Loading...
HomeMy WebLinkAboutCT 03-06; BLACKRAIL 16; HYDROLOGY AND HYDRAULIC STUDY; DWG 434-9A; 2006-08-09--c HYDROLOGY AND HYDRAULIC STUDY FOR BLACK RAIL -16 CARLSBAD, CA CT 03-06 PREPARED BY: EXCEL ENGINEERING 440 State Place Escondido, CA 92029 • (760) 745-8118 EXCEL JOB NO. 05-034 August 9, 2006 .LN3Wl~\fd3Q f>Nf~33Nff)N3 9ooz vr 9nv U3AI3~31r \ \ \ TABLE OF CONTENTS Objective Overview Project Location Project Site Description Methodology Hydrology Pre & Post Development Hydraulics Storm Drain System Curb Inlets Curb Outlets (D-25) Brow Ditch & Channel Hydraulic Calculations Regional Quality Control Board Requirements 85TH Percentile Storm Conclusions Appendix A. Vicinity Map B. Charts & Figures From The San Diego County Hydrology Manual 2003 C. Pre-Development Hydrology Calculation 10 Year Storm D. Pre-D~velopmentHydrology Calculation 100 Year Storm E. Post-Oevelopment Hydrology Calculation 10 Year Storm, Node 100 Series F. Post-Development Hydrol-0gy Calculation 100 Year Storm, Node 100 Series . G. Post-Development Hydrology Calculation 10 Year Storm, Nodes 200, 300, 500 Series H. Post-Development Hydrology Calculation 100 Year Storm, Nodes 200, 300, 500 Series I. Post-Development Hydrology Calculation 10 Year Storm, Node 400 Series J. Post-Development Hydrology Calculation 100 Year Storm, Node 400 Series K. Storm Drain System Calculation Storm Drain Lines A-1 To A-6, 10 Year Storm and 100 Year Storm L. Curb Inlet Calculation M. Curb Outlet (D-25) Calculations N. Brow Ditch Hydraulic Calculations 0. Rock Rip Rap Sizing Calculations P. Regional Water Quality Control Board Requirements Q. Pre & Post Development Hydrology Basin Maps & Storm Drain Line Grading Plan Index Sheet o, 0 0 C OBJECTIVE The objective of this study is to determine the amount of 6 hour 10 year and 100 year storm runoff that the proposed project will be generating. This study will also guide the design of the proposed private and public storm drain facilities in such a way as not to negatively impact the existing downstream storm drain facilities. OVERVIEW PROJECT LOCATION The proposed development is located PROJECT SITE DESCRIPTION The subject site has an approximate area of 5 .26 acres. The site is also identified as Assessor's Parcel Number's 215-080-20, 21 & 28. It is surrounded by developed and undeveloped land, and open space parcels. A northwest-southeast trending ridge characterizes the site area. Elevations at the site ranges from approximately 383 feet mean sea level on the west side of the property to approximately 317 mean sea level on the eastern edge of the property at the existing drainage course. The site has a relatively gentle slope but there is an existing 1.5:1 slope parallel and adjacent to the eastern property line. Estimated variance in height is 38 feet for this slope. The surrounding terrain consists of mild slopes except to the east, which has a few steeper slopes adjacent to the existing drainage course. Access to the site is from Black Rail Road. The proposed on-site street (Zephyr Court) will dead-end into a cul-de-sac. At present the site contains vegetation that includes native brush along the eastern edge of the property. Site has been used for the agricultural production of strawberries and for the storage of farm equipment. To the south of the site is an existing residential subdivision. To the north is a property containing large water tanks for the Carlsbad Municipal Water District. To the east of the site is an existing open space and a natural drainage course. To the west is Black Rail Road fronting the property. The majority of the site drains to the east and into the natural drainage course at the eastern property line. There is a small ridge line approximately a quarter of the way into the site from Black Rail Road, which runs north to south and splits the site drainage to the east and to the west. A small portion of the site drains to Black Rail Road from this ridge line. The proposed development will contain a combination of residential lots/areas, a cul-de-sac, landscaping, and single family dwellings as well as the proposed driveways that will provide access to each home. Infrastructure will include new storm drainage as well as water and sewer main extensions and new dry utility runs/extensions to service the lots. There are currently no existing storm drain systems in Black Rail Road. The majority of the site will drain to the end of the proposed cul-de-sac to a proposed storm drain system. The system will consist of a Type B-2 curb inlet, which will drain into a Storm Water 360 media filtration unit to treat stormwater for the SWRCB requirements. This will then drain to a cleanout at the top of slope and then to a proposed D-41 energy dissipator at the toe of the slope. This storm drain discharges into the existing drainage course adjacent to the eastern property line. Brow ditches per SDRSD D-75 will also be proposed along the southern and northern property lines of the site. These ditches will drain to Black Rail Road and to the existing drainage course along the eastern property line. The brow ditches that drain to Black Rail Road will drain to the new curb and gutter through proposed D-25 curb outlets. The brow ditches that drain to the eastern property line will dump out into D-40 energy dissipators prior to reaching the existing drainage course. METHODOLOGY HYDROLOGY Tue Rational Method as outlined in the San Diego County Hydrology Manual May 2005 Edition was followed in this study. The CIVILCADD I CIVILDESIGN software version 7. 4 was used to calculate the storms. Specifically, we used the software's San Diego 2003 Rational Method module. This computer program has taken into account the changes that the 2003 manual implemented. Such changes include, but are not limited to, the time of concentration and urban area runoff coefficients, Please see the calculation printouts and the hydrology basin maps in the Appendix. HYDRAULICS The Hydraflow storm Sewers version 8. 0 software was used in the hydraulic calculations. Said software uses the energy-based Standard step method when computing the hydraulic profile. This methodology is an iterative procedure that applies Bernoulli's energy equation between the downstream and upstream ends of each line in the system. It uses Manning's equation to determine head losses due to pipe friction. Since the 10 year storm is less than the 100 year storm, we only analyzed the proposed storm drain systems using the 100 year runoff. Runoff as calculated in the hydrology section of this study was used to design the proposed storm drain systems. Storm drain System A consists of a proposed Type B-2 curb inlet in the cul-de-sac for Street 'A'. This inlet connects to a proposed Storm Water 360 stormgater diversion weir, which diverts the treatable flows to the Storm Water 360 media filtration unit; the bypass flows are carried by an 18" pipe, which then drains to a proposed cleanout, which then drains to a proposed D-41 energy dissipator at the eastern property line. Please see the calculation printouts and the hydrology basin maps in Appendices C through K and Q. For the curb inlet calculation, please see the appropriate section in Appendix L. 0 • 0 For the brow ditch calculations, please see Appendix N. REGIONAL QUALITY CONTROL BOARD REQUIREMENTS Please see Appendix P. CONCLUSION As shown on the calculations that are attached in the Appendices and the methodology used, we have proven that this project does not negatively impact the downstream storm drain facilities. Pre-development runoff is equal to 13. 70 cfs for the 100 year storm event. The post-development runoff is equal to 14.38 cfs for the 100 year storm event. Even though the post-development QlOO runoffs are larger than the pre-development, this is consistent with the tentative map hydrology study, which calculated an increase of 1.0 cfs. This small increase (0.68 cfs) is consistent with this type of residential development. The outlets of the drainage discharge points will contain rip rap energy dissipators to ensure that downstream properties will not be subjected to erosive velocities. Therefore we feel that this site does not negatively impact the downstream properties. We have also demonstrated that this project meets the requirements of the Regional Water Quality Control Board since the permanent BMP~ exceed the minimum standards that the Board has implemented. ~ 0 . VICINITY MAP 0 0 0 C CITY OF OCEANSIDE VIC I N I TY MAP ~o~ ~~ I>-~ t,..\~'? ~'i)· ~------o~" CITY OF ENCINITAS CITY OF VISTA SITE NOT TO SCALE 0 CHARTS & FIGURES FROM THE SAN DIEGO COUNTY HYDROLOGY MANUAL 2005 0 0 g i... "' ~ ~ "' .. ~ g U) ~ ~ 33•30· ;:::..-:::..:::.-: ti.I .. ~. J ,t.'.:.I I 33•30• 33•15·------1---- ~ ,;\) () -· 33"00' -I -;.: L . _____ Wl so, L. 1Yf'6 p 32·•s· ~ 3 "O (I) ::!. ~ () 0 C ::, ~ 32•3a 32"30' !;: ~ 8 ~ g ~ ~ ~ C ~ .:: :: :: ::: ..... ~ ~ County of San Diego Hydrology Manual Soil Hydrologic Groups Legend Soil Groups D GroopA -GroupB LJ GrOIJl)C [e(•:1 GfOL'!) 0 LJ Undetc,maned LJ Data Unev1ttlable DPW ~GIS ~ SliiGIS ....._...,, ... .A .. ,.... ~--"""" ..... 'C"I." H-'....:~ ~,C:.Cwc_t.,..¢ ~ N :::-.:::-.:=~~~.::,.=-='u W-CIIOWft ... ffT,C,~fall•r~~ ~---M-..-...-1'-...-..--......._--,....,.,..,.., E -~ ....... --------..-.~---,....,.... ..... _________ _ -.....--.---.... s 3 0 ...-=, 3 Miles San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 12 of26 Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. Table 3w2 provides limits of the length (Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial T1 values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study. MAXIMUM OVERLAND FLOW LENGTH (LM) & INITIAL TIME OF CONCENTRATION (T1) Element* DU/ .5% 1% 2% 3% 5% 10% Acre LM T, LM Ti LM T1 LM T, LM Ti LM T1 Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LOR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 ,4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N.Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G.Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 · 2.6 100 2.2 General I. 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 *See Table 3-1 for more detailed description 3-12 0 0 San Diego County Hydrology Manual Date: June 2003 0 Section: Page: Table3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient "C" Soil TYlle NRCS Elements Cowi Elements %IMPER. A B Undisturbed Natural Terrain {Natural) Permanent Open Space O* 0.20 0.25 Low Density Residential (IDR) Residential, 1.0 DU/A or less 10 0.27 0.32 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 Lo.w Density Residential (LDR) Residential, 2.9 DUI A or less 25 0.38 o.41 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 Mediwn Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0 55 0.58 High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76-0.77 CommerciaVIndustrial (G. Com) General Commercial 85 0.80 0.80 Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 Commercial/Industrial (General I.} General Industrial 95 0.87 0.87 C 030 0.36 0.42 0.45 0.48 0.54 0.57 0.60 0.69 0.78 0.78 0.81 0.84 0.84 0.87 3 6of26 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.85 0.87 0 *The values associated with 0% impervious may be used for cbrect calculation of the ronoff coefficient as descnbed in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type). or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g, the area is located in Cleveland National Forest). DU/A= dwelling units per acre NRCS = National Resources Conservation Service 3-6 10.0 9.0 B.O 7.0 80 :-.. i-.. .... .... ~ .... i,.., ... " ... I' ... ... ........ II,. -... I' " " "'r-, '"'!',,, I" too.I"~ ...~;,,. . . ' tooi,,. ~ ~ •i,.. ~ " .... ~ .. , .. .. ~ ~ 1"" 5.0 40 I 3.1 2.1 'C" I m .c g1 ~o ~o §0 0 0 0 0. 0 I I I I : I i ' " "" ' I l',,i,.., ....... " .... • I,. r-. .. ... , ... '"" .... "' 'r-. 5 6 7 8 910 0 ~ I', ~ .. ~~~ "' r... ~ ~ .. ', "'~ -, " .. ~ ...~ ~ ~ ... .... .. ~~~ '~ ,, "'~~ 15 20 30 Minutes 40 50 Duration EQUATION I = 7.44 P5 o-0,645 ::; lntel)Sity ("mlhr) I Pa = 6-Hour Preeipitation (in) 0 = Duration (min) ,um 1111 Ulill 1111 'r-. r.. I" " !"I~ " r... "' ,, r-. ' ,."'~ " to,. ' l"I, ,, 1 ... "'~ l"I "' "'~h to,, "'~ ~ :'i... "' , ........ ' "' '~ ' ~"" "'~ , ... "i.. ~ ' 1. ~ :,.., ,, IJ 'IIITIIHll1111 111111111111111111 1111ITTTT111111111 11111111111111111 2 3 4 5 6 Hour.. ± ~ ,, ii! 6.0 "§: 5.5 i s.oi 4.55' 4.0! 3.5 .!!!. 3.0 2.5 2.0 1.5 1.0 Intensity-Duration Design Chart-Template • Drrect1ons for Appllcatlon: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are Included In the County Hydrology Manual (1 o, 50, and 100 yr maps included In the Design and Procedure Manual}. (2) Adjust 6 hr precipitation {If necessary) so that it is within lhe range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve forthe location being analyzed. Appllcatlon Form: (a) Selected frequency I!}_ year . I P .-/ (b) Ps = ,75" In .. P24 = 2!L ·-p 6 = ~ %(2) • 24 (c}AdjustedP6(2)= /,7>1n. (d} ix= _min. (e) I = __ in.Jhr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. PS 1 Ouml!on I s 2.63 7 2.12 10 1.68 15 1.30 2.0 1 08 25 D.93 30 083 40 069 SO 060 60 o.53 90 0.41 12D 034 1S0 029 1ll0 Q.26 2411 0.22 300 0.19 360 0.17 I 1.Sl 2 I 2.S 3 3.5 4 4..5 5 6.S I 6 I I I I I I I I I I I I I 3.9515.27 6.59 7.90 9= 1054 11.!16 13.17 14.49 15.61 3.16 4.24 5.30 6.36 7.42 8.-48 9.54 10.60 11.66 12.72 2.53 3.37 4.21 5.05 5901674 7.58 842 9.27 10.11 1.95 259 3.24 389 4.54 5.19 5.84 a49 7.13 7.78 1.62 2.15 2.69 3.23 3.77 4.31 4.85 SS9 5.93 6.46 1.40 187 233 2.80 3.27 3.73 4.20 4.fJ7 5.13 5.60 1.24 1.661207 2.49 2.90 3.32 3.73 4.15 4.56 4.98 1..1)3 1,38 1.72 2.tfl 2.41 2.76 310 3.45 3.79 "13 o..so 1.19 149 ' 1.79 2.09 2.39 2.69 2.98 3.28 358 0.60 1.06 13311.59 1.86 2.12 2.39 2.ll5 2..92 3.111 0.61 082 1,02 1.23 1.43 1.63 1.114 2.04 2.25 2.45 o.s, 0.68 085 1.02 1.19 1..36 Ui3 1.70 1.a'7 2.04 0.44 O.S9 0.73 0.88 1.