Loading...
HomeMy WebLinkAboutCT 00-06; BRESSI RANCH MASTER; ADDENDUM EL FUERTE ST CONSTRUCTION CHANGES; 2004-05-01ADDENDUM BRESSI RANCH EL FUERTESTREET CONSTRUCTION CHANGES CARLSBAD, CALIFORNIA May 2004 m ^ 0 ^^^^ Prepared For: LENNAR COMMUNITIES c/o LENNAR BRESSI VENTURE, LLC 5780 Fleet Street, Suite 320 Carlsbad, CA 92008 Prepared By: PROJECTDESIGN CONSULTANTS PiANnim • ENVIKONMENTAI • ENGINEERING • Smvtx/CPS 701 B Street, Suite 800, San Oi^o, CA 92101 619-235-6471 FAX 619-234-0349 Job No. 2244.00 Gregory M. ShieldsRCE 42951 Registration Expires 03/31/06 Prepared By: RI Checked By: BS TABLE OF CONTENTS Section Page 1.0 INTRODUCTION 1 2.0 CONSTRUCTION MODIHC ATIONS I 3.0 RESULTS 3 FIGURES Page 1.0 Vicinity Map 2 APPENDICES I.O AES Rational Method Hydrology Computer Output 2.0 AES Pipeflow Hydraulic Computer Output 3.0 Desilting Basin Sizing Calculations EXHIBITS A Hydrology & Pipeflow Node Numbers & Locations 1 T:\Water Resources\2407.3-Bressi ResidentialVEl Fuerte (Apr04)\Report\2244.0DRl.doc 1.0 INTRODUCTION This drainage report addendum has been prepared in support of the design changes to a connection to the backbone system of the Bressi Ranch El Fuerte Street drainage (Project). The Project is located in the City of Carlsbad (City) and is bounded by Palomar Airport Road to the north, future El Fuerte Street to the east. El Camino Real to the west, and Poinsettia Drive to the south. Refer to Figure 1: Vicinity Map, for the project location. The backbone system is identified in the approved drainage report prepared by ProjectDesign Consultants (PDC) titled Drainage Report for Bressi Ranch Mass Grading (Mass Grading Report), dated February 2003. 2.0 CONSTRUCTION MODIFICATIONS The design changes consist of regrading the southem portion of Planning Area 13 to drain to El Fuerte Street, construction of a desilting basin and connection to an existing stub on the 60-inch RCP El Fuerte Street backbone storm drain system. These changes are minor and produced no additional flow on the El Fuerte Street storm drain system. The regraded area is now collected and enters the storm drain system approximatly 500 north of its previous location. See Exhibit A for hydrology and pipe node numbers and locations. Also see Appendix I for rational method calculations. Appendix 2 for hydraulic grade calculations, and Appendix 3 for desilting basin calculations. I T:\Water Resources\2407.3-Bressi ResidentialVEl Fuerte (Apr 04)\Report\2244.0DRl.doc o CL MELROSE DRIVE EL FUERTE STREET 'JECT LOCATION POINSETTIA LANE Figure 1: Vicinity Map T:\Water Resources\2407.3-Bressi ResidentialVEl Fuerte (Apr 04)\Report\2244.0DRl .doc 3.0 RESULTS There are no increases in flow to the backbone system due to the changes in the regrading. See Grading Plans and Appendix 3 for desilting basin sizing. 3 T:\Water Resources\2407.3-BressiResidentialVEl Fuerte (Apr 04)\Report\2244.0DRl.doc APPENDIX 1 RATIONAL METHOD HYDROLOGY RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 619-235-6471 DESCRIPTION OF STUDY ************************** * 2244 - EL FUERTE STREET * * EXISTING CONDITIONS - DRAINAGE CHANGES * * 100-YEAR STORM EVENT * ********************************************************************** FILENAME: 2244-HOl.DAT TIME/DATE OF STUDY: 11:42 04/13/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximuin Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GRASS FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00 UPSTREAM ELEVATION(FEET) = 404.00 DOWNSTREAM ELEVATION(FEET) = 3 80.00 ELEVATION DIFFERENCE(FEET) = 24.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.543 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.51 TOTAL AREA(ACRES) = 0.51 TOTAL RUNOFF(CFS) = 1.51 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 380.00 DOWNSTREAM(FEET) = 232.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 490.00 CHANNEL SLOPE = 0.3020 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 25.