Loading...
HomeMy WebLinkAboutCT 05-14; LA COSTA OAKS NBHGD 3.1 & 3.3 -3.5; DRAINAGE STUDY; 2006-10-04I I I I I I I I I I I I I I I I I I i I HUNSAKER &ASSOClATES DIE G O. INC. PLANN~~IN~G ---.......... __ _ ENGINEERING SURVEYING IRVINE LOS ANGELES RIVERSIDE SAN DIEGO DAVE HAMMAR LEX WILLIMAN AU SA VIALPANDO DAN SMITH RAY MARTIN CHUCK CATER 10179 Huennekens St. San Diego, CA 92121 (858) 558-4500 PH (858) 558-1414 F X www.HunsakerSD.com Info@HunsakerSD.com DRAINAGE STUDY for LA COSTA OAKS NORTH NEIGHBORHOODC ,~ 3.05 -j I City of Carlsbad, California Prepared for: Real Estate Collateral Management Company c/o Morrow Development 1903 Wright Place Suite 180 Carlsbad, CA 92008 RECEIVED W.O. 2352-151 October 4, 2006 Hunsaker & Associates San Diego, Inc. OCT 102006 ENGINEERING DEPARTMENT DE.kc h:\reports123521151\dralnage study01.doc W 0 2352-151 10/6/2006 8:27 AM Ct1 OS-f 4 I I I I I I I I I I I I I I I I. I !I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study TABLE OF CONTENTS Chapter 1 -Executive Summary 1.1 Introduction 1.2 Summary of Pre-Developed Conditions 1.3 Summary of Developed Conditions 1.4 Summary of Results 1.5 References Chapter 2 -Methodology -Rational Method Peak Flowrate Determination (Ultimate Conditions) 2.1 Design Rainfall Determination 100-Year, 6-Hour Rainfallisopiuvial Map 100-Year, 24-Hour Rainfallisopiuvial Map 2.2 Runoff Coefficient Determination 2.3 Peak Intensity Determination Urban Watershed Overland Time of Flow Nomograph Natural Watershed Overland Time of Flow Nomograph Gutter and Roadway DischargeNelocity Chart Manning's Equation Nomograph San Diego County Intensity-Duration Design Chart SECTION II 2.4 Model Development Summary (from San Diego County Hydrology Manual) 2.5 STORM Methodology - Chapter 3 -Site Hydrologic Analysis -100-Year Developed Conditions iii 3.1 100-Year Developed Conditions -Neighborhood 3.1 3.2 100-Year Developed Conditions -Neighborhood 3.3 3.3 100-Year Developed Conditions -Neighborhood 3.4 & 3.5 Chapter 4 -Storm Drain Hydraulic Analysis IV 4.1 Storm Drain Hydraulic Analysis -Neighborhood 3.1 4.2 Storm Drain Hydraulic Analysis -Neighborhood 3.3 4.3 Storm Drain Hydraulic Analysis -Neighborhood 3.4 & 3.5 Chapter 5 -Inlet Sizing V DE:ad h:lreportsl235211511drainage stud'y01.doc w.o.2352-151 1014120066:47 AM I I I I I I I I I I I I I I I I I ;1 I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study Chapter 6 -Catch Basin Sizing Chapter 7 -Brow Ditch Sizing Chapter 8 -Rip Rap Design Chapter 9 -Developed Condition Hydrology Maps 9.1 Developed Conditions Map -Neighborhood 3.1 9.2 Deve,oped'C~nditions Map -Neighborhood 3.3 VI VII VIII IX 9.3 Developed Conditions Map -Neighborhood 3.4 & 3.5 OE:ad h:lreports1235211S1ldrainage s1udy01.doc w.o.2352-1S1 101412006 6:47 AM I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 1 -EXECUTIVE SUMMARY 1.1 -Introduction The La Costa Oaks North Neighborhoods 3.1 & 3.3 -3.5 sites are located at the north eastern corner of the intersection of Poinsettia Lane and Alicante Road in the City of Carlsbad, California (see Vicinity Map below). VICINITY MAP NTS Neighborhood 3.1 & 3.3 -3.5 consists of residential developments, each approximately 27.8-acres, 48.9-acres and 23.9-acres respectively. Runoff from the neighborhoods drains towards four (4) outlet locations, ultimately discharging into San Marcos Creek. This study analyzes developed condition 1 OO-year peak f10wrates from the proposed development. . Treatment of storm water runoff from the site has been addressed in a separate report -the "Storm Water Management Plan for La Costa Oaks North Neighborhoods 3.1 & 3.3 -3.5" dated October 2006 bX Hunsaker & Associates. Per City of Carlsbad drainage criteria, the Modified Rational Method should be used to determine peak design f10wrates when the contributing drainage area is less than 1.0 square mile. Since the total watershed area discharging from the site is less than 1.0 square mile, the AES-2003 computer software was used to model the runoff response per the modified Rational Method. Methodology used for the computation of design rainfall events, runoff coefficients, and rainfall intensity values are consistent with criteria set forth in the San Diego County Hydrology Manual. A more. detailed explanation of methodology used for this analysis is listed in Chapter 2 of this report. OE:ad h:lreportsI23521151ldralnage study01.doc w.o.2352-151 1014120056:47 AM I I I I· I I I I I I I I I I I I 'I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study 1.2 -Summary of Pre-Developed Conditions The La Costa Oaks North Neighborhoods 3.1 & 3.3 -3.5 sites are located in the City of Carlsbad, California. The site has been mass graded in anticipation for residential . development per the "Mass Graded Hydrology Study for La Costa Oaks Norlh - Neighborhood 3.1 & 3.3 -3.5" dated October, 2005 by Hunsaker & Associates. 1.2.1 Neighborhood 3.1 Runoff from the La Costa Oaks North Neighborhood 3.1 site is drained via an existing 42-inch RCP storm drain to the receiving storm drain located within the adjacent Rancho Santa Fe Road, ultimately discharging to San Marcos Creek. 1.2.2 Neighborhood 3.3 Runoff from the La Costa Oaks North Neighborhood 3.3 site drains to four. (4) existing storm drain outlet locations. Three (3) drainage locations (an 18-inch, 36- inch and 42-inch RCP) discharge site runoff to the receiving storm drain located within the adjacent Rancho Santa Fe Road, ultimately discharging to San Marcos Creek. Flow directed to the south of the project site is intercepted via an existing 48- inch RCP, discharging to the receiving San Marcos Creek. 1.2.3 Neighborhood 3.4 & 3.5 Runoff from the La Costa Oaks North Neighborhoods 3.4 & 3.5 site drains to two (2) existing storm drain outlet locations. Runoff from the mass graded Neighborhood 3.4 site drains north to the receiving 36-inch RCP storm drain within San Elijo Road, discharging to the storm drain system within the adjacent Rancho Santa Fe Road. Runoff from the mass graded Neighborhood 3.5 site drains south to the receiving 48-inch RCP storm drain that discharges directly to San Marcos Creek. All flow from the La Costa Oaks North project site ultimately drains to San Marcos Creek. Table 1 on the following page summarizes pre-developed conditions peak flows for Neighborhoods 3.1, 3.3 -3.5. DE:ad h:lreportsl23521151Idralnaga study01.dac w.a.2352·151 1014/2006 6:47 AM .... ----------------------------~--------- I I I I I I I I I I I I I I I I I II I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study Table 1 -Summary of Pre-Developed Peak Flows Drainage 100-Year Peak Drainage Location Neighborhoods Area Flow CAc) (cfs) 48-inch RCP to San Marcos 3.3, 3.4 & 3.5 21.2 53.0 Creek 18-inch RCP to Rancho Santa .. Fe Road 3.3 3.0 8.7 (Avenida Soledad) 36-inch RCP to Rancho Santa Fe Road 3.4 10.6 27.8 (San Elijo Road) 42-inch RCP to Rancho Santa 3.1,3.3 & 3.4 45.7 105.2 Fe Road TOTAL 80.5 194.7 *Note: Inclusive of tributary areas from 3.1 & 3.3 -3.5 1.3 -Summary of Developed Conditions 1.3.1 Neigborhood 3.1 The proposed La Costa Oaks North Neighborhood 3.1 will consist of 80 single family residences, roads, sidewalks, curbs and gutters, associated underground utilities and storm water drainage systems. Runoff from the residential development wili be conveyed via curb and gutter, where curb inlets will intercept this flow and convey it to the proposed storm drain system. This storm drain system drains to the' existing 42-inch Rep storm drain, discharging to the existing storm drain system located within the adjacent Rancho Santa Fe Road. ' Development of the site will not cause any diversion to or from the existing watershed to the storm drain system. 85th percentile runoff will be treated in storm water BMPs prior to discharge to the existing storm drain within Rancho Santa Fe Road. Based on County of San Diego 2003 Engineering Standards criteria, a runoff coefficient of 0.52 was assumed for the proposed single-family residential development. OE:ad h:lreporls\23521151Idrnlnage study01.doc w.o.2352·151 1014/2006 6:47 AM I I I I I I I I I I I I I I I I I I .1 La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study 1.3.2 Neighborhood 3.3 The proposed La Costa Oaks Nqrth Neighborhood 3.3 will consist of 120 single family residences, roads, sidewalks, curbs and gutters, associated underground utilities and storm water drainage systems. Runoff from the northern portion of the residential development will be conveyed via curb and gutter, where curb inlets will il1tercept this flow and convey it to the proposed storm drain system. This northern storm drain system connects to the existing 42-inch RCP storm drain, discharging to the existing storm drain system located within the adjacent Rancho Santa Fe Road. Runoff from the southern portion of the residential development will be conveyed via curb and gutter, where curb inlets will intercept this flow and convey it to the proposed storm drain system. This southern storm drain system connects to the existing 48-inch RCP storm drain to the south of the project site, discharging to the receiving San Marcos Creek. Runoff from a small portion to the south east of the La Costa Oaks North Neighborhood 3.3 site discharges to the curb and gutter within Sitio Corazon, draining to both the storm drain system within Avienda Soledad and San Elijo Roads, ultimately discharging to the existing storm drain system within the adjacent Rancho Santa Fe Road. Development of the site will not cause any diversion to or from the existing watershed to the storm drain systems. 85th percentile runoff will be treated in storm water BMPs prior to discharge to the existing storm drain within Rancho Santa Fe Road and San Marcos Creek. Based on County of San Diego 2003 Engineering Standards criteria, a runoff coefficient of 0.52 was assumed for the proposed single-family residential development. 1.3.3 Neighborhood 3.4 & 3.5 The proposed La Costa Oaks North Neighborhoods 3.4 & 3.5 will consist of 83 single family residences, roads, sidewalks, curbs and gutters, associated underground utilities and storm water drainage systems. Runoff from the northern (Neighborhood 3.4) portion of the development will be conveyed via curb and gutter, where curb inlets will intercept this flow and convey it to the proposed storm drain system. This storm drain system connects to the existing 36-inch RCP storm drain within San Elijo Road, discharging to the existing storm drain system located within the adjacent Rancho Santa Fe Road. DE:ad h:lreporls\23521151ldralnag. study01.doc w.o.23S2-1S1 101412006 6:47 AM I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study Runoff from the southern (Neighborhood 3.5) portion of the development will be conveyed via curb and gutter, where curb inlets will intercept this flow and convey it to the proposed storm drain system. This storm drain system connects to the existing 48-inch RCP storm drain to the south of the project site, discharging to the receiving San Marcos Creek. Development of the site will not cause any diversion to or from the existing watershed to the storm drain sys~ems .. , 85th percentile runoff will be treated in storm water BMPs prior to discharge to the existing storm drain within Rancho Santa Fe Road and San Marcos Creek. Based on County of San Diego 2003 Engineering Standards criteria, a runoff coefficient of 0.52 was assumed for the proposed single-family residential development. Table 2 below summarizes developed conditions peak flows for Neighborhoods 3.1, 3.3-3.5. Table 2 -Summary of Developed Conditions Peak Flows Drainage Location 48-inch Rep to San Marcos Creek 18-inch Rep to Rancho Santa Fe Road (Avenida Soledad) 36-inch Rep to Rancho Santa Fe Road (San Elijo Road) 42-inch Rep to Rancho Santa Fe Road TOTAL Drainage 100-Year Peak ~ Neighborhoods Area Flow . (Ac) (cfs) 3.3, 3.4 & 3.5 21.0 * 44.3 3;3· ~ 2.9 * 7.7 3.4 8.8 * 20.2 3.1,3.3 & 3.4 45.8 * 97.3 78.5 169.5 . *Note: Inclusive of tnbutary areas from 3.1 & 3.3 -3.5 DE:ad h:lreports\23521151\drainage studyQ1.doc w.o.2352-151 1014120066:47 AM I I I I I I I I I I I I I I I :1 I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study 1.4 -Summary of Results Tables 3 & 4 below summarize pre and post-developed conditions drainage areas and resultant 1 DO-year peak flowrate at the storm drain discharge location. Per San Diego County rainfall isolpluvial maps, the design 1 DO-year rainfall depth for the site area is 2.9 inches. Table 4 -Summary .of Pre Vs Post Developed Peak Flows Drainage Conditions Drainage Area 100-YearPeak Location (Ac) Flow (cfs) 48-inch RCP to Existing 21.2 53.0 San Marcos Creek Developed 21.0 44.3 Difference -0.2 .-B.7 Drainage Conditions Drainage Area 100-Year Peak Location CAc) Flow (cfs) 18-inch RCP to Existing 3.0 8.7 Rancho Santa Fe Road (Avenida Developed 2.9 7.7 Soledad) Difference -0.1 -1.0 Drainage Conditions Drainage Area 100-Year Peak Location CAc) Flow Ccfs) 36-inch RCP to Existing 10.6 27.8 Rancho Santa Fe Road (Avenida Developed .. -8.8 20.2 Soledad) Difference -1.B -7.6 Drainage Conditions Drainage Area 100-Year Peak Location (Ac) Flow (cfs) 42-inch RCP to Existing 45.7 105.2 Rancho Santa Fe Developed 45.8 97.3 Road Difference +0.1 -7.9 As shown in the above table, developed flows are below that of pre-developed conditions to the receiving storm drain system within the adjacent Rancho Santa Fe Road and San Marcos Creek. DE:ad h:lreportsl23521151Idralnag? study01.doc w.o.2352·151 101412006 6:50 AM I I I I I I I I I I I' I I I I I !I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Draina,ge Study Table 4 -Summary of Pre Vs Post Developed Peak Flows Conditions Drainage Area 100-Year Peak Flow (Ac) (cfs) Existing 80.5 * 194.7 Developed 78.5 169.5 Difference -2.0 -25.2 .. • 2.0 A~res accounted from San EhJo Road In Mass Graded Peak flow rates listed above were generated based on criteria set forth in "San Diego County Hydrology Manual" (methodology presented in Chapter II of this report). Rational Method output is located in Chapter III .. DE:ad h:lreports123521151Idralnage study01.doc w.o.2352·151 1014120066:47 AM I I I I I I I I I I I' I I I I I I ~ I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study 1.5 • References "Storm Water Management Plan for La Costa Oaks North Neighborhood 3.1, 3.3- 3.5': Hunsaker & Associates San Diego, Inc.; October 2006. "Mass Graded Hydrology Study for La Costa Oaks North -Neighborhood 3.1 & 3.3 -3.5': Hunsaker & Associates San Diego, Inc.; October, 2005. "San Diego County Hydrology Manual". Department of Public Works -Flood Control Division. County of San Diego, California. 2003. "City of San Diego Regional Standard Drawings". Section D -Drainage Systems. Updated March 2000. "Standards for Design and Construction of Public Works Improvements in the City of Carlsbad". City of Carlsbad, California. April 1993 "Preliminary Hydrology for Vii/ages of La Costa -The Ridge and the Oaks". Hunsaker & Associates San Diego, Inc. April 25, 2001. DE:ad h:lreports123521151Idrainage study01.doc w.o,2352-151 101412006 6:47 AM I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3_1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METH'OD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.1 -Design Rainfall Determination DE:ad h:lreports123521151ldralnage study01.doc w.o.2352-151 101412006 6:47 AM I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.1 -100-Year, 6-Hour RainfaU Isopluvial Map DE:ad h:lrepoJts\2352\151ldrainage study01.doc w.o.2352-151 101412006 6:47 AM - - Orange County -0 .. " IpI/QllyJi}'llnllp1wlllpgWl""r .... - o " .. .. .,. - - --- TijJan. - - - -- - \""'>'",' "":'~::\Q, '~::::"" .. \>\ .\. \", "\\ \" ...... " .... j:s" \\ .... , \\ "\ \, 2.75 .............. _" 3jO \ t, "\ \\ \'.. ... .. ,,_ .. ,1 \\ " ...... , ........ \, \\ '\ \vlani~:\\\ tl~rTJ1Q; ) \, \. '\ 2.75 .,,--._._--_.--.. """"'" '\, I o e 3 ." <II .. o o -- -- County of San Diego Hydrology Manual Rainfall Isopluvials 100 Year Rainfall Event· 6 Hours /\/ Isopluvial (inches) Map Notes Stateplane Projection, Zone6, NADB3 Creation Date: June 22, 2001 NOTTO BE USED FOR DESIGN CALCULATlONS Q 7.5 - fl.!l1.~ ~ MILES I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK··- FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.1 -100-Year, 24-Hour Rainfaliisopiuvial Map DE:ad h:lreporls123521151Idralnage study01.doc w.o.2352·151 1014120066:47 AM - - --- - - - - - - ... /"--'\'-/--"" .. '" '" o '" .. .. " Tijuana I,WClllyJI,YIkoiploWlilJiDWmly.-1 -- - 3 ." <D .. (") o c " - - - - County of San Diego Hydrology Manual Rainfall IsopJuviaJs 100 Year Rainfall Event -24 Hours /"/ Isopluvial (inches) Map Notes StatepJane Projection. Zone6. NADB3 Creation Date: June 22. 2001 NOT TO BE USED FOR DESJGN CALCULATIONS Q' o 7.5 - amerfJ ~ ----;;;;J MILES I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1 J 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONI;)ITIONS) 2.2 -Runoff Coefficient Determination DE:ad h:lreportsl23521151\drainage study01.dDC w.D.2352·151 101412006 6:47 AM - - --- San Diego County Hydrology Manual Date: June 2003 ---- - Table 3-1 ------- Section: Page: 3 6"of26 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient "c" Soil T},:Ee NRCS Elements Coun Elements %IMPER. A B C D Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 0.30 0.35 Low Density Residential (LDR) Residential, 1.0 DUiA or less 10 0.27 0.32 0.36 0.41 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 0.54 0.57 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 0.60 \ Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Residential (HDR) Residential, 24.0 DUI A or less 65 0.66 0.67 0.69 0.71 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 CommerciallIndustrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 0.79 CommerciallIndustrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 CommerciallIndustrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0.84 0.85 CommerciallIndustrial (Limited 1.) Limited Industrial 90 0.83 0.84 0.84 0.85 CommerciallIndustrial (General 1.) General Industrial 95 0.87 • 0.87 0.87 0.87 - - *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). "" DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 I I 'I I I I I I I I I I I I I I I 'I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRATE DETERMINATION (ULTIMATE CONDITIONS) 2.3 -Peak Intensity Determination oe:ad h:lreports123521151ldralnage study01.dDc w.D.2352-151 101<412006 6:47 AM -- -- --10.0 9.0 8.0 7.0 6.0 5.0 I , ~ 4.0 li'o I 3.0 2.0 I 'S ~ ~ .s:: g1. ~o; ~O. S .50. O. O. 0. o o '0 } I I r i j I I ! I r.... " ~ 1'00. r-... '1'00. I'" .~ r.... "" ...... ~ ~i'oo. r...." ...... i'oo. I' ~" " ~ r-.. " ~I'" "-I'" " .. ~ '" "r.... 1'00 l"-I'" to-, ""-... , ..... r-.. .... ~ I" '" 1'0- t-, .. , r....r... .... '" 5 6 7 S 910 15 -. ! 20 30 Minutes - II. 40 50 Duration ---- II IT 11 1/ II EQUATION 1 = 7.44 P6 D-O.645 1 = Intensity (in/hr) P6 = 6-Hour Precipitation (in) D = Duration (min) 1IIIIIlIIII 1"' .... , ,,~~ , I'" "I'-. '" , I'-. '" I, ~t-. I,,,,to- I"-t-.t-. 1'01'0'" I'" '" i"o .... "" " I'-.~ '" I ... "'", 1'0- l~1'o- !'., r-...", 2 3 4 Hours 5 6 - ~ g ... l 6.0 "9. 5.5 ~ 5.0 ::! 4.55' o 4.0 iii 3.5 .!e. 3.0 2.5 2.0 1.5 1.0 Intensity-Duration Design Chart -Template ----- - Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10.50. and 100 yr maps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right sld!9 of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. Appllcatlon Form: (a) Selected frequency __ year P (b) P6 = __ in., P24 = __ 'P 6 = %(2) . 24 (c) Adjusted P6(2) = __ in. (d) tx = __ min • (e) I = __ in.lhr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. FIGURE ~ - I I I I I I I I I I I I I :1 I II I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRATE DETERMINATION (ULTIMATE CONDITIONS) 2.3 -Urban Watershed Overland Time of flow .. N~mograph DE:ad h:lreports123521151ldralnage study01.doc w.o.2352·151 101412006 6:47 Ml ------------------- jjj W u. ~ w (.) Z ~ 00 Ci W ~ ::> 0 (.) 0:: ~ 3: 1001 1.5 1"/,,11 I 11~'1 ..... ':>1 hVIII'F -~ "'I' -"F 130 I: w~~ .",~~~ ... .,..... .........-~ ~. CfJ W I-:::> z 0 20 ~ ~=-~----~----~------~----~------~----~----~IO EXAMPLE: Given: Watercourse Distance (D) = 70 Feet Slope (s) ;;1.3% Runoff Coefficient (C) = 0.41 Overland Flow Time (T) = 9.S Min/-ltes T = 1.8 (1.1-C) VD 3VS ~' w :E I- 5: 0 ...J U. 0 z ::i 0:: W > 0 SOURCE: Airport Drainage, Federal Aviation Administration, 1965 FIGURE Rational Formula -Overland Time of Flow Nomograph 3·3 I I I I I I I I I I I I I I I I II I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRATE DETERMINATION' (ULTIMATE CONDITIONS) 2.3 -Natural Watershed Overland Time of floW .. N!lmograph oe:ad h:\reportsI23521151Idralnage study01.~oc w.o.2352-151 101412006 6:47 AM I I I I I I I I I I I I I I I I ~E feet 5000 4000 3000 2000 1000 900 800 'roO 50} , 500 , Tc = Tc = L = ~E = " 400 " ,,~~ ~~ ~-& 300 EQUATION C~~3y.385 TIme of concentration (hours) Watercourse Distance (mil~s) Change in elevation along effective slope line (See Figure 3-5) (feet) Tc Hours Minutes , , 200 100 llE " , , " " , L Miles Feet '1 " . 3000 0.5 , 500 200 L 30 20 , , , " , " 8 7 6 5 Tc I SOURCE: California Division of Highways (1941) and Kirpich (1940) Nomograph for Determination of Time of Concentration (Tc) or Travel Time (Tt) for Natural watersheds I FIGURE ~ I I I I I I I I I I I I I' I I· I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage. Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRATE DETERMINATION (ULTIMATE CONDITION~) 2.3 -Gutter and Roadway Discharge . (Velocity ~hart) DE:ad h:lreporlsI23521151ldralnage study01.doc w.o.2352·151 101412006 6:47 AM I I I I I I I I I I I I I (]) C-o Ci5 1D ~ U5 "- 1+--1.5'~1 I+-n = .015-+1 .... _----2% ... -n = .0175 --------~~----~ 2% Concrete Gutter Paved RESIDENTIAL STREET ONE SIDE ONLY 20-+----------+-~--4_--_+--~~--+_~~~--------~--~~----~_+~r I I"~ 'f--.. v,,· I 18 -+-----+-f--+--+_---;--+.I/~-t-t--II-)-I-........ ~ 70 f" I ~t;1:J. -f 16 -+-----+I-I-----j..:::==--d~--ir--~+-;-t-t'frt---~~ -' ~ 14-+----------~----4----+_,~~~~~~~------~~~--_+----r~/+--r 12 -I-___ -I-+J ---I-----f.-J1'-I---+I----I-r---,-j/!....d:-~ / V j i"~f.D ~ ""V I-J If S I J~ 9-+------~==~~~~--~--~~--~+_+_~----~~~----_4--~~~--~ I -r--J) ~ I 10 5 4 3 0 ~ 1.~ 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 2 3 4 EXAMPLE: Given: Q = 10 S = 2.5% Chart gives: Depth = 0.4, Velocity = 4.4 f.p.s. 5 6 7 8 9 10 Discharge (C.F.S.) SOURCE: San Diego County Department of Special District Services Design Manual Gutter and Roadway Discharge -Velocity Chart 20 30 40 50 FIGURE ~ I I I I I I I I I I I, 'I I I' I I I ! I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.3 -Manning's Equation Nomograph DE:ad h:lreportsl23521151\drainage study01.doc w.o.2352·151 1014/2006 6:47 AM I I I I I I I I I I I I I I I I I :,,0.3 :- 0.2 0.15 r-0.10 to 0.09 r-0.08 I-0.07 ~0.06 Eo 0.05 I-0.04 ~ 0.03 0.002 , f-0.001 0.0009 0.0008 I-0.0007 I:-0.0006 0.0005 I-0.0004 ... 0.0003 EQUATION: V = 1.49 R2J351/2 n 1""0.2 :-0.3 r- 1;-0.4 r F-0.5 5 7 :-8 9 r-10 .. 20 GENERAL SOLUTION 'SOURCE: USDOT, FHWA, HDS-3 (1961) Manning's Equation Nomograph fO ~~ ~30 '"" 1-'20 2 1;01.0. :-0.9 to 0.8 1:-.0.7 ~0.6 "0.5 rO.01 s; I::-0.03 c .~ to '~ :g 0.04 U C1Jr CIJ ~ rO.05 :r: (!) '0.06 ::::l o 0:: ,I:' 0.07 0.08 e-0.09 0.10 t"0.2 I" 0.3 :" "'0.4 FIGURE ~ -----------------~---- I I I I I' I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.4 -Model Development Summary (from San Diego County~ Hydrology Manu.al) _ OE:ad h:lreporlsl2352\151Idralnage study01.doc w.o.2352·151 1014/2006 6:47 AM I I I I I I I I I I I I I I San Diego County Hydrology Manual Section: Date: June 2003 Page: . ~2 DEVELOPING INPUT DATA FOR THE RATIONAL METHOD 3 20of26 This section describes the development of the necessary data to perform RM calculations. Section 3.3 describes the RM calculation ·process. Input data for ~alculating peak flows and Tc's with the RM should be developed as follows: 1. On a topographic base map, outline the overall drainage area boundary, showing' adjacent drains, existing and proposed drains, and'overland flow paths. 2. Verify the accuracy of the drainage map in the field. 3. Divide the drainage area into subareas by locating significant points of interest. These divisions should be based on topography, soil type, and land use. Ensure that an appropriate first subarea is delineated. For natural areas, the first subarea flow path length should be less than or equal to 4,000 feet plus the overland flow length (Table 3-2). For developed areas, the initial subarea flow path length should be consistent with Table 3-2. The topography and slope within the initial subarea should be generally uniform. 4. Working from upstream to downstream, assign a number representing each subarea in the drainage system to each point of interest. Figure 3-8 provides guidelines for node numbers for geographic information system (GIS)-based studies. 5. Measure each subarea in the drainage area to determine its size in acres (A). 6. Determine the length and effective slope of the flow path in each subarea. 7. Identify the soil type for each subarea. 3-20 ------------------- .-""'" Study Area SC ,r-L I . ~ '1 l .. ~ ~ I ./ '. "./ l,' Study Area LA 0) Define Study Areas (Two-Letter 10) o Define Maps (or Subregions on Region Basis) o Define Model Suba~eas on Map Basis . ~ .... ' / . . , . , , , , . . , . \\:,,1 ": · · · . , . " .......... , . . . . CD Define Major Flowpaths in Study Area CD Define Regions on ·Study Area Basis Subarea 10 = (LA010112) N;::: 1 Region # ------.,.----, 1 Study Area (10) # 1 o Define Model Nodes (Intersection of Subarea Boundaries with Flowpath Lines) GIS/Hydrologic Model Data Base Linkage Setup: Nodes, Subareas, Links LA 01 01 03 o Number ~odes "F I G U R E ~. I I I I I I I I I I I I I I I I I II I San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 220f26 8. Determine the runoff coefficient (C) for each subarea based on Table 3-1. If the subarea contains more than one type of development classification, use a proportionate average for C. In determining C f9J." the subarea, use future land use taken from the applicable community plan, Multiple Species Conservation Plan, National Forest land use plan, etc. 9. Calculate the CA value for the subarea. 10. Calculate the I:(CA) value(s) for the subareas upstream of the point(s) of interest. 11. Determine P6 and P24 for the study using the isopluvial maps provided in Appendix B. Ifnecessary, adjust the value for P6 to be within 45% to 65% of the value for P24. See Section 3.3 for a description of the RM calculation process. 3.3 PERFORMING RATIONAL METHOD CALCULATIONS This section describes the RM calculation process. Using the input data, calculation of peak flows and Te's should be performed as follow~; .. 