Loading...
HomeMy WebLinkAboutCT 02-29; CASA LA COSTA; DRAINAGE STUDY; 2004-02-27I I I I I I I I I I I I I I I I I I I PLANNING ENGINEERING SURVEYING IRVINE LOS ANGELES RIVERSIDE SAN DIEGO HUNSAKER &ASSOCIATES S A N D I E G 0, I N C. DRAINAGE STUDY for VILLAS DE LA COSTA c~ 02-2'( City of Carlsbad, California Prepared for Tri-Mark Pacific Casa La Costa, LLC 613 West Valley Parkway Suite 200 Escondido, CA 92025 W.O. 2091-37 February 27, 2004 Hunsaker & Associates San Diego, Inc. DAVEHAM~e ~~ LEx w1LuMAN R ~artin R.C.E. ALISA VIALPANDO p ~ t M ' 10179 Huennekens St. San Diego, CA 92121 (858) 558-4500 PH (858) 558-1414 FX www.HunsakerSD.com lnfo@HunsakerSD.com roJec anager c., 02,-1-9 RECEIVED APR O 8 lDD4 ENGINEERING DEPARTMENT OA:oa h:\reports\2091\37\a04.doc w.o. 2091·37 2/24/2004 8:50 AM ( , / I I I I I I I I I I I I I I I I I I I Drainage Study for Villas De La Costa ·TABLE OF CONTENTS Executive Summary Introduction Existing Condition Proposed Condition Summary of Results Conclusion Me,thodology ·, Rational Method Hydrologic Analysis Storm Drain System Analysis 10-Year, 6-Hour lsopluvial 100-Year, 6-Hour lsopluvial . · 10-Year Rational Method Hydrologic Outpu~ Existing Condition AES Output Developed Condition AES Output 100-Year Rational Method Hydrologic Output Existing Condition AES Output Developed Condition AES Output Detention Basin ~nalysis Stage-Storage-Discharge Calculations Inflow Hydrographs · HEC-HMS Output Storm Drain Analysis 100-Year StormCAD Output Inlet Sizing Hydrology Maps CHAPTER II Ill IV V VI VII (Pocket) OA:oa h:lreports\2091137\a04,doc w,o, 2091-37 2/24/2004 8:40 AM I I I I I I I I I I I I I I I I I I I Drainage Study for Villas De La Costa EXECUTIVE SUMMARY Introduction 1he Villas De La Costa site is located in Carlsbad, California. The site is located at the southwesterly corner of Levante Street and La Costa Avenue, bounded by Cantella Street to the west and Rancho Santa Fe Road to the southeast. The .purpose of this drainage report will include the following: • 100-Year Hydrologic Analys~s • Detention Basin Analysis • 100-Year Storm Drain Analysis • Inlet Sizing VICINITY MAP · NTS Existing Condition In pre-developed conditions, the Villas De La Costa site naturally sheet flows to the west over the curb and down Cantella Street to the south into an inlet on the cul-de- sac that eventually discharges into an unnamed tributary of Encinitas Creek. Prior to development the site is entirely natural, except for 0.34-acres of which is an existing fire station (to be relocated after completion of a new fire station). OA:oa h:lreports\20911371a04.doc w.o. 2091-37 2/24/2004 8:40 AM I I I I I I I I I I I I I I I I I I I Drainag~ Study for Villas De La Costa Proposed Condition Developmenf of the Villas De La Costa will include the construction of 39 single- family housing units along. with the associated streets, sidewalks and internal storm · drainage systems including an underground detention basin and storm water quality treatment BMP (Best Management Practice). The detention basin is proposed to mitigate the· increase in the tO.-year and 100-:year runoff due to development of the site. Runoff from the site will be conveyed in a proposed storm drain system that drains the site to a storm water quality treatment unit and outlets at the intersection of proposed Street A-1 and Cehtella Street. The runoff drains down Centella Street ·into an inlet in the cul-de-sac, eventually discharging_ into an unnamed tributary of Encinitas Creek. Summary of Results For the hydrology portion of this report, AES software was used to calculate flow rates for the existing and developed condition 10-year and 100-year storms(see Chapter 3). The 100-year developed condition analysis was used to size all storm drain facilities(see Chapter 4). The existing condition flow was modeled for the detention basin to mitigate the flow increase Created by development of the site. In the existing conditions model, a runoff coefficient of 0.45 was assumed for natural areas and 0.95 was assumed for the existing fire station. For the developed condition analysis, a runoff coefficient of 0.60 was assumed based on the San Diego County Hydrology Manual corresponding to medium density residential land use. The results of the hydrology studies have been summarized in the table below: Table 1 Summary of Hydrology 10-Year Existing Condition Flow· Area Tc Location (cfs) (acres) (min) Centella Outlet 5.90 4.55 13.26 *Detention Basin Levante Outlet . **Total 5 .. 90 4.55 *Excludes effect of detention basin. Increase in 1 0-year flow = Flow into detention basin = Flow out of detention basin = Reduction of flow due to basin = 10-Year Developed Condition Flow Area Tc {cfs) (acres) (min) 6.50 3.95 12.00 4.40 2.56 11.76 1.10 0.60 12.20 7.60 4.55 1.7 cfs 4.4 cfs 2.5 cfs 1.9 cfs ok === **Addition of Gentelia and Levante Outlets, Detention Basin is included in the Gentelia Basin. OA:oa h:\reparts\2091\37\a04.doc w.o. 2091-37 2/24/2004 8:40 AM I I I I I I I I I I I I I I I I I 11 I - Drainage Study for Viii.as De La Costa Table 1 Summary of Hydrology .100-Year Existing Condition 100-Year Developed Condition Flow Area -Tc Flow Area Tc Loc~tion (cfs) (acres) (min) (cfs) (acres) (min) Centella Outlet 8.70 4.55, 13.30 10.40 3.95 11.80 Detention Basin -6.90 2.56 11.40 Levante Outlet 1.70 0.60 12.20 **Total 8.70 4.55 · 12.10 4.55 Increase in 100-year flow = 3.4 cfs Flow into detention b·asin = 6.9 cfs Flow out of detention basin = 3.3 cfs Reduction of flow due to basin = 3.6 cfs ok *Excludes effect of detention basin. **Addition of Gentelia and Levante Outlets, .Detention Basin is included in the Gentelia Basin. The design of the detention basin is based off of a 9-inch orifice inside of a modified Type I _catch basin just downstream of an 48-inch storm pipe. The orifice forces a hydraulic contraction causing the hydraulic grade line to rise and the peak flow is · attenuated due to the storage in the oversized 48-inch storm pipe. The orifice passes the 10-year and 100-year flows with water surface elevations well below the rim e_levation of the Type I catch basin (for details, see Chapter 5). The bolted grate on top of the Type I catch basin serves as an emergency spillway should the orifice get clogged. The excess flow woald pe immediately intercepted just downstream in another Type I catch basin. Furthermore, a positive overflow path has been designed to convey the runoff in its natural drainage course between the lots and out to Gentelia Street without flooding any buildings, should the system somehow fail to convey the storm water . . The construction of the hydrograph into the detention basin for routing was based on the Rational Hydrograph Procedure per the San Diego County Hydrology Manual. The results have been summarized in spreadsheet in Chapter 5. This hydrograph was routed through the basin usiAg HEC-HMS to determine a maximum water surface elevation. The 10-year and 100-year water surface elevations in the modified Type I catch basin are 274.70 and 276.40 respectively, well below the rim elevation of 281.05. Above ground, the detention basin doubles as an active recreation area. Therefore, the construction and maintenance of the basin needs to strictly adhere to the plans in order for the basin to operate as designed. OA:oa h:\reports\2091\37\a04.doc w o. 2091-37 2/24/2004 8:40 AM I I I I I I I I I ·I I .I I I I I I I I Drainage Study for Villas De La Costa The private storm drain system was analyzed with the StormCAD software (see Chapter 6) with starting downstream hydraulic grade line was based on the calculated water surface elevation in the detention basin where applicable, otherwise free outfall was assumed. The site contains one type B inlet and five (5) grated- inlets which were sized in accordance with the City's methodology for inlets on- _grade (see Chapter 7). · Perthe Regional Water Quality Control Board Order No. 2001-01, a proposed storm water quality treatment unit is proposed near the. intersection of Centella Street and Street 'A-1' adjacent to Lot 5. This proposed unit has been sized to effectively treat the first flush requirements for the site. Conclusion The proposed storm drain facilities will effectively convey the 100-year flow through the site due to proper design meeting regional standards. Furthermore, the increase in the 10-and 100-year flows due to development of this site _will be mitigated by the detention basin if constructed per pian. OA:oa h:lreports\20911371a04.doc w.o. 2091-37 2/24/2004 8:40 AM I I I I I I I I I I I I I I I I I· I I Drainage Study for Villas De La Costa . CHAPTER2 · Methodology OA:oa h.\reparts\20911371a04.doc w.o. 2091-37 212412004 8:40 AM I I I I I I I I I I I I I I I I I I I Drainage Study for Villas De La Costa_ METHODOLOGY Rational Method Hydrolcgic Analysis Computer Software Package -AES-99 Design Storm -100-year return interval· Land Use -Single-family residential onsite . . Soil Type -Hydrologic soil group D was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer at or near the surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission. Runoff Coefficient-In accordance with the County of San Diego standards, rural or undeveloped areas are assigned a runoff coefficient of 0.45, and single family medium density residential areas are assigned a runoff coefficient of 0.60. Rainfall Intensity -Initial time of concentration values for onsite areas were determined using the County of San Diego's overland flow nomograph for urban areas. Downstream Tc values are determined by adding the initial subbasin time of concentration_ and the downstream routing time. Intensity values were determined from the Intensity-Duration-Frequency curves from the City of San Diego's Drainage Design Manual. Method of Analysis-The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expresse_d by the equation: Q = CIA, where: Q = The peak runoff rate in cubic feet per second at the point of analysis. C = A runoff coefficient representing the area -averaged ratio of runoff to rainfall intensity. I = The time-averaged rainfall intensity in inches per hour corresponding to the · time of concentration. A = The drainage basin area in acres . . To perform a node-link study, the total watershed area is divided into subareas which disoharge at designated nodes. OA:oa h:\reports\2091\37\a04.doc w.o. 2091-37 2/24/2004 8:40 AM I I I I I I I I I I I I I I I I I I I Drainage Study for Villas De La Costa . The procedure for the subarea summation model is as follows: (1) Subdivide the watershed into an initial subarea (generally 1 lot) and subsequent subareas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each subarea. (2) Estimate an initial Tc by using the appropriate nomograph or overland flow velocity ~stimation. · (3) Using the initial Tc, determine the corresponding values of I. Then Q =CI A. (4) Using· Q, · estimat~ the travel time between this node and the next by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function <;>f the revised time of concentration) The nodes are joined together by .links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-99 computer subarea m~nu is as follows: SUBAREA HYDROLOGIC PROCESS 1. Confluence analysis at node. 2. · Initial subarea analysis (including time of concentration calculation). 3. Pipeflow travel time (computer estimated). 4. Pipeflow travel time (user specified). 5. Trapezoidal channel travel time. 6. Street flow analysis through subarea. 7. User -specified information at node. 8. Addition of subarea runoff to main line. 9. V-gutter flow through area. 1 O. · Copy main stream data to memory bank 11. Confluen.ce main stream data wi~h a memory bank 12. Clear a memory bank At the confluence point of two or more basins, the following procedure is used to combine peak flow rates· to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape; .