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.610 GRASS FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.22 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.96 AVERAGE FLOW DEPTH(FEET) = 0.24 TRAVEL TIME(MIN.) = 1.65 Tc(MIN.) = 7.65 SUBAREA AREA(ACRES) = 4.52 SUBAREA RUNOFF(CFS) = 11.41 TOTAL AREA(ACRES) = 5.03 PEAK FLOW RATE(CFS) = 12.92 EISTD OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.30 FLOW VELOCITY(FEET/SEC.) = 5.72 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 575.00 FEET. ****************************************************************,tjt********^^ FLOW PROCESS FROM NODE 110.00 TO NODE 115.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 232.00 DOWNSTREAM(FEET) = 213.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 CHANNEL SLOPE = 0.4750 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 12.92 FLOW VELOCITY(FEET/SEC.) = 26.25 FLOW DEPTH(FEET) = 0.36 TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 7.67 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 115.00 = 615.00 FEET. ***********************************************************************jt,t*^tjt FLOW PROCESS FROM NODE 115.00 TO NODE 120.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 213.00 DOWNSTREAM{FEET) = 207.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 720.00 CHANNEL SLOPE = 0.0083 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.862 GRASS FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.77 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.41 AVERAGE FLOW DEPTH(FEET) = 1.19 TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) = 9.54 SUBAREA AREA(ACRES) = 3.52 SUBAREA RUNOFF(CFS) = 7.70 TOTAL AREA(ACRES) = 8.55 PEAK FLOW RATE(CFS) = 20.62 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.32 FLOW VELOCITY(FEET/SEC.) = 6.76 LONGEST FLOWPATH FROM NODE 100 00 TO NODE 120.00 = 1335.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) 8.55 TC(MIN.) = 9.54 PEAK FLOW RATE(CFS) 20. 62 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2244 - EL FUERTE STREET * * PROPOSED CONDITIONS - DRAINAGE CHANGES * * 1OO-YEAR STORM EVENT * ************************************************************************** FILE NAME: 2244-H02.DAT TIME/DATE OF STUDY: 11:51 04/13/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximuin Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GRASS FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00 UPSTREAM ELEVATION(FEET) = 404.00 DOWNSTREAM ELEVATION(FEET) = 3 80.00 ELEVATION DIFFERENCE(FEET) = 24.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.543 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.51 TOTAL AREA(ACRES) = 0.51 TOTAL RUNOFF(CFS) = 1.51 ji.jt**^t,k********************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 380.00 DOWNSTREAM(FEET) = 232.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 490.00 CHANNEL SLOPE = 0.3020 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 25.000 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.610 GRASS FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.22 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.96 AVERAGE FLOW DEPTH(FEET) = 0.24 TRAVEL TIME(MIN.) = 1.65 Tc(MIN.) = 7.65 SUBAREA AREA(ACRES) = 4.52 SUBAREA RUNOFF(CFS) = 11.41 TOTAL AREA(ACRES) = 5.03 PEAK FLOW RATE(CFS) = 12.92 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.30 FLOW VELOCITY(FEET/SEC.) = 5.72 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 575.00 FEET. jt^^.^************************************************************************* FLOW PROCESS FROM NODE 110.00 TO NODE 115.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 232.00 DOWNSTREAM(FEET) = 213.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 CHANNEL SLOPE = 0.4750 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 12.92 FLOW VELOCITY(FEET/SEC.) = 26.25 FLOW DEPTH(FEET) = 0.36 TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 7.67 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 115.00 = 615.00 FEET. Jt*************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 120.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 213.00 DOWNSTREAM(FEET) = 207.