Loading...
HomeMy WebLinkAboutCT 04-20; MATCHPLAY AT LA COSTA; HYDROLOGY AND HYDRAULIC REPORT; 2004-07-26I I -I I I I I I I I I I I' I I I I- I I HYDROLOGY and HYDRAULIC REPORT MATCH PLAY at LA COSTA CITY OF CARLSBAD Prepared for: Michael Crews Commercial Development c/o Frost Custom Builders P.O. Box 300429 Escondido, CA 92030 ).t£CEl\TED St.? 28 lOOS E.NG\NEER\N~ OEPAR1MEN Prepared by~ 1" fY} ,- bHA, Inc. land planning, civil engineering, surveying 5115 Avenida Encinas, Suite L Carlsbad, CA 92008-4387 (760) 931-8700 July 26, 2004 w.o. 731-0990-400, BR CT04-20 "" ~ c- ~ ~""~ \~ te~·~ t) ,,;'" ld , -:"el m:::-~ 1 ~..-"~ t) <t .J Cb I I I I I I I I I I I I I, I I I I I I I. II. III. IV. TABLE OF CONTENTS Discussion: Purpose and Scope Project Description Study Method Conditions of Concern Conclusions Calculations A. Existing Hydrology B. Proposed Hydrology . Exhibits A. On-Site Existing Hydrology Map B. On-Site Proposed Hydrology Map C. Off-Site Existing Hydrology Map D. Off-Site Existing Hydrology Map References A. Hydrology Manual Charts B. Reference Maps I I I I I -I I. DISCUSSION I I I I I I I- I I I I I I I I I I I I I I I I I I 'I ~I I I I I I PURPOSE AND SCOPE: The purpose of this report is to publish the results of hydrology and hydraulic computer analysis for the proposed Match Play at La Costa Project. The proposed Tentative Parcel Map will consist of 8-condominiums on 0.43 acres. The scope is to study the existing and proposed hydrology and hydraulics as it influences existing storm drain facilities in the vicinity during a 100-year frequency storm event. PROJECT DESCRIPTION: The existing site was previously cleared and is vacant. Drainage from the site sheet flows northerly, toward Navarra Drive at grades between 10 and 30 percent, where the flow is intercepted by the street gutter and flows easterly in Navarra Drive where it is intercepted by an existing IS-foot sump curb inlet and conveyed through an existing I8-inch Reinforced Concrete Pipe (rcp). See Exhibits "A" and "C" for existing hydrology. Proposed runoff from the Match Play at La Costa Project will surface drain toward Navarra Drive at two different locations (Nodes 30 and 80), where a stormwater treatment device will filter the runoff prior to discharging it into the street gutter of Navarra Drive. The runoff will then flow to the existing sump curb inlet at the easterly end of Navarra Drive. See Exhibits "B" and "D" for the proposed hydrology. STUDYMETIIOD: The method of analysis was based on the Rational Method according to the San Diego County Hydrology Manual. The Hydrology and Hydraulic Analysis were done on HydroSoft by Advanced Engineering Software. Drainage basin areas were determined from the proposed grades shown on the Grading Plans for the property and Aerial Photo Maps from the City of Carlsbad. The Rational Method provided the following variable coefficients: Soil group "D" will be used for a composite runoff coefficient for the existing and proposed hydrology analyses. Since the surrounding area is almost all developed, a runoff coefficient of 0.79 will be used for both the existing and proposed hydrology calculations. The runoff coefficient for attached residential lot land use reflects a composite value of landscaping, roof and street runoff per County of San Diego Hydrology Manual County. Initial Time of concentration (in minutes) = Ti = 60x(I1.9x(L A 3)1H) A 0.385 Rainfall Intensity = I = 7 .44x(P6)x(Tc) A 0.645 Page 1 I I ·1 I I I P6 for 100 year storm = 2.5 CONDITIONS OF CONCERN: The development of Match Play at La Costa Project will not impact the downstream water bodies or their habitat integrity. Sediment will likely be reduced upon site development. There will be no change in the vicinities priority hydrologic regime that would be considered a condition of concern for the downstream water bodies and habitat integrity. See Table 1.1 below comparing On-site Existing and Proposed storm drain flows. Table 1.1 I Existing and Proposed On·Site Storm Drain Flows I I I I I I I I I I I I Cumulative Nodes Flow (cfs) Existing Condition 2.5 30 See Exhibit "A" Proposed Condition 2.6 30,60 See Exhibit "B" See Table 1.2 below comparing Off-site Existing and Proposed storm drain flows. Table 1.2 Existing and Proposed Off·Site Storm Drain Flows Cumulative Nodes Flow (cfs) Existing Condition 34.3 170 See Exhibit "C" Proposed Condition 34.3 170 See Exhibit "0" CONCLUSION: The proposed storm drain system for Match Play at La Costa Project conveys a 100-year frequency storm event to Navarra Drive. The existing IS-foot sump curb inlet at the easterly end of Navarra Drive can adequately intercept the existing or proposed runoff, but the existing 18-inch rcp per Storm Drain Plan 2694-1 (See references for copy of plan) is inadequate to Page 2 I I convey the flow. The cul-de-sac is subject to inundation during a IOO-year frequency storm event. I I I I I I I I I I I I I I I I Page 3 I I I I I I I I I II. CALCULATIONS I I I I I' I I I I I I I I I I I I I I I I I I I' 'I I I, I I I' II. CALCULATIONS A. EXISTING ON-SITE HYDROLOGY I I I I I I I I I I I I I' - I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License 10 1459 Analysis prepared by: bRA, Inc. 5115 Avenida Encinas, Suite L Carlsbad, Calif 92008 ************************** DESCRIPTION OF STUDY * EXISTING HYDROLOGY AND HYDRAULICS ************************** * * " ' ************************************************************************** FILE NAME: 990-E1.DAT TIME/DATE OF STUDY: 14:01 07/14/2004 * * * ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECTFlED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) ~O USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER~DEFINED STREET-SECTIONS FOR COUPLED PIPE FLOW AND STREETFLOW HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: WIDTH CROSS FALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) ---========= ================= ====== ===== ====== 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* HIKE (FT) ===== 0.167' MODEL* MANNING FACTOR en) ======= 0.0150 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = 94 1 I I I I I I ·1 I I I I I, I" I I I I I I INITIAL SUBAREA FLOW-LENGTH (FEET) = 82.00 UPSTREAM ELEVATION (FEET) = 82.00 DOWNSTREAM ELEVATION(FEET) = 73.50 ELEVATION DIFFERENCE (FEET) = 8.50 2.346 SUBAREA OVERLAND TIME OF FLOW(MIN.) = WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc = 10.%, IS USED IN Tc CALCULATION! 7.114 5-MINUTE. SUBAREA RUNOFF(CFS) 1.35 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) = 1.35 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 73.50 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 89.00 CHANNEL SLOPE = 65.00 0.0955 CHANNEL BASE(FEET) 5.00 "z" FACTOR = 10.000 MANNING1S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. RESIDENTAIL (43. DUlAC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE .FLOW DEPTH (FEET) 0.10 TRAVEL TIME(MIN.) Tc(MIN.) = 2.83 1. 94 3.09 0.48 0.21 SUBAREA AREA(ACRES) AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA RUNOFF(CFS) 0.79.0 TOTAL AREA (ACRES) = 0.45 PEAK FLOW RATE(CFS) = END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.12 FLOW VELOCITY(FEET/SEC.) 1.18 2.53 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 3.43 30.00 = 171.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 0.45 TC(MIN.) = 2.53 2.83 ============================================================~=============== ============================================================================ END OF RATIONAL METHOD ANALYSIS 2 I I I I I I I I I I I I I' I I I I I I II. CALCULATIONS :; B. EXISTING OFF-SITE HYDROLOGY I I I I I I I I I I I I I' I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1459 Analysis prepared py: ************************** DESCRIPTION OF STUDY ************************** * OFF-SITE EXISTING HYDROLOGY * * * ************************************************************************** FILE NAME: 990-P2.DAT TIME/DATE OF STUDY: 08:14 07/26/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT{YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE{INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS{DEClMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD ' NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPE FLOW AND' STREET FLOW MODEL* * * HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROS S FALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) ,(FT) (n) === ===== ========= ================= ====== 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 110.00 IS CODE = 21 -----------------------------------------~---------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 1 I I I I I I I I I I I I 1- I I I I I INITIAL SUBAREA FLOW-LENGTH(FEET) = 95.00 UPSTREAM ELEVATION(FEET) = 151.00 DOWNSTREAM ELEVATION(FEET) = 146.00 ELEVATION DIFFERENCE(FEET) = 5.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.127 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) 0.56 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.56 **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 140.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 146.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSS FALL (DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 61. 00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb} 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING EST.lMATED FLOW (CFS) 8.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET} = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.51 AVERAGE FLOW VELOCITY(FEET/SEC.) 7.24 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 2.44 STREET FLOW TRAVEL TIME(MIN.) = 2.00 Tc(MIN.} 5.13 100 YEAR RAINFALL INTENSITY(INCH/HOUR} = 6.997 RES~DENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 AREA-AVERAGE RUNOFF COEFFICIENT 0.790 SUBAREA AREA (ACRES) 3.00 SUBAREA RUNOFF(CFS} = 16.58 TOTAL AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) 17.14 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) 13.81 FLOW VELOCITY(FEET/SEC.) = 8.46 DEPTH*VELOCITY(FT*FT/SEC.) 3.40 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 140.00 = 965.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 1 ---------------------------~--~------------~-------------------~------------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.} = 5.13 2 I I I I I I I I, I I I I I I I I RAINFALL INTENSITY (INCH/HR) = 7.00 TOTAL STREAM AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.14 **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 130.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ RESIDENTAIL (43. DUlAC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION{FEET) = 71.00 DOWNSTREAM ELEVATION(FEET) = 70.00 ELEVATION DIFFERENCE (FEET) = 1.