Loading...
HomeMy WebLinkAboutCT 05-16; LA COSTA OAKS NORTH 3.4&3.5; DRAINAGE STUDY; 2007-02-12I I I I I I I I I I I I I I I I I I I HUNSAKER &ASSOCIATES ...-...:::I 5 AND lEG 0, INC. PLANNING ENGINEERING SURVEYING IRVINE LOS ANGELES RIVERSIDE SAN DIEGO DAVE HAMMAR LEX WILLIMAN ALiSA VIALPANDO DAN SMITH RAY MARTIN CHUCK CATER 10179 Huennekens St. San Diego, CA 92121 {858} 558-4500 PH {858} 558-1414 FX www.HunsakerSD.com Info@HunsakerSD.com DRAINAGE STUDY for LA COSTA OAKS NORTH NEIGHBORHOODS 3.1 & 3.3 -3.5 eroS-If; City of Carlsbad, California . Prepared for: Real Estate Collateral Management Company c/o Morrow Development 1903 Wright Place Suite 180 Carlsbad, CA 92008 RECEIVED FEB 20 2001 W.O. 2352-151 ENGINEER!NG DEPAR1"MENT February 12, 2007 Hunsaker & Associates San Diego, Inc. David A. Blalock, R.C.E. Associate DG'kc h \reports\2352\151 oaks north rough 3.1, 3 3. 3.4 & 3.S\drainage sludy02 doc w 0 2352·151 2116/20072'58 PM • o z ~. o w :r: o z ~ Da I I I I I I I I I I I I I I I I 'I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study TABLE OF CONTENTS Chapter 1 -Executive Summary 1.1 Introduction 1.2 Summary of Pre-Developed Conditions 1.3 Summary of Developed Conditions 1.4 Summary of Results 1.5 References Chapter 2 -Methodology -Rational Method Peak Flowrate Determination (Ultimate Conditions) 2.1 Design Rainfall Determination 100-Year, 6-Hour Rainfaliisopiuvial Map 100-Year, 24-Hour Rainfalilsopluvial Map 2.2 Runoff Coefficient Determination 2.3 Peak Intensity Determination Urban Watershed Overland Time of Flow Nomograph Natural Watershed Overland Time of Flow Nomograph Gutter and Roadway DischargeNelocity Chart Manning's Equation Nomograph San Diego County Intensity-Duration Design Chart SECTION II 2.4 Model Development Summary (from San Diego County Hydrology Manual) 2.5 STORM Methodology Chapter 3 -Site Hydrologic Analysis -i00-Year Developed Conditions III 3.1 100-Year Developed Conditions -Neighborhood 3.1 3.2 100-Year Developed Conditions -Neighborhood 3.3 3.3 100-Year Developed Conditions -Neighborhood 3.4 & 3.5 Chapter 4 -Storm Drain Hydraulic Analysis 4.1 Storm Drain Hydraulic Analysis -Neighborhood 3.1 4.2 Storm Drain Hydraulic Analysis -Neighborhood 3.~ IV 4.3 Storm Drain Hydraulic Analysis -Neighborhood 3.4 & 3.5 Chapter 5 -Inlet Sizing V DE:ad h:lreportsl23521151IdrainOll" study01.dDC w.D.2352·151 10/4i2C\06 6:47 AM I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study Chapter 6 -Catch Basin Sizing Chapter 7 -Brow Ditch Sizing Chapter 8 -Rip Rap Design Chapter 9 -Developed Condition Hydrology Maps 9.1 Developed Conditions Map -Neighborhood 3.1 9.2 Developed Conditions Map -Neighborhood 3.3 VI VII VIII IX 9.3 Developed Conditions Map -Neighborhood 3.4 & 3.5 OE:ad h:lreports123521151ldrainage study01.doc w.o.2352·151 101412006 6:47 AM I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 1 -EXECUTIVE SUMMARY 1.1 -Introduction The La Costa Oaks North Neighborhoods 3.1 & 3.3 -3.5 sites are located at the north eastern corner of the intersection of Poinsettia Lane and Alicante Hoad in the City of Carlsbad, California (see Vicinity Map below). VICINITY MAP NTS Neighborhoods 3.1 & 3.3 -3.5 consists of residential developments; each approximately 27.8-acres, 48.9-acres and 23.9-acres respectively. Runoff from the neighborhoods drain towards four (4) outlet locations, ultimately discharging into San Marcos Creek. This study analyzes developed condition 100-year peak flowrates from the proposed development. Treatment of storm water runoff from the site has been addressed in a separate report -the "Storm Water Management Plan for La Costa Oaks North Neighborhoods 3.1 & 3.3 -3.5" dated October 2006 by Hunsaker & Associates. Per City of Carlsbad drainage criteria, the Modified Rational Method should be used to determine peak design flowrates when the contributing drainage area is less than 1.0 square mile. Since the total watershed area discharging from the site is less than 1.0 square mile, the AES-2003 computer software was used to model the runoff response per the modified Rational Method. Methodology used for the computation of design rainfall events, runoff coefficients, and rainfall intensity values are consistent with criteria set forth in the San Diego County Hydrology Manual. A more detailed explanation of methodology used for this analysis is listed in Chapter 2 of this report. CE:djg h:lreportsl23521151\dralnage study02.doc w.o.2352-151 2f112007 10:06 AM I I I I I I I I I I I I I I I I II I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study 1.2 -Summary of Pre-Developed Conditions The La Costa Oaks North Neighborhoods 3.1 & 3.3 -3.5 sites are located in the City of Carlsbad, California. The site has been mass graded in anticipation for residential development per the "Mass Graded Hydrology Study for La Costa Oaks North - Neighborhood 3.1 & 3.3 -3.5" dated October, 2005 by Hunsaker & Associates. 1.2.1 Neighborhood 3.1 Runoff from the La Costa Oaks North Neighborhood 3.1 site is drained via an existing 42-inch RCP storm drain to the receiving storm drain located within the adjacent Rancho Santa Fe Road, ultimately discharging to San Marcos Creek. 1.2.2 Neighborhood 3.3 Runoff from the La Costa Oaks North Neighborhood 3.3 site drains to four (4) existing storm drain outlet locations. Three (3) drainage locations (an 18-inch, 36- inch and 42-inch RCP) discharge site runoff to the receiving storm drain located within the adjacent Rancho Santa Fe Road, ultimately d,ischarging to San Marcos Creek. Flow directed to the south of the project site is intercepted via an existing 48- inch RCP, discharging to the receiving San Marcos Creek. 1.2.3 Neighborhood 3.4 & 3.5 Runoff from the La Costa Oaks North Neighborhoods 3.4 & 3.5 site drains to two (2) existing storm drain outlet locations. Runoff from the mass graded Neighborhood 3.4 site drains north to the receiving 36-inch RCP storm drain within San Elijo Road, discharging to the storm drain system within the adjacent Rancho Santa Fe Road. Runoff from the mass graded Neighborhood 3.5 site drains south to the receiving 48-inch RCP storm drain that discharges directly to S~n Marcos Creek. All flow from the La Costa Oaks North project site ultimately drains to San Marcos Creek. Table 1 on the following page summarizes pre-developed conditions peak flows for Neighborhoods 3.1, 3.3 -3.5. DE:ad h:lreportsI2352\151ldralnage study01.doc w.o.2352-151 101412006 6:47 AM I I I I I I I I I I I I I I I I !I I I La Costa Oaks North -Neighborhooqs 3.1, 3.3 -3.5 Drainage Study Table 1 -Summary of Pre-Developed Peak Flows Drainage 100-Year Peak Drainage Location Neighborhoods Area Flow (Ac) (cfs) 48-inch RCP to San Marcos 3.3, 3.4 & 3.5 21.2 53.0 Creek 18-inch RCP to Rancho Santa Fe Road 3.3 3.0 8.7 (Avenida Soledad) 36-inch RCP to Rancho Santa Fe Road 3.4 8.9 20.9 (San Elijo Road at Node 325) 42-inch RCP to Rancho Santa 3.1, 3.3 & 3.4 45.7 105.2 Fe Road TOTAL 78.8 187.8 *Note: Inclusive of tributary areas from 3.1 & 3.3 -3.5 1.3 -Summary of Developed Conditions 1.3.1 Neigborhood 3.1 The proposed La Costa Oaks North Neighborhood 3.1 will consist of 80 single family residences, roads, sidewalks, curbs and gutters, associated underground utilities and storm water drainage systems. Runoff from the residential development will be conveyed via curb and gutter, where curb inlets will intercept this flow and convey it to the proposed storm drain system. This storm drain system drains to the existing 42-inch RCP storm drain, discharging to the existing storm drain system located within the adjacent Rancho Santa Fe Road. Development of the site will not cause any diversion to or from the existing watershed to the storm drain system. 85th percentile runoff will be treated in storm water BMPs prior to discharge. to the existing storm drain within Rancho Santa Fe Road. Based on County of San Diego 2003 Engineering Standards criteria, a runoff coefficient of 0.52 was assumed for the proposed single-family residential development. DE:djg h:lreports\2352\151\dralnage study02.doc w.o.23s2-151 217120073:44 PM --------------------------------------------------~------~------------------~ I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study 1.3.2 Neighborhood 3.3 The proposed La Costa Oaks North Neighborhood 3.3 will consist of 120 single family residences, roads, sidewalks, curbs and gutters, associated underground utilities and storm water drainage systems. Runoff from the northern portion of the residential development will be conveyed via curb and gutter, where curb inlets will intercept this flow and convey it to the proposed storm drain system. This northern storm drain system connects to the existing 42-inch RCP storm drain, discharging to the existing storm drain system located within the adjacent Rancho Santa Fe Road. Runoff from the southern portion of the residential development will be conveyed via curb and gutter, where curb inlets will intercept this flow and convey it to the proposed storm drain system. This southern storm drain system connects to the existing 48-inch RCP storm drain to the south of the project site, discharging to the receiving San Marcos Creek. Runoff from a small portion to the south east of the La Costa Oaks North Neighborhood 3.3 site discharges to the curb and gutter within Sitio Corazon, draining to both the storm drain system within Avienda Soledad and San EIijo Roads, ultimately discharging to the existing storm drain system within the adjacent Rancho Santa Fe Road. Development of the site will not cause any diversion to or from the existing watershed to the storm drain systems. 85th percentile runoff will be treated in storm water BMPs prior to discharge to the existing storm drain within Rancho Santa Fe Road and San Marcos Creek. Based on County of San Diego 2003 Engineering Standards criteria, a runoff coefficient of 0.52 was assumed for the proposed single-family residential development. 1.3.3 Neighborhood 3.4 & 3.5 The proposed La Costa Oaks North Neighborhoods 3.4 & 3.5 will consist of 83 single family residences, roads, sidewalks, curbs and gutters, associated underground utilities and storm water drainage systems. . Runoff from the northern (Neighborhood 3.4) portion of the development will be conveyed via curb and gutter, where curb inlets will intercept this flow and convey it to the proposed storm drain system. This storm drain system connects to the existing 36-inch RCP storm drain within San Elijo Road, discharging to the existing storm drain system located within the adjacent Rancho Santa Fe Road. DE:ad h:lreports123521151Idralnage study01.doc w.o.2352'151 101412006 6:47 AM I I I I I I I I I I I I I I I I I i l I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study Runoff from the southern (Neighborhood 3.5) portion of the development will be conveyed via curb and gutter, where curb-inlets will intercept this flow and convey it to the proposed storm drain system. This storm drain system connects to the existing 48-inch RCP storm drain to the south of the project site, discharging to the receiving San Marcos Creek. Development of the site will not cause any diversion to or from the existing watershed to the storm drain systems. 85th percentile runoff will be treated in storm water BMPs prior to discharge to the existing storm drain within Rancho Santa Fe Road and San Marcos Creek. Ba.sed on County of San Diego 2003 Engineering Standards criteria, a runoff coefficient of 0.52 was assumed for the proposed single-family residential development. Table 2 below summarizes developed conditions peak flows for Neighborhoods 3.1, 3.3-3.5. Table 2 -Summary of Developed Conditions Peak Flows Drainage Location 48-inch RCP to San Marcos Creek 18-inch RCP to Rancho Santa Fe Road .(Avenida Soledad) 36-inch RCP to Rancho Santa Fe Road (San Elijo Road) 42-inch RCP to Rancho Santa Fe Road TOTAL Drainage 100-Year Peak Neighborhoods Area Flow (Ac) (cfs) 3.3, 3.4 & 3.5 21.0 * 44.3 3.3 2.9 * 7.7 3.4 8.8 * 20.2 3.1,3.3 & 3.4 45.8 * 98.4 78.5 170.6 *Note: Inclusive of tnbutary areas from 3.1 & 3.3 -3.5 DG:djg h:lreports123521151 oaks north rough 3.1, 3.3, 3.4 & 3.5Idralnage studytl2.doc w.o.2352·151 21151200712:04 PM I I I I I I I I I I I I I I 'I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study 1.4 -Summary of Results Tables 3 & 4 below summarize pre and post-developed conditions drainage areas and resultant 100-year peak f10wrate at the storm drain discharge location. Per San Diego County rainfall isolpluvial maps, the design 100-year rainfall depth for the site area is 2.9 inches. Table 4 -Summary of Pre Vs Post Developed Peak FloWs Drainage Location Conditions Drainage Area 100-Year Peak (Ac) Flow (cfs) 48-inch RCP to San Existing 21.2 53.0 Marcos Creek Developed 21.0 44.3 Difference -0.2 -8.7 Drainage Location Conditions Drainage Area 100-Year Peak CAc) Flow (cfs) 18-inch RCP to Existing 3.0 8.7 Rancho Santa Fe Road (Avenida Developed 2.9 7.7 Soledad) Difference -0.1 ~ 1.0 Drainage Location Conditions Drainage Area 100-Year Peak CAc) Flow (cfs) 36-inch RCP to Existing 8.9 20.9 Rancho Santa Fe Road (Avenida Developed 8.8 20.2 Soledad at Node 325) Difference -0.1 -0.7 Drainage Location Conditions Drainage Area 100-Year Peak (Ac) Flow (cfs) 42-inch RCP to Existing 45.7 105.2 Rancho Santa Fe Developed 45.8 98.4 Road Difference +0.1 -6.8 As shown in the above table, developed flows are below that of pre-developed conditions to the receiving storm drain system within the adjacent Rancho Santa Fe Road and San Marcos Creek. DG:dJo h:lreports123521151 oaks north rough 3.1. 3.3. 3.4 & 3.5\drainage study02.doc w.o.2352·151 211512007 12:04 PM I I I I~ I I I I I I I I I I I I II I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study Table 4 -Summary of Pre Vs Post Developed Peak Flows Conditions Drainage Area 1 OO-Year Peak Flow CAc) Ccfs) ExistinQ 78.8 * 187.8 Developed 78.5 170.6 Difference -0.3 -17.2 .. * 0.3 Acres accounted from San EhJo Road In Mass Graded Peak flow rates listed above were generated based on criteria set forth in "San Diego County Hydrology Manual" (methodology presented in Chapter II of this report). Rational Method output is located in Chapter III. 1.5 -References "Storm Water Management Plan for La Costa Oaks North Neighborhood 3.1, 3.3- 3.5': Hunsaker & Associates San Diego, Inc.; October 2006. "Mass Graded Hydrology Study for La Costa Oaks North -Neighborhood 3.1 & 3.3 -3.5': Hunsaker & Associates San Diego, Inc.; October, 2005. "San Diego County Hydrology Manual". Department of Public Works -Flood Control Division. County of San Diego, California. 2003. "City of San Diego Regional Standard Drawings". Section D -Drainage Systems. Updated March 2000. "Standards for Design and Construction of Public Works Improvements in the City of Carlsbad". City of Carlsbad, California. April 1993 "Preliminary Hydrology for Villages of La Costa -The Ridge and the Oaks". Hunsaker & Associates San Diego, Inc. April 25, 2001. DG:dJg h:lreports\2352\1S1 oaks north rough 3.1. 3.3. 3.4 & 3.5\dra/nage stuCly02.doc w.o.2352·1S1 21151200712:04 PM r-----------------~~---~-~~ I I I I'Y I I I I I I I I ,I I 'I I' I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL M'ETHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.1 -Design Rainfall Determination DE:ad h:\reportsl235211511dralnage studyOl,doc w,o,2352-151 101412096 6:47 AM I I I I I I I I I I I I I I I I I II I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.1 -100-Year, 6-Hour Rainfall Isopluvial Map DE:ad h:\repOrls123521151Idrainage s1udy01.doc w.o.2352·151 1014/2006 6:47 AM -- ... '" ... " Ipl1Ql)'~Iau/1ipIlIICIII)'- o " " .. - ';> -... .. .. -.. TIjJln. .. --' ------ County of San Diego Hydrology Manual ~ '~~~~----------r----, " ................. , '\, '\ 2.75 .... , ..... \ .. \', '\ .................. ~~5 3~O ...... l ..... _ .... .. .................. _ ............... ----............. .. '\) 7~----............ ' ,/' 2.75 3 "0 " II> 0 0 c " ... Rainfall Isopluvials 100 Year Rainfall Event -6 Hours /"/ Isopluvial (inches) Map Notes Sialeplar,. Projection. zoneS. NAD83 Creation Dale; June 22. 2001 NOTTO BE USED FOR OESIGN CALCULATIONS Q o 1.5 ,........... ----.-oJ MILES ame~ - I I I I I I I I 1\ I I I I II I' I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.1 -100-Year, 24-Hour Rainfaliisopiuvial 'Map DE:ad h:\repOrtsl2~521151\drainag. s1udy01.doc w.o.2352·151 101412006 6:47 Mt ---.-.. -.. -.. -.. - -0 .... _, :' \ / '.. ....... , .... .-.. .. '" o " .. .. '" TijJana I&bVmly_~,*a,..wQll1.11111 -- 3 .., .. ----J" ~ o C ::l '< ,,~' ~~ ,-----4 o- r \. ".J' \ , 4:0 -4.5....... \ . . --.. "' ............ .. --" "' ... 5.0~..... '\. '-I --- - --- County of San Diego Hydrology Manual RalnfaH Isopluvials 100 Year Rainfall Event -24 Hours /v" Isopluvial (inches) Map Notes Statepiane Projection, Z0ne6, NADB3 Creation Date: June 22, 2001 NOTTO BE USED FOR DESIGN CAlCUlATIONS Q o 7.5 ,.....,~ MilES ame&1 - I I I I I I I I' I I I I' I I I if I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRATE DETERMINATION (ULTIMATE CONDITIONS) 2.2 -Runoff Coefficient Determination DE:ad h:lreportsl23521151ldralnage study01.doc ~.o.2352·151 1014/2006 6:47 AM ---_ ........ -.... San Diego County Hydrology Manual Date: June 2003 Table 3-1 .. _ .. _---- Section: Page: 3 6of26 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient "C" Soil TXEe NRCS Elements Coun Elements %IMPER. A B C D Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 0.30 0.35 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 0.36 0.41 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) Residential, 7.3 DUiA or less 40 0.48 0.51 0.54 0.57 Medium Density Residential (MDR) Residential, 10.9 DUiA or less 45 0.52 0.54 0.57 0.60 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 CommerciallIndustrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 0.79 CommerciallIndustrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 CommerciallIndustrial (O.P. Com) Office ProfessionaVCommercial 90 0.83 0.84 0.84 0.85 CommerciallIndustrial (Limited I.) Limited Industrial 90 0.83 0.84 0.84 0.85 CommerciallIndustrial (General.!.) General Industrial 95 0.87 0.87 0.87 0.87 *The values associated with 0% impervious may be used for direct calculation of the runoff coefficien,t as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National' Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 I I I I I I- I I I I I 11 I I I il I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRATE DETERMINATION (ULTIMATE CONDITIONS) 2.3 -Peak Intensity Determination DE:ad Itlreportsl2352\1511d1llInage sIlldy01.doc w.o.2352-151 1014/2006 6:47 AM -----.. _--..... _------10.0 9.0 8.0 7.0 6.0 5.0 ) r.... Ii'o 4. )~ 3. 2. 'C' 5 1 c 1• ~o. !!!o: ~o o o 0, o o '0 ) ) J ~ ~ 7 ) ) ~ ~ 2 I ~ f' i' f' "" ~ ~ r... r... ~ I' i'o ~ ~ r....r-., '" ~ .. . ~ 1', i'o r.... ..... "" i' "" ~ r-., f' I'" ~ I ..... r.... ..... r.... ""~ 5 6 7 8 910 .... ~ "i" . .... .'" "" " ~ r-. ~ r-- "r-- " '" to ", '" .... " 15 llllllill 20 30 Minutes EQUATION 1 = 7.44 Pa 0-0.645 1 = Intensity (in/hr) Pa = 6-Hour Precipitation (in) o = Duration (min) 'r-. I' ~ I'~ I' ~" .... i'o .... ... ..,. I. I' I' " r. ~ ~ i"" ..,.~ I' I' ~i' ..,.~ 1111111111111 40 50 1 2 3 4 5 6 Duration Hours ~ g ~ i Q u~ uE ug u~ o ~i u~ 3.0 2.5 2.0 1.5 1.0 Intensity-Duration Design Chart -Template DirectIons for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual) . (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right sld~ of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. Application Fonn: (a) Selected frequency ___ year (b) Ps = __ in •• P24 = __ ,;6 = %(2) 24 (0) Adjusted P6(2) = __ in. (d) Ix = __ min. (e) I = __ In./hr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. -L FIG U R E. ~ I I I I I I I' I I I' I I I I I I I II I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.3 -Urban Watershed Overland Time of flow Nomograph DE:ad h:lreporls123S2I151ldralnage study01,doc w.o.2352·151 101412006 6:47 AM -----~~--~~~-~-----~. . ~ W U. z -w () z ~ C/) 0 w ~ ::> 0 () a:: w !;: ~ 100 1 1.5 I 0/111 ' 1 .. ~·1_~7 ftVjIIf -~ --I 4'r 130 w ...-~ 4'i~~~"'I1''-:......-...-:»----.-- 0 C/) ~ ::l Z 20 5E ~ w :2 I-s: 9 u. 10 Cl ~ 0::: w 6 --'0 EXAMPLE: Given: Watercourse Distance (D) = 70 Feet Slope (5) =1.3% Runoff Coefficient (C) = 0.41 Overland Flow Time (T) = 9.5 Minutes T= 1.8 (1.1-C)Vo 3VS SOURCE: Airport Drainage, Federal Aviation Administration, 1965 FIGURE Rational Formula· Overland Time of Flow Nomograph 3·3 I I· I I "I I I I I I If I" I I I I II I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.3 -Natural Watershed Overland Time of flow Nomograph CE:ad h:lrepor1s123521151\dralnage study01.doc w.o.2352-151 101412006 6:47 AM I I I I I- I I I I I I I I I I I I I· I .6.E Feet 5000 4000 Tc Tc L ~E = = ::: = EQUATiON C~~3y.385 Time of concentration (hours) Watercourse Distance (miles) Change in elevation along effective slope line (See Figure 3-5){feet) 3000 2000 SOURCE: California Division of Highways (1941) and Kirpich (1940) L Miles Feet 0.5 L . 3000 '- 2000 1800 1600 1400 500 200 '- Nomograph for Determination of '-'- Tc Hours Minutes '- 4 3 2 1 '-'- Tc 240 180 120 60 20 5 3 Time of Concentration (Tc) or Travel Time (Tt) for Natural watersheds FIGURE ~ I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRATE DETERMINATION (ULTIMATE CONDITIONS) 2.3 -Gutter and Roadway Discharge (Velocity Chart) DE:ad h:lreportsI23521151Idralnage study01.doc w.o.2352·151 101412006 6:47 AM I I I I I I I I I I I I I I I I :1 I I CD Co 0 3 en .-CD ~ .-en -0 ~ 1.: 1.6 1.4 1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 1....--1.5'~1 I-+-n = .015~1""'-__ --2% ~ _n=.0175 --------~------~ 2% 2 EXAMPLE: Concrete Gutter Given: Q = 10 S = 2.5% 3 4 Chart gives: Depth = 0.4, Velocity = 4.4 f.p,s. Paved 5 6 7 8 9 10 Discharge (C.F.S.) SOURCE: San Diego County Department of Special District Services Design Manual Gutter and Roadway Discharge· Velocity Chart RESIDENTIAL STREET ONE SIDE ONLY 20 30 40 50 FIGURE ~ I I I I I I' I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.3 -Manning's Equation Nomograph DE:ad h:\reportsl23521151ldralnage study01.doc w.o.2352·151 101412006 6:47 AM I I I I I I I I I I I I I I I I I I I '? 15 .E .... m Co (j) J!! .5 W C-0 ...J en 0.15 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.009 0.008 0.007 0.006 0.002 0.001 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0003 EQUATION: V = 1.49 R2/351/2 n 0.2 0.3 0.4 0.6 ~ 0.8 ""- 0.9 ~ "0 1.0 '6' 4 5 6 7 8 9 10 20 '" ""- GENERAL SOLUTION SOURCE: USDOT, FHWA, HDS-3 (1961) Manning's Equation Nomograph 1·9 0.9 . 0.8 0.7 0.6 0.5 . 0.01 0.2 0.3 0.4 FIGURE §] I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.4 -Model Development Summary (from San Diego County Hydrology Manu·al) Dc:ad h:lreportsI23521151Idralnage study01.doc w.o.2352-151 101412006 6:47 AM I I I I I I I I I I I I I I II I I I I San Diego County Hydrology Manual Date: June 2003 3.2 DEVELOPING INPUT DATA FOR THE RATIONAL METHOD Section: Page: 3 200f26 This section describes the development of the necessary data to perform RM calculations. Section 3.3 describes the RM calculation process. Input data for calculating peak flows and Tc's with the RM should be developed as follows: 1. On a topographic base map, outline the overall drainage area boundary, showing adjacent drains, existing and proposed drains, and overland flow paths. 2. Verify the accuracy of the drainage map in the field. 3. Divide the drainage area into subareas by locating significant points of interest. These divisi'ons should be based on topography, soil type, and land use. Ensure that an appropriate first subarea is delineated. For natural areas, the first subarea flow path length should be less than or equal to 4,000 feet plus the overland flow length (Table 3-2). For developed areas, the initial subarea flow path length should be consistent with Table 3-2. The topography and slope within the initial subarea should be generally uniform. 4. Working from upstream to downstream, assign a number representing each subarea in the drainage system to each point of interest. Figure 3-8 provides guidelines for node numbers for geographic information system (GIS)-based studies. 5. Measure each subarea in the drainage area to determine its size in acres (A). 6. Determine the length and effective slope ofthe flow path in each subarea. 7. Identify the soil type for each subarea. 3-20 ------------------- ,-----Study Area SC ,.r-L I . ~ '1 l.. \ I /" "", /' l,' Study Area LA G) Define Study Areas (Two-Letter 10) o Define Maps (or Subregions on Region Basis) o Define Model Subareas on Map Basis , ~: , ' , ' , " ,'!: ... . ' . , I .' ,,' ." .. · .' · ' · ' , ......... 4 ..... _ ....... I..... , : ,".... /' &,," , , .' . I I ....... \ I,' " " I , \ I I I \ I I I \1" I "(' " CD Define Major Flowpaths in Study Area CD Define Regions on Study Area Basis Subarea ID = (LA010112) Region # N~::: 1 Study Area (10)' 1 11 CD Define Model Nodes (Intersection of Subarea Boundaries with Flowpath Lines) GIS/Hydrologic Model Data Base Linkage Setup: Nodes, Subareas, Links LA 01 01 03 o Number Nodes IF I~_~R EI I I I I I I I I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 22 of 26 8. Determine the runoff coefficient (C) for each subarea based on Table 3-1. If the subarea contains more than one type of development classification, use a proportionate average for C. In determining C for the subarea, use future land use taken from the applicable community plan, Multiple Species Conservation Plan, National Forest land use plan, etc. 9. Calculate the CA value for the subarea. 10. Calculate the :2:(CA) value(s) for the subareas upstream of the point(s) of interest. 11. Determine P6 and P24 for the study using the isopluvial maps provided in Appendix B. Ifnecessary, adjust the value for P6 to be within ~5% to 65% of the value for P24. See Section 3.3 for a description of the RM calculation process. 3.3 PERFORMING RATIONAL METHOD CALCULATIONS This section describes the RM calculation process. Using the input data, calculation of peak flows and Te's should be performed as follows: 1. Determine Ti for the first subarea. Use Table 3-2 or Figure 3-3 as discussed in Section 3.1.4. If the watershed is natural, the travel time to the downstream end of the first subarea can be added to Tito obtain the Te. Refer to paragraph 3.1.4.2 (a). 2. Determine I for the subarea using Figure 3-1. If Ti was less than 5 minutes, use the 5 minute time to determine intensity for calculating the flow. . 3. Calculate the peak discharge flow rate for the subarea, where Qp = :2:(CA) L In case that the downstream flow rate is less than the upstream flow rate, due to the long travel time that is not offset by the additional subarea runoff, use the upstream peak flow for design purposes until downstream flows increase again. 3-22 I I I I I I I I I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 4. Estimate the Tt to the next point of interest. 5. Add the Tt to the previous Te to obtain a new Te. Section: Page: 6. Continue with step 2, above, until the final point of interest is reached. 3 230f26 Note: The MRM should be used to calculate the peak discharge when there is a junction -from independent subareas into the drainage system. 