Loading...
HomeMy WebLinkAboutCT 00-02; CALAVERA HILLS PHASE II; HYDROLOGY, HYDRAULICS, AND DETENTION STUDY; 2005-07-08HYDROLOGY, HYDRAULICS, AND DETENTION STUDY FOR FOX-MILLER PROPERTY CARLSBAD, CA CT 00-20 Job No. 04-1093-5 Original Submittal Date: January 28, 2004 Revised: May 7, 2004 Revised: June 21, 2004 Revised: August 23, 2004 Revised: November. 30, 2004 Revised: March 16,2005 O'Day Consultants, Inc. 2710 Loker Ave West, Suite 100 Carlsbad, CA92008-7317 Tel: (760) 931-7700 Fax: (760) 931-8680 Date PillCEIVED. JUl 08 2005 ENG\NEE~~ DEPART[V\t:.N~ Revised by: TTC ("'te-'" ) >' r ." c.··· "~ ~ f \ ~\ DESCRIPTION SECTION • ~i\FlFlf\1LI'I~ -------------------------------------------------------------------1 IN1LRODUC1LIO~ L~1L1L~RBOX Ci\~YO~ D~SCRIP1LIO~ OF Ri\nO~i\L M~1LHOD PROGRi\M D~1L~~1LIO~ Bi\SIN D~SIG~ PROC~DU~ CO~CLUSIO~S • Ri\1LIO~i\L i\~i\L YS~S -----------------------------------------------------2 1 00-Y~i\R ~XIS1LING CO~DI1LIO~ 100-YEi\R PROPOS~D CO~DI1LIO~ -Mi\SS GRi\DING 100-YEi\R PROPOSED CO~DI1LIO~ -FULL Y D~'1ELOPED SI1LE WI1LH i\SSUMED O~-L01L D~1L~~nO~ 2-Y~i\R PROPOSED CO~DInO~ -Mi\SS GRi\DING • DE1L~~1LIO~ Bi\SIN SIZING Ci\LCULi\1LIO~S ----------------------- PROPOSED CO~DlnO~ R~OFF HYDROGRi\PH INFLOW / OU1LFLOW / S1LORi\GE Di\1Li\ S1L i\GE-S1LORi\GE GRi\PH 3 • PIPE Ci\LCULi\ 1LIO~S -------------------------------------------------------4 • INLE1L SIZING Ci\LCULi\1LIO~S ------------------------------------------5 • DE1Li\ILS i\~D i\DDI1LIO~i\L INFORMi\1LIO~ ------------------------6 SEDIM~~1L Bi\SIN Ci\LCULi\ 1LIO~ ~XHIBI1L SEDIME~1L Bi\SIN SIZING Ci\LCULi\1LIO~S O'IERFLOVI WEIR Ci\LCULi\1LIO~S G:\Accts\041 093\drainage intra.doc 2 (.' " v • i\J>J>~~l)I)( ---------------------------------------------------------------------- VICWITYMM RUNOFF CO~FFICIENT Ti\BL~ ISOJ>LUVIi\L Mi\J>S 100 YR, 6HR 100 YR, 24 HR SOIL GRODJ> Mi\J> Mi\~WG'S RODG~~SS CO~FFICIE~T T i\BL~ 7 • Mi\J> J>OCKET ------------------------------------------------------------------8 l)Ri\Wi\G~ Mi\J> (1 00 Y~AR ~)(ISTWG) DRi\Wi\G~ Mi\J> (1 00 Y~AR J>ROJ>OS~l)) L~TT~RBO)( CANYON ~)(HIBIT G:\Accts\041093\drainage intro,doc 3 INTRODUCTION The Fox-Miller project site is located in the City of Carlsbad near the intersection of College Blvd. and EI Camino Real. Taylor Made Golf Business Park bounds the site on the west, and Carlsbad Research Center on the south and east. These surrounding, areas are part of the industrial development surrounding Palomar Airport Road; the Fox-Miller property also proposes industrial development. The site topography is predominated by a large canyon bisecting the property east to west from EI Camino Real to the Taylor-Made site at Salk Ave. and Fermi Court. Gently to moderately sloping hillsides occur on each side of the canyon. Approximately two-thirds of the 54-acre site flows into the canyon and then into the existing 48" storm drain in Salk Ave. The majority of the remainder of the site drains into EI Camino Real, with about 6 acres draining into the Taylor-Made industrial park on the east side of Fermi Court. The development of the Fox-Miller property will result in increased runoff volumes generated by the industrial use. Due to capacity constraints in the existing trunk storm drains in College Blvd. and in the Taylor-Made site, all tributary projects would need to detain post- development runoff to produce a volume equal to or less than the existing-condition flows, based on San Diego County 100-yrear storm criteria. A minimum velocity of 4 fps will have to be maintained, based on San Diego County 2 year storm criteria This report analyzes flows generated from the 100-year storm for the propo~ed mass grading. It also analyzes flows generated from the 100-year storm for the fully developed project. In the fully developed study, detention requirements for the future development of lots 1, 2, and 3 were established. The resultant Q' s were then used to size the underground storm drain pipes. A 2 year storm analysis is also included to evaluate minimum Q's Soil type D occurs throughout the site. LETTERBOX CANYON The TM approval of 2002 (planning commission resolution number 5240) conditioned the owners of the property to ensure that ultimate development peak runoff for the property not be G:\Accts\04 I 093\drainage intro,doc 4 c. • increased over the existing peak runoff, due to the capacity constraints in the downstream trunk storm drain system in College Blvd. The design proposal with the TM was to' provide the necessary detention in the canyon itself, with the road embankment blocking the bottom of the canyon, allowing for sufficient pondinglheadwater depth, thus providing the necessary storage/detention. The design called for peak runoff from 3 of the 4 proposed lots, and Salk Ave, to enter the canyon. This concept would have provided the necessary detention, with no additional provisions necessary within the lots. While there would be an increase in flows entering the canyon, the detention provided would result in no increase in runoff leaving the site at that point. As work for the final plans, and discussions associated with agency permits began, information received from the State Regional Water Quality Board (SRWQB), and the Army Corps of Engineers indicated that their preference was for the proposed peak ruIioff entering the canyon, to be as close to the existing peak runoff as feasible, and that the majority of the detention be provided upstream of the canyon, not in line with it. Our understanding is that this concept of minimizing "in line" detention is a recent development with the Army Corps and the SRWQB. The new detention concepts were discussed with the Carlsbad Engineering Department, and their response was that there could be some flexibility in the placement of detention basins, with their main concern being that there would be no increase in peak runoff leaving the site at the bo.ttom. The placement of detention basins within the lots themselves will take up useableh:;ellable area, so with the storm drain/detention design, every effort was made to minimize the amount of detention on each lot. Based on this strategy, the street alignment for Salk, and the proposed grading for the site, lots 1 through 4 will have on-site detention facilities. The developers of lots 1,2, and 3 will construct detention facilities in the future as part of their final engineering of.each lot. Lot 4 detention will be constructed as part of this mass-grading project. The future developers of each lot will be responsible for limiting runoff to amounts noted within this study. Ultimately the individual lot owners and the owners association will be responsible for maintenance of detention basins and pollutant-removal appurtenances. Looking at the impacts to the Letterbox Canyon: A storm drain for the fully developed project will outlet at the top of the canyon with the proposed Q similar but slightly greater than existing G:\Accts\041093\drainage intro.doc 5 ie " at 37 CFS. Moving downstream in the canyon, proposed flows remain close to existing down to the headwall/embankment supporting the Salk roadway, which blocks the canyon at that point. A proposed diverter cleanout in Salk would allow another 17.5 CFS to enter the canyon right at the bottom during high flows. The total proposed QIOO at that point will be 61 CFS, compared to the existing Q100 of 43 CFS. The increase over existing flows will only occur at the bottom end of the canyon. The development of headwater depth at the culvert outlet, due to the road embankment, will allow for some detention of flows there, contributing toward the overall flow reduction at the site outlet. With this design proposal, only the last IS-feet of canyon would be maintained by the City, at the culvert outlet/inlet headwalls. Upstream from there, flows would be similar to existing, and the proposed altered channel bottom will be designed to match the existing cross-section of the canyon. Other than the bottom 15-feet, this entire area is proposed to be un-maintained with planting proposed per the biological mitigation report/plan. To summarize the canyon impacts: The canyon will not be a maintained, fenced detention basin, as proposed on the approved TM. Runoff will flow at velocities and volumes very close toc existing, with an increase in flows only at the end at the City-maintained inlet/outlet structures. Normal culvert headwater depths will provide a small amount of detention during high flows, with minor ponding. The graded portion of the canyon bottom will be constructed to match current cross sections, and with the ultimate planting, will result in a canyon bottom that will appear and function almost identical to existing. Leaving the canyon, flows will join other storm drain systems from the remaining lots, and combine to a total of 64 CFS at the connection to the existing 48" storm drain in Salk Ave. Again, this is based on a fully developed project. The total combined flows for the mass graded condition is 53 CFS. This is less than the calculated existing flow of 61 CFS at that point, and very close to the flow identified on the plans for the existing storm drain. RATIONAL METHOD DESCRIPTION The rational method, as described in the 2003 San Diego County Hydrology Manual, was used to generate surface runoff flows, which were then used to size the drainage facilities. G:\Accts\041093\drainage intro.doc 6 c. The basic equation: Q = CIA C = runoff coefficient (varies with surface) I = intensity (varies with time of concentration) A = Area in acres The design storm for this project is the lOO-year event; the corresponding 6-hourrainfall amount is 2.7 inches. A computer program developed by CivilCADD/Civildesign Engineering Software, © 1999 Version 2.1, is used to determine the times of concentration and corresponding intensities and flows for the various hydrological processes performed in this model. This program can also determine the street flow and pipeflow characteristics for a given segment. ' The rational method program is a computer aided design program where the user develops a node link model of the watershed. The node link model is created by developing independent node link models of each interior watershed and linking these sub-models together at confluence points. The program has the capability of performing calculations for eleven different hydrologic and hydraulic processes. These processes are assigned and printed in the output. They are as follows: 1. Initial sub-area input, top of stream 2. Street flow through sub-area. Includes sub-area runoff 3. Addition of runoff from sub-area to stream 4. Street inlet and parallel street and pipeflow and area 5. Pipeflow travel time (program estimated pipe size) 6. Pipeflow travel time (user specified pipe size) 7. Improved channel time -Area add option 8. Irregular channel travel time -Area add option 9. User specified entry of data at a point 10. Confluence at downstream point in current stream 11. Confluence of main streams DETENTION BASIN DESIGN PROCEDURE Using the data obtained from the rational an~lyses for the proposed condition; a runoff hydro graph was developed to model the 100-year storm. The hydro graph was constructed using the Qp and tc from the rational method, and the Q/Qp and tltp ratios from the San Diego County Hydrology Manual. Using CivilCADD Flood Hydrograph Routing, Universal Method version G:\Accts\041093\drainage intro.doc 7 6.2, the hydro graph was routed into the detention basin. The program calculates outflow from the basin at different times based on the input hydrograph, the storage capacity of the basin, and the outlet works from the basin. The basin for this site was designed to keep the peak Q in the proposed condition below the peak Q in the existing condition. CONCLUSIONS The proposed EI Camino Real storm drain system connects to the existing trunk public storm drain at the northwest comer of the property, on the adjacent Parcel 3 of PM 17830, with the connection made into the existing 18" storm drain. The system increases to 30" diameter about 60 feet into the adjacent parcel. The Carlsbad Engineering Department stated that the design for the El Camino storm drain system should result in flows entering the existing system at rates no higher than existing runoff. These calculations show the existing Q100 at that point to be 38 CFS, and with the proposed small detention basin near the connection point, the proposed QlOo would be 38 CFS as well. The small detention basin is located to pickup all runoff outside of the EI Camino roadway, which amounts to an inflow of around 10 CFS. The trunk storm (. drain in the street would pick up all the runoff from the road itself. • Letterbox Canyon will have flows, as detailed above, that are similar. to the existing condition. The final Q leaving the site and entering the existing system in Salk Avenue at the bottom of the canyon will essentially match the existing flows that currently enter the system. The flows that are generated in the basin that drains onto the property to the west will remain equal to existing flows . G:\Accts\041093\drainage intro.doc 8 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 08/25/04 041093 -FOX/MILLER EXISTING CONDITION RATIONAL METHOD -100 BASIN G:\ACCTS\041093\100EX ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SIN 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation(inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.350 given for subarea Initial subarea flow distance 90.00(Ft.) Highest elevation = 306.00(Ft.) Lowest elevation = 300.00(Ft.) Elevation difference = 6.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.80 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.3500)*( 90.00A .5)/( 6.67 A (1/3)]= 6.80 Rainfall intensity (I) = 5.831 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 1.020(CFS) Total initial stream area = 0.500 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 102.100 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation Channel length thru subarea Channel base width 300 . 00 (Ft. ) 260 . 00 ( Ft . ) 230 . 00 ( Ft . ) 0.000 (Ft. ) 1 G:\Accts\041093\Existing Rational 100 Basin.doc Slope or 'Z' of left channel bank = 5.000 Slope or 'Z' of right channel bank = 5.000 Estimated mean flow rate at midpoint of channel 2.041(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 2.041(CFS) Depth of flow = 0.306(Ft.), Average velocity 4.371(Ft/s) Channel flow top width = 3.056(Ft.) Flow Velocity = 4.37(Ft/s) Travel time 0.88 min. Time of concentration = 7.68 min. Critical depth = 0.402(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 5.393(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 1.887(CFS) for 1.000(Ac.) Total runoff = 2.908(CFS) Total area = 1.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.100 to Point/Station 102.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.500(Ac.) Runoff from this stream 2.908(CFS) Time of concentration Rainfall intensity = 7.68 min. 5.393(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.100 to Point/Station 106.200 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance 250.00(Ft.) Highest elevation = 308.70(Ft.) Lowest elevation = 307.00(Ft.) Elevation difference = 1.70(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.09 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.8500)*(250.00A .5)/( 0.68 A (1/3)]= 8.09 Rainfall intensity (I) = 5.215 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 2.438(CFS) Total initial stream area = 0.550 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.200 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 307.000(Ft.) End of street segment elevation = 292.500(Ft.) Length of street segment 430.000(Ft.) 2 G:\Accts\04 I 093\Existing Rational 100 Basin.doc (. Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 30.000(Ft.) Distance from crown to cross fall grade break 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.050 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.546(CFS) Depth of flow = 0.176(Ft.), Average velocity = 3.774(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 9.770(Ft.) Flow velocity = 3.77(Ft/s) Travel time = 1.90 min. TC 9.99 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 4.552(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 2.162(CFS) for 0.500(Ac.) Total runoff = 4.600(CFS) Total area = 1.05(Ac.) Street flow at end of street = 4.600(CFS) Half street flow at end of street 4.600(CFS) Depth of flow = 0.195 (Ft.), Average velocity = 4.03:0 (Ft/s) Flow width (from curb towards crown)= 10.753(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 102.100 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 292.50(Ft.) Downstream point elevation 260.00(Ft.) Channel length thru subarea 110.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 10.000 Slope or 'Z' of right channel bank = 10.000 Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 4.600(CFS) Depth of flow = 0.288(Ft.), Average velocity Channel flow top width = 5.767(Ft.) Flow Velocity = 5.53(Ft/s) Travel time 0.33 min. Time of concentration 10.32 min. Critical depth = 0.422(Ft.) 5.534(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.100 to Point/Station 102.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 3 G:\Accts\041093\Existing Rational 100 Basin.doc c. Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: 1.050 (Ac.) 4.600(CFS) 10.32 min. 4.457(In/Hr) Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.908 7.68 5.393 2 4.600 10.32 4.457 Qmax(l) 1. 000 * 1. 000 * 2.908) + 1. 000 * 0.744 * 4.600) + 6.332 Qmax(2) 0.827 * 1. 000 * 2.908) + 1. 000 * 1. 000 * 4.600) + 7.004 Total of 2 streams to confluence: Flow rates before confluence point: 2.908 4.600 Maximum flow rates at confluence using above data: 6.332 7.004 Area of streams before confluence: 1.500 1.050 Results of confluence: Total flow rate = 7.004(CFS) Time of concentration 10.322 min. Effective stream area after confluence 2.550 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.100 to Point/Station 103.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 260.00(Ft.) Downstream point elevation 245.00(Ft.) Channel length thru subarea 150.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 5.000 Slope or 'z' of right channel bank = 5.000 Estimated mean flow rate at midpoint of channel 9.201(C"FS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 9.20l(CFS) Depth of flow = 0.596(Ft.), Average velocity 5.175(Ft/s) Channel flow top width = 5.963(Ft.) Flow Velocity = 5.18(Ft/s) Travel time 0.48 min. Time of concentration = 10.80 min. Critical depth = 0.734(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 4.328(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff = 2.423(CFS) for 1.600(Ac.) 4 G:\Accts\041 093\Existing Rational 100 Basin.doc c. Total runoff 9.427(CFS) Total area 4.15 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 107.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 245.00(Ft.) Downstream point elevation 190.00(Ft.) Channel length thru subarea 500.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 3.000 Slope or 'Z' of right channel bank = 3.000 Estimated mean flow rate at midpoint of channel 16.242(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 16.242(CFS) Depth of flow = 0.885(Ft.), Average velocity 6.909(Ft/s) Channel flow top width = 5.311(Ft.) Flow Velocity = 6.91(Ft/s) Travel time 1.21 min. Time of concentration = 12.01 min. Critical depth = 1.125(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 4.042(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 8.488(CFS) for 6.000(Ac.) Total runoff = 17.916(CFS) Total area = 10.15(Ac.) ++++++t+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 107.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 10.150(Ac.) Runoff from this stream 17.916(CFS) Time of concentration = 12.01 min. Rainfall intensity = 4.042(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 109.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.750 given for subarea Initial subarea flow distance 10.00(Ft.) Highest elevation = 308.50(Ft.) Lowest elevation = 302.00(Ft.) Elevation difference = 6.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.50 min. TC [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.7500)*( 10.00A .5)/( 65.00A (1/3)]= 0.50 5 G:\Accts\041093\Existing Rational 100 Basin.doc Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100:0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.750 Subarea runoff = 3.201(CFS) Total initial stream area = 0.600 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 110.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 302.00(Ft.) Downstream point elevation 242.00(Ft.) Channel length thru subarea 220.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 10.000 Slope or 'Z' of right channel bank = 10.000 Estimated mean flow rate at midpoint of channel 3.468(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 3.468(CFS) Depth of flow = 0.263(Ft.), Average velocity 5.004(Ft/s) Channel flow top width = 5.265(Ft.) Flow Velocity = 5.00(Ft/s) Travel time 0.73 min. Time of concentration = 5.73 min. Critical depth = 0.375(Ft.) Adding area flow to channel User specified 'c' value of 0.350 given for subarea Rainfall intensity 6.513(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 0.228(CFS) for 0.100(Ac.) Total runoff = 3.429(CFS) Total area = 0.70(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.700(Ac.) Runoff from this stream 3.429(CFS) Time of concentration Rainfall intensity = 5.73 min. 6.513(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.100 to Point/Station 110.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.350 given for subarea Initial subarea flow distance 320.00(Ft.) Highest elevation = 316.00(Ft.) Lowest elevation = 242.00(Ft.) Elevation difference = 74.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.48 min. 6 G:\Accts\041 093\Existing Rational 100 Basin.doc c. (-. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.3500)*(320.00A .5)/( 23.13A (1/3)]= 8.48 Rainfall intensity (I) = 5.061 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 4.074(CFS) Total initial stream area = 2.300 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.300(Ac.) Runoff from this stream 4.074(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 8.48 min. 5.061(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 3.429 5.73 6.513 2 4.074 8.48 5.061 Qmax(l) 1. 000 * 1. 000 * 3.429) + 1. 000 * 0.676 * 4.074) + 6.185 Qmax(2) 0.777 * 1. 000 * 3.429) + 1. 000 * 1. 000 * 4.074) + 6.739 Total of 2 streams to confluence: Flow rates before confluence point: 3.429 4.074 Maximum flow rates at confluence using above data: 6.185 6.739 Area of streams before confluence: 0.700 2.300 Results of confluence: Total flow rate = 6.739(CFS) Time of concentration 8.476 min. Effective stream area after confluence 3.000(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 107.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 242.00(Ft.) Downstream point elevation 190.00(Ft.) Channel length thru subarea 550.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'z' of left channel bank = 5.000 Slope or 'Z' of right channel bank = 5.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.040 7 13.253(CFS) G:\Accts\041 093\Existing Rational 100 Basin.doc Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 13.253(CFS) Depth of flow = 0.691(Ft.), Average velocity 5.551(Ft/s} Channel flow top width = 6.910(Ft.} Flow Velocity = 5.55(Ft/s) Travel time 1.65 min. Time of concentration = 10.13 min. Critical depth = 0.848(Ft.} Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 4.512(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 9.160(CFS) for 5.800(Ac.} Total runoff = 15.898(CFS} Total area = 8.80(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 107.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 8.800(Ac.} Runoff from this stream 15.898(CFS} Time of concentration = 10.13 min. Rainfall intensity = 4.512(In/Hr) Summary of stream data: Stream No. 1 2 Qmax(l) Qmax(2} Flow rate (CFS) 17.916 15.898 1. 000 * 0.896 * 1. 000 * 1. 000 * TC (min) 12.01 10.13 1. 000 * 1. 000 * 0.843 * 1. 000 * 17.916} 15.898} 17.916} 15.898} Total of 2 main streams to confluence: Flow rates before confluence point: 17.916 15.898 Rainfall Intensity (In/Hr) 4.042 4.512 + + 32.158 + + 31. 005 Maximum flow rates at confluence using above data: 32.158 31.005 Area of streams before confluence: 10.150 8.800 Results of confluence: Total flow rate = 32.158(CFS) Time of concentration 12.011 min. Effective stream area after confluence 18.950 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 8 G:\Accts\041 093\Existing Rational 100 Basin.doc c. Process from Point/Station 107.000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 190.00(Ft.) Downstream point elevation 154.00(Ft.) Channel length thru subarea 650.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 5.000 Slope or 'Z' of right channel bank = 5.000 111. 000 Estimated mean flow rate at midpoint of channel 39.201(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 39.201(CFS) Depth of flow = 1.147(Ft.), Average velocity 5.957(Ft/s) Channel flow top width = 11.472(Ft.) Flow Velocity = 5.96(Ft/s) Travel time 1.82 min. Time of concentration = 13.83 min. Critical depth = 1.313(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 3.691(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 10.722(CFS) for 8.300(Ac.} Total runoff = 42.880(CFS) Total area = 27.25(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 112.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 154.00(Ft.) Downstream point elevation 140.50(Ft.) Channel length thru subarea 230.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel 44.532(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 44.532(CFS) Depth of flow = 0.705(Ft.), Average velocity 4.486(Ft/s) Channel flow top width = 28.182(Ft.) Flow Velocity = 4.49(Ft/s) Travel time 0.85 min. Time of concentration = 14.68 min. Critical depth = 0.789(Ft.) Adding area flow to channel User specified 'c' value of 0.350 given for subarea Rainfall intensity 3.551(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.3-50 Subarea runoff 2.610(CFS) for 2.100(Ac.) Total runoff = 45.490(CFS) Total area = 29.35(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 112.00b 9 G:\Accts\041 093\Existing Rational 100 Basin.doc c. **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 29.350(Ac.) Runoff from this stream 45.490(CFS) Time of concentration 14.68 min. Rainfall intensity = 3.551(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 114.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.350 given for subarea Initial subarea flow distance 160.00(Ft.) Highest elevation = 300.00(Ft.) Lowest elevation = 260.00(Ft.) Elevation difference = 40.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.84 min. TC = [l.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.3500)*(160.00 A .5)/( 25.00A (1/3)]= 5.84 Rainfall intensity (I) = 6.436 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 2.027(CFS) Total initial stream area = 0.900 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 112.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 260.00(Ft.) Downstream point elevation 140.50(Ft.) Channel length thru subarea 1150.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 5.000 Slope or 'z' of right channel bank = 5.000 Estimated mean flow rate at midpoint of channel 14.529(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 14.529(CFS) Depth of flow = 0.703(Ft.), Average velocity 5.885(Ft/s) Channel flow top width = 7.027(Ft.) Flow Velocity = 5.89(Ft/s) Travel time 3.26 min. Time of concentration = 9.10 min. Critical depth = 0.879(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 4.836(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 18.786(CFS) for 11.100(Ac.) Total runoff = 20.814(CFS) Total area = 12.00(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 10 G:\Accts\041093\Existing Rational 100 Basin.doc Process from Point/Station 112.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 12.000(Ac.) Runoff from this stream 20.814(CFS) Time of concentration = 9.10 min. Rainfall intensity = 4.836(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 45.490 14.68 3.551 2 20.814 9.10 4.836 Qmax(l) 1. 000 * 1. 000 * 45.490) + 0.734 * 1. 000 * 20.814) + 60.773 Qmax(2) 1. 000 * 0.620 * 45.490) + 1. 000 * 1. 0,00 * 20.814) + 48.995 Total of 2 streams to confluence: Flow rates before confluence point: 45.490 20.814 Maximum flow rates at confluence using above data: 60.773 48.995 Area of streams before confluence: 29.350 12.000 Results of confluence: Total flow rate = 60.773(CFS) Time of concentration = 14.684 min. Effective stream area after confluence End of computations, total study area = 41. 350 (Ac. ) 41.35 (Ac.) 112.000 11 G:\Accts\041 093\Existin&" Rational 100 Basin.doc • • San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology man~al Rational Hydrology Study Date: 05/04/04 ----------------------------------------------~---------------------~--- 041093 -FOX/MILLER EXISTING CONDITION RATIONAL METHOD -200 BASIN G:\ACCTS\041093\200EX ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SIN 10125 Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation (inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 200.100 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.350 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 283.50(Ft.) Lowest elevation = 274.00(Ft.) Elevation difference = 9.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.37 min. TC = [l.8*(1.1-C)*distanceA .5)/{% slopeA (1/3)] TC = [l.8*{l.1-0.3500)*(100.00A .5)/( 9.50A (1/3)]= 6.37 Rainfall intensity (I) = 6.082 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 1.277(CFS) Total initial stream area = 0.600 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.100 to Point/Station 201.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation Channel length thru subarea Channel base width 274 . 00 (Ft. ) 14 2 • 00 (Ft. ) 660.00 (Ft.) 0.000 (Ft.) 12 G:\Accts\041093\Existing Rational 200 Basin.doc • , Slope or 'Z' of left channel bank = 5.000 Slope or 'z' of right channel bank = 5.000 Estimated mean flow rate at midpoint of channel 7.877(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 7.877(CFS) Depth of flow = 0.494(Ft.), Average velocity 6.455(Ft/s) Channel flow top width = 4.940(Ft.) Flow Velocity = 6.46(Ft/s) Travel time 1.70 min. Time of concentration = 8.08 min. Critical depth = 0.688(Ft.) Adding area flpw to channel User spec~fied 'C' value of 0.350 given for subarea Rainfall intensity 5.221(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff = 11.329(CFS) for 6.200(Ac.) Total runoff = 12.606(CFS) Total area = 6.80(Ac.) End of computations, total study area = 6.80 (Ac.) 13 G:\Accts\041093\Existing Rational 200 Basin.doc • • • San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 05/04/04 041093 -FOX/MILLER EXISTING CONDITION RATIONAL METHOD -300 BASIN G:\ACCTS\041093\300EX ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SiN 10125 Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation(inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values 'used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 301.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 180.00(Ft.)' Highest elevation = 300.50(Ft.) Lowest elevation = 295.00(Ft.) Elevation difference = 5.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.50 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9500)*(180.00 A .5)/( 3.06A (1/3)]= 2.50 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 1.690(CFS) Total initial stream area = 0.250(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 301.000 to Point/Station 302.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 295.000(Ft.) End of street segment elevation = 250.000(Ft.) Length of street segment 800.000(Ft.) 14 G:\Accts\041 093\Existing Rational 300 Basin.qoc • e· Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 30.000(Ft.) Distance from crown to crossfall grade break 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.050 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 5.744(CFS) Depth of flow = 0.272(Ft.), Average velocity = 7.061(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 4.654(Ft.) Flow velocity = 7.06(Ft/s) Travel time = 1.89 min. TC 6.89 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 5.786(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 6.596(CFS) for 1.200(Ac.) Total runoff = 8.285(CFS) Total area = 1.45(Ac.) Street flow at end of street = 8.285(CFS) Half street flow at end of street 8.285(CFS) Depth of flow = 0.323(Ft.), Average velocity = 7.772(Ft/s) Flow width (from curb towards crown)= 5.268(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station .303.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 247.00(Ft.) Downstream point/station elevation 238.00(Ft.) Pipe length 120.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 8.285(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow 8.285(CFS) Normal flow depth in pipe = 8.50(In.) Flow top width inside pipe = 10.91(In.) Critical depth could not be calculated. Pipe flow velocity = 13.94(Ft/s) Travel time through pipe 0.14 min. Time of concentration (TC) = 7.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 303.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.450(Ac.) Runoff from this stream 8.285(CFS) Time of concentration = 7.03 min. 15 G:\Accts\041093\Existing Rational 300 Basin.doc • • Rainfall intensity S.709(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 304.000 to Point/Station 30S.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.9S0 given for subarea Initial subarea flow distance 130.00(Ft.) Highest elevation = 294.00(Ft.) Lowest elevation = 28S.00(Ft.) Elevation difference = 9.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.62 min. TC = [l.8*(l.1-C)*distanceA .S)/(% slopeA (1/3)] TC = [l.8*(l.1-0.9S00)*(130.00A .S)/( '6.92A (1/3)]= 1.62 Setting time of concentration to S minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.9S0 Subarea runoff = 1.014(CFS) Total initial stream area = 0.lS0 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30S.000 to Point/Station 303.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 28S.000(Ft.) End of street segment elevation = 238.000(Ft.) Length of street segment 7S0.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 30.000(Ft.) Distance from crown to crossfall grade break 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) O.OSO Gutter width = 1.S00(Ft.) Gutter hike from flowline = 0.12S(In.) Manning's N in gutter = 0.01S0 Manning's N from gutter to grade break 0.01S0 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.379(CFS) Depth of flow = 0.206(Ft.), Average velocity = 6.376(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.8S1(Ft.) Flow velocity = 6.38(Ft/s) Travel time = 1.96 min. TC 6,.96 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 5.747(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.9S0 Subarea runoff 3.822(CFS) for 0.700(Ac.) Total runoff = 4.83S(CFS) Total area = 0.85(Ac.) Street flow at end of street = 4.835(CFS) Half street flow at end of street 4.835(CFS) 16 G:\Accts\041 093\Existing Rational 300 Basin.doc • Depth of flow = 0.244(Ft.), Average velocity = 7.020(Ft/s) Flow width (from curb towards crown)= 4.320(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 303 .. 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.850(Ac.) Runoff from this stream 4.835(CFS) Time of concentration = 6.96 min. Rainfall intensity = 5.747(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 8.285 7.03 5.709 2 4.835 6.96 5.747 Qmax(l) 1. 000 * 1. 000 * 8.285) + 0.993 * 1. 000 * 4.835) + 13.089 Qmax(2) 1. 000 * 0.990 * 8.285) + 1. 000 * 1. 000 * 4.835) + 13.037 Total of 2 streams to confluence: Flow rates before confluence point: 8.285 4.835 Maximum flow rates at confluence using above data: 13.089 13.037 Area of streams before confluence: 1.450 0.850 Results of confluence: Total flow rate = 13.089(CFS) Time of concentration 7.032 min. Effective stream area after confluence 2.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 306.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 238.000(Ft.) End of street segment elevation = 200.000(Ft:) Length of street segment 550.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 30.000(Ft.) Distance from crown to cross fall grade break 20.000(ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.OOO(Ft.) Slope from curb to property line (v/hz) = 0.050 Gutter width = 1.500(Ft.) 17 G:\Accts\041093\Existing Rational 300 Basin.doc • • \" Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 14.512(CFS) Depth of flow = 0.398(Ft.), Average velocity = 9.694(Ft/s) Street flow hydraulics at midpoint of street traver: Halfstreet flow width = 6.175(Ft.) Flow velocity = 9.69(Ft/s) Travel time = 0.95 min. TC 7.98 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 5.263(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C =, 0.950 Subarea runoff 2.500(CFS) for 0.500(Ac.) Total runoff = 15.589(CFS) Total area = 2.80(Ac.) Street flow at end of street = 15.589(CFS) Half street flow at end of street 15.589(CFS) Depth of flow = 0.412(Ft.), Average velocity = 9.874(Ft/s) Flow width (from curb'towards crown)= 6.333(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 306.000 to Point/Station 311.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation Channel length thru subarea Channel base width Slope or 'Z' of left channel Slope or 'Z' of right channel Manning's 'N' = 0.015 200.00(Ft.) 192.00(Ft.) 50.00(Ft.) 2.000(Ft.) bank = 0.000 bank = 0.000 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 15.589(CFS) Depth of flow = 0.436(Ft.), Average velocity Channel flow top width = 2.000(Ft.) Flow Velocity = 17.89(Ft/s) Travel time 0.05 min. Time of concentration 8.02 min. Critical depth = 1.234(Ft.) 17.893(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 311.000 to Point/Station 311.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.800(Ac.) Runoff from this stream 15.589(CFS) Time of concentration 8.02 min. Rainfall intensity = 5.243(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 307.000 to Point/Station 308.000 **** INITIAL AREA EVALUATION **** 18 G:\Accts\04I093\Existing Rational30Q Basin.doc • '. . ~. User specified 'C' value of 0.500 given for subarea Initial subarea flow distance 150.00(Ft.) Highest elevation = 272.00(Ft.) Lowest elevation = 250.00(Ft.) Elevation difference = 22.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.40 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.5000)*(150.00A .5)/( 14.67A (1/3)]= 5.40 Rainfall intensity (I) = 6.766 for a 100.0 year storm Effective runoff coefficient used for area (Q~KCIA) is C = 0.500 Subarea runoff = 2.030(CFS) Total initial stream area = 0.600(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 308.000 to Point/Station 310.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 250.000(Ft.) End of street segment elevation = 200.000(Ft.) Length of street segment 750.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 30.000(Ft.) Distance from crown to crossfall grade break 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] siders) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.050 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.214(CFS) Depth of flow = 0.198(Ft.), Average velocity = 6.434(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.755(Ft.) Flow velocity =. 6.43 (Ft/s) Travel time = 1.94 min. TC 7.35 min. Adding area flow to street User specified 'c' value of 0.950 given for subarea Rainfall intensity 5.550(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 3.691(CFS) for 0.700(Ac.) Total runoff = 5.721(CFS) Total area = 1.30(Ac.) Street flow at end of street = 5.721(CFS) Half street flow at end of street 5.721(CFS) Depth of flow = 0.261(Ft.), Average velocity = 7.509(Ft/s) Flow width (from curb towards crown)= 4.519(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.000 to Point/Station 310.000 **** SUBAREA FLOW ADDITION **** 19 G;\Accts\041093\Existing Rational 300 Basin.doc • • User specified 'c' value of 0.700 given for subarea Time of concentration = 7.35 min. Rainfall intensity 5.550{In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C -0.700 Subarea runoff 1.166{CFS) for 0.300{Ac.) Total runoff = 6.886{CFS) Total area = 1.60(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 311.QOO **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 192.30(Ft.) Downstream point/station elevation 192.00{Ft.) Pipe length 50.00{Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 6.886(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow 6.886(CFS) Normal flow depth in pipe = 12.70(In.) Flow top width inside pipe = 16.41(In.) Critical Depth = 12.19{In.) Pipe flow velocity = 5.16(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 7.51 min . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 311.000 to Point/Station 311.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.600(Ac.) Runoff from this stream 6.886(CFS) Time of concentration Rainfall intensity = 7.51 min. 5.473{In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 312.000 to Point/Station 313.000 **** INITIAL AREA EVALUATION **** User specified 'c' value of 0.350 given for subarea Initial subarea flow distance 600.00(Ft.) Highest elevation = 309.00(Ft.) Lowest elevation = 255.00{Ft.) Elevation difference = 54.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 15.90 min. TC = [1.8*(1.1-C)*distanceA .5)/{% slopeA {l/3)] TC = [1.8*{l.1-0.3500)*(600.00A .5)/( 9.00A (1/3)]= 15.90 Rainfall intensity (I) = 3.373 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 2.007(CFS) Total initial stream area = 1. 700 (Ac.) 20 G:\Accts\041093\Existing Rational 300' Basin.doc • '- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 313.000 to Point/Station 311.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = 255.00(Ft.) Downstream point elevation 192.00(Ft.) Channel length thru subarea 350.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 3.000 Slope or 'Z' of right channel bank = 3.000 Estimated mean flow rate at midpoint of channel 3.365(CFS) Manning's 'N' = 0.035 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 3.365(CFS) Depth of flow = 0.425(Ft.), Average velocity 6.197(Ft/s) Channel flow top width = 2.553(Ft.) Flow Velocity = 6.20(Ft/s) Travel time 0.94 min. Time of concentration = 16.84 min. Critical depth = 0.602(Ft.) Adding area flow to channel User specified 'C-' value of 0.350 given for subarea Rainfall intensity 3.251 (In/Hr) for a· 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 2.617(CFS) for 2.300(Ac.) Total runoff = 4.624(CFS) Total area = 4.00(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 311.000 to Point/Station 311.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 4.000(Ac.) Runoff from this stream 4.624(CFS) Time of concentration = 16.84 min. Rainfall intensity = 3.251(In/Hr) Summary of stream data: Stream No. 1 2 3 Qmax (1) Qmax(2) Qmax(3) Flow rate (CFS) 15.589 6.886 4.624 1. 000 * 0.958 * 1. 000 * 1. 000 * 1. 000 * 1. 000 * 0.620 * 0.594 * TC (min) 8.02 7.51 16.84 1. 000 * 1. 000 * 0.477 * 0.936 * 1. 000 * 0.446 * 1. 000 * 1. 000 * 15.589) 6.886) 4.624) 15.589) 6.886) 4.624) 15.589) 6.886) 21 Rainfall Intensity (In/Hr) 5.243 5.473 3.251 + + + 24.390 + + + 23.535 + + G:\Accts\041093\Existing Rational 300 Basin.doc • .~ 1. 000 * 1. 000 * 4.624) + 18.378 Total of 3 streams to confluence: Flow rates before confluence point: 15.589 6.886 4.624 Maximum flow rates at confluence using above data: 24.390 23.535 18.378 Area of streams before confluence: 2.800 1.600 4.000 Results of confluence: Total flow rate = 24.390(CFS) Time of concentration 8.024 min. Effective stream area after confluence 8.400 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 311.100 to Point/Station 3~1.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.350 given for subarea Time of concentration = 8.02 min. Rainfall intensity 5.243(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 3.303(CFS) for 1.800(Ac.) Total runoff = 27.693(CFS) Total area = 10.20(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 311.000 to Point/Station 318.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 192.00(Ft.) Downstream point elevation 175.00(Ft.) Channel length thru subarea 220.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 3.000 Slope or 'zt of right channel bank = 3.000 Estimated mean flow rate at midpoint of channel 31.087(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 31.087(CFS) Depth of flow = 1.207(Ft.), Average velocity 7.118(Ft/s) Channel flow top width = 7.239(Ft.) Flow Velocity = 7.12(Ft/s) Travel time 0.52 min. Time of concentration = 8.54 min. Critical depth = 1.461(Ft.) Adding area flow to channel User specified 'c' value of 0.350 given for subarea Rainfall intensity 5.037(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C -0.350 Subarea runoff 4.407(CFS) for 2.500(Ac.) Total runoff = 32.101(CFS) Total area = 12.70(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 318.000 to Point/Station 317.000 22 G:\Accts\041093\Existing Rational 300 Basin.doc • • ***'* IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = Downstream point elevation Channel length thru subarea Channel base width Slope or 'Z' of left channel Slope or 'Z' of right channel Manning's 'N' = 0.040 17S.00(Ft. ) 160.00 (Ft. ) 160.00 (Ft.) O.OOO{Ft.) bank = 2.000 bank = 2.000 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 32.101(CFS) Depth of flow = 1.391(Ft.), Average velocity Channel flow top width = S.S66(Ft.) Flow Velocity = 8.29(Ft/s) Travel time 0.32 min. Time of concentration 8.86 min. Critical depth = 1.734(Ft.) 8.291(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 317.000 to Point/Station 317.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 12.700{Ac.) Runoff from this stream 32.101(CFS) Time of concentration 8.86 min. Rainfall intensity = 4.918(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31S.000 to Point/Station 316.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.9S0 given for subarea Initial subarea flow distance 130.00(Ft.) Highest elevation = 200.00{Ft.) Lowest elevation = 190.00{Ft.) Elevation difference = 10.00{Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.56 min. TC = [l.8*(1.1-C)*distanceA .S)/(% slopeA {1/3)] TC = [l.8*(1.1-0.9S00)*(130.00A .5)/( 7.69A (1/3)]= 1.56 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 1.690(CFS) Total initial stream area = 0.250 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 316.000 to Point/Station 317.000' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 190.000(Ft.) End of street segment elevation = 170.000(Ft.) Length of street segment 280.000(Ft.) 23 G:\Accts\041093\Existing Rationa1300 Basin.doc ·' ." • Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 30.000(Ft.) Distance from crown to crossfall grade break 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope, from curb to property line (v/hz) 0.050 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.703(CFS) Depth of flow = 0.178(Ft.), Average velocity = 6.292(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.523(Ft.) Flow velocity = 6.29(Ft/s) Travel time = 0.74 min. TC 5.74 min. Adding area flow to street User specified 'c' value of 0.950 given for subarea Rainfall intensity 6.507(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q~KCIA, C 0.950 Subarea runoff 1.854(CFS) for 0.300(Ac.) Total runoff = 3.544(CFS) Total area = 0.55(AQ.) Street flow at end of street = 3.544(CFS) Half street flow at end of street 3.544{CFS) Depth of flow = 0.204(Ft.), Average velocity = 6.775(Ft/s) Flow width (from curb towards crown)= 3.830(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 317.000 to Point/Station 317.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.550(Ac.) Runoff from this stream 3.544(CFS) Time of concentration = 5.74 min. Rainfall intensity = 6.507(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 32.101 8.86 4.918 2 3.544 5.74 6.507 Qmax(l) 1. 000 * 1. 000 * 32.101) + 0.756 * 1. 000 * 3.544) + 34.779 Qmax(2) 1. 000 * 0.648 * 32.101) + 1. 000 * 1. 000 * 3.544) + 24.345 Total of 2 streams to confluence: Flow rates before confluence point: 24 G:\AcctsI041093IExisting Rational 300 Basin.doc • • 32.101 3.544 Maximum flow rates at confluence using above data: 34.779 24.345 Area of streams before confluence: 12.700 0.550 Results of confluence: Total flow rate = 34.779(CFS) Time of concentration 8.861 min. Effective stream area after confluence 13.250 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 317.000 to Point/Station 314.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 170.00(Ft.) Downstream point elevation 148.00(Ft.) Channel length thru subarea· 90.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel 37.011(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 37.011(CFS) Depth of flow = 1.226(Ft.), Average velocity 12.306(Ft/s) Channel flow top width = 4.905(Ft.) Flow Velocity = 12.31(Ft/s) Travel time 0.12 min. Time of concentration = 8.98 min. Critical depth = 1.844(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 4.875(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff = 2.901(CFS) for 1.700(Ac.) Total runoff = 37.680(CFS) Total area = 14.95(Ac.) End of computations, "total study area = 14 . 95 (Ac.) 25 G:\Accts\041093\Existing Rationa1300 Basin.doc • . I '. " • Q'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 * * Inside Diameter 18.00 in.) * * * * * - ---AAAAAAAAAAAAAAAAAAAAA A * Water * I I * * I I * * 16.88 1. 407 * * I * * I * v -------- Circular Channel Section Flowrate ................. . 51. 818 CFS Velocity ................. . 30.097 fps Pipe Diameter ............ . 18.000 inches Depth of Flow ............ . 16.884 inches Depth of Flow ............ . 1. 407 feet in. ) f~. ) Critical Depth ........... . Greater than Pipe Diameter Depth/Diameter (D/d) .... . 0.938 Slope of Pipe ............ . 21. 030 % X-Sectional Area ......... . 1. 722 sq. ft. Wetted Perimeter ......... . 3.957 feet AR" (2/3) ................. . 0.989 Mannings In' ............. . 0.013 Min. Fric. Slope, 18 inch Pipe Flowing Full ..... . 24.335 % \ 8 "(...( f Di~ @> €L Cf\'M'w\l'- (. • San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 11/30/04 041093 -FOX/MILLER PROPOSED RATIONAL METHOD -100 & 200 BASINS G:\ACCTS\041093\100P ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SiN 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation(inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.400 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 306.00(Ft.) Lowest elevation = 288.50(Ft.) Elevation difference = 17.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.85 min. TC = [1.8*(l.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.4000)*(100.00A .5)/( 17.50A (1/3)]= 4.85 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.400 Subarea runoff = 0.569(CFS) Total initial stream area = 0.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.crOO **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation Channel length thru subarea 288.50(Ft.) 275 . 00 (Ft. ) 520 . 00 (Ft. ) 1 G:\Accts\041093\Proposed Rational 100 Basin.doc • Channel base width 0.100(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel 4.126(CFS) Manning's 'N' = 0.025 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 4.126(CFS) Depth of flow = 0.663(Ft.), Average velocity 4.370(Ft/s) Channel flow top width = 2.750(Ft.) Flow Velocity = 4.37(Ft/s) Travel time 1.98 min. Time of concentration = 6.98 min. Critical depth = 0.742(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 5.735(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 5.735(CFS) for 2.500(Ac.) Total runoff = 6.304(CFS) Total area = 2.70(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.800 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 272.00(Ft.) Downstream point/station elevation 258.96(Ft.) Pipe length 105.46(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 6.304(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow 6.304(CFS) Normal flow depth in pipe = 6.02(In.) Flow top width inside pipe = 12.00(In.) Critical depth could not be calculated. Pipe flow velocity = 15.98(Ft/s) Travel time through pipe 0.11 min. Time of concentration (TC) = 7.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.800 to Point/Station 103.800 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.700(Ac.) Runoff from this stream 6.304(CFS) Time of concentration 7.09 min. Rainfall intensity = 5.677(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.100 to Point/Station 103.300 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.400 given for subarea Initial subarea flow distance 202.00(Ft.) Highest elevation = 284.05(Ft.) 2 G:\Accts\041093\Proposed Rational 100 Basin.doc Lowest elevation = 282.03(Ft.) Elevation difference = 2.02(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 17.91 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.4000)*(202.00A.5)/( 1.00A(1/3)]= 17.91 Rainfall intensity (I) = 3.124 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.400 Subarea runoff = 0.375(CFS) Total initial stream area = 0.300 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.300 to Point/Station 103.700 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 282.03(Ft.) Downstream point elevation 276.60(Ft.) Channel length thru subarea 210.00(Ft.) Channel base width 0.100(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.025 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 1.187(CFS) Depth of flow = 0.407(Ft.), Average velocity Channel flow top width = 1.726(Ft.) Flow Velocity = 3.20(Ft/s) Travel time 1.09 min. Time of concentration = 19.00 min. Critical depth = 0.441(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea 1.187 (CFS) 3.198(Ft/s) Rainfall intensity 3.007(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C Subarea runoff 1.564(CFS) for 1.300(Ac.) Total runoff = 1.938(CFS) Total area = 1.