Loading...
HomeMy WebLinkAboutCT 02-12; CARLSBAD OFFICE CAMPUS; PRELIMINARY DRAINAGE STUDY; 2003-06-18I :1 I ,I 'I I ,I ,-I I I I I I I I I I I I K&S ENGINEERING Planning Engineering Surveying 'PRELIMINARY DRAINAGE STUDY FOR CARLSBAD OFFICE CAMPUS IN CITY OF CARLSBAD IN 01-048 June 18, 2003 48592 DAtE • 7801 Mission Center Court, Suite 100 • San Diego, California 92108 • (619) 296-5565 • Fax (619) 296-5564 I I I I I I I I I I I 'I .1 I I I I I I TABLE OF CONTENTS 1.SITE DESCRIPTION 2.·HYDROLOGY DESIGN MODELS 3.INLET DESIGN ....................... APPENDIX A 4.HYDROLOGIC CALCULATIONS .......................... APPENDIX B S.TABLES AND CHARTS ................................ APPENDIX C 6.HYDROLOGY MAPS ................................... APPENDIX D I I ~I I :1 ,I I I I I I I I I I I I I I 1. SITE DESCRIPTION A. EXISTING CONDITION THE EXISTING SITE CONSISTS OF PARCEL 1 OF PARCEL MAP NO. 16274. THE ENTIRE SITE CURRENTLY SURFACE-FLOWS TO AN ONSITE CONCRETE CHANNEL THAT FLOWS NORTHERLY, ALONG THE WESTERLY PROPERTY LINE AND OUTLETS INTO AN EXISTING FLOOD C'ONTR'OL CHANNEL LOCATED WITHIN A DRAINAGE. EASEMENT IN FAV'OR 'OF THE STATE 'OF CALIF'ORNIA. IN ADDITION OFFSITE FLOWS FR'OM THE PR'OPERTY T'O ,THE SOUTH 'ENTER THE SITE AT THE SOUTHWESTERLY CORNER. THE T'OTAL C'OMBINED FL'OW (Q100) EXITING THE SITE IS 89 CFS. B. PROPOSED CONDITION THE PROPOSED TENTATIVE MAP CONSISTS OF LOTS A THR'OUGH E 'OF THE CARLSBAD 'OFF I CE CAMPUS WITH A T'OTAL 'OF FOUR INDUSTRIAL BUILDINGS AND THEIR CORRESPONDING PARKING AREAS. FURTHERMORE, A RUN'OFF COEFFICIENT (C) OF 0.95 WAS USED SINCE THE ENTIRE SITE IS LOCATED IN SOIL GROUP "D". THE PROP'OSED DRAINAGE PATERN IS C'ONSISTENT WITH THAT 'OF THE EXISTING CONDITION. THE PROPOSED SITE WILL SURFACE -DRAIN TO TW'O PR'OP'OSED CURB INLETS L'OCATED 'ON THE NORTHWESTERLY SIDE 'OF THE SITE. IN ADDITI'ON, THE 'OFFSITE FLOWS WILL BE INTERCEPTED BY A NEW 2' X6' RCB DRAIN, WHICH WILL REPLACE THE EXISTING 'ONSITE C'ONCRETE CHANNEL MENTI'ONED ABOVE. THE T'OTAL C'OMBlNED FLOW EXITING THE SITE IS 94 CFS. C. SUMMARY THE INCREASE IN FLOW FROM THE EXISTING T'O THE PROP'OSED C'ONDITI'ON IS 5 CFS (5% INCREASE); THEREF'ORE, THE PROPOSED DEVELOPMENT WILL NOT CAUSE A SIGNIFICANT IMPACT T'O THE D'OWNSTREAM STORM DRAIN SYSTEM. ALS'O, A 2- YEAR STORM ANALYSIS DEMONSTRATES THAT ALL THE PIPES' HAVE VEL'OCITIES GREATER THAN 4 FPS EXCEPT F'OR THE 2'X6'RCB WITH A VEL'OCITY OF 3.48 FPS AS DISCUSSED WITH CITY STAFF. ALSO, A SEPARATE REP'ORT ENTITLED "WATER QUALITY TECHNICAL REP'ORT" HAS BEEN PREPARED FOR THE PR'OJECT. THIS REPORT Ap:QRESSES TH? SAN DIEG'O REGI'ONAL WATER QUALITY B'OARD 'ORDER 2001.01. BRIEFLY,. THE REPORT DEMONSTRATES THAT THERE WILL BE N'O DOWNSTREAM IMPACTS DUE T'O DEVEL'OPMENT 'OF THE SITE WITH RESPECT TO WATER QUALITY AND ER'OSI'ON.A MAINTENANCE PR'OGRAM F'OR THE BMP'S HAS ALS'O BEEN ADDRESSED IN THE REP'ORT. I I 2. HYDROLOGY DESIGN MODELS I I I I I I I I I I I 'I I I I I I A. DESIGN METHODS THE RATIONAL METHOD IS USED IN THIS HYDROLOGY STUDY; THE RATIONAL FORMULA I S AS FOLLOWS: Q = CIA, WHERE: Q= PEAK DISCHARGE IN CUBIC· FEET/SECOND * C = RUNOFF COEFFICIENT (DIMENSIONLESS) I = RAINFALL INTENSITY IN INCHES/HOUR (PER FIGURE 3-1) A TRIBUTARY DRAINAGE AREA IN ACRES *1 ACRE INCHES/HOUR = 1.008 CUBIC FEET/SEC THE OVERLAND FLOW METHOD IS ALSO USED IN THIS HYDROLOGY STUDY; THE OVERLAND FLOW FORMULA IS AS FOLLOWS: B. C. Tc=1.8 (l.l-C) (L) .5/ [S (100)] .333 L = OVERLAND TRAVEL DISTANCE IN FEET S = SLOPE IN FT./FT. Tc= TIME IN MINUTES DESIGN CRITERIA -FREQUENCY, 100 YEAR STORM. -LAND USE PER SPECIFIC PLAN AND TENTATIVE MAP. -RAIN FALL INTENSITY PER COUNTY OF SAN DIEGO 2001 HYDROLOGY DESIGN MANUAL. REFERENCES -COUNTY OF SAN DIEGO 2001, HYDROLOGY MANUAL. -COUNTY OF SAN DIEGO 1992 REGIONAL SrANDARD DRAWINGS. -HAND BOOK OF HYDRAULICS BY BRATER & KING, SIXTH EDITION. I ·1 I I I I I I I I I I I I I I I I I APPENDIX A (3. HYDROLOGY CALCULATIONS) I I I I I I I I I I I I I I I I I I I EXISTING HYDROLOGY San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2001 Version 6.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/27/03 ********* HydrologY'Study Control Information ********** --------------------------------------------------~-------~-------------K & S Engineering, San Diego, CA -SiN 868 --------------------------------------------------~---------------------Rational hydrology study storm event year is English (in-lb) input data Units used English (in) rainfall data used Map data precipitation entered: 6 hour, precipitation (inches) = 2.600 24 hour precipitation(inches) 4.200 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 61.9% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** 0.000 Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type 0.000 0.000 1.000 Initial subarea flow distance Highest elevation = 54.200(Ft.) Lowest elevation = 48.300(Ft.) ] 500.000(Ft.) Elevation difference 5.900(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.71 min. TC = [1.8*(1.1-C)*distance(Ft.)A.5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9500)*( 500.000A.5)/( 1.180A(1/3)]= 5.71 Rainfall intensity (I) = 6.286(In/Hr) for a 100.0 year storm Effective runoff coefficien~ used for area (Q=KCIA) is C = 0.950 Subarea runoff = 29.857(CFS) Total initial stream area = 5.000(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 48.300(Ft.) Downstream point elevation 47.400(Ft.) Channel length thru subarea 250.000(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 38.695(CFS) I I I I I I I I I I I I I I I I I I I Manning's 'N' = 0.020 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 3B.695(CFS) Depth of flow = 0.617(Ft.), Average velocity 2.035(Ft/s) Channel flow top width = 61.675(Ft.