Loading...
HomeMy WebLinkAboutCT 07-05; LA COSTA GREENS NEIGHBOROOD 1.3; STORM WATER MANAGEMENT PLAN; 2008-10-02HUN SAKER &ASSOCIATES ~-....::I 5 AND lEG 0, INC. PLANNING ENGINEERING SURVEYING IRVINE LOS ANGELES RIVERSIDE SAN DIEGO ARIZONA DAVE HAMMAR LEX WILLIMAN ALiSA VIALPANDO DAN SMITH RAY MARTIN CHUCK CATER 9707 Waples Street San Diego, CA 92121 (858) 558-4500 PH (858) 558-1414 FX www.HunsakerSD.com Info@HunsakerSD.com DwC--~S-7 a' STORM WATER MANAGEMENT PLAN for LA COSTA GREENS NEIGHBORHOOD 1.3 City of Carlsbad, California ~5-7 PrePared for~ Col Rich Communities 4747 Morena Boulevard Suite 100 San Diego, CA 92117 w.o. 2301-15 October 2, 2008 David A. Blalock, R.C.E. Hunsaker & Associates San Diego, Inc. RE kc h \reports\2301\1S\swmp-04 doc wo 2301-15 1012120081.15 PM -I I I I I -I I I, -'1/ I 'J I I I I I I I ,I La Costa Greens Neighborhood 1.3 Storm Water Management Plan TABLE OF CONTENTS CHAPTER 1 -Executive Summary 1_1 Introduction 1.2 Summary of Pre-Developed Conditions 1.3 Summary of Proposed Development 1.4 Results and Recommendations 1.5 Conclusion 1.6 References CHAPTER 2 -Storm Water Criteria 2.1 Regional Water Quality Control Board Criteria 2.2 City of Carlsbad SUSMP Criteria CHAPTER 3 -Identification of Typical Pollutants 3.1 Anticipated Pollutants from Project Site 3.2 Sediment 3.3 Nutrients 3.4 Trash & Debris 3.5 Oxygen-Demanding Substances 3.6 Oil & Grease 3.7 Pesticides 3.7 Bacteria & Viruses 3.9 Organic Compounds 3.10 Metals CHAPTER 4 -Conditions of Concern 4.1 Receiving Watershed Descriptions 4.2 Surface Water Quality Objectives and Beneficial Uses 4.3 Coastal Waters 4.4 303(d) Status 4.5 Conditions of Concern -Developed Condition Hydrology Summary 4.6 Identification of Primary & Secondary Pollutants of Concern RE.kc h:\reports\2301\15IsWmp-03 doc w.o.2301-15 6/5/20081'18 PM 'I I I I I I I I I '1 I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan CHAPTER 5 -Treatment Control BMP Design 5.1 BMP Location 5.2 Determination of Treatment Flow 5.3 Determination of Treatment Volume 5.4 BMP Unit Sizing 5.5 CDS Treatment Units 5.6 FloGard Curb Inlet Filter Units 5.7 Extended Detention Basins 5.8 Pollutant Removal Efficiency Table 5.9 BMP Unit Selection Discussion CHAPTER 6 -Source Control BMPs 6.1 Landscaping 6.2 Urban Housekeeping 6.3 Automobile Use 6.4 Integrated Pest Management Principles 6.5 Storm Water Conveyance Systems Stenciling and Signage 6.6 Efficient Irrigation Practices 6.7 Pet Ownership Responsibility CHAPTER 7 -Site Design BMPs & Low Impact Development 7.1 Site Design BMPs 7.2 Minimize Impervious Footprint 7.3 Conserve Natural Areas 7.4 Permeable Pavements 7.5 Minimize Directly Connected Impervious Areas 7.6 Slope & Channel Protection / Hillside Landscaping 7.7 Maximize Canopy Interception & Water Conservation 7.8 Residential Driveways & Guest Parking 7.9 Trash Storage Areas CHAPTER 8 -Operations & Maintenance Plan 8.1 Maintenance Requirements 8.2 Operation and Maintenance Plan 8.3 Annual Operation & Maintenance Costs 8.4 Responsible Parties CHAPTER 9 -Fiscal Resources 9.1 Agreements (Mechanisms to Assure Maintenance) RE'kc h'\reports\2301\15\Swmp.03.CloC w.o.2301·15 8/5/2008118 PM I 'I 1 I I I I I I· 'I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan List of Tables and Figures Chapter 1 -Vicinity Map Chapter 1 -Watershed Map Chapter 1 -BMP Map Chapter 3 -Pollutant Category Table Chapter 4 -2006 CWA Section 303(d) List Chapter 4 -Beneficial Uses of Inland Surface Waters Chapter 4 -Water Quality Objectives Chapter 5 -BMP Location Map Chapter 5 -Pollutant Removal Efficiency Table Chapter 5 -Design Runoff Determination Summary Table Chapter 5 -85th Percentile Rational Method Calculations Chapter 5 -CDS Product Information Exhibits BMP Location Exhibit Developed Conditions Hydrology Exhibit RE,kc h:\repMs\2301l1S\swmp-03 doc w.o.2301-15 8/5/20081'18 PM I I I I I' I I I' I :1 . -'.J I I I, I .1. I ;·1 I I I I I I I I I I I I I I I I I 'I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan CHAPTER 1 -EXECUTIVE SUMMARY This Storm Water Management Plan addresses the treatment of 85th percentile runoff from the proposed La Costa Greens Neighborhood 1.3 development. The design will utilize multiple flow and volume based BMPs to treat the 85th percentile flow from the development. 