~0(Ac.) 0.400 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.700 to Point/Station 103.800 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 265.60(Ft.) Downstream point/station elevation ~58.96(Ft.) Pipe length 42.06(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 1.938(CFS) Nearest computed pipe diameter 6.00(In.) Calculated individual pipe flow 1.938(CFS) Normal flow depth in pipe = 4.32(In.) Flow top width inside pipe = 5.38(In.) Critical depth could not be calculated. Pipe flow velocity = 12.79(Ft/s) Travel time through pipe 0.05 min. Time of concentration (TC) = 19.06 min. 3 G:\Accts\041093\Proposed Rational 100 Basin.doc c. • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.800 to Point/Station 103.800 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.600(Ac.) Runoff from this stream 1.938(CFS) Time of concentration = 19.06 min. Rainfall intensity = 3.001(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6.304 7.09 5.677 2 1. 938 19.06 3.001 Qmax(l) 1. 000 * 1. 000 * 6.304) + 1. 000 * 0.372 * 1.938) + 7.025 Qmax(2) 0.529 * 1. 000 * 6.304) + 1. 000 * 1. 000 * 1. ~38) + 5.271 Total of 2 streams to confluence: Flow rates before confluence point: 6.304 1.938 Maximum flow rates at confluence using above data: 7.025 5.271 Area of streams before confluence: 2.700 1.600 Results of confluence: Total flow rate = 7.025(CFS) Time of concentration 7.093 min. Effective stream area after confluence 4.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.800 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 258.63(Ft.) Downstream point/station elevation 241.71(Ft.) Pipe length 246.23(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 7.025(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow 7.025(CFS) Normal flow depth in pipe = 5.58(In.) Flow top width inside pipe = 20.27(In.) Critical Depth = 11.29(In.) Pipe flow velocity = 12.68(Ft/s) Travel time through pipe = 0.32 min. Time of concentration (TC) = 7.42 min . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 4 G:\Accts\041093\Proposed Rational 100 Basin.doc c. • Process from Point/Station 10S.000 to Point/Station 10S.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.300 (Ac. )' Runoff from this stream 7.02S(CFS) Time of concentration = 7.42 min. Rainfall intensity = S.S16(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.200 to Point/Station 103.100 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.400 given for subarea Initial subarea flow distance 16S.00(Ft.) Highest elevation = 283.S0(Ft.) Lowest elevation = 281.8S(Ft.) Elevation difference = 1.6S(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 16.18 min. TC = [1.8*(1.1-C)*distanceA .S)/(% slopeA (1/3)] TC = [1.8*(1.1-0.4000)*(16S.00A .S)/( 1.00A (1/3)]= 16.18 Rainfall intensity (I) = 3.33S for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.400 Subarea runoff = 0.400(CFS) Total initial stream area = 0.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.100 to Point/Station 103.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 281.8S(Ft.) Downstream point elevation 269.00(Ft.) Channel length thru subarea 440.00(Ft.) Channel base width 10.000(Ft.) Slope or 'Z' of left channel bank = SO.OOO Slope or 'Z' of right channel bank = SO.OOO Estimated mean flow rate at midpoint of channel 1.334(CFS) Manning's 'N' = 0.02S Maximum depth of channel 0.100(Ft.) Flow(q) thru subarea = 1.334(CFS) Depth of flow = 0.068(Ft.), Average velocity 1.458(Ft/s) Channel flow top width = 16.822(Ft.) Flow Velocity = 1.46(Ft/s) Travel time 5.03 min. Time of concentration = 21.21 min. Critical depth = 0.072(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 2.801(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 1.568(CFS) for 1.400(Ac.) Total runoff = 1.969(CFS) Total area = 1.70(Ac.) 5 G:\Accts\041093\Proposed Rational 100 Basin.doc ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.600. **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 269.00(Ft.) Downstream point/station elevation 268.00(Ft.) Pipe length 100.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 1.969(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow 1.969(CFS) Normal flow depth in pipe = 6.37(In.) Flow top width inside pipe = 11.98(In.) Critical Depth = 7.18(In.) Pipe flow velocity = 4.65(Ft/s) Travel time through pipe = 0.36 min. Time of concentration (TC) = 21.57 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.600 to Point/Station 103.600 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.700(Ac.) Runoff from this stream 1.969(CFS) Time of concentration Rainfall intensity = 21.57 min. 2.771 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.200 to Point/Station 103.400 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.400 given for subarea Initial subarea flow distance 120.00(Ft.) Highest elevation = 283.50(Ft.) Lowest elevation = 282.30(Ft.) Elevation difference = 1.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 13.80 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.4000)*(120.00 A .5)/( 1.00A(1/3)]= 13.80 Rainfall intensity (I) = 3.695 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.400 Subarea runoff = 0.296(CFS) Total initial stream area = 0.200 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.400 to Point/Station 103.500 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation Channel length thru subarea 282 . 30 (Ft. ) 273 . 00 (Ft. ) 650.00 (Ft. ) 6 G:\Accts\041 093\Proposed Rational 100 Basin.doc ce ce le Channel base width 0.100(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel 1.996(CFS) Manning's 'N' = 0.025 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 1.996(CFS) Depth of flow = 0.561(Ft.), Average velocity 2.915(Ft/s) Channel flow top width = 2.342(Ft.) Flow Velocity = 2.92(Ft/s) Travel time 3.72 min. Time of concentration = 17.52 min. Critical depth = 0.547(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 3.169(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 2.915(CFS) for 2.300(Ac.) Total runoff = 3.211(CFS) Total area = 2.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.500 to Point/Station 103.600 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 273.00(Ft.) Downstream point/station elevation 272.00(Ft.) Pipe length 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 3.211(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 3.211(CFS) Normal flow depth in pipe = 5.68(In.) Flow top width inside pipe = 16.73(In.) Critical Depth = 8.19(In.) Pipe flow velocity = 6.71(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 17.64 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.600 to Point/Station 103.600 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.500(Ac.) Runoff from this stream 3.211(CFS) Time of concentration = Rainfall intensity = Summary of stream data: Stream Flow rate 17.64 min. 3.154(In/Hr) TC No. (CFS) (min) 1 1.969 21. 57 2 3.211 17.64 Qmax(l) 7 Rainfall Intensity ( In/Hr) 2.771 3.154 G:\Accts\04! 093\Proposed Rational! 00 Basin.doc • Qmax(2) 1. 000 * 0.878 * 1. 000 * 1. 000 * 1. 000 * 1. 000 * 0.818 * 1. 000 * 1.969) + 3.211) + 1.969) + 3.211) + Total of 2 streams to confluence: Flow rates before confluence point: 1.969 3.211 4.789 4.821 Maximum flow rates at confluence using above data: 4.789 4.821 Area of streams before confluence: 1.700 2.500 Results of confluence: Total flow rate = 4.821(CFS) Time of concentration 17.643 min. Effective stream area after confluence 4.200 (Ac. ). ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.600 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 272.00(Ft.) Downstream point/station elevation 242.00(Ft.) Pipe length 450.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 4.821(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow 4.821(CFS) Normal flow depth in pipe = 6.17(In.) Flow top width inside pipe = 12.00(In.) Critical Depth = 10.88(In.) Pipe flow velocity = 11.85(Ft/s) Travel time through pipe = 0.63 min. Time of concentration (TC) = 18.28 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.200(Ac.) Runoff from this stream 4.821(CFS) Time of concentration = 18.28 min. Rainfall intensity = 3.083(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 104.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance 120.00(Ft.) Highest elevation = 275.70(Ft.) 8 G:\Accts\04l 093\Proposed Rational 100 Basin.doc Lowest elevation = 273.50(Ft.) Elevation difference = 2.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.22 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9000)*(120.00A .5)/( 1.83A (1/3)]= 3.22 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.280(CFS) Total initial stream area = 0.200 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 273.500(Ft.) End of street segment elevation = 251.000(Ft.) Length of street segment 340.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.0~3 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.561(CFS) Depth of flow = 0.177(Ft.), Average velocity = 6.030(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.507(Ft.) Flow velocity = 6.03(Ft/s) Travel time = 0.94 min. TC 5.94 min. Adding area flow to street User specified 'C' value of 0.700 given for subarea Rainfall intensity 6.366(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, ~ 0.700 Subarea runoff 1.782(CFS) for 0.400(Ac.) Total runoff = 3.063(CFS) Total area = 0.60(Ac.) Street flow at end of street = 3.063(CFS) Half street flow at end of street 3.063(CFS) Depth of flow = 0.193(Ft.), Average velocity = 6.333(Ft/s) Flow width (from curb towards crown)= 3.704(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.600 given for subarea. Time of concentration = 5.94 min. 9 G;\;\ccts\041 093\Proposed Rational 100 Basin.doc c. Rainfall intensity 6.366(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.600 Subarea runoff 2.292(CFS) for 0.600(Ac.) Total runoff = 5.355(CFS) Total area = 1.20(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 246.18(Ft.) Downstream point/station elevation 242.47(Ft.) Pipe length 52.68(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 5.355(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 5.355(CFS) Normal flow depth in pipe = 5.34(In.) Flow top width inside pipe = 16.45(In.) Critical Depth = 10.70(In.) Pipe flow velocity = 12.17(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 6.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.200(Ac.) Runoff from this stream 5.355(CFS) Time of concentration = 6.01 min. Rainfall intensity = 6.316(In/Hr) Program is now starting with Main Stream No. 4 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 109.000 **** INITIAL AREA EVALUATION **** User specified 'c' value of 0.850 given for subarea· Initial subarea flow distance 15.00(Ft.) Highest elevation = 275.70(Ft.) Lowest elevation = 273.50(Ft.) Elevation difference = 2.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.71 min. TC = [l.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.8500)*( 15.00A .5)/( 14.67 A (1/3)]= 0.7i Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effecti ve runoff coefficient used for a,rea (Q=KCIA) is C = 0.850 Subarea runoff = 0.907(CFS) Total initial stream area = 0.150 (Ac.) 10 G:\Accts\041 093\Proposed 'Rational 100 Basin,doc c. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 105.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 273.500(Ft.) End of street segment elevation = 251.000(Ft.) Length of street segment 340.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Dist·ance from crown to crossfall grade break 21.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] siders) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.814(CFS) Depth of flow = 0.149(Ft.), Average velocity = 5.477(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.169(Ft.) Flow velocity = 5.48(Ft/s) Travel time = 1.03 min. TC 6.03 min. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity 6.301(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.900 Subarea runoff 1.701(CFS) for 0.300(Ac.) Total runoff = 2.608(CFS) Total area = 0.45(Ac.) Street flow at end of street = 2.608(CFS) Half street flow at end of street 2.608(CFS) Depth of flow = 0.179(Ft.), Average velocity = 6.060(Ft/s) Flow width (from curb towards crown)= 3.526(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 4 Stream flow area = 0.,450 (Ac. ) Runoff from this stream 2.608(CFS) Time of concentration = Rainfall intensity = Summary of stream data: Stream Flow rate 6.03 min. 6.301(In/Hr) TC No. (CFS) (min) 1 7.025 7.42 2 4.821 18.28 3 5.355 6.01 11 Rainfall Intensity (In/Hr) 5.516 3.083 6.316 G:\Accts\041093\Proposcd Rational 100 Basin.doc c. 4 2.608 6.03 6.301 Qmax(l) 1. 000 * 1. 000 * 7.025) + 1. 000 * 0.406 * 4.821) + 0.873 * 1. 000 * 5.355) + 0.875 * 1. 000 * 2.608) + 15.942 Qmax(2) 0.559 * 1. 000 * 7.025) + 1.000 * 1. 000 * 4.821) + 0.488 * 1. 000 * 5.355) + 0.489 * 1. 000 * 2.608) + 12.638 Qmax(3) 1.000 * 0.811 * 7.025) + 1. 000 * 0.329 * 4.821) + 1. 000 * 1. 000 * 5.355) + 1.000 * 0.996 * 2.608) + 15.234 Qmax(4) 1. 000 * 0.814 * 7.025) + 1.000 * 0.330 * 4.821) + 0.998 * 1. 000 * 5.355) + 1. 000 * 1. 000 * 2.608) + 15.258 Total of 4 main streams to confluence: Flow rates before confluence point: 7.025 4.821 5.355 2.608 Maximum flow rates at confluence using above data: 15.942 12.638 15.234 15.258 Area of streams before confluence: 4.300 4.200 1.200 0.450 Results of confluence: Total flow rate = 15.942(CFS) Time of concentration 7.417 min. Effective stream area after confluence 10.150(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 107.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 242.00(Ft.) Downstream point/station elevation 190.00(Ft.) Pipe length 120.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 15.942(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 15.942(CFS) Normal flow depth in pipe = 5.88(In.) Flow top width inside pipe = 16.88(In.) Critical Depth = 17.08(In.) Pipe flow velocity = 31.80(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 7.48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 107.000 12 G:\Accts\041093\Proposed Rational 100 Basin.doc c. **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.400 given for suba~ea Time of concentration = 7.48 min. Rainfall intensity 5.486(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KC'IA, CO. 400 Subarea runoff 2.195(CFS) for 1.000(Ac.) Total runoff = 18.136(CFS) Total area = 11.15fAc.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 113.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 190.00(Ft.) Downstream point elevation 169.00(Ft.) Channel length thru subarea 640.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 10.000 Slope or 'z' of right channel bank = 10.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.040 Maximum depth of channel 3.000(Ft.) Flow(q) thru subarea = 22.040(CFS) Depth of flow = 0.783(Ft.), Average velocity Channel flow top width = 15.669(Ft.) Flow Velocity = 3.59(Ft/s) Travel time 2.97 min. Time of concentration = 10.45 min. Critical depth = 0.789(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea 22.040(CFS) 3.591(Ft/s) Rainfall intensity 4.422(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 7.429(CFS) for-4.800(Ac.) Total runoff = 25.565(CFS) Total area = 15.95(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 113.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 15.950(Ac.) Runoff from this stream 25.565(CFS) Time of concentration = 10.45 min. Rainfall intensity = 4.422(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.750 given for subarea Initial subarea flow distance 180.00(Ft.) 13 G:\Accts\041 093\Proposed' Rational 100 Basin.doc (. ~, Highest elevation = 308.50(Ft.) Lowest elevation = 306.00(Ft.) Elevation difference = 2.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.58 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.7500)*(180.00A .5)/( 1.39A (1/3)]= 7.58 Rainfall intensity (I) = 5.441 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.750 Subarea runoff = 2.449(CFS) Total initial stream area = 0.600(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201.000 to Point/Station 202.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = 306.00(Ft.) Downstream point elevation 288.00(Ft.) Channel length thru subarea 140.00(Ft.) Channel base width 1.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel 2.857(CFS) Manning's 'N' = 0.015 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 2.857(CFS) Depth of flow = 0.219(Ft.), Average velocity 10.686(Ft/s) Channel flow top width = 1.439(Ft.) Flow Velocity = 10.69(Ft/s) Travel time 0.22 min. Time of concentration = 7.79 min. Critical depth = 0.527(Ft.) Adding area flow to channel User specified 'C' value of 0.450 given for subarea Rainfall intensity 5.343(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 0.481(CFS) for 0.200(Ac.) Total runoff = 2.929(CFS) Total area = 0.80(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 203.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 288.00(Ft.) Downstream point elevation 273.00(Ft.) Channel length thru subarea 140.00(Ft.) Channel base width 10.000(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'z' of right channel bank = 50.000 Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 2.929(CFS) Depth of flow = 0.074(Ft.), Average velocity Channel flow top width = 17.352(Ft.) Flow Velocity = 2.91(Ft/s) 14 2.913(Ft/s) G:\Accts\041093\Proposed Rational 100 Basin.doc c. Travel time 0.80 Time of concentration Critical depth = min. 8.59 o .113 (Ft.) min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 203.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.350 given for subarea Time of concentration = 8.59 min. Rainfall intensity 5.016(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 1.931(CFS) for 1.100(Ac.) Total runoff = 4.861(CFS) Total area = 1.90(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 206.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 273.00(Ft.) Downstream point elevation 258.00(Ft.) Channel length thru subarea 500.00(Ft.) Channel base width 50.000(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 10.617(CFS) Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 10.617(CFS) Depth of flow = 0.095(Ft.), Average velocity 2.033(Ft/s) Channel flow top width = 59.537(Ft.) Flow Velocity = 2.03(Ft/s) Travel time 4.10 min. Time of concentration = 12.69 min. Critical depth = 0.107(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 3.900(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 7.021(CFS) for 4.500(Ac.) Total runoff = 11.881(CFS) Total area = 6.40(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 207.000 -H'H PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 258.00(Ft.) Downstream point/station elevation 231.00(Ft.) Pipe length 120.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 11.881(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow 11.881(CFS) Normal flow depth in pipe = 7.42(In.) Flow top width inside pipe = 11.66(In.) 15 G:\Accts\041093\Proposcd Rational 100 Basin.doc c. c. Critical depth could not be calculated. Pipe flow velocity = 23.30(Ft/s) Travel time through pipe Time of concentration (TC) = 0.09 min. 12.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 207.000 to Point/Station 208.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 231.00(Ft.) Downstream point/station elevation 20S.00(Ft.) Pipe length 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 11.881(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 11.881(CFS) Normal flow depth in pipe = 8.S9(In.) Flow top width inside pipe = 14.84(In.) Critical depth could not be calculated. Pipe flow velocity = 16.3S(Ft/s) Travel time through pipe 0.31 min. Time of concentration (TC) = 13.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 6.400(Ac.) Runoff from this stream 11.881(CFS) Time of concentration 13.09 min. Rainfall intensity = 3.825(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 209.000 to Point/Station 210.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.9S0 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 2S0.00(Ft.) Lowest elevation = 243.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.41 min. TC = [l.8*(l.1-C)*distanceA .S)/(% slopeA (l/3)] TC = [l.8*(l.1-0.9S00)*(100.00 A .S)/( 7.00A (l/3)]= 1.41 Setting time of concentration to S minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.9S0 Subarea runoff = 0.676(CFS) Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 208.000 16 G:\Accts\041093\Proposed Rational 100 Basin.doc c. **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 243.000(Ft.) End of street segment elevation = 213.000(Ft.) Length of street segment 370.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to cross fall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.OS3 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.01S0 Estimated mean flow rate at midpoint of street = 2.027(CFS) Depth of flow = 0.150(Ft.), Average velocity = 6.0S0(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.17S(Ft.) Flow velocity = 6.08(Ft/s) Travel time = 1.01 min. TC 6.01 min. Adding area flow to street User specified 'c' value of 0.950 given for subarea Rainfall intensity 6.315(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 2.400(CFS) for 0.400(Ac.) Total runoff = 3.075(CFS) Total area = 0.50(Ac.) Street flow at end of street = 3.075(CFS) Half street flow at end of street 3.075(CFS) Depth of flow = 0.lS4(Ft.), Average velocity = 6.S25(Ft/s) Flow width (from curb towards crown)= 3.594(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 211.000 to Point/Station 20S.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.500 given for subarea Time of concentration = 6.01 min. Rainfall intensity 6.315(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.500 Subarea runoff 3.157(CFS) for 1.000(Ac.) Total runoff = 6.233(CFS) Total area = 1.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 20S.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.500(Ac.) Runoff from this stream 6.233(CFS) Time of concentration Rainfall intensity = 6.01 min. 6.315(In/Hr) 17 G:\Accts\041093\Proposed Rational 100 Basin.doc ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 213.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 250.00(Ft.) Lowest elevation = 243.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.41 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9500)*(100.00A.5)/( 7.00A(1/3)]= 1.41 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.676(CFS) Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 213.000 to Point/Station 208.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 243.000(Ft.) End of street segment elevation = 213.000(Ft.) Length of street segment 370.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = Depth of flow = 0.136(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.019(Ft.) Flow velocity = 5.77(Ft/s) Travel time = 1.07 min. TC 6.07 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea 1. 690 (CFS) 5.773(Ft/s) Rainfall intensity 6.279(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 1.789(CFS) for 0.300(Ac.) Total runoff = 2.465(CFS) Total area = 0.40(Ac:) Street flow at end of street = 2.465(CFS) Half street flow at end of street 2.465(CFS) Depth of flow = 0.165(Ft.), Average velocity = 6.421(Ft/s) 18 G:\Accts\041093\Proposed Rational. 100 Basin.doc c. Flow width (from curb towards crown)= 3.363 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 214.000 to Point/Station 208.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.400 given for subarea Time of concentration = 6.07 min. Rainfall intensity 6.279(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.753(CFS) for 0.300(Ac.) Total runoff = 3.219(CFS) Total area = 0.70(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.700(Ac.) Runoff from this stream 3.219(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 6.07 min. 6.279(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 11. 881 13. 09 3.825 2 6.233 6.01 6.315 3 3.219 6.07 6.279 Qmax(l) 1.000 * 1. 000 * 11.881) + 0.606 * 1. 000 * 6.233) + 0.609 * 1. 000 * 3.219) + 17.617 Qmax(2) 1. 000 * 0.460 * 11. 881) + 1. 000 * 1. 000 * 6.233) + 1. 000 * 0.991 * 3.219) + 14.883 Qmax(3) 1. 000 * 0.464 * 11.881) + 0.994 * 1.000 * 6.233) + 1.000 * 1. 000 * 3.219) + 14.925 Total of 3 streams to confluence: Flow rates before confluence point: 11.881 6.233 3.219 Maximum flow rates at confluence using above data: 17.617 14.883 14.925 Area of streams before confluence: 6.400 1.500 0.700 Results of confluence: Total flow rate = 17.617(CFS) Time of concentration 13.086 min. Effective stream area after confluence 8.600 (Ac.) 19 G:\Accts\041093\Proposed Rational 100 Basin.doc • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 21S.000 *,*** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 206.00(Ft.) Downstream point/station elevation 182.00(Ft.) Pipe length 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 17.617(CFS) Nearest computed pipe diameter lS.00(In.) Calculated individual pipe flow 17.617(CFS) Normal flow depth in pipe = 11.84(In.) Flow top width inside pipe = 12.24(In.) Critical depth could not be calculated. Pipe flow velocity = 16.96(Ft/s) Travel time through pipe 0.29 min. Time of concentration (TC) = 13.38 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21S.000 to Point/Station 21S.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 8.600(Ac.) Runoff from this stream 17.617(CFS) Time of concentration Rainfall intensity = 13.38 min. 3.770(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 217.000 to Point/Station 218.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.9SO given for subarea Initial subarea flow distance 70.00(Ft.) Highest elevation = 212.00(Ft.) Lowest elevation = 208.00(Ft.) Elevation difference = 4.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.26 min. TC = [l.8*(1.1-C)*distanceA.S)/(% slopeA (1/3)] TC = [l.8*(1.1-0.9S00)*( 70.00 A.S)/( S.71A(1/3)]= 1.26 Setting time of concentration to S minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.9SO Subarea runoff = 0.676(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 218.000 to Point/Station 21S.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation End of street segment elevation 20 208 . 000 (Ft. ) 189.000 (Ft.) G:\Accts\041093\Proposed Rational 100 Basin.doc c. (. Length of street segment 240.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crpwn (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.352(CFS) Depth of flow = 0.123(Ft.), Average velocity = 5.369(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.851(Ft.) Flow velocity = 5.37(Ft/s) Travel time = 0.75 min. TC 5.75 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 6.504(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 1.236(CFS) for 0.200(Ac.) Total runoff = 1.912(CFS) Total area = 0.30(Ac.) Street flow at end of street = 1.912(CFS) Half street flow at end of street 1.912(CFS) Depth of flow = 0.146(Ft.), Average velocity = 5.928(Ft/s) Flow width (from curb towards crown)= 3.136(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 215.000 to Point/Station 215.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.300(Ac.) Runoff from this stream 1.912(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 5.75 min. 6.504(In/Hr) Stream No. 1 2 Qmax(l) Qmax(2) Total of Flow rate (CFS) 17.617 1. 912 1. 000 * 0.580 * 1. 000 * 1. 000 * 2 streams TC (min) 13.38 5.75 1. 000 * 1. 000 * 0.429 * 1.000 * 17.617) 1.912) 17.617) 1.912) to confluence: 21 Rainfall Intensity ( In/Hr) 3.770 6.504 + + 18.725 + + 9.475 G:\Accts\041 093\Proposed Rational '\ 00 Basin.doc (. Flow rates before confluence point: 17.617 1.912 Maximum flow rates at confluence using above data: 18.725 9.475 Area of streams before confluence: 8.600 0.300 Results of confluence: Total flow rate = 18.725(CFS) Time of concentration 13.381 min. Effective stream area after confluence 8.900(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 215.000 to Point/Station 113.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 181.00(Ft.) Downstream point/station elevation 169.00(Ft.) Pipe length 44.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 18.725(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 18.725(CFS) Normal flow depth in pipe = 7.25(In.) Flow top width inside pipe = 17.66(In.) Critical depth could not be calculated. Pipe flow velocity = 28.11(Ft/s) Travel time through pipe 0.03 min. Time of concentration (TC) = 13.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 113.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 8.900(Ac.) Runoff from this stream 18.725(CFS) Time of concentration = 13.41 min. Rainfall intensity = 3.765(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 25.565 10.45 4.422 2 18.725 13.41 3.765 Qmax(l) 1. 000 * 1.000 * 25.565) + 1. 000 * 0.779 * 18.725) + 40.160 Qmax(2) 0.852 * 1.000 * 25.565) + 1. 000 * 1. 000 * 18.725) + 40.494 Total of 2 main streams to confluence: Flow rates before confluence point: 22 G:\Accts\041093\Proposed Rational 100 Basin.doc (. c. 25.565 18. 725 Maximum flow rates at confluence using above data: 40.160 40.494 Area of streams before confluence: 15.950 8.900 Results of confluence: . Total flow rate = 40.494(CFS) Time of concentration 13.407 min. Effective stream area after confluence 24 . 8 SO (Ac . ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 219.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 169.00(Ft.) Downstream point/station elevation 162.00(Ft.) Pipe length 70.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 40.494.(CFS) Nearest computed pipe diameter 21.00(In.) Calculated individual pipe flow 40.494(CFS) Normal flow depth in pipe = 14.32(In.) Flow top width inside pipe = 19.56(In.) Critical depth could not be calculated. Pipe flow velocity = 23.19(Ft/s) Travel time through pipe O.OS min. Time of concentration (TC) = 13.46 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Station 220.0DO **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 162.00(Ft.) Downstream point/station elevation 14S.S0(Ft.) Pipe length lS0.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 40.494(CFS) Nearest computed pipe diameter 21.00(In.) Calculated individual pipe flow 40.494(CFS) Normal flow depth in pipe = 13.83(In.) Flow top width inside pipe = 19.92(In.) Critical depth could not be calculated. Pipe flow velocity = 24.10(Ft/s) Travel time through pipe 0.10 min. Time of concentration (TC) = 13.S6 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 221.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 14S.S0(Ft.) Downstream point/station elevation 142.50(Ft.) Pipe length 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 40.494(CFS) 23 G:\Accts\041093\Proposed Rational,] 00 Basin.doc • Nearest computed pipe diameter 21.00(In.) Calculated individual pipe flow 40.494(CFS) Normal flow depth in pipe = 14.32(In.) Flow top width inside pipe = 19.56(In.) Critical depth could not be calculated. Pipe flow velocity = 23.19(Ft/s) Travel time through pipe 0.02 min. Time of concentration (TC) 13.58 min. End of computations, total study area = 24.85 (Ac.) 24 G:\Accts\041093\Proposed Rational 100 Basin.doc San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/16/05 041093 -FOX/MILLER PROPOSED RATIONAL METHOD -300 BASIN G:\ACCTS\041093\300Pl ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SiN 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation(inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4+++++++ Process from Point/Station 300.000 to Point/Station 301.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance 180.00(Ft.) Highes~ elevation = 300.50(Ft.) Lowest elevation = 295.00(Ft.) Elevation difference = 5.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.33 min. TC = [l.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [l.8*(1.1-0.9000)*(180.00A .5)/( 3.06A (1/3)]= 3.33 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.601(CFS) Total initial stream area = 0.250 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 301.000 to Point/Station 302.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 295.000(Ft.) End of street segment elevation = 250.000(Ft.) Length of street segment 800.000(Ft.) 25 G:\Accts\041093\Proposed Rational 300 Basin.doc • • Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 30.000(Ft.) Distance from crown to crossfall grade break 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 5.442(CFS) Depth of flow = 0.265(Ft.), Average velocity = 6.961(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 4.572(Ft.) Flow velocity = 6.96(Ft/s) Travel time = 1.92 min. TC 6.92 min. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity 5.771(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.900 Subarea runoff 6.233(CFS) for 1.200(Ac.) Total runoff = 7.833(CFS) Total area = 1.45(Ac.) Street flow at end of street = 7.833(CFS) Half street flow at end of street 7.833(CFS) Depth of flow = 0.315(Ft.), Average velocity = 7.659(Ft/s) Flow width (from curb towards crown)= 5.168(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 303.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 245.00(Ft.) Downstream point/station elevation 234.00(Ft.) Pipe length 90.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 7.833(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 7.833(CFS) Normal flow depth in pipe = 5.64(In.) Flow top width inside pipe = 16.70(In.) Critical Depth = 13.01(In.) Pipe flow velocity = 16.52(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 7.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 303:000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area 1.450(Ac.) Runoff from this stream = 7.833(CFS) 26 G:\Accts\041093\Proposed Rational 300 Basin.doc c. • Time of concentration = 7.01 min. Rainfall intensity = 5.723(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 304.000 to Point/Station 305 .. 000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 308.50(Ft.) Lowest elevation = 307.50(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.50 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.8500)*(100.00A .5)/( 1.00A (l/3)]= 4.50 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 2.419(CFS) Total initial stream area = 0.400(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.000 to Point/Station 306.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 307.500(Ft.) End of street segment elevation = 270.000(Ft.) Length of street segment 900.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 44.000(Ft.) Distance from crown to crossfall grade break 39.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street =6.349(CFS) Depth of flow = 0.323(Ft.), Average velocity = 5.912(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 6.099(Ft.) Flow velocity = 5.91(Ft/s) Travel time = 2.54 min. Te 7.54 min. Adding area flow to street User specified 'e' value of 0.900 given for subarea Rainfall intensity 5.459(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KeIA, C 0.900 Subarea runoff 6.387(CFS) for 1.300(Ac.) Total runoff = 8.806(CFS) Total area = 1.70(Ac.) 27 G:\Accts\041093\Proposed Rational 300 Basin.doc c. • Street flow at end of street = 8.806(CFS) Half street flow at end of street 8.806(CFS) Depth of flow = 0.391(Ft.), Average velocity = 5.486(Ft/s) Flow width (from curb towards crown)= 9.504(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 306.000 to Point/Station 309.100 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 262.16(Ft.) Downstream point/station elevation 258.85(Ft.) Pipe length 47.37(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 8. 80,6 (CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow 8.806(CFS) Normal flow depth in pipe = 9.20(In.) Flow top width inside pipe = 10.15(In.) Critical depth could not be calculated. Pipe flow velocity = 13.63(Ft/s) Travel time through pipe 0.06 min. Time of concentration (TC) = 7.60 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.100 to Point/Station 309.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.700(Ac.) Runoff from this stream 8.806(CFS) Time of concentration 7.60 min. Rainfall intensity = 5.432(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 307.000 to Point/Station 308.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.700 given for subarea Initial subarea flow distance 90.00(Ft.) Highest elevation = 275.30(Ft.) Lowest elevation = 274.40(Ft.) Elevation difference = 0.90(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.83 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.7000)*( 90.00 A.5)/( 1.00A(1/3)]= 6.83 Rainfall intensity (I) = 5.817 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.700 Subarea runoff = 0.611(CFS) Total initial stream area = 0.150 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 308.000 to Point/Station 309.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 28 G:\Accts\041093\Proposed Rationa1300 Basin.doc • Top of street segment elevation = 275.300(Ft.) End of street segment elevation = 264.050(Ft.) Length of street segment 172.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.036(CFS) Depth of flow = 0.158(Ft.), Average velocity = 5.634(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.282(Ft.) Flow velocity = 5.63(Ft/s) Travel time = 0.51 min. TC 7.34 min. Adding area flow to street User specified 'C' value of 0.800 given for subarea Rainfall intensity 5.554(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.800 Subarea runoff 3.110(CFS) for 0.700(Ac.) Total runoff = 3.721(CFS) Total area = 0.85(Ac.) Street flow at end of street = 3.721(CFS) Half street flow at end of street 3.721(CFS) Depth of flow = 0.213(Ft.), Average velocity = 6.648(Ft/s) Flow width (from curb towards crown)= 3.943(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.000 to Point/Station 309.100 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 259.32(Ft.) Downstream point/station elevation 258.85(Ft.) Pipe length 46.74(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 3.721(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 3.721(CFS) Normal flow depth in pipe = 8.16(In.) Flow top width inside pipe = 14.94(In.) Critical Depth = 9.35(In.) Pipe flow velocity = 5.46(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 7.48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.100 to Point/Station 309.100 **** CONFLUENCE OF MINOR STREAMS **** 29 G:\Accts\041093\Proposed Rational 300 Basin.doc c. c. • Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.850(Ac.) Runoff from this stream 3.721(CFS) Time of concentration = 7.48 min. Rainfall intensity = 5.485(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 8.806 7.60 5.432 2 3.721 7.48 5.485 Qmax(l) 1. 000 * 1. 000 * 8.806) + 0.990 * 1. 000 * 3.721) + 12.491 Qmax(2) 1. 000 * 0.985 * 8.806) + 1. 000 * 1. 000 * 3.721) + 12.396 Total of 2 streams to confluence: Flow rates before confluence point: 8.806 3.721 Maximum flow rates at confluence using above data: 12.491 12.396 Area of streams before confluence: 1.700 0.850 Results of confluence: Total flow rate = 12.491(CFS) Time of concentration 7.595 min. Effective stream area after confluence 2.550 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.100 to Point/Station 303.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 258.52(Ft.) Downstream point/station elevation 234.00(Ft.) Pipe length 244.22(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 12.491(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 12.491(CFS) Normal flow depth in pipe = 8.46(In.) Flow top width inside pipe = 14.88(In.) Critical depth could not be calculated. Pipe flow velocity = 17.50(Ft/s) Travel time through pipe 0.23 min. Time of concentration (TC) = 7.83 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 303.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 30 G:\Accts\041 093\Proposed Rational 300.Basin.doc c. Stream flow area = 2.550(Ac.) Runoff from this stream 12.491(CFS) Time of concentration = 7.83 min. Rainfall intensity = 5.328(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.200 to Point/Station 309.300 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.800 given for subarea Initial subarea flow distance 155.00(Ft.) Highest elevation = 266.30(Ft.) Lowest elevation = 259.56(Ft.) Elevation difference = 6.74(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.12 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.8000)*(155.00A .5)/( 4.35A (1/3)]= 4.12 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.800 Subarea runoff = 0.569(CFS) Total initial stream area = 0.100 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.300 to Point/Station 303.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 259.560(Ft.) End of street segment elevation = 240.880(Ft.) Length of street segment 258.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 44.000(Ft.) Distance from crown to crossfall grade break 39.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000CFt.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = Depth of flow = 0.153(Ft.), Average velocity = Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.213(Ft.) Flow velocity = 5.81(Ft/s) Travel time = 0.74 min. TC 5.74 min. Adding area flow to street User specified 'C' value of 0.900 given for subarea 1. 992 (CFS) 5.808(Ft/s) Rainfall intensity 6.508(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.900 31 G:\Accts\041093\Proposed Rational 300 Basin.doc c. C. Subarea runoff Total runoff = 2.928(CFS) for 3.498 (CFS) Street flow at end of street = 0.500 (Ac.) Total area = 3.498(CFS) 3.498(CFS) 0.60 (Ac.) Half street flow at end of street Depth of flow = 0.202(Ft.), Average Flow width (from curb towards crown)= velocity = 6.784(Ft/s) 3.806(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 303.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 0.600(Ac.) Runoff from this stream 3.498(CFS) Time of concentration = 5.74 min. Rainfall intensity = 6.508(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 7.833 7.01 5.723 2 12.491 7.83 5.328 3 3.498 5.74 6.508 Qmax(l) 1. 000 * 1. 000 * 7.833) + 1. 000 * 0.895 * 12.491) + 0.879 * 1. 000 * 3.498) + Qmax(2) 0.931 * 1.000 * 7.833) + 1. 000 * 1.000 * 12.491) + 0.819 * 1. 000 * 3.498) + Qmax(3) 1. 000 * 0.819 * 7.833) + 1. 000 * 0.733 * 12.491) + 1. 000 * 1. 000 * 3.498) + Total of 3 main streams to confluence: Flow rates before confluence point: 7.833 12.491 3.498 Maximum flow rates at confluence using above 22.089 22.647 19.076 Area of streams before confluence: 1.450 2.550 0.600 Results of confluence: Total flow rate = 22.647(CFS) Time of concentration 7.828 min. Effective stream area after confluence 22.089 22.647 19.076 data: 4.600 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 310.000 32 G:\Accts\041 093\Proposed Rational 300 Basin.doc • **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 234.00(Ft.) Downstream point/station elevation 192.00(Ft.) Pipe length 660.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 22.647(CFS) Nearest computed pipe diameter 18.00(In.) Calculated individual pipe flow 22.647(CFS) Normal flow depth in pipe = 12.80(In.) Flow top width inside pipe = 16.32(In.) Critical depth could not be calculated. Pipe flow velocity = 16.84(Ft/s) Travel time through pipe 0.65 min. Time of concentration (TC) = 8.48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.600(Ac.) Runoff from this stream 22.647(CFS) Time of concentration 8.48 min. Rainfall intensity = 5.059(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 311.000 to Point/Station 312.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.500 given for subarea Initial subarea flow distance 150.00(Ft.) Highest elevation = 272.00(Ft.) Lowest elevation = 250.00(Ft.} Elevation difference = 22.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.40 min. TC = [1.8*(1.1-C)*distanceA.5}/(% slopeA(1/3)] TC = [1.8*(1.1-0.5000)*(150.00A.5)/( 14.67A(1/3)]= 5.40 Rainfall intensity (I) = 6.766 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.500 Subarea runoff = 2.030(CFS) Total initial stream area = 0.600 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 312.000 to Point/Station 313.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITI·ON **** Top of street segment elevation = 250.000(Ft.) End of street segment elevation = 200.000(Ft.} Length of street segment 750.000(Ft.) Height of curb above gutter flowline 6.0(In.} Width of half street (curb to crown) 44.000(Ft.) Distance from crown to crossfall grade break 39.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 33 G:\Accts\041093\Proposed Rational 300 Basin.doc c. Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.214(CFS) Depth of flow = 0.198(Ft.), Average velocity = 6.434(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.755(Ft.) Flow velocity = 6.43(Ft/s) Travel time = 1.94 min. TC 7.35 min. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity 5.550(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.900 Subarea runoff 3.497(CFS) for 0.700(Ac.) Total runoff = 5.527(CFS) Total area = 1.30(Ac.) Street flow at end of street = 5.527(CFS) Half street flow at end of street 5.527(CFS) Depth of flow = 0.257(Ft.), Average velocity = 7.440(Ft/s) Flow width (from curb towards crown)= 4.468(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 314.000 to Point/Station 313.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.700 given for subarea Time of concentration = 7.35 min. Rainfall intensity 5.550(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.700 Subarea runoff 1.166(CFS) for 0.300(Ac.) Total runoff = 6.692(CFS) Total area = 1.60(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 313.000 to Point/Station 310.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 192.30(Ft.) Downstream point/station elevation 192.00(Ft.) Pipe length 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 6. 692 (CFS) Nearest computed pipe diameter 18.00(In.) Calculated individual pipe flow 6.692(CFS) Normal flow depth in pipe = 12.42(In.) Flow top width inside pipe = 16.65(In.) Critical Depth = 12.01(In.) Pipe flow velocity = 5.14(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 7.51 min. 34 G:\Accts\041093\Proposed Rationa1300 Basin.doc c. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.600(Ac.) Runoff from this stream 6.692(CFS) Time of concentration 7.51 min. Rainfall intensity = 5.473(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.100 to Point/Station 310.200 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 247.00(Ft.) Lowest elevation = 240.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.88 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9000)*(100.00A .5)/( 7.00A (1/3)]= 1.88 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 1.280(CFS) Total initial stream area = 0.200(Ac.) storm is C = 0.900 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.200 to Point/Station 310.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 240.000(Ft.) End of street segment elevation = 199.000(Ft.) Length of street segment 600.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 44.000(Ft.) Distance from crown to crossfall grade break 39.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade bre'ak 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.841(CFS) Depth of flow = 0.214(Ft.), Average velocity = 6.813(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.956(Ft.) Flow velocity 6.81(Ft/s) Travel time = 1.47 min. TC = 6.47 min. 35 G:\Accts\04 I 093\Proposed Rational 306 Basin.doc • • Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity 6.026(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.900 Subarea runoff 4.338(CFS) for 0.800(Ac.) Total runoff = 5.619(CFS) Total area = 1.00(Ac~) Street flow at end of street = 5.619(CFS) Half street flow at end of street 5.619(CFS) Depth of flow = 0.257(Ft.), Average velocity = 7.541(Ft/s) Flow width (from curb towards crown)= 4.474(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 1.000(Ac.) Runoff from this stream 5.619(CFS) Time of concentration = 6.47 min. Rainfall intensity = 6.026(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 22.647 8.48 5.059 2 6.692 7.51 5.473 3 5.619 6.47 6. 026 Qmax(l) 1.000 * 1. 000 * 22.647) + 0.924 * 1.000 * 6.692) + 0.840 * 1. 000 * 5.619) + 33.552 Qmax(2) 1. 000 * 0.885 * 22.647) + 1.000 * 1. 000 * 6.692) + 0.908 * 1. 000 * 5.619) + 31.847 Qmax (3) 1.000 * 0.763 * 22.647) + 1. 000 * 0.861 * 6.692) + 1.000 * 1. 000 * 5.619) + 28.655 Total of 3 streams to confluence: Flow rates before confluence point: 22.647 6.692 5.619 Maximum flow rates at confluence using above data: 33.552 31.847 28.655 Area of streams before confluence: 4.600 1.600 1.000 Results of confluence: Total flow rate = 33.552(CFS) Time of concentration 8.481 min. Effective stream area after confluence = 7.200 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 36 G:\Accts\041093\Proposed Rationa1300 Basin.doc c. • Process from Point/Station 310.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 199.00(Ft.) Downstream point/station elevation 161.00(Ft.) Pipe length 420.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 33.552(CFS) Nearest computed pipe diameter 21.00(In.) Calculated individual pipe flow 33.552(CFS) Normal flow depth in pipe = 13.00(In.) Flow top width inside pipe = 20.40(In.) Critical depth could not be calculated. Pipe flow velocity = 21.47(Ft/s) Travel time through pipe 0.33 min. Time of concentration (TC) = 8.81 min. 315.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 315.100 to Point/Station 315.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.950 given for subarea Time of concentration = 8.81 min. Rainfall intensity 4.938(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 2.815(CFS) for 0.600(Ac.) Total runoff = 36.366(CFS) Total area = 7.80(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 315.000 to Point/Station 316.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 161.00(Ft.) Downstream point/station elevation 147.00(Ft.) Pipe length 100.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 36.366(CFS) Nearest computed pipe diameter 18.00(In.) Calculated individual pipe flow 36.366(CFS) Normal flow depth in pipe = 13.66(In.) Flow top width inside pipe = 15.39(In.) Critical depth could not be calculated. Pipe flow velocity = 25.25(Ft/s) Travel time through pipe 0.07 min. Time of concentration (TC) = 8.87 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 316.000 to Point/Station 316.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 7.800(Ac.) Runoff from this stream 36.366(CFS) Time of concentration Rainfall intensity = 8.87 min. 4.914(In/Hr) 37 G:\Accts\041 093\Proposed Rational 300 Basin.doc • • Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 320.000 to Point/Station 316.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.350 given for subarea Rainfall intensity (I) = 3.502 for a 100.0 year storm User specified values are as follows: TC = 15.00 min. Rain intensity = 3.50(In/Hr) Total area = 6.45(Ac.) Total runoff = 2.32(CFS) *THIS PROCESS IN ADDING Te, Qp AND AREA FOR THE DETENTION BASIN, SEE DETENTION SECTION FOR MORE INFORMATION. *OUTLET PIPE SHALL BE 8" PVC WITH A 6" ORIFICE OPENING, OR A 6" HPDE PIPE ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 316.000 to Point/Station 316.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 6.450(Ac.) Runoff from this stream 2.320(CFS) Time of concentration = 15.00 min. Rainfall intensity = 3.502(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 36.366 8.87 4.914 2 2.320 15.00 3.502 Qmax(l) 1. 000 * 1. 000 * 36.366) + 1. 000 * 0.592 * 2.320) + 37.739 Qmax(2) 0.713 * 1. 000 * 36.366) + 1. 000 * 1. 000 * 2.320} + 28.239 Total of 2 main streams to confluence: Flow rates before confluence point: 36.366 2.320 Maximum flow rates at confluence using above data: 37.739 28.239 Area of streams before confluence: 7.800 6.450 Results of confluence: Total flow rate = 37.739(CFS) Time of concentration = 8.873 min. Effective stream area after confluence End of computations, total study area = 38 14.250 (Ac.) 14.25 (Ac.) G:\Accts\04l093\Proposed Rational 300 Basin.doc San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3 .. 2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/16/05 041093 -FOX/MILLER PROPOSED RATIONAL METHOD -400 & 500 BASINS G:\ACCTS\041093\400Pl ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SiN 10125 -------------------------------------------------------------~---------- Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation(inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% San Diego hydrology manual 'c' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station 501.000 **** INITIAL AREA EVALUATION **** User specified 'c' value of 0.400 given for subarea Initial subarea flow distance 110.00(Ft.) Highest elevation = 302.50(Ft.) Lowest elevation = 295.00(Ft.) Elevation difference = 7.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.97 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.4000)*(110.00A .5)/( 6.82A (1/3)]= 6.97 Rainfall intensity (I) = 5.742 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.400 Subarea runoff = 0.276(CFS) Total initial stream area = 0.120 (Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~++ Process from Point/Station 501.000 to Point/Station 502.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation Channel length thru subarea Channe+ base width 295 . 00 ( Ft . ) 266.00(Ft.) 220.00(Ft.) 10.000(Ft.) 39 G:\Accts\041093\Proposed Rational 400 Basin.doc Slope or 'z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 ~stimated mean flow rate at midpoint of channel 0.620(CFS) Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 0.620(CFS) Depth of flow = 0.029(Ft.), Average velocity 1.877(Ft/s) Channel flow top width = 12.888(Ft.) Flow Velocity = 1.88(Ft/s) Travel time 1.95 min. Time of concentration = 8.92 min. Critical depth = 0.045(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 4.896(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.588(CFS) for 0.300(Ac.) Total runoff = 0.863(CFS) Total area = 0.42(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 503.