3.4 MODIFIED RATIONAL METHOD (FOR JUNCTION ANALYSIS) The purpose of this section is to describe the steps necessary to develop a hydrology report for a small watershed using the MRM. It is necessary to use the MRM if the watershed contains junctions of independent drainage systems. The process is based on the design manuals of the City/County of San Diego. The general process description for using this method, including an example ofthe application of this method, is described below. The engineer should only use the MRM for drainage areas up to approximately 1 square mile in size. If the watershed will significantly exceed 1 square mile then the NRCS method described in Section 4 should be used. The engineer may choose to use either the RM or the MRM for calculations for up to an approximately I-square-mile area and then transition the study to the NRCS method for additional downstream areas that exceed approximately 1 square mile. The transition process is described in Section 4. 3.4.1 Modified Rational Method General Process Description The general process for the MRM differs from the RM only when a junction of independent drainage systems is reached. The peak Q, T e, and I for each of the independent drainage systems at the point of the junction are calculated by the RM. The independent drainage systems are then combined using the MRM procedure described below. The peak Q, Te, and I for each of the independent drainage systems at the point of the junction must be calculated prior to using the MRM procedure to combine the independent drainage systems, as these 3-23 I I I I I I I I I I I I I I 'I I I I I San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 240f26 values will be used for the MRM calculations. After the independent drainage systems have been combined, RM calculations are continued to the next point of interest. 3.4.2 Procedure for Combining Independent Drainage Systems at a Junction Calculate the peak Q, T e, and I for each of the independent drainage systems at the point of the junction. These values will be used for the MRM calculations. At the junction of two or more independent drainage systems, the respective peak flows are combined to obtain the maximum flow out of the junction at Te. Based on the approximation that total runoff increases directly in proportion to time, a general equation may be written to determine the maximum Q and its corresponding Te using the peak Q, Te, and I for each of the independent drainage systems at the point immediately before the junction. The general equation requires that contributing Q's be numbered in order ofincreasing Te. Let QI, TI, and II correspond to the tributary area with the shortest Te. Likewise, let Q2, T2, and h correspond to the tributary area with the next longer Te; Q3, T3, and h correspond to the tributary area with the next longer Te; and so on. When only two independent drainage systems are combined, leave Q3, T 3, and h out of the equation. Combine the independent drainage systems using the junction equation below: Junction Equation: T 1 < T 2 < T 3 3-24 I I I I I· I I I I I I I I I I I I I I San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 250f26 Calculate QIl, QT2, and QT3. Select the largest Q and use the Tc associated with that Q for further calculations (see the three Notes for options). If the largest calculated Q's are equal (e.g., QIl = QT2 > QT3), use the shorter of the Tc's associated with that Q. This equation may be expanded for a junction' of more than three independent drainage systems using the same concept. The concept is that when Q from a selected subarea (e.g., Q2) is combined with Q from another subarea with a shorter Tc (e.g., QI), the Q from the subarea with the shorter Tc is reduced by the ratio of the I's (hill); and when Q from a selected subarea (e.g., Q2) is combined with Q from another subarea with a longer T c (e.g., Q3), the Q from the subarea with the longer Tc is reduced by the ratio of the Tc's (T2rr3). Note #1: At a junction of two independent drainage systems that have the same Tc, the tributary flows may be added to obtain the Qp. This can be verified by using the junction equation above. Let Q3, T3, and 13 = O. When TI and T2 are the same, 11 and h are also the same, and TI/T2 and hill = 1. TI/T2 and hill are cancelled from the equations. At this point, QT1 = QT2 = QI + Q2. Note #2: In the upstream part of a watershed, a conservative computation is acceptable. When the times of concentration (Tc's) are relatively close in magnitUde (within 10%), use the shorter Tc for the intensity and the equation Q = L(CA)1. Note #3: . An optional method of determining the Tc is to use the equation Tc = [(L (CA)7.44 P6)/Q] 1.55 This equation is from Q = L(CA)I = L(CA)(7.44 P6/Tc,645 ) and solving for Tc. The advantage in this option is that the T c is consistent with the peak flow Q, and avoids inappropriate fluctuation in downstream flows in some cases. 3-25 I I I I I I I I I' I I I I I I II I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study Modified Rational Method Hydrologic Analysis Computer Software Package -AES-2003 Design Storm - 1 OO-year return interval Land Use -Single-family residential Soil Type -Hydrologic soil group D was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan o~ clay layer at or near the surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission. Runoff Coefficient -In accordance with the County of San Diego standards, runoff coefficients were based on land use and slope. Rainfall Intensity -Initial time of concentration values were determined using the County of San Diego standards. The rainfall intensity-duration-frequency curve for the San Diego County was used to determine rainfall intensities. Method of Analysis -The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation: Q = CIA, where: Q = The peak runoff rate in cubic feet per second at the point of analysis. C = A runoff coefficient representing the area -averaged ratio of runoff to rainfall intensity. I = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration. A = The drainage basin area in acres. To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes. The procedure for the subarea summation model is as follows: (1) Subdivide the watershed into an initial subarea (generally 1 lot) and subsequent subareas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each subarea. (2) Estimate an initial Tc by using the appropriate nomograph or overland flow velocity estimation. DE:ad h:lrepol1s\23521151ldralnage study01.doc w.o.2352·151 101412006 6:47 AM I I I I I I' I I' I I I I I ., ,I II I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study (3) Using the initial Te, determine the corresponding values of I. Then Q = C I A. (4) Using Q, estimate the travel time between this node and the next by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration) The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-2003 computer subarea menu is as follows: SUBAREA HYDROLOGIC PROCESS 1. Confluence analysis at node. 2. Initial subarea analysis (including time of concentration calculation). 3. Pipeflow travel time (computer estimated). 4. 5. 6. 7. 8. 9. Pipeflow travel time (user specified). Trapezoidal channel travel time. Street flow analysis through subarea. User -specified information at node. Addition of subarea runoff to main line. V-gutter flow through area. 10. Copy main stream data to memory bank 11. Confluence main stream data with a memory bank 12. Clear a memory bank At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape. (1). If the collection streams have the same times of concentration, then the Q values are directly summed, DE:ad h:lreports\23521151Idralnage study01.doc w.o.2352·151 101412006 6:47 AM I I I' I I I I I I I, I I I I I I I 'I !I La Costa Oaks North -Neighborhoods 3.1 J 3.3 -3.5 Drainage Study (2). If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows: (i). The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities. (ii). In some cases, the collection stream with the shorter time of concentration has the larger Q .. Then the smaller Q is adjusted by a ratio of the T values. OE:ad h:\reports123521151idralnago study01,dac w,a.2352-151 101412006 6:47,AM I I I I I I I I' I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRA TE DETERMINATION (ULTIMATE CONDITIONS) 2.5 -STORM Methodology OE:ad h:\reporl$\23521151ldralnagestudy01.doc w.o.2352·151 101412006 6:47 iw. I I I I I 'I I I I I I I' I I I I I -I 1- La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study STORM METHODOLOGY PURPOSE The Storm Drain Analysis program calculates the hydraulic grade line elevations of a proposed or existing storm drain system given the physical characteristics and the discharge (Q). Currently capability allows for either pressure flow or partial flow with cross sections being either circular or rectangular box. A rectangular open channel can be analyzed as a box cross section, providing the results show that it is flowing partially full throughout the entire system, so that the soffit does not affect the computations. GENERAL DESCRIPTION The program starts the computation for the hydraulic grade line by evaluating the friction losses and the minor losses throughout the system. The junction losses are evaluated by equating pressure plus momentum for the incoming and outgoing flows through the junction. This is accomplished by applying the formula developed by the City of Los Angeles, which establishes that the summation of pressures, ignoring friction, is equal to the average cross section flow area, multiplied by the change in the hydraulic gradient through the junction. The basic flow elevations used for the main lines at either end of the junction that apply to the pressure plus momentum equation depend on the type of flow at each end of the junction. These elevations are de~ermined by computing the drawdown curves for each line. The control elevation for the lateral or lateral system is taken as the average of the hydraulic grade line elevations at both ends of the junction. If the water elevation in the lateral is above this control, the momentum contributed by the lateral in the analYSis of the junction is decreased in proportion to the ratio of the area in the lateral below the control to the total area of flow. The point with greater force will be the control point and the point at the other end of the junction is determined by satisfying the pressure plus momentum equation. Any of these points may be overridden by the backwater curve originating at the main control at the downstream end of the system. If this is the case, then the pressure plus momentum equation is applied to the point or points determined by the backwater curve during the upstream analysis. The above mentioned considerations apply to both partial and pressure flow. When the flow changes from partial to full or from full to partial, the program determines and prints the location where this change occurs. If the flow reaches normal depth within a line, the program determines and prints this location. When the flow changes from supercritical to subcritical because of downstream conditions, it happens through a hydraulic jump, the program determines the precise location of the jump by equating the pressure plus momentum for the two kinds of flow. It prints DE:ad h:lreporls123521151Idralnage study01.doc w.a.2352-151 101412006 6:47 AM I I I I '1 I I I I I I I '1- I I I I i'l I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study the jump location pressure plus momentum at the jump and the depth of water before and after the jump. A PROBLEM SET-UP A typical procedure which will allow the engineer to obtain a complete analysis of a storm drain system and also acquire all data necessary to analyze the design is as follows: 1. Establish the main line of the entire storm drain system. Generally speaking, the lines carrying the greater Q will form the main line. In case of comparable Q's, the line contributing the greater force will be the main line. 2. Establish the main line of any lateral system by proceeding upstream from the junction with the main line to the highest upstream inlet. 3. Number the segments of the main line of the entire storm drain system consecutively in the upstream direction to the highest upstream inlet. The channel or conduit, existing or proposed, at the downstream end, which the system joins, should have the lowest number in the system (normally line number 1). 4. Number each lateral system in the same manner, proceeding from its junction with the main line to its highest upstream inlet. 5. For each line, tabulate all pertinent analysis parameters such as: Maximum design flow Q. Adjusted flow Q, to be used in junction analysis. Conduit size and length. Flow line elevations. Minor loss coefficients for the inlets. Entrance loss coefficients for the inlets. Confluence angles at all junctions. For this program the input for the storm drain analysis is structured as follows in Column 1 of each line, and all known as cards: 1 - 8- 2- Project description card. Control card. Line data cards. DE:dJg h:lreports\23521151\dralnage study02.dDC w.D.2352·151 2171200710:47 AM ...... -------------------------------------~-~-- I I I I I' I I I I I I I I· I" I· I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study The control card, and line data card are explained as follows: CONTROL CARD (8) This card contains the line number and hydraulic grade line or water surface elevation of the channel or conduit at the downstream end of the main line of a storm drain system. Many drain systems may be included within one job. Each system must begin with a Control Card (8) and must not repeat line numbers from other systems in the same job. CD L2 CTLrrw Number 8 (numeric, required). Line number of the channel or conduit at the downstream end which the system joins (numeric, required). Hydraulic grade line elevation or water surface elevation of the channel or conduit at the downstream end which the system Joins (numeric, required). LINE CARD (CARD2) This card contains the necessary information for each line of the storm drain system. CD Number 2 (numeric, required). L2 MAXQ ADJ.Q LENGTH FL1 FL2 CTLrrw Line number L2. The maximum line number is 300. Line numbers must be in ascending order without duplications (numeric, required). Maximum design Q (cfs) (numeric, required). Adjusted Q (cfs) for junction calculations. Adjusted Q equals maximum Q if no entry is made (numeric, optional). Line Length L (feet) (numeric, required). Flow line elevation FL 1 (feet) of conduit at downstream end of line (numeric, required). Flow line elevation FL2 (feet) of conduit at upstream end of line (numeric, required). Maximum allowable hydraulic grade line elevation at upper end of line for structure type 3 or maximum allowable top of water elevation for structure types 1 and DE:dJg h:lreportsl2352\151ldrainage study02.doc w.o.2352·151 21712007 10:48 AM I I I I I I~ I I- I I I I I '1" I, I I ,I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study D W S 1 2= 3= 2. This entry is optional and is printed in the output as a check value for structural types 1 and 2 (numeric, optional). Diameter D (inches) of circular conduit or Depth D (inches) of rectangular conduit (numeric, required). Width W (inches) or rectangular conduit (numeric, required for rectangular section). Structure type at the upstream end of the line. = Catch basin, headwall, or similar inlet structure for the first upstream line. Box inlet structure with a trash rack for the first upstream line. Manhole, junction structure, in line catch basin, or similar structure for an intermediate line only. (Numeric, required). KJ Junction loss coefficient (Kj) for use with structure type 3. When an entry is made and there is full flow, the junction loss is calculated as Kj times the outlet velocity head, and the pressure plus momentous equation is not applied. If no entry is made or there is partial flow, the junction loss is calculated by pressure plus momentum (numeric, optional). Junction losses are obtained from the Headloss Coefficient table, included at the end of this section. KE Entrance loss coefficient (Ke) for use with structure types 1,2, and 3 when applicable. When an entry is made, the entrance loss is calculated as Ke times the outlet velocity head. At junctions, this loss is considered only in the case of full flow (numeric, optional). For most entrances KE = 0.10. Entrance losses are based on a conservative basis for each scenario and starting from a 0.2 value. DE:djg h:lreportsl23521151Idralnage study02.doc w.o.2352·151 2fl12007 10:48 AM I I 'I I- I I' I I I I I I I I I I I :1 I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study KM Minor loss coefficient (Km). Summation of minor loss coefficients for bends, manholes, etc. The minor losses are added to the friction losses for full flow only (numeric, optional). Typical values for KM are: Manholes KM = 0.05 Bends KM = 0.002 X I:l = Minor losses are based on a conservative basis for each scenario and considering the bend angles. This values starts at 0.05. Central angle of curve of degrees. LC Control line number. An entry is made for the downstream line only of a main or lateral line system. For the main line of the entire storm drain system, the control line will be that which was entered on the Card 8. For a lateral, the control line is the upstream line from the junction where the lateral connects to the main line or another lateral (numeric, required). L 1,L3,L4 L 1, L3, L4 line numbers entering the structure at the upstream end of the line for structure type 3. L 1 is the main line, 13 and 14 are the laterals (numeric, optional A1,A3,A4 J N for L 1, required for L3 and L4). . A 1, A3, A4 (degrees) confluence angles of lines L 1, L3 and L4 to the nearest degree measured from the prolongation of L2 (numeric, required). J (feet) junction length for structure type 3. This is an entry for obtaining the friction loss across a junction, manhole or transition structure for full flow (numeric, optional). Manning's constant, uses 0.013 if no entry is made (numeric, optional). JUNCTION LOSS COEFFICIENT. Kj The junction loss is computed as Kj times the velocity head in the outlet conduit. Note, however, that if the value of Kj is left blank or there is partial flow condition, the pressure plus momentum equation will be used to determine the junction losses. ENTRANCE LOSS COEFFICIENT. KE For use with structure types 1, 2 or 3. Values for ke are 0.10. The entrance loss is computed as Ke times the velocity head in the outlet conduit. DE:dJg h:lreporlsl23521151ldralnage studyll2.doc w.o2352·151 2£712007 10:50 />JA r----------------------------------------------------------- I I· I I I I I I I I I I I I I I I I II La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study MINOR LOSS COEFFICIENT,KM Km is the summation of the loss coefficients for bends, manholes, etc. The total minor loss is computed as Km times the velocity head in the conduit. Typical values for Km are: Manholes: Km 0.05 Bends: Km = 0.002 x Delta Delta = central angle of curve in degrees. Minor losses are added to the friction losses in the hydraulic analysis for full flow only. OTHER VARIABLES • V1, FL1, D1 and HG1 Refer to Downstream End • V2, FL2, D2 and HG2 Refer to Upstream End • X: Distance in feet from downstream end to point where HG intersects soffit in seal condition. • X(N): Distance in feet from downstream end to point where water surface reaches normal depth by either drawdown or backwater. • X(J): Distance in feet from downstream end to point where ,hydraulic jump occurs in line. • F(J): The computed force at the Hydraulic Jump • D (BJ): Depth of water before the hydraulic jump (Upstream Side) • D (AJ): Depth of water after the hydraulic jump (Downstream Side) • SEAL: Indicates flow changes from part to full or from full to part • HYD JUMP: Indicates that flow changes from supercritical to sub-critical through a hydraulic jump. • HJ @ UJT: Indicates that hydraulic jump occurs at the junction at the upstream end of the line. • HJ @ DJT: Indicates that hydraulic jump occurs at the junction at the downstream end of the line. DE:ad -h:\reports123521151Idralnage study01.doc w.o.2352·151 101412006 6:47 tw. I I I I I I' I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 3 Site Hydrologic Analysis - 1 DO-Year Developed Conditions DE:ad h:lreportsl23521151\drainage StUdyOl.doc w.o.2352-151 101412006 6:47 PM I I I I I I I I I I I I il I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 3 Site Hydrologic Analysis --100-Year Developed Conditions 3.1 -Neighborhood 3.1 DE:ad h:lreportsl23521151\dralnage study01.doc w.o.2352·151 101412006 6:47 AM I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software" (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES -SAN DIEGO 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * LA COSTA OAKS -NEIGHBORHOOD 3.1 * * 100-YEAR DEVELOPED CONDITION HYDROLOGIC ANALYSIS * * W.O.# 2352-126 PREPARED BY: DJG * ************************************************************************** FILE NAME: H:\AES2003\2352\126\DEV100B.DAT TIME/DATE OF STUDY: 15:07 02/14/2007 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL * HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ---===== ========= ================= ====== -----=====;= 1 17.0 12.0 0.020/0.020/ 0.50 1.50 0.0313 2 18.0 13.0 0.020/0.020/ 0.50 1.50 0.0313 3 20.0 15.0 0.020/0.020/ 0.50 1.50 0.0313 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 4.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* -----======= 0.125 0.0150 0.125 0.0150 0.125 0.0150 +--------------------------------------------------------------------------+ I I BEGIN PORTION OF NEIGHBORHOOD 3.3 -NODE SERIES 400 I +-----------------------------------------------------------------------~--+ I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 543.40 DOWNSTREAM ELEVATION(FEET) = 542.70 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) SUBAREA RUNOFF(CFS) 0.78 8.735 5.332 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) 0.78 **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 428.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 541.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 681.20 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.58 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.86 AVERAGE FLOW VELOCITY (FEET/SEC. ) 3 . 97 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.20 STREET FLOW TRAVEL TIME(MIN.) = 2.86 Tc(MIN.) 11.59 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.441 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 2.42 SUBAREA RUNOFF (CFS) = 5.59 517.00 0.0150 TOTAL AREA(ACRES) = 2.70 PEAK FLOW RATE(CFS) 6.24 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) 11.28 FLOW VELOCITY(FEET/SEC.) = 4.49 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 401.00 TO NODE 428.00 = 751.20 1.58 FEET. **************************************************************************** FLOW PROCESS FROM NODE 428.00 TO NODE 429.00 IS CODE = 41 I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 506.80 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.41 GIVEN PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW (CFS) = 6.24 NUMBER OF PIPES 0.00 Tc(MIN.) = 1 506.50 PIPE TRAVEL TIME(MIN.) = LONGEST FLOW PATH FROM NODE 401. 00 TO NODE 11.60 429.00 = 754.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 429.00 TO NODE 425.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 506.00 DOWNSTREAM (FEET) 501.60 FLOW LENGTH(FEET) = 81.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 5.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.83 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.24 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 11.72 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 425.00 836.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 425.00 TO NODE 425.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 413.00 TO NODE 415.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 69.90 UPSTREAM ELEVATION(FEET) = 529.10 DOWNSTREAM ELEVATION (FEET) = 528.40 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = SUBAREA RUNOFF (CFS) 0.92 8.725 5.336 TOTAL AREA(ACRES) = 0.33 TOTAL RUNOFF(CFS) 0.92 **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 416.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 526.00 DOWNSTREAM ELEVATION(FEET) = 513.00 I I I I I I I I I I I I I I I I I I I STREET LENGTH(FEET) = 455.00 STREET HALFWIDTH(FEET) = 17.00 CURB HEIGHT(INCHES) DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 6.0 12.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH (FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) 8.43 3.46 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.02 STREET FLOW TRAVEL TIME(MIN.) = 2.19 Tc(MIN.) 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.617 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 2.87 10.92 SUBAREA AREA(ACRES) 1.62 SUBAREA RUNOFF(CFS) = 3.89 TOTAL AREA(ACRES) = 1.95 PEAK FLOW RATE(CFS) = END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 10.43 0.0150 4.68 FLOW VELOCITY(FEET/SEC.) = 3.88 DEPTH*VELOCITY(FT*FT/SEC.) 1.30 LONGEST FLOWPATH FROM NODE 413.00 TO NODE 416.00 = 524.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 416.00 TO NODE 424.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 503.00 DOWNSTREAM (FEET) 502.00 FLOW LENGTH(FEET) = 26.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.05 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 4.68 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 10.97 LONGEST FLOWPATH FROM NODE 413.00 TO NODE 424.00 551.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 424.00 TO NODE 424.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.97 RAINFALL INTENSITY(INCH/HR) = 4.60 TOTAL STREAM AREA(ACRES) = 1.95 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.68 I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 417.00 TO NODE 418.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET} = 70.00 UPSTREAM ELEVATION(FEET) = 520.70 DOWNSTREAM ELEVATION(FEET) = 520.00 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.332 SUBAREA RUNOFF(CFS) 0.61 TOTAL AREA(ACRES) = 0.22 TOTAL RUNOFF(CFS) 0.61 **************************************************************************** FLOW PROCESS FROM NODE 419.00 TO NODE 418.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR} = 5.332 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF SUBAREA AREA (ACRES) TOTAL AREA (ACRES) TC(MIN.) = 8.73 COEFFICIENT = 0.6294 0.10 SUBAREA RUNOFF (CFS) 0.32 TOTAL RUNOFF(CFS) = 0.46 1.07 **************************************************************************** FLOW PROCESS FROM NODE 418.00 TO NODE 420.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ========================================================================~=== UPSTREAM ELEVATION(FEET) = 517.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 144.80 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb} **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 6.31 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 0.81 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : 2.99 0.76 Tc(MIN.) 5.036 1.55 9.54 513.00 0.0150 I I I I I I I I I I I I I I I I I I I USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 0.36 TOTAL AREA(ACRES) = 0.68 0.571 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) -7.10 0.94 1.96 FLOW VELOCITY(FEET/SEC.) = 3.14 DEPTH*VELOCITY(FT*FT/SEC.) 0.84 LONGEST FLOWPATH FROM NODE 417.00 TO NODE 420.00 = 214.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 420.00 TO NODE 424.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 502.50 DOWNSTREAM (FEET) 502.00 FLOW LENGTH(FEET) = 4.