(1). If the collection streams have the same times of concentration, then the Q values are directly summed, (2). If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows: OA:oa h:\reportsl2091137\a04.doc w.o. 2091-37 2124/2004 8:40 AM I I I I I I I I I I I I I I I I I I I Drainage Study for Villas De La Costa (i). . The most frequent case is where the collection stream .. with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities. · (ii). In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is . · adjusted by a ratio of the T values. Op= Qb + Oa (TblTa); Tp = Tb Storm Drain Hydraulic Analysis Computer Software -StormCAD- Design Sto~m -100-Year Return Interval Storm drain systems in this analysis were sized to prevent street flooding and to predict outlet velocities to receiving channels. The StormCAD computer program, developed by Haested Methods, was used to predict hydraulic grade lines, pipe flow travel times, and velocities .in the storm drain systems. Required input includes the p·eak flowrate at each inlet, upstream and downstream inverts, pipe lengths, and rim elevations. · Flow calculations are valid for both pressure and varied flow situations, including hydraulic jumps~ backwater, and drawdown curves. The gravity network solution is solved using a numerical model that utilizes both the direct step and standard step gradually varied flow methods. Junction losses are modeled using the standard method, which calculates structure headloss based on the structure's exit velocity (velocity at the upstream end of the downstream pipe). The exit velocity head is multiplied by a user-entered coefficient to determine the loss according to the following formula ... Hs = K * Vo2 /2g Where Hs = structure headloss (ft.) K = headloss coefficient Vo= exit pip~ velocity (ft/s) G = gravitational acceleration (ft/s2) Typical headloss coefficients used for the standard method range from 0.5 to 1.0 depending on the number of pipes meeting at the junction and the confluence angle. OA:oa h:\reportsl2091\371a04.doc W,O, 2091-37 2/24/2004 8:40 AM I 0 0/)crj -~ § Q ro I §~ Cl] 5'i3 4-( 0 I o_ €~ I g~ u ~ I'.! .!:! = Q :: = '<ii' ...:::: \Q • Q) §, ' .c " ... C:. ~ = :::, ... ';; ::::: ~ > ::, -g, C. .is :s. _g ~ = c:.::: ·; ci:: .... = ~ 0 ,..., I I I I I I I I I I I I I I I ' .111111 ------------------·-- County of San Diego Hydrology Mar,.ual Rainfall Isopluvials · 100 Year Rainfall Event -6 Hours lsopluvial (inches) DPW ~~GIS 0.o.Jr.T.t"foll';~~ ~~"""""""'..: ...... s""4..>: I I I I I I I I I I I I I 1-· I II I I I prainage Study for Villas De La Costa . · · . CHAPTER 3 10-Year Rational· Mett,od Hydrologic Output OA:oa h:lreportsl2091\37\a04.doc w.o. 2091-37 2/24/2004 8:40 AM I 1· I I I I I I .I I I I I I -1 I I I I *************************************i************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1239 Ana_lysis prepared by: Hunsaker & Associates San Diego, Inc. 10179 Huennekens Street San Diego, California (619) 558-4500 Planning Engineering Surveying ******i<**********·********* DESCRIPTION OF STUDY ************************** * CASA LA COSTA * * 10-YEAR EXISTING CONDITION HYDROLQGIC ANALYSIS * * W.O.#2091-37 FILE NAME: H:\AES99\2091\37\EXIST10.DAT TIME/DATE OF STUDY: . 14 :41 .9/ 9/2003 * ---------: ---------------------------------~-------------------------------- USER SPECIFIED.HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CR~TERIA USER SPECIFIED STORM EVENT(YEAR) = 10.00 6-HOUR DURATION PRECIPITATION (INCHES) ~ 1.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.90 SAN DIEGO HYDROLOGY MANUAL 11 C11 -VALUES USED NOTE: ONLY PEAK GONFLUENCE VALUES CONSIDERED **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============·===============================, ===· =========================== SOIL CLASSIFICATION IS 11D11 RURAL DEVELOPMENT RUNOFF COEFFICIENT= .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED= 13.26(MINUTES) INITIAL SUBAREA FLOW-LENGTH= 625.00 UPSTREAM ELEVATION= DOWNSTREAM ELEVATION= 310.00 272. 00 ELEVATION DIFFERENCE = 38. 00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.668 SUBAREA RUNOFF(CFS) = 5.05 TOTAL AREA(ACRES) = 4.21 TOTAL RUNOFF(CFS) = 5.05 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE= 8 I I I I I I I I I I I I I I 1· I I I I ---------------------------------------. --------------------------------- >>>>>ADDITION OF SUBARE:A TO MAINLINE PEAK FLOW<<<<< ===========·====== -========================================================= 10 YEAR RAINFALL INTENSITY(INCH/HOUR}·;., 2.668 SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF SUBAREA AREA(ACRES} = 0.34 TOTAL AREA (ACRES} = 4. 55 - TC(MIN} = 13.26 COEFFICIENT= .9500 SUBAREA RUNOFF(CFS}. = TOTAL RUNOFF(CFS} = 0.86 5.92 ----------------------------------------------------------------------------END OF STUDY SUMMARY: PEAK FLOW RATE(CFS} = TOTAL AREA{ACRES} = 5.92 Tc{MIN.} = 4.55 '13.26 ===----=============-------===--=--------~-------============-------======== ENP OF RATIONAL METHOD ANALYSIS 1 I I I I I I I I I I I I I I I I I I I ***********i**************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Referen~e: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-e99 Adva·nced .Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego, Inc. 10179 Huennekens Street San Diego, California (619) 558-4500 Planning Engineering Surveying ***"./;**'!<******************* DESCRIPTION OF STUDY ***·*********************** * CASA LA COSTA * * 10-YEAR DEVELOPED CONDITION HYDROLOGY ANALYSIS * * W.0.#2091-37 * ******************************************~******************************* FILE NAME: H:\AES99\2091\37\DEV10.DAT TIME/DATE OF STUDY: 16:41 10/8/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DI.EGO M}\NUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 10.00 6-HOUR DURATION PRECIPITATION (INCHES.) = 1. 900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE:·ONLY PEAK CONFLUENCE VALUES CONSIDERED ******************~********************************************************* FLOW PROCESS FROM NODE 10. 00 TO NODE 11.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ================================= ·========================================== *USER SPEC.IFIED ( SUBAREA) : MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW~LENGTH = 190.00 UPSTREAM ELEVATION= 289.90 DOWNSTREAM ELEVATION= 286.85 ELEVATION DIFFERENCE= 3.05 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.595 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.084 SUBAREA RUNOFF(CFS) = 0.44 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) = 0.44 **************************************************************************** FLOW PROCESS FROM NODE 11. 00 TO NODE 14.00 IS CODE= 3 I I I I I I I I I I I I I I I I I I I I >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =====================================-===-============-===================== ESTIMATED.PIPE DIAMETER(INCH) INCREASED TQ 1'8.000 DEPTH OF FLOW IN 18 .. 0 INCH PIPE IS 3 .1 INCHES PIPEFLOW VELOCITY(FEET/SEC.). = 2.2 UPSTREAM NODE ELEVATION= 281.58. DOWNSTREJ¥,'I NODE ELEVATION= FLOWLENGTH (:FEET) = 24. 00 ESTIMATED PIPE DIAMETER(INCH) PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME (MIN.) = 0 .18 281.46 MANNING' S N ,,; 0 . 013 = 18.00 NUMBER OF PIPES 0.44 TC(MIN.J = 10.77 1 **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE= 1 . . ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ========== ·================================================================= TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR. INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.77 RAINFALL INTEN$ITY(INCH/HR) ·= 3.05 TOTAL STREAM AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) AT CONFLUENCE= 0.44 **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE= 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ==================---------------------------------------------------------- *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW-LENGTH= 260.00 UPSTREAM ELEVATION= 297.20 DOWNSTREAM ELEVATION= 290.59 ELEVATION DIFFERENCE= 6.70 URB!IN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.585 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 10 YEAR RA,INFALL INTENSITY(INCH/HOUR) = 3.086 . SUBAREA RUNOFF(CFS) = 0.96 TOTAL AREA (ACRES) = 0 . 5 2 TOTAL RUNOFF (CFS) 0 . 9 6 **•************************************************************************* FLOW PROCESS FROM NODE 13. 00 TO NODE 14.00 IS CODE= 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< =======================·==========-======, .. ======================---===---- UPSTRE~ ELEVATION= 290.50 STREET LENGTH(FEET) = 150.00 STREET HALFWIDTH(FEET) = 14.00 DOWNSTREA,M ELEVATION= 286.85 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.50 INTERIOR.STREET CROSSFALL(DECIMAL) = 0.020 I I I I I I I I I I I I I I I I I I I OUTSIDE STREET CROSSFALL(DEC:CMA.L) = 0.083 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF= 1 **TRAVELTIME COMPUTED USING.MEAN FLOW(CFS) = 1.53 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.26 HALFSTREET FLOODWIDTH(FEET) ~ 6.58 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.77 PRODUCT OF DEPTH&VELOCI~Y = 0.71 STREETFLOW TRAVELTIME(MIN) = 0.90 TC(MIN) = 11.49 . 10 YEAR RAINJ)'ALL INTENSITY (INCH/HOUR) = 2·. 927 *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF .COEFFICIENT = . 6.000 SUBAREA AREA(ACRES) = 0.64 SUBAREA RUNOFF(CFS) = 1.12 SUMMED AREA(ACRES) = 1.16 TOTAL RUNOFF(CFS) = 2.09 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH('FEET) = 0.27 HALFSTREET FLOODWIDTH(FEET) = 7.36 FLOW VELOCITY(FEET/SEC.) = 3.16 DEPTH*VELOCITY = 0.86 **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO.NODE 14.00 IS CODE= >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS.CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.49 RAINFALL INTENSITY(INCH/HR) = 2.93 TOTAL STREAM AREA(ACRES) = 1.16 PEAK-FLOW RAT~(CFS) AT CONFLUENCE= 2.09 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 0.44 10.77 3.051 2 2. 09. 11.49 2.927 AREA (ACRE) 0.24 1.16 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FOR.M1ll,A USED FOR 2 STREAMS .. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER ( CE:S) (MIN.) ( INCH/HOUR) 1 2.45 10.77 3.051 2 2.51 11.49 2. 927 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.51 Tc(MIN.) = 11.49 TOTAL AREA(ACRES) = 1.40 1 **************************************************************************** FLOW PROCESS FRQM NODE 14,00 TO NODE 30.00 IS CODE= 3 I I I I I I I I I I I I I I I I ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.7 INCHES PIPEFLOW VELOCITY (FEET/SEC.) = 3. s· UPSTREAM NODE ELEVATION= 281.13 DOWNSTREAM NODE ELEVATION= 280.50 FLOWLENGTH(FEET) = · 141.04 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(fNCH) = 18.00 NUMBER OF PIPES= 1 PIPEFLOW THRU SUBAREA(CFS) = 2.51 TRAVEL TIME (MIN.) = 0. 67 TC (MIN .. ) = 12 . 16 **************************************************************************** FLOW PROCESS FROM NODE 30. 00. TO NODE' · 30. 00 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 1 <<<<< ---------------------.------------------------------------------------------ *********~***********************************~****************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< =-================-======-====·==============·-=============----=----------- *USER SPECIFIED($UBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFF.ICIENT = . 6000 INITIAL SUB.AREA FLOW-LENGTH= UPSTREAM ELEVATIO~ = DOWNSTREAM ELEVATION= 297.00 289.50 ELEVATION DIFFERENCE= 7.50 240.00 URBAN SUBAREA OVERLAND TIME OF FLdW(MINUTES) = 9.537 *CAUTION: SUB.AREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.301 SUBAREA RUNOFF(CFS) -0.50 TOTAL AR-EA(ACRES') -0.25 TOTAL RUNOFF(CFS) = 0.50 **************************************************************************** FLOW PROCESS FROM NODE 21. 