85th percentile design runoff calculations are provided in Chapter 5 of this report. 1.1 -Introduction The La Costa Greens Neighborhood 1:3 Development consists of 38 proposed single family residential units, a single servicing drive· and associated sidewalks and a RV parking. The site is located adjacent to EI Camino Real, north of Poinsettia Lane and west of Alicante Road in the City of Carlsbad, California (see Vicinity Map on this page). PROJECT SITE ALICANTF ROAD LA COSTA VICINITY MAP NTS Per the City of Carlsbad Storm Water Management Program for residential urban runoff, the La Costa Greens Neighborhood 1.3 project is classified as a priority project and subject to the City's Permanent Storm Water BMP Requirements. This Storm Water Management Plan (SWMP) has been prepared pursuant to requirements set forth in the City of Carlsbad's "Standard Urban Storm Water Mitigation Plan (SUSMP)." All calculations are consistent with criteria set forth by the Regional Water Quality Control Board's Order R9-2007-0001, and the City of Carlsbad SUSMP. This SWMP recommends the location and sizing of site Best Management Practices (BMPs) which include multiple flow and volume based treatment units. . RE:kc h:\reportsI2301115\swmp·03 doc w.o.2301-15 8/5120081:18 PM· I I I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan To provide maximum water quality treatment for flows generated by the proposed residential development, a BMP "treatment train" is to be employed within the La Costa Greens neighborhood 1.3 at the developed discharge location. Developed site flows will receive primary treatment via FloGard curb inlet filters, these flows will then receive secondary treatment via an Extended Detention Basin prior to discharging from the project site. Furthermore, this report determines anticipated project pollutants, pollutants of concern in the receiving watershed, peak flow mitigation, recommended source control BMPs, and methodology used for the design of flow-based BMPs. 1.2 -Summary of Pre-Developed Conditions ' The La Costa Greens Neighborhood 1.3 site is part of the La Costa Greens development in the City of Carlsbad, California. The existing La Costa Greens 1.3" site has been mass-graded per the "Grading & Erosion Control Plans for La Costa Greens Neighborhoods 1.01-1.03". Runoff from the mass-graded La Costa Greens Neighborhood 1.3 residential 'site flows into a desiltation basin located in the southwest corner of the mass-graded site. The runoff then flows southeasterly towards Poinsettia Road, where it is intercepted via an existing U-Type headwall at approximate Sta. 23+00 per Dwg. No. 397 -2H, and then via storm drain beneath Poinsettia Road to the Alicante Detention Basin located in the southeast corner of the Poinsettia Lane-Alicante Road intersection. The peak discharge from this basin is drained by a double 8-ft by 5-ft reinforced concrete box and then flows southwards to an unnamed tributary of San Marcos Creek. The runoff then flows in a southerly direction along the site boundary of the La Costa Greens Golf Course, west of the Phase I development area. All the runoff eventually drains under Alga Road via three 96" RCP culverts, as shown in Drawing. No. 397-2, and discharges into San Marcos Creek towards the Batiquitos Lagoon. The existing condition hydrologic analysis of the La Costa Greens 1.3 development was completed and is discussed in the "Drainage Study for La Costa Greens . Neighborhoods 1.2 & 1.3 Developer Improvements", prepared by Hunsaker & Associates dated August 21,2006. The Regional Water Quality Control Board has identified San Marcos Creek as part of the Carlsbad Hydrologic Unit, San Marcos Hydrologic Area, and the Batiquitos Hydrologic Subarea (basin number 904.51). RE"kc h:\repor1s\2301\1S\swmp-03 doc W.O 2301-15 81512008 "'8 PM I I I I I I I I I I I I I I I I II i I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 1.3 -Summary of Proposed Development The construction of the La Costa Greens Neighborhood 1.3 site will include 38 single family units with associated car parking, internal storm drain systems, sidewalks, and a single entrance from the adjacent EI Camino Real to the