(13 1.111 1.32 1.47 1.62 1.76 0.3910.52 0,65 0.78 ;0.91 1.04 1.18 1.31 1.44 1.57 0.33 0.43 0.54 0.65 0.76 087 098 1.06 1.19 1.30 0.21110.38 047 0.56 0,6G 0,75 o.as 094 1.03 1.13 0.251033 0.42 0.50 I 0.58 O.fiT I 0.75 0.84 0.92 1.00 ~ ~ 0 0 0 H.J. t.~!::::1=t:~_1t~. L.+.-r&--l H; '. +·t-~·-··~-r j .... r ,. .. 0 County of San Diego Hydrology Manual • Rainfall Isopluvials 10 Year Rainfall Event-6 Hours I ······ ·· lsopluvial (inches) I DPW ~G..I§ ~~ .... ..._ S11GIS We ti:tt-..: S:m l)iqtu <:nvcrcd.! 1.1 N --~-..........,-""Clufllf#IMlffi'DFM,fllH!I-.-... °"~NtO,,,......JIIIIRll.~fllMl'DSI:. 1_·· f .. ......,._....,_.,._,_,.,_ __ w_ °""""'" .............. __ _ ..... __ ....,_.....,,_..,.....,....,... E ........... .._ ..... _ ... __.., ........ -............ .,...... ,..,_...,.,......_..,..,.._"""""' __ _.._..,_.,,_._... .... s 3 0 3Mlles ,........, :J ···r····, .. .i.t: I + .~~~~~~~~~:fb~~~+.;::...I+h+-i--:-+-++~-++-+++-7-++..:++.~+f-i+H-+-:-r'-,H+~...,_-H-t-'-t..,...""t,~-t--tt-tttttt:.1 3 j3tit: County of San Diego Hydrology Manual • Rainfall Isopluvials 10 Year Rainfall Event -24 Hours lsopluvial (inches) DPW ._GIS . .._ .. ,..$_ ~w.,.,,-~ ~ smGIS W<. H1.n: S:an DiCJO Ch-<:ted! N MS-IINOllllt'iloWl'IMCluTWMIWff\'Ol'--Ql'lefl~ ··+ :=.«~:,=:~.~~ C....,SMDll.1*..,..._, ,..,.....,._,_.........., ..... S#IIJM ...... E .__,,.,._.....,._ .. ....._..._ .. ----"""'°"°' __ _,._...__,__,..__ ............ _n.-..._""""' s 3 0 3 Miles 0 0 0 ·O 10.0 9.0 8.0 7.0 60 "' • i-,. ..... ..... 1'-s.o 40 I I 3.0 2., 'l -c-5 ~ (D .c: g1 ~o ~o io 0 0 0 0. 0 o. I 9 8 .7 ; j I I ! 1 r.. i" 1' r,.. ... r,.. ...... I"' "" r,.. ... ... "" "' ' ... , ,. ' .. ... .... "' , I',..' " . '~ i" ... ~ ~ ", l'I ~ " ... I" I" 'r,,, . ~ "'r,.. I', ...... "' I' 'r-I" ~ ~ . I"' I"~ I' ' .. ...~ ~ . "' .... ... .. I' ~ ... ""' r~ r I',,. l..,r I llt-.11111 "'"' . ' ~r ~ ... I', l'-,,1', l'r '~ " ~r r ~ 5 6 7 8 910 15 20 30 40 50 1 Dura lion Minutes 0 111111 """' 111111 EQUATION l = 7.44 P5 o-0·645 I- I = Intensity fin/hr) P5 = 6-Hour Precipitation (m} D = Duration (min} 111111111111 Ill JlKl!llllli Ill ~ ... i' I"" i' "t'-11 "" ... lllW..11 ... ' I• ~ ' I', ' .. ~ 1 .. I' 1,"' ~ ~ "" I' f',"' ~~ ' I"' ... ' ~ "" ... " r i'' , ... "'"' f', ~ ...... 'r,. " ... BH Ill ""' "I 11111 11111 11111 Ill 11111 11111 11111 11111 11111 2 3 4 5 6 Hours ~ s C ., .,, ~ 6.0 if s.si 5.0 g 4.5j 4.0 i 3.s- 3.0 25 2.0 1.5 1.0 Intensity-Duration Design Chart• Template 0 Dlrectlona for AppRcation: (1) From precipitation maps detennine 6 hr and 24 hr amounts for the selected frequency. These maps are Included In the County Hydrology Manual (10, 50, and 100 yr maps included In the Design and Procedure Manual). (2) Adjust 6 hr precipitation (If necessary) so 1hat it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3} Plot 6 hr precipitation on the right side of the chart . (4) Draw a Une through the point parallel to the plotted lines. {5) This line is the intensity-duration curve for the location being analyzed. Application Fonn: (a) Selected frequency / 00 year {b) ?6 = '2. 7 in., p24 = Q .;6 = !JO %{21 "} ·7 24 (c) Adjusted P6<2> = _..:-_~_ ln. (d) l,c = _min. (e) I= __ in.lhr. Note: This chart replaces the Intensity-Duration-Frequency cutves used since 1965. I t I PS 1 1.51 2 12.51 3 3.5 Oura!lon I I I I I I I I 5 2.63 3.95 5.Z1 6.59 7.90 9.22 1 2.12 3.18 4.24 S.30 6.36 7.42 10 1.68 2.53 3.3'7 4.21 5.05 590 15 1.:io 1.95 259 3.24 389 4.54 20 108 1.62 2.15 2.69 3.23 3.77 25 0.93 1AO 187 233 2.80 3.27 30 083 1.24 1.6& 207 2.49 2.90 40 069 1.IJ3 1.38 1.72 2.(f7 2.41 50 060 I~ 1.19 149 1.19 2.09 611 o.53 0.81) ,1.0S 133 1.59 1.88 90 UA1 ,.,.., 082 1.112 1.23 1.43 120 034 0.S1 G..68 085 1.0Z 1.19 150 0.29 OM G.59 11.m , ... Q.28 ""~ 0.52 0.65 0.78 G.91 2AO 0.22 0.33 QA3 0.54 o.ss 0.16 300 0.19 Cl.28 G.38 047 o.56 0.66 380 0.17 0.25 033 0.42 0.SOIG.58 4 I 4.S 5 5.5 t 6 I I I I I I I 1054 11.86 13.17 14.49 15.81 ,8.48 9..54 674 7.58 5.19 5.84 4.31 4.85 :l.73 4.20 3.32 3.73 2.76 310 2.39 2.69 2.12 2.39 1.53 1.84 1.36 1.53 1.18 1.32 1.04 1.18 087 098 0.75 0.85 0.67 0.75 10.60 11.66 12.72 842 9.27 10.11 6.49 7.13 7.78 539 5.93 6.46 .....,, 5.13 5.80 .4.15 4.56 4.98 3.4'> 3.79 4.13 ll!.Jlll 3.28 358 .,,.ti .. 2.92 3.18 2.04 22!i 2.-45 1.10 1.87 2.04 1.47 1.62 1.7S 1.31 1.44 1.57 1.DK 1.19 1.311 094 1.03 1.13 0.84 0.82 1.0J ~ ~ t1tt~~JfflJJ±i1l: 0 0 County of San Diego Hydrology Manual • Rai,ifall Isop/uvials 100 Year Rainfall Event-6 Hours I ········ lsopluvial {inches) I DPW *GIS ·~ Sl1iGIS ~--...... .,--~----W-= H;a".: S:.o 1)iqtn < rt~'t-n::d! N ..,.-.. ~--w----.1-....-'*'IWl'U80.INClUDNG.anter1~t0.1M!IWLieD-wM!Wffla ~ .. __ ,,, .............. ..__..""'_ C...,....bGIS.M..,,.--..,. ,-,,,___,_.............,.....,_,.,..,.,a11..,.... E...,....,._..,._-.,,,,,_,_...._. .. _ _.......,.,....,, .,,.-...... ---..._ .... ___ _ ................. ..,"'-" ....... ..... s 0 3 Miles ~ 0 -0 ~. ' ·. ' :3~·oo· : ;/ : I :-i ,32•,\5' --+----+.;---,-~--,-~, l, . () ~ 1: ff:}=1 :11l:\1. .tr,.,. t :S:· (--;·-,;·, ;·.· () County of San Diego Hydrology Manual • Rainfall Isopluvials 100 Year Rainfall Event-24 Hours \ ~------· lsop1~al (Inches~ J DPW ~G.~ ~-...,,. ........ S1fiGIS w~ Hai·..: S.n Di• r.~d! N :s:.:=~~,."{~~°"=2'1L.r~ f Ol" __ ,.._ITYltNOl'ffMIUPl:WIA.,.,.~""'1"0I(. r-,tpls..cat ....... "-·• .... ..-_______ .,.._,........ E '"""-'-"-wllldi-.. _._....--..... -~-SIIHl».G ""-ll!lllliid .... ..,.._ ....... ....,.,..._......,.._,.. .......__...."' ___ _ s 3 0 3 MIies ~ 0 1001 1,5 I QJ(il,, , I ...-.. > ,ij {I.I ~ ~ w z ~ 0 20 ~ -z w -O W z ~ ~ ~ ~ ~ Q 0 w ~ {I.I ~ C:: 10 o 5 5 0 c:: ~ w ~ ~ ~ --~..,_~~~-'-~~~ ....... ~~~~'--~~~-'-~~~--'-~~~-'-~~~--'Q EXAMPLE: Given: Watercourse Distance (D) = 70 Feet Slope (s) =1.3% Runoff Coefficient (C) = 0.41 Overland Flow Time (T) = 9.5 Minutes T= 1.8(1.1-C)'/o 3Vs' SOURCE: Airport Drainage, Federal Aviation Adminlstrabon, 1965 FIGURE Rational Formula -Overland Time of Row Ncmograph 13·3 I • 0 0 C C AE Feet EQUATION Tc :: Ctt)0.385 5000 Tc = Tlmo of concentration (hours) L = Watercourse m,tance (mllee) 4DOO AE = Change In elevatlon along effective slope llne (See Rgure 3-S)(reet) Tc 3000 2000 30 20 10 AE SOURCE: California Division of Highways (1941) and Klrplch (1940) L MIies Feet . M 3000 ' 2000 1B00 1600 1400 1200 1000 900 800 700 300 200 L ' Hours Minutes 240 180 1:ZO 1 40 30 20 19 18 14 ' 12 ' ' ' 10 ' 9 8 7 6 s 4 3 Tc Nomograph for Defermlnatlon of Time of Concentration (Tc) or Travel Time (Tt) for Natural watersheds FIGURE ~ .---. Watershed D~Mde ----~ --. ~ \ \ .. ~ / ' \ . \ ,... -·-· ,, ~--·r" -----'···--··· -~ -~-..... _______. ~ ,.; ,-.....__ .,,/" , ~ / '--------------1-------------------------------L------------------------------~ watershed Divide T .D.E Effectlv-e Slope Line 1+------------------------------L------------------------------.i Area "A" = Area "B" SOURCE: Cahrornla Division or Highways (1841) and Klrp1ch (1840) FIGURE Computation of Effective Slope for Natural Watersheds ~ 0 • 0 C EQUATION: V = 1.4!i R213 s'1a n 0.3 02 r 40 02 03 0.15 30 001 04 0.10 0.09 0.06 05 20 007 0.06 0.6 005 ~ 004 o.a " 0.02 0.9 13!-)'I-/ 0.03 ~ y" 1.0 q(i' :,,- " > 9 OC2 ~ /' C: 0.03 I // i 8 I I{' 'lii "' ... C: ,2! 7 (I) 0 ·u s .5 ... 6 ~ .. en Q) 0.04 Q) ::::) C. 0 0. . (.) ~ 0 01 i5 2 / y<; ai 5 "' J!! 0009 ~ ~<fP" J!! en 0.05 w .s 0.008 c., ~ ~ .5 z C w 0.007 ::::i ~ 4 :c a. ~ "g C!) 0.06 g o.ooe a/ ::> UJ 0.005 0 ..J @ 0.07 lb >-w 3 0.0~40~ :C: > 0 08 6" -4 009 010 0002 5 2 6 7 E i~ 6 O.OC1 i· 9 f oo~ ! 1.0 0.2 L."J08 1-10 0 0007 L 09 ~.:::: i 0.8 0.7 0.3 t· C.C004 ( 06 l, o c,J03 L 20 0.5 04 GENERAL SOLUTION 0 SOURCE: USDOT, F,~~,-~,.~H~D~S-~3_i(1::9'.'.'..U~1) ________________________ :-:--::--::-::--:-' r I~-~ El Manning's Equation Nomograph PRE-DEVELOPMENT HYDROLOGY CALCULATION 10 YEAR STORM 0 • 0 0 7. 4 C ++++ 7.000 0 San Diego County Rational Hydroloqy Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2004 Version Rational method. hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 ------------------------------------------------------------------ CT 03-06, BLACK RAIL 16 10 YEAR STORM, PRE-DEVELOPMENT NODE 1 TO NODE 7 TO NODE 8 ------------------------------------------------------------------ ********* Hydrology Study Control Information********** ------------------------------------------------------------------ Program License Serial Number 4012 ------------------------------------------------------------------ Rational hydrology study storm event year is 10.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 1.750 24 hour precipitation(inches) = 3.100 P6/P24 = 56.5% San Dieg·o hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station **** INITIAL AREA EVALUATION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0.000 0.000 1.000 Initial subarea total flow distance Highest elevation= 383.000(Ft.) Lowest elevation= 375.000(Ft.) 225. 000 (Ft.) Elevation difference 8.000(Ft.) Slope= 3.556 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 3.56 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 7.01 minutes TC= (1.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= (1.8*(1.1-0.4900)*( 95.000A.5)/( 3.556A(l/3)]= 7.01 Rainfall intensity (I) = 3.707(In/Hr} for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 0.817(CFS) Total initial stream area= 0.450(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 7.000 to Point/Station 8.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 375.000(Ft.) Downstream point elevation 3~7.000(Ft.) Channel length thru subarea 232.000(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank= 12.000 Slope or 'Z' of right channel bank= 12.000 Estimated mean flow rate at midpoint of channel Manning's 'N' ~ 0.018 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 1.479(CFS) Depth of flow= 0.195(Ft.), Average velocity Channel flow top width= 4.681(Ft.) Flow Velocity= 3.24(Ft/s) Travel time 1.19 min. Time of concentration= 8.20 min. Critical depth= 0.248(Ft.) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D (LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0.000 0.000 1.000 1. 479 (CFS) 3 . 2 4 1 ( Ft Is ) Rainfall intensity= 3.350(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA} is C = 0.490 CA= 0.622 Subarea runoff= l.267(CFS) for 0.820(Ac.) Total runoff= 2.085(CFS) Total area Depth of flow= 0.222(Ft.), Average velocity Critical depth= 0.285(Ft.) End of computations, total study area 1.270(Ac.) 3 . 5 31 ( Ft/ s ) 1. 270 (Ac.) 0 • 0 C 7.4 C ++++ 5.000 0 San Diego County Rational Hydrol~gy Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 CT 03-06, BLACK RAIL 16 10 YEAR STORM, PRE-DEVELOPMENT NODE 4 TO NODE 5 TO NODE 6 ********* Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is 10.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) ~ 1.750 24 hour precipitation(inches) = 3.100 P6/P24 = 56.5% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.410 Initial subarea total flow distance 247.000(Ft.) Highest elevation= 379.000(Ft.) Lowest elevation= 369.000(Ft.) Elevation difference 10.000(Ft.) Slope= 4.049 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.05 %, in a development type of 1.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 7.79 minutes TC= [1.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC = [ 1. 8 * ( 1. 1-0 . 410 0 ) * ( 10 0 . 0 0 0 A . 5 ) I ( 4 • 0 4 9 A ( 1 13 ) J = 7 . 7 9 Rainfall intensity (I) = 3.463(In/Hr) for a 10.0 year storm Effective•runoff coefficient used for area (Q=KCIA) is C = 0.410 Subarea runoff= 0.994(CFS) Total initial stream area= 0.700(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 5.000 to Point/Station 6.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel= Depth of flow= 0.385(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate l 0.00 2 6.00 3 12.00 'Y' · coordinate 2.00 0.00 2.00 Manning's 'N' friction factor 0.035 Sub-Channel flow 1.876(CFS) flow top width= 2.309(Ft.) velocity= 4.222(Ft/s) area= 0.444(Sq.Ft) Froude number 1.696 Upstream point elevation= Downstream point elevation Flow length= 377.000(Ft.) Travel time 1.49 min. 369.000(Ft.J 333. 000 (Ft. J Time of concentration= 9.28 min. Depth of flow= 0.385(Ft.) Average velocity= 4.222(Ft/s) Total irregular channel flow= Irregular channel normal depth Average velocity of channel(s) 1.876(CFS) above invert elev. 4.222(Ft/s) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.410 0.000 0.000 0.000 1. 000 1. 876 (CFS) 4.222(Ft/s) 0. 385 (Ft.) Rainfall intensity= 3.094(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.410 CA= 0.865 Subarea runoff= 1.683(CFS) for 1.410(Ac.) Total runoff= 2.677(CFS) Total area Depth of flow= 0.440(Ft.), .Average velocity End of computations,· total study area = 2. 110 (Ac.) 4 . 6 1 4 ( Ft Is ) 2. 110 (Ac.) • • . 0 C 7.4 C ++++ 2.000 0 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 CT 03-06, BLACK RAIL 16 10 YEAR STORM, PRE-DEVELOPMENT NODE 1 TO NODE 2 TO NODE 3 ********* Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is 10.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 24 hour precipitation(inches) = P6/P24 = 56.5% 1. 750 3.100 San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station **** INITIAL AREA EVALUATION**** Decimal fraction soil group A= Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0.000 0.000 1. 000 Initial subarea total flow distance Highest elevation~ 383.000(Ft.) Lowest elevation= 377.900(Ft.) 156.000(Ft.) Elevation difference 5.lOO(Ft.) Slope= 3.269 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 3.27 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 7.21 minutes TC= [1.