00 TO NODE 22.00 IS CODE= 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< === ==~===·========================== ==== ================================= UPSTREAM ELEVATION= 289.50 STRE~T LENGTH(FEET) = 150.00 STREET HALFWIDTH(FEET) = 14.00 DOWNSTREAM ELEVATION= 284.24 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0:083 SPECIFIED NUMBER OF HALFSTR~ETS CARRYING RUNOFF= 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 0.63 I I I I I I I I I I I I I I I I I I I STREETFLOW MODEL RESULTS: STREET FLOWDE:J?TH (FEET) ·-0 .18 HALFSTREET FLOODWIDTI-):(FEET) = 2.67 AVE~GE FLOW VELOCITY(FEET/SEC.) = 3.30 PRODUCT OF DEPTH&VELOCITY = 0.59 STREETFLOW TRAVELTIME(MIN) = 0.76 TC(~IN) = 10.29 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3 .. 142 *USER SPECIFIED·(SUBAREA): MULTI-UNITS DEVELOPMENT.RUNOFF COEFFICIENT= .6000 SUBAREA AREA(ACRES) = 0.14 SUBA,REA RUNOFF(CFS) = 0.26 0.76 SUMMED AREA(ACRES) = 0.39 .TOTAL RUNOFF(CFS) - END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.20 HALFSTREET FLOODWIDTH(FEET) = FLOW VELOCITY·( FEET/ SEC . ) = 3 . 2 0 DEPTH*VELOCITY = 3.45 0.62 **************************************************************************** 'FLOW PROCESS FROM NODE 22.00 TO NODE 25·.00 IS CODE = 3 . . . >>.>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 1.8. 000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 2.7 UPSTREAM NODE ELEVATION= 281.36 DOWNSTREAM NODE ELEVATION= 281.25 FLOWLENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER{INCH) = 18.00 NUMBER OF PIPES= PIPEFLOW THRU SUBAREA(CFS) = 0.76 .TRAVEL TIME (MIN.) = 0 .12 TC {MIN.) = 10. 42 1 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE= 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ====================. == ·==============================================------ TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION {MIN .. J = 10. 42 RAINFALL INTENSITY{INCH/HR) = 3.12 TOTAL STREAM AREA{ACRES) = 0.39 PEAK FLOW RATE(CFS) AT CONFLUENCE= 0.76 **************************************************************************** FLOW PROCESS. FROM NODE 23.00 TO NODE 24.00 IS CODE= 21 ;>>>>>RATIONAL METHOD IN.ITIAL SUBAREA ~ALYSIS<<<<< =.============== ·=====================-===================================== *USER SPECIFIED(SUBAREA): MULTI~UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW-LENGTH= 190.00 UPSTREAM ELEVATION= 293.00 DOWNSTREAM ELEVATION= 289.00 I I I I. I I I I I I I I I I I I I I I ELEVATION DIFFERENCE= 4.00 URBAN SUBAREA OVERLAND-TIME OF FLOW(MINUTES) = 9.680 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = .3.269 SUBAREA RUNOFF(CFS) = 0.59 TOTAL AREA(ACRES) = 0.30 TOTAL RUNOFF(CFS) = 0.59 **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE ·25. 00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< =======-============================= ·====================================== UPSTREAM ELEVATION·= 289.50 STREET LENGTH (FEET) = 14,0. 00 STREET HALFWIDTH(FEET) = 14.00 DOWNSTREAM ELEVATION= CURB HEIGHT{INCHES) = 6. 284.28 DISTANCE FROM CROWN TO CROSSF~L GRADEBREAK = 12.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREETCROSSFALL(DECIMAL) 0.083 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF= 1 **TRAVELT,IME· COMPUTED USING MEAN FLOW (CFS) = 0. 89 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET). = 0.21 HALFSTREET FLOQDWIDTH(FEET) = 4.23 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.98 PRODUCT OF DEPTH&VELOCITY = 0.63 STREETFLOW, TRAVELTIME(MIN) = 0.78 TC(MIN) = 10.46 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.109 *USER .SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 SUBAREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) = 0.60 SUMMED AREA(ACRES) = 0.62 TOTAL RUNOFF(CFS) = 1.19 END OF SUBAREA STREETFLOW HYDRA{lLICS: DEPTH(FEET) = 0.23 HALFSTREET FLOODWIDTH(FEET) = 5.02 FLOW VELOCITY(FEET/SEC.) = 3.21 DEPTH*VELOCITY = 0.73 *******•******************************************************************** FLOW PROCES$ FROM NODE 25.00 TO NODE 25.00 IS CODE= >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ' 1 =-=-====-----=----===----=--------------------=---------=-==========-------- TOTAL NUMBER OF STREAMS= 2 CONFtUENCE VALUE$ USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.46 RAINFALL INTENSITY(INCH/HR) = 3.11 TOTAL STREAM AREA'(ACRES) = 0. 62 PEAK FLOW RATE(CFS) AT CONFLUENCE= 1.19 ·** CONFLUENCE DATA ** STREAM RUNOFF NUMB:li:R (CFS) 1 0.76 Tc:: (MIN.) 10.42 INTENSITY ( INCH/HOUR) 3.'118 AREA (ACRE) 0.39 I I I I I I I I I I I I I I I I I I I 2 1.19 10.46 3.109 0.62 RAINFALL INTENSITY AND TIME OF CONCENTRATIO~ RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** .PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) .(MIN.) ,( INCH/HOUR,) 1 1.94 10.42 3 .118 2 1.94 10.46 3.109 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.94 Tc(MIN.) = 10.46 TOTAL AREA(ACRES) = 1.01 **********~***************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 30.00 IS CODE= 3 -------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ==============-===================·========================================= ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) =· 3.4 UPSTREAM NODE ELEVATION= 280.92 DOWNSTREAM NODE ELEVATION= FLOWLENGTH(FEET) = 92.37 ESTIMATED PIPE DIAMETER(INCH) PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME(MIN.) = 0.45 280.46 MANNING'S N = 0 . 0·13 = 18.00 NUMBER OF PIPES= 1.94 TC(MIN.) = 1·0.91 1 **************************************************************************** FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE= 11 >>>>>CONFLUENCE MEMORY BANK# 1 WITH THE MAIN-STREAM MEMORY<<<<< =-=--=-=-.--========-==-===-.----------------------------------------------- ** MAIN STREAM CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 · 1.94 10.91 ~.026 1.01 **' MEMORY BANK# 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE) 1 2.51 12.16 2.822 1.40 ** PEAK. FLOW RATE TABLE** STREAM RUNOFF Tc INTENSJ,:TY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 4.29. 10.91 3. 026 - 2 4.32 12.16 2.822 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.32 Tc(MIN.) = 12.16 I I I I I I I I I I I I I I I ·1· I I TOTAL AREA(ACRES) .-2.41 **************************************************************************** FLOW PROCESS FROM NODE 30. 00 TO NODE 30.00 IS CODE= 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ======-=============·===. ====== -=========·================================== 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = ·2.822 S,OIL CLASSIFICATION IS "D" RURAL. DEVELOPMENT RUNOFF COEFFICIENT= .4500 SUB.AR.EA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.11 TOTAL AREA(ACRES} = 2.50 TOTAL.RUNOFF(CFS) = 4.44 TC (MIN)_ = 12. 16 **************************************************************************** FLOW PROCESS FROM NODE 30. O·O TO NODE 39.00 IS CODE= 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU: SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 4.3 UPSTREAM NODE ELEVATION= 271.91 DOWNSTREAM NODE ELEVATION= 271.13 FLOWLENGTH(FEET) = 145.12 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES= PIPEFLOW THRU SUBAREA(CFS) = 4.44 TRAVEL TIME(MIN.) = 0.56 TC(MIN.) = 12.72 1 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE= 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 2 <<<<< ------. --------· ____ . --------------------------------=-=-----=-------------- **************************************************************************** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE= 21 >>>>>RATIONAL. METHOD INITIAL SUBAREA ANALYSIS<<<<< --------------------=-------==--==--------=--------------------------------- *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW-LENGTH= 140.00 UPSTREAM ELEVATION= 285.00 DOWNSTREAM ELEVATION= 279.94 ELEVATION DIFFERENCE= 5.06 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.052 SUBA:REA RUNOFF(CFS) = 0.83 6.939 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) = 0.83 I I I I I I I I I I I I I I I I I ***************************~************************************************ FLOW PROCESS FROM NODE 33.00 TO NODE 39.00 IS CODE= 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ==========================-==========·====================================== ESTIMATED PIPE DIAMETER(INCH) INCREASED TO "18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 2.7 UPSTREAM NODE ELEVATION= 271.76 DOWNSTREAM NODE ELEVATION= FLOWLENGTH(FEET) = 41.98 .ESTIMATED PIPE DIAMETER(INCH) PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME(MIN.) = 0.26 271.54 MANNING'S. N ~ 0.013 = 18.00 NUMBER OF PIPES= 0.83 TC(MIN.) = 7.20 1 ****************************************~*********************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE= 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< =======··====================-==========·==================================== TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.20 RAINFALL INTENSITY(INCH/HR) = 3.96 TOTAL STREAM AREA(ACRES) = 0.34 PEAK FLOW RA.TE(CFS) AT CONFLUENCE= 0.83 *****************************************~********************************** FLOW ~ROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ==========================================·= .=============================== *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF INITIAL SUBAREA FLOW-LENGTH= UPSTREAM ELEVATION= 283.50 COEFFICIENT= .6000 240.00 DOWNSTREAM ELEVATION= 279.30 ELEVATION DIFFERENCE= 4.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 11.570 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.914 SUBAREA RUNOFF(CFS) = · 0.56 TOTAL AREA (ACRES) = 0 . 3 2 TOTAL RUNOFF (-CFS) = 0.56 **************************************************************************** FLOW PROCESS FROM NODE 36.00 TO NODE 3 9 . 0 0 IS CODE = 3 ----------~----------------------------. ------------------------------------ >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES I I I I I I I I I I I I I I I I I I I PIPEFLOW VELOCITY(FEET/SEC.) = . 2.4 UPSTREAM NODE ELEVATION= 271.21 DOWNSTREAM NODE ELEVATION= FLOWLENGTH(FEET) = i5.11 · ESTIMATED PIPE DIAMETER(INCH) PIPEFLOW THRU SUBAREA(CFS). TRAVEL TIME (MIN.) ·= 0 .10 271.13_ ·MANNING'' S N· =· 0. 013. = 18.00 NUMBER OF PIPES= 0 .56- TC (-MIN. ). = 11 . 6 7 1 **************************************************************************** FLOW PROCESS FROM.NODE 39.00 TO NODE 39.00 I$ CODE= >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CO~FLUENCED STREAM VALUES<<<<< 1 ============================================================================ TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.67 RAINFALL INTENS,ITY ( INCH/HR) = 2 . 9 0 TOTAL STREAM AREA(ACRES) = 0.32 PEAK FLOW RATE(CFS) AT CONFLUENCE= 0.56 ** CONFLUENCE DATA** STREAM RUNOFF. Tc INTENSITY AREA NUMB·ER (CFS) '(MIN.) ( INCH/HOUR) (ACRE) 1 0.83 7.20 3.958 0.34 2 0.56 11.67 2.897 0.32 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE **. S.TREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 1.24 7.20 3.958 2 1.16 11.67 2.897 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 1. 2.4 Tc (MIN.) = 7. 20 TOTAL AREA(ACRES) = 0.66 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE= 11 ----------------------------. " -------------_,_ -------------------------------- >>>>_>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< ======================-===================================================== ** MAIN STREAM CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE) 1 1.24 7.20 3. 958 0.66 ** MEMORY BANK# 2 CONFLUENCE DATA ** STREAM ~UNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE) 1 4.44 12. 72 2.742 2.50 I I I I I I I I I I I I I I I ' I I I ** PEAK FLOW RATE TABLE** STREAM RUNOFF Tc INTENSITY NUMBER {CFS) {MIN.) · { INCH/HOUR) 1 4.31 7.20 3 .. 958 2 5.30 12.72 2 .. 742 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE{CFS) = 5.30 Tc{MIN.) = 12.72 TOTAL·AREA{ACRES) = 3.16 *****************~********************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 41.00 IS CODE= 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE {NON-PRESSURE FLOW)<<<<< ==========================-================================================= DEPTH OF FLOW IN 18. 