Loading...
HomeMy WebLinkAboutCT 04-16; LA COSTA GREENS NGBHD 1.06; DRAINAGE STUDY; 2004-12-15I I I I I I I I I I I I I I I I I ,I I HUNSAKER &ASSOClATES ;"=--...;::::1 5 AND lEG 0, INC. PLANNING ENGINEERING SURVEYING IRVINE LOS ANGELES RIVERSIDE SAN DIEGO DAVE HAMMAR LEX WILLIMAN ALiSA VIALPANDO DAN SMITH RAY MARTIN 10179 Huennekens St. San Diego, CA 92121 (858) 558-4500 PH (858) 558-1414 FX www.HunsakerSD.com Info@HunsakerSD.com DRAINAGE STUDY for LA COSTA GREENS NEIGHBORHOODS 1.06 & 1.07 City of Carlsbad, California Prepared for: Real Estate Collateral Management Company c/o Morrow Development 1903 Wright Place RECEIVED Suite 180 Carlsbad, CA 92008 DEC 2 1 Z004 W.O. 2352-115 December 15, 2004 Hunsaker & Associates San Diego, Inc. Raymond L. Martin, R.C.E. Vice President ENGlNEeRlNG OEPARTM9.\T I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 TABLE OF CONTENTS SECTION Chapter 1 -Executive Summary 1.1 Introduction 1.2 Vicinity Map 1.3 Existing Condition 1 .4 Proposed Project 1.5 Summary of Results 1.6 Conclusion 1. 7 References Chapter 2 -Methodology & Model Development II 2.1 City of Carlsbad Engineering Standards 2.2 Rational Method Hydrologic Analysis 2.3 Storm Drain System Analysis Chapter 3 -Rational Method Hydrologic Analysis III (100-Year Developed Condition AES Model Output) Chapter 4 -Hydraulic Analysis IV 4.1 West Basin Storm Drain Legend, Storm Input and Storm Output 4.2 Northeast Basin Storm Drain Legend, Storm Input and Storm Output 4.3 Southeast Basin Storm Drain Legend, Storm Input and Storm Output Chapter 5 -Inlet & Catch Basin Sizing V 5.1 Inlet Sizing & Calculations 5.2 Catch Basin Sizing & Calculations Chapter 6 -Drainage Ditch Sizing VI AH:ah H:IREPORTS12352111511st SubmiHallA02.doc W.O.2352·115 12115120049:39 AM I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 Chapter 7 -Riser & Desilt Basin Design 7.1 100-Year Mass-Graded Condition AES Model Output 7.2 Mass-Graded Hydrology Map for Neighborhood 1.04 7.3 Temporary Strom Drain Analysis (Storm Drain Legend, Storm Input and Storm Output) 7.4 Riser and Desilt Basin Calculations Chapter 8 -Appendices Appendix 8.1 100-Year, 6-Hour Isopluvial Plan Appendix 8.2 Runoff Coefficients (Rational Method) Appendix 8.3 Nomograph for Determination of Time of Concentration' (Tc) for Natural Watersheds Appendix 8.4 Urban Areas Overland Time of Flow Curves . Appendix 8.5 Gutter and Roadway Discharge-Velocity Chart Appendix 8.6 Intensity-Duration Design Chart Appendix 8.7 VII VIII Drawing No. 400-8C "Plans for the Improvement of Bressi Ranch Residential Storm Drain", Sheet 21 Appendix 8.8 Drawing No. 418-8 "Plans for the Improvement of Bressi Ranch Residential Planning Area 11", Sheet 9 Appendix 8.9 Drawing No. 400-8J "Improvement and Utility Plans for Alicante Road"; Sheet 4 Appendix 8.10 Drawing No. 397-2 H "Grading and Drainage Plans for Poinsettia Lane at La Costa Greens", Sheets 12, 13 and 15 AH:kc H:IREPORTSI235211151 1st Submillal\A02.doc W.O.2352-115 1211512004 9:15 AM I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 Chapter 9 -Hydrology Exhibits Exhibit 9.1 Developed Condition Hydrology Map IX AH:kc H:IREPORTS12352111511st SubmlttaJ\A02.doc W.O.2352·115 12115/20049:15 AM I I I' I, I, I I I I I I I I I' I I 'I I I I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 EXECUTIVE SUMMARY 1.1 -Introduction The La Costa Greens Neighborhoods 1.06 and 1.07 project site is located at the northeast corner of the Alicante Road-Poinsettia Lane intersection in the City of Carlsbad, California. The project site is also bounded by the existing Bressi Ranch residential development to the northeast. The vicinity map below has been included to illustrate the project site's location. 1.2 -Vicinity Map 1 I: " " This drainage study will address: • 100-Year Peak Flowrates for Developed Conditions • Hydraulic Calculations • Curb Inlet and Catch Basin Sizing • Drainage Ditch Sizing • Riser and Desilt Basin Design (includes 100-Year Peak Flowrates for Mass- Graded Conditions and temporary Strom Drain Analysis for Neighborhood 1.04) AH:ah H:IREPORTS12352111511st SubmittallA02.doc W.O.2352-115 12115120049:39 AM I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 1.3 • Existing Condition The 7S-acre site is part of the La Costa Greens development in the City of Carlsbad, California. Located in the Batiquitos watershed, the site consists of primarily hilly, undisturbed terrain covered with natural vegetation. The site receives offsite runoff at two different locations from the adjacent Bressi Ranch residential development to the northeast. Peak flow data from the adjacent development, summarized in Table 1 below, was obtained from Drawing No. 400-SC "Plans for the Improvement of Bressi Ranch Residential Storm Drain" and Drawing No. 41S-S "Plans for the Improvement of Bressi Ranch Residential Planning Area 11", both prepared by Project Design Consultants, PDC (see Appendices S.7 and S·.S). TABLE 1 Offsite Runoff to La Costa Greens Neighborhoods 1.06 and 1.07 Site Offsite Runoff Drawing No. 100·Year Identification* Peak Flow Location* (in City of Carlsbad) (cfs) Offsite Runoff A Node 117 418-8 30.6 Offsite Runoff B Node 220 400-SC 22.2 .. .. * Refer to the Developed Condition Hydrology Map (Exhibit 9.1, Chapter 9) Natural runoff from the undeveloped site flows both in a westerly and a southerly direction towards Alicante Road and Poinsettia Lane, respectively. Flow directed towards Alicante Road is collected via an existing 0-34 headwall and 36" RCP per Drawing No. 400-SJ "Improvement and Utility Plans for Alicante Road". The peak discharge is drained southerly along Alicante Road towards the existing flood alternation basin located on the southeast corner of the Alicante Road-Poinsettia Lane intersection. Similarly, flow directed towards Poinsettia Lane is intercepted by four culverts via two 0-34 headwalls and two 0-35 headwalls per Drawing No. 397-2 H "Grading and Drainage Plans for Poinsettia Lane at La Costa Greens". The runoff is then conveyed via storm drain beneath Poinsettia Road towards the previously mentioned flood alternation basin. From the basin, natural runoff then flows in a westerly direction to an unnamed tributary of San Marcos Creek, which drains in a southerly direction along the site boundary of the La Costa Greens Golf Course, west of the Phase I development area. All the runoff eventually drains under Alga Road via three 96" RCP culverts and discharges into San Marcos Creek towards Batiquitos Lagoon. Existing conditions peak f1owrates, summarized in Table 2 on the next page; are referenced from Drawing No. 400-8J and Drawing No. 397-2H (see Appendices S.9 and 8.10). AH:kc H:IREPORTSI2352111511st SubmlttaJIA02.doc W.O.2352-115 12115/2004 9:15 AM I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 TABLE 2 Existing Conditions Hydrologic Data Location* Drawing No. 100-Year Peak Flow (in City of Carlsbad) (cfs) Node 100 400-8J 85.5 'Node 200 397-2H 99.8 Node 300 397-2H 57.0 Node 400 397-2H 51.3 Node 500 397-2H 32.5 . . .. * Refer to the Developed Condition Hydrology Map (Exhibit 9.1, Chapter 9) 1.4 -Proposed Project The construction of the La Costa Greens Neighborhoods 1.06 and 1.07 site will include rough grading of the site in order to match and adjust the existing grade to the grading of Alicante Road and Poinsettia Lane alorig with other surrounding developments. The proposed project consists of single-family residential homes with its associated streets, sidewalks, curbs and gutters, underground utilities including internal storm drainage systems, and open space areas. Runoff from the developed site has been divided into three drainage basins, described in Table 3 below, and will be collected by three proposed storm drain systems which will tie into existing storm drain lines, already depicted in Drawing No. 400-8J and Drawing No. 397 -2H. TABLE 3 Drainage Basin and Storm Drain System Summary Outlet Basin Contributing Location * Identification Sectors/Neighborhoods Node 100 Basin #1 Offsite Runoff A and most of Neighborhood West Basin 1.06 with the exception of Street "A" Offsite Runoff B, Street "A" along Node 200 Basin #2 Neighborhood 1.06, NE portion of NE Basin Neighborhood 1.07, and east portion of Neighborhood 1.04 (School Site) Node 300 Basin #3 SE portion of Neighborhood 1.07 and west SE Basin portion of Neighborhood 1.04 (School Site) . . .. * Refer to the Developed Condition Hydrology Map (Exhibit 9.1, Chapter 9) AH:kc H:IREPORTS12352111511st SubmittallA02.doc W.O.2352·115 1211512004 9:15 AM I I I I I I I I I 'I I I I I I ·1 I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 The storm drain elements proposed in this report for Neighborhoods 1.06 and 1.07 will tie to the existing storm drain systems at three different locations: • At Alicante Road between Stations 93+00 and 94+00 (near Node 130) • At Poinsettia Lane between Stations 67+00 and 68+00 (at Node 244) • At Poinsettia Lane between Stations 55+00 and 56+00 (at Node 331) 1.5 -Summary of Results The hydrology studies prepared by PDC and Hunsaker and Associates for the Alicante Road and Poinsettia Lane existing storm drain system was designed using the 1993 San Diego County hydrologic methodology. To be consistent, the hydrologic analysis prepared for the proposed La Costa Greens Neighborhoods 1.06 and 1.07 development also used the 1993 San Diego County methodology. Future developments, which do not tie into systems designed per the older methodology, will be analyzed with the current 2003 San Diego County methodology. In the Rational Method Analysis, a runoff coefficient of 0.45 was used for undisturbed, natural terrain. For developed areas, a runoff coefficient of 0.55 was used, which corresponds to single-family residential land use and a runoff coefficient of 0.95 was used for paved streets, corresponding to areas that are 90% impervious. For Neighborhood 1.04 a runoff coefficient of 0.55 was used for its mass-graded condition analysis and 0.85 when the site was assumed fully developed. Also, weighed runoff coefficients were used where a combination of land uses was present. All runoff coefficients are based on the "San Diego County Hydrology Manuaf'. Developed condition peak flowrates, listed on Table 4 below, are based on the AES-99 computer program and the City of Carlsbad Drainage Design Criteria (see Chapters 2 and 3). Existing condition peak flowrates are included in Table 4 for comparison purposes. Watershed delineations and node locations are visually depicted on Exhibit 9.1, which is located in the back pocket of this report (see Chapter 9). TABLE 4 Developed Conditions Hydrologic Results Outfall Node Drainage ID Area* (acres) 100 42.6 200 38.5 300 26.4 Total 107.5 * Includes off site area from Bressl Ranch 1 DO-Year Developed Peak Flow (cfs) 73.3 67.9 71.0 212.2 1 DO-Year Existing Peak FlowA (cfs) 85.5 99.8 57.0 . 242.3 A Peak flows from Table 2 AH:kc H:IREPORTS\2352111511st SubmlttallA02.doc W.O.2352·115 12115/20049:15 AM I I I I I I' I I :1 I I I I I 'I '1 I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 As depicted in Table 4 on the previous page, development of the project site does not increase runoff when compared to the existing condition peak flowrates. Overall, the peak runoff decreased by 12%. It is also safe to assume that at Nodes 400 and 500 the peak runoff also decreased given that the drainage area to both locations is considerably smaller after development of the site. Storm water quality goals and objectives have already been established for the proposed project site. Flow-based treatment control Best Management Practices (BMPs) have been sized to treat the first flush while bypassing higher flows to the discharge location. Post-construction BMP methodology, calculations, and sample devices for each storm drain system has been presented in the storm water management plans (SWMPs) entitled "Preliminary Storm Water Management Plan for La Costa Greens Neighborhood 1.06" and "Preliminary Storm Water Management Plan for La Costa Greens Neighborhood 1.07 prepared by Hunsaker & Associates San Diego, Inc. on November 4, 2004 and November 3, 2004, respectively. Please refer to the above described reports for specific information regarding storm water quality. Upon finalizing the design of the proposed storm drain systems, a hydraulic analysis of all storm drain pipes within each system was performed using the Storm computer software. Using a known starting downstream water surface elevation at the discharge locations, the program calculated the hydraulic grade line for the RCP storm drain systems (see Chapter 4 for storm drain legend, Storm model input, and output). In addition, all curb inlets ~nd catch basins have been sized to ensure that they are capable of handling 1 OO-year developed condition peak flows (see Chapter 5). One catch basin at Node 220 has been modified to have an opening height of 1B-inches rather than the standard 9-inches and to allow for 1B-inches of ponding over the top of the box. All drainage ditches were designed to convey 1 OO-year developed condition peak flows at a minimum slope of 1 % while containing at least six inches of freeboard. The flow conveyed in all of the proposed drainage ditches was determined to be considerably less than the maximum capacity they can handle (see Chapter 6). Finally, two desilt basins were designed per Part B of Section A of the State Water Resources Control Board Order No. 99-0B-DWQ, Option 2 along the future school site, Neighborhood 1.04. A mass-graded hydrologic analysis was performed in this area in order to aptly design each basin's riser. A hydraulic analysis was also performed for the temporary drainage of the Desilt Basin #2 on the western portion of the future school site (see Chapter 7). The storm drain system pertaining to the Southeast Basin will be sized for the situation that produces the higher flows. AH:ah H:IREPORTS12352111511st SubmittallA02.doc W.O.2352·115 12115120049:40 AM I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 1.6 -Conclusion Based on the calculations completed herein, the storm drain system shall be able to function as designed and handle the flows generated from the La Costa Greens Neighborhoods 1.06 and 1.07 sites. Drainage design, including watershed delineation and storm drain sizing, shall result in no adverse impact to downstream property owners. Construction of the storm drain improvements as shown herein should safely collect and convey peak discharge through the development. AH:kc H:IREPORTSI2352111511st SubmittaJ\A02.doc W.O.2352-115 1211512004 9:15AM I I I I I' I I I I I I I 'I J I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 1.7· References "San Diego County Hydrology Manual"; Department of Public Works' -Flood Control Division; County of San Diego, California; Revised April 1993. "City of San Diego Regional Standard Drawings"; Section D -Drainage Systems; Updated March 2000. "City of Carlsbad Engineering Standards"; City of Carlsbad, California; June 2004. Drawing No. 400-8C "Plans for the Improvement of Bressi Ranch Residential Storm Drain"; Project Design Consultants Drawing No. 418-8 "Plans for the Improvement of Bressi Ranch Residential Planni"ng Area 11"; Project Design Consultants Drawing No. 400-8J "Improvement and Utility Plans for Alicante Road", Hunsaker & Associates San Diego, Inc. Drawing No. 397-2 H "Grading and Drainage Plans for Poinsettia Lane at La Costa Greens"; Kinley-Horn and Associates, Inc. "Storm Water Management Plan (SWMP) for La Costa Greens Neighborhood 1.06"; Hunsaker & Associates San Diego, Inc.; November 2004. "Storm Water Management Plan (SWMP) for La Costa Greens Neighborhood 1.07'; Hunsaker & Associates San Diego, Inc.; November 2004. AH:kc H:\REPORTSI2352111511st SubmittallA02.doc W,O,2352-115 1211512004 9:15 AM I I' 'I II I I I I: I I I. I' I I: I: I I I I I '1 I I I I ,I I I I I I I I' I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 2 METHODOLOGY & MODEL DEVELOPMENT 2.1 -City of Carlsbad Drainage Desi'gn Criteria AH:kc H:IREPORTS12352111511st SubmittallA02,doc W.O.2352-115 1211512004 9:15 AM I ~ I I I I I I 1 I .. ,,:,. I I I I I I I I I CHAPTER 5 -DRAINAGE AND STORM DRAIN STANDARDS 1. GENERAL A. All drainage design and requirements shall be in accordance with the latest City of Carlsbad Standard Urban Storm Water Mitigation Plan (SUSMP), Jurisdictional Urban Runoff Management Plan (JURMP), Master Drainage and Storm Water Quality Management Plan and the requirements of the City Engineer and be based on full development of upstream tributary basins. B. Public drainage facilities shall be designed to carry the ten-year six-hour storm underground and the 1 ~O-year six-hour storm between the top of curbs. All culverts shall be designed to accommodate a 1 DO-year six-hour storm with a one foot freeboard at entry conditions such as inlets and head walls. C. The use of underground storm drain systems, in addition to standard curb and gutter shall be required: 1) When flooding or street overflow during 1 DO-year six-hour storm cannot be maintained between the top of curbs. 2) When 1 ~O-year six-hour storm flow from future upstream development (as proposed in the existing General Plan) will cause damage to structures and improvements. 3) When existing adequate drainage facilities are available for use (adjacent to proposed development). 4) When more than one travel lane of arterial and collector streets would be obstructed by 10-year 6-hour storm water flow. Special consideration will be required for super-elevated streets. D. The use of underground storm drain systems may be required: 1) When the water level in streets atthe design storm is within 1" of top of curb. 2) When velocity of water in streets exceeds 11 FPS. 3) When the water travels on surface street improvements for more than 1,000'. E. The type of drainage facility shall be selected on the basis of physical and cultural adaptability to the proposed land use. Open channels may be considered in lieu of underground systems when the peak flow exceeds the capacity of a 48" diameter RCP. Fencing of open channels may be required as determined by the City Engineer. F. Permanent drainage facilities and right-of-way, including access, shall be provided from development to point of approved disposal. Page 1 of 5 I I .. ( I I I I I I I I '·"· '" .. ' " .\ .. ' . • :.'.l~. I I I I I I I f I 2. G Storm 'Drains constructed at a depth of 15' or greater measured from finish grade to the top of pipe or structure shall be considered deep storm drains and should be avoided if at all possible. When required, special design consideration will be required to the satisfaction of the City Engineer. Factors considered in the design Will include: 1) Oversized specially designed access holes/air shafts 2) Line encasements 3) Oversizing lines 4) Increased easement requirements for maintenance access 5) Water-tight joints 6) Additional thickness of storm drain The project designer should meet with the planchecker prior to rnitiation of design to review design parameters. H. Concentrated drainage from lots or areas greater than 0.5 acres shall not be discharged to City streets unless specifically approved by the City Engineer. I. Diversion of drainage from natural or existing basins is discouraged. J. Drainage design shall comply with the City's Jurisdictional Urban Runoff Management Plan (JURMP) and requirements of the National Pollutant Discharge Elimination System (NPDES) permit. HYDROLOGY A. Off site, use a copy of the latest edition City 400-scale topographic mapping. Show existing culverts, cross-gutters and drainage courses based on field review. Indicate the direction of flow; clearly delineate each drainage basin showing the area and discharge and the point of concentration. B. On site, use the grading plan. If grading is not proposed, then use a 100-scale plan or greater enlargement. Show all proposed and existing drainage facilities and drainage courses. Indicate the direction of flow. Clearly delineate each drainage basin showing the area and discharge and the point of concentration. C. Use the charts in the San Diego County Hydrology Manual for finding the "Te" and "I". For small areas, a five minute "Te" may be utilized with prior approval of the City Engineer. D. Use the existing or ultimate development, whichever gives the highest "C" factor. E. Use the rational formula Q = CIA for watersheds less than 0.5 square mile unless an alternate method is approved by the City Engineer. For watersheds in excess of 0.5 &juare mile, the method of analysis shall be approved by the City Engineer prior to submitting calculations. Page 2 of 5 I I-- I I I I I I I I 1<, '." I I I I I I '\ .. ';."..., 3. HYDRAULICS A -Street -provide: 1) Depth of gutter flow calculation. 2) Inlet calculations. 3) Show gutter flow Q, inlet 0, and bypass Q on a plan of the street. B. Storm Drain Pipes and Open Channels -provide: 1) Hydraulic loss calculations for: entrance, friction, junction, access holes, bends, angles, reduction and enlargement. 2) Analyze existing conditions upstream and downstream from proposed system, to be determined by the City Engineer on a case-by-case basis. 3) Calculate critical depth and normal depth for open channel flow conditions. 4) Design for non-silting velocity of 2 FPS in a two-year frequency storm unless otherwis~ approved by the City Engineer. 5) All pipes and outlets shall show HGL, velocity and Q value(s) for design storm. 6) Confluence angles shall be maintained between 45° and 90° from the main upstream flow. Flows shall not oppose main line flows. 4. INLETS A Curb inlets at a sump condition should be designated for two CFS per lineal foot of opening when headwater may rise to the top of curb. B. Curb inlets on a continuous grade should be designed based on the following equation: C. D. --Q = 0.7 L (a + y)3/2 Where: y = depth of flow in approach gutter in feet a = depth of depression of flow line at inlet in feet L = length of clear opening in feet (maximum 30 feet) Q = flow in CFS, use 1 DO-year design storm minimum Grated inlets should be avoided. When rEcessary, the design should be based on the Bureau of Public Roads Nomographs (now known as the Federal Highway Administration). All grated inlets shall be bicycle proof. - All catch basins shall have an access hole in the top unless access through the grate section satisfactory to the City Engineer is provided. Page 3 of 5 I ~ •.. I I I I I I I I ';":,,· .. ' ·:0:,' I I I I I I I 5. E. .'~ Catch basins/curb inlets shall be located so as to eliminate, whenever possible, cross gutters. Catch basins/curb inlets shall not be located within 5' of any curb return or driveway. F. Minimum connector pipe for public drainage systems shall be 18". G Flow through inlets may be used when pipe size is 24" or less and open channel flow characteristics exist. STORM DRAINS A. B. C. D. E. F. G H. Minimum pipe slope shall be .005 (.5%) unless othelWise approved by the City Engineer. Minimum storm drain, within public right-of-way, size shall be 18" diameter. Provide cleanouts at 300' maximum spacing, at angle points alid at breaks in grade greater than 1 %. For pipes 48" in diameter and larger, a maximum spacing of 500' may be used. When the storm. drain clean-out Type A dimension of "V" les? "Z" is greater than 18", a storm dram clean-out Type B shall be used. The material for storm drains shall be reinforced concrete pipe designed in conformance with San Diego County Flood Control District's design criteria, as modified by Carlsbad Standard Specifications. Corrugated steel pipe shall not be used. Plastic/rubber collars shall be prohibited. Horizontal curve design shall conform to manufacturer recommended specifications. Vertical curves require prior approval from the City Engineer. The pipe invert elevations, slope, pipe profile line and hydraulic grade line for design flows shall be delineated on the mylar of the improvement plans. Any utilities crossing the storm drain shall also be delineated. The strength classification of any pipe shall be shown on the plans. Minimum D-Ioad for RCP shall be 1350 in all City streets or future rights-of-way. Minimum D-Ioad for depths less than 2', if allowed, 'shall be 2000 or greater. For all drainage designs not covered in these Standards, the current San Diego County Hydrology and Design and Procedure Manuals shall be used. For storm drain discharging into unprotected or natural channel, proper energy dissipation measures shall be installed to prevent damage to the channel or erosion. In cases of limited access or outlet velocities greater than 18 fps, a concrete energy dissipater per SDRS 0-41 will be required. Page 4 of 5 I I· i I I I I I I I I ··,:· :" .' "\.\ I I I I I I I I. J. K. L. M. N. O. P. The use of detention basins to even out storm peaks and reduce piping is permitted with substantiating engineering calculation and proper maintenance agreements. Detention basins shall be fenced. Desiltation measures for silt caused by development shall be provided and cleaned regularly during the rainy season (October 1 to April 30) and after major rainfall as required by the City Engineer or his designated representative. Adequate storage capacity as determined by the City Engineer shall be maintained at all times. Protection of downstream or adjacent properties from incremental flows (caused by change from an undeveloped to a developed site) shall be provided. Such flows shall not be concentrated and directed across unprotected adjacent properties unless an easement and storm drains or channels to contain flows are provided. Unprotected downstream channels shall have erosion and grade control structures installed to prevent degradation, erosion, alteration or downcutting of the channel banks. Storm drain pipes designed for flow meeting or exceeding 20 feet per second will require additional cover over invert reinforcing steel as approved by the City Engineer. Storm drain pipe under pressure flow for the design storm, i.e., HGL above the soffit of the ppe, shall meet the requirements of ASTM C76, C361, C443 for water-tight joints in the sections of pipe calculated to be under pressure and an additional safety length beyond the pressure flow point. Such safety length shall be determined to the satisfaction of the City Engineer taking into consideration such factors as pipe diameter, Q, and velocity. An all weather access road from a paved public right-of-way shall be constructed to all drainage and utility improvements. The following design parameters are required: Maximum grade 14%, 15 MPH speed, gated entry, minimum paved width 12 feet, 38' minimum radius, paving shall be a minimum of 4" AC over 4" Class II AS, turnaround required if over 300'. Work areas should be provided as approved by the plan checker. Access roads should be shown on the tentative project approval to ensure adequate environmental review. . Engineers are encouraged to gravity drain all lots to the street without use of a yard drain system. On projects with new street improvements proposed, a curb outlet per SORSO 0-27 shall be provided for single-family residential lots to allow yard drains to connect to the streets gutter. Page 5 of 5 I I. t I I I I I I I I':~:' .. ," I I I I I I I •••• I CHAPTER 2 CITY OF CARLSBAD MODIFICATIONS TO THE SAN DIEGO REGIONAL STANDARD DRAWINGS , Note: The minimum allowable concrete mix design for all concrete placed within public right- of-way shall be 560-C-3250 as specified in the Standard Specifications for Public Works Construction. DWG. D-2 MODIFICATION Enlarge curb inlet top to width of sidewalk (not to exceed 5'6") by length of inlet including wings. Existing reinforcing steel shall be extended across enlarged top to clear distances shown. D-20 Delete. D-27 D-40 D-70 D-71 D-75 E-1 E-2 G-3 G-5 G-6 G-11 Add: A maximum of three (3) combined outlets in lieu of Std. D-25. Add: "T" dimension shall be a minimum of three (3) times size of rip rap. Minimum bottom width shall be 6' to facilitate cleaning. Minimum bottom width ?hall be 6' to facilitate cleaning. Delete ''Type-A'' Add: 6" x 6" x #10 x #10 welded wire mesh, instead of stucco netting. Delete direct burial foundation. Add: The light standard shall be pre-stressed concrete round pole. Grounding per note 2. Attachment o(the grounding wire -to the anchor bolt shall be below the light-standard base plate with an approved connection. Delete. Add: Note 4. Tack coat shall be applied between dike and existing asphalt concrete surface as specified in Section 302-5.4 SSPWC. Type 8-1 not used. When specified, Type 8-2 shall have a curb height of8", width of 6", with a 3: 1 batter. When specifically approved by the City Engineer, Type 8-3 shall have a curb height of 8", width of 6", a 3:1 batter with the hinge point eliminated. Add: Remove curb/gutter and sidewalk from score-mark to score-mark 'or from joint-to-joint or approved combination. 