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 720.00 CHANNEL SLOPE = 0.0083 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.881 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 18.91 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.61 AVERAGE FLOW DEPTH(FEET) = 1.26 TRAVEL TIME(MIN.) = 1.81 Tc(MIN.) = 9.49 SUBAREA AREA(ACRES) = 3.52 SUBAREA RUNOFF(CFS) = 12.03 TOTAL AREA(ACRES) = 8.55 PEAK FLOW RATE(CFS) = 24.94 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.44 FLOW VELOCITY(FEET/SEC.) = 7.11 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 120.00 = 1335.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) 8 55 TC(MIN.) = 9.49 PEAK FLOW RATE(CFS) 24 94 END OF RATIONAL METHOD ANALYSIS APPENDIX 2 PIPEFLOW COMPUTER OUTPUT ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA., 92101 Suite 800 619-234-6471 ************************** DESCRIPTION OF STUDY ************************** * 22 4 4 - EL FUERTE STREET * * PROPOSED CONDITIONS - DRAINAGE CHANGES * * 1OO-YEAR STORM EVENT * ************************************************************************** FILE NAME: 2244-POl.DAT TIME/DATE OF STUDY: 10:19 05/05/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-i- FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 100.00- 1.49 762.11 1.04* 960.61 } FRICTION 105.00- 2.00 817.95 0.96* 1039.62 ) JUNCTION 105.90- 2.06 824.15 0.95* 1053.19 ) FRICTION 110.00- 1.49 Dc 762.11 1.14* 882.02 } JUNCTION 110.90- 1.54 766.95 1.12* 894.45 } FRICTION 115.00- 1.49*Dc 762.11 1.49*Dc 762.11 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 50 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = 193.02 PIPE FLOW = 24.90 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 194.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.98 FT.) IS LESS THAN CRITICAL DEPTH( 1.4 9 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 100.00 : HGL = < 194.055>;EGL= < 199.744>;FLOWLINE= < 193.020> ****************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 1 UPSTREAM NODE 105.00 ELEVATION = 193.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.90 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 14.00 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 1.50 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH{FT) = 0.96 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.49 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0 .000 0 .958 20 .896 7 .742 1039 . 62 1 . 949 0 . 968 20 . 633 7 . 583 1027 .71 3 . 887 0 . 979 20 .377 7 .430 1016 .17 5 . 812 0 . 990 20 .129 7 .285 1005 .00 7 .726 1 .000 19 .888 7 .146 994 . 19 9 .627 1 .011 19 . 654 7 .012 983 .72 11 . 514 1 . 021 19 . 426 6 . 885 973 . 58 13 .388 1 . 032 19 .205 6 .763 963 .77 14 .000 1 . 035 19 . 134 6 .724 960 . 61 NODE 105.00 : HGL = < 194 . 258>;EGL= < 201.042> ;FLOWLINE= < 193. 300> *********** * * * * *********** * * * * * ****** ********* ****************** ******** FLOW PROCESS FROM NODE 105 . 00 TO NODE 105.90 IS CODE = 5 UPSTREAM NODE 10 5.90 ELEVATION = 193.30 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 24.90 18.00 0.00 193.30 1.49 24.90 18.00 - 193.30 1.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 21 .201 20.902 0 . 000 0.000 . 10713 ,10338 0.000 FEET JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.10526 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.105 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (TRANSITION LOSS) + (FRICTION LOSS)(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.079)+( 0.105)+( 0.000) = 0.184 NODE 105.90 : HGL = < 194.246>;EGL= < 201.226>;FLOWLINE= < 193.300> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 105.90 TO NODE 110.00 IS CODE = 1 ELEVATION = 196.82 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.90 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 16.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.75 CRITICAL DEPTH(FT) = 1.49 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.14 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 0.371 0 . 757 1.158 1.575 2 .008 2.459 2 .928 3 .416 3 .925 4.455 5.007 5.583 6.184 6.812 7 .468 8 .154 8 . 873 9 . 625 10.413 11.241 12.110 13 . 024 13 .986 15.001 16 . 000 FLOW DEPTH (FT) 1 .137 1.129 1. 