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.47 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 1.96 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 9.55 LONGEST FLOWPATH FROM NODE 417.00 TO NODE 424.00 219.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 424.00 TO NODE 424.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) 9.55 RAINFALL INTENSITY(INCH/HR) = 5.03 TOTAL STREAM AREA(ACRES) = 0.68 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.96 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 4.68 10.97 4.604 2 1.96 9.55 5.034 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 6.03 9.55 5.034 2 6.47 10.97 4.604 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 6.47 Tc (MIN.) = TOTAL AREA (ACRES) = 2.63 AREA (ACRE) 1.95 0.68 RATIO· 10.97 I I I I .1 I I I I I I I I I I I I I LONGEST FLOWPATH FROM NODE 413.00 TO NODE 424.00 = 551. 20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 424.00 TO NODE 425.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ================================================================~=========== ELEVATION DATA: UPSTREAM (FEET) = 502.00 DOWNSTREAM (FEET) 501.60 FLOW LENGTH(FEET) = 39.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.03 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.47 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 11.07 LONGEST FLOWPATH FROM NODE 413.00 TO NODE 425.00 590.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 425.00 TO NODE 425.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 6.47 11. 07 4.575 LONGEST FLOWPATH FROM NODE 413.00 TO ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) AREA (ACRE) 2.63 NODE 425.00 AREA (ACRE) 1 6.24 11.72 4.410 2.70 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 425.00 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 12.36 11.07 4.575 2 12.47 11. 72 4.410 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 12.47 Tc (MIN.) = 11. 72 TOTAL AREA(ACRES) = 5.33 590.30 FEET. 836.10 ·FEET. **************************************************************************** FLOW PROCESS FROM NODE 425.00 TO NODE 425.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 425.00 TO NODE 430.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ I I I I I I I I I I I I I I I I I I I ELEVATION DATA: UPSTREAM (FEET) = 501.30 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 177.60 MANNING'S N 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.67 GIVEN PIPE DIAMETER{INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 12.47 PIPE TRAVEL TIME{MIN.) = 0.18 Tc(MIN.) = 11.90 482.90 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 430.00 1013.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 430.00 TO NODE 422.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< . »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 482.60 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 212.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.8 INCHES PIPE-FLOW VELOCITY{FEET/SEC.) = 16.87 GIVEN PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 12.47 NUMBER OF PIPES = 0.21 Tc(MIN.) = 12.11 1 459.90 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 401.00 TO NODE 422.00 1226.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 422.00 TO NODE 422.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = . 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 557.70 DOWNSTREAM ELEVATION(FEET) = 557.00 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.332 SUBAREA RUNOFF (CFS) 0.61 TOTAL AREA(ACRES) = 0.22 TOTAL RUNOFF (CFS) = 0.61 **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 554.00 DOWNSTREAM ELEVATION(FEET) = 537.00 STREET LENGTH(FEET) = 392.30 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 I I I I I I I I I I I I I .1 .1 I I I DISTANCE FROM CROWN TO CROSSFALL GRADE BREAK (FEET) = 12.00 INSIDE STREET CROSSFALL(DEClMAL) = 0.020 . OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 7.77 STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 4.11 STREET FLOW TRAVEL TIME(MIN.) = 1.59 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 1.16 Tc (MIN.) 4.787 2.97 10.32 SUBAREA AREA(ACRES) = 1.89 SUBAREA RUNOFF(CFS) = 4.70 TOTAL AREA(ACRES) = 2.11 PEAK FLOW RATE(CFS) = END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.01 FLOW VELOCITY(FEET/SEC.) = 4.69 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 403.00 TO NODE 405.00 = 462.30 0.0150 5.25 1.53 FEET. **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 548.00 DOWNSTREAM (FEET) 518.50 FLOW LENGTH(FEET) = 268.80 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.66 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 5.25 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 10.65 LONGEST FLOW PATH FROM NODE 403.00 TO NODE 406.00 = 731.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.65 RAINFALL INTENSITY(INCH/HR) = 4.69 TOTAL STREAM AREA(ACRES) = 2.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 407.00 TO NODE 408.00 IS CODE = 21 I I I I I I I I I I I I I I I I I »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 557.00 DOWNSTREAM ELEVATION(FEET) = 556.30 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY (INCHjHOUR) 5.332 SUBAREA RUNOFF (CFS) 0.69 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) 0.69 **************************************************************************** FLOW PROCESS FROM NODE 408.00 TO NODE 409.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 553.50 DOWNSTREAM ELEVATION(FEET) = 527.50 STREE~ LENGTH(FEET) = 555.50 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.76 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.34 AVERAGE FLOW VELOCITY(FEETjSEC.) 4.20 PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 1.15 STREET FLOW TRAVEL TIME(MIN.) = 2.21 Tc(MIN.) 10.94 100 YEAR RAINFALL INTENSITY(INCHjHOUR) 4.611 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 1.72 SUBAREA RUNOFF (CFS) 4.12 TOTAL AREA(ACRES) = 1.97 PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.40 0.0150 4.72 FLOW VELOCITY(FEETjSEC.) = 4.71 DEPTH*VELOCITY(FT*FTjSEC.) = 1.48 LONGEST FLOWPATH FROM NODE 407.00 TO NODE 409.00 = 625,50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 409.00 TO NODE 406.00 IS CODE = 41 ---------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ I I I' I' I I I I I I I I I I I I I ELEVATION DATA: UPSTREAM (FEET) = 519.00 DOWNSTREAM (FEET) 518.50 FLOW LENGTH(FEET) = 26.30 MANNING'S N 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.05 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 4.72 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 11.00 LONGEST FLOWPATH FROM NODE 407.00 TO NODE 406.00 651.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 11.00 RAINFALL INTENSITY(INCH/HR) = 4.59 TOTAL STREAM AREA(ACRES) = 1.97 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.72 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 5.25 10.65 4.691 2 4.72 11.00 4.594 AREA (ACRE) 2.11 1.97 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 9.83 10.65 4.691 2 9.87 11. 00 4.594 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 9.87 Tc(MIN.) = 11.00 TOTAL AREA(ACRES) = 4.08 LONGEST FLOWPATH FROM NODE 403.00 TO NODE 406.00 731.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 410.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 518.50 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 194.00 MANNING'S N = 0.013 PEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.46 GIVEN PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 9.87 NUMBER OF PIPES = 0.34 Tc(MIN.) = 11.34 1 513.50 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 403.00 TO NODE 410.00 925.10 FEET. I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 421.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ==============================~============================================= ELEVATION DATA: UPSTREAM (FEET) = 513.50 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.46 GIVEN PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 9.87 NUMBER OF PIPES 0.37 Tc(MIN.) = 11.71 1 505.70 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 403.00 TO NODE 421.00 1155.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 421.00 TO NODE 421.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 423.00 TO NODE 426.00 IS CODE = 21 ----------------------------------------------------------------------------, »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 69.90 UPSTREAM ELEVATION(FEET) = 547.10 DOWNSTREAM ELEVATION(FEET) = 546.40 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.725 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.336 SUBAREA RUNOFF(CFS) 0.94 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) = 0.94 **************************************************************************** FLOW PROCESS FROM NODE 426.00 TO NODE 427.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 544.70 DOWNSTREAM ELEVATION(FEET) = 536.00 STREET LENGTH(FEET) = 628.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 13.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 2.78 0.0150 I I I, I I I I I I I I I I I I, I I 9.72 2.62 STREET FLOW DEPTH(FEET} = 0.32 HALFSTREET FLOOD WIDTH(FEET} = AVERAGE FLOW VELOCITY(FEET/SEC.} PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.} STREET FLOW TRAVEL TIME (MIN.) = 4.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR} *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 0.84 Tc (MIN.) 4.183 12.73 SUBAREA AREA(ACRES} 1.68 SUBAREA RUNOFF(CFS} 3.65 TOTAL AREA (ACRES) = 2.02 PEAK FLOW RATE (CFS) = 4.39 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.84 FLOW VELOCITY(FEET/SEC.} = 2.89 DEPTH*VELOCITY(FT*FT/SEC.} = 1.05 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 427.00 = 698.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 427.00 TO NODE 427.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.} 12.73 RAINFALL INTENSITY(INCH/HR} = 4.18 TOTAL STREAM AREA(ACRES} = 2.02 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.39 **************************************************************************** FLOW PROCESS FROM NODE 432.00 TO NODE 433.00 IS CODE = 21 --------------------------------------------------------------------~------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ===================================================================~======== *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET} = 70.00 UPSTREAM ELEVATION(FEET} = 546.70 DOWNSTREAM ELEVATION(FEET} = 546.00 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.} = 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR} 5.332 SUBAREA RUNOFF (CFS) 0.69 TOTAL AREA(ACRES} = 0.25 TOTAL RUNOFF(CFS} 0.69 **************************************************************************** FLOW PROCESS FROM NODE 433.00 TO NODE 427.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED}««< ============================================================================ UPSTREAM ELEVATION(FEET} = 544.40 DOWNSTREAM ELEVATION(FEET} STREET LENGTH(FEET} = 589.60 CURB HEIGHT(INCHES} = 6.0 STREET HALFWIDTH(FEET} = 18.00 534.00 I I I I I I I I I I I I "I I I I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 13.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.24 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.30 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.40 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.61 STREET FLOW TRAVEL TIME(MIN.) = 4.10 Tc(MIN.) 12.83 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.161 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 0.50 SUBAREA RUNOFF(CFS) 1.08 0.0150 TOTAL AREA(ACRES) = 0.75 PEAK FLOW RATE (CFS) = 1.62 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.20 FLOW VELOCITY(FEET/SEC.) = 2.55 DEPTH*VELOCITY(FT*FT/SEC.) 0.69 LONGEST FLOWPATH FROM NODE 432.00 TO NODE 427.00 = 659.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 427.00 TO NODE 427.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 12.83 RAINFALL INTENSITY(INCH/HR) = 4.16 TOTAL STREAM AREA(ACRES) = 0.75 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.62 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.39 12.73 4.183 2 1.62 12.83 4.161 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 6.00 12.73 4.183 2 5.99 12.83 4.161 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 6.00 Tc (MIN.) = AREA (ACRE) 2.02' 0.75 RATIO 12.73 I I I I I I I I I I II I I I' I I I' 'I I TOTAL AREA(ACRES) = 2.77 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 427.00 = 698.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 427.00 TO NODE 421.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<"« »»> (STREET TABLE SECTION # 2 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 534.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 646.60 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 13.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 8.62 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 12.94 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.81 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.85 STREET FLOW TRAVEL TIME (MIN.) = 2.24 Tc (MI·N. ) 14.97 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 3.767 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 2.67 SUBAREA RUNOFF (CFS) 5.23 51~.00 0.0150 TOTAL AREA(ACRES) = 5.44 PEAK FLOW RATE(CFS) 10.66 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) 14.10 FLOW VELOCITY(FEET/SEC.) = 5.06 DEPTH*VELOCITY(FT*FT/SEC.) = 2.07 LONGEST FLOW PATH FROM NODE 423.00 TO NODE 421.00 = 1345.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 421.00 TO NODE 421.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 10.66 14.97 3.767 5.44 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 421. 00 1345.40 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 9.87 11.71 4.413 4.08 LONGEST FLOWPATH FROM NODE 403.00 TO NODE 421.00 1155.10 FEET. I I I 'I I I- I I I I 'I I I I I I I ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) ( INCH/HOUR) 1 18.21 11. 71 4.413 2 19.08 14.97 3.767 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 19.08 Tc (MIN.) = 14.97 TOTAL AREA (ACRES) = 9.52 **************************************************************************** FLOW PROCESS FROM NODE 421.00 TO NODE 421.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 421.00 TO NODE 422.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ==============================================================~========~==== ELEVATION DATA: UPSTREAM (FEET) = 505.70 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 136.70 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 28.63 GIVEN PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 19.08 NUMBER OF PIPES 0.08 Tc(MIN.) = 1 459.90 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 15.05 422.00 1482.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 422.00 TO NODE 422.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 19.08 LONGEST FLOWPATH ** MEMORY BANK # STREAM RUNOFF NUMBER (CFS) 1 12.47 Tc INTENSITY (MIN.) ( INCH/HOUR) 15.05 3.754 FROM NODE 423.00 TO 2 CONFLUENCE DATA ** Tc INTENSITY (MIN.) (INCH/HOUR) 12.11 4.318 AREA (ACRE) 9.52 NODE 422.00 AREA (ACRE) LONGEST FLOWPATH FROM NODE 401. 00 TO NODE 5.33 422.00 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 27.83 12.11 4.318 2 29.92 15.05 3.754 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 1482.10 FEET. 1226.10 FEET. I I I I I I I I I I I I I I I I I I I PEAK FLOW RATE(CFS) TOTAL AREA (ACRES) = 29.92 14.85 Tc(MIN.) 15.05 **************************************************************************** FLOW PROCESS FROM NODE 422.00 TO NODE 422.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 2 ««< =========================================================="================== **************************************************************************** FLOW PROCESS FROM NODE 422.00 TO NODE 431.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 458.90 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 81.90 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 9.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.20 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 29.92 NUMBER OF PIPES = 0.06 Tc(MIN.) = 15.11 1 449.70 PIPE ~RAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 431.00 1564.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 431.00 TO NODE 431.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 15.11 RAINFALL INTENSITY(INCH/HR) = 3.74 TOTAL STREAM AREA(ACRES) = 14.85 PEAK FLOW RATE (CFS) AT CONFLUENCE = 29.92 **************************************************************************** FLOW PROCESS FROM NODE 436.00 TO NODE 437.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 509.70 DOWNSTREAM ELEVATION(FEET) = 509.00 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.332 SUBAREA RUNOFF (CFS) 0.72 TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) = 0.72 **************************************************************************** FLOW PROCESS FROM NODE 437.00 TO NODE 434.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< I I I I I I I I I' I I I I I »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 504.20 DOWNSTREAM ELEVATION(FEET) = 460.50 STREET LENGTH(FEET) = 417.20 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.44 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH (FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.59 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.67 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.35 STREET FLOW TRAVEL TIME(MIN.) = 1.23 Tc(MIN.) = 9.96 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.899 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 1.35 SUBAREA RUNOFF (CFS) 3.44 TOTAL AREA(ACRES) = 1.61 PEAK FLOW RATE (CFS) = END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.34 FLOW VELOCITY(FEET/SEC.) = 6.24 DEPTH*VELOCITY(FT*FT/SEC.) = LONGEST FLOWPATH FROM NODE 436.00 TO NODE 434.00 = 487.20 0.0150 4.10 1.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 434.00 TO NODE 431.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 451.40 DOWNSTREAM (FEET) = 451.20 FLOW LENGTH(FEET) = 27.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.78 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 4.10 PIPE TRAVEL TIME (MIN.) = 0.10 Tc(MIN.) = 10.06 LONGEST FLOWPATH FROM NODE 436.00 TO NODE 431.00 514.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 431. 00 TO NODE 431.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.06 I I I I I· I .. I I I I I I I RAINFALL INTENSITY(INCH/HR) = 4.87 TOTAL STREAM AREA(ACRES) = 1.61 PEAK FLOW RATE (CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 29.92 15.11 3.744 2 4.10 10.06 4.869 4.10 AREA (ACRE) 14.85 1. 61 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 24.02 10.06 4.869 2 33.08 15.11 3.744 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 33.08 Tc(MIN.) = 15.11 TOTAL AREA(ACRES) = 16.46 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 431.00 1564.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 431. 00 TO NODE 435.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 449.40 DOWNSTREAM (FEET) 443.90 FLOW LENGTH(FEET) = 49.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.74 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 33.08 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 15.15 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 435.00 1613.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 435.00 TO NODE 435.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< =================================================================~========== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.15 RAINFALL INTENSITY(INCH/HR) = 3.74 TOTAL STREAM AREA(ACRES) = 16.46 PEAK FLOW RATE(CFS) AT CONFLUENCE = 33.08 **************************************************************************** FLOW PROCESS FROM NODE 435.00 TO NODE 435.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: I I I I I I I I I I I I TC(MIN) = 5.00 TOTAL AREA (ACRES) RAIN INTENSITY(INCH/HOUR) = 7.64 1.29 TOTAL RUNOFF(CFS) = 6.23 +--------------------------------------------------------------------------+ I Data from the Code 7 above was obtained from the previously mentioned I mass-graded drainge study preapred by Hunsaker & Associates. I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 435.00 TO NODE 435.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) 5.00 RAINFALL INTENSITY(INCH/HR) = 7.64 TOTAL STREAM AREA(ACRES) = 1.29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.23 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 33.08 15.15 3.738 2 6.23 5.00 7.641 AREA (ACRE) 16.46 1.29 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 22.41 5.00 7.641 2 36.13 15.15 3.738 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 36.13 Tc(MIN.) = 15.15 TOTAL AREA(ACRES) = 17.75 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 435.00 1613.50 FEET. +--------------------------------------------------------------------------+ I END PORTION OF NEIGHBORHOOD 3.3 -NODE SERIES 400 I I I I BEGIN NEIGHBORHOOD 3.1 -NODE SERIES 400 I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 435.00 TO NODE 438.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 443.90 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 377.70 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 12.0 INCHES 422.50 I I I I I I I I I I I I I I I I I I PIPE-FLOW VELOCITY(FEETjSEC.) = 17.51 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 36.13 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 15.51 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 438.00 = 1991.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 438.00 TO NODE 438.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 15.51 RAINFALL INTENSITY(INCHjHR) = 3.68 TOTAL STREAM AREA(ACRES) = 17.75 PEAK FLOW RATE (CFS) AT CONFLUENCE = 36.13 **************************************************************************** FLOW PROCESS FROM NODE 439.00 TO NODE 440.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 451.20 DOWNSTREAM ELEVATION(FEET) = 450.50 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.58 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) 0.58 **************************************************************************** FLOW PROCESS FROM NODE 440.00 TO NODE 441.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED) ««< ========================================================================~==~ UPSTREAM ELEVATION(FEET) = 447.50 DOWNSTREAM ELEVATION(FEET) = 434.50 STREET LENGTH(FEET) = 258.40 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.65 AVERAGE FLOW VELOCITY(FEETjSEC.) 3.88 1.70 0.0150 I I I I I I I I I I I I I I I I I I PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 0.93 STREET FLOW TRAVEL TIME(MIN.} = 1.11 Tc(MIN.) 9.32 100 YEAR RAINFALL INTENSITY (INCHjHOUR) 5.113 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 0.84 SUBAREA RUNOFF (CFS) 2.23 TOTAL AREA(ACRES) = 1.04 PEAK FLOW RATE(CFS} 2.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) 7.22 FLOW VELOCITY(FEETjSEC.) = 4.32 DEPTH*VELOCITY(FT*FT/SEC.} 1.17 LONGEST FLOWPATH FROM NODE 439.00 TO NODE 441.00 = 323.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 441.00 TO NODE 438.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 424.40 DOWNSTREAM (FEET) = 424.10 FLOW LENGTH(FEET) = 27.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 4.99 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 2.76 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.} = 9.41 LONGEST FLOWPATH FROM NODE 439.00 TO NODE 438.00 350.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 438.00 TO NODE 438.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< =========================~==================================~=========~===== TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.41 RAINFALL INTENSITY(INCHjHR) = 5.08 TOTAL STREAM AREA(ACRES) = 1.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.76 **************************************************************************** FLOW PROCESS FROM NODE 600.00 TO NODE 601.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 530.00 DOWNSTREAM ELEVATION(FEET) = 495.00 ELEVATION DIFFERENCE (FEET) = 35.00 SUBAREA OVERLAND TIME OF FLOW (MIN.) = WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 2.695 10.%, IS USED IN Tc CALCULATION! 7.641 I I I I I I I I I I I I I I I I I I I NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINDTE. SUBAREA RUNOFF (CFS) 2.94 TOTAL AREA(ACRES) = 0.55 TOTAL RUNOFF(CFS) = 2.94 **************************************************************************** FLOW PROCESS FROM NODE 601.00 TO NODE 448.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ==========================================================================~= ELEVATION DATA: UPSTREAM (FEET) = 495.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 65.00 CHANNEL SLOPE = CHANNEL BASE(FEET) 10.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 100 YEAR RAINFALL INTENSITY(INCH!HOUR) 7.641 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINDTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 2.00 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 11.15 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME (MIN.) = Tc(MIN.) = 2.82 8.60 0.13 460.00 0.5385 SUBAREA AREA(ACRES) 3.07 SUBAREA RUNOFF (CFS) = 0.700 16.42 AREA-AVERAGE RUNOFF COEFFICIENT = TOTAL AREA (ACRES) = 3.62 PEAK FLOW RATE(CFS) = 19.36 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH (FEET) = 0.17 FLOW VELOCITY(FEET/SEC.) 10.79 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 448.00 = 13 0 . 00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 448.00 TO NODE 602.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 460.00 DOWNSTREAM (FEET) 441.50 FLOW LENGTH(FEET) = 408.90 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.60 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 19.36 PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 3.32 LONGEST FLOW PATH FROM NODE 600.00 TO NODE 602.00 538.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 448.00 TO NODE 448.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.641 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINDTE. *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7000 I I I I I I I I I I. I I I I I I I SUBAREA AREA (ACRES) TOTAL AREA (ACRES) TC(MIN.) = 3.32 2.54 6.16 SUBAREA RUNOFF(CFS) = 13.59 TOTAL RUNOFF (CFS) = 32.95 **************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 438.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 441.50 DOWNSTREAM (FEET) 422.50 FLOW LENGTH(FEET) = 321.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 11.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.33 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 32.95 PIPE TRAVEL TIME (MIN.) = 0.31 Tc(MIN.) = 3.63 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 438.00 859.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 438.00 TO NODE 438.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 3.63 RAINFALL INTENSITY (INCH/HR) = 7.64 TOTAL STREAM AREA(ACRES) = 6.16 PEAK FLOW RATE (CFS) AT CONFLUENCE = 32.95 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE) 1 36.13 15.51 3.682 17.75 2 2.76 9.41 5.081 1.04 3 32.95 3.63 7.641 6.16 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 51.42 3.63 7.641 2 50.85 9.41 5.081 3 54.01 15.51 3.682 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 54.01 Tc(MIN.) = 15.51 TOTAL AREA(ACRES) = 24.95 LONGEST FLOW PATH FROM NODE 423.00 TO NODE 438.00 1991. 