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = 266.00(Ft.) Downstream point elevation 260.00(Ft.) Channel length thru subarea 145.00(Ft.) Channel base width 50.000(Ft.) Slope or 'z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 1.685(CFS) Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 1.685(CFS) Depth of flow = 0.029(Ft.), Average velocity 1.124(Ft/s) Channel flow top width = 52.914(Ft.) Flow Velocity = 1.12(Ft/s) Travel time 2.15 min. Time of concentration = 11.07 min. Critical depth = 0.032(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 4.260(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 1.363(CFS) for 0.800(Ac.) Total runoff = 2.226(CFS) Total area = 1.22(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 503.000 to Point/Station 504.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = 260.00(Ft.) Downstream point elevation 258.00(Ft.) Channel length thru subarea 370.00(Ft.) Channel base width 10.000(Ft.) Slope or 'Z' of left channel bank = 50.000 40 G:\Accts\041093\Proposed Rationa1400 Basin.doc Slope or 'z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 4.872(CFS) Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 4.872(CFS) Depth of flow = 0.206(Ft.), Average velocity 1.161(Ft/s) Channel flow top width = 30.650(Ft.) Flow Velocity = 1.16(Ft/s) Travel time 5.31 min. Time of concentration = 16.39 min. Critical depth = 0.150(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 3.308(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 3.838(CFS) for 2.900(Ac.) Total runoff = 6.064(CFS) Total area = 4.12(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 504.000 to Point/Station 504.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.400 given for subarea Time of concentration = 16.39 min. Rainfall intensity 3.308(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.635(CFS) for 0.480(Ac.) Total runoff = 6.699(CFS) Total area = 4.60(Ac.)· ++++++++++++++++++++++++++++++++++++++++++++++++4+++++++++++++++++++++ Process from Point/Station 504.000 to Point/Station 505.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 251.00(Ft.) Downstream point/station elevation 206.00(Ft.) Pipe length 420.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 6.699(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow -6.699(CFS) Normal flow depth in pipe = 6.52(In.) Flow top width inside pipe = 11.95(In.) Critical depth could not be calculated. Pipe flow velocity = 15.36(Ft/s) Travel time through pipe 0.46 min. Time of concentration (TC) = 16.84 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 505.000 to Point/Station 506.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 206.00(Ft.) Downstream point/station elevation 165.00(Ft.) Pipe length 120.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 6.699(CFS) 41 G:\Accts\041093\Proposed Rational' 400 Basin.doc • • Given pipe size 18.00(In.) Calculated individual pipe flow 6.699(CFS) Normal flow depth in pipe = 4.01(In.) Flow top width inside pipe = 14.98(In.) Critical Depth = 12.02(In.) Pipe flow velocity = 22.79(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 16.93 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 507.000 to Point/Station 506.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.400 given for subarea Time of concentration = 16.93 min. Rainfall intensity 3.239(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA,. CO. 400 Subarea runoff 1.037(CFS) for 0.800(Ac.) Total runoff = 7.736(CFS) Total area ~ 5.40(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 506.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.400(Ac.) Runoff from this stream 7.736(CFS) Time of concentration 16.93 min. Rainfall intensity = 3.239(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 509.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 50.00(Ft.) Highest elevation = 187.00(Ft.) Lowest elevation = 183.00(Ft.) Elevation difference = 4.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.95 min. TC = [1.8*(l.1-C)*distanceA .5)/(% slopeA (l/3)] TC = [1.8*(1.1-0.9500)*( 50.00A .5)/( 8.00A (l/3)]= 0.95 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.676(CFS) Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 509.000 to Point/Station 506.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 42 G:\Accts\041093\Proposed Rational 400 Basin:doc • • Top of street segment elevation = 183.000(Ft.) End of street segment elevation = 172.000(Ft.) Length of street segment 140.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.183(CFS) Depth of flow = 0.115(Ft.), Average velocity = 5.150(Ft/s) Street flow hydraulics at midpoint of street trave·l: Halfstreet flow width = 2.756(Ft.) Flow velocity = 5.15(Ft/s) Travel time = 0.45 min. TC 5.45 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 6.727(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 0.959(CFS) for 0.150(Ac.) Total runoff = 1.634(CFS) Total area = 0.25(Ac.) Street flow at end of street = 1.634(CFS) Half street flow at end of street 1.634(CFS) Depth of flow = 0.135(Ft.), Average velocity = 5.655(Ft/s) Flow width (from curb towards crown)= 3.004(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 506.edo **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.250(Ac.) Runoff from this stream 1.634(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 5.45 min. 6.727(In/Hr) Stream Flow rate TC No. (CFS) (min) 1 7.736 16.93 2 1.634 5.45 Qmax(l) 1. 000 * 1. 000 * 7.736) 0.482 * 1. 000 * 1. 634) Qmax(2) 1. 000 * 0.322 * 7.736) 1. 000 * 1. 000 * 1. 634) 43 Rainfall Intensity (In/Hr) 3.239 6.727 + + 8.523 + + 4.126 G:\Accts\041093\Proposed Rational 400 Basin.doc • • Total of 2 streams to confluence: Flow rates before confluence point: 7.736 1.634 Maximum flow rates at confluence using above data: 8.523 4.126 Area of streams before confluence: 5.400 0.250 Results of confluence: Total flow rate = 8.523(CFS) Time of concentration 16.929 min. Effective stream area after confluence 5.650 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 165.00(Ft.) Downstream point/station elevation 162.00(Ft.) Pipe length 15.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 8.523(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 8.523(CFS) Normal flow depth in pipe = 5.19(In.) Flow top width inside pipe = 16.31(In.) Critical Depth = 13.57(In.) Pipe flow velocity = 20.19(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 16.94 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.650(Ac.) Runoff from this stream 8.523(CFS) Time of concentration 16.94 min. Rainfall intensity = 3.238(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Station 220.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 3.734 for a 100.0 year storm User specified values are as follows: TC = 13.58 min. Rain intensity = 3.73(In/Hr) Total area = 24.85(Ac.) Total runoff = 40.49(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MINOR STREAMS **** 44 G:\Accts\041093\Proposed Rational 400 Basin.doc c. c. Along Main Stream number: 1 in normal stream number 2 Stream flow area = 24.850(Ac.) Runoff from this stream 40.490(CFS) Time of concentration = 13.58 min. Rainfall intensity = 3.734(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 8.523 16.94 3.238 2 40.490 13 .58 3.734 Qmax(l) 1. 000 * 1. 000 * 8.523) + 0.867 * 1. 000 * 40.490) + 43.630 Qmax(2) 1. 000 * 0.802 * 8.523) + 1. 000 * 1. 000 * 40.490) + 47.322 Total of 2 streams to confluence: Flow rates before confluence point: 8.523 40.490 Maximum flow rates at confluence using above data: 43.630 47.322 Area of streams before confluence: 5.650 24.850 Results of confluence: Total flow rate = 47.322(CFS) Time of concentration 13.580 min. Effective stream area after confluence 30.500 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 221.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 162.00(Ft.) Downstream point/station elevation 142.00(Ft.) Pipe length 35.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 47.322(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 47.322(CFS) Normal flow depth in pipe = 11.91(In.) Flow top width inside pipe = 12.14(In.) Critical depth could not be calculated. Pipe flow velocity = 45.34(Ft/s) Travel time through pipe 0.01 min. Time of concentration (TC) = 13.59 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 221.000 to Point/Station 221.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: 45 G:\Accts\041093\Proposed Rational 400 Basin.doc • • In Main Stream number: 1 Stream flow area = 30.500(Ac.) Runoff from this stream 47.322(CFS) Time of concentration = 13.59 min. Rainfall intensity = 3.732(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 405.000 to Point/Station 408.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for'subarea Rainfall intensity (I) = 3.502 for a 100.0 year storm User specified values are as follows: TC = 15.00 min. Rain intensity = 3.50(In/Hr) Total area = 10.95(Ac.) Total runoff = 3.59(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 4'08.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 10.9S0(Ac.) Runoff from this stream 3.S90(CFS) Time of concentration lS.00 min. Rainfall intensity = 3.S02(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 407.000 **** INITIAL AREA EVALUATION **** User specified 'e' value of 0.9S0 given for subarea Initial subarea flow distance SO.OO(Ft.) Highest elevation = 212.00(Ft.) Lowest elevation = 208.00(Ft.) Elevation difference = 4.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.95 min. TC = [1.8*(1.1-C)*distanceA.S)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9S00)*( SO.OOA.S)/( 8.00A(1/3)]= 0.95 Setting time of concentration to S minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.9S0 Subarea runoff = 0.676(CFS) Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 407.000 to Point/Station 408.000 **** STREET FLOW TRAVEL TIME + 'SUBAREA FLOW ADDITION **** Top of street segment elevation = 208.000(Ft.) End of street segment elevation = 172.000(Ft.) Length of street segment 440.000(Ft.) 46 G:\Accts\041093\Proposed Rational400-Basin.doc c. Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000 (Ft .. ) Slope from gutter to grade break (v/hz) = 0.OB3 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s} of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.} Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.027(CFS) Depth of flow = 0.149(Ft.}, Average velocity = 6.099(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.174(Ft.} Flow velocity = 6.10(Ft/s} Travel time = 1.20 min. TC 6.20 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 6.191(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 2.352(CFS) for 0.400(Ac.) Total runoff = 3.02B(CFS} Total area = 0.50(Ac.) Street flow at end of street = 3.02B(CFS} Half street flow at end of street 3.028(CFS) Depth of flow = 0.lB2(Ft.}, Average velocity = 6.B19(Ft/s) Flow width (from curb towards crown)= 3.573(Ft.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 409.000 to Point/Station 40B.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.400 given for subarea Time of concentration = 6.20 min. Rainfall intensity 6.191(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.991(CFS} for 0.400(Ac.) Total runoff = 4.019(CFS} Total area = 0.90(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 4DB.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.900(Ac.} Runoff from this stream 4.019(CFS} Time of concentration = 6.20 min. Rainfall intensity = 6.191(In/Hr} Summary of stream data: Stream No. Flow rate (CFS) TC (min) 47 Rainfall Intensity (In/Hr) G:\Accts\041 093\Proposed Rational 400 Basin.doc \ c. • 1 3.590 15.00 3.502 2 4.019 6.20 6.191 Qmax(l) 1. 000 * 1. 000 * 3.590) + 0.566 * 1. 000 * 4.019) + 5.864 Qmax(2) 1. 000 * 0.413 * 3.590) + 1. 000 * 1. 000 * 4.019) + 5.503 Total of 2 streams to confluence: Flow rates before confluence point: 3.590 4.019 Maximum flow rates at confluence using above data: 5.864 5.503 Area of streams before confluence: 10.950 0.900 Results of confluence: Total flow rate = 5.864(CFS) Time of concentration 15.000 min. Effective stream area after confluence 11.850 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 221.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 158.00(Ft.) Downstream point/station elevation 142.00(Ft.) Pipe length 40.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 5.864(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 5.864(CFS) Normal flow depth in pipe = 3.62(In.) Flow top width inside pipe = 14.42(In.) Critical Depth = 11.21(In.) Pipe flow velocity = 23.18(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 221.000 to Point/Station 221.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 11.850(Ac.) Runoff from this stream 5.864(CFS) Time of concentration = 15.03 min. Rainfall intensity = 3.498(In/Hr) Summary of stream data: Stream No . Flow rate (CFS) TC (min) 48 Rainfall Intensity (In/Hr) G:\Accts\041093\Proposed Rational 400 Basin.doc • 1 47.322 13.59 3.732 2 5.864 15.03 3.498 Qmax(l) 1. 000 * 1. 000 * 47.322) + 1. 000 * 0.904 * 5.864) + 52.625 Qmax(2) 0.937 * 1. 000 * 47.322) + 1. 000 * 1. 000 * 5.864 ) + 50.217 Total of 2 main streams to confluence: Flow rates before confluence point: 47.322 5.864 Maximum flow rates at confluence using above data: 52.625 50.217 Area of streams before confluence: 30.500 11.850 Results of confluence: Total flow rate = 52. 625 (CFS) Time of concentration = 13.593 min. Effective stream area after confluence End of computations, total study area = 49 42.350 (Ac.) 42.35 (Ac.) G;\Accts\041093\Proposed Ratfonal400 Basin.doc San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 05/04/04 041093 -FOX/MILLER PROPOSED CONDITION RATINOAL METHOD -600 BASIN G:\ACCTS\041093\600PR ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SiN 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation(inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 600.000 to Point/Station 601.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.350 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 250.00(Ft.) Lowest elevation = 238.00(Ft.) Elevation difference = 12.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.90 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.3500)*(100.00A.5)/( 12.00A(1/3)]= 5.90 Rainfall intensity (I) = 6.396 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 1.119(CFS) Total initial stream area = 0.500 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 601.000 to Point/Station 602.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation Channel length thru subarea Channel base width 238 . 00 (Ft. ) 142 . 00 ( Ft. ) 4 90 . 0 0 (Ft. ) 0.000 (Ft. ) 49 G:\Accts\041093\Proposed Rational 600 Basin.doc ce Slope or 'Z' of left channel bank = 5.000 Slope or 'z' of right channel bank = 5.000 Estimated mean flow rate at midpoint of channel 8.171(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 8.171(CFS) Depth of flow = 0.503(Ft.), Average velocity 6.465(Ft/s) Channel flow top width = 5.028(Ft.) Flow Velocity = 6.46(Ft/s) Travel time 1.26 min. Time of concentration = 7.16 min. Critical depth = 0.699(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 5.643(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff = 12.443(CFS) for 6.300(Ac.) Total runoff = 13.562(CFS) Total area = 6.80(Ac.) End of computations, total study area = 6.80 (Ac.) 50 G:\Accts\041093\Proposed Rational 600 Basin.doc San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 12/01/04 -----------------------------------------------~--------------~--------- 041093 -FOX/MILLER PROPOSED DEVELOPED CONDITION -100 & 200 BASINS G:\ACCTS\041093\100PD ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SIN 10125 Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation(inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 4.609 for a 100.0 year storm User specified values are as follows: TC = 9.80 min. Rain intensity = 4.61(In/Hr} Total area = 2.70(Ac.} Total runoff = 5.00(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.800 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 272.00(Ft.) Downstream point/station elevation 258.96(Ft.) Pipe length 105.46(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 5.000(CFS} Nearest computed pipe diameter 9.00(In.) Calculated individual pipe flow 5.000(CFS) Normal flow depth in pipe = 6.43(In.) Flow top width inside pipe = 8.13(In.) Critical depth could not be calculated. Pipe flow velocity = 14.81(Ft/s) Travel time through pipe 0.12 min. Time of concentration (TC) = 9.92 min. 1 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc c. (. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.800 to Point/Station 103.800 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.700(Ac.) Runoff from this stream 5.000(CFS) Time of concentration Rainfall intensity = 9.92 min. 4.573(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.300 to Point/Station 103.700 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 4.609 for a 100.0 year storm User specified values are as follows: TC = 9.80 min. Rain intensity = 4. 61 (In/Hr) Total area = 1.60(Ac.) Total runoff = 5.00(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.700 to Point/Station 103.800 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 265.60(Ft.) Downstream point/station elevation 258.96(Ft.) Pipe length 42.06(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 5.000(CFS) Nearest computed pipe diameter 9.00(In.) Calculated individual pipe flow 5.000(CFS) Normal flow depth in pipe = 5.87(In.) Flow top width inside pipe = 8.57(In.) Critical depth could not be calculated. Pipe flow velocity = 16.37(Ft/s) Travel time through pipe 0.04 min. Time of concentration (TC) = 9.84 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.800 to Point/Station 103.800 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream. number 2 Stream flow area = 1.600(Ac.) Runoff from this stream 5.000(CFS) Time of concentration = Rainfall intensity = Summary of stream data: Stream No. Flow rate (CFS) 9.84 min. 4.596(In/Hr) TC (min) Rainfall Intensity (In/Hr) 2 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc 1 5.000 9.92 4.573 2 5.000 9.84 4.596 Qmax (1) 1. 000 * 1. 000 * 5.000) + 0.995 * 1. 000 * 5.000) + 9.975 Qmax(2) 1. 000 * 0.992 * 5.000) + 1. 000 * 1. 000 * 5.000) + 9.962 Total of 2 streams to confluence: Flow rates before confluence point: 5.000 5.000 Maximum flow rates at confluence using above data: 9.975 9.962 Area of streams before confluence: 2.700 1.600 Results of confluence: Total flow rate = 9.975(CFS) Time of concentration 9.919 min. Effective stream area after confluence 4.300 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.800 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 258.63(Ft.) Downstream point/station elevation 241.71(Ft.) Pipe length 246.23(Ft.) Manning's N = 0.013. No. of pipes = 1 Required pipe flow 9.975(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow 9.9~5(CFS) Normal flow depth in pipe = 6.66(In.) Flow top width inside pipe = 21.49(In.) Critical Depth = 13.56(In.) Pipe flow velocity = 14.03(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 10.21 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.00b **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.300(Ac.) Runoff from this stream 9.975(CFS) Time of concentration = 10.21 min. Rainfall intensity = 4.488(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.100 to Point/Station 103.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** 3 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc c. User specified 'c' value of 0.400 given for subarea Rainfall intensity (I) = 4.609 for a 100.0 year storm User specified values are as follows: TC = 9.S0 min. Rain intensity = 4.61(In/Hr) Total area = 1.70(Ac.) Total runoff = 10.00(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.600 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 269.00(Ft.) Downstream point/station elevation 268.00(Ft.) Pipe length 100.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow 10.000(CFS) Nearest computed pipe diameter lS.00(In.) Calculated individual pipe flow 10.000(CFS) Normal flow depth in pipe = 12.23(In.) Flow top width inside pipe = 16.80(In.) Critical Depth = 14.62(In.) Pipe flow velocity = 7.81(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 10.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.600 to Point/Station 103.600 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.700(Ac.) Runoff from this stream 10.000(CFS) Time of concentration Rainfall intensity = 10.01 min. 4.545(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.400 to Point/Station 103.500 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'c' value of 0.400 given for subarea Rainfall intensity (I) = 4.609 for a 100.0 year storm User specified values are as follows: TC = 9.S0 min. Rain intensity = 4.61(In/Hr) Total area = 2.50(Ac.) Total runoff = 10.00(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.500 to Point/Station 103.600 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 273.00(Ft.) Downstream point/station elevation 272.00(Ft.) Pipe length 50.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow 10.000(CFS) Given pipe size = lS.00(In.) Calculated individual pipe flow 10.000(CFS) 4 G:\Accts\041093\Proposed Rational Developed 1.00 Basin.doc c. (. Normal flow depth in pipe Flow top width inside pipe = Critical Depth = l4.62(In.) 9.73 (In.) 17.94(In.) Pipe flow velocity = 10.2S(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 9.88 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.600 to Point/Station 103.600 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.S00(Ac.) Runoff from this stream 10.000(CFS) Time of concentration = 9.88 min. Rainfall intensity = 4.S84(In/Hr) Summary of stream data: Stream No. 1 2 Qmax(l) Qmax(2) Flow rate (CFS) 10.000 10.000 1. 000 * 0.991 * 1. 000 * 1. 000 * TC (min) 10.01 9.88 1. 000 * 1. 000 * 0.987 * 1. 000 * 10.000) 10.000) 10.000) 10.000) Total of 2 streams to confluence: Flow rates before confluence point: 10.000 10.000 Rainfall Intensity (In/Hr) 4.S45 4.584 + + 19.915 + + 19.868 Maximum flow rates at confluence using above data: 19.915 19.868 Area of streams before confluence: 1.700 2.500 Results of confluence: Total flow rate = 19.915(CFS) Time of concentration 10.013 min. Effective stream area after confluence 4.200 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.600 to Point/Station 10S.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 272.00(Ft.) Downstream point/station elevation 242.00(Ft.) Pipe length 4S0.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 19.91S(CFS) Nearest computed pipe diameter 18.00(In.) Calculated individual pipe flow 19.915(CFS) Normal flow depth in pipe = 11.46(In.) Flow top width inside pipe = 17.31(In.) 5 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc • c Critical depth could not Pipe flow velocity = be calculated. 16.77 (Ft/s) 0.45 min. Travel time through pipe Time of concentration (TC) = 10.46 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.200(Ac.) Runoff from this stream 19.915(CFS) Time of concentration = 10.46 min. Rainfall intensity = 4.419(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 104.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance 120.00(Ft.) Highest elevation = 275.70(Ft.) Lowest elevation = 273.50(Ft.) Elevation difference = 2.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.22 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9000)*(120.00A .5)/( 1.83A (1/3)J= 3.22 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.900 Subarea runoff = 1.280(CFS) Total initial stream area = 0.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 273.500(Ft.) End of street segment elevation = 251.000(Ft.) Length of street segment 340.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [lJ side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline 0.125(In.) Manning's N in gutter = 0.0150 6 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc • Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = Depth of flow = 0.177(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.507(Ft.) Flow velocity = 6.03(Ft/s) Travel time = 0.94 min. TC 5.94 min. Adding area flow to street User specified 'C' value of 0.700 given for subarea 2.561(CFS) 6.030(Ft/s) Rainfall intensity 6.366(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.700 Subarea runoff 1.782(CFS) for 0.400(Ac.) Total runoff = 3.063(CFS) Total area = 0.60(Ac.) Street flow at end of street = 3.063(CFS) Half street flow at end of street 3.063(CFS) Depth of flow = 0.193(Ft.), Average velocity = 6.333(Ft/s) Flow width (from curb towards crown)= 3.704(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.600 given for subarea Time of concentration = 5.94 min. Rainfall intensity 6.366(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.600 Subarea runoff 2.292(CFS) for 0.600(Ac.) Total runoff = 5.355(CFS) Total area = 1.20(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 246.18(Ft.) Downstream pOint/station elevation 242.47(Ft.) Pipe length 52.68(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 5.355(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 5.355(CFS) Normal flow depth in pipe = 5.34(In.) Flow top width inside pipe = 16.45(In.) Critical Depth = 10.70(In.) Pipe flow velocity = 12.17(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 6.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.200(Ac.) 7 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc • Total runoff = 2.608(CFS) Street flow at end of street = Total area = 2.608(CFS) 2.608(CFS) 0.45 (Ac.) Half street flow at end of street Depth of flow = 0.179(Ft.), Average Flow width (from curb towards crown)= velocity = 6.060(Ft/s) 3.526(Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 4 Stream flow area = 0.450(Ac.) Runoff from this stream 2.608(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 6.03 min. 6.301(In/Hr) Stream No. 1 2 3 4 Qmax(l) Qmax(2) Qmax(3) Qmax (4) Flow rate (CFS) 9.975 19.915 5.355 2.608 1. 000 * 1. 000 * 0.711 * 0.712 * 0.985 * 1.000 * 0.700 * 0.701 * 1. 000 * 1.000 * 1. 000 * 1. 000 * 1. 000 * 1.000 * 0.998 * 1. 000 * TC (min) 10.21 10.46 6.01 6.03 1. 000 * 0.976 * 1. 000 * 1.000 * 1.000 * 1. 000 * 1. 000 * 1. 000 * 0.589 * 0.575 * 1. 000 * 0.996 * 0.591 * 0.577 * 1.000 * 1. 000 * 9.975) 19.915) 5.355) 2.608) 9.975) 19.915) 5.355) 2.608) 9.975) 19.915) 5.355) 2.608) 9.975) 19.915) 5.355) 2.608) Total of 4 main streams to confluence: Flow rates before confluence point: 9.975 19.915 5.355 Rainfall Intensity (In/Hr) 4.488 4.419 6.316 6.301 + + + + 35.078 + + + + 35.311 + + + + 25.272 + + + + 25.334 2.608 Maximum flow rates at confluence using above data: 35.078 35.311 25.2"72 25.334 Area of streams before confluence: 4.300 4.200 1.200 0.450 9 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc c. Results of confluence: Total flow rate = 35.311(CFS) Time of concentration 10.460 min. Effective stream area after confluence 10 . 150 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 107.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 242.00(Ft.) Downstream point/station elevation 190.00(Ft.) Pipe length 120.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 35.311(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 35.311(CFS) Normal flow depth in pipe = 9.12(In.) Flow top width inside pipe = 18.00(In.) Critical depth could not be calculated. Pipe flow velocity = 39.34(Ft/s) Travel time through pipe 0.05 min. Time of concentration (TC) = 10.51 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 107.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.400 given for subarea Time of concentration = 10.51 min. Rainfall intensity 4.405(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 1.762(CFS) for 1.000(Ac.) Total runoff = 37.074(CFS) Total area = 11.15(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 113.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 190.00(Ft.) Downstream point elevation 169.00(Ft.) Channel length thru subarea 640.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 10.000 Slope or 'Z' of right channel bank = 10.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.040 Maximum depth of channel 3.000(Ft.) Flow(q) thru subarea = 45.053(CFS) Depth of flow = 1.024(Ft.), Average velocity Channel flow top width = 20.487(Ft.) Flow Velocity = 4.29(Ft/s) Travel time 2.48 min. Time of concentration = 13.00 min. Critical depth = 1.047(Ft.) Adding area flow to channel 45.053(CFS) 4.294 (Ft/s) 10 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc User specified tc t Rainfall intensity Runoff coefficient Subarea runoff Total runoff = value of 0.350 given for subarea 3.S42(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 6.454(CFS) for 4.S00(Ac.) 43.52S(CFS) Total area = 15.95(Ac.) 0'.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 113.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 15.950(Ac.) Runoff from this stream 43.52S(CFS) Time of concentration = 13.00 min. Rainfall intensity = 3.S42(In/Hr) Program is now starting with Main Stream No. 2 +++++++t++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 206.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified tc' value of 0.400 given for subarea Rainfall intensity (I) = 3.S03 for a 100.0 year storm User specified values are as follows: TC = 13.20 min. Rain intensity = 3.S0(In/Hr) Total area = 6.40(Ac.) Total runoff = 22.00(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 20'7.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 25S.00(Ft.) Downstream point/station elevation 231.00(Ft.) Pipe length 120.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow 22.000(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 22.000(CFS) Normal flow depth in pipe = S.44(In.) Flow top width inside pipe = 14.SS(In.) Critical depth could not be calculated. Pipe flow velocity = 30.93(Ft/s) Travel time through pipe 0.06 min. Time of concentration (TC) = 13.26 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++4+++++++++++++ Process from Point/Station 207.000 to Point/Station 20S.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 231.00(Ft.) Downstream point/station elevation 205.0O'(Ft.) Pipe length 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 22.000(CFS) 11 G:\Accts\041 093\Proposed Rational Developed 100 Basin.doc c. Nearest computed pipe diameter lS.00(In.) Calculated individual pipe flow 22.000(CFS) Normal flow depth in pipe = 11.21(In.) Flow top width inside pipe = 17.45(In.) Critical depth could not be calculated. Pipe flow velocity = 19.00(Ft/s) Travel time through pipe 0.26 min. Time of concentration (TC) = 13.53 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20S.000 to Point/Station 20S.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 6.400(Ac.) Runoff from this stream 22.000(CFS) Time of concentration 13.53 min. Rainfall intensity = 3.744(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 209.000 to Point/Station 210.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 250.00(Ft.) Lowest elevation = 243.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.41 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9500)*(100.00A .5)/( 7.00A (1/3)]= 1.41 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C ~ 0.950 Subarea runoff = 0.676(CFS) Total initial stream area = O.lOO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station ZOS.OOO **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 243.000(Ft.) End of street segment elevation = 213.000(Ft.) Length of street segment 370.000(Ft.) Height of curb above gutter flowline 6.D(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.OS3 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] siders) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) 12 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.027(CFS) Depth of flow = 0.150(Ft.), Average velocity = 6.080(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.178(Ft.) Flow velocity = 6.08(Ft/s) Travel time = 1.01 min. TC 6.01 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 6.315(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 2.400(CFS) for 0.400(Ac.) Total runoff = 3.075(CFS) Total area = 0.50{Ac.) Street flow at end of street = 3.075(CFS) Half street flow at end of street 3.075(CFS) Depth of flow = 0.184(Ft.), Average velocity = 6.825(Ft/s) Flow width (from curb towards crown)= 3.594(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 211.000 to Point/Station 2.08.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.500 given for subarea Time of concentration = 6.01 min. Rainfall intensity 6.315(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.500 Subarea runoff 3.157(CFS) for 1.000(Ac.) Total runoff = 6.233(CFS) Total area = 1.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.500(Ac.) Runoff from this stream 6.233(CFS) Time of concentration Rainfall intensity = 6.01 min. 6.315(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 213.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 250.00(Ft.) Lowest elevation = 243.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.41 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (l/3)) 13 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc TC = [1.S*(l.1-0.9500)*(lOO.00A.5)/( 7.00A(l/3)]= 1.41 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.676(CFS) Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 213.000 to Point/Station 20S.0DO **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 243.000(Ft.) End of street segment elevation = 213.000(Ft.) Length of street segment 370.000(Ft.) Height of curb above gutter flowline 6.0 (In.,) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.DS3 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.01S0 Estimated mean flow rate at midpoint of street = Depth of flow = 0.136(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.019(Ft.) Flow velocity = 5.77(Ft/s) Travel time = 1.07 min. TC 6.07 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea 1. 690 (CFS) 5.773(Ft/s) Rainfall intensity 6.279(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, CO. 9,50 Subarea runoff 1.789(CFS) for 0.300(Ac.) Total runoff = 2.465(CFS) Total area = 0.40(Ac.) Street flow at end of street = 2.465(CFS) Half street flow at end of street 2.465(CFS) Depth of flow = 0.165(Ft.), Average velocity = 6.421(Ft/s) Flow width (from curb towards crown)= 3.363(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 214.000 to Point/Station 208.000 **** SUBAREA FLOW ADDITION **** User specified 'c' value of 0.400 given for subarea Time of concentration = 6.07 min. Rainfall intensity 6.279(In/Hr) for a 100.0 yea~ storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.753(CFS) for 0.300(Ac.) Total runoff = 3.219(CFS) Total area = 0.70(Ac.) 14 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc c. C. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.700(Ac.) Runoff from this stream 3.219(CFS) Time of concentration = 6.07 min. Rainfall intensity = 6.279(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 22.000 13.53 3.744 2 6.233 6.01 6.315 3 3.219 6.07 6.279 Qmax (1) 1. 000 * 1.000 * 22.000) + 0.593 * 1.000 * 6.233) + 0.596 * 1.000 * 3.219) + 27.614 Qmax(2) 1. 000 * 0.445 * 22.000) + 1. 000 * 1.000 * 6.233) + 1. 000 * 0.991 * 3.219) + 19.204 Qmax(3) 1. 000 * 0.449 * 22.000) + 0.994 * 1.000 * 6.233) + 1. 000 * 1.000 * 3.219) + 19.284 Total of 3 streams to confluence: Flow rates before confluence point: 22.000 6.233 3.219 Maximum flow rates at confluence using above data: 27.614 19.204 19.284 Area of streams before confluence: 6.400 1.500 0.700 Results of confluence: Total flow rate = 27.614(CFS) Time of concentration 13.528 min. Effective stream area after confluence 8.600(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 215.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 206.00(Ft.) Downstream point/station elevation 182.00(Ft.) Pipe length 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 27.614(CFS) Nearest computed pipe diameter 18.00(In.) Calculated individual pipe flow 27.614(CFS) Normal flow depth in pipe = 13.73(In.) Flow top width inside pipe = 15.31(In.) 15 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc Critical depth could not be calculated. Pipe flow velocity = 19.10(Ft/s) Travel time through pipe 0.26 min. Time of concentration (TC) = 13.79 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 215.000 to Point/Station 216.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 3.696 for a 100.0 year storm User specified values are as follows: TC = 13.80 min. Rain intensity = 3.70(In/Hr) Total area = 8.60(Ac.) Total runoff = 17.50(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 216.000 to Point/Station 216.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 8.600(Ac.) Runoff from this stream 17.500(CFS} Time of concentration 13.80 min. Rainfall intensity = 3.696(In/Hr} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 217.000 to Point/Station 218.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 70.00(Ft.} Highest elevation = 212.00(Ft.} Lowest elevation = 208.00(Ft.) Elevation difference = 4.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.26 min. TC = [1.8*(1.1-C}*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9500)*( 70.00 A.5)/( 5.71A(1/3)]= 1.26 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.676(CFS) Total initial stream area = 0.100(Ac.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 218.000 to Point/Station 216.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 208.000(Ft.) End of street segment elevation = 189.000(Ft.) Length of street segment 240.000(Ft.} Height of curb above gutter flowline Width of half street (curb to crown) 6.0(In.} 26 . 000 (Ft. ) 16 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc (. Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.352(CFS) Depth of flow = 0.123(Ft.), Average velocity = 5.369(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.S51(Ft.) Flow velocity = 5.37(Ft/s) Travel time = 0.75 min. TC 5.75 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 6.504(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 1.236(CFS) for 0.200(Ac.) Total runoff = 1.912(CFS) Total area = 0.30(Ac.) Street flow at end of street = 1.912(CFS) Half street flow at end of street 1.912(CFS) Depth of flow = 0.146(Ft.), Average velocity = 5.928(Ft/s) Flow width (from curb towards crown)= 3.136(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 216.000 to Point/Station 216.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.300(Ac.) Runoff from this stream 1.912(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 5.75 min. 6.504(In/Hr) Stream No. 1 2 Qmax(l) Qmax(2) Total of Flow rate (CFS) 17.500 1. 912 1. 000 * 0.568 * 1. 000 * 1. 000 * 2 streams TC (min) 13. SO 5.75 1. 000 * 1.000 * 0.416 * 1. 000 * 17.500) 1. 912) 17.500) 1. 912) to confluence: Flow rates before confluence point: 17 . 500 1. 912 Maximum flow rates at confluence using Rainfall Intensity ( In/Hr) 3.696 6.504 + + 18.586 + + 9.197 above data: 17 G:\Accts\041093\Proposed Rationaf Developed 100 Basin.doc 18.586 9.197 Area of streams before confluence: 8.600 0.300 Results of confluence: Total flow rate = 18.586(CFS) Time of concentration 13.800 min. Effective stream area after confluence 8.900(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 216.000 to Point/Station 113.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 181.00(Ft.) Downstream point/station elevation 169.00(Ft.) Pipe length 44.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 18.586(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 18.586(CFS) Normal flow depth in pipe = 7.22(In.) Flow top width inside pipe = 17.64(In.) Critical depth could not be calculated. Pipe flow velocity = 28.04(Ft/s) Travel time through pipe 0.03 min. Time of concentration (TC) = 13.83 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 113.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 8.900(Ac.) Runoff from this stream 18.586(CFS) Time of concentration = 13.83 min. Rainfall intensity = 3.691(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 43.528 13.00 3.842 2 18.586 13.83 3.691 Qmax (1) 1.000 * 1.000 * 43.528) + 1. 000 * 0.940 * 18.586) + 6-0.998 Qmax(2) 0.961 * 1.000 * 43.528) + 1. 000 * 1.000 * 18.586) + 60.409 Total of 2 main streams to confluence: Flow rates before confluence point: 43.528 18.586 Maximum flow rates at confluence using above data: 60.998 60.409 18 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc c. c. Area of streams before confluence: 15.950 8.900 Results of confluence: Total flow rate = 60.998(CFS) Time of concentration 12.996 min. Effective stream area after confluence 24.850(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 219.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 3.502 for a 100.0 year storm User specified values are as follows: TC = 15.00 min. Rain intensity = 3.50(In/Hr) Total area = 24.85(Ac.) Total runoff = 25L19(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Station 219.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 24.850(Ac.) Runoff from this stream 25.190(CFS) Time of concentration 15.00 min. Rainfall intensity = 3.502(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 215.000 to Point/Station 219.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 3.696 for a 100.0 year storm User specified values are as follows: TC = 13.80 min. Rain intensity = 3.70(In/Hr) Total area = O.OO(Ac.) Total runoff = 10.10(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Stat~on 219.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number -2 Stream flow area = O.OOO(Ac.) Runoff from this stream 10.100(CFS) Time of concentration = Rainfall intensity = Summary of stream data: Stream No. Flow rate (CFS) 13.80 min. 3.696(In/Hr) TC (min) Rainfall Intensity (In/Hr) 19 G:\Accts\041093\Proposed Rational Developed 100 Basin.doc c. • 1 25.190 15.00 3.502 2 10.100 13.80 3.696 Qmax(l) 1. 000 * 1. 000 * 25.190) + 0.948 * 1. 000 * 10.100) + 34.761 Qmax(2) 1. 000 * 0.920 * 25.190) + 1. 000 * 1. 000 * 10.100) + 33.275 Total of 2 streams to confluence: Flow rates before confluence point: 25.190 10.100 Maximum flow rates at confluence using above data: 34.761 33.275 Area of streams before confluence: 24.850 0.000 Results of confluence: Total flow rate = 34.761(CFS) Time of concentration 15.000 min. Effective stream area after confluence 24 . 850 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 162.00(Ft.) Downstream point/station elevation 145.50(Ft.) Pipe length 150.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 34.761(CFS) Nearest computed pipe diameter 18.00(In.) Calculated individual pipe flow 34.761(CFS) Normal flow depth in pipe = 14.72(In.) Flow top width inside pipe = 13.90(In.) Critical depth could not be calculated. Pipe flow velocity = 22.47(Ft/s) Travel time through pipe 0.11 min. Time of concentration (TC) 15.11 min. End of computations, total study area = ·58.30 (Ac.) 20 G:\Accts\041093\Proposed Rational Developed roo Basin.doc c. San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/16/05 041093 -FOX/MILLER PROPOSED DEVELOPMENT CONDITION -400 & 500 BASINS G:\ACCTS\041093\400PD ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SIN 10125 Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation(inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% Sart Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++++++++ Process from Point/Station 500.000 to Point/Station 504.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 4.229 for a 100.0 year storm User specified values are as follows: TC = 11.20 min. Rain intensity = 4.23(In/Hr) Total area = 4.60(Ac.) Total runoff = 14.00(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 504.000 to Point/Station 505.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 251.00(Ft.) Downstream point/station elevation 206.00(Ft.) Pipe length 420.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow 14.000(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 14.000(CFS) Normal flow depth in pipe = 8.03(In.) Flow top width inside pipe = 14.96(In.) Critical depth could not be calculated. Pipe flow velocity = 20.94(Ft/s) Travel time through pipe 0.33 min. Time of concentration (TC) = 11.53 min. 21 G:\Accts\041093\Proposed Rational Developed 400-8asin.doc c. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 505.000 to Point/Station 506.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 206.00(Ft.) Downstream point/station elevation 165.00(Ft.) Pipe length 120.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow 14.000(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 14.000(CFS) Normal flow depth in pipe = 5.36(In.) Flow top width inside pipe = 16.46(In.) Critical Depth = 16.58(In.) Pipe flow velocity = 31.74(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 11.60 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 507.000 to Point/Station 506.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.400 given for subarea Time of concentration = 11.60 min. Rainfall intensity 4.135(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=~CIA, C 0.400 Subarea runoff 1.323(CFS) for 0.800(Ac.) Total runoff = 15.323(CFS) Total area = 5.40(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 506.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.400(Ac.) Runoff from this stream 15.323(CFS) Time of concentration 11.60 min. Rainfall intensity = 4.135(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++~+++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 509.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 50.00(Ft.) Highest elevation = 187.00(Ft.) Lowest elevation = 183.00(Ft.) Elevation difference = 4.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.95 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9500)*( 50.00A .5)/( 8.00A (1/3)]= 0.95 Setting time of concentration to 5 minutes 22 G:\Accts\041093\Proposed Rational Developed 400 Basin.doc Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.676(CFS) Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 509.000 to Point/Station 506.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 183.000(Ft.) End of street segment elevation = 172.000(Ft.) Length of street segment 140.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.183(CFS) Depth of flow = 0.115(Ft.), Average velocity = 5.150(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.756(Ft.) Flow velocity = 5.15(Ft/s) Travel time = 0.45 min. TC 5.45 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 6.727(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 0.959(CFS) for 0.150(Ac.) Total runoff = 1. 634 (CFS) Total area = 0.25 tAc. ) Street flow at end of street = 1.634(CFS) Half street flow at end of street 1.634(CFS) Depth of flow = 0.135 (Ft.), Average velocity = 5.655 (Ft/s) Flow width (from curb towards crown)= 3.004(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 506.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.250(Ac.) Runoff from this stream 1.634(CFS) Time of concentration = 5.45 min. Rainfall intensity = 6.727(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 23 G:\Accts\04 I 093\Proposed Rational Developed 400 Basin.doc c. • 1 15.323 11. 60 4.135 2 1. 634 5.45 6.727 Qmax(l) 1. 000 * 1. 000 * 15.323) + 0.615 * 1. 000 * 1. 634) + 16.328 Qmax(2) 1. 000 * 0.470 * 15.323) + 1. 000 * 1. 000 * 1. 634) + 8.839 Total of 2 streams to confluence: Flow rates before confluence point: 15.323 1.634 Maximum flow rates at confluence using above data: 16.328 8.839 Area of streams before confluence: 5.400 0.250 Results of confluence: Total flow rate = 16.328(CFS) Time of concentration 11.597 min. Effective stream area after confluence 5.650(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 22D.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 165.00(Ft.) Downstream point/station elevation 162.00(Ft.) Pipe length 15.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow 16.328(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 16.328(CFS) Normal flow depth in pipe = 6.69(In.) Flow top width inside pipe = 17.40(In.) Critical depth could not be calculated. Pipe flow velocity = 27.32(Ft/s) Travel time through pipe 0.01 min. Time of concentration (TC) = 11.61 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.650(Ac.) Runoff from this stream 16.328(CFS) Time of concentration Rainfall intensity = 11.61 min. 4.132 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Station 220.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** 24 G;\Accts\041093\Proposed Rational Developed 400 Basin.doc c. C. User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 3.486 for a 100.0 year storm User specified values are as follows: TC = 15.11 min. Rain intensity = 3.49(In/Hr) Total area = 24.85(Ac.) Total runoff = 34.76(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 24.850(Ac.) Runoff from this stream 34.760(CFS) Time of concentration = 15.11 min. Rainfall intensity = 3.486(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16.328 11. 61 4.132 2 34.760 15.11 3.486 Qmax(l) 1. 000 * 1.000 * 16.328) + 1. 000 * 0.768 * 34.760) + 43.028 Qmax(2) 0.844 * 1.000 * 16.328) + 1. 000 * 1.000 * 34.760) + 48.533 Total of 2 streams to confluence: Flow rates before confluence point: 16.328 34.760 Maximum flow rates at confluence using above data: 43.028 48.533 Area of streams before confluence: 5.650 24.850 Results of confluence: Total flow rate = 48.533(CFS) Time of concentration 15.110 min. Effective stream area after confluence 30.500 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 221.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 162.00(Ft.) Downstream point/station elevation l42.00(Ft.) Pipe length 35.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 48.533(CFS) Nearest computed pipe diameter l5.00(In.) Calculated individual pipe flow 48.533(CFS) Normal flow depth in pipe = 12.2l(In.) Flow top width inside pipe = 11.67(In.) Critical depth could not be calculated. 25 G:\Accts\041 093\Proposed Rational Developed 400 Basin.doc c. Pipe flow velocity = 45.36(Ft/s) 0.01 min. Travel time through pipe Time of concentration (TC) = 15.12 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ . Process from Point/Station 221.000 to Point/Station 221.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 30.500(Ac.) Runoff from this stream 48.533(CFS) Time of concentration = 15.12 min. Rainfall intensity = 3.484(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 400.000 to Point/Station 408.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 2.819 for a 100.0 year storm User specified values are as follows: TC = 21.00 min. Rain intensity = 2.82(In/Hr) Total area = 10.95(Ac.) Total runoff = 19.40(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 408.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 10.950(Ac.) Runoff from this stream 19.400(CFS) Time of concentration 21.00 min. Rainfall intensity = 2.819(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 407.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 50.00(Ft.) Highest elevation = 212.00(Ft.) Lowest elevation = 208.00(Ft.) Elevation difference = 4.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.95 min. TC = [l.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9500)*( 50.00A .5)/( 8.00A (1/3)]= 0.95 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.114 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.676(CFS) 26 G:\Accts\041093\Proposed Rational Developed 400 Basin.doc c. • Total initial stream area 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 407.000 to Point/Station 408.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 208.000(Ft.) End of street segment elevation = 172.000(Ft.) Length of street segment 440.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = Depth of flow = 0.149(Ft.), Average velocity = Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.174(Ft.) Flow velocity = 6.10(Ft/s) Travel time = 1.20 min. TC 6.20 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea 2.027(CFS) 6.099(Ft/s) Rainfall intensity 6.191(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KGIA, C Subarea runoff 2.352(CFS) for 0.400(Ac.) Total runoff = 3.028(CFS) Total area = 0.50(Ac.) Street flow at end of street = 3.028(CFS) Half street flow at end of street 3.028(CFS) Depth of flow = 0.182(Ft.), Average velocity = 6.819(Ft/s) Flow width (from curb towards crown)= 3.573(Ft.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 409.000 to Point/Station 408.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.400 given for subarea Time of concentration = 6.20 min. Rainfall intensity 6.191(In/Hr) for a 100.0 year storm Runoff coefficient used for' sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.991(CFS) for 0.400(Ac.) Total runoff = 4.019(CFS) Total area = 0.90(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 408.000 **** CONFLUENCE OF MINOR STREAMS **** 27 O:\Accts\041093\Proposed Rational Developed 400'Basin.doc Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.900(Ac.) Runoff from this stream 4.019(CFS) Time of concentration = 6.20 min. Rainfall intensity = 6.191(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 19.400 21.00 2.819 2 4.019 6.20 6.191 Qmax(l) 1. 000 * 1. 000 * 19.400) + 0.455 * 1. 000 * 4.019) + 21. 230 Qmax(2) 1. 000 * 0.295 * 19.400) + 1. 000 * 1. 000 * 4.019) + 9 .. 749 Total of 2 streams to confluence: Flow rates before confluence point: 19.400 4.019 Maximum flow rates at confluence using above d.ata: 21.230 9.749 Area of streams before confluence: 10.950 0.900 Results of confluence: Total flow rate = 21.230(CFS) Time of concentration 21.000 min. Effective stream area after confluence 11. 850 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 221.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 158.00(Ft.) Downstream point/station elevation 142.00(Ft.) Pipe length 40.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 21.230(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow 21.230(CFS) Normal flow depth in pipe = 9.26(In.) Flow top width inside pipe = 10.08(In.) Critical depth could not be calculated. Pipe flow velocity = 32.62(Ft/s) Travel time through pipe 0.02 min. Time of concentration (TC) = 21.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 221.000 to Point/Station 221.