0 INCH PIPE IS 11.. 6 INCHES PIPEFLOW VELOCITY{FEET/SEC.) = 4.4 UPSTREAM NODE ELEVATION= 270.80 DOWNSTREAM NODE E~EVATION = 270.50 FLOWLENGTH(FEET) = 59.38 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES= 1 PIPEFLOW THRU SUBAREA(CFS) = 5.30 TRAVEL TIME(MIN.) = 0.23 TC(MIN.) = 12.94 **************~************************************************************* FLOW PROCESS FROM NODE 41. QO TO NODE 42.00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ======= '======================-====== ·====================================== UPSTREAM NODE ELEVATION= 270.50 DOWNSTREAM NODE ELEVATION~ 270.10 CHANNEL LENGT~ THRV SUBAREA(FEET) = 50.00 CHANNEL SLOPE= 0.0080 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.30 FLOW VELOCITY(FEET/SEC) = 2.32 FLOW DEPTH(FEET) = TRAVEL TIME(MIN.) = 0.36 TC(MIN.) = 13.30 0.46 **************************************************************************** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE= 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.663 SOIL CLASSIF;I:CATION IS ''D" RURAL DEVELOPMENT RUNOFF COEFFICIENT= ,4500 SUBAREA AREA(ACRES) = 0.07 SUB.AREA RUNOFF(CFS) = 0.08 TOTAL AREA(ACRES) = 3.23 TOTAL RUNOFF(CFS) = 5.38 TC(MIN} = 13.30 I I I I I I I I I I I I I ,. ~, I I ·I **************************************************************************** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE= 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ·============== ·==== ·==========. ======-=--------===-=----------------------- TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDEN:T STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.30 RAINFALL 'INTENSITY(INCK/RR) ~ 2.66 TOTAL STREAM AREA(ACRES) = 3.23 PEAK FLOW RATE(CFS) AT CONFLUENCE= 5.38 *************************~•************************************************* FLOW PROCESS FROM NODE 41. 00 TO NODE 42.00 IS CODE= 21 ---------------, ----··------------------------------------------------------- »»>RATIONAL ~ETHOD INITIAL SUBAREA ANALYSIS<<<« === .=--=========------------------------------------------------------------ *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT.= .6000 INITIAL SUBAREA FLOW-LENGTH= 310.00 UPSTREAM ELEVATION= 279.60 DOWNSTREAM ELEVATION = 270 .. 10 ELEVATION DIFFERENCE= 9.50 URBAN SUBAREA OV;ERLAND TIME OF FLOW(MINUTES) = 10.910 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTX NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.026 SUBAREA RUNOFF(CFS) = 1.00 TOTAL AREA(ACRES). = 0.55 TOTAL RUNOFF(CFS) = 1.00 *********~****************************************************************** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE= >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< 1 ================-=-=========-·======"======================================= TOTAL NUMBER OF STREAMS= 2 CONFLUENCE. VALUES USED FOR INDEPENDENT. STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.91 RAINFALL INTENSITY(INCH/HR) = 3.03 TOTAL STREAM AREA(ACRES) = 0.55 PEAK FLOW RATE(CFS) AT CONFLUENCE= 1.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 5.38 13.30 2.663 2 1.00 10.91 3.026 AREA (ACRE) 3.23 0.55 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE** STREAM RUNOFF Tc INTENSITY I I I I I I -1 I I 1· I I I ., I I I NUMBER 1 2 (CFS) 5.73 6.26 (MIN.) 10.91 13.30 ( INCH/HOUR) 3.026 2.663 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.26 Tc(MIN.) = 13.30 TOTAL AREA (ACRES.) = ~ • 7 8 **************************************************************************** FLOW PROCESS FROM NODE . 42.00 TO NODE 44.00 IS CODE= 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ========.=============== -=================================================== DEPTH OF FLOW IN 21. 0 INCH PIPE IS 13 . 2, INCHES PIPEFLOW VELOGITY(FEET/SEC.) = 3.9 ·UPS~REAM.NODE ELEVATION= 270.10 'DOWNSTREAM NOD~ ELEVATION = 2 7 0 . 0 0 . FLOWLENGTH(FEET) = 30.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 2"1.00 NUMBER OF PIPES= 1 PI"PEFLOW THRU SUBAREA(CFS),= 6.26 TRAVEL TIME (MIN.) =· 0 .13 TC (MIN.) = 13. 43 **************************************~************************************* FLOW PROCESS FROM NODE 44.00 TO NODE 44.00 IS CODE= 1 »»>DESIGN~TE INDEPENDENT STREAM FOR CONFLUENCE<«« ---.---------------·--------------------------------------------------------TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CO:t;l"CENTRATION(MIN.) = 13.43 RAINFALL INTENSITY(INCH/HR) = 2.65 TOTAL STREAM AREA(ACRES) = 3.78 PEAK FLOW RATE(CFS) AT CONFLUENCE= 6.26 **************************************************************************** FLOW PROCESS FROM NODE, 43.00 TO NODE 44.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW-LENGTH= 340.00 UPSTREAM ELEVATION= 283.50 DOWNSTREAM ELEVATION= 270.00 ELEVATION DIFFERENCE= 13.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.481 .. *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION .. EXTRAPOLATION OF NOMOGRAPH USED. 10 YEAR RAINFALL INTENSITY(INCH/HOUR) ·= 3.106 SUBAREA RUNOFF(CFS) = 0.32 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 0.32 I I I- I I 1· I I I I~ I I I I I I I I I **************************************************************************** . . . FLOW PROCESS FRQM NODE 44.00 TO NODE 44.00 rs CODE= ------------. ' >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND. COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< 1 ============================================================================ TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRA'FION(MIN.) =. 10.48 RAINFA,IiL INTENSITY (INCH/HR). = . 3·.11 TOTAL STREAM AREA(ACRES) = 0.17 PEAK FLOW RATE(CFS) AT CONFLUENCE= 0.32 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 6.26 13 .43 2.647 2 0.32 10.48 3·.106 AREA (ACRE) 3.78 0.17 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENS.ITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 . 5 .65 10.48 3.106 2 6.53 13.43 2.647 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.53 Tc(MIN.) = 13.43 TOTAL AREA(ACRES) = 3.95 *****************************************~********************************** FLOW PROCESS FROM NODE 50.00.TO NODE 51.00 rs CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ===-=.===========================·================================-==------- *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW-LENGTH= 205.00 UPSTREAM ELEVATION= 280.10 DOWNSTREAM ELEVATION= 276.00 ELEVATION DIFFERENCE= 4.10 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.228 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.155 SUBAREA RUNOFF(CFS) = 1.10 TOTAL AREA (ACRES.) = 0 . 5 8 TOTAL RUNOFF (CFS) = 1.10 ============· -====================="====================================---- END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 1.10 0.5'8 Tc(MIN.) = 10.23 =========================================:-================================= ·END OF RATIONAL METHOD ANALYSIS 1 I Drainage Study for Villas De La Costa . I I I I I I I 1· I I I I I I I I I I CHAPTER4 _ 100-Yea-r Rational Method Hydrologic Output OA:oa h:\reportsl2091137\a04.doc w.o. 2091-37 2/24/2004 8:40 AM I I I I I I I I I I I I I I I I I ***********~****~****************************~****************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: (c) Copyright V.er. 1.5A SAN DIEGO COUNTY FLOOD.CONTROL DISTRICT 198.5,1981 HnJROLOGY MANUAL 1982-99 Advanced Engineering Software (aes) Release Date: 01/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego, Inc. 10179 Huennekens Street San Diegor California (619) 558-4500 Planning Engineering Surveying ************************** .DESCRIPTION OF STUDY "************************** * CASA LA COSTA * 100-YEAR EXISTING CONDITION HYDROLOGIC ANALYSIS * W.O.#2091-37 ************************************************************************** FILE NAME_: H:\AES99\2091\37\EXIST.DAT TIME/DATE OF STUDY: 14:39 9/9/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA· USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES)·= 2.800 SPECIFIED MINIMJJM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCEN'.l' OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.90 SAN DIEGO HYDROLOGY MANUAL 11 C11 -V'ALUES USED NOT~: ONLY P~AK CONFLUENCE VALUES CONSIDERED * * * **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ------, -===========---------====--==-=----------==========-=---------------- SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT= .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED= 13.26(M!NUTE$) INITIAL SUBAREA FLOW-LENGTH= 625.00 UPSTREAM ELEVATION= 310.00 DOWNSTREAM ELEVATION= 272.00 ELEVATION DIFFERENCE= 38.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.932 SUBAREA RUNOFF(CFS) = 7.45 TOTAL AREA (ACRES) == 4 . 2.1 TOTAL RUNOFF ( CFS) = 7.45 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 2.00 IS CODE= 8 I I I I I I I I I I I I I I I I I I I _. ----------------------------------·------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLI~_PEAK FLOW<<<<< .----------. -----------------.--.-------------------------------------------100 YEAR RAINFAL~ INTENSITY(INCg/HOUR) = 3.932 SOIL-CLASSIFICA':!:'ION IS "D" 'INDUSTRIAL.DEVELOPMENT SUBAREA AREA(ACRES) - TOTAL AREA (ACRES) = · TC(MIN) = 13.26 RUNOFF. COEFFiqENT = .. 9500 0.34 SUBAREA RUNOFF(CFS) = 4.55 TOTAL RUNOFF(.C~S} = 1.27 8.72 =------=========-----------.------------------------------------------------ END OF STUDY SUMMARY: PEAK FLOW RATE (CFS)· = · TOTAL AREA(ACRES) = 8.-72 4.55 Tc(MIN.) = 13.26 ===== ·==================-============= '===================================== END OF RATIONAL METHOD .?illALYSIS 1 I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL 'METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Refer~nce: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL ·(c)" Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Releas~ Date: ·0l/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego, Inc. 10179 Huennekens Street San Diego, California (619) '558-4500 Planning E~gineeri~g Surveying ***************~********** DESCRIPTION OF STUDY************************** * CASA LA COSTA * 100-YEAR DEVELOPED CONDITION HYD~OLOGY ANALYSIS * W.0.#2091-37 ************************************************************************** FILE NAME: H:\AES99\20.91\37\DEV.DAT TIME/DATE OF STUDY: 16:34. 10/ 8/2-003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: * * * --------,--.---------------------------------------------------------------- 1985 SAN DIEGO MANUAL ~RITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 3.000 SPECIFIED MINIMUM PIPE SIZE(INCH) ~ 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.90 SAN DIEGO HYDROLOGY MANUAL 11C11 -VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW-LENGTH= UPSTREAM ELEVATION= 289.9Q DOWNSTREAM ELEVATION? ELEVATION DIFFERENCE= 286.85 3.05 190.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.595 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.870 SUBAREA RUNOFF(CFS) = 0.70 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) = 0.70 **************************************************************************** FLOW PROCESS FROM NODE 11. 00 TO NODE 14.00 IS CODE= 3 I I I I I I I I I I I I I I I I I I :1 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< »»>USING COMPUTER-_ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« -----------.----------------'----. -------. ----------------------------------- ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS -3.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 2.5 UPSTREAM NODE ELEVATION= 281.58 DOWNSTREAM NODE ELEVATION= 281.46 FLOWLENGTH(FEET) = 24.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES= 1 PIPEFLOW THRU SUBAREA(CFS) = 0.70 TRAVEL TIME.(MIN.·) = 0.16 TC(MIN.) = 10.75 **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE= 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ---------------.