1. Determine Ti for the first subarea. Use Table 3-2 or Figure 3-3 as discussed in Section 3.1.4. If the watershed is natural, the travel time to the downstream end of the first subarea can be added to Tito obtain the Te. Refer to paragraph 3.1.4.2 (a). 2. Determine I for the subarea using Figure 3-1. If Ti was less than 5 minutes, use the 5 minute time to determine intensity for calculating the flow. 3. Calculate the peak discharge flow rate for the subarea, where Qp = I:(CA) 1. In case that the downstream flow rate is less than the upstream flow rate, due to the long travel time that is not offset by the additional subarea runoff, use the upstream peak flow for design purposes until downstream flows increase again. 3-22 I I I I I I I I I I I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 4. Estimate the Tt to the next point of interest. 5. Add the Tt to the previous Te to obtain a new Te. Section: Page: 6. Continue with step 2, above, until the final point of interest is reached. 3 230f26 Note: The MRM should be used to calculate the peak discharge when there is a junction from independent subareas into the drainage system. 3.4 MODIFIED RATIONAL METHOD (FOR JUNCTION ANALYSIS) The purpose of this section is to describe the steps necessary to develop a hydrology report for a small watershed using the MRM. It is necessary to use the MRM if the watershed contains junctions of independent drainage systems. The process is based on the design manuals of the City/County of San Diego. The general process description for using this method, including an example of the application of this method, is described below. The engineer should only use the MRM for drainage areas up to approximately 1 square mile in size. If the watershed will significantly exceed 1 square mile then the NRCS method described in Section 4 should be used. The engineer may choose to use either the RM or the MRM for calculations for up to an approximately I-square-mile area and then transition the study to the NRCS method for additional downstream areas that exceed approximately 1 square mile. The transition process is described in Section 4. 3.4.1 Modified Rational Method General Process Description The general process for the MRM differs from the RM only' when a junction of independent drainage systems is reached. The peak Q, T e, and I for each of the independent drainage systems at the point of the junction are calculated by the RM. The independent drainage systems are then combined using the MRM procedure described below. The peak Q, Te, and I for each of the independent drainage systems at the point of the junction must be calculated prior to using the MRM procedure to combine the independent drainage systems, as these 3-23 I I I I I I I I I I I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 240f26 values will be used for the MRM calculations. After the independent qrainage systems have been combined, RM calculations are continued to the next point of interest. 3.4.2 Procedure for Combining I-!ldepeu.,dent Drainage Systems at a Junction Calculate the peak Q, T e, and I for each of the independent drainage systems at the point of the junction. These values will be used for the MRM calculations. At the junction of two or more independent drainage systems, the respective peak flows are combined to obtain the maximum flow out of the junction at Te. Based on the approximation that total runoff increases directly in proportion to time, a general equation may be written to determine the maximum Q and its corresponding T e using the peak Q, T e, and I for each of the independent drainage systems at the point immediately before the junction. The general equation requires that contributing Q's be numbered in order of increasing Te. Let QI, TI, and II correspond to the tributary area with the shortest Te. Likewise, let Q2, T2, and h correspond to the tributary area with the next longer Te; Q3, T3, and h correspond to the tributary area with the next longer Te; and so on. When only two independent drainage systems are combined, leave Q3, T 3, and h out of the equation. Combin~ the independent drainage systems using the junction equation below..; Junction Equation: TI < T2 < T3 3-24 I I I I I I I I I I I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 250f26 Calculate QT!, QT2, and Qu Select the largest Q and use the Tc associated with that Q for further calculations (see the three Notes for options). If the largest calculated Q's are equal (e.g., Qn = QT2 > QT3), use the shorter ofthe Tc's associated with that Q. This equation may be expanded for a junction of more than three independent drainage systems using the same concept. The concept is that when Q from a selected subarea (e.g., Q2) is combined with Q from another subarea with a shorter Tc (e.g., Ql), the Q from the subarea with the shorter Tc is reduced by the ratio of the I's (hIll); and when Q from a selected subarea (e.g., Q2) is combined with Q from another subarea with a longer Tc (e.g., Q3), the Q from the subarea with the longer Tc is reduced by the ratio ofthe Tc's (J2/T3). Note #1: At a junction of two indeperident drainage systems that have the same Tc, the tributary flows may be added to obtain the Qp. Qp=Ql+Q2; whenTI=T2; andTc=TI=T2 This can be verified by using the junction equation above. Let Q3, T3, and h = o. When TI and T2 are the same, 11 and h are also the same, and Tt/T2 and 12111 = 1. TI/T2 and hill are cancelled from the equations. At this point, Qn = QT2 = QI + Q2. Note #2: In the upstream part of a watershed, a conservative computation is acceptable. When the times of concentration (Tc's) are relatively close in.magnitude (within 10%), use the shorter Tc for the intensity and the equation Q = ~(CA)I. Note #3: . Ali optional method of determining the Tc is to use the equation Tc = [(I (CA)7.44 P6)/Q] 1.55 This equation is from Q = I(CA)I = I(CA)(7.44 P61Tc·645 ) and' solving for Tc. The advantage in this option is that the T c is consistent with the peak flow Q, and avoids inappropriate fluctuation in downstream flows in some cases. 3-25 I I I I I I I I I I I I I I i'l I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study Modified Rational Method Hydrologic Analysis Computer Software Package -AES-2003 Design Storm - 1 ~O-year return interval Land Use -Single-family residential Soil Type -Hydrologic soil group D was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer at or near the surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission. Runoff Coefficient -In accordance with the County of San Diego standards, runoff coefficients were based on land use and slope. Rainfall Intensity -Initial time of concentration values were determined !:Ising the County of San Diego standards. The rainfall intensity-duration-frequency curve for the San Diego County was used to determine rainfall intensities. Method of Analysis -The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 0.5 square'miles, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation: Q = CIA, where: Q = The peak runoff rate in cubic feet per second at the point of analysis. C = A runoff coefficient representing the area -averaged ratio of runoff to rainfall intensity. I = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration. A = The drainage basin area in acres. To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes. The procedure for the subarea summation model is as follows: (1) Subdivide the watershed into an initial subarea (generally 1 lot) and subsequent subareas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each subarea. (2) Estimate an initial Tc by using the appropriate nomograph or overland flow velocity estimation. DE:ad h:lreportsl23S211S1ldralnage study01.doc w.o.2SS2-1S1 1014/2006 6:47 AM I I I I I I I I I I I I I I II I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study (3) (4) Using the initial T c, determine the corresponding values of I. Then Q = C I A. Using Q, estimate the travel time between this node and the next" by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration) The nodes are joined together by links",' which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-2003 computer subarea menu is as follows: SUBAREA HYDROLOGIC PROCESS 1. Confluence analysis at node. 2. Initial subarea analysis (including time of concentration calculation). 3. Pipeflow travel time (computer estimated). 4. Pipeflow travel time (user specified). 5. 6. 7. 8. 9. Trapezoidal channel travel time. Street flow analysis through subarea. User -specified information at node. Addition of subarea runoff to main line. V-gutter flow through area. 10. Copy main stream data to memory bank 11. Confluence main stream data with a 'memory bank 12. Clear a memory bank At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape. (1). If the collection streams have the same times of concentration, then the Q values are directly summed, DE:ad h:\reportsl23521151\dralnage study01.doc w.o.2352·151 10/412006 6:47 AM I I I I I I I I I I I I I I I :1 I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study (2). If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows: (i). The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities. (ii). In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a ratio of the T values. DE:ad h:lreportsI23521151ldralnage study01.dac w.a.2352-151 1014120066:47 AM I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRATE DETERMINATION (ULTIMATE CONDITIONS) 2.5 -STORM Methodology DE:ad h:lreporlS\23521151Idralnage study01.doc w.o.23S2-151 1014/2006 6:47 AM ... --------------------------------------~--~- I I I I I I I I I I I I I I I II I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study STORM METHODOLOGY PURPOSE The Storm Drain Analysis program calculates the hydraulic grade line elevations of a proposed or existing storm drain system given the physical characteristics and the discharge (Q). Currently capability allows for either pressure flow or partial flow with cross sections being either circular or rectangular box. A rectangular open channel can be analyzed as a box cross section, providing the results show that it is flowing partially full throughout the entire system, so that the soffit does not affect the computations. GENERAL DESCRIPTION The program starts the computation for the hydraulic grade line by eValuating the friction losses and the minor losses throughout the system. The junction losses are evaluated by equating pressure plus momentum for the incoming and outgoing flows through the junction. This is accomplished by applying the formula developed by the City of Los Angeles, which establishes that the summation of pressures, ignoring friction, is equal to the average cross section flow area, multiplied by the change in the hydraulic gradient through the junction. The basic flow elevations used for the main lines at either end of the junction that apply to the pressure plus momentum equation depe,nd on the type of flow at each end of the junction. These elevations are determined by computing the drawdown curves for each line. The control elevation for the lateral or lateral system is taken as the average of the hydraulic grade line elevations at both ends of the junction. If the water elevation in the lateral is above this control, the momentum contributed by the lateral in the analysis of the junction is decreased in proportion to the ratio of the area in the lateral below the control to the total area of flow. The point with greater force will be the control point and the 'point at the other end of the junction is determined by satisfying the pressure plus momentum equation. Any of these points may be overridden by the backwater curve originating at the main control at the downstream end of the system. If this is the case, then the pressure plus momentum equation is applied to the point or points determined by the backwater curve during the upstream analysis. The above mentioned considerations apply to both partial and pressure flow. When the flow changes from partial to full or from full to partial, the program determines and prints the location where this change occurs. If the flow reaches normal depth within a line, the program determines and prints this location. When the flow changes from supercritical to subcritical because of downstream conditions, it happens through a hydraulic jump, the program determines the precise location of the jump by equating the pressure plus momentum for the two kinds of flow. It prints DE:ad h:lreportsl23521151ldralnage study01.doc w.o.2352-151 101412006 6:47 PM I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study the jump location pressure plus momentum at the jump and the depth of water before and after the jump. . A PROBLEM SET-UP A typical procedure which will allow the engineer to obtain a complete analysis of a storm drain system and also acquire all data necessary to analyze the design is as follows: 1. Establish the main line of the entire storm drain system. Generally speaking, the lines carrying the greater a will form the main line. In case of comparable a's, the line contributing the greater force will be the main line. 2. Establish the main line of any lateral system by proceeding upstream·from the junction with the main line to the highest upstream inlet. 3. Number the segments of the main line of the entire storm drain system consecutively in the upstream direction to the highest upstream inlet. The channel or conduit, existing or proposed, at the downstream end, which the system joins, should have the lowest number in the system (normally line number 1). 4. Number each lateral system in the same manner, proceeding from its junction with the main line to its highest upstream inlet. 5. For each line, tabulate all pertinent analysis parameters such ·as: Maximum design flow a. Adjusted flow a, to be used in junction analysis. Conduit size and length. Flow line elevations. Minor Joss coefficients for the inlets. Entrance loss coefficients for the inlets. Confluence angles at all junctions. For this program the input for the storm drain analysis is structured as follows in Column 1 of each line, and ale known as cards: 1 -. Project description card. 8 -Control card. 2 -Line data cards. OE:ad h:lreport5\23521151ldralnage study01.doc w.o.2352-151 101412006 6:47 AM I I I I I' I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study The control card, and line data card are explained asfollows: CONTROL CARD (8) This card contains the line number and hydraulic grade line or water surface. elevation of the channel or conduit at the downstream end of the main, line of a storm drain system. Many drain systems may be included within one job. Each system must begin with a Contro.l Card.(8) and must not repeat line numbers from other systems in the same sob. CD L2 CTLfTW Number 8 (numeric, required). Line number-of the channel or conduit at the downstream end which the system joins (numeric, required). Hydraulic grade line elevation or water surface elevation of the channel or conduit at the downstream end which the system Joins (numeric, required). LINE CARD (CARD2) This card contains the necessary information for each line of the storm drain system. CD Number 2 (numeric, required). L2 Line number L2. The maximum line number is 300. Line numbers must be in ascending order without duplications (numeric, required). --.. ~ MAXQ ADJ.Q LENGTH FL1 FL2 CTLfTW Maximum design Q (cfs) (numeric, required). Adjusted Q (cfs) for junction calculations. Adjusted Q equals maximum Q if no entry is made (numeric, optional). Line Length L (feet) (numeric, required). Flow line elevation FL 1 (feet) of conduit at downstream end of line (numeric, required). Flow line elevation FL2 (feet) of conduit at upstream end of line (numeric, required). Maximum allowable hydraulic grade line elevation at upper end of line for structure type 3 or maximum allowable top of water elevation for structure types 1 and oe:ad h;lreports123521151\dralnage study01.dDC w.o.2352-1S1 10/4/2006 6:47 AM I I I I I I I I I I I' I I I I I I -I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study D W S 1 2= ·3= 2. This entry is optional and is printed in the output as a check value for structural types 1 and 2 (numeric, optional). Diameter D (inches) of circular conduit or Depth D (inches) of rectangular conduit (numeric, required). Width W (inches) or rectangular conduit (numeric, required for rectangular section). Structure type at the upstream end of the line. = Catch basin, headwall, or similar inlet structure for the first upstream line. Box inlet structure with a trash rack for the first upstream line. Manhole, junction structure, in line catch basin, or similar structure for an intermediate line only. (NumeriC, required). KJ Junction loss coefficient (Kj) for use with structure type 3. When an entry is made and there is full flow, the junction loss is calculated as Kj times the outlet velocity head, and the pressure plus momentous equation is not applied. If no entry is made or there is partial flow, the junction loss is calculated by pressure plus momentum (numeric, optional). Junction losses are obtained from the Headloss Coefficient table, included at the end of this section. KE Entrance loss coefficient (Ke) for us with structure types 1,2, and 3 when applicable. When an entry is made, the entrance loss is calculated as Ke times the outlet velocity head. At junctions, this loss is considered only in the case of full flow (numeric, optional). For most entrances KE = 0.10. Entrance losses are based on a conservative basis for each scenario and starting from a 0.2 value. DE:ad h:lreportsl23521151ldralnage study01.doc w.o.2352-151 1014/2006 6:47 AM I I I I I I I I 'I I, I I I I ,I I I I 'I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study KM Minor loss coefficient (Km). Summation of minor loss coefficients for bends, manholes, etc. The minor losses are added to the friction losses for full flow only (numeric, optional). Typical values for KM are: Manholes KM Bends KM = = 0.05 0.002 X!J. = Minor losse~ are based on a conservative basis for each scenario and considering the bend angles. This values.starts at 0.05. Central angle of curve of degrees. LC Control line number. An entry is made for the downstream line only of a main or lateral line system. For the main line of the entire storm drain system, the control line will be that which was entered on the Card 8. For a lateral, the control line is the upstream line from the junction where the lateral connects to the main line or another lateral (numeric, required). L 1,L3,L4 L 1, L3, L4 line numbers entering the structure at the upstream end of the line for structure type 3. Li is the main line, 13 and 14 are the laterals (numeric, optional for L 1, required for L3 and L4). A1,A3,A4 J N AI, A3, A4 (degrees) confluence angles of lines L 1, L3 and L4 to the nearest degree measured from the prolongation of L2 (numeric, required). J (feet) junction length for structure type 3. This is an entry for obtaining the friction loss across a junction, manhole or transition structure for full flow (numeric, optional). Manning's constant, uses 0.013 if no entry is made (numeric, optional). JUNCTION LOSS COEFFICIENT. K.J The junction loss is computed as Kj times the velocity head in the outlet conduit. Note, however, that if the value of Kj is left blank or there is partial flow condition, the pressure plus momentum equation will be used to determine the junction losses. ENTRANCE LOSS COEFFICIENT. KE For use with structure types 1, 2 or 3. Values for ke are 0.10. The entrance loss is computed as Ke times the velocity head in the outlet conduit. oe:ad h:lreportsl2352\1~1\dralnage study01.doc w.o.23S2-1S1 101412005 6:47 AM I I I I I I I I I I I I' :1 I I I 'J 'I rl La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study MINOR LOSS COEFFICIENT,KM Km is the summation of the loss coefficients for bends, manholes, etc. The total minor loss is computed as Km times the velocity head in the conduit. Typical values for Km are: Manholes: Km 0.05 Bends: Km = 0.002 x Delta Delta = central angle of curve in degrees. Minor losses are added to the friction losses in the hydraulic analysis for full flow only. OTHER VARIABLES • V1, FL 1, D1 and HG1 Refer to Downstream End • V2, FL2, 02 and HG2 Refer to Upstream End • X: Distance in feet from downstream end to point where HG .intersects soffit in seal condition. • X(N): Distance in feet from downstream end to point where water surface reaches normal depth by either drawdown or backwater. • X(J): Distance in feet from downstream end to point where hydraulic jump occurs in line. • F(J): The computed force at the Hydraulic Jump • 0 (BJ): Depth of water before .t~e hydraulic jump (Upstream Side) • 0 (AJ): Depth of water after the hydraulic jump (Downstream Side) • SEAL: Indicates flow changes from part to full or from full to part • HYD JUMP: Indicates that flow changes from supercritical to sub-critical through a hydraulic jump. • HJ @ UJT: Indicates that hydraulic jump occurs at the junction at the upstream end of the line. • HJ @ DJT: Indicates that hydraulic jump occurs at the junction at the downstream end of the line. DE:ad h:lrepor1s123521151Idralnage study01.doc w.o.2352·151 101412006 6:47 AM I I I I I I I I I I I I I I I I I I I' La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 3 Site Hydrologic Analysis -100-Year Developed Conditions OE:ad h:\reportsl23521151Idralnage study01.doc w.o.2352·151 1014120066:47 AM I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 3 Site Hydrologic Analysis -100-Year Developed Conditions 3.1 -Neighborhood 3.1· DE:ad h:\reporls\23521151\dralnage sludyOl.<!oc w.o.2352-1S1 10/4120066:47 AM I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES -SAN DIEGO 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * LA COSTA OAKS -NEIGHBORHOOD 3.1 * * 100-YEAR DEVELOPED CONDITION HYDROLOGIC ANALYSIS * * W.O.# 2352-126 PREPARED BY: DJG * ************************************************************************** FILE NAME: H:\AES2003\2352\126\DEVI00.DAT TIME/DATE OF STUDY: 17:34 09/27/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED l?IPEFLOW AND STREETFLOW HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) ---===== ========= ================= ====== ====== 1 17.0 12.0 0.020/0.020/ 0.50 1.50 0.0313 2 18.0 13.0 0.020/0.020/ 0.50 1.50 0.0313 3 20.0 15.0 0.020/0.020/ 0.50 1.50 0.0313 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 4.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* HIKE (FT) 0.125 0.125 0.125 MODEL* MANNING FACTOR (n) =-====== 0.0150 0.0150 0.0150 +--------------------------------------------------------------------------+ I I I BEGIN PORTION OF NEIGHBORHOOD 3.3 -NODE SERIES 400 I I I +--------------------------------------------------------------------------+ I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 543.40 DOWNSTREAM ELEVATION(FEET) = 542.70 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = SUBAREA RUNOFF(CFS) 0.78 8.735 5.332 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) 0.78 **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 428.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 541.00 DOWNSTREAM ELEVATION(FEET) = 517.00 STREET LENGTH(FEET) = 681.20 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED-FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.86 AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 3.97 STREET FLOW TRAVEL TIME(MIN.) = 2.86 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 1.20 Tc(MIN.) = 4.441 11.59 SUBAREA AREA(ACRES) 2.42 TOTAL AREA(ACRES) = 2.70 SUBAREA RUNOFF"(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.35 HALF STREET FLOOD WIDTH(FEET) 11.28 3.58 5.59 0.0150 6.24 FLOW VELOCITY(FEET/SEC.) = 4.49 DEPTH*VELOCITY(FT*FT/SEC.) 1.58 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 428.00 = 751.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 428.00 TO NODE 429.00 IS CODE = 41 I I I I I I I I I I I I I I I I I 'I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 506.80 DOWNSTREAM (FEET) 506.50 FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.41 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.24 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 11.60 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 429.00 754.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 429.00 TO NODE 425.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 506.00 DOWNSTREAM (FEET) 501.60 FLOW LENGTH(FEET) = 81.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 5.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.83 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.24 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 11.72 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 425.00 836.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 425.00 TO NODE 425.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 413.00 TO NODE 415.00 IS CODE = 21 --------------------------------------------~------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 69.90 UPSTREAM ELEVATION(FEET) = 529.10 DOWNSTREAM ELEVATION(FEET) = 528.40 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.725 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.336 SUBAREA RUNOFF (CFS) 0.92 TOTAL AREA(ACRES) = 0.33 TOTAL RUNOFF(CFS) 0.92 **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 416.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 526.00 DOWNSTREAM ELEVATION(FEET) = 513.00 I I I I I I I I I I I I I I I I I I I STREET LENGTH(FEET) = 455.00 STREET HALFWIDTH(FEET) = 17.00 CURB HEIGHT(INCHES) 6.0 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow section{curb-to-curb) **TRAVEL TIME COMPUTED USING EST~~TED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 8.43 STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 3.46 STREET FLOW TRAVEL TIME(MIN.) = 2.19 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.520 1. 02 Tc (MIN.) 4.617 10.92 SUBAREA AREA(ACRES) 1.62 TOTAL AREA(ACRES) = 1.95 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 10.43 2.87 3.89 0.0150 4.68 FLOW VELOCITY(FEET/SEC.) = 3.88 DEPTH*VELOCITY(FT*FT/SEC.) 1.30 LONGEST FLOWPATH FROM NODE 413.00 TO NODE 416.00 = 524.90 FEET. ******************************"********************************************** FLOW PROCESS FROM NODE 416.00 TO NODE 424.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ======================================================================~===== ELEVATION DATA: UPSTREAM (FEET) = 503.00 DOWNSTREAM (FEET) 502.00 FLOW LENGTH(FEET) = 26.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.05 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 4.68 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 10.97 LONGEST FLOWPATH FROM NODE 413.00 TO NODE 424.00 551.20 FEET. ****************************************************************~*********** FLOW PROCESS FROM NODE 424.00 TO NODE 424.