} Flow Velocity = 2.03(Ft/s) Travel time 2.05 min. Time of concentration = 7.76 min. Critical depth = 0.520(Ft.) Adding area flow to channel Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type Rainfall intensity 5.159(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff 14.506(CFS) for 2.960(AC.} Total runoff = 44.363 (CFS) Total area = 7.96(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 42.900(Ft.} Downstream point elevation 42.500(Ft.} Channel length thru subarea BOO.OOO{Ft.) Channel base width = 6.000(Ft.} Slope or 'Z' of left channel bank = Slope or 'Z' of right channel bank = 1.000 1.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.015 Maximum depth of channel 5.000(Ft.} Flow(q) thru subarea = 77.B31{CFS) Depth of flow = 2.760(Ft.}, Average velocity Channel flow top width = 11.521{Ft.} Flow Velocity = 3.22{Ft/s} Travel time 4.14 min. Time of concentration = 11.90 min. ~ritical depth = 1.57B(Ft.} Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL "area type 0.000 0.000 0.000 1.000 77.831(CFS} 3.219(Ft/s) Rainfall intensity 3.915{In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C - Subarea runoff = 44.668{CFS} for 12.010(Ac.} Total runoff = 89.031(CFS} Total area End of computations, total study area = 19.97 {Ac.} 19.970 (Ac.) 0.950 I I I I I I I I I I I I I I I I I I I PROPOSED HYDROLOGY San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2001 Version 6.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/27/03 ********* Hydrology Study Control Information ********** K & S Engineering, San Diego, CA -SIN 868 Rational hydrology study storm event year is English (in-lb) input data Units used English (in) rainfall data used Map data precipitation entered: 6 hour, precipitation (inches) = 2.600 24 hour precipitation(inches) = 4.200 Adjusted 6 hour precipitation (inches) = 2.600 P6/P~4 = 61. 9% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type 0.000 0.000 0.000 1.000 Initial subarea flow distance Highest elevation = S3.490(Ft.) Lowest elevation = SO.110(Ft.) ] SOO.OOO(Ft.) Elevation difference 3.380(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.88 min. TC = [1.8*(1.1-C)*distance(Ft.)A.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9500)*( SOO.OOOA.S)/( 0.676A(1/3)l= 6.~8 Rainfall intensity (I) = S.S76(In/Hr) for a 100.0 year storm Effective runoff coefficie~t used for area (Q=KCIA) is C = 0.950 Subarea runoff = 8.900(CFS) Total initial stream area = 1.680(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = SO.110(Ft.) Downstream point elevation 46.260(Ft.) Channel length thru suba+~~ = 380.0QQ(ft.) Channel base width 0.000 (Ft.) , Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 0.200 Manning's 'N' = 0.013 I I I I I I I I I I I I I I I I I I I Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = B.900(CFS) Depth of flow = 0.421(Ft.), Average velocity Channel flow top width = 10:611(Ft.) Flow Velocity = 3.9B(Ft/s} Travel time 1.59 min. Time of concentration = 8.47 min. Critical depth = 0.500(Ft.) 3. 9B4 (Ft/s) ++++++++++++++++++++++++++++++++++++++++~+++++++++++++++++++++++++++++ Process from Point/station 2.000 to Point/Station 3.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D 0.000 0.000 0.000 1.000 B.47 min. [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 4.B76 (In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 32.474 (CFS) for 7.010(Ac.} Total runoff = 41.374(CFS} Total area = B.69(Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 43.500(Ft.} Downstream point/station elevation 42.690(Ft.} Pipe length = 142.00(Ft.} Manning's N = 0.013 No. of pipes = 1 Required pipe flow 41.374(CFS} Given pipe size = 30.00(In.} NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 2. 2B9 (Ft.) at the headworks or inlet of the pipe'(s) Pipe friction loss = 1.444(Ft.) Minor friction loss = 1.655(Ft.) K-factor = 1.50 Pipe flow velocity = B.43(Ft/s) Travel time through pipe 0.2B min. Time of concentration (TC) = B.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type 0.000 0.000 0.000 1.000 Time of concentration B.75 min. Rainfall intensity 4.775(In/Hr} for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C Subarea runoff = 0.953(CFS} for 0.210(Ac.} Total runoff = 42.326(C¥S) Total area B.90 (Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 I I I I I I I I I I I I I I I I I I I **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 42.690(Ft.) Downstream point/station elevation 42.S00(Ft.) Pipe length 19.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 42.326 (CFS) Given pipe size = 30.00(In.) ~ Calculated individual pipe flow 42.326(CFS) Normal flow depth in pipe = 2S.SS(In.) Flow top width inside pipe = 21.33(In.) Critical Depth = 26.13(In.) Pipe flow velocity = 9.S0(Ft/S) Travel time through pipe = 0.03 min. Time of concentration (TC) = 8.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station S.OOO **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream 1s listed: In Main Stream number: 1 Stream flow area = 8.900(Ac.) Runoff from this stream 42.326(CFS) Time of concentration = 8.78 min. Rainfall intensity = 4.763 (In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 6.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type 0.000 0.000 0.000 1.QOO Initial subarea flow distance Highest elevation = S3.490(Ft.) Lowest elevation = 49.000(Ft.) ] sOO.OOO(Ft.) Elevation difference 4.490(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.26 min. TC = [1.8*(1.1-C)*distance(Ft.)A.S)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9500)*( SOO.OOOA.S)/( 0.898A(1/3JJ= 6.