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.4900)*( 95.00QA.5)/( 3.269A(l/3)]= 7.21 Rainfall intensity (I) = 3.641(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 0.749(CFS) Total initial stream area= 0.420(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 2.000 to Point/Station 3.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel= Depth of flow= 0.397(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 1 0.00 2 6.00 3 12.00 'Y' coordinate 2.00 0.00 2.00 Manning's 'N' friction factor 0.035 Sub-Channel flow 2.428(CFS) flow top width = 2. 384 (Ft. ) velocity= 5.126(Ft/s) area= 0.474(Sq.Ft) Froude number 2.027 Upstream point elevation= Downstream point elevation Flow lengt-h = 444. 000 (Ft. J Travel time 1.44 min. 377.900(Ft.J 318.000(Ft,) Time of concentration= 8.65 min. Depth of flow= 0.397(Ft.) Average velocity= 5.126(Ft/s) Total irregular channel flow= 2.428(CFSJ Irregular channel normal depth above invert elev. Average velocity of channel (s) 5 .126 (Ft/s) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.410 0.000 0.000 0.000 1.000 2.428(CFS) 5.126(Ft/s) 0. 397 (Ft.) Rainfall intensity= 3.237(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIAJ is C = 0.421 CA= 1.243 Subarea runoff= 3.274(CFSJ for 2.530(Ac.J Total runoff= 4.023(CFSJ Total area Depth of flow= 0.486(Ft.), Average velocity End of computations, total study area= 2.950(Ac.) 5.816(Ft/s) 2. 950 (Ac. J • • 0 C C C PRE-DEVELOPMENT HYDROLOGY CALCULATION 100 YEAR STORM 7.4 ++++ 7.000 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 CT 03-06, BLACK RAIL 16 100 YEAR STORM, PRE-DEVELOPMENT NOPE 1 TO NODE 7 TO NODE 8 ********* Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 24 hour precipitation(inches) = P6/P24 = 60.0% 2.700 4.500 San Diego hydrology manual 'C' values u_sed 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** INITIAL AREA EVALUATION Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 1.000 to Point/Station ****" 0.000 0.000 0.000 1. 000 Initial subarea total flow distance 225.000(Ft.) Highest elevation= 383.000(Ft.) Lowest elevation= 375.000(Ft.) Elevation difference 8.000(Ft.) Slope= 3.556 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 3.56 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 0 • 0 C C 0 Initial Area Time of Concentration= 7.01 minutes TC= [l.8*(1.1-C)*distance(Ft.)A.5)/{% slopen(l/3)J TC= [l.8*(1.1-0.4900)*( 95.000A.5)/( 3.556A(l/3)]= 7.01 Rainfall intensity (I) = 5.720(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area {Q=KCIA) is C = 0.490 Subarea runoff= 1.26l(CFS) Total initial stream area= 0.450(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 7.000 to Point/Station 8.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 375.000(Ft.) Downstream point elevation 367.000(Ft.) Channel length thru subarea 232.000(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel bank= 12.000 Slope or 'Z' of right channel bank= 12.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.018 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 2.294(CFS) Depth of flow= 0.230(Ft.), Average velocity Channel flow top width= 5.518(Ft.) Flow Velocity= 3.62(Ft/s) Travel time 1.07 min. Time of concentration= 8.08 min. Critical depth= 0.297(Ft.) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D (LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0.000 0.000 1.000 2.294(CFS) 3. 616(Ft/s) Rainfall intensity= 5.220(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.490 CA= 0.622 Subarea runoff= 1.987(CFS) for 0.820(Ac.J Total runoff= 3.248(CFS) Total area Depth of flow= 0.262(Ft.), Average velocity Critical depth= 0.340(Ft.J End of computations, total study area 1.270(Ac.) 3.945(Ft/s) 1.270 (Ac.) 7. 4 ++++ 5.000 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 CT 03-06, BLACK RAIL 16 100 YEAR STORM, PRE-DEVELOPMENT NODE 4 TO NODE 5 TO NODE 6 ********* Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 24 hour precipitation(inches) = P6/P24 = 60.0% 2.700 4.500 San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.410 Initial subarea total flow distance 247.000(Ft.) Highest elevation= 379.000(Ft.) Lowest elevation= 369.000(Ft.) Elevation difference 10.000(Ft.) Slope= 4.049 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.05 %, in a development type of 1.0 DU/A or Less In Accordance With Figure 3-3 0 • 0 0 C 0 Initial Area Time of Concentration= 7.79 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.4100)*{ 100.000A.5)/( 4.049A(l/3)]= 7.79 Rainfall intensity (I) = S.343(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.410 Subarea runoff= l.534(CFS) Total initial stream area= 0.700(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 5.000 to Point/Station 6.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel= Depth of flow= 0.452(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : 2.883(CFS) 4.70l(Ft/s) Point number 'X' coordinate 'Y' coordinate 1 0.00 2.00 2 6.00 0.00 3 12.00 2.00 Manning's 'N' friction factor 0.035 Sub-Channel flow 2.883(CFS) flow top width= 2.713(Ft.) velocity= 4.70l(Ft/s). area= 0.613(Sq.Ft) Froude number 1.742 Upstream point elevation= Downstream point elevation Flow length= 377.000(Ft.) Travel time 1.34 min. 3 6 9 • 0 0 0 ( Ft . ) 333. 000 (Ft.) Time of concentration= 9.13 min. Depth of flow= 0.452(Ft.) Average velocity= 4.70l(Ft/s) Total irregular channel flow= Irregular channel normal depth Average velocity of channel(s) 2.883(CFS) above invert elev. 4.70l(Ft/s) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.410 0.000 0.000 0.000 1. 000 0. 452 (Ft.) Rainfall intensity= 4.825(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.410 CA= 0.865 Subarea runoff= 2.640(CFS) for l.410(Ac.) Total runoff= 4.174(CFS) Total area Depth of flow= 0.519(Ft.), Average velocity End of computations, total study area= 2. 110 (Ac.) 5 . 15 6 ( Ft Is ) 2 .110 (Ac.) 7.4 ++++ 2.000 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 CT 03-06, BLACK RAIL 16 100 YEAR STORM, PRE DEVELOPMENT NODE 1 TO NODE 2 TO NODE 3 ********* Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 24 hour precipitation(inches) = P6/P24 = 60.0% 2.700 4.500 San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** INITIAL AREA EVALUATION Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area c Value= 0.490 1.000 to Point/Station **** 0.000 0.000 0.000 1.000 Initial subarea total flow distance 156.000(Ft.) Highest elevation= 383.000(Ft.) Lowest elevation= 377.900(Ft.) Elevation difference 5.100(Ft.) Slope= 3.269 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 3.27 %, in a developme~t type of 2.9 DU/A or Less In Accordance With Figure 3-3 0 • 0 0 C C Initial Area Time of Concentration= 7.21 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.4900)*( 95.000A.SJ/( 3.269A(l/3))= 7.21 Rainfall intensity (I) = 5.617(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q~KCIA) is C = 0.490 Subarea runoff= l.156(CFS) Total initial stream area= 0.420(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 2.000 to Point/Station 3.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel= Depth of flow= 0.468(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 1 0.00 2 6.00 3 12.00 'Y' coordinate 2.00 0.00 2.00 Manning's 'N' friction factor 0.035 Sub-Channel flow 3.748(CFS) flow top width= 2.805(Ft.) velocity= 5.714(Ft/s) area= 0.656(Sq.Ft) Froude number 2.083 Upstream point elevation= Downstream point elevation Flow length= 444.000(Ft.) 377.900(Ft.) 318.000(Ft.) Travel time 1.30 min. Time of concentration= 8.51 min. Depth of flow= 0.468(Ft.) Average velocity= 5.714(Ft/s) Total irregular channel flow= Irregular .channel normal depth Average velocity of channel(s) 3.748(CFS) above invert elev. 5 . 714 ( Ft Is J Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.410 0.000 0.000 0.000 1.000 3.748(CFS) 5 . 714 ( Ft Is ) 0. 4 68 (Ft. ) Rainfall intensity= 5.050(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0. 421 CA = 1. 243 Subarea runoff= 5.12l(CFS) for 2.530(Ac.) Total runoff= 6.277(CFS) Total area Depth of flow= 0.567(Ft.), Average velocity End of computations, total study area= 2.950(Ac.) 6.500(Ft/s) 2. 950 (Ac.) POST-DEVELOPMENT HYDROLOGY CALCULATION 100 YEAR STORM, NODES 100 SERIES 0 • 0 0 C C 7.4 ++++ San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 CT 03-06, BLACK RAIL 16 100 YEAR STORM, POST DEVELOPMENT NODE 100 TO NODE 101 TO NODE 102 TO NODE 400 TO NODE 103 ********* Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour prectpitation(inches) = 4.500 P6/P24 = 60.0% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 101. 000 **** INIT.IAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B O. 000, Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 Initial subarea total flow distance 102.000(Ft.) Highest elevation= 383.000(Ft.) Lowest elevation= 378.000(Ft.) Elevation difference 5.000(Ft.) Slope= 4.902 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.90 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 6.46 minutes TC= [1.8*(1.l-CJ*distance(Ft.)A.5)/(% slopeA(l/3)) TC= [l.8*(1.1-0.4900)*( 100.000A.5)/( 4.902A(l/3))= 6.46 Rainfall intensity (I) = 6.028(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 0.177(CFS) Total initial stream area= 0.060(Ac.J ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 102.000 101.000 to Point/Station ++++ **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 378.000(Ft.) End of street segment elevation= 372.000(Ft.) Length of street segment 204.000(Ft.) Height of curb above gutter flowline 6.0{In.) Width of half street (curb to crown) 22.000(Ft.J Distance from crown to crossfall grade break 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 0.125{In.) Manning's Nin gutter= 0.0150 , Manning's N from gutter to grade break O. 0150 Manning's N from grade break to crown= 0.0160 Estimated mean flow rate at midpoint of street= 0.732(CFS) Depth of flow= O.llS(Ft.), Average velocity=. 3.162(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 2.764(Ft.) Flow velocity= 3.16(Ft/s) Travel time= 1.08 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less J Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 TC= 0.000 0.000 0.000 1. 000 7.54 min. Rainfall intensity= S.458(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.490 CA= 0.250 Subarea runoff l.187(CFS) for 0.450(Ac.) Total runoff= 1.364(CFS) Total area= O.SlO(Ac.) Street flow at end of street= l.364(CFS) Half street flow at end of street 1.364(CFS) Depth of flow= 0.158(Ft:), Average velocity= 3.777(Ft/s) Flow width (from curb towards crown)= 3.28l(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 0 • 0 0 C 0 Process from Point/Station 103.000 102.000 to Point/Station ++++ **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 372.000(Ft.) End of street segment elevation= 367.000(Ft.) Length of street segment 182.000{Ft.) Height of curb above gutter flow line 6. 0 (In. ) Width of half street (curb to crown) 22.000(Ft.) Distance from crown to crossfall grade break 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break 0.015G Manning's N from grade break to crown= 0.0160 Estimated mean flow rate at midpoint of street= 1.850(CFS) Depth of flow= 0.187(Ft.), Average velocity= 4.009(Ft/s) Streetflow hydraulics at midpoint of street travel: Half street flow width = 3. 631 (Ft.) Flow velocity= 4.0l(Ft/s) Travel time= 0.76 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 TC= 0.000 0.000 0.000 1. 000 8.30 min. Rainfall intensity= 5.132(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.490 CA= 0.441 Subarea runoff 0.899(CFS) for 0.390(Ac.) Total runoff= 2.263(CFS) Total area= 0. 900 (Ac.) Street flow at end of street= 2.263(CFS) Half street flow at end of street 2.263(CFS) Depth of flow= 0.207(Ft.), Average velocity= 4.235(Ft/s) Flow width (from curb towards crown)= 3.865(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 103.000 to Point/Station **** CONFLUENCE OF MJNOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 0.900(Ac.) Runoff from this stream 2.263(CFS) Time of concentration 8.30 min. Rainfall interisity = 5.132(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 103.000 400.000 to Point/Station **** INITIAL AREA EVALUATION**** Decimal fraction soil group A= Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0. 0-00 0.000 1. 000 Initial subarea total flow distance Highest elevation= 375.000(Ft.) Lowest elevation= 367,000(Ft.) 156. 000 (Ft.) Elevation difference 8.000(Ft.) Slope= 5.128 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 5.13 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 6.37 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.4900)*( 100.000A.5)/( 5.128A(l/3)]= 6.37 Rainfall intensity (I) = 6.087(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 0.089(CFS) Total ·initial stream area = 0. 030 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 103.000 103.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.030(Ac.) Runoff from this stream 0.089(CFS) Time of concentration= 6.37 min. Rainfall intensity= 6.087(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.263 8.30 5.132 2 0.089 6.37 6.087 Qrnax (1) 1. 000 * 1. 000 * 2.263) + 0.843 * 1. 000 * 0. 089) + 2.339 Qrnax(2) 1. 000 * 0. 768 * 2.263) + 1. 000 * 1. 000 * 0. 089) + = 1. 827 0 • 0 0 C 0 Total of 2 streams to confluence: Flow rates before confluence point: 2.263 0.089 Maximum flow rates at confluence using above data: 2.339 1.827 Area of streams before confluence: 0.900 0.030 Results of confluence: Total flow rate= 2.339(CFS) Time of concentration= 8.296 min. Effective stream area after confluence End of computations, total study area= 0.930(Ac.) 0.930 (Ac.) POST-DEVELOPMENT HYDROLOGY CALCULATION 10 YEAR STORM, NODES 100 SERIES 0 • 0 0 C 0 7.4 ++++ San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 CT 03-06, BLACK RAIL 16 10 YEAR STORM, POST-DEVELOPMENT NODE 100 TO NODE 101 TO NODE 102 TO NODE 400 TO NODE 103 ********* Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is 10.