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.97 RAINFALL INTENSITY(INCH/HR) = 4.60 TOTAL STREAM AREA(ACRES) = 1.95 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.68 I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 417.00 TO NODE 418.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 520.70 DOWNSTREAM ELEVATION(FEET) = 520.00 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) SUBAREA RUNOFF (CFS) 0.61 8.735 5.332 TOTAL AREA(ACRES) = 0.22 TOTAL RUNOFF(CFS) = 0.61 **************************************************************************** FLOW PROCESS FROM NODE 419.00 TO NODE 418.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.332 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6294 SUBAREA AREA(ACRES) 0.10 SUBAREA RUNOFF (CFS) TOTAL AREA(ACRES) 0.32 TOTAL RUNOFF(CFS) = TC(MIN.) = 8.73 0.46 1.07 **************************************************************************** FLOW PROCESS FROM NODE 418.00 TO NODE 420.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)<~«<~ ============================================================================ UPSTREAM ELEVATION(FEET) = 517.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 144.80 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) 6.31 2.99 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.76 STREET FLOW TRAVEL TIME(MIN.) = 0.81 Tc(MIN.) 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.036 *USER SPECIFIED (SUBAREA) : 1.55 9.54 513.00 0.0150 I I I I I I I I I I I I I I I I I I USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.36 TOTAL AREA(ACRES) = 0.68 0.571 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.10 0.94 FLOW VELOCITY(FEET/SEC.) = 3.14 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 417.00 TO NODE 420.00 = 214.80 1.96 0.84 FEET. **************************************************************************** FLOW PROCESS FROM NODE 420.00 TO NODE 424.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 502.50 DOWNSTREAM (FEET) 502.00 FLOW LENGTH(FEET) = 4.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.47 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 1.96 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 9.55 LONGEST FLOWPATH FROM NODE 417.00 TO NODE 424.00 219.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 424.00 TO NODE 424.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN. ) 9.55 RAINFALL INTENSITY(INCH/HR) = 5.03 TOTAL STREAM AREA(ACRES) = 0.68 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.96 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.68 10.97 4.604 2 1.96 9.55 5.034 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 6.03 9.55 5.034 2 6.47 10.97 4.604 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 6.47 Tc (MIN.) = TOTAL AREA (ACRES) = 2.63 AREA (ACRE) 1.95 0.68 RATIO 10.97 I I I I I I I I I I I I I I I I I I LONGEST FLOWPATH FROM NODE 413.00 TO NODE 424.00 = 551. 20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 424.00 TO NODE 425.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 502.00 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 39.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.03 GIVEN PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 6.47 NUMBER OF PIPES 0.11 Tc(MIN.) = 11. 07 1 501. 60 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 413.00 TO NODE 425.00 590.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 425.00 TO NODE 425.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 6.47 11;07 4.575 AREA (ACRE) 2.63 LONGEST FLOWPATH FROM NODE 413.00 TO NODE 425.00 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 6.24 11. 72 4.410 2.70 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 425.00 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 12.36 11.07 4.575 2 12.47 11. 72 4.410 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 12.47 Tc(MIN.) = 11.72 TOTAL AREA(ACRES) = 5.33 590.30 FEET. 836.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 425.00 TO NODE 425.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 425.00 TO NODE 430.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ I I I I I I I I I I I I I I I I I I I ELEVATION DATA: UPSTREAM (FEET) = 501.30 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 177.60 MANNING'S N 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 16.67 GIVEN PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 12.47 NUMBER OF PIPES 0.18 Tc(MIN.) = 11.90 1 482.90 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 401. 00 TO NODE 430.00 10l3.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 430.00 TO NODE 422.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 482.60 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 212.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.87 GIVEN PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 12.47 NUMBER OF PIPES 0.21 Tc (MIN.) = 1 459.90 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 401.00 TO NODE 12.11 422.00 1226.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 422.00 TO NODE 422.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 557.70 DOWNSTREAM ELEVATION(FEET) = 557.00 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.332 SUBAREA RUNOFF (CFS) 0.61 TOTAL AREA(ACRES) = 0.22 TOTAL RUNOFF(CFS) 0.61 **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 554.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 392.30 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 537.00 I I I I I I I I I I I I I I I I I I I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DEClMAL) = 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.77 AVERAGE FLOW VELOCITY(FEET/S"EC.) 4.11 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.16 STREET FLOW TRAVEL TIME(MIN.) = 1.59 Tc(MIN.) = 10.32 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.787 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 2.97 0.0150 SUBAREA AREA(ACRES) 1.89 SUBAREA RUNOFF (CFS) = 4.70 TOTAL AREA(ACRES) = 2.11 PEAK FLOW RATE (CFS) 5.25 END OF SUBAREA STREET FLOW HYDRAuLICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 10.01 FLOW VELOCITY(FEET/SEC.) = 4.69 DEPTH*VELOCITY(FT*FT/SEC.) 1.53 LONGEST FLOWPATH FROM NODE 403.00 TO NODE 405.00 = 462.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 548.00 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 268.80 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4:9 ~NCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.66 GIVEN PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW (CFS) = 5.25 NUMBER OF PIPES 0.33 Tc(MIN.) = 10.65 1 518.50 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 403.00 TO NODE 406.00 731. 10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.65 RAINFALL INTENSITY (INCH/HR) = 4.69 TOTAL STREAM AREA(ACRES) = 2.11 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 407.00 TO NODE 408.00 IS CODE = 21 I I I I I I I I I I I I I I I I I I »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 557.00 DOWNSTREAM ELEVATION(FEET) = 556.30 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) SUBAREA RUNOFF (CFS) 0 . 6'9 ' , 8.735 5.332 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF (CFS) = 0.69· **************************************************************************** FLOW PROCESS FROM NODE 408.00 TO NODE 409.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 553.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 555.50 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF =" 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 7.34 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 4. '20 STREET FLOW TRAVEL TIME(MIN.) = 2.21 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 1.15 Tc (MIN.) 4.611 10.94 SUBAREA AREA (ACRES) 1 . 72 TOTAL AREA(ACRES) = 1.97 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.40 2.76 4.12 527.50 0.0150 4.72 FLOW VELOCITY(FEET/SEC.) = 4.71 DEPTH*VELOCITY(FT*FT/SEC.) 1.48 LONGEST FLOWPATH FROM NODE 407.00 TO NODE 409.00 = 625.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 409.00 TO NODE 406.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ I I I I I I I I I I I I I I I I I I I ELEVATION DATA: UPSTREAM (FEET) = 519.00 DOWNSTREAM (FEET) 518.50 FLOW LENGTH(FEET) = 26.30 MANNING'S N 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.05 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 4.72 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 11.00 LONGEST FLOWPATH FROM NODE 407.00 TO NODE 406.00 651.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 11.00 RAINFALL INTENSITY (INCH/HR) = 4.59 TOTAL STREAM AREA(ACRES) = 1.97 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.72 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 5.25 10.65 4.691 2 4.72 11. 00 4.594 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 9.83 10.65 4.691 " .. 2 9.87 11.00 4.594 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 2.11 1.97 RATIO PEAK FLOW RATE(CFS) 9.87 Tc(MIN.) = 11.00 TOTAL AREA(ACRES) = 4.08 LONGEST FLOWPATH FROM NODE 403.00 TO NODE 406.00 731.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 410.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 518.50 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 194.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 9.46 GIVEN PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 9.87 NUMBER OF PIPES 0.34 Tc(MIN.) = 11.34 1 513.50 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 403.00 TO NODE 410.00 925.10 FEET. I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 421.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 513.50 DOWNSTREAM (FEET) 505.70 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.46 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 9.87 PIPE TRAVEL TIME (MIN.) = 0.37 Tc(MIN.) = 11.71 LONGEST FLOWPATH FROM NODE 403.00 TO NODE 421.00 1155.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 421.00 TO NODE 421.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 423.00 TO NODE 426.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 69.90 UPSTREAM ELEVAT"ION(FEET) = 547.10 DOWNSTREAM ELEVATION(FEET) = 546.40 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.725 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.336 SUBAREA RUNOFF (CFS) 0.94 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) 0.94 **************************************************************************** FLOW PROCESS FROM NODE 426.00 TO NODE 427.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 544.70 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 628.90 CURB HEIGHT(INCHES) 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 2.78 536.00 0.0150 I I I I I I I I I I I I I I I I I I I STREET FLOW DEPTH(FEET) = 0.32 9.72 2.62 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET!SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT!SEC.) STREET FLOW TRAVEL TIME(MIN.) = 4.00 100 YEAR RAINFALL INTENSITY(INCH!HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 0.84 Tc (MIN.) 4.183 12.73 SUBAREA AREA(ACRES) 1.68 TOTAL AREA(ACRES) = 2.02 . .'~UBAREA RUNOFF (CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) 11.84 3.65 4.39 FLOW VELOCITY(FEET!SEC.) = 2.89 DEPTH*VELOCITY(FT*FT!SEC.) 1.05 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 427.00 = 698.80 FEET. **************************************************************************** , FLOW PROCESS FROM NODE 427.00 TO NODE 427.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.73 RAINFALL INTENSITY(INCH!HR) = 4.18 TOTAL STREAM AREA(ACRES) = 2.02 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.39 **************************************************************************** FLOW PROCESS FROM NODE 432.00 TO NODE 433.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 546.70 DOWNSTREAM ELEVATION(FEET) = 546.00 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY(INCH!HOUR) 5.332 SUBAREA RUNOFF (CFS) 0.69 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) 0.69 **************************************************************************** FLOW PROCESS FROM NODE 433.00 TO NODE 427.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >.»» (STREET TABLE SECTION # ~ USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 544.40 DOWNSTREAM ELEVATION(FEET) = 534.00 STREET LENGTH(FEET) = 589.60 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 I I I I I I I I I I I I I I I I I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 13.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 6.30 STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 2.40 STREET FLOW TRAVEL TIME(MIN.) = 4.10 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.520 0.61 Tc (MIN.) 4.161 12.83 SUBAREA AREA(ACRES) 0.50 TOTAL AREA(ACRES) = 0.75 SUBAREA-RUNOFF (CFS) PEAK FLOW RATE (CFS) = END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.20 1.24 1.08 FLOW VELOCITY(FEET/SEC.) = 2.55 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 432.00 TO NODE 427.00 = 659.60 0.0150 1.62 0.69 FEET. **************************************************************************** FLOW PROCESS FROM NODE 427.00 TO NODE 427.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) 12.83 RAINFALL INTENSITY (INCH/HR) = 4.16 TOTAL STREAM AREA(ACRES) = 0.75 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.62 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 4.39 2 1. 62 Tc (MIN. ) 12.73 12.83 INTENSITY ( INCH/HOUR) 4.183 4.161 2 ARE: AREA (ACRE) 2.02 0.75 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 6.00 12.73 4.183 2 5.99 12.83 4.161 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 6.00 Tc (MIN.) = 12.73 I I I I I I I I I I I I I .1 I I I TOTAL AREA(ACRES) = 2.77 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 427.00 = 698.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 427.00 TO NODE 421.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 534.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 646.60 C~RB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH (FEET) = 18. 0 O· DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF l' Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 12.94 4.81 AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = STREET FLOW TRAVEL TIME(MIN.) = 2.24 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.520 SUBAREA AREA(ACRES) 2.67 1.85 Tc (MIN.) 3.767 8.62 14.97 5.23 512.00 0.0150 TOTAL AREA(ACRES) = 5.44 SUBAREA RUNOFF (CFS) PEAK FLOW RATE (CFS) 10.66 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) 14.10 FLOW VELOCITY(FEET/SEC.) = 5.06 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 423.00 TO NODE 421.00 = 1345.40 2.07 FEET. **************************************************************************** FLOW PROCESS FROM NODE 421. 00 TO NODE 421.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 10.66 14.97 3.767 5.44 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 421. 00 = 1345.40 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 9.87 11.71 4.413 4.08 LONGEST FLOWPATH FROM NODE 403.00 TO NODE 421. 00 1155.10 FEET. I I I I I I I I I I I I I I I I I I ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 18.21 11. 71 4.413 2 19.08 14.97 3.767 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 19.08 Tc(MIN.) = 14.97 TOTAL AREA(ACRES) = 9.52 ********************************"******************************************** FLOW PROCESS FROM NODE 421.00 TO NODE 421.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 421.00 TO NODE 422.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 505.70 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 136.70 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 28.63 GIVEN PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 19.08 NUMBER OF PIPES = 0.08 Tc(MIN.) = 15.05 1 459.90 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 422.00 1482.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 422.00 TO NODE 422.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 2 WITH THE ~IN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 19.08 15.05 3.754 9.52 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 422.00 1482.10 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 12.47 12.11 4.318 5.33 LONGEST FLOWPATH FROM NODE 401. 00 TO NODE 422.00 1226.10 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) :). 27.83 12.11 4.318 2 29.92 15.05 3.754 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I I I I I I I I I I I I I I I I I I I PEAK FLOW RATE (CFS) TOTAL AREA (ACRES) = 29.92 14.85 Tc (MIN.) 15.05 **************************************************************************** FLOW PROCESS FROM NODE 422.00 TO NODE 422.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 2 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 422.00 TO NODE 431.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 458.90 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 81.90 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 9.1 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 21.20 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 29.92 NUMBER OF PIPES = 0.06 Tc(MIN.) = 15.11 1 449.70 PIPE ~RAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 431. 00 1564.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 431. 00 TO NODE 431.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 15.11 RAINFALL INTENSITY(INCHjHR) = 3.74 TOTAL 'STREAM AREA(ACRES) = 14.85 PEAK FLOW RATE (CFS) AT CONFLUENCE = 29.92 **************************************************************************** FLOW PROCESS FROM NODE 436.00 TO NODE 437.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 509.70 DOWNSTREAM ELEVATION(FEET) = '509.00 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY (INCHjHOUR) 5.332 SUBAREA RUNOFF (CFS) 0.7-2 TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) 0.72 **************************************************************************** FLOW PROCESS FROM NODE 437.00 TO NODE 434.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< I I I I I I I I I I I I I I I I I I I »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 504.20 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 417.20 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS C~~YING RUNOFF 1 Manning's FRICTION FACTOR for "Streetflow Section(c~rb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.44 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.59 AVERAGE FLOW VELOCITY(FEET/SEC.) 5.67 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.35 STREET FLOW TRAVEL TIME(MIN.) = 1.23 Tc(MIN.) 9.96 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.899 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 1.35 SUBAREA RUNOFF (CFS) = 3.44 460.50 0.0150 TOTAL AREA(ACRES) = 1.61 PEAK FLOW RATE (CFS) = 4.10 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.34 FLOW VELOCITY(FEET/SEC.) = 6.24 DEPTH*VELOCITY(FT*FT/SEC.) 1.70 LONGEST FLOW PATH FROM NODE 436.00 TO NODE 434.00 = 487.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 434.00 TO NODE 431.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»·>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 451.40 DOWNSTREAM (FEET) 451.20 FLOW LENGTH(FEET) = 27.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.78 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 4.10 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 10.06 LONGEST FLOW PATH FROM NODE 436.00 TO NODE 431.00 514.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 431.00 TO NODE 431.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.06 I I I I I I I I I I I I I I I I I I I RAINFALL INTENSITY(INCH/HR) = 4.87 TOTAL.STREAM AREA(ACRES) = 1.61 PEAK FLOW RATE(CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 29.92 15.n 3.744 2 4.10 10.06 4.869 4.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 24.02 10.06 4.869 2 33.08 15.n 3.744 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 14.85 1. 61 RATIO PEAK FLOW RATE (CFS) 33.08 Tc(MIN.) = 15.11 TOTAL AREA(ACRES) = 16.46 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 431.00 1564.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 431.00 TO NODE 435.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 449.40 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 49.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.74 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 33.08 NUMBER OF PIPES 0.04 Tc (MIN.) = 1 443.90 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 15.15 435.00 1613.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 435.00 TO NODE 435.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 15.15 RAINFALL INTENSITY (INCH/HR) = 3.74 TOTAL STREAM AREA(ACRES) = 16.46 PEAK FLOW RATE (CFS) AT CONFLUENCE = 33.08 **************************************************************************** FLOW PROCESS FROM NODE 435.00 TO NODE 435.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: I I I I I I I I I I I I I I I I I I 'I TC(MIN) = 5.00 TOTAL AREA (ACRES) RAIN INTENSITY(INCH/HOUR) = 7.64 1.29 TOTAL RUNOFF(CFS) = 6.23 +--------------------------------------------------------------------------+ I Data from the Code 7 above was obtained from the previously mentioned I mass-graded drainge study preapred by Hunsaker & Associates. I +-----------------------------------------------------------------------~--+ **************************************************************************** FLOW PROCESS FROM NODE 435.00 TO NODE 435.00 IS CODE = 1 ----------------------~--------~-------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION (MIN. ) 5 . 00 RAINFALL INTENSITY(INCH/HR) = 7.64 TOTAL STREAM AREA(ACRES) = 1.29 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.23 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 33.08 2 6.23 Tc (MIN. ) 15.15 5.00 INTENSITY ( INCH/HOUR) 3.738 7.641 2 ARE: AREA (ACRE) 16.46 1.29 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 22.41 5.00 7.641 .... 2 36.13 15.15 3.738 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 36.13 Tc(MIN.) = 15.15 TOTAL AREA(ACRES) = 17.75 ~ LONGEST FLOWPATH FROM NODE 423.00 TO NODE 435.00 1613.50 FEET. +--------------------------------------------------------------------------+ I END PORTION OF NEIGHBORHOOD 3.3 -NODE SERIES 400 I I I I BEGIN NEIGHBORHOOD 3.1 -NODE SERIES 400 I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 435.00 TO NODE 438.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 443.90 DOWNSTREAM (FEET) 422.50 FLOW LENGTH(FEET) 377.70 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 12.0 INCHES I I I I I I I I I I I I I I I I I PIPE-FLOW VELOCITY(FEET/SEC.) 17.51 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 36.13 0.36 Tc(MIN.) = PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 15.51 438.00 1991.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 438.00 TO NODE 438.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 15.51 RAINFALL INTENSITY(INCH/HR) = 3.68 TOTAL STREAM AREA(ACRES) = 17.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 36.13 **************************************************************************** FLOW PROCESS FROM NODE 439.00 TO NODE 440.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 451.20 DOWNSTREAM ELEVATION(FEET) = 450.50 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF(CFS) 0.58 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) 0.58 **************************************************************************** FLOW PROCESS FROM NODE 440.00 TO NODE 441.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 447.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 258.40 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = INSIDE STREET CROSSFALL(DEClMAL) OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 12.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALF STREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.65 3.88 1.70 434.50 0.0150 I I I I I I I I I I I I I I I I I I I PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 1.11" 100 YEAR" RAINFALL INTENSITY (INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 0.93 Tc (MIN.) 5.113 9.32 SUBAREA AREA(ACRES) 0.84 TOTAL AREA(ACRES) = 1.04 SUBAREA RUNOFF (CFS) PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.22 2.23 2.76 FLOW VELOCITY(FEET/SEC.) = 4.32 DEPTH*VELOCITY(FT*FTjSEC.) 1.17 LONGEST FLOWPATH FROM NODE 439.00 TO NODE 441.00 = 323.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 441.00 TO NODE 438.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVArION DATA: UPSTREAM (FEET) = 424.40 DOWNSTREAM (FEET) 424.10 FLOW LENGTH(FEET) = 27.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 4.99 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 2.76 PIPE "TRAVEL TIME (MIN.) = 0.09 Tc(MIN.) = 9.41 LONGEST FLOWPATH FROM NODE 439.00 TO NODE 438.00 350.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 438.00 TO NODE 438.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN. ) 9 . 41 RAINFALL INTENSITY(INCH/HR) = 5.08 TOTAL STREAM AREA(ACRES) = 1.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.76 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 36.13 15.51 3.682 2 2.76 9.41 5.081 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 28.94 9.41 5.081 2 38.13 15.51 3.682 AREA (ACRE) 1"7.75 1. 04 RATIO I I I I I I I I I I I I I I I I I I I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 38.13 Tc(MIN.) = 15.51 TOTAL AREA(ACRES) = 18.79 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 438.00 1991.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 438.00 TO NODE 490.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE .~EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 422.10 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 104.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 12.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.64 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 38.13 NUMBER OF PIPES 0.10 Tc(MIN.) = 1 416.30 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 15.61 490.00 2095.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 490.00 TO NODE 490.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 15.61 RAINFALL INTENSITY(INCH/HR) = 3.67 TOTAL STREAM AREA(ACRES) = 18.79 PEAK FLOW RATE(CFS) AT CONFLUENCE = 38.13 **************************************************************************** FLOW PROCESS FROM NODE 444.00 TO NODE 444.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.54 RAIN INTENSITY(INCH/HOUR) = 5.41 TOTAL AREA(ACRES) = 1.62 TOTAL RUNOFF(CFS) = 12.91 +--------------------------------------------------------------------------+ I The data in the Code 7 above was obtained from the previously mentioned I I mass-graded drainage study prepared from Hunsaker & Associates. I I I +--------------------------------------------------------------~-----------+ **************************************************************************** FLOW PROCESS FROM NODE 444.00 TO NODE 492.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 450.00 DOWNSTREAM (FEET) 423.30 FLOW LENGTH(FEET) 78.