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 28 G:\Accts\041093\Proposed Rational Developed 400 Basin.doc c. • • to Stream flow area = 11.850(Ac.) Runoff from this stream 21.230(CFS) Time of concentration = 21.02 min. Rainfall intensity = 2.817(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 48.533 15.12 3.484 2 21. 230 21. 02 2.817 Qmax(l) 1. 000 * 1. 000 * 48.533) + 1. 000 * 0.719 * 21.230) + 63.807 Qmax(2) 0.809 * 1. 000 * 48.533) + 1. 000 * 1. 000 * 21. 230) + 60.476 Total of 2 main streams to confluence: Flow rates before confluence point: 48.533 21.230 Maximum flow rates at confluence using above data: 63.807 60.476 Area of streams before confluence: 30.500 11.850 Results of confluence: Total flow rate = 63.807(CFS) Time of concentration = 15.123 min. Effective stream area after confluence End of computations, total study area = 42.350 (Ac. ) 42.35 (Ac.) 29 G:\Accts\041093\Proposed Rational Developed 400 Basin.doc San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 11/30/04 041093 -FOX/MILLER PROPOSED RATIONAL - 2 YEAR G:\ACCTS\041093\100P2Y ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SIN 10125 Rational hydrology study storm event year is 2.0 Map data precipitation entered: 6 hour, precipitation (inches) = 1.200 24 hour precipitation (inches) 1.800 Adjusted 6 hour precipitation (inches) = 1.170 P6/P24 = 66.7% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.400 given for subarea Initial subarea flow distance 100.00{Ft.) Highest elevation = 306.00(Ft.) Lowest elevation = 288.50{Ft.) Elevation difference = 17.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.85 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA{l/3)] TC = [1.8*(1.1-0.4000)*(100.00A.5)/{ 17.50A(1/3)]= 4.85 Setting time of concentration to 5 minutes Rainfall intensity (I) =' 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.400 Subarea runoff = 0.247(CFS) Total initial stream area = 0.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation Channel length thru subarea 288.50(Ft. ) 275 . 00 (Ft. ) 520 . 00 (Ft. ) 1 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc Channel base width 0.100(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel 1.788(CFS) Manning's 'N' = 0.025 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 1.788(CFS) Depth of flow = 0.478(Ft.), Average velocity 3.547(Ft/s) Channel flow top width = 2.011(Ft.) Flow Velocity = 3.55(Ft/s) Travel time 2.44 min. Time of concentration = 7.44 min. Critical depth = 0.523(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 2.385(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 2.385(CFS) for 2.500(Ac.) Total runoff = 2.632(CFS) Total area = 2.70(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.800 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 272.00(Ft.) Downstream point/station elevation 258.96(Ft.) Pipe length 105.46(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 2.632(CFS) Nearest computed pipe diameter 9.00(In.) Calculated individual pipe flow 2.632(CFS) Normal flow depth in pipe = 4.25(In.) Flow top width inside pipe = 8.99(In.) Critical Depth = 8.42(In.) Pipe flow velocity = 12.84(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 7.58 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.800 to Point/Station 103.800 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.700(Ac.) Runoff from this stream 2.632(CFS) Time of concentration 7.58 min. Rainfall intensity = 2.357(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.100 to Point/Station 103.300 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.400 given for subarea Initial subarea flow distance 202.00(Ft.) Highest elevation = 284.05(Ft.) 2 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc Lowest elevation = 282.03(Ft.) Elevation difference = 2.02(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 17.91 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.4000)*(202.00A.5)/( 1.00A(1/3)]= 17.91 Rainfall intensity (I) = 1.354 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.400 Subarea runoff = 0.162(CFS) Total initial stream area = 0.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.300 to Point/Station 103.700 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 282.03(Ft.) Downstream point elevation 276.60(Ft.) Channel length thru subarea 210.00(Ft.) Channel base width 0.100(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel 0.514(CFS) Manning's 'N' = 0.025 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 0.514(CFS) Depth of flow = 0.291(Ft.), Average velocity 2.596(Ft/s) Channel flow top width = 1.263(Ft.) Flow Velocity = 2.60(Ft/s) Travel time 1.35 min. Time of concentration = 19.26 min. Critical depth = 0.309(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 1.292(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.672(CFS) for 1.300(Ac.) Total runoff = 0.834(CFS) Total area = 1.60(Ac.~ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.700 to Point/Station 103.800 **** PIPEFLOW TRAVEL TIME (Program estimated size) **.** Upstream point/station elevation = 265.60(Ft.) Downstream point/station elevation 258.96(Ft.) Pipe length 42.06(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 0.834(CFS) Nearest computed pipe diameter 6.00(In.) Calculated individual pipe flow 0.834(CFS) Normal flow depth in pipe = 2.54(In.) Flow top width inside pipe = 5.93(In.) Critical Depth = 5.40(In.) Pipe flow velocity = 10.53(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 19.32 min. 3 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.800 to Point/Station 103.800 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.600(Ac.) Runoff from this stream 0.834(CFS) Time of concentration = 19.32 min. Rainfall intensity = 1.289(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.632 7.58 2.357 2 0.834 19.32 1. 289 Qmax(l) 1. 000 * 1.000 * 2.632) + 1. 000 * 0.392 * 0.834) + 2.959 Qmax(2) 0.547 * 1. 000 * 2.632) + 1. 000 * 1. 000 * 0.834) + 2.273 Total of 2 streams to confluence: Flow rates before confluence point: 2.632 0.834 Maximum flow rates at confluence using above data: 2.959 2.273 Area of streams before confluence: 2.700 1.600 Results of confluence: Total flow rate'= 2.959(CFS) Time of concentration 7.580 min. Effective stream area after confluence 4.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.800 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 258.63(Ft.) Downstream point/station elevation 241.71(Ft.) Pipe length 246.23(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 2.959(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow 2.959(CFS) Normal flow depth in pipe = 3.64(In.) Flow top width inside pipe = 17.23(In.) Critical Depth = 7.20(In.) Pipe flow velocity = 9.83(Ft/s) Travel time through pipe = 0.42 min. Time of concentration (TC) = 8.00 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 4 G;\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.300(Ac.) Runoff from this stream 2.959(CFS) Time of concentration = 8.00 min. Rainfall intensity = 2.277(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.200 to Point/Station 103.100 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.400 given for subarea Initial subarea flow distance 165.0Q(Ft.) Highest elevation = 283.50(Ft.) Lowest elevation = 281.85(Ft.) Elevation difference = 1.65(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 16.18 min. TC = [l.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.4000)*(165.00A.5)/( 1.00A(1/3)]= 16.18 Rainfall intensity (I) = 1.445 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.400 Subarea runoff = 0.173(CFS) Total initial stream area = 0.300 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.100 to Point/Station ~03.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 281.85(Ft.) Downstream point elevation 269.00(Ft.) Channel length thru subarea 440.00(Ft.) Channel base width 10.000(Ft.) Slope or 'z' of left channel bank = 50.000 Slope or 'z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 0.578(CFS) Manning's 'N' = 0.025 Maximum depth of channel 0.100(Ft.) Flow(q) thru subarea = 0.578(CFS) Depth of flow = 0.043(Ft.), Average velocity 1.114(Ft/s) Channel flow top width = 14.274(Ft.) Flow Velocity = 1.11(Ft/s) Travel time 6.58 min. Time of concentration = 22.77 min. Critical depth = 0.043(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 1.160(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.649(CFS) for 1.400(Ac.) Total runoff = 0.823(CFS) Total area = 1.70(Ac.) 5 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR,doc c. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.600 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 269.00(Ft.) Downstream point/station elevation 268.00(Ft.) Pipe length 100.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 0.823(CFS) Nearest computed pipe diameter 9.00(In.) Calculated individual pipe flow 0.823(CFS) Normal flow depth in pipe = 4.49(In.) Flow top width inside pipe = 9.00(In.) Critical Depth = 4.97(In.) Pipe flow velocity = 3.74(Ft/s) Travel time through pipe = 0.45 min. Time of concentration (TC) = 23.21 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.600 to Point/Station 103.600 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.700(Ac.) Runoff from this stream 0.823(CFS) Time of concentration Rainfall intensity = 23.21 min. 1.145 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.200 to Point/Station 103.400 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.400 given for subarea Initial subarea flow distance 120.00(Ft.) Highest elevation = 283.50(Ft.) Lowest elevation = 282.30(Ft.) Elevation difference = 1.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 13.80 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.4000)*(120.00A .5)/( 1.00A (l/3)]= 13.80 Rainfall intensity (I) = 1.601 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.400 Subarea runoff = 0.128(CFS) Total initial stream area = 0.200 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Piocess from Point/Station 103.400 to Point/Station 103.500 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation Channel length thru subarea 282 . 30 (Ft. ) 2 7 3 . 00 ( Ft . ) 650.00 (Ft. ) 6 G:\Accts\04 I 093\Proposed Rational 100 Basin -2YEAR.doc (. Channel base width 0.100(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel 0.865(CFS) Manning's 'N' = 0.025 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 0.865(CFS) Depth of flow = 0.403(Ft.), Average velocity 2.366(Ft/s) Channel flow top width = 1.713(Ft.) Flow Velocity = 2.37(Ft/s) Travel time 4.58 min. Time of concentration = 18.38 min. Critical depth = 0.387(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 1.331(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 1.225(CFS) for 2.300(Ac.) Total runoff = 1.353(CFS) Total area = 2.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.500 to Point/Station 103.600 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 273.00(Ft.) Downstream point/station elevation 272.00(Ft.) Pipe length 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 1.353(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 1.353(CFS) Normal flow depth in pipe = 3.67(In.) Flow top width inside pipe = 14.S1(In.) Critical Depth = 5.22(In.) Pipe flow velocity = S.23(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 18.54 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.600 to Point/Station 103.600 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.500(Ac.) Runoff from this stream 1.353(CFS) Time of concentration = Rainfall intensity = Summary of stream data: Stream Flow rate 18.54 min. 1. 324 (In/Hr) TC No. (CFS) (min) 1 0.823 23.21 2 1. 353 18.54 Qmax (1) Rainfall Intensity (In/Hr) 1.145 1. 324 7 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc Qmax(2) 1. 000 * 0.865 * 1. 000 * 1. 000 * 1. 000 * 1. 000 * 0.799 * 1. 000 * 0.823) + 1.353) + 0.823) + 1.353) + Total of 2 streams to confluence: Flow rates before confluence point: 0.823 1.3S3 1. 993 2.010 Maximum flow rates at confluence using above data: 1.993 2.010 Area of streams before confluence: 1.700 2.S00 Results of confluence: Total flow rate = 2.010(CFS) Time of concentration 18.S40 min. Effective stream area after confluence 4.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.600 to Point/Station 10S.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 272.00(Ft.) Downstream point/station elevation 242.00(Ft.) Pipe length 4S0.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 2.010(CFS) Nearest computed pipe diameter 9.00(In.) Calculated individual pipe flow 2.010(CFS) Normal flow depth in pipe = 4.34(In.) Flow top width inside pipe = 8.99(In.) Critical Depth = 7.73(In.) Pipe flow velocity = 9.S2(Ft/s) Travel time through pipe = 0.79 min. Time of concentration (TC) = 19.33 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 10S.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.200(Ac.) Runoff from this stream 2.010(CFS) Time of concentration = 19.33 min. Rainfall intensity = 1.289(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 104.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.900 given for subarea Initial subarea flow distance 120.00(Ft.) Highest elevation = 275.70(Ft.) 8 G:\Accls\041 093\Proposed Rational 100 Basin -2YEAR.doc Lowest elevation = 273.50(Ft.) Elevation difference = 2.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.22 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9000)*(120.00 A .5)/( 1.83A (1/3)]= 3.22 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = p.900 Subarea runoff = 0.555(CFS) Total initial stream area = 0.200 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 273.500(Ft.) End of street segment elevation = 251.000(Ft.) Length of street segment 340.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown1 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = Depth of flow = 0.116(Ft.), Average velocity = Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.772(Ft.) Flow velocity = 4.76(Ft/s) Travel time = 1.19 min. TC 6.19 min. Adding area flow to street User specified 'C' value of 0.700 given for subarea 1.110 (CFS) 4.757(Ft/s) Rainfall intensity 2.686(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.700 Subarea runoff 0.752(CFS) for 0.400(Ac.) Total runoff = 1.307 (CFS) Total area = 0.'60(Ac.) Street flow at end of street = 1.307(CFS) Half street flow at end of street 1.307(CFS) Depth of flow = 0.126(Ft.), Average velocity = 4.989(Ft/s) Flow width (from curb towards crown)= 2.894(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.600 given for subarea Time of concentration = 6.19 min. 9 G:IAcctsl041093lProposed Rational 100 Basin -2YEAR.doc Rainfall intensity 2.686(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KC'IA, C 0.600 Subarea runoff 0.967(CFS) for 0.600(Ac.) Total runoff = 2.274(CFS) Total area = 1.20(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 10S.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 246.1S(Ft.) Downstream point/station elevation 242.47(Ft.) Pipe length S2.68(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 2.274(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 2.274(CFS) Normal flow depth in pipe = 3.47(In.) Flow top width inside pipe = 14.21(In.) Critical Depth = 6.83(In.) Pipe flow velocity = 9.S0(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 6.28 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10S.000 to Point/Station 10S.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.200(Ac.) Runoff from this stream 2.274(CFS) Time of concentration = 6.28 min. Rainfall intensity = 2.660(In/Hr) Program is now starting with Main Stream No. 4 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 109.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.8S0 given for subarea Initial subarea flow distance lS.00(Ft.) Highest elevation = 27S.70(Ft.) Lowest elevation = 273.50(Ft.) Elevation difference = 2.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.71 min. TC = [1.8*(1.1-C)*distanceA .S)/(% slope A (1/3)] TC = [1.8*(1.1-0.8S00)*( lS.00A .S)/( 14.67A (1/3)]= 0.71 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.8S0 Subarea runoff = 0.393(CFS) Total initial stream area = 0.150 (Ac.) 10 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc (. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 105.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 273.500(Ft.) End of street segment elevation = 251.000(Ft.) Length of street segment 340.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.786(CFS) Depth of flow = 0.097(Ft.), Average velocity = 4.295(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.544(Ft.) Flow velocity = 4.30(Ft/s) Travel time = 1.32 min. TC 6.32 min. Adding area flow to street User specified 'C' value of 0.900 given for subarea Rainfall intensity 2.651(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.900 Subarea runoff 0.716(CFS) for 0.300(Ac.) Total runoff = 1.109(CFS) Total area = 0.45(Ac.) Street flow at end of street = 1.109(CFS) Half street flow at end of street 1.109(CFS) Depth of flow = 0.116(Ft.), Average velocity = 4.756(Ft/s) Flow width (from curb towards crown)= 2.771(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 4 Stream flow area = 0.450(Ac.) Runoff from this stream 1.109(CFS) Time of concentration = 6.32 min. Rainfall intensity = 2.651(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.959 8.00 2.277 2 2.010 19.33 1. 289 3 2.274 6.28 2.660 11 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc c. 4 1.109 6.32 2.651 Qmax(l) 1. 000 * 1. 000 * 2.959) + 1. 000 * 0.414 * 2.010) + 0.856 * 1. 000 * 2.274) + 0.859 * 1. 000 * 1.109) + 6.689 Qmax(2) 0.566 * 1. 000 * 2.959) + 1. 000 * 1. 000 * 2.010) + 0.484 * 1. 000 * 2.274) + 0.486 * 1. 000 * 1.109) + 5.325 Qmax(3) 1. 000 * 0.786 * 2.959) + 1. 000 * 0.325 * 2.010) + 1. 000 * 1. 000 * 2.274) + 1. 000 * 0.994 * 1.109) + 6.354 Qmax(4) 1. 000 * 0.790 * 2.959) + 1. 000 * 0.327 * 2.010) + 0.996 * 1. 000 * 2.274) + 1. 000 * 1. 000 * 1.109) + 6.369 Total of 4 main streams to confluence: Flow rates before confluence point: 2.959 2.010 2.274 1.109 Maximum flow rates at confluence using above data: 6.689 5.325 6.354 6.369 Area of streams before confluence: 4.300 4.200 1.200 0.450 Results of confluence: Total flow rate = 6.689(CFS) Time of concentration 7.998 min. Effective stream area after confluence 10 . 150 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 107.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 242.00(Ft.) Downstream point/station elevation 190.00(Ft.) Pipe length 120.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 6.689(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 6.689(CFS) Normal flow depth in pipe = 3.78(In.) Flow top width inside pipe = 14.67(In.) Critical Depth = 12.01(In.) Pipe flow velocity = 24.78(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 8.08 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 107.000 12 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.400 given for subarea Time of concentration = 8.08 min. Rainfall intensity 2.262(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.905(CFS) for 1.000(Ac.) Total runoff = 7.594(CFS) Total area = 11.15(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 113.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 190.00(Ft.) Downstream point elevation 169.00(Ft.) Channel length thru subarea 640.00(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 10.000 Slope or 'Z' of right channel bank = 10.000 Estimated mean flow rate at midpoint of channel ·9.229(CFS) Manning's 'N' = 0.040 Maximum depth of channel 3.000(Ft.) Flow(q) thru subarea = 9.229(CFS) Depth of flow = 0.565(Ft.), Average velocity 2.888(Ft/~) Channel flow top width = 11.305(Ft.) Flow Velocity = 2.89(Ft/s) Travel time 3.69 min. Time of concentration = 11.77 min. Critical depth = 0.555(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 1.775(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 2.981(CFS) for 4.800(Ac.) Total runoff = 10.575(CFS) Total area = 15.95(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 113.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed~ In Main Stream number: 1 Stream flow area = 15.950(Ac.) Runoff from this stream 10.575(CFS) Time of concentration = 11.77 min. Rainfall intensity = 1.775(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.750 given for subarea Initial subarea flow distance 180.00(Ft.) 13 G:\Accts\04l093\Proposed Rational 100 Basin -2YEAR.doc Highest elevation = 308.50(Ft.) Lowest elevation = 306.00(Ft.) Elevation difference = 2.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.58 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3l] TC = [1.8*(1.1-0.7500)*(180.00 A .5)/( 1.39A (1/3)]= 7.58 Rainfall intensity (I) = 2.358 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.750 Subarea runoff = 1.061(CFS) Total initial stream area = 0.600 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201.000 to Point/Station 202.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 306.00(Ft.) Downstream point elevation 288.00(Ft.) Channel length thru subarea 140.00(Ft.) Channel base width 1.000(Ft.) Slope or 'Z' of left channel bank = ~.OOO Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel 1.238(CFS) Manning's 'N' = 0.015 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 1.238(CFS) Depth of flow = 0.134(Ft.), Average velocity 8.158(Ft/s) Channel flow top width = 1.268(Ft.) Flow Velocity = 8.16(Ft/s) Travel time 0.29 min. Time of concentration = 7.86 min. Critical depth = 0.324(Ft.) Adding area flow to channel User specified 'C' value of 0.450 given for subarea Rainfall intensity 2.302(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.450 Subarea runoff 0.207(CFS) for 0.200(Ac.) Total runoff = 1.268(CFS) Total area = 0.80(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 203.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 288.00(Ft.) Downstream point elevation 273.00(Ft.) Channel length thru subarea 140.00(Ft.) Channel base width 10.000(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 1.268(CFS) Depth of flow = 0.046(Ft.), Average velocity Channel flow top width = 14.616(Ft.) Flow Velocity = 2.23(Ft/s) 2.232(Ft/s) 14 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc • Travel time 1.05 Time of concentration Critical depth = min. 8.91 0.070(Ft.) min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Sta.tion 20.3.00.0 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.350 given for subarea Time of concentration = 8.91 min. Rainfall intensity 2.124(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 0.818(CFS) for 1.100(Ac.) Total runoff = 2.086(CFS) Total area = 1.90(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 206.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 273.00(Ft.) Downstream point elevation 258.00(Ft.) Channel length thru subarea 500.00(Ft.) Channel base width 50.000(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 4.556(CFS) Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 4.556(CFS) Depth of flow = 0.058(Ft.), Average velocity 1.487(Ft/s) Channel flow top width = 55.792(Ft.) Flow Velocity = 1.49(Ft/s) Travel time 5.60 min. Time of concentration = 14.51 min. Critical depth = 0.063(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 1.551(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 2.791(CFS) for 4.500(Ac.) Total runoff = 4.877(CFS) Total area = 6.40(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Stat~on 207.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 258.00(Ft.) Downstream point/station elevation 231.00(Ft.) Pipe length 120.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 4.877(CFS) Nearest computed pipe diameter 9.00(In.) Calculated individual pipe flow 4.877(CFS) Normal flow depth in pipe = 5.14(In.) Flow top width inside pipe = 8.91(10.) 15 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc c. Critical depth could not Pipe flow velocity = be calculated. 18 . 72 (Ft / s ) Travel time through pipe Time of concentration (TC) = 0.11 min. 14.62 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 207.000 to Point/Station 208.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 231.00(Ft.) Downstream point/station elevation 20S.00(Ft.) Pipe length 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 4.877(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow 4.877(CFS) Normal flow depth in pipe = S.75(In.) Flow top width inside pipe = 11.99(In.) Critical Depth = 10.92(In.) Pipe flow velocity = 13.11(Ft/s) Travel time through pipe = 0.38 min. Time of concentration (TC) = lS.00 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 6.400(Ac.) Runoff from this stream 4.877(CFS) Time of concentration lS.00 min. Rainfall intensity = 1.S18(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 209.000 to Point/Station 210.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.9S0 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 2S0.00(Ft.) Lowest elevation = 243.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.41 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9S00)*(100.00 A.S)/( 7.00A(1/3)]= 1.41 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a Effective runoff coefficient used for area Subarea runoff = 0.293(CFS) 2.0 year storm (Q=KCIA) is C = 0.950 Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-++++ Process from Point/Station 210.000 to Point/Station 208.000 16 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc c. **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 243.000(Ft.) End of street segment elevation = 213.000(Ft.) Length of street segment 370.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = Depth of flow = 0.098(Ft.), Average velocity = Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.550(Ft.) Flow velocity = 4.77(Ft/s) Travel time = 1.29 min. TC 6.29 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea 0.879 (CFS) 4.768(Ft/s) Rainfall intensity 2.658(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 1.010(CFS) for 0.400(Ac.) Total runoff = 1.303(CFS) Total area = 0.50(Ac.) Street flow at end of street = 1.303(CFS) Half street flow at end of street 1.303(CFS) Depth of flow = 0.120(Ft.), Average velocity = 5.357(Ft/s) Flow width (from curb towards crown)= 2.815(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 211.000 to Point/Station 208.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.500 given for subarea Time of concentration = 6.29 min. Rainfall intensity 2.658(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.500 Subarea runoff 1.329(CFS) for 1.000(Ac.) Total runoff = 2.632(CFS) Total area = 1.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.500(Ac.) Runoff from this stream 2.632(CFS) Time of concentration 6.29 min. Rainfall intensity = 2.658(In/Hr) 1 7 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 213.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 250.00(Ft.) Lowest elevation = 243.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.41 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9500)*(100.00 A.5)/( 7.00A(1/3)]= 1.41 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.293(CFS) Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 213.000 to Point/Station 208.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 243.000(Ft.) End of street segment elevation = 213.000(Ft.) Length of street segment 370.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfal1 grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.732(CFS) Depth of flow = 0.089(Ft.), Average velocity = 4.513(Ft/s) Streetflow hydraulics at midpoint of street tr~vel: Halfstreet flow width = 2.444(Ft.) Flow velocity = 4.51(Ft/s) Travel time = 1.37 min. TC 6.37 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 2.638(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 0.752(CFS) for 0.300(Ac.) Total runoff = 1.045(CFS) Total area = 0.40(Ac.) Street flow at end of street = 1.045(CFS) Half street flow at end of street 1.045(CFS) Depth of flow = 0.107(Ft.), Average velocity = 5.021(Ft/s) 18 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc Flow width (from curb towards crown)= 2.660 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 214.000 to Point/Station 208.000 **** SUBAREA FLOW ADDITION **** User specified 'c' value of 0.400 given for subarea Time of concentration = 6.37 min. Rainfall intensity 2.638(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.317(CFS) for 0.300(Ac.) Total runoff = 1.361(CFS) Total area = 0.70(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.700(Ac.) Runoff from this stream 1.361(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 6.37 min. 2.638(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity . (In/Hr) 1 4.877 15.00 1. 518 2 2.632 6.29 2.658 3 1. 361 6.37 2.638 Qmax(l) 1. 000 * 1. 000 * 4.877) + 0.571 * 1. 000 * 2.632) + 0.575 * 1. 000 * 1. 361) + . 7.163 Qmax(2) 1. 000 * 0.420 * 4.877) + 1. 000 * 1. 000 * 2.632) + 1. 000 * 0.988 * 1.361) + 6.023 Qmax(3) 1. 000 * 0.424 * 4.877) + 0.993 * 1.000 * 2.632) + 1. 000 * 1.000 * 1.361) + 6.043 Total of 3 streams to confluence: Flow rates before confluence point: 4.877 2.632 1.361 Maximum flow rates at confluence using above data: 7.163 6.023 6.043 Area of streams before confluence: 6.400 1.500 0.700 Results of confluence: Total flow rate = 7.163(CFS) Time of concentration 14.998 min. Effective stream area after confluence 8.600(Ac.) 19 G:\Accts\04 I 093\Proposed Rational 100 Basin -2YEAR.doc ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20B.000 to Point/Station 21S.0QO **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 206.00(Ft.) Downstream point/station elevation IB2.00(Ft.) Pipe length 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 7.163(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow 7.163(CFS) Normal flow depth in pipe = 7.4B(In.) Flow top width inside pipe = 11.63(In.) Critical depth could not be calculated. Pipe flow velocity = 13.93(Ft/s) Travel time through pipe 0.36 min. Time of concentration (TC) = 15.36 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 215.000 to Point/Station 215.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = B.600(Ac.) Runoff from this stream 7.163(CFS) Time of concentration Rainfall intensity = 15.36 min. 1.49S(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 217.000 to Point/Station 21B.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 70.00(Ft.) Highest elevation = 212.00(Ft.) Lowest elevation = 20B.00(Ft.) Elevation difference = 4.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.26 min. TC = [1.8*(1.1-C)*distance~.S)/(% slope~(1/3)l TC = [1.8*(1.1-0.9S00)*( 70.00~.5)/( 5.71~(1/3)l= 1.26 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.0B3 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.9S0 Subarea runoff = 0.293(CFS) Total initial stream area = 0.100 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21B.000 to Point/Station 215.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation End of street segment elevation 20 B . 000 ( Ft . ) IB 9 . 0 0 0 ( Ft . ) 20 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc c. c. (. Length of street segment 240.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.586(CFS) Depth of flow = 0.079(Ft.), Average velocity = 4.179(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.332(Ft.) Flow velocity = 4.18(Ft/s) Travel time = 0.96 min. TC 5.96 min. Adding area flow to street User specified 'c' value of 0.950 given for subarea Rainfall intensity 2.753(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 0.523(CFS) for O.~OO(Ac.) Total runoff = 0.816(CFS) Total area = 0.30(Ac.) Street flow at end of street = 0.816(CFS) Half street flow at end of street 0.816(CFS) Depth of flow = 0.094(Ft.), Average velocity = 4.625(Ft/s) Flow width (from curb towards crown)= 2.513(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 215.000 to Point/Station 215.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.300(Ac.) Runoff from this stream 0.816(CFS) Time of concentration = 5.96 min. Rainfall intensity = 2.753(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 7.163 15.36 1.495 2 0.816 5.96 2.753 Qmax(l) 1.000 * 1.000 * 7.163) + 0.543 * 1. 000 * 0.816) + 7.606 Qmax(2) 1. 000 * 0.388 * 7.163) + 1.000 * 1.000 * 0.816) + 3.595 Total of 2 streams to confluence: 21 G:\Accts\04l093\Proposed Rational 100 Basin -2YEAR.doc c. Flow rates before confluence point: 7.163 0.816 Maximum flow rates at confluence using above data: 7.606 3.595 Area of streams before confluence: 8.600 0.300 Results of confluence: Total flow rate = 7.606(CFS) Time of concentration 15.357 min. Effective stream area after confluence 8.900 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 215.000 to Point/Station 113.000 **** PIPEFLOW TRAVEL TIME (User specified size) ~*** Upstream point/station elevation = 181.00(Ft.) Downstream point/station elevation 169.00(Ft.) Pipe length 44.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 7.606(CFS) Given pip~ size = 18.00(In.) Calculated individual pipe flow 7.606(CFS) Normal flow depth in pipe = 4.53(In.) Flow top width inside pipe = 15.62(In.) Critical Depth = 12.81(In.) Pipe flow velocity = 21.83(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.39 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 113.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 8.900(Ac.) Runoff from this stream 7.606(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 15.39 min. 1.493(In/Hr) Stream No. Flow rate (CFS) TC (min) 1 10.575 11.77 2 '/.606 15.39 Qmax(l) 1. 000 * 1. 000 * 10.575) 1.000 * 0.765 * 7.606) Qmax(2) 0.841 * 1. 000 * 10.575) 1. 000 * 1.000 * 7.606) Total of 2 main streams to confluence: Flow rates before confluence point: Rainfall Intensity (In/Hr) 1. 775 1.493 + + 16.393 + + 16.502 22 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc c. 10.575 7.606 Maximum flow rates at confluence using above data: 16.393 16.502 Area of streams before confluence: 15.950 8.900 Results of confluence: Total flow rate = 16.502(CFS) Time of concentration 15.391 min. Effective stream area after confluence 24 . 850 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 219.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 169.00(Ft.) Downstream point/station elevation 162.00(Ft.) Pipe length 70.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 16.502(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 16.502(CFS} Normal flow depth in pipe = 10.22(In.) Flow top width inside pipe = 13.98(In.) Critical depth could not be calculated. Pipe flow velocity = 18.52(Ft/s) Travel time through pipe 0.06 min. Time of concentration (TC) = 15.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 162.00(Ft.) Downstream point/station elevation 145.50(Ft.) Pipe length 150.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 16.502(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 16.502(CFS) Normal flow depth in pipe = 9.88(In.) Flow top width inside pipe = 14.23(In.) Critical depth could not be calculated. Pipe flow velocity = 19.26(Ft/s) Travel time through pipe 0.13 min. Time of concentration (TC) = 15.58 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 221.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 145.50(Ft.) Downstream point/station elevation 142.50(Ft.) Pipe length 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 16.502(CFS) 23 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 16.502(CFS) Normal flow depth in pipe = 10.22(In.) Flow top width inside pipe = 13.98(In.) Crittcal depth could not be calculated. Pipe flow velocity = 18.52(Ft/s) Travel time through pipe 0.03 min. Time of concentration (TC) 15.61 min. End of computations, total study area = 24.85 (Ac.) 24 G:\Accts\041093\Proposed Rational 100 Basin -2YEAR.doc • • • San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/16/05 041093 -FOX/MILLER PROPOSED RATIONAL METHOD - 2 YEAR G:\ACCTS\041093\300P2Y ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SiN 10125 Rational hydrology study storm event year is 2.0 Map data precipitation entered: 6 hour, precipitation (inches) = 1.200 24 hour precipitation(inches) 1.800 Adjusted 6 hour precipitation (inches) = 1.170 P6/P24 = 66.7% San Diego hydrology manual 'c' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 301.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 180.00(Ft.) Highest elevation = 300.50(Ft.) Lowest elevation = 295.00(Ft.) Elevation difference = 5.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.50 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9500)*(180.00A .5)/( 3.06A (1/3)]= 2.50 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a Effective runoff coefficient used for area Subarea runoff = 0.732(CFS) 2.0 year storm (Q=KCIA) is C = 0.950 Total initial stream area = 0.250 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 301.000 to Point/Station 302.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 295.000(Ft.) End of street segment elevation = 250.000(Ft.) Length of street segment 800.000(Ft.) 25 G:\Accts\04 I 093\Proposed Rational 300 Basin -2YEAR.doc c. • Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 30.000(Ft.) Distance from crown to crossfall grade break 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.050 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.489(CFS) Depth of flow = 0.182(Ft.), Average velocity = 5.640(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.563(Ft.) Flow velocity = 5.64(Ft/s) Travel time = 2. 36-min. TC 7.36 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 2.401(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 2.738(CFS) for 1.200(Ac.) Total runoff = 3.470(CFS) Total area = 1.45(Ac.) Street flow at end of street = 3.470(CFS) Half street flow at end of street 3.470(CFS) Depth of flow = 0.214(Ft.), Average velocity = 6.174(Ft/s) Flow width (from curb towards crown)= 3.950(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 303 .. 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 245.00(Ft.) Downstream point/station elevation 234.00(Ft.) Pipe length 90.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 3.470(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 3.470(CFS) Normal flow depth in pipe = 3.74(In.) Flow top width inside pipe = 14.60(In.) Critical Depth = 8.53(In.) Pipe flow velocity = 13.07(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 7.48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 303.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.450(Ac.) . Runoff from this stream 3.470(CFS) Time of concentration = 7.48 min. 26 • Rainfall intensity 2.378(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 304.000 to Point/Station 305.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 308.S0(Ft.) Lowest elevation = 307.S0(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urba'n areas overland flow method (App X-C) = 4.50 min. TC = [l.8*(1.1-C)*distanceA.S)/(% slopeA(1/3)] TC = [l.8*(l.1-0.8S00)*(100.00A.S)/( 1.00A(l/3)]= 4.50 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 1.048(CFS) Total initial stream area = 0.400(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.000 to Point/Station 306.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 307.S00(Ft.) End of street segment elevation = 270.000(Ft.) Length of street segment 900.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 44.000(Ft.) Distance from crown to crossfall grade break 39.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.050 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.12S(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.751(CFS) Depth of flow = 0.205(Ft.), Average velocity = 5.197(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.849(Ft.) Flow velocity = 5.20(Ft/s) Travel time = 2.89 min. TC 7.89 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 2.298(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 2.838(CFS) for 1.300(Ac.) Total runoff = 3.886(CFS) Total area = 1.70(Ac.) Street flow at end of street = 3.886(CFS) Half street flow at end of street 3.886(CFS) 27 G:\Accts\041093\Proposed Rational 300 Basin -2YEARdoc Depth of flow = 0.243(Ft.), Average velocity = 5.702(Ft/s)', Flow width (from curb towards crown)= 4.299(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 306.000 to Point/Station 303.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 262.00(Ft.) Downstream point/station elevation 234.00(Ft.) Pipe length 400.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 3.886(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 3.886(CFS) Normal flow depth in pipe = 4.55(In.) Flow top width inside pipe = 15.64(In.) Critical Depth = 9.04(In.) Pipe flow velocity = 11.08(Ft/s) Travel time through pipe = 0.60 min. Time of concentration (TC) = 8.49 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 303.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.7bO(Ac.) Runoff from this stream 3.886(CFS) Time of concentration 8.49 min. Rainfall intensity = 2.191(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 307.000 to Point/Station 308.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.700 given for subarea Initial subarea flow distance 90.00(Ft.) Highest elevation = 275.30(Ft.) Lowest elevation = 274.40(Ft.) Elevation difference = 0.90(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.83 min. TC = [1.8*(1.1-C)*distance~.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.7000)*( 90.00A.5)/( 1.00A(1/3)]= 6.83 Rainfall intensity (I) = 2.521 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.700 Subarea runoff = 0.265(CFS) Total initial stream area = 0.150 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 308.000 to Point/Station 303.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 274.400(Ft.)' 28 G:\Accts\041093\Proposed Rationa1300 Basin -2YEAR.doc • • (. End of street segment elevation = 242.000(Ft.) Length of street segment 460.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.050 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.412(CFS) Depth of flow = 0.129(Ft.), Average velocity = 5.215(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.930(Ft.) Flow velocity = 5.22(Ft/s) Travel time = 1.47 min. TC 8.30 min. Adding area flow to street User specified 'C' value of 0.800 given for subarea Rainfall intensity 2.223(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method-, Q=KCIA, CO. 800 Subarea runoff 2.312(CFS) for 1.300(Ac.) Total runoff = 2.577(CFS) Total area = 1.45(Ac.) Street flow at end of street = 2.577(CFS) Half street flow at end of street 2.577(CFS) Depth of flow = 0.175(Ft.), Average velocity = 6.178(Ft/s) Flow width (from curb towards crown)= 3.480(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 303.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 1.450(Ac.) Runoff from this stream 2.577(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 8.30 min. 2.223(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 3.470 7.48 2.378 2 3.886 8.49 2.191 3 2.577 8.30 2.223 Qmax(l) 1. 000 * 1. 000 * 3.470) + 1. 000 * 0.881 * 3.886) + 1. 000 * 0.901 * 2.577) + 9.215 Qmax(2) 0.922 * 1. 000 * 3.470) + 29 G:\Accts\04l093\Proposed Rational 300 Basin -2YEAR.doc Qmax(3) 1. 000 * 0.986 * 0.935 * 1. 000 * 1. 000 * 1. 000 * 1. 000 * 1. 000 * 0.978 * 1. 000 * 3.886) + 2.577) + 3.470) + 3.886) + 2.577) + Total of 3 streams to confluence: Flow rates before confluence point: 3.470 3.886 2.577 9.623 9.621 Maximum flow rates at confluence using above data: 9.215 9.623 9.621 Area of streams before confluence: 1.450 1.700 1.450 Results of confluence: Total flow rate = 9. 623 (CFS) Time of concentration 8.488 min. Effective stream area after confluence 4.600 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 310.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 234.00(Ft.) Downstream point/station elevation 192.00(Ft.) Pipe length 660.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 9.623(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 9. 623 (CFS) Normal flow depth in pipe = 8.30(In.) Flow top width inside pipe = 14.92(In.) Critical Depth = 14.09(In.) Pipe flow velocity = 13.83(Ft/s) Travel time through pipe = 0.80 min. Time of concentration (TC) = 9.28 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.600(Ac.) Runoff from this stream 9.623(CFS) Time of concentration 9.28 min. Rainfall intensity = 2.068(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 311.000 to Point/Station 312.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.500 Initial subarea flow distance Highest elevation = 272.00(Ft.) Lowest elevation = 250.00(Ft.) given for subarea 150 . 00 (Ft. ) 30 G:\Accts\041093\Proposed Rational 300 Basin -2YEAR.doc • • Elevation difference = 22.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.40 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.5000)*(150.00A .5)/( 14.67A (1/3)]= 5.40 Rainfall intensity (I) = 2.932 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.500 Subarea runoff = 0.880(CFS) Total initial stream area = 0.600 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 312.000 to Point/Station 313.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 250.000(Ft.) End of street segment elevation = 200.000(Ft.) Length of street segment 750.000(Ft.) Height of curb above gutter flowline 6.0{In.) Width of half street (curb to crown) 44.000(Ft.) Distance from crown to cross fall grade break 39.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.050 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.393(CFS) Depth of flow = 0.130(Ft.), Average velocity = 5.094(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.941(Ft.) Flow velocity = 5.09(Ft/s) Travel time = 2.45 min. TC 7.86 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 2.303(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 1.532(CFS) for O.700(Ac.) Total runoff = 2.411(CFS) Total area = I.30(Ac.) Street flow at end of street = 2.411(CFS) Half street flow at end of street 2.411(CFS) Depth of flow = 0.171(Ft.), Average velocity = 5.946(Ft/s) Flow width (from curb towards crown)= 3.440(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 314.000 to Point/Station 313.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value Time of concentration = Rainfall intensity Runoff coefficient used of 0.700 given for subarea 7.86 min . 2.303(In/Hr) for a 2.0 year storm for sub-area, Rational method,Q=KCIA, C 0.700 31 G:\Accts\041093\Proposed Rational 300 Basin -2YEAR.doc • Subarea runoff Total runoff = 0.484(CFS) for 0.300(Ac.) 2.895(CFS) Total area = 1. 60 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 313.000 to Point/Station 310.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 192.30(Ft.) Downstream point/station elevation 192.00(Ft.) Pipe length 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 2.895(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 2.895(CFS) Normal flow depth in pipe = 8.19(In.) Flow top width inside pipe = 14.94(In.) Critical Depth = 8.20(In.) Pipe flow velocity = 4.23(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 8.05 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.600(Ac.) Runoff from this stream 2.895(CFS) Time of concentration Rainfall intensity = 8.05 min. 2.267(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.100 to Point/Station 310.200 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 247.00(Ft.) Lowest elevation = 240.00(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.41 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9500)*(100.00A.5)/( 7.00A(1/3)]= 1.41 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.S86(CFS) Total initial stream area = 0.200 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.200 to Point/Station 310.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 32 G:\Accts\041093\Proposed Rational 300 Basin -2YEAR.doq • (. Top of street segment elevation = 240.000(Ft.) End of street segment elevation = 199.000(Ft.) Length of street segment 600.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 44.000(Ft.) Distance from crown to cross fall grade break 39.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.050 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.757(CFS) Depth of flow = 0.145(Ft.), Average velocity = 5.491(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 3.126(Ft.) Flow velocity = 5.49(Ft/s) Travel time = 1.82 min. TC 6.82 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 2.523(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 1.918(CFS) for 0.800(Ac.) Total runoff = 2.503(CFS) Total area = 1.00(Ac.) Street flow at end of street = 2.503(CFS) Half street flow at end of street 2.503(CFS) Depth of flow = 0.174(Ft.), Average velocity = 6.062(Ft/s) Flow width (from curb towards crown)= 3.466(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 1.000(Ac.) Runoff from this stream 2.503(CFS) Time of concentration = 6.82 min. Rainfall intensity = 2.523(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 9.623 9.28 2.068 2 2.895 8.05 2.267 3 2.503 6.82 2.523 Qmax(l) 1. 000 * 1. 000 * 9.623) + 0.913 * 1. 000 * 2.895) + 0.820 * 1. 000 * 2.503) + 14.317 Qmax(2) 33 G:\Accts\041093\Proposed Rational 300 Basin -2YEAR.doc • 1. 000 * 0.868 * 9.623) + 1. 000 * 1. 000 * 2.895) + 0.898 * 1. 000 * 2.503) + 13.493 Qmax(3) 1. 000 * 0.735 * 9.623) + 1. 000 * 0.847 * 2.895) + 1. 000 * 1. 000 * 2.503) + 12.026 Total of 3 streams to confluence: Flow rates before confluence point: 9.623 2.895 2.503 Maximum flow rates at confluence using above data: 14.317 13.493 12.026 Area of streams before confluence: 4.600 1.600 1.000 Results of confluence: Total flow rate = 14.317(CFS) Time of concentration 9.283 min. Effective stream area after confluence 7.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 315.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 199.00(Ft.) Downstream point/station elevation 161.00(Ft.) Pipe length 420.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 14.317(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 14.317(CFS) Normal flow depth in pipe = 9.57(In.) Flow top width inside pipe = 14.41(In.) Critical depth could not be calculated. Pipe flow velocity = 17.31(Ft/s) ~ravel time through pipe 0.40 min. Time of concentration (TC) = 9.69 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 315.100 to Point/Station 31~.DOO **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.950 given for subarea Time of concentration = 9.69 min. Rainfall intensity 2.012(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 1.147(CFS) for 0.600(Ac.) Total runoff = 15.464(CFS) Total area = 7.80(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 315.000 to Point/Station 316.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = Downstream point/station elevation 161. 00 (Ft. ) 147.00(Ft.) 34 G:\Accts\04 I 093\Proposed Rational 300 Basin -2YEAR.doc c. Pipe length 100.00(Ft.) Manning's N = 0.013 No. of pipes 1 Required pipe flow lS.464(CFS) Nearest computed pipe diameter lS.00(In.) Calculated individual pipe flow lS.464(CFS) Normal flow depth in pipe = 8.72(In.) Flow top width inside pipe = 14.80(In.) Critical depth could not be calculated. Pipe flow velocity = 20.89(Ft/s) Travel time through pipe 0.08 min. Time of concentration (TC) = 9.77 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 316.000 to Point/Station 316.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 7.800(Ac.) Runoff from this stream lS.464(CFS) Time of concentration = 9.77 min. Rainfall intensity = 2.002(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 320.000 to Point/Station 316.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'c' value of 0.3S0 given for subarea Rainfall intensity (I) = 1.S18 for a 2.0 year storm User specified values are as follows: TC = lS.00 min. Rain intensity = 1.S2(In/Hr) Total area = 6.4S(Ac.) Total runoff = 2.32(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 316.000 to Point/Station 316.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 6.450(Ac.) Runoff from this stream 2.320(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 15.00 min. 1.S18 (In/Hr) Stream Flow rate TC No. (CFS) (min) 1 15.464 9.77 2 2.320 15.00 Qmax(l) 1. 000 * 1. 000 * 15.464) 1. 000 * 0.6S1 * 2.320) Rainfall Intensity (In/Hr) 2.002 1. S18 + + 16.974 35 G:\Accts\041093\Proposed Rational 300 Basin· 2YEAR.doc Qmax(2) 0.758 * 1. 000 * 1. 000 * 1. 000 * 15.464) + 2.320) + Total of 2 main streams to confluence: Flow rates before confluence point: 15.464 2.320 14.046 Maximum flow rates at confluence using above data: 16.974 14.046 Area of streams before confluence: 7.800 6.450 Results of confluence: Total flow rate = 16.974(CFS) Time of concentration = 9.767 min. Effective stream area after confluence End of computations, total study area = 14.250 (Ac. ) 14 .. 25 (Ac.) 36 G:\Accts\041093\Proposed Rational 300 Basin ~ 2YEAR.doc • San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/16/05 041093 -FOX/MILLER PROPOSED RATIONAL METHOD - 2 YEAR G:\ACCTS\041093\400P2Y ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SiN 10125 Rational hydrology study storm event year is 2.0 Map data precipitation entered: 6 hour, precipitation (inches) = 1.200 24 hour precipitation (inches) 1.800 Adjusted 6 hour precipitation (inches) = 1.170 P6/P24 = 66.7% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station 501.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.400 given for subarea Initial subarea flow distance 110.00(Ft.) Highest elevation = 302.50(Ft.) Lowest elevation = 295.00(Ft.) Elevation difference = 7.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6:97 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.4000)*(110.00A .5)/( 6.82A(1/3)]= 6.97 Rainfall intensity (I) = 2.488 ·for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.4QO Subarea runoff = 0.119(CFS) Total initial stream area = 0.120(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501.000 to Point/Station 502.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = Downstream point elevation Channel length thru subarea Channel base width 295 . 00 ( Ft . ) 266 . 