------------------------------------------------------===-=-TOTAL ~BER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.75 RAINFALL INTENSITY(INCH/HR) : 4.82 TOTAL STREAM AREA(ACRES) = 0.24 PEAK F~OW RATE(CFS) AT CONFLUENCE= 0.70 **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE= 21 ------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< -·-----========================.====-======================================= *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAR~A FLOW-LENGTH~ UPSTREAM ELEVATION= DOWNSTREAM ELEVATION= 297.20 290.50 ELEVATION DIFFERENCE= 6.70 260.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.585 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.873 SUBAREA RUNOFF(CFS) = 1.52 TOTAL AREA(ACRES) = 0.52 TOTAL RUNOFF(CFS) = 1.52 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE= 6 ---~ . ------------------------------------·------------------------------------ >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ============================================================================ UPSTREAM ELEVATION= 290.50 STREET LENGTH(FEET)·= 150.00 STREET HAI.FWIDTH(FEET) = 14.00 DOWNSTREAM ELEVATION= 286.85 CURB HEIGHT(INCHES) = 6. DISTANCE FROM ·CROWN TO CROSSFALL GRADEBREAK = 12.50 INTERIOR STREET CROSSFALL(DEC~MAL) = 0.020 I I I I· I I I I I I I I· I I I I I I I OUTSIDE STREET CROSSFALL(DECIMAL) = 0.Q83 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF= 1 **TRAVELTIME CO~PUTED USING MEAN FLOW(CFS) = 2.41 STREETFLOW MODEL RESULTS·: STREET FLOWDEPTH(FEET) = 0.29 HALFSTREET FLOODWIDTH(FEET) = 8.14 AVERAGE FLOW VELOCITY(FEET/SEC .. ) ---3. 09 PRODUCT OF.DEPTH&VELOCITY =· 0.89 STREETFLOW TRAVELTIME(MIN) = 0.81 TC(MIN) ~ 11.39 100 YEAR RAI~FALL INTENSITY(INCH/HOl;JR) = 4.647 *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVEµOPMENT RUNOFF COEFFICIENT= .6000 SUBAREA AREA(ACRES) = 0.64 SUB~EA RUNOFF(CFS) = 1.78 SUMMED AREA(ACRES1 = 1.16 TOTAL RUNOFF(CFS) = 3.30 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET)· = 0. 3 0 HALFSTREET FLOODWIDTH (FEET) = 8. 92 FLOW VELOCITY (FEET/SEC.) = 3. 61 ·DEPTH*VELOCITY = 1.10 **************************************************************************** FLOW PROCESS FROM NODE 14. 00 TO NODE" 14.00 IS CODE= 1 ------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM _FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VA_RIOUS CONFLUENCED STREAM VALUES<<<<< ====-=·=====-================================·============================== TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES US~D FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) -11. 39 RAINFALL INTENSITY(INCH/HR) = 4.65 TOTAL STREAM AREA(ACRES) = 1.16 PEAK FLOW RATE(CFS) AT CONFLUENCE= 3.30 ** CONFLUENCE DATA ** STREAM · RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 0.70 10.75 4.824 2 3.30 11.39 4.647 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREl\.MS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER . (CFS) (MIN.) -( INCH/HOUR) 1 3.88 10.75 4.824 2 3.98 11.39 4.647 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 0.24 1.16 RATIO PEAK FLOW RATE(CFS) = 3.98 Tc(MIN.) = . 11.39 TOTAL-AREA(ACRES) = 1.40. **************************************************************************** FLOW PROCESS FROM NODE 14. 00 TO NODE. 3 0 . 0 0 IS CODE = 3 I I ·1 I I I I I I I I I I I I I I I I ------------------------------------------------------------. ------------ >>>>>COMPUTE PIPEFLOW TRAVELTIME. THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ==============-============ -==, ============================================= ESTIMATED PIPE DIAMETER(INCH) INCREASED TO ta.coo DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 3. 9 UPSTREAM NODE ELEVATION= 281.13 DOWNSTREAM NODE ELEVATION= 280.50 FLOWLENGTH(FEET) = 141.04 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES= 1 PIPEFLOW THRU SUBAREA(CFS) = 3.98 TRAVEL TIME(MIN.) = 0.60 TC(MIN.) = ~l.99 * * * * * * * * * * * * * * * * * * * * * * * * * * * *·* * * * * * * * * * * * * * * * *'* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 30. 00 TO NODE-30.00 IS CODE= 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# .1 <<<<< ==============-==========,=====-============================================ **************************************************************************** FLOW PROCESS FROM NODE 2Q.OO TO NODE 21.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ================================-=========================================== *USER SPEC~FIED(SUBAREA}: MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT =· . 6000 INITIAL SUBAREA FLOW-LENGTH= 240.00 UPSTREAM ELEVATION= 297.00 DOWNSTREAM ELEVATION= 289.50 ELEVATION DIFFERENCE= 7.50 URBAN SUBAR~A OVERLAND.TIME OF FLOW(MINUTES) = 9.537 *CAUTION: SUBAREA SLOPE EXCEEDS. COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.212 SUBAREA RUNOFF(CFS) -0.78 TOTAL AREA(ACRES) = · 0.25 TOTAL RUNOFF(CFS) = 0.78 **************************************************************************** FLOW PROCESS FROM NODE 21. 00 TO NODE 22.00 IS CODE= 6 >>>>>COMPUTE. STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ======================== "========== ·======================================== UPSTREAM ELEVATION= 289.50 STREET LENGTH(FEET) = 150.00 STRE_ET HALFWIDTH (FEET) = 14. 00 DOWNSTREAM ELEVATION= 284.24 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0:083 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF= 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 0.99 I I I I I I I I I I I I I I I I I I I STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.21 HALFSTREET. FLOODWIDTH(FEET) = 4.23 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.33 PRODUCT OF DEPTH&VELOCITY = 0.70 STREETFLOW TRAVELTIME (MIN) = 0. 75 TC (MIN) = 10. 2·9 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.963 *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = SUMMED .AREA(ACRES). = 0.39 TOTAL RUNOFF(CFS) = END OF SUBAREA STREETFLOW HYDRAULICS: 0.42 1.20 DEPTH(FEET) = 0.23 HALFSTREET FLOODWIDTH(FEET) = FLOW VELOCITY(FEET/SEC.) = 3.24 DEPTH*VELOCITY = 5.02 0. 73 **************~************************************************************* FLOW PROCESS FROM NODE 22.00 TO NODE . 25.00 IS CODE= 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ===== ·============"========================================================= ESTIMATED PIPE DIAMETER(INCH) INCREASED.TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 3 .1 UPSTREAM NODE ELEVATION= 2e1.36 DOWNSTREAM NODE ELEVATION= FLOWLENGTH(FEET) = 20.00 ESTIMATED PIPE DIAMETER(INCH) PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME (MIN. ) = 0 . 11 281.25 MANNING'S N = 0.013 = 18.00 NUMBER OF PIPES= 1.20 TC(MIN.) = 10.40 1 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE= 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ==========· ============================.==========·========================= TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDEN'J;' STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.40 RAINFALL INTENSITY(INCH/HR) = 4.93 TOTAL STREAM AREA(ACREp) = . 0.39 PE;AK FLOW RATE (CFS)' AT CONFLUENCE = 1. 20 **************************************************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE= 21 ·>>>>>RATIONAL METHOD INITIAL SUB.AREA ANALYSIS<<<<< ====================· =========·===========·================================= *USER SPECIFIED(SUBAREA): MULTI-UNITS D~VELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW-LENGTH= 190.00 UPSTREAM ELEVATION = 29J .. 00 DOWNSTREAM ELEVATION= 289.00 I I I I I I I I I I ·1 I I I I ·I. I I I ELEVATION DIFFERENCE = 4 .. QO URBA!if SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.680 100 YEAR RAINFALL INTENSITY(INCH/HOUR) ~ 5.162 SUBAREA RUNOFF(CFS) = 0.93 TOTAL AREA(ACRES) = 0.30 TOTAL RUNOFF(CFS) = 0.93 **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE ·2s.oo ·rs coDE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ... --------------------------------------------------=====-=-=---------====-==- UPSTREAM ELEVATION = 2 89 . s·o STREET LENGTH(FEET) = 140.00 ST;REET HALFWIDTH(FEET) = 14.00 DOWNSTREAM ELEVATION= 284.28 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 12.50 INTERIOR STREET CROSSFALL (DECIMAL) = 0. 020· OUTSIDE STREET CROS$FALL(DECIMAL) = 0.083 SPECIFIED NUMB~R OF HALFSTREETS CARRYING RUNOFF= 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.40 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.24 HALFSTREET FLOODWIDTH(FEET) = 5.80 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.09 PRODUCT OF DEPTH&VELOCITY = 0.75 STR~ETFLOW TRAVELTIME(MIN) = 0.76 TC(MIN) = 10.44 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.918 *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 SUB.AREA AREA(ACRES) = 0.32 SUBAREA RUNOFF(CFS) 0.94 SUMMED AREA(ACRES) = 0.62 TOTAL RUNOFF{CFS) = 1.87 END OF SUBAREA. STREETFLOW HYDRAULICS:. DEPTH(FEET) = 0.26 HALFSTREET FLOODWIDTH(FEET) = 6.58 FLOW VELOCITY(FEET/SEC.). = 3.40 DEPTH*VELOCITY = 0.88 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 rs CODE= >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< 1 ==-====. =====.==================-==============================-----=------- TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION{MIN.) = 10.44 RAINFALL INTENSITY(INCH/HR) = 4.92 TOTAL STREAM AREA{ACRES) = 0.6.2 PEAK FLOW RATE(CFS) AT CONFLUENCE= 1.87 ** CONFLUENCE DATA** STREAM RUNOFF NUMBER (CFS) 1 1.20 Tc {MIN.) 10.40 INTENSITY { INCH/HOUR) 4.930 AREA {ACRE) 0.39 I I I I I I I I I I I I I. I I I I I I 2 1.87 10.44 4. 9;1.8 0.62 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2. STREAMS. ** PEAK FLOW RATE. TABLE** STREAM RUNOFF NUMBER (CFS). 1 3,07 2 3.07 Tc (MIN.) 10.40 10.44 INTENSITY ( INCH/HOUR) 4.930 4.918 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 3. 07 Tc (MIN.) = 10 .44 TOTAL AREA(ACRES) = 1.01 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 30.00 IS CODE= 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME.THRU ,$UBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ========·=================================================================== ESTIMATED PIPE DIAMETER(INCH) INCREASED .TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 3.8 UPSTREAM NODE ELEVATION= 280.92· DOWNSTREAM NODE ELEVATION= 280.46 FLOWLENGTH (FEET) = _ 92. 37 MANNING'S N = 0. 013 ESTIMATED PIPE DIAMETER(INCH) -18.00 NUMBER OF PIPES= 1 PIPEFLOW THRU SUBl\,REA(CFS) = 3.07 TRAVEL TIME(MIN.) = 0.40 TC(MIN.). = 10.84 ***********•*************~************************************************** FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE= 11 »·»>CONFLUENCE MEMORY BANK # 1 WITH THE ~IN-STREAM MEMORY««< ===================·======================================================== ** MAIN STREAM NU}1BER 1 STREAM CONFLUENCE DATA** RUNOFF· Tc INTENSITY (CFS) (MIN.) (INCH/HOUR) 3.07 10.84 4.800 ** MEMORY BANI<# 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 3.98 11.99 4.496 ** PEAK FLOW RATE TABLE** STREAM RUNOFF Tc INTENSIT~ NUMBER (CFS) (MIN.) (INCH/HOUR) 1 6.80 10.84 4. 800 - 2 6.85 11.99 4.496 AREA (ACRE) 1.01 AREA (ACRE) 1.40 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.85 Tc(MIN.) = 11.99 I I I I I I I I I I I I I I I I I I ·I TOTAL AREA(ACRES) = 2.41 **************************************************************************** FLOW PROCESS FROM NODE 30. 00 TO NODE. 30.00 IS CODE= 8 ----------------· ---------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< --=----=================================================================-==== 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = -4.496 SOIL CLASSIFICATION IS .11D11 RURAL DEVELOPMENT RUNOFF COEFFICIENT= .4500 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.18 TOTAL AREA(ACRES) = 2.50 TOTAL RUNOFF.(CFS) = 7.04 TC (MIN) ·= 11. 99 **************************************************************************** FLOW PROCESS FROM NODE 3Q.OO TO NODE 39.00 IS CODE= 3 -,· . >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >»»USING COMPUTER-ESTIMATED PIP;ESIZE (NON-PRESSURE FLOW)««< =============-======================·======================================= DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.2 ·INCHES PIPEFLOW VELOCITY(.FEET/SEC.) = 4.7 UPSTREAM NODE ELEVATION= 271.91 DOWNSTREAM NODE ELEVATION= 271.13 FLOWLENGTH (FEET) = 145 .12. ESTI~TED PIPE DIAMETER(INCH) PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME(MIN.) .