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 1.750 24 hour precipitation(inches) = 3.100 P6/P24 = 56.5% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 Initial subarea total flow distance 102.000(Ft.) Highest elevation= 383.000(Ft.) Lowest elevation= 378.000(Ft.) Elevation difference S.OOO(Ft.) Slope= 4.902 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow'distance is 100.00 (Ft) for the top area slope value of 4.90 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 6.46 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)) TC= [l.8*(1.1-0.4900)*( 100.000A.5)/( 4.902A(l/3))= 6.46 Rainfall intensity (I) = 3.907(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff -0.115(CFS) Total initial .stream area= 0.060(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 102.000 101.000 to Point/Station ++++ **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 378.000(Ft.) End of street segment elevation= 372.000(Ft.) Length of street segment 204.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 22.000(Ft.) Distance from crown to crossfall grade break. 18. 000 (Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0160 Estimated mean flow rate at midpoint of street= 0.445(CFS) Depth of flow= 0.089(Ft.), Average velocity= 2.725(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 2.448(Ft.) Flow velocity = 2. 72 (Ft/s) Travel time= 1.25 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 TC= 0.000 0.000 0.000 1. 000 7.71 min. Rainfall intensity= · 3.487(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.490 CA= 0.250 Subarea runoff 0.756(CFS) for 0.450(Ac.) Total runoff= 0.871(CFS) Total area= 0. 510 (Ac.) Street flow at end of street= 0.87l(CFS) Half street flow at end of street= 0.871(CFS) Depth of flow= 0.126{Ft.), Average velocity= 3.326(Ft/s) Flow width (from curb towards crown)= 2.894(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 0 0 0 0 C 0 Process from Point/Station 103.000 102.000 to Point/Station ++++ **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 372.000(Ft.) End of street segment elevation= 367.000(Ft.) Length of street segment 182.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 22.000(Ft.) Distance from crown to crossfall grade break 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.,020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 0.125(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0160 Estimated mean flow rate at midpoint of street= 1.179(CFS) Depth of flow= 0.150(Ft.), Average velocity= 3.538(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 3.177(Ft.) Flow velocity= 3.54(Ft/s) Travel time= 0.86 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 TC= 0.000 0.000 0.000 1. 000 8.57 min. Rainfall intensity= 3.257(In/Hr) for a 10.0year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.490 CA= 0.441 Subarea runoff 0.565(CFS) for 0.390(Ac.) Total runoff= l.437(CFS) Total area= 0. 900 (Ac.) Street flow at end of street= l.437(CFS) Half street flow at end of street 1.437(CFS) Depth of flow= 0.165(Ft.), Average velocity= 3.739(Ft/s) Flow width (from curb towards crown)= 3.365(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 103.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 0.900(Ac.) Runoff from this stream 1.437(CFS) Time of concentration 8.57 min. Rainfall intensity= 3.257(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 400.000 to Point/Station 103.000 storm ++++ **** INITIAL AREA EVALUATION**** Decimal fraction soil group A Decimal fraction soil group B = Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0.000 0.000 1.000 Initial subarea total flow distance Highest elevation= 375.000(Ft.) Lowest elevation= 367.000(Ft.) 156.000(Ft.) Elevation difference= 8.000(Ft.) Slope= 5.128 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 5.13 %, in a development type of 2.9 DU/A or Less In Accordance With Figure· 3-3 Initial Area Time of Concentration 6.37 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.4900)*( 100.000A.5)/( 5.128A(l/3)]= 6.37 Rainfall intensity (I) = 3.945(In/Hr) for a 10.0 year Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 0.058(CFS) Total initial stream area= 0.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 103.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.030(Ac.) Runoff from this stream 0.058(CFS) Time of concentration= 6.37 min. Rainfall intensity= 3.945(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) ( In/Hr) 1 1. 437 8.57 3.257 2 0.058 6.37 3.945 Qmax(l) 1. 000 * 1. 000 * 1.437) + 0.826 * 1. 000 * 0.058) + 1. 484 Qmax(2) 1. 000 * 0.743 * 1.437) + 1. 000 * 1. 000 * 0.058) + 1.125 0 • 0 0 C 0 Total of 2 streams to confluence: Flow rates before confluence point: 1.437 0.058 Maximum flow rates at confluence using above data: 1.484 1.125 Area of streams before confluence: 0.900 0.030 Results of confluence: Total flow rate= l.484(CFS) Time of concentration= 8.569 min. Effective stream area after confluence End of computations, total study area= 0. 930 (Ac.) 0. 930 (Ac.) POST-DEVELOPMENT HYDROLOGY CALCULATION 100 YEAR STORM, NODES 200, 300 & 500 SERIES 0 0 0 0 C 0 7.4 ++++ San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 CT 03-06, BLACK RAIL 16 100 YEAR STORM, POST DEVELOPMENT NODE 200 TO 201 TO 202 TO 501. NODE 300 TO 301 TO 202 TO 501 NODE 100 TO 500 TO 501 ********~ Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.500 P6/P24 = 60.0% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 Initial subarea total flow distance 267.000(Ft.) Highest elevation= 383.000(Ft.) Lowest elevation= 372.000(Ft.) Elevation difference 11.000(Ft.) Slope= 4.120 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.12 %, in a development type of 2.9 DO/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 6.85 minutes TC= (1.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= (1.8*(1.l~0.4900)*( 100.000A.5)/( 4.120A(l/3)]= 6.85 Rainfall intensity (I) = 5.807(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 0.825(CFS) Total initial stream area= 0.290(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 202.000 201.000 to Point/Station ++++ **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 372.000(Ft.) End of street segment elevation= 355.000(Ft.) Length of street segment 437.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 22.000(Ft.) Distance from crown to crossfall grade break 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is. on [1) side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= l.SOO(Ft.) Gutter hike from flowline = 0.125(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0160 Estimated mean flow rate at midpoint of street= 2.884(CFS) Depth of flow= 0.214(Ft.), Average velocity= 5.133(Ft/s) ~treetflow hydraulics at midpoint of street travel: Halfstreet flow width= 3.949(Ft.) Flow velocity= 5.13(Ft/s) Travel time= 1.42 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 TC= 0.000 0.000 0.000 1.000 8.27 min. Rainfall intensity= 5.143(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA), is C = 0.490 CA= 0.946 Subarea runoff 4.039(CFS) for 1.640(Ac.) Total runoff= 4.864(CFS) Total area= 1.930(Ac.) Street flow at end of street= 4.864(CFS) Half street flow at end of street 4.864(CFS) Depth of flow= 0.293(Ft.), Average velocity= 4.774 (Ft/s) Flow width (from curb towards crown)= 7.748(Ft.) +t++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 0 0 0 0 0 0 Process from Point/Station 202.000 202.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= l.930(Ac.) Runoff from this stream 4.864(CFS) Time of concentration 8.27 min. Rainfall intensity = 5.143(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 300.000 to Point/Station 301. 000 storm ++++ **** INITIAL AREA EVALUATION**** Decimal fraction soil group A= Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0.000 0.000 1.000 Initial subarea total flow distance Highest elevation= 376.000(Ft.} Lowest elevation= 372.000(Ft.) 267.000(Ft.) Elevation difference 4.000(Ft.) Slope= 1.498 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 1.50 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of ·concentration 8.03 minutes TC= [l.8*(1.1-C)*distance(Ft.)A.S)/(% slopeA(l/3)] TC= [1.8*(1.1-0.4900)*( 70.000A.5)/( 1.498A(l/3))= 8.03 Rainfall intensity (I} = 5.241(In/Hr) for a 100.0 year Effective runoff coefficient used for area (Q=KCIAJ is C = 0.490 Subarea runoff= 0.642(CFS) Total initial stream area= 0.250(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 301.000 to Point/Station 202.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 372.000(Ft.) End of street segment elevation= 355.000(Ft.) Length of street segment 431.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break 16.SOO(Ft.) Slope from gutter to grade break (v/hz) 0.083 Slope from grade break to crown (v/hz) 0.020 ++++ Street flow is on [l] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0160 Estimated mean flow rate at midpoint of street= 2.548(CFS) Depth of flow= 0.254(Ft.), Av~rage velocity= 3.630(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 7.942(Ft.) Flow velocity~ 3.63(Ft/s) Travel time= 1.98 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 TC= 0.000 0.000 0.000 1.000 10.01 min. Rainfall intensity= 4.547(In/Hr) for a 100,0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.490 CA= 0.960 Subarea runoff 3.725(CFS) for 1.710(Ac.). Total runoff= 4.367(CFS) Total area= 1. 960 (Ac.) Street flow at end of street= 4.367(CFS) Half street flow at end of street 4.367(CFS) Depth of flow= 0.294(Ft.), Average velocity= 4.112(Ft/s) Flow width (from curb towards crown)= 9.954(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 202.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 1.960(Ac.) Runoff from this stream 4.367(CFS) Time of concentration= 10.01 min. Rainfall intensity= 4.547(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4. 864 8.27 5.143 2 4. 367 10.01 4.547 Qmax(l) 1. 000 * 1. 000 * 4. 864) + 1. 000 * 0.826 * 4.367) + 8.471 Qrnax{2) 0.884 * 1. 000 * 4. 864) + 1. 000 * 1. 000 * 4.367) + 8.667 0 • 0 0 0 Total of 2 streams to confluence: Flow rates before confluence point: 4.864 4.367 Maximum flow rates at confluence using above data: 8.471 8.667 Area of streams before confluence: 1.930 1.960 Results of confluence: Total flow rate= 8.667(CFS) Time of concentration 10.008 min. Effective stream area after confluence 3. 890 (Ac. l ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 501.000 202.000 to Point/Station ++++ **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation 350.000(Ft.J Downstream point/station elevation 317.000(Ft.) Pipe length 178.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 8.667(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 8.667(CFS) Normal flow depth in pipe= 5.34(In.) Flow top width inside pipe = 16. 44 (In. J Critical Depth= 13.68(In.) Pipe flow velocity= 19.74(Ft/s) Travel time through pipe= 0.15 min. Time of concentration (TC) = 10.16 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501. 000 501.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 3.890(Ac.) Runoff from this stream 8.667(CFSJ Time of concentration 10.16 min. Rainfall intensity= 4.503(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 100.000 to Point/Station 500.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [LOW DENSITY RESIDENTIAL (2. 9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 Initial subarea total flow distance 538.000(Ft.) Highest elevation= 383.000(Ft.) Lowest elevation= 346.000(Ft.) Elevation difference= 37.000(Ft.) Slope= 6.877 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 6.88 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 5.77 minutes TC= [1.8*(1.1-C)*distance(Ft.)A,5)/(% slopeA(l/3)J TC= (1.8*(1.1-0.4900)*( 100.000A.5)/( 6.877A(l/3)J= 5.77 Rainfall intensity (I) = 6.483(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 2.383(CFS) Total initial stream area= 0.750(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 500.000 to Point/Station 501. 000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel= Depth of flow= 0.352(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate l 0.00 2 6.00 3 12.00 'Y' coordinate 2.00 0.00 2.00 Manning's 'N' friction factor 0.035 Sub-Channel flow 2.804(CFS) flow top width= 2.114(Ft.) velocity= 7.526(Ft/s) area= 0.373(Sq.Ft) Froude number 3.159 Upstream point elevation= Downstream point elevation 346.000(Ft.) 317.000(Ft.) Flow length= 85.000(Ft.) Travel time 0.19 min. Time of concentration= 5.96 min. Depth of flow= 0.352(Ft.) Average velocity= 7.525(Ft/s) Total irregular channel flow= Irregular channel normal depth Average velocity of channel(s) 2.804(CFS) above invert elev. 7.525(Ft/s) Adding area flow to channel Decimal fraction soil group A ,Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL 0.000 0.000 0.000 1.000 2.804(CFS) 7. 525 (Ft/s) 0. 352 (Ft.) 0 0 0 0 C 0 ++++ (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.410 Rainfall intensity= 6.350(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.466 CA= 0.499 Subarea runoff= 0.784(CFS) for 0.320(Ac.) Total runoff= 3.167(CFS) Total area Depth of flow= 0.369(Ft.J, Average velocity= 1. 070 (Ac.) 7.758(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501.000 501.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= l.070(Ac.) Runoff from this stream 3.167(CFSJ Time of concentration= 5.96 min. Rainfall intensity= 6.350(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 8.667 10.16 4.503 2 3.167 5.96 6.350 Qmax ( 1) 1. 