20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 438.00 TO NODE 490.00 IS CODE = 41 I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 422.10 DOWNSTREAM (FEET) 416.30 FLOW LENGTH(FEET) = 104.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 15.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.40 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 54.01 PIPE TRAVEL TIME (MIN.) = 0.09 Tc(MIN.) = 15.60 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 490.00 2095.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 490.00 TO NODE 490.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.60 RAINFALL INTENSITY(INCH/HR) = 3.67 TOTAL STREAM AREA(ACRES) = 24.95 PEAK FLOW RATE (CFS) AT CONFLUENCE = 54.01 **************************************************************************** FLOW PROCESS FROM NODE 444.00 TO NODE 444.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.54 RAIN INTENSITY(INCH/HOUR) = 5.41 TOTAL AREA(ACRES) = 1.62 TOTAL RUNOFF(CFS) = 12.91 +--------------------------------------------------------------------------+ I The data in the Code 7 above was obtained from the previously mentioned I I mass-graded drainage study prepared from Hunsaker & Associates. I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE . 444.00 TO NODE 492.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 450.00 DOWNSTREAM (FEET) 423.30 FLOW LENGTH (FEET) = 78.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 5.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.77· GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 12.91 PIPE TRAVEL TIME (MIN.) = 0.05 Tc(MIN.) = 8.59 LONGEST FLOWPATH FROM NODE 439.00 TO NODE 492.00 = 428.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 444.00 TO NODE 492.00 IS CODE = 81 I I I I I I I I I I I I I I I I I I »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.389 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 1.4074 SUBAREA AREA(ACRES) 0.12 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 1.74 TOTAL RUNOFF(CFS) = TC(MIN.) = 8.59 0.34 13.20 +--------------------------------------------------------------------------+ I I The Code 8 above pertains to the area drained by ditch B I +-------------------------------------------------------------------~------+ **************************************************************************** FLOW PROCESS FROM NODE 492.00 TO NODE 490.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 422.80 DOWNSTREAM (FEET) 417.30 FLOW LENGTH(FEET) = 118.90 MANNING'S N = 0.013 ~ DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES PIPE-FLOW-VELOCITY(FEET/SEC.) = 12.68 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 13.20 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 8.75 LONGEST FLOWPATH FROM NODE 439.00 TO NODE 490.00 = 547.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 490.00 TO NODE 490.00 IS CODE = 1 ------------------------------------------------------------------~--------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN. ) 8 .75 RAINFALL INTENSITY(INCH/HR) = 5.33 TOTAL STREAM AREA(ACRES) = 1.74 PEAK FLOW RATE (CFS) AT CONFLUENCE = 13.20 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 54.01 15.60 3.668 2 13.20 8.75 5.327 AREA (ACRE) 24.95 1. 74 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF NUMBER (CFS) Tc (MIN. ) INTENSITY ( INCH/HOUR) I I I I I I I I I I I I I I I I 1 2 50.39 63.09 8.75 15.60 5.327 3.668 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 63.09 Tc(MIN.) = 15.60 TOTAL AREA(ACRES) = 26.69 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 490.00 = 2095.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 490.00 TO NODE 442.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 416.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 105.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 16.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.15 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 63.09 NUMBER OF PIPES = 0.09 Tc(MIN.) = 15.68 1 410.20 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 442.00 2201. 00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 443.00 TO NODE 442.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.655 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6252 SUBAREA AREA(ACRES) 0.24 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) = 26.93 TOTAL RUNOFF(CFS) = TC(MIN.) = 15.68 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE 0.46 63.09 ".-';-- **************************************************************************** FLOW PROCESS FROM NODE 442.00 TO NODE 491.00 IS CODE = 41 -----------------------------------------------------------------~---------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 409.90 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 29.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 29.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.31 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 63.09 NUMBER OF PIPES 0.05 Tc(MIN.) = 15.73 1 409.60 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 491.00 = 2230.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 491.00 TO NODE 491.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< I I I I I I I I I I I I I I I I I I ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 15.73 RAINFALL INTENSITY (INCH/HR) = 3.65 TOTAL STREAM AREA(ACRES) = 26.93 PEAK FLOW RATE(CFS) AT CONFLUENCE = 63.09 **************************************************************************** FLOW PROCESS FROM NODE 496.00 TO NODE 496.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 9.26 RAIN INTENSITY(INCH/HOUR) = 5.13 TOTAL AREA(ACRES) = 1.28 TOTAL RUNOFF(CFS) = 2.30 +--------------------------------------------------------------------------+ I Data from the Code 7 above was obttained from the previouly mentioned I I mass-graded drainage study prepared by Hunsaker & Associates. I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 496.00 TO NODE ~91.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 428.50 DOWNSTREAM (FEET) 411.io FLOW LENGTH(FEET) = 57.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.34 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 2.30 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 9.32 LONGEST FLOWPATH FROM NODE 439.00 TO NODE 491.00 605.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 491. 00 TO NODE 491.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 9.32 RAINFALL INTENSITY (INCH/HR) = 5.11 TOTAL STREAM AREA (ACRES) = 1.28 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.30 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 63.09 15.73 3.648 2 2.30 9.32 5.112 AREA (ACRE) 26.93 1.28 I I I I I I I I I I I I I I I I I I I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. * * PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 47.32 9.32 5.112 2 64.73 15.73 3.648 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 64.73 Tc (MIN.) = 15.73 TOTAL AREA (ACRES) = 28.21 LONGEST FLOW PATH FROM NODE 423.00 TO NODE 491. 00 = 2230.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 491. 00 TO NODE 445.00 IS .CODE.= 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 409.20 DOWNSTREAM (FEET) 408.60 FLOW LENGTH(FEET) = 56.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 29.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.55 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 64.73 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 15.82 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 445.00 = 2286.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 445.00 TO NODE 445.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 446.00 TO NODE 447.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 440.20 DOWNSTREAM ELEVATION(FEET) = 439.50 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = SUBAREA RUNOFF (CFS) 0.81 8.212 5.548 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) = 0.81 +--------------------------------------------------------------------------+ I The Code 8 above pertains to the area from the future recreation I I center (Lot 81). A weighted runoff coefficient was used for I I neighborhood commercial and residential. I +--------------------------------------------------------------------------+ I I I I I I I I I I I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 447.00 TO NODE 449.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 436.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 338.60 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 6.56 STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) = PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 3.82 STREET FLOW TRAVEL TIME(MIN.) = 1.48 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 0.98 Tc (MIN .") 4.987 2.09 9.69 SUBAREA AREA(ACRES) = 0.99 SUBAREA RUNOFF (CFS) = 2.57 421. 50 0.0150 TOTAL AREA(ACRES) = 1.27 PEAK FLOW RATE (CFS) = 3.29 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 8.19 FLOW VELOCITY(FEET/SEC.) = 4.17 DEPTH*VELOCITY(FT*FT/SEC.) = 1.21 LONGEST FLOWPATH FROM NODE 446.00 TO NODE 449.00 = 403.60 FEET. **************************************************************~************* FLOW PROCESS FROM NODE 449.00 TO NODE 449.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) 9.69 RAINFALL INTENSITY (INCH/HR) = 4.99 TOTAL STREAM AREA(ACRES) = 1.27 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.29 **************************************************************************** FLOW PROCESS FROM NODE 450.00 TO NODE 451.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< =======~===============================================================~==== *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 I I I I I I I I I I I I I I I I I I I S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 435.70 DOWNSTREAM ELEVATION(FEET) = 435.00 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 5.548 SUBAREA RUNOFF (CFS) 0.95 TOTAL AREA(ACRES) = 0.33 TOTAL RUNOFF(CFS) 0.95 **************************************************************************** FLOW PROCESS FROM NODE 451.00 TO NODE 449.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 433.50 DOWNST~EAM ELEVATION(FEET) STREET LENGTH(FEET) = 469.20 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 13.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.40 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.33 AVERAGE FLOW VELOCITY(FEETjSEC.) 3.44 PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) = 1.08 STREET FLOW TRAVEL TIME(MIN.) = 2.27 Tc(MIN.) 10.48 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 4.739 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 1.98 SUBAREA RUNOFF (CFS) = 4.88 421.50 0.0150 TOTAL AREA(ACRES) = 2.31 PEAK FLOW RATE(CFS) 5.69 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) 11.59 FLOW VELOCITY(FEETjSEC.) = 3.90 DEPTH*VELOCITY(FT*FTjSEC.) 1.40 LONGEST FLOWPATH FROM NODE 450.00 TO NODE 449.00 = 534.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 449.00 TO NODE 449.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 =============================================================~============== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.48 RAINFALL INTENSITY (INCHjHR) = 4.74 I I I I I I I I I I I I I I I I I I TOTAL STREAM AREA(ACRES) = 2.31 PEAK FLOW RATE (CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 3.29 9.69 4.987 2 5.69 10.48 4.739 5.69 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 8.55 9.69 4.987 2 8.82 10.48 4.739 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 1.27 2.31 RATIO PEAK FLOW RATE(CFS) = 8.82 Tc(MIN.) = 10.48 TOTAL AREA(ACRES) = 3.58 LONGEST FLOWPATH FROM NODE 450.00 TO NODE 449.00 = 534.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 449.00 TO NODE 445.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: 'UPSTREAM(FEET) = 410.14 DOWNSTREAM (FEET) 410.11 FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.28 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 8.82 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 10.49 LONGEST FLOWPATH'FROM NODE 450.00 TO NODE 445.00 = 537.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 445.00 TO NODE 445.00 IS CODE. = 11 »»>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 8.82 10.49 4.737 3.58 LONGEST FLOWPATH FROM NODE 450.00 TO NODE 445.00 537.50 FEET. ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 64.73 15.82 3.635 28.21 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 445.00 = 2286.50 FEET. ** PEAK FLOW RATE TABLE ** I I I I I I I I I~ I I I I I I I I I STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 51. 76 10.49 4.737 2 71.50 15.82 3.635 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 71.50 Tc (MIN.) = 15.82 TOTAL AREA (ACRES) = 31. 79 **************************************************************************** FLOW PROCESS FROM NODE 445.00 TO NODE 445.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 3 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 445.00 TO NODE 452.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 408.30 DOWNSTREAM (FEET) 408.10 FLOW LENGTH(FEET) 7 6.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 20.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.21 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 71.50 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 15.83 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 452.00 2292.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 452.00 TO NODE 453.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ====================================================================~======== ELEVATION DATA: UPSTREAM (FEET) = 407.80 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 241.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 17.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.65 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 71.50 NUMBER OF PIPES 0.19 Tc(MIN.) = 1 394.80 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 16.02 453.00 = 2533.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 453.00 TO NODE 453.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 16.02 RAINFALL INTENSITY (INCH/HR) = 3.61 TOTAL STREAM AREA(ACRES) = 31.79 PEAK FLOW RATE (CFS) AT CONFLUENCE = 71.50 I I I I I I I I I ·1 I I I I I I I I I **************************************************************************** FLOW PROCESS FROM NODE 454.00 TO NODE 455.00 IS CODE = 21 ------------------------------------------------------------------~--------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 435.80 DOWNSTREAM ELEVATION(FEET) = 435.10 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY (INCHjHOUR) 5.548 SUBAREA RUNOFF(CFS) 0.49 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) 0.49 **************************************************************************~* FLOW PROCESS FROM NODE 455.00 TO NODE 456.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 432.00 DOWNSTREAM ELEVATION(FEET) = 407.00 STREET LENGTH(FEET) = 451.10 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1 12.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREET FLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEETjSEC.) 5.41 4.07 PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 0.95 STREET FLOW TRAVEL TIME (MIN.) = 1.85 Tc(MIN.) 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 4.868 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 1.67 10.06 SUBAREA AREA(ACRES) 0.93 SUBAREA RUNOFF(CFS) 2.35 0.0150 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE (CFS) = 2.78 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALF STREET FLOOD WIDTH(FEET) 7.10 FLOW VELOCITY(FEETjSEC.) = 4.47 DEPTH*VE~OCITY(FT*FTjSEC.) = 1.20 LONGEST FLOWPATH FROM NODE 454.00 TO NODE 456.00 = 516.10 FEET, **************************************************************************** FLOW PROCESS FROM NODE 456.00 TO NODE 453.00 IS CODE = 41 I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 396.80 DOWNSTREAM (FEET) 396.30 FLOW LENGTH(FEET) = 27.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.01 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 2.78 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 10.14 LONGEST FLOWPATH FROM NODE 454.00 TO NODE 453.00 543.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 453.00 TO NODE 453.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.14 RAINFALL INTENSITY(INCH/HR) = 4.84 TOTAL STREAM AREA(ACRES) = 1.10 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.78 **************************************************************************** FLOW PROCESS FROM NODE 457.00 TO NODE 458.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 64.00 UPSTREAM ELEVATION(FEET) = 435.90 DOWNSTREAM ELEVATION(FEET) = 435.20 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.106 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.595 SUBAREA RUNOFF (CFS) 0.81 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) 0.81 **************************************************************************** FLOW PROCESS FROM NODE 458.00 TO NODE 459.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 433.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 710.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 407.00 0.0150 I I I I I I I I I I' I' I ,I I **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.23 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.36 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.95 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.16 STREET FLOW TRAVEL TIME(MIN.) = 3.00 Tc(MIN.) 11.11 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.566 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.520 SUBAREA AREA(ACRES) 2.02 SUBAREA RUNOFF(CFS) = 4.80 TOTAL AREA(ACRES) = 2.30 PEAK FLOW RATE (CFS) = 5.46 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.49 FLOW VELOCITY(FEET/SEC.) = 4.48 DEPTH*VELOCITY(FT*FT/SEC.) 1.51 LONGEST FLOWPATH FROM NODE 457.00 TO NODE 459.00 = 774.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 459.00 TO NODE 453.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 396.40 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.70 GIVEN PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW (CFS) = 5.46 NUMBER OF PIPES 0.01 Tc(MIN.) = 11.11 1 396.30 PIPE TRAVEL TIME(MIN.) = LONGEST FLOW PATH FROM NODE 457.00 TO NODE 453.00 778.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 453.00 TO NODE 453.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 11.11 RAINFALL INTENSITY(INCH/HR) = 4.56 TOTAL STREAM AREA(ACRES) = 2.30 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.46 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 71.50 16.02 3.605 31. 79 2 2.78 10.14 4.844 1.10 3 5.46 11.11 4.564 2.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO I, I I I~ I- I' I I I I I I I I I CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 53.00 10.14 4.844 2 57.69 11.11 4.564 3 77.89 16.02 3.605 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 77.89 Tc(MIN.) = 16.02 TOTAL AREA(ACRES) = 35.19 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 453.00 2533.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 453.00 TO NODE 460.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ====================================================================~======= ELEVATION DATA:. UPSTREAM (FEET) = 394.50 DOWNSTREAM (FEET) = 391. 90 FLOW LENGTH(FEET) = 42.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 18.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 22.11 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 77.89 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 16.05 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 460.00 2576.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 460.00 TO NODE 460.00 IS CODE = 10 ----------------------------------------------------------------------~----- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 461.00 TO NODE 462.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 433.90 DOWNSTREAM ELEVATION(FEET) = 433.20 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF(CFS) 0.72 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) = 0.72 **************************************************************************** FLOW PROCESS FROM NODE 463.00 TO NODE 462.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =======================================================================.===== I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 5.548 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7109 SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF (CFS) = 1.45 TOTAL AREA(ACRES) 0.55 TOTAL RUNOFF(CFS) = 2.17 TC(MIN.) = 8.21 **************************************************************************** FLOW PROCESS FROM NODE 462.00 TO NODE 464.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 431.00 DOWNSTREAM ELEVATION(FEET) = 420.50 STREET LENGTH(FEET) = 294.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET). 12.00 INSIDE STREET CROSSFALL(DEClMAL) = 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 8.80 STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEETjSEC.) = PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 3.97 STREET FLOW TRAVEL TIME(MIN.) = 1.24 100 YEAR RAINFALL INTENSITY(INCHjHOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.586 1.20 Tc (MIN.) = 5.068 9.45 SUBAREA AREA(ACRES) 1.04 TOTAL AREA(ACRES) = 1.59 SUBAREA RUNOFF (CFS) PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 10.01 3.54 2.74 FLOW VELOCITY(FEETjSEC.) = 4.22 DEPTH*VELOCITY(FT*FTjSEC.) 0.0150 4.72 LONGEST FLOWPATH FROM NODE 461.00 TO NODE 464.00 = 359.90 1.38 FEET. **************************************************************************** FLOW PROCESS FROM NODE 464.00 TO NODE 465.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 408.73 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 5.37 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 408.70 I I I I I I I I I I I- I I 'I I I PIPE-FLOW (CFS) = 4.72 0.01 Tc(MIN.) = PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 461. 00 TO NODE 9.46 465.00 363.20 FEET. **************************************************************************** FLOW PROCESS FROM NODE 465.00 TO NODE 465.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN. ). 9 .46 RAINFALL INTENSITY (INCH/HR) = 5.06 TOTAL STREAM AREA (ACRES) = 1.59 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.72 ***********************************************************************~**** FLOW PROCESS FROM NODE 466.00 TO NODE 467.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< =============================================================~============== *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 433.90 DOWNSTREAM ELEVATION(FEET) = 433.20 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW (MIN.) = 8 .212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.548 SUBAREA RUNOFF(CFS) 0.61 TOTAL AREA(ACRES) = 0.21 TOTAL RUNOFF(CFS) 0.61 **************************************************************************** FLOW PROCESS FROM NODE 467.00 TO NODE 468.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 431.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 298.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 6.68 STREET FLOW DEP~H(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) = PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 1.47 3.38 0.88 Tc (MIN.) = 1 .. 90 9.69 421. 00 0.0150 I I I I' I 1- I~ I 'I I I I' I I I I II ! I I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 4.988 SUBAREA AREA(ACRES) 1.00 TOTAL AREA(ACRES) = 1.21 SUBAREA RUNOFF(CFS) PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) 8.43 2.59 3.14 FLOW VELOCITY(FEET/SEC.) = 3.78 DEPTH*VELOCITY(FT*FT/SEC.) 1.12 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 468.00 = 363.90 FEET. ******************************************************************~******~** FLOW PROCESS FROM NODE 468.00 TO NODE 465.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) «'«< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 409.30 DOWNSTREAM (FEET) 408.70 FLOW LENGTH(FEET) = 28.10 MANNING'S N = 0.013 DEPTH .OF FLOW IN 18.0 INCH PIPE IS 5.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.58 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 3.14 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 9.76 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 465.00 = 392.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 465.00 TO NODE 465.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN. ) 9 .76 RAINFALL INTENSITY(INCH/HR) = 4.96 TOTAL STREAM AREA(ACRES) = 1.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.14 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 4.72 9.46 5.065 1.59 2 3.14 9.76 4.964 1.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 7.76 9.46 5.065 2 7.77 9.76 4.964 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I I I I I I I I I I I I I I I I I I I PEAK FLOW RATE (CFS) = TOTAL AREA (ACRES) = 7.77 2.BO Tc(MIN.) = LONGEST FLOWPATH FROM NODE 466.00 TO NODE 9.76 465.00 392.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 465.00 TO NODE 469.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 40B.40 DOWNSTREAM (FEET) 400.60 FLOW LENGTH(FEET) = 199.00 MANNING'S N = 0.013 DEPTH OF FLOW IN lB.O INCH PIPE IS 7.B INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.50 GIVEN PIPE DIAMETER(INCH) = 1B.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 7.77 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 10.07 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 469.00 591.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 469.00 TO NODE 470.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================~=============== ELEVATION DATA: UPSTREAM (FEET) = 400.30 DOWNSTREAM (FEET) 395.20 FLOW LENGTH(FEET) = 14B.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 1B.0 INCH PIPE IS B.l INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.01 GIVEN PIPE DIAMETER(INCH) = lB.OO NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 7.77 PIPE TRAVEL TIME(MIN.) = 0.25 . Tc(MIN.) = 10.32 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 470.00 = 739.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 470.00 TO NODE 470.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.32 RAINFALL INTENSITY(INCH/HR) = 4.79 TOTAL STREAM AREA(ACRES) = 2.BO PEAK FLOW RATE (CFS) AT CONFLUENCE = 7.77 **************************************************************************** FLOW PROCESS FROM NODE 471.00 TO NODE 472.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ====================================================================?======= *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 422.00 DOWNSTREAM ELEVATION(FEET) = 421.30 I I I I I I I I I I I I I I ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY (INCHjHOUR) 5.548 SUBAREA RUNOFF(CFS) 0.61 TOTAL AREA(ACRES) = 0.21 TOTAL RUNOFF(CFS) 0.61 **************************************************************************** FLOW PROCESS FROM NODE 472.00 TO NODE 473.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 419.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 294.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.06 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 6.74 AVERAGE FLOW VELOCITY(FEETjSEC.) 3.60 PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 0.94 STREET FLOW TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) = 9.57 100 YEAR RAINFALL INTENSITY(INCHjHOUR) 5.025 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 1.11 SUBAREA RUNOFF(CFS) = 2.90 408.00 0.0150 TOTAL AREA(ACRES) = 1.32 PEAK FLOW RATE (CFS) 3.45 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) 8.61 FLOW VELOCITY(FEETjSEC.) = 4.01 DEPTH*VELOCITY(FT*FTjSEC.) = 1.20 LONGEST FLOWPATH FROM NODE 471.00 TO NODE 473.00 = 359.