1 I I I I ·1 I I I I -'., Drainage Study· ... . La Costa Greens -Neighborhoods l' .06 & '1 ;07 CHAPTER 2 METHODOLOGY & MODEL DEVELOPMENT I 2.2 -Rational Method Hydrologic Analysis :1 I I I I I I I I AH:kc H:IREPORTSI2352111511sISubmittalIA02.doc . W.O.2352.115 12115/2004 9:15 AM "I I I I I I I I I I I I I I I I I I I " Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 Rational Method Hydrology Analysis Computer Software Package -AES-99 Design Storm -1 OO-Year Return Interval Land Use -Mass-Graded (future Multi-Family) in Developed Areas Soil Type -Hydrologic soil group D was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer at or near the surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission. Runoff Coefficient -In accordance with the County of San Diego standards, single- family residential areas, constructed slopes, and mass-graded areas (future school site) were designated a runoff coefficient of 0.55 while natural areas were designated a 'runoff coefficient of 0.45. Areas that are 90% impervious were assigned a runoff coefficient of 0.95 and the future school site when assumed fully developed was assigned a runoff coefficient of 0.85. Weighed runoff'coefficients were used where a combination of land uses was present Method of Analysis -The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied, to small urban and semi-urban areas with drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall intensity, a runoff coefficient,and drainage area to peak runoff rate. This relationship is expressed by the equation: Q = CIA, where: Q = The peak runoff rate in cubic feet per second at the point of analysis. C = A runoff coefficient representing the area -averaged ratio of runoff to rainfall intensity. I = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration. A = The drainage basin area in acres. To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes. The procedure for the subarea summation model is as follows: 1. Subdivide the watershed into an initial subarea (generally 1 lot) and subsequent subareas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each subarea. 2. Estimate an initial T e by using the appropriate nomograph or overland flow velocity estimation. ' 3. Using the initial Te, determine the corresponding values of I. Then Q = C I A. AH:kc H:IREPORTSI2352111511st SubmittallA02,doc W.O.2352·115 1211512004 9:15 AM I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 4. Using Q, estimate the travel time between this node and the next by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration) The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-99 computer subarea menu is as follows: SUBAREA HYDROLOGIC PROCESS 1. Confluence analysis at node. 2. Initial subarea analysis (including time of concentration calculation). 3. Pipeflow travel time (computer estimated). 4. Pipeflow travel time (user specified). 5. Trapezoidal channel travel time. 6. Street flow analysis through subarea. 7. User -specified information at node. 8. Addition of subarea runoff to main line. 9. V-gutter flow through area. 10. Copy main stream data to memory bank 11. Confluence main stream data with a memory bank 12. Clear a memory bank At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of . concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape. 1. If the collection streams have the same times of concentration, then the Q values are directly summed, Qp = Qa + Qb; T p = T a = T b 2. If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows:' a. The most frequent case is where the collection stream with the long"er time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities. AH:kc H:IREPORTS\2352111511st SubmittallA02.doc W.O.2352·115 12115/2004 9:15 AM I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 b. In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a. ratio of the T values. AH:kc H:IREPORTSI2352111511st SubmittallA02.doc W.O.2352-115 1211512004 9:15 AM I· . I I I I I I I' . I. I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 2 . METHODOLOGY &. MODEL DEVELOPMENT 2.3 -Storm Drain System Analysis AH:kc H:\REPORTSI2352111511s! SubmittallA02.doc W.O.2352·115 12115120049:15 AM I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 Storm Drain Hydraulic Analysis Computer Software Package -Storm Design Storm - 1 OO-Year Return Interval Roughness Coefficient -Manning's "n" value of 0.013 (concrete pipe) Minimum Pipe Diameter -18 inches Minimum Grade of Storm Drains -0.50% Given the discharge and the physical characteristics of a proposed storm drain system, the "Storm" computer program, from Los Angeles Public Works, generates hydraulic grade line elevations at junctions and inlet locations. Hydraulic grade line elevations are calculated by evaluating friction and minor losses throughout the system. To determine the hydraulic characteristics at a junction, the pressure plus momentum equation is applied at end points of the junction to determine the control point and to compute the conjugate depth at the opposite end of the junction. When flow changes from partial flow to full flow or from full flow to partial flow, the program determines the location in the line where the change occurs. The program also determines the precise locations of hydraulic jumps (where flow changes from supercritical to subcritical flow) along with the pressure plus momentum at the jump and flow depth before and after the jump. A typical storm drain analysis procedure is as follows: 1. 2. 3. 4. Establish the main line of the entire storm drain system. Generally, lines carrying the majority of the flow will constitute the main line. Establish the main line of any lateral system by proceeding upstream from the main line junction to the highest upstream inlet. Number the main line segments consecutively in the upstream direction to the most upstream inlet. Then, number each lateral system in the same manner (with values greater than that of the main line). Note: The storm program is number sensitive. Therefore, a chronological number system must be established. For each line, tabulate pertinent data such as the maximum design flow, conduit size and length, flow line elevations, minor loss coefficients for manholes, bends, etc., entrance loss coefficients for the inlets, and confluence angles at all junctions. AH:kc H:IREPORTS\2352111511st SubmittallA02.doc W.O.2352-115 12115120049:15 AM I I I I I I I I I I, I I I I I I ,I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 Junction loss coefficients, Kj, range from 0 to 1.0 depending on the efficiency of the junction design. Junction losses are calculated by multiplying Kj times the velocity head in the outlet conduit. If the value of Kj is left blank or the pipe flow condition is partially full, the pressure plus momentum equation is used to determine the junction losses. Entrance loss coefficients, Ke, range from 0.04 (bell-mounted entrance) to 0.5 (flush headwall entrance). The entrance loss is computed by multiplying Ke times the velocity head in the outlet conduit. Minor loss coefficients, Km, are the summation of losses from bends, manholes, etc. The total minor loss, computed as Km times the velocity head in the conduit, is added to friction losses in the hydraulic analysis for full flow only. AH:kc H:IREPORTS12352111511st SubmittallA02,doc W.O.2352-115 12115120049:15 AM III I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 3 RATIONAL METHOD HYDROLOGIC ANALYSIS (100-Year Developed Condition AES Model Output) AH:kc H:IREPORTS\2352\ 115\15t Submlttal\A02.doc W.O.2352·115 12115/2004 9:15 AM I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates -San Diego, Inc. 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * LA COSTA GREENS -P.A. 1.06 AND P.A. 1.07 * 100-YEAR DEVELOPED CONDITION HYDROLOGY ANALYSIS * W.O.# 2352-115 PREPARED BY: AH ************************************************************************** FILE NAME: H:\AES99\2352\115\FEDEV100.DAT TIME/DATE OF STUDY: 11:34 12/14/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE SAN DIEGO HYDROLOGY MANUAL "C" -VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED 0.90 * * * +--------------------------------------------~-----------------------------+ I I I BEGIN P.A. 1.06, BASIN #1 -WEST BASIN (NODE SERIES 100) I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 425.00 UPSTREAM ELEVATION = 248.70 DOWNSTREAM ELEVATION = 244.00 ELEVATION DIFFERENCE = 4.70 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 19.736 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 3.043 SUBAREA RUNOFF (CFS) = 2.39 I I I I I I I I I I I I I I I I I I I TOTAL AREA (ACRES) 1.43 TOTAL RUNOFF(CFS) 2.39 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 244.00 STREET LENGTH(FEET) = 542.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 238.92 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 15.50 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.67 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.36 HALFSTREET FLOODWIDTH(FEET) = 11.67 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.48 PRODUCT OF DEPTH&VELOCITY = 0.89 STREETFLOW TRAVELTIME(MIN) = 3.64 TC(MIN) = 23.38 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.728 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF (CFS) SUMMED AREA(ACRES) = 3.13 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: 2.55 4.94 DEPTH (FEET) = 0.40 HALFSTREET FLOODWIDTH(FEET) = 13.61 FLOW VELOCITY(FEET/SEC.) = 2.51 DEPTH*VELOCITY = 1.00 **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED'PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.0 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 5.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA (CFS) TRAVEL TIME(MIN.) = 0.01 227.27 227.08 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.94 TC(MIN.) = 23.39 1 **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ I I I I I I I I I I I I I I I I I I I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 23.39 RAINFALL INTENSITY(INCH/HR) = 2.73 TOTAL STREAM AREA(ACRES) = 3.13 PEAK FLOW RATE (CFS) AT CONFLUENCE 4.94 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 470.00 UPSTREAM ELEVATION = 259.00 DOWNSTREAM ELEVATION = 249.50 ELEVATION DIFFERENCE = 9.50 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 16.975 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.353 SUBAREA RUNOFF (CFS) 4.22 TOTAL AREA(ACRES) = 2.29 TOTAL RUNOFF(CFS) 4.22 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 249.50 STREET LENGTH(FEET) = 565.00 STREET HALFWIDTH(FEET) = 18.00 DOWNSTREAM ELEVATION = 239.02 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 16.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 6.06 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) = 9.49 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.97 PRODUCT OF DEPTH&VELOCITY = 0.94 STREETFLOW TRAVELTIME (MIN) = 3.17 TC(MIN) = 20.14 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.003 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.22 SUBAREA RUNOFF (CFS) 3.67 SUMMED AREA(ACRES) = 4.51 TOTAL RUNOFF(CFS) 7.89 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.34 HALFSTREET FLOODWIDTH(FEET) 10.52 FLOW VELOCITY(FEET/SEC.) 3.22 DEPTH*VELOCITY = 1.08 I I I I I I I I I I I I I I I. I I I I **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 104.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.6 UPSTREAM NODE ELEVATION = 227.03 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 26.88 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.06 226.58 MANNING'S N = 0.013 24.00 NUMBER OF PIPES 7.89 TC(MIN.) = 20.20 1 ***********~**************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ========================================================~=================== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 20.20 RAINFALL INTENSITY(INCH/HR) = 3.00 TOTAL STREAM AREA (ACRES) = 4.51 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.89 ** CONFLUENCE DATA ** STREAM NUMBER 1 2 RUNOFF (CFS) 4.94 7.89 Tc (MIN. ) 23.39 20.20 INTENSITY ( INCH/HOUR) 2.727 2.998 AREA (ACRE) 3.13 4.51 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF NUMBER (CFS) 1 12.39 2 12.12 Tc (MIN. ) 20.20 23.39 INTENSITY ( INCH/HOUR) 2.998 2.727 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 12.39 Tc(MIN.) = 20.20 TOTAL AREA(ACRES) = 7.64 **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 108.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.8 INCHES I I I I I I I I I I I I I I I I I I I PIPEFLOW VELOCITY(FEETjSEC.) 10.3 UPSTREAM NODE ELEVATION = 226.25 DOWNSTREAM NODE ELEVATION = 220.65 FLOWLENGTH(FEET) = 204.91 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) 12.39 TRAVEL TIME(MIN.) = 0.33 TC(MIN.) = 20.53 1 **************************************************************************** FLOW PROCESS FROM NODE 10B.00 TO NODE 10B.00 IS CODE = 1 ·»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 20.53 RAINFALL INTENSITY(INCHjHR) = 2.97 TOTAL STREAM AREA(ACRES) = 7.64 PEAK FLOW RATE (CFS) AT CONFLUENCE = 12.39 *******~******************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< =====================================================================~====== *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 170.00 UPSTREAM ELEVATION = 275.00 DOWNSTREAM ELEVATION = 237.BO ELEVATION DIFFERENCE = 37.20 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 6.559 SUBAREA RUNOFF (CFS) 0.76 TOTAL AREA(ACRES) = 0.21 TOTAL RUNOFF(CFS) 4.615 0.76 **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 10B.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN lB.O INCH PIPE IS 1.9 INCHES PIPEFLOW VELOCITY(FEETjSEC.) = 7.7 UPSTREAM NODE ELEVATION = 225.49 DOWNSTREAM NODE ELEVATION = 221.15 FLOWLENGTH(FEET) = 39.59 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = lB.OO NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) 0.76 TRAVEL TIME(MIN.) = 0.09 TC(MIN.) = 6.09· 1 I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 10B.00 TO NODE 10B.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN. ) 6 . 09 RAINFALL INTENSITY(INCH/HR) = 6.50 TOTAL STREAM AREA(ACRES) = 0.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.76 ** CONFLUENCE DATA ** STREAM NUMBER 1 2 RUNOFF (CFS) 12.39 0.76 Tc (MIN.) 20.53 6.09 INTENSITY ( INCH/HOUR) 2.966 6.499 AREA (ACRE) 7.64 0.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 6.41 12.73 TABLE ** Tc (MIN. ) 6.09 20.53 INTENSITY ( INCH/HOUR) 6.499 2.966 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 12.73 Tc(MIN.) = 20.53 TOTAL AREA(ACRES) = 7.B5 **************************************************************************** FLOW PROCESS FROM NODE 10B.00 TO NODE 111.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS B.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.5 UPSTREAM NODE ELEVATION = 220.32 DOWNSTREAM NODE ELEVATION = 206.04 FLOWLENGTH(FEET) = 252.03 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) 12.73 TRAVEL TIME(MIN.) = 0.31 TC(MIN.) =. 20.B4 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS B.2 INCHES I I I I I I I I I I I I I I I I I I I PIPEFLOW VELOCITY(FEETjSEC.) 13.3 UPSTREAM NODE ELEVATION = 205.71 DOWNSTREAM NODE ELEVATION = 193.63 FLOWLENGTH (FEET) = 221. 37-MANNING 'S N = 0.-013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) 12.73 TRAVEL TIME{MIN.) 0.28 TC(MIN.) = 21.12 1 **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 240.90 DOWNSTREAM ELEVATION = 230.00 ELEVATION DIFFERENCE = 10.90 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 17.073 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 3.341 SUBAREA RUNOFF (CFS) 2.76 TOTAL AREA(ACRES) = 1.50 TOTAL RUNOFF(CFS) 2.76 **************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 115.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 230.00 STREET LENGTH(FEET) = 325.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 209.27 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.78 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.28 HALFSTREET FLOODWIDTH(FEET) = 7.80 AVERAGE FLOW VELOCITY(FEETjSEC.) 5.21 PRODUCT OF DEPTH&VELOCITY = 1.47 STREETFLOW TRAVELTIME(MIN) = 1.04 TC(MIN) = 18.11 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 3.216 I I I I I I I I I I I I I I I I I I I *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT .5500 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 2.05 SUMMED AREA(ACRES) = 2.66 TOTAL RUNOFF(CFS) 4.81 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) 8.77 FLOW VELOCITY(FEET/SEC.) = 5.42 DEPTH*VELOCITY = 1.64 **************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 18.11 RAINFALL INTENSITY (INCH/HR) = 3.22 TOTAL STREAM AREA(ACRES) = 2.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.81 **************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 115.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 230.70 DOWNSTREAM ELEVATION = 209.27 ELEVATION DIFFERENCE = 21.43 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 13 '.629 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.864 SUBAREA RUNOFF (CFS) 3.36 TOTAL AREA(ACRES) = 1.58 TOTAL RUNOFF(CFS) 3.36 **************************************************************************** FLOW PROCESS FROM NODE 115 . 0,0 TO NODE 115.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 13.63 RAINFALL INTENSITY(INCH/HR) = 3.86 TOTAL STREAM AREA (ACRES) = 1.58 PEAK FLOW RATE (CFS) AT CONFLUENCE 3.36 **************************************************************************** FLOW PROCESS FROM NODE 11 7 . 00 TO NODE 117.00 IS CODE = 7 I I I I I I I I I I I I I I I I I I I »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 10.00 RAIN INTENSITY (INCH/HOUR) = 4.72 TOTAL AREA(ACRES) = 15.00 TOTAL RUNOFF(CFS) = 30.60 +---~----------------------------------------------------------------------+ I Data for the Code 7 above from Node 117 to Node 117 was obtained from I I the "Tentative Map Drainage Study for La Costa Greens, Neighborhood 1.6" I I prepared by Hunsaker and Associates on November 4, 2004. . I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 11 7 . 00 TO NODE 117.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.718 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) 2.61 SUBAREA RUNOFF (CFS) 6.77 TOTAL AREA(ACRES) 17.61 TOTAL RUNOFF(CFS) = 37.37 TC(MIN) = 10.00 +--------------------------------------------------------------------------+ I The Code 8 above from Node 117 to Node 117 peratins to the subarea I I drained by the existing ditch per Dwg. No. 400-8A prepared by I I Project Design Consultants and approved on January 2003. I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 11 7 . 00 TO NODE 118.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 17.5 UPSTREAM NODE ELEVATION = 205.10 DOWNSTREAM NODE ELEVATION = 203.67 FLOWLENGTH(FEET) = 26.32 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) 37.37 TRAVEL TIME(MIN.) = 0.03 TC(MIN.) 10.03 1 ****************************~*********************************************** FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =================================~========================================== 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.710 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.23 SUBAREA RUNOFF (CFS) = 3.19 I I I I I I I I I I I I I I I I I I I TOTAL AREA (ACRES) TC (MIN). = 10.03 18.84 TOTAL RUNOFF(CFS) = 40.56 +-----------~------------------.--------------------------------------------+ I The Code 8 above from Node 117 to Node 118 pertains to the subarea I drained by Ditch lB. I +-----------------------------------------------------~--------------------+ **************************************************************************** FLOW PROCESS FROM NODE l18.00 TO NODE 115.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 .============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.9 UPSTREAM NODE ELEVATION = 203.34 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 170.98 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0~19 197.08 MANNING'S N = 0.013 24.00 NUMBER OF PIPES 40.56 TC(~IN.) = 10.22 1 **************************************************************************** FLOW PROCESS FROM NODE l15.00 TO NODE 115.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 10.22 RAINFALL INTENSITY(INCH/HR) = 4.65 TOTAL STREAM AREA(ACRES) = 18.84 PEAK FLOW RATE(CFS) AT CONFLUENCE 40.56 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 4.81 18.11 3.216 2 3.36 13.63 3.864 3 40.56 10.22 4.653 AREA (ACRE) 2.66 1.58 18.84 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 46.67 10.22 4.653 2 41.04 13.63 3.864 3 35.64 18.11 3.216 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I I I I I I I I I I I I I I I I I I PEAK FLOW RATE (CFS) TOTAL AREA(ACRES) = 46.67 23.08 Tc (MIN.) 10.22 **************************************************************************** FLOW PROCESS FROM NODE 115.00 TO NODE 112.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 23.1 UPSTREAM NODE ELEVATION = 196.75 DOWNSTREAM NODE ELEVATION = 193.63 FLOWLENGTH(FEET) = 31.84 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) 46.67 TRAVEL TIME(MIN.) = 0.02 TC(MIN.) = 10.24 1 **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 46.67 10.24 4.646 23.08 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 12.73 21.12 2.913 7.85 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 54.65 10.24 4.646 2 41. 99 21.12 2.913 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 54.65 Tc(MIN.) = 10.24 TOTAL AREA(ACRES) = 30 .. 93 **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 10 I I I I I I I I I I I I I I I I I »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 119.00 TO NODE 120.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 350.00 UPSTREAM ELEVATION = 300.00 DOWNSTREAM ELEVATION = 269.40 ELEVATION DIFFERENCE = 30.60 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 8.991 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.053 SUBAREA RUNOFF (CFS) 2.45 TOTAL AREA(ACRES) = 0.88 TOTAL RUNOFF(CFS) 2.45 **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 125.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.8 UPSTREAM NODE ELEVATION = 259.39 DOWNSTREAM NODE ELEVATION = 220.89 FLOWLENGTH(FEET) = 474.22 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) 2.45 TRAVEL TIME(MIN.) = 0.80 TC(MIN.) = 9.79 **************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 300.00 DOWNSTREAM ELEVATION ELEVATION DIFFERENCE 250.00 50.00 I I I I I I I I I I I I I I I I I I URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 10.276 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.636 SUBAREA RUNOFF (CFS) 2.45 TOTAL AREA(ACRES) = 0.96 TOTAL RUNOFF(CFS) 2.45 **************************************************************************~* FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.6 UPSTREAM NODE ELEVATION = 250.00 DOWNSTREAM NODE ELEVATION = 237.88 FLOWLENGTH(FEET) = 120.00 MANNING'S N = 0.015 ESTIMATED PIPE DIAMETER(INCH) 18.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) 2.45 TRAVEL TIME(MIN.) = 0.21 TC(MIN.) 10.48 **************************************************************************** FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.576 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) 0.94 SUBAREA RUNOFF(CFS) 2.37 TOTAL AREA(ACRES) 1.90 TOTAL RUNOFF(CFS) = 4.81 TC(MIN) = 10.48 +--------------------------------------------------------------------------+ I The Code 8 above from Node 123 to Node 124 pertains to the subarea I I drained by Ditch 1C. I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 124.00 TO NODE 121.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.5 UPSTREAM NODE ELEVATION = 227.73 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 180.22 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) = 222.09 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.81 1 I I I I I I I I I I I I I I I I I I I TRAVEL TIME(MIN.) 0.35 TC(MIN.) 10.84 **************************************************************************** FLOW PROCESS FROM NODE 121.00 TO NODE 121.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.84 RAINFALL INTENSITY(INCH/HR) = 4.48 TOTAL STREAM AREA(ACRES) = 1.90 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.81 **************************************************************************** FLOW PROCESS FROM NODE-137.00 TO NODE 138.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 460.00 UPSTREAM ELEVATION = 270.10 DOWNSTREAM ELEVATION = 254.20 ELEVATION DIFFERENCE = 15.90 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 14.044 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.790 SUBAREA RUNOFF (CFS) 3.54 TOTAL AREA(ACRES) = 1.70 TOTAL RUNOFF(CFS) 3.54 **************************************************************************** FLOW PROCESS FROM NODE 138.00 TO NODE 121.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 254.20 STREET LENGTH(FEET) = 235.00 -STREET HALFWIDTH(FEET) = 20.00 DOWNSTREAM ELEVATION = 131.00 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 18.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 4.80 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.23 HALFSTREET FLOODWIDTH(FEET) = 5.26 AVERAGE FLOW VELOCITY(FEET/SEC.) 12.16 PRODUCT OF DEPTH&VELOCITY = 2.81 STREETFLOW TRAVELTIME (MIN) = 0.32 TC(MIN) = 14.37 I I I I I I I I I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 3.735 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.22 SUBAREA RUNOFF (CFS) SUMMED AREA(ACRES) = 2.92 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.24 HALFSTREET FLOODWIDTH (FEET.) FLOW VELOCITY(FEET/SEC.) = 13.19 DEPTH*VELOCIT~ 2.51 6.05 5.84 3.20 **************************************************************************** FLOW PROCESS FROM NODE 121.00 TO NODE 121.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 14.37 RAINFALL INTENSITY (INCH/HR) = 3.73 TOTAL STREAM AREA(ACRES) = 2.92 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.05 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.81 1_0~.84 4.479 2 6.05 14.37 3.735 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 9.86 10.84 4.479 2 10.06 14.37 3.735 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 1.90 2.92 RATIO PEAK FLOW RATE (CFS) 10.06 Tc(MIN.) = 14.37 TOTAL AREA(ACRES) = 4.82 **************************************************************************** FLOW PROCESS FROM NODE 121.00 TO NODE 125.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.7 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 32.41 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) = 221. 76 220.89 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 10.06 1 I I I I I I I I I I I I I I I I I I I TRAVEL TIME(MIN.) 0.06 TC (MIN.) 14.42 *************************~******************************~*************.***** FLOW PROCESS FROM NODE 121.00 TO NODE 121.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # '3 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUEN~E DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.06 14.42 3.725 4.82 ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 2.45 9.79 4.781 0.88 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 10.29 9.79 4.781 2 11.97 14.42 3.725 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 11.97 Tc (MIN.) 14.42 TOTAL AREA (ACRES) , 5.70 **************************************************************************** , FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 3 ««< ===============~============================================================ **************************************************************************** FLOW PROCESS FROM NODE ,125.00 TO NODE 125.00 IS CODE = 1 »»>DESIGNATE 'INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 14.42 RAINFALL INTENSITY(INCH/HR) = ,3.73 TOTAL STREAM AREA (ACRES) = 5 . '70 PEAK FLOW RATE (CFS) AT CONFLUENCE = 11.97 **************************************************************************** FLOW PROCESS FROM NODE 126.00 TO NODE 127.00 IS CODE = 21 ----------------------------~----------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 I I I I I I I I I I I I I I I I I I I INITIAL SUBAREA FLOW-LENGTH UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 270.70 255.20 ELEVATION DIFFERENCE = 15.50 466.