000 * 1. 000 * 8. 667) + 0.709 * 1. 000 * 3.167) + 10.913 Qmax(2) 1. 000 * 0.587 * 8. 667) + 1. 000 * 1. 000 * 3.167) + 8.254 Total of 2 streams to confluence: Flow rates before confluence point: 8.667 3.167 Maximum flow rates at confluence using above data: 10.913 8.254 Area of streams before confluence: 3.890 1.070 Results of confluence: Total flow rate= 10.913(CFS) Time of concentration= 10.158 min. Effective stream area after confluence End of computations, total study area= 4.960(Ac.) 4. 960 (Ac.) POST-DEVELOPMENT HYDROLOGY CALCULATION 10 YEAR STORM, NODES 200, 300 & 500 SERIES 0 0 0 0 0 0 7.4 ++++ San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Di.vision 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 CT 03-06, BLACK RAIL 16 10 YEAR STORM, POST-DEVELOPMENT NODE 200 TO 201 TO 202 TO 501. NODE 300 TO 301 TO 202 TO 501 NODE 100 TO 500 TO 501 ********* Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is 10.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 1.750 24 hour precipitation(inches) = 3.100 P6/P24 = 56.5% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201. 000 200.000 to Point/Station **** INITIAL AREA EVALUATION Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 **** 0.000 0.000 0.000 1.000 Initial subarea total flow distance 267.000(Ft.) Highest elevation= 383.000(Ft.) Lowest elevation= 372.000(Ft.) Elevation difference 11.000(Ft.) Slope= 4.120 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.12 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 6.85 minutes TC= [l.8*(1.l-CJ*distance(Ft.JA.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.4900)*( 100.000A.5)/( 4.120A(l/3)]= 6.85 Rainfall intensity (I) = 3.764(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 0.535(CFS) Total initial stream area= 0.290(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 202.000 201.000 to Point/Station ++++ **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 372.000(Ft.) End of street segment elevation= 355.000(Ft.) Length of street segment 4 3 7. 000 (Ft. ) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 22.000(Ft.) Distance from crown to crossfall grade break 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Street flow is on [l) side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width= 1.SOO(Ft.) Gutter hike from flowline = 0.125(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0160' Estimated mean flow rate at midpoint of street= 1.851(CFS) Depth of flow= 0.172(Ft.), Average velocity= 4.549(Ft/s) Stieetflow hydraulics at. rnidpoin.t of street travel: Halfstreet flow width= 3.445(Ft.) Flow velocity= 4.55(Ft/s) Travel time= 1.60 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less J Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 TC= 0.000 0.000 0.000 1.000 8.45 min. Rainfall intensity= 3.287(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.490 CA= 0.946 Subarea runoff 2.574(CFS) for 1.640(Ac.) Total runoff= 3.108(CFS) Total area= 1. 930 (Ac.) Street flow at end of street= 3.108(CFS) Half street flow at end of street 3.108(CFS) Depth of flow= 0.228(Ft.), Average velocity= 5.006(Ft/s) Flow width (from curb towards crown)= 4.500(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 0 • 0 0 0 0 Process from Point/Station 202.000 202.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 1.930(Ac.) Runoff from this stream 3.108(CFS) Time of concentration 8.45 min. Rainfall intensity= 3.287(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 300.000 to Point/Station 301.000 storm ++++ **** INITIAL AREA EVALUATION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D (LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0.000 0.000 1. 000 Initial subarea total flow distance Highest elevation= 376.000(Ft.) Lowest elevation= 372.000(Ft.) 267. 000 (Ft.) Elevation difference 4.000(Ft.) Slope= 1.498 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 1.50 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration 8.03 minutes TC= (l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)) TC= [l.8*(1.1-0.4900)*( 70.000A.5)/( l.498A(l/3)]= 8.03 Rainfall intensity (I) = 3.397(In/Hr) for a 10.0 year Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 0.416(CFS) Total initial stream area= 0.250(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 301.000 to Point/Station **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 372.000(Ft.) End of street segment elevation= 355.000(Ft.) Length of street segment 431.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break 16.SOO(Ft.) Slope from gutter to grade break (v/hz) 0.083 Slope from grade break to crown (v/hz) 0.020 ++++ Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width= 1.SOO(Ft.) Gutter hike from flowline = 1.SOO(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0160 Estimated mean flow rate at midpoint of street= 1.636(CFS) Depth of flow= 0.226(Ft.), Average velocity= 3.290(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 6.527(Ft.) Flow velocity= 3.29(Ft/s) Travel time= 2.18 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 TC= 0.000 0.000 0.000 1. 000 10.21 min. Rainfall intensity= 2.909(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.490 CA= 0.960 Subarea runoff 2.378(CFS) for l.710(Ac.) Total runoff= 2.794(CFS) Total area= 1.960(Ac.) Street flow at end of street= 2.794(CFS) Half street flow at end of street 2.794(CFS) Depth of flow= 0.260(Ft.), Average velocity= 3.707(Ft/s) Flow width (from curb towards crown)= 8.26l(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. Process from Point/Station 202.000 202.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= l.960(Ac.) Runoff from this stream 2. 794 (CFS) Time of concentration= 10.21·min. Rainfall intensity= 2.909(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) l 3.108 8.45 3.287 2 2.794 10.21 2.909 Qmax(l) 1. 000 * 1. 000 * 3.108) + 1. 000 * 0.827 * 2. 794) + 5.420 Qmax(2) 0.885 * 1.000 * 3.108) + 1. 000 * 1. 000 * 2. 794) + 5.545 0 0 0 0 0 0 Total of 2 streams to confluence: Flow rates before confluence point: 3.108 2.794 Maximum flow rates at confluence using above data: 5.420 5.545 Area of streams before confluence: 1.930 1.960 Results of confluence: Total flow rate= 5.545(CFS) Time of concentration 10. 212 min. Effective stream area after confluence 3. 890 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 501. 000 202.000 to Point/Station ++++ **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 350.000(Ft.) Downstream point/station elevation 317.000(Ft.) Pipe length 178.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 5.545(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 5.545(CFS) Normal flow depth in pipe= 4.25(In.) Flow top width inside pipe= 15.29(In.) Critical Depth= 10.90(In.) Pipe flow velocity= 17.36(Ft/s) Travel time through pipe= 0.17 min. Time of concentration (TC) = 10.38 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501.000 501.00b to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 3.890(Ac.) Runoff from this stream 5.545(CFS) Time of concentration 10.38 min. Rainfall intensity= 2.878(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 100.000 to Point/Station 500.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [LOW DENSITY RESIDENTIAL (2. 9 DU/A or Less Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 Initial subarea total flow distance 538.000(Ft.) Highest elevation = 383. 000 (Ft.) Lowest elevation= 346.000(Ft.) Elevation difference 37.000(Ft.) Slope= 6.877 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 6.88 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 5.77 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.4900)*( 100.000A.5)/( 6.877A(l/3}]= 5.77 Rainfall intensity (I) = 4.202(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= l.544(CFS) Total initial stream area= 0.750(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 500.000 to Point/Station 501. 000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel= Depth of flow= 0.30l(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate· 1 0.00 2 6.00 3 12.00 'Y' coordinate 2.00 0.00 2.00 Manning's 'N' friction factor 0.035 Sub-Channel flow 1.835(CFS) flow top width= l.804(Ft.) velocity= 6.769(Ft/s) area= 0.27l(Sq.Ft} Froude number 3.077 Upstream point elevation= Downstream point elevation 346.000(Ft.) 317.000(Ft.) Flow length= 85.000(Ft.) Travel time 0.21 min. Time of concentration= 5.98 min. Depth of flow= 0.301(Ft.) Average velocity= 6.769(Ft/s) Total irregular channel flow= Irregular channel normal depth Average velocity of channel(s) 1. 835 (CFS) above invert elev. 6.769(Ft/s) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL 0.000 0.000 0.000 1.000 1. 835 (CFS) 6. 769 (Ft/s} 0.30l(Ft.) 0 • 0 C C C ++++ (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.410 Rainfall intensity= 4.107(In/Hr) for a 10.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.466 CA= 0.499 Subarea runoff= 0.504(CFS) for 0.320(Ac.) Total runoff= 2.048(CFS) Total area Depth of flow = 0. 313 (Ft.), Average ·velocity = 1. 070 (Ac.) 6.957(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501.000 501.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1. 070 (Ac.) Runoff from this stream 2.048(CFS) Time of concentration= 5.98 min. Rainfall intensity= 4.107(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. {CFS) (min) (In/Hr) 1 5.545 10.38 2.878 2 2.048 5.98 4.107 Qmax(l) 1. 000 * 1. 000 * 5.545) + 0.701 * 1. 000 * 2.048) + = 6.980 Qmax(2) 1. 000 * 0.576 * 5.545) + 1. 000 * 1. 000 * 2.048) + 5.243 Total of 2 streams to confluence: Flow rates before confluence point: 5.545 2.048 Maximum flow rates at confluence using above data: 6.980 5.243 Area of streams before confluence: 3.890 1.070 Results of confluence: Total flow rate= 6.980(CFS) Time of concentration= 10.383 min. Effective stream area after confluence End of computations, total study area= 4.960{Ac.) 4.960 (Ac.) POST-DEVELOPMENT HYDROLOGY CALCULATION 100 YEAR STORM, NODES 400 SERIES 0 • 0 0 C 0 7. 4 ++++ San Diego County Rational Hydrology Prograrn CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology St~dy Date: 09/23/05 CT 03-06, BLACK RAIL 16 100 YEAR STORM, POST DEVELOPMENT NODE 400 TO NODE 401 TO NODE 402 ********* Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour preci~itation(inch~s) = 4.500 P6/P24 = 60.0% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 400.000 to Point/Station 401.000 **** INITIAL AREA EVALµATION **** Decimal fraction soil group A= Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D (LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0.000 0.000 1.000 Initial subarea total flow distance 467.000(Ft.) Highest elevation= 375.000(Ft.) Lowest elevation= 350.000(Ft.) Elevation difference 25.000(Ft.) Slope= 5.353 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 5.35 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration= 6.28 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slope~(l/3)) TC= (1.8*(1.1-0.4900)*( 100.0QOA.5)/( 5.353A(l/3)]= 6.28 Rainfall inten~ity (I) = 6.143(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 0.27l(CFS) Total initial stream area= 0.090(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 402.000 401.000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 350.000(Ft.) Downstream point elevation 316.000(Ft.) Channel length thru subarea 202.000(Ft.) Channel base width O.OOO(Ft.) Slope or 'Z' of left channel barik = 2.000 Slope or 'Z' of right channel bank= 2.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.016 Maximum depth of channel 1. 000 (Ft.) Flow(q) thru subarea = 0.722(CFS) Depth of flow = 0. 213 (Ft.), Average velocity = Channel flow top width = 0; 8 53 (Ft.) Flow Velocity= 7.95(Ft/s) Travel time 0.42 min. Time of concentration= 6.70 min. Critical depth = 0. 38.3 (Ft.) Adding area flow to channel Decimal fraction soil group A= Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D (LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0.000 0.000 1.000 0. 722 (CFS) 7.951(Ft/s) Rainfall intensity= 5.890(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.490 CA= 0.191 Subarea runoff= 0.855(CFS) for. 0.300(Ac.) Total runoff= 1.126(CFS) Total area Depth of flow = 0. 252 ( f't. ) , Average velocity Critical depth= 0.457(Ft.) End of computations, total study area 0.390(Ac.) 8 . 8 8 3 ( Ft Is ) 0.390 (Ac.) 0 • 0 0 C 0 POST-DEVELOPMENT HYDROLOGY CALCULATION 10 YEAR STORM, NODES 400 SERIES 7.4 ++++ San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2004 Version Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 09/23/05 CT 03-06, BLACK RAIL 16 10 YEAR STORM, POST-DEVELOPMENT NODE 400 TO NODE 401 TO NODE 402 ********* Hydrology Study Control Information********** Program License Serial Number 4012 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 1.750 24 hour precipitation(inches) = 3.100 P6/P24 = 56.5% San Diego hydrology manual 'C' values used 10.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++. Process from Point/Station 400.000 to Point/Station 401.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A= Q.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 Initial subarea total flow distance 467.000(Ft.) Highest elevation= 375.000(Ft.) Lowest elevation= 350.000(Ft.) Elevation difference~ 25.000(Ft.) Slope= 5.353 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 5.35 %, in a development type of 2.9 DU/A or Less In Accordance With Figure 3-3 0 0 0 0 C 0 Initial Area Time of Concentration= 6.28 minutes TC= (1.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= (1.B*(l.1-0.4900)*( 100.0QOA.5)/( 5.353A(l/3)]= 6.28 Rainfall intensity (I) = 3.982(In/Hr) for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea runoff= 0.176(CFS) Total initial stream area= 0.090(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ Process from Point/Station 402.000 401.000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 350.000(Ft.) Downstream point elevation 316. 