~6 Rainfall intensity (I) = S.927(In/Hr) for a 100.0 year sto~ Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 7.489(CFS) Total initial stream area = 1.330(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 49.000(Ft.) Downstream point elevation 46.600(Ft.) Channel length thru subarea ~ 350.000(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 0.200 Slope or 'Z' of right channel bank = 0.083 Estimated mean flow rate at midpoint of channel 8.840(CFS) I I I I I I I I I I I I I I I I I I I Manning's 'N' = 0.015 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 8.840(CFS) Depth of flow = 7.676(Ft.), Average velocity 8.414(Ft/s) !!Warning: Water is above left or right bank elevations Channel flow top width = 0.142(Ft.) Flow Velocity = 8.41(Ft/s) Travel time 0.69 min. Time of concentration 6.95 min. Critical depth = 5.188(Ft.) ERROR -Channel depth exceeds maximum allowable depth Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C group D 0.000 0.000 0.000 1.000 Decimal fraction soil [INDUSTRIAL area type Rainfall intensity Runoff coefficient Subarea runoff 5.539(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 2.526(CFS) for 0.480(AC.) Total runoff = 10.015(CFS) Total area = 1.81(AC.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Proces~ from Point/Station 7.000 to Point/Station 8.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 43.650(Ft.) Downstream point/station elevation 43.430(Rt.) Pipe length 22.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 10.015(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 10.015(CFS) Normal flow depth in pipe = 14.06(In.) Flow top width inside pipe = 14.88(In.) Critical Depth = 14.64(In.) Pipe flow velocity = 6.77(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 7.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.810(Ac.) Runoff from this stream 10.015(CFS) Time of concentration 7.01 min. Rainfall intensity = 5.511(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10. 000 to Point/Station 11. OO~O **** INITIAL AREA EVALUATION **** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group A group B group C group D 0.000 0.000 0.000 1.000 Initial subarea flow distance Highest elevation = 54.200(Ft.) 1 500.000(Ft.) I I I I I I I I I I I I I I I I I I Lowest elevation = 48.300(Ft.) Elevation difference = S.900(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.71 min. TC = [1.8*(1.1-C)*distance(Ft.)A.5 )/(% slopeA(1/3)] TC = [1.8*(1.1-0.9500)*( SOO.000A.5)/( 1.180A(1/3)]= 5.71 Rainfall intensity (I) = 6.286 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 29.857(CFS) Total initial stream area = S.OOO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream point elevation 48.300(Ft.) Downstream point elevation 47.400{Ft.) Channel length thru subarea 250.000(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 38.695{CFS) Manning's 'N' = 0.020 Maximum depth of channel 1.000(Ft.) Flow{q) thru subarea = 38.695{CFS) Depth of flow = 0.617(Ft.), Average velocity 2.03S{Ft/s) Channel flow top width = 61.675(Ft.) Flow Velocity = 2.03(Ft/S) Travel time 2.05 min. Time of concentration = 7.76 min. Critical depth = 0.520(Ft.) Adding area flow to channel Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type Rainfall intensity 5.1S9(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 14.S06(CFS) for 2.960(Ac.) Total runoff = 44.363 (CFS) Total area = 7.96(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 8.·000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream point elevation 43.490(Ft.) Downstream point elevation 43.430(Ft.) Channel length thru subarea SO.OOO(Ft.) Channel base width 6.000(Ft.) Slope or 'Z' of left channel bank = 0.000 Slope or 'Z' of right channel bank = 0.000 Manning's 'N' = 0.013 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 44.363(CFS) Depth of flow = 1.748(Ft.); Average velocity Channel flow top width = 6.000(Ft.) Flow Velocity = 4.23(Ft/s) Travel time 0.20 min. 4.231(Ft!S) I I I I I I I I I I I I I I I I I I I Time of concentration Critical depth = 7.96 min. 1.188(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 8.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 7.960(Ac.) Runoff from this stream 44.363 (CFS) Time of concentration = 7.96 min. Rainfall intensity = 5.076 (In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 10.015 7.01 5.511 2 44.363 7.96 5.076 Qmax(l) 1. 000 * 1.000 * 10.015) + 1. 000 * 0.880 * 44.363) + 49.066 Qmax(2) 0.921 * 1. 000 * 10.015) + 1. 000 * 1.000 * 44.363) + 53.587 Total of 2 streams to confluence: Flow rates before confluence point: 10.015 44.363 Maximum flow rates at confluence using above data: 49.066 53.587, Area of streams before confluence: 1.810 7.960 Results of confluence: Total flow rate = 53.587(CFS) Time of concentration 7.958 min. Effective stream area after confluence 9.770 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 5.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered charinel Upstream point' elevation 43.430 (Ft.), Downstream point elevation 42.500(Ft.) Channel length thru subarea 775.000(Ft.) Channel base width 6.000(Ft.) Slope or 'Z' of left channel bank = Slope or 'Z' of right channel bank = Manning's 'N' = 0.013 0.000 0.000 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 53.587(CFS) Depth of flow = 1.998(Ft.), Average velocity = Channel flow top width = 6.000(Ft.) Flow Velocity = 4.47(Ft/s) Travel time 2.89 min. Time of concentration 10.85 min. Critical depth = 1.359(Ft.) 4.470(Ft/s) I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 8.