00 (Ft. ) 220.00(Ft.) 10.000(Ft.) 37 G:\Accts\041093\Proposed Rational 400 Basin -2YEAR.doc Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 0.269(CFS) Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 0.269(CFS) Depth of flow = 0.018(Ft.), Average velocity 1.392(Ft/s) Channel flow top width = 11.773(Ft.) Flow Velocity = 1.39(Ft/s) Travel time 2.63 min. Time of concentration = 9.60 min. Critical depth = 0.027(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 2.024(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.243(CFS) for 0.300(Ac.) Total runoff = 0.362(CFS) Total area = 0.42(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 503.0.00 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 266.00(Ft.) Downstream point elevation 260.00(Ft.) Channel length thru subarea 145.00(Ft.) Channel base width 50.000(Ft.) Slope or 'z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 0.707(CFS) Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 0.707(CFS) Depth of flow = 0.017(Ft.), Average velocity 0.8Ql(Ft/s) Channel flow top width = 51.735(Ft.) Flow Velocity = 0.80(Ft/s) Travel time 3.02 min. Time of concentration = 12.62 min. Critical depth = 0.018(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 1.697(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.543(CFS) for 0.800(Ac.) Total runoff = 0.905(CFS) Total area = 1.22(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 503.000 to Point/Station 504.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = 260.00(Ft.) Downstream point elevation 258.00(Ft.) Channel length thru subarea 370.00(Ft.) Channel base width 10.000(Ft.) Slope or 'Z' of left channel bank = 50.000 38 G:\Accts\041093\Proposed Rational 400 Basin -2YEAR.doc • • Given pipe size 18.00(In.) Calculated individual pipe flow 2.642(CFS) Normal flow depth in pipe = 2.54(In.) Flow top width inside pipe = 12.54(In.) Critical Depth = 7.38(In.) Pipe flow velocity = 17.31(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 20.12 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 507.000 to Point/Station 506.000 **** SUBAREA FLOW ADDITION **** User specified 'c' value of 0.400 given for subarea Time of concentration = 20.12 min. Rainfall intensity 1.256(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,.Q=KCIA, C 0.40'0 Subarea runoff 0.402(CFS) for 0.800(Ac.) Total runoff = 3.044(CFS) Total area = 5.40(AG.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 506.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.400(Ac.) Runoff from this stream 3.044(CFS) Time of concentration 20.12 min. Rainfall intensity = 1.256(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 509.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 50.00(Ft.) Highest elevation = 187.00(Ft.) Lowest elevation = 183.00(Ft.) Elevation difference = 4.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.95 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9500)*( 50.00A .5)/( 8.00A (1/3)]= 0.95 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.293(CFS) Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 509.000 to Point/Station 506.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 40 G:\Accts\041093\Proposed Rational 400 Basin -2YEAR.doc (. Top of street segment elevation = 183.000(Ft.) End of street segment elevation = 172.000(Ft.) Length of street segment 140.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.512(CFS) Depth of flow = 0.074(Ft.), Average velocity = 3.998(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.269(Ft.) Flow velocity = 4.00(Ft/s) Travel time = 0.58 min. TC 5.58 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 2.87l(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 0.409(CFS) for 0.150(Ac.) Total runoff = 0.702(CFS) Total area = 0.25(Ac.) Street flow at end of street = 0.702(CFS) Half street flow at end of street 0.702(CFS) Depth of flow = 0.088(Ft.), Average velocity = 4.407(Ft/s) Flow width (from curb towards crown)= 2.429(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 506.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.250(Ac.) Runoff from this stream 0.702(CFS) Time of concentration = 5.58 min. Rainfall intensity = 2.871(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 3.044 20.12 1. 256 2 0.702 5.58 2.871 Qmax(l) 1. 000 * 1. 000 * 3.044) + 0.437 * 1. 000 * 0.702) + 3.351 Qmax(2) 1.000 * 0.278 * 3.044) + 1. 000 * 1. 000 * 0.702) + 1. 547 41 G:\Accts\041093\Proposed Rationa1400 Basin -2YEAR.doc i.e Total of 2 streams to confluence: Flow rates before confluence point: 3.044 0.702 Maximum flow rates at confluence using above data: 3.351 1.547 Area of streams before confluence: 5.400 0.250 Results of confluence: Total flow rate = 3.351(CFS) Time of concentration 20.118 min. Effective stream area after confluence 5.650(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 165.00(Ft.) Downstream point/station elevation 162.00(Ft.) Pipe length 15.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 3.351(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 3.351(CFS) Normal flow depth in pipe = 3.25(In.) Flow top width inside pipe = 13.86(In.) Critical Depth = 8.37(In.) Pipe flow velocity = 15.39(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 20.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.650(Ac.) Runoff from this stream 3.351(CFS) Time of concentration 20.13 min. Rainfall intensity = 1.255(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Station 220.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 1.479 for a 2.0 year storm User specified values are as follows: TC = 15.61 min. Rain intensity = 1.48(In/Hr) Total area = 24.85(Ac.) Total runoff = 16.50(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MINOR STREAMS **** 42 G:\Accts\04I 093\Proposed Rational 400 Basin -2YEAR.doc • • Along Main Stream number: 1 in normal stream number 2 Stream flow area = 24.850(Ac.) Runoff from this stream 16.500(CFS) Time of concentration = 15.61 min. Rainfall intensity = 1.479(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 3.351 20.13 1.255 2 16.500 15.61 1. 479 Qmax(l) 1. 000 * 1. 000 * 3.351) + 0.849 * 1. 000 * 16.500) + 17.353 Qmax(2) 1. 000 * 0.775 * 3.351) + 1. 000 * 1. 000 * 16.500) + 19.098 Total of 2 streams to confluence: Flow rates before confluence point: 3.351 16.500 Maximum flow rates at confluence using above data: 17.353 19.098 Area of streams before confluence: 5.650 24.850 Results of confluence: Total flow rate = 19.098(CFS) Time of concentration 15.610 min. Effective stream area after confluence 30.500 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 221.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 162.00(Ft.) Downstream point/station elevation 142.00(Ft.) Pipe length 35.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 19.098(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow 19.098(CFS) Normal flow depth in pipe = 7.46(In.) Flow top width inside pipe = 11.64(In.) Critical depth could not be calculated. Pipe flow velocity = 37.21(Ft/s) Travel time through pipe 0.02 min. Time of concentration (TC) = 15.63 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 221.000 to Point/Station 221.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: 43 G;\Accts\041093\Proposed Rational 400 Basin -2YEAR.doc • In Main Stream number: 1 Stream flow area = 30.500(Ac.) Runoff from this stream 19.09B(CFS) Time of concentration = 15.63 min. Rainfall intensity = 1.47B(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 405.000 to Point/Station 40B.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.400 given for subarea Rainfall intensity (I) = 1.51B for a 2.0 year storm User specified values are as follows: TC = 15.00 min. Rain intensity = 1.52(In/Hr) Total area = 10.95(Ac.) Total runoff = 3.59(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40B.000 to Point/Station 40B.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 10.950(Ac.) Runoff from this stream 3.590(CFS) Time of concentration 15.00 min. Rainfall intensity = 1.518(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 407.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 50.00(Ft.) Highest elevation = 212.00(Ft.) Lowest elevation = 208.00(Ft.) Elevation difference = 4.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.95 min. TC = [1.B*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.B*(1.1-0.9500)*( 50.00A.5)/( B.00A(1/3)]= 0.95 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.293(CFS) Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 407.000 to Point/Station 40B.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 208.000(Ft.) End of street segment elevation = 172.000(Ft.) Length of street segment 440.000(Ft.) 44 G:\Accts\041093\Proposed Rational 400 Basin -2YEAR.doc • • Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 21.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.879(CFS) Depth of flow = 0.097(Ft.), Average velocity = 4.784(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 2.547(Ft.) Flow velocity = 4.78(Ft/s) Travel time = 1.53 min. TC 6.53 min. Adding area flow to street User specified 'C' value of 0.950 given for subarea Rainfall intensity 2.594(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 0.986(CFS) for 0.400(Ac.) Total runoff = 1.279(CFS) Total area = 0.50(Ac.) Street flow at end of street = 1.279(CFS) Half street flow at end of street 1.279(CFS) Depth of flow = 0.118(Ft.), Average velocity = 5.345(Ft/s) Flow width (from curb towards crown)= 2.798(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process f~om Point/Station 409.000 to Point/Station 408~000 **** SUBAREA FLOW ADDITION **** User specified 'C' value of 0.400 given for subarea Time of concentration = 6.53 min. Rainfall intensity 2.594(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff 0.415(CFS) for 0.400(Ac.) Total runoff = 1.694(CFS) Total area = 0.90(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 408.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.900(Ac.) Runoff from this stream 1.694(CFS) Time of concentration = 6.53 min. Rainfall intensity = 2.594(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 45 G:\Accts\041093\Proposed Rationa1400 Basin -2YEAR.doc (. 1 3.590 15.00 1. 518 2 1.694 6.53 2.594 Qmax(l) 1. 000 * 1. 000 * 3.590) + 0.585 * 1. 000 * 1. 694) + 4.581 Qmax(2) 1. 000 * 0.436 * 3.590) + 1. 000 * 1. 000 * 1. 694) + 3.257 Total of 2 streams to confluence: Flow rates before confluence point: 3.590 1.694 Maximum flow rates at confluence using above data: 4.581 3.257 Area of streams before confluence: 10.950 0.900 Results of confluence: Total flow rate = 4.581(CFS) Time of concentration 15.000 min. Effective stream area after confluence 11. 8;i0 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 22l.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 158.00(Ft.) Downstream point/station elevation 142.00(Ft.) Pipe length 40.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 4.581(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 4.581(CFS) Normal flow depth in pipe = 3.20(In.) Flow top width inside pipe = 13.77(In.) Critical Depth = 9.86(In.) Pipe flow velocity = 21.56(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 221.000 to Point/Station 221.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 11.850(Ac.) Runoff from this stream 4.581(CFS) Time of concentration = 15.03 min. Rainfall intensity = 1.516(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 46 G:\Accts\041093\Proposed Rational.400 Basin -2YEAR.doc • • 1 19.098 15.63 1. 478 2 4.581 15.03 1. 516 Qmax(l) 1. 000 * 1. 000 * 19.098) + 0.975 * 1. 000 * 4.581) + 23.566 Qmax(2) 1. 000 * 0.962 * 19.098) + 1.000 * 1. 000 * 4.581) + 22.952 Total of 2 main streams to confluence: Flow rates before confluence point: 19.098 4.581 Maximum flow rates at confluence using above data: 23.566 22.952 Area of streams before confluence: 30.500 11.850 Results of confluence: Total flow rate = 23.566(CFS) Time of concentration = 15.626 min. Effective stream area after confluence End of computations, total study area = 42.350 (Ac.) 42.35 (Ac.) 47 G:\Accts\041093\Proposed Rational 400 Basin -2YEAR.doc • • San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 05/07/04 041093 -FOX/MILLER PROPOSED RATIONAL METHOD - 2 YEAR G:\ACCTS\041093\600P2Y ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SIN 10125 Rational hydrology study storm event year is 2.0 Map data precipitation entered: 6 hour, precipitation(inches) = 1.200 24 hour precipitation(inches) 1.800 Adjusted 6 hour precipitation (inches) = 1.170 P6/P24 = 66.7% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 600.000 to Point/Station 601.000 **** INITIAL AREA EVALUATION **** User specified 'c' value of 0.350 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 250.00(Ft.) Lowest elevation = 238.00(Ft.) Elevation difference = 12.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.90 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.3500)*(100.00A.5)/( 12.00A(1/3)]= 5.90 Rainfall intensity (I) = 2.772 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.485(CFS) Total initial stream area = 0.500 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 601.000 to Point/Station 602.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = Downstream point elevation Channel length thru subarea Channel base width 238.00(Ft.) 14 2 . 0 0 ( Ft . ) 4 90 . 0 0 (Ft . ) 0.000 (Ft. ) 47 G:\Accts\041093\Proposed Rational 600 Basin -2YEAR.doc Slope or 'z' of left channel bank = 5.000 Slope or 'z' of right channel bank = 5.000 Estimated mean flow rate at midpoint of channel 3.54l(CFS) Manning's 'N' = 0.040 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 3.54l(CFS) Depth of flow = 0.367(Ft.), Average velocity 5.245(Ft/s) Channel flow top width = 3.674(Ft.) Flow Velocity = 5.25(Ft/s) Travel time 1.56 min. Time of concentration = 7.45 min. Critical depth = 0.500(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 2.383(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff = 5.254(CFS) for 6.300(Ac.) Total runoff = 5.739(CFS) Total area = ~.80(Ac.) End of computations, total study area = 6.80 (Ac.) 48 G:\Accts\041 093\Proposed Rational 600 Basin -2YEAR.doc • San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/16/05 041093 -FOX/MILLER PROPOSED RATIONAL METHOD -AREA IN 300 BASIN DETENTION G:\ACCTS\041093\300P ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California -SiN 10125 Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation(inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 317.000 to Point/Station 318.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.350 given for subarea Initial subarea flow distance 420.00(Ft.) Highest elevation = 302.50(Ft.) Lowest elevation = 230.00(Ft.) Elevation difference = 72.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.71 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.3500)*(420.00A .5)/( 17.26A (1/3)]= 10.71 Rainfall intensity (I) = 4.354 for a ·100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 1.128(CFS) Total initial stream area = 0.740(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 318.000 to Point/Station 318.000 **** SUBAREA FLOW ADDITION **** User specified 'c' value Time of concentration = Rainfall intensity Runoff coefficient used of 0.350 given for subarea 10.71 min . 4.354(In/Hr) for a 100.0 year storm for sub-area, Rational method,Q=KCIA, C 0.350 1 G:\Accts\041093\Proposed Rational Area in 300 Detention.doc • Subarea runoff Total runoff = 0.320(CFS) for 0.210(Ac.) 1 . 448 (CFS) Total area = 0.95 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 318.000 to Point/Station 319.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 230.00(Ft.) Downstream point elevation 202.00(Ft.) Channel length thru subarea 340.00(Ft.) Channel base width 2.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel 3.276(CFS) Manning's 'N' = 0.015 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 3.276(CFS) Depth of flow = 0.181(Ft.), Average velocity 8.286(Ft/s) Channel flow top width = 2.363(Ft.) Flow Velocity = 8.29(Ft/s) Travel time 0.68 min. Time of concentration = 11.39 min. Critical depth = 0.406(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 4.183(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 3.514(CFS) for 2.400(Ac.) Total runoff = 4.961(CFS) Total area = 3.35(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 319.000 to Point/Station 320.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 202.00(Ft.) Downstream point elevation 181.00(Ft.) Channel length thru subarea 320.00(Ft.) Channel base width 2.000(Ft.) Slope or 'z' of left channel bank = 1.000 Slope or 'z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel 6.146(CFS) Manning's 'N' = 0.015 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 6.146(CFS) Depth of flow = 0.282(Ft.), Average velocity 9.535(Ft/s) Channel flow top width = 2.565(Ft.) Flow Velocity = 9.54(Ft/s) Travel time 0.56 min. Time of concentration = 11.95 min. Critical depth = 0.602(Ft.) Adding area flow to channel User specified -'C' value of 0.350 given for subarea Rainfall intensity 4.056(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff = 2.271(CFS) for 1.600(Ac.) 2 G:\Accts\041093\Proposed Rational Area in 300 Detention.doc Total runoff 7.233{CFS) Total area 4.95(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 320.000 to Point/Station 316.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 181.00(Ft.) Downstream point elevation 147.00(Ft.) Channel length thru subarea 180.00{Ft.) Channel base width 0.100(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel 8.328{CFS) Manning's 'N' = 0.015 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 8.328(CFS) Depth of flow = 0.649{Ft.), Average velocity 17.137{Ft/s) Channel flow top width = 1.398{Ft.) Flow Velocity = 17.14(Ft/s) Travel time 0.18 min. Time of concentration = 12.12 min. Critical depth = 1.289(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 4.018(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.400 Subarea runoff = 2.411(CFS) for 1.500{Ac.) Total runoff = 9.643{CFS) Total area = 6.45(Ac.) End of computations, total study area = 6.45 (Ad.) 3 G:\Accts\041093\Proposed.Rational Area in 300 Detention.doc • FLOOD HYDROGRAPH ROUTING PROGRAM Copyright (c) CIVILCADD/CIVILDESIGN, 1989 -2001 Study date: 03/16/05 041093 -FOX/MILLER DETENTION -300 BASIN G:\ACCTS\041093\0493B300 O'Day Consultants, Carlsbad, California -SiN 768 ********************* HYDROGRAPH INFORMATION ********************** From study/file name: 0493B300.rte ********************** Hydrograph Information ************************ From manual input hydrograph ****************************HYDROGRAPH DATA**************************** Number of intervals = 41 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 9.630 (CFS) Total volume = 0.144 (Ac.Ft) Status of hydro graphs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Peak (CFS) Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 *********************************************************************** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 300.000 **** RETARDING BASIN ROUTING **** Program computation of outflow v. depth CALCULATED OUTFLOW DATA AT DEPTH = 0.50(Ft.)) Pipe length 42.00(Ft.) Elevation difference 7.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Given pipe size = 6.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. The total friction loss through the pipe is 7.000 (Ft.) Pipe friction loss = 4.286(Ft.) Minor friction loss = 2.711(Ft.) Calculated flow rate through pipets) = K-factor = 2.118 (CFS) 1. 50 Total outflow at this depth = 2.12(CFS) CALCULATED OUTFLOW DATA AT DEPTH 1.00(Ft.)) G:\Accts\041093\Proposed Detention 300 Basin.doc Pipe length 42.00(Ft.) Elevation difference 7.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Given pipe size = 6.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. The total friction loss through the pipe is 7.S00(Ft.) Pipe friction loss = 4.S92(Ft.) Minor friction loss = 2.90S(Ft.) Calculated flow rate through pipets) = K-factor = 2.193(CFS) Total outflow at this depth = 2.19(CFS) CALCULATED OUTFLOW DATA AT DEPTH = 1.S0(Ft.)) Pipe length 42.00(Ft.) Elevation difference Manning's N = 0.011 No. of pipes = 1 Given pipe size = 6.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. 1. SO 7.00 (Ft.) The total friction loss through the pipe is 8.000 (Ft. ) Pipe friction loss = 4.898(Ft.) Minor friction loss = 3.098(Ft.) Calculated flow rate through pipets) = K-factor = 2.26S(CFS) Total outflow at this depth = 2.26(CFS) CALCULATED OUTFLOW DATA AT DEPTH = 2.00(Ft.)) Pipe length 42.00(Ft.) Elevation difference Manning's N = 0.011 No. of pipes = 1 Given pipe size = 6.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. 1. SO 7.00 (Ft.) The total friction loss through the pipe is 8. SOO (Ft.) Pipe friction loss = S.20S(Ft.) Minor friction loss = 3.292(Ft.) Calculated flow rate through pipets) = K-factor = 2.334(CFS) Total outflow at this depth 2.33 (CFS) CALCULATED OUTFLOW DATA AT DEPTH = 2.S0(Ft.)) Pipe length 42.00(Ft.) Elevation difference Manning's N = 0.011 No. of pipes = 1 Given pipe size = 6.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. 1. SO 7.00 (Ft.) The total friction loss through the pipe is 9.000 (Ft. ) Pipe friction loss = S.Sll(Ft.) Minor friction loss = 3.486(Ft.) Calculated flow rate through pipets) = K-factor = 2.402(CFS) Total outflow at this depth = 2.40(CFS) Total number of inflow hydro graph intervals = 41 Hydrograph time unit = 1.000 (Min.) Initial depth in storage basin = O.OO(Ft.) Initial basin depth = 0.00 (Ft.) 1. 50 2 G:\Accts\041 093\Proposed Detention 300 Basin.doc c. Initial basin storage = 0.00 (Ac.Ft) Initial basin outflow = 0.00 (CFS) Depth vs. Storage and Depth vs. Discharge data: Basin Depth Storage Outflow (S-0*dt/2) (S+0*dt/2) (Ft.) (Ac.Ft) (CFS) (Ac.Ft) (Ac.Ft) 0.000 0.500 1.000 1.500 2.000 2.500 0.000 0.019 0.042 0.064 0.093 0.121 0.000 2.118 2.193 2.265 2.334 2.402 0.000 0.018 0.040 0.062 0.091 0.119 Hydrograph Detention Basin Routing 0.000 0.020 0.044 0.066 0.095 0.123 Graph values: '1'= unit inflow; 'O'=outflow at time shown Time (Hours) 0.017 0.033 0.050 0.067 0.083 0.100 0.117 0.133 0.150 0.167 0.183 0.200 0.217 0.233 0.250 0.267 0.283 0.300 0.317 0.333 0.350 0.367 0.383 0.400 0.417 0.433 0.450 0.467 0.483 0.500 0.517 0.533 0.550 0.567 0.583 0.600 0.617 0.633 0.650 Inflow (CFS) 0.45 1.37 2.64 4.42 6.61 8.32 9.33 9.63 9.50 8.76 7.87 6.77 5.39 4.27 3.49 2.84 2.38 1. 98 1. 62 1. 32 1. 09 0.90 0.73 0.58 0.47 0.38 0.32 0.26 0.21 0.18 0.14 0.12 0.10 0.09 0.08 0.06 0.05 0.04 0.02 Outflow (CFS) 0.03 0.16 0.42 0.86 1. 53 2.13 2.16 2.19 2.22 2.25 2.28 2.29 2.31 2.31 2.32 2.32 2.32 2.32 2.32 2.32 2.31 2.31 2.30 2.30 2.29 2.29 2.28 2.27 2.27 2.26 2.25 2.24 2.23 2.22 2.21 2.20 2.19 2.18 2.17 Storage (Ac. Ft) .0 2.4 0.000 01 I 0.001 0 I I 0.004 10 I 0.008 I 0 I 0.014 I 0 I 0.021 I 01 0.031 I 01 0.041 I 01 0.051 I 01 0.060 I 01 0.069 I 01 0.076 I 01 0.081 I 01 0.084 I 01 0.086 I 01 I 0.088 I OII 0.088 I 01 0.088 I IOI 0.087 I I 01 0.086 I I 01 0.084 I I 01 0.083 I I 01 0.081 I I 01 0.078 II 01 0.076 II 01 0.073 II 01 0.071 II 01 0.068 I 01 0.065 I 01 0.062 I 01 0.059 I 01 0.056 I 01 0.054 I 01 0.051 I 01 0.048 I 01 0.045 I 01 0.042 I 01 0.039 I 01 0.036 I 01 4.82 I I I I I I I I I I I I I II I I I I I I I I 1 I I 1 I I I I I I I I I I I I I I I I 7.22 I I I I I I I I I I 1 I I I I I I I I I I I I I 1 I 1 I I I I Depth 9.63 (Ft.) I 0.01 I 0.04 1 0.10 I 0.20 I 0.36 I 0.55 II 0.75 I 0.97 I 1. 20 1. 42 1. 58 1. 70 1. 79 1. 85 1. 89 1.91 1. 91 1. 91 1. 90 1. 88 1. 85 1. 82 1. 79 1. 75 1. 70 1. 66 1. 61 1. 57 1. 52 1. 46 1. 39 1. 33 1. 26 1.19 1.13 1. 06 0.99 0.93 0.87 3 G:\Accts\041093\Proposed Detention 300 Basin.doc c. (. 0.667 0.683 0.700 0.717 0.733 0.750 0.767 0.783 0.800 0.817 0.833 0.850 0.867 0.883 0.900 0.917 0.933 0.950 0.967 0.983 1.000 1.017 1.033 1.050 1. 067 1. 083 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.16 2.15 2.14 2.13 2.13 2.03 1. 74 1. 49 1. 28 1.10 0.94 0.81 0.69 0.59 0.51 0.44 0.37 0.32 0.27 0.24 0.20 0.17 0.15 0.13 0.11 0.09 0.033 0.030 0.027 0.024 0.021 0.018 0.016 0.013 0.011 0.010 0.008 0.007 0.006 0.005 0.005 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 I 01 I 01 I 01 I 01 I 01 101 101 101 101 101 101 101 101 IO I IO 10 IO 10 o o o o o o o o 0.80 0.74 0;67 0.61 0.54 0.48 0.41 0.35 0.30 0.26 0.22 0.19 0.16 0.14 0.12 0.10 0.09 0.08 0.06 0.06 0.05 0.04" 0.04 0.03 0.03 0.02 ****************************HYDROGRAPH DATA**************************** Number of intervals = 65 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 2.322 (CFS) Total volume = 0.144 (Ac.Ft) Status of hydrographs being held in storage Peak (CFS) Vol (Ac.Ft) Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 *********************************************************************** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 30"0.000 **** PRINT CURRENT HYDROGRAPH **** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ P R I N T 0 F S TOR M Run 0 f f H Y d r 0 g rap h Hydrograph in 1 Minute intervals (CFS) Time (h+m) Volume (Ac.Ft) Q(CFS) 0 0.6 1.2 1.7 2.3 0+ 1 0.0000 0.03 0+ 2 0.0003 0.16 0+ 3 0.0008 0.42 0+ 4 0.0020 0.86 0+ 5 0.0041 1. 53 0+ 6 0.0071 2.13 0+ 7 0.0100 2.16 Q V Q V V IV IV I V Q Q 4 Q 1 I I 1 I Q I Q t G:\Accts\041093\Proposed Detention 300 Basin.doc 0+ 8 0.0130 2.19 V I I Q C. 0+ 9 0.0161 2.22 V I I Q 0+10 0.0192 2.25 V I I Q 0+11 0.0223 2.28 V I I Q 0+12 0.0255 2.29 V I I Q 0+13 0.0287 2.31 V I I Q 0+14 0.0319 2.31 V I I Q 0+15 0.0351 2.32 VI I Q 0+16 0.0383 2.32 V I Q 0+17 0.0415 2.32 IV I Q 0+18 0.0447 2.32 I V I Q 0+19 0.0479 2.32 I V I Q 0+20 0.0510 2.32 I V I Q 0+21 0.0542 2.31 I V I Q 0+22 0.0574 2.31 I V I Q 0+23 0.0606 2.30 I V I Q 0+24 0.0638 2.30 I V I Q 0+25 0.0669 2.29 I V I Q 0+26 0.0701 2.29 I vI Q 0+27 0.0732 2.28 I V Q 0+28 0.0763 2.27 I IV QI 0+29 0.0795 2.27 I I V QI 0+30 0.0826 2.26 I I V Q I 0+31 0.0857 2.25 I I V Q I 0+32 0.0888 2.24 I I V I Q I 0+33 0.0918 2.23 I I V I Q I 0+34 0.0949 2.22 I I V I Q I 0+35 0.0~79 2.21 I I V I Q I 0+36 0.1010 2.20 I I V I Q J 0+37 0.1040 2.19 I I V I Q I (. 0+38 0.1070 2.18 I I VI Q I 0+39 0.1100 2.17 I I V Q I 0+40 0.1130 2.16 I I IV Q I 0+41 0.1159 2.15 I I I V Q I 0+42 0.1189 2.14 I I I V Q 0+43 0.1218 2.13 I I I V Q 0+44 0.1247 2.13 I I I V Q 0+45 0.1275 2.03 I I I QV 0+46 0.1299 1. 74 I I QI V 0+47 0.1320 1. 49 I I Q I V 0+48 0.1338 1. 28 I I Q I V 0+49 0.1353 1.10 I Q I I V 0+50 0.1366 0.94 I Q I I V 0+51 0.1377 0.81 I Q I I V 0+52 0.1386 0.69 IQ I I V 0'+53 0.1394 0.59 Q I I V 0+54 0.1401 0.51 Q I I I V 0+55 0.1407 0.44 Q I I I V 0+56 0.1412 0.37 Q I I I VI 0+57 0.1417 0.32 Q I I I VI 0+58 0.1421 0.27 Q I I I VI 0+59 0.1424 0.24 Q I I I VI 1+ 0 0.1427 0.20 Q I I I VI 1+ 1 0.1429 0.17 Q I I I VI 1+ 2 0.1431 0.15 Q I I I VI 1+3 0.1433 0.13 I Q I I I VI 1+ 4 0.1434 0.11 IQ I I I VI 1+ 5 0.1436 0.09 IQ I I I VI ---------------------------------------------------------------------~-(. ****************************HYDROGRAPH DATA**************************** Number of intervals = 65 5 G:\Accts\041 093\Proposed Detention 300 Basin.doc Time interval = 1.0 (Min.) Maximum/Peak flow rate = 2.322 (CFS) Total volume = 0.144 (Ac.Ft) Status of hydrographs being held in storage Peak (CFS) Vol (Ac.Ft) Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 *********************************************************************** ---------------------------------------------------------------~-~-- 6 G:\Accts\041093\Proposed Detention 300 Basin.doc DETENTION RUNOFF HY LJn.~~ -300 BASIN OUTPUT • ~ ~ Ql E: ~ • ~ • 420B.17 3156.13 2104.09 1052.04 Stage-Storage Curve 300 BASIN O. 00 ~L..--..J----I----L---'---t..--L.--L..--'--.l---'--'---'--'----I--....J.-....1.-...;.-L.--'----J -2.50 -2.00 -1.50 -1.00 -0.50 0.00 Stage -It • .' • ·San Diego County Rational Hydrology Program CIVILCADO/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 05/06/04 041093 -FOX/MILLER PROPOSED RATIONAL METHOD -AREA IN 400 BASIN DETENTION G:\ACCTS\041093\400P ********* Hydrology Study Control Information ********** -------------------------------------------------~---------------------- O'Day Consultants, San Deigo, California -SiN 10125 ------------------------------------------------------------------------ Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation (inches) = 2.700 24 hour precipitation(inches) 4.700 Adjusted 6 hour precipitation (inches) = 2.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++++++++++++++ Process from Point/Station 400.000 to Point/Station 401.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.350 given for subarea Initial subarea flow distance 130.00(Ft.) Highest elevation = 308.00(Ft.) Lowest elevation = 290.0~(Ft.) Elevation difference = 18.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.41 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [l.8*(1.1-0.3500)*(130.00A .5)/( 13.85A (1/3))= 6.41 Rainfall intensity (I) = 6.061 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.318(CFS) Total initial stream area = 0.150 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 401.000 to Point/Station 402.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = Downstream point elevation Channel length thru subarea Channel base width 290.00(Ft.) 250 . 00 ( Ft . ) 180 . 00 ( Ft . ) 2.000 (Ft.) 1 G:\Accts\041093\Proposed Rational Area in 400 Detention.doc • • • Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel 2.227(CFS) Manning's 'N' = 0.015 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 2.227(CFS) Depth of flow = 0.107(Ft.), Average velocity 9.905(Ft/s) Channel flow top width = 2.213(Ft.) Flow Velocity = 9.91(Ft/s) Travel time 0.30 min. Time of concentration = 6.71 min. Critical depth = 0.320(Ft.) Adding area flow to channel User specified 'C' value of 0.350 given for subarea Rainfall intensity 5.883(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.350 Subarea runoff 3.706(CFS) for 1.800(Ac.) Total runoff = 4.024(CFS) Total area = 1.95(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++++++++++++ Process from Point/Station 402.000 to Point/Station 403.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 250.00(Ft.) Downstream point elevation 242.00(Ft.) Channel length thru subarea 200.00(Ft.) Channel base width 10.000(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 4.850(CFS) Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 4.850(CFS) Depth of flow = 0.125(Ft.), Average velocity 2.391(Ft/s) Channel flow top width = 22.488(Ft.) Flow Velocity = 2.39(Ft/s) Travel time 1.39 min. Time of concentration = 8.11 min. Critical depth = 0.150(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 5.209(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, CO. 4-00 Subarea runoff 1.667 (CFS) for 0.800(Ac.,) Total runoff = 5.691(CFS) Total area = 2.75(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 403.100 to Point/Station 403.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value Time of concentration = of 0.400 given for subarea 8.11 min. Rainfall intensity Runoff coefficient Subarea runoff = 5.209(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 1.458(CFS) for 0.700(Ac.) 0.400 2 G:\Accts\041093\Proposed Rational Area in 400 Detention.doc • Total runoff 7.l49{CFS) Total area 3.45 (Ac. ) ++++++++++++++++++++++++~+++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 403.000 to Point/Station 404.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 242.00(Ft.) Downstream point elevation 225.00(Ft.) Channel length thru subarea 600.00{Ft.) Channel base width 10.000(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel l3.263{CFS) Manning's 'N' = 0.025 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = l3.263(CFS) Depth of flow = 0.224(Ft.), Average velocity 2.784(Ft/s) Channel flow top width = 32.445(Ft.) Flow Velocity = 2.78(Ft/s) Travel time 3.59 min. Time of concentration = 11.70 min. Critical depth = 0.254(Ft.) Adding area flow to channel User specified 'C' value of 0.400 given for subarea Rainfall intensity 4.111(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C 0.400 Subarea runoff 9.703(CFS) for 5.900(Ac.) Total runoff = 16.852(CFS) Total area = 9.35(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 405.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Opstream point/station elevation = 225.00(Ft.) Downstream point/station elevation 170.00(Ft.) Pipe length 170.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 16.852(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 16.852(CFS} Normal flow depth in pipe = 6.54(In.} Flow top width inside pipe = 17.31(In.) Critical depth could not be calculated. Pipe flow velocity = 29.06(Ft/s) Travel time through pipe 0.10 min. Time of concentration (TC) = 11.80 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 410.000 to Point/Station 405.000 **** SUBAREA FLOW ADDITION **** User specified 'C' value Time of concentration = Rainfall intensity = Runoff coefficient used of 0.450 given for subarea 11.80 min. 4.089(In/Hr) for a 100.0 year storm for sub-area, Rational method,Q=KCIA, C 0.450 3 G:\Accts\041093\Proposed Rational Area in 400 Detention.doc • • • Subarea ·runoff = Total runoff = 2.944(CFS) for 1.600(Ac.) 19.797 (CFS) Total area = End of computations, total study area = 10.95(Ac.) 10.99 (Ac.) 4 G:\Accts\041093\Proposed Rational Area in 400 Detention.doc c. • • FLOOD HYDROGRAPH ROUTING PROGRAM Copyright (c) CIVILCADD/CIVILDESIGN, 1989 -2001 Study date: 09/08/04 ------------------------------------------------------------~-------- 041093 -FOX/MILLER DETENTION -400 BASIN G:\ACCTS\041093\0493B400 O'Day Consultants, Carlsbad, California -SiN 768 ********************* HYDROGRAPH INFORMATION ********************** From study/file name: 0493B400.rte ********************** Hydrograph Information ************************ From manual input hydrograph * * * * * * * ** * ** ******* *********HYDROGRAPH DATA****** * * ** * * * **** *'******* * * * Number of intervals = 40 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 19.770 (CFS) Total volume = 0.289 (Ac.Ft) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Peak (CFS) Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 *********************************************************************** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 405.000 to Point/Station 405.000 **** RETARDING BASIN ROUTING **** Program computation of outflow v. depth CALCULATED OUTFLOW DATA AT DEPTH = 1.00(Ft.)) Pipe length 57.11(Ft.) Elevation difference 22.50 (Ft.) Manning's N = 0.011 No. of pipes = 1 Given pipe size = 6.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. The total friction loss through the pipe is 23 . 000 ( Ft. ) Pipe friction loss = 15.700(Ft.) Minor friction loss = 7.303(Ft.) Calculated flow rate through pipets) = 1 K-factor = 3.477(CFS) 1. 50 G:\Accts\041093\Proposed Detention 400 Basin.doc • I·e Total outflow at this depth 3.48(CFS) CALCULATED OUTFLOW DATA AT DEPTH = 2.00(Ft.)) Pipe length 57.11(Ft.) Elevation difference 22.50 (Ft.) Manning's N = 0.011 No. of pipes = 1 Given pipe size = 6.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. The total friction loss through the pipe is 24 . 000 ( Ft . ) Pipe friction loss = 16.383(Ft.) Minor friction loss = 7.621(Ft.) Calculated flow rate through pipe(s) = K-factor = 3.552(CFS) Total outflow at this depth = 3.55(CFS) CALCULATED OUTFLOW DATA AT DEPTH = 3.00(Ft.)) Pipe length 57.11(Ft.) Elevation difference Manning's N = 0.011 No. of pipes = 1 Given pipe size = 6.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. 1. 50 22.50(Ft. ) The total friction loss through the pipe is 25.000(Ft.) Pipe friction loss = 17.065(Ft.) Minor friction loss = 7.939(Ft.) Calculated flow rate through pipe(s) = K-factor = 3.625(CFS) Total outflow at this depth = 3.62(CFS) CALCULATED OUTFLOW DATA AT DEPTH = 4.00(Ft.)) Pipe length 57.11(Ft.) Elevation difference Manning's N = 0.011 No. of pipes = 1 Given pipe size = 6.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. 1. 50 22.50 (Ft.) The total friction loss through the pipe is 26 . 000 (Ft. ) Pipe "friction loss = 17.748(Ft.) Minor friction loss = 8.256(Ft.) Calculated flow rate through pipets) = K-factor = 3.697(CFS) Total outflow at this depth = 3.70(CFS) CALCULATED OUTFLOW DATA AT DEPTH = 5.00(Ft.)) Pipe length 57.11(Ft.) Elevation difference Manning's N = 0.011 No. of pipes = 1 Given pipe size = 6.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. 1. 50 22.50 (Ft. ) The total friction loss through the pipe is 27 . 000 (Ft. ) Pipe friction loss = 18.431(Ft.) Minor friction loss = 8.574(Ft.) Calculated flow rate through pipets) = K-factor = 3.767(CFS) 1. 50 Total outflow at this depth = 3.77(CFS) 2 G:\Accts\041093\Proposed Detention 400 Ba~in"doc Total number of inflow hydrograph intervals = 40 Hydrograph time unit = 1.000 (Min.) Initial depth in storage basin = O.OO(Ft.) Initial basin depth = Initial basin storage = Initial basin outflow = o. 00 (Ft.) o . 00 (Ac . Ft ) 0.00 (CFS) Depth vs. Storage and Depth vs. Discharge data: Basin Depth Storage Outflow (S-0*dt/2) (Ft.) (Ac.Ft) (CFS) (Ac.Ft) (S+0*dt/2) (Ac.Ft) 0.000 1.000 2.000 3.000 4.000 5.000 0.000 O. 071 0.151 0.246 0.350 0.473 0.000 3.477 3.552 3.625 3.697 3.767 0.000 0.069 0.149 0.244 0.347 0.470 Hydrograph Detention Basin Routing 0.000 0.073 0.153 0.248 0.353 0.476 Graph values: '1'= unit inflow; 'O'=outflow at time shown Time (Hours) 0.017 0.033 0.050 O. 067 0.083 0.100 0.117 0.133 0.150 0.167 0.183 0.200 0.217 0.233 0.250 0.267 0.283 0.300 0.317 0.333 0.350 0.367 0.383 0.400 0.417 0.433 0.450 Inflow (CFS) 0.96 2.92 5.65 9.53 14.09 17.52 19.43 19.77 19.14 17.51 15.58 13. 04 10.21 8.13 6.57 5.38 4.50 3.70 2.96 2.46 2.01 1. 64 1. 31 1. 04 0.85 0.70 0.56 Outflow (CFS) 0.03 0.16 0.43 0.89 1. 61 2.53 3.48 3.50 3.52 3.54 3.56 3.57 3.58 3.58 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.58 3.58 3.58 3.57 3.57 Storage (Ac.Ft) .0 0.001 01 0.003 0 0.009 0 0.018 10 0.033 I 0 0.052 I 0.073 I 0.095 I a .117 I 0.138 I 0.155 I 0.170 I 0.181 I 0.189 I 0.194 I 0.198 I 0.199 I 0.200 I 0.200 I 0.199 I 0.197 I 0.194 I I 0.191 I I 0.188 II 0.184 II 0.181 II 0.176 I 4.9 I I I II I I o I o I o I o I o I o I o I o I o I o I I o I o I I o I 10 I 101 101 o I o I o I o I o I o I I 9.88 I I I II I I I I I I I I I I I I I I I I I I I I I I I I 14.83 I I I I I I I I I I I II I I I I I I I I I I I I I I I I Depth 19.77 (Ft.) I 0.01 I O. 04 I 0.12 I 0.26 I 0.46 I I 0.73 I I 1. 03 I 1.30 I I 1. 58 I I 1. 83 I 2.05 I 2.20 I 2.32 I 2.40 'I 2.46 I 2.49 I 2.51 I 2.52 I 2.51 I 2.50 I 2.48 I 2.46 I 2.42 I 2.39 I 2.35 I 2.31 I 2.27 3 G:\Accts\041093\Proposed Detention 400 Basin.doc 0.467 0.46 3.57 0.172 I 0 I I I I 2.22 • 0.483 0.38 3.56 0.168 I 0 I I I I 2.18 0.500 0.30 3.56 0.163 I 0 I I I I 2.13 0.517 0.25 3.56 0.159 I 0 I I I I 2.08 0.533 0.21 3.55 0.154 I 0 I I I I 2.04 0.550 0.18 3.55 0.150 I 0 I I I I 1. 98 0.567 0.16 3.55 0.145 I 0 I I I I 1. 93 0.583 0.13 3.54 0.140 I 0 I I I I 1. 87 0.600 0.11 3.54 0.136 1 0 I I I I 1. 81 0.617 0.08 3.53 0.131 I 0 I I I I 1. 75 0.633 0.05 3.53 0.126 1 0 I I I I 1. 69 0.650 0.02 3.52 0.121 I 0 I I I I 1. 63 0.667 0.00 3.52 0.117 1 0 I I I I 1. 57 0.683 0.00 3.51 0.112 I 0 I I I I 1. 51 0.700 0.00 3.51 0.107 I 0 I I I I 1. 45 0.717 0.00 3.51 0.102 I 0 I I I I 1. 39 0.733 0.00 3.50 0.097 1 0 I I I I 1. 33 0.750 0.00 3.50 0.092 I 0 I I I I 1.27 0.767 0.00 3.49 0.088 1 0 I I I I 1.2'1 0.783 0.00 3.49 0.083 I 0 I I I I 1.1-5 0.800 0.00 3.48 0.078 1 0 I I I I 1. 09 0.817 0.00 3.48 0.073 I 0 I I I I 1. 03 0.833 0.00 3.35 0.068 1 0 I I I I 0.96 0.850 0.00 3.13 0.064 1 0 I I I I 0.90 0.867 0.00 2.93 0.060 1 0 I I I I 0.84 0.883 0.00 2.74 0.056 I 0 I I I I 0.79 0.900 0.00 2.56 0.052 I 0 I I I I 0.74 0.917 0.00 2.39 0.049 I 0 I I I I 0.69 • 0.933 0.00 2.24 0.046 1 0 I I I I 0.64 0.950 0.00 2.09 0.043 I 0 I I I I 0.60 0.967 0.00 1. 95 0.040 I 0 I I I I 0.56 0.983 0.00 1. 83 0.037 I 0 I I I I 0.53 1. 000 0.00 1.71 0.035 1 0 I I I I 0.49 1.017 0.00 1. 60 0.033 I 0 I I I I 0.46 1. 033 0.00 1. 49 0.030 1 0 I I I I 0.43 1. 050 0.00 1. 39 0.028 I 0 I I I I 0.40 1. 067 0.00 1. 30 0.027 1 0 I I I I 0.37 1. 083 0.00 1. 22 0.025 IO I I I I 0.35 1.100 0.00 1.14 0.023 10 I I I I 0.33 1.117 0.00 1. 06 0.022 IO I I I I 0.31 1.133 0.00 1. 00 0.020 IO I I I I 0.29 1.150 0.00 0.93 0.019 IO I I I I 0.27 1.167 0.00 0.87 0.018 10 I I I I 0.25 1.183 0.00 0.81 0.017 IO I I I I 0.23 1. 200 0.00 0.76 0.016 IO I I I I 0.22 1.217 0.00 0.71 0.015 10 I I I I 0.20 1. 233 0.00 0.66 0.014 IO I I I I 0.19 1. 250 0.00 0.62 0.013 10 I I I I 0.18 1. 267 0.00 0.58 0.012 0 I I I I 0.17 1. 283 0.00 0.54 0.011 0 I I I I 0.16 1.300 0.00 0.51 0.010 0 I I I I 0.15 1.317 0.00 0.47 0.010 0 I I I I 0.14 1.333 0.00 0.44 0.009 0 I I I I 0.13 1.350 0.00 0.41 0.008 0 I I I I 0.12 1. 367 0.00 0.39 0.008 0 I I I I 0.11 • 1. 383 0.00 0.36 0.007 0 I I I I 0.10 1. 400 0.00 0.34 0.007 0 I I I I 0.10 4 G:\Accts\041093\Proposed Detention 400 Basin_doc c. • • 1. 417 0.00 0.32 0.006 0 0.09 1. 433 0.00 0.30 0.006 0 0.08 1. 450 0.00 0.28 0.006 0 0.08 1.467 0.00 0.26 0.005 0 0.07 1. 483 0.00 0.24 0.005 0 0.07 1.500 0.00 0.23 0.005 0 0.06 1.517 0.00 0.21 0.004 0 0.06 1. 533 0.00 0.20 0.004 0 0.06 1.550 0.00 0.18 0.004 0 0.05 1. 567 0.00 0.17 0.004 0 0.05 1. 583 0.00 0.16 0.003 0 0.05 1. 600 0.00 0.15 0.003 0 0.04 1. 617 0.00 0.14 0.003 0 0.04 1.633 0.00 0.13 0.003 0 0.04 1. 650 0.00 0.12 0.003 0 0.04 1. 667 0.00 0.11 0.002 0 0.03 1. 683 0.00 0.11 0.002 0 0.03 1. 700 0.00 0.10 0.002 0 0.03 1. 717 0.00 0.09 0.002 0 0.03 Remaining water in basin 0.00 (Ac.Ft) ****************************HYDROGRAPH DATA**************************** Number of intervals = 103 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 3.590 (CFS) Total volume = 0.287 (Ac.Ft) Status of hydrographs being held in storage Peak (CFS) Vol (Ac.Ft) Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **********************************************************'************* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 405.000 to Point/Station 405.000 **** PRINT CURRENT HYDROGRAPH **** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ P R I N T 0 F S TOR M Run 0 f f H Y d r 0 g rap h Hydrograph in 1 Minute intervals (CFS) ----------------------------------------------------------~~-------- Time (h+m) Volume (Ac.Ft) Q(CFS) 0 0.9 1.8 2.7 3.6 0+ 1 0.0000 0.03 0+ 2 0.0003 0.16 0+ 3 0.0008 0.43 0+ 4 0.0021 0.89 0+ 5 0.0043 1. 61 0+ 6 0.0078 2.53 Q VQ V Q V V IV 5 I I I QI I I Q Q 'I I I I I I G:\Accts\041093\Proposed Detenti6n 400 Basin.doc (. 0+ 7 0.0126 3.48 IV I I I Q I 0+ 8 0.0174 3.50 I V I I I Q I 0+ 9 0.0222 3.52 I V I I I. QI 0+10 0.0271 3.54 I V I I I QI 0+11 0.0320 3.56 I V I I I QI 0+12 0.0369 3.57 I V I I I QI 0+13 0.0418 3.58 I V I I I QI 0+14 0.0468 3.58 I V I I I QI 0+15 0.0517 3.59 I V I I I QI 0+16 0.0567 3.59 I V I I I QI 0+17 0.0616 3.59 I V I I I QI 0+18 0.0665 3.59 I VI I I Q 0+19 0.0715 3.59 I VI I I QI 0+20 0.0764 3.59 I V I I QI 0+21 0.0814 3.59 I IV I I QI 0+22 0.0863 3.59 I I V I I QI 0+23 0.0912 3.58 I I V I I QI 0+24 0.0962 3.58 I I V I I QI 0+25 0.1011 3.58 I I V I I QI 0+26 0.1060 3.57 I I V I I QI 0+27 0.1109 3.57 I I V I I QI 0+28 0.1159 3.57 I I V I I QI 0+29 0.1208 3.56 I I V I I QI 0+30 0.1257 3.56 I I V I I QI 0+31 0.1306 3.56 I I V I I QI 0+32 0.1355 3.55 I I V I I QI 0+33 0.1404 3.55 I I VI I QI 0+34 0.1452 3.55 I I V I Q'I (. 0+35 0.1501 3.54 I I V I QI 0+36 0.1550 3.54 I I IV I QI 0+37 0.1599 3.53 I I I V I QI 0+38 0.1647 3.53 I I I V I QI 0+39 0.1696 3.52 I I I V I QI 0+40 0.17 44 3.52 I I I V I QI 0+41 0.1793 3.51 I I I V I QI 0+42 0.1841 3.51 I I I V I QI 0+43 0.1889 3.51 I I I V I QI 0+44 0.1938 3.50 I I I V I QI 0+45 0.1986 3.50 I I I V I Q I 0+46 0.2034 3.49 I I I V I Q I 0+47 0.2082 3.49 I I I VI Q I 0+48 0.2l30 3.48 I I I VI Q I 0+49 0.2178 3.48 I I I V Q I 0+50 0.2224 3.35 I I I IV Q I 0+51 0.2267 3.13 I I I IV Q I 0+52 0.2307 2.93 I I I I Q I 0+53 0.2345 2.74 I I I Q V I 0+54 0.2380 2.56 I I I Q I V I 0+55 0.2413 2.39 I I I Q I V I 0+56 0.2444 2.24 I I I Q I V I 0+57 0.2473 2.09 I I I Q I V I 0+58 0.2500 1. 95 I I IQ I V I 0+59 0.2525 1. 83 I I Q I V I 1+ 0 0.2549 1.71 I I QI I V I 1+ 1 0.2571 1. 60 I I Q I I V I • 1+ 2 0.2591 1. 49 I I Q I I V I 1+ 3 0.2610 1. 39 I I Q I I V I 6 G:\Accts\041093\Proposed Detention 400 Basin.doc • 1+ 4 1+ 5 1+ 6 1+ 7 1+ 8 1+ 9 1+10 1+11 1+12 1+13 1+14 1+15 1+16 1+17 1+18 1+19 1+20 1+21 1+22 1+23 1+24 1+25 1+26 1+27 1+28 1+29 1+30 1+31 1+32 1+33 1+34 1+35 1+36 1+37 1+38 1+39 1+40 1+41 1+42 1+43 0.2628 0.2645 0.2661 0.2675 0.2689 0.2702 0.2714 0.2725 0.2736 0.2745 0.2755 0.2763 0.2771 0.2779 0.2786 0.2792 0.2798 0.2804 0.2809 0.2814 0.2819 0.2823 0.2827 0.2831 0.2835 0.2838 0.2841 0.2844 0.2847 0.2849 0.2852 0.2854 0.2856 0.2858 0.2860 0.2861 0.2863 0.2864 0.2866 0.2867 1. 30 1. 22 1.14 1. 06 1. 00 0.93 0.87 0.81 0.76 0.71 0.66 0.62 0.58 0.54 0.51 0.47 0.44 0.41 0.39 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.23 0.21 0.20 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.11 0.10 0.09 I I Q I I Q I I Q I IQ I IQ I Q I QI I QI I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I I Q I IQ I IQ I IQ I IQ I IQ I IQ I IQ I IQ I IQ I IQ I v I V I V I V I V I V I V I V I VI V I VI V I V I V I V I V I VI VI VI VI VI VI VI VI VI VI VI VI VI VI VI VI VI VI VI VI VI VI VI V ----------------------------------------------------------------------- ****************************HYDROGRAPH DATA**************************** Number of intervals = 103 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 3.590 (CFS) Total volume = 0.287 (Ac.Ft) Status of hydrographs being held in storage Peak (CFS) Vol (Ac.Ft) Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 *********************************************************************** --------------------------------------------------------------~----- 7 G:\Accts\041093\Proposed Detention 400 Basin.doc DETENTION RUNOFF -400 BASIN OUTPUT (AT 1 MIN • 16480.51 12360.39 8240.26 . 4120.13 Stage-storage Curve 400 basin o. 00 ~I...--I--'----'-----'----'---'---'---'---'----'-----'----'----'----'--.....L---'---'---'---' -5.00 -4.00 -3.00 -2.00 -1.00 0.00 Stage -ft • • FLOOD HYDROGRAPH ROUTING PROGRAM Copyright (c) CIVILCADD/CIVILDESIGN, 1989 -2001 Study date: 05/06/04 041093 -FOX/MILLER DETENTION -CANYON G:·\JOBS\041093\0493BCAN Q'Day Consultants, Carlsbad, California -SiN 768 ********************* HYDROGRAPH INFORMATION ********************** From study/file name: 0493bcan.rte ********************** Hydrograph Information ************************ From manual input hydrograph ****************************HYDROGRAPH DATA**************************** Number of intervals = 44 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 60.580 (CFS) Total volume = 0.979 (Ac.Ft) Status of hydrographs being held in storage Stream 1 Stream 2 Stream. 3 Stream 4 Stream 5 Peak (CFS) Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 *********************************************************************** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 113.000 **** RETARDING BASIN ROUTING **** Program computation of outflow v. depth CALCULATED OUTFLOW DATA AT DEPTH = 1.00(Ft.)) Pipe length 72.00(Ft.) Elevation difference 7.00 (Ft.) Manning's N = 0.013 No. of pipes = I Given pipe size = 18.00(In.) Calculated individual pipe flow 6.687(CFS) Normal flow depth in pipe = 5.52(In.) Flow top width inside pipe = 16.60(In.) Critical Depth = 1.00(Ft.) Calculated flow rate through pipets) = 6.687(CFS) Total outflow at this depth = 6.69(CFS) 1 G;\Accts\041093\Proposed Detention Canyon Basin.doc • • • CALCULATED OUTFLOW DATA AT DEPTH = 2.00(Ft.» Pipe length 72.00(Ft.) Elevation difference 7.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Given pipe size = 18.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. The total friction loss through the pipe is 7.500 (Ft. ) Pipe friction loss = 3.501(Ft.) Minor friction loss = 4.002(Ft.) Calculated flow rate through pipe(s) = K-factor = 23.163(CFS) Total outflow at this depth = 23.16 (CFS) CALCULATED OUTFLOW DATA AT DEPTH = 3.00(Ft.» Pipe length 72.00(Ft.) Elevation difference Manning's N = 0.013 No. of pipes = 1 Given pipe size = 18.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. 1. 50 7.00CFt.) The total friction loss through the pipe is 8.500 (Ft. ) Pipe friction loss = 3.968(Ft.) ~inor friction loss = 4.535(Ft.) Calculated flow rate through pipets) = K-factor = 24.659(CFS) Total outflow at this depth = 24.66(CFS) CALCULATED OUTFLOW DATA AT DEPTH = 4.00(Ft.» Pipe length 72.00(Ft.) Elevation difference Manning's N = 0.013 No. of pipes = 1 Given pipe size = 18.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. 1. 50 7.00 (Ft.) The total friction loss through the pipe is 9.500 (Ft. ) Pipe friction loss = 4.435(Ft.) Minor friction loss = 5.069(Ft.) Calculated flow rate through pipe(s) = K-factor = 26.069(CFS) Total outflow at this depth = 26.07(CFS) CALCULATED OUTFLOW DATA AT DEPTH = 5.00(Ft.» Pipe length 72.00(Ft.) Elevation difference Manning's N = 0.013 No. of pipes = 1 Given pipe size = 18.00(In.) NOTE: Assuming outlet depth at soffit of outlet. NOTE: Normal flow is pressure flow. 1. 50 7.00 (Ft. ) The total friction loss through the pipe is 10 . 500 ( Ft . ) Pipe friction loss = 4.901(Ft.) Minor friction loss = 5.603(Ft.) Calculated flow rate through pipe(s) = K-factor = 27.407(CFS) 1. 50 Total outflow at this depth = 27.41 (CFS) 2 G:\Accts\041093\Proposed Detention Canyon Basin.doc • • Total number of inflow hydro graph intervals = 44 Hydrograph time unit = 1.000 (Min.) Initial depth in storage basin = O.OO(Ft.) Initial basin depth = Initial basin storage = Initial basin outflow = 0.00 (Ft.) 0.00 (Ac.Ft) 0.00 (CFS) -------------------------------------------------------~----~------- Depth vs. Storage and Depth vs. Discharge data: Basin Depth Storage Outflow (S-0*dt/2) (Ft.) (Ac.Ft) (CFS) (Ac.Ft) (S+0*dt/2 ) (Ac.Ft) 0.000 1.000 2.000 3.000 4.000 5.000 0.000 0.098 0.237 0.400 0.588 0.817 0.000 6.687 23.163 24.659 26.069 27.407 0.000 0.093 0.221 0.383 0.570 0.798 Hydrograph Detention Basin Routing 0.000 0.103 0.253 0.417 0.606 0.836 Graph values: '1'= unit inflow; 'O'=outflow at time shown Time (Hours) 0.017 0.033 0.050 0.067 0.083 0.100 0.117 0.133 0.150 0.167 0.183 0.200 0.217 0.233 0.250 0.267 0.283 0.300 0.317 0.333 0.350 0.367 0.383 0.400 0.417 0.433 0.450 0.467 Inflow (CFS) 2.44 7.67 14.72 24.49 36.94 48.58 56.58 60.26 60.58 58.51 53.97 48.65 42.00 33.83 27.20 22.52 18.63 15.71 13.27 11.11 9.06 7.66 6.37 5. ;33 4.38 3.51 2.92 2.41 Outflow (CFS) 0.11 0.55 1. 51 3.13 5.61 10.48 16.84 23.11 23.63 24.08 24.48 24.79 25.00 25.13 25.19 25.19 25.14 25.06 24.95 24.82 24.67 24.46 24.24 24.01 23.77 23.52 23.27 21. 31 Storage (Ac. Ft) .0 0.002 01 0.008 0 I 0.022 0 0.046 10 0.082 I 0 0.130 I 0 0.184 I 0.237 I 0.288 I 0.337 I 0.381 I 0.418 I 0.446 I 0.463 I 0.471 I 0.470 I 0.464 I 0.453 I 0.439 I 0.421 I I 0.401 I I 0.379 I I 0.355 I I 0.330 I I 0.303 I I 0.276 II 0.248 II 0.221 II 15.1 I I II I I I o I I I I I I I I I I II I II I I I o o o o o o o 30.29 I I I I I I I I I I I I I I II 01 I o I o I o o o I I I I o o o o I I I I I o o I 0 I 0 I I I I I I I 45.44 I I I I I II I I I I I I II I I I I I I I I I I I I I I I I I Depth 60.58 (Ft.) I 0.02 I 0.08 I 0.23 I 0.47 I 0.84 I 1. 23 I I 1.62 II 2.00 I 2.31 I I 2.61 I 2.88 . I 3.09 I 3.24 I 3.34 I 3.38 I 3.37 I 3.34 I 3.28 I 3.21 ·1 3.11 I 3.00 r 2.87 I 2.72 I 2.57 I 2.41 I 2.24 I 2.07 I 1. 89 3 G:\Accts\041093\Proposed Detention Canyon Basin.doc • 0.483 2.03 18.43 0.197 II 10 I 1.71 0.500 1. 68 15.92 0.176 I 0 I 1.56 0.517 1. 40 13.75 0.158 I 01 I 1. 43 0.533 1.16 11. 87 0.142 I 0 I I 1.31 0.550 0.95 10.24 0.128 I 0 I J 1. 22 0.567 0.80 8.82 0.116 I 0 I I 1.13 0.583 0.66 7.60 0.106 I 0 I I 1. 06 0.600 0.59 6.60 0.097 I 0 I I 0.99 0.617 0.52 6.06 0.089 I 0 I I 0.91 0.633 0.45 5.56 0.082 I 0 I I 0.83 0.650 0.39 5.10 0.075 I 0 I I 0.76 0.667 0.32 4.67 0.069 I 0 I I 0.70 0.683 0.23 4.28 0.063 I 0 I I 0.64 0.700 0.14 3.91 0.057 I 0 I I 0.58 0.717 0.06 3.57 0.052 10 I I I 0.53 0.733 0.00 3.25 0.048 IO I I I I 0.49 0.750 0.00 2.96 0.043 10 I I I I 0.44 0.767 0.00 2.69 0.039 IO I I I I 0.40 0.783 0.00 2.45 0.036 10 I I I I 0.37 0.800 0.00 2.23 0.033 10 I I I I 0.33 0.817 0.00 2.03 0.030 IO I I I I 0.30 0.833 0.00 1. 85 0.027 0 I I I I 0:28 0.850 0.00 1. 68 0.025 0 I I I I 0.25 0.867 0.00 1.53 0.022 0 I I I I 0.23 0.883 0.00 1. 39 0.020 0 I I I I 0.21 0.900 0.00 1.27 0.019 0 I I I I 0.19 0.917 0.00 1.16 0.017 0 I I I I 0.17 • 0.933 0.00 1. 05 0.015 0 I I I I 0.16 0.950 0.00 0.96 0.014 0 I I I I 0.14 0.967 0.00 0.87 O. 013 0 I I I I 0.13 0.983 0.00 0.79 0.012 0 I I I I 0.12 1. 000 0.00 0.72 0.011 0 I I I I 0.11 1. 017 0.00 0.66 0.010 0 I I I I 0.10 1.033 0.00 0.60 0.009 0 I I I I 0.09 1.050 0.00 0.54 0.008 0 I I I I 0.08 1.067 0.00 0.50 0.007 0 I I I I 0.07 1. 083 0.00 0.45 0.007 0 I I I I 0.07 1.100 0.00 0.41 0.006 0 I I I I 0.0'6 1.117 0.00 0.37 0.005 0 I I I I 0.06 1.133 0.00 0.34 0.005 0 I I I I 0.05 1.150 0.00 0.31 0.005 0 I I I I 0.05 1.167 0.00 0.28 0.004 0 I I I I 0.04 1.183 0.00 0.26 0.004 0 I I I I 0.04 1.200 0.00 0.23 0.003 0 I I I I 0.03 1.217 0.00 0.21 0.003 0 I I I I 0.03 1.233 0.00 0.19 0.003 0 I I I ! 0.03 1. 250 0.00 0.18 0.003 0 I I I I 0.03 1. 267 0.00 0.16 0.002 0 I I I I 0.02 1. 283 0.00 0.15 0.002 0 I I I I 0.02 1. 300 0.00 0.13 0.002 0 I I I I 0.02 1. 317 0.00 0.12 0.002 0 I I I I . 0.02 1.333 0.00 0.11 0.002 0 I I I I 0.02 1.350 0.00 0.10 0.001 0 I I I I 0.01 1.367 0.00 0.09 0.001 0 I I I I 0.01 • Remaining water in basin 0.00 (Ac.Ft) 4 G:\Accts\041093\Proposed Detention Canyon Basin.doc • • (. ****************************HYDROGRAPH DATA**************************** Number of intervals = 82 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 25.190 (CFS) Total volume = 0.978 (Ac.Ft) Status of hydrographs being held in storage Peak (CFS) Vol (Ac.Ft) stream 1 Stream 2 Stream 3 Stream 4 Stream 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 *************************************************************~********* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 113.000 **** PRINT CURRENT HYDROGRAPH **** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ P R I N T 0 F S TOR M Run 0 f f H Y d r 0 g rap h Hydrograph in 1 Minute intervals (CFS) -------------------------------------------------------------------- Time (h+m) Vo1ume(Ac.Ft) Q(CFS) 0 6.3 12.6 18.9 ----------------------------------------------------------------------- 0+ 1 0.0002 0.11 Q I I 0+ 2 0.0009 0.55 Q I I 0+ 3 0.0030 1. 