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc SUBAREA RUNOFF(CFS) 0.45 65.00 3.897 7.114 = 5-MINUTE. TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.45 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 140.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 930.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) 13.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSS FALL (DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RONOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 61.00 Manning's FRICTION FACTOR for Street flow Section (curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.38 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.83 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.23 STREET FLOW TRAVEL TIME(MIN.) = 5.48 Tc(MIN.) 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.742 RESIDENTAIL (43. DulAC OR LESS) RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 AREA-AVERAGE RUNOFF COEFFICIENT 0.790 9.38 .7900 SUBAREA AREA(ACRES) 3.40 TOTAL AREA(ACRES) = 3.48 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE{CFS) END OF SUBAREA STREET FLOW HYDRAULICS: 7.03 12.74 13.04 3 I I I I I I I I I I I I I I I I DEPTH (FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET/SEC.) = 3.12 DEPTH*VELOCITY(FT*FT/SEC.) 1.52 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 140.00 = 995.00 FEET. ****************************************~*********************************** FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 9.38 RAINFALL INTENSITY (INCH/HR) = 4.74 TOTAL STREAM AREA (ACRES) = 3.48 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.04 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 17.14 5.13 6.997 2 13.04 9.38 4.742 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 24.27 5.13 6.997 2 24.65 9.38 4.742 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 24.65 Tc (MIN.) = TOTAL AREA(ACRES) = 6.58 AREA (ACRE) 3.10 3.48 RATIO 9.38 LONGEST FLOW PATH FROM NODE 120.00 TO NODE 140.00 995.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 170.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 61.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) = 550.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSS FALL (DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSS FALL (DECIMAL) 0.020 51. 60 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Wa1k Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 28.74 4 I I I ,I I " I I I I I I ,I' I I I' I I I ***STREET FLOWING FULL*** STREET FLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.21 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 2.06 STREET FLOW TRAVEL TIME(MIN.) = 2.18 Tc(MIN.) 11.55 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.144 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S~C.S. CURVE NUMBER (AMC II) = 94 AREA-AVERAGE RUNOFF COEFFICIENT 0.790 SUBAREA AREA(ACRES) 2.50 SUBAREA RUNOFF(CFS) 8.18 TOTAL AREA(ACRES) = 9.08 PEAK FLOW RATE(CFS) 29.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) 18.00 FLOW VELOCITY(FEET/SEC.) = 4.25 DEPTH*VELOCITY(FT*FT/SEC.) 2.10 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 170.00 = 1545.00, FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR ~ONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.55 RAINFALL INTENSITY (INCH/HR) = 4.14 ~OTAL STREAM AREA(ACRES) = 9.08 PEAK FLOW RATE (CFS) AT CONFLUENCE = 29.73 **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 160.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 INITIA'L SUBAREA FLOW-LENGTH (FEET) = UPSTREAM ELEVATION(FEET) = 71.00 DOWNSTREAM ELEVATION(FEET) = 70.00 ELEVATION DIFFERENCE (FEET) = 1.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc SUBAREA RUNOFF(CFS) 0.56 65.00 3.897 7.114 = 5-MINUTE. TOTAL AREA (ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.56 **************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 170.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 51. 60 5 I I I I I ·1 I 'I r I I I I I I I I I I STREET LENGTH(FEET) = 1480.00 STREET HALFWIDTH(FEET) = 18.00 CURB HEIGHT(INCHES) 6.0 DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) 13.00 INSIDE STREET CROSS FALL (DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.020'0 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.23 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.61 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.59 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.88 STREET FLOW TRAVEL TIME{MIN.) = 9.52 Tc(MIN.) 13.41 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 3.764 RESIDENTAI-L (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 AREA-AVERAGE RUNOFF COEFFICIENT 0.790 SUBAREA AREA(ACRES) 1.70 SUBAREA RUNOFF(CFS) = 5.06 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE (CFS) 5.35 END OF SUBAREA STREET FLOW HYDRAULICS: nEETH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) 13.10 FLOW VELOCITY(FEET/SEC.) = 2.92 DEPTH*VELOCITY(FT*FT/SEC.) 1.13 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 170.00 = 1545.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 13.41 RAINFALL INTENSITY (INCH/HR) = 3.76 TOTAL STREAM AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.35 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 29.73 2 5.35 Tc (MIN. ) 11. 