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 14.317 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.743 SuBAREA RUNOFF (CFS) = 2.61 TOTAL AREA(ACRES) = 1.27 TOTAL RUNOFF(CFS) = 2.61 **************************************************************************** FLOW PROCESS FROM NODE 127.00 TO NODE 128.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 255.20 STREET LENGTH(FEET) = 233.96 STREET HALFWIDTH(FEET) = 20.00 DOWNSTREAM ELEVATION = 233.00 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 18.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.58 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.27 HALFSTREET FLOODWIDTH(FEET) = 6.99 AVERAGE FLOW VELOCITY(FEET/SEC.) 5.90 PRODUCT OF DEPTH&VELOCITY = 1.57 STREETFLOW TRAVELTIME(MIN) = 0.66 TC(MIN) = 14.98 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.636 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 0.97 SUBAREA RUNOFF (CFS) 1.94 SUMMED AREA(ACRES) = 2,24 TOTAL RUNOFF(CFS) 4.55 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOODWIDTH(FEET) 8.15 FLOW VELOCITY(FEET/SEC.) = 5.82 DEPTH*VELOCITY = 1.68 **************************************************************************** FLOW PROCESS FROM NODE 128.00 TO NODE 125.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.9 UPSTREAM NODE ELEVATION = 221.31 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 8.52 GIVEN PIPE DIAMETER(INCH) = 220.89 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 1 I I I I I I I I I I I I I I I I I I I PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME (MIN.) = 0.01 4.55 TC (MIN.) 14.99 **************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL-NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 14.99 RAINFALL INTENSITY(INCH/HR) = 3.63 TOTAL STREAM AREA(ACRES) = 2.24 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.55 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 11. 97 14.42 3.725 2 4.55 14.99 3.633 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 16.41 14.42 3.725 2 16.23 14.99 3.633 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 16.41 Tc (MIN.) = TOTAL AREA (ACRES) = 7.94 AREA (ACRE) 5.70 2.24 RATIO 14.42 **************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 129.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.0 UPSTREAM NODE ELEVATION = 220.39 DOWNSTREAM NODE ELEVATION = 204.77 FLOWLENGTH (FEET) = 2.09.24 MANNING I S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) 16.41 TRAVEL TIME (MIN.) = 0-.22 TC (MIN.) = 14.64 **************************************************************************** FLOW PROCESS FROM NODE 129.00 TO NODE 112.00 IS CODE = 4 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< I I I I I I I I I I I I I I I I I I I »»>USING USER-SPECIFIED PIPESIZE««< ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 15.9 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 148.61 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.16 204.44 193.63 MANNING'S N = 0.013 24.00 NUMBER OF PIPES 16.41 TC(MIN.) = 14.80 1 *************************~************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = ·11 »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< ======~===================================================================== ** MAIN STREAM NUMBER 1 STREAM CONFLUENCE DATA ** RUNOFF Tc INTENSITY (CFS) (MIN.) (INCH/HOUR) 16.41 14.80 3.664 ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM NUMBER 1 ** PEAK STREAM NUMBER 1 2 RUNOFF (CFS) 54.65 FLOW RATE RUNOFF (CFS) 67.60 59.51 Tc INTENSITY (MIN. ) (INCH/HOUR) 10.24 4.646 TABLE ** Tc INTENSITY (MIN. ) ( INCH/HOUR) 10.24 4.646 14.80 3.664 AREA (ACRE) 7.94 AREA (ACRE) 30.93 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 67.60 Tc(MIN.) = 10.24 TOTAL AREA(ACRES) 38.87 **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 2 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 130.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 36.0 INCH PIPE IS 22.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.3 UPSTREAM NODE ELEVATION = 192.63 DOWNSTREAM NODE ELEVATION = 189.72 FLOWLENGTH(FEET) = 136.80 MANNING'S N 0.013 I I I I I I I I I I I I I I I I I I I GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME(MIN.) = 0.16 36.00 NUMBER OF PIPES 67.60 TC(MIN.) = 10.40 1 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.40 RAINFALL INTENSITY(INCH/HR) = 4.60 TOTAL STREAM AREA (ACRES) = 38·. 87 PEAK FLOW RATE (CFS) AT CONFLUENCE = 67.60 **************************************************************************** FLOW PROCESS FROM NODE 131. 00 TO NODE 132.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 240.80 DOWNSTREAM ELEVATION = 228.60 ELEVATION DIFFERENCE = 12.20 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 16.444 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.423 SUBAREA RUNOFF (CFS) 2.11 TOTAL AREA(ACRES) = 1.12 TOTAL RUNOFF(CFS) = 2.11 **************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 228.60 STREET LENGTH(FEET) = 440.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 200.94 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.21 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.28 HALFSTREET FLOODWIDTH(FEET) = 7.80 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.42 PRODUCT OF DEPTH&VELOCITY = 1.25 STREETFLOW TRAVELTIME(MIN) = 1.66 TC(MIN) = 18.10 I I I I I I I I I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY(INCHjHOUR) 3.217 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.24 SUBAREA RUNOFF (CFS) 2.19 SUMMED AREA(ACRES) = 2.36 TOTAL RUNOFF(CFS) 4.30 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) 8.77 FLOW VELOCITY(FEETjSEC.) = 4.85 DEPTH*VELOCITY = 1.46 **************************************************************************** FLOW PROCESS FROM NODE 133.00 TO NODE 130.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 4.5 INCHES PIPEFLOW VELOCITY(FEETjSEC.) = 10.5 UPSTREAM NODE ELEVATION = 191.34 DOWNSTREAM NODE ELEVATION = 190.72 FLOWLENGTH(FEET) = 9.13 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) 4.30 TRAVEL TIME(MIN.) = 0.01 TC(MIN.) = 18.12 1 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 18.12 RAINFALL INTENSITY (INCHjHR) = 3.22 TOTAL STREAM AREA(ACRES) = 2.36 PEAK FLOW RATE(CFS) AT CONFLUENCE 4.30 **************************************************************************** FLOW PROCESS FROM NODE 134.00 TO NODE 135.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 460.00 UPSTREAM ELEVATION = 233.50 DOWNSTREAM ELEVATION = 211.00 ELEVATION DIFFERENCE = 22.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 12.509 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 4.083 SUBAREA RUNOFF (CFS) 2.47 TOTAL AREA(ACRES) = 1.10 TOTAL RUNOFF(CFS) 2.47 I I I I I I I I I I I· I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 135.00 TO NODE 136.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 211.00 STREET LENGTH(FEET) = 160.00 STREET HALFWIDTH(FEET) = 20.00 DOWNSTREAM ELEVATION = 200.52 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 18.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 2.82 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.27 HALFSTREET FLOODWIDTH(FEET) = 6.99 AVERAGE FLOW VELOCITY(FEETjSEC.) = 4.64 PRODUCT OF DEPTH&VELOCITY = 1.24 STREETFLOW TRAVELTIME(MIN) = 0.57 TC(MIN) = 13.08 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 3.967 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .8000 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF (CFS) 0.70 SUMMED AREA(ACRES) = 1.32 TOTAL RUNOFF(CFS) 3.17 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOODWIDTH(FEET) 6.99 FLOW VELOCITY(FEETjSEC.) = 5.22 DEPTH*VELOCITY = 1.39 ****************~*********************************************************** FLOW PROCESS FROM NODE 136.00 TO NODE 130.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.8 INCHES PIPEFLOW VELOCITY(FEETjSEC.) = 8.4 UPSTREAM NODE ELEVATION = 192.98 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 41.38 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.08 191. 22 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 3.17 TC(MIN.) = 13.17 1 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ I I I I I I I I I I I I I I I I I I I TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 13.17 RAINFALL INTENSITY(INCH/HR) = 3.95 TOTAL STREAM AREA(ACRES) = 1.32 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.17 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 67.60 10.40 4.600 2 4.30 18.12 3.215 3 3.17 13.17 3.951 AREA (ACRE) 38.87 2.36 1.32 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK STREAM NUMBER 1 2 3 FLOW RATE RUNOFF (CFS) 73 .32 64.73 54.13 TABLE ** Tc (MIN. ) 10.40 13.17 18.12 INTENSITY ( INCH/HOUR) 4.·600 3.951 3.215 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 73.32 Tc(MIN.) = 10.40 TOTAL AREA(ACRES) = 42.55 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 100.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 36.0 INCH PIPE IS 22.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 15.8 UPSTREAM NODE ELEVATION = 189.39 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 70.30 GIVEN PIPE DIAMETER(INCH) =. PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.07 187.53 MANNING'S N = 0.013 36.00 NUMBER OF PIPES 73.32 TC(MIN.) = 10.47 1 +--------------------------------------------------------------------------+ I END P.A. 1.06, BASIN #1 -WEST BASIN (NODE SERIES 100) I I I I BEGIN P.A. 1.07, BASIN #2 -NORTHEAST BASIN (NODE SERIES 200) I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 201. 00 TO NODE 202.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : I I I I I I I I I I I I I I I I I I I SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT INITIAL SUBAREA FLOW-LENGTH = 445.00 UPSTREAM ELEVATION = 248.90 DOWNSTREAM ELEVATION = 243.00 ELEVATION DIFFERENCE = 5.90 .5500 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 19.010 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.117 SUBAREA RUNOFF (CFS) 1.41 TOTAL AREA(ACRES) =' 0.82 TOTAL RUNOFF(CFS) = 1.41 **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 243.00 STREET LENGTH(FEET) = 705.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 231.44 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.14 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) = 9.73 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.95 PRODUCT'OF DEPTH&VELOCITY = 0.95 STREETFLOW TRAVELTIME(MIN) = 3.99 TC(MIN) = 23.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.757 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.27 SUBAREA RUNOFF (CFS) SUMMED 'AREA (ACRES) = 3.09 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.36 HALFSTREET FLOODWIDTH(FEET) FLOW VELOCITY(FEET/SEC.) = 3.27 DEPTH*VELOCITY = 3.44 4.85 11.67 1.18 **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.7 UPSTREAM NODE ELEVATION = 222.16 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 25.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) = 221~04 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.85 1 I I I I I I I I I I I I I I I I I I I TRAVEL TIME(MIN.) = 0.04 TC(MIN.) 23.04 **************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 23.04 RAINFALL INTENSITY(INCH/HR) = 2.75 TOTAL STREAM AREA(ACRES) = 3.09 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.85 **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .8000 INITIAL SUBAREA FLOW-LENGTH = 425.00 UPSTREAM ELEVATION = 242.00 DOWNSTREAM ELEVATION = 233.40 ELEVATION DIFFERENCE = 8.60. URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 8.802 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.123 SUBAREA RUNOFF(CFS) 1.89 TOTAL AREA(ACRES) = 0.46 TOTAL RUNOFF (CFS) 1.89 **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 207.00 IS CODE = 6 -----------------------------------------------------------------------~---- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 233.40 STREET LENGTH(FEET) = 150.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 231.44 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 2.24 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) = 8.77 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.53 PRODUCT OF DEPTH&VELOCITY = 0.76 STREETFLOW TRAVELTIME (MIN) = 0.99 TC(MIN) = 9.79 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.783 I I I I I I I I I I I I I I I I I I I *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .7500 SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF (CFS) SUMMED AREA (ACRES)· = 0 . 66 TOTAL RUNOFF (CFS.) END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) FLOW VELOCITY(FEET/SEC.) = 2.44 DEPTH*VELOCITY = 0.72 2.60 9.73 0.78 **************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 204.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.8 UPSTREAM NODE ELEVATION = 221.34 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 5.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.01 221. 04 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 2.60 TC(MIN.) = 9.80 1 **************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>~ COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN. ) 9 . 80 RAINFALL INTENSITY (INCH/HR) = 4.78 TOTAL STREAM AREA(ACRES) = 0.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.60 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.85 23.04 2.754 2 2.60 9.80 4.780 AREA (ACRE) 3.09 0.66 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 5.40 9.80 4.780 2 6.35 23.04 2.754 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 6.35 Tc(MIN.) = 23.04 TOTAL AREA(ACRES) = 3.75 I I I I I I I I I I I I I I I I I I I ****************************************************************************. FLOW PROCESS FROM NODE 204.00 TO NODE 208.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 6.0 UPSTREAM NODE ELEVATION = 220.54 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 204.07 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA (CFS) TRAVEL TIME(MIN.) = 0.57 218.46 MANNING'S N = 0.013 24.00 NUMBER OF PIPES = 6.35 TC(MIN.) = 23.61 1 **************************************************************************** FLOW PROCESS FROM NODE 208.00 TO NODE 209.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 6.1 UPSTREAM NODE ELEVATION = 218.13 ·DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 298.00 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.82 215.00 MANNING'S N = 0.013 24.00 NUMBER OF PIPES 6.35 TC(MIN.) = 24.43 1 **************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 5.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.1 UPSTREAM NODE ELEVATION = 214.67 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 286.17 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.36 188.38 MANNING'S N = 0.013 24.00 NUMBER OF PIPES 6.35 TC(MIN.) = 24.79 1 **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 24.79 I I I I I I I I I I I I I I I I I I I RAINFALL INTENSITY (INCHjHR) 2.63 TOTAL STREAM AREA(ACRES) = 3.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.35 **************************************************************************** FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF-COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 453.00 UPSTREAM ELEVATION = 233.30 DOWNSTREAM ELEVATION = 228.40 ELEVATION DIFFERENCE = 4.90 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 20.527 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 2.967 SUBAREA RUNOFF (CFS) 1.78 TOTAL AREA(ACRES) = 1.09 TOTAL RUNOFF(CFS) 1.78 **************************************************************************** FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 228.40 STREET LENGTH(FEET) = 460.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATTON = 201.13 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 2.80 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.26 HALFSTREET FLOODWIDTH(FEET) = 6.83 AVERAGE FLOW VELOCITY(FEETjSEC.) 4.79 PRODUCT OF DEPTH&VELOCITY = 1.26 STREETFLOW TRAVELTIME (MIN) = 1.60 TC(MIN) = 22.13 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 2.826 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.31 SUBAREA RUNOFF (CFS) SUMMED AREA(ACRES) = 2.40 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.28 HALFSTREET FLOODWIDTH(FEET) FLOW VELOCITY(FEETjSEC.) = 5.25 DEPTH*VELOCITY = 2.04 3.82 7.80 1.48 **************************************************************************** FLOW PROCESS FROM NODE 213.00 TO NODE 210.00 IS CODE = 4 I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.7 UPSTREAM NODE ELEVATION = 189.89 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 25.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.05 188.88 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 3.82 TC(MIN.) = 22.18 1 ****************************************************************~*********** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 22.18 RAINFALL INTENSITY(INCH/HR) = 2.82 TOTAL STREAM AREA(ACRES) = 2.40 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.82 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 6.35 24.79 2.627 3.75 2 3.82 22.18 2.822 2.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 9.72 22.18 2.822 2 9.90 24.79 2.627 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 9.90 Tc(MIN.) = 24.79 TOTAL AREA(ACRES) = 6.15 **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 214.00 TO NODE 215.00 IS CODE = 21 I I I I I I I I I I I, I I I I I I I »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER.SPECIFIED(SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .5000 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED. = 12.10 (MINUTES) 'INITIAL SUBAREA FLOW-LENGTH = 590.00 UPSTREAM ELEVATION = 302.00 DOWNSTREAM ELEVATION = 201.70 ELEVATION DIFFERENCE = 100.30 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.172 SUBAREA RUNOFF (CFS) 3.90 TOTAL AREA(ACRES) = 1.87 TOTAL RUNOFF(CFS) 3.90 **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.172 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) 0.44 SUBAREA RUNOFF (CFS) 1.01 TOTAL AREA(ACRES) 2.31 TOTAL RUNo"FF(CFS) = 4.91 TC(MIN) = 12.10 +--------------------------------------------------------------------------+ I The Code 8 above from Node 215 to Node 215 pertains to the subarea I I drained by Ditch 2F. I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 15.0 UPSTREAM NODE ELEVATION = 191.64 DOWNSTREAM NODE ELEVATION = 189.39 FLOWLENGTH(FEET) = 15.00 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA (CFS) TRAVEL TIME(MIN.) = 0.02 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.91 TC(MIN.) = 12.12 1 **************************************************************************** FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: , I I I' 'I I I I I I I I I I I I I I I I TIME OF CONCENTRATION(MIN.) = 12.12 RAINFALL INTENSITY (INCH/HR) 4.'17 TOTAL STREAM AREA(ACRES) = 2.31 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.91 **************************************************************************** FLOW PROCESS FROM NODE 217.00 TO NODE 218.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6800 INITIAL SUBAREA FLOW-LENGTH = 460.00 UPSTREAM ELEVATION = 250.00 DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 228.00 22.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 9.624 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAP~ USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.836 SUBAREA RUNOFF (CFS) 2.80 TOTAL AREA(ACRES) = 0.85 TOTAL RUNOFF(CFS) = 2.80 **************************************************************************** FLOW PROCESS FROM NODE 218.00 TO NODE 216.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 228.00 STREET LENGTH(FEET) = 375.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 201.13 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 4.04 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.28 HALFSTREET FLOODWIDTH(F~ET) = 7.80 AVERAGE FLOW VELOCITY(FEET/SEC.) 5.56 PRODUCT OF DEPTH&VELOCITY = 1.57 STREETFLOW TRAVELTIME (MIN) = 1.12 TC(MIN) = 10.75 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.503 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6800 SUBAREA AREA(ACRES) = 0.81 SUBAREA RUNOFF (CFS) SUMMED AREA (ACRES) = . 1. 66 TOTAL RUNOFF' ( CFS) END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) FLOW VELOCITY(FEET/SEC.) = 5.95 DEPTH*VELOCITY = 2.48 5.28 8.77 1. 79 I I I I I- I I I I I I I I I I I I I ****************************************************************************. FLOW PROCESS FROM NODE 216.00 TO NODE 216.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.75 RAINFALL INTENSITY(INCH/HR) = 4.50 TOTAL STREAM AREA(ACRES) = 1.66 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.28 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.91 12.12 4.168 2 5.28 10.75 4.503 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 9.82 10.75 4.503 2 9.79 12.12 4.168 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 2.31 1. 66 RATIO PEAK FLOW RATE (CFS) 9.82 Tc(MIN.) = 10.75 TOTAL AREA(ACRES) = 3.97 **************************************************************************** FLOW PROCESS FROM NODE 216.00 TO NODE 210.00 IS CODE = '4 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.6 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 5.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.01 189.06 188.88 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 9.82 TC(MIN.) = 10.76 1 **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** I I I I I I I I I I I I ,I I I STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 9.82 10.76 4.501 3.97 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 9.90 24.79 2.627 6.15 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 15.60 10.76 4.501 2 15.63 24.79 2.627 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 15.63 Tc (MIN.) = 24.79 TOTAL AREA (ACRES) = 10.12 **************************************************************************** FLOW ~ROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 219.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.7 UPSTREAM NODE ELEVATION = 188.05 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 80.17 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.08 181. 01 MANNING'S N = 0.013 24.00 NUMBER OF PIPES 15.63 TC(MIN.) = 24.87 1 **************************************************************************** FLOW PROCESS FROM NODE 219.00 TO NODE 219.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 24.87 RAINFALL INTENSITY(INCH/HR) = 2.62 TOTAL STREAM AREA(ACRES) = 10.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.63 **************************************************************************** I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.00 RAIN INTENSITY(INCH/HOUR) = 3.63 TOTAL AREA(ACRES) = 10.16 TOTAL RUNOFF (CFS) = 22.20 +--------------------------------------------------------------------------+ I Data in the Code 7 above from Node 220 to Node 220 was obtained from the I I "Tentative Map Drainage Study for La Costa Greens, Neighborhood 1.7" I I prepared by Hunsakera nd Associates on November 3, 2004. I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.632 *USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) 0.50 SUBAREA RUNOFF (CFS) 0.82 TOTAL AREA(ACRES) 10.66 TOTAL RUNOFF(CFS) = 23.02 TC(MIN) = 15.00 +------------------------------------------~-------------------------------+ I The Code 8 above from Node 220 to Node 220 pertains to the subarea I I drained by Ditch 2H. I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 219.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ PIPEFLOW VELOCITY(FEET/SEC.) = 7.3 UPSTREAM NODE ELEVATION = 181.41 DOWNSTREAM NODE ELEVATION = 181.01 FLOWLENGTH(FEET) = 39.51 MANNINGIS N = 0.013 GIVEN PIPE DIAMETER(INCH) =, 24.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) 23.02 TRAVEL TIME(MIN.) 0.09 TC(MIN.) = 15.09 **************************************************************************** FLOW PROCESS FROM NODE 219.00 TO NODE 219.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.09 I I I I I I I I I I I I I I I I I I I RAINFALL INTENSITY(INCH!HR) 3.62 TOTAL STREAM AREA(ACRES) = 10.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.02 **************************************************************************** FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = . 460.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 231.00 192.00 ELEVATION DIFFERENCE = 39.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION DF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.596 SUBAREA RUNOFF (CFS) 1.36 TOTAL AREA(ACRES) = 0.54 TOTAL RUNOFF (CFS) 10.414 1.36 **************************************************************************** FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.7 INCHES PIPEFLOW VELOCITY(FEET!SEC.) = 5.1 UPSTREAM NODE ELEVATION = 192.00 DOWNSTREAM NODE ELEVATION = 188.20 FLOWLENGTH(FEET) = 135.00 MANNING'S N = 0.015 ESTIMATED PIPE DIAMETER(INCH) 18.00 NUMBER OF PIPES r 1 PIPEFLOW THRU SUBAREA(CFS) 1.36 TRAVEL TIME (MIN.) = 0.44 TC(MIN.) 10.85 **************************************************************************** FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH!HOUR) = 4.475 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) 0.14 SUBAREA RUNOFF (CFS) TOTAL AREA(ACRES) 0.68 TOTAL RUNOFF(CFS) = TC(MIN) = 10.85 0.34 1.71 +-----------------~--------------------------------------------------------+ I The Code 8 above from Node 222 to Node 223 pertains to the subarea I drained by Ditch 2G. I I I I I I I I I I I I I I I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 223.00 TO NODE 219.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS PIPEFLOW VELOCITY(FEET/SEC.) = 5.4 4.2 INCHES UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 60.11 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.19 182.72 181. 51 MANNINGIS N = 0.013 18.00 NUMBER OF PIPES = 1. 71 TC(MIN.) = 11.04 1 **************************************************************************** FLOW PROCESS FROM NODE 219.00 TO NODE 219.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 11.04 RAINFALL INTENSITY (INCH/HR) = 4.43 ·TOTAL STREAM AREA(ACRES) = 0.68 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.71 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 15.63 24.87 2.621 2 23.02 15.09 3.618 3 1. 71 11.04 4.427 AREA (ACRE) 10.12 10.66 0.68 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 29.77 11.04 4.427 2 35.74 15.09 3.618 3 33.32 24.87 2.621 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 35.74 Tc(MIN.) = 15.09 TOTAL AREA (ACRES) = 21.46 **************************************************************************** FLOW PROCESS FROM NODE 219.00 TO NODE 224.00 IS CODE = 4 I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< ============================================================================ DEPTH OF FLOW IN 30.0 INCH PIPE IS 14.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.0 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 209.00 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.22 180.51 171.46 MANNING'S N = 0.013 30.00 NUMBER OF PIPES = 35.74 TC(MIN.) = 15.31 1 **************************************************************************** FLOW PROCESS FROM NODE 224.00 TO NODE 224.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 15.31 RAINFALL INTENSITY(~NCH/HR) = 3.58 TOTAL STREAM AREA (ACRES) = 21.46 PEAK FLOW RATE (CFS) AT CONFLUENCE = 35.74 **************************************************************************** FLOW PROCESS FROM NODE 225.00 TO NODE 226.