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 473.00 TO NODE 470.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 395.30 DOWNSTREAM (FEET) = 395.20 FLOW LENGTH(FEET) = 3.30 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.4 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 7.66 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 3.45 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 9.58 LONGEST FLOWPATH FROM NODE 471.00 TO NODE 470.00 = 362.30 FEET. I I I 1- 1 I I I I I I I I I I 1 I I I **************************************************************************** FLOW PROCESS FROM NODE 470.00 TO NODE 470.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 9.58 RAINFALL INTENSITY (INCH/HR) = 5.02 TOTAL STREAM AREA (ACRES) = 1.32 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.45 **************************************************************************** FLOW PROCESS FROM NODE 474.00 TO NODE 475.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 422.30 DOWNSTREAM ELEVATION(FEET) = 421.60 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.55 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF(CFS) = 0.55 **************************************************************************** FLOW PROCESS FROM NODE 475.00 TO NODE 476.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 419.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 293.30 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) 6.31 3.43 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.87 STREET FLOW TRAVEL TIME(MIN.) = 1.42 Tc(MIN.) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 5.004 1.77 9.64 408.60 0.0150 1 1 1 I 1 .1 1 I 1 1 I 1 1 1 I I I I I S.C.S. CURVE NUMBER (AMC II) = AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA{ACRES) 0.94 TOTAL AREA{ACRES) = 1.13 o 0.520 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE{CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.13 2.45 2.94 FLOW VELOCITY{FEET/SEC.) = 3.77 DEPTH*VELOCITY(FT*FT/SEC.) 1.09 LONGEST FLOWPATH FROM NODE 474.00 TO NODE 476.00 = 358.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 476.00 TO NODE 470.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 396.50 DOWNSTREAM (FEET) 395.20 FLOW LENGTH(FEET) = 31.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.20 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 2.94 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 9.70 LONGEST FLOWPATH FROM NODE 474.00 TO NODE 470.00 = 389.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 470.00 TO NODE 470.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 9.70 RAINFALL INTENSITY(INCH/HR) = 4.98 TOTAL STREAM AREA(ACRES) = 1.13 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.94 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 7.77 10.32 4.788 2 3.45 9.58 5.023 3 2.94 9.70 4.983 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 13.76 9.58 5.023 2 13.82 9.70 4.983 3 13.88 10.32 4.788 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 13.88 Tc (MIN.) = AREA (ACRE) 2.80 1.32 1.13 RATIO 10.32 I I I I I I I I I I I I I I I I I I I TOTAL AREA(ACRES) = 5.25 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 470.00 = 739.30 FEET. ************************************************************************~*** FLOW PROCESS FROM NODE 470.00 TO NODE 460.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 394.80 DOWNSTREAM (FEET) 393.20 FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.20 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 13.88 PIPE TRAVEL TIME (MIN.) = 0.11 Tc(MIN.) = 10.43 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 460.00 804.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 460.00 TO NODE 460.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 13.88 10.43 4.756 5.25 LONGEST FLOWPATH FROM NODE 466.00 TO NODE 460.00 804.30 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 77.89 16.05 3.601 35.19 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 460.00 = 2576.10 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 64.47 10.43 4.756 2 88.40 16.05 3.601 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 88.40 Tc(MIN.) = 16.05 TOTAL AREA(ACRES) = 40.44 **************************************************************************** FLOW PROCESS FROM NODE 460.00 TO NODE 460.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ====================================================================*======= **************************************************************************** FLOW PROCESS FROM NODE 460.00 TO NODE 477.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< I I I I I I I I I I I I I I I I I I I ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 391.20 DOWNSTREAM (FEET) 381.80 FLOW LENGTH(FEET) = 278.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 21.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.27 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 88.40 PIPE·TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 16.31 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 477.00 2854.20 FEET, **************************************************************************** FLOW PROCESS FROM NODE 477.00 TO NODE 477.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< =========================================================================~== *****************************************************~********************** FLOW PROCESS FROM NODE 478.00 TO NODE 479.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 405.00 DOWNSTREAM ELEVATION(FEET) = 404.30 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.548 SUBAREA RUNOFF (CFS) 0.55 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF(CFS) 0.55 **************************************************************************** FLOW PROCESS FROM NODE 489.00 TO NODE 479.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.548 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6744 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF (CFS) = TOTAL AREA(ACRES) 0.34 TOTAL RUNOFF(CFS) = TC(MIN.) = 8.21 0.72 1.27 **************************************************************************** FLOW PROCESS FROM NODE 479.00 TO NODE 483.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 401.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 184.30 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 395.00 I I I I I I I I I I I I I I I I I I I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 15.00 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) 7.25 3.43 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.93 STREET FLOW TRAVEL TIME(MIN.) = 0.90 TC(MIN.) 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.190 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.571 9.11 SUBAREA AREA(ACRES) 0.69 TO~AL AREA(ACRES) = 1.03 SUBAREA RUNOFF (CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: 2.21 1.86 DEPTH (FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.40 FLOW VELOCITY(FEET/SEC.) = 3.70 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 478.00 TO NODE 483.00 = 249.30 0.0150 3.05 1.09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 483.00 TO NODE 483.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.11 RAINFALL INTENSITY(INCH/HR) = 5.19 TOTAL STREAM AREA(ACRES) = 1.03 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.05 **************************************************************************** FLOW PROCESS·FROM NODE 480.00 TO NODE 481.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 401.60 DOWNSTREAM ELEVATION(FEET) = 400.90 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.55 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF(CFS) 0.55 **************************************************************************** I I I I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 481.00 TO NODE 483.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 399.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 336.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.17 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.05 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.31 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.71 STREET FLOW TRAVEL TIME(MIN.) = 2.43 Tc(MIN.) = 10.64 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.694 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S. C. S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.520 SUBAREA AREA(ACRES) 1.32 SUBAREA RUNOFF(CFS) = 3.22 395.00 0.0150 TOTAL AREA(ACRES) = 1.51 PEAK FLOW RATE (CFS) 3.69 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) 11.36 FLOW VELOCITY(FEET/SEC.) = 2.61 DEPTH*VELOCITY(FT*FT/SEC.) 0.92 LONGEST FLOW PATH FROM NODE 480.00 TO NODE 483.00 = 401.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 483.00 TO NODE 483.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.64 RAINFALL INTENSITY(INCH/HR) = 4.69 TOTAL STREAM AREA(ACRES) = 1.51 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.69 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 3.05 9.11 5.190 1. 03 2 3.69 10.64 4.694 1.51 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I I I I I I I I I I I I I I I I I I I ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 6.21 9.11 5.190 2 6.45 10.64 4.694 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE{CFS) 6.45 Tc{MIN.) = 10.64 TOTAL AREA{ACRES) = 2.54 LONGEST FLOWPATH FROM NODE 480.00 TO NODE 483.00 401. 90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 482.00 TO NODE 483.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 4.694 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF SUBAREA AREA (ACRES) TOTAL AREA (ACRES) TC{MIN.) = 10.64 COEFFICIENT = 0.5370 = 0.55 SUBAREA RUNOFF (CFS) = 3.09 TOTAL RUNOFF{CFS) = 1.34 7.79 +--------------------------------------------------------------------------+ I I I The Code 8 above pertains to the area drained by Ditch C I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 483.00 TO NODE 477.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 383.90 DOWNSTREAM (FEET) 383.80 FLOW LENGTH{FEET) = 6.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.1 INCHES ~IPE-FLOW VELOCITY{FEET/SEC.) = 7.63 GIVEN PIPE DIAMETER{INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 7.79 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 10.66 LONGEST FLOWPATH FROM NODE 480.00 TO NODE 477.00 407.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 477.00 TO NODE 477.00 IS CODE = 11 >.»»CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY««< =======================================================================~==== ** MAIN STREAM NUMBER 1 STREAM CONFLUENCE DATA ** RUNOFF Tc INTENSITY (CFS) (MIN.) (INCH/HOUR) 7.79 10.66 4.690 AREA (ACRE) 3.09 I I I I I I I I I I I I I I I I I I I LONGEST FLOWPATH FROM NODE 480.00 TO NODE 477.00 = 407.90 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 88.40 16.31 3.564 40.44 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 477.00 = 2854.20 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 65.55 10.66 4.690 2 94.32 16.31 3.564 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 94.32 Tc(MIN.) = 16.31 TOTAL AREA(ACRES) = 43.53 **************************************************************************** FLOW PROCESS FROM NODE 477.00 TO NODE 477.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 2 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 477.00 TO NODE 412.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 381.50 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 31.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 28.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.84 GIVEN PIPE DIAMETER(INCH) = 42.00 PIPE-FLOW (CFS) = 94.32 NUMBER OF PIPES 0.04 Tc(MIN.) = 16.35 1 381. 00 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 412.00 2885.70 FEET. **************************************************************************** FLOW PROCESS FROM NODE 412.00 TO NODE 412.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 484.00 TO NODE 485.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< =========================================================================~== *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 410.20 DOWNSTREAM ELEVATION(FEET) 409.50 ELEVATION DIFFERENCE (FEET) 0.70 I I I I I I I I I I I I I I I I I I I SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF(CFS) 0.49 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) 0.49 **************************************************************************** FLOW PROCESS FROM NODE 485.00 TO NODE 486.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 3 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 406.50 DOWNSTREAM ELEVATION(FEET) = 395.00 STREET LENGTH(FEET) = 305.80 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 15.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.73 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.16 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.47 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.86 STREET FLOW TRAVEL TIME(MIN.) = 1.47 Tc(MIN.) 9.68 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.989 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.520 SUBAREA AREA(ACRES) 0.95 SUBAREA RUNOFF(CFS) = 2.46 TOTAL AREA(ACRES) = 1.12 PEAK FLOW RATE(CFS) = 2.91 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 7.97 FLOW VELOCITY(FEET/SEC.) = 3.86 DEPTH*VELOCITY(FT*FT/SEC.) 1.10 LONGEST FLOWPATH FROM NODE 484.00 TO NODE 486.00 = 370.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 486.00 TO NODE 486.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 9.68 RAINFALL INTENSITY(INCH/HR) = 4.99 TOTAL STREAM AREA(ACRES) = 1.12 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.91 **************************************************************************** FLOW PROCESS FROM NODE 487.00 TO NODE 488.00 IS CODE = 21 ----------------------------------------------------------------------~----- I I I I I I I I I I I I I I I I II I I »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ===================================================================~======== *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 400.50 DOWNSTREAM ELEVATION(FEET) = 399.80 ELEVATION DIFFERENCE (FEET) = ·0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.548 SUBAREA RUNOFF(CFS) 0.46 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) 0.46 **************************************************************************** FLOW PROCESS FROM NODE 488.00 TO NODE 486.00 IS CODE = 62 -----------------------------------------------------------------~---------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 3 USED)««< ======================================================================~===== UPSTREAM ELEVATION(FEET) = 398.00 DOWNSTREAM ELEVATION(FEET) 395.00 STREET LENGTH(FEET) = 270.30 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF ~ Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.63 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.04 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.14 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.61 STREET FLOW TRAVEL TIME(MIN.) = 2.11 Tc(MIN.) 10.32 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.788 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 0.94 SUBAREA RUNOFF (CFS) = 2.34 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) 2.74 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.14 FLOW VELOCITY(FEET/SEC.) = 2.39 DEPTH*VELOCITY(FT*FT/SEC.) 0.79 LONGEST FLOWPATH FROM NODE 487.00 TO NODE 486.00 = 335.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 486.00 TO NODE 486.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ I I I I I I I I I I I I I I I I I I I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 10.32 RAINFALL INTENSITY(INCH/HR) = 4.79 TOTAL STREAM AREA(ACRES) = 1.10 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.74 ** CONFLUENCE DATA ** STREAM NUMBER 1 2 RUNOFF (CFS) 2.91 2.74 Tc (MIN. ) 9.68 10.32 INTENSITY ( INCH/HOUR) 4.989 4.788 2 ARE: AREA (ACRE) 1.12 1.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF NUMBER (CFS) 1 5.48 2 5.53 Tc (MIN. ) 9.68 10.32 INTENSITY ( INCH/HOUR) 4.989 4.788 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 5.53 Tc(MIN.) = 10.32 TOTAL AREA(ACRES) = 2.22 LONGEST FLOWPATH FROM NODE 484.00 TO NODE 486.00 370.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 486.00 TO NODE 412.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 385.50 DOWNSTREAM (FEET) 383.00 FLOW LENGTH(FEET) = 3.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 26.66 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 5.53 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 10.32 LONGEST FLOWPATH FROM NODE 484.00 TO NODE 412.00 = 374.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 412.00 TO NODE 412.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 5.53 10.32 4.788 LONGEST FLOWPATH FROM NODE 484.00 TO ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) AREA (ACRE) 2.22 NODE 412.00 AREA (ACRE) 374.40 FEET. I I I I I I I I I I I I I I I I I I I 1 94.32 16.35 3.559 43.53 LONGEST FLOWPATH FROM NODE 423.00 TO NODE 412.00 2885.70 FEET. *, * PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 65.08 10.32 4.788 2 98.43 16.35 3.559 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 98.43 Tc(MIN.) = 16.35 TOTAL AREA(ACRES) = 45.75 **************************************************************************** FLOW PROCESS FROM NODE 412.00 TO NODE 412.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 3 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 412.00 TO NODE 414.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 380.70 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 98.60 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) 10.23 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 98.43 0.16 Tc(MIN.) = 16.51 379.80 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 414.00 2984.30 FEET. **************************************************************************** FLOW PROCESS FROM NODE 414.00 TO NODE 400.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 399.50 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 131.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 11.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 46.75 GIVEN PIPE DIAMETER(INCH) = 42.00 ~IPE-FLOW(CFS) = 98.43 NUMBER OF PIPES = 0.05 Tc(MIN.) = 1 345.40 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 423.00 TO NODE 16.55 400.00 = 3115.30 FEET. +--------------------------------------------------------------------------+ I I END NEIGHBORHOOD 3.1 -NODE SERIES 400 I I I I +--------------------------------------------------------------------------+ ============================================================================ END OF STUDY SUMMARY: I I I I I I I I I I I I' I I I I· I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 3 Site Hydrologic Analysis -100-Year Developed Conditions 3.2 -Neighborhood 3.3 De:ad h:lreports123521151Idralnage study01.doc w.D.2352-151 101412006 6:47 AM I I I I I I I I I I I I I I I I **********************************************************~***************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 20031 1985 1 1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES -SAN DIEGO 10179 Huennekens Street San Diegol Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * LA COSTA OAKS NORTH -NEIGHBORHOODS 3.3 & 3.5 * * 100 YEAR DEVELOPED CONDITIONS HYDROLOGY ANALYSIS * * SEPTEMBER 2006 * ************************************************************************** FILE NAME: H:\AES2003\2352\152\DEV-l00.DAT TIME/DATE OF STUDY: 16:03 09/27/2006 --------------------------------------------------------------------~------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFlNED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) ===== ========= ================= ====== -----====== 1 30.0 20.0 0.020/0.020/ ---0.50 1.50 0.0313 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* HIKE (FT) 0.125 0.95 MODEL * MANNING FACTOR (n) ======= 0.0150 **************************************************************************** FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 I I I I I I I' I I I I I I I I I INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 541.30 DOWNSTREAM ELEVATION(FEET) = 540.60 ELEVATION DIFFERENCE(FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN. ) 8.735 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.72 TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) 0.72 **************************************************************************** FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE == 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< ===============================================================~============ UPSTREAM ELEVATION(FEET) = 539.00 DOWNSTREAM ELEVAT+ON(FEET) STREET LENGTH(FEET) = 306.00 CURB HEIGHT(INCHES) = (5.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 Manning's FRICTION FACTOR for Street flow Section (curb-to-curb-) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.70 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.54 AVERAGE FLOW VELOCITY(FEET/SEC.) 1.96 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.54 STREET FLOW TRAVEL TIME(MIN.) = 2.60-Tc(MIN.) 11.33 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.508 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 1.68 SUBAREA RUNOFF (CFS) = 3.94 535.90 0.0150 TOTAL AREA(ACRES) = 1.94 PEAK FLOW RATE(CFS) = 4.66 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) 9.65 FLOW VELOCITY(FEET/SEC.) = 2.22 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 60.00 TO NODE 62.00 = 376.00 0.71 FE;ET. **************************************************************************** FLOW PROCESS FROM NODE 62.00 TO NODE 100.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ======================================================~===================== ELEVATION DATA: UPSTREAM (FEET) = 532.00 DOWNSTREAM (FEET) = 529.00 FLOW LENGTH(FEET) = 731.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.03 ESTIMATED PIPE DIAMETER(INCH) 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 4.66 I I I I I I I I I '1 I I I .1 3.02 Tc(MIN.) = PIPE TRAVEL TIME(MIN.) LONGEST FLOWPATH FROM NODE 60.00 TO NODE 14.35 100.00 1107.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 14.35 RAINFALL INTENSITY(INCH/HR) = 3.87 TOTAL STREAM AREA(ACRES) = 1.94 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.66 **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< =================================================~========================== *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S . C . S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 543.30 DOWNSTREAM ELEVATION(FEET) = 542.60 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN.) 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.69 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) 0.69 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 540.90 DOWNSTREAM ELEVATION(FEET) = 534.40 STREET LENGTH(FEET) = 526.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: 7.98 STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) STREET FLOW TRAVEL TIME(MIN.) = 3.91 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 2.24 0.64 Tc (MIN.) 4.200 3.39 12.64 0.0150 r------------------------------~~-------- I I I I I I I I I I I I I I *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 2.45 TOTAL AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) 10.32 5.35 FLOW VELOCITY(FEET/SEC.) = 2.55 DEPTH*VELOCITY(FT*FTjSEC.) LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 596.00 6.04 0.8.5 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 100.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 529.50 DOWNSTREAM (FEET) 529.00 FLOW LENGTH(FEET) = 11.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 10.56 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.04 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 12.66 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 100.00 607.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 12.66 RAINFALL INTENSITY(INCH/HR) = 4.20 TOTAL STREAM AREA(ACRES) = 2.70 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.04 **************************************************************************** FLOW PROCESS FROM NODE 63.00 TO NODE 64.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 541.30 DOWNSTREAM ELEVATION(FEET) = 540.60 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 5.332 SUBAREA RUNOFF(CFS) 0.42 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) 0.42 **************************************************************************** I I I I t I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 64.00 TO NODE 65.00 IS CODE »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< 62 ============================================================================ UPSTREAM ELEVATION(FEET) = 539.70 DOWNSTREAM ELEVATION(FEET) = 534.40 STREET LENGTH(FEET) = 536.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.90 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.88 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.10 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.64 STREET FLOW TRAVEL TIME(MIN.) = 4.26 Tc(MIN.) 12.99 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.127 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 1.37 SUBAREA RUNOFF (CFS) 2.94 0.0150 TOTAL AREA(ACRES) = 1.52 PEAK FLOW RATE (CFS) = 3.36 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.32 FLOW VELOCITY(FEET/SEC.) = 2.40 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 63.00 TO NODE 65.00 = 606.00 0.85 FEET. **************************************************************************** FLOW PROCESS FROM NODE 65.00 TO NODE 100.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 529.50 DOWNSTREAM (FEET) = 529.00 FLOW LENGTH(FEET) = 33.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.03 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 3.36 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 13.08 LONGEST FLOWPATH FROM NODE 63.00 TO NODE 100.00 639.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ I· I I I· I I I I I I I I· I I I TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 13.08 RAINFALL INTENSITY (INCH/HR) = 4.11 TOTAL STREAM AREA(ACRES) = 1.52 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.36 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 4.66 14.35 3.870 2 6.04 12.66 4.196 3 3.36 13.08 4.109 AREA (ACRE) 1. 94 2.70 1.52 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 13.63 12.66 4.196 2 13.66 13.08 4.109 3 13.39 14.35 3.870 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 13.66 Tc(MIN.) = 13.08 TOTAL AREA(ACRES) = 6.16 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 100.00 1107.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 102.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ===================================================================~======== ELEVATION DATA: UPSTREAM (FEET) = 529.00 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 66.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.63 ESTIMATED PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 13.66 NUMBER OF PIPES 0.17 Tc(MIN.) = 13.25 528.50 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 60.00 TO NODE 102.00 = 1173.