west ofthe project site. The majority of the runoff from the developed site will be collected and conveyed via a curb and gutter system into a storm drain system within the project site. The storm drain system flows in a southerly direction, discharging into an onsite water quality basin. The runoff in the basin discharges via an existing 24" storm drain and surface flows in a southerly direction, along the site boundary of the La Costa Greens Golf Course until it eventually drains under Alga Road via three 96" RCP CUlverts and discharges into the existing Alicante Detention Basin. The remainder of the runoff will be collected in a curb and gutter system and conveyed northerly, along Private Way "A" into an existing storm drain inlet, ultimately discharging into the adjacent La Costa Greens Golf Course. Based on County of San Diego 2003 criteria, a runoff coefficient of 0.57 was assumed for the proposed multi-family residential development. Table 1 below summarizes the developed conditions: Table 1 -Summary of the Developed Condition Peak Flows Discharge Location Drainage Area (Ac) 100 Year Developed Peak Discharge (cfs) Southern Outlet (Basin) 5.3 16.6 Northern Discharge 0.8 2.7 To provide maximum water quality treatment for flows generated by the proposed residential development, a BMP "treatment train" is to be employed within the . development at the two (2) devel~ped discharge locations. Developed site flows will receive primary treatment via FloGard curb inlet filters, these flows will then receive secondary treatment via an Extended Detention Basin prior to discharging from the project site. 1.4 -Results and Recommendations Four (4) flow-based BMP and one (1) volume-based BMP has been proposed to treat 85th percentile runoff from the site prior to discharging of the southern storm drain system. One (1) flow-based BMP has been proposed to treat 85th percentile runoff from the site prior to discharging of the northern storm drain system. To determine the Design Treatment Flows for the FloGard Inlet filter units and the (existing) CDS unit, the 85th percentile design runoff has been calculated using the Rational Method. A runoff coefficient of 0.57 was assumed for the proposed . developed site as per the "2003 San Diego County Hydrology Manual". RE.kc h:lreportsI2301115\swmp-03 doc vi 0 230'1-15 6/5/20061'16 PM ..... ----------------------------------- I I I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Table 2 -Flow Based Rational Method Input Data Treatment Drainage Rainfall Runoff Unit Area Intensity Coefficient (acres) (inches/hour) CDS Unit 0.4 0.2 0.57 (existing) FloGard Inlet 1.2 0.2 0.57 Filter 1 FloGard Inlet 0.6 0.2 0.57 Filter 2 FloGard Inlet 0.9 0.2 0.57 Filter 3 FloGard Inlet 2.6 0.2 0.57 Filter 4 Table 3 -Volume Based Rational Method Input Data 85th Percentile Flow (cfs) 0.1 0.1 -- 0.1 0.1 0.3 Treatment Drainage Rainfall Runoff 85th Percentile Area Precipitation Unit acres) inches) Coefficient Volume (acre-ft) Extended Detention 5.3 0.67 0.57 0.2 Basin Calculations show that the existing CDS Model PMSU 20_15" is adequate to treat the design 85th percentile flow at the northern point of discharge respectively. This unit is an inline system and does not require the construction of a special diversion box upstream of the treatment unit. Site design BMPs & Low Impact Design (LID) principles will also be implemented on each individual lot to the maximum extent practicable to ensure water quality treatment is maximized throughout the La Costa 1.3 development. Rooftop runoff will be discharged to vegetated landscaped areas on each residential lot, draining overland via the vegetated landscaping to the receiving curb and gutter. This conveyance through the natural landscaping provides passive treatment for these flows allows for infiltration via the on-lot vegetated areas, targeting the potential bacterial and nutrient pollutants of concern generated via "each single family residence. " RE:kc h:\reports\2301\1S\swmp-03 doc W 0 2301-15 81512008 1"18-PM I I I I I I I I I I I I I I I I : I il I La Costa Greens Neighborhood 1.3 Storm Water Management Plan The conveyance of treatment flows via the vegetated landscaped areas on each individual residence