= 0.51 MANNING'S = 18.00 7.04 TC (MIN.) N = 0.013 NUMBER = 12 .51 OF PIPES = 1 **************************************************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE= 10 ---------------------------·------------------------------------------------ >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK# 2 <<<<< ===========================-=============-----. -======---------------------- **************************************************************************** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ====================================="====================================== *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW-LENGTH= 140.00 ·UPSTREAM ELEVATION = 285. 00 DOWNSTREAM ELEVATION= 279.94 ELEVATION DIFFERENCE= 5.06 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.939 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH'USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.398 SUBAREA RUNOFF(CFS) = ·1.31 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) = 1.31 I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 33.00 TO NODE 3 9 . 0 0 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ---------------------------------------------------------------------------- ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES PI]?EFLOW VELOCI'l;'Y(FEET/SEC.) = 3.1 UPSTREAM NODE ELEVATION= 271.76 DOWNSTREAM NODE ELEVATION= 271.54 FLOWLENGTH(FEET) = 41.98 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(TNCH) -18.00 NUMBER OF PIPES= 1 PIP~FLOW THRU SUBAREA(CFS) = 1.31 TRAVEL TIME(MIN.) = 0.23 TC(MIN.) ~ 7.16 **************************************************************************** FLOW PROCESS FROM NODE 39.00 'l;'O NODE 39.00 IS CODE= 1 >>>~>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.16 RAINFALL INTENSITY(INCH/HR) = 6.27 TOTAL STREAM AREA(ACRES) = 0.34 PEAK FLOW RATE(CFS) AT CONFLUENCE= 1.31 **************************************************************************** FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANAL~SIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT·RUNOFF COEFFICIENT= .6000 INITIAL SUB.AREA FLOW-LENGTH= 240.00 UPSTREAM ELEVATION= 283.50 ·DOWNSTREAM ELEVATION= 279.30 ELEVATION DIFFERENCE= 4.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 11.570 100 YEAR RAINFALL INTENSITY("INCH/HOUR) = 4.601 SUBAREA RUNOFF(CFS) = 0.88 TOTAL AREA (ACRES) = 0 . 3 2 -. TOTAL RUNOFF (CFS) = 0 . 8 8 **************************************************************************** FLOW PROCESS ~ROM NODE 36.00 TO NODE 3.9. 00 IS CODE = 3 -------·-----------------------· -------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ===================================================================--======- ESTIMATED PIP~ DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) ,;, 2.8 I I· I I I I I I I I I I I I UPSTREAM NODE ELEVATION= DOWNSTREAM NODE ELEVATION= 271. 21 -FLOWLENGTH (FEET) = 1.5 .11 ESTIMATED PIPE DIAMETER(INCH) PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME(MIN.) = 0.09 271.13 . MANNING'S N = 0. 013 = 18.00 NUMBER OF PIPES= 0.88 T~(MIN.) ·= 11.66 1 ********~*********************•*************~******************************* FLOW PROCESS FROM NODE 3 9 . 0 0 . TO NODE 3 9 . 0 0 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE· VARIOUS CONFLUENCED STREAM VALUES<<<<< 1 ============================================================================ TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME ·op CONCENTRATION(MIN.) = 11.66 RAINFALL INTENSITY(INCH/HR) = 4.58 TOTAL STREAM AREA(ACRES) = 0.32 PEAKFLOW RATE(CFS) AT CONFLUENCE= 0.88 ** CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.31 7.16 6.267 0.34 2 0.88 11.66 4.578 0.32 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 1.95 7.16 6.267 2 1.84 11.66 4.578 COMPUTED CONFLUENCE ES'l:'IMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 1. 95 Tc (-MIN.) = 7 .16 TOTAL AREA(ACRES) = ,0.66 **************************************************************************** F~OW PROCESS FROM NODE 39.00 'I'O NODE 39.00 IS CODE= 11 >>>>>CONFLUENCE MEMORY BANK# 2 WITH THE MAIN-STREAM MEMORY<<<<< **-MAIN STREAM CONFLUENCE DATA** STREAM RUNOFF Tc INTENSITY ·AREA NUMBER (CFS) (MIN.} ( INCH/HOUR) (ACRE) 1 1.95 7.16 6.267 0.66 .** MEMORY BANK# 2 CONFLUENCE DATA** STREAM. RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) ( INCH/HOUR} (ACRE) 1 7.04 12.51 4.376 2.50 I 1- 1 I I' I I I I I I I I I I I I ** PEA~ FLOW RATE STREAM RUNOFF NUMBER (CFS) 1 6.86 2 8.40 TABLE** Tc (MIN.) 7 .16, -12.51 INTENSITY ( INCH/HOUR) 6 .267 - 4.376 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.40 Tc(MIN.) = 12.51 TOTAL AREA(ACRES) ~ 3.16 *****************'******'***************************~*********************** FLOW PROCESS FROM NODE 39.00 TO NODE 41.00 IS CODE= 3 ------. ---------------------------·------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUB.AREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< -----------= ===-=-=-------================================================ DEPTH OF FLOW IN . 21 .. 0 INCH PIPE IS 14. 0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 4.9 UPSTREAM NODE ELEVATION= 270.80 DOWNSTREAM NODE ELEVATION= FLOWLENGTH(FEET) = 59.38 ESTIMATED PIPE DIAMETER(INCH) PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME(MIN.) = 0.20 270.50 MANNING'S N = 0.013 · = 21.00 NUMBER OF PIPES= 8 .40 TC(MIN.) = 12.71 1 **********************************~***************************************** FLOW PROCESS FROM NOD:J:i: 41.00 TO NODE >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>.>>TRAVELTIME THRU SUBAREA<<<<< 42.00 IS CODE= 51 -----------------------------------------------. ==========-=-=--=----=====-= UPSTREAM NODE ELEVA':i:'ION = 270.50 DOWNSTREAM NODE ELEVATION= 270.10 CHANNEL LENGTH THRU SUBAREA(FEET) = 50.00 ·cHANNEL SLOPE = 0 .'0 0 8 0 CHANNEL BASE(FEET) = 4.00 . "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 8~40 FLOW VELOCITY(FEET/SEC) = 2.66 FLOW DEPTH(FEET) = 0.61 TRAVEL TIME(MIN.) = 0.31 TC(MIN.) = 13.02 **********************************************~***************************** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE= 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ===·==·=========='========================================================== 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.264 SOIL_CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT= .4500 SUBAREA AREA(ACRES) = 0.07 SUBAREA·RUNOFF(CFS) = TOTAL AREA(ACRES) 3.23 TOTAµ RUNOFF(CFS) = TC (MIN) = 13. 02 0.13 8.53 I. I I I I I I I I I: I I I I I I I * * * * * * * * * * * * * * * * * * * * * * * *-* * * * * * * * *-* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE= 1 --------------------------.------------------------------------------------- >>>>>DESIGNATE INDEPENDENT .STREAM FOR CONFLUENCE<<<<< =====.==-=================================================================== TOTAL NUMBER OF STREAMS= 2 CONFLUENCE_VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.02 RAINFALL INTENSITY(INCH/HR) = 4.26 ·TOTAL STREAM AREA (ACRES) = 3 . 2 3 PEAK FLOW RATE(CFS) AT CONFLUENCE= 8.53 ***********************************************************~**************** FLOW PROCESS FROM NODE 41. 00 TO NODE 42.00 IS CODE= 21 -------------------:-------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ===========·============·=================================================== *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA fLOW~LENGTH = 310,00 UPSTREAM ELEVATION= 279.60 DOWNSTREAM ELEVATION = 270·.10 ELEVATION.DIFFERENCE= 9.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN1JTES) = 10.910 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION QF NOMOGRAPH USED .. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4:779 SUBAREA RUNOFF(CFS) = 1.58 TOTAL ARE:A(ACRES) = 0.55 TOTAL RUNOFF(CFS') = 1.58 *****************•********************************************************** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE= 1 . . . ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM· VALUES<<<<< =======-==================================================================== TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = .10.91 RAINFALL INTENSITY ( INCH/HR) = 4 • 7 8 TOTAL STREAM AREA(ACRES) = -0.55 PEAK FLOW RATE(CFS) AT CONFLUENCE= 1.58 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 8.53 13.02 4.264 2 1.58 -10. 91 4.779 AREA (ACRE) 3.23 0.55 RAINFALL -INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR ** PEAK FLOW RATE TABLE** STREAM RUNOFF NUMBER (CFS) Tc (MIN.) 2 STREAMS. - INTENSITY ( IN(!H/HOUR) I I I I I I I I. I I I I I I 1 2 9.19 9.94 10.91 13.02. 4.779 4.264 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.94 Tc(MI~.) = 13.02 TOTAL AREA(ACRES) = 3.78 ******************************************,********************************* FLOW PROCESS :FROM NODE 42.00 TO NODE 44.00 IS CODE= 3 ----------------------------------·--------------------------------------- .>>>>>COMPUTE PIPEFLOW TRAVELTIME THRU. SUBAREA<<<<< >>>>>VSING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ======-==============-===============================-====================== DEPTH OF FLOW IN 24. 0 INCH PIPE IS 16. 3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 4.4 UPSTREAM NODE ELEVATION= 270.10 DOWNSTREAM NODE ELEVATION= 270.0Q F~OWLENGTH(FEET) = 30.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES= 1 PIPEFLOW THRU SUBAREA (CFS) = , 9. 94 TRAVEL TIME(MIN.) = 0.11 TC(MIN.) = 13.13 **************************************************************************** FLOW PROCESS FROM NODE 44.00 TO NODE 44.00 IS CODE= 1 >>>?>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.13 RAINFALL INTENSITY(INCH/HR) =· 4.24 TOTAL STREAM AREA(ACRES) = 3.78 PEAK FLOW RATE(CFS) AT CONFLUENCE= 9.94 **************************************************************************** FLQW PROCESS FROM NODE 43.00 TO NODE 44.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< =====================================-==========-=========================== *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW-LENGTH= 340.00 UPSTREAM ELEVATION= 283.50 DOWNSTREAM ELEVATION= 270.00 ELEVATION DIFFERENCE= 1'3.50 URBAN.SUBAREA OVERLAND TIME OF FLOW(MINUTES') = 10.481 *CAUTION.: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH .DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.904 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 0.50 **************************************************************************** 1. I I I I I ., I I I I I I FLOW PROCESS FROM NODE 44.00 TO NODE 44.00 IS CODE= >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< 1 ==============================-============================================= TOTAL NUMBER OF STREAMS= 2 CONFLUENCE VALUES USED FOR INDEPENDENT' STREAM 2 ARE: TIME OF CONCENTRATION-(M-IN.) = 10. 48 RAINFALL INTENSITY(INCH/HR) = 4.90 TOTAL STREAM AREA(ACRES) = 0.17 PEAK FLOW RATE(CFS) AT CONFLUENCE= 0.50 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS). (MIN-.) ( INCH/HOUR) 1 9.94 13.13 4.240 2 0.50 10.48 4.904 AREA (ACRE) 3.78 0.17 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USEp FOR 2 ST~EAMS. ** PEAK FLOW RATE TABLE** STREAM ·RUNOFF NUMBER (CFS") 1 2· 9.09 10.37 Tc (MIN.) 10.48 13 .13 INTENSITY ( INCH/HOUR) 4.904 4.240 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.37 Tc(MIN.) = 13.13 TOTAL AR,EA(ACRES) = 3.95 **************************************************************************** FLOW PROCESS FROM NODE 50. 