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 ---------~----------------------------------------------------.... I I I I I I I. I 1- ·1 I·· I I- I I I :1 I !I I S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 561.00 DOWNSTREAM ELEVATION(FEET) = 560.30 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.61 TOTAL AREA(ACRES) = 0.22 TOTAL RUNOFF(CFS) 0.61 **************************************************************************** FLOW PROCESS FROM NODE 91.00 TO NODE 92.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 558.60 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 575.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 550.00 Manning's FRICTION FACTOR for Streetflow section(curb-to-curb) 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.74 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.04 AVERAGE FLOW VELOCITY(FEETjSEC.) 2.45 PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 0.70 STREET FLOW TRAVEL TIME(MIN.) = 3.92 Tc(MIN.) 12.65 100 YEAR RAINFALL INTENSITY(INCHjHOUR) 4.198 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 2.84 SUBAREA RUNOFF(CFS) = 6.20 TOTAL AREA (ACRES) = 3 . 06 PEAK FLOW RATE (CFS) 6 . 81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.43 FLOW VELOCITY(FEETjSEC.) = 2.82 DEPTH*VELOCITY(FT*FTjSEC.) 0.94 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 92.00 = 645.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 92.00 TO NODE 101.00 IS CODE = 3.1 -----------------------------------------------------------~----~----------~ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 547.50 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 473.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) = 10.12 530.00 I I I I I I I I I I I I I I I I I I I ESTIMATED PIPE DIAMETER(INCH) = l8.00 NUMBER OF PIPES l PIPE-FLOW (CFS) = 6.8l Tc(MIN.) = l3.43 PIPE TRAVEL TIME(MIN.) = 0.78 LONGEST FLOW PATH FROM NODE 90.00 TO NODE lOl.00 1118.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 101.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ======================================================~===================== TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 13.43 RAINFALL INTENSITY(INCH/HR) = 4.04 TOTAL STREAM AREA(ACRES) = 3.06 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.81 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 551.40 DOWNSTREAM ELEVATION(FEET) = 550.70 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.75 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) 0.75 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 548.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 488.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREET FLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 6.98 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.16 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.84 1.91 534.30 0.0150 I I I I I I I I I I I I I I I I I I STREET FLOW TRAVEL TIME(MIN.) = 2.57 Tc(MIN.) 11.31 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.514 *USER SPECIFIED (SUBAREA) : USER-SPECIFIEP RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 0.99 SUBAREA RUNOFF (CFS) = 2.32 TOTAL AREA(ACRES) = 1.26 PEAK FLOW RATE(CFS) 3.07 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) 8.71 FLOW VELOCITY(FEET/SEC.) = 3.51 DEPTH*VELOCITY(FT*FT/SEC.) = 1.05 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 6.00 = 558.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 101.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 530.50 DOWNSTREAM (FEET) 530.00 FLOW LENGTH(FEET) = 35.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 5.76 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 3.07 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 11.41 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 101.00 593.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 101. 00 TO NODE 101. 00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 11.41 RAINFALL INTENSITY (INCH/HR) = 4.49 TOTAL STREAM AREA (ACRES) = 1.26 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.07 **************************************************************************** FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S. C. S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 556.20 DOWNSTREAM ELEVATION(FEET) = 486.20 ELEVATION DIFFERENCE (FEET) = 70.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN.) = 1. 882 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. .~ I I I I I I I I I I I I I I I I I I I 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 6.793 SUBAREA RUNOFF (CFS) 0.99 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) 0.99 **************************************************************************** FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ==========================================================================~= UPSTREAM ELEVATION(FEET) = 551.90 DOWNSTREAM ELEVATION(~EET) STREET LENGTH(FEET) = 559.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) -3.44 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.93 AVERAGE FLOW VELOCITY(FEETjSEC.) 3.75 PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) 1.14 STREET FLOW TRAVEL TIME(MIN.) = 2.48 Tc(MIN.) = 8.48 100 YEAR RAINFALL INTENSITY (INCHjHOUR) 5.434 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.72 SUBAREA RUNOFF (CFS) = 4.86 534.20 0.0150 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) 5.85 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) 11.21 FLOW VELOCITY(FEETjSEC.) = 4.25 DEPTH*VELOCITY(FT*FTjSEC.) = LONGEST FLOWPATH FROM NODE 7.00 TO NODE 9.00 = 629.00 1.49 FEET. **************************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 101.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 530.50 DOWNSTREAM (FEET) 530.00 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.9 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) 11.74 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 5.85 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 8.49 LONGEST FLOW PATH FROM NODE 7.00 TO NODE 101.00 = 637.00 FEET. **************************************************************************** I I I I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 101. 00 TO NODE 101. 00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 8.49 RAINFALL INTENSITY(INCH/HR) = 5.43 TOTAL STREAM AREA(ACRES) = 2.00 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.85 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 6.81 13.43 4.039 3.06 2 3.07 11.41 4.488 1.26 3 5.85 8.49 5.429 2.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 13.46 8.49 5.429 2 14.04 11.41 4.488 3 13.93 13.43 4.039 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.04 Tc(MIN.) = 11.41 TOTAL AREA(ACRES) = 6.32 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 101.00 = 1118.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 101. 00 TO NODE 102.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 530.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 88.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 9.06 ESTIMATED PIPE DIAMETER(INCH) = 21.00 PIPE-FLOW (CFS) = 14.04 NUMBER OF PIPES 0.16 Tc (MIN.) = 528.50 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 90.00 TO NODE 11.57 102.00 = 1206.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA I I I I I I I I I I I I I I I I I NUMBER 1 (CFS) 14.04 (MIN. ) 11.57 ( INCH/HOUR) 4.447 (ACRE) LONGEST FLOWPATH FROM NODE 90.00 TO NODE 6.32 102.00 = 1206.00 FEET. ** MEMORY BANK # STREAM RUNOFF NUMBER (CFS) 1 13.66 1 CONFLUENCE DATA ** Tc INTENSITY (MIN.) (INCH/HOUR) 13.25 4.075 AREA (ACRE) 6.16 LONGEST FLOWPATH FROM NODE 60.00 TO NODE 102.00 11 73 . 00 FEET. ** PEAK FLOW RATE STREAM RUNOFF NUMBER (CFS) 1 26.56 2 26.52 TABLE ** Tc (MIN. ) 11.57 13.25 INTENSITY (INCH/HOUR) 4.447 4.075 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 26.56 °Tc(MIN.) = 11.57 TOTAL AREA(ACRES) = 12.48 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 528.50 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 321.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.32 ESTIMATED PIPE DIAMETER(INCH) = 27.00 PIPE-FLOW (CFS) = 26.56 NUMBER OF PIPES = 0.64 Tc(MIN.) = 12.21 525.50 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 90.00 TO NODE 103.00 1527.0.0 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ======================================================================~===== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.21 RAINFALL INTENSITY(INCH/HR) = 4.29 TOTAL STREAM AREA(ACRES) = 12.48 PEAK FLOW RATE (CFS) AT CONFLUENCE = 26.56 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< I I I I I I I I I I I I I I I I I I I ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 541.70 DOWNSTREAM ELEVATION(FEET) = 541.00 ELEVATION DIFFERENCE(FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.332 SUBAREA RUNOFF(CFS) 0.86 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) 0.86 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 539.60 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 437.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.16 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 6.76 AVERAGE FLOW VELOCITY(FEET/SEC.) 2.75 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.72 STREET FLOW TRAVEL TIME(MIN.) = 2.65 Tc(MIN.) 11.39 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.494 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 1.96 SUBAREA RUNOFF (CFS) 4.58 TOTAL AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) 8.71 FLOW VELOCITY(FEET/SEC.) = 3.10 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 ~ 507.00 530.00 0.0150 5.44 0.93 FEET. **************************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 103.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<. »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) FLOW LENGTH(FEET) = 12.50 526.00 DOWNSTREAM (FEET) = MANNING'S N = 0.013 525.50 I I I I I I I I I I I I I I I I I I I ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 9.79 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 5.44 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 11.41 LONGEST FLOWPATH FROM NODE 1b.00 TO NODE 103.00 = 519.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 11.41 RAINFALL INTENSITY (INCH/HR) = 4.49 TOTAL STREAM AREA(ACRES) = 2.27 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.44 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 26.56 12.21 4.295 2 5.44 11.41 4.489 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 30.85 11.41 4.489 2 31. 76 12.21 4.295 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 12.48 2.27 RATIO PEAK FLOW RATE (CFS) 31.76 Tc(MIN.) = 12.21 TOTAL AREA(ACRES) = 14.75 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 103.00 1527.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 525.50 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 375.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 8.78 ESTIMATED PIPE DIAMETER(INCH) = 30.00 PIPE-FLOW (CFS) = 31.76 NUMBER OF PIPES 0.71 Tc(MIN.) = 12.93 522.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 90.00 TO NODE 104.00 = 1902.00 FEET. **************************************************************************** I I I I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.93 RAINFALL INTENSITY(INCHjHR) = 4.14 TOTAL STREAM AREA(ACRES) = 14.75 PEAK FLOW RATE (CFS) AT CONFLUENCE = 31.76 **************************************************************************** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 532.00 DOWNSTREAM ELEVATION(FEET) = 531.30 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) 8.735 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.50 TOTAL AREA(ACRES) = 0.18 TOTAL RUNOFF(CFS) 0.50 *************************************************************~************** FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 530.00 DOWNSTREAM ELEVATION(FEET) = 52E.80 STREET LENGTH(FEET) = 469.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 3.40 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.33 AVERAGE FLOW VELOCITY(FEETjSEC.) = 2.07 PRODUCT OF DEPTH&VELOCITY(FT*FTjSEC.) = 0.77 STREET FLOW TRAVEL TIME(MIN.) = 3.77 Tc(MIN.) = 12.50 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 4.230 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 2.61 SUBAREA RUNOFF(CFS) = 5.74 0.0150 I I I I I .1 I I I I I I I I I I I I I TOTAL AREA (ACRES) = 2.79 PEAK FLOW RATE (CFS) 6.24 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.72 FLOW VELOCITY(FEET/SEC.) = 2.41 DEPTH*VELOCITY(FT*FT/SEC.) 1.06 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 15.00 = 539.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 15.00 TO NODE 104.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 522.50 DOWNSTREAM (FEET) 522.00 FLOW LENGTH(FEET) = 8.50 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.69 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 6.24 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 12.52 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 104.00 547.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.52 RAINFALL INTENSITY(INCH/HR) = 4.23 TOTAL STREAM AREA(ACRES) = 2.79 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.24 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 31. 76 12.93 4.141 2 6.24 12.52 4.228 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 37.35 12.52 4.228 2 37.87 12.93 4.141 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 14.75 2.79 RATIO PEAK FLOW RATE (CFS) 37.87 Tc(MIN.) = 12.93 TOTAL AREA(ACRES) = 17.54 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 104.00 = 1902.00 FEET. **************************************************************************** I I I I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 522.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 38.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.8 INCHES PIPE-FLOW VELOCITY(FEETjSEC.) 13.60 ESTIMATED PIPE DIAMETER(INCH) = 27.00 PIPE-FLOW (CFS) = 37.87 NUMBER OF PIPES 0.05 Tc(MIN.) = 521.00 1 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 90.00 TO NODE 12.97 105.00 1940.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME qF CONCENTRATION(MIN.) 12.97 RAINFALL INTENSITY (INCHjHR) = 4.13 TOTAL STREAM AREA(ACRES) = 17.54 PEAK FLOW RATE (CFS) AT CONFLUENCE = 37.87 **************************************************************************** FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 536.10 DOWNSTREAM ELEVATION(FEET) = 535.40 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY (INCHjHOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.42 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) 0.42 **************************************************************************** FLOW PROCESS FROM NODE 17.00 TO NODE 105.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 534.10 DOWNSTREAM ELEVATION(FEET) = 526.80 STREET LENGTH(FEET) = 803.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 r------------------------------------------------ I I I I I I I I I I I I I I I I I I I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.71 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.05 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.36 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.87 STREET FLOW TRAVEL TIME(MIN.) = 5.67 Tc(MIN.) = 14.40 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 3.862 *USE~ SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 3.22 SUBAREA RUNOFF (CFS) = 6.47 TOTAL AREA(ACRES) = 3.37 PEAK FLOW RATE (CFS) = 6.88 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) 15.44 FLOW VELOCITY(FEET/SEC.) = 2.75 DEPTH*VELOCITY(FT*FT/SEC.) = 1.20 LONGEST FLOWPATH FROM NODE 16.00 TO NODE 105.00 = 873.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 14.40 RAINFALL INTENSITY(INCH/HR) = 3.86 TOTAL STREAM AREA(ACRES) = 3.37 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.88 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 37.87 12.97 4.131 2 6.88 14.40 3.862 AREA (ACRE) 17.54 3.37 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 44.31 12.97 4.131 2 42.28 14.40 3.862 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 44.31 Tc(MIN.) = 12.97 TOTAL AREA(ACRES) = 20.91 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 105.00 = 1940.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 31 I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 521.00 DOWNSTREAM (FEET) 486.00 FLOW LENGTH(FEET) = 260.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 26.06 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 44.31 PIPE TRAVEL TIME(MIN.) = 0.17 TC(MIN.) = 13.14 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 106.00 = 2200.00 FEET. +--------------------------------------------------------------------------+ I END OF ONSITE FLOW FROM NEIGHBORHOODS 3.3, 3.4 & 3.5 I CORTE ALTURA, SITIO CALIENTE, CORTE PANORAMA, SITIO CORAZON I AND SITIO BAHIA +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ I BEGIN ANALYSIS OF AVENIDA SOLEDAD OUTLET I I OUTLET -PIPE SIZE (18" RCP) I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 48.00 TO NODE 49.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 543.40 DOWNSTREAM ELEVATION(FEET) = 542.70 ELEVATION DIFFERENCE (FEET) = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN. ) 8.735 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.332 SUBAREA RUNOFF (CFS) 0.69 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) 0.69 ********************************************************************w******* FLOW PROCESS FROM NODE 49.00 TO NODE 50.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION (FEET) = 541.00 DOWNSTREAM ELEVATION (FEET) STREET LENGTH(FEET) = 782.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 500.00 I I I I I I I I I I I I I I I I I I I Manning's FRICTION FACTOR for Streetflow section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.86 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.32 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.38 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.19 STREET FLOW TRAVEL TIME(MIN.) = 2.98 Tc(MIN.) 11.71 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.413 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 1.88 SUBAREA RUNOFF (CFS) = 4.31 0.0150· TOTAL AREA(ACRES) = 2.13 PEAK FLOW RATE(CFS) = 5.01 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 9.43 FLOW VELOCITY(FEET/SEC.) = 4.97 DEPTH*VELOCITY(FT*FT/SEC.) = 1.56 LONGEST FLOWPATH FROM NODE 48.00 TO NODE 50.00 = 852.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 117.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 501.50 DOWNSTREAM (FEET) 501.00 FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.55 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 5.01 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 11.76 LONGEST FLOWPATH FROM NODE 48.00 TO NODE 117.00 876.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STRE~ 1 ARE: TIME OF CONCENTRATION(MIN.) 11.76 RAINFALL INTENSITY(INCH/HR) = 4.40 TOTAL STREAM AREA(ACRES) = 2.13 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.01 +--------------------------------------------------------------------------+ I WEIGHTED COEFFICIENT USED DUE TO LANDSCAPE AND ROAD AREAS I I LANDSCAPE (C=0.45) -ROAD (C=0.85) -WEIGHTED (C=0.70) I I I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 51.00 TO NODE 93.00 IS CODE = 21 r-------------------------------------------~-~-----~- I I I I I I I I I I I I I I I I »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 536.00 DOWNSTREAM ELEVATION(FEET) = 530.00 ELEVATION DIFFERENCE (FEET) = 6.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN.) 3.963 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.793 SUBAREA RUNOFF (CFS) 0.48 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) 0.48 **************************************************************************** FLOW PROCESS FROM NODE 93.00 TO NODE 52.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 530.00 DOWNSTREAM ELEVATION(FEET) = 500.00 STREET LENGTH(FEET} = 391.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 20.00 INSIDE STREET CROSSFALL(DEClMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.04 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.54 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.81 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.14 STREET FLOW TRAVEL TIME(MIN.) = 1.35 Tc(MIN.) 7.35 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.957 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) 0.75 SUBAREA RUNOFF (CFS) = 3.13 0.0150 TOTAL AREA(ACRES) = 0.85 PEAK FLOW RATE(CFS) 3.60 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.43 FLOW VELOCITY(FEET/SEC.) = 5.38 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 51.00 TO NODE 52.00 = 491.00 1.48 FEET. **************************************************************************** FLOW PROCESS FROM NODE 52.00 TO NODE 117.00 IS CODE = 31 I I I I I I I I I I I I I I I I I I I »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 501.50 DOWNSTREAM (FEET) 501.00 FLOW LENGTH(FEET) = 43.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 5.59 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 3.60 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.48 LONGEST FLOWPATH FROM NODE 51.00 TO NODE 117.00 534.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.48 RAINFALL INTENSITY(INCH/HR) = 5.89 TOTAL STREAM AREA(ACRES) = 0.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.60 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 5.01 11.76 4.400 2.13 2 3.60 7.48 5.891 0.85 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 7.34 7.48 5.891 2 7.70 11.76 4.400 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 7.70 Tc (MIN.) = 11.76 TOTAL AREA(ACRES) = 2.98 LONGEST FLOWPATH FROM NODE 48.00 TO NODE 117.00 = 876.00 FEET. +--------------------------------------------------------------------------+ I END OF DISCHARGE TO CENTRAL OUTLET I I CORNER OF AVENIDA SOLEDAD AND RANCHO SANTA FE ROAD I I FLOW FROM SITIO CORAZON & AVENIDA SOLEDAD I +--------------------------------------------------------------------------+ ============================================================================ END OF STUDY SUMMARY: TOTAL AREA (ACRES) = PEAK FLOW RATE (CFS) 2.98 TC(MIN.) = 7.70 11.76 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I I I I I I I I I TOTAL AREA (ACRES) PEAK FLOW RATE (CFS) = 45.75 TC(MIN.) = 98.43 16.55 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS r--------------------.,-,-------~~ I I I I I I' I I, I I I 'I I I' I I I I- II I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 3 Site Hydrologic Analysis -100-Year Developed Conditions 3.3 -Neighborhood 3.4 & 3.5 DE:ad h:\reporlsl23521151Idralnage study01,doc w,o,2352·151 1014/2oo66:47,AM I I I I I I I I' I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES -SAN DIEGO 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * LA COSTA OAKS NORTH -NEIGHBORHOOD 3.4 * * 100-YEAR DEVELOPED CONDITION HYDROLOGIC ANALYSIS (ULTIMATE CONDITION) * * W.O.# 2352-124 PREPARED BY: DJG * ************************************************************************** FILE NAME: H:\AES2003\2352\124\34DEV.DAT TIME/DATE OF STUDY: 10:00 09/27/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 . SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) ---===== ========= ================= ====== ====== ===== 1 17.0 12.0 0.020/0.020/ 0.50 1.50 0.0313 0.125 2 18.0 13.0 0.020/0.020/ 0.50 1.50 0.0313 0.125 3 20.0 15.0 0.020/0.020/ 0.50 1.50 0.0313 0.125 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb), 2. (Depth) * (Velocity) Constraint = 4.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FACTOR (n) ======= 0.0150 0.0150 0.0150 +--------------------------------------------------------------------------+ I I BEGIN NEIGHBORHOOD 3.4 -NODE SERIES 300 I I I I +--------------------------------------------------------------------------+ I I I I I I I I I I I I' I I **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ==============================================================~============= *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH (FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 523.30 DOWNSTREAM ELEVATION(FEET) = 522.60 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 5.548 SUBAREA RUNOFF(CFS) = 0.69 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) = 0.69 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 521.00 DOWNSTREAM ELEVATION(FEET) = 510.00 STREET LENGTH(FEET) = 383.90 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 15.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.26 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.53 AVERAGE FLOW VELOCITY (FEET / SEC. ) 3 . 29 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.91 STREET FLOW TRAVEL TIME(MIN.) = 1.95 Tc(MIN.) 10.16 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 4.837 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA(ACRES) 1.24 SUBAREA RUNOFF(CFS) 3.12 0.0150 TOTAL AREA(ACRES) = 1.48 PEAK FLOW RATE (CFS) = 3.72 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 9.41 FLOW VELOCITY(FEET/SEC.) = 3.71 DEPTH*VELOCITY(FT*FT/SEC.) 1.17 LONGEST FLOWPATH FROM NODE 301.00 TO, NODE 303.00 = 448.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 1 I I I I I I I I I I I I I. I I I I I »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.16 RAINFALL INTENSITY (INCH/HR) = 4.84 TOTAL STREAM AREA (ACRES) = 1.48 PEAK FLOW RATE (CFS) AT CONFLUENCE = J.72 **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *US~R SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 534.80 DOWNSTREAM ELEVATION(FEET) = 534.10 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.332 SUBAREA RUNOFF(CFS) = 0.72 TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) 0.72 ************************************************************-**************** FLOW PROCESS FROM NODE 305.00 TO NODE 303.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 531.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 595.10 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 2.37 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.34 AVERAGE FLOW VELOCITY(FEET/SEC.) 3.60 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.98 STREET FLOW TRAVEL TIME(MIN.) = 2.76 Tc(MIN.) = 11.49 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.468 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.520 SUBAREA AREA (ACRES) 1.41 SUBAREA RUNOFF (CFS) 3.28 510.00 0.0150 TOTAL AREA(ACRES) = 1.67 PEAK FLOW RATE (CFS) = 3.88 I I I I I 1- I I I 'I I I I I I I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) 9.16 FLOW YELOCITY(FEET/SEC.) = 4.05 DEPTH*VELOCITY(FT*FT/SEC.) 1.25 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 303.00 = 665.10 FEET. +--------------------------------------------------------------------------+ I The weighted runoff coefficient in the Code 6 above was used since Lots I I #2-#5 pertain to PA 3.3 which has 3.90 DU/Ac (C=0.52) and Lots #82-#83 I I pertain to PA 3.4 which has 4.79 DU/Ac (C=0.57) I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< =================================================================~========== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 11.49 RAINFALL INTENSITY(INCH/HR) = 4.47 TOTAL STREAM AREA(ACRES) = 1.67 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.88 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 3.72 10.16 4.837 2 3.88 11.49 4.468 AREA (ACRE) 1.48 1. 67 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 7.15 10.16 4.837 2 7.32 11.49 4.468 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 7.32 Tc(MIN.) = 11.49 TOTAL AREA(ACRES) = 3.15 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 303.00 = 665.10 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 306.