provides passive treatment for pollutants of concern typically associated with single family residential developments such ~s Nutrients and Bacteria & Viruses. Many alternate treatment BMPs, including extended detention basins, infiltration basins, wet ponds, media filters, and grassy swales were explored and evaluated· (see Chapter 5 for a full comparison on all treatment BMPs considered). However, due to site design constraints, the CDS treatment unit, Extended Detention Basin and FloGard curb inlet filter units were deemed to be the most effective and feasible for the La Costa Greens Neighborhood 1.3 development. Permeable pavements were also evaluated for implementation within the La Costa' Greens Neighborhood 1.3 project site. However, due to several factors including porous pavements high failure rate, porous pavements have been deemed .infeasible for the La Costa Greens Neighborhood 1.3 project site. A full discussion is provided within Chapter 7 of this report. An operations and maintenance plan will be submitted to the City during the Grading Plan approval process. 1.5 -Conclusion The combination of proposed construction and permanent BMP's will reduce, to the maximum extent practicable, the expected project pollutants and will not adversely impact the beneficial uses of the receiving waters. RE:kc h:\reports\2301\15.\Svimp~03.doc w.o.2301·15 8J5/2008118 PM I I I I I I I I I I I I I I I I II I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 1.6 -References "2006 CWA Section 303(d) List," California Regional Water Quality Control Board. Hydrology Manual. County of San Diego Department of Public Works -Flood Control Division; June 2003. "Order No. R9-2007-0001, NPDES No. CAS0108758 -Waste Discharge Requirements for Discharges of Urban Runoff from the Municipal Separate Storm Sewer Systems (MS4s) Draining the Watersheds of the County of San Diego, the Incorporated Cities of San Diego County, San Diego Unified Port District and the San Diego County Regional Airport Authority", California Regional Water Quality Control Board -San Diego Region; January 24, 2007. "Water Quality Plan for the San Diego Basin", California Regional Water Quality Control Board -San Diego Region, September 8, 1994. "Tentative Map Drainage Study for La Costa Greens Neighborhood 1.3", Hunsaker & Associates Inc; May 2007. "Mass Graded Hydrology Study for La Costa Greens Neighborhoods 1.1-1.3 & EI Camino Real Widening", Hunsaker & Associates Inc; August 2005. RE:kc h·lreports\2301115\swmp-03,doc. W.O' 2301-15 8/5/20081'18 PM ------------------- 120 I Galf) LEGEND WATERSHED BOUNDARY FLOWLINE IMPERVIOUS AREAS PERVIOUS AREAS" CURB INLET STENCILING SOURCE CONTROL BMPs: -LANDSCAPING MANUFACTURED SLOPES SHALL BE LANDSCAPED WITH SUITABLE GROUND COVER OR INSTALLED WITH AN EROSION CONTROL SYSTEM. -AUTOMOBILE USE RV OWNERS SHOULD BE EDUCATED AS TO THE PROPER USE, STORAGE, AND DISPOSAL OF THESE POTENTIAL STORMWATER CONTAMINANTS -STORM WATER SYSTEMS STENCILING AND SIGNAGE SITE DESIGN BMPs: -MINIMIZE IMPERVIOUS FOOTPRINT -SLOPE & CHANNEL PROTECTION/HILLSIDE LANDSCAPING TREATMENT CONTROL BMPs: -CDS TREATMENT UNIT (MP-51) TARGETING COARSE SEDIMENTS & TRASH -FLO-GARD FILTER INSERT (MP-52) TARGETING COARSe SEDIMENTS & TRASH -EXTENDED DETENTION BASIN (TC-22) TARGETING COARSE SEDIMENTS & TRASH, POLLUTANTS THAT TEND TO ASSOCIATE WITH FINE PARTICLES DURING TREATMENT I V_L·:I T PREPARED BY: • HUNSAKER ~~~~TJlS ftANNNC mWipltl SI1eIt B«HOONC San ~Ca mn SUlVEYIiG~SlXI·~1fH DATE CITY LANDSCAPE CITY BUILDING DEPT. BMP SHEET LACb 1 OF ; ...... , "',." .. , J. CALIFORNIA 1 ------------------------------------------------------------------------\ ! I I -H.-H-+Ci:J;I+-+c-j-'-~f--__ !_I~(¥;-,~-LI·-+-+++++eH·--I-+-H I 11 --I·-l-~~--f-·~-4·-·-i·-~--~+·-I-I·-i--·I~~~+-+·+-r 'j Fl-J••• i. N 1-- 111~1.-I-;-~--.~ .. -.I-I-+.i--I .. --~ 1 __ I--'-.-I-.~.~i .. -.i .. -f .. +-II--1-.I-~.- 111 r-I--I--.I.-,_ ... pr ~[ 1-1-'1-'- I-I--~--I-I·-l--H (Xl f--! --l-~ -1··-4_-++·+-+-+-+ H·-H-I--f-I·-+-I--I-·I-l-·+·+--I-I--+ +.-+-i-'+-I-~ .. -+--.I--I':' T 1 ! CD I ~ __ N " T I. -1--I~--I-+4.-j~ .. -r~I--~--.r-I--f-I--1-4-'I-~f--r-j--f-+-~~~~~-~-~-~·--I.-4~i-1 -:'---I-e:-.l--H.l--,I-+ ..... I~-I I ....... i~!--· I !I; b!~ I--!