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 5.2 INCHES I I I I I I I I I I I I I I I I I I PIPE-FLOW VELOCITY(FEET/SEC.) = 25.77 GIVEN PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 12.91 NUMBER OF PIPES 0.05 Tc(MIN.) = 1 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 439.00 TO NODE 8.59 492.00 428.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 444.00 TO NODE 492.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.389 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 1.4074 SUBAREA AREA(ACRES) 0.12 SUBAREA RUNOFF (CFS) TOTAL AREA(ACRES) 1.74 TOTAL RUNOFF(CFS) = TC(MIN.) = 8.59 0.34 13.20 +--------------------------------------------------------------------------+ I The Code 8 above pertains to the area drained by the existing Ditch I I A. The ditch is existing per the mass-graded plans. I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 492.00 TO NODE 490.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 422.80 DOWNSTREAM (FEET) 417.30 FLOW LENGTH(FEET) = 118.90 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.68 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 13.20 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 8.75 LONGEST FLOWPATH FROM NODE 439.00 TO NODE 490.00 547.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 490.00 TO NODE -490.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION (MIN. ) 8 . 75 RAINFALL INTENSITY(INCH/HR) = 5.33 TOTAL STREAM AREA(ACRES) = 1.74 PEAK FLOW RATE (CFS) AT CONFLUENCE = 13.20 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) Tc (MIN. ) INTENSITY ( INCH/HOUR) 2 ARE: AREA (ACRE) I I I I I I I I I I I I I I I I I I 1 38.13 15.61 3.667 18.79 2 13.20 8.75 5.327 1. 74 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 39.44 8.75 5.327 2 47.21 15.61 3.667 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 47.21 Tc(MIN.) = 15.61 TOTAL AREA(ACRES) = 20.53 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 490.00 2095.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 490.00 TO NODE 442.00 IS CODE. = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 416.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 105.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 14.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.66 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 47.21 NUMBER OF PIPES 0.09 Tc(MIN.) = 1 410.20 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 15.70 442.00 2201.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 443.00 TO NODE 442.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.653 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6030 SUBAREA AREA(ACRES) 0.24 SUBAREA RUNOFF (CFS) TOTAL AREA(ACRES) = 20.77 TOTAL RUNOFF(CFS) TC(MIN.) = 15.70 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE 0.46 47.21 +--------------------------------------------------------------------------+ I The Code 8 above pertains to the area drained by existing Ditch B. I I The ditch is existing per the mass-graded plans. I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 442.00 TO NODE 491.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< I I I I I I I I I I I I I I I I ,I I I »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 409.90 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 29.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 23.0 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 9.89 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 47.21 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 15.75 409.60 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 491.00 2230.40 FEET. .. ********************************'******************************************** FLOW PROCESS FROM NODE 491.00 TO NODE 491.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 15.75 RAINFALL INTENSITY(INCHjHR) = 3.65 TOTAL STREAM AREA(ACRES) = 20.77 PEAK FLOW RATE (CFS) AT CONFLUENCE = 47.21 **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 9.26 RAIN INTENSITY(INCHjHOUR) = 5.13 TOTAL AREA(ACRES) = 1.28 TOTAL RUNOFF(CFS) = 2.30 +--------------------------------------------------------------------------+ I Data from the Code 7 above was obttained from the previoulY,mentioned I I mass-graded drainage study prepared by Hunsaker & Associates. I I ,',' ~ I +---------------------------------------------------------------~----------+ **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 491.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 428.50 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 57.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.5 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 15.34 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPE-FLOW (CFS) = 2.30 0.06 Tc(MIN.) = 9.32 1 411.10 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 439.00 TO NODE 491.00 605.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 491.00 TO NODE 491.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< I I I I I I I I I I I I I I II I I I I I »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) 9.32 RAINFALL INTENSITY (INCH/HR) = 5.11 TOTAL STREAM AREA(ACRES) = 1.28 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.30 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) . (INCH/HOUR) (ACRE) 1 47.21 15.75 3.645 20.77 2 2.30 9.32 5.112 1.28 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 35.96 9.32 5.112 2 48.85 15.75 3.645 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 48.85 Tc(MIN.) = 15.75 TOTAL AREA(ACRES) = 22.05 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 491.00 2230.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 491.00 TO NODE 445.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 409-:":20 ~ DOWNSTREAM (FEET) 408.60 FLOW LENGTH(FEET) = 56.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 23.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.15 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 48.85 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 15.84 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 445.00 2286.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 445.00 TO NODE 445.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< =========================================================~================== **************************************************************************** FLOW PROCESS FROM NODE 446.00 TO NODE 447.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 I I I I I I I I I I I I I I I I I I S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 440.20 DOWNSTREAM ELEVATION(FEET) = 439.50 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.81 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) 0.81 **************************************************************************** FLOW PROCESS FROM NODE 448.'00 TO NODE 447.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.548 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF SUBAREA AREA (ACRES) TOTAL AREA (ACRES) TC(MIN.) = 8.21 COEFFICIENT = 0.6922 6.16 SUBAREA RUNOFF(CFS) 6.44 TOTAL RUNOFF(CFS) = 23.92 24.73 +--------------------------------------------------------------------------+ I The Code 8 above pertains to the area from the future recreation I I center (Lot 81). A weighted runoff coefficient was used for I I neighborhood commercial and residential. I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 447.00 TO NODE 449.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 436.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 338.60 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) ***STREET FLOW SPLITS OVER STREET-CROWN*** FULL DEPTH(FEET) = 0.47 FLOOD WIDTH(FEET) = 17.00 FULL HALF-STREET VELOCITY(FEET/SEC.) = 6.34 26.07 SPLIT DEPTH(FEET) = 0.35 SPLIT FLOOD WIDTH(FEET) = 11.34 SPLIT FLOW(CFS) = 7.01 SPLIT VELOCITY(FEET/SEC.) 4.99 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.00 AVERAGE FLOW VELOCITY(FEET/SEC.) 6.34 421. 50 0.0150 I I I I I I I I I I I I I I I 'I I I PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 0.89 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.669 2.95 Tc (MIN.) 5.192 9.10 SUBAREA AREA(ACRES) 0.99 TOTAL AREA(ACRES) = 7.43 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) 17.00 2.67 25.82 FLOW VELOCITY(FEET/SEC.) = 6.34 DEPTH*VELOCITY(FT*FT/SEC.) = 2.95 LONGEST FLOWPATH FROM NODE 446.00 TO NODE 449.00 = 403.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 449.00 TO NODE 449.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) 9.10 RAINFALL INTENSITY(INCH/HR) = 5.19 TOTAL STREAM AREA(ACRES) = 7.43 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.82 **************************************************************************** FLOW PROCESS FROM NODE 450.00 TO NODE 451.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW -LENGTH (FEET) = "·65 . -00 UPSTREAM ELEVATION(FEET) = 435.70 DOWNSTREAM ELEVATION(FEET) = 435.00 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.95 TOTAL AREA(ACRES) = 0.33 TOTAL RUNOFF(CFS) 0.95 **************************************************************************** FLOW PROCESS FROM NODE 451.00 TO NODE 449.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 2 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 433.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 469.20 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 13.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) = 0.020 421. 50 I I I I' I I I I I I I I I I I I I 'I I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 9.33 STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 3.44 STREET FLOW TRAVEL TIME(MIN.) = 2.27 100 YEAR RAINFALL INTENSITY (INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 1. 08 Tc(MIN.) 4.739 10.48 SUBAREA AREA(ACRES) 1.98 TOTAL AREA(ACRES) = 2.31 SUBAREA RUNOFF(CFS) PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) 11.59 3.40 4.88 0.0150 5.69 FLOW VELOCITY(FEET/SEC.) = 3.90 DEPTH*VELOCITY(FT*FT/SEC.) 1.40 LONGEST FLOWPATH FROM NODE 450.00 TO NODE 449.00 = 534.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 449.00 TO NODE 449.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.48 RAINFALL INTENSITY(INCH/HR) = 4.74 TOTAL STREAM AREA(ACRES) = 2.31 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5~69 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 25.82 9.10 5.192 2 5.69 10.48 4.739 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 30.76 9.10 5.192 2 29.26 10.48 4.739 ESTIMATES ARE AS FOLLOWS: 30.76 Tc(MIN.) = 9.74 COMPUTED CONFLUENCE PEAK FLOW RATE (CFS) TOTAL AREA (ACRES) = LONGEST FLOWPATH FROM NODE 450.00 TO NODE AREA (ACRE) 7.43 2.31 RATIO 9.10 449.00 534.20 FEET. I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 449.00 TO NODE 445.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) 410.14 DOWNSTREAM (FEET) 410.11 FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) 9.79 PIPE FLOW VELOCITY = (TOTAL FLOW)/(~IPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 2'4.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 30.76 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 9.11 LONGEST FLOWPATH FROM NODE 450.00 TO NODE 445.00 537.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 445.00 TO NODE 445.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM NUMBER 1 STREAM CONFLUENCE DATA ** RUNOFF Tc INTENSITY (CFS) (MIN.) (INCH/HOUR) 30.76 9.11 5.190 AREA (ACRE) 9.74 LONGEST FLOWPATH FROM NODE 450.00 TO NODE 445.00 537.50 FEET. ** MEMORY STREAM NUMBER 1 BANK # RUNOFF (CFS) 48.85 3 CONFLUENCE DATA ** Tc (MIN. ) 15.84 INTENSITY ( INCH/HOUR) AREA (ACRE) LONGEST FLOWPATH FROM NODE 3.631 423.00 TO NODE 22.05 445.00 2286.50 FEET. ** PEAK FLOW RATE STREAM RUNOFF NUMBER (CFS) 1 58.84 2 70.38 TABLE ** Tc (MIN. ) 9.11 15.84 INTENSITY ( INCH/HOUR) 5.190 3.631 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 70.38 Tc(MIN.) = 15.84 TOTAL AREA(ACRES) = 31.79 **************************************************************************** FLOW PROCESS FROM NODE 445.00 TO NODE 445.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 3 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 445.00 TO NODE 452.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 408.30 DOWNSTREAM (FEET) = 408.10 I I I I I I I I I I I I I I I I I I I FLOW LENGTH(FEET) = 6.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 20.3 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 17.14 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 70.38 NUMBER OF PIPES 0.01 Tc(MIN.) = 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOW PATH FROM NODE 423.00 TO NODE 15.85 452.00 2292.50 FEET. ******************************************************.********************** FLOW PROCESS FROM NODE 452.00 TO NODE 453.00 IS CODE = 41 , , »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 407.80 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 241.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 17.6 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 20.56 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 70.38 NUMBER OF PIPES 0.20 Tc(MIN.) = 16.04 1 394.80 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 453.00 2533.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 453.00 TO NODE 453.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 16.04 RAINFALL INTENSITY(INCHjHR) = 3.60 TOTAL STREAM AREA(ACRES) = 31.79 PEAK FLOW RATE (CFS) AT CONFLUENCE = 70.38 ********************************************~******************************* FLOW PROCESS FROM NODE 454.00 TO NODE 455.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 435.80 DOWNSTREAM ELEVATION(FEET) = 435.10 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCHjHOUR) SUBAREA RUNOFF(CFS) = 0.49 65.00 8.212 5.548 TOTAL AREA(ACRES) = ·0.17 TOTAL RUNOFF(CFS) = 0.49 **************************************************************************** FLOW PROCESS FROM NODE 455.00 TO NODE 456.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< I I I I I I I I I I I I I I I I I I I ============================================================================ UPSTREAM ELEVATION(FEET) = 432.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 451.10 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manningls FRICTION FACTOR for Stre~~flow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEETjSEC.) 5.41 4.07 PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 0.95 STREET FLOW TRAVEL TIME(MIN.) = 1.85 Tc(MIN.) 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 4.868 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.520 10.06 SUBAREA AREA(ACRES) = 0.93 TOTAL AREA(ACRES) = 1.10 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE (CFS) = END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.10 1.67 2.35 FLOW VELOCITY(FEETjSEC.) = 4.47 DEPTH*VELOCITY(FT*FTjSEC.) LONGEST FLOWPATH FROM NODE 454.00 TO NODE 456.00 = 516.10 407.00 0.0150 2.78 1.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 456.00 TO NODE 453.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 396.80 DOWNSTREAM (FEET) 396.30 FLOW LENGTH(FEET) = 27.30 MANNINGIS N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 6.01 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 2.78 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 10.14 LONGEST FLOWPATH FROM NODE 454.00 TO NODE 453.00 543.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 453.00 TO NODE 453.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.14 RAINFALL INTENSITY (INCHjHR) 4.84 TOTAL STREAM AREA(ACRES) = 1.10 I I I I I I I I I I I I I I I I I PEAK FLOW RATE (CFS) AT CONFLUENCE 2.78 **************************************************************************** FLOW PROCESS FROM NODE 457.00 TO NODE 458.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET)~. 64.00 UPSTREAM ELEVATION(FEET) = 435.90 DOWNSTREAM ELEVATION(FEET) = 435.20 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.106 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.595 SUBAREA RUNOFF (CFS) 0.81 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) 0.81 ***************************************************************~************ FLOW PROCESS FROM NODE 458.00 TO NODE 459.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED)««< ================~=========================================================== UPSTREAM ELEVATION(FEET) = 433.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 710.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 8.36 3.95 STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 3.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 1.16 Tc(MIN.) 4.566 11.11 SUBAREA AREA(ACRES) 2.02 TOTAL AREA(ACRES) = 2.30 SUBAREA RUNOFF (CFS) PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.34 HALF STREET FLOOD WIDTH(FEET) 10.49 3.23 4.80 407.00 0.0150 5.46 FLOW VELOCITY(FEET/SEC.) = 4.48 DEPTH*VELOCITY(FT*FT/SEC.) = 1.51 LONGEST FLOWPATH FROM NODE 457.00 TO NODE 459.00 = 774.90 FEET. **************************************************************************** I I I I I I I I I I· I I FLOW PROCESS FROM NODE 459.00 TO NODE 453.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ========================================================================~=== ELEVATION DATA: UPSTREAM (FEET) = 396.40 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.70 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 5.46 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE " o. (J1 Tc (MIN.) = 457.00 TO NODE 11.11 453.00 = 1 396.30 778.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 453.00 TO NODE 453.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 11.11 RAINFALL INTENSITY(INCH/HR) = 4.56 TOTAL STREAM AREA(ACRES) = 2.30 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.46 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 70.38 16.04 3.602 2 2.78 10.14 4.844 3 5.46 11.11 4.564 AREA (ACRE) 31. 79 ·1.10 2.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF NUMBER (CFS) 1 2 3 52.22 56.84 76.76 Tc (MIN. ) 10.14 11.11 16.04 INTENSITY ( INCH/HOUR) 4.844 4.564 3.602 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 76.76 Tc(MIN.) = TOTAL AREA(ACRES) = 35.19 16.04 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 453.00 2533.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 453.00 TO NODE 460.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) FLOW LENGTH(FEET) = 42.50 = 394.50 DOWNSTREAM (FEET) MANNING'S N = 0.013 391. 90 I I I I I I I, I I I I I I I ,I I I II DEPTH OF FLOW IN 36.0 INCH PIPE IS 17.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 22.03 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 76.76 NUMBER OF PIPES 0.03 Tc(MIN.) = 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 16.08 460.00 2576.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 460.00 TO NODE 460.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONT~",MEMORY BANK # 1 ««< ==================================================================~========= **************************************************************************** FLOW PROCESS FROM NODE 461.00 TO NODE 462.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 433.90 DOWNSTREAM ELEVATION(FEET) = 433.20 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.72 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) 0.72 **************************************************************************** FLOW PROCESS FROM NODE 463.00 TO NODE 462.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOmif'= ~5.548 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF SUBAREA AREA (ACRES) TOTAL AREA (ACRES) TC(MIN.) = 8.21 COEFFICIENT = 0.7109 0.30 SUBAREA RUNOFF (CFS) 0.55 TOTAL RUNOFF(CFS) = 1.45 2.17 **************************************************************************** FLOW PROCESS FROM NODE 462.00 TO NODE 464.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 431.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 294.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 420.50 I I I I I I I I I I I t I I I I I I SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.54 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.80 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.97 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.20 STREET FLOW TRAVEL TIME(MIN.) = ~,24 Tc(MIN.) 9.45 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.068 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.586 SUBAREA AREA(ACRES) 1.04 SUBAREA RUNOFF (CFS), = 2.74 TOTAL AREA(ACRES) = 1.59 PEAK FLOW RATE (CFS) 4.72 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.01 FLOW VELOCITY(FEET/SEC.) = 4.22 DEPTH*VELOCITY(FT*FT/SEC.) 1.38 LONGEST FLOWPATH FROM NODE 461.00 TO NODE 464.00 = 359.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 464.00 TO NODE 465.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 408.73 DOWNSTREAM (FEET) 408.70 FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.37 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 4.72 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 9.46 LONGEST FLOWPATH FROM NODE 461.00 TO NODE 465.00 363.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 465.00 TO NODE 465.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 9.46 RAINFALL INTENSITY (INCH/HR) = 5.06 TOTAL STREAM AREA(ACRES) = 1.59 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.72 **************************************************************************** FLOW PROCESS FROM NODE 466.00 TO NODE 467.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : I I I I I I I I I I t I I I I I I I USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 433.90 DOWNSTREAM ELEVATION(FEET) = 433.20 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.548 SUBAREA RUNOFF(CFS) 0.61 TOTAL AREA(ACRES) = 0.21 TOTAL RUNOFF (CFS) ,,, 0.61 ********************************.******************************************** FLOW PROCESS FROM NODE 467.00 TO NODE 468.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU'SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 431.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 298.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 6.68 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.38 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.88 STREET FLOW TRAVEL TIME(MIN.) = 1.47 Tc(MIN.) 100 YEAR RAINFALL INTENSITY (INCH/HOuR) '= -4.988 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 9.69 SUBAREA AREA(ACRES) 1.00 TOTAL AREA (ACRES) = 1.21 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 8.43 1.90 2.59 FLOW VELOCITY(FEET/SEC.) = 3.78 DEPTH*VELOCIT~(FT*FT/SEC.) 421.00 0.0150 3.14 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 468.00 = 363.90 1.12 FEET. **************************************************************************** FLOW PROCESS FROM NODE 468.00 TO' NODE 465.00 IS CODE ~ 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 409.30 DOWNSTREAM (FEET) = 408.70 FLOW LENGTH(FEET) 28.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.7 INCHES I I I I I I I I I I I I I I I I I I I PIPE-FLOW VELOCITY(FEET/SEC.) = GIVEN PIPE DIAMETER(INCH) = lS.00 PIPE-FLOW (CFS) = 3.14 PIPE TRAVEL TIME(MIN.) = 0.07 6.5S NUMBER OF PIPES Tc(MIN.) = 9.76 LONGEST FLOW PATH FROM NODE 466.00 TO NODE 465.00 1 392.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 465.00 TO NODE 465.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENC~P STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 9.76 RAINFALL INTENSITY (INCH/HR) = 4.96 TOTAL STREAM AREA(ACRES) = 1.21 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.14 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.72 9.46 5.065 2 3.14 9.76 4.964 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 7.76 9.46 5.065 2 7.77 9.76 4.964 ESTIMATES ARE AS FOLLOWS: 7.77 Tc(MIN.)~= 2.S0 COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA (ACRES) = LONGEST FLOWPATH FROM NODE 466.00 TO NODE AREA (ACRE) 1.59 1.21 RATIO 9.76 465.00 = 392.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 465.00 TO NODE 469.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 40S.40 DOWNST~EAM(FEET) = 400.60 FLOW LENGTH(FEET) = 199.00 MANNING'S N = 0.013 DEPTH OF FLOW IN lS.0 INCH PIPE IS 7.S INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.50 GIVEN PIPE DIAMETER(INCH) = lS.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 7.77 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 10.07 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 469.00 591.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 469.00 TO NODE 470.00 IS CODE = 41 I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 400.30 DOWNSTREAM (FEET) 395.20 FLOW LENGTH(FEET) = 148.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.01 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 7.77 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 10.32 LONGEST FLOWPATH FROM NODE 466 . 0,9 TO NODE 470 . 00 = 739 .30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 470.00 TO NODE 470.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.32 RAINFALL INTENSITY (INCH/HR) = 4.79 TOTAL STREAM AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.77 **************************************************************************** FLOW PROCESS FROM NODE 471.00 TO NODE 472.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 422.00 DOWNSTREAM ELEVATION(FEET) = 421.30 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.61 TOTAL AREA(ACRES) = 0.21 TOTAL RUNOFF(CFS) 0.61 **************************************************************************** FLOW PROCESS FROM NODE 472.00 TO NODE 473.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< . ============================================================================ UPSTREAM ELEVATION(FEET) = 419.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 294.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL} 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 408.00 0.0150 I I I I I I I I I I I I I I I I I I I **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 6.74 HALF STREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEETjSEC.) PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 3.60 STREET FLOW TRAVEL TIME(MIN.) = 1.36 100 YEAR RAINFALL INTENSITY(INCHjHOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT =".5200 S.C.S. CURVE NUMBER (AMC II) =' 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 0.94 ' Tc(MIN.) 5.025 9.57 SUBAREA AREA(ACRES) 1.11 TOTAL AREA(ACRES) = 1.32 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) 8.61 2.06 2.90 3.45 FLOW VELOCITY(FEETjSEC.) = 4.01 DEPTH*VELOCITY(FT*FTjSEC.) 1.20 LONGEST FLOWPATH FROM NODE 471.00 TO NODE 473.00 = 359.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 473.00 TO NODE 470.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 395.30 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.4 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 7.66 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES PIPE-FLOW (CFS) = 3.45 0.01 Tc(MIN.) = 9.58 1 395.20 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 471.00 TQ,NODE 470.00 362.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 470.00 TO NODE 470.