55 13.41 RAINFALL INTENSITY AND TIME CONFLUENCE FORMULA USED FOR ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc NUMBER (CFS) (MIN. ) OF 2 INTENSITY ( INCH/HOUR) 4.144 3.764 CONCENTRATION STREAMS. INTENSITY (INCH/HOUR) AREA (ACRE) 9.08 1. 80 RATIO 6 I I I I I I I I I I I I I I I I I I I 1 2 34.34 32.36 11.55 13.41 4.144 3.764 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 34.34 Tc(MIN.) = 11.55 TOTAL AREA(ACRES) = 10.88 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 170.00 1545.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.10 IS CODE = 41 ---------------------~------------------------------------------------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 46.14 DOWNSTREAM (FEET) 44.46 FLOW LENGTH(FEET) = 56.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.43' GIVEN PIPE DIAMETER1INCH) = 24.00 NUMBER'OF PIPES 1 PIPE-FLOW (CFS) = 34.34 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 11.62 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 170.10 1601.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 10.88 TC(MIN.) = 34.34 11.62 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS 7 I I I I I .1 I I I ,I, I I I I I I I I I II. CALCULATIONS C. PROPOSED ON-SITE HYDROLOGY .. I I I I I I I I I, I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1459 Analysis prepared by: bHA, Inc. 5115 Avenida Encinas, Suite L Carlsbad, Calif 92008 ************************** DESCRIPTION OF STUDY ************************** * PROPOSED HYDROLOGY AND HYDRAULICS * * * ************************************************************************** FILE NAME: 990-Pl.DAT TIME/DATE OF STUDY: 15:17 07/16/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECITIED STORM EVENT (YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE SAN DIEGO HYDROLOGY MANUAL "Cff-VALUES USED FOR RATIONAL METHOD NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND-STREETFLOW HALF-CROWN TOSTREET-CROSSFALL: CURB GUTTER-GEOMETRIES: WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE 0.90 * * NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) MODEL* MANNING FACTOR (n) === ========= ================= ====== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.i67 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ USER-SPECIFIED RUNOFF COEFFICIENT = .7900 S.C.S. CURVE NUMBER (AMC II) = 94 1 I I I I I I I I I I I I I" I I I I I I INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 70.50 DOWNSTREAM ELEVATION(FEET) = 69.00 ELEVATION DIFFERENCE(FEET) = 1.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc SUBAREA RUNOFF(CFS) 0.28 63.00 3.317 7.114 = 5-MINUTE. TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.28 **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 69.00. DOWNSTREAM (FEET) 67.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 48.00 CHANNEL SLOPE 0.0417 CHANNEL BASE(FEET) ,= 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. USER-SPECIFIED RUNOFF COEFFICIENT = .7900 S.C.S. CURVE NUMBER (AMC II) = 94 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 0.42 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 2.09 AVERAGE FLOW DEPTH (FEET) 0.14 TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 3.70 SUBAREA AREA(ACRES) 0.05 SUBAREA'RUNOFF(CFS) 0.2B AREA-AVERAGE RUNOFF COEFFI,CIENT 0.790 TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) = 0.56 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) LONGEST FLOWPATH FROM NODE 10.00 TO NODE 2.27 30.00 = 111. 00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< =====================================================================~====== USER-SPECIFIED RUNOFF COEFFICIENT ~ .7900 S.C.S. CURVE NUMBER (AMC II) = 94 INITIAL SUBAREA FLOW-LENGTH(FEET) = 20.00 UPSTREAM ELEVATION(FEET) = 81.00 DOWNSTREAM ELEVATION (FEET) = 80.70 ELEVATION DIFFERENCE (FEET) = 0.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.180 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.84 TOTAL AREA (ACRES) = 0.15 TOTAL RUNOFF (CFS) = 0.84 **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 60.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< 2 I I I I I I I I I I I I I I I I I I »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 79.20 DOWNSTREAM (FEET) 75.00 FLOW LENGTH(F~ET) = 138.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.65 GIVEN PIPE DIAMETER (INCH) = 6.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 0.84 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 2.53 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 60.00 158.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 60.00. TO NODE 70.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 75.30 DOWNSTREAM (FEET) 74.30 CHANNEL LENGTH. THRU SUBAREA (FEET) = 32.00 CHANNEL SLOPE 0.0312 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA (CFS) = 0.84 FLOW VELOCITY(FEET/SEC.) = 3.17 FLOW DEPTH (FEET) = 0.16 TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 2.69 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 70.00 = 190.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 70.00 TO NODE 80.