-- I , m ! r1'I Ir.: :: 'Fa ~ § . 1·--. i1Ih ~!:l: r" ~a: 1\ ~~ I" ,..'" I: :t~ 111:; M ! :\ :;l'" I I-i--!'- +-1--1-1+++ 1-,-1-1-' 1-f-·I-I- H-+'-HH-+'-1-!--I-H-'~-!'-+ .•.. t·--1-1-""'-- j' I:. \ I I ! C I h. ~7 r-' j.-. 1-- 1·-f--,--I---i-'- i/ I\. I ~ I-'-f-' 1 I / 1<" i "I I-I l--t--I-. I I H-I I-I -r 1 -r II !YF IZ, ir'"" r-f--!-f.-+i-+.+-I-+-~'~~~+-!.-+-~-i-++~--i-~l~-+~-~-+~-1-~':'I'~r-~'r++-1~1--~'!-i i :"-h. v ~ I f'.. I li~~I~~~-~~I~~I-.H-.11~4~-~-I--!4·-i~--~-.+~-I--F~~~~+-~·~+-·l--Hf-~·I-H-~t~~-I !i! ; I I I " "II I I: I I .1 I I I I I I I II : I I I ~ \ ..---------------------------------------- I I I I, 1 I I 1 I 1 I I I I I I 1 : I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan CHAPTER 2 -STORM WATER CRITERIA 2.1 -Regional Water Quality Control Board Criteria All runoff conveyed in the proposed storm drain systems will be tr~ated in compliance with Regional Water Quality Control Board regulations and NPDES criteria prior to discharging to natural watercourses. California Regional Water Quality Control Board Order No. R9-2007-0001, dated January 24,2007, sets waste discharge requirements for discharges of urban runoff from municipal storm separate drainage systems draining the watersheds of San Diego County. Per the RWQCB Order, post-development runoff from a site shall not contain pollutant loads which cause or contribute to an exceedance of receiving water quality objectives or which have not been reduced to the maximum extent practicable. Post-construction Best Management Practices (BMPs), which refer to specific storm water management techniques that are applied to manage construction and post-construction site runoff and minimize erosion, include source control -aimed at reducing the amount of sediment and other pollutants -and treatment controls that keep soil and other pollutants onsite once they have been loosened by storm water erosion. Post construction pollutants are a result of the urban development of the property and the effects of automobile use. Runoff from paved surfaces can contain both sediment (in the form of silt and sand) as well as a variety of pollutants transported by the sediment. Landscape activities by homeowners are an additional source of sediment. All structural BMPs shall be located to infiltrate, filter, or treat the required runoff volume or flow (based on the 85th percentile rainfall) prior to its discharge to any receiving watercourse supporting beneficial uses. 2.2 -City of Carlsbad SUSMP Criteria Per the City of Carlsbad SUSMP, the La Costa Greens Neighborhood 1.3 project is classified as a Priority Project and subject to the City's Permanent Storm Water BMP Requirements. These requirements required the preparation of this Storm Water Management Plan. ' The Storm Water Applicability Checklist, which must be included along with Grading Plan applications, is included on the following page. RE'kc h:lreports\2301115\swmp-03 doc W.O 2301-15 8/5/2008118 PM I I I I I I I I I I I I I I I I I I I INSTRUCTIONS: DEVELOPMENT APPLICATION' STORM WATER STANDARDS QUESTIONNAIRE This questionnaire must be completed by applicant in advance of submitting for a development application (subdivision and land use planning, approvals and constrUction permits). The results of the questionnaire determine the level of storm water pollution prevention standards applied to a proposed development or redevelopment project. Many aspects of project site design are dependent upon the storm water pollution protection standards applied to a project. Applicant responses to the questionnaire represent an initial assessment of the proposed project conditions and impacts. City staff has responsibility for making the final assessment after submission of the development application. A staff determination that the development application is subject to more stringent storm water standards, than initially assessed by the applicant, will result in the return of the development application as incomplete. If applicants are unsure about the meaning of a question or need help in determining how to respond to one or more of the questions, they are advised to seek assistance from Engineering Department' Development Services staff. A separate completed and signed