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 194.20 DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 187.50 6.70 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 20.080 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.009 SUBAREA RUNOFF (CFS) 4.10 TOTAL AREA(ACRES) = 2.48 TOTAL RUNOFF (CFS) 4.10 **************************************************************************** FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 187.50 STREET LENGTH(FEET) = 270.00 STREET HALFWIDTH(FEET) = 18.00 DOWNSTREAM ELEVATION = 182.49 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 16.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2· I I I I I I I I I I I I I I I I I I I **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.31 HALFSTREET FLOODWIDTH(FEET) = 8.98 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.72 PRODUCT OF DEPTH&VELOCITY = 0.83 STREETFLOW TRAVELTIME(MIN) = 1. 65 TC(MIN) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.859 *USER SPECIFIED (SUBAREA) : 21. 73 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 5.03 SUBAREA AREA(ACRES) = 1.17 SUBAREA RUNOFF (CFS) = 1.84 SUMMED AREA(ACRES) = 3.65 TOTAL RUNOFF(CFS) = 5.94 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) 9.49 FLOW VELOCITY(FEET/SEC.) = 2.92 DEPTH*VELOCITY = 0.92 ********************************************~******************************* FLOW PROCESS FROM NODE 227.00 TO NODE 224.00 IS CODE = 4 ---~------------------------------------------------------------------------ »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< ===============~============================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.9 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 25.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.05 173.22 . 172.46 MANNING'S· N = 0.013 18.00 NUMBER OF PIPES 5.94 TC(MIN.) = 21.78 1 **************************************************************************** FLOW PROCESS FROM NODE 224.00 TO NODE 224.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 21.78 RAINFALL INTENSITY(INCH/HR) = 2.86 TOTAL STREAM AREA(ACRES) = 3.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.94 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 35.74 15.31 3.585 21.46 2 5.94 21. 78 2.855 3.65 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I I I I I I I I I I I I I I I I I I I ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 40.47 15.31 3.585 2 34.41 21. 78 2.855 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 40.47 Tc(MIN.) = 15.31 TOTAL AREA(ACRES) = 25.11 **************************************************************************** FLOW PROCESS FROM NODE 224.00 TO NODE 228.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING U,SER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 36.0 INCH PIPE IS 21.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.3 UPSTREAM NODE ELEVATION = 170.96 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 228.81 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.41 168.77 MANNING'S N =0.'013 36.00 NUMBER OF PIPES 40.47 TC(MIN.) = 15.72 1 **************************************************************************** FLOW PROCESS FROM NODE 228.00 TO NODE 229.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 36.0 INCH PIPE IS 21.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.0 UPSTREAM NODE ELEVATION = 168.44 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 146.39 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA (CFS) TRAVEL TIME (MIN.) =0.27 167.16 MANNING'S N = 0.013 36.00 NUMBER OF PIPES 40.47 TC(MIN.) = 15.99 1 **************************************************************************** FLOW PROCESS FROM NODE 229.00 TO NODE 229.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 15.99 RAINFALL INTENSITY(INCH/HR) = 3.49 TOTAL STREAM AREA(ACRES) = 25.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 40.47 **************************************************************************** I I I I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 230.00 TO NODE 231.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .7000 INITIAL SUBAREA FLOW-LENGTH = 470.00 UPSTREAM ELEVATION = 201.00 DOWNSTREAM ELEVATION = 181.00 ELEVATION DIFFERENCE = 20.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 9.633 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 4.833 SUBAREA RUNOFF(CFS) 2.88 TOTAL AREA (ACRES) = 0.85 TOTAL RUNOFF (CFS) 2.8-8 **************************************************************************** FLOW PROCESS FROM NODE 231. 00 TO NODE 232.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 181.00 STREET LENGTH(FEET) = 205.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 178.28 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.58 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.34 HALFSTREET FLOODWIDTH(FEET) = 10.70 AVERAGE FLOW VELOCITY(FEETjSEC.) = 2.83 PRODUCT OF DEPTH&VELOCITY = 0.96 STREETFLOW TRAVELTIME(MIN) = 1.21 TC(MIN) = 10.84 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 4.479 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6800 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF (CFS) SUMMED AREA(ACRES) = 1.31 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: 1.40 4.28 DEPTH (FEET) = 0.36 HALFSTREET FLOODWIDTH(FEET) = 11.67 FLOW VELOCITY(FEETjSEC.) = 2.89 DEPTH*VELOCITY = 1. 04 **************************************************************************** FLOW PROCESS FROM NODE 232.00 -TO NODE 229.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ I I I I I I I I I I I I I I I I I I I DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.3 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 5.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.01 168.97 168.66 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.28 TC(MIN.) = 10.85 1 **************************************************************************** FLOW PROCESS FROM NODE 229.00 TO NODE 229.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.85 RAINFALL INTENSITY (INCH/HR) = 4.48 TOTAL STREAM AREA(ACRES) = 1.31 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.28 ** CONFLUENCE DATA ** STREAM NUMBER 1 2 RUNOFF (CFS) 40.47 4.28 Tc (MIN. ) 15.99 10.85 INTENSITY ( INCH/HOUR) 3.486 4.476 AREA (ACRE) 25.11 1.31 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 35.79 10'.85 4.476 2 43.80 15.99 3.486 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 43.80 Tc(MIN.) = 15.99 TOTAL AREA(ACRES) = 26.42 **************************************************************************** FLOW PROCESS FROM NODE 229.00 TO NODE 233.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 36.0 INCH PIPE IS 22.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.3 UPSTREAM NODE ELEVATION = 166.83 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 162.94 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.29 165.37 MANNING'S N = 0.013 36.00 NUMBER OF PIPES 43.80 TC(MIN.) = 16.28 1 I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 233.00 TO NODE 233.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 16.28 RAINFALL INTENSITY(INCH/HR) = 3.45 TOTAL STREAM AREA(ACRES) = 26.42 PEAK FLOW RATE (CFS) AT CONFLUENCE = 43.80 **************************************************************************** FLOW PROCESS FROM NODE 234.00 TO NODE 235.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 12.56 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 520.00 UPSTREAM ELEVATION = 240.00 DOWNSTREAM ELEVATION = 199.00 ELEVATION DIFFERENCE = 41.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.072 SUBAREA RUNOFF (CFS) 2.71 TOTAL AREA(ACRES) = 1.48 TOTAL RUNOFF(CFS) 2.71 **************************************************************************** FLOW PROCESS FROM NODE 235.00 TO NODE 233.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 15.4 UPSTREAM NODE ELEVATION = 184.66 DOWNSTREAM NODE ELEVATION = 166.87 FLOWLENGTH(FEET) = 67.13 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) 2.71 TRAVEL TIME(MIN.) = 0.07 TC(MIN.) = 12.64 **************************************************************************** FLOW PROCESS FROM NODE 233.00 TO NODE 233.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I I I I I I I I I I I I I I I I I I TIME OF CONCENTRATION(MIN.) 12.64 RAINFALL INTENSITY(INCH/HR) 4.06 TOTAL STREAM AREA (ACRES) = 1.48 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.71 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 43.80 16.28 3.445 26.42 2 2.71 12.64 4.057 1.48 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 39.91 12.64 4.057 2 46.10 16.28 3.445 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 46.10 Tc(MIN.) = 16.28 TOTAL AREA (ACRES) = . 27. 90 **************************************************************************** FLOW PROCESS FROM NODE 233.00 TO NODE 236.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 36.0 INCH PIPE IS 17.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.1 UPSTREAM NODE ELEVATION = 165.04 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 204.64 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME (MIN.) = 0.26 160.65 MANNING'S N = 0.013 36.00 NUMBER OF PIPES 46.10 TC(MIN.) = 16.54 1 **************************************************************************** FLOW PROCESS FROM NODE 236.00 TO NODE 236.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 16.54 RAINFALL INTENSITY(INCH/HR) = 3.41 TOTAL STREAM AREA(ACRES) = 27.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 46.10 **************************************************************************** FLOW PROCESS FROM NODE 237.00 TO NODE 238.00 IS CODE = .21 I I I I I I I I I I I I I I I I I I I »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4700 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION WITH 10-MINUTES ADDED = 10.77 (MINUTES) (APPENDIX X-A) INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 227.00 205.00 ELEVATION DIFFERENCE = 22.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.496 SUBAREA RUNOFF (CFS) 0.70 TOTAL AREA (ACRES)' = 0 .33 TOTAL RUNOFF (CFS) = 0.70 **************************************************************************** FLOW PROCESS FROM NODE 238.00 TO NODE 239.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12.1 UPSTREAM NODE ELEVATION.= DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 62.63 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.09 191.82 165.11 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 0.70 TC(MIN.) = 10.86 1 **************************************************************************** FLOW PROCESS FROM NODE 238.00 TO NODE 239.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.473 . *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) 0.58 SUBAREA RUNOFF (CFS) 1.43 TOTAL AREA(ACRES) 0.91 TOTAL RUNOFF(CFS) = 2.12 TC(MIN) = 10.86 +--------------------------------------------------------------------------+ I The Code 8 above from Node 238 to Node 239 pertains to the subarea I I drained by Ditch 2K. I I I +-------------------------------------------------------~------------------+ **************************************************************************** FLOW PROCESS FROM NODE 239.00 TO NODE 236.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES I I I I I I I I I I I I I I I I I I I PIPEFLOW VELOCITY(FEET/SEC.) 8.4 UPSTREAM NODE ELEVATION = 164.78 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 44.99 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME (MIN.) = 0.09 162.15 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 2.12 TC(MIN.) = 10.95 1 **************************************************************************** FLOW PROCESS FROM NODE 236.00 TO NODE 236.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.95 RAINFALL INTENSITY(INCH/HR) = 4.45 TOTAL STREAM AREA(ACRES) = 0.91 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.12 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 46.10 16.54 3.410 2 2.12 10.95 4.449 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 37.46 10.95 4.449 2 47.73 16.54 3.410 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 27.90 0.91 RATIO PEAK FLOW RATE (CFS) 47.73 TC(MIN.) = 16.54 TOTAL AREA(ACRES) 28.81 **************************************************************************** FLOW PROCESS FROM NODE 236.00 TO NODE 240.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 =============================~============================================== DEPTH OF FLOW IN 36.0 INCH PIPE IS 12.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 21.9 UPSTREAM NODE ELEVATION = 160.32 DOWNSTREAM NODE ELEVATION = 143.98 FLOWLENGTH(FEET) = 191.35 MANNING'S N = 0.013· GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) 47.73 TRAVEL TIME(MIN.) = 0.15 TC(MIN.) = 16.69 I I I I I I I I I I I I I I I I I I ****~*********************************************************************** FLOW PROCESS FROM NODE 240.00 TO NODE 241.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 36.0 INCH PIPE IS 13.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 19.5 UPSTREAM NODE ELEVATION = 143.65 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 253.07 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) 0.22 127.97 MANNING'S N = 0.013 36.00 NUMBER OF PIPES 47.73 TC(MIN.) = 16.90 1 **************************************************************************** FLOW PROCESS FROM NODE 241.00 TO NODE 241.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 'CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 16.90 RAINFALL INTENSITY (INCH/HR) = 3.36 TOTAL STREAM AREA(ACRES) =' 28.81 PEAK FLOW RATE(CFS) AT CONFLUENCE 47.73 **************************************************************************** FLOW PROCESS FROM NODE 242.00 TO NODE 243.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ~ALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 ,INITIAL SUBAREA FLOW-LENGTH = ,UPSTREAM ELEVATION = 177.00 DOWNSTREAM ELEVATION = ,135.57 ELEVATION DIFFERENCE = 41.43 411.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 4.224 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF (CFS) 18.23 TOTAL AREA(ACRES) = 3.27 TOTAL RUNOFF(CFS) 18.23 **************************************************************************** FLOW PROCESS FROM NODE 243.00 TO NODE 241.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================' DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.2 INCHES I I I I I I I I I I I I I I I I I I I PIPEFLOW VELOCITY(FEET/SEC.) 14.4 UPSTREAM NODE ELEVATION = 131.89 DOWNSTREAM NODE ELEVATION = 128.97 FLOWLENGTH(FEET) = 56.45 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) 18.23 TRAVEL TIME(MIN.) = 0.07 TC(.MIN.) = 6.07 **************************************************************************** FLOW PROCESS FROM NODE 241.00 TO NODE 241.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) 6.07 RAINFALL INTENSITY(INCH/HR) = 6.51 TOTAL STREAM AREA(ACRES) = 3.27 PEAK FLOW RATE (CFS) AT CONFLUENCE = 18.23 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 47.73 16.90 3.363 2 18.23 6.07 6.513 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 42.87 6.07 6.513 2 57.14 16.90 3.363 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 57.14 Tc (MIN.) = TOTAL AREA (ACRES) = 32.08 AREA (ACRE) 28.81 3.27 RATIO 16.90 **************************************************************************** FLOW PROCESS FROM NODE 241.00 TO NODE 244.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 42.0 INCH PIPE IS 23.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.2 UPSTREAM NODE ELEVATION = 127.47 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 101.22 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.17 126.50 MANNING'S N = 0.013 42.00 NUMBER OF PIPES 57.14 TC(MIN.) = 17.07 1 I I I I I I I I ,I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 244.00 TO NODE 244.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 245.00 TO NODE 246.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6700 INITIAL SUBAREA FLOW-LENGTH = 460.00 UPSTREAM ELEVATION = 215.00 DOWNSTREAM ELEVATION = 172.00 ELEVATION DIFFERENCE = 43.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 7.881 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.501 SUBAREA RUNOFF (CFS) 3.46 TOTAL AREA(ACRES) = 0.94 TOTAL RUNOFF(CFS) 3.46 **************************************************************************** FLOW PROCESS FROM NODE 246.00 TO NODE 247.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 172.00 STREET LENGTH(FEET) = 565.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 132.62 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 6.39 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) = 9.73 AVERAGE FLOW VELOCITY(FEET/SEC.) 6.00 PRODUCT OF DEPTH&VELOCITY = 1.93 STREETFLOW TRAVELTIME(MIN) = 1.57 TC(MIN) = 9.45 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.893 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.18 SUBAREA RUNOFF (CFS) SUMMED AREA(ACRES) = 3.12 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.36 HALFSTREET FLOODWIDTH(FEET) 11.67 5.87 9.33 I I I I I I I I I I I I I I I I I I I FLOW VELOCITY(FEET/SEC.) 6.30 DEPTH*VELOCITY 2.27 **************************************************************************** FLOW PROCESS FROM NODE 247.00 TO NODE 247.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ====================================================== ===============~====== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) .9.45 RAINFALL INTENSITY(INCH/HR) = 4.89 TOTAL STREAM AREA(ACRES) = 3.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.33 **************************************************************************** FLOW PROCESS FROM NODE 251.00 TO NODE 252.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.68 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 361.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 220.00 179.00 ELEVATION DIFFERENCE = 41.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.268 SUBAREA RUNOFF (CFS) 0.98 TOTAL AREA(ACRES) = 0.51 TOTAL RUNOFF(CFS) 0.98 **************************************************************************** FLOW PROCESS FROM NODE 252.00 TO NODE 253.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< =================================================================~========== ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.3 UPSTREAM NODE ELEVATION = 179.00 DOWNSTREAM NODE ELEVATION = 138.00 FLOWLENGTH(FEET) = 407.00 MANNING'S N = 0.015 ESTIMATED PIPE DIAMETER(INCH) 18.00 NUMBER PIPEFLOW THRU SUBAREA(CFS) 0.98 TRAVEL TIME(MIN.) = 0.93 TC(MIN.) 12.61 OF PIPES 1 **************************************************************************** FLOW PROCESS FROM NODE 252.00 TO NODE 253.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.062 I I I I I I I I I I I I I I I I I I I *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT SUBAREA AREA (ACRES) RUNOFF COEFFICIENT = .5500 TOTAL AREA (ACRES) = TC(MIN) = 12.61 0.17 0.68 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) = 0.38 1.36 +--------------------------------------------------------------------------+ I The Code 8 above from Node 252 to Node 253 pertains to the subarea I I drained by Ditch 2L. I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 253.00 TO NODE 247.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 137.50 STREET LENGTH(FEET) = 154.00 STREET HALFWIDTH(FEET) = 41.00 DOWNSTREAM ELEVATION = 132.62 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 39.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 2.14 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.27 HALFSTREET FLOODWIDTH(FEET) = 7.36 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.24 PRODUCT OF DEPTH&VELOCITY = 0.89 STREETFLOW TRAVELTIME (MIN) = 0.79 TC(MIN) = 13.40 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.905 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .9500 SUBAREA AREA(ACRES) = 0.42 SUBAREA RUNOFF (CFS) 1.56 SUMMED AREA(ACRES) = 1.10 TOTAL RUNOFF(CFS) 2.92 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOODWIDTH(FEET) 7.98 FLOW VELOCITY(FEET/SEC.) = 3.86 DEPTH*VELOCITY = 1.10 **************************************************************************** FLOW PROCESS FROM NODE 247.00 TO NODE 247.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) RAINFALL INTENSITY (INCH/HR) TOTAL STREAM AREA (ACRES) = 13.40 3.91 1.10 2 ARE: I I I I I I I I I I I I I I I I I I PEAK FLOW RATE (CFS) AT CONFLUENCE 2.92 ** CONFLUENCE DATA ** STREAM . RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 9.33 9.45 4.893 3.12 2 2.92 13.40 3.905 1.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 11.66 9.45 4.893 2 10.37 13.40 3.905 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 11.66 Tc(MIN.) = 9.45 TOTAL AREA(ACRES) = 4.22 **************************************************************************** FLOW PROCESS FROM NODE 247.00 TO NODE 244.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ PIPEFLOW VELOCITY(FEET/SEC.) = 6.6 UPSTREAM NODE ELEVATION = 128.83 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 32.65 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.08 128.50 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 11. 66 TC(MIN.) = 9.53 1 **************************************************************************** FLOW PROCESS FROM NODE 244.00 TO NODE 244.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.66 9.53 4.865 4.22 ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 57.14 17.07 3.342 32.08 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 50.91 9.53 4.865 I I I I I I I I I I I I I I I I I 2 65.15 COMPUTED CONFLUENCE PEAK FLOW RATE (CFS) TOTAL AREA (ACRES) = 17.07 3.342 ESTIMATES ARE AS FOLLOWS: 65.15 Tc(MIN.) = 36.30 17.07 **************************************************************************** FLOW PROCESS FROM NODE 244.00 TO NODE 244.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 2 ««< ============================================================================ **********************************************************************.****** FLOW PROCESS FROM NODE 244.00 TO NODE 244.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 17.07 RAINFALL INTENSITY (INCH/HR) = 3.34 TOTAL STREAM AREA(ACRES) =. 36.30 PEAK FLOW RATE (CFS) AT CONFLUENCE = 65.15 **************************************************************************** FLOW PROCESS FROM NODE 248.00 TO NODE 249.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 480.00 UPSTREAM ELEVATION = 181.50 DOWNSTREAM ELEVATION = 176.50 ELEVATION DIFFERENCE = 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 21.397 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.888 SUBAREA RUNOFF (CFS) 1.94 TOTAL AREA(ACRES) = 1.22 TOTAL RUNOFF(CFS) 1.94 **************************************************************************** FLOW PROCESS FROM NODE 249.00 TO NODE 250.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 176.50 STREET LENGTH(FEET) = 710.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO C'ROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 132.54 I I I I I' I I I~ I I I I I I I I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 2.65 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.26 HALFSTREET FLOODWIDTH(FEET) = 6.83 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.54 PRODUCT OF DEPTH&VELOCITY = 1.19 STREETFLOW TRAVELTIME (MIN) = 2.60 TC(MIN) = 24.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.682 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 0.97 SUBAREA RUNOFF (CFS) SUMMED AREA(ACRES) = 2.19 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.28 HALFSTREET FLOODWIDTH(FEET) FLOW VELOCITY(FEET/SEC.) = 4.64 DEPTH*VELOCITY = 1.43 3.37 7.80 1.31 **************************************************************************** FLOW PROCESS FROM NODE 250.00 TO NODE 244.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.1 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 16.94 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.06 128.67 128.50 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 3.37 TC(MIN.) = 24.06 1 **************************************************************************** FLOW PROCESS FROM NODE 244.00 TO NODE 244.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 24.06 RAINFALL INTENSITY (INCH/HR) = 2.68 TOTAL STREAM AREA(ACRES) = 2.19 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.37 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 65.15 17.07 3.342 2 3.37 24.06 2.678 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. AREA (ACRE) 36.30 2.19 RATIO I I I' I I I I I I I I I I ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 67.85 17.07 3.342 2 55.58 24.06 2.678 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 67.85 Tc(MIN.) = 17.07 TOTAL AREA(ACRES) = 38.49 **************************************************************************** FLOW PROCESS FROM NODE 244.00 TO NODE 200.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 48.0 INCH PIPE IS 22.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.8 UPSTREAM NODE ELEVATION = 126.00 DOWNSTREAM NODE ELEVATION = 124.02 FLOWLENGTH(FEET) = 157.21 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) 67.85 TRAVEL TIME(MIN.) = 0.22 TC(MIN.) = 17.29 +--------------------------------------------------------------------------+ I END P.A. 1.07 NORTH, BASIN #2 -NORTHEAST BASIN (NODE SERIES 200) I I' I I BEGIN P.A. 1.07 SOUTH, BASIN #3 -SOUTHEAST BASIN (NODE SERIES 300) I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 301. 00 TO NODE 302.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .7300 INITIAL SUBAREA FLOW-LENGTH = 465.00 UPSTREAM ELEVATION = 182.50 DOWNSTREAM ELEVATION = 166.00 ELEVATION DIFFERENCE = 16.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 9.416 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.904 SUBAREA RUNOFF (CFS) 2.15 TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF(CFS) 2.15 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< I I I I I I I I 1- I II I I I I I I I I ============================================================================ UPSTREAM ELEVATION = 166.00 STREET LENGTH(FEET) = 320.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 154.08 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.17 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) = 8.77 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.58 PRODUCT OF DEPTH&VELOCITY = 1.08 STREETFLOW TRAVELTIME (MIN) = 1.49 TC(MIN) = 10.91 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.461 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6700 SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF (CFS) SUMMED AREA (ACRES) = 1.28 TOTAL RUNOFF(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) FLOW VELOCITY(FEET/SEC.) = 3.92 DEPTH*VELOCITY = 2.03 4.18 9.73 1.26 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.91 RAINFALL INTENSITY (INCH/HR) = 4.46 TOTAL STREAM AREA(ACRES) = 1.28 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.18 **************************************************************************** FLOW PROCESS FROM NODE 337.00 TO NODE 338.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 219.00 UPSTREAM ELEVATION = 195.00 DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 155.00 40.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 5.564 I I I I I I I I I I I I ,I I I I I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.559 SUBAREA RUNOFF (CFS) 0.87 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOF~(CFS) 0.87 **************************************************************************** FLOW PROCESS FROM NODE 338.00 TO NODE 303.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 =========================================================================~== DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.5 UPSTREAM NODE ELEVATION = 147.21 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 10.45 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.02 146.27 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 0.87 TC(MIN.) = 6.02 1 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) 6.02 RAINFALL INTENSITY (INCH/HR) = 6.54 TOTAL STREAM AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.87 **.CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.18 10.91 4.461 2 0.87 6.02 6.542 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 3.72 6.02 6.542 2 4.77 10.91 4.461 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 1.28 0.24 RATIO PEAK FLOW RATE(CFS) 4.77 Tc(MIN.) = 10.91 TOTAL AREA(ACRES) = 1.52 **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 4 I I I I I I I: I I I I I I' I I I I I »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.9 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 5.