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 9.770(Ac.) Runoff from this stream 53.587(CFS) Time of concentration = 10.85 min. Rainfall intensity = 4.157(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 13.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type 0.000 0.000 0.000 1.000 Initial subarea flow distance Highest elevation = 47.800(Ft.) Lowest elevation = 45.500(Ft.) 1 SOO.OOO(Ft.} Elevation difference 2.300(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.82 min. TC = [1.8*(1.1-C)*distance(Ft.)A.5}/(% slopeA(1/3}] TC = [1.8*(1.1-0.9500}*( SOO.OOOA.S}/( 0.460A {1/3}1= 7.82 Rainfall intensity (I) = 5.133 (In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 4.S3S(CFS} Total initial stream area = 0.930(Ac.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 14.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 4S.500(Ft.) End of street segment elevation = 44.390(Ft.) Length of street segment 190.000(Ft.} Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 19.000(Ft.) Distance from crown to crossfall grade break 17.S00(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side{s) of the street Distance from curb to property line 5.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.S00(Ft.) Gutter hike from flowline = 1.S00{In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 . Manning's N from grade break to crown = 0.0200 Estimated mean flow rate at midpoint of street = S.Sll'(CFS) Depth of flow = 0.441(Ft.), Average velocity = 1.803(Ft/s} Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 17.277(Ft.) Flow velocity = 1.80(Ft/s) Travel time = 1.76 min. TC = 9.58 min. Adding area flow to street I I I I I I I I I I I I I I I I I I I Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL a,rea type group A group B group C group D 0.000 0.000 0.000 1.000 Rainfall intensity 4.504 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C Subarea runoff 1.712 (CFS) for 0.400(Ac.) Total runoff = 6.247(CFS) Total area = 1.33 (Ac.) Street flow at end of street = 6.247(CFS) Half street flow at end of street = 6.247(CFS) Depth of flow = 0.458(Ft.), Average velocity = 1.858(Ft/s) Flow width (from curb towards crown)= 18.139(Ft.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 5.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 42.810(Ft.) Downstream point/station elevation = 42.500(Ft.) Pipe length = 62.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 6.247(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 6.247(CFS) Normal flow depth in pipe = 12.64(In.) Flow top width inside pipe = 16.46(In.) Critical Depth = 11.60(In.) Pipe flow velocity = 4.71(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) 9.80 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.330(Ac.) Runoff from this stream 6.247(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 9.80 min. 4.439(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 42.326 8.78 4.763 2 53.587 10.85 4.157 3 6.247 9.80 4.439 Qmax(l) 1.000 * 1. 000 * 42.326) + 1.000 * 0.810 * 53.587) + 1.000 * 0.897 * 6.247) + 91.314 Qmax(2) 0.873 * 1. 000 * 42.326) + 1.000 * 1.000 '!\" 53.587) + 0.936 * 1. 000 * 6.247) + 96.374 Qmax(3) 0.932 * 1. 000 * 42.326) + 1.000 * 0.903 * 53.587) + I I I I I I I I I I. ·1 I I I I I I 1. 000 * 1. 000 * 6.247) + = 94.088 Total of 3 main streams to confluence: Flow rates before confluence point: . 42.326 53.587 6.247 Maximum flow rates at confluence using above data: 91.314 96.374 94.088 Area of streams before confluence: 8.900 9.770 1.330 Results of confluence: Total flow rate = 94.088(CFS) Time of concentration = 9.797 min. Effective stream area after confluence End of computations, total study area = 20.000(Ac.) 20.000 (1!,c.) I I I I I I I ,~ I I I I I I I I I I I I PROPOSED 2-YR HYDROLOGY San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2001 Version 6.2' Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/27/03 -----------~-----------------------------------------------~------------ ********* Hydrology Study Control Information ********** K & S Engineering, San Diego, CA -SiN 868 Rational hydrology study storm event year is English'(in-lb) input data Units used English (in) rainfall data used Map data precipitation entered: 6 hour, precipitation (inches) = 1.200 24 hour precipitation(inches) 1.800 Adjusted 6 hour precipitation (inches) = 1.170 P6/P2~ _ 66.7% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 2.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group A group B group C group D 0.000 0.000 0.000 1.000 Initial subarea flow distance Highest elevation = 53.490(Ft.) Lowest elevation = 50.110{Ft.) ] 500.000{Ft.) Elevation difference 3.380{Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.88 min. TC = [1.8*(1.1-C)*distance(Ft.)A.5 )/{% slopeA(1/3)] TC = [1.8*{1.1-0.9500)*{ 500.000A .5)/{ 0.676A{1/3)]= 6.88 Rainfall intensity (I) = 2.509(In/Hr) for a 100.0 year storm Effective runoff coefficient.used for area (Q=KCIA) is C = 0.950 Subarea runoff = 4.005(CFS) Total initial stream area = 1.680(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 50.110{Ft.) Downstream point elevation 46.260(Ft.) Channel length thru subarea_ 380.000{ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 0.200 Manning's 'N' = 0.013 I I I I I " I I I: I I I I· I I I PROPOSED 2-YR HYDROLOGY San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2001 Version 6.