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) 9.58 RAINFALL INTENSITY (INCHjHR) = 5.02 TOTAL STREAM AREA(ACRES) = 1.32 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.45 2 ARE: *******************************************************************'********* FLOW PROCESS FROM NODE 474.00 TO NODE 475.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 I I I I I I I I I I I I I I I I I I I UPSTREAM ELEVATION(FEET) = 422.30 DOWNSTREAM ELEVATION(FEET) 421.60 ELEVATION DIFFERENCE (FEET) 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) SUBAREA RUNOFF(CFS) 0.55 8.212 5.548 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF(CFS) 0.55 **************************************************************************** FLOW PROCESS FROM NODE 475.00 TO NODE 476.00 IS CODE = 62 .. »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 419.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 293.30 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 6.31 STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 3.43 STREET FLOW TRAVEL TIME(MIN.) = 1.42 100 YEAR RAINFALL INTENSITY (INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 0.87 Tc (MIN.) 5.004 9.64 SUBAREA AREA(ACRES) 0.94 TOTAL AREA(ACRES) = 1.13 SUBAREA RUNOFF (CFS) PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 8.13 1.77 2.45 FLOW VELOCITY(FEET/SEC.) = 3.77 DEPTH*VELOCITY(FT*FT/SEC.) 408.60 0.0150 2.94 LONGEST FLOWPATH FROM NODE 474.00 TO NODE 476.00 = 358.30 1. 09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 476.00 TO NODE 470.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 396.50 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 31.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.20 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 2.94 395.20 I I I I I I I I I I, I I I I I I I I I PIPE TRAVEL TIME(MIN.} = LONGEST FLOWPATH FROM NODE 0.06 Tc(MIN.) = 474.00 TO NODE 9.70 470.00 389.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 470.00 TO NODE 470.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPE~~NT STREAM 3 ARE: TIME OF CONCENTRATION (MIN. ) 9 . 70 RAINFALL INTENSITY(INCH/HR) = 4.98 TOTAL STREAM AREA(ACRES) = 1.13 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.94 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 7.77 10.32 4.788 2.80 2 3.45 9.58 5.023 1.32 3 2.94 9.70 4.983 1.13 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 13.76 9.58 5.023 2 13.82 9.70 4.983 3 13.88 10.32 4.788 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 13.88 TC(~~~.) = 10.32 TOTAL AREA(ACRES) = 5.25 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 470.00 739.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 470.00 TO NODE 460.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 394.80 DOWNSTREAM (FEET) 393.20 FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.20 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 13.88 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 10.43 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 460.00 804.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 460.00 TO NODE 460.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< I I I I I I I I I I I I I I I I I I I ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE) 1 13.88 10.43 4.756 5.25 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 460.00 804.30 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH!.ijOUR) 1 76.76 16.08 3.597 AREA (ACRE) 35.19 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 460.00 2576.10 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOF,F NUMBER (CFS) 1 63.66 2 87.25 COMPUTED CONFLUENCE PEAK FLOW RATE (CFS) TOTAL AREA (ACRES) = Tc INTENSITY (MIN. ) ( INCH/HOUR) 10.43 4.756 16.08 3.597 ESTIMATES ARE AS FOLLOWS: 87.25 Tc(MIN.) = 40.44 16.08 **************************************************************************** FLOW PROCESS FROM NODE 460.00 TO NODE 460.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 460.00 TO NODE 477.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EX~f?TING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 391.20 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 278.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 20.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.21 GIVEN PIPE DIAMETER(INCH) = 42.00 PIPE-FLOW (CFS) = 87.25 NUMBER OF PIPES 0.25 Tc(MIN.) = 1 381. 80 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 16.33 477.00 2854.20 F.EET. *********************************************************************.******* FLOW PROCESS FROM NODE 477.00 TO NODE 477.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< ========================================~=================================== **************************************************************************** FLOW PROCESS FROM NODE 478.00 TO NODE 479.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ====================================================================~======= *USER SPECIFIED (SUBAREA) : I I I I I I I I I I I I I I I I I I USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 405.00 DOWNSTREAM ELEVATION(FEET) = 404.30 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.548 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF(CFS) . , 0.55 ********************************'******************************************** FLOW PROCESS FROM NODE 489.00 TO NODE 479.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.548 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6744 SUBAREA AREA(ACRES) 0.15 SUBAREA RUNOFF (CFS) = 0.72 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) = 1.27 TC(MIN.) = 8.21 **************************************************************************** FLOW PROCESS FROM NODE 479.00 TO NODE 483.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 401.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 184.30 CURB HEIGHT(INCHES) 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 15.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.25 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.43 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.93 STREET FLOW TRAVEL TIME(MIN.) = 0.90 Tc(MIN.) 9.11 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.190 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) = 0.69 TOTAL AREA (ACRES) = 1.03 0.571 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE(CFS) 2.21 1.86 395.00 0.0150 3.05 I I I I I I I I I I I I I I I I I I I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 8.40 FLOW VELOCITY(FEET/SEC.) = 3.70 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 478.00 TO NODE 483.00 = 249.30 1. 09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 483.00 TO NODE 483.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 , .. CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN. ) 9 . 11 RAINFALL INTENSITY(INCH/HR) = 5.19 TOTAL STREAM AREA(ACRES) = 1.03 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.05 **************************************************************************** FLOW PROCESS FROM NODE 480.00 TO NODE 481.00 IS CODE = 21 . ----------------------------------------------------------~--~--------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 401.60 DOWNSTREAM ELEVATION(FEET) = 400.90 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.55 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF (CFS) 0.55 **************************************************************************** FLOW PROCESS FROM NODE 481.00 TO NODE ~ 483.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 399.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 336.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 395.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) -. 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALF STREET FLOOD WIDTH(FEET) = 9.05 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.31 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71 2.17 I I I I I I I I I I I I I I I I I I I STREET FLOW TRAVEL TIME(MIN.) = 2.43 Tc(MIN.) 10.64 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.694 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 1.32 SUBAREA RUNOFF (CFS) = 3.22 TOTAL AREA(ACRES) = 1.51 PEAK FLOW RATE(CFS) 3.69 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.35 HALFSTREET FLQOD WIDTH(FEET) 11.36 FLOW VELOCITY(FEET/SEC.) = 2.'61 DEPTH*VELOCITY(FT*FT/SEC.) 0.92 LONGEST FLOWPATH FROM NODE 480.00 TO NODE 483.00 = 401.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 483.00 TO NODE 483.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ==========================================================~================= TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.64 RAINFALL INTENSITY(INCH/HR) = 4.69 TOTAL STREAM AREA(ACRES) = 1.51 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.69 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 3.05 9.11 5.190 2 3.69 10.64 4.694 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 6.21 9.11 5.190 2 6.45 10.64 4.694 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 1.03 1.51 RATIO PEAK FLOW RATE (CFS) 6.45 Tc(MIN.) = 10.64 TOTAL AREA(ACRES) = 2.54 LONGEST FLOWPATH FROM NODE 480.00 TO NODE 4~3.00 401.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 482.00 TO NODE 483.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.694 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5370 I I I I I I I I I I I I I I I I I I I SUBAREA AREA (ACRES) TOTAL AREA (ACRES) TC(MIN.) = 10.64 0.55 3.09 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) = 1.34 7.79 +-------------------------------------------------------------------~------+ I The Code 8 above pertains to the area drained by existing Ditch C. I The ditch is existing per the mass-graded plans. I +--------------------------------------------------------------------------+ **************************************************************************** ,. FLOW PROCESS FROM NODE 483.'00 TO NODE 477.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 383.90 DOWNSTREAM (FEET) 383.80 FLOW LENGTH(FEET) = 6.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.63 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 7.79 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 10.66 LONGEST FLOWPATH FROM NODE 480.00 TO NODE 477.00 407.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 477.00 TO NODE 477.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.79 10.66 4.690 AREA (ACRE) LONGEST FLOWPATH FROM NODE 480.00 TO NODE 3.09 477.00 ** MEMORY BANK # STREAM RUNOFF NUMBER (CFS) 1 87.25 2 CONFLUENCE DATA ** Tc INTENSITY (MIN.) (INCH/HOUR) 16.33 3.561 AREA, (ACRE) 40.44 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 477.00 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 64.72 10.66 4.690 2 93.17 16.33 3.561 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 93.17 Tc (MIN.) = 16.33 TOTAL AREA (ACRES) = 43.53 407.90 FEET. 2854.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 477.00 TO NODE 477.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 2 ««< I I I I I I I I I I I I I I I I I I I ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 477.00 TO NODE 412.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 38l.50 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 31.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS" 27.8 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) '= B. 80 GIVEN PIPE DIAMETER(INCH) = 42.00 PIPE-FLOW (CFS) = 93.l7 NUMBER OF PIPES 0.04 Tc(MIN.) = 16.37 l 381. 00 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 412.00 2885.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 412.00 TO NODE 4l2.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 484.00 TO NODE 485.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 410.20 DOWNSTREAM ELEVATION(FEET) = 409.50 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8~2l2 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.548 SUBAREA RUNOFF (CFS) 0.49 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) 0.49 **************************************************************************** FLOW PROCESS FROM NODE 485.00 TO NODE 486.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 406.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 305.80 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL INSIDE STREET CROSSFALL(DEClMAL) OUTSIDE STREET CROSSFALL(DEClMAL) GRADEBREAK(FEET) 0.020 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF l l5.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 395.00 0.Ol50 I I I I I I I I I I I I I I I I I I **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 6.16 3.47 STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 1.47 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT . .- 0.520 0.86 Tc (MIN.) 4.989 9.68 SUBAREA AREA (ACRES) 0.95 TOTAL AREA(ACRES) = 1.12 SUBAREA RUNOFF(CFS) PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 7.97 1. 73 2.46 2.91 FLOW VELOCITY(FEET/SEC.) = 3.86 DEPTH*VELOCITY(FT*FT/SEC.) 1.10 LONGEST FLOWPATH FROM NODE 484.00 TO NODE 486.00 = 370.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 486.00 TO NODE 486.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN. ) 9 . 68 RAINFALL INTENSITY (INCH/HR) = 4.99 TOTAL STREAM AREA(ACRES) = 1.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.91 **************************************************************************** FLOW PROCESS FROM NODE 487.00 TO NODE 488.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 400.50 DOWNSTREAM ELEVATION(FEET) = 399.80 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.46 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) = 0.46 **************************************************************************** FLOW PROCESS FROM NODE 488.00 TO NODE 486.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 398.00 DOWNSTREAM ELEVATION(FEET) = 395.00 STREET LENGTH(FEET) = 270.30 CURB HEIGHT(INCHES) = 6.0 I I 1 I I 1 I I I I 1 I I .1 I I I STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DEClMAL) = 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 15.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ES.~IMATED FLOW: 8.04 2.14 STREET FLOW DEPTH (FEET) = 0'.29 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 2.11 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 0.61 Tc (MIN.) 4.788 10.32 SUBAREA AREA(ACRES) 0.94 TOTAL AREA(ACRES) = 1.10 SUBAREA RUNOFF (CFS) PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 10.14 1.63 2.34 0.0150 2.74 FLOW VELOCITY(FEET/SEC.) = 2.39 DEPTH*VELOCITY(FT*FT/SEC.) = 0.79 LONGEST FLOWPATH FROM NODE 487.00 TO NODE 486.00 = 335.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 486.00 TO NODE 486.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.32 RAINFALL·INTENSITY(INCH/HR) = 4.79 TOTAL STREAM AREA(ACRES) = 1.10 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.74 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 2.91 9.68 4.989 2 2.74 10.32 4.788 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 5.48 9.68 4.989 2 5.53 10.32 4.788 AREA (ACRE) 1.12 1.10 RATIO I I ,I I I I I I I I I I I I I I I I I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 5.53 Tc(MIN.) = 10.32 TOTAL AREA(ACRES) = 2.22 LONGEST FLOWPATH FROM NODE 484.00 TO NODE 486.00 370.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 486.00 TO NODE 412.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ . ELEVATION DATA: UPSTREAM(FEET)' = 385.50 DOWNSTREAM (FEET) 383.00 FLOW LENGTH(FEET) = 3.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES PIPE~FLOW VELOCITY(FEET/SEC.) = 26.66 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 5.53 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 10.32 LONGEST FLOWPATH FROM NODE 484.00'TO NODE 412.00 374.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 412.00 TO NODE 412.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 5.53 LONGEST FLOWPATH ** MEMORY STREAM NUMBER 1 BANK # RUNOFF (CFS) 93.17 Tc INTENSITY (MIN. ) ( INCH/HOUR) 10.32 4.788 FROM NODE 484.00 TO 3 CONFLUENCE DATA ** Tc INTENSITY (MIN.) (INCH/HOug~ AREA (ACRE) 2.22 NODE 412.00 AREA (ACRE) 16.37 3.556 43.53 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 412.00 ** PEAK FLOW RATE STREAM RUNOFF NUMBER (CFS) 1 64.28 2 97.27 TABLE ** Tc (MIN.) 10.32 16.37 INTENSITY ( INCH/HOUR) 4.788 3.556 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 97.27 Tc(MIN.) = 16.37 TOTAL AREA(ACRES) = 45.75 374.40 FEET. 2885.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 412.00 TO NODE 412.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 3 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 412.00 TO NODE 414.00 IS CODE = 41 I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ 380.70 DOWNSTREAM (FEET) ELEVATION DATA: UPSTREAM (FEET) FLOW LENGTH(FEET) = 98.60 ASSUME FULL-FLOWING PIPELINE MANNING'S N = 0.013 PIPE-FLOW VELOCITY(FEET/SEC.) 10.11 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 97.27 0.16 ~c(MIN.) = 379.80 PIPE TRAVEL TIME(MIN.) = LONGEST FLOW PATH FROM NODE -423.00 TO NODE 16.53 414.00 2984.3-0 FEET. **************************************************************************** FLOW PROCESS FROM NODE 414.00 TO NODE 400.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 399.50 DOWNSTREAM (FEET) 345.40 FLOW LENGTH(FEET) = 131.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 11.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 46.59 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES -1 PIPE-FLOW (CFS) = 97.27 PIPE TRAVEL TIME (MIN.) = 0.05 Tc(MIN.) = 16.58 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 400.00 3115.30 FEET. +--------------------------------------------------------------------------+ I I END NEIGHBORHOOD 3.1 -NODE SERIES 400 I +--------------------------------------------------------------------------+ ============================================================================ END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) 45.75 TC(MIN.} = 97.27 16.58 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 3 Site Hydrologic Analysis -100-Year Developed Con·ditions 3.2· -Neighborhood 3.3 DE:ad h:\repor1s123521151ldralnage s1udyQ1.doc w.o.2352-151 1014/2006 6:47 AM I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE R~ference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced" Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1239 Analysis prepared by: ."" HUNSAKER & ASSOCIATES -SAN DIEGO 10179 Huennekens "Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * LA COSTA OAKS NORTH -NEIGHBORHOODS 3.3 & 3.5 * 100 YEAR DEVELOPED CONDITIONS HYDROLOGY ANALYSIS * SEPTEMBER 2006 * * * *********************************************~**************************** FILE NAME: H:\AES2003\2352\152\DEV-100.DAT TIME/DATE OF STUDY: 16:03 09/27/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) ================= ::::;===== ====== 0.95 MODEL * MANNING FACTOR (n) ======= 1 30.0 20.0 0.020/0.020/ ---0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN . OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 I I I I I I I I I I I I I I I I INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION (FEET) = 541.30 DOWNSTREAM ELEVATION(FEET) = 540.60 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN:) 8.735 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.332 SUBAREA .RUNOFF (CFS) 0.72 TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) 0.72 **************************************************************************** FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 539.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 306.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00. INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.70 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.54 AVERAGE FLOW VELOCITY (FEET / SEC. ) 1 . 96 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.54 STREET FLOW TRAVEL TIME (MIN.) = 2.60 Tc(MIN.) 11.33 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.508 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = . 52-cio S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 1.68 SUBAREA RUNOFF (CFS) 3.94 TOTAL AREA(ACRES) = 1.94 PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) 9.65 FLOW VELOCITY(FEET/SEC.) = 2.22 DEPTH*VELOCITY(FT*FT/SEC.) 535.90 0.0150 4.66 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 62.00 = 376.00 0.71 FEET. **************************************************************************** FLOW PROCESS FROM NODE 62.00 TO NODE 100.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 532.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 731.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 4.03 ESTIMATED PIPE DIAMETER(INCH) 18.00 NUMBER OF PIPES = PIPE-FLOW (CFS) = 4.66 529.00 1 I I I I I I I I I I I I I I ·1 I I I I PIPE TRAVEL TIME(MIN.) 3.02 Tc(MIN.) = 14.35 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 100.00 1107.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 . CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 14.35 RAINFALL INTENSITY (INCH/HR) =' 3.87 TOTAL STREAM AREA(ACRES) = 1.94 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.66 **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE· NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 543.30 DOWNSTREAM ELEVATION(FEET) = 542.60 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN.) 8.735 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.332 SUBAREA RUNOFF(CFS) 0.69 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) 0.69 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 540.90 DOWNSTREAM ELEVATION(FEET) = 534.40 STREET LENGTH(FEET) = 526.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSS.FALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.39 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 7.98 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.24 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.64 STREET FLOW TRAVEL TIME(MIN.) = 3.91 Tc(MIN.) 12.64 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.200 I I I I I I I I I I I I I I I I I I I *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 2.45 TOTAL AREA(ACRES) = 2.70 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 10.32 5.35 6.04 FLOW VELOCITY(FEET/SEC.) = 2.55 DEPTH*VELOCITY(FT*FT/SEC.) = 0.85 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 596.00 FEET. ********************************.******************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 100.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 529.50 DOWNSTREAM (FEET) 529.00 FLOW LENGTH(FEET) = 11.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 10.56 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.04 PIPE TRAVEL TIME (MIN.) = 0.02 Tc(MIN.) = 12.66 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 100.00 607.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 12.66 RAINFALL INTENSITY(INCH/HR) = 4.20 TOTAL STREAM AREA(ACRES) = 2.70 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.04 **************************************************************************** FLOW PROCESS FROM NODE 63.00 TO NODE 64.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 541.30 DOWNSTREAM ELEVATION(FEET) = 540.60 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.42 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) 0.42 ****************************************************************~*********** I I I I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 64.00 TO NODE 65.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 539.70 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 536.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 -INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.90 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.88 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.10 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.64 STREET FLOW TRAVEL TIME(MIN.) = 4.26 Tc(MIN.) = 12.99 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.127 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA (ACRES) TOTAL AREA (ACRES) = 1.37 1.52 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) 11.32 2.94 534.40 0.0150 3.36 FLOW VELOCITY(FEET/SEC.) = 2.40 DEPTH*VELOCITY(FT*FT/SEC.) 0.85 LONGEST FLOWPATH FROM NODE 63.00 TO NODE 65.00 = 606.00 FEET. ********************************************~******************************* FLOW PROCESS FROM NODE 65.00 TO NODE 100.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 529.50 DOWNSTREAM (FEET) 529.00 FLOW LENGTH(FEET) = 33.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.03 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 3.36 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 13.08 LONGEST FLOWPATH FROM NODE 63.00 TO NODE 100.00 639.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ .----------------------------------------------------------------------------------- I I I I I I I I I I I I I I I I I I I TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 13.08 RAINFALL INTENSITY (INCH/HR) = 4.11 TOTAL STREAM AREA(ACRES) = 1.52 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.36 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 4.66 14.35 3 .... 870 1. 94 2 6.04 12.66 4.196 2.70 3 3.36 13.08 4.109 1.52 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 13.63 12.66 4.196 2 13.66 13.08 4.109 3 13.39' 14.35 3.870 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 13.66 Tc(MIN.) = 13.08 TOTAL AREA(ACRES) = 6.16 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 100.00 1107.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 102.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 529·.··00 -DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 66.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.63 ESTIMATED PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 13.66 NUMBER OF PIPES 0.17 Tc(MIN.) = 528.50 1 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 60.00 TO NODE 13.25 102.00 11 73 . 00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««.< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 21 -------------------------------~-------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 I I I I I I I I I I I I I I I I il I S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 561.00 DOWNSTREAM ELEVATION(FEET) = 560.30 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 8.735 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.332 SUBAREA RUNOFF (CFS) . 0.61 TOTAL AREA (ACRES) = 0 .22 TOTAL RUNOFF (CFs-) 0.61 **************************************************************************** FLOW PROCESS FROM NODE 91.00 TO NODE 92.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 558.60 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 575.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DEClMAL) = 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 20.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.74 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.04 AVERAGE FLOW VELOCITY(FEET/SEC .. ) 2.45 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.70 STREET FLOW TRAVEL TIME(MIN.) = 3.92 Tc(MIN.) 12.65 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.198. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 2.84 SUBAREA RUNOFF (CFS) = 6.20 550.00 0.0150 TOTAL AREA(ACRES) = 3.06 PEAK FLOW RATE(CFS) 6.81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 10.43 FLOW VELOCITY(FEET/SEC.) = 2.82 DEPTH*VELOCITY(FT*FT!SEC.) LONGEST FLOWPATH FROM NODE 90.00 TO NODE 92.00 = 645.00 0.94 FEET. **************************************************************************** FLOW PROCESS FROM NODE 92.00 TO NODE 101.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 547.50 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 473.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.12 530.00 I I I I I I I I I I I I I I I I I I I ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.81 PIPE TRAVEL TIME (MIN.) = 0.78 Tc(MIN.) = 13.43 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 101.00 1118.00 FEET. *******************************************************************~******** FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 .. ' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 13.43 RAINFALL INTENSITY(INCH/HR) = 4.04 TOTAL STREAM AREA(ACRES) = 3.06 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.81 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 551.40 DOWNSTREAM ELEVATION(FEET) = 550.70 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.75 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) 0.75 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 548.00 DOWNSTREAM ELEVATION(FEET) = 534.30 STREET LENGTH(FEET) = 488.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 6.98 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.16 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.84 1.91 0.0150 I I I I I I I I I I I I I I I I I. I I STREET FLOW TRAVEL TIME(MIN.) = 2.57 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIEP RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 Tc (MIN.) 4.514 11.31 SUBAREA AREA (ACRES) TOTAL AREA (ACRES) = 0.99 1.26 SUBAREA RUNOFF (CFS.) = PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) 8.71 2.32 FLOW VELOCITY(FEET/SEC.) = 3.51 PEPTH*VELOCITY(FT*FT/SEC.) 3.07 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 6.00 = 558.00 1.05 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 101.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 530.50 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 5.76 ESTIMATED PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW (CFS) = 3.07 NUMBER OF PIPES 0.10 Tc (MIN.) = 530.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 4.00 TO NODE 11.41 101. 00 593.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 11.41 RAINFALL INTENSITY (INCH/HR) = 4.49 TOTAL STREAM AREA(ACRES) = 1.26 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.07 **************************************************************************** FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 556.20 DOWNSTREAM ELEVATION(FEET) = 486.20 ELEVATION DIFFERENCE (FEET) = 70.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN.) 1.882 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. I I I I I I I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.793 SUBAREA RUNOFF (CFS) 0.99 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) 0.99 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ====================================================================~======= UPSTREAM ELEVATION (FEET) = 551.90 .,.DOWNSTREAM ELEVATION (FEET) STREET LENGTH(FEET) = 559.00' CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 534.20 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.44 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.93 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.75 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.14 STREET FLOW TRAVEL TIME(MIN.) = 2.48 Tc(MIN.) 8.48 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.434 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 1.72 SUBAREA RUNOFF (CFS) = 4.86 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE (CFS) 5.85 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) 11.21 FLOW VELOCITY(FEET/SEC.) = 4.25 DEPTH*VELOCITY(FT*FT/SEC.) = 1.49 LONGEST FLOWPATH FROM NODE 7.00 TO NODE, 9.00 = 629.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 101.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< . »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) '= 530.50 DOWNSTREAM (FEET) 530.00 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.9 INCHES ,PIPE-FLOW VELOCITY(FEET/SEC.) 11.74 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 5.85 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 8.49 LONGEST FLOWPATH FROM NODE 7.00 TO NODE 101.00 637.00 FEET. **************************************************************************** I. I I I 1- I I 1 I I I I I I I I I I FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION (MIN. ) 8 .49 RAINFALL INTENSITY (INCH/HR) = 5.43 TOTAL STREAM AREA(ACRES) = 2.00 PEAK FLOW RATE (CFS) AT CONFLUENCE .. 5.85 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 6.81 13.43 4.039 2 3.07 11.41 4.488 3 5.85 8.49 5.429 3 ARE: AREA (ACRE) 3.06 1.26 2.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 13.46 8.49 5.429 2 14.04 11.41 4.488 3 13.93 13.43 4.039 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 14.04 TC(MIN.) = 11.41 TOTAL AREA(ACRES) = 6.32 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 101.00 1118.00 FEET. ********************************************************************~******* FLOW PROCESS FROM NODE 101.00 TO NODE ~ 102.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 530.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 88.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 9.06 ESTIMATED PIPE DIAMETER(INCH) = 21.00 PIPE-FLOW (CFS) = 14.04 NUMBER OF PIPES 0.16 Tc(MIN.) = 528.50 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 90.00 TO NODE 11.57 102.00 1206.00 FEET~ **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF' Tc INTENSITY AREA I I I I I, 1 I I I I I I I I I I I I NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 14.04 11.57 4.447 6.32 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 102.00 1206.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 13.66 13.25 4.075 6.16 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 102.00 1173.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc ' INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 26.56 11.57 4.447 2 26.52 13.25 4.075 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 26.56 Tc(MIN.) = 11.57 TOTAL AREA(ACRES) = 12.48 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ======================================================~===================== ELEVATION 'DATA: UPSTREAM (FEET) = 528.50 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 321.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 8.32 ESTIMATED PIPE DIAMETER(INCH) = 27.00 PIPE-FLOW (CFS) = 26.56 NUMBER OF PIPES 0.64 Tc(MIN.) = 525.50 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 90.00 TO NODE 12.21 103.00 1527.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.21 RAINFALL INTENSITY(INCH/HR) = 4.29 TOTAL STREAM AREA(ACRES) = 12.48 PEAK FLOW RATE (CFS) AT CONFLUENCE = 26.56 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< .... ---------------------------------------------- I I I I I I I I I I I I I I I I I ======================~===================================================== *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 541.70 DOWNSTREAM ELEVATION(FEET) = 541.00 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 8.735 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.86 TOTAL AREA(ACRES) = 0.31' TOTAL RUNOFF(CFS) 0.86 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 539.60 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 437.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 20.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.16 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 6.76 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.75 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.Y"= -0.72 'STREET FLOW TRAVEL TIME (MIN.) = 2.65 Tc (MIN.) 11.39 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.494 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA (ACRES) = 1. 96 SUBAREA RUNOFF (CFS) = 4.58 530.00 0.0150 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) 5.44 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) 8.71 FLOW VELOCITY(FEET/SEC.) = 3.10 DEPTH*VELOCITy'(FT*FT/SEC.) = 0.93 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 7 507.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 103.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) FLOW LENGTH(FEET) = 12.50 526.00 DOWNSTREAM (FEET) MANNING'S N = 0.013 525.50 I I I I I I I I I I I I I I I I I I I ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 9.79 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 5.44 PIPE TRAVEL TIME (MIN.) = 0.02 Tc(MIN.) = 11.41 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 103.00 519.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.41 RAINFALL INTENSITY(INCH/HR) = 4.49 TOTAL STREAM AREA(ACRES) = 2.27 PEAK FLOW RATE (CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 26.56 12.21 4.295 2. 5.44 11.41 4.489 5.44 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOPR) 1 30.85 11.41 4.489 2 31. 76 12.21 4.295 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 12.48 2.27 RATIO PEAK FLOW RATE (CFS) 31.76 Tc(MIN.) = 12.21 TOTAL AREA(ACRES) = 14.75 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 103.00 1527.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< . . ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 525.50 DOWNSTREAM (FEET) 522.00 FLOW LENGTH(FEET) = 375.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.7 INCHES' PIPE-FLOW VELOCITY(FEET/SEC.) = 8.78 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 31.76 PIPE TRAVEL TIME(MIN.) = 0.71 TC(MIN.) = 12.93 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 104.00 = 1902.00 FEET. **************************************************************************** I I I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.93' RAINFALL INTENSITY(INCH/HR) = 4.14 TOTAL STREAM AREA(ACRES) = 14.75 PEAK FLOW RATE (CFS) AT CONFLUENCE = 31.76 ,. *******************************w***********************************~******** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 532.00 DOWNS~REAM ELEVATION(FEET) = 531.30 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.332 SUBAREA RUNOFF(CFS) 0.50 TOTAL AREA(ACRES) = 0.18 TOTAL RUNOFF(CFS) 0.50 **************************************************************************** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 530.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 469.00 CURB HEIGRT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.40 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.33 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.07 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.77 STREET FLOW TRAVEL TIME(MIN.) = 3.77 Tc(MIN.) = 12.50 100 YEAR RAINFALL INTENSITY(~NCH/HOUR) = 4.230 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 2.61 SUBAREA RUNOFF (CFS) 5.74 526.80 0.0150 I I I I I I I I I I I I I I I I I I I TOTAL AREA (ACRES) = 2.79 PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS,: DEPTH (FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) 15.72 FLOW VELOCITY(FEET/SEC.) = 2.41 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 13.00 TO NODE 15.00 = 539.00 6.24 1.06 FEET. **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 104.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME ~HRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 522.50 DOWNSTREAM (FEET) 522.00 FLOW LENGTH(FEET) = 8.50 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 11.69 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.24 PIPE TRAVEL TIME(MIN.) = 0.01 TC(MIN.) = 12.52 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 104.00 547.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 12.52 RAINFALL INTENSITY (INCH/HR) = 4.23 TOTAL STREAM AREA(ACRES) = 2.79 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.24 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 31. 76 12.93 4.141 2 6.24 12.52 4.228 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 37.35 12.52 4.228 2 37.87 12.93 4.141 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 37.87 Tc(MIN.) = TOTAL AREA(ACRES) = 17.54 LONGEST FLOWPATH FROM NODE 90.00 TO NODE AREA (ACRE) 14.75 2.79 RATIO 12.93 104.00 = 1902.00 FEET. **************************************************************************** I I I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESr"ZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 522.00 . DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = . 38.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 13.60 ESTIMATED PIPE DIAMETER(INCH) = 27.00 PIPE-FLOW (CFS) = 37.87 NUMBER OF PIPES = 0.05 Tc(MIN.) = 12.97 521. 00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 90.00 TO NODE 105.00 1940.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 .IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.97 RAINFALL INTENSITY (INCH/HR) = 4.13 TOTAL STREAM AREA(ACRES) = 17.54 PEAK FLOW RATE (CFS) AT CONFLUENCE = 37.87 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 536.10 DOWNSTREAM ELEVATION(FEET) = 535.40 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 8.735 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.42 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) 0.42 **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 105.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA~«« »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 534.10 DOWNSTREAM ELEVATION(FEET) ~ 526.80 STREET LENGTH(FEET) = 803.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 I I I I I I I I I I I I I I I I I I I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.71 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.05 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.36 PRODUCT OF DEPTH&VELOCITY (FT*FT/SEC .-) 0.87 STREET FLOW TRAVEL TIME(MIN.) = 5.67 Tc(MIN.) 14.40 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 3.862 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 3.22 SUBAREA RUNOFF (CFS) = 6.47 0.0150 TOTAL AREA(ACRES) = 3.37 PEAK FLOW RATE(CFS) 6.88 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.44 HALFSTREET FLOOD WIDTH(F,EET) 15.44 FLOW VELOCITY(FEET/SEC.)'= 2.75 -DEPTH*VELOCITY(FT*FT/SEC.) 1.20 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 105.00 = 873.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 14.40 RAINFALL INTENSITY (INCH/HR) = 3.86 TOTAL STREAM AREA(ACRES) = 3.37 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.88 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 37.87 12.97 4.131 2 6.88 14.40 3.862 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY- NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 44.31 12.97 4.131 2 42.28 14.40 3.862 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 44.31 Tc (MIN.) = TOTAL AREA (ACRES) = 20.91 LONGEST FLOWPATH FROM NODE 90.00 TO NODE AREA (ACRE) 17.54 3.37 RATIO 12.97 105.00 1940.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 31 I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 521.00 DOWNSTREAM (FEET) 486.00 FLOW LENGTH{FEET) = 260.00 MANNING'S N.= 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.0 INCHES PIPE-FLOW VELOCITY{FEET/SEC.) 26.06 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 44.31 PIPE TRAVEL TIME(MIN.) = 0.17 ~c(MIN.) = 13.14 LONGEST FLOWPATH FROM NODE 90.00.TO NODE 106.00 2200.00 FEET. +--------------------------------------------------------------------------+ I END OF ONSITE FLOW FROM NEIGHBORHOODS 3.3, 3.4 & 3.5 I I CORTE ALTURA, SITIO CALIENTE, CORTE PANORAMA, SITIO CORAZON I I AND SITIO BAHIA I +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ I BEGIN ANALYSIS OF AVENIDA SOLEDAD OUTLET I I OUTLET -PIPE SIZE (18 11 RCP) I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 48.00 TO NODE 49.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH{FEET) = 10.00 UPSTREAM ELEVATION(FEET) = 543.40 DOWNSTREAM ELEVATION{FEET) = 542.70 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN. ) 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = SUBAREA RUNOFF (CFS) 0.69 8.735 5.332 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF (CFS) 0.69 **************************************************************************** FLOW PROCESS FROM NODE 49.00 TO NODE 50.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 541.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH{FEET) = 782.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSF~L GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1 500.00 I I I I I I I I I I I I I I I I I I I Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.86 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.32 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.38 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.19 STREET FLOW TRAVEL TIME(MIN.) = 2.98 Tc(MIN.) 11.71 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.413 *USER SPECIFIED (SUBAREA) : . USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 1.88 SUBAREA RUNOFF (CFS) 4.31 0.0150 TOTAL AREA(ACRES) = 2.13 PEAK FLOW RATE (CFS) 5.01 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 9.43 FLOW VELOCITY(FEET/SEC.) = 4.97 DEPTH*VELOCITY(FT*FT/SEC.) = 1.56 LONGEST FLOWPATH FROM NODE 48.00 TO NODE 50.00 = 852.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 117.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 501.50 DOWNSTREAM (FEET) 501.00 FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.55 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES i PIPE-FLOW (CFS) = 5.01 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.l = 11.76 LONGEST FLOWPATH FROM NODE 48.00 TO NODE 117.00 876.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.76 RAINFALL INTENSITY (INCH/HR) = 4.40 TOTAL STREAM AREA(ACRES) = 2.13 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.01 +--------------------------------------------------------------------------+ I WEIGHTED COEFFICIENT USED DUE TO LANDSCAPE AND ROAD AREAS I I LANDSCAPE (C=0.45) -ROAD (C=0.85) -WEIGHTED (C=0.70) I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 51.00 TO NODE 93.00 IS CODE = 21 I I I I I I I I I I I I I I I I I I I »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 536.00 DOWNSTREAM ELEVATION(FEET) = 530.00 ELEVATION DIFFERENCE (FEET) = 6.00 URBAN SUBAREA OVERLAND TIME OF FLOW,(MIN.) 3.963 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.793 SUBAREA RUNOFF (CFS) 0.48 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.48 **************************************************************************** FLOW PROCESS FROM NODE 93.00 TO NODE 52.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 530.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 391.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.04 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.54 AVERAGE FLOW VELOCITY (FEET/SEC.) 4.81 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.14 STREET FLOW TRAVEL TIME (MIN.) = 1.35 Tc(MIN.) 7.35 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.957 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 0.75 SUBAREA RUNOFF (CFS) 3.13 500 .. 00 0.0150 TOTAL AREA(ACRES) = 0.85 PEAK FLOW RATE(CFS) 3.60 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.43 FLOW VELOCITY(FEET/SEC.) = 5.38 DEPTH*VELOCITY(FT*FT/SEC.) = 1.48 LONGEST FLOWPATH FROM NODE 51.00 TO NODE 52.00 = 491.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 52.00 TO NODE 117.00 IS CODE = 31 I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< =========================================================================~== ELEVATION DATA: UPSTREAM (FEET) = 501.50 DOWNSTREAM (FEET) 501.00 FLOW LENGTH(FEET) = 43.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 5.59 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 3.60 PIPE TRAVEL TIME(MIN.) = 0.13 T.c(MIN.) = 7.48 LONGEST FLOWPATH FROM NODE 51.00 TO NODE 117.00 534.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 11 7 . 00 TO NODE 117.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN. ) 7 .48 RAINFALL INTENSITY(INCH/HR) = 5.89 TOTAL STREAM AREA(ACRES) = 0.85 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.60 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 5.01 11. 76 4.400 2 3.60 7.48 5.891 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 7.34 7.48 5.891 2 7.70 11. 76 4.400 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 7.70 Tc (MIN.) = TOTAL AREA (ACRES) = 2.98 LONGEST FLOWPATH FROM NODE 48.00 TO NODE AREA (ACRE) 2.13 0.85 RATIO 11. 76 117.00 876.00 FEET. +--------------------------------------------------~-----------------------+ I END OF DISCHARGE TO CENTRAL OUTLET I I CORNER OF AVENIDA SOLEDAD AND RANCHO SANTA FE ROAD I I FLOW FROM SITIO CORAZON & AVENIDA SOLEDAD I +--------------------------------------------------------------------------+ ============================================================================ END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) = 2.98 TC(MIN.) = 7.70 11. 76 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I' I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 3 Site Hydrologic Analysis -100-Year DevelopedConditi.ons 3.3 -Neighborhood 3.4 & 3.5 DE:ad h:lrepoJlsI23521151ldrainage study01.dcc w.c.2352·151 10/412006 6:47 AM I I I I I I I I I I I I 'I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES -SAN DIEGO 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * LA COSTA OAKS NORTH -NEIGHBORHOOD 3.4 * * 100-YEAR DEVELOPED CONDITION HYDROLOGIC ANALYSIS (ULTIMATE CONDITION) * * W.O.# 2352-124 PREPARED BY: DJG * ************************************************************************** FILE NAME: H:\AES2003\2352\124\34DEV.DAT TIME/DATE OF STUDY: 10:00 09/27/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PRO~~DURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED P1PEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) MANNING FACTOR (n) -----========= ================= ====== ====== 1 17.0 12.0 0.020/0.020/ 0.50 1.50 0.0313 2 18.0 13.0 0.020/0.020/ 0.50 1.50 0.0313 3 20.0 15.0 0.020/0.020/ 0.50 1.50 0.0313 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET , as (Maximum Allowable Street Flow Depth) -(Top-of-Curb), 2. (];)epth) * (Velocity) Constraint = 4.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ===== 0:125 0.125 0.125 ======= 0.0150 0.0150 0.0150 +-----------------------~--------------------------------------------------+ I I BEGIN NEIGHBORHOOD 3.4 -NODE SERIES 300 I +--------------------------------------------------------------------------+ I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION (FEET) = 523.3-0 DOWNSTREAM ELEVATION (FEET) = 522 .... 60 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) SUBAREA RUNOFF (CFS) 0.69 65.00 8.212 5.548 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) 0.69 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 521.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 383.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) = 15.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTlMAT~R FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTlMATED~FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = . 7.53 AVERAGE FLOW VELOCITY{FEET/SEC.) 3.29 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.91 STREET FLOW TRAVEL TIME(MIN.) = 1.95 Tc(MIN.) 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.837 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT Q .520 . . 10.16 SUBAREA AREA(ACRES) 1.24 SUBAREA RUNOFF(CFS)- TOTAL AREA (ACRES) = 1.48 PEAK FLOW 'RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.41 2.26 .. 3 •. 12 510.00 0.0150 3.72 FLOW VELOCITY(FEET/SEC.) = 3.71 DEPTH*VELOCITY(FT*FT/SEC.) 1.17 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 303.00 = 448.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 1 I I I I, I I I I, I I I I I I I I I I I »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.16 RAINFALL INTENSITY (INCH/HR) = ,4.84 TOTAL STREAM AREA(ACRES) = 1.48 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.72 **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO, ,NODE 305.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 534.80 DOWNSTREAM ELEVATION(FEET) = 534.10 'ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.332 SUBAREA RUNOFF (CFS) 0.72 TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) = 0.72 **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 303.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 531.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 595.10 CURB HEIGHT(INCHES) 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manningls FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.37 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.34 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.60 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.98 STREET FLOW TRAVEL TIME(MIN.) = 2.76 Tc(MIN.) 11.49 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.468 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA (ACRES) = 1.41 TOTAL AREA(ACRES) = 1.67 0.520 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE(CFS) = 3.28 510.,00 0.0;1.50 3.88 I· I I I I, I I I. I I I I I I I I I· I I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.31 .HALFSTREET FLOOD WIDTH(FEET) 9.16 FLOW VELOCITY(FEET/SEC.) = 4.05 DEPTH*VELOCITY(FT*FT/SEC.) = 1.25 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 303.00 = 665.10 FEET. +--------------------------------------------------------------------------+ I The weighted runoff coefficient in the Code 6 above was used since Lots I I #2-#5 pertain to PA 3.3 which has 3.90 DU/Ac (C=0.52) and Lots #82-#83 I I pertain to PA 3.4 which has 4.79 DU/Ac (C=0.57) I +-----~------------------------------~-------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 11.49 RAINFALL INTENSITY (INCH/HR) = 4.47 TOTAL STREAM AREA(ACRES) = 1.67 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.88 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 3.72 10.16 4.837 2 3.88 11.49 4.468 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 7.15 10.16 4.837 2 7.32 11.49 4.468 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 7.32 Tc (MIN.) = TOTAL AREA (ACRES) = 3.15 LONGEST FLOW PATH FROM NODE 304.00 TO NODE AREA (ACRE) 1.48 1.67 RATIO 11.49 303.00 = 665.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE. 306.00 IS CODE = 41 ------------------------------------------------------------~~-------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<.