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.01 145.94 145.75 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.77 TC(MIN.) = 10.92 1 **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.92 RAINFALL INTENSITY (INCH/HR) = 4.46 TOTAL STREAM AREA(ACRES) = 1.52 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.77 **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT INITIAL SUBAREA FLOW-LENGTH = 490.00 .5500 UPSTREAM ELEVATION = 181.70 DOWNSTREAM ELEVATION = 166.50 ELEVATION DIFFERENCE = 15.20 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.628 SUBAREA RUNOFF (CFS) 2.51 TOTAL AREA(ACRES) = 1.26 TOTAL RUNOFF(CFS) 15.027 2.51 **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 166.50 STREET LENGTH(FEET) = 295.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 154.50 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 I I I I I~ I I I I I I I I I I I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.38 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) = 8.77 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.81 PRODUCT OF DEPTH&VELOCITY = 1.15 STREETFLOW TRAVELTIME(MIN) = 1.29 TC(MIN) = 16.32 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.440 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 0.91 SUBAREA RUNOFF (CFS) SUMMED AREA(ACRES) = 2.17 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.32 HALFSTREET FLOODW+DTH(FEET) FLOW VELOCITY(FEET/SEC.) 3.97 DEPTH*VELOCITY = 1. 72 4.24 9.73 1.28 **************************************************************************** FLOW PROCESS FROM NODE 307.00 TO NODE 304.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.1 UPSTREAM NODE ELEVATION = 146.81 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 25.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.05 145.75 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.24 TC(MIN.) = 16.36 1 **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 16.36 RAINFALL INTENSITY (INCH/HR) = 3.43 TOTAL STREAM AREA(ACRES) = 2.17 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.24 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.77 10.92 4.458 2 4.24 16.36 3.434 RAINFALL INTENSITY AND TIME OF CONCENTRATION AREA (ACRE) 1.52 2.17 RATIO I I I I I I I. I~ I- I I I I. I I I I I I CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 8.03 10.92 4.458 2 7.91 16.36 3.434 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 8.03 Tc(MIN.) = 10.92 TOTAL AREA(ACRES) = 3.69 **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 308.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< . 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.5 UPSTREAM NODE ELEVATION = 145.42 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = . 283.67 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = . 0.35 123.60 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 8.03 TC (MIN. ) 11 .27 1 **************************************************************************** FLOW PROCESS FROM NODE 308.00 TO NODE 308.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< =============~============================================================== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.27 RAINFALL INTENSITY(INCH/HR) = 4.37 TOTAL STREAM AREA(ACRES) = 3.69 PEAK FLOW RATE (CFS) AT CONFLUENCE 8.03 **************************************************************************** FLOW PROCESS FROM NODE 309.00 TO NODE 310.00 IS CODE = .21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4600 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 12.15 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 585.00 UPSTREAM ELEVATION = 230.00 DOWNSTREAM ELEVATION = 138.00 ELEVATION DIFFERENCE = 92.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.161 SUBAREA RUNOFF (CFS) = 5.38 I I I I I I I I I I I I I I I I I I I TOTAL AREA (ACRES) 2.81 TOTAL RUNOFF(CFS) 5.38 **************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 308.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.3 UPSTREAM NODE ELEVATION = 131.50 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 162.80 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.26 123.60 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 5.38 TC(MIN.) = 12.42 1 **************************************************************************** FLOW PROCESS FROM NODE 308.00 TO NODE 308.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 12.42 RAINFALL INTENSITY (INCH/HR) = 4.10 TOTAL STREAM AREA(ACRES) = 2.81 PEAK FLOW RATE(CFS) AT CONFLUENCE 5.38 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 8.03 11.27 4.368 2 5.38 12.42 4.103 AREA (ACRE) 3.69 2.81 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** ·PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 13.08 11.27 4.368 2 12.92 12.42 4.103 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 13.08 Tc(MIN.) = 11.27 TOTAL AREA(ACRES) = 6.50 **************************************************************~************* FLOW PROCESS FROM NODE 308.00 TO NODE 312.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 I I I I I I I I I I I I I I I I I I I ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPEFLOW VELOCITY(FEETjSEC.) = 12.9 UPSTREAM NODE ELEVATION = 123.27 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 94.77 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME (MIN.) = 0.12 118.71 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 13.08 TC(MIN~) = 11.39 1 **************************************************************************** FLOW PROCESS FROM NODE 312.00 TO NODE 312.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.39 RAINFALL INTENSITY(INCHjHR) = 4.34 TOTAL STREAM AREA(ACRES) = 6.50 PEAK FLOW RATE (CFS) AT CONFLUENCE = 13.08 **************************************************************************** FLOW PROCESS FROM NODE 313.00 TO NODE 314.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«~« ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 153.90 127.21 ELEVATION DIFFERENCE = 26.69 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 12.667 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 4.050 SUBAREA RUNOFF(CFS) 3.16 TOTAL AREA(ACRES) = 1.42 TOTAL RUNOFF(CFS) 3.16 **************************************************************************** FLOW PROCESS FROM NODE 314.00 TO NODE 312.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PI'PE IS 4.4 INCHES PIPEFLOW VELOCITY(FEETjSEC.) = 9.6 UPSTREAM NODE ELEVATION = 119.03 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 5.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.01 118.71 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 3.16 TC(MIN.) = 12.68 1 I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 312.00 TO NODE 312.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 12.68 RAINFALL INTENSITY (INCH/HR) = 4.05 TOTAL STREAM AREA(ACRES) = 1.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.16 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 13.08 11. 39 4.338 6.50 2 3.16 12.68 4.049 1.42 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 16.04 11.39 4.338 2 15.37 12.68 4.049 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 16.04 Tc (MIN.) = 11.39 TOTAL AREA (ACRES) = 7.92 **************************************************************************** FLOW PROCESS FROM NODE 312.00 TO NODE 315.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.4 UPSTREAM NODE ELEVATION = 118.21 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 43.70 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.07 117.19 MANNING'S N = 0.013 24.00 NUMBER OF PIPES 16.04 TC(MIN.) = 11.46 1 **************************************************************************** FLOW PROCESS FROM NODE 315.00 TO NODE 315.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< ============================================================================ I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 316.00 TO NODE 317.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.43 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 400.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 235.00 149.90 ELEVATION DIFFERENCE = 85.10 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.328 SUBAREA RUNOFF(CFS) 4.83 TOTAL AREA(ACRES) = 2.48 TOTAL RUNOFF(CFS) 4.83 **************************************************************************** FLOW PROCESS FROM NODE 317.00 TO NODE 318.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.3 UPSTREAM NODE ELEVATION = 134.53 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 72.21 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME (MIN.) = 0.08 124.91 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.83 TC(MIN.) = 11.51 1 **************************************************************************** FLOW PROCESS FROM NODE 318.00 TO NODE 319.00 "IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.9 UPSTREAM NODE ELEVATION = 124.58 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 283.35 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.80 121.34 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.83 TC(MIN.) = 12.32 1 **************************************************************************** FLOW PROCESS FROM NODE 319.00 TO NODE 320.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ I I I I I I I I I I I I I I I I I I I DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.8 UPSTREAM NODE ELEVATION = 121.01 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 254.18 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.73 118.24 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.83 TC(MIN.) = 13.05 1 **************************************************************************** FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 13.05 RAINFALL INTENSITY(INCH/HR) = 3.97 TOTAL STREAM AREA(ACRES) = 2.48 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.83 **************************************************************************** FLOW PROCESS FROM NODE 321.00 TO NODE 322.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 490.00 UPSTREAM ELEVATION = 165.00 DOWNSTREAM ELEVATION = 129.70 ELEVATION DIFFERENCE = 35.30 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 11.348 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.348 SUBAREA RUNOFF (CFS) 3.32 TOTAL AREA(ACRES) = 1.39 TOTAL RUNOFF(CFS) 3.32 **************************************************************************** FLOW PROCESS FROM NODE 322.00 TO NODE 323.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 129.70 STREET LENGTH(FEET) = 200.00 STREET HALFWIDTH(FEET) = 18.00 DOWNSTREAM ELEVATION = 127.50 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO-CROSSFALL GRADE BREAK 16.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 I I I I I I I I I I I I I I I I I I I **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.37 HALFSTREET FLOODWIDTH(FEET) = 12.07 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.60 PRODUCT OF DEPTH&VELOCITY = 0.96 STREETFLOW TRAVELTIME(MIN) = 1.28 TC(MIN) = 12.63 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.058 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 0.69 SUBAREA RUNOFF (CFS) = SUMMED AREA(ACRES) = 2.08 TOTAL RUNOFF(CFS) = END OF SUBAREA STREETFLOW HYDRAULICS: 4.09 1.54 4.86 DEPTH (FEET) = 0.39 HALFSTREET FLOODWIDTH(FEET) FLOW VELOCITY(FEET/SEC.) = 2.65 DEPTH*VELOCITY = 13.10 1. 03 **************************************************************************** FLOW PROCESS FROM NODE 323.00 TO NODE 320.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.5 UPSTREAM NODE ELEVATION = 118.95 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 6.25 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME (MIN.) = 0.01 118.24 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 4.86 TC(MIN.) = 12.64 1 **************************************************************************** FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 12.64 RAINFALL INTENSITY (INCH/HR) = 4.06 TOTAL STREAM AREA(ACRES) = 2.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.86 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.83 13.05 3.974 2 4.86 12.64 4.057 AREA (ACRE) 2.48 2.08 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** I I I I I I I I I I I I I I I I I I I STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 9.60 12.64 4.057 2 9.60 13.05 3.974 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 9.60 Tc (MIN.) = 12.64 . TOTAL AREA (ACRES) = 4.56 **************************************************************************** FLOW PROCESS FROM NODE 320.00 TO NODE 315.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.3 UPSTREAM NODE ELEVATION = 117.74 DOWNSTREAM NODE ELEVATION = 117.19 FLOWLENGTH(FEET) = 42.74 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) 9.60 TRAVEL TIME(MIN.) = 0.10 TC(MIN.) = 12.74 1 **************************************************************************** FLOW PROCESS FROM NODE. 315.00 TO NODE 315.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.60 12.74 4.037 4.56 ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE) 1 16.04 11.46 4.321 7.92 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 25.00 11.46 4.321 2 24.58 12.74 4.037 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 25.00 Tc(MIN.) = 11.46 TOTAL AREA(ACRES) = 12.48 **************************************************************************** FLOW PROCESS FROM NODE 315.00 TO NODE 315.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 3 ««< I I I I I I I I I I I I I I I I I I I ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 315.00 TO NODE 339.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 36.0 INCH PIPE IS 13.5 INCHES PIPEFLOW VELOCITY(FEETjSEC.) = 10.3 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION FLOWLENGTH(FEET) = 76.55 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.12 116.19 114.87 MANNING'S N = 0.013 36.00 NUMBER OF PIPES 25.00 TC(MIN.) = 11.58 1 **************************************************************************** FLOW PROCESS FROM NODE 339.00 TO NODE 324.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 36.0 INCH PIPE IS 18.2 INCHES PIPEFLOW VELOCITY(FEETjSEC.) = 7.0 UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 95.29 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME (MIN.) = 0.23 114.54 113.97 MANNING'S N = 0.013 36.00 NUMBER OF PIPES 25.00 TC(MIN.) = 11.81 1 **************************************************************************** FLOW PROCESS FROM NODE 324.00 TO NODE 324.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.81 RAINFALL INTENSITY (INCHjHR) = 4.24 TOTAL STREAM AREA(ACRES) = 12.48 PEAK FLOW RATE (CFS) AT CONFLUENCE = 25.00 **************************************************************************** FLOW PROCESS FROM NODE 325.00 TO NODE 326.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .7700 INITIAL SUBAREA FLOW-LENGTH = 407.00 UPSTREAM ELEVATION = 153.30 I I I I I I I I I I I I I I I I I I I DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 130.00 23.30 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.109 SUBAREA RUNOFF (CFS) 1.79 6.699 TOTAL AREA(ACRES) = 0.38 TOTAL RUNOFF(CFS) 1. 79 **************************************************************************** FLOW PROCESS FROM NODE 326.00 TO NODE 327.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 130.00 STREET LENGTH(FEET) = 247.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 123.17 CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) = 8.77 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.18 PRODUCT OF DEPTH&VELOCITY = 0.96 STREETFLOW TRAVELTIME (MIN) = 1.29 TC(MIN) = 7.99 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.451 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .9500 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF (CFS) SUMMED AREA(ACRES) = 0.78 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: 2.82 2.07 3.86 DEPTH (FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) 9.73 FLOW VELOCITY(FEET/SEC.) = 3.62 DEPTH*VELOCITY = 1.16 **************************************************************************** FLOW PROCESS FROM NODE 327.00 TO NODE 324.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.4 UPSTREAM NODE ELEVATION = 116.24 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 15.51 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.03 115.47 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 3.86 TC(MIN.) = 8.02 1 I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 324.00 TO NODE 324.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 8.02 RAINFALL INTENSITY (INCH/HR) = 5.44 TOTAL STREAM AREA(ACRES) = 0.78 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.86 **************************************************************************** FLOW PROCESS FROM NODE 328.00 TO NODE 329.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 177.00 DOWNSTREAM ELEVATION = 139.00 ELEVATION DIFFERENCE = 38.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 5.118 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.559 SUBAREA RUNOFF (CFS) 11.21 TOTAL AREA(ACRES) = 2.01 TOTAL RUNOFF(CFS) 11.21 **************************************************************************** FLOW PROCESS FROM NODE 329.00 TO NODE 330.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM NODE ELEVATION = 139.00 DOWNSTREAM NODE ELEVATION = 123.98 CHANNEL LENGTH THRU SUBAREA(FEET) = 592.00 CHANNEL SLOPE = 0.0254 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 99.990 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50 CHANNEL FLOW THRU SUBAREA(CFS) = 11.21 FLOW VELOCITY(FEET/SEC) = 1.93 FLOW DEPTH(FEET) = 0.24 TRAVEL TIME(MIN.) = 5.13 TC(MIN.) = 11.13 **************************************************************************** FLOW PROCESS FROM NODE 329.00 TO NODE 330.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ ,I I I I I I I I I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.404 *USER SPECIFIED (SUBAREA) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA AREA(ACRES) 6.15 SUBAREA RUNOFF (CFS) = 23.02 TOTAL AREA(ACRES) 8.16 TOTAL RUNOFF (CFS) 34.23 TC(MIN) = 11.13 **************************************************************************** FLOW PROCESS FROM NODE 330.00 TO NODE 324.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 42.0 INCH PIPE IS 14.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.7 UPSTREAM NODE ELEVATION = 113.83 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 18.00 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.03 113.47 MANNING'S N = 0.013 42.00 NUMBER OF PIPES 34.23 TC(MIN.) = 11.15 1 **************************************************************************** FLOW PROCESS FROM NODE 324.00 TO NODE 324.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 11.15 RAINFALL INTENSITY(INCH/HR) = 4.40 TOTAL STREAM AREA(ACRES) = 8.16 PEAK FLOW RATE (CFS) AT CONFLUENCE = 34.23 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 25.00 11. 81 4.237 2 3.86 8.02 5.439 3 34.23 11.15 4.398 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 51. 01 8.02 5.439 2 61.44 11.15 4.398 3 60.99 11.81 4.237 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 12.48 0.78 8.16 RATIO PEAK FLOW RATE (CFS) 61.44 Tc(MIN.) = 11.15 TOTAL AREA(ACRES) = 21.42 I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 324.00 TO NODE 331.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 42.0 INCH PIPE IS 23.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.0 UPSTREAM NODE ELEVATION = 113.14 DOWNSTREAM NODE ELEVATION = 111.45 FLOWLENGTH(FEET) = 150.27 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) 61.44 TRAVEL TIME(MIN.) = 0.23 TC(MIN.) = 11.38 **************************************************************************** FLOW PROCESS FROM NODE 331.00 TO NODE 331.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.38 RAINFALL INTENSITY (INCH/HR) = 4.34 TOTAL STREAM AREA (ACRES) = 21.42 PEAK FLOW RATE (CFS) AT CONFLUENCE = 61.44 **************************************************************************** FLOW PROCESS FROM NODE 332.00 TO NODE 333.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 365.00 UPSTREAM ELEVATION = 136.90 DOWNSTREAM ELEVATION = 131.50 ELEVATION DIFFERENCE = 5.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 16.599 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.402 SUBAREA RUNOFF (CFS) 1.61 TOTAL AREA(ACRES) = 0.86 TOTAL RUNOFF(CFS) 1.61 **************************************************************************** FLOW PROCESS FROM NODE 333.00 TO NODE 334.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 131.50 STREET LENGTH(FEET) = 705.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 121.00 CURB HEIGHT(INCHES) = 6. I I I I I I I I I I I I I I I I I I I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 3.00 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) = 9.73 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.S2 PRODUCT OF DEPTH&VELOCITY = 0.90 STREETFLOW TRAVELTIME (MIN) = 4.17 TC(MIN) = 20.77 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.944 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.74 SUBAREA RUNOFF(CFS) SUMMED AREA(ACRES) = 2.60 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: 2.S2 4.43 DEPTH (FEET) = 0.36 HALFSTREET FLOODWIDTH(FEET) FLOW VELOCITY(FEET/SEC.) = 2.99 DEPTH*VELOCITY = 11.67 1. OS **************************************************************************** FLOW PROCESS FROM NODE 334.00 TO NODE 331.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN lS.0 INCH PIPE IS 5.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.1 UPSTREAM NODE ELEVATION = 114.00 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 13.62 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.02 113.45 MANNING'S N = 0.013 lS.00 NUMBER OF PIPES 4.43 TC(MIN.) = 20.S0 1 **************************************************************************** FLOW PROCESS FROM NODE 331. 00 TO NODE 331.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) 20.80 RAINFALL INTENSITY(INCH/HR) = 2.94 TOTAL STREAM AREA(ACRES) = 2.60 PEAK FLOW RATE (CFS") AT CONFLUENCE = 4 .43 2 ARE: **************************************************************************** FLOW PROCESS FROM NODE 335.00 TO NODE 340.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< I I I I I I I I I I I I I I I I I I I ============================================================================ *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .8500 INITIAL SUBAREA FLOW-LENGTH = 463.00 UPSTREAM ELEVATION = 140.90 DOWNSTREAM ELEVATION = 138.00 ELEVATION DIFFERENCE = 2.90 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 11.317 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.356 SUBAREA RUNOFF (CFS) 3.81 TOTAL AREA (ACRES) = 1.03 TOTAL RUNOFF(CFS) 3.81 **************************************************************************** FLOW PROCESS FROM NODE 340.00 TO NODE 341.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM NODE ELEVATION#= 138.00 DOWNSTREAM NODE ELEVATION = 124.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 391.00 CHANNEL SLOPE = 0.0358 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50 CHANNEL FLOW THRU SUBAREA(CFS) = 3.81 FLOW VELOCITY(FEET/SEC) = 1.70 FLOW DEPTH(FEET) 0.15 TRAVEL TIME(MIN.) = 3.83 TC(MIN.) = 15.15 **************************************************************************** FLOW PROCESS FROM NODE 340.00 TO NODE 341. 00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.609 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA AREA(ACRES) 0.64 SUBAREA RUNOFF (CFS) TOTAL AREA(ACRES) 1.67 TOTAL RUNOFF(CFS) TC(MIN) = 15.15 1. 96 5.78 **************************************************************************** FLOW EROCESS FROM NODE 341. 00 TO NODE 336.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM ELEVATION = 124.00 STREET LENGTH(FEET) = 160.00 STREET HALFWIDTH(FEET) = 17.00 DOWNSTREAM ELEVATION = 120.31. CURB HEIGHT(INCHES) = 6. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 15.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 I I I I I I I I I I I I I I I I **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 6.98 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.38 HALFSTREET FLOODWIDTH(FEET) = 12.64 AVERAGE FLOW VELOCITY(FEETjSEC.) = 4.07 PRODUCT OF DEPTH&VELOCITY = 1.54 STREETFLOW TRAVELTIME(MIN) = 0.66 TC(MIN) = 15.80 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 3.512 *USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .9500 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF (CFS) SUMMED AREA(ACRES) = 2.39 TOTAL RUNOFF(CFS) END OF SUBAREA STREETFLOW HYDRAULICS: 2.40 8.18 DEPTH (FEET) = 0.40 HALFSTREET FLOODWIDTH(FEET) FLOW VELOCITY(FEET/SEC.) = 4.15 DEPTH*VELOCITY 13.61 1. 65 **************************************************************************** FLOW PROCESS FROM NODE 336.00 TO NODE 331. 00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.2 UPSTREAM NODE ELEVATION = 114.71 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 35.88 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA (CFS) TRAVEL TIME(MIN.) = 0.06 113.45 MANNING'S N = 0.013 18.00 NUMBER OF PIPES 8.18 TC(MIN.) =. 15.86 1 **************************************************************************** FLOW PROCESS FROM NODE 331. 00 TO NODE 331. 00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 15.86 RAINFALL INTENSITY (INCH/HR) = 3.50 TOTAL STREAM AREA(ACRES) = 2.39 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.18 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 61.44 11.38 4.341 2 4.43 20.80 2.942 3 8.18 15.86 3.504 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 3 STREAMS. AREA (ACRE) 21.42 2.60 2.39 RATIO I I I I I I I I I I I I I I I ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 71.04 11.38 4.341 2 61.49 15.86 3.504 3 52.93 20.80 2.942 COMPUTED CONFLUENCE ESTIMATES ARE·AS FOLLOWS: PEAK FLOW RATE (CFS) 71.04 Tc(MIN.) 11.38 TOTAL AREA(ACRES) = 26.41 **************************************************************************** FLOW PROCESS FROM NODE 331. 00 TO NODE 300.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE««< 4 ============================================================================ DEPTH OF FLOW IN 42.0 INCH PIPE IS 25.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.6 UPSTREAM NODE ELEVATION = 111.12 DOWNSTREAM NODE ELEVATION = FLOWLENGTH(FEET) = 47.03 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) TRAVEL TIME(MIN.) = 0.07 110.56 MANNING'S N = 0.013 ·42.00 NUMBER ·OF PIPES 71.04 TC(MIN.) = 11.45 1 . +--------------------------------------------------------------------------+ I I END P.A. 1.07 SOUTH, BASIN #3 -SOUTHEAST BASIN (NODE SERIES 300) I I I I +--------------------------------------------------------------------------+ ============================================================================ END OF STUDY SUMMARY: PEAK FLOW RATE (CFS) = TOTAL AREA (ACRES) = 71. 04 26 .. 41 Tc(MIN.) = 11.45 ============================================================================ END OF RATIONAL METHOD ANALYSIS 1 I I I I I 1° . I I I °1 r I I I' ° I ,I :1 I: 1° IV I I I I I I I I I 'I I I I -- I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 4 HYDRAULIC ANALYSIS 4.1 -West Basin Storm Drain Legend, Storm Input and Storm Output AH:kc H:\REPORTSI2352111511s1 SubmittallA02.doc W.O.2352·115 12115/2004 9:15 AM . I - ----1 ~~ \ ~ \ II \ SCALE: 1 "= 120' LEGEND PIPE NODE 10 EXISTING STORM DRAIN PROPOSED STORM DRAIN --- ---------.... ~~~::: ... '$ ... ~ ~ \:Jrnl -~"-~::"Q:: I:'r __ --~~l'> ----- 81 83 80 -= r -- 85 78 86 --------- PREPARED FOR: HUNSAKER & ASSOCIATES SAN DIEGO, INC PLANNING 10179 Huennekens Street ENGINEERING San Diego, Ca 92121 SURVEYING PH(856)SS8-4500' FX(858}558·1414 87 STORM DRAIN LEGEND FOR LA COSTA GREENS PA 1.06 & 1.07 WEST BASIN CITY OF CARLSBAD, CALIFORNIA ---- 55 54 SHEET 1 OF 1 R: \0385\lIHyd\0385SH06-Storftl Droin Legend.dwg[ 0 jOec-15-2004: 11: 11 .