00 TO NODE 51.00 IS CODE= 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT= .6000 INITIAL SUBAREA FLOW-LENGTH= 205.00 UPSTREAM ELEVATION= 280.10 DOWNSTREAM ELEVATION= 276.00 ELEVATION DIFFERENCE= 4.10 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.228 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.982 SUBAREA RUNOFF(CFS) = 1.73 . TOTAL AREA(ACRES) = 0.58 TOTAL RUNOFF(CFS) 1.73 ==-=================·=========·=== ·========================================= END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = , TOTAL AREA (ACRES) = 1. 73 0.58 Tc(MIN.) = 10.23 ====== ·=======--========= !================================================== END OF RATIONAL METHOD ANALYSIS 1 I I I ·I I I ·I I I ·1 I I I I I I ,1. I I Drainage Study for Villas De La Costa· ·cHAPTER5 · Detention Basin Analysis OA:oa h:\reportsl2091137\a04.doc w.o. 2091-37 2/2412004 8:40 AM I I I I I I I I I I I I I I I I I I I I I I I I I· I I. I I I I I I I .I I I I - 100-YR WSEL=276.40 /-.,...,__ I ·\ ,_:.;.'· \. I I X=5' I I BOLTED GRATE PER SDRSD D-13 & D-15 18" RCP SD 272.12 FL DETENTION BASIN DETAIL NOTTO SCALE I I I I I I I I I I I I I I I I I I I STAGE-STORAGE-OUTFLOW TABLE Casa La CostcJ Underground Detention Basin·(1-48"RCP, 70 LF@S=0.5%) . . . Elevation Area Incremental Total Volume Outflow (ft) (acres) Volume (acre-ft.) (acre-rt.) (cfs) 272.2 0.000 0.000 0 0.002 273.2 0.004 0.002 1.4 0.008 274.2 0.0.11 0.010 2.2 0.014 275.2 · 0.018 0.024 · 2.8 0.020 - 276.2 0.022 0.044 3.2 0.022 277.2 0.023 0.066 3.7 H:\Excel\2097\37\Stage-Storage.xls I 1_0-Year Rational Method Hydrograph Calculations for I VILLAS DE LA COSTA, Carlsbad, CA I 010= 4.4 cfs Tc= 10 min C= 0.6 I #= 36 P10,e= 1.9 in A= 2.5 acres (7.44*P9*D"-. 645) (/*D/60) (V1-V0) (.;:I VI LI 7J (Q=ciA) (Re-ordered) D I VOL AVOL I (INCR) Q VOL ORDINATE I # {MIN} {IN/HR} {IN} {IN) {IN/HR) {CFS) (CF) SUM= 0 0 0.00 0.00 0.53 3.20 ·4.40 2640 0.00 1 10 3.20 · 0.53 0.15 0.89 1.34 804 0.17 I 2 20 2.05 0.68 0.11 0.63 0.95 570 0.17 3 30 1.58 0.79 0.08 0.51 0.76 458 0.18 .4 40 1.31 0'.87 0.07 0.43 0.65 389 0.18 I 5 50 1.13 0.94 0.06 0.38 0.57 341 0.19 6 60 1.01 1.01 0.06 0.34 0.51 306 0.20 7 70 0.91 1.06 0.05 0.31 0.47 279 0.21 8 80 0.84 1.12 0.05 0.29 0.43 257 0.21 I 9 90 0.78 1.16 0.04 0.27 0.40 240 0.22 10 100 0.72 1.21 0.04 0.25 0.37 225 0.23 11 110 0.68 1.25 0.04 0.24 0.35 212 0.24 I 12 120 0.64 1.29 0.04 0.22 0.33 201 0.25 13 130 Q.61 1.33 0.04 0.21 0.32 191 0.27 14 140 0;58 1.36 0.03 0.20 0.30 182 0.28 I 15 150 0.56 1.40 0.03 0.19 0.29 175 0.30 16 160 0.54 1.43 0.03 0.19 0.28 168 0.32 17 170 0.51 1.46 0.03 0.18. 0.27 161 0.35 I 18 180 0.50 1.49 0.03 0.17 0.26 156 0.37 19 190 0.48 1.52 0.03 0.17 0.25 151 0.43 20 200 0.46 1.55 · 0.03 0.16 0.24 146 0.47 21 210 . 0.45 1.57 0.03 0.16 0.24 141 0.57 I 22 220 0.44 1.60 0.03 0.1'5 0.23 137 0.65 23 230 0.42 1.62 Q.02 0.15 0.22 . 134 0.95 24 240 0.41 1.65 0.02 0.14 0.22 130 1.34 I 25 250 0.40 1.67 0.02 0.14 0.21 127 4.40 26 260 0.39 1.70 0.02 0.14 0.21 124 0.76 27 270 0.38 1.72 0.02 0.13 0.20 121 0.51 I 28 280 0.37 1.74 0.02 0.13 0.20 118 0.40 29 290 0.36 1.76 0.02 0.13 0.19 115 0.33 30 300 0.36 1.78 0.02 0.13 0.19 113 0.29 .1 · 31 310 0.35 1.81 0.02 0.12 0.18 111 0.26 32 320 0.34 1.83 0.02 0.1'2 0.18 108 0.24 33 330 0.34 1.85 0.02 0.12 0.18 106 0.22 34 340 0.33 1.87 0.02 d.12 0.17 104 0.20 I 35 350 0.32 1.89 0.02 0.11 0.17 102 0.19 36 360 0.32 1.90 0.00 0.00 0.00 0 0.18 SUM= 10040 cubic feet I 0.23 acre-feet Check: V = C*A*Pe V= 0.24 acre-feet I OK I RM-Hydrograph 10-Year.xls 1/7/2004 I I I I I I I I I I I I I I I I I I I 5.00 4.50 4.00 3.50 3.00 -J!? u -3: 2.50 0 iC .c 2.00 1.50 1.00 0.50 10-Year Rational Method Hydrograph Calculations for VILLAS DE LA COS_TA, Carlsbad, CA 10-Year Inflow Hydrograph -------------------.----------------------------------------------------· -------------------------------------------------------------· 0.00 ·-----~~--~-~----------- o · 50 100 150 200 250 300 350 400 Time (min) · RM-Hydrograph 10-Year.xls 1/7/2004 I 100.;vear Rational Meth.ad Hydro9raph Calculations I for VILLAS DELA COSTA, Carlsbad, CA I 01~0= 7 cfs· Tc= 10 min C= 0.6 I #= 36 'P100,e= 3 in -A= 2.5 acres .(7.44*P6*D"--. 645) (l*D/60) (V1-V0) (,WILi T) _ (Q=ciA) (Re-ordered) D I VOL .iiVOL I (INCR) Q VOL ORDINATE I # {MIN) {IN/HR} {IN} {IN} {IN/HR} {CFS) {CF) SUM= 0 0 0.00 0.00 0.84 5.05 7.00 4200 0.00 1 10 5.05 -.0.84 0.24 1.41 2.12 1269 0.27 I 2 20 3.23 1.08 0.17 1.00 1.50 901 0.27 3 30. 2.49 1.24 0.1~ . 0.80 1.20 722 0.29 4 40 2.07 1.38 0.11 0.68" 1.02 613 0.29 I 5 50 1.79 1.49 0;10 0.60 0.90 539 0.30 6 60 1.59 1.59 0.09 0.54 0.81 483 0.31 7 70 t.44 1.68 0.08 0.49 0.73 441 0.33 8 ·80 1.32 1.76 0.08 0.45 0.68 406 0.33 I 9 90 1.23 1.84 0.07 0.44 · 0.63 378 0.35 10 100 1.14 1.91 0.07 0.39 0.59 355 0.36 11 110 1.08 1.97 · 0.06 0.37 0.56 334 0.38 I 12 120 1.02 2.04 · 0.06 0.35 0.53 317 0.40 13 130 0.97 2.09 0.06 0.33 0.50 301 0.42 14 140 0.92 2.f5 0~05 0.32 0.48 288 0.44 I 15 150 0.88 2.20 0.05 0.31 0.46 276 0.48 16 160 0.85 2.25 0.05 0.29 0.44 265 0.50 17 170 0.81 '2.30 0.05 0.28 0.42 255 0.56 I 18 180 0.78 2.35 0.05 0.27 0.41 246 0.59 19 190 0:76 2.40 0.04 0.26 0.40 238 0.68 20 200 0.13 2.44 0.04 0;26 0.38 230 0.73 21 ~10 0.71 2.48 0.04 0.25 0.37 223 0.90 I 22 220 0.69 2.52 0.04 0.24 0.36 217 1.02 23 230 0.67 2.56 0.04 0.23 0.35 211 1.50 24 240 0.65 2.60 0.04 0.23 0.34 205 2.12 I 25 250 0.63 2.64 0.04 0.22 0.33 200 7.00 26 260 0.62 2.68 0.04 0.22 0.33 195 1.20 27 270 0.60 2.71 0.04 0.21 ° 0.32 190 0.81 I 28 280 0.59 2.75 0.03 0.21 0.31 186 0.63 29 290 0.58 2.78 0.03 0.20 0.30 182 0.53 30 300 0.56 2.82 0.03 0.20 0.30 178 0.46 I 31 310 0.55 2.85 0.03 0.19 0.29 . 174 0.41 32 320 -0.54 2.88 0.03 0.19 0.29 171 0.37 33 330 0.53 2.91 0.03 0.19 0.28 168 0.34 34 340 0.52 2.95 0.03 0.18 0.27 165 0.32 I 35 ·350 0.51 2.98 0.03 0.18 0.27 162 0.30 36 360 0.50 3.01 0.00 0.00 0.00 0 0.28 SUM= 15885 cubic feet I 0.36 acre-feet Check: V = C*A*P6 V= 0.38 acre-feet I OK I RM-Hydrograph 100-Year.xls 1/7/2004 I I I I I I I I I I I I I I I I I· I I 8.00 6.00 5.00 -J{l u - 100-Year Rational· Method ,Hydrograph Calculations for VILLAS DE. LA COST A, Carlsbad, CA 100-Year lnflowHydrograph . . " . 3 4.00 -----· -------------------------------------------------------------------,------------------------------------------------------------ 0 it= r::: - 3.00 2.00 1.00 0.00 -~--r-----r--~r----.-----,-----,----,~----r----, 0 100 RM-Hydrograph 1·00-Year.xls 150 200 Time (min) 250 300 350 400 117/2004 I I I I I I I I I I I I I· I I I I I I Outflow Rating Clirve·for Detention Basin Plotted Curves for Generic Orifice Project Description Worksheet Type Solve For Input Data 8" Detention Basin Or Generic Orifice Discharge Centroid Elevatior !72.50 ft Tailwater Elevatio !72.00 ft Discharge Coeffic 0.60 Opening Area 0.35 ft2 Attribute Minimum Maximum Increment Headwate.r Elevation-272.20 277.20 0.01 Worksheet: 8" Detention Basin Orifice . . . Discharge vs Headwater Elevation 4 ·0 -----!----· 1 -----i-----1------i _____ 1 ___ -1 ______ 1 _____ 1 _____ r ____ 1 _____ 1-·---r----:-·---:---·--1----· :-----1 ----·!-·---1-·---:-----· 1-----:··-·--! -·--- • I I I I I I I -I I I f I 1 1 r 1 1 I : : : : : : : l : : : : : : : : : : 305 -----1-----i-_---1-----1-----1--'---1-----1------1 ·-·--1-----1------1-----1-----·1-----i-----1--·---:-----i----· 1·-----i-----;----··:••••••: .... i "I 'I I t I I I I I t I I I f t I I t 3 ·0 i . j ' i 1 j i 1 ~ i f f i i 1 i : : : i i j ! 1 j 2 -5· -----/------!---~ --+----1----1-----~----+----l----l ---~----~. · i·----·l·····j ·····:----l-·--t---··: ···--i-----:----!---1 ··--~-----Q) I I I I I I I I I I I f t > I I , 1 1 C) I t I I I I I I I I I I I I I I I I Ii 2 · 0 · ·l··T' L·J···+-··!··+··i· ·/··T (·J ·, +·+ ··:·····!·····t--:· ·Li··· !· i··:···· 0 1 . 5 .... ·:····· i······i ·····[····· i. ··i····· 1·····1 ·····i·.····1····j ····· j·····/····1·····:······• ·····!·····/·····• ..... 1······1 ····· 1 ·····•······;····· 1 · 0 · ·-· --··!""· · , ··1···r · i-r t·· ·1···· i · r 1····· i ·· --r ··t·· r ····1··· ··1 r· ·1 · ··1 ·····r-T r· .·· 0.5 _. ·--:-----:----· -----:-----:-····: _···· :···--(--·:.----··:---·-: ..... :---·--: ·····:·---· j-··--·: ··-·-:·---· )--····:----· :··-·-+--···:·-··· (·--: ····- ' i i ~ i i ! 1 l 1 1 i i . b.0'--'-~-~~-'-~~-~~-~~-~~-~~~~-~~-~~-~~-~~-~~-~ 272.2 272.6 273.0 273.4 273.8 274.2 274.6 275.0 275.4 Headwater Elevation (ft) 275.8 276.2 276.6 277.0 Project Engineer: H&A Employee h:\flow-m\2091\37\detbasin.fm2 Hunsaker & Associates -San Diego, inc. FlowMaster v7.0 (7.0005) 01/06/04 05:17:07 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 I 10-YEAR HEC-HMS OUTPUT I I I I I I I ' '·· I ,~ Detention Basin I I I I I I I I I I I I I I I I I I I I I I I I I I ' I I I I I I I I I I I I I I I I I I I 1- I I I I I I I I I I I' I I I I I I I I 100-YEAR HEC~HMS OUTPUT I I I I I I I I I I I' I I I I . I I I I· I I I I I I 1· I I I I I I 1· I I I I I I Drainage Study for Villas De La Costa ·1 ' I I I I . I ·1 I ·I I I ·1 I I I I 'I I CHAPTER6 Storm Drain Analysis OA:oa h:lreports\2091\37\a04.doc w.o. 2091-37 2124/2004 8:40 AM I I I I I I I I I I I I I I I I I I I Scenario: Street A Lateral Sta 13+70 1 1 14.5 Title: Casa La Costa · h:\stormcad\2091 \37\rcprf61 o.stm 01/27/04 08:20:11 AM © Raestad Methods, Inc. t),, . 1-4 I I i I ! ' ·/ 30 Project Engineer: H&A Employee Hunsaker & Associates • San Diego, Inc. Storm CAD v5.5 [5.5003] 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 I I I I I I I I I I I I I I I I I I I Scenario: Street A Lateral Sta 13+70 Combined Pipe\Node, Report Label us bs Section Mann. Length Slope us OS HGL HGL Vel Vel Total us OS Node Node Size n (ft) (ft/ft) Invert Invert In Out In Out System Ground Ground Elev Elev (ft) (ft) (ft/s) (fUs) Flow Elevation Elevation (ft) (ft) (cfs) (ft) (ft) P-1 11 14 18inch 0.013 24.00 0.0054 280.36 280.23 280.82 280.82 1.52 1.08 0.70 286.85 286.86 P-2 14 14.5 18 inch 0.013 37.82 0.0050 279.90 279.71 280.68 280.47 4.28 4.40 3.98 286.86 286.64 P-3 14.5 30 18 inch 0.013 103.87 0.0419" '279.38 275.03 2so.14 276.60 4.40 2.25 3.98 286.64 282.50 Title: Casa La Coi;;ta . Project Engineer: H&A Employee h:\stormcad\2091 \37\rcprf61 0.stm Hunsaker & Associates -San Diego, Inc. StormCAD v5.5 (5.5003] 01/27/04 08:20:16 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ·---------------.. -- Label: 11 Rim: 286.85 ft Sump: 280.36 ft Profile Scenario: Street A Lateral Sta 13+70 · Label: 14 Rim: 286.86 ft 288.00 Sump: 279:90 11 ·I I 286.oo 11 I 11 I I I · I I l> "'--· I I 284. oo Ri : 282.50 ft I I 11 I I I Y~f ., I~ _ J I _ _ .· _ . _ ~ s~ :~:~:~53ft I , ··1··-,--n-,,-,,-·r···-~----~ I ~ I I I 11 I I -,. .... ,. ····e-~;,cf,,,·,,£,,:-~>!xh~l~ ~ . -. .· · 280.0ci:levation (ft) I ffn~ ,~ Dl>-1ri\ierl 279.eo n: I ~4:d-·;8,s.::: , I............... I 1-1 I 278.oo on:jnvert: 27!i71 ft L: 3 .. 82 ft Size 18inch S: 0.0050 ft/ft 276.00 ·, 274.00 ;;, (~ (~ j,-..J ~-------'--------'--------'-------.L_ _____ _j_ ______ J_ _____ _J 272.00 0+00 0+25 0+50 0+75 1+00 1+25 1+50 1+75 Station (ft) - Title: Casa La Costa h:\stormcad\2091\37\rcprf61 0.stm 01/27/04 08:20:33 AM Hunsaker & Associates -San Diego, Inc. © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: H&A Employee StormCAD v5.5 [5.5003] Page 1 of 1 I I I I I I I I I I I I I I I I I I Scenario: Street A-1 Liitteral Sta 13+70 30 Title: Casa-La Costa h:\stormcad\2091 \37\rqprf620.stm 01/21/04 07:32:38 PM © Haestad Methods, Jnc. 25 J::, '7 22 Project Engineer: H~A Employee Hunsaker & Associates -San Diego, Inc. StormCAD v5.5 (5.5003] 37 Brookside Road Waterbl,Jry, CT 06708 USA +1-203-755-1666 Page 1 of 1 I I I I I I I I I I I I I I I I I I. I Scenario: StreetA-1 Lateral Sta 13+70 Label us OS Section Node Node Size P-1 22 25 18 inch P-2 25 30 18 inch Title: Casa La Costa h:\stormcad\2091 \37\rcprf620.stm Mann. Length n (ft) 0.013 20.00 0.013 110.19 01/21/04 07:32:43 PM © Haestad Methods, Inc. Combined Pipe\Node Report Slope us DS HGL HGL Vel Vel Total us DS (ft/ft) Invert Invert In Out In Out System Ground Ground Elev Elev (ft) . (ft) (ft/s) (ft/s) Flow Elevation Elevation (ft), (ft) (cfs) (ft) (ft) 0.0050 281.28 281.18 281.69 281.59 3.07 3.09 1.20 284.28 284.28 0.0643 280.73 273.64 . 