questionnaire must be submitted for each new development application submission. Only one completed and signed questionnaire is required when multiple development applications for the same project are submitted concurrently. In addition to this questionnaire, applicants for construction permits must also complete, sign and submifa Construction Activity Storm Water Standards Questionnaire. . . To address pollutants that may be generated from new development, the City requires that new development and significant redevelopment priority projects incorporate Permanent Storm Water Best Management Practices (BMPs) into the project design, which are described' in Section 2 c;>f the City's Storm Water Standards Manual This questionnaire should be used to categorize new development and significant redevelopment projects as priority or non-priority, to determine what level of storm water standards are required or if the project is exempt. I 1. Is your project a significant redevelopment? Definition: Significant redevelopment is defined as the creation or addition of at least 5, 000 square feet of impervious surface on an already developed site. Significant redevelopment includes, but is not limited to: the expansion of a building footprint; addition to or replacement of a structure; structural development including an increase in gross floor area and/or exterior construction remodeling; replacement of an impervious surface that is not part of a routine maintenance activity; and land disturbing activities related with structural or impervious surfaces. Replacement of impervious surfaces includes any activity that is not part of a routine maintenance activity where imperVious material(s) are removed, exposing underlying soil during construction. . Note: If the Significant Redevelopment results in an increase of less than fifty percent of the impervious surfaces of a previously existing development, and the existing development was not subject to SUSMP requirements, the numeric sizing criteria discussed in Section F.1.b. (2)(c) applies only to the addition, and not to the entire development. 2. If your project IS considered significant redevelopment, then please skip Section 1 and proceed with Section 2. 3. If your project IS NOT considered significant redevelopment, then please proceed to Section 1. I I I I I I I I I I I I I I I I I I I I SECTION 1 NEW DEVELOPMENT _. PRIORITY PROJECT TYPE YES NO Does you project meet one or more of the following criteria: 1. Home subdivision of 100 unfts or more. !/'" Includes SFD, MFD, Condominium and Apartments -Residential development of 10 units or more. 2. ./ Includes SFD, MFD, Condominium and Apartments 3. Commercial and industrial development greater than 100,000 sguare feet including parking areas. ./' Any development on private land that is not for heavy industrial or residential uses. Example: Hospitals, Hotels, Recreational Facilities, Shopping Malls, etq. 4. Heavy Industrial/ Industrv greater than 1 acre (NEED SIC CODES FOR PERMIT BUSINESS TYPES) V SIC codes 5013,5014,5541,7532-7534, and 7536-7539 5. Automotive repair shop. ./' SIC codes 5013, 5014, 5541, 7532-7534, and 7536-7539 ". 6. A New Restaurant where the land area of development is 5,000 sguare feet or more including parking ,/ areas. SIC code 5812 7. Hillside development ./' (1) greater than 5,000 square feet of impervious surface area and (2) development will grade On a~y natural slope that is 25% or greater 8. Environmentallv Sensftive Area (ESA). . Impervious surface of 2,500 square feet or more located within, "directly adjacent,,2 to (within 200 feet), ./'" or "discharQinQ directly to,,3 receiving water within the ESA1 9. Parking lot. V Area of 5,000 square feet or more, or with 15 or more parking spaces, and potentially exposed to urban runoff 10. Retail Gasoline Outlets -serving more than 100 vehicles Qer da'{. ./ Serving more than 100 vehicles per day and greater than 5,000 square feet 11. Streets, roads, highways. andfreewavs. ,/' Project would create a new paved surface that is 5,000 square feet or greater. 12. Coastal Development Zone. / Within 200 feet of the Pacific Ocean and (1) creates more than 2500 square ,feet of impermeable surface or (2) increases impermeable surface on property. by more than 10%. . 