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 500.30 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 28.70 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.64 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 7.32 499.80 ---------------------------------------~~------ I I I I I I I· I I I I I I. I I I I I 0.06 Tc(MIN.) = PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 304.00 TO NODE 11.55 306.00 693.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 306.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.55 RAINFALL INTENSITY (INCH/HR) = 4.45 TOTAL STREAM AREA(ACRES) = 3.15 PEAK FLOW RATE (CFS) AT CONFLUENCE = 7.32 **************************************************************************** FLOW PROCESS FROM NODE 307.00 TO NODE 308.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-S.PECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 522.70 DOWNSTREAM ELEVATION(FEET) = 522.20 ELEVATION DIFFERENCE (FEET) = 0.50 SUBAREA OVERLAND TIME OF FLOW (MIN.) = 8.683 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 58.08 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.352 SUBAREA RUNOFF (CFS) 0.78 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) = 0.78 **************************************************************************** FLOW PROCESS FROM NODE 308.00 TO NODE 309.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 520.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 341.20 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.020 SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.75 2.51 510.00 0.0150 r--------------------------------- I I I I I I I I I I I I I I I > AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.50 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.98 STREET FLOW T~VEL TIME(MIN.) = 1.63 Tc(MIN.) = 10.31 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.791 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT SUBAREA AREA(ACRES) 1.39 TOTAL AREA(ACRES) = 1.67 0.520 SUBAREA RUNOFF (CFS) PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) 9.77 3.46 FLOW VELOCITY(FEET/SEC.) = 3.88 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOW PATH FROM NODE 307.00 TO NODE 309.00 = 406.20 4.16 1.25 FEET. **************************************************************************** FLOW PROCESS FROM NODE 309.00 TO NODE 306.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 499.90 DOWNSTREAM (FEET) 499.80 FLOW LENGTH(FEET) = 6.80 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.21 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 4.16 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 10.33 LONGEST FLOWPATH FROM NODE 307.00 TO NODE 306.00 = 413.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 306.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< 1 ===~======================================================================== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.33 RAINFALL INTENSITY(INCH/HR) = 4.79 TOTAL STREAM AREA(ACRES) = 1.67 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.16 ** CONFLUENCE DATA ** STREAM RUNOFF Tc NUMBER (CFS) (MIN. ) 1 7.32 11.55 2 4.16 10.33 RAINFALL INTENSITY AND TIME CONFLUENCE FORMULA USED FOR * * PEAK FLOW RATE TABLE * * STREAM RUNOFF NUMBER (CFS) 1 10.97 Tc (MIN. ) 10.33 OF 2 INTENSITY ( INCH/HOUR) 4.452 4.786 CONCENTRATION STREAMS. INTENSITY ( INCH/HOUR) 4.786 AREA (ACRE) 3.15 1.67 RATIO I I I I I I I I I I I I I I I I I I I 2 11.19 11.55 4.452 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 11.19 Tc(MIN.) = 11.55 TOTAL AREA(ACRES) = 4.82 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 306.00 = 693.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 312.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME TERU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) FLOW LENGTH(FEET) = 75.60 ASSUME FULL-FLOWING PIPELINE 499.40 DOWNSTREAM (FEET) = MANNING'S N = 0.013 PIPE-FLOW VELOCITY(FEET/SEC.) 6.33 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 11.19 0.20 Tc(MIN.) = 11. 75 498.70 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 304.00 TO NODE 312.00 769.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 312.00 TO NODE 313.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME TERU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT}««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 498.40 DOWNSTREAM (FEET) 496.70 FLOW LENGTH(FEET) = 88.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.70 GIVEN,PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 11.19 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 11.92 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 313.00 = 857.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 313.00 TO NODE 314.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 496.30 DOWNSTRE~(FEET) = FLOW LENGTH(FEET) = 287.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.21 GIVEN PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW (CFS) = 11.19 NUMBER OF PIPES = 0.29 Tc(MIN.) = 1 468.10 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 304.00 TO NODE 12.22 314.00 = 1144.80 FEET. **************************************************************************** FLOW PROCESS FROM NODE 314.00 TO NODE 325.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME TERU SUBAREA««< I I I I I I I I I I I I I I I I I I »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 467.80 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 228.70 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.07 GIVEN PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW (CFS) = 11.19 NUMBER OF PIPES 0.27 Tc(MIN.) = 1 452.50 PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 304.00 TO NODE 12.49 325.00 1373.50 FEET. ****************************************************************'************ FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.49 RAINFALL INTENSITY(INCH/HR) = 4.23 TOTAL STREAM AREA(ACRES) = 4.82 PEAK FLOW RATE (CFS) AT CONFLUENCE = 11.19 **************************************************************************** FLOW PROCESS FROM NODE 315.00 TO NODE 316.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 506.90 DOWNSTREAM ELEVATION(FEET) = 506.20 ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.55 TOTAL AREA(ACRES) = 0.19 TOTAL RUNOFF(CFS) 0.55 ***********************************************.***************************** FLOW PROCESS FROM NODE 317.00 TO NODE 316.00 IS CODE = .81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.548 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6325 SUBAREA AREA(ACRES) 0.09 SUBAREA RUNOFF(CFS) = 0.43 TOTAL AREA(ACRES) 0.28 TOTAL RUNOFF(CFS) = 0.98 TC(MIN.) = 8.21 **************************************************************************** FLOW PROCESS FROM NODE 316.00 TO NODE 325.00 IS CODE = 62 I I I I I I I I I I I I I I I I I I I »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED) ««< ============================================================================ UPSTREAM ELEVATION(FEET) = 503.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET) = 519.10 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 13.00 INSIDE STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = AVERAGE FLOW VELOCITY(FEET/SEC.) 7.08 5.03 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 1.35 STREET FLOW TRAVEL TIME(MIN.) = 1.72 Tc(MIN.) 100 ~EAR RAINFALL INTENSITY(INCH/HOUR) = 4.908 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.536 9.93 SUBAREA AREA(ACRES) 1.66 TOTAL AREA(ACRES) = 1.94 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE (CFS) END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) 8.88 3.11 4.24 FLOW VELOCITY(FEET/SEC.) = 5.63 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 315.00 TO NODE 325.00 = 584.10 466.00 0.0150 5.11 1.71 F~ET. **************************************************************************** FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< =======================================================================~==== TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 9.93 RAINFALL INTENSITY (INCH/HR) = 4.91 TOTAL STREAM AREA(ACRES) = 1.94 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.11 **************************************************************************** FLOW PROCESS FROM NODE 318.00 TO NODE 319.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ============================================================================ *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 65.00 UPSTREAM ELEVATION(FEET) = 510.80 DOWNSTREAM ELEVATION(FEET) = 510.10 I I I I I I I I I I I I I I I I I I I ELEVATION DIFFERENCE (FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.212 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.548 SUBAREA RUNOFF (CFS) 0.89 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) 0.89 **************************************************************************** FLOW PROCESS FROM NODE 320.00 TO NODE 319.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ============================================================================ 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.548 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .8700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6054 SUBAREA AREA(ACRES) 0.10 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) 0.41 TOTAL RUNOFF(CFS) = TC(MIN.) = 8.21 0.48 1.38 **************************************************************************** FLOW PROCESS FROM NODE 319.00 TO NODE 325.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED)««< ============================================================================ UPSTREAM ELEVATION(FEET) = 509.00 DOWNSTREAM ELEVATION(FEET) = 466.00 STREET LENGTH{FEET) = 586.10 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL{DECIMAL) 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 13.00 Manning's FRICTION FACTOR for Streetflow Section{curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.43 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH{FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.33 AVERAGE FLOW VELOCITY(FEET/SEC.) 5.24 PRODUCT OF DEPTH&VELOCITY{FT*FT/SEC.) = 1.43 STREET FLOW TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) = 10.08 100 YEAR RAINFALL INTENSITY{INCH/HOUR) 4.862 *USER SPECIFIED (SUBAREA) : USER-SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT 0.537 SUBAREA AREA(ACRES) 1.62 SUBAREA RUNOFF{CFS) = 4.10 TOTAL AREA{ACRES) = 2.03 PEAK FLOW RATE (CFS) 5.30 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.31 HALFSTREET FLOOD WIDTH{FEET) 8.94 FLOW VELOCITY{FEET/SEC.) = 5.78 DEPTH*VELOCITY{FT*FT/SEC.) 1.76 LONGEST FLOWPATH FROM NODE 318.00 TO NODE 325.00 = 651.10 FEET. I I I I I I I I I I I I I II I I I I I **************************************************************************** FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ============================================================================ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) 10.08 RAINFALL INTENSITY(INCH/HR) = 4.86 TOTAL STREAM AREA(ACRES) = 2.03 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.30 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 11.19 12.49 4.234 2 5.11 9.93 4.908 3 5.30 10.08 4.862 RAINFALL INTENSITY AND TIME OF CONCENTRATION CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 19.98 9.93 4.908 2 20.10 10.08 4.862 3 20.21 12.49 4.234 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA (ACRE) 4.82 1.94 2.03 RATIO PEAK FLOW RATE (CFS) 20.21 Tc(MIN.) = 12.49 TOTAL AREA(ACRES) = 8.79 LONGEST FLOWPATH FROM NODE 304.00 TO NODE 325.00 1373.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 325.00 TO NODE 311.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ============================================================================ ELEVATION DATA: UPSTREAM (FEET) = 452.20 DOWNSTREAM (FEET) 425.00 FLOW LENGTH(FEET) = 85.10 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 28.62 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPE-FLOW (CFS) = 20.21 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 0.05 Tc(MIN.) = 304.00 TO NODE 12.54 311.00 = 1 1458.60 FEET. +--------------------------------------------------------------------------+ I I I END NEIGHBORHOOD 3.3 -NODE SERIES 300 I I I +--------------------------------------------------------------------------+ ============================================================================ END OF STUDY SUMMARY: I I I I I I I I I I I I I I I I I I I TOTAL AREA (ACRES) PEAK FLOW RATE (CFS) 8.79 TC(MIN.) = 20.21 12.54 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS I I I I I ·1 I I I I I I I I I I I .1 I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 4 Storm Drain Hydraulic Analysis OE:ad h:lreportsI235Z1151\dralnage study01.doc w.o.2352·151 101412006 6:47 AM I I I I I I I I I I I I I I I I I I II La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 4 Storm Drain Hydraulic Analysis 4.1 -Neighborhood 3.1 OE:ad h:lreporlsl23521151Idralnage study01.doc w.o.2352-151 101412006 6:47 AM ------------------- LEGEND LOCATION ID NODE G PROPOSED STORM DRAIN =i!3F=== EXISTING STORM DRAIN ===E':1=== HUNSAKER & ASSOCIATES SAN OIECO, INC. PlANNING 111179 Huomekens Street ENGlNEEllING s.n Diego, Co 92121 SURVEYING PH(858)558-4500· FX(858)5S8-"II"II 46 14J'2.41 47 14.3'3.91 STORM LEGEND MAP FOR SHEET 1 LA COSTA OAKS NORTH OF NEIGHBORHOOD 3.1 CITY OF CARLS CALIFORNIA 1 It O~"1Z III ;!; II .. ~ COUNTY PUBLIC WORKS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 I DESIGNER: DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D 1 383.94 2 8 98.4 98.4 23.53 380.44 380.68 0.00 42. 9 94.3 94.3 31.51 381. 01 381.49 0.00 42. 10 88.4 88.4 278.13 381. 82 391.22 0.00 42. 11 13.9 13.9 65.01 393.22 394.84 0.00 18. 12 7.8 7.8 148.28 395.17 400.28 0.00 18. 2 13 7.8 7.8 199.01 400.61 408.37 0.00 18. 12 14 3.1 3.1 28.06 408.70 409.30 0.00 18. 20 5.5 5.5 3.63 383.01 383.07 0.00 18. 25 1.3 1.3 42.76 383.82 384.69 0.00 18. 26 1.3 1.3 123.03 385.02 387.81 0.00 18. . 2 30 6.5 6.5 5.95 383.82 383.94 0.00 18. 35 77.9 77.9 42.50 391. 87 394.47 0.00 36. 36 71.5 71.5 241.14 394.80 407.79 0.00 36. 37 71.5 71.5 5.96 408.12 408.28 0.00 36. 38 64.7 64.7 56.12 408.61 409.23 0.00 36. 2 39 63.1 63.1 29.40 409.56 409.88 0.00 36. 40 63.1 63.1 105.34 410.21 416.01 0.00 36. 2 41 54.0 54.0 104.46 416.34 422.13 0.00 36. 42 2.8 2.8 27.25 424.08 424.35 0.00 18. 45 2.8 2.8 27.25 396.30 396.81 0.00 18. 2 50 5.5 5.5 3.25 396.30 396.39 0.00 18. 55 8.8 8.8 3.25 409.61 409.64 0.00 24. 2 56 2.0 2.0 10.15 410.14 410.68 0.00 18. 60 2.3 2.3 57.41 411.06 428.50 0.00 18. I STORM DRAIN ANALYSIS (INPUT) W S KJ KE o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 1 0.00 0.20 o. 1 0.00 0.20 o. 3 0.50 0.00 o. 1 0.00 0.20 o. 1 0.00 0.20 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 1 0.00 0.20 o. 1 0.00 0.20 o. 1 0.00 0.20 o. 3 0.50 0.20 o. 1 0.00 0.20 o. 1 0.00 0.20 KM LC L1 L3 0.05 1 9 20 0.05 o 10 25 0.05 o 11 35 0.05 o 12 80 0.05 o l3 o 0.05 o 14 90 0.05 o o o 0.05 9 o o 0.05 10 26 o 0.05 o o o 0.05 10 o o 0.05 11 36 45 0.05 o 37 o 0.05 o 38 55 0.05 o 39 60 0.05 o 40 65 0.05 o 41 70 0.05 o 42 75 0.05 o o o 0.05 36 o o 0.05 36 o o 0.05 38 56 o 0.05 o o o 0.05 39 o o REPT: PC/RD4412.1 DATE: 02/15/07 PAGE 1 L4 A1 A3 A4 J N o o. 90. o. 4.00 0.013 30 90. 90. 38. 4.00 0.013 o o. 90. o. 4.00 0.013 85 o. 61. 90. 4.00 0.013 o o. o. o. 4.00 0.013 o 76. 90. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o 90. o. o. 4.00 0.013 o o. o • o. 4.00 0.013 o o. o. o. 4.00 0.013 50 o. 90. 90. 4.00 0.013 o 90. o. o. 4.00 0.013 o o. 90. o. 4.00 0.013 o o. 90. o. 4.00 0.013 o o. 90. o. 4.00 0.013 o o. 90. o. 4.00 0.013 o 90. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.0l3 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.0l3 ILA COUNTY PUBLIC WORKS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 I DESIGNER: DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D I 2 65 0.5 0.5 21. 99 411.71 412.96 0.00 18. 2 70 13.2 13.2 118.91 417.34 422.80 0.00 24. I 2 71 12.9 12.9 36.17 423.30 432.28 0.00 18. I 2 75 51.3 51.3 65.12 422.26 426.11 0.00 36. 2 80 2.9 2.9 3.25 395.17 395.32 0.00 18. 85 3.5 3.5 31.13 395.17 396.52 0.00 18. 2 90 4.7 4.7 3.25 408.70 408.73 0.00 18. I I I I I I I I I I I STORM DRAIN ANALYSIS (INPUT) W S KJ KE O. 1 0.00 0.20 O. 3 0.50 0.20 O. 1 0.00 0.02 O. 1 0.00 0.20 O. 1 0.00 0.20 o. 1 0.00 0.20 o. 1 0.00 0.20 KM LC Ll L3 0.05 40 0 0 0.05 41 71 0 0.05 0 0 0 0.05 42 0 0 0.05 12 0 0 0.05 12 o o 0.05 14 o o REPT: PC/RD4412.1 DATE: 02/15/07 PAGE 2 L4 Al A3 A4 J N 0 O. O. O. 4.00 0.013 0 9. O. O. 4.00 0.013 0 O. O. O. 4.00 0.013 0 O. O. O. 4.00 0.013 0 O. O. O. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 ILA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 DJG IDESIGNER: LINE Q DC FLOW SF-FULL V 1 D W DN V 2 (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC 9 12 I 14 26 I ! 1,10 I HYDRAULIC GRADE LINE' CONTROL 383.94 98.4 42 0 2.77 3.04 PART 0.00956 10.2 94.3 42 0 2.28 3.00 PART 0.00878 12.3 88.4 42 0 1.70 2.92 SEAL 0.00772 9.2 X = 51.16 X(N) 0.00 X(J) = 51.16 13.9 18 0 1.05 1.38 FULL 0.01751 7.9 7.8 18 0 0.66 1.08 FULL 0.00551 4.4 7.8 18 0 0.64 1.08 PART 0.00551 10.9 x = 0.00 X(N) 106.63 3.1 18 0 0.46 0.67 SEAL 0.00087 1.8 X = 5.51 X(N) 0.00 HYDRAULIC GRADE LINE CONTROL 383.88 5.5 18 o 0.67 0.90 PART 0.00274 5.1 HYDRAULIC GRADE LINE CONTROL 386.17 1.3 18 0 0.30 0.43 SEAL 0.00015 0.7 X = 41.99 X(N) 0.00 1.3 18 0 0.29 0.43 PART 0.00015 0.9 10.2 10.7 10.3 F(J) 7.9 4.4 5.7 2.5 4.9 0.7 3.1 X = 0.00 X(N) 43.15 X(J) = 23.50 F(J) HYDRAULIC GRADE LINE CONTROL = 386.17 6.5 18 o 0.69 0.98 FULL 0.00383 3.7 3.7 HYDRAULIC GRADE LINE CONTROL 396.55 77.9 36 o 1.45 2.75 PART 0.01364 20.7 19.4 380.44 380.68 381. 01 381.49 381. 82 391. 22 53.55 D(BJ) 393.22 394.84 395.17 400.28 400.61 408.37 383.94 384.16 383.60 384.49 387.85 394.14 1. 77 D(AJ) 398.96 400.10 401.37 402.20 401.25 409.45 408.70 409.30 410.31 410.29 383.01 383.07 383.88 383.97 383.82 384.69 386.17 386.17 385.02 387.81 386.19 388.24 0.25 D(BJ) 0.29 D(AJ) 383.82 383.94 386.17 386.20 391.87 394.47 393.44 396.13 D 1 (FT) D 2 (FT) 3.50 3.48 2.59 3.00 6.03 2.92 4.68 5.74 5.26 6.20 1.92 0.64 1.08 TW CALC 0.00 0.00 0.00 0.00 0.00 0.00 1.61 0.99 410.41 0.87 2.35 1.17 0.60 2.35 1.57 0.90 384.43 1.48 0.00 0.43 388.42 2.26 386.45 1.66 0.00 REPT: PC/RD4412.2 DATE: 02/15/07 PAGE 1 TW CK REMARKS 0.00 HJ @ UJT 0.00 0.00 HYD JUMP 0.00 0.00 HJ @ UJT 0.00 0.00 0.00 0.00 0.00 HYD JUMP 0.00 0.00 ILA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 I DESIGNER: DJG LINE Q D W DN DC FLOW SF-FULL V 1 V 2 (FT) TYPE (FT/FT) (FPS) (FPS) NO (CFS) (IN) (IN) (FT) 136 38 40 I 36 I 38 56 I: ,I 60 I I 71.5 36 o 1.43 2.67 PART 0.01149 20.9 10.7 71.5 36 o 1.77 2.67 FULL 0.01149 10.1 10.1 64.7 36 o 2.28 2.58 FULL 0.00941 9.2 9.2 63.1 36 o 2.24 2.55 FULL 0.00895 8.9 8.9 63.1 36 o 1.32 2.55 PART 0.00895 19.7 17.4 54.0 36 o 1.21 2.39 PART 0.00655 20.3 20.5 2.8 18 o 0.53 0.63 PART 0.00071 5.0 4.0 HYDRAULIC GRADE LINE CONTROL 396.20 2.8 18 o 0.45 0.63 PART 0.00071 HYDRAULIC GRADE LINE CONTROL 396.20 5.5 18 o 0.58 0.90 PART 0.00274 HYDRAULIC GRADE LINE CONTROL 414.30 8.8 24 o 0.89 1.05 FULL 0.00151 2.0 18 o 0.29 0.53 FULL 0.00036 HYDRAULIC GRADE LINE CONTROL 415.18 2.3 18 0 0.20 0.57 SEAL 0.00048 X = 8.64 X(N) 41.03 X(J) = 6.1 4.0 6.0 4.9 2.8 2.8 1.1 1.1 1.3 3.7 9.11 F(J) FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC 394.80 407.79 396.26 410.46 408.12 408.28 413.94 414.01 408.61 409.23 414.59 415.12 409.56 409.88 415.24 415.52 410.21 416.01 411.60 417.54 416.34 422.13 417.55 423.33 424.08 424.35 424.61 424.98 396.30 396.81 396.76 397.44 396.30 396.39 397.07 397.29 409.61 409.64 414.30 414.31 410.14 410.68 414.50 414.51 411.06 428.50 415.18 429.07 1.17 D(BJ) 0.20 D(AJ) D 1 (FT) 1.46 5.82 5.98 5.68 1.39 1.21 0.53 0.46 0.77 4.69 4.36 D 2 (FT) TW CALC 2.67 0.00 5.73 0.00 5.89 0.00 5.64 0.00 1.53 0.00 1.20 0.00 0.63 425.27 0.63 397.73 0.90 397.75 4.61 0.00 3.83 414.53 4.12 0.57 429.33 1.34 REPT: PC/RD4412.2 DATE: 02/15/07 PAGE 2 TW CK 0.00 0.00 0.00 REMARKS 0.00 HJ @ UJT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HYD JUMP ILA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 02/15/07 I PAGE 3' PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 I,DESIGNER: DJG D W DN V 1 V 2 FL 1 FL 2 HG 1 HG 2 LINE Q DC FLOW SF-FULL D 1 D 2 TW TW NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS 1-39 HYDRAULIC GRADE LINE CONTROL 413.56 1,65 0.5 18 0 0.15 0.26 SEAL 0.00002 0.3 0.8 411.71 412.96 413.56 413.55 1. 85 0.59 413.56 0.00 X = 6.11 X(N) 0.00 141 HYDRAULIC GRADE LINE CONTROL 417.54 I 70 13.2 24 0 0.71 1.30 PART 0.00340 13.4 21.4 411.34 422.80 418.04 423.30 0.70 0.50 0.00 0.00 71 12.9 18 0 0.51 1.35 PART 0.01508 21.2 7.7 423.30 432.28 423.86 433.63 0.56 1.35 434.57 0.00 I I' 42 HYDRAULIC GRADE LINE CONTROL 423.97 75 51.3 36 0 1.16 2.33 PART 0.00592 12.3 8.7 422.26 426.11 423.97 428.44 1.71 2.33 429.85-0.00 I 1'12 HYDRAULIC GRADE LINE CONTROL = 400.73 80 2.9 18 0 0.36 0.64 FULL 0.00076 1.6 1.6 395.17 395.32 400.73 400.74 5.56 5.42 400.79 0.00 I' 112 HYDRAULIC GRADE LINE CONTROL 400.73 185 3.5 18 0 0.40 0.71 FULL 0.00111 2.0 2.0 395.17 396.52 400.73 400.77 5.56 4.25 400.85 0.00 1'14 HYDRAULIC GRADE LINE CONTROL 409.88 190 4.7 18 0 0.72 0.83 PART 0.00200 3.1 3.2 408.70 408.73 409.88 409.88 1.18 1.15 410.07 0.00 I' I I r--------------------------------------------------------------------------------------------------------------------------------- I I I I I' I I I I I I I I I I ,I I I I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH EY EITHER DRAWDOWN OR BACKWATER X (J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN l!.INE F (J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D (BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE" LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 2/15/2007 10:43 , 125 OPEN SPACE 16.2 ACRES 71 LEGEND 39 1538.51 LOCAlION 10 NODE 0 PROPOSED STORM DRAIN = =Ea== = = EXlSlING STORM DRAIN = ==1!3== = = 62 1532.91 40 1535.31 41 32 1559.21 42 1531.11 43 1529.11 55 1517.61 48 1517.41 54 1515.21 50 1518.81 40 1468.11 46 1503.71 " ~ STORM LEGEND MAP FOR LA COSTA OAKS NORTH NEIGHBORHOOD 3.1 WEST CllY OF CARLSBAD, CALIFORNIA SHEET 1 OF 1 I LA COUNTY PUBLIC WORKS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 WEST I DESIGNER: DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D I 8 1 506.43 2 105 9.9 9.9 231.27 503.57 512.33 0.00 24. I 2 106 9.9 9.9 194.03 512.66 515.61 0.00 24. I 2 107 2 110 5.3 5.3 268.80 516.11 525.39 4.7 4.7 26.25 515.61 516.69 0.00 18. 0.00 18. I I I I I I I I I I I I I STORM DRAIN ANALYSIS (INPUT) W S KJ KE KM LC Ll L3 O. 3 0.15 0.00 0.30 1 106 0 O. 3 0.50 0.00 0.05 0 107 110 O. 1 0.00 0.20 0.11 0 0 0 O. 1 0.00 0.20 0.05 107 0 0 L4 A1 A3 o O. O. o O. 90. o O. O. o O. O. REPT: PC/RD4412.1 DATE: 09/29/06 PAGE 1 A4 J N O. 4.00 0.013 O. 4.00 0.013 O. 4.00 0.013 O. 4.00 0.013 I LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3. 1 WEST I DESIGNER: DJG LINE Q D W DN DC FLOW SF-FULL (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) HYDRAULIC GRADE LINE CONTROL 506.43 1106 107 I 9.9 24 a 0.64 1.12 SEAL 0.00191 X = 23.91 X{N) 112.99 X{J) = 9.9 24 0 0.82 1.12 PART 0.00191 x = 0.00 X{N) = 122.87 5.3 18 0 0.53 0.89 PART 0.00255 X = 0.00 X{N) 72.01 HYDRAULIC GRADE LINE CONTROL = 516.69 V 1 V 2 (FPS) (FPS) 3.2 9.7 27.44 F{J) 8.1 5.5 9.4 4.9 FL 1 (FT) 503.57 3.72 512.66 516.11 FL 2 (FT) 512.33 D{BJ) 515.61 525.39 HG 1 CALC 506.43 0.64 513.48 516.64 HG 2 CALC 513.05 D{AJ) 516.73 526.28 4.7 18 a 0.48 0.83 PART 0.00200 8.6 4.7 515.61 516.69 516.13 517.52 I I I I I I I I I I I D 1 (FT) 2.86 1.85 0.82 0.53 0.52 D 2 (FT) 0.72 1.12 0.89 TW CALC 0.00 0.00 526.72 0.83 517.93 REPT: PC/RD4412.2 DATE: 09/29/06 PAGE 1 TW CK REMARKS 0.00 HYD JUMP 0-.00 0.00 HJ @ DJT 0.00 .------------------------------------------------ I I I I I I I I I I I I I I I I I I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X (J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F (J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D (AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 9/29/2006 ll:15 I LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.1 (INPUT) DATE: ,09/29/06 I PAGE 1 PROJECT: LA COSTA OAK NORTH -NEIGHBORHOOD 3.1 SOUTH I DESIGNER: DJG CD L2 MAX Q ADJQ LENGTH FL 1 FL 2 CTL/TW D W S KJ KE KM LC Ll L3 L4 Al A3 A4 J N I 8 1 450.86 2 5 6.5 6.5 39.07 498.86 499.25 0.00 24. O. 3 0.50 0.00 0.05 J. 6 10 0 90.' 90. O. 4.00 0.013 I 2 6 4.7 4.7 26.25 500.08 500.46 0.00 18. O. 1 0.00 0.20 0.05 0 0 0 0 o. o. O. 4.00 0.013 I 2 10 2.0 2.0 4.25 500.08 500.13 0.00 18. O. 1 0.00 0.20 0.05 6 o o a o. o. O. 4.00 0.0-13 I I I I I I I I I I I I I I LA COUNTY PUBLIC WORKS I PROJECT: I DESIGNER: LINE Q LA COSTA OAK NORTH -NEIGHBORHOOD 3.1 SOUTH DJG D W DN DC FLOW SF-FULL V 1 STORM DRAIN ANALYSIS V 2 (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC HYDRAULIC GRADE LINE CONTROL = 450.86 I 5 6.5 24 o 0.73 0.90 PART 0.00083 6.1 4.8 498.86 499.25 499.60 500.15 6 4.7 18 o 0.63 0.83 PART 0.00200 6.2 4.7 500.08 500.46 500.75 501.29 I HYDRAULIC GRADE LINE CONTROL = 500.45 10 2.0 18 o 0.42 0.53 PART 0.00036 3.9 3.6 500.08 500.13 500.57 500.66 I I I I I I I I I I I I D 1 (FT) 0.74 0.67 0.49 D 2 (FT) 0.90 TW CALC 0.00 0.83 501.70 0.53 500.90 REPT: PC/RD4412.2 DATE: 09/29/06 PAGE 1 TW CK 0.00 REMARKS 0.00 HJ @ DJT 0.00 I I I I I I I I I I I I I I I I I I v 1, V 2, x X(N) X(J) F(J) D(BJ) D(AJ) FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END FL 2, D 2 AND HG 2 REFER TO UPSTREAM END -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE -THE COMPUTED FORCE AT THE HYDRAULIC JUMP -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 9/29/2006 11:43 .--------------------~~----- I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 4 Storm Drain Hydraulic Analysis 4.2 -Neighborhood 3.3 DE:ad h:lreporls\23521151Idrainage studyOl.doc w.o.2352·151 101412008 6:47 AM I I I I ~ I I I~-rRl1r8& 97 114 IBil £m;lI ~MII 92 ill mfD] .. 6 f.' II III :in-----Jr---S--A--!E--11Ii~ fill Ilf .. i.%' "-,--'--;;4/1;' III -------... . ~ ...... __ .. ~ ... ~ 115 ~ 85 15.lO.81 tMnl~'~I~J~'~I~ ~ ~ 25 WfJ] LEGEND LOCATION 10 NODE PROPOSED STORM DRAIN EXISTING STORM DRAIN o ==Il3==== ===EiI=== 85 ~ 19 Imll is 24 tm1l 28 !mIl , 88 18 Im1l ImlI 24 I 28 I 22' 21 wm WZIJ Imll I:mil %.. ~ In STORM LEGEND MAP FOR LA COSTA OAKS NORTH NEIGHBORHOOD 3.3 CITY OF CARLSBAD, CALIFORNIA SHEET 1 OF 1 ILA COUNTY PUBLIC WORKS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 WEST I DESIGNER: DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D 1 487.58 2 4 44.3 44.3 64.35 487.58 509.13 0.00 48. 5 44.3 44.3 5.00 509.46 509.75 0.00 48. 6 44.3 44.3 170.62 510.08 512.43 0.00 48. 2 7 37.9 37.9 37.06 512.43 512.90 0.00 48. 8 31.8 31.8 144.80 513.31 514.63 0.00 48. 2 9 31.8 31.8 215.10 515.13 517.81 0.00 42. 10 26.6 26.6 324.57 518.14 521.13 0.00 36. 13.7 13.7 61.82 521.46 522.29 0.00 36. 4.7 4.7 495.54 523.29 525.81 0.00 24. 13 4.7 4.7 255.88 526.14 527.27 0.00 24. 2 20 6.9 6.9 6.78 513.68 514.01 0.00 18. 25 6.2 6.2 15.07 515.73 516.07 0.00 18. 30 5.4 5.4 5.00 519.40 522.15 0.00 18. 35 14.0 14.0 39.51 522.46 522.96 0.00 18. 36 6.8 6.8 277.40 523.45 532.47 0.00 18. 2 37 6.8 6.8 186.32 532.80 538.70 0.00 18. 12 40 5.9 5.9 4.25 523.45 523.72 0.00 18. 45 3.1 3.1 26.25 523.45 524.22 0.00 18. 50 6.0 6.0 4.77 523.79 523.99 0.00 18. 