51 V Q I I 0+ 4 0.0073 3.13 V Q I I 0+ 5 0.0150 5.61 V Q I L 0+ 6 0.0295 10.48 IV Q I I 0+ 7 0.0527 16.84 I V Q I I 0+ 8 0.0845 23.11 I V I Q I 0+ 9 0.1170 23.63 I V I Q I 0+10 0.1502 24.08 I V I Q I 0+11 0.1839 24.48 I V I Q L 0+12 0.2181 24.79 I V I QI 0+13 0.2525 25.00 I V I QI 0+14 0.2871 25.13 I IV I QI 0+15 0.3218 25.19 I I V I Q 0+16 0.3565 25.19 I I V I QI 0+17 0.3912 25.14 I I V I QI' 0+18 0.4257 25.06 I I V I QI 0+19 0.4600 24.95 I I V I QI 0+20 0.4942 24.82 I I V I QI 0+21 0.5282 24.67 I I IV I QI 0+22 0.5619 24.46 I I I V I Q I 0+23 0.5953 24.24 I I I V I Q I 0+24 0.6284 24.01 I I I V I Q I 0+25 0.6611 23.77 I I I V I Q I 0+26 0.6935 23.52 I I I V I Q I 0+27 0.7255 23.27 I I I VI Q I 0+28 0.7549 21. 31 I I I V Q I 25.2 5 G:\Accts\041093\Proposed Detention Canyon Basin.doc . (. 0+29 0.7803 18.43 I I QIV I 0+30 0.8022 15.92 I I Q I V I 0+31 0.8212 13.75 I IQ I V I 0+32 0.8375 11.87 I Q I I V I 0+33 0.8516 10.24 I Q I I V I 0+34 0.8638 8.82 I Q I I V I 0+35 0.8742 7.60 I Q I I V I 0+36 0.8833 6.60 Q I I V I 0+37 0.8917 6.06 QI I I V I 0+38 0.8993 5.56 Q I I I V I 0+39 0.9064 5.10 Q I I I V I 0+40 0.9128 4.67 Q I I I V I 0+41 0.9187 4.28 Q I I I V I 0+42 0.9241 3.91 Q I I I V I 0+43 0.9290 3.57 Q I I I V I 0+44 0.9335 3.25 Q I I I V I 0+45 0.9376 2.96 Q I I I V I 0+46 0.9413 2.69 Q I I I V I 0+47 0.9446 2.45 Q I I I V I 0+48 0.9477 2.23 Q I I I V '1 0+49 0.9505 2.03 Q I I I V I 0+50 0.9531 1. 85 Q I I I V I 0+51 0.9554 1. 68 Q I I I VI 0+52 0.9575 1. 53 Q I I I VI 0+53 0.9594 1. 39 Q I I I VI 0+54 0.9612 1.27 I Q I I I VI 0+55 0.9628 1.16 IQ I I I VI • 0+56 0.9642 1. 05 IQ I I I V.I 0+57 0.9655 0.96 IQ I I I VI 0+58 0.9667 0.87 IQ I I I VI 0+59 0.9678 0.79 IQ I I I VI 1+ 0 0.9688 0.72 IQ I I I VI 1+ 1 0.9697 0.66 IQ I I r vI 1+ 2 0.9705 0.60 Q I I I VI 1+ 3 0.9713 0.54 Q I I I VI 1+ 4 0.9720 0.50 Q I I I VI 1+ 5 0.9726 0.45 Q I I I VI 1+ 6 0.9732 0.41 Q I I I VI 1+ 7 0.9737 0.37 Q I I I VI 1+ 8 0.9741 0.34 Q I I I VI 1+ 9 0.9746 0.31 Q I I I VI 1+10 0.9750 0.28 Q I .I I VI 1+11 0.9753 0.26 Q I I I VI 1+12 0.9756 0.23 Q I I I VI 1+13 0.9759 0.21 Q I I I VI 1+14 0.9762 0.19 Q I I I VI 1+15 0.9764 0.18 Q I I I VI 1+16 0.9767 0.16 Q I I I VI 1+17 0.9769 0.15 Q I I I VI 1+18 0.9770 0.13 Q I I I VI 1+19 0.9772 0.12 Q I I I VI 1+20 0.9774 0.11 Q I I I VI 1+21 0.9775 0.10 Q I I I VI 1+22 0.9776 0.09 Q I I I V -----------------------------------------------------------------------• ****************************HYDROGRAPH DATA**************************** Number of intervals = 82 6 G:\Accts\04 I 093\Proposed Detention Canyon Basin:doc • • Time interval = 1.0 (Min.) Maximum/Peak flow rate = 25.190 (CFS) Total volume = 0.978 (Ac.Ft) Status of hydro graphs being held in storage Peak (CFS) Vol (Ac.Ft) Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 *********************************************************************** 7 G:\Accts\041093\Proposed Detention Canyon, Basin.doc DETENTION RUNOFF HY H -CANYON BASIN INPUT 1 MIN INTERVALS) IV") ~ <U E: ~ W • 28458.41 21343.81 14229.20 7114.60 Stage-Storage Curve Canyon Basin o. 00 ~---1--L---l..---l..---L.---l---1---1-~-L---L---I----l---L-.....L.--1--..l..--L-.....I -5.00 -4.00 -3.00 -2.00 -1.00 0.00 Stage -ft EL CAMINO REAL STORMDRAIN SYSTEM HGL CALCULATIONS c. c. ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -EL CAMINO SYSTEM * G:\ACCTS\041093\ELCAM01 * * * ************************************************************************** FILE NAME: ELCAM01.DAT TIME/DATE OF STUDY: 10:46 05/12/2004 *******************************************************************~********** NODE NUMBER 316.00- } 316.50- } 315.00- } 315.50- } 315.51- } 315.52- } 310.00- } 310.50- } 310.51- } 310.52- } 310.53- } 310.54- } 303.00- } 303.50- GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM (POUNDS) 2.00 1105.61 JUNCTION 2.17 1062.58 FRICTION 1.93*Dc 1025.64 JUNCTION 4.18 1352.59 FRICTION 1. 98 Dc 770.67 JUNCTION 1. 98 Dc 770.67 FRICTION 1.98*Dc 770.67 JUNCTION 2.67 648.02 FRICTION 1.70 Dc 493.74 JUNCTION 1. 70 Dc 493.74 FRICTION 1.70 Dc 493.74 JUNCTION 2.09 534.82 FRICTION 1.70*Dc 493.74 JUNCTION 3.26* 368.30 1 RUN data used.) DOWNSTREAM FLOW PRESSURE+ MOMENTUM (POUNDS) 1876.90 DEPTH (FT) 0.99* 0.91* 1.93*Dc 0.93* 0.98* 0.97* 1.98*Dc 0.87* 0.90* 0.89* 1.23* 0.90* 1.70*Dc 0.60 1928.55 1025.64 1389.04 1307.16 1322.60 770.67 796.34 768.32 775.71 563.39 766.86 493.74 258.44 G:\Accts'\041 093\ELCAMO I.DOC c-. c. } FRICTION } HYDRAULIC JUMP 303.51-1.17 Dc 158.69 0.69* 219.22 } JUNCTION 303.52-1.17 Dc 158.69 0.61* 251.48 } FRICTION 306.00-1.17*Dc 158.69 1.17*Dc 158.69 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 316.00 PIPE FLOW = 38.40 CFS ASSUMED DOWNSTREAM CONTROL. HGL FLOWLINE ELEVATION = 146.05 PIPE DIAMETER = 24.00 INCHES 148.050 FEET NODE 316.00: HGL = < 147.043>;EGL= < 156.495>;FLOWLINE= < 146.050> ****************************************************************************** 316.00 TO NODE 316.50 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 316.50 ELEVATION = 146.38 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 36.77 24.00 0.00 146.38 1. 93 DOWNSTREAM 38.40 24.00 146.05 1. 94 LATERAL #1 1. 63 18.00 90.00 146.38 0.48 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4»/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.14902 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.11813 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.13357 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 26.603 24.672 1. 744 0.000 FRICTION LOSSES 0.534 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (1.780)+( 0.000) = 1.780 NODE 316.50: HGL = < 147.286>;EGL= < 158.275>;FLOWLINE= < 146.380> ****************************************************************************** 316.50 TO NODE 315.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 315.00 ELEVATION = 158.81 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 36.77 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 49.72 FEET MANNING'S N 0.01300 NORMAL DEPTH (FT) = 0.78 CRITICAL DEPTH(FT) = 1. 93 ===============================================================~============== UPSTREAM CONTROL ASSUMED FLOv.7DEPTH (FT) = 1.93 2 G:\Accts\041 0931ELCAMO I.DOC C. I,. GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1.934 11.821 4.105 1025.64 0.035 1.888 11.966 4.113 1027.15 0.133 1.842 12.149 4.135 1031.41 0.292 1.796 12.364 4.171 1038.16 0.513 1.750 12.612 4.221 1047.35 0.800 1.704 12.891 4.286 1058.98 1.158 1. 658 13.202 4.366 1073.11 1.595 1.612 13.548 4.464 1089.85 2.121 1. 566 13.929 4.581 1109.36 2.750 1. 520 14.349 4.719 1131.82 3.498 1. 474 14.810 4.882 1157.46 4.384 1. 428 15.317 5.073 1186.54 5.435 1. 382 15.872 5.296 1219.40 6.683 1. 336 16.483 5.558 1256.41 8.171 1. 290 17 .155 5.863 1298.01 9.954 1. 244 17.894 6.219 1344.72 12.107 1.198 18.711 6.638 1397.16 14.734 1.152 19.615 7.130 1456.07 17.980 1.106 20.618 7.711 1522.31 22.063 1.060 21.735 8.400 1596.94 27.324 1. 014 22.983 9.222 i681.20 34.337 0.968 24.385 10.207 1776.65 44.186 0.922 25.966 11. 398 1885.15 49.720 0.906 26.595 11.895 1928.55 ------------------------------------------------------------------------------ NODE 315.00 : HGL = < 160.744>iEGL= < 162. 915>iFLOWLINE= <' 158.BiG> ****************************************************************************** FLOW PROCESS FROM NODE 315.00 TO NODE 315.50 IS CODE = 5 UPSTREAM NODE 315.50 ELEVATION = 159.14 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 34.00 30.00 45.00 159.14 1. 98 DOWNSTREAM 36.77 24.00 158.81 1. 93 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 2.77===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300i FRICTION SLOPE = 0.07942 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02317 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05130 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 20.474 11.824 0.000 0.000 FRICTION LOSSES 0.205 FEET ENTRANCE LOSSES 0.434 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (3.229)+( 0.434) = 3.663 3 G:\Accts\041 093\ELCAMO 1 ,DOC c. le NODE 315.50 : HGL = < 160.069>iEGL= < 166.578>iFLOWLINE= < 159.140> ****************************************************************************** 315.50 TO NODE 315.51 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 315.51 ELEVATION = 171.15 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 34.00 CFS PIPE DIAMETER = PIPE LENGTH = 149.15 FEET MANNING'S N 30.00 INCHES 0.01300 NORMAL DEPTH(FT) = 0.93 CRITICAL DEPTH (FT) = 1. 98 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.98 ===================================================================~========== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRf:SSURE+ CONTROL (FT) (FT) . (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.976 19.148 6.673 1307.16 2.105 0.974 19.202 6.703 1310.45 4.307 0.972 19.255 6.733 1313.76. 6.615 0.970 19.309 6.763 1317 . 09 9.039 0.968 19.363 6.794 1320.44 11.591 0.966 19.418 6.824 1323.81 14.282 0.964 19.472 6.855 1327.20 17.130 0.962 19.527 6.887 1330.61 20.150 0.960 19.583 6.918 1334.03 23.366 0.958 19.638 6.950 1337.48 26.800 0.956 19.694 6.982 1340.95 30.485 0.954 19.751 7.015 1344.44 34.457 0.952 19.807 7.048 1347.94 38.762 0.950 19.864 7.081 1351.47 43.458 0.948 19.921 7.114 1355.02 48.620 0.946 19.978 7.147 135·8.59 54.346 0.944 20.036 7.181 1362.18 60.770 0.942 20.094 7.215 136'5.79 68.079 0.940 20.153 7.250 1369.43 76.545 0.938 20.211 7.285 1373.08 86.594 0.936 20.270 7.320 1376.76 98.936 0.934 20.330 7.355 1380.45 114.904 0.932 20.389 7.391 1384.17 137.493 0.930 20.449 7.427 1387.91 149.150 0.929 20.467 7.438 1389.04 NODE 315.51: HGL = < 172.126>iEGL= < 177.823>iFLOWLINE= < 171.150> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 315.52 315.51 TO NODE 315.52 IS CODE = 5 ELEVATION = 171.48 (FLOW IS SUPERCRITICAL) ----------------------------------------------------------------~------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 34.00 30.00 0.00 171. 48 1. 98 19.404 DOWNSTREAM 34.00 30.00 171.15 1. 98 19.154 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 4 G:\Accts\041093\ELCAMOl.DOC (. (. Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06853 DOWNSTREAM: MANNING'S N = 0.01300i FRICTION SLOPE = 0.06613 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06733 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.269 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (0.470)+( 0.000) = 0.470 NODE 315.52: HGL = < 172.447>iEGL= < 178.293>iFLOWLINE= < 171.480> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 310.00 315.52 TO NODE 310.00 IS CODE = 1 ELEVATION = 191.60 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 34.00 CFS PIPE DIAMETER = 30.00 INCHES 0.01300 PIPE LENGTH = 251.68 FEET MANNING'S N NORMAL DEPTH(FT) = 0.93 CRITICAL DEPTH(FT) = 1. 98 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1. 98 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 982 8.143 3.013 770.67 0.027 1. 940 8.315 3.014 771.18 0.114 1. 898 8.501 3.021 772.75 0.265 1. 856 8.699 3.032 775.42 0.490 1. 814 8.912 3.048 779.27 0.797 1.771 9.140 3.069 784.37 1.196 1.729 9.384 3.097 790.78 1.701 l. 687 9.645 3.132 798.60 2.327 1. 645 9.925 3.175 807.92 3.091 1. 603 10.226 3.227 818.8-4 4.018 1. 560 10.549 3.289 831.50 5.133 l. 518 10.896 3.363 846.02 6.472 1.476 11.269 3.449 862.57 8.076 l. 434 ll.672 3.551 881. 31 10.001 1. 392 12.107 3.669 902.44 12.318 l. 349 12.577 3.807 926.19 15.122 1. 307 13.087 3.968 952.82 18.543 l. 265 13.641 4.156 982.62 22.764 1. 223 14.244 4.375 1015.95 28.054 l.181 14.903 4.631 1053.20 34.836 1.138 15.623 4.931 1094.83 43.815 l. 096 16.415 5.283 ll41.41 56.324 1.054 17.287 5.697 ll93.57 75.358 l. 012 18.251 6.187 1252.0'9 llO.537 0.970 19.322 6.770 1317.89 251.680 0.967 19.398 6.813 1322.60 5 G;\Accts\041 093\ELCAMO I, DOC c:. (,. ----------------------------------------------------------------------~-----~- NODE 310.00: HGL = < 193.582>;EGL= < 194.613>;FLOWLINE= < 191.600> ****************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 310.50 IS CODE = 5 UPSTREAM NODE 310.50 ELEVATION = 192.10 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ----------------------------------------------------------------~------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 22.81 24.00 0.00 192.10 1. 70 DOWNSTREAM 34.00 30.00 191.60 1. 98 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL *2 0.00 0.00 0.00 0.00 0.00 Q5 11.19===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06551 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00732 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03642 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 17.335 8.145 0.000 0.000 FRICTION LOSSES 0.146 FEET ENTRANCE LOSSES 0.206 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (2.820)+( 0.206) = 3.026 NODE 310.50: HGL = < 192.972>;EGL= < 197.638>;FLOWLINE= < 192.100> ****************************************************************************** 310.50 TO NODE 310.51 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 310.51 ELEVATION = 208.66 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 22.81 CFS PIPE DIAMETER = 24.00 INCHES 0.01300 PIPE LENGTH = 251. 68 FEET MANNING'S N ---------------------------------------------------------------------~-------- NORMAL DEPTH(FT) = 0.87 CRITICAL DEPTH(FT) = 1. 70 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.90 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 0.899 16.644 5.204 768.32 1. 883 0.898 16.671 5.217 769.43 3.851 0.897 16.699 5.230 770.55 5.911 0.896 16.726 5.243 771.68 8.071 0.895 16.754 5.256 772.81 10.342 0.894 16.782 5.270 773.94 12.734 0.893 16.810 5.283 775.08 15.262 0.892 16.838 5.297 776.22 17.940 0.890 16.866 5.310 777.37 20.787 0.889 16.894 5.324 778.52 23.824 0.888 16.922 5.338 779.67 6 G:\Accts\041 093\ELCAMO I.DOC (. (. • 27.078 0.887 16.951 5.351 780.83 30.581 0.886 16.979 5.365 781.99 34.372 0.885 17 . 008 5.379 78'3.16 38.503 0.884 17 . 036 5.393 784.33 43.038 0.882 17 .065 5.407 785.50 48.063 0.881 17.094 5.421 78 6.68 53.692 0.880 17.123 5.436 787.87 60.088 0.879 17.152 5.450 789.05 67.487 0.878 17.181 5.464 790.25 76.259 0.877 17 . 210 5.479 791.44 87.017 0.876 17 . 239 5.493 792.64 100.919 0.875 17 . 269 5.508 793.85 120.559 0.873 17.298 5.523 795.06 154.263 0.872 17.328 5.537 796.27 251.680 0.872 17.329 5.538 796.34 -----------------------------------------------------------------------~------ NODE 310.51 : HGL = < 209.559>;EGL= < 213. 864>;FLOWLINE= < 208.660> ****************************************************************************** 310.51 TO NODE 310.52 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 310.52 ELEVATION = 208.99 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 22.81 24.00 0.00 208.99 1. 70 DOWNSTREAM 22.81 24.00 208.66 1. 70 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTAl)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06048 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05873 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05960 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 16.831 16.649 0.000 0.000 FRICTION LOSSES 0.238 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (0.417)+( 0.000) = 0.417 NODE 310.52: HGL = < 209.882>iEGL= < 214.281>;FLOWLINE= < 208.990> ****************************************************************************** 310.52 TO NODE 310.53 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 310.53 ELEVATION = 228.07 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 22.81 CFS PIPE DIAMETER = PIPE LENGTH = 299.66 FEET MANNING'S N 24.00 INCHES 0.01300 NORMAL DEPTH(FT) = 0.88 CRITICAL DEPTH (FT) = 1. 70 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.23 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 7 G:\Accts\041 093\ELCAMO I.DOC ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 234 11.204 3.185 563.39 0.937 1. 220 11.358 3.225 568.43 1. 950 1. 206 11.518 3.267 573.70 3.046 1.192 11. 682 3.312 579.23 4.234 1.178 11.852 3.360 585.01 5.523 1.163 12.027 3.411 591.05 6.926 1.149 12.207 3.465 597.37 8.454 1.135 12.394 3.522 603.98 10.124 1.121 12.587 3.582 610.89 11.953 1.107 12.786 3.647 618.11 13.963 1. 092 12.992 3.71S 625.65 16.181 1. 078 13.205 3.787 633.52 18.639 1. 064 13.425 3.864 641. 75 21. 376 1. 050 13.654 3.946 650.34 24.444 1.035 13.890 4.033 659.31 27.907 1. 021 14.134 4.125 668.68 31.851 1.007 14.388 4.223 678.47 36.393 0.993 14.650-4.328 688.69 41.694 0.979 14.923 4.439 699.37 47.994 0.964 15.205 4.557 7l0.53 55.662 0.950 15.499 4.683 722.19 65.319 0.936 15.804 4.817 734.37 78.129 0.922 16.120 4.959 747.11 96.704 0.908 16.450 5.112 760.4-2 129.429 0.893 16.792 5.275 774.35 299.660 0.892 16.825 5.291 775.7l ------------------------------------------------------------------------------ NODE 310.53 : HGL = < 229.304>;EGL= < 231.255>;FLOWLINE= < 228.070> ****************************************************************************** 310.53 TO NODE 310.54 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 31Q.54 ELEVATION = 228.40 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 22.81 24.00 45.00 228.40 1. 70 DOWNSTREAM 22.81 24.00 228.07 1. 70 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4) )/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05839 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02068 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03953 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 16.613 11.207 0.00,0 0.000 FRICTION LOSSES 0.158 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 2.332)+( 0.000) = 2.332 NODE 310.54: HGL = < 229.301>;EGL= < 233.587>;FLOWLINE= < 228.400> 8 G;\Accts\041 093\ELCAMO I ,DOC C. (. ****************************************************************************** 310.54 TO NODE 303.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 303.00 ELEVATION = 233.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 22.81 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 64.15 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.83 CRITICAL DEPTH (FT) = 1. 70 =============================================================~==============~? UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.70 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -------------------------------------------------------------~---------------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POONDS) 0.000 1.700 8.011 2.697 493.74 0.026 1. 666 8.156 2.699 494.05 0.107 1. 631 8.314 2.705 495.00 0.249 1.596 8.484 2.714 496.62 0.457 1. 561 8.667 2.728 498.94 0.739 1. 526 8.863 2.747 501.99 1.103 1. 492 9.075 2.771 505.80 1.562 1. 457 9.301 2.801 510.44 2.126 1. 422 9.545 2.837 515.95 2.813 1. 387 9.806 2.881 522.38 3.640 1.352 10.086 2.933 529.79 4.631 1. 318 10.387 2.994 538.28 5.814 1. 283 10.711 3.065 547.90 7.226 1. 248 11. 060 3.149 5,58.7,6 8.912 1.213 11.435 3.245 570.96 10.932 1.178 11.840 3.357 584.62 13.367 1.144 12.278 3.486 599.87 16.323 1.109 12.752 3.636 616.87 19.955 1. 074 13.266 3.809 635.79 24.489 1. 039 13.825 4.009 656.84 30.274 1. 005 14.433 4.241 680.25 37.901 0.970 15.098 4.512 706.30 48.481 0.935 15.827 4.827 735.30 64.150 0.901 16.608 5.187 766.86 ------------------------------------------------------------------------------ NODE 303.00 : HGL = < 235.110>iEGL= < 236.107>iFLOWLINE= < 233.410> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 303.50 303.00 TO NODE 303.50 IS CODE = 5 ELEVATION = 233.91 (F'LOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 9.16 18.00 0.00 233.91 1.17 5.184 DOWNSTREAM 22.81 24.00 233.41 1. 70 8.013 LATERAL #1 0.00 18.00 45.00 233.91 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 13.65===Q5 EQUALS BASIN INPUT=== 9 G:\Accts\041 093\ELCAMO 1 ,DOC \. '- LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300i FRICTION SLOPE = 0.00760 DOWNSTREAM: MANNING'S N = 0.01300i FRICTION SLOPE = 0.00957 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00859 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.034 FEET ENTRANCE LOSSES 0.199 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (1.276)+( 0.199) = 1.475 NODE 303.50: HGL = < 237.166>iEGL= < 237.583>iFLOWLINE= < 233.910> ****************************************************************************** 303.50 TO NODE 303.51 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 303.51 ELEVATION = 241.10 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 9.16 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 102.64 FEET MANNING'S N 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.59 CRITICAL DEPTH (FT) = 1.17 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.69 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 . 0.690 11.534 2.757 219.22 0.921 0.686 11. 619 2.784 220.55 1. 892 0.682 11. 706 2.811 221.89 2.919 0.678 11.794 2.840 223.26 4.006 0.675 11.883 2.869 224.66 5.160 0.671 11.973 2.898 226.08 6.387 0.667 12.065 2.929 227.52 7.697 0.663 12.158 2.960 228.99 9.097 0.659 12.253 2.992 230.49 10.600 0.655 12.349 3.024 232.01 12.218 0.651 12.446 3.058 233.56 13.968 0.647 12.545 3.092 235.13 15.870 0.643 12.645 3.128 236.74 17.948 0.639 12.747 3.164 238.37 20.233 0.636 12.851 3.201 240.04 22.765 0.632 12.956 3.240 241.73 25.596 0.628 13.063 3.279 243.45 28.796 0.624 13.171 3.319 245.21 32.466 0.620 13.281 3.361 247.00 36.751 0.616 13.393 3.403 248.81 41.877 0.612 13.507 3.447 250.67 48.221 0.608 13.622 3.491 252.55 56.493 0.604 13.739 3.537 2'54.47 68.285 0.600 13.859 3.585 256.43 88.709 0.597 13.980 3.633 258.42 102.640 0.597 13.981 3.634 258.44 10 G:\Accts\041 093\ELCAMO I.DOC c. HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ===========================================================================~== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.26 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 28.112 PRESSURE HEAD(FT) 3.256 1. 500 VELOCITY (FT/SEC) 5.183 5.183 SPECIFIC ENERGY (FT) 3.673 1. 917 PRESSURE+ MOMEN,TUM ( POUNDS) 368.30 174.72 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: --------------------------------------------------------------------------~--- DISTANCE FROM CONTROL (FT) 28.112 28.304 28.480 28.644 28.800 28.948 29.089 29.224 29.352 29.474 29.590 29.699 29.803 29.900 29.991 30.076 30.154 30.225 30.288 30.345 30.394 30.435 30.467 30.491 30.506 30.511 102.640 FLOW DEPTH (FT) 1.500 1. 487 1. 474 1.460 1. 447 1. 434 1. 421 1. 408 1. 395 1. 381 1. 368 1.355 1. 342 1. 329 1. 315 1.302 1. 289 1. 276 1. 263 1. 249 1. 236 1. 223 1. 210 1.197 1.184 1.170 1.170 VELOCITY (FT/SEC) 5.182 5.189 5.202 5.220 5.240 5.263 5.289 5.317 5.348 5.380 5.415 5.452 5.491 5.532 5.575 5.620 5.667 5.717 5.768 5.822 5.877 5.935 5.996 6.058 6.123 6.190 6.190 SPECIFIC ENERGY (FT) 1. 917 1. 905 1. 894 1. 884 1. 874 1. 864 1. 856 1. 847 1. 839 1. 831 1. 824 1.817 1. 810 1. 804 1. 798 1. 793 . 1. 788 1. 784 1.780 1. 776 1.773 1. 770 1. 768 1. 767 1.766 1. 766 1. 766 PRESSURE+ MOMENTUM (POUNDS) 174.72 173.39 172.18 171.03 169.95 168.93 167.96 167.04 166.17 165.34 164.57 163.84 163.15 162.51 161.92 161.38 160.88 160.43 160.03 159.68 159.38 159.13 158.94 158.80 158.71 158.69 158.69 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 15.98 FEET UPSTREAM OF NODE 303.50 I I DOWNSTREAM DEPTH = 2.257 FEET, UPSTREAM CONJUGATE DEPTH = 0.597 FEET I NODE 303.51: HGL = < 241.790>;EGL= < 243.857>;FLOWLINE= < 241.100> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 303.52 303.51 TO NODE 303.52 IS CODE = 5 ELEVATION = 241.43 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY 11 G:\Accts\041 093\ELCAMO I.DOC c. ~. (CFS) ( INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 9.16 18.00 30.00 241.43 1.17 DOWNSTREAM 9.16 18.00 241.10 1.17 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/( (A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06287 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04053 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05170 JUNCTION LENGTH 4.00 FEET (FT/SEC) 13.560 11.538 0.000 0.000 FRICTION LOSSES 0.207 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (1.039)+( 0.000) = 1.039 NODE 303.52: HGL = < 242.040>;EGL= < 244.896>;FLOWLINE= < 241.430> ****************************************************************************** 303.52 TO NODE 306.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 306.00 ELEVATION = 262.16 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 9.16 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 295.60 FEET MANNING'S N 0.01300 NORMAL DEPTH (FT) = 0.59 CRITICAL DEPTH (FT) = 1.17 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.17 ========================================================================~===== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: --------------------------------------------------------------~~-------------- D.ISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL ( FT') (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1.170 6.190 1. 766 158.69 0.016 1.147 6.3l4 1. 767 158.78 0.067 1.124 6.446 1.770 159.05 0.155 1.101 6.587 1. 775 159.53 0.287 1. 078 6.737 1.783 160.20 0.465 1.055 6.897 1. 794 161.10 0.698 1.032 7.066 1. 807 162.22 0.991 1. 009 7.247 1. 825 163.59 1.353 0.985 7.440 1. 845 165.21 1. 795 0.962 7.646 1. 87l 167.11 2.328 0.939 7.865 1. 900 16.9.30 2.967 0.916 8.099 1. 935 171. 81 3.732 0.893 8.350 1. 976 17 4.65 4.645 0.870 8.618 2.024 177.85 5.736 0.847 8.905 2.079 181.45 7.043 0.824 9.2l4 2.143 185.47 8.618 0.800 9.546 2.216 189.96 10.530 0.777 9.903 2.301 194.95 12.877 0.754 10.289 2.399 200.49 15.803 0.731 10.706 2.512 206.63 19.532 0.708 11.158 2.643 213.45 12 G;\Accts\041 093\ELCAMO I.DOC c. 24.440 0.685 11.649 2.793 221.01 31.235 0.662 12.184 2.968 229.39 41. 509 0.639 12.767 3.171 238.69 60.369 0.616 13.406 3.408 249.04 295.600 0.610 13.556 3.466 251.48 NODE 306.00 : HGL = < 263.330>iEGL= < 263. 926>iFLOWLINE= < 262.160> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 306.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 262.16 263.33 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 13 G:\Accts\041093\ELCAMOI.DOC ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * * HGL -EL CAMINO SYSTEM * * G:\ACCTS\041093\ELCAM02 * ************************************************************************** FILE NAME: ELCAM02.DAT TIME/DATE OF STUDY: 09:15 05/14/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal UPSTREAM RUN point data used.) DOWNSTREAM RUN NODE NUMBER 316.50- } 316.51- MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) , 0.91 36.71 0.2S* 47.09 FRICTION 0.58*Dc 26.20 0.58*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 26.20 ****************************************************************************** 'DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 316.50 PIPE FLOW = 2.33 CFS ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE ELEVATION = 146.38 PIPE DIAMETER = lS.00 INCHES 147.286 FEET NODE 316.50 : 'HGL = < 146.663>;EGL= < 148.234>;FLOWLINE= < 146.380> *********************************************************************~******** FLOW PROCESS FROM NODE 316.50 TO NODE 316.51 IS CODE = 1 UPSTREAM NODE 316.51 ELEVATION = 148.39 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 2.33 CFS PIPE DIAMETER = 18.00 INCHES 0.01300 PIPE LENGTH = lS.11 FEET MANNING'S N NORMAL DEPTH(FT) = 0.26 CRITICAL DEPTH (FT) = 0.58 ============================================================================== 14 G:\Accts\041093\ELCAM02,DOC UPSTREAM CONTROL ASSUMED fLOWDEPTH(FT) = 0.58 ============================================================================== GRADUALLY VARIED FLOW PROfILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.577 3.717 0.792 26.20 0.005 0.565 3.829 0.792 26.22 0.022 0.552 3.948 0.794 26.29 0.051 0.539 4.073 0.797 26.40 0.094 0.527 4.206 0.802 26.56 0.154 0.514 4.347 0.808 26.77 0.232 0.502 4.498 0.816 27.03 0.331 0.489 4.657 0.826 27.35 0.455 0.476 4.828 0.839 27.74 0.607 0.464 5.010 0.854 28.19 0.792 0.451 5.205 0.872 28.71 1. 016 0.439 5.414 0.894 29.30 1. 286 0.426 5.638 0.920 29.99 1.611 0.413 5.879 0.950 30.76 2.003 0.401 6.140 0.987 31.6·3 2.477 0.388 6.422 1. 029 32.61 3.052 0.376 6.727 1.079 33.71 3.757 0.363 7.059 1.137 34.94 4.629 0.350 7.421 1. 206 36.33 5.727 0.338 7.816 1. 287 37.87 7.137 0.325 8.251 1. 383 39.61 e. 9.011 0.313 8.729 1. 496 41. 55 11. 628 0.300 9.257 1.632 43.73 15.621 0.287 9.844 1. 793 46.19 18. 110 0.283 10.056 1. 854 47.09 ------------------------------------------------------------------------~----- NODE 316.51 : HGL = < 148.967>iEGL= < 149. 182>iFLOWLINE= < 148.390> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 316.51 FLOWLINE ELEVATION = 148.39 ASSUMED UPSTREAM CONTROL HGL = 148.97 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 15 G:\Accts\041093\ELCAM02.DOC ******************************k*********************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -EL CAMINO SYSTEM * G:\ACCTS\041093\ELCAM03 ************************************************************************** FILE NAME: ELCAM03.DAT TIME/DATE OF STUDY: 13:22 05/12/2004 * * * *******************************************************************~********** GRADUALLY VARIED FLOW ANALYSIS FOR .. PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*"-indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 303.00- } 302.00- MODEL PRESSURE PRESSURE+FLOW PRESSURE+ PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 1.70 180.12 0.45* 301.90 FRICTION 1.12*Dc 138.33 1.12*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST. CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 138.33 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 303.00 FLOWLINE ELEVATION = 233.41 PIPE FLOW = 8.29 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 235.110 FEET NODE 303.00 : HGL = < 233.862>;EGL= < 239. 158>;FLOWLINE= < 233.410> ****************************************************************************** 303.00 TO NODE 302.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 302.00 ELEVATION = 242.38 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 8.29 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 56.29 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.45 CRITICAL DEPTH (FT) = 1.12 ============================================================================== 16 G:\Accts\041 093\ELCAM03 .DOC UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.12 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (BOUNDS) 0.000 1.115 5.882 1.653 138.33 0.009 1. 089 6.033 1.654 138.44 0.036 1. 062 6.194 1.658 138.80 0.085 1. 036 6.368 1. 666 139.40 0.159 1. 009 6.555 1.677 1.40.28 0.259 0.983 6.756 1. 692 141.45 0.391 0.956 6.972 1.711 142.92 0.560 0.930 7.205 1. 736 144.73 0.770 0.903 7.456 1. 767 146.90 1. 029 0.877 7.728 1. 804 149.46 1. 346 0.850 8.022 1. 850 152.44 1.730 0.823 8.341 1.904 155.89 2.196 0.797 8.687 1. 970 159.85 2.759 0.770 9.065 2.047 164.37 3.442 0.744 9.477 2.140 169.52 4.272 0.717 9.929 2.249 175.36 5.287 0.691 10.425 2.379 181. 98 6.540 0.664 10.971 2.535 189.48 8.104 0.638 11.575 2.720 197.97 10.088 0.611 12.246 2.941 207.60 12.664 0.585 12.994 3.208 218.53 C. 16.121 0.558 13.832 3.531 230.97 21. 002 0.532 14.775 3.924 245.17 28.535 0.505 15.844 4.406 261. 45 42.666 0.479 17.062 5.002 280.19 56.290 0.452 18.461 5.748 301. 90 ------------------------------------------------------------------------------ NODE 302.00 : HGL = < 243.495>;EGL= < 244.033>;FLOWLINE= < 242.380> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 302.00 FLOWLINE ELEVATION = 242.38 ASSUMED UPSTREAM CONTROL HGL = 243.50 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 17 G:\Accts\041093\ELCAM03.DOC c. ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -EL CAMINO SYSTEM * G:\ACCTS\041093\ELCAM04 ************************************************************************** FILE NAME: ELCAM04.DAT TIME/DATE OF STUDY: 09:39 08/24/2004 * * * ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point UPSTREAM RUN RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS 31S.00- HEAD (FT) 1. 93 MOMENTUM (POUNDS) 1007.41 data used.) DOWNSTREAM FLOW DEPTH(FT) 1.93* PRESSURE+ MOMENTUM (POUNDS) 1007.40 } JUNCTION 31S.10- } FRICTION 31S.20- 4.20* 4.13* 1349.36 l. 74 132S.01 l. 97 Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2S NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION 772.37 7S6.S1 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 31S.00 FLOWLINE ELEVATION = lS8.81 PIPE FLOW = 36.37 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 160.744 FEET NODE 315.00 : HGL = < 160.744>iEGL= < 162.868>iFLOWLINE= < lS8.810> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 315.10 31S.00 TO NODE 31S.10 IS CODE = S ELEVATION = 159.14 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW (CFS) DIAMETER (INCHES) ANGLE FLOWLINE (DEGREES) ELEVATION 18 CRITICAL DEPTH(FT.) VELOCITY (FT/SEC) G:\Accts\041093\ELCAM04.DOC r. ~. UPSTREAM 33.55 30.00 45.00 159.14 1. 97 6.835 DOWNSTREAM 36.37 24.00 158.81 1. 93 11.695 . LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 2.82===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300i FRICTION SLOPE = 0.00669 DOWNSTREAM: MANNING'S N = 0.01300i FRICTION SLOPE = 0.02267 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01468 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.059 FEET ENTRANCE LOSSES = 0.425 FEET JUNCTION LOSSES (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES (0.719)+( 0.059)+( 0.425) = 1.202 0.000 0.000 NODE 315.10: HGL = < 163.345>iEGL= < 164.070>iFLOWLINE= < 159.140> ******************************************************************************. FLOW PROCESS FROM NODE UPSTREAM NODE 315.20 315.10 TO NODE 315.20 IS CODE = 1 ELEVATION = 159.26 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 33.55 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH 6.05 FEET MANNING'S N 0.01300 SF=(Q/K) **2 (( 33.55)/( 410.226))**2 = 0.00669 HF=L*SF = ( 6.05)*(0.00669) = 0.040 NODE 315.20: HGL = < 163.385>iEGL= < 164.110>iFLOWLINE= < 159.260> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 315.20 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 159.26 161.23 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 19 G:\Accts\041093\ELCAM04.DOC (. ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -EL CAMINO SYSTEM * G:\ACCTS\041093\ELCAM05 ************************************************************************** FILE NAME: ELCAM05.DAT TIME/DATE OF STUDY: 09:59 08/24/2004 * * * ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH(FT) MOMENTUM (POUNDS) 310.00-1.98* 756.54 1. 97 } JUNCTION 310.10-2.60* 630.24 1. 52 } FRICTION 310.20-2.54* 619.27 1. 70 Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION 756.51 497.23 488.78 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 310.00 FLOWLINE ELEVATION = 191.60 PIPE FLOW = 33.55 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 193.580 FEET NODE 310.00 : HGL = < 193.580>iEGL= < 194.585>iFLOWLINE= < 191.600> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 310.10 310.00 TO NODE 310.10 IS CODE = 5 ELEVATION = 192.10 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW (CFS) DIAMETER (INCHES) ANGLE FLOWLINE (DEGREES) ELEVATION 20 CRITICAL DEPTH (FT.) VELOCITY (FT/SEC) G:\Accts\041093\ELCAM05.DOC • UPSTREAM 22.65 24.00 0.00 192.10 1. 70 DOWNSTREAM 33.55 30.00 191. 60 1. 97 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 10.90===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01002 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00714 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00858 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.034 FEET ENTRANCE LOSSES = 0.201 FEET JUNCTION LOSSES (TRANSITION LOSS) + (FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES (0.687)+( 0.034)+( 0.201) = 0.922 7.210 8.046 0.000 0.000 NODE 310.10: HGL = < 194.701>;EGL= < 195.508>;FLOWLINE= < 192.100> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 310.20 310.10 TO NODE 310.20 IS CODE = 1 ELEVATION = 192.21 (FLOW IS UNDER PRESSURK) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW PIPE LENGTH SF=(Q/K) **2 HF=L*SF = ( ( ( 22.65 CFS PIPE DIAMETER = 24.00 INCHES 5.39 FEET MANNING'S N 0.01300 22.65)/( 226.224))**2 = 0.01002 5.39)*(0.01002) = 0.054 NODE 310.20: HGL = < 194.755>;EGL= < 195.562>;FLOWLINE= < 192.210> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 310.20 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 192.21 193.91 FOR DOWNSTREAM RUN ANALYSIS ===========================================================================~== END OF GRADUALLY VARIED FLOW ANALYSIS 21 G:\Accts\041093\ELCAM05.DOC c. • ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -EL CAMINO SYSTEM * G:\ACCTS\041093\ELCAM06 ************************************************************************** FILE NAME: ELCAM06.DAT TIME/DATE OF STUDY: 10:20 08/24/2004 * * * ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data, used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 309.10-1. 33 246.91 1.33* } JUNCTION 309.20-1.15 Dc 150.37 1.05* } FRICTION 309.30-1.15*Dc 150.37 1.15*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION 246.91 151. 97 150.37 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 309.10 FLOWLINE ELEVATION = 258.52 PIPE FLOW = 12.49 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 259.670 FEET *NOTE: ASSUMED DOWNSTREM~ CONTROL DEPTH ( 1.15 FT.) IS LESS THAN CRITICAL DEPTH ( 1.33 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 309.10 : HGL = < 259.853>iEGL= < 260.733>iFLOWLINE= < 258.520> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 309.20 309.10 TO ·NODE 309.20 IS CODE = 5 ELEVATION = 258.85 (FLOW IS SUBCRITICAL) 22 G:\Accts\041093\ELCAM06.DOC c. (. (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 8.81 18.00 0.00 258.85 1.15 DOWNSTREAM 12.49 18.00 258.52 1. 33 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 3. 68===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00996 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01259 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01127 JUNCTION LENGTH = 4.00 FEET VELOCITY (FT/SEC) 6.646 7.526 0.000 0.000 FRICTION LOSSES = 0.045 FEET ENTRANCE LOSSES = 0.176 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 309.20: HGL = < 259.903>;EGL= < 260.589>;FLOWLINE= < 258.850> *****************************************************~***************~**~***** 309.20 TO NODE 309.30 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 309.30 ELEVATION = 259.32 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 8.81 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 46.74 FEET MANNING'S N 0.01300 ---------------------------------------------------------------------------~-- NORMAL DEPTH (FT) = 1. 05 CRITICAL DEPTH (FT) = 1.15 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.15 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1.149 6.065 1.720 150.37 0.015 1.145 6.086 1.720 150.37 0.061 1.141 6.108 1.720 150.38 0.141 1.137 6.129 1. 721 150.40 0.258 1.133 6.151 1.721 150.41 0.415 1.129 6.173 1.721 15,0.44 0.617 1.125 6.196 1.721 150.47 0.869 1.121 6.219 1. 722 150.50 1.175 1.117 6.242 1. 722 150.54 1. 543 1.113 6.265 1. 723 150.59 1. 980 1.109 6.288 1.723 150.64 2.496 1.105 6.312 1.724 150.70 3.102 1.101 6.336 1. 725 150.76 3.813 1.097 6.360 1.725 150.83, 4.647 1. 093 6.384 1.726 150.90 5.628 1. 089 6.409 1. 727 150.98 6.786 1. 085 6.434 1.728 151. 07 8.162 1. 081 6.459 1. 729 151.16 9.816 1. 077 6.485 1. 730 151.26 23 G:\Accts\041093\ELCAM06.DOC c. 11.833 1. 073 6.511 1. 732 151.36 14.346 1. 069 6.537 1. 733 151.47 17 . 577 1. 065 6.563 1.734 151. 59 21.944 1. 061 6.590 1. 736 151.7l 28.383 1. 057 6.617 1. 737 151.84 39.904 1.053 6.644 1.739 151.97 46.740 1. 053 6.644· 1. 739 151.97 NODE 309.30: HGL = < 260.469>iEGL= < 261.040>iFLOWLINE= < 259.320> *******************************************************************.*********** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 309.30 FLOWLINE ELEVATION = 259.32 ASSUMED UPSTREAM CONTROL HGL = 260.47 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 24 G:\Accts\041093\ELCAM06.DOC SALK AVENUE STORMDRAIN SYSTEM HGL CALCULATIONS c. (. ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * * HGL -NODE 215-221 * * G:\ACCTS\041093\FOXMLR01 * ************************************************************************** FILE NAME: FOXMLR01.DAT TIME/DATE OF STUDY: 13:37 05/17/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: n*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRE9SURE+ NUMBER PROCESS HEAD(FT) MOMENTUM ( POUNDS) DEPTH (FT) MOMENTUM (PQUNDS) 221. 00-2.50 1314.15 0.86* } FRICTION 220.00-2.28*Dc 1289.91 2.28*Dc } JUNCTION 220.50-3.34 1204.13 1. 21 * } FRICTION 219.00-1.92*Dc 935.88 1. 92*Dc } JUNCTION 219.50-2.87 345.17 0.47* } FRICTION 215.00-1.22*Dc 181.88 1.22*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 3072.60 12.89.91 1240.25 935.88 428.69 181.88 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 221.00 PIPE FLOW = 63.84 CFS ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE ELEVATION = 142.00 PIPE DIAMETER = 30.00 INCHES 14 4.500 FEET NODE 221.00 : HGL = < 142.864>iEGL= < 170. 834>iFLOWLINE= < 142.000> ****************************************************************************** FLOW PROCESS FROM NODE 221. 00 TO NODE 220.00 IS CODE = 1 1 G:\Accts\041 093\FOXMLRO I.DOC c. UPSTREAM NODE 220.00 ELEVATION = 158.77 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 48.57 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 31.11 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.68 CRITICAL DEPTH(FT) = 2.28 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.28 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSUR,E+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 2.280 10.336 3.940 1289.9l 0.012 2.216 10.552 3.946 1291.68 0.047 2.152 10.802 3.965 1297.00 0.109 2.088 11.085 3.997 1305.94 0.199 2.024 11.403 4.045 1318.66 0.321 1. 960 11.759 4.109 1335.39 0.479 1.896 12.155 4.192 1356.44 0.681 1. 832 12.595 4.297 1382.15 0.932 1. 768 13.083 4.427 1412.97 1. 242 1. 704 13.625 4.588 1449.42 1. 622-1. 640 14.226 4.784 1492.13 2.087 1. 576 14.896 5.023 1541.85 2.656 1. 512 15.643 5.314 1599.46 C. 3.353 1. 448 16.479 5.667 1666.04 4.210 1. 384 17.417 6.097 1742.92 5.271 1. 320 18.475 6.623 1831.68 6.595 1. 255 19.673 7.269 1934.30 8.265 1.191 21.038 8.068 2053.24 10.404 1.127 22.602 9.064 2191.59 13.195 1. 063 24.407 10.319 2353.30 16.931 0.999 26.508 11. 917 2543.46 22.114 0.935 28.975 13.980 2768.77 29.704 0.871 31. 905 16.687 3038.16 31.110 0.864 32.278 17.052 3072.60 ------------------------------------------------------------------------------ NODE 220.00 : HGL = < 161.050>iEGL= < 162.710>;FLOWLINE= < 158.770> ****************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 220.50 IS CODE = 5 UPSTREAM NODE 220.50 ELEVATION = 159.00 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (;FT/SEC) UPSTREAM 34.76 24.00 45.00 159.00 1. 92 17.443 DOWNSTREAM 48.57 30.00 158.77 2.28 10.339 LATERAL #1 13.82 18.00 45.00 159.00 1. 38 7.821 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- 2 G:\Accts\041 093\FOXMLRO l.DOC C. Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05067 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01223 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03145 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.126 FEET ENTRANCE LOSSES 0.000 FEET (DY+HVI-HV2) + (ENTRANCE LOSSES) ( 2.227)+( 0.000) = 2.227 NODE 220.50: HGL = < 160.213>;EGL= < 164.937>;FLOWLINE= < 159.000> ****************************************************************************** 220.50 TO NODE 219.00 IS CODE =. 1 FLOW PROCESS FROM NODE UPSTREAM NODE 219.00 ELEVATION = 167.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 34.76 CFS PIPE DIAMETER = 24.00 INCHES 0.01300 PIPE LENGTH = 146.42 FEET MANNING'S N NORMAL DEPTH(FT) = 1. 18 CRITICAL DEPTH(FT) = 1. 92 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.92 ===========================================================================~== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1.917 11. 221 3.873 935.88 0.089 1. 887 11.314 3.876 936.47 0.331 1. 858 11. 420 3.884 938.05 0.720 1. 829 11.540 3.898 940.56 1.259 1. 799 11.672 3.916 943.98 1. 952 1.770 11.816 3.939 948.29 2.808 1.741 11.973 3.968 953.49 3.840 1.711 12.141 4.002 959.58 5.063 1. 682 12.323 4.041 966.59 6.500 1. 653 12.517 4.087 974.54 8.174 1.623 12.724 4.139 983.46 10.119 1. 594 12.944 4.197 993.37 12.375 1. 565 13.179 4.263 10G4.32 14.991 1.535 13.429 4.337 1016.36 18.032 1. 506 13.694 4.420 1029.53 21.581 1. 477 13.976 4.511 1043.90 25.750 1. 447 14.274 4.613 1059.53 30.690 1. 418 14.591 4.726 1076.49 36.611 1. 388 14.928 4.851 1.094.86 43.826 1. 359 15.285 4.989 1114.73 52.819 1. 330 15.665 5.143 1136.19 64.401 1.300 16.068 5.312 11.59.37 80.097 1.271 16.497 5.500 1184.36 103.332 1. 242 16.954 5.708 1211. 32 145.102 l. 212 17.440 5.938 1240.39 146.420 1.213 17.438 5.937 1240.25 ---------------------------------------------------------------------------~-- NODE 219.00: HGL = < 168.917>;EGL= < 170.873>;FLOWLINE= < 167.000> ****************************************************************************** 3 G:\Accts\04I 093\FOXMLRO I.DOC c. ~. FLOW PROCESS FROM NODE 219.00 TO NODE 219.50 IS CODE = 5 UPSTREAM NODE 219.50 ELEVATION = 167.50 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 10.10 18.00 0.00 167.50 1. 22 DOWNSTREAM 34.76 24.00 167.00 1. 92 LATERAL #1 24.68 18.00 45.00 167.50 1. 49 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*V1*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.21159 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02055 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.11607 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 21.616 11.220 13.988. 0.000 FRICTION LOSSES 0.464 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 4.348)+( 0.000) = 4.348 NODE 219.50: HGL = < 167.965>;EGL= < 175.221>;FLOWLINE= < 167.500> *********************************************************************k******** 219.50 TO NODE 215.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 215.00 ELEVATION = 180.97 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 10.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 63.67 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.47 CRITICAL DEPTH(FT) = 1. 22 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.22 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 224 6.539 1. 889 181. 88 0.009 1.194 6.695 1. 890 182.04 0.036 1.163 6.865 1. 896 182.55 0.084 1.133 7.050 1. 905 183.42 0.155 1.103 7.251 1. 920 184.68 0.253 1.072 7.469 1. 939 186.34 0.381 1. 042 7.705 1. 965 188.46 0.544 1. 012 7.962 1. 997 19l.05 0.748 0.981 8.242 2.037 194.16 0.999 0.951 8.546 2.086 197.83 l. 306 0.921 8.877 2.145 202.12 1.679 0.890 9.239 2.217 207.09 2.132 0.860 9.635 2.302 212.81 2.681 0.830 10.068 2.405 219.36 3.349 0.799 10.545 2.527 226.84 4 G:\Accts\041 093\FOXMLRO I.DOC (. 4.163 0.769 11.071 2.673 235.37 5.163 0.739 1l. 653 2.848 245.07 6.401 0.708 12.298 3.058 256.12 7.953 0.678 13.018 3.311 268.69 9.933 0.648 13.824 3.617 283.05 12.517 0.617 l4.730 3.989 299.46 16.005 0.587 15.756 4.444 318.28 20.963 0.557 16.924 5.007 339.98 28.668 0.526 18.262 5.708 365.09 43.228 0.496 19.808 6.592 394.35 63.670 0.465 21. 609 7.721 428.69 ------------------------------------------------------------------------------ NODE 215.00 : HGL = < 182.194>;EGL= < 182.859>;FLOWLINE= < 180.970> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 215.00 FLOWLINE ELEVATION = 180.97 ASSUMED UPSTREAM CONTROL HGL = 182.19 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS (. 5 G:\Accts\041093\FOXMLROl.DOC (. ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1~23 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 113 TO 215.5 * G:\ACCTS\041093\FXMLR02 * * * ************************************************************************** FILE NAME: FOXMLR02.DAT TIME/DATE OF STUDY: 11:21 05/14/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: n*n indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 113.00-1. 50 Dc 461. 52 0.72* } FRICTION 216.00-1.46*Dc 459.91 1.46*Dc } JUNCTION 216.50-2.01* 474.42 1. 21 } FRICTION 215.00-1.80* 451.18 1.45 Dc } JUNCTION 215.50-3.73* 723.37 1. 51 Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCE~ DESIGN MANUALS. 814.78 459.91 440.74 416.51 340.68 ************************************************~***************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 113.00 FLOWLINE ELEVATION = 168.10 PIPE FLOW = 25.19 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 169.600 FEET NODE 113.00 : HGL = < 168.820>;EGL= < 182.851>;FLOWLINE= < 168.100> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 216.00 113.00 TO NODE 216.00 IS CODE = 1 ELEVATION = 177.27 (FLOW IS SUPERCRITICAL) 6 G:\Accts\041093\FOXMLR02.DOC C. CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 18.59 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 42.81 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.64 CRITICAL DEPTH(FT) = 1. 46 ==========================================================================~=== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.46 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC P.RESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 457 10.601 3.203 459.91 0.032 1.424 10.718 3.209 460.55 0.120 1. 392 10.864 3.226 462.34 0.263 1. 359 11.038 3.252 465.15 0.458 1.327 11. 237 3.289 468. 95 0.710 1. 294 11. 462 3.335 473.73 1.022 1. 262 11.713 3.393 479.49 1.400 1. 229 11.990 3.463 486.29 1.853 1.196 12.294 3.545 494.16 2.390 1.164 12.628 3.642 503.16 3.024 1.131 12.994 3.755 513.39 3.771 1. 099 13.393 3.886 524.91 4.649 1. 066 13.829 4.038 537.85 5.686 1. 034 14.305 4.213 552.33 6.913 1. 001 14.826 4.417 568.49 8.372 0.969 15.395 4.651 586.51 10.120 0.936 16.019 4.923 606.58 12.236 0.904 16.704 5.239 628.94 14.830 0.871 17.457 5.606 653.86 18.065 0.839 18.287 6.G35 681.66 22.197 0.806 19.206 6.537 712.73 27.656 0.773 20.224 7.129 747.53 35.250 0.741 21.359 7.829 786.59 42.810 0.720 22.173 8.358 814.78 -----------------------------------------------------~--------~--------------- NODE 216.00 : HGL = < 178.727>iEGL= < 180.473>iFLOWLINE= < 177.270> *******************************************************************~********** 216.00 TO NODE 216.50 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 216.50 ELEVATION = 177.60 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 17.50 18.00 0.00 177.60 1. 45 DOWNSTREAM 18.59 18.00 177.27 1. 46 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 1.09===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N 0.01300i FRICTION SLOPE 0.02775 DOWNSTREAM: MANNING'S N = 0.01300i FRICTION SLOPE = 0.02761 VELOCITY (FT/SEC) 9.903 10.605 .0.000 0.000 7 G:\Accts\041093\FOXMLR02.DOC (-. C. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02768 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.111 FEET ENTRANCE LOSSES 0.349 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.307)+( 0.349) = 0.656 NODE 216.50: HGL = < 179.607>;EGL= < 181.130>;FLOWLINE= < 177.600> ****************************************************************************** 216.50 TO NODE 215.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 215.00 ELEVATION = 178.37 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 17.50 CFS PIPE DIAMETER = 20.15 FEET MANNING'S N 18.00 INCHES 0.01300 PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( (( 17.50)/( 105.043) )**2 = 0.02776 20.15)*(0.02776) = 0.559 NODE 215.00: HGL = < 180.166>;EGL= < 181.689>;FLOWLINE= < 178.370> ****************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.50 IS CODE = 5 UPSTREAM NODE 215.50 ELEVATION = 178.70 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 17.50 24.00 '90.00 178.70 1. 51 DOWNSTREAM 17.50 18.00 178.37 1. 45 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.OCl===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4»/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00598 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02775 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01687 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.067 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HVI-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (1.219)+( 0.000) = 1.219 5.570 9,903 0.000 0.000 NODE 215.50: HGL = < 182.426>;EGL= < 182.908>;FLOWLINE= < 178.700> ********************************************************~******************~** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 215.50 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 178.70 180.21 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 8 G:\Accts\041093\FOXMLR02,DOC • (. ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes.) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 221 TO 405 * G:\ACCTS\041093\FXMLR03 * * * ************************************************************************** FILE NAME: FOXMLR03.DAT TIME/DATE OF STUDY: 14:36 09/08/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: n*n indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH(FT) MOMENTUM (POUNDS.) 221.00-4.00 866.13 0.54* } FRICTION 40B.00-1. 65 Dc 445.75 0.81* } JUNCTION 408.50-2.02 432.49 0.63* } FRICTION 408.60-1. 58 Dc 392.81 0.91* } JUNCTION 408.70-1. 58 Dc 392.Bl 0.91* } FRICTION 405.00-1.58*Dc 392.Bl 1.5B*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 1292.13 760.90 879.29 559.64 556.06 392.81 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 221.00 FLOWLINE ELEVATION = 142.50 PIPE FLOW = 63.B4 CFS PIPE DIAMETER = 4B.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 146.500 FEET NODE 221.00 : HGL = < 143.038>;EGL= < 205.208>;FLOWLINE= < 142.500> ****************************************************************************** FLOW PROCESS FROM NODE 221. 00 TO NODE 408.00 IS CODE = 1 9 G:\Accts\04I'093\FOXMLR03.DOC • UPSTREAM NODE 408.00 ELEVATION = 156.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 21.23 CFS PIPE DIAMETER = 24.00 INCHES 0.01300 PIPE LENGTH = 16.81 FEET MANNING'S N NORMAL DEPTH(FT) = 0.44 CRITICAL DEPTH (FT) = 1. 65 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.81 =================~============================================================ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.807 17.882 5.775 760.90 0.327 0.792 18.329 6.012 778.24 0.682 0.777 18.798 6.268 796.48 1. 069 0.762 19.290 6.544 815.70 1.492 0.748 19.807 6.843 835.94 1. 