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 74.30 DOWNSTREAM (FEET) 65.20 CHANNEL LENGTH THRU SUBAREA (FEET) ~ 105.00 CHANNEL SLOPE 0.0867 CHANNEL BASE(FEET) 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.114 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. USER-SPECIFIED RUNOFF COEFFICIENT = .7900 S.C.S. CURVE NUMBER (AMC II) = 94 TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 1.40 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEETJSEC~) 3.68 AVERAGE FLOW DEPTH (FEET) 0.20 TRAVEL T~ME(MIN.) 0.48 Tc(MIN.) = 3.17 SUBAREA AREA(ACRES) 0.20 SUBAREA RUNOFF(CFS) 1.12 AREA-AVERAGE RUNOFF COEFFICIENT 0.790 TOTAL AREA(ACRES) = 0.35 PEAK FLOW RATE (CFS) = 1.97 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) LONGEST FLOWPATH FROM NODE 40.00 TO NODE 4.12 80.00 = 295.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) o . 35 TC (MIN.) = 1. 97 3.17 ============================================================================ ============================================================================ 3 I I I I I I I I I I I I I' I I I I I I II. CALCULATIONS . D. PROPOSED OFF-SITE HYDROLOGY I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1459 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * OFF-SITE PROPOSED HYDROLOGY * * * * * ************************************************************************** FILE NAME: 990-P2.DAT TIME/DATE OF STUDY: 08:15 07/26/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREET FLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ================= ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 110.00 IS CODE = 21 -----------------------------~-----------~-~-------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = 94 1 I I I I I I I I I I I I I- I I I I I I INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 151.00 DOWNSTREAM ELEVATION(FEET) = 146.00 ELEVATION DIFFERENCE(FEET) = 5.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc SUBAREA RUNOFF(CFS) = 0.56 95.00 3.127 7.114 = 5-MINUTE. TOTAL AREA (ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.56 **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 140.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 146.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSS FALL (DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) . 0.020 61..00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Wa1k Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 8.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.51 AVERAGE FLOW VELOCITY(FEET/SEC.) 7.24 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 2.44 STREET FLOW TRAVEL TIME(MIN.) = 2.00 Tc(MIN.) 5.13 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 6.997 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER (AMC II) = 94 AREA-AVERAGE RUNOFF COEFFICIENT 0.790 SUBAREA AREA(ACRES) 3.00 SUBAREA RUNOFF(CFS) = 16.58 TOTAL AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) = 17.14 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) 13.81 FLOW VELOCITY(FEET/SEC.) = 8.46 DEPTH*VELOCITY(FT*FT/SEC.) 3.40 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 140.00. = 965.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 1 -----------------------------------------~---------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.13 2 I I I I I I I I I I I I I- I I I I I I RAINFALL INTENSITY (INCH/HR) = 7.00 TOTAL STREAM AREA(ACRES) = 3.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.14 **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 130.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 71.00 DOWNSTREAM ELEVATION(FEET) = 70.00 ELEVATION DIFFERENCE (FEET) = 1.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTE~SITY IS BASED ON Tc SUBAREA RUNOFF(CFS) 0.45 65.00 3.897 7.114 = 5-MINUTE. TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF (CFS) = 0.45 ****************************************************************************. FLOW PROCESS FROM NODE 130.00 TO NODE 140.00 IS GODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) 61. 00 STREET LENGTH (FEET) = ,930.00 CURB HEIGHT(INCHES) 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSS FALL (DECIMAL) 0.020 OUTSIDE STREET CROSS FALL (DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSS FALL (DECIMAL) 0.020 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR. for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 7.03 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.38 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.83 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.23 STREET FLOW TRAVEL TIME(MIN.) = 5.48 Tc(MIN.) 9.38 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.742 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 AREA-AVERAGE RUNOFF COEFFICIENT 0.790 SUBAREA AREA(ACRES) 3.40 SUBAREA RUNOFF(CFS) 12.74 TOTAL AREA(ACRES) = 3.48 PEAK FLOW RATE(CFS) 13.04 END OF SUBAREA STREET FLOW HYDRAULICS: 3 I I I I I I I I I I I I 1- I I I I I I DEPTH (FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET/SEC.) = 3.12 DEPTH*VELOCITY(FT*FT/SEC.) 1.52 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 140.00 = 995.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< '»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.38 RAINFALL INTENSITY (INCH/HR) = 4.74 TOTAL STREAM AREA(ACRES) = 3.48 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.04 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 17.14 5.13 6.997 2 13.04 9.38 4.742 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 24.27 5.13 6.997 2 24.65 9.38 4.742 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 24.65 Tc (MIN.) = TOTAL AREA (ACRES) = 6.58 AREA (ACRE) 3.10 3.48 RATIO 9.38 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 140.00 = 995.