« »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 500.30 DOWNSTREAM (FEET) 499.80 FLOW LENGTH(FEET) = 28.70 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.64 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 7.32 I I I I I I I I I I I I I· I I I I I I 0.06 Tc(MIN.) = PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 304.00 TO NODE 11.55 306.00 693.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 306.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ================================~=========================================== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 11.5.5 RAINFALL INTENSITY(INCH/HR) =' 4.45 TOTAL STREAM AREA(ACRES) = 3.15 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.32 **************************************************************************** FLOW PROCESS FROM NODE 307.00 TO NODE 308.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200' S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 522.70 DOWNSTREAM ELEVATION(FEET) = 522.20 ELEVATION DIFFERENCE (FEET) = 0.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.683 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 58.08 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.352 SUBAREA RUNOFF(CFS) 0.78 TOTAL AREA(ACRES) = ·0.28 TOTAL RVNOFF(CFS) 0.78 **************************************************************************** FLOW PROCESS FROM NODE 308.00 TO NODE 309.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 520.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 341.20 CURB HEIGHT(INCHES) 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 15.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALF STREET FLOOD WIDTH(FEET) = 7.75 2.51 510.00 0.0150 I I I I I I I I I I I I I I I I I I I AVERAGE FLOW VELOCITY(FEET/SEC.) = PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 1.63 3.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 0.98 Tc (MIN.) 4.791 10.31 SUBAREA AREA (ACRES) TOTAL AREA (ACRES) = 1.39 1. 67 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) 9.77 3.46 FLOW VELOCITY(FEET/SEC.) = 3.88 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 307.00 TO NODE 309.00 = 406.20 4.16 1.25 FEET. **************************************************************************** FLOW PROCESS FROM NODE 309.00 TO NODE 306.00 IS CODE = 41 ----------------------------------------------------------------------~----- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ==~========================================================================= ELEVATION DATA: UPSTREAM (FEET) = 499.90 DOWNSTREAM (FEET) = 499.80 FLOW LENGTH(FEET) = 6.80 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.21 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 4.16 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 10.33 LONGEST FLOWPATH FROM NODE 307.00 TO NODE 306.00 413.00 FEET. **************************************************************************~* FLOW PROCESS FROM NODE 306.00 TO NODE 306.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR QQNFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««.< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.33 RAINFALL INTENSITY (INCH/HR) = 4.79 TOTAL STREAM AREA(ACRES) = 1.67 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.16 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 7.32 11.55 4.452 2 4.16 10.33 4.786 . ARE~ (ACRE) 3;15 1. 67 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF NUMBER (CFS) 1 10.97 Tc (MIN. ) 10.33 INTENSITY ( INCH/HOUR) 4.786 I I I I I I I I I I I I I I I I I I I 2 11.19 11.55 4.452 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 11.19 Tc(MIN.) = 11.55 TOTAL AREA(ACRES) = 4.82 LONGEST FLOW PATH FROM NODE 304.00 TO ·NODE 306.00 693.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 312.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME XHRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) 499.40 DOWNSTREAM (FEET) 498.70 FLOW LENGTH(FEET) = 75.60 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) 6.33 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 11.19 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 11.75 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 312.00 = 769.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 312.00 TO NODE 313.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 498.40 DOWNSTREAM (FEET) 496.70 FLOW LENGTH(FEET) = 88.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.70' GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 11.19 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.j = 11.92 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 313.00 857.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 313.00 TO NODE 314.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 496.30 DOWNSTREAM (FEET) 468.10 FLOW LENGTH(FEET) = 287.00 MANNING'S N = 0.0~3 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.21 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 11.19 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 12.22 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 314.00 1144.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 314.00 TO NODE 325.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< I I I I I I I I I I I I I I I I I I I »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) =. 467.80 DOWNSTREAM (FEET) 452.50 FLOW LENGTH(FEET) = 228.70 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.3 INCHES PIPE-FLOW VELOCITY(FEET!SEC.) = 14.07 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PI~ES 1 PIPE-FLOW (CFS) = 11.19 PIPE TRAVEL TIME (MIN.) ,= 0.27 Tc (MIN.) = 12.49 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 325.00 1373.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.49 RAINFALL INTENSITY(INCH!HR) = 4.23 TOTAL STREAM AREA(ACRES) = 4.82 PEAK FLOW RATE (CFS) AT CONFLUENCE = 11.19 **************************************************************************** FLOW PROCESS FROM NODE 315.00 TO NODE 316.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 506.90 DOWNSTREAM ELEVATION(FEET) = 506.20 ELEVATION DIFFERENCE (FEET) = 0.70 ... SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8:212 100 YEAR RAINFALL INTENSITY(INCH!HOUR) = 5.548 SUBAREA RUNOFF(CFS) 0.55 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF(CFS) 0.55 ***********************************************.***************************** FLOW PROCESS FROM NODE 317.00 TO NODE 316.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ====================================================~=======~=============== 100 YEAR RAINFALL INTENSITY(INCH!HOUR) = 5.548, *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF SUBAREA AREA (ACRES) TOTAL AREA(ACRES) TC(MIN.) = 8.21 COEFFICIENT = 0.6325 0.09 SUBAREA RUNOFF (CFS) = 0.28 TOTAL .RUNOFF(CFS) = 0.43 0.98 **************************************************************************** FLOW PROCESS FROM NODE 316.00 TO NODE 325.00 IS CODE = 62 I I I I I I I I I I I I I I I I I I I »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 503.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 519.10 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREET"S CARRYING RUNOFF 1 466.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.11 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.08 AVERAGE FLOW VELOCITY (FEET/SEC.) 5.03 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.35 STREET FLOW TRAVEL TIME (MIN.) = 1.72 Tc (MIN. ) 9.93 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.908 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.536 SUBAREA AREA(ACRES) 1.66 SUBAREA RUNOFF (CFS) = 4.24 TOTAL AREA(ACRES) = 1.94 PEAK FLOW RATE(CFS) 5.11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) 8.88 FLOW VELOCITY(FEET/SEC.) = 5.63 DEPTH*VELOCITY(FT*FT/SEC.) 1.71 LONGEST FLOWPATH FROM NODE 315.00 TO NODE 325.00 = 584.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 325.00 TO NODE -325.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ==========================================================~================= TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 9.93 RAINFALL INTENSITY(INCH/HR) = 4.91 TOTAL STREAM AREA (ACRES) = 1.94 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.11 ****************************************************************~*********** FLOW PROCESS FROM NODE 318.00 TO NODE 319.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================?=============================== *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 510.80 DOWNSTREAM ELEVATION(FEET) = 510.10 I I I I I I I I I I I I I I I I I I I ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF(CFS) 0.89 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) 0.89 **************************************************************************** FLOW PROCESS FROM NODE . 320.00 TO NODE 319.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ====================================~~=====================~==============~= 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.548 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF SUBAREA AREA (ACRES) TOTAL AREA (ACRES) TC(MIN.) = 8.21 COEFFICIENT = 0.6054 0.10 SUBAREA RUNOFF(CFS) 0.41 TOTAL RUNOFF(CFS) = 0.48 1.38 **************************************************************************** FLOW PROCESS FROM NODE 319.00 TO NODE 325.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 509.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 586.10 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetfl~~ Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.43 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.33 AVERAGE FLOW VELOCITY(FEET/SEC.) 5.24 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.43 STREET FLOW TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) 10.08 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.862 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.537 SUBAREA AREA(ACRES) 1.62 SUBAREA RUNOFF (CFS) = 4.10 466.00 a.0150 TOTAL AREA(ACRES) = 2.03 PEAK FLOW RATE (CFS) 5.30 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 8.94 FLOW VELOCITY(FEET/SEC.) = 5.78 DEPTH*VELOCITY(FT*FT/SEC.) 1.76 LONGEST FLOW PATH FROM NODE 318.00 TO NODE 325.00 = 651.10 FEET. I I I I I· 1 I I I I I I I I I I 1 I 1 **************************************************************************** FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 1· »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 10.08 RAINFALL INTENSITY(INCH/HR) = 4.86 TOTAL STREAM AREA (ACRES) = 2.03,. PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.30 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 11.19 12.49 4.234 2 5.11 9.93 4.908 3 5.30 10.08 4.862 AREA (ACRE) 4.82 1.94 2.03 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 19.98 9.93 4.908 2 20.10 10.08 4.862 3 20.21 12.49 4.234 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 20.21 TC(MIN.) = 12.49 TOTAL AREA(ACRES) = 8.79 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 325.00 1373.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 325.00 TO NODE 311.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 452.20 DOWNSTREAM (FEET) 425.00 FLOW LENGTH(FEET) = 85.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.6 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 28.62 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF p;rPES PIPE-FLOW (CFS) = 20.21 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 0.05 TC(MIN.) = 304.00 TO NODE 12.54 311.00 1 1458'.60 FEET. +--------------------------------------------------------------------------+ I I END NEIGHBORHOOD 3.3 -NODE SERIES 300 I +---------------~----------------------------------------------------------+ ============================================================================ END OF STUDY SUMMARY: I I I I I I I I I I I I I I I I I I I ~I TOTAL AREA (ACRES) PEAK FLOW RATE (CFS) 8.79 TC(MIN.) = 20.21 12.54 ============================================================================ ======================================================================~===== END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I I I I I I I II I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study . CHAPTER 4 Storm Drain Hydraulic Analysis OE:ad h:\reportsl23521151Idralnage studyOl.doc w.o.2352·151 1014/2006 6:47 AM I I I I I I I I I I I I I I I I I I II La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 4 Storm Drain Hydraulic Analysis 4.1 -Neighborhood 3.1 D5:ad h:lreports123521151Idralnage study01.doc w.o.2352·151 1014/2006 6:47 AM -------------------- LEGEND LOCATION ID NODE G PROPOSED STORM DRAIN EXISTING STORM DRAIN ==mJ1==== ==mJ1==== 46 14.12.41 47 14.13.91 STORM LEGEND MAP FOR HUNSAKER- &ASSOCIATES LA COSTA OAKS NORTH SAN DIEG~ INC NEIGHBORHOOD 3.1 PlANNING 111179 Huemekens Street ENGINEfIlING San DIego, Ca 92121 SURVEYING PH(B5Bl5~SDO-FX(BSBlSSB4I14 SHEET 1 OF 1 ILA COUNTY PUBLIC WORKS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 I DESIGNER: DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D 1 383.94 2 8 97.3 97.3 23.53 380.44 380.68 0.00 42. 9 93.2 93.2 31.51 381.01 381.49 0.00 42 .. 10 87.3 87.3 278.13 381. 82 391.22 0.00 42. 11 13.9 13.9 65.01 393.22 394.84 0.00 18. 12 7.8 7.8 148.28 395.17 400.28 0.00 18. 2 13 7.8 7.8 199.01 400.61 408.37 0.00 18. 14 3.1 3.1 28.06 408.70 409.30 0.00 18. 20 5.5 5.5 3.63 383.01 383.07 0.00 18. 25 1.3 1.3 42.76 383.82 384.69 0.00 18. 26 1.3 1.3 123.03 385.02 387.81 0.00 18. 2 30 6.5 6.5 5.95 383.82 383.94 0.00 18. 35 76.8 76.8 42.50 391. 87 394.47 0.00 36. 36 70.4 70.4 241.14 394.80 407.79 0.00 36. 37 70.4 70.4 5.96 408.12 408.28 0.00 36. 38 48.9 48.9 56.12 408.61 409.23 0.00 36. 2 39 47.2 47.2 29.40 409.56 409.88 0.00 36. 40 47.2 47.2 105.34 410.21 416.01 0.00 36. 41 38.1 38.1 104.46 416.34 422.13 0.00 36. 42 2.8 2.8 27.25 424.08 424.35 0.00 18. 45 2.8 2.8 27.25 396.30 396.81 0.00 18. 2 50 5.5 5.5 3.25 396.30 396.39 0.00 18. 55 30.8 30.8 3.25 409.61 409.64 0.00 24. 2 56 2.0 2.0 10.15 410.14 410.68 0.00 18. 60 2.3 2.3 57.41 411. 06 428.50 0.00 18. I STORM DRAIN ANALYSIS (INPUT) W S KJ KE KM O. 3 0.50 0.00 0.05 o. 'j 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 3 0.50 0.00 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 3 0.50 0.20 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 LC L1 1 9 o 10 o 11 o 12 o 13 o 14 o o 9 o 10 26 o o 10 o 11 36 o 37 o 38 o 39 o 40 o 41 o 42 o o 36 o 36 o 38 56 o o 39 o L3 20 25 35 80 o 90 o o o o o 45 o 55 60 65 70 75 o o o o o o L4 Al A3 o O. 90. REPT: PC/RD4412.1 DATE: 09/27/06 PAGE 1 A4 J N O. 4.00 0.013 30 90. 90. 38. 4.00 0.013 o o. 90. o. 4.00 0.013 85 o. 61. 90. 4.00 0.013 o o. o. o. 4.00 0.013 o 76. 90. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o 90. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 50 o. 90. 90. 4.00 0.013 o 90. o. o. 4.00 0.013 o o. 90. o. 4.00 0.013 o o. 90. 0 .. 4.00 0.013 o o. 90. o. 4.00 0.013 o o. 90. o. 4.00 0.013 o 90. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 ILA COUNTY PUBLIC WORKS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 IDESIGNER: DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D I 2 65 0.5 0.5 21.99 411.71 412.96 0.00 18. 2 70 13.2 13.2 118.91 417.34 422.80 0.00 24. I 2 71 12.9 12.9 36.17 423.30 432.28 0.00 18.· 75 36.1 36.1 65.12 422.26 426.11 0.00 36. 80 2.9 2.9 3.25 395.17 395.32 0.00 18. 85 3.5 3.5 31.13 395.17 396.52 0.00 18. 2 90 4.7 4.7 3.25 408.70 408.73 0.00 18. I I I I I I I I I I I I STORM DRAIN ANALYSIS (INPUT) W S KJ KE O. 1 0.00 0.20 O. 3 0.50 0.20 o. '1 0.00 0.02 o. 1 0.00 0.20 o. 1 0.00 0.20 o. 1 0.00 0.20 o. 1 0.00 0.20 KM LC L1 0.05 40 a 0.05 41 71 0.05 a 0 0.05 42 o 0.05 12 o 0.05 12 a 0.05 14 a L3 0 a 0 o o o a REPT: PC/RD4412.1 DATE: 09/27/06 PAGE 2 L4 A1 A3 A4 J N a O. o. O. 4.00 0.013 0 9. O. O. 4.00 0.013 0 o. o. O. 4.00 0.013 a o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 a o. o. o. 4.00 0.013 a o. o. o. 4.00 0.013 COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 I DESIGNER: LINE Q DJG W DN DC V 1 V 2 FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC D FLOW SF-FULL NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) I 1 HYDRAULIC GRADE LINE CONTROL 383.94 I 8 97.3 42 o 2.75 3.03 PART 0.00935 10.1 10.1 380.44 380.68 383.94 384.15 9 93.2 42 0 2.26 2.99 PART 0.00858 12.3 10.7 381.01 381.49 383.59 384.48 87.3 42 0 1.69 2.90 SEAL 0.00753 9.1 10.2 381.82 391.22 387.77 394.12 X = 48.65 X(N) 0.00 X(J) = 48.65 F(J} 52.74 D(BJ}'= 1.75 D(AJ) 13.9 18 0 1.05 1.38 FULL 0.01751 7.9 7.9 393.22 394.84 398.85 399.99 12 7.8 18 0 0.66 1.08 SEAL 0.00551 4.4 12.0 395.17 400.28 401.27 400.87 I X = 145.89 X(N) 0.00 X(J} = 145.89 F(J) 3.06 D(BJ) 0.60 D(AJ} 13 7.8 18 o 0.64 1.08 PART 0.00551 10.9 5.7 400.61 408.37 401.25 409.45 X = 0.00 X(N) 106.63 3.1 18 0 0.46 0.67 SEAL 0.00087 1.8 2.5 408.70 409.30 410.31 410.29 X = 5.51 X(N) 0.00 I 8 HYDRAULIC GRADE LINE CONTROL 383.87 5.5 18 o 0.67 0.90 PART 0.00274 5.2 4.9 383.01 383.07 383.87 383.97 I 10 HYDRAULIC GRADE LINE CONTROL 386.12 1.3 18 0 0.30 0.43 SEAL 0.00015 0.7 0.7 383.82 384.69 386.12 386.13 X = 39.81 X(N} 0.00 1.3 18 0 0.29 0.43 PART 0.00015 0.9 3.1' 385.02 387.81 386.15 388.24 X = 0.00 X(N) 49.26 X(J} = 21.54 F(J) = 0.25 D(BJ) 0.29 D(AJ) I 10 HYDRAULIC GRADE LINE CONTROL 386.12 6.5 18 o 0.69 0.98 FULL 0.00383 3.7 3.7 383.82 383.94 386.12 386.16 I 11 HYDRAULIC GRADE LINE CONTROL 396.49 76.8 36 o 1.44 2.74 PART 0.01326 20.7 19.3 391.87 394.47 393.43 396.12 I D 1 (FT) 3.50 D 2 (FT) 3.48 2.58 2.99 5.95 2.90 4.67 5.63 5.15 6.10 0.59 1.86 0.64 1. 08 TW CALC 0.00 0.00 0.00 0.00 0.00 0.00 1.61 0.99 410.41 0.86 0.90 384.43 2.30 1.44 0.00 1.13 0.43 388.42 0.59 2.30 2.22 386.41 1.56 1. 65 0.00 REPT: PC/RD4412.2 DATE: 09/27/06 PAGE 1 TW CK REMARKS 0.00 HJ @ UJT 0.00 0.00 HYD JUMP 0.00 0.00 HYD JUMP 0.00 0.00 0.00 0.00 0.00 HYD JUMP 0.00 0.00 ILA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 I DESIGNER: LINE Q DJG DN DC D W FLOW SF-FULL V 1 V 2 FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) 70.4 36 o 1.42 2.66 PART 0.01114 20.8 10.6 394.80 407.79 396.25 410.45 70.4 36 0 1.75 2.66 FULL 0.01114 10.0 10.0 408.12 408.28 413.84 413.91 38 48.9 36 0 1.85 2.28 FULL 0.00537 6.9 6.9 408.61 409.23 415.50 415.81 47.2 36 0 1.81 2.24 FULL 0.00501 6.7 6.7 409.56 409.88 415.91 416.06 40 47.2 36 0 1.13 2.24 SEAL 0.00501 6.7 14.8 410.21 416.01 416.06 417.39 X = 56.86 X(N) 0.00 38.1 36 0 1.00 2.00 SEAL 0.00326 5.4 19.0 416.34 422.13 420.40 423.11 X = 4.61 X(N) 0.00 X(J) = 4.61 F(J) 22.75 D(BJ) 1.00 D(AJ) 2.8 18 0 0.53 0.63 PART 0.00071 5.0 4.0 424.08 424.35 424.61 424.98 I 36 HYDRAULIC GRADE LINE CONTROL 396.18 2.8 18 o 0.45 0.63 PART 0.00071 6.1 4.0 396.30 396.81 396.76 397.44 I HYDRAULIC GRADE LINE CONTROL 396.18 5.5 18 o 0.58 0.90 PART 0.00274 6.0 4.9 396.30 396.39 397.07 397.29 I HYDRAULIC GRADE LINE CONTROL 414.71 30.8 24 o 2.00 1.87 FULL 0.01854 9.8 9.8 409.61 409.64 414.71 414.84 2.0 18 o 0.29 0.53 FULL 0.00036 1.1 1.1 410.14 410.68 417.40 "417.40 I 39 HYDRAULIC GRADE LINE CONTROL 415.86 D 1 (FT) 1.45 D 2 (FT) 2.66 TW CALC 0.00 5.72 5.63 0.00 6.89 6.58 0.00 6.35 6.18 0.00 5.85 1.38 0.00 4.06 0.98 0.00 3.80 0.53 0.63 425.27 0.46 0.63 397.73 0.77 0.90 397.75 5.10 5.20 0.00 7.26 6.72 417.43 2.3 18 0 0.20 0.57 SEAL 0.00048 1.3 3.7 411.06 428.50 415.86 429.07 4.80 0.57 429.33 X = 10.87 X(N) 31.23 X(J) = 11.35 F(J) 1.17 D(BJ) 0.20 D(AJ) 1.34 I I REPT: PC/RD4412.2 DATE: 09/27/06 PAGE 2 TW CK REMARKS O.pO 0.00 0.00 0.00 0.00 0.00 HYD JUMP 0.00 0.00 0.00 0.00 0.00 0.00 HYD JUMP ILA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 09/27/06 I PAGE 3 PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 I DESIGNER: DJG DN FLOW SF-FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW LINE Q D W DC NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS I 39 HYDRAULIC GRADE LINE CONTROL 416.06 I 65 0.5 18 0 0.15 0.26 FULL 0.00002 0.3 0.3 411.71 412.96 416.06 416.06 4.35 3.10 416.06 0.00 I 41 HYDRAULIC GRADE LINE CONTROL 418.89 I 70 13.2 24 0 0.71 1.30 PART 0.00340 13.3 21.2 417.34 422.80 418.05 423.31 0.71 0.51 '0.00 0.00 71 12.9 18 0 0.51 1.35 PART 0.01508 21.2 7.7 423.30 432.28 423.86 433.63 0.56 1.35 434.57 0.00 I I 42 HYDRAULIC GRADE LINE CONTROL 423.86 75 36.1 36 0 0.96 1.95 PART 0.00293 9.4 7.4 422.26 426.11 423.86 428.06 1.60 1.95 429.09 0.00 I I 12 HYDRAULIC GRADE LINE CONTROL 400.63 80 2.9 18 0 0.36 0.64 FULL 0.00076 1.6 1.6 395.17 395.32 400.63 400.63 5.46 5.31 400.68 0.00 I I 12 HYDRAULIC GRADE LINE CONTROL 400.63 I 85 3.5 18 0 0.40 0.71 FULL 0.00111 2.0 2.0 395.17 396.52 400.63 400.67 5.46 4.15· 400.74 0.00 I 14 HYDRAULIC GRADE LINE CONTROL 409.88 I 90 4.7 18 0 0.72 0.83 PART 0.00200 3.1 3.2 408.70 408.73 409.88 409.88 1.18 1.15 410.07 0.00 I I I I I I I I I I I I I I I I I I I I I I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X (N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X (J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F (J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D (BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITlCAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 9/27/2006 17:37 125 ' /\ ))/j; OPEN SPACE 16.2 ACRES 71 LEGEND LOCA110N 10 NODE 0 PROPOSED STORM DRAIN = =D=== = EXISl1NG STORM DRAIN = =Ei1== = = 62 1532.91 40 1535.31 32 1559.21 42 1531.11 43 1529.11 55 1517.61 48 1517.41 6 1525.31 54 1515.2.1 50 1518.81 i 40 1468.11 41 474.:J 1W 1474.11 47:16 TF 46 1503.71 %.. ~ STORM LEGEND MAP FOR LA COSTA OAKS NORTH NEIGHBORHOOD 3.1 WEST CITY OF CARLSBAD, CALIFORNIA SHEEr 1 OF 1 LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.1 (INPUT) DATE: 09/29/06 I . PAGE 1 PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 WEST I DESIGNER: DJG Q ADJQ LENGTH CTL/TW CD L2 MAX FL 1 FL 2 D W S KJ KE KM LC L1 L3 L4 A1 A3 ·M J N I 8 1 506.43 2 105 9.9 9.9 231.27 503.57 512.33 0.00 24. O. 3 0.15 0.00 0.30 1 106 0 0 o. o. O. 4.00 0.013 I 2 106 9.9 9.9" 194.03 512.66 515.61 0.00 24." O. '3" 0.50 0.00 0.05 0 107 110 0 O. 90. O. 4.00 0.013 I 2 107 5.3 5.3 268.80 516.11 525.39 0.00 18. o. 1 0.00 0.20 0.11 o o o o o. o. o. 4.00 0.013 2 110 4.7 4.7 26.25 515.61 516.69 0.00 18. o. 1 0.00 0.20 0.05 107 a a o o. o. 0, 0.013 I I I I I I I I I I I I COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 WEST IDESIGNER: LINE Q DJG D DC SF-FULL V 1 V 2 W DN FLOW NO 1 1 (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) HYDRAULIC GRADE LINE CONTROL 506.43 1105 9.9 24 0 0.64 1.12 SEAL 0.00191 3.2 9.7 X = 23.91 X(N) 112.99 X(J) = 27.44 F(J)·= 1106 107 9.9 24 0 0.82 1.12 PART 0.00191 8.1 5.5 X = 0.00 X(N) 122.87 5.3 18 0 0.53 0.89 PART 0.00255 9.4 4.9 X = 0.00 X(N) 72.01 I 1106 HYDRAULI C GRADE LINE CONTROL 516.69 110 4.7 18 o 0.48 0.83 PART 0.00200 8.6 4.7 I I I I :1 I :1 II I I I FL 1 (FT) 503.57 3':72 512.66 516.11 FL 2 (FT) 512.33 D(BJ) 515.61 525.39 HG 1 CALC 506.43 0.64 513.48 516.64 HG 2 CALC 513.05 D(AJ) 516.73 526.28 515.61 516.69 516.13 517.52 D 1 (FT) 2.86 1.85 0.82 0.53 0.52 D 2 (FT) 0.72 1.12 0.89 TW CALC 0.00 0.00 52.6.72 0.83 5:).7.93 REPT: PC/RD4412.2 DATE: 09/29/06 PAGE 1 TW CK REMARKS 0.00 HYD JUMP 0.00 0.00 HJ @ DJT 0.00 I I I I I I I I I I I I I I I I I I I VI, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X (N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X (J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D (M) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 9/29/2006 11:15 ILA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.1 (INPUT) DATE: 09/29/06 I PAGE 1 PROJECT: LA COSTA OAK NORTH -NEIGHBORHOOD 3.1 SOUTH I DESIGNER: DJG CTL/TW CD L2 MAX Q ADJQ LENGTH FL 1 FL 2 D W S KJ KE KM LC Ll L3 L4 Al A3 A4 J N I 8 1 450.86 2 5 6.5 6.5 39.07 498.86 499.25 0.00 24. O. 3 0.50 0.00 0.05 1 6 10 0 90. 90. O. 4.00 0.013 I 2 6 4.7 4.7 26.25 500.08 500.46 0.00 18.-o. 'i 0.00 0.20 0.05 0 0 0 0 O. o. O. 4.00 0.013 I 2 10 2.0 2.0 4.25 500.08 500.13 0.00 18. O. 1 0.00 0.20 0.05 6 o o o o. o. O. 4.00 0.013 I I I I I I I I I I I I I I LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: LA COSTA OAK NORTH -NEIGHBORHOOD 3.1 SOUTH DJG I DESIGNER: LINE Q FLOW SF-FULL D W DN DC V 1 V 2 NO I (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC 1 HYDRAULIC GRADE LINE CONTROL = 450.86 I 5 6.5 24 o 0.73 0.90 PART 0.00083 6.1 4.B 498.B6 499.25 499.60 500.15 6 4.7 18 o 0.63 0.83 PART 0.00200 6.2 4.7 500.0B 500.46 500.75 501.29 I I 6 HYDRAULIC GRADE LINE CONTROL 500.45 10 2.0 18 o 0.42 0.53 PART 0.00036 3.9 3.6 500.08 500.13 500.57 500.66 I I I I I I I I I I II I D 1 (FT) 0.74 0.67 0.49 D 2 (FT) TW CALC 0.90 0.00 0.83 501.70 0.53 500.90 REPT: PC/RD4.412. 2 DATE: 09/29/06 PAGE 1 TN CK 0.00 REMARKS 0.00 HJ @ DJT 0.00 I I I I I I I I I I I I I I I I ,I I I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X (N) -DISTANCE IN FEET ·FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAwDOWN OR BACKWATER X(J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 9/29/2006 11:43 I I I I I I I I I I I I I I I I I I !I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER4 . Storm Drain Hydrauli.c Analysis 4.2 -Neighborhood 3.3 DE:ad h:lreportsl2352\151ldralnage study01.doc w.o.2352·151 101412006 6:47 AM 92 !'I ~ !!, & 1., .. I III 91----s.:---I---s---S6---x--l.1I!' 'II ~I ImlI I ~ III I:;r I III ~I£I~I~ 97 £AIIIIr'~ -K-1-~~ __ d_111i 'I~ WI 115 ~ lmII 35 15JO.B1 34 I2.EII 33 ~ LEGEND LOCA 1l0N 10 NODE PROPOSED STORM DRAIN EXISllNG STORM DRAIN o ==IQI=== = =EiF=== = .6" II • 0 .. ..."'----~--m I £&of' ., ...... .--.....J I!I ~ ~I~ &lri& & ~I~ 85 1£271 19 ~ , 18 (j lIDd] 0 ~I~ 24 I 23 1m! WZII 22 !mID IiA ~ STORM LEGEND MAP FOR LA COSTA OAKS NORTH NEIGHBORHOOD 3.3 CITY OF CARLSBAD, CALIFORNIA SHEET 1 OF 1 COUNTY PUBLIC WORKS I STORM DRAIN ANALYSIS (INPUT) PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 WEST II DESIGNER: DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D W S KJ KE KM 1 487.58 4 44.3 44.3 64.35 487.58 509.13 0.00 48. O. 3 0.15 0.00 0.05 5 44.3 44.3 5.00 509.46 509.75 0.00 48.' O. 3 0.50 0.00 0.05 6 44.3 44.3 170.62 510.08 512.43 0.00 48. O. 3 0.50 0.00 0.30 2 7 37.9 37.9 37.06 512.43 512.90 0.00 48. O. 3 0.50 0.00 0.05 8 31.8 31.8 144.80 513.31' 514.63 0.00 48. O. 3 0.15 0.00 0.05 2 9 31.8 31.8 215.10 515.13 517.81 0.00 42. O. 3 0.50 0.00 0.05 10 26.6 26.6 324.57 518.14 521.13 0.00 36. O. 3 0.50 0.00 0.05 11 13.7 61.82 521.46 522.29 0.00 36. O. 3 0.50 0.00 0.05 12 4.7 4.7 495.54 523.29 525.81 0.00 24. O. 3 0.50 0.00 0.05 I 2 '13 4.7 4.7 255.88 526.14 527.27 0.00 24. o. 1 0.20 0.05 2 20 6.9 6.9 6.78 513.68 514.01 0.00 18. o. 1 0.00 0.20 0.05 25 6.2 6.2 15.07 515.73 516.07 0.00 18. o. 1 0.00 0.20 0.05 30 5.4 5.4 5.00 519.40 522.15 0.00 18. o. 1 0.00 0.20 0.05 35 14.0 14.0 39.51 522.46 522.96 0.00 18. o. 3 0.50 0.00 0.05 36 6.8 6.8 277.40 523.45 532.47 0.00 18. o. 3 0.50 0.00 0.05 2 37 6.8 6.8 186.32 532.80 538.70 0.00 18. o. 1 0.00 0.20 0.11 40 5.9 5.9 4.25 523.45 523.72 0.00 18. o. 1 0.00 0.20 0.05 45 3.1 3.1 26.25 523.45 524.22 0.00 18. o. 1 0.00 0.20 0.05 50 6.0 6.0 4.77 523.79 523.99 0.00 18. o. 1 0.00 0.20 0.05 55 3.4 3.4 28.62 523.79 523.99 0.00 18. o. 1 0.00 0.20 0.05 I I I LC Ll L3 1 5 o o 6 20 o 7 25 o 8 o o 9 o o 10 30 o 11 35 o 12 50 o 13 o o o o 7 o o 8 o o 10 o o 12 36 40 o 37 o o o o 36 o o 36 o o 12 o o 12 o o L4 A1 A3 o O. O. o O. 90. o O. 72. o 90. O. o o. 0,. o O. 90. o O. 90. 