000 (Ft.) Channel length thru subarea 202,000(Ft.) Channel base w.idth O. 000 (Ft.) Slope or 'Z' of left channel bank= 2.000 Slope or 'Z' of right channel bank= 2.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.016 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 0.468(CFS) Depth of flow= 0.18l(Ft.), Average velocity.= Channel flow top width = 0. 725 (Ft.) Flow Velocity= · 7.13(Ft/s) Travel time 0.47 min. Time of concentration= 6.75 min. Critical depth= 0.320(Ft.) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction sojl group C Decimal fraction soil group O [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai= 0.250 Sub-Area C Value= 0.490 0.000 0.000 0.000 1.000 0. 4 68 (CFS) 7 .134 (Ft/s) Rainfall intensity= 3.800(In/Hr) for a 1.0.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.490 CA= 0.191 Subarea runoff= 0.551(CFS) for 0.300(Ac.) Total runoff= 0.726(CFS) Total area Depth of flow= 0.214(Ft.), Average velocity Critical depth= 0.383(Ft.) End of computations, totai study area 0. 390 (Ac.) 7.961(Ft/s) 0.390 (Ac.) 0 BROW DITCH HYDRAULIC CALCULATIONS 0 0 0 C C D---1S- 7 .. -;pc D B(l,ow CAL-CL,( «>A ft O 1J CIRCULAR CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION September 23, 2005 /l)O \) f::. I Ot --============================================================================== PROGRAM INPUT DATA DESCRIPTION VALUE Flow Rate (cfs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .18 Channel Bottom Slope (ft/ft) ................................ 0.049 Manning's Roughness Coefficient (n-value) ................... 0.02 Channel Diameter (ft) ....................................... 2. 0 --============================================================================== COMPUTATION RESULTS DESCRIPTION VALUE Normal Depth (ft)··········································· O .11 Flow Ve-locity (fps)········································· 2. 78 Froude Nurnbe r · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 . B 2 6 Velocity Head {ft) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0. 12 Energy Head (ft)············································ 0.23 Cross-Sectional Area of Flow (sq ft)························ 0.06 Top Width of Flow (ft)···············•······················ 0. 9 --=========================================~============================---===== HYDROCALC Hydraulics for Windows, Version 1.1 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281)440-3787, Fax: (281)440-4742, Email:software@dodson-hydro.com All Rights Reserved. l)-lt.;' 1YtE 0 CIRCULAR CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION September 23, 2005 1V u v 6 { 0 J --~==-========================================================================= PROGRAM INPUT DATA DESCRIF!'ION VALUE Flow Rate (cfs) ............................................. 0.09 Channel Bottom Slope (ft/ft) ................................ 0.0513 Manning's Roughness Coefficient (n-value) ................... 0.02 Channel Diameter (ft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. 0 ======~===============================~========================~=============== COMPUTATION RESULTS DES CR I PT ION VALUE Normal Oepth (ft)··········································· 0.08 Flow Velocity (fps)········································· 2. 29 Froude Wumber · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1. 778 Velocity Head (ft) · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0. 08 Energy Read (ft) · · · · · · · • · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 .16 Cross-Sectional Area of Flow ( sq ft) .... · .. · .. · .... · .. .. .. .. D. 04 Top Width of Flow (ft)······································ 0.77 ----=-===-:;:=ai:====-=-===------=-=---===--=-----=---=--------------··------------------ HYDROCA1C Hydraulics for Windows, Version 1.1 Copyright (c) 1996 Dodson, Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281) 440-3787, Fax: (281) 4 40-4 742, Email: software@dodson-hydro.com All Rights Reserved. 0 0 0 C C 0 B ,2,o i.,,J CIRCULAR CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION September 23, 2005 =---=--===-==...:.-==---=.,;;;;;=================.-=================---========================== PROGRAM INPUT DATA DESCRIPTION VALUE -------------------------------------------------------------------------------- Flow Rate (cfs) ............................................. O. 27 Channel Bottom Slope (ft/ft) ................................ 0. 0535 Manning's Roughness Coefficient (n-value) ................... 0.02 Channel Diameter (ft) ....................................... 2.0 =====-=========================================================================- COMPUTATION RESULTS DESCRIPTION VALUE --------------------------------------------------------------------------------- Normal Depth (ft)··········································· 0.13 Flow Velocity (fps)········································· 3. 24 Froude Number············•·································· 1. 954 Velocity Head (ft)·········································· 0.16 Energy Head (ft) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · O. 29 Cross-Sectional Area of Flow (sq ft)·· .. "·"·"""·"""· 0.08 Top Width of Flow (ft)······································ 0.97 ================================================================================ HYDROCALC Hydraulics for Windows, Version 1.1. Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281) 440-3787, Fax: (281) 440-4742, Email:software@dodson-hydro.com All Rights Reserved. D-1S- 1YPe f) CAe, C,,,i l·A -r, o ,J CIRCULAR CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION September 23, 2005 /1]6 D £ --============================================================================== PROGRAM INPUT DATA DESCRIPTION VALUE Flow Rate (cfs) ..................................... ,, .... ,. 2. 38 Channel Bottom Slope (ft/ft) ................................ 0.0688 ManninJ's Roughness Coefficient (n-value) ................... 0.02 Channel Diameter ( ft J • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • 2. O ---==-~========~======================================--=================--===-- COMPUTATION RESULTS DESCRI !TION VALUE Normal Depth (ft)··········································· 0.34 Flow VElocity (fps)········································· 6. 81 Froude Number· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · • · · · · · · · · · · 2. 485 Velocity Head (ft)·······•·································· 0. 72 Energy Head (ft) · · · • · · · · · · · · • · · · · · · · · · · · · · · · · · · • • · · · · · · · · · · · 1. 06 Cross-Sectional Area of Flow (sq ft) .. ····· .... · .. · .. ···· .. · 0.35 Top Width of Flow (ft)······································ 1. 5 HYDROCALC Hydraulics for Windows, Version 1.1 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281)440-3787, Fax: (281)440-4742, Ernail:software@dodson-hydro.com All Rights Reserved. 0 0 0 C C 0 lOYEAR & 100 YEAR STORMS STORM DRAIN SYSTEM CALCULATION STORM DRAIN LINES A-1 TO A-6 Hydraflow Plan View Outfall 6 zephyr No. Lines: 7 08-09-2006 Hydraflow Storm Sewers 2005 0 lo Ye1:j -s--ro,12../../J 0 sOm Sewer Profile () 0 Proj. file: zephyr1 OYR.stm Elev. (ft) 371.00 Sta 0+00.00 -Outfa~lll. ··.-+-----t-- Grnd. Ei. 329.50 _ . rnd.EL337 to.. .Rim.ELf51.91 . ----~-~~-=IJ:~-0~1~---~------------J ll=!~~ .Out.. ut :~~Y-~LI ~=~o~-~ 360.00 -+------·+----··--------+-·-------+---+----·--·---1-------------f-------·-+----+---------+---~-----+-------····-·---, ·-·-+---. ·-~···"t---···---·-1··---t---·-··------··----t----··---------+--f------·-·---~------·· -···-----t-----+-·-·- -------+--+-------------+··-·-----·--------++····---------+------+-------·-+---+------- ·------··--····-----·-1---···-· --------1----t-----·--· --·--+· .~~---i· ------··-+--·-·---·---------· 349.00 -·--- ,---·+-----....... + --+--·----------+---+--· --·--·--------+-------· -----f---------.. -- 338.00 327.oo ~ "' __ · ----~=-~-----_---·-i--~-~--~---X--~=-~---J-~~~:~=-::_~:_J~-~:=-~~-~~=-- 316.00 0 10 ---1------------1--...... ,---------+--------· .. +--------""'"-+·----.. -------·I---------- +-------·-------.. -+-------· .. ·-·-------+--------------!-- 20 30 40 50 Reach (ft) 60 /0 YEA-/Z. 5~~/ZM . ----t-·-----. ----·-., 70 80 90 100 Hydraflow Storm Sewers 2005 Storm Sewer Profile Proj. file: zephyr10YR.stm Elev. (ft) 364.00 ..... -Sta--0 ~c'5::::i:==t:::::::::::::=::::::::::=:::=E:: ----·- 360.00 --f---·-· .. ·-. ··-+---------. -·-····+--+----···-· -----+--------+--- ·----t-----··--.. --···---·--f-··-------"+-·-··----1-t-·······-----+----·--·--+-···-------+--··---+--··----··-·---------+--· .. ----. -----+-···--·--. -+------·---+----·-··+·· -t--------·---··+-----------·- 356.00 .... +---·-··-···----·+··-. ---·---+-+--· ····-----·-----t~====~----+=---4+ ··-----------t-·--· ..... -------·t-.. ---·---· .. --+-- -------1; ~ -1 1---r---~,~J j 352.00 ~~~-0--:::-::=-~:-:_-~-=~~~~:~ i-~±=ttti----1 t l ... ···---t------...... ----·--· ------:::=:~=-...::~-::...-=1=----··--·-···---l"=·::._=·=-· 348.006.~5~ ---11111111··-· ------·-- 344.00 0 10 0 -------· ----- --------·-·--·---·-------·--------+·--------+··--· ----·-···-f-------·------------t---·-----···---+---·-------r-·---·---··-+-···--·----··--·-+----------t---···---·----+-·----------l--·-----------1 ---·--·+--·· ·-·-. ---+--------------!·····--··--·--·---+-·- 20 ......... ,. 30 40 50 Reach (ft) ft) ,YEr1£0-Z--O£-M --i··-·---·-··--·-·-·-·---·-· --+----------·····-----1 60 70 80 90 100 Hydraflow Stowers 2005 stOn Sewer Inventory Report (l 0 Page 1 Line Alignment No. Flow Data Physical Data Line ID Dnstr Line Defl June Known Dmg Runoff Inlet Invert Line Invert Line Line N J-loss Inlet/ line length angle type Q area coeff time El On slope El Up size type value coeff Rim El No. (ft) (deg) (cfs) (ac) (Cl (min) (ft) (%) (ft) (In) (n) (K) (ft) 1 End 28.1 160.4 None 5.55 0.00 0.00 0.0 324.00 27.05 331.60 18 Cir 0.013 0.25 0.00 LINEA-1 2 1 20.5 -11.9 None 5.55 0.00 0.00 0.0 331.60 27.07 337.16 18 Cir 0.013 0.43 0.00 LINEA-1 3 2 18.3 -22.1 None 5.55 0.00 0.00 0.0 337.16 27.00 342.09 18 Cir 0.013 0.46 0.00 LINEA-1 4 3 16.0 -23.6 MH 5.55 0.00 0.00 0.0 342.09 27.08 346.41 18 Cir 0.013 1.00 0.00 LINEA-1 5 4 6.9 -98.3 None 3.75 0.00 0.00 0.0 346.74 7.01 347.22 18 Cir 0.013 1.00 0.00 LINE A-6 6 5 31.7 90.6 MH 3.75 0.00 0.00 0.0 347.22 7.00 349.44 18 Cir 0.013 0.43 0.00 LINEA-5 7 6 28.0 22.3 Curb 5.55 0.00 0.00 0.0 349.44 2.00 350.00 18 Cir 0.013 1.00 0.00 LINEA-4 zephyr Number of lines: 7 Date: 08-09-2006 lo YG?=l-£ Hydraflow Storm Sewers 2005 s;ro;ZA-1 Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No. rate size length ELDn EL Up slope down up loss Ju net line (eris) (In) (ft) (ft} (ft) (%) (ft} (ft) (ft) (ft} No. 0 1 LINEA-1 5.55 18 C 28.1 324.00 331.60 27.046 325.12 332.50 n/a 332.50 j End 2 LINEA-1 5.55 18 C 20.5 331.60 337.16 27.069 332.74 338.06 n/a 338.06j 1 3 LINEA-1 5.55 18 C 18.3 337.16 342.09 26.999 338.30 342.99 n/a 342.99 j 2 4 LINEA-1 5.55 18 C 16.0 342.09 346.41 27.085 343.23 347.31 n/a 347.31 j 3 5 LINEA-6 3.75 18 C 6.9 346.74 347.22 7.007 347.63 347.96 n/a 347.96j 4 6 LINEA-5 3.75 18 C 31.7 347.22 349.44 7.003 348.18 350.18 n/a 350.18j 5 7 LINEA-4 5.55 18 C 28.0 349.44 350.00 2.000 350.32 350.90 nla 350.90 j 6 0 i zephyr Number of Jines: 7 I Run Date: 08-09-2006 0 NOTES: c = cir; e = elllp; b = box; Return period = 10 Yrs. ; J -Line contains hyd. jump. Hydraflow Storm Sewers 2005 Hys;'.lulic Grade Line Comput.!tions () () Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ftls) (ft) (ft) (%) (ft) (ft} (ft) (ft) (sqft) (ftls) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8} (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 18 5.55 324.00 325.12 1.12 1.42 3.92 0.24 325.36 0.339 28.1 331.60 332.50 j 0.90-1.11 5.02 0.39 332.89 0.621 0.480 n/a 0.25 0.10 2 18 5.55 331.60 332.74 1.14 1.44 3.86 0.23 332.97 0.328 20.5 337.16 338.06j 0.90•• 1.11 5.02 0.39 338.45 0.621 0.474 nla 0.43 0.17 3 18 5.55 337.16 338.30 1.14 1.44 3.86 0.23 338.53 ,0.328 18.3 342.09 342.99j 0.90 ... 1.11 5.02 0.39 343.38 0.621 0.474 n/a 0.46 0.18 4 18 5.55 342.09 343.23 1.14 1.44 3.86 0.23 343.46 0.328 16.0 346.41 347.31 j 0.90-1.11 5.02 0.39 347.70 0.621 0.474 nla 1.00 0.39 5 18 3.75 346.74 347.63 0.89 1.09 3.43 0.18 347.81 0.292 6.9 347.22 347.96 j 0.74** 0.87 4.32 0.29 348.25 0.536 0.414 n/a 1.00 n/a 6 18 3.75 347.22 348.18 0.96 1.19 3.14 0.15 348.33 0.233 31.7 349.44 350.18 j 0.74-0.87 4.32 0.29 350.47 0.536 0.385 n/a 0.43 n/a 7 18 5.55 349.44 350.32 0.88 1.07 5.18 0.42 350.73 0.672 28.0 350.00 350.90j 0.90•· 1.11 5.02 0.39 351.29 0.621 0.646 n/a 1.00 0.39 I . zephyr I Number of lines: 7 I Run Date: 08-09-2006 Notes: ; ** Critical depth.; j-Line contains hyd. jump. Jo y~ ~-rb.en Hydraflow Storm Sewers 2005 . r Hydraflow HGL Computation Procedure General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, Iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same proeedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise Is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 / Col. 7). Col. 9 Velocity head (Velocity squared / 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the Sor Slope tenn in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 I Col. 16). Col. 18 Velocity head (Velocity squared/ 2g). Col. 19 The elevation of the energy grade line at the upstream end, HGL + Velocity head, (Col. 14 + Col. 18). Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x line length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream)+/-tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). 