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/27/03 ----------------------------------------------------~---------~---------********* Hydrology Study Control Information ********** K & S Engineering, San Diego, CA -SiN 868 Rational hydrology study storm event year is 2.0 English (in-lb) input data Units used English (in) rainfall data used Map data precipitation entered: 6 hour, precipitation (inches) = 1.200 24 hour precipitation{inches) 1.800 Adjusted 6 hour precipitation (inches) = 1.170 P6/P24 = 66.7% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type 0.000 0.000 0.000 1.000 Initial subarea flow distance Highest elevation = 53.490(Ft.) Lowest elevation = SO.110(Ft.) ] 500.000 (Ft.) Elevation difference 3.380(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.88 min. TC = [1.8*(1.1-C)*distance{Ft.)A.5 )/(% slopeA(1/3)] TC = [1.8*(1.1-0.9500)*( SOO.OOOA.S)/( 0.676A (1/3)]= Rainfall intensity (I) = 2.509{In/Hr) for a Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 4.005{CFS) Total initial stream area = 1.680 (Ac.) , 6.88 2.0 year storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 50.110(Ft.) Downstream point elevation 46.260(Ft.) Channel length thru subare~ 380.0Pg{Ft.) Channel base width = O.OOO(Ft.) Slope or 'Z' of left channel bank = 25.000 Slope or 'Z' of right channel bank = 0.200 Manning's 'N' = 0.013 I I I I I I I I I I I I I I I I I I I Maximum depth of channel 0.500(Ft.} Flow(q) thru subarea = 4.005(CFS} Depth of flow = 0.312(Ft.}, Average velocity 3.263{Ft/s) Channel flow top width = 7.865(Ft.} Flow Velocity = 3.26(Ft/s) Travel time 1.94 min. Time of concentration 8.82 min. Critical depth = 0.363(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 2.000 to Point/Station 3.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D ~ 0.000 0.000 0.000 1.000 8.82 min. [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 2.138 (In/Hr) for a 2.0 year storm used for sub-area, Rational method,Q=KCIA, C 14.235(CFS) for 7.010{Ac.) Total runoff = 18.240{CFS) Total area = 8.69(Ac.} 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 43.500(Ft.} 42.690(Ft.) Pipe length 142.00(Ft.) Manning's N = 0.013 18.240(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 30.00(In.} Calculated individual pipe flow 18.240(CFS) Normal flow depth in pipe = 16.55(In.) Flow top width inside pipe = 29.84(In.) Critical Depth = 17.37(In.) Pipe flow velocity = 6.57(Ft/s) Travel time through pipe = 0.36 min. Time of concentration (TC) = 9.18 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** SUBAREA FLOW ADDITION **** group A group B group C group D 0.000 0.000 0.000 1.000 Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration 9.18 min. Rainfall intensity Runoff coefficient Subarea runoff Total runoff = 2.083 (In/Hr) for a 2.0 year storm used for sub-area, Rational method;Q=KCIA, C 0.416(CFS) for 0.210(Ac.) 18.656(CFS) Total area 8.90(Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I I I I I I I I I I - I I I I I I I I Upstream point/station elevation = 42.690(Ft.) Downstream point/station elevation 42.500(Ft.) Pipe length 19.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 18.656(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow 18.656 (CFS) Normal flow depth in pipe = 14.20(In.) Flow top width inside pipe = 29.96(In.) Critical Depth = 17.55(In.) pipe flow velocity.= 8.16(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 9.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 8.900(Ac.) Runoff from this stream 18.656(CFS) Time' of concentration = 9.22 min. Rainfall intensity = 2.077(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Statio~ 6.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type ] Initial subarea flow distance 500.000(Ft.) Highest elevation = 53.490(Ft.) Lowest elevation = 49.000(Ft.) Elevation difference 4.490(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.26 min. TC = [1.8*(l.1-C)*distance(Ft.)A.5)/(% slopeA(1/31] TC = [1.8*(1.1-0.9500)*( 500.000A .5)/( 0.898A (1/3)]= Rainfall intensity (I) = 2.667(In/Hr) for a Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 3.370(CFS) Total initial stream area = 1.330(Ac.) 6.26 2.0 year storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 49.000(Ft.) Downstream point elevation 46.600(Ft.) Channel length thru subarea 350.000(Ft.) Channel base width O.Oqq(Ft.) Slope or 'Z' of left channel bank = Slope or 'Z' of right channel bank = 0.200 0.083 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.015 3.978(CFS) ( I I I I I I, I I I I I I I I I I I I Maximum depth of channel 0.500{Ft.) Flow(q) thru subarea = 3.978(CFS) Depth of flow = 4.849(Ft.), Average velocity 6.113(Ft/s) ! !Warning: Water is above left or right bank elevations Channel flow top width = O.142(Ft.) Flow Velocity = 6.11(Ft/s) Travel time 0.95 min. Time of concentration 7.21 min. Critical depth = 3.156(Ft.) ERROR -Channel depth exceeds maximum allowable depth Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D 0.000 0.000 0.000 1.000 [INDUSTRIAL area type Rainfall intensity Runoff coefficient Subarea runoff 2.434 (In/Hr) for a 2.0 year storm used for sub-area, Rational method,Q=KCIA, C 1.110(CFS) for 0.480(Ac.) Total runoff = 4.480(CFS) Total area = 1.8i(Ac.) '0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 43.650(Ft.) Downstream point/station elevation 43.430(Ft.) Pipe length 22.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 4.480(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 4.4BO(CFS) Normal flow depth in pipe = 8.21(In.) Flow top width inside pipe = 17.93(In.) Critical Depth = . 