55 O. 90. o 21. o. o o. o. o o. o. o o. o. o o. o. 45 o. 90. o o. o. o O. o. b o. o. o o. o. o O. o. o o. o. REPT: PC/RD4412.1 DATE: 09/28/06 PAGE 1 A4 J N O. 4.00 0.013 O. 4.00 0.013 O. 4.00 0.013 O. 4.00 0.013 O. 4.00. 0 .. OI~ o. 4.00 0.013 O. 4.00 0.013 60. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 90. 4.00 0.013 o. 4.00 0.013 O. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 o. 4.00 0.013 O. 4.00 0.013 I LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOQ 3.3 WEST IDESIGNER: DJG LINE Q D W DN DC FLOW SF-FULL V 1 V 2 (CFS) (IN) (IN) (FT) (FT)' TYPE (FT/FT) (FPS) (FPS) FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC HYDRAULIC GRADE LINE CONTROL 487.58 I 4 44.3 48 o 0.62 1.99 PART 0.00095 30.8 13.8 487.58 509.13 488.27 510.34 5 44.3 48 o 0.96 1.99 PART 0.00095 12.8 12.3 509.46 509.75 510.74 511.07 I 6 44.3 48 0 1.40 1.99 PART 0.00095 11.0 7.1 510.08 512.43 511.51 514.42 I 7 37.9 48 0 1.31 1.83 PART 0.00070 4.5 6.8 X = 0.00 X(N) 0.00 X(J) = 22.17 F(J) 512.43 512.90 514.98 514.73 12.76 D(BJ) 1.57 D(AJ) 8 31.8 48 0 1.31 1.67 PART 0.00049 3.8 12.2 513.31 ?14.63 515.86 515.67 I X = 0.00 X(N) 0.00 X(J) = 31.63 F(J) 11.16 . D (BJ) 1. 24 D (AJ) 9 31. 8 42 o 1.27 1.74 PART 0.00100 10.1 7.7 515.13 517.81 516.40 519.37 X = 0.00 X(N) 56.12 26.6 36 0 1.35 1.66 PART 0.00159 8.6 6.6 518.14 521.13 519.49 522.79 X = 0.00 X(N) 139.71 11 13.7 36 0 0.85 1.18 PART 0.00042 2.4 5.3 521.46 522.29 523.71 523.47 I· X = 0.00 X(N) 0.00 X(J) = 55.66 F(J) 3.62 D(BJ) 1.04 D(AJ) 12 4.7 24 0 0.74 0.76 PART 0.00043 2.9 3.8 523.29 525.81 524.33 526.65 X = 0.00 X(N) 46.32 4.7 24 0 0.77 0.76 PART 0.00043 4.3 4.2 526.14 527.27 526.90 528.04 X = 0.00 X(N) 1.35 I 7 HYDRAULIC GRADE LINE CONTROL 514.70 6.9 18 o 0.56 1.01 PART 0.00431 7.8 5.4 513.68 514.01 514.43 515.02 I 8 I, 25 HYDRAULIC GRADE LINE CONTROL 515.30 6.2 18 o 0.65 0.96 PART 0.00348 7.1 5.2 515.73 517.03 516.07 516.48 I HYDRAULIC GRADE LINE CONTROL 519.43 5.4 18 o 0.26 0.90 PART 0.00264 14.6 4.9 519.40 522.15 519.79 523.05 I I D 1 (FT) 0.69 1.28 D 2 (FT) 1.21 1.32 1.43 1.99 2.55 1.83 2.13 2.55 1.04 2.20 1.27 1.56 1.35 1.66 TW CALC 0.00 0.00 0.00 0.00 .0.00 0.00 0.00 2.25 1.18 0.00 1.32 0.76 0.77 528.37 0.75 1. 01 515.57 0.75 0.96 517.53 0.39 0,.90 523.49 REPT: PC/RD4412.2 DATE: 09/28/06 PAGE 1 TW CK 0.00 0.00 0.00 REMARKS 0.00 HYD JUMP 0.00 HYD JUMP 0.00 0.00 0.00 HYD JUMP 0.00 HJ @ UJT 0.00 0.00 0.00 0.00 ILA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS .REPT: PC/RD4412.2 DATE: 09/28/06 I PAGE 2 PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 WEST IDESIGNER: DJG LINE Q D W DN DC FLOW SF-FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW I NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS 12 HYDRAULIC GRADE LINE CONTROL 523.90 I 35 14.0 18 0 1.50 1.38 SEAL 0.01776 8.0 7.9 522.46 522.96 523.90 524.60 1.44 1.64 0.00 0.00 X = 11.29 X(N) 0.00 36 6.8 18 0 0.62 1. 01 SEAL 0.00419 3.8 10.9 523.45 532.47 526.10 533.04 2.65 0.57 0.00 0.00 HYD JUMP I X = 38.05 X(N) 145.16 X(J) = 38.05 F(J) 2.26 D(BJ) 0.62 D(AJ) 1.56 37 6.8 18 0 0.63 1. 01 PART 0.00419 9.7 5.4 532.80 538.70 533.43 539.71 0.63 1. 01 540.25 0.00 I X = 0.00 X(N) 116.90 I. 36 HYDRAULIC GRADE LINE CONTROL 525.35 40 5.9 18 0 0.48 0.94 FULL 0.00315 3.3 3.3 523.45 523.72 525.35 525.37 1.90 1.65 525.58 0.00 I I 36 HYDRAULIC GRADE LINE CONTROL 525.35 45 3.1 18 0 0.42 0.67 SEAL 0.00087 1.8 2.2 523.45 524.22 525.35 525.35 1. 90 1.13 525.43 0.00 I X = 14.05 X(N) 0.00 I 12 HYDRAULIC GRADE LINE CONTROL 523.90 50 6.0 18 0 0.54 0.94 PART 0.00326 7.0 5.1 523.79 523.99 524.52 524.93 0.73 0.94 525.42 0.00 I 112 HYDRAULIC GRADE LINE CONTROL 523.90 I 55 3.4 18 0 0.65 0.70 PART 0.00105 4.7 4.2 523.79 523.99 524.44 524.69 0.65 0.70 525.02 0.00 X = 0.00 X(N) 18.04 I ! I I I I I I I I I I I I I I I I I V 1, FL 1, D 1 AND HG 1 V 2, FL 2, D 2 AND HG 2 REFER TO DOWNSTREAM END REFER TO UPSTREAM END x -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) .F(J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 9/28/2006 17:34 I LA COUNTY PUBLIC WORKS I PROJECT: IDESIGNER: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 EAST DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D 1 494.77 2 105 7.7 7.7 32.42 493.60 495.83 0.00 18. 2 106 7.7 7.7 8.00 495.83 496.67 0.00 18. I 2 107 5.0 5.0 5.00 497.00 497.18 0.00 18. 2 110 3.6 3.6 45.50 497.00 497.46 0.00 18. I I I I I I I I I I I I I STORM DRAIN ANALYSIS (INPUT) W S KJ KE KM LC L1 o. 3 0.15 0.00 0.18 1 106 o. 3 0.50 0.00 0.05 o 107 O. 1 0.00 0.20 0.05 0 o O. 1 0.00 0.20 0.05 107 o L3 o 110 o o L4 A1 A3 o o. o. o 90. 90. o o. o. o o. O. REPT: PC/RD4412.1 DATE: 09/28/06 PAGE 1 A4 J N o. 4.00 0.013 o. 4.00 0.013 O. 4.00 0.013 O. 4.00 0.013 I LA COUNTY PUBLIC WORKS I PROJECT: I DESIGNER: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 EAST DJG LINE 1 106 I 1107 110 Q D W DN DC FLOW (CFS) (IN) (IN) (FT) (FT) TYPE HYDRAULIC GRADE LINE CONTROL 7.7 18 0 0.54 1.07 PART 7.7 18 0 0.48 1. 07 PART 5.0 18 0 0.51 0.86 SEAL X = 3.40 X(N) 0.00 HYDRAULIC GRADE LINE CONTROL 3.6 18 o 0.60 0.72 PART SF-FULL V 1 (FT/FT) (FPS) ", 494.77 0.00537 12.5 0.00537 10.1 0.00227 2.8 498.18 0.00117 2.4 STORM DRAIN ANALYSIS V 2 FL 1 FL 2 HG 1 HG 2 (FPS) (FT) (FT) CALC CALC 10.0 493.60 495.83 494.17 496.50 5.7 495.83 496.67 496.50 497.74 2.9 497.00 497.18 498.61 498.62 4.3 497.00 497.46 498.18 498.18 X = 0.00 X(N) 0.00 X(J) = 28.63 F(J) 0.76 D(BJ) 0.62 D(AJ) I I I I I I I I I I D 1 (FT) 0.57 0.67 1.61 1.18 0.83 D 2 (fT) 0.67 1. 07 1.44, 0.72 TW GALC 0.00 0.00 498.77 498.52 REPT: PC/RD4412.2 DATE: 09/28/06 PAGE 1 TW CK REMARKS 0.00 0.00 0.00 0.00 HYD JUMP .. ------------------------------------------------------ I I I I I I I I, I I I I I I I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X (N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 9/28/2006 11: 7 I I I I I I. I I I I I I I I I I I i I I La Costa Oaks North -Neighborhoods 3.1 J 3.3 -3.5 Drainage Study CHAPTER 4 Storm Drain Hydraulic Analysis 4.3 -Neighborhood 3.4 & 3.5 DE:ad h:lreporls\23521151ldrainage stUdy01.doc w.o.2352-151 10/412006 6:47 AM 83 1514.11 J ~//;- j' I ::;:b-'--~l"'--'-+--~\-::. ;;:::::=:p:==~?-\ ~ ---_._-_. __ ._-- ~-=--~ ( ,----_._---~Er. ~=--=~.::::::::.._...:-:.-=:~~--=-=::=======.==---~ -"-'" 445 r41C~ ~ ----::.m= -=----~~~-. -r i = -'-~.': .~_._.:-_=:::-,-.~:=~ .. --=-=-:. ""'''''w.r 81 1514.91 LEGEND 1£P.61 IjYBI 66 1512.21 67 1512.61 68 1513.31 61 1486.91 62 1492.61 LOCAll0N 10 NODE 0 STORM LEGEND MAP FOR PROPOSED STORM DRAIN EXISllNG STORM DRAIN ====ISJ=== ==ml=== HUNSAKER & ASSOCIATES I LA COSTA OAKS NORTH SAN DIECO, INC NEIGHBORHOOD 3.4 ., SHEET 1 OF ; PlANNING 10179 Hu ..... kens Slre<t ENGINEERING San Diego, Ca 92121 SURVEYING PH(656)55B-4500· fX(656)55fi.1414 CITY OF CARLSBAD, CALIFORNIA i "~,"D~.44 --~---------------- II LA COUNTY PUBLIC WORKS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.4 II DESIGNER: DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D 1 425.61 2 4 20.2 20.2 165.65 423.94 452.19 0.00 18. 5 11.2 11.2 228.72 452.52 467.77 0.00 18.' 6 11.2 11.2 287.01 468.10 496.34 0.00 18. 7 11.2 11.2 88.44 496.67 498.35 0.00 18. 8 11.2 11.2 75.59 498.68 499.43 0.00 18. 2 9 7.3 7.3 28.73 499.76 500.34 0.00 18. 15 4.2 4.2 13.17 499.76 499.96 0.00 18. I I I I I I I I I I STORM DRAIN ANALYSIS (INPUT) W S KJ KE KM O. 3 0.15 0.00 0.05 O. 'j 0.15 0.20 0.05 O. 3 0.15 0.00 0.05 O. 3 0.15 0.00 0.05 O. 3 0.50 0.00 0.05 O. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 LC L1 L3 L4 A1 1 5 o o O. o 6 o o o. o 7 o o O. a 8 o o 73. a 9 15 o 90. a a o o. 9 a .. 0 o o. A3 0·. o. 0 •. O. o. o. REPT: PC/RD4412.1 DATE: 09/27/06 PAGE 1 A4 J N O. 4.00 0.013 O. 4.00 0.013 O. 4.00 0.013 O. 4.00 0.013 O. 4.00 0.013 O. 4.00 0.013 o .. O. 4.00 O.Op ILA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3. 4 IDESIGNER: DJG LINE Q D W DN DC FLOW SF-FULL V 1 V 2 (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) FL l. (FT) FL 2 (FT) HG 1 CALC HG 2 CALC HYDRAULIC GRADE LINE CONTROL 425.61 I 4 20.2 IS 0 0.72 1.47 PART 0.03698 24.1 11.5 423.94 452.19 424.66 453.66 X = 0.00 X(N) 115.49 5 11.2 IS 0 0.67 1.2S SEAL 0.01137 6.3 17.5 452.52 467.77 456.49 468.36 I X = 26.62 X(N) 198.24 X(J) = 26.62 F(J) 5.30 D(BJ) 0.,67 D(AJ) 6 11.2 18 0 0.60 1.28 PART 0.01137 16.9 10.5 468.10 496.34 468.70 497.21 X = 0.00 X(N) 203.32 11.2 18 0 0.99 1.28 PART 0.01137 9.0 7.0 496.67 498.35 497.66 499.63 X = 0.00 X(N) 11.18 S 11.2 1S 0 1.50 1.2S FULL 0.01137 6.3 6.3 498.6$ 499.43 500.69 501.55 7.3 18 0 0.74 1. 05 FULL 0.00483 4.1 4.1 499.76 500.34 502.62 502.76 I HYDRAULIC GRADE LINE CONTROL 502.08 4.2 18 o 0.59 0.78 FULL 0.00160 2.4 2.4 499.76 499.96 502.0S 502.11 I I I I I I I I I D 1 (FT) 0.72 3.97 2.49 0.60 0.99 2.01 2.86 2.32 D 2 (FT) 1.47 0.59 0.S7 1.28 2.12' 2.42 TW CALC 0.00 0.00 0.00 0,.00 0.00 503.07 2.15 502.21 REPT: PC/RD4412.2 DATE: 09/27/06 PAGE 1 TW CK 0.00 REMARKS 0.00 HYD JUMP 0.00 0.00 0.00 0.00 0.00 I I I I I I I I I I I I I I I I I I I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X (N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 9/27/2006 17 :49 I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 5 Inlet Sizing DE:ad h:lreportsl23521151ldralnage studyOl.doc w.o,2352·151 101412006 8:47 AM I I I I I I I I I I I I I I I I I I I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 CURB INLET SIZING Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) a (cfs) ON-GRADE 441 5.00% 2.8 ON-GRADE 456 3.16% 2.8 ON-GRADE 459 3.16% 5.5 ON-GRADE 464 3.40% "4.7 ON-GRADE 468 3.40% 3.1 . ON-GRADE 473 5.21% 3.5 ON-GRADE 476 5.21% 2.9 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) 0.33 0.33 0.33 .. 0.33 0.33 0.33 0.33 3 From Manning's Equation: 0= (1.49/n)*A*S1/2*R2I3 Flow Required Depth3 length of y (ft) Opening4 (ft) 0.27 8.5 0.29 8.2 0.34 14.2 0.32 12.8 0.29 9.2 0.28 10.3 0.27 9.0 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7L(a+y)"3/2 5 Length shown on plans (Required length of Opening + 1 foot) Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) a (cfs) SUMP 449 N\A 30.8 SUMP 483 N\A 6.5 SUMP 486 N\A 5.5 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) N\A N\A .. N\A 3 Per City of Carlsbad Standards From Ratio: all = 2 5 Length shown on plans (Required length of Opening + 1 foot) Flow Depth y (ft) N\A N\A N\A Required length of Opening::! (ft) 15.4 3.2 2.8 Use length 5 (ft) 1.0 10 16 14 11 12 10 Use length 5 (ft) 17 5 5 H:\EXCEL\2352\ 126\1NLETS-CARLSBAD.x1s 9/28/2006 1 of 1 I I I I I I I I I I I I I I I I I I I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 CURB INLET SIZING Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) ON-GRADE 3 1.00% 6.0 ON-GRADE 6 2.00% 3.1 ON-GRADE 9 2.00% 5.9 ON-GRADE 12 1.00% ·5.4 ON-GRADE 65 1.00% 3.4 ON-GRADE 92 3.90% 6.8 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) 0.33 0.33 0.33 ,. 0.33 0.33 0.33 3 From Manning's Equation: Q = (1.49/n)*A*S1/2*R2I3 Flow Required Depth3 Length of y (ft) Opening4 (ft) 0.41 13.5 0.31 8.6 0.37 14.4 0.40 12.5 0.35 8.7 0.35 17.3 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7L(a+y)A3/2 5 Length shown on plans (Required Length of Opening + 1 foot) Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) SUMP 15 N\A 6.2 SUMP 63 N\A 4.7 SUMP 105 N\A 6.9 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) N\A N\A N\A 3 Per City of Carlsbad Standards From Ratio: Q/L = 2 5 Length shown on plans (Required Length of Opening + 1 foot) Flow Depth y (ft) N\A N\A N\A Required Length of Opening" (ft) 3.1 2.4 3.5 Use Length 5 (ft) 15 10 16 14 10 19 Use Length 5 (ft) 5 5 5 H:\EXCEL\2352\152\INLETS-CARLSBAD.xls 9/29/2006 1 of 1 I I I I I I -I I I I I I I I I , I I I I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 CURB INLET SIZING Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) ON-GRADE 405 4.70% 5.2 ON-GRADE 409 3.30% 4.7 ON-GRADE 416 2.50% 4.7 ON-GRADE 420 2.50% '2.0 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) 0.33 0.33 0.33 0.33 3 From Manning's Equation: Q = (1.49/n)*A*S1/2*R2I3 Flow Required' Depth3 Length of y (ft) Opening4 (ft) , 0.32 14.3 0.33 12.7 0.34 12.3 0.27 6.0 The hydraulic radius, R, and area, A,' are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7L(a+y)J\3/2 5 Length shown on plans (Required Length of Opening + 1 foot) Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) SUMP 421 N\A 10.7 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) N\A 3 Per City of Carlsbad Standards From Ratio: Q/L = 2. ~ 5 Length shown on plans (Required Length of Opening + 1 foot) Flow Depth y (ft) N\A Required Length of Opening3 (ft) 5.3 Use Length 5 (ft) 16 14 14 8 Use Length 5 (ft) 7 H:\EXCEL \2352\ 152\INLETS2-CARLSBAD.xls 9/29/2006 1 of 1 I I I I I I I I I I I I I I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.4 CURB INLET SIZING Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) ON-GRADE 309 4.02% 4.2 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) 0.33 3 From Manning's Equation: Q = (1049In)*A*S112*R2I3 Flow Required Depth3 length of· y (ft) Opening4 (ft) 0.31 11.8 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7l(a+y)A3/2 5 length shown on plans (Required length of Opening + 1 foot) Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) SUMP 303 N\A 7.3 SUMP 325 N\A 1004 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) N\A N\A 3 Per City of Carlsbad Standards From Ratio: Q/l = 2 5 Length shown on plans (Required Length of Opening + 1 foot) Flow Depth y (ft) N\A N\A Required length of Opening3 (ft) 3.7 5.2" Use length 5 (ft) 13 Use length 5 (ft) 5 7 H:\EXCEL \2352\ 124\1NLETS-CARLSBAD.xls 9/29/2006 1 of 1 I I I I I I I I I I I I I I I II I I I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.5 CURB INLET SIZING Type Inlet Street Surface of at SIope1 Flovi Inlet Node S(%) Q (cfs) ON-GRADE 50 1.00% 5.0 ON-GRADE 52 1.00% 3.6 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) 0.33 0.33 3 From Manning's Equation: Q = (1.49/n)*A*S1/2*R2I3 Flow Required Depth3 Length of y (ft) Opening4 (ft) 0.39 11.8 0.36 9.1 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7L(a+y)A3/2 5 Length shown on plans (Required Length of Opening + 1 foot) Use Length 5 (ft) 13 11 H:\EXCEL \2352\ 152\1NLETS2-CARLSBAD.x1s 9/28/2006 1 of 1 I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 6 Catch Basin Sizing' DE:ad h:lreportsl2352\151ldralnage study01.doc w.o.2352·151 1014120066:47 AM I I· I' I I I I I I I I I I I I I I I I NORTH -NEIGHBORHOOD 3.1 CATCH BASIN TYPE "F" Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): Node 406 13.5" Qmax = 0.6A"'(2gh) QrTiax = 0.6A"'(2gh) 3' 4.5". 7.5" .".. 1 y = 0.405' (Centroid) i;'S''''' 1 5" ,. . ~ , ~ ------------------------ Qmax = 0.6(1.875+0.1875)["'(2)(32.2)(1.125-0.405)] Qmax= 8.42 cfs per opening West'Jy Opening North'Jy Opening Q= 2.30 cfs H:\EXCEL \2352\ 126\CB F-NEW.xls 1 of 1 w.o.# 2352-0126 I I I I I I I I I I I I I I I I I I II LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 CATCH BASIN TYPE IIFII Dimensions obtained from City of San Diego Standard Drawings (Drawing 0-7): Node 443 3' 4.5" 13.5" 7.5" . .. '," y = 00405' (Centroid) ""~ <, .• , t 1.5" _ __ _ _ _ ___________ .:. "~'4'~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _________ _ Qmax = 0.6A"",(2gh) Qmax = 0.6A"",(2gh) Qmax = 0.6(1.875+0.1875)["",(2)(32.2)(1.125-0.405)] Qmax = 8.42 cfs per opening West'ly Opening Q= 0.5 cfs H:\EXCEL\2352\126\CB F-NEW.xls 1 of 1 W.O.# 2352-0126 I I I I· I I I I I I I I I I I I I I I NORTH -NEIGHBORHOOD 3.1 CATCH BASIN TYPE ItFIt Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7).: Node 482 3' 4.5" 13.5" 7.5" ~,.\,-1 y = 0.405' (Centroid) '~$1 . -. 1.5" _ _ _ _ _ _ __________ '~ _ ;.:'" _';'~-4: _ __ _ _ _ _ _ _ _ _ _________ _ Qmax = 0.6A.y(2gh) Qmax = 0.6A.y(2gh) Qmax = 0.6(1.875+0.1875)[.y(2)(32.2)(1.125-0.405)] Qmax = 8.42 cfs per opening West'ly Opening Q= 1.34 cfs H:\EXCEL\2352\126\CB F-NEW.xls 1 of 1 W.O.# 2352-0126 r-------------------------------~-------- I I' I I I I I I· I I I I I I I I I :1 I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 CATCH BASIN TYPE "F" Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): Node 492 3' 4.5" 13.5" 7.5" y = 00405' (Centroid) 11.511 ------------------------ Qmax = 0.6A"I'(2gh) Qmax = 0.6A"I'(2gh) Qmax = 0.6(1.875+0.1875)["1'(2)(32.2)(1.125-0.405)] Qmax = 8.42 cfs per opening Northwest'ly Opening Q= 5.4 cfs H:\EXCEL\2352\126\CB F-NEW.xls 1 of 1 W.O.# 2352-0126 NORTH -NEIGHBORHOOD 3.1 CATCH BASIN TYPE "F" I I I I I I I I Dimensions obtained from City of San Diego Standard Drawings (Drawing 0-7): . . 13.5" Qmax = O.6A~(2gh) Qmax = O.6A~(2gh) 3' 4.5" 7.5" "M Y = 0.405' (Centroid) , ,,,:.' 11.5" "j:':'" "------------------------ Qmax = O.6(1.875+0.1875)[~(2)(32.2)(1.125-0.405)] '1 Qmax = 8.42 cfs 'per opening I Node 499 I I I I I I South'ly Opening Q= 5.69 cfs I I I H:\EXCEL\2352\126\CB F-NEW.xls 1 of 1 W.O.#2352·0126 I I I I I I I I I I I· I I I I I I i I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 7 Brow Ditch Sizing. OE:ad h:lreportsl23521151ldralnage study01.doc w.o.2352-1S1 1014/20066:47 AM I I I I' I I I I I I I I I I I I I I I 9/26/2006 BROW DITCH SIZING LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 Brow Ditch Conveyed Brow Ditch ID Node1 Flow2 (cfs) Size3 (ft) A 6.56 -3 1 Refer to Developed Condition Hydrology Map (Chapter IX) 2 Flows from AES output (Chapter IV) 3 Refer to Grading Plans for brow ditch detail Maximum Capacities for Brow Ditches Brow Ditch Brow Ditch Maximum Size (ft) Min. Slope (%) Flow (cfs) 2 1.00 2.73 3 1.00 13.98 NOTES: Based on a brow ditch minimum slope, s = 1.00%, and Manning's n = 0.015 Refer to attached FlowMast~r. output for calculations (Chapter VI) Refer to Sheet Grading Plans fotbrow ditch detail 1 of 1 H:\EXCEL\2352\126\B-DITCH.xls I I I I I I I I I I I I I I I I I I I Worksheet for 2·ft BROW DITCH Flow Element: Friction Method: Solve For: Circular Pipe Manning Formula Normal Depth !l'lffm't~_t'~~~~~i~fT~~~-=~~ ~ ~~N~~' ':i~' ~ ·~~_~~"~N~~~~~ Roughness Coefficient: 0.015 Channel Slope: 0.01000 ftlft Diameter: Discharge: Normal Depth: Flow Area: Wetted Perimeter: Top Width: Critical Depth: Percent Full: Critical Slope: Velocity: Velocity Head: Specific Energy: Froude Number: Maximum Discharge: Discharge Full: Slope Full: Flow Type: Downstream Depth: Length: Number Of Steps: Upstream Depth: Profile Description: Profile Headloss: Average End Depth Over Rise: Normal Depth Over Rise: Downstream Velocity: 2.00 2.73 0.50 0.62 2.10 1.74 0.58 25.2 0.00593 4.39 0.30 0.80 1.29 21.09 19.61 0.00019 SuperCritical 0.00 0.00 0 0.00 N/A 0.00 0.00 0.00 0.00 ft ft3/s ft ft2 ft ft ft % ftlft ftls ft ft ft3/s W/s ftlft ft ft ft ft % % ftls I I' Worksheet for 3-ft TERRACE DITCH I Flow Element: Circular Pipe " Friction Method: Manning Formula Solve For: Normal Depth I ' Roughness Coefficient: 0.015 Channel Slope: 0.01000 ftIft I Diameter: 3.00 ft Discharge: 13.98 ft3ts I Normal Depth: 1.00 ft Flow Area: 2.08 ft2 I Wetted Perimeter: 3.70 ft Top Width: 2.83 ft Critical Depth: 1.19 ft I . Percent Full: 33.5 % Critical Slope: 0.00530 ftIft Velocity: 6.73 ftIs I Velocity Head: 0.70 ft Specific Energy: 1.71 ft Froude Number: 1.39 I Maximum Discharge: 62.18 ' ft3ts Discharge Full: 57.80 ft3ts I Slope Full: 0.00058 ftIft Flow Type: SuperCritical I Downstream Depth: 0.00 ft Length: 0.00 ft I Number Of Steps: 0 Upstream Depth: 0.00 ft I Profile Description: NtA Profile Headloss: 0.00 ft Average End Depth Over Rise: 0.00 % I Normal Depth Over Rise: 0.00 % Downstream Velocity: 0.00 ftIs I I I I I I I I I I I .1 I I I I· I I I DRAINAGE DITCH CROSS SECTION Project Description Worksheet Flow Element Method Solve For Section Data Cross Section Circular Channe Manning's Forml Channel Depth Mannings Coeffie ).015 Slope Depth Diameter Discharge h:\flow-m\2167\4\4thsubmittal\100yrbdltch.fm2 06/18/03 03:34:28 PM © Haestad Methods, Inc. Diameter Hunsaker & Associates -San Diego, Inc. T Freeboard = 0.50 ft ~ V:1~ H:1 NTS Project Engineer: Anabella Hedman FlowMaster v6.1 [6140] 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 I I I I I I I, I I- I I I I,. I I , I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 8 Rip Rap Design DE:ad h:lreporls123521151Idralnage study01.doc w.o.2352-151 1014120066:47 AM I I I I I I' , I I I I· I- I I~ I I II I I RIPRAP SIZING LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 D-41 N'ode 106 (Refer to Developed Condition Hydrology Map in Chapter 12) Pipe Diameter, 0 = 4.0 ft Flow, Q = 44.3 cfs . Velocity, v = 30.80 fps (From STORM Output) Use D-41: Energy Dissipator Rock Class: 2 Ton Length, L= Width, W= (Per SDRSD D-41) 16.0 ft 12.00 ft Thickness, T = 5.4 ft (Per 2003 Regional Supplement to "Greenbook 2003" Standard Specifications and based on three times the 05.0) Filter Blanket: Upper Layer: 2" Crushed Rock (or equivalent) Thickness, T = 1.0 ft Lower Layer: Sand (Per 2003 Regional Supplement to "Greenbook 2003" Standard Specificatiom 9/28/2006 1 of 1 H:\EXCEL \2352\ 152\RIPRAP2.x1s r---------------------------------------------------------------~----- I I I I i . II I I I Chapter 7. Energy Dissipation velocities to non-erosive or pre-project levels. In these cases, the engineer shall apply a reasonable design procedure to determine an appropriate riprap design. 7.3.1.1 San Diego Regional Standard Drawing Apr:on Length and Width. Riprap apron length and width are a function of the diameter or vertical dimension of the outlet pipe or culvert. The apron length shall be determined using the following equation, with a minimum length of 10 feet: (7-:1) where ... La = minimum riprap apron length (ft); and Do = diameter or width of culvert or storm drain (ft). Where there is a well-defined channel downstream of the apron, the bottom width of the riprap apron shall be at .least equal to the bottom width of the channel. The riprap apron 'shall extend at least one foot above the maximum tailwater elevation or the computed water surface elevation, whichever is. greater. The side slopes of the riprap apron shall be 3H:IV whenever practical, but in no case be steeper than 1.5H: 1 V. . . Where there is no well-defined channel downstream of the apron, the. upstream width of the riprap . apron shall be equal to twice the width of conduit or the wieith of the headwall, whichever is greater. The downstream width of the riprap apron shall be at least the width of the upstream end of the apron, plus one conduit diameter (Do) on each side. Figure 7-1 illustrates the layout of the San Diego regional standard riprap apron. Riprap Size and Thickness. Flow energy governs the size of the riprap used for energy dissipation. The San Diego Regional Standard Drawings use exit velocity as a surrogate for flow energy (Table 7-1). Riprap apron thickness shall be at least 1.5 times the nominal dso of the specified riprap. Riprap shall be placed over a geotextile :filter fabric, and a filter blanket material . shall be placed under the fabric as appropriate. The equivalent diameter of stone (dso) shall not exceed the diameter or vertical dimension of the outlet pipe, 'and the dimensions of the riprap apron shall be adjusted to accommodate the required stone size. Table 7-1 Rock Size for Riprap Aprons at Storm Drain Outlets . Outlet Velocity (ft/s) Rock Classification Size of Stone, d50 (ft) (a) 6-10 No.2 Backing 0.7 10-12 % Ton 1.8 12-14 % Ton 2.3 14-16 1 Ton 2.9 16=18 2 Ton 3.6 Is) Assumes specific weight of 165 Iblfe. The designer shall take care to apply a unit weight that is applicable to the type of riprap specified for the project, and adjust their calculations if necessary. 7.3.2 Stilling Basins There are a number of additional types of stilling basins~ and it is beyond the scope of this . Manual to provide detailed information on each of them. Information about their proper application and design can be obtained from a number of sources, including the FHW A Hydraulic Design of Energy DiSSipaters for Culverts and Channels (HEC-14), the U.S. Army Corps of Engineers' Hydraulic Design Criteria and Engineer Manuals, the Bureau of San Diego County Drainage Design Manual May 2005 Page 7-2 I I' I .. I I I' I '~t~,:: I I I I I "I -I ;;: '" ~ c o '" W 20 or2W Min. A~ > Max (3~, W) PLAN VIEW Chapter 7. Energy Dissipation Endwall (Typical) SECTION B·B Figure 7-1 San Diego Regional Standard Rock Riprap Apron Layout Reclamation's Design of Small Canal Structures, and other references. The use of riprap, SAF, and CSU stilling basins are allowed, subject to the approval of the governing Agency. 7.3.3 Dissipator Rings The use of dissipater rings in pipes and culverts can be an efficient manner to reduce exit velocities. FHW A HEC-14 provides a complete discussion of their use and design. Dissipater rings shall be modified to facilitate drainage behind the rings and prevent :bonding within the culvert. The 'use of dissipater rings is limited to urban applications where velocities within the pipe are greater than 20 ftlsec and where no significant bedloads are anticipated, or where other methods of energy dissipation are impracticable. 7.3.4 Impact Basin (SDRSD No. D-41) Design standards for the impact basin depicted on San Diego Regional Standard Drawing No. D-41 are based on the USBR Type VI Basin. The original USBR basin has been modified to allow drainage of. the basin during dry periods, which enhances the usefulness of the basin in urban environments. The width of D-41 is based on discharge from the storm drain or culvert; this width must be specified on drawings. Information on the original hydraulic design reference can be found in the Hydraulic Design of Stilling Basins for Pipe or Channel Outlets (peterka, 1984). The designer is encouraged to use the design guidelines contained wIthin the Regional Standard Drawings .. 7.4 REFERENCES Bradley, IN. and Peterka, A.l (1957). "Hydraulic design of stilling basins." Journal of the Hydraulics Division, American Society of Civil Engineering 83(5), 1-15. California Department of Transportation (Caltrans). (June 1996). California Bank and Shore Rock Slope Protection Design, Practitioner's Guide and Field Evaluation of Rip rap Methods. FHWA-CA-TL-95-10/Caltrans Study No. F90TL03. San Diego County Drainage Design Manual May 2005 Page 7-3 I I I I I I I I I I I I 'I I I : I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 9 Developed Condition Hydrology Maps 9.1 -Neighborhood· 3.1 OE:ad h:lreportsl23521151ldrainage study01.doc w.o.2352·151 101412006 6:47 AM I I I I I I I I I I I I I I I ·1 I I I La Costa Oaks North -Neighborhoods 3.1 J 3.3 -3.5 Drainage Study CHAPTER 9 Developed Condition Hydrology Map.s 9.2 -Neighborhood 3.3 OE:ad h:lreportsI23521151Idralnage study01.doc w.o.2352-1S1 101412006 6:47 AM I I ,I ,I I I I I I I I I ,I I I I II I ! I -I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 9 Developed Condition Hydrol'ogy Maps 9.3 -Neighborhood 3.4 & 3.5 DE:ad h;\reports123521151ldralnage study01.doc w.o.2352·151 1014/2006 6:47 AM