121 1.114 1.106 1. 098 1. 091 1.083 1.076 1.068 1.060 1.053 1. 045 1. 037 1.030 1. 022 1.014 1. 007 0.999 0.991 0.984 0.976 0.969 0.961 0.953 0 . 946 VELOCITY (FT/SEC) 17 .327 17.446 17.568 17.693 17.820 17.950 18.083 18.218 18.357 18.498 18.642 18 .789 18.939 19.093 19.249 19.409 19.572 19.739 19.909 20.083 20.261 20.442 20 . 628 20.817 21.010 21.195 SPECIFIC ENERGY(FT) 5.801 5.858 5 .917 5 . 978 6.040 6.105 6.171 .240 .311 ,384 .460 , 538 , 618 ,701 6.787 6.875 6 . 967 7 . 061 7.158 7.258 7 . 362 7.469 7 .580 7.694 7.812 7 . 926 PRESSURE-^ MOMENTUM(POUNDS) 882.02 887.12 892.33 897.68 903 .16 908 .77 914.51 920.40 926 .42 932.59 938.91 945 .38 952.00 958 .78 965 .72 972.82 980 . 09 987.54 995 .16 1002.96 1010.94 1019 .12 1027 .48 1036.05 1044.82 1053.19 NODE 110.00 : HGL = < 197.957>;EGL= < 202.621>;FLOWLINE= < 196.820> *****************************************************************^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 110.00 TO NODE 110.90 IS CODE = 5 UPSTREAM NODE 110.90 ELEVATION = 197.15 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 24.90 18.00 0.00 197.15 1.49 17.623 24.90 18.00 - 196.82 1.49 17.332 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06853 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06600 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06727 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.269 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)-H (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.201)-i-( 0.269)-f( 0.000) = 0.470 NODE 110.90 : HGL = < 198.268>;EGL= < 203.091>;FLOWLINE= < 197.150> ****************************************************************************** FLOW PROCESS FROM NODE 110.90 TO NODE 115.00 IS CODE = 1 UPSTREAM NODE 115.00 ELEVATION = 199.55 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.90 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 18.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) zz 0.88 CRITICAL DEPTH(FT) 1.49 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 . 000 1 .486 14 107 4 578 762 . 11 0 .029 1 .474 14 140 4 581 762 . 38 0 . 107 1 .462 14 182 4 587 763 . 08 0 .224 1 .450 14 232 4 597 764 . 16 0 .376 1 .438 14 .288 4 610 765. 56 0 . 561 1 . 426 14 351 4 626 767 . 26 0 . 777 1 . 414 14 419 4 644 769 . 23 1 . 023 1 .401 14 492 4 665 771. 47 1 .299 1 .389 14 571 4 688 773 . 97 1 . 604 1 .377 14 654 4 714 776 . 71 1 .939 1 .365 14 743 4 742 779 . 70 2 .305 1 .353 14 836 4 773 782 . 93 2 .701 1 .341 14 934 4 806 786. 39 3 . 129 1 .329 15 037 4 842 790 . 09 3 .591 1 .317 15 144 4 880 794 . 03 4 .087 1 .304 15 256 4 921 798 . 20 4 . 619 1 .292 15 373 4 964 802 . 62 5 . 189 1 .280 15 495 5 Oil 807 . 27 5 .799 1 .268 15 621 5 060 812 . 16 6 .451 1 .256 15 752 5 112 817 . 30 7 . 148 1 .244 15 889 5 166 822 . 69 7 . 893 1 . 232 16 030 5 224 828 . 33 8 .689 1 .220 16 177 5 286 834 . 23 9 .540 1 .207 16 328 5 350 840. 39 10 .450 1 .195 16 485 5 418 846 . 82 11 .424 1 .183 16 648 5 489 853 . 53 12 .466 1 .171 16 816 5 565 860. 51 13 .584 1 . 159 16 990 5 644 867 . 79 14 .784 1 .147 17 169 5 727 875. 36 16 .074 1 .135 17 355 5 815 883 . 24 17.462 1.123 17.547 5.907 891.43 18.000 1.118 17.618 5.941 894.45 NODE 115.00 : HGL = < 201.036>;EGL= < 204.128>;FLOWLINE= < 199.550> ************************************************************^j^j.^^^^^^^^^_^^^^_ij^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 115.00 FLOWLINE ELEVATION = 199.55 ASSUMED UPSTREAM CONTROL HGL = 201.04 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS APPENDIX 3 Desilting Basin Calculations PROJECT SUBJECT PROJECTDESIGN CONSULTANTS PLANNING ENGINEERING SURVEYING 701 B Street, Suite 720, San Diego, CA 92101 (619) 235-6471 • Fax (619) 234-0349 OF JOB NO. DRAWNBY C DATE 0^ f^a^ Pf CHECKED BY DATE ^ J ^'^se Uli>w> riser c rSS(, /fc^ - 'iVS 31 ^t"^ V FROJECFDESIGN CONSULTANTS PLANNING ENGINEERING SURVEYING 701 8 Street, Suite 720, San Diego, CA 92101 (619) 235-6471 • Fax (619) 234-0349 JOB NO. DRAWNBY 0F_ DATE PROJECT SUBJECT. CHECKED BY DATE 0 esi*jn ' *2 IPO EXHIBIT A HYDROLOGY AND PIPEFLOW NODE NUMBERS AND LOCATIONS