- ttl I N ttl ..., N ... c5 ;10 I I COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS (INPUT) PROJECT: La Costa Greens PA 1.06 and PA 1.07 West Ultimate ( SIGNER: TF L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D W S KJ KE I 1 192.91 2 4 73.3 73.3 70.31 187.53 189.39 0.00 36. o. 3 0.50 0.00 I 5 67.6 67.6 136.80 189.72 192.63 0.00 36. o. 3 0.50 0.00 6 16.4 16.4 148.60 193.63 204.44 0.00 24. o. 3 0.50 0.00 7 16.4 16.4 209.24 204.77 220.39 0.00 24. o. 3 0.50 0.00 I 8 2.5 2.5 298.71 220.89 248.22 0.00 18. o. 3 0.50 0.00 2 9 2.5 2.5 175.51 248.55 259.39 0.00 18. o. 1 0.00 0.20 I 15 3.2 3.2 41.38 191.22 192.98 0.00 18. o. 1 0.00 0.20 2 25 4.3 4.3 9.13 190.72 191.34 0.00 24. o. 1 0.00 0.20 I 35 12.7 12.7 221.37 193.63 205.71 0.00 24. o. 3 0.50 0.00 I 36 12.7 12.7 252.03 206.04 220.32 0.00 24. o. 3 0.50 0.00 2 37 12.4 12.4 204.91 220.65 226.25 0.00 24. o. 3 0.50 0.00 I 38 4.9 4.9 5.25 227.08 227.27 0.00 18. o. 1 0.00 2 55 7.9 7.9 26.88 226.58 227.03 0.00 24. o. 1 0.00 0.20 I 65 0.8 0.8 39.59 221. 15 225.49 0.00 18. o. 1 0.00 0.20 I: 75 46.7 76 40.6 46.7 31. 84 193.63 40.6 170.98 197.08 196.75 203.34 0.00 24. 0.00 24. o. o. 3 3 0.50 0.50 0.20 0.20 I 77 37.4 37.4 26.32 203.67 205.10 0.00 24. o. 3 0.50 0.20 2 78 37.4 37.4 138.54 205.43 249.72 0.00 24. o. 1 0.50 0.20 I 85 10.1 10.1 32.41 220.89 221. 76 0.00 18. o. 3 0.50 0.00 • 86 95 4.8 4.6 4.8 180.22 222.09 4.6 8.52 220.89 227.73 221.31 0.00 18. 0.00 18. o. o. 1 1 0.00 0.00 0.20 0.29 I I I KM LC Ll L3 0.05 1 5 15 0.05 o 6 35 0.05 o 7 o 0.05 o 8 95 0.05 o 9 o 0.05 o o o 0.05 5 o o 0.05 5 o o 0.05 6 36 o 0.05 o 37 65 0.05 o 38 55 0.05 o o o 0.05 38 o o 0.05 37 o o 0.05 6 76 o 0.05 o 77 o 0.05 o 78 o 0.11 o o o 0.11 8 86 o 0.30 o o o 0.05 8 o o L4 A1 A3 25 o. 89. 75 89. 91. o o. o. 85 o. 85. o 8. o. o o. o. o o. o. o o. o. o o. o. o o. 91. o 90. 70. o o. o. o o. o. o o. o. o 36. o. o o. o. o o. o. o o. o. o 36. o. o o. o. o o. o. REPT: PC/RD4412.1 DATE: 12/14/04 PAGE 1 A4 J N 86. 4.00 0.013 37. 4.00 0.013 o. 4.00 0.013 90. 4.00 0.013 o. 4.00 0.013 o. 3.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 3.00 0.013 o. 3.00 0.013 o. 6.00 0.013 o. 4.00 0.013 o. 3.00 0.013 o. 4.00 0.013 l COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: La Costa Greens PA 1.06 and PA 1.07 West Ultimate .ESIGNER: TF IlINE Q D W DN DC FLOW SF-FULL V 1 V 2 FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC 8 I I 25 I 35 I 36 38 I I I (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) HYDRAULIC GRADE LINE CONTROL 192.91 73.3 36 o 1.81 2.70 FULL 0.01208 10.4 10.4 67.6 36 o 1.84 2.62 FULL 0.01027 9.6 9.6 16.4 24 0 0.71 ,1.46 SEAL 0.00526 5.2 17.3 X = 24.26 X(N) 0.00 X(J) = 24.26 F(J) 16.4 24 0 0.70 1.46 PART 0.00526 16.6 6.7 X = 0.00 X(N) 84.62 2.5 18 0 0.28 0.60 SEAL 0.00057 1.4 10.3 X 2.5 X = 18 11.03 X(N) o 0.31 0.00 X (N) 62.02 0.60 PART 146.44 HYDRAULIC GRADE LINE CONTROL X(J) = 0.00057 194.41 3.2 18 o 0.39 0.68 SEAL 0.00093 X = 40.55 X(N) 0.00 HYDRAULIC GRADE LINE CONTROL 194.41 4.3 24 o 0.36 0.73 FULL 0.00036 HYDRAULIC GRADE LINE CONTROL 197.32 14.88 F(J) 9.4 3.8 1.8 1.8 1.4 1.4 187.53 189.39 192.91 193.84 189.72 192.63 194.97 196.45 193.63 204.44 198.19 205.12 8.69 D(BJ) 0.71 D(AJ) 204.77 220.39 205.47 221.85 220.89 248.22 223.39 248.51 0.86 D(BJ) 0.28 D(AJ) 248.55 259.39' 248.86 259.99 191.22 192.98 194.41 194.44 190.72 191.34 194.41 194.41 12.7 24 0 0.67 1.28 SEAL 0.00315 4.0 14.8 193.63 205.71 197.32 206.35 X = 26.74 X(N) 135.13 X(J) = 26.74 F(J) 5.72 D(BJ) 0.67 D(AJ) 12.7 24 0 0.66 1.28 PART 0.00315 14.0 11.4 206.04 220.32 206.70 221.09 X = 0.00 X(N) 126.08 12.4 24 0 0.79 1.26 PART 0.00300 10.7 5.9 220.65 226.25 221.44 227.51 X = 0.00 X(N) 96.97 4.9 18 o 0.51 0.85 PART 0.00218 3.0 3.7 227.08 227.27 228.38 228.32 D 1 (FT) 5.38 5.25 D 2 (FT) 4.45 3.82 4.56 0.68 2.91 0.70 2.50 1.13 0.31 1.46 0.29 0.60 TW CALC 0.00 0.00 0.00 0.00 0.00 260.26 3.19 1.46 194.51 3.69 3.07 194.45 3.69 0.64 0.00 2.30 0.66 0.77 0.00 0.79 1.26 0.00 1.30 1.05 228.58 REPT: PC/RD4412.2 DATE: 12/14/04 PAGE 1 TW CK 0.00 0.00 REMARKS 0.00 HYD JUMP 0.00 0.00 HYD JUMP 0.00 0.00 0.00 0.00 HYD JUMP 0.00 0.00 0.00 l COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: La Costa Greens PA 1.06 and PA 1.07 West Ultimate liESIGNER: TF IlINE Q D W DN DC FLOW SF-FULL V 1 V 2 NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) I 37 I I 8 I I: I I I HYDRAULIC GRADE LINE CONTROL 227.95 7.9 24 0 0.71 1.00 PART 0.00122 3.5 5.0 X = 0.00 X(N) 0.00 X(J) = 4.83 F(J) HYDRAULIC GRADE LINE CONTROL 221. 27 0.8 18 X = o 0.16 0.33 PART 0.00006 8.2 0.00 X(N) 28.99 HYDRAULIC GRADE LINE CONTROL 197.32 46.7 24 o 1.19 1.97 FULL 0.04261 14.9 2.8 14.9 40.6 24 o 1.54 1.95 FULL 0.03221 12.9 12.9 37.4 24 o 1.25 1.94 PART 0.02733 30.3 35.7 37.4 24 o 0.74 1.94 PART 0.02733 35.4 12.0 HYDRAULIC GRADE LINE CONTROL 222.62 10.1 18 0 0.83 1.22 SEAL 0.00924 5.7 6.5 X = 9.14 X(N) 0.00 X(J) = 9.14 F(J) 4.8 18 0 0.52 0.84 SEAL 0.00209 2.7 4.7 X = 14.97 X(N) 109.94 X(J) = 20.87 F(J) HYDRAULIC GRADE LINE CONTROL 4.6 18 X = o 0.45 0.82 SEAL 4.87 X(N) 0.00 222.62 0.00192 2.6 2.8 FL 1 FL 2 (FT) (FT) HG 1 cALc HG 2 CALC 226.58 227.03 227.95 228.03 2.07 D(BJ) 0.79 D(AJ) 221.15 225.49 221.31 225.82 193.63 196.75 197.32 198.85 197.08 203.34 202.23 207.87 203.67 205.10 204.50 205.84 205.43 249.72 206.17 251.66 220.89 221.76 222.62 222.98 3.24 D(BJ) 0.93 D(AJ) 222.09 227.73 224.03 228.57 1.43 D(BJ) 0.52 D(AJ) 220.89 221.31 222.62 222.62 D 1 (FT) D 2 (FT) TW CALC 1.37 1.00 228.50 1.25 0.16 0.33 225.96 3.69 2.10 0.00 5.15 4.53 0.00 0.83 0.74 0.00 0.74 1.94 254.35 1.73 1.22 0.00 1. 56 1.94 0.84 228.98 1.29 1.73 1.31 222.77 REPT: PC/RD4412.2 DATE: 12/14/04 PAGE 2 TW CK REMARKS 0.00 HYD JUMP 0.00 0.00 0.00 0.00 HJ @ DJT 0.00 0.00 HYD JUMP 0.00 HYD JUMP 0.00 I I I I I I I I I I I I I I I I I I I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END FL 2, D 2 AND HG 2 REFER TO UPSTREAM END V 2, X X(N) X(J) F(J) D(BJ) D(AJ) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT ,WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE -THE COMPUTED FORCE AT THE HYDRAULIC JUMP -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITlCAL TO SUBCRITlCAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 12/14/2004 14:42 I I ·1 I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1 .06 & 1.07 CHAPTER 4 HYDRAULIC ANALYSIS 4.2 -Northeast Basin Storm Drain Legend, Storm Input and Storm Output AH:kc H:iREPORTS12352111511st SubmittallA02.doc W.O.2352-115 12115/2004 9:15AM I I I I I I' I I I I I I I I I I I I I w ~ 'U~=!lO~® rlili/~~ "·1;$1- ;I:::;,c:r:::: __ _ ---- 55 54 ~ ~ SCALE: "-1 2 0 • 77 LEGEND PIPE NODE 10 @ EXISTING STORM DRAIN ~ PROPOSED STORM DRAIN ~ 77 PREPARED FOR: HUNSAKER & ASSOCIATES SAN DIEGO, INC. PLANNING 10179 Huennekens Street ENGINEERING San Diego, Ca 92121 SURVEYING PH(8S8)S58-4S00' FX(858)SS8-1414 v -...;:;:::: ""== "'=" ._"'=' -/ I" -----=:;::;;;;. , ~ 5 = 4 - 3 77 :::~~\l\~ I 40 \ --' . \ STORM DRAIN LEGEND FOR LA COSTA GREENS PA 1.06 & 1.07 NORTH EAST BASIN CITY OF CARLSBAD, CALIFORNIA 1 SHEET 1 OF 1 R: \0385\l<Hyd\0385SH06-Storm Drain Legend.dwg[ 0]Dec-15-2004: 11: 11 I~ 'I C'I I~ d ~ I LA COUNTY PUBLIC WORKS I PROJECT: La Costa Greens PA 1.06 & PA 1.07 NE Ultimate I DESIGNER: AH CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D 1 126.30 2 4 67.9 67.9 157.21 124.02 126.00 0.00 48. 5 57.1 57.1 101.22 126.50 127.47 0.00 42. 6 47.7 47.7 253.07 127.97 143.65 0.00 36. 7 47.7 47.7 191.35 143.98 160.32 0.00 36. 8 46.1 46.1 204.64 160.65 165.04 0.00 36. 2 9 43.8 43.8 162.94 165.37 166.83 0.00 36. I 2 10 40.5 40.5 146.39 167.16 168.44 0.00 36. I 2 2 11 12 40.5 228.81 170.96 168.77 40.5 35.7 209.00 180.51 35.7 171.46 0.00 0.00 36. 30. I 2 13 15.6 1"5.6 80.17 181. 01 188.05 0.00 24. 2 14 6.4 6.4 286.17 188.38 214.67 0.00 24. I 2 15 6.4 6.4 298.00 215.00 218.13 0.00 24. I 2 16 2 17 6.4 6.4 204.07 218.46 220.54 2.6 2.6 5.25 221.04 221.34 0.00 24. 0.00 18. I 2 20 3.4 3.4 16.94 128.50 128.67 0.00 18. 2 30 11.7 11. 7 32.65 128.50 128.84 0.00 18. 18.2 18.2 56.45 128.97 131.89 0.00 24. 2 50 2.1 2.1 44.99 162.15 164.78 0.00 18. I 2 51 0.7 0.7 62.63 165.11 191.82 0.00 18. I 2 60 2.7 2.7 67.13 166.87 184.66 0.00 18. 2 70 4.3 4.3 5.25 168.66 168.97 0.00 18. 5.9 5.9 25.25 172.46 173.22 0.00 18. 2 90 1.7 1.7 60.11 181.51 182.72 0.00 18. I 2 100 23.0 23.0 39.51 181.01 181.41 0.00 24. I STORM DRAIN ANALYSIS (INPUT) W S KJ KE KM o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.20 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 3 0.50 0.00 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.29 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.11 o. 1 0.00 0.20 0.11 LC Ll L3 1 5 20 o 6 40 o 7 0 o 8 50 o 9 60 o 10 70 o 11 o o 12 80 o 13 90 o 14 110 o 15 o o 16 0 o 17 130 o o 0 5 o 0 5 o o 6 o o 8 51 o o o o 9 o o 10 o o 12 o o 13 o o 13 o o L4 Al A3 REPT: PC/RD4412.1 .DATE: 12/14/04 PAGE 1 A4 J N 30 o. 85. 90. 4.00 0.013 o o. 90. o. 4.00 0.013 o 24. O. O. 4.00 0.013 o o. 90. o. 4.00 0.013 o O. 90. O. 4.00 0.013 o o. 87. o. 4.00 0.013 o o. o. O. 4.00 0.013 o o. 90. O. 4.00 0.013 100 o. 77. 91. 4.00 0.013 120 O. 89. 91. 4.00 0.013 o O. O. O. 4.00 0.013 o O. o. o. 4.00 0.013 o 90. 90. o. 4.00 0.013 o O. O. o. 4.00 0.013 o O. O. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 3.00 0.013 o 36. O. o. 4.00 0.013 o o. o. o. 3.00 0.013 o O. O. o. 3.00 0.013 o o. o. o. 4.00 0.013 o O. o. o. 4.00 0.013 o O. O. o. 2.50 0.013 o o. O. O. 3.00 0.013 I I I I I I I I I I I I' I I I I I, I I LA COUNTY PUBLIC WORKS PROJECT: La Costa Greens PA 1.06 & PA 1.07 NE Ultimate DESIGNER: AH CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D 2 110 3.8 3.8 25.25 188.88 189.89 0.00 18. 2 120 9.8 9.8 5.25 188.88 189.06 0.00 18. 2 121 4.9 4.9 15.00 189.39 191.64 0,00 18. 2 130 4.9 4.9 25.25 221.04 222.16 0.00 18. STORM DRAIN ANALYSIS (INPUT) W S KJ KE KM O. 1 0.00 0.20 0.05 O. 3 0.50 0.20 0.05 O. 1 0.00 0.20 0.05 O. 1 0.00 0.20 0.05 LC L1 L3 L4 A1 A3 14 0 o o o. o. 14 121 o o o. o. o 0 o o o. o. 17 0 o o o. o. REPT: PC/RD4412.1 DATE: 12/14/04 PAGE 2 A4 J N O. 4.00 0.013 O. 4.00 0.013 O. 3.00 0.013 O. 4.00 0.013 I I I I I I I I I I I I I I I I I I LA COUNTY PUBLIC WORKS PROJECT: La Costa Greens PA 1.06 & PA 1.07 NE Ultimate DESIGNER: AH LINE Q D W DN V 1 V 2 STORM DRAIN ANALYSIS NO (CFS) (IN) (IN) (FT) DC (FT) FLOW TYPE SF-FULL (FT/FT) (FPS) (FPS) FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 5 20 5 30 HYDRAULIC GRADE LINE CONTROL 126.30 67.9 48 o 1.81 2.48 PART 0.00223 9.2 11. 9 57.1 42 o 1.91 2.36 PART 0.00322 13.5 17.5 47.7 36 0 1.10 2.25 PART 0.00511 20.3 20.9 X = 0.00 X(N) 111.40 47.7 36 o 1.01 2.25 PART 0.00511 22.5 13.7 46.1 36 0 43.8 36 0 X = 0.00 40.5 36 0 40.5 36 0 35.7 30 0 X = 0.00 15.6 24 0 X = 7.25 6.4 X = 24 o 1.14 1. 45 1. 84 X(N) 1. 76 1.71 1.13 X(N) 0.65 X(N) 0.41 X(N) 2.21 PART 0.00478 2.15 PART 0.00431 48.92 2.07 PART 0.00369 2.07 PART 0.00369 2.03 PART 0.00757 13.91 1.42 SEAL 0.00475 0.00 X(J) = 0.89 SEAL 59.89 0.00080 X(J) = 6.4 24 0 0.72 0.89 PART 0.00080 X = 0.00 X(N) 200.72 6.4 24 0 0.72 0.89 PART 0.00080 X = 0.00 X(N) 159.03 2.6 18 0 0.32 0.61 PART 0.00061 HYDRAULIC GRADE LINE CONTROL 127.97 3.4 18 o 0.59 0.70 PART 0.00105 HYDRAULIC GRADE LINE CONTROL 127.97 11. 7 18 o 1. 50 1.30 PART 0.01241 13.4 9.6 9.8 10.2 16.6 5.0 7.25 2.0 3.81 6.3 6.2 1.9 5.2 7.2 10.2 9.7 11.6 15.5 8.4 6.5 F(J) 8.4 F(J) 8.4 4.7 3.8 4.2 6.9 124.02 126.00 126.30 127.85 126.50 127.47 128.08 128.77 127.97 143.65 129.07 144.73 143.98 160.32 145.00 161.80 160.65 165.37 167.16 168.77 171.46 181. 01 8.08 188.38 2.81 165.04 166.83 168.44 170.96 180.51 188.05 D(BJ) 214.67 D(BJ) 162.12 166.87 167.21 168.67 168.87 169.92 170.42 172.15 172.59 182.54 J:84.42 189.47 0.70 D(AJ) 190.48 215.25 0.41 D(AJ) 215.00 218.13 215.72 218.71 218.46 220.54 219.18 221.43 221.04 221.34 222.12 221.96 128.50 128.67 129.10 129.37 128.50 128.84 129.80 130.23 D 1 (FT) 2.28 1. 58 1.10 1. 02 1.47 1.84 1. 71 1.65 1.13 3.41 2.79 2.10 1. 74 0.72 0.72 1. 08 0.60 1.30 D 2 (FT) 1. 85 1.30 1. 08 1. 48 1. 83 1. 84 1.48 1.19 2.03 1.42 0.58 TW CALC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58· 0.00 0.89 0.00 0.62 222.22 0.70 129.70 1.39 131.10 REPT: PC/RD4412.2 DATE: 12/14/04 PAGE 1 TW CK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 REMARKS 0.00 HYD JUMP 0.00 HYD JUMP 0.00 0.00 0.00 0.00 0.00 I LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 12/14/04 I PAGE 2 PROJECT: La Costa Greens PA 1.06 & PA 1.07 NE Ultimate I DESIGNER: AH LINE Q D W DN DC FLOW SF-FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS I 6 HYDRAULIC GRADE LINE CONTROL 128.92 I 40 18.2 24 0 0.82 1.54 PART 0.00647 13.2 7.0 128.97 131. 89 129.87 133.43 0.90 1. 54 134.35 0.00 I 8 HYDRAULIC GRADE LINE CONTROL 161.96 I 50 2.1 18 0 0.29 0.55 PART 0.00040 8.7 3.6 162.15 164.78 162.44 165.33 0.29 0.55 0.00 0.00 X ~ 0.00 X(N} 15.15 51 0.7 18 0 0.10 0.31 PART 0.00004 13.6 2.7 165.ll 191.82 165.21 192.13 0.10 0.31 192.26 0.00 HJ @ DJT I-X ~ 0.00 X(N} 8.80 I 9 HYDRAULIC GRADE LINE CONTROL 167.04 60 2.7 18 0 0.23 0.62 PART 0.00066 16.0 3.9 166.87 184.66 167.10 185.28 0.23 0.62 185.57 0.00 I X ~ 0.00 X(N} 46.72 I 10 HYDRAULIC GRADE LINE CONTROL 168.77 70 4.3 18 0 0.42 0.79 PART 0.00168 7.0 4.5 168.66 168.97 169.23 169.76 0.57 0.79 170.15 0.00 I' I 12 HYDRAULIC GRADE LINE CONTROL 172.37 80 5.9 18 0 0.59 0.94 PART 0.00315 8.3 5.1 172.46 173 .22 173.09 174.16 0.63 0.94 174.64 0.00 I I 13 HYDRAULIC GRADE LINE CONTROL 183.48 90 1.7 18 0 0.34 0.49 SEAL 0.00026 1.0 2.0 181. 51 182.72 183.48 183.45 1.97 0.73 183.52 0.00 I X ~ 23.48 X(N} 0.00 I 13 HYDRAULIC GRADE LINE CONTROL 183.48 1100 23.0 24 0 2.00 1. 71 FULL 0.01034 7.3 7.3 181. 01 181.41 183.48 183.98 2.47 2.57 184.98 0.00 I ILA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: La Costa Greens PA 1.06 & PA 1.07 NE Ultimate DESIGNER: AH I LINE Q D W DN DC (FT) FLOW SF-FULL TYPE (FT/FT) NO '114 1110 1'14 1120 121 I I' 17 1,130 I, I I I I I I I (CFS) (IN) (IN) (FT) HYDRAULIC GRADE LINE CONTROL 189.98 3.8 18 o 0.43 0.74 PART 0.00131 HYDRAULIC GRADE LINE CONTROL 189.98 9.8 18 4.9 18 X = o 0.75 1.21 PART 0.00870 o 0.35 0.85 SEAL 0.00218 1.81 X(N) 0.00 X(J) = HYDRAULIC GRADE LINE CONTROL 221.78 4.9 18 o 0.48 0.85 PART 0.00218 V 1 V 2 (FPS) (FPS) 8.1 4.3 7.1 6.4 2.8 4.8 1.81 F(J) 5.7 4.8 FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC 188.88 189.89 189.35 190.63 188.88 189.06 189.98 190.27 189.39 191.64 191.20 192.49 1. 82 D(BJ) 0.44 D(AJ) 221.04 222.16 221.78 223.01 D 1 (FT) 0.47 1.10 1.81 1. 53 0.74 D 2 (FT) TW CALC 0.74 190.99 1.21 0.00 0.85 192.91 0.85 223.43 REPT: PC/RD4412.2 DATE: 12/14/04 PAGE 3 TW CK 0.00 0.00 REMARKS 0.00 HYD JUMP 0.00 I I I I I I I I I I I I I I I I I I V 1, FL 1, D 1 AND HG 1 V 2, FL 2, D 2 AND HG 2 REFER TO DOWNSTREAM END REFER TO UPSTREAM END X X(N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POI~T WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X (J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F (J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 12/14/2004 15: 8 I 'I I, ,I I' I· I I I I I I 'I' I, I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 4 HYDRAULIC ANALYSIS 4.3 -Southeast Basin Storm Drain Legend, ,Storm Input and Storm Output AH:kc. H:IREPORTS123521115\1st SubmlttallA02,doc W,O,2352-1,15 1211512004 9:15 AM -' , I I I~ I I I 'I " I I I I I I I I I I' I I ~ ~ SCALE: 1 "= 1 0 0 ' ---- 32 74 '1ft'l! 38 I 39 ~~~~//A fJ LEGEND PIPE NODE 10 @ EXISTING STORM ,DRAIN ~ PROPOSED STORM DRAIN ~ ~/,,//' ...... ,,~.-.~ *'/,/ . .....a lJ»'-~..-/ /'/_~ ?O~$v;p-.... ~ ,,/' ................. -----~~ ......... ' .... PREPARED FOR: HUNSAKER & ASSOCIATES SAN DIEGO, INC PlANNING 10179 Huennekens Street ENGINEERING San Diego, Ca 92121 SURVEYING PH(858)558-4500' FX(858)558,1414 STORM DRAIN LEGEND FOR LA COSTA GREENS PA 1.06 & 1.07 SOUTH EAST BASIN CITY OF CARLSBAD, CALIFORNIA SHEET 1 OF 1 R: \03B5\l<Hyd\0385tH06-Storm Drcln Legend.dwg[ O]Dec-15-2004: 11: 14 I~ 'I '" I~ 0 == PUBLIC WORKS I STORM DRAIN ANALYSIS (INPUT) ~JECT: LA COSTA GREENS P.A. 1.06 & P.A. 1.07 SE Ultimate ' ,GNER: AH L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D W S KJ KE KM LC Ll L3 111.68 3 7B.0 7B.0 98.19 109.32 110.23 0.00 42. O. 3 0.50 0.00 0.05 1 4 0 71.0 71.0 47.03 110.56 111.12 0.00 42. O. 3 0.50 0.00 0.05 0 5 15 61.4 61.4 150.27 111.45 113.14 0.00 42. O. 3 0.50 0.00 0.05 0 6 35 25.0 25.0 95.29 113.97 114.54 0.00 36. O. 3 0.50 0.00 0.05 0 7 55 25.0 25.0 76.55 114.B7 116.19 0.00 36. O. 3 0.50 0.00 0.05 0 8 65 8 16.0 16.0 43.70 117.19 IlB.21 0.00 24. O. 3 0.50 0.00 0.05 0 9 85 13.1 13.1 94.77 118.71 123.27 0.00 18. O. 3 0.50 0.00 0.05 0 10 95 B.O 8.0 283.67 123.60 145.42 0.00 18. O. 3 0.50 0.00 0.05 0 11 115 4.2 4.2 25.25 145.75 146.81 0.00 lB. O. 1 0.50 0.20 0.05 0 0 0 4.4 4.4 13.62 113.45 114.00 0.00 18. O. 1 0.00 0.20 0.05 5 0 0 8.2 8.2 35.8B 113.45 114.71 0.00 18. O. 1 0.00 0.20 0.05 5 0 0 3.9 3.9 15.51 115.47 116.24 0.00 18. O. 1 0.00 0.20 0.11 6 0 0 45 34.2 34.2 18.00 113.47 113.83 0.00 42. O. 1 0.00 0.20 0.05 6 0 0 9.6 9.6 42.74 117.19 117.74 0.00 24. O. 3 0.50 0.00 0.05 8 66 75 4.8 4.8 254.18 118.24 121.01 0.00 18. O. 3 0.50 0.00 0.05 0 67 0 4.8 4.B 283.35 121.34 124.58 0.00 lB. O. 3 0.50 0.00 0.05 0 68 0 4.8 4.B 72.21 124.91 134.53 0.00 18. O. 1 0.00 0.20 0.05 0 0 0 75 4.9 4.9 6.25 118.24 11B.95 0.00 18. O. 1 0.00 0.20 0.05 66 0 0 3.2 3.2 5.25 11B.71 119.03 0.00 18. O. 1 0.00 0.20 0.05 9 0 0 5.4 5.4 162.BO 123.60 131.50 0.00 18. O. 1 0.00 0.20 0.18 10 0 o 4.B 4.8 5.25 145.75 145.94 0.00 18. O. 3 0.50 0.20 0.05 11 116 o 0.9 0.9 10.45 146.27 147.21 0.00 18. O. 1 0.00 0.20 0.05 o o o I I L4 A1 A3 REPT: PC/RD4412.1 DATE: 12/14/04 PAGE 1 A4 J N o O. O. O. 4.00 0.013 25 O. 91. 89. 4.00 0.013 45 90. 77. O. 4.00 0.013 o O. 90. O. 4.00 0.013 o 90. O. O. 4.00 0.013 o O. O. O. 4.00 0.013 o O. O. O. 4.00 0.0l3 o 91. 91. O. 4.00 0.013 o O. O. O. 4.00 0.013 o O. O. b. 4.00 0.013 o o. O. O. 4.00 0.·013 .0 O. O. O. 4.00 0.013 o O. O. O. 4.00 0.013 o 2. 89. O. 4.00 0.013 o 2. O. O. 4.00 0.013 o 86. O. O. 4.00 0.013 o O. O. O. 3.00 0.013 o o. O. O. 4.00 0.013 o O. O. O. 4.00 0.013 o O. O. O •. 3.00 0.0l3 o O. O. O. 4.00 0.013 o O. O. O. 3.00 0.013 PUBLIC WORKS STORM DRAIN ANALYSIS I .OJECT: LA COSTA GREENS P.A. 1.06 IX P.A. 1.07 SE Ultimate I GNER: AH Q D W DN DC FLOW SF-FULL V 1 V 2 ·0 I , I I 8 I , I I I I I I I I (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) HYDRAULIC GRADE LINE CONTROL 111. 68 78.0 71.0 X = 61. 4 X = 25.0 X = 25.0 X = 42 42 42 o o 0.00 o 0.00 36 0 63.67 36 0 0.00 16.0 24 o 13.1 18 X = o 0.00 8.0 18 0 X = 0.00 4.2 18 0 X = 4.85 2.38 2.05 X(N) 1. 90 X(N) 1.47 X(N) 1.10 X(N) 0.95 0.81 X(N) 0.54 X(N) 0.45 X(N) 2.76 2.64 2.46 1. 61 1. 61 PART PART 0.00 PART 0.00 0.00601 0.00498 X(J) = 0.00372 X(J) = SEAL 0.00140 0.00 PART 0.00140 0.00 X(J) = 1.44 PART 0.00500 1.35 PART 16.34 0.01555 1.10 PART 0.00580 205.13 0.78 SEAL 0.00160 0.00 X(J) = HYDRAULIC GRADE LINE CONTROL 114.19 4.4 18 o 0.46 0.80 PART 0.00175 _ HYDRAULIC GRADE LINE CONTROL 114.19 8.2 18 o 0.68 1.11 PART 0.00609 HYDRAULIC GRADE LINE CONTROL 116.43 3.9 18 o 0.41 0.75 PART 0.00138 10.9 7.8 1. 00 6.7 9.14 3.5 4.0 14.51 12.2 13.5 14.1 2.4 13.39 5.1 9.4 8.0 9.6 9.1 F(J) 8.5 F(J) 3.6 6.5 F(J) 14.1 13 .1 5.8 4.5 F(J) 4.6 5.9 4.4 FL 1 (FT) 109.32 110.56 30.50 111.45 25.87 113.97 114.87 8.79 117.19 118.71 123.60 145.75 1. 08 113.45 FL 2 (FT) 110.23 111.12 D(BJ) 113.14 D(BJ) 114.54 116.19 D(BJ) 118.21 123.27 145.42 146.81 D(BJ) 114.00 HG 1 CALC HG 2 CALC 111.76 112.99 113.68 113.76 2.24 D(AJ) 114.62 115.60 1.95 D(AJ) 117.26 117.38 117.33 117.80 1.18 D(AJ) 118.06 118.99 119.52 124.10 124.14 146.52 147.45 147.59 0.55 D(AJ) 114.19 114.80 113.45 114.71 114.19 115.82 115.47 116.24 115.95 116.99 D 1 (FT) 2.44 3.12 3.10 3.17 3.05 3.29 2.46 2.15 0.87 0.81 0.54 1. 70 1. 09 0.74 0.74 0.48 REPT: PC/RD4412.2 DATE: 12/14/04 PAGE 1 D 2 (FT) TW TW CALC CK REMARKS 2.76 0.00 0.00 2.64 0.00 0.00 HYD JUMP 2.46 0.00 0.00 HYD JUMP 2.84 0.00 0.00 1.61 0.00 0.00 HYD JUMP 0.78 0.00 0.00 HJ @ DJT 0.83 0.00 0.00 1.10 0.00 0.00 0.78 147.97 0.00 HYD JUMP 0.80 115.19 0.00 1.11 116.46 0.00 0.75 117.35 0.00 PUBLIC WORKS STORM DRAIN ANALYSIS I ~OJECT: LA COSTA GREENS P.A. 1.06 & P.A·. 1.07 SE Ultimate I GNER: AH . Q DWDN 10 (CFS) (IN) (IN) (FT) DC (FT) FLOW TYPE SF-FULL V 1 V 2 (FT/FT) (FPS) (FPS) I I I I I I I I 9 I I o I I 1 I I I HYDRAULIC GRADE LINE CONTROL 116.43 34.2 42 o 1.17 1.81 PART 0.00116 3.9 HYDRAULIC GRADE LINE CONTROL 117.93 9.6 24 0 0.85 1.10 PART 0.00180 7.2 4.8 18 0 0.69 x = 0.00 X(N) 0.84 PART 0.00209 3.0 59.67 X(J) = 20.84 4.8 18 0 0.68 x = 0.00 X(N) 0.84 PART 0.00209 6.1 243.15 4.8 18 0 0.36 0.84 PART 0.00209 14.9 X = 0.00 X(N) 67.15 HYDRAULIC GRADE LINE CONTROL 119.18 4.9 18 o 0.38 0.85 PART 0.00218 8.8 HYDRAULIC GRADE LINE CONTROL 119.25 3.2 18 o 0.35 0.68 PART 0.00093 5.5 HYDRAULIC GRADE LINE CONTROL 124.12 5.4 18 0 0.49 0.90 PART 0.00264 10.0 X = 0.00 X(N) 66.31 HYDRAULIC GRADE LINE CONTROL 146.98 4.8 18 o 0.50 0.84 PART 0.00209 0.9 18 0 0.17 X = 0.00 X(N) 0.35 PART 0.00007 0.00 X(J) = 3.1 0.7 5.90 4.6 5.4 8.2 F(J) 4.7 4.7 4.8 4.1 4.9 4.1 2.8 F(J) FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC 113.47 113.83 116.43 116.37 117.19 117.74 118.24 121.01 1.13 D(BJ) 121.34 124.58 118.07 118.84 119.51 121.56 0.69 D(AJ) 122.02 125.42 124.91 134.53 125.27 135.37 118.24 118.95 118.77 119.80 118.71 119.03 119.25 119.71 123.60 131.50 124.12 132.40 145.75 145.94 146.98 146.89 146.27 147.21 0.16 D(BJ) 147.35 147.56 0.23 D(AJ) D 1 (FT) 2.96 D 2 (FT) TW CALC 2.54 116.76 0.88 1.10 0.00 1.27 0.55 0.00 1. 01 0.68 0.84 0.00 0.36 0.84 135.78 0.53 0.85 120.22 0.54 0.68 120.03 0.52 0.90 132.84 1.23 0.95 0.00 1.08 0.35 147.71 0.51 REPT: PC/RD4412.2 DATE: 12/14/04 PAGE 2 TW CK 0.00 0.00 REMARKS 0.00 HYD JUMP 0.00 0.00 HJ @ DJT 0.00 0.00 0.00 0.00 HJ @ UJT 0.00 HYD JUMP I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END I x X(N} X(J} -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT ~RE HG INTERSECTS SOFFIT IN SEAL CONDITION -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER I -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J} -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ} -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ} -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART I HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE I EOJ 12/14/2004 16:16 I I I I I I I I I I I I I I I I I I I I I I I: I: I' I I I I, 'I I I v I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 5 INLET & CATCH BASIN SIZING 5.1 -Inlet Sizing & Calculations AH:kc H:\REPORTS12352111511s1 SubmittallA02.doc W.O.2352·115 12115/2004 9:15AM I I I I I I I I I I I I I I I I I I I CURB INLET SIZING LA COSTA GREENS'-PLANNING AREAS 1.06 AND 1.07 Type Inlet Street Surface of at SIope1 Flow Inlet Node S (%) Q (cfs) ON-GRADE 103 1.00% 4.9 ON-GRADE 107 1.00% 7.9 ON-GRADE 121 8.75% 6.1 ON-GRADE 128 8.75% 4.6 ON-GRADE 133 4.88% 4.3 ON-GRADE 136 4.67% 3.2 ON-GRADE 203 1.00% 4.9 ON-GRADE 207 1.00% 2.6 ON-GRADE 213 9.02% 3.8 ON-GRADE 216 9.02% 5.3 ON-GRADE 227 2.50% 5.9 ON-GRADE 232 1.00% 4.3 ON-GRADE 303 6.44% 4.2 ON-GRADE 307 6.44% 4.2 ON-GRADE 314 3.58% 3.2 ON-GRADE 323 1.00% 4.9 1 From street profiles in Improvement Plans· 2 From AES ouput Gutter Depression a (ft) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 3 From Manning's Equation: Q = (1.49/n)*A*S1/2*R2I3 Flow Required Depth3 ~ength of y (ft) Opening4 (ft) 0.39 11.6 0.44 16.6 0.31 17.1 0.28 13.5 0.30 12.2 0.28 9.5 0.38 11.5 0.33 7.0 0.27 11.7 0.29 15.3 0.36 14.9 0.37 10.4 0.29 12.3 0.29 12.4 0.29 9.2 0.38 11.5 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analYSis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7l(a+y)1\3/2 5 length shown on plans (Required Length of Opening + 1 foot) Type Inlet Street Surface of at SIope1 Flow Inlet Node S (%) Q (cfs) SUMP 115 N\A 8.2 SUMP 247 N\A 11.7 SUMP 250 N\A 3.4 SUMP 327 N\A 3.9 SUMP 334 N\A 4.4 SUMP 336 N\A 8.2 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) N\A N\A N\A N\A N\A N\A 3 Per City of Carlsbad Standards From Ratio: Q/l = 2 5 length shown on plans (Required length of Opening + 1 foot) Flow Depth y (ft) N\A N\A N\A N\A N\A N\A Required length of Opening3 (ft) 4.1 5.8 1.7 1.9 2.2 4.1 Use Length 5 (ft) 13 18 19 15 14 11 13 9 13 17 16· 12 14 14 11 13 Use length 5 (ft) 6 7 5 5 5 6 12114/2004 H:\EXCEL\2352\115\1st SubmittaI\INLETS-CARLSBAD-FINAL.xls I I I I I I I I I I I ~ I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 5 INLET & CATCH BASIN SIZING· 5.2 -Catch Basin Sizing & Calculati·ons AH:kc H:IREPORTSI2352111511sISubmittaIlA02.doc . W.O.2352·115 12115/20049:15 AM I I I I I I I I I I I I I I I I I I I 12/14/2004 TYPE "F" CATCH BASIN SIZING LA COSTA GREENS -PLANNING AREAS 1.06 AND 1.07 Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): 3' .. 13.5" 7.5" , '. ' -.' ," 1 y = 0.405' (Centroid) ---------------------'-~~:~'~'~'~'-------~ ~~'~ ------ Qmax = 0.6A"(2gh) Qmax = 0.6A"(2gh) Qmax = 0.6(1.875+0.1875)["(2)(32.2)(1.125-0.405)] Qmax = 8.42 cfs per opening BASIN #1 -WEST BASIN NODE 110: Q = 0.76 cfs 1 Opening: Easterly Side Easterly Side NODE 117: Q = 6.77 cfs 2 Openings: Northerly Side Southerly Side NODE 118: Q = 3.19 cfs 2 Openings: Northerly Side Southerly Side NODE 120: Q = 2.45 cfs 1 Opening: Northerly Side 1 of 3 BASIN #2 -NE BASIN NODE 215: Q = 4.91 cfs 2 Openings: Westerly Side Easterly Side NODE 223: Q = 1'.71 cfs 1 Opening: Southerly Side NODE 235: Q = 2.71 cfs 2 Openings: Westerly Side Easterly Side NODE 238: Q:;: 0.70 cfs 2 Openings: Westerly Side Easterly Sioe H:\EXCEL\2352\115\CB F-FINAL.xls I I I I I I I I I I I I I I I I I I I 12/14/2004 TYPE "F" CATCH BASIN SIZING LA COSTA GREENS -PLANNING AREAS 1.06 AND 1.07 BASIN #1 -WEST BASIN NODE 124: Q = 4.81 cfs 2 Openings: Northerly Side Southerly Side BASIN #3 -SE BASIN NODE 338: Q = 0.87 cfs 1 Opening: Westerly Side NODE 310: Q = 5.38 cfs 2 Openings: Northerly Side Southerly Side NODE 317: Q = 4.83 cfs 2 Openings: Westerly Side Easterly Side BASIN #2 -NE BASIN NODE 239: Q = 1.43 cfs 1 Opening: Easterly Side NODE 220: Q = 23.02 cfs* * Requies special design with a bigger opening. Refer to the "Modified Catch Basin Type F -Maximum Capacity Calculation" spreadsheet for opening dimensions. 2of3 H:\EXCEL \2352\ 115\CB F-FINAL.xls I I I I I I I I I I I I I I I I I I I 12/14/2004 MODIFIED CATCH BASIN TYPE "F" MAXIMUM CAPACITY CALCULATION Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): H= 1.5 X= 18 (in) 10.9 (in) At Node 220: W= X= X-6"= 'LAy= 'LA= y='LAy/L,A= h= H= H+h= W= 3.0 (ft) 18 (in) 12 (in) 1.89 (ft3) 3.19 (fe) 0.59 (ft) 0.91 (ft) 1.50 (ft) 2.41 (ft) Qmax = 0.6A"(2gh) 3 4.5 (in) 12 (in) Input width of opening Input depth from top of box to flowline Height of rectangular opening Sum of each area times each centroid Sum of areas Height of effective centroid -Computed head to top of box (X -y) Additional ponding height allowable Total height above centroid Qrnax = 23.81 cfs per opening * Assumes no clogging of opening 30f3 H:\EXCEL\2352\115\CB F-FINAL.xls I I I I I . I I I I I I , I I I I I I I .. ~ I I I I I I I I I I I I I I I I I 'I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 6 DRAINAGE DITCH SIZING AH:ah H:IREPORTS\23521 115115! SubmlttallA02.doc W.O.2352-115 12115/2004 9:42 AM I I I I I I I I I I I I I I I I I I I DRAINAGE DITCH SIZING LA COSTA GREENS -PLANNING AREAS 1.06 AND 1.07 Basin Brow Ditch Conveyed Brow Ditch ID ID Node1 Flow2 (cfs) Size3 (ft) "'"" 1A 0.76 2 =I:I:_s::::: 1B 3.19 3 (J) .-s::::: Q) (J) .-ca 1C 2.37 3 ~Sco co 1D 2.45 3 2E 3.90 3 2F 1.01 3 N .;: 2G 1.71 3 =1:1: (J) 2H 0.82 3 s::::: ca 'w co 21 2.71 3 caw coz 2J 0.70 3 2K 1.43 3 2L 1.36 3 3M 5.38 3 ('I') s::::: 3N 4.83 3 =1:1: 'w s:::: ca 'w co 30 4.85 3 caw COCl) 3P 1.35 3 3Q 0.54 3 1 Refer to Developed Condition Hydrology Map (Chapter 9) 2 Flows from AES output (Chapter 3) and "Flow Determination into Terrace Ditches" spreadsheet (this chapter) 3 Refer to Grading Plans for drainage ditch details Maximum Capacities for Brow Ditches Brow Ditch Brow Ditch Manning's Maximum Size (ft) Min. Slope (%) "n" Flow (cfs) 2 1.00 0.015 2.73 3 1.00 0.015 13.98 NOTES: Based on a brow ditch minimum slope, s = 1.00%, and Manning's n = 0.015 Refer to attached FlowMaster output for calculations (this chapter) Refer to Grading Plans for drainage ditch details 12114/2004 1 of 1 H:\EXCEL\2352\115\DITCH-FINAL.xls I I I I I I I I I I I I' I I I I I I I FLOW DETERMINATION INTO TERRACE DITCHES LA COSTA GREENS PLANNING AREAS 1.06 AND 1.07 FLOW INTO TERRACE DITCH 30: STEP 1: Determine Time of Concentration (Tc): U/S Elevation = 250.00 ft DIS Elevation = 110.00 ft llE = 140.00 ft Flowlength, L = 530.00 ft = 0.100 miles T = (1l.9L 3 JO . 