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 170.00 IS CODE = 91 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 61.00 DOWNSTREAM ELEVATION{FEET) STREET LENGTH(FEET) = 550.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 51. 60 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 28.74 4 I I I I I I I I I I I I I I I I 'I I ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH (FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.21 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 2.06 STREET FLOW TRAVEL TIME(MIN.) = 2.18 Tc(MIN.) 11.55 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.144 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 AREA-AVERAGE RUNOFF COEFFICIENT 0.790 SUBAREA AREA(ACRES) 2.50 SUBAREA RUNOFF(CFS) 8.18 TOTAL AREA(ACRES) = 9.08 PEAK FLOW RATE(CFS) = 29.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.49 HALFSTREET FLOOD WIDTH (FEET) 18.00 FLOW VELOCITY(FEET/SEC.) = 4.25 DEPTH*VELOCITY(FT*FT/SEC.) 2.10 LONGEST FLOWPATH FR9M NODE 120.00 TO NODE 170.00 = 1545.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.55 RAINFALL INTENSITY (INCH/HR) = 4.14 TOTAL STREAM AREA(ACRES) = 9.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.73 **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 160.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 94 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION (FEET) = 71.00 DOWNSTREAM ELEVATION(FEET) = 70.00 ELEVATION DIFFERENCE (FEET) = 1.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) NOTE: RAINFALL INTENSITY IS BASED ON Tc SUBAREA RUNOFF(CFS) 0.56 65.00 3.897 7.114 = 5-MINUTE. TOTAL AREA (ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.56 **************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 170.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 51. 60 5 I I I I I I I I I I I I I I I I I I STREET LENGTH(FEET) = 1480.00 STREET HALFWIDTH(FEET) = 18.00 CURB HEIGHT(INCHES) DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 6.0 13.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 3.23 STREETFLOW MODEL RESULTS USING ESTIMATED ·FLOW: STREET FLOW DEPTH (FEET) = 0.34 HALFSTREET FLOOD WIDTH (FEET) = 10.61 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.59 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.88 STREET FLOW TRAVEL rIME(MIN.) = 9.52 Tc(MIN.) 13.41 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 3.764 RESIDENTAIL (43. DU/AC OR LESS) RUNOFF COEFFICIENT = .7900 SOIL CLASSIFICATION IS "0" S.C.S. CURVE NUMBER AREA-AVERAGE RUNOFF SUBAREA AREA(ACRES) TOTAL AREA(ACRES) = (AMC II) = COEFFICIENT 1. 70 1. 80 94 0.790 SUBAREA RUNOFF(CFS) PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: D~PTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) 13.10 5.06 FLOW VELOCITY(FEET/SEC.) = 2.92 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 150.00 TO NODE 170.00 = 1545.00 5.35 l.13 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 13.41 RAINFALL INTENSITY (INCH/HR) = 3.76 TOTAL STREAM AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.35 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS ) 1 29.73 2 5.35 Tc (MIN. ) 11.55 13.41 INTENSITY ( INCH/HOUR) 4.144 3.764 AREA (ACRE) 9.08 1. 80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF NUMBER (CFS ) Tc (MIN. ) INTENSITY (INCH/HOUR) 6 I I I I I I I I I I I I I- I I I I I I 1 2 34.34 32.36 11.55 13.41 4.144 3.764 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 34.34 Tc(MIN.) = 11.55 TOTAL AREA(ACRES) = 10.88 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 170.00 1545.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.10 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 46.14 DOWNSTREAM (FEET) 44.46 FLOW LENGTH (FEET) = 56.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.43 GIVEN PIPE DIAMETER1INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 34.34 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 11.62 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 170.10 1601.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 10.88 TC(MIN.) = 34.34 11.62 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS 7 I I I I I I III. EXHIBITS I I I I I I I' I I I I I I I I I I I I I IV. REFERENCES I --.~ , I I I ·1 , I I I I I I I I I I I I I I I I I I I I I I I I I I IV. REFERENCES ' A. HYDROLOGY MANUAL CHARTS --~ I I I. 1 I I I -, I 1 1 I I 1 I 1 I 1 I I -------, ---- L ---.. ----- County of San Diego Hydrology Manual RaiJrfld[ ]sop[uvia[s 100 Year Rainfall Event -24 Hours Isopluvial (Inches) rYD-rV/ iL.<..il. ,\,., .. "~"GIS ~~.~~ ... ~~:oI,"':t~',J ~"""''''_''''''''''r' ~~~\GIS t~ ... ,.! .. ~.-\I:~ .. :,.:.!:,~,; •.. ·f:t .. N tfUSf.WtISrRQ\mEDWllllOI,.Il ''URI\4~'''',~ Io'{"."/O rrHfJlI"R'S\ QRI·.lI't.IED "IC\UOI"C.UUtNOt~tI"lI£DIG.1Iof ,""",!~O",.q"lo,ml~S ~!>IW'Qs. .... ~q""",.:l. Jh'f'O'OduI1.~c_""~,,_,,,.SAlIC' .. r:q"'l""'''' ~ 01 ... £FtCIlI-t" .. "UfYAkD'lIIrts5·(\It-'r .. Qn-:t. ......... '"·'\lSL E 1nr"_$~""""'~"'''_'''' .. OI_r~ f .., ,..,. IIi It· " ""'_""", .. ,,...,.eJSANO.aG. I-:-++H-:·-+-+ ~-lR+-t-·I~ .. t~ ·1-,,;-"' ... t-·f"·}--~ "14-~"1-J.