0 0 Page 1 0 0 () 0 Hydraflow Plan View Io o I E:A-.R-s· -ro tz r1 ~Outfall 6 zephyr l No. Lines: 7 08-09-2006 Hydraflow Storm Sewers 2005 Storm ~ewer Pror1le I Od y e:>A;Z. ~ lt>,tc.f1 Proj. file: zephyr.stm Elev. (ft) 371.00 360.00 349.00 338.00 327.00 316.00 0 Sta O+O .00 -Outfall Gmd. E . 329.50 _Jnv. EL 24.00Jn __ .. rnd .. EL337 10 J v .. B. 33.1_6 .Out -a----------+----------·---+-----··------W v.EL.33j..6 c.Jn.__ ---- ·---··-++-----····-+------+-+-------·-----t-----+-·-···------+· -----·-·----·- ·-·-----·--·--l---------+--t-------------+--------++--------·------·-t-··----t----1----------------+--+--·····-----+-····-------··-- ---!---····---···---··-!···· -. ._. ----·. ---···---+----·-•-----------------+--------------t-1---------l-----+-·--l---·--· ---------1-----1--------------+----··----------1 -------+------·--·--·-···-f--+-------------t--------·-· --+-+----------------· --------t-----+-----::.:::=----1---·--·-+-------·-t-= + . ---+---·----------· --1----·------------+ t.=r--------~===-~~ ~ ---------+-·-~ ---·--,-·-·---·-··-~ • 0 ------+----------+------------------~, ... ----------+-·-------------t-------·---1------------------f-------------1-----·----·--l -+-· -----------------·+-· -----···--··-·-----+-----·-- 0 10 20 30 ---+------· ---+------- -·--f-------------------l -----------···---+---------··---+---'---------·------· --+· .... ------------. -----+------- 40 50 Reach (ft) 0 60 70 80 90 100 Hydraflow Stooers 2005 s1:0n ~ewer Profile (~) 0 Proj. file: zephyr.stm Elev. (ft) 364.00 360.00 a····· t---t-· ___ J _________ --f __ ----~·---t=t= ----=t ------=±=-~--=l=---t----==± ---L-.----···- ·..f·~- !·-·--·· ···--········ ··-·-+-···------·· ·-··--+-·--· ·-···--+--t·----------+·--------··-t------ 356.00 352.00 £==1~~-t~1i-;:·1~=tr~r-_=_:---=~-:-~~=::-" . --·t---····--. ·-.. ··- ---·· ··+········--·--·-.. -··· +-··--·-------+-·· --· -----+-----· ·-·· --------·-·-··-!·-·· ··-·-·-----t---·-·----i ··-·-.. --· ·---+-. ·----·--··· ··-1---···-·· -j-------·--------1-·-····--··-··------+---·---····-·-·-I-·····-···· 344.00 0 10 20 30 40 50 60 70 80 90 100 Reach (ft) /oo /"e,ve 5-tC>~M Hydraflow Storm Sewers 2005 Storm sewer Inventory Repori Page 1 Line Alignment Flow Data Physical Data Line ID No. Dnstr Line Defl June Known Dmg Runoff Inlet Invert Line Invert Line Line N J-loss Inlet/ line length angle type Q area coeff time EIDn slope El Up size type value coeff Rim El No. (ft) (deg} (cfs) (ac} (C} (min} (ft) (%} (ft) (In) (n} (K) (ft) 1 End 28.1 160.4 None 8.67 0.00 0.00 0.0 324.00 27.05 331.60 18 Cir 0.013 0.25 0.00 LINEA-1 2 1 20.5 -11.9 None 8.67 0.00 0.00 0.0 331.60 27.07 337.16 18 Cir 0.013 0.43 0.00 LINEA-1 3 2 18.3 -22.1 None 8.67 0.00 0.00 0.0 337.16 27.00 342.09 18 Cir 0.013 0.46 0.00 LINEA-1 4 3 16.0 -23.6 MH 8.67 0.00 0.00 0.0 342.09 27.08 346.41 18 Cir 0.013 1.00 0.00 LINE A-1 5 4 6.9 -98.3 None 6.87 0.00 0.00 0.0 346.74 7.01 347.22 18 Cir 0.013 1.00 0.00 LINEA-6 6 5 31.7 90.6 MH 6.87 0.00 0.00 0.0 347.22 7.00 349.44 18 Cir 0.013 0.43 0.00 LINE A-5 7 6 28.0 22.3 Curb 8.67 0.00 0.00 0.0 349.44 2.00 350.00 18 Cir 0.013 1.00 0.00 LINEA-4 I I zephyr Number of lines: 7 Date: 08-09-2006 0 /(JO YeA-,,e s~ Hydrorm Sewers 2005 Storm Sewer Summary Report /tJ6 Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No. rate size length ELDn EL Up slope down up loss Ju net line (cfs) (In) (ft) (ft) (ft) (%) (ft) (ft) (ft) (ft) No. 0 1 LINE A-1 8.67 18 C 28.1 324.00 331.60 27.046 325.12 332.72 n/a 332.72j End 2 LINE A-1 8.67 18 C 20.5 331.60 337.16 27.069 332.93 338.28 n/a 338.28j 1 3 LINEA-1 8.67 18 C 18.3 337.16 342.09 26.999 338.49 343.21 n/a 343.21 j 2 4 LINE A-1 8.67 18 C 16.0 342.09 346.41 27.085 343.42 347.53 nla 347.53j 3 5 LINE A-6 6.87 18 C 6.9 346.74 347.22 7.007 347.88 348.22 n/a 348.22 4 6 LINE A-5 6.87 18 C 31.7 347.22 349.44 7.003 348.45 350.44 n/a 350.44j 5 7 LINE A-4 8.67 18 C 28.0 349.44 350.00 2.000 350.53 351.12 n/a 351.12j 6 C : I 0 zephyr Number of lines: 7 I Run Date: 08-09-2006 NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; j -Line contains hyd. jump. Hydraflow Storm Sewers 2005 -I Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff toss Invert HGL Depth Area Vet Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) 1 18 8.67 324.00 325.12 1.12 1.42 6.10 0.58 325.70 0.822 28.1 331.60 332.72j 1.12*" 1.42 6.10 0.58 333.30 0.822 0.822 n/a 0.25 n/a 2 18 8.67 331.60 332.93 1.33 1.66 5.24 0.43 333.36 0.609 20.5 337.16 338.28j 1.12·· 1.42 6.10 0.58 338.86 0.822 0.715 n/a 0.43 n/a 3 18 8.67 337.16 338.49 1.33 1.66 5.24 0.43 338.92 0.609 18.3 342.09 343.21 j 1.12·· 1.42 6.10 0.58 343.79 0.822 0.715 n/a 0.46 n/a 4 18 8.67 342.09 343.42 1.33 1.66 5.24 0.43 343.85 0.609 16.0 346.41 347.53j 1.12·· 1.42 6.10 0.58 348.11 0.822 0.715 n/a 1.00 n/a 5 18 6.87 346.74 347.88 1.14 1.44 4.78 0.35 348.23 0.501 6.9 347.22 348.22 1.00·· 1.25 5.49 0.47 348.69 0.696 0.598 n/a 1.00 n/a 6 18 6.87 347.22 348.45 1.23 1.55 4.42 0.30 348.76 0.426 31.7 349.44 350.44 j 1.00·· 1.25 5.49 0.47 350.91 0.696 0.561 nta 0.43 n/a 7 18 8.67 349.44 350.53 1.09 1.38 6.28 0.61 351.15 0.876 28.0 350.00 351.12 j 1.12·· 1.42 6.10 0.58 351.70 0.822 0.849 n/a 1.00 n/a zephyr I Number of lines: 7 I Run Date: 08-09-2006 Notes:;•• Critical depth.; j-Line contains hyd. jump. 0 /tJ o Yck;zos7ab'? Hydorm Sewers 2005 n .. .[ () Hyblaflow HGL Computation t1rocedure · General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile Is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 / Col. 7). Col. 9 Velocity head (Velocity squared I 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow Inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area ofthe flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 I Col. 16). Col. 18 Velocity head (Velocity squared/ 2g). Col. 19 The elevation of the energy grade line at the upstream end, HGL + Velocity head, (Col. 14 + Col. 18) . Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream) +/-tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). 0 Page 1 Hydraflow Plan View Outfall 1 zephyr 0 0 ~ "'l o/t.. M v ~ "t' e(L "3 '4 0 f1. ,e 'O I A y, L --((llr.'{10 ~ 1 No. Lines: 2 08-09-2006 Hydrallow storm Sewers 2005 .o StJ;l Sewer Inventory Report! (') () Page 1 Line Alignment Flow Data Physical Data Line ID No. Dnstr Line Defl June Known Dmg Runoff Inlet Invert Line Invert Line Line N J-loss Inlet/ llne length angle type Q area coeff time EIDn slope El Up size type value coeff Rim El No. (ft) (deg) (cfs) (ac) (C) (min) (ft) (%) (ft) (In) (n) (K) (ft) 1 End 13.0 98.1 Mt-I 1.80 0.00 0.00 0.0 346.74 2.00 347.00 6 Cir 0.013 1.00 0.00 LINE A-2 2 End 6.7 38.0 None 1.80 0.00 0.00 0.0 349.30 2.11 349.44 6 Cir 0.013 1.00 0.00 LINE A-3 zephyr Number of lines: 2 Date: 08-09-2006 Hydraflow Storm Sewers 2005 Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No. rate size length ELDn EL Up slope down up loss Ju net line (cfs) (In) (ft) (ft) (ft) (%) (ft) (ft) (ft) (ft) No. 0 1 LINE A-2 1.80 6 C 13.0 346.74 347.00 . 2.000 347.24* 348.58* 1.31 349.89 End 2 LINE A-3 1.80 6 C 6.7 349.30 349.44 2.105 349.80* 350.49* 1.31 351.79 End I 0 I I i zephyr Number of lines: 2 I Run Date: 08-09-2006 0 NOTES: c = cir; e = ellip; b = box; Return period= 100 Yrs. ; *Surcharged (HGL above crown). HydQlic Grade Line Computaiions () 0 Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) {ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 16 1.80 346.74 347.24 0.50 0.20 9.17 1.31 348.55 10.30! 13.0 347.00 348.58 0.50** 0.20 9.17 1.31 349.89 10.30f 10.307 1.340 1.00 1.31 2 6 1.80 349.30 349.80 0.50• 0.20 9.17 1.31 351.11 10.30! 6.7 349.44 350.49 o.5o·· 0.20 9.17 1.31 351.79 10.305 10.307 0.685 1.00 1.31 zephyr I Number of lines: 2 I Run Date: 08-09-2006 Notes: • Normal depth assumed.; -Critical depth. Hydraflow Storm Sewers 2005 Hydraflow HGL Computation Procedure General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, {Col. 3 / Col. 7). Col. 9 Velocity head (Velocity squared I 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, {Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, {Col. 3 / Col. 16). CoL 18 Velocity head (Velocity squared/ 2g). Col. 19 The elevation of the energy grade line at the upstream end, HGL + Velocity head, (Col. 14 + Col. 18) . Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream) +/-tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. {Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). 0 0 Page 1 0 StJ;'t Sewer Profile () 0 Proj. file: zephyr filtration.stm Elev. (ft) 355.00 353.00 351.00 349.00 347.00 345.00 ' ---!--··· --· ----·-·-------~--·-··-· -1---------------+ --------------------- ·--·------·· --· _---1 ,__ __ ---------·· . ..,...-,-----------!--------------+-----------+--------+----------------+----------1---------t---·--------- ------------------,-+ --+----------t-------------1---------------------1-----------------j--- I ----·· -----1-----··- ---------f------------------+ --------------- 0 10 20 30 ------+-------------+---------------+-------------------------1---------- -l----------+---------+-----------+------------+--------------------1-------------1 40 50 Reach (ft) 60 --+-------------------+---------------+--------------- 70 80 90 100 Hydraflow Stonn Sewers 2005 0 CURB OUTLET CALCULATIONS (D-25) 0 0 0 C 0 CAPACITY OF CURB OUTLETS I. Check capacity of Curb Outlets Determine the flow capacity in cfs of the Curb Outlet using Manning's Equation: 1.49 1. .1 Q(cap) = -AR3S 2 n Where, A = Cross-sectional area of ditch in square feet (sf) R = Hydraulic Radius (area divided by wetted perimeter) S = Slope of pipe n = Roughness Coefficient Given: We have: for one cell 3"x36" opening A= 0.75 sf Q(cap) = 2.88 cfs R= 0.12 ft S= 2.00 % min n= 0.013 for concrete The highest flow rate entering into a D-25 curb outlet is 0.18 cfs (Node 101). Node 103 is 0.09 cfs. Therefore the use of a S.D.S.R.D. D-25 for this project is okay. 0 CURB INLET CALCULATION 0 0 0 FORMULAS: ON GRADE: Q=O. 7 L (a + y )312 IN A SUMP: Q=3.0 L y12 0 CURB INLET CALCULATIONS Where: Q = Runoff in cfs L = length of opening in feet a=depth of depression in feet y=depth of flow in feet INLET LOCATION Q(cfs) a(ft) Street Slope y (ft) L (ft min) L (ft) 4" for 1 O"depp. from FIG~ Specified INLET(S) IN A SUMP Q(cfs) a(ft) Street Slope y (ft) L (ft min) L (ft) MAX.Y AT END OF LINE A-3 (STREET 'A' CUL-DE-SAC) 8.670 0.400 11.424 12.000 0 INLET TYPE B-1 B-2 0 ROCK RIP RAP SIZING CALCULATIONS 0 0 0 ,,,.•' 0 4-ot 2003 REGIONAL SUPPLEMENT 200-1.6.3 Quality Requirements Page. 45 -First paragraph, second sentence change "60 days" to "30 days". 200-1. 7 Selection of Rip rap and Filter Blanket Material Table 200-1. 7 Rip Filter Blanket U1;mer Laxer(s) Velocity Rock Class Rap (3) Meters/Sec (2) Thie Option 1 Optio (Ft/Sec) k-Sect. 200 n2 Option 3 (1) Nes (4) Sect.4 (5) s 00 "TTI (4) ·=---2 (6-7) No. 3 Backing 0.6 5 mm (3/16") C2 D.G. -.,... __ 2.2 (7-8) No. 2 Backing 1.0 6 mm (1/4") B3 D.G. 2.6 (8-9.5) Facing 1.4 9.5 mm (3/8") ----D.G. 3 (9.5-11) Light 2.0 12.5 mm(W') ....... 25mm (3/4"-1-1/2") 3.5 (11-13) 220 kg (1/4 Ton) 2.7 19 mm (3/4") ----25mm (3/411-1-1/2") 4 (13-15) 450 kg (Yz Ton) 3.4 25 mm (1 11) ----25mm (3/4"-1-1/2") 4.5 (15-17) 900 kg (1 Ton) 4.3 37.5 mm (1-1/2") ----TYPEB 5.5 (17-20) l .8Tonne (2 Ton) 5.4 50 mm (211) ----TYPEB See Section 200-1.6. see also Table 200-1.6 (A) Practical use of this table is limited to situations where "T" is less than inside diameter. (I) Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater. (2) If desired rip rap and filter blanket class is not available, use next larger class. (3) Filter blanket thickness= 0.3 Meter (1 Foot) or "T", whichever is less. (4) Standard Specifications for Public Works Construction. (5) D.G. = Disintegrated Granite, 1mm to 10mm. P.B. = Processed Miscellaneous Base. 8 Lower Layer (6) .. ___ ---- --- ---- SAND SAND SAND SAND 3: N 0::: 0 E C , N J ::I 0 3: N 0::: 0 C N 01}( fol 2D OR 2 W min. s· Wide Slot Al 3D OR 3W PLAN Endwoll (typical) NOTES D ~ z_ =-----( I -:=){)SC. A ..f 'f.-LO 0tS5 t Pk'1o(l -rype z., D = Pipe Diameter W = Bottom Width of Chonnel Flow .... filter Blanket Sill, Class 420-C-2000 Concrete SECTION A-A 1. Plans shall specify: A) Rock Class ond thickness (T). B) rilter material, number of layers ·and thickness. 2. Rip rap shall be either quarry stone or broken concrete (if shown on the plans.) Cobbles ore not acceptable. 3. Rip rep shall be pieced over filter blanket which moy be either granular materiel or filter fabric. 4. See Regional Supplement Amer:idcn.ents for selection of rip rap and filter blanket. "- SECTION B-8 5. Rip rap energy dissipotors shll be desi9noted as either Type 1 or Type 2. Type 1 shall be with concrete sill; Type 2 shall be without sill. Revision B Approved Dote ORIGINAL Kercheval 2 75 SAN DIEGO REGIONAL STANDARD DRAWING RIP RAP ENERGY DISSIPATOR RECOMMENDED BY THE SI.N DIEGO REGIONAL STANDARDS COMMITTEE DRAYr1NG NUMBER D-40 0 0 0 0 -(_ 2003 REGIONAL SUPPLEMENT 200-1.6.3 Quality Requirements Page 45 -First paragraph, second sentence change "60 days" to "30 days". 200-1. 