281.40 276.60 4.05 1.74 3.07 284.28 283.00 Project Engineer: H&A Employee Hunsaker & Associates -San Diego, Inc. StormCAD v5.5 [5.5003] 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 I I I I I I I I I I I I I I I I I I I Profile -, Scenario: Street A-1 Lateral Sta 13+70 ~-----~-~----~------,-~---'----~-----~-----~ 286 .00 Lab el: 22 Lab el: 25 Rim: 284.28 ft Rim: 284.28 ft Sump: 281 .28 ft r~====i:'.l==l=S::::u:::m:::p:::~2~8;=0=.7-3~ft~=:----_:__j_ ___ _,___--4-______ (_ _____ __j 284 .00 Lab el: 30 Rim: 283. Oft Sump: 27 .39 ft Elevation (ft) -------1274.00 '-------'-------'-----~~-'---l>-ta-tl-G-IH-!t+---'--------L-----__, 272 .00 O+OO 0+25 0+50 0+75 1 +00 1+25 1+50 Title: Casa La Costa Project Engineer: H&A Employee h:\stormcad\2091 \37\rcprf620.stm Hunsaker & Associates -San Diego, Inc. StormCAD v5.5 [5.5003] 01/21/04 07:33:05 PM © Haestad Methods, Inc. 37 Brookside Road Waterb1,1ry, CT 06708 USA +1-203-755-1666 Page 1 of 1 I I I I I I I I I I I I I I I I I I I Scenario: Detention Basin Outfall 33 P-5 /:J ... , 30.1 30 40 P-7 Title: Casa La Costa Project Engineer: H&A Employee h:\stormcad\2091\37\rcprf600-1.stm Hunsaker & Associates -San Diego, Inc. StormCAD v5.5 [5.5003] 01/28/04 02:38:34 PM © Haestad Methods, Inc. 37 Brookside.Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ---------....-----------------------,------------------- I I I I I I I I I I I I I I I I I I I Scenario: Detention Basin Outfall Combined Pipe\Node Report Label us DS . Section Mc1nn. Length Slope us DS HGL HGL Vel Vef Total us DS Node-Node Size n (ft) ' (ft/ft) Invert Invert In Out In Out System Ground Ground .Elev Elev (ft) (ft) (ft/s) (ft/s) Flow Elevation Elevation (ft) (ft) (cfs) (ft) (ft) P-7 3d 30.1 18inch 0.013 _-4.00 0.0050 27,2_.17 272.15 273.25 273.18 5.17 5.46 7.04 281.05 280.80 P-1 30.1 39 18inch 0.013. 138.17 0.0056 271.91 271.13 273.10 272.62 4.68 3.99 7.04 280.80 274.18 P-4 -33 36 18inch · 0.013 43.98 0.0182 272:93 272.13 ,2_73.36 272.59 3.15 2.85 1.31 279.94 279.41 P-3 36 39 18 inch 0.013 15.11 0.0443 271.80 271.13 272.58 272.62 2.11 1.10 1.95 279.41 274.18 P-5 39 BMP. -18inch 0.013 3.50 0.0086 270.80 270.77 272.30 272.28 4.75 4.75 8.40 274.18 274.16 P-6 BMP 40 18inch 0.013 50.88 0.0053 270.77 270.50 272.07 271.62 5.15 5.92 8.40 274.16 272.50 Project Engineer: H&A Employee Title: Casa La Costa h:\stormcad\2091-\37\rcprfS00-1.stm Hunsaker & Associates • San-Diego, Inc. StormCAD v5.5 [5.5003] 01/28/04 02:39:04 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA :t-1-203-755-1666 Page 1 of 1 I I I I I I I I I I I I. I I I I I I I Profile Scenario: Detention Basin-Outfall '· ~----------~----------~~---------~----------~ 282.00 Label: 30 Rim: 281,05 ft sump: 272.17 ft Label: P-7 Up. Invert: 272.17 ft Label: P-1 On. Invert: 272.15 ft p. Invert: 271.91 ft L: 4.00 ft n. Invert: 271.13 ft abel: 40 lm:272.50 ft ump: 270.50 ft 272.00 o+'-oo~s"":""o"-.o""o'--5o=n,ll..ft---~--o-+-'-s-o--s-1.iz'""'el--l: ~18~11-l'n c-1ht-----1+..Lo_o ______ ..,,_ ___ 1+--'5-0-~---i------2---'+o~70·00 Title: Casa La Costa h:\stormcad\2091\37\rcprf600-1.stm S: 0,0058 ft/ft Station (ft) Label: P-5 Up. Invert: 270.80 ft Dn. Invert: 270.77 ft L: 3.50 ft Size: 18 Inch s: 0.0086 11/11 Hunsaker &-Associates--San Diego, Inc. Label: P-6 Up. Invert: 270.77 ft Dn. Invert: 270,50 ft L: 50.88 ft Size: 18 Inch s: 0,0053 ft/ft Project Engineer: H&A Employee StormCAD v5.5 [5.5003] 01/28/04 02:39:29 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page ·1 of 1 I I I I I I I I I I I I I I I I I I I Profile Scenario: Detention Basin Outfall .. Label: 33 Rim: 279. 94 ft Sump: 272.93 ft ~::::::=:::-----r----,-----~---r-----7 280.00 Label: .Rim: 2 Sump: :6 9.41 ft 71.80 ft 1-1-------+----------+-"--1-+--~-+______, 27 5. 00 Elevation (ft) 0+00 LetP-4 Up. In ert: 272.93 ft On. In ert: 272.13 ft L: 43. 8 ft Size: 18 inch S: 0.0 82 ft/ft 0+20 0+40 Station (ft) Label: 39 Rim: 274.18 ft Sump: 270.80 ft Label: P-3 Up. Invert: 271.80 ft On. Invert: 271.13 ft L: 15.11 ft Size: 18 inch S: 0. 0443 ft/ft 270.00 0+60 Title: Casa La Costa Project Engineer: H&A Employee h:\stormcad\2091\37\rcprf600,1.stm Hunsaker & Associates -San Diego, Inc. StormCAD v5.5 [5.5003] 01/28/04 02:39:36 PM. © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 I I I. 1: I I I I I I I I I I I I I I Project Description Worksheet Flow Element Method Solve For · Input Data 48"RC_PSD@ Circular Chanr Manning's Forr Channel. Dept!" . Mannin~s Coeffic 0.013 Channel Slope 005000 ft/ft Diameter Discharge Results Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Froude Numbe Maximum Disc Discharge Full. Slope Full Flow Type 48.0 in 7.04 cfs 0.71 ft 1.52 ft2 3.49 ft 0.00 ft 0:77 ft· 17.8 % 0.003658' ft/ft 4.64 ft/s 0.33 ft 1.05 ft 1.16 109.25 cfs 101.57 cfs 0.000024 ft/ft ,upercritical h:\flow-m\2091\37\detbasin.fm2 01/07/04 01:19:56 PM © Haestc!d.Methods, Inc. Velocity in_ 48" RCP SD @ 0.5% Worksheet for Circular Channel Project Engineer: H&A Employee . Hunsaker & Associates -San Diego, Inc. FlowMaster v7.0 [7.0005] 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 I I I I I I I I I I 1-· ·1 I I I I I· !I I -Cross Section between Lots 8 & 32 Worksheet for Irregular Channel Project Description Worksheet Pinch Point XS-2 Flow Element Irregular Channel Method Manning's Formula Solve For . Channel Depth Section Data 'Mannings Coefficient Channel Slope . Water Surface Elevc;1tion Elevation Range Discharge 0.013 0.059000 ft/ft· 279.81 ft 279.70 to 283.70 6.90 cfs 284.00 283.50 283.00 282.50 282.00 281.50 281.00 L-Ot ~2.. 280.50 280.00 279.50 0+00.0 0+08.0 0+18.0 V:10.0~ H:1 NTS Project Engineer: H&A Employee h:\flow-m\2091\37\detbasin.fm2 Hunsaker & Associates -San Diego, Inc. FlowMaster v7.0 [7.0005] 1/27/20041:07 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 2 I I I I I I I I I I I ·1 I I I I I I I Project Description Worksheet . Flow Element Method _Solve For · Input Data Cross Section between Lots 8 & 32 Worksheet for Irregular Channel Pinch Point XS-2 Irregular Channel Manning's Formula Channel Depth Channel Slope Discharge 0.059000 .ft/ft 6.90 cfs Options Current Ro·ughness Method Improved Letter's Methoc;l Improved Letter's Method Horton'.s Method Open ChannelWeighting Method Closed Channel Weighting Method Results ManninQS Coefficient Water Surface Elevation Elevation Range Flow Area Wetted· Perimeter Top Width Actual. Depth Critical· Elevation Critical Slope Velocity Velocity Head Specific Energy Froude NLJmber Flow Type 0.013 279.81 ft 279.70 to 283.70 1.15 ft2 11.40 ft 11.24 ft 0.11 ft 279.93 ft 0.004220 ft/ft 6.01 ft/s 0.56 ft 280.37 ft 3.31 Supercritical Roughness Segments Start End Station Station 0+00.0 0+16.6 Mannings Coefficient 0.013 . Natural Channel Points Station Elevation (ft) (ft) 0+00.0 0+00.1 0+06.7 0+11.3 0+11.4 0+16.5 0+16.6 283.70 279.71 279.70 279.71 280.00 280.10 280.40 Project Engineer: H&A Employee h:\flow-m\2091\37\detbasin.fm2 Hunsaker & Associates -San Diego, Inc. FlowMaster v7.0 [7.0005] 1/27/2004 1:07 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 I I I I I I I I I I I I I 1· I I I I I Drainage Study for Villas De La Costa CHAPTER7 Inlet. Sizing OA:oa h:\reports\2091\37\a04 doc w.o. 2091-37 2/24/2004 8.40 AM --~--------------------------------.... ----·-·--------------- For Jensen Curb Inlet Type DI2436: Type Inlet StrE:let of at Slope Inlet Node_ % ON-GRADE 11 5.55% ON-GRADE 22 3.30% ON-GRADE 25 3.30% ON-GRADE 33 3.30% SUMP 36 0.00% Q(cfs) . 0.70 1.20 1.87 1.31 0.88 VILLAS DE LA COSTA · 1nlet S·izing Flow Intercepted a{ft.) y(ft.) By Curb Opening Opening {ft.) 0.33 0.12 0.63 1 0.33 0.2_1 0.83 1 0.33 0.24 0.91 1 0.33 0.22 0.85 1 0.33 -0.88 4 1 FROM EQUATION Q=0.7L(0.33+DEPTH)A3/2 FROM CITY OF SAN DIEGO CHART 1-103.6A 2 FROM NEENAH NOMOGRJ\PH CAT. NO. -R-,.3067 3 FROM E;QUATION Q=KDA5/3 AND ASSUMING 50% CLOGGING OF GRATE 4 FROM CITY OF SAN DIEGO CHART 1-103.6C For Type B Curb Inlet . Type Inlet Street Required of at Slope Q(cfs) a(ft.) y(ft.) Length of Inlet Node % Opening {ft.)1 ON-GRADE 14 5.55% 3.3 0.33 0.28 10.0 1 K Flow {cfs) Total Bypass coeff. 2 Intercepted Flow (cfs) Flow by Grate 3 Interception (cfs) 19 0.28 0.70 0.00 17 0.62 1.20 0.00 17 0.80 1.70 0.17 17 0.66. 1.31 o.oo --0.88 0.00 Use Length . {ft.) 11 1/27/2004 H:\EXCEL\2091\37\INLET SIZES.XLS I I I I I I I I I I I I I I I I I I I "K" OESCl11PTION-TYPE V co11P. coo£-3065-0002 FLOW----- I[ flJlll] .l JJJ JJ J I• zo· ·I ~ so, ..... ,....,-,-..,...........,-,--,--,-..-,--,-...,,,...,~._-...... ,,-~,---,....,-..,....,....,,.....,....,....., .I I I 50+-f-l-l--l--f-11--1--l--!--f-ll--l--l-+-~-l--l-+-l-+-l--!-H"-t-++-H 40 ' .... ... 30 ..... ..... ..... 1-.. 20 ..... 0 .01 I I s - .. ..... ,,_ -~........ I I .03 sl T .04 I ST·: TRANSVERSE ·GUTTER SL:OPE SL= LONGITUDINAL GUTTER SLOPE K = GRATE .INLET COEFFICIENT - .05 I © 1980 Neenah Foundry Co. CAT. NO.-R•3067•L DESCRIPTION-TYPE L COIIP. CODE-3067-0006 11)1111 60 50 40 ... ..... 30 ..... 20 10 0 I FLOW- : .. uf------ ' ..... ..... I I I I II I II "K"vs. ST ...... -. ...._,.a , ..... s -.. ,.._ -,__ ---. ... t-.. r,,,.....__,._; ,_ --f-·. ..... .01 I ---..,_ : ' ,__ -_,_ .03 . s' T - 04 I ST= TRANSVERSE GUTTER SLOPE SL= LONGITUDINAL GUTTER SLOPE --· ---- .05 .I I ,-,_ r-- -.- -,- : ·1 I 06 I 6 DESCRIPTION---DIAGONAL REVERSIBLE COMP. CODE-3067-0004 FLOW--__.- 60 50 I\. f\. 40 r-... I'-. ..... " ,~, 6 -' I' " " l!l, r-.. 30 ' .::.:.r-,.,,, .. ;-.. " BJ I 35r---___, I I "K"vs. ST ,-,_ r-..,-.. .. ·--~ ""'r,.,,.' ·-rs: ;:::; ------~ r-i-:; ..... ,_ 1::,,-.:: - 20 ,-.. S, 11 ,-.. 10 r- r--- r- ,03 sl T r- -....__ ,__ t-.. ,__ _,_ ,-L..J _._ j - .04 .05 I I .~ 't\~ \\ '\ ST= TRANSVERSE GUTTER SLOPE SL= LONGITUDINAL GUTTER SLOPE K = GRATE INLET COEFFICIENT © 1976 Neenah Foundry Co, CAT. NO.-R-3067,V DESCRIPTION-TYPE V COMP. COOE-3067-0008 FLOW----- 60 50 40 ' r-.... ' 30 _::::, ~~ --~ :--!JJ ---. ~" I'-..._ P,,..r-,; I'-- I I I I "K"vs. ST ,_ 'r,.. ,__ f-..~ l.l' '--: -,_ t:,,,r--.. 20 r-- 10 -,-----1--,, __ f-. .. 0 .01 I I -.. -L -r-- .. r--.. ,-.. ,-,- 03 s' T -.. -.... -- 04 I ST= TRANSVERSE GUTTER SLOPE SL= LONGITUDINAL GUTTER SLOPE ,_..._ -,.._ .05 I - ....__. - (·\ ) " /4.1 ,,,,. ' I I I I I I I I I I I I I I -I I II I I CAST IRON HOOD, FRAME AND VEIN GRAT.E '3295-4, APPROX WEIGHT: 510. LBS. OUTSIDE HEIGHT B . OF BOX 31" ROUND THIN WALL KNOCKOUTS. St.EDGE OUT AS REQUIRED. (TYP. 2 PLACES) BOX DESIGN LOAD: H-20 FULL TRAFFIC FOR COMPLETE DESIGN AND PRODUCT INFORMATION, CONTACT JENSEN PREC.AST. 9/6/01 0124.364-vl.dwg CC 2001 Jensen Precost OPTIONAL L EXTENSION C HEIGHT I EXTENSION MODEL NO. C WEIGHT. RS24.3606 6'' 450 LBS. RS243612 12' 900 LBS. 7 D12436 24"x36" CURB INLET . WITH CAST IRON FRAME GRATE, AND HOOD 12" UP TO 6'-0" INSIDE _ DEPTH, OPTIONAL RISERS AVAILABLE J DROP INLET MODEL NO. A 8 WEIGHT** DI243636* 36" 42" 3028 LBS. Dl243648 48" 54" 3889 LBS. Dl243660 60" 66" 5611 LBS. Dl243672 72" 78" 6472 LBS. *STANDARD **BOX ONLY USE AS A DESIGN ALTERNATIVE FOR: NDOT TYPE 3 AND CLARK COUNTY TYPE A OR TYPE B*** ***VANE GRATES MEET FLOW REQUIREMENTS FOR NDOT TYPE 3, MODIFIED TYPE 3, CLARK COUNTY TYPE B, C AND D. 18"x31" THIN WALL KNOCKOUTS. SLEDGE OUT AS REQUIRED. (TYP. 2 PLACES) I I I I I I I ·1 I I I I I I I I I ,·1 I Drainage Study for Villas De La Costa NOTE: REFERENCE DAT A· Some reference data that has typically been included in support of hydrologic calculations. done by hand are incorporated into the Rational Method.Hydrology Computer Program Package (by AES). These include: • Intensity-Duration Design Chart • Nomograph for Determination of Time of Concentration (Tc) for Natural Watersheds • Urban Areas Overland Time of Flow Curves • Runoff Coefficients (Rational Method) Since these references are incorporated into the AES software, they are not needed to support this study and are therefore not included in this report. Soils maps are also not included, as Hydrologic Soil Group "D" was used for this study. OA:oa h.\reports\2091\37\a04.doc w.o. 2091-37 2124/2004 8:40 AM