-\ .. -I lN1pM,d....., ___ .... ""-"_ooNcIo~I""".p~,,-. """ .......... "_""'D"""""'.e' ..... ,,""-S o 3 3 Miles -cs;;c::s-==-- - - - - - --, - - - - - - - - - - - - 1~~ N ~ .... r-.,. ~'N I! I I: I i I r 11111 I I IIIi1il '!llii I I IT I 1TiT [I II l!!i 0:0 1--1 ~ "kll N ! iii I I. iii Ii !, 1I11i1 111111 I i II I I II Ii II Ill! 7.oXI~ r--..'1--Ci--.l"1--N--11 i I I! 1111 III 1IIIIIIIIilii III I I!IIIIII !I! 6.0 N K ..... l'~ 'R'N. ~ I II iii Ii I I II II EQUATION lill 50~\ 1-k ..... ~ !JiJ ~ . J~~ 111111111111 I I' = 7.44 ~6 0:°.645 . mr · j',Cr l' K I i'~i N{~ I ~ i II~ III', i "1" -IntenSity (m/hr) , i'f.+1·1!! 40 I I'}... KI i"N.. II~! N-.r~ M It).! Ii IPS = 6-HourPrecipitation(in} II! · N,' I I ~l I I J I ~ lIN I Nol iii ~ No. I I', /1' D = Duration (min) 'F,',. 11' 1"h.'N--"~I,~II Ii-I. 3.0 ! i 1-.. I J I i I 11' ~ I ~ U" : ~ I i I ! I i ~ , ! II !II! II Ii I III! III i I II III! ! I I .. i I"'i-J I r-: J I ~ I .~ u iI' I~~ 'H-t,fgl '1 111 ! I ! III 111!,1 iliO 1 ,,,I I -;--I !, ~. , I tiN N.J II " " ! I I I ! /.11 2.011}[ I I~ 1~~I~H411~ U I . ~II~I~,~~ ! II 1·111111111 ! ,I I ..... Ii 'I !I i II~ I ~1'111 ~ Il~li'l'i ,I ~ I ~III ;i~I~ri'Hlli; ~:}j{1 l II 11'11 illli!! . {I I t-... !I I I ~ 11 :-;. I I. ,," i" .r' I! II II! I (J) j: o !;; 'U @ o g I Iii ! IK,': J.lli i! I ttU'III~111111 ~J I IIr1WI·".I ~ ~~ I I ~ JJmlllllll ~! I I i l ;"I"N-. ' I' 1 III HL I 'rth r{M-1'-N{t,1 i I-H ! II .§ 10 I I I I, I I I II ~ I I I i 17t I I ~ IiI I i 1.1 If ~ I I ~ LI ~ H.! n ~ '§'o'g i I I iii Iii II I i IJ.i II II I i'!-Ii . I II i11' .N·"'i'-N-l rH I !Tl'iI ~0'8 i I I I II! I Ii! ! li~illll III I!II ;.1111 N I N. Il-L t'K I !iii! ~0'7 i II I I I! I I! ! I ,II I '~III I i 'i 1111 1Tl'-1 I I N.,II ~ IT ilfi! 6.0 '2: 5.5 §: 5.0 ~j' 4.5 S- oS' I i I I I I I! ! II i II Ii' I i Iii I1'N.I I IlIlIrW! [i.J,' i j ! I i'U11 Hij :.:' I I I j II I! ! \1 I 'II I III I ~ I 111111 n I, iii r} 11 ~ 11 rWlt 30 · I' II I Ii! I I! I I II I I" I I I ®l 11,'11 I'll I I . III ~illi . 04 . I i I I ! iii ,I 1111mB \ II'N, ~ Ilirntl 2.5 · ! I II I II; I II ! III' I II' IIII III I Illlllfli>.U II I II II1II r!~~! .1 ! iii I! I Iii, I i II I Iii ilil I"'N. I I II I /'N. I 11Ii!1] 2.0 O.3~-L I--' !=i~-~" -i-!:i:\:!:!± '.' , .. , .. , U-l-L. -i-l-~ , -!-" " -1-i+H1 ~I-~ :-. -""!--; -~ J-+-~ -r .: r; " i. ~. I -r: . ~ . . rH-'-::::p::i ~-.' : . L~i o 4.0 15 3.5 ~ " -I-1-': 'I :--+-: , ;:-1-1-: .. .' c !. -' _ . ' .. :.;'; J.: 1L-l, :. :H'-L. •• ...:..1l :l,,1-1.5 • 1-r-1. • r-TI'. 'rr· l Tn. [''------r ~ t I j;"lll;. ;' ill " -,:0:"": , : a t· ittl !: i-j-I· :. , ': ': ' ,j -I. t: -r I !. I l't H,:" -I;" j 1+--:' ~ r t ".' -til -I I I. : ; ill ;: L: 1. .. :'I+HJ.if I ; I I I i UH I i I --H I ! I ; at I! I I ( :' 10 1·....J_·-!"-.... ·--.. --··-l-' .. !-'1-'!-·+·-d·-j-·-·'1Hi··~TT ·1· .. · -, t .. t· f '1--'-'-'-1-++--+·-!J 1±"iW . 1-l-t+r-e-r:l:±lj::l:.t w:=~d -f I! U ." -L I' 1.1 fl. i, ,+~r I: : r l±l+i:r HtD ; I ._L -L1; 1 O-:J 1 I + I I II I . 1 I 1 , I uJ M't t:ttu i ! I -:1-, IT Iw.+ Iii' I 1111 IT II Ii 1'1 I I I I I I . I I IltHt Til' 0.11~-H-I---t---rH--I--H-t + ... -I-I' iHl' .. t· t I . fI-I Iti J~'Ii--tltt +~ -I+~·I 0-21$ 5 6 7 8 9 10 15 20 30 40 50 2 3 4 5 6 Minutes Hours Duration Intensity-Duration Design Chart -Template Directions for Application: (1) From preCipitation maps determine 6 hr and 24 hr amou'nts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert).· (3) Plot 6 hr precipitation on the right side of the chart. (:1.) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location • being analyzed. Application Form: (a) Selected frequency 1M) year 1".'-"1 ,.J 8 P6 r;; I (2) (b) P6 == ~ in., P24 == <-f; 'p = _<",_Y-?_,,-,,_ % 2-t (c) Adjusted P6(2) = __ in. (d) tx = ___ min. (e) I = __ in.lhr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. P6 :.:~=-=t-,1-··b .5.":-:~2·.::t·i,5.J )~::.;S.~S.t ... ~.:·:::.4,5~~~~5. -.. ~-. 5.5 . 6 . Dunnion! I ill I ' I ! I , I I I ' I ; I i I I · , "---5 2,63 13.95: 5.27,6.591 7.90'9,22i 10.5-1: 11.86' 13.171 14,.19{ 15.81 ""--i -:nH:Hal;i:2Fli:3cHS.3ih:'i2'·s.4S"'9,1i4 T'io.6orrL66; 12.72 · '--'10 "·"i:sif1'21i31s.sT-,j':2-n-s·.-oSls.9iJ!·s5:r:·-i.58 :'8.42'19:27 ii'oj, __ =l~ :I3.(r.i~~~f.¥J!1D1.~4..L:}:~~t1'E[5.·i9PJ4_~:S;..~9 ... [ti3_j'X?,8. · .. __ .20 . 1.08. i l-!?~l ~'!!?.i,,?.'.~~_.w.231.?J2J_.~.';J) . ..!_,!:~5,,; __ ~.3~..i .5.93 !. 6A6 25 0.93 i 1.4011.67! 2.33 ,2.8013.2il 3.73; 4.20 ' 4.67, 5.13; 5.50 ~. -~-=-)o =.Q;~~J@~.!J.6~L2~§f~t11?1~~9gt~.?'~.J);t~T4..1$ .. ! :~_.56 i: 4.98 __ .... _,i9 ._q,69 .. 1..!·~31.~.:?~.;.!:.~_:~;0;:i,2 .. ~.1 .. i.2??_: .3:.19.1.~:~5.; ~.7.9,i .4.~3 ___ ~~ _ Q:?Q..l ~.9~p.'.1 P.~J.'19 .. l ).'.?.~.12:0~ i. 2.3~.~ ?:~69. ~ ?·?~ .. 1 ,3 .. ?S.J .3.S? _~ . ..Q.§..~,_~~:?9i_l-P!hJ_~~~.!1:~W,~6i,.2,12 L~·?9 i_2.65 .. i 2.'~2.i.3.~~ _ .. _~g _~ . .:I.!.J9.,?J.!.~t!~.i. 1,9g .. U:2~.,.1.'1~,! .1:.~~ ... ;').~4 L2~0_'!.:. 2.2.~ :_2.45. .·_.~20 .0.34 i.~:~.1.\.q:~a_W~.~.U.'02p.19! 1.~G .. : .1,-53 .: ..... 1,70 .. : 1.~7..1 ~.O·1 ." ---! ~g o.2~il ~.:~g .. L2· 73 ~~~~.:g~L! :lOll .. Hg l.l·~? .. i _!:Q~J. .. 1:~~ , __ 1~Q . 0.26 ~.Q~~g!..Q'§'~.L9:&'!!.j.Q.:Z!hQ·'~~'lt.!&L .1:..l.8 p"?_L!J:.1:! _11 .. 57 ~Q 0.22 J!l~l O,4~~_ 0.54 l o!.~ I 0.76 .!2:.l!?. _q~lIL~·~~.!_~:.!.9.L!.:~P_ __ 3Q.Q ..2:l~jo:g§.r.Q:~!!.i-!:!:1Zj.Q.,~!~_Q.'~-j-0·~1...Q,94 ~ __ 1:.Q.3J_!