7 Selection of Riprap and Filter Blanket Material Table 200-1.7 Rip Filter Blanket Ui:mer Layer(s) Velocity Rock Class Rap (3) :Meters/Sec (2) Thie Option l Optio (Ft/Sec) k-Sect. 200 n2 Option 3 (I) Nes (4) Sect.4 (5) s 00 "T" (4) 2 (6-7) No. 3 Backing 0.6 5 mm (3/16") C2 D.G. ) 2.2 (7-8) No. 2 Backing LO 6 mm (1/4") B3 D.G. 2.6 (8-9.5) Facing 1.4 9.5 mm (3/8") ----D.G. 3 (9.5-11) Light 2.0 12.5 mm (W') --·· 25mm (3/4"-1-1/2") 3.5 (11-13) 220 kg (1/4 Ton) 2.7 19 mm (3/4") ----25mm (3/4"-1-1/2") 4 (13-15) 450 kg (Yi Ton) 3.4 25 mm (I") ----25mm (3/4"-1-1/2") 4.5 (15-17) 900 kg (1 Ton) 4.3 37.5 mm (1-1/2") ----TYPEB 5.5 (17-20) l.8Tonne (2 Ton) 5.4 50 mm (2") ----TYPEB See Section 200-1.6. see also Table 200-1.6 (A) Practical use of this table is limited to situations where "T" is less than inside diameter. (1) Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater. (2) If desired rip rap and filter blanket class is not available, use next larger class. (3) Filter blanket thickness= 0.3 Meter (I Foot) or "T", whichever is less. ( 4) Standard Specifications for Public Works Construction. (5) D.G. = Disintegrated Granite, Imm to 10mm. 0 P.B. = Processed Miscellaneous Base. 8 Lower Layer (6) ---- ---- ---- ---- SAND SAND SAND SAND E ~ ! .s :i; ~ Revision ORIGINAL 3: N 0:: 0 0 N 3: N 0:: 0 0 N Concrete Channel /llo 5"00 2D OR 2 W min. 6" Wide Slot Al 30 OR :SW PLAN 1/20 min. SECTION 8-8 Endwolf (typical) --~------:----;/ r I ( f CD ~? U S -s A 4 I-Jo 0 l SS l PA "'1ote, -r y?6 z, D = Pipe Diameter W = Bottom Width of Channel Flow I- I filter Blanket Sill, Closs 420-C-2000 Concrete SECTION A-A NOTES I. Plans shall specify: A) Rock Closs and thickness (T). B) Filler material, number of layers and thickness. 2. R,p rep shall be either quarry stone or broken concrete (if shown on the plans.) Cobbles ore not acceptable. 3. Rip rep shall be placed over filter blanket which may be either granular material or filter fabric. 4. See Regional Supplement Arnecidr:nents for selection of rip rep and filter .blanket. , "-.. 5. Rip rep energy dissipaters shit be desi9nated as either Type 1 or Type 2. Type 1 shall be w,th concrete sill; Type 2 shell be without sill. SAN DIEGO REGIONAL STANDARD DRAWING RECOMMENDED BY lHE SAN DIEGO REGIONAL STANDARDS COMMITTEE RIP RAP ENERGY OISSIPATOR DRA'MNG NUMBER D-40 0 0 0 0 REGIONAL WATER QUALITY CONTROL BOARD REQUIREMENTS C 0 Calculate O's to treat using the State Water Resource Control Board Requirements Per the California Regional Water Quality Control Board, San Diego Region, order no. 2001-01 pages 18 & 19, in order to get the required flow to be treated, we can either use: i. The maximum flow rate of runoff produced from a rainfall intensity of 0.2 inch of rainfall per hour; or ii. The maximum flow rate of runoff produced by the 85th percentile hourly rainfall intensity, as determined from the local historical rainfall record, multiplied by a factor of two; or iii. The maximum flow rate of runoff, as determined from the local historical rainfall record, that achieves approximately the same reduction in pollutant loads and flows as achieved by mitigation of the 85th percentile hourly rainfall intensity multiplied by a factor of two. For this project we are going to use the maximum flow rate of runoff produced from a rainfall intensity of 0.2 inch of rainfall per hour. Please see the Post-development Hydrology Basin Map to see locations of the nodes. C values where derived using the formula Q=CIA. Values of Q, I and A are from the confluence results of the node junction. R . dtr tdfl I I ti eqmre ea e ow ca cu a ons SYSTEM NODE (AJAREA Tc C I Q=CIA (Acres) (Mins) (In/Hr) cfs LINE A-3 202 3.89 10.01 0.49 0.20 0.38 BMP t t t t s rue ure o mee reci . d t tm t ffl u1re rea en o ows SYSTEM Reau ired STORMWATER Treated Remarks Q 360MODEL flow LINE A-3 0.38 STORMFIL TER W/ 12 CARTRIDGES 0.38 Meets requirement See attached printout for a brief overview of how the Stormfilter is sized. Manufacturer uses a 15 gpm/cartridge (or 0.0334 cfs/cartridge) to determine the number of cartridges. Therefore to treat 0.38 cfs: 0.38 cfs/0.0334 cfs/cartridge = 11.38 cartridges Use 12 cartridges For a filter with 12 cartridges, the manufacturer recommends an 8'X16' pre-cast basin size. 0 0 0 0 C 0 Establishing agency requirements Before determining the number of cartridges to use in your StormFilter, first contact your local regulatory agency regarding the requirements for water quality facilities in your area in order to determine what your system will need to treat. Your local agency typically specifies a modeling methodology that you can use to calculate either the water quality flow rate or runoff volume from your site. Flow-based regulations Most water quality facilities are designed around a "design storm" established by the local regulatory agency. The local agency typically identifies a storm of a specific magnitude with certain characteristics and sets in place regulations so that facilities in the area are configured to handle that storm when it occurs. There are at least two design storms identified by the regulatory agency that must be considered: the water quality design storm and the peak conveyance design storm. Water quality design storm The peak flow rate from the water quality design storm (Otreat> is used to size water quality facilities. Typically, the water quality design storm has a return period of approximately six months and is set by the local agency in order to maintain a certain level of water quality. Peak conveyance design storm The peak flow rate from the peak conveyance design storm (OpealU is used to evaluate the hydraulic conveyance of stormwater treatment systems in the case of a severe storm event and to determine the need for a high flow bypass. Typically, the peak conveyance design storm has a return period that can vary from once every 10 years (10-year event) to once every 100 years (100-year event). Contact your local agency for information on the peak conveyance design storm and corresponding peak conveyance flow rate for your area. Volume-based regulations Other agencies require that a certain volume of runoff be treated. Most volume-based regulations require that the first W' to 1" of rainfall or runoff be stored and released over a period of time. Contact your local agency for information on the volume-based requirements for your area. 28 ©2006 CONTECH Stormwater Solutions Determining the number of cartridges for a highly impervious site To determine the number of StormFilter cartridges needed for a highly impervious site (~70% impervious): 1. Calculate the peak flow rate from the water quality storm (Otreat) for your site using the approved hydrologic models established by your local agency. If there are no agency guidelines, we recommend using the Santa Barbara Urban Hydrograph Method. 2. Calculate the number of cartridges required to treat the peak water quality flow rate (Nt1ow) for your site. i+ N11ow = Otreat (449 gpm/cfs I Ocart gpm/cart) Notes: • Assume Ocart = 15 gpmlcart, which is the maximum flow rate that an Individual cartridge can treat. In some areas or situations, cartridges with a flow rate other than 15 gpm may be required, resulting in a different Ocart value. • If the number of cartridges is not a whole number, round the number of cartridges up to the next whole number. ©2006 CONTECH Stormwater Solutions 29 0 The Stormwater Management StormFilter® Performance Summary for Excel Engineering ~;ttO f.. ((;N"!f(H (01~1p<irrir January 25, 2006 1to21-B NE Airport Way, Portland, OR 97220 l{ 800.548.4667 800.561.1271 /~.-,.,.-"boo,,~ .,,,.. ...., ·, \ 1$'-. ,'f'<.'l{"rn,• \_ ; ; ' '·,,:.l / ,, '· /) ",_ <)'.~" -~,:;, stormwaterlnc.com The Stormwater Management StormFilter® The Stormwater Management StormFilter® (StormFilter) is a Best Management Practice (BMP) designed to meet federal, state, and local requirements for treating stormwater runoff in compliance with the Clean Water Act. The StormFilter, a passive, flow-through, stormwater filtration system and improves the quality of stormwater runoff from the urban environment before it enters receiving waterways by removing non-point source pollutants, including sediment (TSS), oil and grease, soluble metals, nutrients, organics, and trash and debris. The StormFilter excels in numerous applications and is being used to treat runoff from a wide variety of sites including: retail and commercial developments, residential streets, urban roadways, freeways, and industrial sites such as shipyards, foundries, and high-tech developments. For jurisdictional authorities, the StormFilter offers high levels of pollutant removal and improved water quality. For developers and contractors, the StormFilter is cost-effective, easy to install, and uses no additional land (completely underground). For engineers, Stormwater360 provides full design support at no additional cost. ·operation The StormFilter is typically comprised of a vault that houses rechargeable, media-filled, filter cartridges. Stormwater from storm drains is percolated through the cartridges, which trap particulates and remove pollutants such as dissolved metals, nutrients, and hydrocarbons. Once filtered through the media, the treated stormwater is directed to a collection pipe or discharged to an open channel drainage way. Configurations The StormFilter is offered in seven basic configurations: vault, manhole, high flow, catch basin, curb inlet, linear, and volume. All configurations use pre-manufactured units to ease the design and installation process. Cast-in-place units can be customized for very large flows. Figure 1 shows a typical MAHHOt.E cOVER precast StormFilter unit. INLINE HIGH FLOW BYPASS • · · ACCESS LJ,OOER ENERGY The typical precast StormFilter unit is composed of three bays: the inlet bay, the filtration bay, and the outlet bay. Stormwater first enters the inlet bay of the StormFilter vault through the inlet pipe. Stormwater in the inlet bay is OUlLET PIP£ OISSIPATOR INLET l!AY OUTLET BAY Stormflttor CARTRIO<lE UNDER-ORAIN MANIFOLD Figure 1. A typical precast Stormwater Management StormFilter 12021-B NE Nrport Way, Portland OR 97220 Toll-free: 800.548.4667 1 of 3 09/08/05 VKV The Stormwater Management StormFllter ©2005 Storrnwater360 0 0 0 0 C C then directed through the flow spreader, which traps some floatables, oils, and surface scum, and over the energy dissipator into the filtration bay where treatment will take place. Once in the filtration bay, the stormwater passes through the filter cartridges and is then directed into the outlet bay by an under-drain manifold. The treated water in the outlet bay is then discharged through the outlet pipe to a collection pipe or to an open channel drainage way. Cartridge operation As the water le~el in the filtration bay begins to rise, stormwater enters the StormFilter cartridge, shown in Figure 2. Stormwater in the cartridge percolates horizontally through the filter media and passes into the cartridge's center tube, where the float valve in the cartridge begins each treatment cycle in a closed (downward) position. As the water level in the filtration bay continues to rise, more water passes through the filter media and into the cartridge's center tube. The air in the cartridge is displaced by the incoming water and purged from beneath the filter hood through the one-way check valve located in the cap. Once the center tube is filled with water (approximately 18 inches deep), there is enough buoyant force on the float to open the float valve and allow the treated water to flow into the under-drain manifold. As the treated water drains from beneath the hood, a vacuum is, created. This causes the check valve to close, initiating a siphon that draws polluted water throughout the full surface area and volume of the filter. Thus, the entire filter cartridge is used to filter water throughout the duration of the storm, regardless of the water surface elevation in the filtration bay. Siphonic filtration continues until the water surface elevation drops to the elevation of the scrubbing regulators. At this point, the siphon begins to break and air is quickly drawn beneath the hood through the scrubbing regulators, causing high-energy turbulence between the inner surface of the hood and the outer screen. This turbulence agitates the surface of the filter, releasing accumulated sediments on the outer screen, flushing them from beneath the hood, and FILTERIIIEOlA CENTER nJ!lE SCRUBBlNG REGU1.ATORS (Bi \JNF1lTEREO WATER UNDER-OF!AIN MANl~OLD UNOEft-DRAIN !JANIFOlD CASr INTO VAUl.T FLOOR UFTINGTAB AlR LOCK CAP WITH CHECK VALVE HOOO OUTfRMi:SH \/NFII.TEREC WATrn VA\Jl TFLOOR allowing them to settle to the vault floor. This surface-cleaning mechanism maintains the permeability of the filter surface and enhances the overall performance and longevity of the system. Figure 2. The StormFilter Cartridge Adjustable flow rate Depending on the treatment requirements in your area and on the characteristics of the influent waste stream to your StormFilter system, you may want to adjust the flow rate through the filter cartridges. By decreasing the flow rate through the filter cartridges, the influent contact time with the media is increased and the water velocity through the system is decreased, thus increasing both the level of treatment and the solids removal efficiencies of the filters, respectively. 12021-B NE Airport Way, Portland OR 97220. Toll-free: 800.548.4667 09/09/05 VKV Tha Stormwatar Management StonnFllter 2 of 3 ©2005 Storrnwater360 The flow rate through each cartridge can be adjusted to between 2 and 15 gpm using a calibrated restrictor disc at the base of each filter cartridge. For more information, contact our Engineering Department at (800) 548-4667 Cartridge media By using a variety of filter media in the cartridges, the StormFilter can be customized for each site to target and remove the desired levels of sediments, oil and grease, dissolved metals, dissolved phosphorus, and organics. In many cases, a combination of media is recommended to maximize the effectiveness of the stormwater pollutant removal. 12021-8 NE Airport Way, Portland OR 97220 Toll-free: 800.548.4667 3 of3 09/09/05 VKV The Stormwater Management StonnFllter @2005 Stormwater360 0 0 0 0 0 0 PRE & POST DEVELOPMENT HYDROLOGY BASIN MAPS & STORM DRAIN LINE IMPROVEMENT PLAN INDEX SHEET "'"·-.,~ 0 0 0