9.75(In.) Pipe flow velocity = 5.71(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 7.28 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.810(Ac.) Runoff from this stream 4.4BO(CFS) Time of concentration 7.28 min. Rainfall intensity = 2.420(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C 0.000 0.000 0.000 Decimal fraction soil group p " 1.000 [INDUSTRIAL area type ] 500.000(Ft.) Initial subarea flow distance Highest elevation = 54.200(Ft.) Lowest elevation = 48.300(Ft.) I I I I 'I I, I I I' I I I I I' I I I Elevation difference = 5.900{Ft.) Time of concentration calculated by the urban areas overland flow method (App x-C) = 5.71 min. TC = [1.8*{1.1-C)*distance{Ft.)A.5)/(% slopeA {1/3)] TC = [1.8*{1.1-0.9500)*( 500.000A.S)/{ 1.180A{1/3)]= Rainfall intensity (I) = 2.829 (In/Hr) for a Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 13.436(CFS) Total initial stream area = 5.000(Ac.) 5.71 2.0 year storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream point elevation 48.300{Ft.) Downstream point elevation ,= 47.400(Ft.) Channel length thru subarea 250.000(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel 17.413 (CFS) Manning's 'N' = 0.020 Maximum depth of channel 1.000(Ft.) Flow{q) thru subarea = 17.413 (CFS) Depth of flow = 0.457(Ft.), Average velocity 1. 666'(Ft/S) Channel flow top width = 45.716(Ft.) Flow velocity = 1.67(Ft/s) Travel time 2.50 min. Time of concentration = 8.21 min. Critical depth = 0.375(Ft.) Adding area flow to channel Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type Rainfall intensity 2.238 (In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 6.294(CFS) for 2.960(Ac.) Total runoff = 19.729(CFS) Total area = 7.96(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 8.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream point elevation = 43.490(Ft.) Downstream point elevation 43.430{Ft.) Channel length thru subarea 50.000{Ft.) Channel base width 6.000(Ft.) Slope or 'Z' of left channel bank = Slope or 'Z' of right channel bank = Manning's 'N' = 0.013 0.000 0.000 Maximum depth of channel 2.000{Ft.) Flow(q) thru subarea = 19.729(CFS) Depth of flow = 1.004 (Ft.), Average velocity Channel flow top width = 6.000(Ft.) , Flow Velocity = 3.28(Ft/s) Travel time 0.25 min. Time of concentration = 8.47 min. 3.275(Ft/S) I I I I 'I I I I I I I I I I I I I I Critical depth 0.695(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 8.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 7.960(Ac.) Runoff from this stream 19.729(CFS) Time of concentration = 8.47 min. Rainfall intensity = 2.194 (In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Total of 2 streams to confluence: Flow rates before confluence point: 4.480 19.729 Maximum flow rates at confluence using above data: 21.432 23.792 Area of streams before confluence: 1.810 7.960 Results of confluence: Total flow rate = 23.792(CFS) Time of concentration 8.468 min. Effective stream area after confluence 9.770 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 5.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream point elevation 43.430(Ft.) Downstream point elevation = 42.500(Ft.) Channel length thru subarea 775.000(Ft.) Channel base width 6.000(Ft.) Slope or 'Z' of left channel bank = Slope or 'Z' of right channel bank = Manning's 'N' = 0.013 0.000 0.000 Maximum depth of channel 2.000(Ft.) Flow(q) thru subarea = 23.792(CFS) Depth of flow = 1.138(Ft.), Average velocity Channel flow top width = 6.000(Ft.) Flow Velocity = 3.48(Ft/s) Travel time 3.71 min. Time of concentration 12.~8 min. Critical depth = 0.789(Ft.) 3.484(Ft/S) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I I I I I I I ,I I I Process from Point/Station B.OOO to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 9.770(Ac.) Runoff from this stream 23.792(CFS) Time of concentration = 12.1B min. Rainfall intensity = 1.736 (In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 13.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type 0.000 0.000 0.000 1.000 Initial subarea flow distance Highest elevation = 47.BOO(Ft.) Lowest elevation = 45.500(Ft.) ] 500.000(Ft.) Elevation difference 2.300(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.B2 min. TC = [1.B*(1.1-C)*distance(Ft.)"'S)/(% slope"'(1/3)] TC = (l.B*{1.1-0.9500)*{ 500.000"'.5)/{ 0.460"'(1/3)]= Rainfall intensity (I) = 2.310{In/Hr) for a Effective runoff coefficient used fo~ area (Q=KCIA) Subarea runoff = 2.041{CFS) Total initial stream area = 0.930 (Ac.) 7.B2 2.0 year storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 14.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 45.500(Ft.) End of street segment elevation = 44.390(Ft.) Length of street segment 190.000(Ft.) Height of curb above gutter flowline 6.0{In.) Width of half street (curb to crown) = 19.000(Ft.) Distance from crown to crossfall grade break 17.500(Ft.) Slope from gutter to grade break (v/hz) = 0.OB3 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side{s) of the street Distance from curb to property line 5.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0200 Estimated mean flow rate at midpoint of street = 2.4BO(CFS) Depth of flow = 0.347(Ft.), Average velocity = 1.491(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.616(Ft.) Flow velocity = 1.49(Ft/s) Travel time = 2.12 min. TC = 9.94 min. Adding area flow to street Decimal fraction soil group A = 0.000 I I I I, I I I I I I I I I I I I I I I Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type Rainfall intensity 1.978 (In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C Subarea runoff 0.752 (CFS) for 0.400(Ac.) Total runoff = 2.793 (CFS) Total area = 1.33(Ac.) Street flow at end of 'street = 2.793(CFS) Half street flow at end of street = 2.793(CFS) Depth of flow = 0.360(Ft.), Average velocity = 1.533 (Ft/S) Flow width (from curb towards crown)= 13.228(Ft.