385 C AE Time of Concentration, T c = Time of Concentration, T c = 0.027 hours 1.63 min STEP 2: Determine Intensity for 1 DO-Year Storm Event (/100): 1 ~O-year, 6-Hour Percipitation, P 100,6 = 2.8 inches Duration, D = T c I = 7.44 P6 D -0.645 Intensity, 1100 = 15.19 inlhr STEP 3: Determine Runoff for 1 DO-Tear Storm Event (Qi00): Runoff Coefficient, C = 0.45 Drainage Area, A = 0.71 acres Q=CIA Runoff, Q100 = 4.85 cfs FLOW INTO TERRACE DITCH 3P: STEP 1: Determine Time of Concentration (Tc): U/S Elevation = 129.00 ft DIS Elevation = 105.23 ft Flowlength, D = 346.00 ft Slope, s = 6.87 % Runoff Coefficient, C = 0.55 T _ 1.8(1.1-C).fi5 c -VS Time of Concentration, T c = 9.69 12/14/20044:48 PM min 1 of2 H:\EXCEL\2352\115\1 st Submittal\OITCH Q.xls I I I I I' I I, I,· I I~ I- I I. I I I I I I FLOW DETERMINATION INTO TERRACE DITCHES LA COSTA GREENS PLANNING AREAS 1.06 AND 1.07 STEP 2: Determine Intensity for 1DD-Year Storm Event (1100): 1DD-year, 6-Hour Percipitation, P100•6 = 2.8 inches Duration, D = Tc I = 7.44 P6 D -0.645 Intensity, 1100 = 4.82 inlhr STEP 3: Determine Runoff for 1DD-Tear Storm Event (Q100): Runoff Coefficient, C = 0.55 Drainage Area, A = 0.51 acres Q=CIA Runoff, Q100 = 1.35 cfs FLOW INTO TERRACE DITCH 3Q: STEP 1: Determine Time of Concentration (Tc): U/S Elevation = 129.00 ft DIS Elevation = 110.00 ft Flowlength, L = 178.00 ft Slope, s = 1 D.67 % Runoff Coefficient, C = 0.55 T _ 1. 8(1.1-C)..Jj5 c -.", 'Jvs Time of Concentration, T c = 6.00 min STEP 2: Determine Intensity for 1 DO-Year Storm Event (1100): 1 ~O-year, 6-Hour Percipitation, P100,6 = 2.8 inches Duration, D = T c I = 7.44 P6 D -0.645 Intensity, /100 = 6.56 inlhr STEP 3: Determine Runoff for 1 DO-Tear Storm Event (0100): Runoff Coefficient, C = 0.55 Drainage Area, A = 0.15 acres Q=CIA Runoff, Q100 = 0.54 cfs 12/14/20044:48 PM 2of2 H:\EXCEL\2352\115\1 st Submittal\D1TCH Q.xls I I Worksheet for 2·ft Brow Ditch I Flow Element: Circular Pipe I Friction Method: Manning Formula Solve For: Normal Depth 1-Roughness Coefficient: 0.015 Channel Slope: 1.00 % I Diameter: 2.0 ft Discharge: 2.73 cfs I Normal Depth: 0.50 ft Flow Area: 0.62 ft2 I Wetted Perimeter: 2.10 ft Top Width: 1.74 ft Critical Depth: 0.58 ft I Percent Full: 25.2 % Critical Slope: 0.00593 ftlft Velocity: 4.39 ftls I Velocity Head: 0.30 ft Specific Energy: 0.80 ft Froude Number: 1.29 I Maximum Discharge: 21.09 ft'/s Discharge Full: 19.61 ft'/s Slope Full: 0.00019 ftlft I' Flow Type: SuperCritical I Downstream Depth: 0.00 Length: 0.00 ft Number Of Steps: 0 I I Profile Description: N/A Profile Headloss: 0.00 ft Average End Depth Over Rise: 0.00 % I Normal Depth Over Rise: 0.00 % Downstream Velocity: 0.00 ftls I I I I I: I I I I~ I I I I I I I I· I I Worksheet for 3-ft Terrace Ditch Friction Method: Solve For: Roughness Coefficient: Channel Slope: Diameter: Discharge: Normal Depth: Flow Area: Wetted Perimeter: Top Width: Critical Depth: Percent Full: Critical Slope: Velocity: Velocity Head: Specific Energy: Froude Number: Maximum Discharge: Discharge Full: Slope Full: Flow Type: Downstream Depth: Length: Number Of Steps: Manning Formula Normal Depth 1.00 3.0 13.98 2.08 3.70 2.83 1.19 33.5 0.00530 6.73 0.70 1.71 1.39 62.18 57.80 0.00058 SuperCritical 0.00 0.00 0 -' '\,i~ .... • "ot,' % ft cfs ft2 ft ft ft % ftlft ftls ft ft fP/s ft"/s ftlft ' " ft ft :;::'~~?j:~~:"~J.>,'>;j:::. '{'?::;$;~;:i"it;7*~~;[~C \tt)1;\~,,;, ::;·'tr'~~ill£t:'~ Upstream Depth: Profile Description: Profile Headloss: Average End Depth Over Rise: Normal Depth Over Rise: Downstream Velocity: ~oo ft N/A 0.00 0.00 0.00 0.00 ft % % ftls I I I I 1- 1- I I I I I~ I' I I I I I I Project Description Worksheet Flow Element Method Solve For Section Data Cross Section Circular Channe Manning's Forml Channel Depth -. Mannings Coeffic ),015 Slope Depth Diameter Discharge DRAINAGE DITCH CROSS SECTION Diameter ~f-------~ Hunsaker & Associates -San Diego, Inc. Freeboard = 0.50 ft ~ V:1~ H:1 NTS Project Engineer: Anabella Hedman FlowMaster v6.1 [6140] h:\flow-m\2167\4\4thsubmittal\10Dyrbditch_fm2 06/18/03 03:34:28 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 I, I I .. I I I I: ' I I' I . I I I 'I I I I I I, . VIIi I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 7 R·ISER & DESIL T BASIN DESIGN 7.1 -100 Year Mass-Graded Condition AES Model Output AH:kc H:IREPORTS123521115\1st Sub.mittaM02.doc W.O.2352-115 12115120049:15 AM I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: (c) Copyright Ver. 1.5A SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL 1982-99 Advanced Engineering Software (aes) Release Date: 01/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates -San Diego, Inc. 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * LA COSTA GREENS -NEIGHBORHOOD 1.04 (SCHOOL SITE) * * 100-YEAR MASS-GRADED CONDITIONS HYDROLOGIC STUDY * * (TO BE UUSED FOR RISER SIZING IN EACH DESILT BASIN) ************************************************************************** FILE NAME: H:\AES99\2352\115\DESILT.DAT TIME/DATE OF STUDY: 10:44 12/15/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE SAN DIEGO HYDROLOGY MANUAL 11 C 11 -VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED 0.90 * +--------------------------------------------------------------------------+ I I, I BEGIN DESILT BASIN #1 -EAST BASIN I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 42.00 TO NODE 43.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 177.00 135.57 41.43 411.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 9.292 I I I I I I I I I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.947 SUBAREA RUNOFF (CFS) 8.90 TOTAL AREA(ACRES) = 3.27 TOTAL RUNOFF (CFS) = 8.90 +--------------------------------------------------------------------------+ I END DESILT BASIN #1 -EAST BASIN I I I I BEGIN DESILT BASIN #2 -WEST BASIN I +--------------------------------------------------------------------------+ ************************************************************~*************** FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 177.00 139.00 ELEVATION DIFFERENCE = 38.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.370 SUBAREA RUNOFF (CFS) 4.83 TOTAL AREA(ACRES) = 2.01 TOTAL RUNOFF(CFS) 11.260 4.83 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 30.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< ============================================================================ UPSTREAM NODE ELEVATION = 139.00 DOWNSTREAM NODE ELEVATION = 123.98 CHANNEL LENGTH THRU SUBAREA (FEET) = 661.00 CHANNEL SLOPE = 0.0227 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 0.50 CHANNEL FLOW THRU SUBAREA(CFS) = 4.83 FLOW VELOCITY(FEET/SEC) = 1.49 FLOW DEPTH(FEET) 0.18 TRAVEL TIME(MIN.) = 7.41 TC(MIN.) = 18.67 **************************************************************************** FLOW PROCESS FROM NODE 29.00 TO NODE 30.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.154 *USER SPECIFIED (SUBAREA) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) 6.15 SUBAREA RUNOFF (CFS) 10.67 TOTAL AREA(ACRES) = 8.16 TOTAL RUNOFF(CFS) = 15.50 I I I I I I I I I I I I I I I I I I I TC(MIN) = 18.67 +--------------------------------------------------------------------------+ I I END DESILT BASIN #2 -WEST BASIN I +--------------------------------------------------------------------------+ ============================================================================ END OF STUDY SUMMARY: PEAK FLOW RATE (CFS) = TOTAL AREA (ACRES) = 15.50 8.16 Tc (MIN.) = 18.67 ============================================================================ END OF RATIONAL METHOD ANALYSIS 1 I I I I I I I I. I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 7 RISER & DESIL T BASIN DESIGN 7.2 -Mass-Graded Hydrology Map for Neighborhood 1.04 AH:kc H:IREPORTSI2352111511s1 SubmittallA02.doc . . . W.O.2352·115 12115120049:15 AM LEGEND WATERSHED BOUNDARY .FLOWLINE WATERSHED NODE ID EXISTING STORM DRAIN PROPOSED STORM DRAIN --... @ ~ ~ 0'00= 15.5 cfs. A= 8.2 ac. Te = 18. 7 min. -.. -... -- Jf ttl.oS ~. "- EAST BASIN Q,oo= 8.9cfs. --- A= 3.3 ac. Ta = 9.3 min. c----- V-- .. ... ~ ;; ~ ~ ~ (@ :lrtt2t;.S )< IIO • .? )< lTe~4 ,../ SCALE: 1"= 120';:::: ~~~ '11:1/5..5 D HUNSAKER & ASSOCIATES SAN DIEGO. INC. PlANNING 10179 Huennekens Street ENGINEERING San Diego, Ca 92121 SURVEYING PH(858}558-4500' FX(858}55B·1414 MASS-GRADED HYDROLOGY MAP FOR I SHEET 1 LA COSTA GREENS P.A. 1.04 (SCHOOL SITE) OF I~ .. N CITY OF CARLSBAD, CAUFORNIA 1 I~ 0 3:i R: \0385\l<Hyd\0385SH07-Sehool Site.dwg[ O]Dec-15-2004: 10: 41 I I. I I '1 I I I I I' I I I I I I· I I I Drainage Study La.Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 7 RISER & DESIL T BASIN DESIGN 7.3 -TEMPORARY STORM DRAIN ANA·L YS'IS (Storm 'Drain Legend, Storm Input and Storm Output) .. AH:kc H:IREPORTS12352111511st SubmittallA02.doc w.o. 2352-115 '.12115/2004 9:15 AM I I I I I I I I I I I I I I I I I I I ",'" / I '" I / I / I ( I I \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 47 \ \ \ \ \ \ 48 \ \ SCALE: 1"= 50' LEGEND PIPE NODE 10 EXISTING STORt.! DRAIN PROPOSED STORt.! DRAIN -.. , , \ \ \ \~ \ \ \ \ \ \ I I I I I ( ,,/ I ... PREPARED BY: HUNSAKER & ASSOCIATES 1't»foINC'I)tI'J~S __ bG«(UlC s..~ Ca mil SUlvtYlNC~·fXlMa)m.~ STORM DRAIN LEGEND FOR LA COSTA GREENS PA 1.06 & 1.07 TEMPORARY SOUTH EAST BASIN CARLSBAD, CALIFORNIA SHEEr 1 OF 1 I COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.1 (INPUT) DATE: 12/15/04 I PAGE 1 ,-OJECT: LA COSTA GREENS P.A. 1. 06 & P.A. 1.07 SE Interim IIGNER: AH J L2 MAX Q ADJQ LENGTH FL 1 FL 2 CTL/TW D W S KJ KE KM LC L1 L3 L4 A1 A3 A4 J N I 1 111.68 3 64.0 64.0 98.19 109.32 110.23 0.00 42. O. 3 0.50 0.00 0.05 1 4 0 0 o. O. O. 4.00 0.013 I 4 57.0 57.0 47.03 110.56 111.12 0.00 42. O. 3 0.50 0.00 0.05 0 5 15 25 O. 91. 89. 4.00 0.013 , 5 44.4 44.4 150.27 111.45 113.14 0.00 42. O. 3 0.50 0.00 0.05 0 6 35 0 90. 77. O. 4.00 0.013 6 40.5 40.5 95.29 113.97 114.54 0.00 36. O. 3 0.50 0.00 0.05 0 7 0 0 90. O. O. 4.00 0.013 I 7 15.5 15.5. ,71. 97 115.04 119.77 0.00 30. O. 1 0.00 0.20 0.05 0 0 0 0 O. O. O. 4.00 0.013 2 15 4.4 4.4 13.62 113.45 114.00 0.00 18. O. 1 0.00 0.20 0.05 5 0 0 0 O. O. O. 4.00 0.013 125 8.2 8.2 35.88 113.45 114.71 0.00 18. O. 1 0.00 0.20 0.05 5 o o o o. o. O. 4.00 0.013 3.9 3.9 15.51 115.47 116.24 0.00 18. O. 1 0.00 0.20 0.11 6 o o o o. o. O. 4.00 0.013 I I I I I I I I I I I COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I ~OJECT: LA COSTA GREENS P.A. 1.06 & P.A. 1.07 SE Interim ( IGNER: AH Q D W DN DC FLOW SF-FULL V 1 V 2 );0 I I 4 I 7 I I I I I I' 6 I I I I I I (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) HYDRAULIC GRADE LINE CONTROL 111.68 64.0 42 o 2.08 2.51 PART 0.00405 9.3 57.0 42 o 1.79 2.36 PART 0.00321 10.4 44.4 42 0 1.57 X ~ 0.00 X(N) 2.08 PART 0.00195 5.1 0.00 X(J) = 28.69 40.5 36 o 2.00 2.07 PART 0.00369 5.9 15.5 30 0 0.65 X = 15.68 X(N) 1.32 SEAL 0.00143 3.2 0.00 X(J) = 18.20 HYDRAULIC GRADE LINE CONTROL 113.97 4.4 18 o 0.46 0.80 PART 0.00175 7.4 HYDRAULIC GRADE LINE CONTROL 113.97 8.2 18 o 0.68 1.11 PART 0.00609 9.6 HYDRAULIC GRADE LINE CONTROL 116.00 3.9 18 o 0.41 0.75 PART 0.00138 6.9 8.7 8.3 7.5 F(J) 6.6 5.9 F(J) 4.6 5.9 4.4 FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC 109.32 110.23 111.68 112.74 110.56 111.12 112.51 113.48 111.45 113.14 17.01 D(BJ) 114.45 115.22 1.63 D(AJ) 113.97 114.54 116.79 116.99 115.04 119.77 6.87 D(BJ) 118.55 121.09 0.71 D(AJ) 113.45 114.00 114.00 114.80 113.45 114.71 114.18 115.82 115.47 116.24 116.00 116.99 D 1 (FT) 2.36 1.95 D 2 (FT) 2.51 2.36 TW CALC 0.00 0.00 3.00 2.08 0.00 2.62 2.82 2.45 0.00 3.51 1.32 121. 74 2.31 0.55 0.80 115.19 0.73 loll 116.46 0.53 0.75 117.35 REPT: PC/RD4412.2 DATE: 12/15/04 PAGE 1 TW CK 0.00 REMARKS 0.00 HJ @ DJT 0.00 HYD JUMP 0.00 HJ @ UJT 0.00 HYD JUMP 0.00 0.00 0.00 I I I I I I I I 1- I I I I I .1 V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WflERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY X(J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITlCAL TO SUBCRITlCAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 12/15/2004 10: 8 EITHER DRAWDOWN OR BACKWATER I I I I I I I, I I' I I I' I I' I I I I I Drainage Sfudy La Costa Greens -Neighborhoods.1.06 & 1.07 CHAPTER·7 RISER & DESIL T BASIN DESIGN 7.4 -Riser and Desilt Basin Cal'cu'lations AH:kc H:IREPORTS12352111511s.t SubmittallA02.doc . W.O,2352-115 12115120049:15 AM I I I I I I I I I' I I I I I· I. I I DESIL T BASIN DESIGN (BASIN #1-EAST BASIN) LA COSTA GREENS -NEIGHBORHOOD 1.04 (SCHOOL SITE) Per Option 2, Part B of Section A of the State Water Resources Control Board Order No. 99-0B-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured from the bottom of the basin to the principle outlet, shall have at least capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length of the basin shall be more than twice the width of the basin. The length is determined by measuring the distance between the inlet and the out/et; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum effiCiency. AREA TO BASIN ------------> c:::II:Jacres 100-YEAR PEAK FLOW TO BASIN ------------> ~cfs REQUIRED STORAGE CAPACITY BELOW PRINCIPLE OUTLET ELEV. 11772 ft3 436 CY 0.27 acre-ft. BOTTOM OF BASIN ELEVATION -------------> c:TIIDfeet RISER/PRINCIPLE SPILLWAY EL. ------------> ~feet DEPTH BELOW PRINCIPLE OUTLET 3.0 Ifeet IDESIGN BASIN BOTTOM WIDTH 1-------------> ~feet DESIGN BASIN BOTTOM lENGTH C!!::Jfeet DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. 12006 ft3 445 CY 0.28 acre-ft • ... 11_00_-_Y_EA_R_HW_O_V_E_R_R_IS_E_R __ .... I-------------> ~feet 100-YEAR WSE OVER RISER ~feet FREEBOARD ABOVE 100-YEAR WSE -------------> I 1.0 1ft. a..;IT..;O.;.P..;;O;;.;.F..;;B;;.;.A..;.;S;.;;IN...;..,;;;,EL;;.;E;.;V.;.A.;.;.T..;..;IO;.;.N~_ .... I-------------> I 140.0 Ifeet (From AES-99 Output and Hydro Map) (From AES-99 Output and Hydro-Map) (From Grading Plans) (From Grading Plans) (3 <= Depth <= 5 feet) (Length> 2 * Width) (Assume 2:1 Basin Side Slopes) (From Riser Design Spreadsheet) (From Grading Plans) * Emergency spillway crest elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 1 ~O-year runoff assuming 100% clogging of principle spillway. FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the CREST ELEVATION = -------------> ~feet Then the Spillway Opening Must Be = ~feet 12/13/2004 1of4 H:\EXCEL\2352\115\DESILT BASIN-OPTION 2.xls I I I I I I- I I, I: I I I: I' I I I I I I RISER DESIGN FOR DESIL T BASIN #1 (EAST BASIN) LA COSTA GREENS -NEIGHBORHOOD 1.04 (SCHOOL SITE) Weir Formula for Orifices & Short Tubes (free & submerged): Q = 0.85*Ca(2gh)0.5 Q = 0.6a(64.32h)0.5(0.85) Q = 4.1 a(h)0.5 Therefore, h = (Q/4.1a) 2 Weir Formula for riser acting as straight weir: Q = CLH1.5 Therefore, h = (Q/3.3L) 213 Node 243 : where: 0.85 is a reduction factor for trash rack C = 0.6 from Table 4-10, Kings Handbook a = area of orifice opening h = head (ft) above top of riser (Equation 1) where: C = 3.3 from Eqn. 5-40, Kings Handbook (Equation 2) Q100 = 8.90 cfs Riser d = 36 in Thus, a = 7.069 sq. ft. ---+. h = 0,09 ft. (Eqn. 1) (Eqn.2) L = 9.425 ft. • h = 0.43 ft. Therefore: I h = 0.43 ft., 12/13/2004 2of4 H:\EXCEL12352\115\RISER DESIGN.xls I I I I I I~ I, I I I I' I I I I DESIL T BASIN DESIGN (BASIN #2-WEST BASIN) LA COSTA GREENS -NEIGHBORHOOD 1.04 (SCHOOL SITE) Per Option 2, Part B of Section A of the State Water Resources Control Board Order No. 99-0B-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured from the bottom of the basin to the principle outlet, shall have at least capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length of the basin shall be more than twice the width of the basin. The length is detennined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. AREA TO BASIN -----------> ~acres 100-YEAR PEAK FLOW TO BASIN ------------> ~cfS REQUIRED STORAGE CAPACITY BEL,OW PRINCIPLE OUTLET ELEV. 29376 fe- 1088 CY 0.67 acre-ft. BOTTOM OF BASIN ELEVATION ----------> ~feet RISER/PRINCIPLE SPILLWAY EL. -------------> ~feet DEPTH BELOW PRINCIPLE OUTLET 3.0 Ifeet IDESIGN BASIN BOTTOM WIDTH ,------------> C]C]feet DESIGN BASIN BOTTOM LENGTH ~feet DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. 30024 ft3 1112. CY 0.69 acre-ft. 1 ... 1_00_-"""YE~A"""R ___ HW~O ... V_E""",R~R .... IS ... E ..... R~_ ..... '------------> I 102'75.5 Iffeeeett . 1 ~O-YEAR WSE OVER RISER FREEBOARD ABOVE 100-YEAR WSE ----------> I 1.0 1ft. .. IT_O_P_O_F_B_A_S_IN_E_L_E_VA_T_IO_N ___ I-----------> I 128.5 Ifeet (From AES-99 Output and Hydro Map) (From AES-99 Output and Hydro Map) (From Grading Plans) (From Grading Plans) (3 <= Depth <= 5 feet) (Length> 2 * Width) (Assume 2:1 Basin Side Slopes) (From Riser Design Spreadsheet) (From Grading Plans) * Emergency spillway crest elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 1 DO-year runoff assuming 100% clogging of principle spillway. FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the CREST ELEVATION = -------------> ~feet Then the Spillway Opening Must Be = ~feet 12/13/2004 30f4 H:\EXCEL \2352\ 115\DESIL T BASIN-OPTION 2.xls I I I' I I I 'I I I I I I- I II I- I I I I RISER DESIGN FOR DESIL T BASIN #2 (WEST BASIN) LA COSTA GREENS -NEIGHBORHOOD 1.04 (SCHOOL SITE) Weir Formula for Orifices & Short Tubes (free & submerged): Q = 0.85*Ca(2gh)0,5 Q = 0.6a(64.32h)0.5(0.85) Q = 4.1 a(h)o.5 Therefore, h = (0/4.1a) 2 Weir Formula for riser acting as straight weir: Q = CLH1.5 Therefore, h = (Q/3.3L) 213 Node 342: where: 0.85 is a reduction factor for trash rack C = 0.6 from Table 4-10, Kings Handbook a = area of orifice opening h = head (ft) above top of riser (Equation 1) where: C = 3.3 from Eqn. 5-40, Kings Handbook (Equation 2) Q100 = 15.50 cfs Riser d = 48 in Thus, a = 12.57 sq. ft. --~. h = 0.09 ft. (Eqn. 1) (Eqn.2) L = 12.57 ft. • h = 0.52 ft. Therefore: I h = 0.52 ft.! 12/13/2004 4of4 H:\EXCELI2352\115IRISER DESIGN.xls 1 I I, 1 1 I I I I 1 1 I 'I, I' I 1 VIn I I I .1 I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 8 APPENDICES Appendix 8.1 100-Year, 6-Hour Isopluvial Plan AH:kc H:IREPORTS\2352111511sIS11bmittaIlA02.doc W.O.2352.115 12/15/2004 9:15 AM -,--_.-; ~ -.---!--.-: ! .-. . -,~,,! .., ~ -i COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL r 100-YEAR 6-HOUR 1 , PRECIPITATIOr'J r"'20./ ISOPlUVIAlS OF 100-YEAR 6-HOUR PREGIPiTf\TIOrl IN 45 1 I 30 I I I 'I. \ It.: I I 15' . J l.j:-',"" .,r-I ffZo:re.C.T SiT£:' : p ~ ----~I+I--- I lOOJ~'" 2..u iv-... 330 45' ~' ~ r'" ",,"VI' I --I :i IIinil'lll >1 PrepR~d by u.s. DEPARTMENlr OF COMMERCE NATIONAL OCEANIC AND AT~OSPHERIC ADMINISTRATION SPECIAL STUDIES BRANCH, OFFICE OF IItOROLOGY. NATIONAL WEATHER SERVICE 30 1 -i I LU. ·T----- 118' 45' 30' ]5' 117° l.5' 3D' n_ ..... .: .......... ...1 , lor:' ~ ~I -I IS' J 16° Ann1::l'.Tn'TV VT t:l I I I I I" , I I' I I I I I I I I I I· I I· . Drainage Stwdy . . La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 8 APPENDICES .' . Appendix 8.2 . Runoff Coefficients (Rational .Method) . ,', .. . . , . '.. " -. '. .' , . AH:kc H:IREPORTS\2352111511st SubmittallA02.doc W.O.2352-115 1211512004 9:15 AM I Ii I I I I I I I I I I I I I I I I I RUNOFF COEFFICIENTS (RATIONAL METHOD) DEVELOPED AREAS {URBAN} Coefficient, C Soil Group (11 Land Use A ~ C D Residential: Single Family .40 .. .45 .50 .55 Multi-Units .45 .50 .60 .70 Mobile Homes .45 .50 .55 .65 Rural (lots greater than 1/2 acre) .30 .35 .40 .45 Commercial (21 80% Impervious .70 .75 .80 .85 Industrial (21 90% Impervious .80 .85 .90 .95 NOTES: (1) Soil Group maps are available at the offices of the Department of Public Works. (21 Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil group. Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C = 50 x 0.85 = 0.53 80 APPENDIX IX Updated 4/93 I I I I I I I I I I I I I - I I I I I I Drainage Study L?\ Costa Greens-Neighborhoods 1.06 & 1.07 CHAPTER 8 APPENDICES Appendix 8-~'3 .' Nomograph for Determination of Time of Concentration (Tc) for Natural Watersheds '. • AH:kc H:IREPORTS\2352111511s1 S~pmlttaIlA02.doc W,O.2352-115 1211512004 9:15 AM .. I ~( I I I I I I I l I I I. I I I I f· I H £GL1I1TIOAI Tc •. (/1tL J) . .385 1C = 7im~ or co/?c~nlra.rlc/? L 2 L~n91;' or wa/~rs);ed 3000 1/.. f)//I'~re/?ce 11"1 elevaflon along dl'~cfly~ . slot:J~ line (S~~ Ilpp~ndtx Y·IJ) 1ft L 't: .M/I~.s r~~f #Dt./.i-.". Minule$ soo .foo .5 4 3~O 21)() as NOTE [FORNATURALWATERSHEDS] 2t) R ADD TEN MINUTES TO P ~COMPUTED TIME OF CO~ CENTRAT/ON. L-:-=--=-=--=--=-==--=-__ ~ 10 5 " S~t)() "4~tJ "- J()()O " 20tJtJ 181)0 /61)0 /~()() 2()O "- 4 24() --I--IBI) 2--1--120 lOt) ~o lJt) 70 . /--:1--GO " " '\. SO .3tJ 2tJ 5 H L SAN DI EGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAL APPROVED "j, /1: /tf;"~ ~ NOMOGRAPH FOR DETERM I NATION OF TIME OF CONCENTRATION (Te) FOR NATURAL WATERSHEDS DATE . /2./1169 APPENPIX x:-~_ I··' I '1 I I· I I '1 I' I I I I· I I I ·1 I I . . Drainage Study La Costa Greens -Neighborhoods 1 ;06 & 1.07 CHAPTER 8 APPENDICES Appendix 8.4 . Urban Areas Overland Time of Flow Curves AH:kc H:IREPORTS\2352111511st SubmittallA02.doc W.O.2352.115 1211512004 9:15 AM I If I I· I· I I I. I' I( I I I· I I I I ( I· I URB/9# .t?RE/9S ()//ERL/lA/LJ TIME IJF FLtJW CURVES : -7-1-- E~ol'»ple : Cill'en : L I!'AgJ'h 01' F/ow • .3tJtJ :I';f Slope = I. tJ % Coel'hLoienr 0/ ,RU/10!'1'. C' •. 50 R~t2d: tJ"~r/qlu:/ fiowftm~ ::I..? Al/nv/~.s SAN 01 EGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES ~,E~) ~~. ,M,ANUAL-t--;:-. __ APPROVED .... ) I ,. 'H'>"-' /.. ,'/.. L4!>-e. '. .. ~'\ . ... ' ." .., v '-i- ..... ~ .~ It) URBAN AREAS OVERLAND TIME OF FLOW CURVES DATE 1'2.(r;'r i APPENDIX X-c I, I I 'I I I I I I,' I, I I I I I: ,I J I I Drainage Study , ' La Costa Greens -Neighborhoods 1 :06 & 1.07 CHAPTER 8 APPENDICES Appendix 8.5 Gutter and-Roadway Discharge-Velocity Chart _ _ AIi:kc H:\~EPORTSI2352\115\lst SubmittallA02,dac -" --W.O.2352-115 12115/20049:15 AM I I: I I I I I I I I I' I I I I I, I I I 'I' I W a. 9 en 1-W W a: ~ en LL. 0 .f!. 2% 20 18 16 14 I 12-1' ; 10 9 8 7 6 5 4 3 2 1.8 LG 1.2 LO 2 l-:-1.5'--1 ~' n=.0175 -::: _-+lr,L._,---t--2% O.l~ 45678910 DISCHARGE (C. F. S.) EXAMPLE: Given I Q..= 10 5 = 2.5 % RESIDENTIAl STREET ONE SIDE ONLY 20 30 Chart "": ,Depth = 0.4 t Velocity = 4.4 f. p.s. 40 SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES GUTTER AND ROADWAY DIS,CHARGE -VELOCITY CHART ' .. . a.-::: .::m. "~:9 50 DES I ~ ~. ,~ ~~,t;; APPROVED "r.ti~_ DATE f2..jS4/t.7' , I APPENDIX X-D I I I I' I' I I I · , . I, I. I I I I .1 I .1 I ,. D'rainage Study . La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER8 . APPENDICES Appendix 8.6 Intensity-Duration Design Chart • AH:kc H:IREPORTS12352111511st SubmittallA02.doc • W.O.2352.115 12115/20049:15 AM ----.... -,--.-.' - -.. --------.. JNTENSrrY~D~M!J.vd D~SIGN CHART l=t=tttllIDJIfmIL IIIIII-H-H-IIlfllll--+-+-I-+-H I I f I I H+H+H-I+l-HI I-l-+-~-1-1-1-1 I I I I I I I I I 1-._._._ ..... ,1 t I I I ,,! Illllllllllllf!III!1III1II'~"I"I~IIJ1.1IlJII!111!1 I I "Ill) 1Ij'1I111'"'J) 10 15 20 30 40 50 1 2 3 4 5 6 M';~, ..... I"\'" J-/nlll"1! Directions for Application: 1) From precipitation (naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed in the County Hydrology Manual (la, 50 and 100 yr. maps included in the Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation. (Not «rrlicable to Desert) 3) Plot 6 hr. precipitation on the ri~ht side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line is the intensity-duration curve for the location being analyzed. Application Form: '0) Selected Frequency yr. * 1) P6 = in., P24= , P6 = %* :P24 2) Adjusted *P6= in. 3) . tc = min. 4) I = in/hr. *Not Applicable to Desert Region R~'r;c:,a.rl llac· .T't.nT""l'1t.TnTV VT A I' I I· I I' I, I I I I I I I I I, I I I' I Drainage Study . La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTERS' APPENDICES· Appendix S.7 Drawing No. 4.00-SC "Plans for the Improvement of Bressi Ranch Residential Storm Drain"., Sheet 21 AH:kC H:\REPORTSI2352111511sISubmittaIlA02.doc W.O.2352-115 1211512004 9:15 AM I I I I I I I I I I I I I I I I I I I d ~ LA OOSiA GREENs 01-ee-03 ~ I J_ENIIRdNMENTAL \ \ PLANNING AREA 11 ~f' UI"~ \. LOi 1'1 ~~I tf,1 \ ~GRADING PER DII'C, NO, 4-Q0-8A ~~I .,'\ \ ,/~,-,,/ \ \ .... ;-,.-. 0/ \ .f / , ... X -'_h"~ " I \ I' /.1 .... '\ / /,/ ~ . ( /Jff//ifffJlir. -Im--ot-=-""r-t(!Jo-1~-<=""'~-!!I.-.~'"i1 NO. 4o.D-6A ~/ ~ .. ", '-,.---..---_/"" a.:: /.,>.\":' 2 TON CLASS RlPRAP L-l0', 11'-10' T-5.4' W! FlL T<R FABRIC IIIRAFI 700K (APPROV£D EQUAL) OR 6" 711ICK 3/4-"-1 1/2" BASE 1 TON CLASS RIPRAP • , L=10: 11'=12' 1=4.3' UGHT cu.SS RIPRAP ' , W/ FlLT<R FABRIC MIRAFI L-l0: W.'0' T=2.o.' \ \ 700K (APPROVED EQUAL) OR W! flLT<R FABRIC MIRAFI i I 6" 711ICK 3/4"-1 1/2" BASE 700.X (APPROV£D EQUAL) OR \ I 6" 711ICK 3/4"-1 1/2" BASE f'~ ( i LA OOBiA 1 I GREENS \ I Oi-99-03 STORM DRAIN DA TA 110. DaTA OR BRG.[jiADIUS(1f LeICTH(ff REMARKS r 1174'4643" -----128.00. 24 flCPClllSO'-ZlIlt¥ 2 1174'4643" ---'20.00. 24" eMP 14 GA • N29'460.9 W -----90.00 24 13""~ • N29'46 o.9'W ----20.0.0. 24" CI.IP 14 CA 5 1102'54 41 W ----104.00 24 RCP IJ5D-D t I • 1102'5441 W -----15.50 24 CI.IP 14 GA t WA T<RllGHT JOINTS . I ADot CONC, 0\9/ RE1I/FORCfIlC S7m REQ'D (2.5") "AS BUILT' RCE EXP. ___ _ REVIEWED BY: $1.. :01 2 TON ClASS RlPRAP Ri ~ :s <S PRIVATE CONTRACT INSPECTOR L-IO: W=I2' T=5.4' iti d :;:j .. W! FlL 1El1 FABRIC MlRAFI • it; ll! 700X (APPRo.V£D EQUAL) OR 6" THICK 3/4"-1 1/2" BASE r GRAPHICAL SCALE r.~\tt~\nornI""'--~am.., CJIII/ltW DU~tOftllnr PLAN: PLANNING AREA 11 STORM DRAIN SCALE: I" .-4f)' BENCH MARK DESCRfPllON: 9RASS DI5I( IN CONCRETF IN A STANDARD SUllV<Y IIflL ON OIl CENJElUNC' OF El CAMINO Rli'AL LOCAnON: COUNTY !if SAN DieGO BfNCfflIARf< DESlGNA110N NO., Rf800 288+89fC e PRomcrDPscaNCoNsvtTANTS p,--.._._.'tmm'1ClI'II 701 BStroct.SuiteSOO, San Dqo, CA 921(11 6]9-235-6471 FAX 619-234-0349 El.EVAl1011: 3".40.7 1I.5,/.. I~m"el DA~~~ ID~I ~ lWl DATUM: 1/,9.1(9. 29 hJJ..:),. "'"Z/.;; 07-13-OJ~';:: ~ H&f~ ! :::1 :~/::Gt:.1 I SHEET I CITY OF CARLSBAD 21 ENGINEERING DEPARTMENT ~~I~~'~·~KI RE'.'lSION DESCRIPTION DATE Job no. 2244.0.0. , I 'I I I I I I' I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.0q & 1.07 CHAPTER 8 APPENDICES Appendix 8.8 Drawing No. 418-8 "Plans for the Improvement of Bressi Ranch Residential.Planning Area 11", Sheet 9 AH:kC H:\REPORTS12352111511st SubmittallA02.doc W.O.2352-115 1211512004 9:15 AM I I I I I I I I I I I I I I I I I I I 1----.. L_ -.. -. -._1.. --. -f-l---i--'--'-------'I--1--1--+---.. -. -,"---1--J..-.J.--_ -I-II-'"!'... ...!._. _ • _ __ _ • _._______ _ " JI-I--I ij-~=r' ! I Ji 1 17 ' --I I -I . I ~ ... ~ ~~ 1 L+~I EE~f" t-t" -I i-Ir"r-.--r---.--.-,-", ........ . f f----+'1----+ .. + --I . ~-l-~ --. 'I , -if P"FI 1 Y ! 1 -I I-'i--I-I--T-!---1--i -. i ..... . -L. _1.. I----r-+--I----Hi -+ -j--r..J--7-.L ,'--' 1.....>._. i .-_.-1 .. _. ----T~ ,------. ---j .. -t. --f·-L ----'1--=t 1---ti l--. ~ -----i . ! t--±t-I-I--f--I---LL -it-t-"-I----H-. ---,-L f ---j--'-1-+ -. Et -t-4=f --++-.--j-. --LW3-J'L-t __ ~.J __ t ! I 1 1 1 . 1\ ~!I;i . Iii I I I I 1 1 'II' I ' I 'I ' ; I I! I I' II --\--. -_LL __ 1 ~-+--I I---' I, , H-----l--' H-I-~"---I---. --+-__ . _+ -+ ___ -l-ttjill I-I-T.J 1-1---I 1+ --~---'--'r-. I-i-1---~-.. ----+ ---H----H-..J I V -+ 1---H-. I-l-·-ttf --. -I-_LL I--: -+. -+-.-. -,1-+-1--I----t~--1----. ---t-I---+-'-'I--. --t--t-E J~+-* I-i-' ;=.1-.-----1--'--ti-_j_: .. --" . I ' 17 GliAL I I +.--I---t---+---I-1..t·. -t i i ,.-_1 1 -=t --I------I' ... ~=1~--+-..,-:f 1-1-I ~t-T .. I-.!-. - 1 I I I 1/ I r, , . I' I .. 'I ., I .. 1 t ----f'·-·-~---_I--___ .. _~-. .LI_--'-F'''----!-.!---. ES .i-,_ -' .-. t--+----\--1--.... ..;--c-I---~-----1-.--+-i---.. -L-.!_I _____ --1-"---:1---1----'1--w-i--' -l--.-l---:::.r-----I __ .L .. _.1 _____ _ "1 1 1 -t 1 f ,..M rnv ' ! Iii 1 I I ! I I I 1 I ' , I I J ---.. --~-----0----. ,-.I-t_ -----L -I----V1.t-. =1..= "-"1-'--11---.1---1--'--1--------1-'-.-. '----,--'-1-1----, 'l-~-----1.---"----~~-~--~-c---~ ---~I-----Lf--J.--~ -C-!-c---dl-----+ +--1-± hi T -----L -_.l.. .. .!-._ --t---1-1-' -to 1-----. -. --.-1-1-',,+ ---1--t--I----r----'-!-. --. 1 I --1---+--. 1-----~i-I---j-f--I--I-I---I--, -1--1----!-, --I---r--f---;-H-I-" 1 1 it I 1 1 ~i-/ I I I, ! i-i 1 ! ' : I: I . . I I I 11'"[" i I I ----·H-+-I1-... ±. 