954 0.733 20.349 7.167 857.29 2.462 0.718 20.920 7.518 879.82 3.021 0.703 21. 520 7.899 903.62 3.637 0.689 22.153 8.314 928.77 4.320 0.674 22.821 8.766 955.38 5.079 0.659 23.526 9.259 983.57 5.928 0.644 24.272 9.798 1013.45 6.880 0.629 25.062 10.389 1045.17 7.956 0.615 25.900 11. 037 1078.87 9.178 0.600 26.789 11. 751 1114.72 10.579 0.585 27.735 12.537 1152.92 12.199 0.570 28.742 13.406 1193.67 14.094 0.555 29.816 14.368 1237.21 16.343 0.541 30.964 15.438 1283.80 16.810 0.538 31.169 15.633 1292.13 NODE 408.00: HGL = < 156.807>;EGL= < 161.775>;FLOWLINE= < 156.000> *************************************************************~**************** 408.00 TO NODE 408.50 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 408.50 ELEVATION = 156.33 (FLOW IS SUPERCRITICAL) ----------------------------------------------------------------~------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 19.40 24.00 0.00 156.33 1. 58 DOWNSTREAM 21. 23 24.00 156.00 1. 65 LATERAL jj:l 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 1.83===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.16179 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07519 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.11849 JUNCTION LENGTH = 4.00 FEET VELOCITY (FT/SEC) 23.026 17.888 0.000 0.000 10 G:\Accts\041093\FOXMLR03.DOC (. !.. FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.474 FEET ENTRANCE LOSSES. (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 2.421)+( 0.994) = 3.415 0.994 FEET NODE 408.50: HGL = < 156.957>;EGL= < 165.190>;FLOWLINE= < 156.330> ****************************************************************************** 408.50 TO NODE 408.60 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 408.60 ELEVATION = 162.82 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 15.40 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.49 CRITICAL DEPTH(FT) = 1. 58 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT} = 0.91 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.907 14.003 3.954 559.64 0.355 0.890 14 . 346 4. 088 571.11 0.742 0.874 14.706 4.234 583.25 1.166 0.857 15.083 4.392 596.08 1.631 0.840 15.479 4.563 609.65 2.140 0.824 15.895 4.749 624.02 2.702 0.807 16.333 4.952 639.24 3.321 0.790 16.794 5.173 655.36 4.007 0.774 17.280 5.413 672.46 4.768 0.757 17.793 5.676 690.60 5.617 0.741 18.335 5.964 709.86 6.568 0.724 18.908 6.279 730.34 7.637 0.707 19.515 6.625 7'52.12 8.847 0.691 20.159 7.005 775.31 10.224 0.674 20.843 7.424 8'00.04 11. 805 0.657 21.570 7.886 826.43 13.637 0.641 22.344 8.398 854.64 15.400 0.627 23.019 8.860 879.29 NODE 408.60: HGL = < 163.727>;EGL= < 166.774>;FLOWLINE= < 162.820> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 408.70 408.60 TO NODE 408.70 IS CODE = 5 ELEVATION = 163.15 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 19.40 24.00 0.00 163.15 1. 58 13.900 DOWNSTREAM 19.40 24.00 162.82 1. 58 14.808 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 O.OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: 11 G:\Accts\041 093\FOXMLR03 .DOC (. • DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4»/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04040 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04125 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04083 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.163 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (0.289)+( O.OOO} = 0.289 NODE 408.70: HGL = < 164.062>;EGL= < 167.062>iFLOWLINE= < 163.150> ****************************************************************************** 408.70 TO NODE 405.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 405.00 ELEVATION = 165.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.40 CFS PIPE DIAMETER = PIPE LENGTH = 18.48 FEET MANNING'S N 24.00 INCHES 0.01l00 NORMAL DEPTH (FT) = 0.65 CRITICAL DEPTH(FT} = 1. 58 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.58 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+. CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 583 7.270 2.405 392.81 0.021 1. 546 7.442 2.407 393.13 0.086 1. 509 7.627 2.413 394.11 0.200 1.472 7.827 2.424 395.79 o .37l 1. 434 8.043 2.439 398.22 0.605 1. 397 8.276 2.461 401.44 0.912 1. 360 8.527 2.489 405.51 1. 301 1. 322 8.798 2.525 410.50 1. 786 1. 285 9.091 2.569 416.47 2.383 1. 248 9.408 2.623 423.51 3.111 1.211 9.751 2.688 431. 7l 3.992 1.173 10.123 2.7'66 441.17 5.058 1.136 10.528 2.858 452.03 6.345 1. 099 10.969 2.968 464.41 7.901 1. 061 1l.451 3.099 478.49 9.79l 1. 024 11.978 3.253 494.45 12.098 0.987 12.556 3.436 512.51 14.938 0.950 13 .192 3.654 532.94 18.479 0.912 13.895 3.912 556.05 18.480 0.912 13.896 3.912 556.06 ------------------------------------------------------------------------------ NODE 405.00 : HGL = < 166.583>;EGL= < 167.405>iFLOWLINE= < 165.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 405.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 165.00 166.58 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 12 G:\Accts\041093\FOXMLR03,DOC c. (. ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 405 TO 404 * G:\ACCTS\041093\FOXMLR04 * * * ************************************************************************** FILE NAME: FOXMLR04.DAT TIME/DATE OF STUDY: 15:41 05/17/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 405.00- } 405.10- } 405.15- } 405.20- } 405.30- } 405.40- } 405.50- } 405.60- } 405.70- } 405.80- MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM (POUNDS) 2.00 428.19 FLOW DEPTH (FT) 0.54* PRESSURE+ MOMENTUM (POUNDS) 1069.30 FRICTION 1. 58 Dc 392.81 0.50* FRICTION 1. 58 Dc 392.81 0.52* JUNCTION 1. 58 Dc 392.81 0.50* FRICTION 1.58 Dc 392.81 0.55* JUNCTION 1.58 Dc 392.81 0.53* FRICTION 1.58 Dc 392.81 1. 08* FRICTION 1.58 Dc 392.81 1.19* JUNCTION 1. 80 402.16 1.14* FRICTION 1.58*Dc 392.81 1.58*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 1187.50 1122.87 1207.90 1038.73 1109.49 470.83 436.19 450.66 392.81 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: 13 G:\Accts\041093IFOXMLR04.DOC c. l. NODE NUMBER = PIPE FLOW = 405.00 19.40 CFS ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE ELEVATION = 166.00 PIPE DIAMETER = 24.00 INCHES 168.000 FEET NODE 405.00: HGL = < 166.542>iEGL= < 178.880>iFLOWLINE= < 166.000> ****************************************************************************** 405.00 TO NODE 405.10 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 405.10 ELEVATION = 166.40 (FLOW IS SUPERCRIT'ICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 10.00 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.91 CRITICAL DEPTH (FT) = 1. 58 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.502 31. 365 15.788 1187.50 4.093 0.519 29.970 14.475 113.5.69 8.255 0.535 28.682 13.317 1087.90 10.000 0.542 28.179 12.880 1069.30 -----------------------------------------------------------------------~-~---- NODE 405.10: HGL = < 166.902>iEGL= < 182.188>iFLOWLINE= < 166.400> ****************************************************************************** 405.10 TO NODE 405.15 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 405.15 ELEVATION = 177.70 (FLOW IS SUBERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.40 CFS PIPE DIAMETER = 24.00 INCHES 0.01300 PIPE LENGTH = 26.84 FEET MANNING'S N NORMAL DEPTH(FT) = 0.49 CRITICAL DEPTH (FT) = 1.5.8 ============================================================================~= UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.52 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ----------------------------------------------------------------------~------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 0.523 29.625 14.160 1122.87 1.016 0.522 29.728 14.253 1126.68 2.079 0.521 29.831 14.347 ~130.51 3.194 0.519 29.935 14.442 1134.36 4.365 0.518 30.039 14.538 1138.23 5.597 0.517 30.144 14.635 1142.14 6.897 0.515 30.250 14.733 1146.06 8.273 0.514 30.356 14.832 1150.01 9.733 0.513 30.463 14.932 1153.99 11.287 0.512 30.571 15.033 1157.99 12.947 0.510 30.680 15.135 1162.02 14.728 0.509 30.789 15.238 1166.07 14 G:\Accts\041093\FOXMLR04.DOC (e le 16.649 0.508 30.899 15.342 1170.15 18.731 0.506 31.009 15.447 1174.25 21.002 0.505 31.120 15.553 1178.39 23.500 0.504 31. 232 15.660 1182.54 26.270 0.503 31. 345 15.768 1186.73 26.840 0.502 31. 365 15.788 1187.50 NODE 405.15: HGL = < 178.223>;EGL= < 191.860>;FLOWLINE= < 177.700~ ****************************************************************************** 405.20 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 405.20 405.10 TO NODE ELEVAT.I0N = 178.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) UPSTREAM 19.40 24.00 0.00 178.00 1. 58 DOWNSTREAM 19.40 24.00 177.70 1. 58 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.40385 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.32763 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.36574 4.00 FEET VELOCITY (FT/SEC) ~1. 924 29.634 0.000 0.000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 1.463 FEET ENTRANCE LOSSES 0.000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 2.462)+( 0.000) = 2.462 NODE 405.20: ,HGL = < 178.496>;EGL= < 194.322>;FLOWLINE= < 178.000> ****************************************************************************** 405.20 TO NODE 405.30 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 405.30 ELEVATION = 195.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 38.51 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.48 CRITICAL DEPTH(FT) = 1. 58 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.55 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (.POUNDS) 0.000 0.554 27.353 12.179 1038.73 0.886 0.551 27.553 12.347 1046.15 1.817 0.548 27.757 12.519 1053.66 2.798 0.545 27.962 12.694 1061. 27 3.834 0.542 28.171 12.873 1068.99 4.929 0.539 28.382 13.056 1076.81 15 G.\Accts\041093\FOXMLR04.DOC c. 6.089 0.537 28.596 13.242 1084.74 7.323 0.534 28.813 13.433 1092.78 8.638 0.531 29.033 13.628 1100.94 10.045 0.528 29.256 13.827 1109.20 11.555 0.525 29.482 14.030 1117.58 13.183 0.522 29.711 14.238 1126.08 14.947 0.519 29.944 14.451 1134.70 16.867 0.516 30.179 14.668 1143.44 18.972 0.513 30.418 14.890 1152.30 21. 298 0.511 30.660 15.117 1161.30 23.890 0.508 30.906 15.349 1170.42 26.812 0.505 31.155 15.586 1179.67 30.153 0.502 31. 408 15.829 1189.06 34.043 0.499 31.664 16.077 1198.59 38.510 0.496 31.914 16.322 1207.90 -----------------------------------------------------------------~------------ NODE 405.30 : HGL = < 196.054>;EGL= < 207. 679>;FLOWLINE= < 195.500> ****************************************************************************** 405.30 TO NODE 405.40 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 405.40 ELEVATION = 195.80 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 19.40 24.00 0.00 195.80 1. 58 DOWNSTREAM 19.40 24.00 195.50 1. 58 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vl*COS (DELTAl)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)·*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.31655 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.26194 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.28924 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 29.273 27.361 0.000 0.000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 1.157 FEET ENTRANCE LOSSES 0.000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 1.955)+( 0.000) = 1.955 NODE 405.40: HGL = < 196.328>;EGL= < 209.634>;FLOWLINE= < 195.800> ****************************************************************************** 405.40 TO NODE 405.50 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 405.50 ELEVATION = 220.64 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 65.79 FEET MANNING'S N = '0.01300 NORMAL DEPTH(FT) = 0.50 CRITICAL DEPTH(FT) = 1. 58 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.08 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 16 G:\Accts\041 093\FOXMLR04. DOC \. DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1.081 11.191 3.027 470'.83 0.239 1. 058 11.496 3.112 479.85 0.505 1.035 11.819 3.206 489.59 0.803 1. 012 12.161 3.310 500.11 1.135 0.989 12.523 3.426 511.47 1. 508 0.966 12.907 3.554 523.72 1.925 0.943 13.315 3.698 536.94 2.395 0.920 13.750 3.857 551.2i 2.924 0.897 14.212 4.035 566.62 3.522 0.874 14.706 4.234 583.25 4.199 0.851 15.234 4.456 6.01.23 4.971 0.828 15.798 4.706 620.6,7 5.854 0.804 16.404 4.986 641. 72 6.869 0.781 17 . 055 5.301 664.52 8.044 0.758 17.756 5.657 689.27 9.415 0.735 18.512 6.060 716.17 11.030 0.712 19.329 6.518 745.44 12.953 0.689 20.216 7.039 777.37 15.275 0.666 21.180 7.636 812.27 18.133 0.643 22.230 8.322 850.49 21. 736 0.620 23.379 9.113 892.47 26.438 0.597 24.640 10.030 938.71 32.903 0.574 26.027 11.099 989.79 42.628 0.551 27.561 12.353 1046.43 60.416 0.528 29.263 13.833 1109.46 65.790 0.528 29.264 13.834 1109.49 ------------------------------------------------------------------------------ NODE 405.50 : HGL = < 221. 721>iEGL= < 223. 667>iFLOWLINE= < 220.64,0> ****************************************************************************** 405.50 TO NODE 405.60 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 405.60 ELEVATION = 221.24 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 15.00 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.91 CRITICAL DEPTH (FT) = 1. 58 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.19 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 1.192 9.930 2.724 436.19 1.024 1.181 10.042 2.748 439.06 2.126 1.170 10.157 2.773 442.05 3.315 1.159 10.275 2.799 445.16 4.599 1.148 10.396 2.827 448.41 5.987 1.137 10.519 2.856 451. 78 7.491 1.126 10.646 2.887 455.29 9.123 1.115 10.777 2.919 458.94 10.900 1.104 10.911 2.953 462.73 17 G:\Accts\041093\FOXMLR04.DOC c. c. ~. 12.839 14.962 15.000 1. 092 1. 081 1.081 11.048 11.189 11.191 2.989 3.026 3.027 466.67 470.76 470.83 NODE 405.60: HGL = < 222.432>;EGL= < 223. 964>;FLOWLINE= < 221.240> ******************************************************************~*********** 405.60 TO NODE 405.70 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 405.70 ELEVATION = 221.24 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 19.40 24.00 0.00 221. 24 1. 58 DOWNSTREAM 19.40 24.00 221. 24 1. 58 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 O~OO Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01909 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01662 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01785 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 10.482 9.933 0.000 0.000 FRICTION LOSSES 0.071 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HVI-HV2)+(ENTRANCE LOSSES) JUNCTION· LOSSES (0.122)+( 0.00'0) = 0.122 NODE 405.70: HGL = < 222.380>iEGL= < 224.086>iFLOWLINE= < 221.240> ****************************************************************************** 405.70 TO NODE 405.80 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 405.80 ELEVATION = 222.00 (FLOW IS SUPERCRITICAL) ----------------------------------------------------------------------~------- CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 21.44 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.95 CRITICAL DEPTH(FT) = 1. 58 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.58 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 583 7.270 2.405 392.81 0.033 1.558 7.386 2.406 392.96 0.135 1. 533 7.508 2.408 393.41 0.314 1. 507 7.636 2.413 394.18 0.576 1. 482 7.772 2.420 395.27 0.932 1. 456 7.914 2.429 396.70 1. 391 1. 431 8.064 2.441 398.49 1.967 1.405 8.223 2.456 400.66 2.674 1. 380 8.389 2.473 403.21 18 G:\Accts\041093\FOXMLR04.DOC (. 3.529 1. 354 8.565 2.494 406.17 4.555 1. 329 8.749 2.518 409.57 5.776 1. 303 8.944 2.546 413.41 7.225 1. 278 9.150 2.579 417.74 8.941 1. 253 9.367 2.616 422.57 10.974 1. 227 9.596 2.658 427.93 13.389 1. 202 9.838 2.705 433.86 16.272 1.176 10.094 2.759 440.4,0 19.740 1.151 10.365 2.820 447.57 21.440 1.140 10.478 2.846 450.66 -------------------------------------------------------------------~-------~-- NODE 405.80: HGL = < 223.583>;EGL= < 224.405>;FLOWLINE= < 222.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 405.80 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 222.00 223.58 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== ~ND OF GRADUALLY VARIED FLOW ANALYSIS 19 G:\Accts\04 [093\FOXMLR04. DOC c. ***************************************************************************~~* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 219 TO 113 * G:\ACCTS\041093\FOXMLROS ************************************************************************** FILE NAME: FOXMLR05.DAT TIME/DATE OF STUDY: 11:48 05/14/2004 * * * ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM ,RUN NODE NUMBER 219.00- } 113.'00- MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 1.50*Dc 1407.65 1.50*Dc 1407.65 FRICTION 7.82* 2105.15 1.50 Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 1407.65 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 219.00 FLOWLINE ELEVATION = 167.50 PIPE FLOW = 34.76 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 168.977 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH ( 1.48 FT.) IS LESS THAN CRITICAL DEPTH ( 1.50 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 219.00 : HGL = < 168.996>;EGL= < 175.007>;FLOWLINE= < 167.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 113.00 219.00 TO NODE 113.00 IS CODE = 1 ELEVATION = 169.00 (FLOW UNSEALS IN REACH) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 34.76 CFS PIPE DIAMETER = 18.00 INCHES 20 G:\Accts\041 093\FOXMLR05 .DOC c. c. PIPE LENGTH = 71.46 FEET MANNING'S N 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 1. 50 CRITICAL DEPTH(FT) = 1. 50 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.50 ===========================================================================~== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.004 0.005 0.006 0.006 0.007 0.008 0.009 0.010 O. all 0.013 0.014 FLOW DEPTH (FT) 1.496 1.497 1.497 1.497 1. 497 1.497 1.497 1. 497 1.498 1.498 1. 498 1.498 1. 498 1. 498 1. 498 1. 499 1. 499 1. 499 1.499 1. 499 1. 499 1. 499 1. 500 1. 500 1. 500 1. 500 ===> FLOW IS UNDER PRESSURE 71.460 7.824 VELOCITY (FT/SEC) 19.669 19.668 19.668 19.668 19.668 19.667 19.667 19.667 19.667 19.667 19.666 19.666 19.666 19.666 19.666 19.666 19.665 19.665 19.665 :1,,9.665 19.665 19.665 19.665 19.665 19.665 19.665 19.671 SPECIFIC ENERGY (FT) 7.507 7.507 7.507 7.507 7.507 7.507 7.507 7.507 7.507 7.507 7.507 7.507 7.507 7.507 7.507 7.507 7.508 7.508 7.508 7.508 7.508 7.508 7.508 7.508 7.508 7.508 13.833 PRESSURE+ MOMENTUM (POUNDS) 1407.65 1407.65 1407.65 14·07.65 1407.65 1407.65 1407.65 1407.65 1407.66 1407.66 1407.66 1407.67 1407.67 1407.68 1407.68 1407.69 1407.69 1407.70 1407.71 1407.71 1407.72 1407.73 1407.74 1407.75 1407.77 1407.78 2l05.15 NODE 113.00: HGL = < 176.824>iEGL= < 182.833>iFLOWLINE= < 169.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 113.00 FLOWLINE ELEVATION = 169.00 ASSUMED UPSTREAM CONTROL HGL = 170.50 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 21 G:\Accts\041093\FOXMLR05.DOC (. ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * * HGL -NODE 208 TO 217 * * G:\ACCTS\041093\FOXMLR06 * ************************************************************************** FILE NAME: FOXMLR06.DAT TIME/DATE OF STUDY: 14:31 05/14/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 208.00-1. 49*Dc 88.56 0.37 } FRICTION } HYDRAULIC JUMP 217.00-0.60*Dc 28.68 0.60*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 38.71 28.68 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 208.00 FLOWLINE ELEVATION = 204.27 PIPE FLOW = 27.61 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 205.242 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.97 FT.) IS LESS THAN CRITICAL DEPTH ( 1.49 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 208.00 : HGL = < 205.761>;EGL= < 209.558>;FLOWLINE= < 204.270> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 217.00 208.00 TO NODE 217.00 IS CODE = 1 ELEVATION = 205.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 2.50 CFS PIPE DIAMETER = 18.00 INCHES 22 G:\Accts\041093\FOXMLR06.DOC c. PIPE LENGTH = 16.32 FEET MANNING'S N 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.34 CRITICAL DEPTH (FT) = 0.60 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.60 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.599 3.797 0.823 28.68 0.009 0.588 3.887 0.823 28.69 0.037 0.578 3.980 0.824 28.74 0.087 0.568 4.079 0.826 28.81 0.160 0.557 4.181 0.829 28.92 0.260 0.547 4.289 0.833 2'9.06 0.390 0.537 4.401 0.838 29.23 0.554 0.526 4.520 0.844 29.44 0.756 0.516 4.644 0.851 29.69 1. 002 0.506 4.775 0.860 29.98 1. 298 0.495 4.912 0.870 30.31 1.653 0.485 5.057 0.882 30.69 2.075 0.474 5.210 0.896 31.12 2.578 0.464 5.371 0.912 31. 59 3.177 0.454 5.542 0.931 32.12 C. 3.890 0.443 5.722 0.952 32.71 4.746 0.433 5.914 0.976 33.3.6 5.779 0.423 6.117 1. 004 34.08 7.039 0.412 6.332 1.035 34.86 8.601 0.402 6.562 1. 071 35.73 10.577 0.392 6.807 1.112 36.67 13.161 0.381 7.069 1.158 37.71 16.320 0.372 7.317 1. 204 38.71 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS =========================================================~==================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.49 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 491 1. 415 1. 522 8·8.56 0.796 1. 455 1. 427 1. 487 84.70 1. 585 1.420 1. 444 1. 452 80.91 2.369 1. 384 1.467 1. 417 77.19 3.148 1. 348 1. 493 1. 383 73.56 3.922 1. 312 1. 524 1. 349 70.02 4.691 1.277 1. 559 1. 315 66.58 5.455 1. 241 1. 598 1. 281 63.24 6.214 1. 205 1.642 1. 247 60.01 6.966 1.170 1. 690 1. 214 56.9'1 C. 7.711 1.134 1.744 1.181 53.92 8.448 1. 098 1. 802 1.149 51. 07 9.176 1. 063 1. 867 1.117 48.35 23 G:\Accts\04 I 093\FOXMLR06.DOC (. 9.893 1.027 1.938 1.085 45.76 10.597 0.991 2.017 1.055 43.33 11. 286 0.956 2.104 1.024 41. 05 11.957 0.920 2.200 0.995 38.92 12.606 0.884 2.306 0.967 36.97 13.229 0.849 2.424 0.940 35.19 13.820 0.813 2.556 0.914 33.59 14.371 0.777 2.704 0.891 32.19 14.872 0.741 2.870 0.869 30.99 15.308 0.706 3.058 0.851 30.02 15.660 0.670 3.271 0.836 29.30 15.902 0.634 3.516 0.826 28.84 15.994 0.599 3.797 0.823 28.68 16.320 0.599 3.797 0.823 28.68 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 15.34 FEET UPSTREAM OF NODE 208.00 I DOWNSTREAM DEPTH = 0.702 FEET, UPSTREAM CONJUGATE DEPTH = 0.506 FEET I NODE 217.00: HGL = < 205.599>;EGL= < 205.823>;FLOWLINE= < 205.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 217.00 FLOWLINE ELEVATION = 205.00 ASSUMED UPSTREAM CONTROL HGL = 205.60 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 24 G:\Accts\041093\FOXMLR06.DOC ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 208 TO 406 * G:\ACCTS\041093\FOXMLR07 ************************************************************************** FILE NAME: FOXMLR07.DAT TIME/DATE OF STUDY: 14:33 05/14/2004 * * * ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 208.00- } 406.00- MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 1.49*Dc 92.25 0.47 FRICTION } HYDRAULIC JUMP 0.67*Dc 37.82 0.67*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 44.83 37.82 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 208.00 FLOWLINE ELEVATION = 204.27 PIPE FLOW = 27.61 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 205.242 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.97 FT.) IS LESS THAN CRITICAL DEPTH ( 1.49 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS -------------------------------------------------------~---------------------- NODE 208.00 : HGL = < 205.761>;EGL= < 209.558>;FLOWLINE= < 204.270> ************************************************************************.***** FLOW PROCESS FROM NODE UPSTREAM NODE 406.00 208.00 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : 406.00 IS CODE = 1 205.00 (HYDRAULIC JUMP OCCURS) PIPE FLOW 3.10 CFS PIPE DIAMETER = 18.00 INCHES 25 G:\Accts\041093\FOXMLR07.DOC PIPE LENGTH = 35.16 FEET MANNING'S N 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.46 CRITICAL DEPTH(FT) = 0.67 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.67 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.670 4.059 0.926 37.82 0.013 0.661 4.126 0.926 37.83 0.055 0.653 4.196 0.927 37.86 0.127 0.645 4.268 0.928 37.91 0.233 0.636 4.342 0.929 37.98 0.378 0.628 4.419 0.931 38.07 0.564 0.620 4.498 0.934 38.18 0.798 0.611 4.580 0.937 38.32 1. 084 0.603 4.665 0.941 38.48 1. 430 0.594 4.753 0.946 38.67 1. 844 0.586 4.844 0.951 38.88 2.336 0.578 4.939 0.957 39.11 2.918 0.569 5.037 0.964 39.38 3.606 0.561 5.138 0.971 39.67 4.41S 0.553 5.244 0.980 39.99 (. 5.379 0.544 5.354 0.990 40.35 6.521 0.536 5.467 1. 000 40.73 7.890 0.528 5.586 1. 012 41.15 9.545 0.519 5.709 1. 026 41. 60 11.578 0.511 5.S37 1. 040 42.09 14.129 0.502 5.971 1. 056 42.62 17 . 433 0.494 6.110 1. 074 43.19 21. 931 0.4S6 6.255 1. 094 43.80 28.612 0.477 6.407 1.115 44.46 35.160 0.473 6.492 1.128 44.83 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS =====================================================~======================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.49 =================================================~============================ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 491 1.755 1. 539 92.25 1. 610 1. 458 1.768 1. 507 88.72 3.199 1. 425 1.787 1. 475 85.26 4.772 1. 392 1.811 1. 443 Sl.88 6.331 1. 360 1. 841 1. 412 78.57 7.877 1.327 1.874 1. 381 75.35 9.410 1. 294 1. 912 1. 351 72.22 10.930 1. 261 1.954 1. 320 6'9.19 12.435 1. 228 2.001 1. 290 66.26 \. 13.925 1.195 2.052 1. 261 63.43 15.399 1.162 2.109 1.232 60.72 26 G:\Accts\04! 093\FOXMLR07 ,DOC .J c. c. 16.853 1.130 2.171 l. 203 58.12 18.286 1. 097 2.238 l.175 55.65 19.695 1. 064 2.312 l.147 53.30 21. 076 1. 031 2.393 l.120 51. 08 22.424 0.998 2.481 1. 094 49.01 23.734 0.965 2.578 l. 069 47.07 24.999 0.933 2.684 1. 044 45.30 26.209 0.900 2.800 1.022 43.68 27.354 0.867 2.929 l. 000 42.23 28.418 0.834 3.070 0.981 40.96 29.382 0.801 3.227 0.963 39.89 30.220 0.768 3.401 0.948 39.02 30.896 0.736 3.596 0.936 38.37 31. 360 0.703 3.814 0.929 37.96 31.537 0.670 4.059 0.926 37.82 35.160 0.670 4.059 0.926 37.82 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 28.62 FEET UPSTRE~M OF NODE 208.00 I DOWNSTREAM DEPTH = 0.827 FEET, UPSTREAM CONJUGATE DEPTH = 0.536 FEET I NODE 406.00: HGL = < 205. 670>;EGL= < 205. 926>;FLOWLINE= < 205.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 406.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 205.00 205.67 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 27 G:\Accts\041 093\FOXMLR07 .DOC \ .•. ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 220 TO 503 * G:\ACCTS\041093\FOXMLROB * * * ************************************************************************** FILE NAME: FOXMLR08.DAT TIME/DATE OF STUDY: 13:19 05/14/2004 ****************************************************************************** NODE NUMBER 220.00- } 220.10- } 220.20- } S06.00- } S06.S0- } SOS.OO- } 505.S0- } S07.00- } S07.S0- } S07.60- } S07.70- } S07.80- } S07.90- } S03.00- GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 2.05 43S.46 0.62* 753.44 FRICTION 1. 43 Dc 372.16 0.91* 488.S6 JUNCTION 2.47 404.23 O.SS* 653.02 FRICTION 2.19 374.26 O.SO* 7S0.20 JUNCTION 2.02 354.53 0.47* 816.07 FRICTION 1. 38*Dc 292.98 1.38*Dc 292.98 JUNCTION 2.19 373.35 0.63* 5S6.l7 FRICTION 1. 38 Dc 292.98 0.79* 419.98 JUNCTION 1.38 Dc 292.98 0.79* 42S.12 FRICTION 1.38 Dc 292.98 0.72* 471.19 JUNCTION 1.38 Dc 292.98 0.70* 484.94 FRICTION 1.38 Dc 292.98 0.86* 386.91 JUNCTION 1.38 Dc 292.98 0.86* 386.21 FRICTION 1.38*Dc 292.98 1.38*Dc 292.98 28 G:\Accts\041093\FOXMLR08.DOC ---~-------------------------------------------------------------------------- MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 220.00 PIPE FLOW = 48.57 CFS ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE ELEVATION = 159.00 PIPE DIAMETER = 18.00 INCHES 161.050 FEET NODE 220.00 : HGL = < 159.624>;EGL= < 235.325>;FLOWLINE= < 159.000> ****************************************************************************** 220.00 TO NODE 220.10 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 220.10 ELEVATION = 165.56 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 16.32 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 13.30 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.48 CRITICAL DEPTH (FT) = 1. 43 =================================================~============================ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.91 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.908 14.574 4.209 488.56 0.311 0.891 14.910 4.346 498.01 0.651 0.874 15.264 4.494 508.03' 1. 024 0.857 15.636 4.656 518.67 1. 434 0.840 16.028 4.831 529.97 1.885 0.823 16.441 5.023 541.97 2.382 0.805 16.877 5.231 554.72 2.932 0.788 17.338 5.459 568.28 3.542 0.771 17 . 825 5.708 582.70 4.220 0.754 18.341 5.981 598.05 4.978 0.737 18.888 6.280 614.40 5.828 0.720 19.468 6.608 631.84 6.786 0.703 20.084 6.970 650.45 7.873 0.685 20.739 7.368 670.32 9.112 0.668 21.437 7.809 091.58 10.538 0.651 22.182 8.296 714.34 12.193 0.634 22.978 8.837 738.75 13.300 0.624 23.456 9.172 753.44 ------------------------------------------------------------------------------ NODE 220.10 : HGL = < 166.468>;EGL= < 169.769>;FLOW~INE= < 165.560> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 220.20 220.10 TO NODE ELEVATION = CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE 29 220.20 IS CODE = 5 165.89 (FLOW IS SUPERCRITICAL) FLOWLINE CRITICAL VELOCITY G:\Accts\041093\FOXMLR08.DOC (. • (CFS) ( INCHES) (DEGREES) ELEVATION DEPTH (FT. ) (FT/SEC) UPSTREAM 14.00 18.00 30.00 165.89 1. 38 23.759 DOWNSTREAM 16.32 18.00 165.56 1. 43 14.579 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 2.32===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/( (Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.21369 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05198 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.13283 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 4.00 FEET 0.531 FEET ENTRANCE LOSSES (DY+HVI-HV2)+(ENTRANCE LOSSES) ( 4.778)+( 0.660) = 5.438 0.660 FEET NODE 220.20: HGL = < 166.441>;EGL= < 175.207>;FLOWLINE= < 165.890> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 506.00 220.20 TO NODE 506.00 IS CODE = 1 ELEVATION = 166.39 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 14.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 12.85 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.90 CRITICAL DEPTH(FT) = 1. 38 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 3.737 7.529 11.384 12.850 FLOW DEPTH (FT) 0.497 0.513 0.529 0.545 0.551 VELOCITY (FT/SEC) 27.401 26.218 25.124 24.111 23.751 SPECIFIC ENERGY (FT) 12.163 11.193 10.337 9.578 9.317 PRESSURE+ MOMENTUM (POUNDS) 750.20 718.60 689.47 662.56 653.02 NODE 506.00: HGL = < 166.887>;EGL= < 178.553>;FLOWLINE= < 166.390> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 506.50 506.00 TO NODE 506.50 IS CODE = 5 ELEVATION = 166.64 (FLOW IS SUPERCRITICAL) -------------------------------------------------------------------------~---- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 14.00 18.00 0.00 166.64 1. 38 29.872 DOWNSTREAM 14.00 18.00 166.39 1. 38 27.410 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== 30 G:\Accts\041093\FOXMLR08.DOC c. LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.40312 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.31736 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.36024 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 1.441 FEET ENTRANCE LOSSES 0.000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 2.410)+( 0.000) = 2.410 ----------------------------------------------------------------~---~-------~- NODE 506.50: HGL = < 167.106>;EGL= < 180.9'63>;FLOWLINE= < 166.640> ****************************************************************************** 506.50 TO NODE 505.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 505.00 ELEVATION = 207.01 (FLOW IS SUPERCRITICAL) -------------------------------------------------------------~--------~---~--- CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 14.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 71.98 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.43 CRITICAL DEPTH(FT) = 1. 38 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.38 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 381 8.223 2.432 292.98 0.007 1. 343 8.386 2.436 293.38 0.028 1.305 8.575 2.447 294.58 0.065 1. 267 8.790 2.467 296.59 0.119 1. 229 9.033 2.496 299.43 0.191 1.191 9.304 2.536 303.16 0.284 1.153 9.606 2.586 307.83 0.402 1.114 9.941 2.650 313.51 0.549 1. 076 10.312 2.729 320.31 0.729 1.038 10.724 2.825 .328.33 0.949 1. 000 11.182 2.943 337.70 1. 218 0.962 11.689 3.085 348.57 1. 545 0.924 12.255 3.257 361. :1,3 1. 944 0.886 12.886 3.466 375.61 2.433 0.848 13.593 3.718 392.27, 3.036 0.810 14.387 4.026 411. 45 3.785 0.771 15.284 4.401 433.55 4.727 0.733 16.302 4.862 459.06 5.926 0.695 17.463 5.434 488.61 7.483 0.657 18.798 6.147 522.98 9.556 0.619 20.342 7.048 563.19 12.416 0.581 22.145 8.200 610.5'5 16.578 0.543 24.270 9.695 666.78 23.216 0.505 26.803 11. 667 734.22 36.110 0.466 29.863 14.323 816.07 71.980 0.466 29.863 14.323 816.07 ------------------------------------------------------------------------------ NODE 505.00 : HGL = < 208.391>;EGL= < 209. 442>;FLOWLINE= < 207.010> 31 G:\Accts\041093\FOXMLR08.DOC r. ( • ****************************************************************************** FLOW PROCESS FROM NODE 505.00 TO NODE 505.50 IS CODE = 5 UPSTREAM NODE 505.50 ELEVATION = 207.34 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 14.00 18.00 60.00 207.34 1. 38 DOWNSTREAM 14.00 18.00 207.01 1. 38 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 O.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPS'TREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.13470 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01542 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.07506 JUNCTION LENGTH 4.00 FEET VELOCITY (FT /SEC) 20.080 8.226 0.000 0.000 FRICTION LOSSES 0.300 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (4.784)+( 0.000) = 4.784 NODE 505.50: HGL = < 207.965>;EGL= < 214.226>;FLOWLINE= < 207.340> ****************************************************************************** 505.50 TO NODE 507.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 507.00 ELEVATION = 216.55 (FLOW' IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 14.00 CFS PIPE DIAMETER = PIPE LENGTH = 60.97 FEET MANNING'S N 18.00 INCHES 0.01300 NORMAL DEPTH(FT) = 0.61 CRITICAL DEPTH (FT) = 1. 38 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.79 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -----------------------------------------------------------------------.------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.794 14.735 4.168 41~L;38 0.810 0.787 14.913 4.242 424.34 1.672 0.779 15.094 4.319 428.83 2.590 0.772 15.280 4.399 433.45 3.570 0.764 15.471 4.483 438.21 4.618 0.756 15.667 4.570 443.10 5.742 0.749 15.868 4.661 448.13 6.950 0.741 16.074 4.756 453.31 8.252 0.734 16.285 4.855 458.64 9.660 0.726 16.502 4.958 464.13 11.189 0.719 16.725 5.065 469.78 12.855 0.711 16.954 5.177 475.60 14.679 0.704 17.189 5.295 481.59 32 G:\Accts\041093\FOXMLR08.DOC r. ,e t.. ... _ ' • 16.689 0.696 17.431 5.417 487.77 18.915 0.689 17.679 5.545 494.13 21.402 0.681 17 . 934 5.678 500.68 24.203 0.674 18.196 5.818 507.44 27.396 0.666 18.466 5.964 514.40 31.086 0.659 18.744 6.117 521. 58 35.428 0.651 19.030 6.278 528.99 40.662 0.643 19.324 6.445 536.63 47.192 0.636 19.627 6.621 544.52 55.773 0.628 19.939 6.806 552.66 60.970 0.625 20.074 6.886 556.17 ------------------------------------------------------------------------------ NODE 507.00 : HGL = < 217.344>;EGL= < 220.718>iFLOWLINE= < 216.550> ****************************************************************************** 507.00 TO NODE 507.50 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 507.50 ELEVATION = 216.88 (FLOW IS SUPERCRITICAL) --------------------------------------------------------------------~--------~ CALCULATE PIPE JUNCTION LOSSES: UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 FLOW DIAMETER (CFS) (INCHES) 14.00 18.00 14.00 18.00 0.00 0.00 0.00 0.00 ANGLE (DEGREES) 0.00 0.00 0.00 FLOWLINE ELEVATION 216.88 216.55 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- CRITICAL DEPTH (FT. ) 1. 38 1. 38 0.00 0.00 Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06087 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05865 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05976 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 14.949 14.74Q 0.000 0.000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.239 FEET ENTRANCE LOSSES 0.000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.417)+( 0.000) = 0.417 NODE 507.50: HGL = < 217.665>;EGL= < 221. 135>;FLOWLINE= < 216.880> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 507.60 507.50 TO NODE 507.60 IS CODE = 1 ELEVATION = 224.90 (FLOW IS SUPERCRiTICAL) -------------------------------------------------------------~--~------------- CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 14.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 133.36 FEET MANNING'S N 0.01300 -------------------------------------------------------------~------~--------- NORMAL DEPTH(FT) = 0.79 CRITICAL DEPTH (FT) = 1. 38 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.72 =====================================================================~======== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 FLOW DEPTH (FT) 0.717 VELOCITY (FT/SEC) 16.781 33 SPECIFIC ENERGY(FT) 5.092 PRESSURE+ MOMENTUM (POUNDS) 471.19 G:\Accts\041093\FOXMLR08.DOC (~. 1.874 0.720 16.695 5.051 469.02 3.815 0.723 16.611 5.010 466.87 5.830 0.726 16.527 4.969 464.75 7.926 0.728 16.444 4.930 462.65 10.111 0.731 16.362 4.891 460.57 12.393 0.734 16.280 4.852 458.52 14.784 0.737 16.200 4.815 456.48 17.295 0.740 16.120 4.777 454.47 19.942 0.743 16.041 4.741 452.49 22.743 0.745 15.963 4.705 450.52 25.7l7 0.748 15.886 4.669 448.57 28.893 0.751 15.809 4.634 446.65 32.301 0.754 15.733 4.600 444 .. 75 35.982 0.757 15.658 4.566 442.8'6 39.988 0.760 15.583 4.533 441. 00 44.390 0.763 15.509 4.500 439.16 49.278 0.765 15.436 4.468 437.34 54.785 0.768 15.364 4.436 435.53 61.102 0.77l 15.292 4.405 433.75 68.525 0.774 15.221 4.374 431. 98 77.553 0.777 15.151 4.343 430.24 89.116 0.780 15.081 4.314 428.51 105.310 0.782 15.012 4.284 426.80 132.856 0.785 14.944 4.255 425.11 133.360 0.785 14.944 4.255 425.12 --------------~--------------------------------------------------------------- NODE 507.60: HGL = < 225.617>;EGL= < 229. 992>;FLOWLINE= < 224.9QO> ****************************************************************************** 507.60 TO NODE 507.70 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 507.70 ELEVATION = 225.23' (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 14.00 18.00 0.00 225.23 1.38 DOWNSTREAM 14.00 18.00 224.90 1. 38 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.09029 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08292 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.08660 4.00 FEET VELOCITY (E'T/SEC) 17.326 16.786 0.000 0.000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.346 FEET ENTRANCE LOSSES 0.000 FEET (DY+HVI-HV2)+(ENTRANCE LOSSES) ( 0.599)+( 0.000) = 0.599 NODE 507.70: HGL = < 225.930>iEGL= < 230.591>;FLOWLINE= < 225.230> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 507.80 507.70 TO NODE 507.80 IS CODE = 1 ELEVATION = 248.00 (FLOW IS SOPERCRITtCAL) 34 G:\Accts\041093\FOXMLR08.DOC C. CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 14.00 CFS PIPE DIAMETER = PIPE LENGTH = 244.85 FEET MANNING'S N 18.00 INCHES 0.01300 NORMAL DEPTH(FT) = 0.69 CRITICAL DEPTH(FT) = 1. 38 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.86 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 '0.859 13.367 3.636 386.91 0.985 0.853 13.494 3.682 389.92 2.030 0.846 13.623 3.730 393.00 3.140 0.839 13.755 3.779 396.16 4.321 0.833 13.890 3.831 399.40 5.581 0.826 14.028 3.884 402.72 6.927 0.820 14.168 3.939 406.13 8.371 0.8l3 14.312 3.995 409.61 9.922 0.806 14.458 4.054 413.18 11.594 0.800 14.608 4.115 416.85 13.404 0.793 14.761 4.178 420.60 15.370 0.786 14.917 4.244 424.45 17.517 0.780 15.076 4.311 428.39 19.874 0.773 15.239 4.382 432.43 22.477 0.767 15.406 4.454 436.58 25.375 0.760 15.576 4.530 440.83 28.630 0.753 15.751 4.608 445.19 32.328 0.747 15.929 4.689 449.66 36.588 0.740 16.111 4.773 454.24 41. 583 0.733 16.298 4.860 458.95 47.586 0.727 16.488 4.951 463.77 55.051 0.720 16.683 5.045 468.72 64.827 0.714 ,16.883 5.143 473.80 78.828 0.707 17 . 088 5.244 479.01 103.189 0.700 17.297 5.349 484.36 244.850 0.700 17.320 5.361 484.94 ---------------------------------------------------------------------~-------- NODE 507.80: HGL = < 248.859>;EGL= < 251. 636>;FLOWLINE= < 248.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 507.90 507.80 TO NODE 507.90 IS CODE = 5 ELEVATION = 248.33 (FLOW r'S SUPERCRITICAL) ----------------------------------------------------------------~---~--------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 14.00 18.00 0.00 248.33 1. 38 13.342 DOWNSTREAM 14.00 18.00 248.00 1.38 13.371 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- 35 G:\Accts\041093\FOXMLR08.DOC c. C. Q4*V4*COS(DELTA4) )/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04519 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04544 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04532 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 4.00 FEET 0.181 FEET ENTRANCE LOSSES 0.000 FEET (DY+HVI-HV2)+(ENTRANCE LOSSES) ( 0.319)+( 0.000) = 0.319 NODE 507.90 : HGL = < 249.191>;EGL= < 251.955>;FLOWLINE= < 248.330> ****************************************************************************** 507.90 TO NODE 503.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 503.00 ELEVATION = 250.26 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 14.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.69 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.71 CRITICAL DEPTH (FT) = 1. 3.8 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.38 ===============================================================~============== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 381 8.223 2.432 292.98 0.027 1. 354 8.335 2.434 293.18 0.110 1. 328 8.459 2.440 293.77 0.249 1. 301 8.597 2 .. 449 294.76 0.450 1. 274 8.747 2.463 296 .14 0.717 1. 247 8.911 2.481 297.94 1. 057 1. 221 9.089 2.504 300.16 1. 477 1.194 9.281 2.532 302.82 1. 987 1.167 9.488 2.566 305.94 2.599 1.140 9.710 2.605 309.55 3.328 1.113 9.950 2.652 313.68 4.191 1. 087 10.208 2.706 318.36 5.212 1. 060 10.485 2.768 323.62 6.418 1. 033 10.783 2.840 329.51 7.846 1. 006 11.104 2.922 336.08 9.543 0.980 11.449 3.016 343.37 11.570 0.953 11.821 3.124 351.46 14.013 0.926 12.223 3.247 360.40 16.992 0.899 12.656 3.388 370.28 20.683 0.872 13 .125 3.549 38i.19 22.690 0.861 13.338 3.625 386.21 NODE 503.00 : HGL = < 251.641>;EGL= < 252. 692>;FLOWLINE= < 250.260> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 503.00 FLOWLINE ELEVATION = 250.26 ASSUMED UPSTREAM CONTROL HGL = 251.64 FOR DOWNSTREAM RUN ANALYSIS =======================================================================~====== END OF GRADUALLY VARIED FLOW ANALYSIS 36 G:\Accts\041093\FOXMLR08.DOC (. '~ • ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 107 TO 103 * G:\ACCTS\041093\FOXMLR09 * * * ************************************************************************** FILE NAME: FOXMLR09.DAT TIME/DATE OF STUDY: 11:50 09/08/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 107.00-2.00 953.40 0.67* 2617.37 } FRICTION 107.50-1. 92 Dc 948.46 0.84* 1924.51 } JUNCTION 107.60-1. 92 Dc 948.46 0.82* 2000.65 } FRICTION 105.00-1.92*Dc 948.46 1.92*Dc 948.46 } JUNCTION 105.50-4.70* 970.20 0.78 ,696.99 } FRICTION } HYDRAULIC JUMP 105.51-1. 60 Dc 407.03 1.15* 468.37 } JUNCTION 105.52-1. 93 429.85 0.85* 634.07 } FRICTION 105.53-1. 60 Dc 407.03 1.06* 501.57 } JUNCTION 105.54-1. 60 Dc 407.03 1.10* 484.60 } FRICTION 103.60-1.60*Dc 407.03 1.60*Dc 407.03 } JUNCTION 103.65-2.87* 343.85 0.82 217.45 } FRICTION } HYDRAULIC JUMP 103.00-1.22*Dc 179.35 1.22*Dc 179.35 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST 37 G:\Accts\041093\FOXMLR09.DOC c. • CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 107.00 PIPE FLOW = 35.05 CFS ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE ELEVATION = 189.40 PIPE DIAMETER = 24.00 INCHES 191.400 FEET NODE 107.00: HGL = < 190.066>iEGL= < Z12.870>iFLOWLINE= < 189.400> ****************************************************************************** 107.00 TO NODE 107.50 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 107.50 ELEVATION = 224.70 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 35.04 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 75.23 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.65 CRITICAL DEPTH(FT) = 1. 92 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.84 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -------------------------------------------------------------------,~---------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFI(:: PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.841 27.927 12.959 1924.51 1. 015 0.833 28.273 13.253 1947.42 2.091 0.826 28.627 13.559 1970.89 3.233 0.818 28.990 13.876 1994.94 4.449 0.810 29.362 14.205 2019.60 5.745 0.802 29.742 14.547 2044.88 7.131 0.794 30.132 14.902 2070.80 8.616 0.787 30.532 15.271 2697.~9 10.212 0.779 30.942 15.654 2124.67 11. 933 0.771 31. 362 16.053 2152.66 13.797 0.763 31.793 16.468 2181. 38 15.823 0.755 32.235 16.900 2210.87 18.036 0.748 32.688 17.350 2241.15 20.466 0.740 33.154 17.818 2272.25 23.153 0.732 33.631 18 .. 306 2304.20 26.146 0.724 34.122 18.815 2337.03 29.510 0.717 34.626 19.346 2370.77 33.335 0.709 35.144 19.899 2405.46 37.746 0.701 35.676 20.477 2441.14 42.924 0.693 36.224 21.081 2477.83 49.154 0.685 36.786 21.711 2515.59 56.908 0.678 37.365 22.371 2554.46 67.077 0.670 37.961 23.060 2594.47 75.230 0.666 38.302 23.460 2617.37 NODE 107.50: HGL = < 225.541>iEGL= < 237.659>iFLOWLINE= < 224.700> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 107.60 107.50 TO NODE 107.60 IS CODE = 5 ELEVATION = 225.00 (FLOW IS SUPERCRITICAL) 38 G:\Accts\04 I 093\FOXMLR09.DOC (. • ~. CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 35.05 24.00 0.00 225.00 1. 92 DOWNSTREAM 35.05 24.00 224.70 1. 92 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*V1*COS (DELTAl)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.19645 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.17620 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.18632 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/$EC) 29.078 27.942 0.000 0.000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.745 FEET ENTRANCE LOSSES 0.000 FEET (DY+HV1-HV2)+{ENTRANCE LOSSES) ( 1.281)+( 0.000) = 1.281 NODE 107.60: HGL = < 225.816>;EGL= < 238.946>;FLOWLINE= < 225.000> *******************************************************************~********** 107.60 TO NODE 105.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 105.00 ELEVATION = 241.38 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 35.05 CFS PIPE DIAMETER = 24.00 INCHES 0.01300 PIPE LENGTH = 53.52 FEET MANNING'S N NORMAL DEPTH(FT) = 0.72 CRITICAL DEPTH(FT) = 1. 92 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.92 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 921 11. 303 3.906 948.46 0.026 1. 873 11.459 3.913 949.87 0.101 1. 825 11. 651 3.934 953.90 0.223 1.777 11. 878 3.969 960.37 0.394 1.729 12.137 4.018 969.25 0.619 1. 681 12.429 4.081 980.58 0.902 1.633 12.755 4.161 994.44 1. 249 1. 586 13.118 4.259 1010.96 1.671 1. 538 13.518 4.377 1030.34 2.179 1.490 13.961 4.518 1052.77 2.787 1. 442 14.448 4.686 1078.53 3.512 1. 394 14.986 4.883 1107.93 4.378 1. 346 15.578 5.117 1141.34 5.413 1. 298 16.232 5.392 1179.19 6.656 1. 250 16.956 5.717 1222.01 8.156 1. 203 17.757 6.102 1270.41 9.981 1.155 18.647 6.557 1325.14 12.224 1.107 19.639 7.100 1387.06 15.017 1. 059 20.749 7.748 1457.25 39 G:\Accts\041093\FOXMLR09.DOC c. 18.558 1.011 21. 995 : 8.528 1537.01 23.159 0.963 23.401 9.472 1627.93 29.345 0.915 24.996 10.623 1731. 99 38.109 0.867 26.817 12.041 18.51.64 . 51. 698 0.820 28.909 13.805 19~0.01 53.520 0.816 29.069 13.946 20'00.65 NODE 105.00: HGL = < 243.301>;EGL= < 245.286>;FLOWLINE= <241,380> ****************************************************************************** 105.00 TO NODE 105.50 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 105.50 ELEVATION = 241.71 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DE'PTH (FT. ) (FT/SEC) UPSTREAM 19.90 24.00 45.00 241.71 1. 60 6.335 DOWNSTREAM 35.05 24.00 241.38 1. 92 11. 306 LATERAL #1 10.00 18.00 45.00 243.45 1. 22 5.809 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 5.15===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.·.00774 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02092 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01433 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.057 FEET ENTRANCE LOSSES (DY+HV1-HV2) + (ENTRANCE LOSSES) ( 1.354)+( 0.397) = 1.751 0.397 FEET NODE 105.50: HGL = < 246.413>;EGL= < 247.036>iFLOWLINE= < 241.710> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 105.51 105.50 TO NODE 105.51 IS CODE = i ELEVATION = 245.57 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.90 CFS PIPE DIAMETER = PIPE LENGTH = 25.64 FEET MANNING'S N 24.00 INCHES 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.65 CRITICAL DEPTH(FT) = 1. 60 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.15 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 0.440 0.926 1.463 FLOW DEPTH (FT) 1.149 1.129 1.109 1. 089 VELOCITY (FT/SEC) 10.647 10.878 11.121 11.375 40 SPECIFIC ENERGY (FT) 2.911 2.968 3.031 3.100 PRESSURE+ MOMENTUM (POUNDS) 468.37 474.99 482.07 489.66 G:\Accts\041093\FOXMLR09.DOC (. • 2.058 1. 069 11.641 3.175 497.77 2.716 1. 049 11. 921 3.257 506.44 3.446 1. 029 12.215 3.347 515.71 4.258 1. 009 12.523 3.446 525.60 5.162 0.989 12.848 3.554 536.17 6.171 0.969 13 .190 3.672 547.45 7.302 0.949 13.551 3.802 559.49 8.572 0.929 13.931 3.944 572.35 10.007 0.909 14.333 4.100 586.08 11. 634 0.888 14.758 4.272 600.76 13.493 0.868 15.207 4.462 616.44 15.630 0.848 15.684 4.670 633.21 18.109 0.828 16.190 4.901 651.16 21.016 0.808 16.727 5.156 670.39 24.474 0.788 17.299 5.43.8 690.99 25.640 0.782 17.465 5.522 696.99 ------------------------------------------------------------------~----------- HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD (FT) = 4.70 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 18.927 PRESSURE HEAD(FT) 4.703 2.000 VELOCITY (FT/SEC) 6.335 6.335 SPECIFIC ENERGY (FT) 5.326 2.623 PRESSURE+ MOMENTUM (POUNDS) 970.20 440.34 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 =======================================================================~====== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE:/, CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 18.927 2.000 6.333 2.623 440.34 19.028 1. 984 6.340 2.609 437.51 19.120 1. 968 6.354 2.596 434.94 19.206 1. 952 6.372 2.583 432.53 19.287 1. 936 6.394 2.572 430.26 19.364 1. 920 6.418 2.560 428.12 19.437 1.905 6.445 2.550 426.09 19.506 1. 889 6.475 2.540 424.18 19.572 1. 873 6.507 2.531 422.36 19.634 1. 857 6.541 2.522 420.66 19.694 1. 841 6.577 2.513 419.05 19.749 1. 825 6.616 2.505 417.54 19.802 1. 809 6.656 2.497 416.13 19.851 1.793 6.699 2.490 414.82 19.896 1.777 6.744 2.484 413.60 19.939 1. 761 6.790 2.478 412.49 19.977 1. 745 6.839 2.472 411.48 20.013 1. 730 6.890 2.467 410.56 20.044 1. 714 6.943 2.463 409.75 20.072 1. 698 6.998 2.459 409.04 20.096 1. 682 7.055 2.455 408.44 20.116 1. 666 7.115 2.452 407.94 20.132 1. 650 7.176 2.450 407.54 41 G:\Accts\041093\FOXMLR09.DOC c. • • 20.143 20.150 20.153 25.640 1. 634 1.618 1.602 1.602 7.240 7.306 7.374 7.374 2.449 2.448 2.447 2.447 407.26 407.09 407.03 407.03 ------------------------END OF HYDRAULIC JUMP ANALYSIS-----------------------.- I PRESSURE+MOMENTUM BALANCE OCCURS AT 12.85 FEET UPSTREAM OF NOPE. 105.50 I DOWNSTREAM DEPTH = 2.868 FEET, UPSTREAM CONJUGATE DEPTH = 0.876 FEET I NODE 105.51: HGL = < 246.719>;EGL= < 248.481>;FLOWLINE= < 245.570> ****************************************************************************** 105.51 TO NODE 105.52 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 105.52 ELEVATION = 245.90 (FLOW IS SUPERCRITIChL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 19.90 24.00 45.00 245.90 1. 60 DOWNSTREAM 19.90 24.00 245.57 1. 60 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vl*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05533 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01960 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03746 4.00 FEET VELOCITY (.FT /SEC) 15.713 10.650 0.000 0.000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.150 FEET ENTRANCE LOSSES 0.000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 2.100)+( 0.000) = 2.100 NODE 105.52: HGL = < 246.747>;EGL= < 250.581>;FLOWLINE= < 245.900> ****************************************************************************** 105.52 TO NODE 105.53 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 105.53 ELEVATION = 265.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 333.97 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.84 CRITICAL DEPTH (FT) = 1. 60 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.06 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM ( POUNDS) 0.000 1. 060 11.764 3.211 501.57 1.170 1. 051 11.888 3.247 505.43 2.416 1. 043 12.015 3.286 509.39 3.745 1. 034 12.144 3.325 513.48 5.166 1. 025 12.277 3.367 517.68 42 G:\Accts\041 093\FOXMLR09 .DOC ce • • 6.688 1. 016 12.412 3.410 522.01- 8.321 1.007 12.550 3.454 526.46 10.078 0.998 12.691 3.501 531. 05 11.973 0.990 12.836 3.550 535.77 14.025 0.981 12.984 3.600 540.62 16.254 0.972 13.135 3.653 545.62 18.684 0.963 13.290 3.707 550.76 21.346 0.954 13.448 3.764 556.05 24.278 0.945 13.611 3.824 561.50 27.529 0.937 13.777 3.886 567.11 31.159 0.928 13.947 3.950 572.88 35.250 0.919 14.121 4.017 578.82 39.911 0.910 14.299 4.087 584.94 45.297 0.901 14.482 4.160 591.23 51.633 0.892 14.670 4.236 597.72 59.269 0.884 14.862 4.316 604.39 68.792 0.875 15.059 4.398 611. 