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 5.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 42.810(Ft.) Downstream point/station elevation 42.500(Ft.) pipe length 62.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 2.793 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 2.793(CFS) Normal flow depth in pipe = 7.65(In.) Flow top width inside pipe = 17.80(In.) Critical Depth = 7.61(In.) pipe flow velocity = 3.90(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 10.21 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.330(Ac.) Runoff from this stream 2.793(CFS) Time of concentration = 10.21 min. Rainfall intensity = 1.945 (In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 18.656 9.22 2.077 2 23.792 12.18 1. 736 . 3 2.793 10.21 1.945 Qmax(l) 1. 000 * 1. 000 * 18.656) + 1.000 * 0.757 * 23.792) + 1.000 * 0.903 * 2.793) + 39.192 Qmax(2) 0.836 * 1. 000 * 18.656) + 1. 000 * 1. 000 * 23.792) + 0.893 * 1. 000 * 2.793) :t 41. 876 Qmax(3) 0.936 * 1. 000 * 18.656) + 1. 000 * 0.838 * 23.792) + 1. 000 * 1. 000 * 2.793) + 40.209 I I I I I I I I I I I I I I I I I I I Total of 3 main streams to confluence: Flow rates before confluence point: 18.656 23.792 2.793 Maximum flow rates at confluence using above data: 39.192 41.876 40.209 Area of streams before confluence: 8.900 9.770 1.330 Results of confluence: Total flow rate = 40.209(CFS) Time of concentration = 10.209 min. Effective stream area after confluence End of computations, total study area = 20.000(Ac.) 20.000 (Ac.) I I I I J I I I I APPENDIX B (4. INLET DESIGN) I I I I I I I I I I I · J' ,@Pa.s&'.5flii-1-._. __ .;_) _____________ _ ,. 0;00 . = 1t~4--C.;::c€;;;;;..t~----------------_:__-­ " "LCJc-",~ lJq?,ee;r,t((?&I =-/0 I . . , La'--,,~ l/.!a..::...r.t~e;__.c..7#1~~~C&~~I_...oII"J:...=. ~=r;J......-:.4:..c:.11:W.;.;...~.:c;J.,:IIL~~_=~;;..:. r:rr:.;.r:. .. ---..Ioe~ ___ a"'_~_=_""""'M.;...:b"""_, ---- 1 __ '_-.;....· C!=--lS:fe~""'--"=cPt.~StV~·.u:.:1 M;;.c:~:........;:;..~_L~) _:K...;;;..2,",,-"'_3_· .' -=c~:.....:S--.s::;;)(a...' ...::,;-; ... '1. . ..;..Z=---...;...· --_I.l.~ '.-'e;c ~.-.-~~, ~ . tlSG (. : . .lL,er. (c(.~ Ot'5v;,v,,) . /110'06 No.. 7 II'&~Q~ ~!~C~~~1 _______________ _ -II · .La-~ ;;;U~Rl!.t6.s.fHJtJ #: /b II 'I' # tI..i&; LWtJ C!e.J reA. &A/~'-;=:b 0-:-qz ~r9JI"N'~ _ C>Lt:/If1.... ~e~/NG. (L )~ 10. ~...I~. /'Pr-,;;; S. /=r . I e~J ~---~----------~~----~- , rd.~~ ~ ==_ .. ~ -'?C. Ca:L.t;,47t. b4 ~&J tl t ~------------------ ~-I .) -. '- -1-1 I I I I I I I I I I I I I I I I I I I . APPENDIX C (5 . TABLES AND CHARTS) I 500r------,-------r------~----~r_y__,~~----_r------,_--~~70 400~------~------~------r_~~~r_#_~~+_~~--+__.~--~----~ ~--~------~----~------~------~------~----~~-----JO EXAMPLE: Given: Watercourse Distance (D) = 250 Feet Slope (5) = 0.5% Runoff Coefficient (C) = 0.70 Overland Flow Time (T) = 14.3 Minutes T = 1.8 (1.1.C)VO 3'{i OURCE: Airport Drainage, Federal Aviation Administration, 1965 FIGURE Rational Formula· Overland Time of Flow Nomograph 3-5 fMaVCounty Hydrogeology ManuaVOv,rI.nd Flow.FH8 l .- ·~10.0-r!-.~ -----IiIIIII ----- --90 1'0. I.... t'oo..i' r-... i , II' i! : ''', Directions for Application: ---, 8·0 i' ~ i"",,-~ I III III !I I d: (1) From precipitation maps determine 6 hr and 24 hr amounts . ~ r-.., .... ~, .... ~ II III III :j I ! 1 7.0 f'. f I ~ for the selected frequency. These maps are included in the r.... ~ ~~ .... "'~~ ... EQUATION I I: County Hydrology Manual (10, 50, and 100 yr maps included · , 6.0 "" .... · ., in the Design and Procedure Manual). .... "'~' ..... I-"' .... ~ I = 7.44 P6 0-0.645 ; I! i ~ • (2) Adjust 6 hr precipitation (if necessary) so that it is within 5.0 " ~ I = Intensity (in/hr) I ! I ~'" ~,... r-... .... ~ P 6 = 6-Hour Precipitation ( in) 1 m , the range of 45% to 65% of the 24 hr precipitation (not 4.0~ D = Duration (min) , 'I applicaple to Desert). .... ~..... "'r-., · II (3) Plot 6 hr precipitation on the right side of the chart. ~.... ~r... l"-I I I i hi! , (4) Draw a line through the point parallel to the plotted lines. 3.0 r-., I I I II' ..... I , I (5) This line is the intensity-duration curve for the location : .......... ~ I I I ' . I being analyzed. I I "'1'00. , , I ..... II I 2.0 ""1'0. 'I'- ..... ' ~{ I I I Application Form: ..... r-. ~ I ....... ~ ! .. ~ I C1I (a) Selected frequency ______ year :i: "C' I"r-. [' ~r... ~ h" ~ '\1 g :::l ~ (b) P = in P = ---= ~ (2) 0 t...~ r-., I I i ~ I .... ~ :... ... 1""" " 6 ------., 24 ______ 'P -----0 It' ~ ... ",,~ 1·'1 24 CD ~"-' I II> (c) Adjusted P6(2) = ______ in. s:: :;. .,", o. g1.0 ' ' 60 '0 I r:-... I'-N !f :r.'h . ;:;: ~0.9 ' 5.5!!!. (d) tx = _____ min. : I .... I"'~ IRI : ,-,. 5.0 g. ·t:!0.8 ~ I-N.!. '. '!'Ij 4.55-CD (e) I = _____ in.lhr. EO.7 , " ... r0-II :I~!! 4.0 [ I 0.6 ~ I .... IF 11 I II, 3.5~ Note: This chart replaces the Intensity-Duration-Frequency I I~' 0.5 curves used since 1965. II .... II r":'. i ·1= i 3.0 II I~I 0.4 h .. · " : ,', 2.5 . 1. i.1:5.1~2~ .. t·2.5.J·(.r3:5··j-·4-t·4:(:~" 5 ; 5:5·:._6 ~ i ~ I~I. P6 ..... i Duration I iIi I I i I I: I . I I I I ! I ' .... , ! I I : 1'1 2.0 ...... "-5 I !. " 2.63 13.9S'S.2?f 6 .. S9r.901_9.22.10.54i 11.86, 13. 17P,U9; 15.81 0.3 ... 7 .2~~~.13~~~1~:~~~_~!~ .~:~ !!42L8.48-!--9.54 • ~0·60p!·~n2.~2 -10 .1.68 j2.5313.3714.21 5.0515.90' 6.74 7.58.8.42 19.27,'0.11 .' 1.5 . '.' "·,5 1.30 : 1.95 2.59 3.24l3.B914.54J.5 .. 1.9 .. 5.84.1 6.49 i 7.131 7.78 .. 20 1.08!,.6212.,5! 2.6913.231.3:771.4.3114.85 ! 5.39 I 5.93 I 6.46 0.2 25 .0.93 '1.40 1.87l2.33 rOO13.27i 3.73 i 4.20 , 4.6715.,315.60 30 .0.83 1.24 1.66! 2.07 2.49,2.9013.32 3.73.4.15 4.!Sa 4.98 • • I 1.0 ... 