'j~-'-'-)---_____ ..... L_J._, __ -+ -+ ~--t--tl---!---rt~ I'--'~~: C""l ... ~--++ -r-+--+-1--1---' -r-I-±l.. 1----.---. -.. Lt .. ++------+-. ----~-.----.. ;.-... --I . I t· I-.. -:-~+-++-t-.. --1---1--'-i--1--I'--'I-I---"---H.---,--. --- -.... --I-I-f-.. -.. ~ I -'r T '" . . -". I ·r-f·-c--=1--' "~'-l--= 1----r'-_L I1--+--. -f--f---j-'I-r--L .L... --I---I-+-I--~.--.. ;-.... --... _ H.--I--.-., . . I i I -, 'Fa/. I I II r , , I I I I , -i-'-t' -J--I-----. ---------.... --1---.. ------.. 1 .. ...Lf+_··.j---_...l_ .. =/-:..-~~~I~L~~n ml'-----.... --~ .. ---1-----+-1----I---!---. --'------.. J.... --. -j-----1--.-.--J-I-I---1-+-.-.l-----I-J --I' L...L._ _ _. ___ ..... _ .. 1 __ --' ___ '-. ___ _ 1 rT ,I " Rcpl7.'~· * 8.2 (po • I" +-I I I J 1 I L _ I I r -1 ' I $1---1---,----.-1------~ --"+-1------.ll!o;"r, I -1--1----. --,---l-t .. I-----+-... -t-1-----i----.. +---I--· .. -1--1-1 '-1-1--"rf-f----j-'-i-I--H .. +-T'--I-I-._. "·--l---f+-·f~-"--'~""'-' -'-1--I-----' .. -t-----\--...,.-l~-1/1-. --I t--·~ t·I--.. I-'--i---·--r-TI----r-.. -·--·I-·--f-.-I-I---LI---H----··-·-+l-,-T ----ti~1 .. ---.. ·-----·---+-t---· -.-.... --r--.. ~F·-±-·--i .. --J -"-'M---'---J--'-'-__ ~l .. -.---1---1----+. -i----.-1---1-, t---j' . IT-' '--r' fFj!i! . -1---1--1-1--\-'-t --1-" .-. ±r--.1--1--1----.L. --I---1---j----. --.ll-j-------j--f--'1---I-t--. .--t--~ --+t-----.. ---.. -or' ___ 1 __ ._ --.. -.. ------L _ .. L --.-.. --. --~-f-I--1-l/l-.. J. ~-jl --lLl . ...J------+-1----1--5 !!!i_1---1---. --. -----.--1---1--H-- - -f--H--· -.--.. _.J.... f-.-.J--.;.-. ----.. 1-f-'I_"----... ,-t. ---I---.---1--1' .... -I -_..L --.------·r--... --_: .. _. --j--tl ."_ --t-l--l-i ---+ -f-~-if-ii~ -+~H--""1 --t-~ ----~ +; ,---,--+ -t-~~ ----+ -+~--+ -+ A!-C --L-r , ---+tr Fl----+---f ---lif-. 1 • ..J ' I III IL I Q , j' .,. " , I r.L I . -. -------1--1---"--r---. ---.. -i----1-Vic l . 1---l-. -------1-1-1-. ----I" --1---1--1--r ii! --1----I----t---1-1--1--1--I-' -. ---.1----f-I----1-'--.--1----...Lt-i--1-1·----i-·j-f--,--1-'-I--·-I-.. -~-.. Ii-· --1___'1---1--_~ .. -1-.... ____ -_';'_j ___ . _., ! 1 1 1 1 II 1 VI! . V I ; I I 1 I' '~, 1 ; , 1 E : . .1 I 1 . --'l -.j.--_.1. -.... L __ 20. . t"'---I-HI--! -j-+"--I L+-. -1-1-1--+1---.-L-.I----!-,.---."T -l-Lt -.-_._-1-. I "-,·--1-------r-I--', '-1-t--1-1-_j_I-.I ___ ; . ___ . _ .. _ .. , -tor' ------'--l't ----I-;.:k;.;r.;;,,~.h:tn· -;~. 71i"~ . -I----7r---t-H---I-I-t"--H --'-. '-i-I--I--i----. -+ .. -I-H--·.l+--+-'--'-"±"---l----1-'-1--------1-1---·-..L-t-.----... --.---. "1--' '-"$ -·t-----f-----.... ---\---~ .. -.. ---.-~-_r.""I-~ .. ~.J-.. --j .. r -----11. ----- --1----·1·-1--___ ..L __ .-..L . ~"S!tR. -1-.... _t:: ----r --.bI. -":"'-!--"-r----.. ---I---I--'-t--i-T--: -.--1----+ ... -+ .. -.. ---1' 'ftl ----l-H-I-Lr-t"i ---.. --1--f-----.-.-. ---I' -.. -----:-f'·I----.. -f---" -1----, .. -1---.. -..... -------t--._,_j_ .. --._i ". --i --T' -+-.-.}--i' --1-----:T:-F·H----j--. - . ---H-'-rl _-®-L I----f-t-f-- -1 -i-I--t--i--t-------1---1---1---+f--H-'r--r-.-. -J 1---1---I--------T -rt-I-----1--1-' --'1 +-- -\--I-,. f-~ +. -----I-r----"I"'"' --1 __ +_ -- --.. 11 .... -.-+"I~ "1"""1-,,+, ---·t· ---I-I-I---J, -zJ-lllF-;t~~-J.lPl2v. em-f----. . -1----.. t-l-H -I f----.--1---1----f·--'-+ -----..... ------.. -. -+------1---1---... -_t~·--.---.. -1-1---.. -J:1:~ ____ ... L, 1·-• I-T -"-I'-!------.-'-.. --.-l-· ... --.. -'----+-f------.. .... --.. --. -+ .. -.. ~--.. ·[-·---t--· .... f---t__ ·1-+1t/:"-·f-~-·~I..c-V. 1'P9-1-f--' ---I----t-I----I-. ---r .. -H---L.-----. --.-1-1---1--1---++ T....L.-f-F-l-.-1··--·1-----\-1-·-+..2·_1_ ----I-----f---+-l.-.-. _____ +_-'-___ .. _. . --.. -.. ·1-+--.. -.. -t }--.----.. + .-----+ .. l71 --l---"i-± -----1""-1----1--I--I--r-----t--j--'-1-. '----f---I---l=t---.'tt'-"--I-.1--. -. -.. -. -.-"-.1--'-------±-. ---.---.1t -1 +~-T--Jj~ -. :.~-r-+-_U ____ 1._ .. J. -.. ·-.. -i -1-.. -.-.--"1-.. -_ ._~_~ .. _ . __ 1-.--11---til-Hi---I -~-i 1/-j-m --1--'-,--H---+ ~-H--~ --rt -f---+"-1 H-'-f-it -+ --l-,----~Ff --t+-ffi+F--f-t: -Htf--til-lH -+1 -,---+ ----t!--, .......... --t·-.. · ·--r-.. ----,-··-1---·------' ./-+.----1--.--.-H-I-"Lj---.-t-+---I .-.t-.---+-I-.--.... ---I---1 --... -+ -1--'\-1-1-. 1---, .. -+--.~-----'-;-_1... .. ---... -u ... ----.-+-i.----l-.. -.-.--+ _ -. + .. -t·-..I.i-;----I-.. t--Lj--T-.. -I/--V---,-I---... -l-.. --I...-.... -_r' L-----i~ 5+00/ 6tOO ---1--'-"_L -----.. -.-J-'1--. '-nrc:-=---.... -. 'L .. ---._--t----l-_. -.---.... --1-1-'-/ -----i .. l. 1-.. L -.. +----" _J .. _ '---~~-~j.-"I"f ---.---i-_L. -------. --1--1--/ AU__.. STORM DRAIN DATA -"--. -·-t't--JJ----·1--j-.+---./-~r;-~~--ff---.. -'-1---1--------l---~--i-. / J.. ~"~qyer-.... NO. OflTA,OR BRG.RNJlUS(f!LENGTH(f!) REMAR/(S -... -.. -'j 0-; -.... -.. ~ .. -1... -.' ----.. -. -.. -~I ~l=-'--.. ---.. -.--. --1-1--I--" I ~ I ;;'Z~f !iIft&-'sl<:l::7 ' N7H8'4J"E -----6.58 24 Rep IJ50"iiJ I I 2 N067228 W _____ 52.08 -------1-.. ·t-·-~ -.-.. -... -·-JfllS> .. -.-1-iT ' --f--c-.--.. ---+-.. ----i-·-" / /, J NU8'2U02"E ____ 105.J6 .. ·---·-ll--..... ~--liSi---.-.. ,~ .. --I-----~.....L-..... --f-I-I--I---r-~-J-I--. ( I #94.75STOIIMOIWN'A'-/~/'/r ~rr'-31 ' • N51'J9S5C --_ 215.5 24RCPIJ5D-O' I I 1~ it ~ I ! " -----::7-------N I !::) £§.tJ:_t:.6.&..1:~ • ... -llT--·--~ ... -.~--~-1J ·'Il-·-~-t-------+-·I---.. +·--·-----~-·-I-I---·l·l-/ I~I / r2±7f~~~II..P!Al1!.~6+35.,4--21,50RTALLSTONS71lm-)~"lf ALLS'ffI'IS,77lEET WAlERTlGHTJOINTS -"-1-"'! 1'-'----!<:; .. iL·,·~~f· ·1·-f--7'-'-"-;--.. ----r-I-.... -I--~-·-",-r--" '1 , m ~-4 0, TYPE'i"CATCHSASIN .J U I f',/n1'e;~-Ic.o. I' It"~ lH'I 'I I 1 I ! I" I~I I_~ ____ .....,.,.... I I t il I'~§' ~ki!\U1: ' il l' -I tSl I I!:!;°U 04+00 "I .~ I 6+J5f4--165'LT --. -i-I ---... ~~ -; "I,r--. I .... -~. 111" I-.... I---i--1--1'--f--I-j---. --I l::i 1 =-= -, ... = -= r -" . Aifsroo--sTriffi' -.. --1--"-"8'i!i~~;-1-"-' ...vAI_I--_ --.... :---l-r{-+l'-'I-'I--"1----~~I ~20'PRIVA7FS7ORIIORAII/ 1J-..L.~\ ~\\I TYPErCATCHSASlN .j-. -1"-"---,----!-.I/-.----1-I-Vl++l·/ .. -4,-,-,,,--H--I--r+---I-++1---( ~ \~~!\. E),SMNTPERFlN""-IJAI' II r~ -.. -'-i----. ,-... --... --1/, .. ----ri--.. -1--'--I--l-...l--"-"--1---1---"11--. "'-... ~ 1;1 "[\ ®. I ~, II --.--.j ... j-1-.. 1·'-1:; -.~-----t··-i .. ------·~ ----g---.... I--+r-'.' iIit;:,yo.~ 1\ / J--H PfRSDRSDS-9 \1\ .J \ ...... -~---.;.. . .. ---17--' . -----------. ---------.--.. -j--f--~ ""7\ \ \ ~\. + ~\~ -ll·· -+.--+1·-·1 ---;~--b-+·-.--~I-.. ·l-1. .. -r-----I--_..J. --. ---[I +~ ", ~ -----I 1 \\ ~\ \ g ~~ --1--'-j---ID------~~ ·J'H-. f--L--'-d-. ----I---+ .. -I "'-l-I-V -----/ ;--;--V) ~ \,~ \\ ~. \ . 1 'l,;". ~ I~'" V' ! _____ -----'/ "'. '0 \ N\ s1-r¢T -.j -I . Q II_'*~~J ~:"f·l-.. ' Il· --. 1---·t· -. -.---. -t --. -----I=t--J._ --Vi ~ / I I .AW--s!oNsHfET5 I -.. 1 "'v~.r:£ -~f" . .. -.-. -·-·1-.~r /®+-.--... --... ~--.. --1---1---·1--rL ------I \ S!:E I j L '''kfi; "T"l!' -. . ~~4~R12.~it 08-~~g~~----.----1-+ -. -~-.1.-. J 1 -11 . . -.g~/fo;t:~. fl 252. -. ~~II' -~ ~ -: '2~ -'1'..-.. -'-+4 -\---.. ---. ~+ ttL I I,) I ~ STORM DRAIN 'A'IFRtVA7EJ ", -iL -12n"-I-.-----J--.... _J.. -1--.. -~-I---. iE' tl-r'-I---l--.-:'::.L I SEE \ REMoI£RlSERd:AI'PROX SCAlE:1"·.U' I -·1--1 -·t .... --.. V ---.-.. --.. ---dT --.. -I--.. ·r-J:----. . 1 J-~SlETf1'1 20!F()fU"ClJPPER - . -" .--. --j.. lB!/N~~ __ I-:-11' 1 J;.O.f..l:n Il:r 81 ~~ _ rA'N'·! '. . .~.J--lili . I Oil!>: NO. 4(J()-.8C T 4-f· -"i--T-.BL~ILI -----.. -r-t-~Atf"'j:I'IIz.+"r1pnl1"-~ -t-t+-"I .. ·t-:i:!~ .... "'I~ . ---j-"I" -Tl'----1-.. -.---, --I-I-I-ti --t--. FtF--'r-h -h11-t-~t~ ~11§ .'ftft ft'_ -.-"00 toe "'Ii:! I"''''' .... ~I"" I<::lii!!l "'1,':" ~I\'i", fi i!lr.-~i~~§ ~l~ "AS BUILT" DATE RCE ___ EXP_ REVIEWED BY: PRIVATE CONTRACT I INSPECTOR DATE _ I I ' I SHEET 1-CITY OF CARLSBAD 1 SHEETS 1 , I I I I 9 ENGINEERING DEPARTMENT 11 1--. --to --1.-------------+. --t. --1.--f-. ---j·lpLANS FOR 1HE IMPROVENENT OF: 1r T \Cllpr\Z4Dl\PAlI\k7Ip\2407.JJmp09daop Q5"/Jo/Z£liJ4 --69 42:33 MI pDf BENCHMARK DfSCRiPTlOII: SRASS DISK IN CONCRfJE IN A STMiOAIIIJ SURV£Y I!El1. 011 C£NTERUIIF: or EL CAillNo REAL LOCATION: COUNTY OF SAN DI£GO BENCHIJARf( DESIGNATION NO. R1800 288+89 EC ELEVA TlON: Jl1.407 MSL. OAm!/: N.G.V.o. 29 ~ :1 STORM DRAiN ~' (PRIVATE) PRamcr.D.ESrGNCoNsm.:n4N'IS . II BRESS1 RANCH PLANNING AREA· 11 ~.~.a.-a +11ZnrI"1OII 70l B Sttcot, Suil. 800, Son Diego, CA 9210/ • I APPROVED: LLOYD B. HUBBS EXPIRES 12-31-0~ I 619-235-6471 FAX 619-234-0349 IIiIIEOdt'I .. HIJIS;Ill2O-.. lE -"'" 1 """"" 1 pO 1 ......... 1 eM 2)",.. !m ENGiNEER DAlE >.( ~.. ".".. o>-J1-oe .............,. DATE INIllAL . DATE INIllAL D"TE INIllAL·1I ~~D BJ~: " -II PROJEC~ NO, Jl DRAv.1NG NO, 1 .... ~ 7Z.t.o'l ~GlNEEROfWORK REVISION DESCRIPllON 01HERAPPROVAl C1TYAPPROVALIIRVWDBY: JL CT 02 19 418-8 H~~.;J:.. i::n 5i:;O{:·~ J.N 2407.11 I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 8 . 'APPENDICES Appendix 8.9 Drawing No. 400-8J "Improvement and l)tility Plans for Alicante Road''', Sheet 4, AH:kc H:IREPORTS12352111511st SubmittallA02.doc W.O.2352·115 12115120049:15,AM ! , I I I I I I I I I I I I I I I I I I I I I STRIPING & SIGNING LEGEND rm STRIPING TYPE PER CALTRANS STANIl4RD NUM8£R R£F£/IS 70 DETAIL LOTB HUNSAKER & ASSOCIATES S ... N 0 I ~ (j 0. INC. PlANNING 10179 HuennekeI'IsSueet ENQN£ERINC San Dtegtt, Ca 92tZ1 SURVEYING PH(BS8)SSB-4S00· FX(8S8)SS8-1414 f!1 LOT 22 OPEN SPACE 40 ) '~~E~~~~~ 40 80 120 SCALE 1"-40' ENGINEER OF WORK RAYMOND L. MARTIN DATE R.C.E. NO. 48670 EXP. 6/30/04 "AS BUILT" RCE ____ EXP. DATE REVIEWED BY: ALICANTE ROAD 1.1 ~'. -.. ,~'!'-:' "~" •• \ t INSPECTOR DATE I SHEET II CITY OF CARLSBAD 4 II ENG1NEERING DEPARTMENT I SH~ETS I IMPROVEMENT AND Ul7LI7Y PlANS FOR: BENCH MARK ALICANfE ROAD DESCRIPT/DN: BRASS DISK ON 1Iru. MONUMNIT (S.D. CO. CONTROL PI". RIBDO-2BB+B9EC) LOCATION: ON EL CAliINO REAL. 2.63 /II. APPROVED LLOYD B. HUBBS I Nty FROM LA COSTA AI'[" , F:l£VATlO~ 311.41 NGVD 29 MSL DATE I INITIAL ENGINEER OF' WOR REVISION DESCRIPTION DATE INITIAL DATE INITIAL OTHER APPROVAL CITY APPROVAL cm ENGINEER ReE EXe. ';ll,[05 DATE I nWN RV! i I Don I~"" ..... In i I n ...... " .... ~, ... t 7:35 W.O. No. 2167-04 RIM· I I I I I I I I I I I I I I I '1 I I I' Drainage Study . La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 8 APPENDICES .Appendix 8.10 Drawing No. 397-2H "Grading. and Drainage Plans for Poinsettia Lane at La Costa Greens", Sheets 12, 13 and 15 . AH:kc H:\REPORTS\2352111511s1 Submittal\A02.doc W.O.2352-115 12115/2004 9:15 AM I I I I I I I I, I I I I I I I I I I I f ---"--'-. -: ---.. ----:~.'-----.-~-----.---M~--~--. -. -, ~--~--.. -, -. -----1. --1-' -~-~'-I -. --:--, -, ~-~-.-~-.-:-~'---'---"--'--~'-----'--'--:--"---~-I .. : , -~---~.~~--.--.. ~-. -",-----,-~---~~----, ... ----.--.. -.-.. -~~---.~.:--,-~-.--.-- g: I I. I f+ ..j. tfd-l-H-4m-g'-+-I-I-!-, ~l·-r-l-1-t--l-+-. ,--l--H-I- J1-++.--'·+f+1:-P.-j--+-H-;' tE~·---l--r··1-'-ltEl-t -H-r+-+t~-++hl-H--j-tll-ri-t-r+ -' -'---l-I-..... J-L.t·-·-t.l·-j-ll-f· _J -W---I--r'-++ j HH=' -+i !! i .j.j-+ =r--c-'-+~~I-H' 'r-i H M -LLif-l+ -~L j-' -+ +-rl +-H-. +-h-+-+-':-'1 -~'-i---I-H-+-I-l--r++ .. ~r...l~-I·-t + +----I --+-+J~+ -++-1--. -+-1--r--~-i I-+-td-!+t---,-,++-t-++-l-+-J-l-r! -i-+--~-+--l--L, -+~-.~ -!--l-~..l...t-, '-1~t ID . r--~ c-' .' I I I , 1-'1+ i-.-'--. -. --1·-+-. -;. ++-l' -·'-r' -l·t··~l--·1 ,-. t f-J-t4·t -+"';"""I--i-·· .1-->-.-+-· ..... -·1-+-+--+-i.r.~r].-+-'" . ! -I--;--r-'-tl±.!-t-+. ,-!-.1-I.-.Lrl. i L_LII __ ..L..!..J-till . .L....L. "'. LL I L J '-, "t' I,' , I ' ': I ,!!! , ' I· I I I 1 I, I J+H' \., I "" "'.1 II': ~ I . I I t'l I'" '~')' I I r'''',,1 I I" '... ;. I r-gJ 'r-r-j:-H-I-I-' 1-' - -1 I, --1.-1-.--+ --++'1-+:' -+-. r'-, "T -i-I-+--"T--r-i -:-1-+--114-1--+-1 """, '. -r-lii....>< ". ~._---t-t.-'-i-\-:i ~4\TI ,--. , "". -r-" ! . I I I I I ! . I I I t I I I' I . ! I I I I I I I I ...... ~ I ~ !,u ~ I! " I I I !! i ( J5.v-t,t) . ~:a:'. I. I I ~ t:tt . l-t-r-·+t·+H-i--l--i · -f--r-t-ltTIag' A-~.H-~' i-· -iJ:-j-Tr4--j.-rt-r--T-"j':::IT-hi -.. 1-. f8=~-++ +--.a--~-R=1. i'?tH-+l'~ilf-T-Jt~~ ~ -+ !lo~~~ ! ·tl-ti'd-l--[-11~2,!·tt-UI!t . .i-l!~~~·1 'M-.it~ltl.....l. ~ J -'I--II-I--mjjo:rfr~ ->-l-----,~--'-'-+---+i'+ --'1-+-·.,,--·-I-l-++-<--··-H .. -L~ __ LL __ jj -1·+J--1-1· -:-r-I--l-I---t-dl~···~ J~ it-' , '·Ttl "'T-a~~f-SI~-4~-'-U~-~~+--,.-+ j I r I I I I I , ' ; I! "I , , ,I I '. I , .+-' ..J.-I! 1 i < f "i ~I!.~ 01'" . !! I 1 v =1 !O;:'7'SI ~ I _~: .,'!\.!ii j'-I ! ~ '=J--I-t-~ -!-i-I-:.-1-_; ._ ± I-h I 1-t ..Lt;~r~ ~H+-I+ti-t-I-~++-!-LLT4-~±"'~~ i rT-t-'-C-,'-~t·±~r: -q=r-t~j±~-.H't'--Ltt.lr-l-I'Jll'·ll'~I-1i ~~~ H· H-Httl r ·'~""1?1 I~rft·i-i~~~~![f~ ~ ;1='~F++~' , ~ . i I ! . . II I± I Ii· i iT. I .w. ILl-'..f I 1 '.1 1 .1 L-...J...! I .L-LLH'! I 1 1. i L... I I II IT 1.t-1Vi 11 ! ~ \', \ I '-H-,I, .k:l_I! i \'CJ JL I I I I! I~ I I j J 9· j-j--""1-:-r-t. iTtiTItl-1-111 I . -TT I 1 I , '1 i', t ;-T-~-'! ,'1· I I II i -j-"I, I I 1·1 Ii! -"~I" '....i,.. , .. i " ~ Ih I li.lJ...' iTI v' jlHTT --1-[-1 yri ~ 1 ,--t) I J'= =f!~ I . ..1 ' I I I 'I d:' I I I rH-f1' +t -1-I J I : I ' I tj ~I I I I I I l' 'I" ~' 1-I I"'"'!~ ~.. . I '.j , 1\ I bl' II v, '1. . '_~n ~ 1 ~ , I ' !~ u ' I'· r' r--"t-T-i--I-_.L '-'--' i'-r-' .. J·-i-i--!-l-·· ---..J-. .-+--·-1-· "'-7'·0-"';-' -' ·-+-'r -l-·~···i·-i··+-I'--·t·-·-·~ t-·~I....J..-i·-I--. -. '_+'-:-'i .+.-, 'I-ROi> •. -r-. .t-:;..,........, '--t-. -~ ... :t";'-,~ .. J.-.L . -, . . _1_"'; ':' " -~,pL":±.._l III .. ,. I I! 1 \1 I!II 'I '.+-' ,II J '\11+-11 ,J 3J;01D~ 1"1' ~ 11""'01\ ~P'AP"'I'II-"~'l'l:.' ",". ". ~ .. _~. i(SEEBSLUjt') , -J. ' ----!-L.J.-~. ..J.. __ ..J.-1.. -'-,--T-T -+-.-.---i--~--~-+---+ .--.. ---. '~T~_. --". . 1--'-'--1--t-+-" ' ... , -'~ ... , 'r.""" -.t.--I I I" I I I I I I 1 5(1. 0 I I ;!! I. I I I I: I I I Ii.. . I ,_ e." i..... 'J:r. \ I ~ J... I ! JUYjI !., I I 'I" _. W • 1, I f-.t---i.! I, -I~±tr-l.-_..l----"=1=t CL, -!-.j.--I-+ H-............... .lrf...,:;.x.:;();*'li-~-·-:·....!-l'---j·-+l-;--l-l--L-.~.~-+ ----~-~·-f-I··-I...l--+· _.~-+_t±i_.J.+_+. _f..../.L=J},,51~1 .. -~I;:..~ ,,-~ .. I; ij~Ll-!.·+-i-4-l;):);:'f··C+_I __ I __ ,~ -j-.-j-l=tl'--~. oF--.~.J~ 1 -++-" I It"'· 'U-+++ i --1-1-. ~ I . 1-I I I' I!' I I VTli'9ft-t· '!' Ii I 1 I , I, L' ± -, I I N~ TJ I r " 0100-'=C , "-,. ''''<. I I I I T I I -illr!!i' Ii' I' I.' I I! I -~--' "j-'~ --~ --.....l_~.-L. -+-j~ ,_...l.. ,. . -·-1 .. -1--·-,..---. ..j-. -f+l·· .LR:=J--t-=-.---,--.t-·il -: ""f'~ .. 'JT 1:" -r" ' •. -"","'\'-1-r-'"-'---~~-.,...-tj ---.L---t r-1-1-. .:.1-.-----"~"-}'j , 1 i 1. it:'" I ,-; I " , , i P 4P"+ 5. 0' 'I,' , I I I I 'I ,! • I . . ---t-' , I , ,-' I .kJ.L.J .. l . , ,. i ,! -LJ" . I I ~-I _L • ,-;. !-. , .. -~ ,-'--r f-H~T 6-·..J.-i--j--. .,-'--. -. -..,.··-'--1-·-,..··r--j--.-. L. --. • -I ' .. t(J'fF1-i-:'" h ". '.-..,-( VITi -' ~ , -i-!---'--·_LF.L.1 --;-'in~l _ : I' .. +.' 01-! +t-I~ igj:_ :.]f4~':f-i-I I . -t-,-H-lI' L4--·4--r-jt~-L+'~I' J-+·f· =1I·:.ttL .+-1-.)._:-1 .. -T' .l.~!_ 1....j'-tt-...l..-.~I 'l.t:JLr+-i-t-·.L.. --~-IT' L!'\J.\ JJ "! !:iIo;l'1oLN.~' ,bjo; -~ O"jRqp i : "-rt-t-__ 10, :.-l-l.....;.~.C~tmePi-'l~-.:.l , . .L.l--~.J -~. I 'r~' rt-co, 1-~ 1 ij-JL iT , I =t' ! I i +t Iii 1+'8 r,,: 1 It! . l' ± ttl' i' I+'t-'.!:' c '1I"ill(~3!f0 ). I'h ~ ';;~1!~/l' 1 -j:i++-i ~[,!a S GIPRpP~ti'" S It'E'R¥¢I "1' I ! . iii -+ --. L-r-'--' --T' -,.-... -+. _I -. -. ~-. ;-.. --1 D -l--,-~!-j--.,.....,..-. -,-f-+-H -. -·m:·...!· -I' '. -.-----,.--,-1.--.... ~'T----M·t -""---t.-.t-+ ,.-, • ,... . I 1 I '" I I I 'I I I' ii' I", 'L .! : I ' I -I ' , I ' I I' : "jI~ 6R~-~'! I'-\"!: -, 'I ' . '-.j_1 , '...i...iu ' ! !, \., "-r-+-t-f-· --:;r-. I-I-+-i---'.+'-I-. . -+. t-T.L... .. .,--;-T'T ,-:.~ =+. ---1-+---~Tt· ..J. +--, .--. -h -h t· ' _ .(f2.i,Cf;S. ·!-i··-I--1.:.ei:-S. , + __ -+-.. _+ ::+ H-~. -t_I-_H:)1<i __ H-... I-IL -I.t-L r--'-li·-I-I-·· i!Ji --\J 1-1 IJ I--r:.,. -'--U.).-U ... i--·.l..jtt~!l-~-·,-.J+ .. h-r-Jitil-TT ~s.mE~t-J."=L-~.-L .. -.I.-LL .. L~l·.L····r·Tt-±1~mbl-_c ~~':;lJ~:~l'-+--.L~-s'~.u --~~~4~!MJ+~_.L -+'_'I"_'~ ·-H-, 1r..J ,~itF ."1 t -r-1 ' I I' ,~"; it) I. L I ':1 . I! !!.:, !: '" I I! <;?~ _L_LL ""I I I T~",!7f:::;;: t-t..L.' :!!! I IT .Lilt". , i" ,~. i r!'." H~.;;J ~! I , I :! ' I , [1 .1'""1 .... 1 I-Ig'" III· ~"'I! 1 I!I I<.>~ 1.:::t:! '~I IJ-! i' i+ '~f"'-' i I I~f: iitJ~llilllll:F.I~'*' 1'"1''''1 Iii I ± I I I IJ I! ILl' '-L~t' I' i '~+if~' 11 'SqAlE'IHOI. ''i401.tVE~T.II''8!-1. i !! I . -, • 1 'l..' t+.. 10. '-l--t-t-'T --' I-. -+.-:1+ ~"-'--"]j -f]-I'T" i --4--r-i-' ,-~ '-I--""1-+-++ -r-+, -j-.l-.,.-.; '-r-;-;m---f---1.--1-;-+ ~--l--1-T..j-.L·--'-~·-H--. --I-\-' "-, 1";.-\--I-t-,-_ .. -;-j_ : .. L.: I 1 I "'~ I ,',.;, I Ill· ... 1 f" I '" , Illl.b j.<:>~ 'i I , ,I I -LI tit . I I' I I I ,.,1'1 ""iIIA1N-' I :. L1 ,·,.1 I I ''': .r I,'! J.' ! I I ' --r -··t-n --i-'-' ~'-r--'''-r-!(]---''. ·-~r:1--.... '-T<>. ;. "-1-'--n'-r--r'" '7 --.->-. +-"1--r-r--"-~ .. ~ ~'.' -t--:-·T~r-.·---i-t-J-·-:"-r;;~ .. _-1-'--r-rH" '--. _ ';---1' : -L-JTI=ff+ rl?_ -' b.ftr-~ -~J~=lJ~-cirl---~~ ~rtl.~ -l-j-;j 10:. ::!.T~=+±:4-"+~"'-.-~~-.. J--~--L I . --t-jJ;W-+-~-.-'*~--.J-.i~.L··~-t-D· .--i-EI]~ltmL-:-t.~;~=;-",,:~ ... LLLwJl,~~-:-:i·--tL-+_Lr'-i~e.t-__ tl_1-t,+"';""'-l.i.+-X;;I:_i' I I I I lrlnl-I ' .f-i, "rO;;J, 1<;:1:::: ~ 1 ., I~-i 1 ... -.-1::-+ "'-1.lt I I 'I'B j ~ 1 1 . L +1 1 "I IT f-&"~"...l.~~r. 1"1 [-r-L, i 'j-T I, i ,',;::1 . ".! I I rio 0/, . ' -+-+ --I-l"-+-r...,r~..!=~ '. . ~. --~.-.-.. --:·r·rr -.... -:-... -, .. :-.. -.. --..... --lr--. -'t-.-'.-.l .... -.... '-. .--.,..-.•... ill-I-<~·'~-nYl~-' =r:D.--+-!---.·--~-~-.-~~'I-I--+~-t-+-'-__ ~.-~._*_._. I 'I I ., Il:r I 11' 1'-'· . I ' '1.111 1 '-i I I" ! ' L' '" I II 'i' 1 I I -·,··,···:-·fFt"" .. ~,· ,. I .! I' I" i i I-r:~ II i I I ' I ! I, ., --'. . • .. L --1 ---··'-T"-j--:-~ ..• 1-. -+ ........ --.. --·j·-j-·-r··J----+-.... 'l--' ~.. ;t..-y -'r-T--. --" -h-,-i.-T -r -.---+-;--'-I--~---'-'. -+-.L+_I--+--l-.I--'--l-~ _ .-+~ ">.+ ___ ._.+-" i I I I I' I' I . ! I I I I ! I I I Ill' 1 I I 1 I I I I i I ~ ! I I • I I I i I I "I j I~ . I~ I. to") I ,I I I . : n--I-T=J J ~. I ! -+--; ,--.H-J-.-'. .---H-} tt -,-+-.; ... ...,-J-;., .... --1-.1...1 ..... --. !.-~--"'--'1'--I---c·-r-'l, __ ,, __ -t·-· -1--l_1--k·.~ . ..J ---+ .. -.. ll··I--I.-J.-,-~-----~-I~-1t-_L S_I~+"_,,-,-:-: -+ __ -L .......... -r--;-...~ __ . J-l1-.J .. t:i~_c_. -Lt--~ :, I It-IT ','. r '" , I , I I ,I I ,b -. , 'I .+, I .' , . I, I I I I I -I-l-" . . . I ,I-I , ! . H;, I Ii' ,. -.-c-r--' -I 1--_["oc ---l_r-I I '-_+ __ !ll~-~'I-~-I-.~~*: t--'--,...... -. ·-il-=r· --~-I""-I"-+ -Li--~. 1--.-.~~-.-'-+-.,...-,. '~--ic-:: ·t-.·~ -,,,-,,I--.'.-t-··t··· _.+_.t-l-!__ .+-_l... -J._I_I_~_ J-r,·-·.-.. r-t-TI-.Ll->-;---r-~ __ -1-l-l-'--H-I-1. .---LLl.,-,-n. .. .-L . ..,--t-.r-:i t'&'+ L_ -1-'-1-I. ! I-T I~ IT, i! t+-+-1 I , .. --t-· 1 I ' : t·, ' I I : i~ L---~-..!--I---, -I . r I I I I. I , " T I r, I, I ii' i ., ,I I I-T I 1· I . , , I ;'!:i", ',"1 ' --I-~-~T~-t-l---i< _J Im-+-I+4-,.-L ·-+·j-'ti-}~-l-+·--+~H-~jj~i'-tJ =L~~-.-.""-I.-'i--1.:~'.J;' --!-{#!-"'~-t·-1--fEf··-L .. .=:l::.-+'--tt·-l-·+-"·i··-·---··-t-+..I-+~=t':cL---I·...L··~-· .. -·-l-I.~--=H-rttt-l-~$-~·-t:"'-T·-'-Ht-_ -ijJ-1'--'--e-!-r-r-'_f.j"_~_ ' ~~J_ ~_L~. ' .· .. +.H,±,--l I I t<-, I::++,l I~ , . t --t-.-t-L...L .l-i ·-'1l" -r::-: . ----1-'~ , , ..,--,--, ,. ----;-, L' J. I r+d ' ,r !, 1 +t" I ! , 1+, 1 I. I I j I I , J. I I r j j I I 'I' '" >Ii J! 'I 1 i . ~-----1-+. _'--.L. '--".I-i-...L.T-~F:---r:':i:::!::~~·-··r--+1'--·-F:i~ ... I--L+-..);X.42J'!o • " ¥/l'O-1 !,·L.1·-·t·I--I-·I-... --.l-··---+-1 -"-...1_-1_. -1-1--1· .. ~ +.--. -.~.L---J--j... .. -.'-~-....;.:..~-·I-I---+-L, 1--+---1-1---:-, __ j_'_' -i"'-'--'.,--' -·.·-t.-~ 1-'!-'-I-T'-r ':' ,; I . = -'-T "1..1 i -H-i , ,! ' I' t:::I.....L.... I 1:1 I r I ' ; " Til ii,'! i II I .i : I I 1 I I , 1M! ,!! I; ! ii' Iii! .1' iii , j i I: , 'I', . r "-I i' . ' ! '-1-"'f'1 -r ,-r--'---rr-T-!--'-c-t-1' .+1 Ii -"d",'1"--1 -1-' -·+-:Cl .. T··~·;--·i--· .. ··..,..-I .. ···-:-+·,-r .. ·t-j ·'-+i~1-j~-··-7·T+-L·I-·!·4.-I-:·-+·t·-i-:li"'I·-!-··---il-t'"1-r-+ ·'·i,=t·+," +-',-;-yt',+-i+--j-" ...... i\;l~'rii,,-l--.t-j-.. --r-l.-I-' .. C:1~tt +.L '-H-i _I. 1+1 J-L. _.J. 1;0; 'ml I ili'..l I I ' ! i I J:U III ' , 1 I .J.: +!' j! ill' . ' .. :t::'t' J ',I' I 11" ±~ L 1.1 I I Itt I I I '+' '.1 '1'1.' i, I , c_" -1-1 I . i i ' -1--·m· R1=t. J:-fd=~~H--' -·-rr.$l LftlL--t.# ~.t-~+--+ -' --,--.1..-1. ,1· -I· t.-L .. --l--·~~-t .. j. tir-•. -. ---1--~-.J..t-' .. 4!l!>c.J--I--+.-J:-+ . .I-1._.1 .. j.. ._ .. _i .. ~.-t_-I_ ~~.r.rj ... I--L~L~_l_._ .. l.-+_+_ -~ d_·.j. ____ I-.• _ !--... U-·Ef· -+. -, -T' "'r-, .. -1-'''< 1"-_150i-l ti.~ -',··-l--i···-'· -~. t'r' I -1-1"-++-.1... I--I-r-!-i-:!-::--dd-..J....J-J . -' "--I-.-,.L -f-.. -+ __ J~ --+--"["-!-.-"It~iT-_L._: --~·T·-·~ .. L-+ .. +.+.j-'4 .. ---1--1--+-+ +-j -+--!--4 --!-1'--,--' ._1-+ Oi-·..Jt...d,p r-<l""""-ri-'_".j.. ! .!. 'R GJ ~ G OOND (J la I I I I I I I '] r I I I 1 I I (,j, I I I Ii! I: I • • i I I I • i I ! 1 ~ 1.1 1,!"'£*o I I I. 1 • 1 I I I . I I Tl""t"-I' 'Til" ,,; ±l=.+-+-~ I ill I ' :, , ,! I I j I ' , 1.lr! 1+' I ± ' I ' J' , I 1 It· i .. I r t-'=H I, I I H' ! I I, 'I, 1 1 'J<>' ;_~~. ,~ I' I ., -j--j---1-1--' '---+--.+-+-+-,--. -I-·-1'-1----·l··f-+--.--.-~-+--.L-t--.. ---I-·-I--t-.,. ..... I-+--',--1.-_.4-. _ .. L __ .__ -. -.. -t-+--I --. -+-i-.....l_ -.----.-i-!--I--1---t·..j.-.--.-r-'-+ ·"'il-rr:-2.i-f..-. -+ . ....l--...,..j--t-. ! I I I! t I I I I ~ I ! J I. " . ! '. i I I J ."! ,I! I ! r; . j I I I I ! 1 I I~' 5D"!J. ;00f4 .!' I ' . I-r-r-·tT "I -.1-1-.+.1... --j--'-.{--4 . -.-----'-.---,-___ J. .--• '-Ai--J~ -=\=.!-... u-. '-'1"· -·1.--I·-L -114-j-+--n-'-+++ .'l-.L ... -. ·l-._-<--L.i--.t.t-. --_.1, -.J. -+ -·r.. -t-+T ·---+i"iTT·-j-~.· . 13°:')1; ·~i -'r-H-+ i ' ttl-~.-+ . ...1--L I t-I=I-.' f-~-l :-t" ~H--+fl-+-I--t-ijl -'-~ . f· . .4I'1KI 1"1 E:[~I~$l...ttl I ~~L.i-l.I . .J •• -L+-l.-[J..~.~ ~'II~~":' i-1-ff-1'--'[' -;··JI-l --13-l.-Ltl-lII--+-~-··L'-EF.-"-,j:~l+ -+'-..;-t1-·~-.c·H'-·'···I-Lt' -·~-~--"-11-!-·kL--~ ---c-J -+j~-tr-~4-.. --t"-I--'~ I· I i I if I I !:>~ H+1 it-+ -t" I I -1lI , I \ -, , II' ~ IL • ~~~ I I I ", I I 1:1 i l ,'" , ,I ' " ,! +++1 t' -1 ., t' , " ., I l-t ~_. il ti~ ... ~ -ffll '~. ' 1 I 1-.-+. r--'''' 1--1 -i - --.L.J.-t-t--r--~-I--t-T-'I--l-iS&6!~~9Rl'.zir·tj'~1' E!lI'rHf .. ·,"L--->-.... ·-,.·fi·· -i-+· ... ·i-i-··-l---r···, .. --.. ,--.--.. ;-=1-.-+ .... --1'-.-1-.,-1'" .-l--+--, W;--~· =t.--+ ... ~-+-' ···-l-l-·-r-;·1Ii '-I--r'''--tt t-. ~ i " H-+ I I I I, ' I J-t-' j I 'I ~ ii" t+ tt' i I I, 1 I I Ii! I I ': I l' I tt' I ; I -t I"!·i"'l'-", ~ 1:.: '" ~ ~ r-"~!! ,I --.-* -+' ---I-+'-!--r-i---.-+----....J......LI--t-r-r·-f"-i-T-1--r--.--_. -, .. ,.. .. --. ---t--.... __ .1..._ -1-""1-t· ~r'TI'-+--.......... -+-pt-r t~ rr;-..,---h-·'-·-; -l"-' ,.I-• T j'--t-f--t--, ,. I '" "':1 ,.JII·lli l' 'I l-"1,11 1+ ~I . -t!!I.+-! -j111-trt+·+.J I! 'Hi-t I III "JH-!-' ill~il"~ I'TII~ . :1' .... j-IT '" _.i..j~ -1--+. -t--- --.+-+ I--'-j' -r ..... ··1-+-.-. L~__._ ---1-+-_. _. 1-1---l·-t -J --]--.--. -1-'-1----"-1-' --r-+-+-~_ -'-_ , I I _1 iii II I i I I I I I II. . , .i'! I I I 1.1 I I J' I!.I I I I ii, I .' I, ! ", Ii, iii ! ~C LEI JORIZ. It-P'~ V,ERJ. 'I'W I I I r 46 47 48 49 50 ! '. 51 52 . . . '. . fagn~IDF EXISTING UTILITIES ON THESE PLANS ARE APPROXIW.TE AND ~OI-Son 0leoo. Co. -92101 1-0,,", !(\I9) 234-9433 ] 1III""l_" Kimley-Hom IIII....I_U and AssociaIes, Inc, -. EnQlnserlng,Plamlng and Envfr'onmentolConsuitonts 517 Fourth AvonlJG -SuIte 301 Telt (619) 234-940 1-0,,", !(\I9 Q I:; ~ &-i" ~ ~ !;)~ ~ fig , ESMT,lVWOi E:XIST/NG 2Rfc 1/27/69 ~ EED , 1 F/ ,#. 6r TECHITE 0 EXISTI~~ W~OI) TO '-e:. CB~~~ANDONE~ ..., 0: I 12Q DIP TO E:XIS~IZ~IN (V, W;PiobINScTTIA r FaRe ELGCATEO ko, 397-2H I :; ----' -:t~NE PER OWG-o-..::::. ) '...-:--" I "-.~/ . "!Ii .::~ ... "07.S: ___ ?: ~ I _ \ "-?:l-';Q~~--~ ;-,~... ('\1 \ ~.;;r"""b.. ~1Ie~~+z~~, M .- STORM DRAlN DATA . SHALL lIE VERIFIED I!Y CONTRACTOR liijRi5PbSEb MR. SEWER . I!'RIOR TO CONSTRUCTION. All) STREET III'ROVEIENTS SEE DIG. 111:597-21. . NO. IDELT A OR BRG.I RNJIUS I LEN!JTH I REMPRKS 31 IN8'55'14'W I 15.IUi 130" RCP (1350 .. 0) .il INI8'51'35'W 5\ N~'..O." ~~F{ T/~m; .TO/~:Z 152.92' 74.52' 36" RCP (1350-{)) ts" RCP (1350-{))1 IVALLECITOS WATER DISTRICT1 BENCHMARK (FOR GRADING OND') : ENGINEER BUlL T" =""""-i ~~",~,"",g-~ ~ ~ , ---, . LOCA q ON: EL CIWINO R&J.. "~FrrICAI. CONTROL D'TE I . . -? /' -_'0 "1""'1 . ~A'l 0!' ,fL../. _0 ~ ,,~ CARLSBAD I 24 : ~u. ~ "' .. n~". ~~ ~ 1-'IICIT~ DEl'ARTNENT I "" "~~'L 12 . "". i ~:"'i':,:, __ --....... pOt'NmTIA VeN~E ! .-"'" """ AT LA COSTA G:"" I srA._TO . ! I • I· ~ ! < , ~ ® REV1SID. "","PlION ! 110 . . " .. ,.,._.,--• , ... <0' ,,"-'-= . GRAPHIC SeAL ...... __ .. __ ~ __ ~ ••• ~ .. _ .......... ~~ .. ~.~~ ___ ... -_ .. __ • __ .~ •••• _._. __ ..... __ ._. ___ ." .. _ •• __ • ___ .... __ ... __ .... ~ __ ~ ......... _ •• _ •• _ -.,._._. •• ___ ........... _ •• -..... _ '"'' ... _. _._~ ... _ ......... " _"_ ........... __ • __ •• _" ••• _ .. _. -.. __ ._. _____ .. _. __ • _. _._ •••• _ •• -__ ...... _ .. _ _.. _ ....... _ .. _ .... _. -__ ._ -__ • _ ... ___ • __ .' ... ____ ... _ •• __ ...... N ........ ____ •• _ .. I , , I i i '_._~ .. ~~_.r4!~.~_~.+~ .. ~_+.i_1_4_~+-i ~+'-'H'-l-.. l-.. ++-... ~ L _._'_._._, -'--.--~ r-Hf::!;!:+'~4.i·-+-+-+--·i'~C~-+-i : : • I !8~: I i J i' I": ~ i +-j--I-'·i-+~·-·-f-'~-I·-·~I'-+ .. ~.-;-.'-+-I-~·-~-r~,··+~~~+-i~'-+-+~-+-~l-+--+-~-~~ '--i-.i._.i--! ... +-.!-.'-_. ~ rlf! Iml'M ,9 , 1 ·_·1· -I .. -f-.r-"'f_+·+_,--+_+~,·_~'3iI~+~·~-_l-I-+_-\_-l~ci!~~~-l-113 13£ b !;o, '-I-:~ .,.._-1--.-1-+"-H-+·+4'+-~-+-+-·'I-' i----_.,-,-----, ;;;; i --'F-il-+-·'~·· _." ·1·_·-'-·-!g£ 1/3 i .. I-I--!-~-r'+~-'~=~~=~~~:~'~-+-+T-*+-ll-l-+-i--f-~f.~·-HI~'--+L~i~ I 1_~+-+_~.-+-+_.+. __ ~_~ __ I._~_~_T~_r··+~_~-+-·~'_+-·+-f~_·-+_+-f-+4--~"I-+--+-++-l-r .. ·I~""r4 I -_. +-1:-+-1-··1--1" _. ----"" '+I-+l+ .. +·-+-+-·I--I.++.-I~+.!--+-+.j'-i-+-i-j-+-l:-+-+-+-.j-+-l H--j--f-++ .+-I-+-I---I-i-+ !.+ 1-!--+-.1·_+·---i .-.-'. +--I'---r--+-"!--1--1--1··+ .. + +-i---lH-+, +-1,'-+ ! T ! I I • :", _. -rl-t-t-+ __ ,...."i_i', _. i---. 1--_ -+___ Y L ·ON H3HS 33S I' L JI'4.... ," :I:.]:;: . uu ,... IV~~ "I tJlIIC h .\ -------------- I-(J a:: l-V> Ci fils l-iS ~! V>~ Ol§ I-l!; CJ W ...J ...J < > -- .... -. """" .,,,,,~ --- I I I I I I I I I I I I I I I I I I I , j ~ ~ ~ n ., ., ~ ~ ~ ~ !: ~ , ~ ! H-.J=1~ I ±± [L±l---'-L i nTTIJ--r~lti-'.....J.-I...-!..-H-!' t-L-Ll±l .. +-' , r'1-1-.. : r=r -I" ~'nCr1-tT I l+-h-j,..t+-I-+-l-~++=i= 'j-D-_ + :! I ! 1-+,+, ~++H--I- r-H-t-++++.J-f--i- Ii' o o -.::t+ ...--.::t .'0 o . Z~ .... IJ) W W W :cZ IJ) --I W:c Wu IJ)""", ~ 64 65 66 JII"'1_n KlmIey·Hom IIIIIo.J_U and ASsociates,lnc. EnQlneerlng, Plonnlno end EnVlronmentOIConsultonts SIT Fourth Avenue -Suite 301-Son Oleoo, ca. -92101 Toh !Sill) 234'9~1 Fa"" (619) 234-9433 PLAN: POINSETrIA LANE . --«I 20 o 40 10 l!iO GRAPHIC SCALE r= 40' ~.~ .). I; ! '~:l':..'·~n~~ l (§) FOR IMPROVEMENTS IN THIS AREA SEE DRAWING NO. 397-2J FOR-PROPOSED WATER. :SEWER AHD STREET I .... RDVEIlENTS SEE DIG. "97-21. L STORM Df/AIN DATA l ! NO.!D£LTA OR BRG,I RPDIUS I L£NIiTH R£MARKS l [(j) !NI8'38'27"W 1157.20' 148" Rep 11350-0)1 CAlJTIONII LOCATION OF EXISTING UTILITIES ON THESE PLANS ARE APPROXI ..... TE AND SHALL BE VERIFIED BY CONTRACTOR P.RIOR TO CtlNSTRUCTlON. ENGINEER OF WORK 4--'1 VA£h 'j,. ..... ,{f! TIMOT~ DEWITT R.C. E. 46579 DATE 1 "AS BUILT" VALLECITOS WATER DISTRICT (FOR GRADING ONlY) BENCHMARK: DESCRIPTION: STANDARD STREff SU~£f MONUMENT I·A"l () ~ LOCATION: STA,2880fJ9 EC ON CENTERUNE OF R.C.E. ____ EXP. ____ DATE EL CAMINO REAL REVIEWED BY: VWD DWG. NO BY • RECORD FROM:SAN DIEGO COUNTY VERTICAL CONTROL A E RS-IBOO.288'89 OATE IINJnAL ENGt£ER 01' 1!ORI( ELEVATION: 3/1.407 IISJ. INITIAL OATE REVISION DESCRIPTION OTHER APPROVAL DATE INITIAL CITY APPROVAL INSPECTOR DATE I SHEET II CITY OF CARLSBAD II SHEETS I 15 ENGIEERING DEPARTNEHT 24 16IINIItG NfD DRNtfISE Pt.INS FfJRJ POINSETTIA LAN'E AT LA COSTA GREENS SfI .. _ 70 STA.6&71!1S VWD 02-001 1 1 I I I I 1 1 I~ I: 1 I I I I I I ~I: ,I IX I I I I I I I I I I I I I I I I I I I Drainage Study La Costa Greens -Neighborhoods 1.06 & 1.07 CHAPTER 9 HYDROLOGY EXHIBITS Exhibit 9.1 Developed Condition Hydrology Map AH:kc H:IREPORTSI2352111511st SubmittallA02.doc W.O.2352.115 12115/20049:15 AM