2-6 81. 299 0.866 15.262 4.485 618.34 99.262 0.857 15.469 4.575 625.63- 130.604 0.848 15.682 4.669 633.14 333.970 0.847 15.708 4.681 634.07 ------------------------------------------------------------------------------ NODE 105.53 : HGL = < 266.060>;EGL= < 268.211>;FLOWLINE= < 265.000> ****************************************************************************** 105.53 TO NODE 105.54 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 105.54 ELEVATION = 265.33 (FLOW IS SUPERCRITICAL) -------------------------------------------------------------'----------------- CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 FLOW (CFS) 19.90 19.90 0.00 0.00 DIAMETER (INCHES) 24.00 24.00 0.00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 265.33 265.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- CRITICAL DEPTH (FT.) 1. 60 1. 60 0.00 0.00 Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION S,LOPE = 0.02240 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02545 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02392 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 11.210 11.768 0.00-0 0.000 FRICTION LOSSES 0.096 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (0.173)+( 0.000) = 0.173 -----------------------------------------------------------------------~------ NODE 105.54: HGL = < 266.432>;EGL= < 268.384>;FLOWLINE= < 265.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 103.60 105.54 TO NODE 103.60 IS CODE = 1 ELEVATION = 266.75 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 19.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 47.18 FEET MANNING'S N 0.01300 43 G:\Accts\04109j\FOXMLR09.DOC C. • NORMAL DEPTH(FT) = 1. 01 CRITICAL DEPTH (FT) = 1. 60 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.60 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -----------------------------------------------------------------~------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 600 7.384 2.447 407.03 0.042 1. 576 7.490 2.448 407.19 0.161 1.553 7.602 2.451 407.61 0.362 1. 529 7.720 2.455 408.30 0.654 1.505 7.843 2.461 409.28 1. 047 1. 482 7.972 2.469 410.56 1. 551 1. 458 8.108 2.479 412.14 2.180 1. 434 8.250 2.492 414.04 2.949 1.411 8.400 2.507 416.28 3.877 1. 387 8.557 2.525 418.86 4.985 1. 363 8.721 2.545 421.81 6.300 1. 340 8.894 2.569 425.14 7.856 1. 316 9.075 2.596 428.87 9.693 1.292 9.266 2.626 433.02 11.864 1. 269 9.466 2.661 437.61 14.435 1. 245 9.677 2.700 442.66 17.495 1. 221 9.899 2.744 448.21 21.165 1.198 10.132 2.793 454.28 25.612 1.174 10.378 2.847 460.90 31.085 1.150 10.637 2.908 46$.10 37.969 1.127 10.911 2.976 475.92 46. 907 1.103 11.199 3.052 484.41 47.180 1.102 11.206 3.054 484.60 ---------------------------------------------------------------------~-------- NODE 103.60 : HGL = < 268.350>;EGL= < 269.197>;FLOWLINE= < 266.750> ****************************************************************************** 103.60 TO NODE 103.65 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 103.65 ELEVATION = 267.12 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 10.00 18.00 90.00 267.12 DOWNSTREAM 19.90 24.00 266.75 LATERAL #1 9.91 24.00 0.00 267.12 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES CRITICAL DEPTH (FT.) 1.22 1. 60 1.13 0.00 UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00906 DOWNSTREAM: MANNING'S N = 0.01300; AVERAGED FRICTION SLOPE IN JUNCTION JUNCTION LENGTH 4.00 FEET FRICTION SLOPE = 0.00808 ASSUMED AS 0.00857 VELOCITY (FT/SEC) 5.659 7.376 3.154 0.000 FRICTION LOSSES 0.034 FEET ENTRANCE LOSSES 0.000 FE:ET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) 44 G:\Accts\041 093\FOXMLR09 .DOC c. • • JUNCTION LOSSES = ( 1.294)+( 0.000) = 1. 294 ---------------------------------------------------------------------------~-- NODE 103.65: HGL = < 269.994>;EGL= < 270. 491>;FLOWLINE= < 267.1'20> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 103.00 103.65 TO NODE 103.00 IS CODE = 1 ELEVATION = 270.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 10.00 CFS PIPE DIAMETER = PIPE LENGTH = 100.52 FEET MANNING'S N 18.00 INCHES 0.01300 -~-----------------------------------------------------------------------~---- HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.80 CRITICAL DEPTH(FT) = 1. 22 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.22 ===========================================================================~== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 219 6.501 1. 875 179.35 0.026 1. 202 6.585 1. 876 179.40 0.109 1.186 6.673 1. 877 179.54 0.252 1.169 6.765 1. 880 179.79 0.461 1.153 6.862 1. 884 180.15 0.744 1.136 6.963 1. 889 180.61 1.107 1.119 7.068 1.896 181.19 1. 561 1.103 7.179 1. 904 181.'88 2.115 1. 086 7.294 1. 913 182.69 2.783 1. 070 7.415 1. 924 183.63 3.581 1. 053 7.542 1. 937 184.70 4.526 1. 037 7.674 1.952 185 .. 90 5.643 1.020 7.812 1. 968 187.25 6.959 1. 003 7.957 1. 987 188.74 8.512 0.987 8.108 2.008 190.40 10.348 0.970 8.267 2.032 192.,21 12.529 0.954 8.433 2.059 194.19 15.140 0.937 8.607 2.088 196.36 18.297 0.921 8.790 2.121 198.71 22.174 0.904 8.981 2.157 201.26 27.040 0.888 9.182 2.198 204.02 33.345 0.871 9.394 2.242 207.00 41.931 0.854 9.615 2.291 210.21 54.698 0.838 9.849 2.345 213.67 77.731 0.821 10.095 2.405 217.40 100.520 0.821 10.098 2.405 217.45 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD (FT) = 2.87 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) 45 SPECIFIC ENERGY (FT) PRESSURE+ MOMENTUM (POUNDS) G:\Accts\041093\FOXMLR09.DOC • • 0.000 70.131 2.874 1. 500 5.659 5.659 3.371 1. 997 343.85 192.36 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 =============================================================================p GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 70.131 1. 500 5.657 1. 997 192.36 70.642 1. 489 5.663 1. 987 191. 25 71. 096 1. 478 5.675 1. 978 190.23 71. 518 1. 466 5.689 1.969 189.28 71.913 1. 455 5.707 1. 961 188.39 72.285 1. 444 5.727 1.953 187.55 72.637 1. 433 5.749 1. 946 186.75 72.971 1. 421 5.773 1. 939 186.00 73.286 1. 410 5.799 1.933 185.29 73.585 1. 399 5.827 1. 926 184.62 73.867 1. 388 5.857 1. 920 184.00 74.133 1. 376 5.888 1.915 183.41 74.383 1. 365 5.921 1. 910 182.86 74.617 1. 354 5.956 1. 905 1.82.35 74.835 1. 343 5.992 1. 900 181.88 75.036 1. 331 6.030 1. 896 181.45 75.222 1. 320 6.070 1. 892 181.06 75.390 1. 309 6.111 1. 889 180.71 75.541 1. 298 6.154 1. 886 180.39 75.675 1. 286 6.198 1. 883 180.12 75.790 1. 275 6.244 1. 881 179.89 75.886 1. 264 6.292 1. 879 179.69 75.963 1.253 6.342 1. 877 179.54 76.019 1. 241 6.393 1. 876 179.4:4 76.053 1. 230 6.446 1. 876 179.37 76.065 1. 219 6.501 1. 875 179.35 100.520 1. 219 6.501 1. 875 179.35 ------------------------END OF HYDRAULIC JUMP ANALYSIS--------------------'---- I PRESSURE+MOMENTUM BALANCE OCCURS AT 62.56 FEET UPSTREAM OF NODE 103.65 I DOWNSTREAM DEPTH = 1.648 FEET, UPSTREAM CONJUGATE DEPTH = 0.862 FEET I NODE 103.00: HGL = < 271.219>iEGL= < 271.875>iFLOWLINE= < 270.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.00 FLOWLINE ELEVATION = 270.00 ASSUMED UPSTREAM CONTROL HGL = 271.22 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 46 G:\Accts\041 093\FOXMLR09 .DOC ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * * HGL -NODE 103.6 TO 103.5 * * G:\ACCTS\041093\FOXMLR10 * ************************************************************************** FILE NAME: FOXMLRI0.DAT TIME/DATE OF STUDY: 13:30 05/14/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates UPSTREAM RUN nodal point data used.) DOWNSTREAM RUN NODE NUMBER 103.60- } 103.50- MODEL PRESSURE PRESSURE+ FLOW P~ESSURE+ PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH (fT) MOMENTUM. (POUNDS) 1.60 Dc 194.38 0.67* 227.46 FRICTION 1.13*Dc 161.29 1.13*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM.THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. :1.61.29 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.60 FLOWLINE ELEVATION = 267.l2 PIPE FLOW = 19.90 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 268.350 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.23 FT.) IS LESS THAN CRITICAL DEPTH( 1.60 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 103.60 : HGL = < 267.786>;EGL= < 275.126>;FLOWLINE= < 267.120> ********************************************************~********************* FLOW PROCESS FROM NODE UPSTREAM NODE 103.50 103.60 TO NODE 103.50 IS CODE = 1 ELEVATION = 269.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 10.00 CFS PIPE DIAMETER = 24.00 INCHES 47 G:\Accis\041093\FOXMLRIO.DOC c. PIPE LENGTH = 40.37 FEET MANNING'S N 0.01300 ---------------------------------------------------------------~-------------- NORMAL 'DEPTH (FT) = 0.61 CRITICAL DEPTH(FT) = 1.13 ========================================================================~===== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.13 ============================================================================~= GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1.131 5.454 1. 594 161.29 0.018 1.111 5.579 1. 594 161.37 0.075 1. 090 5.711 1. 597 161. 63 0.175 1. 069 5.848 1. 601 162.07 0.324 1. 049 5.993 1. 607 162.69 0.527 1. 028 6.146 1.615 163.52 0.790 1.007 6.306 1.625 164.55 1.123 0.987 6.475 1. 638 165.81 1.535 0.966 6.653 1. 654 167.30 2.037 0.945 6.841 1.672 16'9.04 2.642 0.924 7.040 1.695 171. 03 3.368 0.904 7.251 1. 721 173.31 4.235 0.883 7.474 1. 751 175.88 5.269 0.862 7.711 1. 786 178.76 6.502 0.842 7.962 1. 827 1'81. 99 7.977 0.821 8.229 1. 873 185.58 9.748 0.800 8.514 1. 927 189.55 • 11. 892 0.780 8.818 1. 988 193.95 14.515 0.759 9.143 2.058 198.81 17.774 0.738 9.490 2.138 204.17 21.912 0.718 9.863 2.229 210.0q 27.335 0.697 10.264 2.334 216.54 34.810 0.676 10.695 2.454 223.68 40.370 0.666 10.921 2.519 227.46 ------------------------------------------------------------------------------ NODE 103.50 : HGL = < 270.131>;EGL= < 270. 594>; FLOWLINE= < 269.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.50 FLOWLINE ELEVATION = 269.00 ASSUMED UPSTREAM CONTROL HGL = 270.13 FOR DOWNSTREAM RUN ANALYSIS =============================================================~================ END OF GRADUALLY VARIED FLOW ANALYSIS • 48 G:\Accts\041 093\FOXMLRl O.DOC c. (. ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 105.5 TO 102 * G:\ACCTS\041093\FXMLR11A * * * ************************************************************************** FILE NAME: FXMLR11A.DAT TIME/DATE OF STUDY: 08:58 12/07/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: n*n indicates nodal point data used.)' UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 105.50-2.00* 257.72 1.13 161. 29 } FRICTION 102.10-1.90* 238.76 1. 04 162.88 } JUNCTION 102.20-1.65* 200.92 0.82 186.33 } FRICTION } HYDRAULIC JUMP 102.30-1. 36 170.13 0.49* 333.51 } JUNCTION 102.40-1.13 Dc 161.29 0.47* 349.20 } FRICTION 102.50-1.13*Dc 161. 29 1.13*Dc 161.29 } JUNCTION 102.60-1. 46 119.61 0.32* 149.31 } FRICTION 102.70-0.79 Dc 65.74 0.34* 137.81 } JUNCTION 102.80-0.79 Dc 65.74 0.33* 144.17 } FRICTION 102.00-0.79*Dc 65.74 0.79*Dc 65.74 ------------------------------------------------------------------~---~------- MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 -----------------------------------------------------------------------~-----~- NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** 49 G:\Accts\04 I 093\FXMLRI I A.doc c. c. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 105.50 FLOWLINE ELEVATION = 241.71 PIPE FLOW = 10.00 CFS ASSUMED DOWNSTREAM CONTROL HGL = PIPE DIAMETER = 24.00 INCHES 243.710 FEET ---------------------------------------------------------------~---~--~------~ NODE 105.50: HGL = < 243.710>iEGL= < 243.867>iFLOWLINE= < 241.710> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 102.10 105.50 TO NODE 102.10 IS CODE = 1 ELEVATION = 241.86 (FLOW SEALS IN REACH) --------------------------------------------------------------------~------~-- CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 10.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 29.89 FEET MANNING'S N 0.01300 ---------------------------------------------------------------------------~-- NORMAL DEPTH(FT} = 1.14 CRITICAL DEPTH(FT} = 1.13 ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD (FT) = 2.00 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 2.000 3.182 2.157 257.72 10.369 1. 966 3.194 2.124 251.26 20.117 1. 932 3.216 2.092 245.02 29.557 1. 897 3.245 2.061 238.97 29.890 1. 896 3.246 2.060 238.76 NODE 102.10: HGL = < 243.756>iEGL= < 243.920>iFLOWLINE= < 241.860> ****************************************************************************** 102.20 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 102.20 102.10 TO NODE ELEVATION = 242.19 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.} (FT/SEC) UPSTREAM 10.00 24.00 45.00 242.19 1.13 DOWNSTREAM 10.00 24.00 241.86 1.13 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300i FRICTION SLOPE = 0.00193 DOWNSTREAM: MANNING'S N = 0.01300i FRICTION SLOPE = 0.00169 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00181 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.007 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES (TRANSITION LOSS}+(FRICTION LOSS}+(ENTRANCE LOSSES) JUNCTION LOSSES (0.117)+( 0.007}+( O.OOO} = 0.124 3.602 3.247 0.000 0.000 NODE 102.20: HGL = < 243.842>iEGL= < 244.044>iFLOWLINE= < 242.190> ****************************************************************************** FLOW PROCESS FROM NODE 102.20 TO NODE 102.30 IS CODE = 1 50 G:\Accts\041093\FXMLRIIA.doc c. UPSTREAM NODE 102.30 ELEVATION = 242.56 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 10.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 74.40 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.15 CRITICAL DEPTH(FT) = 1.13 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.49 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------~--------~-------------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.488 16.822 4.885 333.51 5.763 0.514 15.648 4.319 311. 74 11.551 0.540 14.611 3.857 292.7l 17 .359 0.566 13.691 3.478 276.00 23.183 0.591 12.869 3.164 261. 28 29.018 0.617 12.131 2.904 248.26 34.862 0.643 11.466 2.686 236.74 40.711 0.668 10.865 2.503 226.51 46.561 0.694 10.318 2.348 217.43 52.409 0.720 9.820 2.218 209.36 58.253 0.746 9.364 2.108 202.20 c. 64.088 0.771 8.945 2.015 195.84 69.912 0.797 8.561 1. 936 190.22 74.400 0.817 8.284 1. 883 186.33·, HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.65 ===============================================================p===~========== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1.652 3.601 1. 854 '200.92 5.163 1.632 3.642 1. 838 198.23 10.315 1. 612 3.684 1. 823 195.62 15.459 1. 592 3.729 1. 808 193.08 20.597 1.572 3.775 1. 793 190.62 25.730 1. 551 3.823 1. 779 188.24 30.861 1. 531 3.873 1.764 185.94 35.992 1.511 3.926 1. 751 183.73 41.123 1. 491 3.980 1. 737 181. 60 46.259 1.471 4.037 1.724 179.56 51.402 1. 450 4.097 1. 711 177.61 56.553 1. 430 4.158 1. 699 175.76 61. 717 1. 410 4.223 1. 687 174.00 66.897 1. 390 4.290 1. 676 172.34 72.098 1. 370 4.360 1. 665 170.78 74.400 1. 361 4.391 1. 660 170.13 (. ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 10.16 FEET UPSTREAM OF NODE 102.20 I 51 G:\Accts\04 J093\FXMLRII A.doc c. (,. DOWNSTREAM DEPTH = 1.613 FEET, UPSTREAM CONJUGATE DEPTH = 0.772 FEET I NODE 102.30: HGL = < 243.048>;EGL= < 247. 445>;FLOWLINE= < 242.560> ****************************************************************************** 102.30 TO NODE 102.40 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 102.40 ELEVATION = 242.89 (FLOW IS SUPERCRITICALl . CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER (CFS) (INCHES) UPSTREAM 10.00 24.00 10.00 0.00 24.00 0.00 ANGLE (DEGREES) 0.00 0.00 DOWNSTREAM LATERAL #1 LATERAL #2 0.00 0.00 0.00 FLOWLINE ELEVATION 242.89 242.56 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH (FT.) 1.13 1.l3 0.00 0.00 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.09384 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.11425 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.10405 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 17.668 16'.827 0.000 O. 000, FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.416 FEET ENTRANCE LOSSES = 0.000 FEET (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) ( 0.348)+( 0.416)+( 0.000) = 0.764 NODE 102.40: HGL = < 243.362>;EGL= < 248.209>;FLOWLINE= < 242.890> ****************************************************************************** 102.40 TO NODE 102.50 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 102.50 ELEVATION = 258.63 (FLOW IS SUPERCRITICAL) ----------------------------------------------------------------~-------~----- CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 10.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 133.94 FEET MANNING'S N 0.01100 NORMAL DEPTH (FT) = 0.45 CRITICAL DEPTH(FT) = 1.l3 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.13 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSUREt CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1.l31 5.454 1. 594 161. 29 0.012 1.104 5.621 1. 595 161.43 0.049 1.077 5.799 1. 599 161.89 0.114 1. 049 5.989 1.607 162.67 0.212 1.022 6.193 1. 618 163.81 0.348 0.994 6.410 1. 633 165.31 0.527 0.967 6.644 1. 653 167.22 0.756 0.940 6.895 1. 678 169.56 1. 043 0.912 7.165 1.710 172.36 1. 398 0.885 7.456 1. 749 175.67 1. 832 0.857 7.772 1. 796 179.53 2.362 0.830 8.113 1. 853 184.00 3.006 0.802 8.484 1. 92i 189.13 52 G:\Accts\041093\FXMLRIIA.doc c. C. (,. 3.788 0.775 8.888 2.003 194.99 4.738 0.748 9.330 2.100 201.68 5.898 0.720 9.814 2.217 209.27 7.321 0.693 10.346 2.356 217.89 9.083 0.665 10.934 2.523 227.68 11.289 0.638 11. 585 2.723 238.78 14.097 0.611 12.310 2.965 251. 40 17.755 0.583 13 .120 3.258 265.76 22.678 0.556 14.032 3.615 282.17 29.654 0.528 15.062 4.053 300.96 40.454 0.501 16.234 4.596 322.59 60.776 0.474 17.578 5.274 347.63 133.940 0.472 17.662 5.319 349.20 -----------------------------------------------------------------------------~ NODE 102.50 : HGL = < 259.761>;EGL= < 260.224>;FLOWLINE= < 258.630> ****************************************************************************** FLOW PROCESS FROM NODE 102.50 TO NODE 102.60 IS CODE = 5 UPSTREAM NODE 102.60 ELEVATION = 258.96 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT. ) UPSTREAM 5.00 24.00 0.00 258.96 0.79 DOWNSTREAM 10.00 24.00 258.63 1.13 LATERAL #1 5.00 24.00 90.00 258.96 0.79 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION' UPSTREAM: MANNING'S N = 0.01100; DOWNSTREAM: MANNING'S N = 0.01100; AVERAGED FRICTION SLOPE IN JUNCTION JUNCTION LENGTH 4.00 FEET FRICTION SLOPE = 0.10767 FRICTION SLOPE = 0.00373 ASSUMED AS 0.05570 VELOCITY (FT/SEC) 15.130 5.456 4.351 0.000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.223 FEET ENTRANCE LOSSES = 0.000 FEET (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) ( 2.392)+( 0.223)+( 0.000) = 2.615 NODE 102.60: HGL = < 259.284>;EGL= < 262.839>;FLOWLINE= < 258.960> ****************************************************************************** 102.60 TO NODE 102.70 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 102.70 ELEVATION = 262.38 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 5.00 CFS PIPE DIAMETER = 24.00 INCHES 0.01100 PIPE LENGTH = 29.32 FEET MANNING'S N NORMAL DEPTH(FT) = 0.32 CRITICAL DEPTH (FT) = 0.79 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.34 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) FLOW DEPTH (FT) VELOCITY (FT/SEC) 53 SPECIFIC ENERGY (FT) PRESSURE+ MOMENTUM (POUNDS) G:\Accts\041093\PXMLRIIA.doc c. c. 0..0.0.0. 0..344 13.894 3.343 137.81 0..798 0..343 13.955 3.368 138.37 1. 634 0..342 14.0.16 3.394 138.94 2.512 0..341 14.0.77 3.420. 139.51 3.435 0..340. 14.139 3.446 140..0.9 4.40.8 0..339 14.20.2 3.472 140..67 5.436 0..338 14.265 3.499 141.26 6.524 0..336 14.328 3.526 141. 85 7.680. 0..335 14.392 3.554 142.45 8.913 0..334 14.456 3.581 143.0.5 10..231 0..333 14.521 3.610. 143.65 11.647 0..332 14.586 3.638 144.27 13.175 0..331 14.652 3.667 144.88 14.834 0..330. 14.719 3.696 145.50. 16.646 0..329 14.786 3.726 146.13 18.640. 0..328 14.853 3.756 146.76 20..856 0..327 14.921 3.786 147.40. 23.344 0..326 14.989 3.817 148.0.4 26.179 0..325 15.0.58 3.848 148.69 29.320. 0..324 15.125 3.879 149.3i NODE 10.2.70.: HGL = < 262.724>;EGL= < 265.723>;FLOWLINE= < 262.380.> ****************************************************************************** 10.2.70. TO NODE 10.2.80. IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 10.2.80. ELEVATION = 262.71 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 5.0.0. 24.0.0. 0..0.0. 262.71 0..79 DOWNSTREAM 5.0.0. 24.0.0. 262.38 0..79 LATERAL #1 0..0.0. 0..0.0. 0..0.0. 0..0.0. 0..0.0. LATERAL #2 0..0.0. 0..0.0. 0..0.0. 0..0.0. 0..0.0. Q5 D.DD===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0..0.110.0.; FRICTION SLOPE = 0..0.9693 DOWNSTREAM: MANNING'S N = 0..0.110.0.; FRICTION SLOPE = 0..0.8459 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0..0.90.76 JUNCTION LENGTH 4.0.0. FEET VELOCITY (FT/SEC) 14.581 13.899 0..0.0.0. 0..0.0.0. FRICTION LOSSES 0..363 FEET ENTRANCE LOSSES = 0..0.0.0. FEET JUNCTION LOSSES JUNCTION LOSSES (TRANSITION LOSS) + (FRICTION LOSS)+(ENTRANCE LOSSES) ( 0..257)+( 0..363)+( 0..0.0.0.) = 0..620. NODE 10.2.80.: HGL = < 263.D42>;EGL= < 266.344>;FLOWLINE= < 262.710.> ****************************************************************************** 10.2.80. TO NODE 10.2.0.0. IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 10.2.0.0. ELEVATION = 272.0.0. (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 5.0.0. CFS PIPE DIAMETER = 24.0.0. INCHES PIPE LENGTH = 76.14 FEET MANNING'S N 0..0.110.0. NORMAL DEPTH (FT) = 0..31 CRITICAL DEPTH(FT) = 0..79 ============================================================================== 54 G:\Accts\041093\FXMLRIIA.i!oc c. UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.79 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.788 4.350 1. 082 65.74 0.008 0.769 4.494 1. 082 65.81 0.032 0.750 4.648 1. 085 66.00 0.075 0.731 4.811 1. 090 66.34 0.140 0.712 4.986 1. 098 '66.82 0.230 0.693 5.172 1.109 67.47 0.348 0.674 5.372 1.122 68.28 0.499 0.655 5.586 1.140 69.28 0.689 0.636 5.816 1.162 7'0.47 0.924 0.617 6.064 1.188 71. 88 1.211 0.598 6.331 1.221 73.52 1. 561 0.579 6.620 1. 260 75.41 1. 987 0.560 6.934 1. 308 77.58 2.503 0.542 7.275 1. 364 80.06 3.131 0.523 7.648 1. 431 82.88 3.897 0.504 8.055 1. 512 86.07 4.836 0.485 8.503 1. 608 89.70 5.998 0.466 8.996 1.723 93.80 7.452 0.447 9.541 1. 861 98.45 9.301 0.428 10.147 2.028 103.73 11.706 0.409 10.824 2.229 109.72 • 14.940 0.390 11.583 2.475 116.55 19.516 0.371 12.440 2.776 124.36 26.590 0.352 13.413 3.147 133.33 39.876 0.333 14.525 3.611 143.69 76.140 0.332 14.576 3.634 144.17 ------------------------------------------------------------------------~~---- NODE 102.00 : HGL = < 272 . 788> i EGL= < 273.082>iFLOWLINE= < 272.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102.00 FLOWLINE ELEVATION = 272.00 ASSUMED UPSTREAM CONTROL HGL = 272.79 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS • 55 G:\Accts\041 093\FXMLRII A.doc • ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. B.O Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 9200B ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 105.5 TO 106 * G:\ACCTS\041093\FOXMLR12 ************************************************************************** FILE NAME: FOXMLR12.DAT TIME/DATE OF STUDY: 13:54 09/0B/2004 * * * ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: u*u indicates nodal UPSTREAM RUN point data used.) DOWNSTREAM RUN NODE NUMBER 105.50- } 106.00- MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH(FT) MOMENTUM (POUNDS) 4.25* 417.39 0.46 125.22 FRICTION } HYDRAULIC JUMP 0.B9*Dc 77.06 0.B9*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASEP ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 77.06 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 105.50 PIPE FLOW = 5.36 CFS ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE ELEVATION = 242.47 PIPE DIAMETER = 1B.00 INCHES 246.720 FEET NODE 105.50 : HGL = < 246.720>;EGL= < 246.863>;FLOWLINE= < 242.470> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 106.00 105.50 TO NODE 106.00 IS CODE = 1 ELEVATION = 246.18 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 5.36 CFS PIPE DIAMETER = PIPE LENGTH = 52.68 FEET MANNING'S N HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS 56 18.00 INCHES 0.01300 G:\Accts\041093\FOXMLRI2.DOC C. l .• NORMAL DEPTH(FT) = 0.45 CRITICAL DEPTH(FT) = 0.89 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.89 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.892 4.890 1. 263 77.06 0.011 0.874 5.011 1. 264 77.10 0.046 0.856 5.138 1. 266 77.25 0.107 0.838 5.272 1. 270 77.50 0.198 0.820 5.414 1. 276 77.86 0.322 0.802 5.564 1. 283 78.33 0.484 0.785 5.723 1. 293 78.92 0.690 0.767 5.892 1. 306 79.64 0.945 0.749 6.071 1. 321 80.50 1. 257 0.731 6.260 1. 340 81.51 1. 634 0.713 6.463 1. 362 82.67 2.089 0.695 6.678 1. 388 84.00 2.633 0.677 6.908 1. 419 85.50 3.286 0.660 7.153 1. 455 87.21 4.067 0.642 7.416 1. 496 89.12 5.005 0.624 7.698 1. 545 91. 25 6.138 0.606 8.001 1. 601 93.64 7.516 0.588 8.327 1. 666 96.29 9.210 0.570 8.679 1. 741 99.24 11. 327 0.553 9.059 1. 828 102.52 14.028 0.535 9.472 1. 929 106.16 17.590 0.517 9.920 2.046 110.20 22.527 0.499 10.408 2.182 114.68 30.001 0.481 10.943 2.342 119.67 43.737 0.463 11. 528 2.528 125.22 52.680 0.463 11.528 2.528 125.22 ---------------------------------------------------------------~--~---~------- HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ===============================================================~============== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD (FT) = 4.25 ========================================================================~===== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 40.545 PRESSURE HEAD (FT) 4.250 1.500 VELOCITY (FT/SEC) 3.030 3.030 SPECIFIC ENERGY (FT) 4.393 1. 643 PRESSURE+ MOMENTUM (POUNDS) 417.39 114.15 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 40.545 40.889 41.219 41. 540 41.855 FLOW DEPTH (FT) 1.500 1. 476 1. 451 1. 427 1. 403 VELOCITY (FT/SEC) 3.029 3.040 3.059 3.085 3.115 57 SPECIFIC ENERGY (FT) 1. 643 1. 619 1. 597 1. 575 1. 553 PRESSURE+ MOMENTUM (POUNDS) 114.15 111.58 109.12 10'6.73 104.42 G:\Accts\041093\FOXMLR12.DOC c. 42.162 42.463 42.757 43.044 43.324 43.597 43.862 44.118 44.366 44.603 44.830 45.045 45.247 45.434 45.605 45.757 45.890 45.999 46.082 46.135 46.154 52.680 1.378 1. 354 1.330 1.305 1. 281 1. 257 1. 232 1. 208 1.184 1.159 1.135 1.111 1. 086 1. 062 1.038 1.013 0.989 0.965 0.940 0.916 0.892 0.892 3.150 3.189 3.232 3.279 3.331 3.386 3.446 3.510 3.579 3.653 3.732 3.816 3.906 4.002 4.105 4.215 4.332 4.457 4.592 4.736 4.890 4.890 1.532 1. 512 1. 492 1.472 1. 453 1. 435 1.417 1. 399' 1. 383 1. 367 1. 351 1. 337 1. 323 1.311 1. 299 1. 289 1.280 1. 273 1. 268 1. 264 1. 263 1. 263 102.19 100.03 97.94 95.94 94.01 92.17 90.41 88.74 87.16 85.67 84.29 83.01 81. 84 80.78 79.84 79.02 78.34 77.79 77.39 77.14 77.06 77.06 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 42.33 FEET UPSTREAM OF NODE 105.50 I DOWNSTREAM DEPTH = 1.365 FEET, UPSTREAM CONJUGATE DEPTH = 0.561 FEET I NODE 106.00: HGL = < 247.072>;EGL= < 247.443>;FLOWLINE= < 246.180> ************************************************************************~***** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 106.00 FLOWLINE ELEVATION = 246.18 ASSUMED UPSTREAM CONTROL HGL = 247.07 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 58 G:\Accts\041093\FOXMLR12,DOC ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 215.5 TO 206 * G:\ACCTS\041093\FOXMLR2B * * * ************************************************************************** FILE NAME: FOXMLR2A.DAT TIME/DATE OF STUDY: 09:13 12/06/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: ~*~ indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE NUMBER 215.50- } 208.00- } 208.50- } 207.00- } 207.50- } 207.60- } 207.70- } 207.71- } 208.00- } 209.00- } 206.00- MODEL PROCESS PRESSURE HEAD (FT) 3.73 PRESSURE+ MOMENTUM (POUNDS) 1004.69 FLOW DEPTH (FT) 0.93* PRESSURE+ MOMENTUM (POUNDS) 1071.12 FRICTION 1.82 Dc 653.63 1. 47* JUNCTION 2.91 672.60 0.84* FRICTION 1.67*Dc 468.87 1.67*Dc JUNCTION 2.38 568.29 0.79* FRICTION 1.67 Dc 468.87 0.63* JUNCTION 1.68 Dc 468.87 0.54* FRICTION 1.67 Dc 468.87 0.92* ANGLE-POINT 1.67 Dc 468.87 0.92* JUNCTION 1.68 Dc 468.87 0.91* FRICTION 1.67*Dc 468.87 1.67*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 697.69 778.26 468.87 839.78 1119.71 1370.60 702.04 702.04 704.79 468.87 59 G:\Accts\041093\FOXMLR2B.doc • G, ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 215.50 PIPE FLOW = 27.61 CFS ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE ELEVATION = 178.70 PIPE DIAMETER = 18.00 INCHES 182.426 FEET NODE 215.50: HGL = < 179.627>;EGL= < 188. 623>;FLOWLINE= < 178.100> ****************************************************************************** 215.50 TO NODE 208.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 208.00 ELEVATION = 203.77 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 27.61 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 299.95 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.91 CRITICAL DEPTH(FT) = 1. 82 ===========================================================~================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.47 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 472 11.139 3.400 697.69 0.642 1. 449 11. 322 3.441 704.04 1.355 1. 427 11. 514 3.487 7l0.90 2.149 1. 404 11.715 3.536 718.30 3.030 1. 381 11.925 3.591 726.26 4.009 1. 359 12.146 3.651 734.82 5.098 1. 336 12.376 3.7l6 744.00 6.308 1. 314 12.618 3.788 753.83 7.658 1. 291 12.872 3.865 764.34 9.163 1. 268 13.137 3.950 775.57 10.849 1. 246 13.416 4.043 787.56 12.740 1.223 13.709 4.143 800.3'6 14.872 1. 201 14.016 4.253 814.01 17.285 1.178 14.340 4.373 828.56 20.031 1.155 14.679 4.504 844.06 23.180 1.133 15.037 4.646 860.58 26.820 1.110 15.413 4.802 878.18 31.073 1. 088 15.810 4.972 896.94 36.110 1. 065 16.229 5.158 916.93 42.181 1. 042 16.672 5.361 938.23 49.676 1. 020 17.139 5.584 960.96 59.244 0.997 17.634 5.829 98.5.20 72.111 0.975 18.158 6.098 1011.08 91. 023 0.952 18.714 6.394 1038.72 124.799 0.929 19.304 6.720 1068.28 299.950 0.927 19.361 6.752 1071.12 --------------------------------------------------------------------~--------- NODE 208.00 : HGL = < 205.242>;EGL= < 207. 170>;FLOWLINE= < 203.770> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 208.50 208.00 TO NODE 208.50 IS CODE = 5 ELEVATION = 204.00 (FLOW IS SUPERCRITICAL) 60 G:\Accts\041093\FOXMLR2B.doc c. (. CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 22.00 24.00 0.00 204.00 1. 67 DOWNSTREAM 27.61 24.00 203.77 1. 82 LATERAL jj:l 0.00 0.00 0.00 0.00 0.00 LATERAL *2 0.00 0.00 0.00 0 .. 00 0.00 Q5 5.61===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07021 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01874 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04448 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 17.612 11.143 0.000 0.000 FRICTION LOSSES 0.178 FEET ENTRANCE LOSSES 0.386 FEET JUNCTION LOSSES JUNCTION LOSSES (DY+HVI-HV2)+(ENTRANCE LOSSES) ( 2.100)+( 0.386) = 2.485 NODE 208.50: HGL = < 204.838>;EGL= < 209. 655>;FLOWLINE= < 204.00D> ****************************************************************************** 208.50 TO NODE 207.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 207.00 ELEVATION = 224.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 22.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 251.86 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.81 CRITICAL DEPTH (FT) = 1. 67 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.67 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ---------------------------------------------------------------------~--~-~--- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 673 7.837 2.627 468.87 0.027 1. 638 7.985 2.629 469.21 0.107 1. 603 8.146 2.635 470.16. 0.243 1. 569 8.319 2.644 471.76 0.442 1.534 8.505 2.658 474.0.3 0.711 1. 500 8.704 2.677 477 . 02 1. 059 1.465 8.918 2.701 480.75 1.497 1. 430 9.148 2.731 485.29 2.036 1.396 9.394 2.767 490.67 2.692 1. 361 9.659 2.811 496.96 3.484 1. 327 9.943 2.862 504.21 4.432 1. 292 10.248 2.924 512.51 5.566 1. 257 10.576 2.995 521.94 6.921 1. 223 10.929 3.078 532.59 8.540 1.188 11.310 3.175 .544.55 10.482 1.153 11. 721 3.288 557.96 12.824 1.119 12.166 3.418 572.95 15.671 1. 084 12.648 3.570 589.67 19.173 1. 050 13.171 3.745 608.30 61 G:\Accts\041093\FOXMLR2B.doc c. c. 23.548 1. 015 13.740 3.948 629.06 29.138 0.980 14.362 4.185 652.17 36.517 0.946 15.041 4.461 677.92 46.762 0.911 15.787 4.783 706.63 62.300 0.876 16.608 5.162 738,70 90.926 0.842 17.514 5.608 774.57 251.860 0.838 17.607 5.655 778.2.6 NODE 207.00: HGL = < 225.973>;EGL= < 226. 927>;FLOWLINE= < 224.300> ****************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 207.50 IS CODE = 5 UPSTREAM NODE 207.50 ELEVATION = 224.63 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 22.00 24.00 60.00 224.63 1. 67 DOWNSTREAM 22.00 24.00 224.30 1. 67 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*V1*COS (DELTAl)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/( (Al+A2) *16. 1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08821 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00912 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04866 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 19.145 7.830 0.000 0.000 FRICTION LOSSES 0.195 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HVI-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (4.182)+( 0.000) = 4.182 NODE 207.50: HGL = < 225.418>iEGL= < 231.109>iFLOWLINE= < 224.630> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 207.60 207.50 TO NODE 207.60 IS CODE = 1 ELEVATION = 226.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 22.00 CFS PIPE DIAMETER = PIPE LENGTH = 48.73 FEET MANNING'S N 24.00 INCHES 0.01300 NORMAL DEPTH(FT) = 1. 00 CRITICAL DEPTH (FT) = 1. 67 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.63 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 3.986 8.051 12.201 FLOW DEPTH (FT) 0.630 0.645 0.659 0.674 VELOCITY (FT/SEC) 25.932 25.125 24.361 23.639 62 SPECIFIC ENERGY (FT) 11.079 10.453 9.880 9.356 PRESSURE+ MOMENTUM (POUNDS) 1119.71 1086.05 1054.30 1024.33 G:\Accts\041093\FOXMLR2B.doc c. (. 16.447 20.797 25.266 29.866 34.614 39.531 44.639 48.730 0.689 0.703 0.718 0.732 0.747 0.762 0.776 0.788 22.955 22.306 21.690 21.104 20.547 20.017 19.511 19.139 8.875 8.434 8.027 7.653 7.307 6.987 6.691 6.479 996.01 96'9.23 943.86 919.83 897.04 875.41 854.87 839.78 ~-----------------------------------------------------------------~----------- NODE 207.60: HGL = < 227. 130>iEGL= < 237.579>iFLOWLINE= < 226.500> ****************************************************************************** 207.60 TO NODE 207.70 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 207.70 ELEVATION = 226.83 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 22.00 24.00 30.00 226.83 1. 67 DOWNSTREAM 22.00 24.00 226.50 1. 67 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.36480 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.20428 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.28454 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 31. 923 25.940 0.000 0.000 FRICTION LOSSES 1.138 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES (5.618)+( 0.000) = 5.618 NODE 207.70: HGL = < 227.373>iEGL= < 243.197>;FLOWLINE= < 226.830> ****************************************************************************** 207.70 TO NODE 207.71 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 207.71 ELEVATION = 253.68 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 22.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 62.04 FEET MANNING'S N 0.01300 NORMAL DEPTH (FT) = 0.52 CRITICAL DEPTH(FT) = 1. 67 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92 ================================================================~============= GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ---------------------------------------------------------------------------~-- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.916 15.668 4.731 702.04 0.426 0.900 16.029 4.893 716.06 0.889 0.885 16.407 5.067 730.81 1.392 0.869 16.801 5.255 746.33 63 G:\Accts\041093\FOXMLR2B.doc (. c. 1. 942 0.853 17.215 5.457 762.67 2.542 0.837 17.648 5.676 779.89 3.199 0.821 18.102 5.912 798.05 3.921 0.805 18.579 6.168 817.19 4.717 0.789 19.080 6.446 837.39 5.597 0.774 19.606 6.746 858.73 6.573 0.758 20.161 7.073 881.29 7.660 0.742 20.745 7.429 905.14 8.878 0.726 21. 362 7.816 930.39 10.250 0.710 22.012 8.239 957.15 11.805 0.694 22.701 8.701 985.53 13.581 0.678 23.430 9.208 1015.67 15.629 0.662 24.202 9.763 1047.70 18.017 0.647 25.022 10.375 1081.79 20.842 0.631 25.894 11. 049 1118.11 24.245 0.615 26.822 11.793 1156.87 28.444 0.599 27.812 12.617 1198.28 33.809 0.583 28.869 13.533 1242.60 41.029 0.567 30.001 14.552 1290.11 51. 656 0.551 31.214 15.689 1341.13 . 62.040 0.543 31.913 16.367 1370.60 ------------------------------------------------------------------------------ NODE 207.71 : HGL = < 254.596>;EGL= < 258.411>;FLOWLINE= < 253.680> ****************************************************************************** 207.71 TO NODE 208.00 IS CODE = 6 FLOW PROCESS FROM NODE UPSTREAM NODE 208.00 ELEVATION = 254.04 (FLOW IS SUP~RCRITICAL) CALCULATE ANGLE-POINT LOSSES (LACRD) : PIPE FLOW = 22.00 CFS PIPE ANGLE-POINT = 22.50 DEGREES FLOW VELOCITY = 15.67 FEET/SEC. HAPT=KA*(VELOCITY HEAD) = (0.09437)*( PIPE DIAMErER = 24.00 INCHES ANGLE-POINT COEFFICIENT KA = 0.09437 VELOCITY HEAD = 3.814 FEET 3.814) = 0.360 NODE 208.00: HGL = < 254.956>;EGL= < 258.771>;FLOWLINE= < 254.040> ****************************************************************************** 208.00 TO NODE 209.00 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 209.00 ELEVATION = 254.37 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 22.00 24.00 0.00 254.37 1. 67 DOWNSTREAM 22.00 24.00 254.04 1. 67 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05179 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05117 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05148 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 15.744 15.673 0.000 O.OQO FRICTION LOSSES = 0.206 FEET ENTRANCE LOSSES = 0.000 FEET 64 G:\Accts\041093\FOXMLR2B.d9c (:. C. JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.361)+( 0.000) = 0.361 NODE 209.00: HGL = < 255.283>iEGL= < 259.132>iFLOWLINE= < 254.370> ***'*************************************************************************** 209.00 TO NODE 206.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 206.00 ELEVATION = 257.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 22.00 CFS PIPE DIAMETER = 24.00 INCHES 0.01100 PIPE LENGTH = 20.89 FEET MANNING'S N NORMAL DEPTH (FT) = 0.66 CRITICAL DEPTH (FT) = 1. 67 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.67 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 675 7.828 2.627 468.87 0.020 1. 634 8.003 2.629 469.28 0.084 1. 593 8.195 2.637 470.56 0.195 1.553 8.405 2.650 472.74 0.360 1. 512 8.632 2.670 47'5.89 0.586 1.471 8.880 2.696 480.05 0.882 1. 430 9.149 2.731 485.31 1. 256 1. 389 9.441 2.774 491.75 1.723 1.349 9.759 2.828 499.46 2.297 1. 308 10.104 2.894 508.56 2.997 1. 267 10.481 2.974 519.16 3.845 1. 226 10.891 3.069 531. 42 4.872 1.185 11. 339 3.183 545.50 6.113 1.145 11. 830 3.319 561. 59 7.618 1.104 12.368 3.481 579.93 9.449 1. 063 12.961 3.673 600.78 11.690 1.022 13.615 3.902 624.45 14.458 0.981 14.339 4.176 651.32 17.919 0.941 15.144 4.504 681. 85 20.890 0.913 15.739 4.762 704.79 ----------------------------------------------------------------------------~- NODE 206.00 : HGL = < 258.675>iEGL= < 259. 627>iFLOWLINE= < 257.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 206.00 FLOWLINE ELEVATION = 257.00 ASSUMED UPSTREAM CONTROL HGL = 258.67 FOR DOWNSTREAM RUN ANALYSIS ====================================================================~========= END OF GRADUALLY VARIED FLOW ANALYSIS 65 G:\Accts\041093\FOXMLR2B,doc c. • ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD, LACRD, AND OCEMA HYDRAULICS CRITERION.) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 041093 -FOX/MILLER * HGL -NODE 103.8 TO 103.7 * G:\ACCTS\041093\FOXMLR13 ************************************************************************** FILE NAME: FOXMLR13.DAT TIME/DATE OF STUDY: 10:07 12/07/2004 * * * ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal UPSTREAM RUN point data used.) DOWNSTREAM RUN NODE NUMBER 102.60- } 103.70- MODEL PRESSURE PRESSURE+ FLOW PRESSURE~ PROCESS HEAD (FT) MOMENTUM (POUNDS) 0.79 65.74 DEPTH (FT) 0.29* MOMENTUM(POUNDS) 173.74 FRICTION 0.79*Dc 65.74 0.79*Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED 'ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION 65.74 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102.60 FLOWLINE ELEVATION = 258.96 PIPE FLOW = 5.00 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 259.280 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH ( 0.32 FT.) IS LESS THAN CRITICAL DEPTH ( 0.79 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 102.60 : HGL = < 259.251>;EGL= < 264. 125>;FLOWLINE= < 258.960> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 103.70 102.60 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : 66 103.70 IS CODE = 1 268.60 (FLOW IS SUPERCRITICAL) G:\Accts\041093\FOXMLR13.doc C. PIPE FLOW PIPE LENGTH NORMAL DEPTH (FT) = 5.00 CFS 42.06 FEET 0.27 PIPE DIAMETER = 24.00 INCHES MANNING'S N 0.01100 CRITICAL DEPTH (FT) = 0.79 =========================================================================~==== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.79 ===============================================================~============== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 0.788 4.350 1. 082 65.74 0.005 0.767 4.508 1. 083 65.82 0.020 0.746 4.678 1. 086 66.05 0.048 0.725 4.859 1. 092 66.46 0.089 0.705 5.054 1.102 67.05 0.147 0.684 5.264 1.115 67.83 0.224 0.663 5.490 1.132 68.82 0.323 0.643 5.735 1.154 70.04 0.447 0.622 6.000 1.181 71. 51 0.603 0.601 6.288 1. 216 73.25 0.795 0.581 6.602 1. 258 75.29 1. 031 0.560 6.945 1. 309 77.66 1.320 0.539 7.321 1.372 80.40 1.676 0.518 7.735 1. 448 83.55 2.112 0.498 8.192 1. 540 87.17 2.651 0.477 8.699 1.653 91.31 3.320 0.456 9.263 1. 790 96.07 4.159 0.436 9.895 1. 957 101. 52 5.224 0.415 10.607 2.163 107.79 6.600 0.394 11.413 2.418 115.01 8.419 0.373 12.331 2.736 123.36 10.906 0.353 13.385 3.136 133.07 14.490 0.332 14.605 3.646 144.44 20.135 0.311 16.030 4.304 157.83 30.950 0.291 17.712 5.165 173.74 42.060 0.291 17.712 5.165 173.74 ------------------------------------------------------------------~-~--------- NODE 103.70 : HGL = < 269.388>;EGL= < 269. 682>;FLOWLINE= < 268.600> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.70 FLOWLINE ELEVATION = 268.60 ASSUMED UPSTREAM CONTROL HGL = 269.39 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 67 G:\Accts\041 093\FOXMLR 13 .doc Inlet Sizing Calculations Inlets on a grade Curb inlets on a grade are sized per the "Standards for Design and Construction of Public Works Improvements in the City of Carlsbad," using the equation: Q = 0.7 L(a + yy12 Where: y = depth of flow in approach gutter, in feet a = depth of depression of flow line at inlet, in feet L = length of clear opening, in feet (maximum 30 feet) Q = flow in CFS, use 50-year design storm minimum (lOO-year used in this evaluation) Solving the above equation for L: L= Q 0.7(a + y)3/2 The flow rate and the depth of flow in the approach gutter are found in the Rational Method calculations or by using CiviICADD@ for street flow calculations. The depth of gutter depression at the inlet is 4" (0.33') forall type B inlets. L is rounded up to the nearest whole foot, and l' is added to the overall length of the inlet to account for the thickness of the walls. Road Station Node Number Grade (%) QlOo (cfs) DeQth of flow Width of Length (ft) in gutter (ft} sQread (ft) EICamino 306 4.2 9.16 0.40 9.83 23 369+50.84 EI Camino 303 7.0 6.08 0.27 4.57 20 370+70.07 EI Camino 310 6.8 5.94 0.26 4.58 20 380+10.04 EI Camino 315 6.9 2.77 0.13 7.28 14 384+60.00 Salk Ave 105 6.6 2.61 0.18 3.53 12 20+49.84 Salk Ave 106 6.6 3.06 0.19 3.70 22 20+57.23 Salk Ave 217 8.1 2.47 0.17 3.36 13 15+57.72 Salk Ave 406 8.1 3.08 0.18 3.60 15 15+57.72 -- Salk Ave 216 7.9 1.91 0.15 3.14 10 12+31.56 Salk Ave 506 7.9 1.63 0.14 3.00 9 10+28.89 Salk Ave 408 8.2 3.03 0.18 3.57 17 10+19.05 Salk Ave 309 6.5 3.72 0.21 3.94 15 27+30.00 G:\Accts\04! 093\inlets on grade. doc LEGENO: SEDIMENT BASIN CALCULATION EXHIBIT PROPERTY BOUNDARY - --- SURFACE AREA BOUNDARY'----- 2004 o· 250' -----500' SCALE: 1· = 250' 2710 Loker Avenue Wnt . SuIte 100 Carlsbad, CalifornIa 92008 780-931-7700 Fmc 780-931-8880 www.odayconlullant..com Xrefs: 0493GRD CMI Englneerif19 PlannIng Proce .. lng Surveying • SOIL LOSS ESTIMATE ONSITEAREA BASINS (ACRES) R K C1 2.49 35.00 0.24 C2 1.87 35.00 0.24 C3 1.64 35.00 0.24 C4 2.75 35.00 0.24 C5 4.24 35.00 0.24 C6 7.45 35.00 0.24 C7 3.72 35.00 0.24 C 1.00 1.00 1.00 1.00 1.00 1.00 1.00 • SEDIMENT BASIN SIZING CALCULATIONS FOX-MILLER PROJECT AVG. LENGTH CHANGE IN P (FEEn ELEVATION 0.90 953 8.4 0.90 493 9.0 0.90 435 11.0 0.90 580 15.0 0.90 586 14.0 0.90 870 15.8 0.9~_ ----606 _L9 - SEDIMENT TRAP CALCULATIONS USING 10YR. Q AVG. AND TOTAL TRAP AREA QAVG VELOCITY OF SURFACE AREA TOTAL AREA TOTAL PARTICLE SETTLING OF TRAPPING STORAGE DEPTH SOIL LOSS TRAP (ACRES) (CFS') SIZE (mm.l PARTICLE (FT.lSEC') PARTICLE (As) (SFT.) OF SEDIMENT (FT) (CFNR.) C1 2.49 0.27 0.074 0.0143 22.66 2.00 51.34 C2 1.87 0.57 0.074 0.0143 47.83 2.00 43.70 C3 1.64 0.25 0.074 0.0143 20.98 2.00 67.63 C4 2.75 0.25 0.074 0.0143 20.98 2.00 124.74 C5 4.24 0.91 0.074 0.0143 76.36 2.00 192.33 C6 7.45 1.45 0.074 0.0143 121.68 2.00 194.57 c9 3."U_ _ Q,91L~074 0.D1~_ 75.52 2.00 ---92.04 .~ • ! I SLOPE EST. SOIL SOIL SOIL LOSS STEEPNESS (%) LS LOSS (TONSNR) CF.NEAR) 0.88 0.15 1.13 2.82 51.34 1.83 0.17 1.29 2.40 43.70 2.53 0.30 2.27 3.72 67.63 2.59 0.33 2.49 6.86 124.74 2.39 0.33 2.49 10.58 192.33 1.82 0.19 1.44 10.70 194.57 1.30 --,_O.HL 1.36 5.06 92.04 MINIMUM BASIN SURFACE WIDTH OF LENGTH OF AREAISFT.l BASIN 1FT.) BASIN (FT.) 25.67 2.93 8.78 21.85 2.70 8.10 33.81 3.36 10.07 62.37 4.56 13.68 96.16 5.66 16.98 97.28 5.69 17.08 46.02 3.92 11.75 c. C. • Actual Dimensions: 2.0' ~I'" Calculated Dimensions: I'" 1.0' ~, Note: 5.0' Overflow Weir Calculations 4.0' ~I'" 2.0' ~I Worst case water volume occurs in Lot 4, where QIOO = 9.70 CFS @ node 404. ,Cd = 0.61+0.08(IH) QIOO = Cd*2/3 * [(2g)"e/3)] *B * [Y 1'(3 12)] Where: Y = 1.0 ft H = 5.0 ft B = 5.0 ft g = 32.2 ft/s/\2 G:\Accts\041093\Overflow Weir Calculations,doc • • PACIFIC OCEAN CITY OF OCEANSIDE ....-..-.."........... CITY OF VISTA ~~SITE CITY OF ENCINITAS ' VICINITY MAP NOT TO SCALE ? San Diego County Hydrology Manual Date: June 2003 '. Section: Page: Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient "c" Soil Type NRCS Elements Coun Elements %1MPER. A B Undisturbed Natural Terrain (Natural) Pennanent Open Space 0* 0.20 0.25 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 Medium Dcl..:. Residential (MDR) Residential,4.3 DU/A or less 30 0.41 0.45 Medium DenSIty Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 High Density Residential (HDR) Residential, 24.0 Du/A or less 65 0.66 0.67 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 CommerciaVIndustrial (G: Com) General Commercial 85 0.80 0.80 CommerciaVIndustrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 CommerciallIndustrial (Limited I.) Limited Industrial . 90 0.83 0.84 General Industrial 95 0.87 0.87 C 0.30 0.36 0.42 0.45 0.48 0.54 0.57 0.60 0.69 0.+8 0.78 0.81 0.84 0.84 0.87 3 6 of 26 D •• 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.85 0.87 *The values associated with 0% impervious may be used for direct calCulation of the iunoff coefficient as described in Section 3.1.2 (represen,ting the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 ~-i i' . .... i M~'" -~. i -" ~ ~-: ; f t··, ~.;, :.. .. .. ~ ... ;. I::j:) i , i L. :-1 (. j·1 i~~ l'r,i'~ ~:~:··~~:·r ._;~l:' iF 0-" • ,! :,-;.L;, . ;; [:,CH.,l, , :-~"-'J' !; .~ .~. -----i ~ -0, .;_.--."t-f. .:--'r t·h ~ -t .S;lQ1 . In : '1-': .:. '! r ! i •• ,._i._: :.: .. + ,. ! : . i' I! i ~' i' ~ "; '\ \~~; , i L: ~ : ',i Ii,; :~L': ".,', :'f' i '$J: ' I ~. j.. i '+ ... : • ~ 'w>' i i ''', r ~ ... ! Cl i~; .. J i 1...-:.' i l.;,~g i' '; :(1 ["I:,::,; ~+l ; '. I I i ~--~. i t··~ : "'j . , ;F~··l··l:~-"~-·;: .. i ,.L ~... 'i • :: ... ~~~i ",. "'-'I,\)' "'II t'-! :_.,~~ ~Jt.·t~~i:HH~i , "32-"45!', " i !; I ' i .: J. ~r!;'~ T ~}Jj .. ·irL{! i , '. i :~ ,·I'·rl·:~ .~. (~. ',> '. COWlty of San Diego Hydrology Manual Rainfall Isopluvials 100 Year Rainfall Event - 6 Hours lsopluvial (inches) DPW ~GIS SruiGIS ~~".$c~ ~~~ \,)It. Ha.vt S-"n 1)h:gn C;('\',.:mi! N 'IHl$ ...... ISPIIO'oIIO£DWlTHOUTWJoMNonYOFIoNtWJCI EIlHERIEXPfIU,I + Df!,1Mf'UW.~eU)OlHO.MJ1ttOTl.Mtmlo.1ltltllPUEDWNUWmEt OfWEltQMTMIJ1YNlDmNUSRItIAI'M1ICU.MNWoSE. . ~a.QLM""''''''''''' ThI.~~CCriMlW--*-... SAfC)Nl~ E ........ S}'$IMIMldic:....-............. .. , ..... ..-.. ~ T ............ ..., __ '""'-~ .... __ ........-. ..... ~ ......... n... ..... ...... S '3 0 3 Miles ~;;; --------0 "->1 gl .?f] '" ~d ~.J j .. .0; Iii I, I Q~ ~ = (e .::1 = A,t:iJ. it II J ~~ ;::.. '<t ..t:! N " ;1 . ~ 1; ;~ il It §< I " ~@ -= .r:: r~~)~ i!IJ Ii Ii u ~ ~ " > '=-::::: >"l iii ~I;f IIi II 0,.9 .;; ~ ~ ~ i~ ·s 0 ~~j! ~o·11 H II .5 .!!! !II ~ os U~I &11~t ~ CI: P-40~! .. O~ os ~~;Jl :~ >: u e ;z; = .... • ,.'; ,:,' I,,:; " ': '.' ~:, >: ':':',,, ",' <': ~ ,: ,,.',' : _ '.:'\ ,"" '., "" ;; ;",;,;, : ~:', .-',~ :. ::J:. ~: . d, .... {:. '.~ ... (".' . t"" - , " '. ,:~,\ ; ',- , ", , .•.. ':\', ,';~ .:f, :,', ,':'+Y:"i:::·: ~ .~ .. :.~ .. : .. ,'.-. ':; , , ",or "~ '. ':;;. ,~;, :)~ ,:, ;\~<:: ~ .. .I" •• ~ '.: ~:I •. ', ,'" '. M~R;i.adJ:: '!'- I , Ii , ' :~> ,": , ;~ .. j';f, ,- ; lit ,n io I: '~' 1,. ~ County' of San Diego Hydrology Manual " .':., ..• I-~':', t. I:::', \' '/; '" .' . p;;: ,-=-or.; '. '\:. ,~Plj ex~ , , ~ .. v / , ~ ,. , .." SoH Hydrologic Groups Legend 1~~1;~ G A ~i.$'*i~ roup ttIM GroupS Ff-~~ t¥<iL Group C _ GroupO Ir~1i8 Undetermined (Made or Urban or Gullied or Escarpments) Data Unavailable Map Notes stateplane Prqjectioo, Z0ne6, NAD83 CreOOoo Dae: .JIm 18, 2001 Nona BE USED FOR DESIGN CAlCULATIONS Q n .,c; • 1-104.14 TABLE 1-104.14A • • DESIGN VALUES FOR MANNINGS ROUGHNESS COEFFICIENT Cn) TYPE OF CHANNEL N VALUE Unlined Channels: , Clay Loam Sand Gravel Rock. 0.023 0.020 0.030 0.040 Lined Channels: ~-' Portland Cement Concrete Air Blown Mortar Asphalt Concrete 0.015 0.018 0·.018 Grass Lined Channels: (Shallow depths) 2 inch length 0.050 0.060 0.120 0.200 .{ - 6 inch length 6 -12 inch length 12 -24 inch + length· Pavement and Gutters: Concrete 0.015 Asphalt Concrete 0.018 Natural Streams: (Less than 100 feet wide at flood stage) 1. Regular section a. Some grass and weeds, little or no brush 0.030 b. Dense growth of weeds, depth of flow substantially greater than weed height 0.040 c. Some weeds, light brush on bank 0.040 d. Some weeds, heavy brush on banks 0.060 e. With trees in channel, branches submerged at flood stage, increase above values by 0.015 74 /' ! !?-~g.lf', ~_ ~ -:" ©2005 O'Da Consultants, Inc, / / • '-q " \ FOX-MILLER EXISTING CONDITION DRAINA GE MAP LEGEND BASIN AREA IN ACRES. .@) E)(/S11NG STORM DRAIN. PROPOS[!) MAJOR BASIN BOUNDARY. ........... . NODE NQ D[SJGNA 1101/. 20D • q., DESIGN flOW IN CUBIC FT. SEC.. .9.8 CFS 111.1£ OF CONC£NlRA 110N IN MINUTES. ....•........ TC = 15.0 MIN 0' 25' 100' .-50' SCALE: 1" = 100' , 200' RHfs[!): MA Y 4. 2OD4-PREPARED: DECEMBER 18, 2003 2710 Loker Ave West Suite 100 Carlsbad, Califomia 9200B 760-931-7700 Fax: 760-931-8680 www.odoyconsultcnis.com Civil Engineering Planning Processing Surveying G \041093\049300EX dwg J,I 07, 2005 9: 57am Xrefs. D493MAP: D493TP01 /' /' /' /' /' /' /' /' /' ©2005 O'Oa Consultants, Inc. Q =37]4 CFS TC = 8.87 MIN. A = 14.25 AC / , , , I ! FOX-MILLER PROPOSED CONDIT/ON DRAINAGE MAP ---.. :?' '-'Cr_-;;:."", ~.;-"'- Uk> , d'" " fJ "f" !Y' " '" • " " ~ ""P"cI\ " €I \, " m" '" " ~gf,;: J\\c'0c\i(.~, .,r LEGEND BASIN AREA IN ACRES. •.•..••.•.•.•.••..••................•......•....... (ff;ff) £XISllNG STORM DRAIN. ................ .............. ...... .... ..•.. ..... [J PROPOS£O STORM DRAIN .•..... , ....................... , .... , ... ,',..... [J PROPOSED DRAINAGE: BASIN BOlJNOARY. ............................. ----- NODE NO. O£S!GNA 1l0N. ................................................ . 200 • q., O£S!CN flOW IN CUBIC FT. SEC., ................................. 9.B CFS llME OF CONC£NllRA llON IN MINUTES. ................................ TC = 15.0 MIN 100' 0' 25' .... -----50' 200' SCALE: 1· = 100' 2710 Loker Ave West Suite 100 Carlsbad, California 92008 760-931-7700 Fax: 760-931-8680 www.odayconsultants.com Civil Engineering Planning Processing Surveying G: \041093\0493DD.dwg Mar 16. 2005 2: 04pm Xrefs: 0493UTl. 0493TP01, 0493GRD; 0493MAP; 0493STR EXHIBIT TO ILLUSTRATE PROPOSED STORM DRAIN & RUNOFF ROUTING FOR LETTERBOX CANYON PORTION OF FOX MILLER PROPERTY CT -OfJ-20 \ \ , \ , " " o o " 0 \.../0 ©2005 O'Day Consultants, Inc. $' .,:::<::; Tee Grourod CoveT CFS 4 MIN )iI=~!:6 AC . .> _. ,- ,'-.. ' / I ./ J" / 48" STORM -~ -~.-------'­,.-. ." ,- .-. . -. "', . .. _ ... , 'ii' . ..... -. J, ,:. ,p/ / .~ " \, ' -- • ., • • ''-''~'.-...) \ ---""--=.:.:::- NOlf; NOlE' IN ADDITION TO RUNOFF D£TENllON, POLLUTANT R£MOVAL WILL 8£ R£QlJIRED ON EACH DEVELOPED LOT. PER LA TEST SDRW()C8 R£()IJIREA/ENT. CALCVLA TEf) RIJNOFF SHOWS THE RESlJL TS fROM THE MASS GRAD£J) CONDITION OF THE HYDRAULICS AND HYDROLOGY STlJDY. REVlSBJ: MARCH 16, 2005 REVISEO: NOVEJJBER 31}, 2004 PREPARED MAY, 2004 2710 Loker Avenue West Suite 100 Carlsbad. California 92008 760-931-7700 Fax:760-931-8580 Civil Engineering Planning Processing Surveying G:\jobs\2002\041093\0493Z15-DETEX,dwg 05/06/2004 03:23:42 PM PDT XREF'S: 0493MAP; 0493GRD; 0493Un..: 0493TP01; 0493STR