40 0.69 1.03 1.381,.72 2.0712.41,2.76 3.10: 3.4513.7914.13 , . .. .. 50 0.60 0.90 1.19 1.491'.79i2.09 .2.39 2.6~;2.98 3.28 t3.58 ,. 80 0.53 0.80 1.06 1.33 1.59j 1.86 2.12 2.39 12.65,2.92 3.18 , · ,. · .... ··10 .... , 0" 0.82 "82 '~I'.<3 '.63 , ... : 10' l .... 1 , ... I I I · " "--'-·'20 .0:34. 0.51 0,68 0.8~ .1.02 .1.19.1.36 1.53 .•. 1.70 1.87 2.04 , i I I !, it' 150 0.29 0.44 0.59 0.73 0.88 1.03 1.18 1.32 I 1.47 1.62 1.76 , I I : t II --1eO -9:2&. 0,39 0,52 0.65 0.78\0.91 1.04 1.18 i 1.31. 1.44 ".57 0.1 --·· .. -240 5 6 7 8 910 15 20 30 40 50 1 2 3 4 5 6 --.. _9..~2_ 9.~~ .. O:~~ ~~ .. q!~ ,.qJ.~ .~:87. O .•. j .1·:l'''~ 11 .. 1.30 Minutes Hours .... __ .. 3ij 1-~:19 ... 0,2' 9:.~ _O.~!_ ~:~h~~'!8 .O,rs. 0.85 to.14 .1.:~ .U~. ; 0.17 10.25 0.33 0.42 0.50.0.58 0.87 0.75· 0.14 0.912 1.00 Duration FIGURE Intensity-Duration Design Chart· Template 3-1 HilzMatlCounty tiyc!rOQeOloQv ManuaUlnt Our O.slan Chart.FHB :('. \. I""... ~ ........ /'..--'. ------------------- ""' ... , > I '-.J Cv .... , 'f OF' SAN D lEGO DEPARTMENT OF SANITATION & FLOOD corrrRoL 45' \. 11!~IJ!\{~1 '-,;'" { _ i I 30' I I ..... 1 ~ II-: I 15' : I ~~ '{,' ,r. 330 45 ' I,' {. 1-----_. I ,i 0 .. ~ IdJ.ii A ----_ ..... -... , .... ---. Pres'" I .. d by u.s. OEPARTMENlr OF COMMERCE HATfONAL OCEANIC AND AT'iOSpnERJC ADMINISTRATION SPECIAL STUDIES DRA!fCH. OFFICE OF nfuRoLoCY. NATIONAL \\'EATHER SERVICE 30'-1 I -... -1 'rr I· 118 1 45 ' 30' 15 ' 1170 45' 30' IS' 116- ,-' -1IIil.----COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL 45 1 30' 1,' .33-~ \\, ,--- 45' Pre,._",,, br u.s. DEPARTMENlr OF COMMERCE NATIONAL OCa-:A~IC AHO Al·:.tOS1'IIERIC AO)IIKI$TRAT10N SP~CJAL STUDIES BRANCH, OffiCE OP' "10ROLOCY, NATIONAL WEATIIE)'t SERvicE --'.- 30 1 -i,--------I~-----·-+I------~~----~~------4-------~------~ ,... >-4 t )0. • 'N . nne 11!i ' )0' I r,., 117-"~i ' JO' J!i' 116-. I I I I I I I I I I I I \ l I I Average Values of Roughness Coefficient (Manning's n) Roughness Type of Waterway Coefficient (n) 1. Closed Conduits (1) Steel (not lined) Cast Iron Aluminum Corrugated Metal (not lined) Corrugated Metal (2) (smooth asphalt quarterlining) Corrugated ~tetal (2) (smooth asphalt half lining) Corrugated Metal (smooth asphalt full lining) Concrete RCP Clay (sewer) Asbestos Cement Drain Tile (terra cotta) Cast-in-p1ace Pipe Reinforced Concrete Box 2. Open Channels (1) a. Unlined Clay Loam Sand b. Revetted Gravel Rock Pipe and Wire Sacked Concrete c. Lined Concrete (poured) Air Blown Mortar (3) Asphaltic Concrete or Bituminous Plant Mix d. Vegetated (5) Grass lined, maintained Grass and Weeds Grass lined with concrete low flow channel , :.;. Pavement and Gutters (1) Concrete Bituminous (plant-mixed) 0.015 0.015 .021 0.024 0.021 0.018 0.012 , O. 012 0.013, 0.011 0.015 0.015 0.014 0."023 0'.020 0.0:';0 0.040 0.025 0.025 0.014 0.016 0.018 n--... .:>!l .045 .032 O.OlS 0.016 ArpE~DIX XV! ~ I I , I I I I I I I J I I I I I I ,I, . \ '-: t I RUNOFF COEFFICIENTS (RATIONAL METHOD) PEYELOPED AREAS (URBAN) Land Use Residential: Single Family Multi-Units 'Mobile Homes Rural (lots greater than 1/2 acre) Commercial 121 SO% Impervious Industrial 121 90% Impervious Coefficient, C Soil Group 111 .40 .45 .50. .55 .45 .50 .60 .70 .45 .50 .55 .65 I .30 .35 .40 .45 .70 .75 .SO .S5 .80 .85 .90 .95 , NOTES: 111 121 Soil Group maps are available at the offices of the Department of Public Works. Where actual conditions deviate significantly from the tabulated imperviousness values of SO% or 90%, the values given for coefficient C, may be revised by mUltiplying SO% or 90% by the ratio of actual imperviousne~s to the tabulated imperviousness. However, in no-case shall the final coefficient be less than 0.50. 'For example: Consider 'commercial property on D soil group. Actual imperviousnes~ = 50% Tabulated imperviousness = SO% Revised C = §..Q. x: 6.S5 = 0.53 SO IV-A-9 APPENDIX IX Updated 4/93 &.at F. 'rlllr -and Horael Williamsllni I I I ,-... -.. HANDBOOK OF :1 ." -. -I I ,I I I I ~I I I I I- I- I I- I S, . 1~1' .... '~'" .. I " " • -0° . ; 'Table 7-14. ! Values of K' for Circular ('hann('ls in Hu' J4'ormula 1 K' I ' D I -.00 d --_. .0 .1 .00967 ., -.... .P4.0G .3 :0907 .4 .1561 .5 .232 .6 .311 .7 .388 .8 .456 .9 .494 . 1.0 .463 . "" :'., Q = -d~~S'-': " D -depth of wawr d -diaulC!wr of channel .01 • 02 , .00007' .00031 .0118 .04"8 .0966 .1633 .239 .319 :395 .458 ' .496 • • • • ,- .. .0142- ;().I92 .1027 .1705 .247 .327 .402 .463 .497 • .03 .04 .05 _.--- .0007" '.00 138· .00222_ .OU.7 .01 !J5 .0537 .0585 .1089 .1153 .1779 .1854 .255 .263 .335 .343 ."OU .416 ,.468 .473 .498 .498 .0225 .0634 ' .1218 .1929 .271 .350 .422 .477 .498 • • j . ,- . .06 _ .07 .08 .09 - .Q0328 .00455 .00604' .00775 .0257 .0291 ' .0327 .03HG .0686 .0738 .07U3 .0849 ' .1284 .1352 .1420 .14UO .2005 .2082 .2160 .2238 .279 .287 .295 ~303 .358 .366 .373 .380 .429 .435 .441 .4-&7 .481-.485 .4SS .-&91 .496~·'" .49-& .• 489 ... 83 -- , I i • I • '-.1 .1 .1 .1 .1 I .." til a _. --' a O. a ell -..... -'. til ':\ ·1 f ,.. .. rguana --?'~ EstadoS l)1ktlS MexicanosJBaja Califom1a M e X i C 0 3 'tJ CD ., III (") o c :s ... '< .... ~. County o~ San. Diego Hydrology Manual ... ~'~~~. "~m~\ I~~). :; 'J ,~ ~·,:r..t~. ,k~ 'J .:.~ /~ ~.I . ' ..• ' l.i.~'\:\~ Rainfall Isopluvials 2 Year Rainfall Event.-6 HOU'S /"'/ Isopluvial (inches) Map Notes ~ Prqjedioo. Zooe6. NADa3 CreM!on Dale: .AIle 22. 2001 OOT TO BE USED FOR DESIGN CAlCULATIONS Q o 7.5 L__ --::::-J MlES amecP .. ................ - \ '\ ~< \'~--"'\ ',.:;;:t' ~ . • ", I ) \ .~ ',' " I ~\ \,) \ \ \ \ \ \ I ,I I I I I APPENDIX D I (6. HYDROLOGY MAP) I I I I I I I I 'I I I I