55 3.4 3.4 28.62 523.79 523.99 0.00 18. I I I STORM DRAIN ANALYSIS (INPUT) W S KJ KE o. 3 0.15 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.15 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 o. 3 0.50 0.00 KM 0.05 0.05 0.30 0.05 0.05 0.05 0.05 0.05 o. 3 0.50 0.00 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 3 0.50 0.00 0.05 o. 3 0.50 0.00 0.05 o. 1 0.00 0.20 0.11 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 o. 1 0.00 0.20 0.05 LC Ll 1 5 o 6 o 7 o 8 o 9 o 10 o 11 o 12 o 13 o o 7 o 8 o 10 o 12 36 o 37 o o 36 o 36 o 12 o 12 o L3 o 20 25 o o 30 35 50 o o o o o 40 o o o o o o REPT: PC/RD4412.1 DATE: 09/28/06 PAGE 1 L4 A1 A3 A4 J N o o. o. o. 4.00 0.013 o o. 90. o. 4.00 0.013 o o. 72. o. 4.00 0.013 o 90. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. 90. o. 4.00 0.013 o o. 90. o. 4.00 0.013 55 o. 90. 60. 4.00 0.013 o 21. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 45 o. 9.0. 90. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 o o. o. o. 4.00 0.013 I LA COUNTY PUBLIC WORKS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOO~ 3.3 WEST IDESIGNER: DJG LINE Q D W DN DC FLOW SF-FULL V 1 V 2 STORM DRAIN ANALYSIS I NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) 1 HYDRAULIC GRADE LINE CONTROL ~ 487.58 FL 1 (FT) FL 2 (FT) HG 1 CALC HG 2 CALC 44.3 48 o 0.62 1.99 PART 0.00095 30.8 13.8 487.58 509.13 488.27 510.34 5 44.3 48 o 0.96 1.99 PART 0.00095 12.8 12.3 509.46 509.7~ 510.74 511.07 I, 6 44.3 48 o 1.40 1.99 PART 0.00095 11.0 7.1 510.08 512.43 511.51 514.42 37.9 48 0 1.31 1.83 PART 0.00070 4.5 6.8 512.43 512.90 514.98 514.73 X = 0.00 X(N) 0.00 X(J) = 22.17 F(J) 12.76 D(BJ) 1.57 D(AJ) 8 31.8 48 0 1.31 1.67 PART 0.00049 3.8 12.2 513.31 514.63 515.86 515.67 I X = 0.00 X(N) = 0.00 X(J) = 31.63 F(J) 11.16 D(BJ) 1.24 D(AJ) 9 31.8 42 0 1.27 1.74 PART 0.00100 10.1 7.7 515.13 517.81 516.40 519.37 X ~ 0.00 X(N) 56.12 26.6 36 0 1.35 1.66 PART 0.00159 8.6 6.6 518.14 521.13 519.49 522.79 X = 0.00 X(N) 139.71 11 13.7 36 0 0.85 1.18 PART 0.00042 2.4 5.3 521.46 522.29 523.71 523.47 I X = 0.00 X(N) 0.00 X(J) ~ 55.66 F(J) 3.62 D(BJ) 1.04 D(~J) 12 4.7 24 o 0.74 0.76 PART 0.00043 2.9 3.8 523.29 525.81 524.33 526.65 X = 0.00 X(N) 46.32 4.7 24 0 0.77 0.76 PART 0.00043 4.3 4.2 526.14 527.27 526.90 528.04 X = 0.00 X(N) 1.35 I HYDRAULI C GRADE LINE CONTROL 514.70 6.9 18 0 0.56 1.01 PART 0.00431 7.8 5.4 513.68 514.01 514.43 515.02 I HYDRAULIC GRADE LINE CONTROL 515.30 6.2 18 0 0.65 0.96 PART 0.00348 7.1 5.2 515.73 516.07 516.48 517.03 I HYDRAULIC GRADE LINE CONTROL 519.43 5.4 18 o 0.26 0.90 PART 0.00264 14.6 4.9 519.40 522.15 519.79 523.05 I I D 1 (FT) 0.69 1.28 1.43 D·2 (FT) 1.21 1.32 1.99 TW CALC 0.00 0.00 0.00 2.55 1.83 0.00 2.13 2.55 1. 04 0.00 2.20 1.27 1. 35 2.25 1.32 1.04 0.76 0.75 0.75 0.39 1.56 0.00 1.66 0.00 1.18 0.00· 0·84 0.00 0.77 528.37 1.01 515.57 0.96 517.53 0.90 523.49 REPT: PC/RD4412.2 DATE: 09/28/06 PAGE 1 TW CK 0.00 0.00 0.00 REMARKS 0.00 HYD JUMP 0.00 HYD JUMP 0.00 0.00 0.00 HYD JUMP 0.00 HJ @ UJT 0.00 0.00 0.00 0.00 I LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT.: PC/RD4412 .-2 DATE: 09/28/06 I PAGE 2 PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 WEST I DESIGNER: DJG LINE Q D W DN DC FLOW SF-FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW I NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS 12 HYDRAULIC GRADE LINE CONTROL 523.90 I 35 14.0 18 0 1.50 1.38 SEAL 0.01776 8.0 7.9 522.46 522.96 523.90 524.60 1.44 1.64 0.00 0.00 X = 11.29 X(N) 0.00 36 6.8 18 0 0.62 1. 01 SEAL 0.00419 3.8 10.9 523.45 532.47 526.10 533.04 2.65 0.57 0.00 0.00 HYD JUMP I X = 38.05 X(N) 145.16 X(J) = 38.05 F(J) 2.26 D(BJ) 0.62 D(AJ) 1.56 37 6.8 18 0 0.63 1. 01 PART 0.00419 9.7 5.4 532.80 538.70 533.43 539.71 0.63 1. 01 540.25 0.00 I X = 0.00 X(N) 116.90 I 36 HYDRAULIC GRADE LINE CONTROL 525.35 40 5.9 18 0 0.48 0.94 FULL 0.00315 3.3 3.3 523.45 523.72 525.35 525.37 1. 90 1.65 525.58 0.00 I I 36 HYDRAULIC GRADE LINE CONTROL 525.35 45 3.1 18 0 0.42 0.67 SEAL 0.00087 1.8 2.2 523.45 524.22 525.35 525.35 1.90 1.13 525.43 0.00 I X = 14.05 X(N) 0.00 I 12 HYDRAULIC GRADE LINE CONTROL 523.90 50 6.0 18 0 0.54 0.94 PART 0.00326 7.0 5.1 523.79 523.99 524.52 524.93 0.73 0.94 525.42 0.00 I I 12 HYDRAULIC GRADE LINE CONTROL 523.90 55 3.4 18 0 0.65 0.70 PART 0.00105 4.7 4.2 523.79 523.99 524.44 524.69 0.65 0.70 525.02 0.00 I X = 0.00 X(N) 18.04 I I I I .---------------------------------------------------~~~ I I I I I I, I I I I I I I I I I I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X (J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F (J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D (AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITlCAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 9/28/2006 17:34 I LA COUNTY PUBLIC WORKS I, PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 EAST I DESIGNER: DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D 1 494.77 2 105 7.7 7.7 32.42 493.60 495.83 0.00 18. I 2 106 7.7 7.7 8.00 495.83 496.67 0.00 18. I 2 107 5.0 5.0 5.00 497.00 497.18 0.00 18. 2 110 3.6 3.6 45.50 497.00 497.46 0.00 18. I I I I I I I I' I I I· I I STORM DRAIN ANALYSIS (INPUT) W S KJ KE KM LC Ll L3 O. 3 0.15 0.00 0.18 1 106 0 O. 3 0.50 0.00 0.05 0 107 110 O. 1 0.00 0.20 0.05 0 0 0 O. 1 0.00 0.20 0.05 107 0 0 REPT: PC/RD4412.1 DATE: 09/28/06 PAGE 1 L4 Al A3 A4 J N o O. O. O. 4.00 0.013 o 90. 90. O. 4.00 0.013 o O. O. O. 4.00 0.013 o O. O. O. 4.00 0.013 I LA COUNTY PUBLIC WORKS 1 PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 EAST IDESIGNER: DJG Q D W DN DC FLOW SF-FULL V 1 STORM DRAIN ANALYSIS V 2 FL 1 FL 2 HG 1 (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) CALC 1106 107 I I I I I I I I I I I I HYDRAULIC GRADE LINE CONTROL 494.77 7.7 1B 0 0.54 1.07 PART 0.00537 7.7 1B 0 0.4B 1.07 PART 0.00537 5.0 1B 0 0.51 0.B6 SEAL 0.00227 X 3.40 X(N) 0.00 HYDRAULIC GRADE LINE CONTROL 49B.18 3.6 1B X = o 0.60 0.72 PART 0.00117 0.00 X(N) 0.00 X(J) = 12.5 10.1 2.B 2.4 2B.63 10.0 5.7 2.9 4.3 F(J) 493.60 495.B3 495.B3 496.67 497.00 497.1B 497.00 497.46 0.76 D(BJ) 494.17 496.50 49B.61 49B.1B 0.62 HG 2 CALC 496.50 497.74 49B.62 49B.1B D(AJ) D 1 (FT) 0.57 0.67 1.61 1.1B 0.B3 D 2 (FT) 0.67 1. 07 1.44 0.72 TW CALC 0.00 0.00 49B.77 49B.52 REPT: PC/RD4412.2 DATE: 09/2B/06 PAGE 1 TW CK REMARKS 0.00 0.00 0.00 0.00 HYD JUMP I I I I I I I I I I I I I I I I I I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X (N) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITlCAL TO SUBCRITlCAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 9/28/2006 11: 7 I I I I I I I I I I I I I I I I I I II La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 4 Storm Drain Hydraulic Analysis 4.3 -Neighborhood 3.4 & 3.5 DE:ad h:lreportsl23521151ldralnage stucly01.doc w.o.2352-1S1 1014i2006 6:47 tw. .. I. ----------------~-- 40 1468.11 41 1474.11 42 1479.51 2:1 43 1485.61 81 1514.91 80 1517.51 LEGEND LOCATION 10 NODE 0 PROPOSED STORM DRAIN ==mJ1=== EXISTING STORM DRAIN ===E!II=== 150 55 1468.31 54 1469.21 53 1472.81 52 1476.41 51 1481.71 50 1487.61 49 1493.81 67 1512.61 68 1513.31 ~ . . --..... --.-'~ -.. ---4J5 -'_'_N ___ ~ _ .. 445 ~ Q~"l ~ 56 1469.01 '" g 'i-~ 57 ~I 1470.01 ~ c-I I / 58 1472.61 59 ~ 1476.01 c-I 2:1 60 1481.11 14~{1 62 1492.61 SHEET STORM LEGEND MAP FOR 1 HUNSAKER & ASSOCIATES LA COSTA OAKS NORTH SAN DIECO, INC. NEIGHBORHOOD 3.4 OF .~ PlANNING 10179 Huemekens Skeet i ENGiNEEIlING Son Diego, Ca 92121 1 SURVEYING PH(858)558-4500· fX(858)558-1414 CITY OF CARLSBAD, CALIFORNIA ~ II ILA COUNTY PUBLIC WORKS I PROJECT: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.4 IDESIGNER: DJG CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D 1 425.61 2 4 20.2 20.2 165.65 423.94 452.19 0.00 18. 5 11.2 11.2 228.72 452.52 467.77 0.00 18. 6 11.2 11.2 287.01 468.10 496.34 0.00 18. 2 7 11.2 11.2 88.44 496.67 498.35 0.00 18. 8 11.2 11.2 75.59 498.68 499.43 0.00 18. 2 9 7.3 7.3 29.23 499.76 500.34 0.00 18. 15 4.2 4.2 13.17 499.76 499.96 0.00 18. I I I I I I I I I I I STORM DRAIN ANALYSIS (INPUT) W S KJ KE O. 3 0.15 0.00 O. 3 0.15 0.20 O. 3 0.15 0.00 O. 3 0.15 0.00 O. 3 0.50 0.00 O. 1 0.00 0.20 O. 1 0.00 0.20 KM LC Ll 0.05 1 5 0.05 0 6 0.05 0 7 0.05 0 8 0.05 0 9 0.05 0 0 0.05 9 0 L3 0 0 0 0 15 0 0 REPT: PC/RD4412.1 DATE: 02/06/07 PAGE 1 L4 Al A3 A4 J N 0 O. O. O. 4.00 0.013 0 O. O. O. 4.00 0.-013 0 O. O. O. 4.00 0.013 0 73. O. O. 4.00 0.013 0 90. O. O. 4.00 0.013 0 o. o. O. 4.00 0.013 0 o. o. O. 4.00 0.013 I I I I I I I I I I I I I I I I I I I V 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) -DISTANCE IN FEET FRO~ DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) -DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) -THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) -DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D (AJ) -DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITlCAL TO SUBCRITlCAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 2/ 6/2007 18:22 I LA COUNTY PUBLIC WORKS I PROJECT: I DESIGNER: LA COSTA OAKS NORTH -NEIGHBORHOOD 3.4 DJG LINE Q D W DN DC FLOW SF-FULL V 1 I NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) 1 HYDRAULIC GRADE LINE CONTROL = 425.61 I 4 20.2 18 0 0.72 1.47 PART 0.03698 24.1 X = 0.00 X(N) = 115.49 5 11.2 18 0 0.67 1.28 SEAL 0.01137 6.3 I X = 26.62 X(N) 198.24 X(J) = 26.62 6 11.2 18 0 0.60 1.28 PART 0.01137 16.9 I X = 0.00 X(N) = 203.32 7 11.2 18 0 0.99 1.28 PART 0.01137 9.0 X = 0.00 X(N) 11.18 8 11.2 18 0 1.50 1.28 FULL 0.01137 6.3 I 9 7.3 18 0 0.74 1. 05 FULL 0.00483 4.1 I HYDRAULIC GRADE LINE CONTROL 502.08 4.2 18 o 0.59 0.78 FULL 0.00160 2.4 I I I I I I I I I STORM DRAIN ANALYSIS V 2 FL 1 FL 2 HG 1 HG 2 (FPS) (FT) (FT) CALC CALC 11.5 423.94 452.19 424.66 453.66 17.5 452.52 467.77 456.49 468.36 F(J) 5.30 D(BJ) 0.67 D(AJ) 10.5 468.10 496.34 468.70 497.21 7.0 496.67 498.35 497.66 499.63 6.3 498.68 499.43 500.69 501.55 4.1 499.76 500.34 502.62 502.76 2.4 499.76 499.96 502.08 502.11 D 1 D 2 TW (FT) (FT) CALC 0.72 1.47 0;00 3.97 0.59 0.00 2.49 0.60 0.87 0.00 0.99 1.28 0.00 2.01 2.12 0.00 2.86 2.42 503.08 2.32 2.15 502.21 REPT: PC/RD4412.2 DATE: 02/06/07 PAGE 1 TW CK REMARKS 0.00 0.00 HYD JUMP 0.00 0.00 0.00 0.00 0.00 I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 5 Inlet Sizing DE:ad h:lreports1235Z1151\dralnage study01.doc w.o.2352·151 101412006 6:47 AM I I I I I I I I I I I I I I I I I I I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 CURB INLET SIZING Type Inlet Street Surface Gutter Flow Required of at SIope1 Flo~ Depression Depth3 length of Inlet Node S (%) Q (cfs) a (ft) y (ft) Opening4 (ft) ON-GRADE 441 5.00% 2.8 0.33 0.27 8.5 ON-GRADE 456 3.16% 2.8 0.33 0.29 8.2 ON-GRADE 459 3.16% 5.5 0.33 0.34 14.2 ON-GRADE 464 3.40% 4.7 0.33 0.32 12.8 ON-GRADE 468 3.40% 3.1 0.33 0.29 9.2 ON-GRADE 473 5.21% 3.5 0.33 0.28 10.3 ON-GRADE 476 5.21% 2.9 0.33 0.27 9.0 1 From street profiles in Improvement Plans 2 From AES ouput . 3 From Manning's Equation: Q = (1.49/n)*A*S1/2*R2I3 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7l(a+y)J\3/2 5 length shown on plans (Required length of Opening + 1 foot) Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) SUMP 449 N\A 8.8 SUMP 483 N\A 6.5 SUMP 486 N\A 5.5 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) N\A N\A N\A 3 Per City of Carlsbad Standards From Ratio: Q/l = 2 5 length shown on plans (Required length of Opening + 1 foot) Flow Depth y (ft) N\A N\A N\A Required length of Opening" (ft) 4.4 3.2 2.8 Use length 5 (ft) 10 10 16 14 11 12 10 Use length 5 (ft) 6 5 5 H:\EXCEL\2352\ 126\1NLETS-CARLSBAD.xls 2115/2007 1 of 1 I I I I I I I I I I I I I I I I I , I I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 CURB INLET SIZING Type Inlet Street Surface of at SIope1 Flovl Inlet Node S(%) a (cfs) ON-GRADE 3 1.00% 6.0 ON-GRADE 6 2.00% 3.1 ON-GRADE 9 2.00% 5.9 ON-GRADE 12 1.00% 5.4 ON-GRADE 65 1.00% 3.4 ON-GRADE 92 3.90% 6.8 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) 0.33 0.33 0.33 0.33 0.33 0.33 3 From Manning's Equation: a = (1.49/n)*A*S1/2*R2I3 Flow Required Depth3 length of y (ft) Opening4 (ft) 0.41 13.5 0.31 8.6 0.37 14.4 0.40 12:5 0.35 . 8.7 0.35 17.3 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: 0= 0.7l(a+y)A3/2 5 length shown on plans (Required length of Opening + 1 foot) Type Inlet Street Surface of at SIope1 Flovl Inlet Node S (%) a (cfs) SUMP 15 N\A 6.2 SUMP 62 N\A 4.7 SUMP 105 N\A 6.9 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) N\A N\A N\A 3 Per City of Carlsl;>ad Standards From Ratio: all = 2 5 length shown on plans (Required length of Opening + 1 foot) Flow Depth y (ft) N\A N\A N\A Required length of Opening3 (ft) 3.1 2.4 3.5 Use length 5 (ft) 15 10 16 14 10 19 Use length 5 (ft) 5 5 5 H:\EXCEL\2352\152\INLETS-CARLSBAD.xls 216/2007 1 of 1 I I I I I I I I I I I I I I- I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 CURB INLET SIZING Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) ON-GRADE 405 4.70% 5.2 ON-GRADE 409 3.30% 4.7 ON-GRADE 416 2.50% 4.7 ON-GRADE 420 2.50% 2.0 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) 0.33 0.33 0.33 0.33 3 From Manning's Equation: Q = (1.49/n)*A*S1/2*R2I3 Flow Required Depth3 Length of y (ft) Opening4 (ft) 0.32 14.3 0.33 12.7 0.34 12.3 0.27 6.0 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7L(a+y)A3/2 5 Length shown on plans (Required Length of Opening + 1 foot) Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) SUMP 421 N\A 10.7 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) N\A 3 Per City of Carlsbad Standards From Ratio: Q/L = 2 5 Length shown on plans (Required Length of Opening + 1 foot) Flow Depth y (ft) N\A Required Length of Opening::! (ft) 5.3 Use Length 5 (fO 16 14 14 8 Use Length 5 (ft) 7 H:\EXCEL\2352\ 152\INLETS2-CARLSBAD.xls 9/29/2006 1 of 1 I I I I I I I I I I I I I I I I I I I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.4 CURB INLET SIZING Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) ON-GRADE 309 4.02% 4.2 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) 0.33 3 From Manning's Equation: Q'= (1.49/n)*A*S1/2*R2I3 Flow Required Depth3 Length.of y (ft) Opening4 (ft) 0.31 11.8 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7L(a+y)/\3/2 5 Length shown on plans (Required Length of Opening + 1 foot) Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S (%) Q (cfs) SUMP 303 N\A 7.3 SUMP 325 N\A 10.4 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) N\A N\A 3 Per City of Carlsbad Standards From Ratio: Q/L = 2 5 Length shown on plans (Required Length of Opening + 1 foot) Flow Depth y (ft) N\A N\A Required Length of Opening3 (ft) 3.7 5.2 Use Length 5 (ft) 13 Use Length 5 (ft) 5 7 H:\EXCEL\2352\124\INLETS-CARLSBAD.xls 9/29/2006 1 of 1 I I I I I I I I I I I I I I I I I I I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.5 CURB INLET SIZING Type Inlet Street Surface of at SIope1 Flo~ Inlet Node S(%) Q (cfs) ON-GRADE 50 1.00% 5.0 ON-GRADE 52 1.00% 3.6 1 From street profiles in Improvement Plans 2 From AES ouput Gutter Depression a (ft) 0.33 0.33 3 From Manning's Equation: Q = (1.49/n)*A*S1/2*R2I3 Flow Required Depth3 Length of y (ft) Opening4 (ft) 0.39 11.~ 0.36 9.1 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7L(a+y)A3/2 5 Length shown on plans (Required Length of Opening + 1 foot) Use Length 5 (ft) 13 11 H:\EXCEL \2352\ 152\1NLETS2-CARLSBAD.xls 9/28/2006 1 of 1 I I I I I I I I I I I I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 6 Catch Basin Sizing DE:ad h:lrepcrtsl23521151ldralnage study01.doc w.o.2352·151 101412006 6:47 />Jd I I I I I I I I I I I I I I I I I , I I I NORTH -NEIGHBORHOOD 3.1 CATCH BASIN TYPE "F" Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): Node 496 Qmax = 0.6A--I(2gh) Qmax = 0.6A--I(2gh) 3' 4.5" Qmax = 0.6(1.875+0.1875)[--1(2)(32.2)(1.125-0.405)] Qmax = 8.42 cfs per opening West'ly Opening North'ly Opening Q= 2.30 cfs Flow from Node 496 to 496 H:\EXCEL\2352\126\CB F-NEW.xls 30f6 W.O.# 2352-0126 I I I I I I I I I I I I I I I I I I I LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 CATCH BASIN TYPE "F~' Dimensions obtained from City of San Diego Standard Drawings (Drawing 0-7): Node 443 13.5" Qmax = 0.6A--I(2gh) Qmax = 0.6A--I(2gh) 3' 4.5" 7.5" ~~t:l,="" Y = 00405' (Centroid) 11.511 ------------------------- Qmax = 0.6(1.875+0.1875)[--1(2)(32.2)(1.125-0.405)] Qrnax = 8.42 cfs per opening West'ly Opening Q= 0.5 cfs Flow from Node 443 to 442 H:\EXCEL\2352\126\CB F-NEW.xls 2of6 W.O.# 2352-0126 I I I I I I I I I I I I I I I I I I I NORTH -NEIGHBORHOOD 3.1 CATCH BASIN TYPE "F" Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): Node 482 3' 4.S" 13.S" 7.S" ~~'7 Y = 0.40S' (Centroid) , 11.511 -----------------_/,~:----------------------- Qrnax = 0.6A"(2gh) QI1)8X = 0.6A"(2gh) Qrnax = 0.6(1.875+0.1875)["(2)(32.2)(1.125-0.405)] Qrnax = 8.42 cfs per opening West'ly Opening Q= 1.34 cfs Flow from Node 482 to 483 H:\EXCEL \2352\ 126\CB F-NEW.xls 4of6 W.O.# 2352-0126 LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 CATCH BASIN TYPE "F" I I I I I I I I Dimensions obtained from City of San Diego Standard Drawings (Drawing D-1): 3' 4.5" 13.5" 7.5" y = OA05' (Centroid) 11.5" ------------------------ Qmax = 0.6A~(2gh) Qmax = 0.6A~(2gh) Qmax = 0.6(1.875+0.1875)[~(2)(32.2)(1.125-0.405)] I Qmax = 8.42 cfs per opening I Node 492 I I I I I II I I I Northwest'ly Opening Q= 0.3 cfs Flow from Node 444 to 492 H:\EXCEL\2352\126\CB F-NEW.xls 1of6 W.O.# 2352-0126 I I I I I I I I I I I I I I I I I I I NORTH -NEIGHBORHOOD 3.1 CATCH BASIN TYPE "F" Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): Node 499 3' ==~~ I 4.5' 13.5" 7.5" . 1.5" .1-'" 1 y = 0.405' (Centroid) ___ _ _ _ _________ ~'~':i> .. ::;".,__ _ _ _ _ _____ _ _ _ _________ _ Qmax = 0.6A--/(2gh) Qmax = 0.6A--/(2gh) Qmax = 0.6(1.875+0.1875)[--/(2)(32.2)(1.125-0.405)] Qmax = 8.42 cfs per opening South'ly Opening Q= 5.69 cfs Flow from Node 451 to 449 H:\EXCEL \2352\ 126\CB F-NEW.xls 5 ef6 W.O.# 2352-0126 I I I I I I I I I I I I .1 II I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 7 Brow Ditch Sizing DE:ad h:\reporls123521151\dralnage studyOl .doc w.o.2352-151 101412006 6:47 AM I I I I I I I I I I I I I I : I I I I I 21712007 BROW DITCH SIZING LA COSTA OAKS NORTH -NEIGHBORHOOD 3.1 Brow Ditch Conveyed Brow Ditch ID Node1 Flow2 (cfs) Size3 (tt) A 5.69 3 B 0.46 3 C 1.34 3 1 Refer to Developed Condition Hydrology Map (Chapter IX) 2 Flows from AES output (Chapter IV) 3 Refer to Grading Plans for brow ditch detail Maximum Capacities for Brow Ditches Brow Ditch Brow Ditch Maximum Size (ft) Min. Slope (%) Flow (cfs) 2 1.00 2.73 3 1.00 13.98 NOTES: Based on a brow ditch minimum slope, s = 1.00%, and Manning's n = 0.015 Refer to attached FlowMaster output for calculations (Chapter VI) Refer to Sheet Grading Plans for brow ditch detail 1 of 1 H:\EXCEL\2352\ 126\8-0ITCH.xls I I I I I I I I I I I I I I I I I Worksheet for 2·ft BROW DITCH Flow Element: Circular Pipe Friction Method: Manning Formula Solve For: Normal Depth Roughness Coefficient: 0.015 Channel Slope: 0.01000 ftlft Diameter: 2.00 ft Discharge: 2.73 Wls -Normal Depth: 0.50 ft Flow Area: 0.62 ft2 Wetted Perimeter: Top Width: Critical Depth: Percent Full: Critical Slope: Velocity: Velocity Head: Specific Energy: Froude Number: Maximum Discharge: Discharge Full: Slope Full: Flow Type: Downstream Depth: Length: Number Of Steps: Upstream Depth: Profile Description: Profile Headloss: Average End Depth Over Rise: Normal Depth Over Rise: Downstream Velocity: 2.10 1.74 0.58 25.2 0.00593 4.39 0.30 0.80 1.29 21.09 19.61 0.00019 SuperCritical 0.00 0.00 0 0.00 NIA 0.00 0.00 0.00 0.00 ft ft ft % ftlft ftls ft ft Wls Wls ftlft ft ft ft ft % % ftls I I' Worksheet for 3·ft TERRACE DITCH I Flow Element: Circular Pipe I Friction Method: Manning Formula Solve For: Normal Depth I Roughness Coefficient: 0.015 Channel Slope: 0.01000 ftlft I Diameter: 3.00 ft Discharge: 13.98 W/s I Normal Depth: 1.00 ft Flow Area: 2.08 ft2 I Wetted Perimeter: 3.70 ft Top Width: 2.83 ft Critical Depth: 1.19 ft I' Percent Full: 33.5 % Critical Slope: 0.00530 ftlft Velocity: 6.73 ftls I. Velocity Head: 0.70 ft Specific Energy: 1.71 ft Froude Number: 1.39 I Maximum Discharge: 62.18 W/s Discharge Full: 57.80 W/s I Slope Full: 0.00058 ftlft Flow Type: SuperCritical I Downstream Depth: 0.00 ft Length: 0.00 ft Number Of Steps: 0 I Upstream Depth: 0.00 ft I Profile Description: N/A Profile Headloss: 0.00 ft Average End Depth Over Rise: 0.00 % I Normal Depth Over Rise: 0.00 % Downstream Velocity: 0.00 ftls I II I I ,I 1 I I 1 I I I I I I I I I I I I I Project Description Worksheet Flow Element Method Solve For Section Data Cross Section Circular Channe Manning's Forml Channel Depth Mannings Coeffic).015 Slope Depth Diameter Discharge DRAINAGE DITCH CROSS SECTION Diameter rr-------~{ h:\flow-m\2167\4\4thsubmittal\100yrbdltch.fm2 Hunsaker & Associates -San Diego, Inc. T Freeboard = 0.50 ft ~ V:,1~ H:1 NTS Project Engineer: Anabella Hedman FlowMaster vS.1 [6140] 06/18/03 03:34:28 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 I I I I I I I I I I I I I I' I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTERS Rip Rap Design DE:ad h:ln!ports12352\151ldralnage studyOl.doc w.o.2352·151 101412006 6:47 AM I I I I I I I I I I I I I I I I I I I RIPRAP SIZING LA COSTA OAKS NORTH -NEIGHBORHOOD 3.3 0-41 Node 106 (Refer to Oeveloped Condition Hydrology Map in Chapter 12) Pipe Diameter, D = 4.0 ft Flow, Q = 44.3 cfs Velocity, v = 30.80 fps (From STORM Output) Use 0-41: Energy Dissipator Rock Class: 2 Ton Length, L= 16.0 ft Width, W= 12.00 ft (Per SORSO 0-41) Thickness,. T = 5.4 ft (Per 2003 Regional Supplement to "Green book 2003" Standard Specifications and based on three times the D50) Filter Blanket: Upper Layer: 2 II Crushed Rock (or equivalent) Thickness, T = 1.0 ft Lower Layer: Sand (Per 2003 Regional Supplement to "Greenbook 2003" Standard Specificatiom 9/28/2006 1 of 1 H:\EXCEL \2352\ 152\RIPRAP2.xls I I I I I I I I' I I I I I I I I I I I Chapter 7. Energy Dissipation velocities to non-erosive or pre-project levels. In these cases, the engineer shall apply 'a reasonable design procedure to detennine an appropriate riprap design. 7.3.1.1 San Diego Regional Standard Drawing Apr:on Length and Width. Riprap apron length and width are a function of the diameter or vertical dimension of the outlet pipe or culvert. The apron length shall be determined using the following equation, with a minimum length of 10 feet: (7-1) where '" La = minimum riprap apron length (ft); and Do = diameter or width of culvert or stonn drain (ft). Where there is a well-defined channel downstream of the apron, the bottom width of the riprap apron shall be at least equal to the bottom width of the channel. The riprap apron shall extend at least one foot above the maximum tailwater elevation or the computed water surface elevation, whichever is. greater. The side slopes of the riprap apron shall be 3H:IV whenever practical, but in no case be steeper than 1.5H: 1 V. Where-there is no well-defined channel downstream of the apron, the. upstream width of the riprap apron shall be equal to twice the width of conduit or the width of the headwall, whichever is greater. The downstream width of the riprap apron shall be at least the width of the upstream end of the apron, plus one conduit diameter (Do) on each side. Figure 7-1 illustrates the layout of the San Diego regional standard riprap apron. Riprap Size and Thickness. Flow energy governs the size of the riprap used for energy dissipation. The San Diego Regional Standard Drawings use exit velocity as a surrogate for flow energy (Table 7-1). Riprap apron thickness shall be at least 1.5 times the nominal dso of the specified riprap. Riprap shall De placed over a geotextile filter fabric, and a filter blanket material shall be placed under the fabric as appropriate. The equivalent diameter of stone (dso) shall not exceed the diameter or vertical dimension of the outlet pipe, and the dimensions of the riprap apron shall be adjusted to accommodate the required stone size. Table 7-1 Rock Size for Riprap Aprons at Storm Drain Outlets Outlet Velocity (ft/s) Rock Classification Size of Stone, dso (ft) (a) 6-10 No.2 Backing 0.7 10-12 ~Ton 1.8 12-14 Y2Ton 2.3 14-16 1 Ton 2.9 16-18 2 Ton 3.6 (s) Assumes specific weight of 165Ib/rf. The designer shall take care to apply a unit weight that is applicable to the type of riprap specified for the project, and adjust their calculations if necessary. 7.3.2 Stilling Basins There are a numb~r of additional types of stilling basins~ and it is beyond the scope of this . Manual to provide detailed information on each of them. Information about their proper application and design can be obtained from a number of sources, including the FHW A Hydraulic Design of Energy Dissipaters for Culverts and Channels (HEC-14), the U.S. Army Corps of Engineers' Hydra'l!lic Design Criteria and Engineer Manuals, the Bureau of San Diego County Drainage Design Manual May 2005 Page 7-2 I , ..... r:;::,::'" I' I I I I I I I I I I I I w 20 or 2W Min. A~ >Max (3D. W) PLAN VIEW Endwall (Typical) Filter Fabric and/or Sand and Gravel Filter Blanket Chapter 7. Energy Dissipation SECTION B-B Figure 7-1 San Diego Regional Standard Rock Riprap Apron Layout Reclamation's Design of Small Canal Structures, and other references. The use of riprap, SAF, and CSU stilling basins are allowed, subject to the approval of the governing Agency. 7.3.3 Dissipator Rings The use of dissipater rings in pipes and culverts can be an efficient manner to reduce exit velocities. FHW A HEC-14 provides a complete discussion of their use and design. Dissipater rings shall be modified to facilitate drainage behind the rings and prevent ponding within the culvert. The use of dissipater rings is limited to urban applications where velocities within the pipe are greater than 20 ftlsec and where no significant bedloads are anticipated, or where other methods of energy dissipation are impracticable. 7.3.4 Impact Basin (SDRSD No. D-41) Design standards for the impact basin depicted on San Diego Regional Standard Drawing No. D-41 are based on the USBR Type VI Basin. The original USBR basin has been modified to allow drainage of. the basin during dry periods, which enhances the usefulness of the basin in urban environments. The width of D-41 is based on discharge from the storm drain or culvert; this width must be specified on drawings. Information on the original hydraulic design reference can be found in the Hydraulic Design of Stilling Basins for Pipe or Channel Outlets (peterka, 1984). The designer is encouraged to use the design guidelines contained within the Regional Standard Drawings. 7.4 REFERENCES Bradley, IN. and Peterka, A.I (1957). "Hydraulic design of stilling basins." Journal of the Hydraulics Division, American Society of Civil Engineering 83(5),1-15. California Department of Transportation (Caltrans). (June 1996). California Bank and Shore Rock Slope Protection Design, Practitioner's Guide and Field Evaluation of Riprap Methods. FHWA-CA-TL-95-10/Caltrans Study No. F90TL03. San Diego County Drainage Design Manual May 2005 Page 7-3 , I I I I I ' I I I I I I I I I I I I I II La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 9 Developed Condition Hydrology Ma,ps 9.1 -Neighborhood 3.1 DE:ad h:\reportsl23521151ldralnage stud~l.doc w.o.2352·151 101412006 6:47·AM I I I I I I I '1 I I I I I I I !I I II I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 9 Developed Condition Hydrology Maps 9.2 -Neighborhood 3.3 DE:ad h:lrepoltS123521151ldrainage studyOl.dac w.a.2352·151 101412006 6:47 AM fl I I , I I I r; I I , I I I I I I I I La Costa Oaks North -Neighborhoods 3.1, 3.3 -3.5 Drainage Study CHAPTER 9 Developed Condition Hydrology Maps 9.3 -Neighborhood 3.4 & 3.5 OE:ad h:lreports123521151Idralnage s1udy01.doc w.o.2352·151 101412006 6:47 AM