~_l~, 360 0.1710.25.0.33, 0.42 10.50 0.5810.6110.75 I 0.84 i 0.9211.00 FIGURE [3:D ----- San Diego County Hydrology Manual Date: June 2003 --,---- Table 3-1 - - - - Section: Page: RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient "C" Soil Type , NRCS Elements Coun Elements %IMPER. A B Undisturbed Natural Terrain (Natural) Permanent Open Space \ 0* 0.20 0.25 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 Medium Density Residential (MDR) Residential,4.3 DU/A or less 30 0.41 0.45 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.5] Medium D~nsity Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 CommerciallIndustrial (N. Com) Neighborhood Commercial 80 0.76 0.77 CommerciaVIndustrial (G. Com) General Commercial 85 0.80 0.80 CommerciallIndustrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 Commercial/Industrial (Limite,d 1.) Limited Industrial 90 0.83 0.84 GeneraL Industrial 95 0.87 0.87 - - C 0.30 0.36 0.42 0.45 0.48 0.54 0.57 0.60 0.69 0.18 0.78 0.81 0.84 0.84 0.87 3 60f26 D 0.35 0041 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.85 0.87 - - *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that.will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 I I I I I I I I· I I I I I I I I I I I San Di~go County Hydrology Manual . Date: June 2003 Section: Page: 3 120f26 Note that the Initial Time of Concentration should be reflective of the general land-use at the , upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. I Table 3-2 provides limits of the length (Maximum Length (LM» of sheet flow to be used in hydrology studies. Initial Tj values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a. detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) & INITIAL TIME OF CONCENTRATION (Ti) Element* DU/ .5% 1% 2% 3% 5% . 10% Acre LM Ti LM Ti LM Tj LM Tj LM Ti LM Ti Natural 50 13.2 70 12.5 85 10.9 '100 10.3 100 -8.7 100 6:9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N.Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G.Com I 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P.lCom 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General 1. 50 3.7 60 3.2 70 2.7. 80 2.6 90 2.3 100 1.9 *See Table 3-1 for more detailed description ~\ t1u. 9.t '7.'" , 3-12 J I I I I I I I IV. REFERENCES I B. REFERENCE MAPS I I I I I I I I I I I x / / 7eA x f i I , , )( f-.., '{;", f • ,-' o \ • \ ! 6 y , , / / / f / / I 'c, , . " '0 --__ 0 _____ _ .. ' ~._.-\"- , . -:,,:::,.,:Ce£:~::>::,.:,,_ :\~,~!.";,, :.-; _~"-~ .:~~ -.:!' ~ ;.: -------- SUBAREA SURFACE __ =~-.~~-""""'7""::-'::::::_:"':~-==-::.. _=-:-------. ',.,' "f I PROPOSED 20 10 o 20 40 60 ------- + + .. ',l 73,6 X -' 73.6 x SCALE: 1» -20' ''\ \ \ i 74,p x \ \ \ \ \ x X /\ " / \, 75.6 X i 0 4 76.4 X • ).( x -, -- + • ~, ! HV-4 fA 68,80 v ~r~,,-. c0 o , c 77.6 X 77.3 >< x ,'---\ , j" , -- _'J'-"' __ AA.A~·J'J ~ , .--'. \. l ';'.:;.4 ,-'='- • / ., -, '\ 80.3.-x , , / 3C) 4 \ \ i / f \ \ ) / <§' ,- 677 X / / { j / "--UIJ/-T/--------- '. j ---,-----.-------, 80.5 y 80.6 x + 81.6 x 81.5 x 8-:.4 y x 82.5 c·L X 825 -'. 63 L X ' . ..; " r t • 72.~; >( x \ ';; 845'., \ \ x \. ... \ 66 <-1- 64.5 ~< 67.2 X 61.6 X 62' >< ~ 65.4 x. X 62_7 X " __ r--'-66.7 ,-or' X 68_ t1 " I' r r-f~ -,.~,-. -.,-r-' f r ! } ,I ,,- '-; 1 j,. ~, -------, 7 ? ---0-----+---··-- 73.5 >< 72,(-5 x DENSE TREES .~.-. 85.3 r' x >< , \ ---f t ~-c, " 7.3_6 -.-?<~ .-"'~, ,.!r-__ ,). .... "'-~--...~. "-'---.. ---.." l , '--.. ..... , -. 60.9 X -------Er+--:----;-_._- X 'r' I\ -. i , , x , ¥SS. xf , , -, , '1 " x , / CCt·,,~_. ~r-.. '.~;.,~,\ } x 678 167.8 Xi , L X ;J I . "-l- X ASPH POOL 59.5 x + • 62.3 61.8 X X .,~~--.-'V ./ J" (' 61.9 X 6~1·4 x· I ,-. 68.6 x 75 • • • • l_:- ,-, .! I , I t 1 = , , i .-' l ;-, LEGEND --;:,',- ----------------~~~--~---- SUBAREA (ACRES) SURFACE NODE . SURFACE RUNOFF (CFS) .-; .. 77,500 -. L ••• , -. ',-" 77,400 - --:--;. " ,-, - '.' E~ __ .;----.'. ----:. - . . ,'0- ·-·'--'i·C.C'.' 1_.iT .. C,cC,'-.· _=>~ ,--" ';'-- ". -,' . : ' . ,'-, EXHIBIT '~'~, EXISTING ON-SilE HYDROLOGY<· , b~A,lnc> land plannIng. eMl engineering. surveying 5115 AVENJDA ENCINAS SUITE "L" CARLSBAD, CA. 92008:':4387 (760)931-8700.1 . - ,,--. -, ;; , . -~' . " :' K: \(anb Projects 3 \731-0990-400 \ dwg \H ydro \731-0990-tXIST -DRN. dwg 7/26/2005 8: 54: 24 -AM PST ;' -- J7S 179 can forms to Notional Mop .; cautioned that the preceding -_ ~j, _.$. _--",,, j ... .il;~.;&iAI ~.a.a:t~ 189 190 191 100 , --lis : " ._. . o 2OO~_iii3COi' IIiii = GR,APtilC SCALE : 1" = 100' AariaI Photo Date -Sept: eci. 1988. Aerial Photo ScaIe - 1 : S6CD OCEAN BOTTOM CONTOURS DERIVED FROM 1968 U.S.G.S. QUAD MAPS. This set of maps, consisting of 225 sheets. conforms ta National Mop Accuracy Standards. The user of the map is cautioned that the preceding statement of accuracy pertains to the entire set of mops. Individual sheets ltilltllLlhe s~t m'lY contain error thot ex.ceeds that allow~~_ or Notional Mop conforms to Notional Mop cautioned that the preceding set of maps. Individual sheets :5 that allowed by National Mop ~ rt t 178 179 JSS 190 .' J80 t " GaAPHlCSCALE: 1" = 1(lO' " 19. Aerial Photo Date -&pt.- This map was Kbb 1 " , OCEAN BOTTOM CONTOURS OERIVEO FROM 1968 U.S.S.S. QUAD MAPS. " , ,~ This" set of mops, consIsting of 225 sheets, con forms to National Map Accuracy Standards. The user af "the map is cautioned thot the preceding statement of accuracy pertains to the entire set of maps. Individual sheets within" the set moy contain error thot exceeds thot ollowed by Notional Map Accur?cy sta:,dards. ----. \J'1..Y cutZ~ ¢-.'h--(' \!.~~\""\ t=1t" W1:>!'!)1. - ....... . ',,-• • .... . ~--~ .