1 Environmentally Sensitive Areas include but are not limited to all Clean Water Act Section 303(d) impaired water bodies; areas deSignated as Areas of Special Biological Significance by the State Water Resources Control Board (Water Quality Control Plan for the San Diego Basin (1994) and amendments); water bodies designated with th.e RARE beneficial use by the State Water Resources Control Board (Water Quality Control Plan for the San Diego Basin (1994) and amendments); areas designated as preserves or their equivalent under the Multi Species Conservation Program within the Cities and Count of San Diego; and any other equivalent environmentally sensitive areas which have been identified. by the Copermittees. 2 "Directly adjacent" means situated within 200 feet of the environmentally sensitive area. 3 "Discharging directly to" means 'outflow from a drainage conveyance system that is composed entirely of flows from the subject development or redevelopment site, and not commingled with flow from adjacent lands. Section 1 Results: If you answered YES to ANY of the questions above you have a PRIORITY project and PRIORITY project requirementsDO apply. A Storm Water Management Plan, prepared in ,,!ccordance with City Storm Water Standards, must be submitted at time of application. Please check the "MEETS PRIORITY REQUIREMENTS" box in Section 3. If you answered NO to ALL of the questions above, then you are a NON-PRIORITY project and STANDARD requirements apply. Please check the "DOES NOT MEET PRIORITY Requirements" box in Section 3. I I I I I I I I .1 I I I I I I I I I I I SECTION 2 .1 SIGNIFICANT REDEVELOPMENT: YES NO 1. Is the project an addition to an existing priority project type? (Priority projects are defined in Section 1) If you answered YES, please proceed to question 2. If you answered NO, then you ARE NOT a significant redevelopment and you ARE NOT subject to PRIORITY project requirements, only STANDARD requirements. Please check the "DOES NOT MEET PRIORITY Requirements" box in Section 3 below. 2. Is the project one of the following: a. Trenching and resurfacing associated with utility work? b. Resurfacing and reconfiguring surface parking lots? c. New sidewalk construction, pedestrian ramps, or bike land on public and/or private existing roads? d. Replacement of damaged pavement? . If,You answered NO to ALL of the questions, then proceed to Question 3. If you answered YES to ONE OR MORE of the questions then you ARE NOT a significant red~velopment and you ARE NOT subject to PRIORITY project requirements, only STANDARD requirements. Please check the "DOES NOT MEET PRIORITY Requirements" box in Section 3 below. 3. Will the development create or add at least 5,000 ~quare feet of impervious surfaces on an existing development or, be located within 200 feet of the Pacific Ocean and (1)create more than 2500 square feet of impermeable surface or (2) increases impermeable surface on property by more than 10%?' If you answered YES, you ARE a significant redevelopment, and you ARE subject to PRIORITY project requirements, Please check the "MEETS PRIORITY REQUIREMENTS" box in Section 3 below. If you answered NO, you ARE NOT a significant redevelopment, and you ARE NOT subject to PRIORITY project requirements, only STANDARD requirements. Please check the "DOES NOT MEET PRIORITY Requirements" box in Section 3 below. I SECTION 3 Questionnaire Results: rp{ MY PROJECT MEETS PRIORITY REQUIREMENTS, MUST COMPLY WITH PRIORITY PROJECT STANDARDS AND MUST PREPARE A STORM WATER MANAGEMENT PLAN FOR SUBMITTAL AT TIME OF APPLICATION. o MY PROJECT DOES NOT MEET PRIORITY REQUIREMENTS AND MUST ONLY COMPLY WITH STANDARD STORM WATER REQUIREMENTS. Applicant Information and Signature Box This Box for City Use Only Address: Assessor Parcel Number(s): City Concurrence: Yess No Applicant Name: Applicant Title: By: .. Applicant Signature: Date: Dak Project ID: I I I I I I I I I I I I I I I I. I I Stonn Water Standards 4/03/03 APPENDIXB DRAFT ENVIRONMENTALLY SENSITIVE AREAS WITHIN THE CITY OF CARLSBAD Environmentally Sensitive Areas /'/ Major Roads o Carlsbad City Boundary _ Environmentally Sensitive Areas 5.8 •• 00 .... 2.00=0==-___ 5,000 Feet J'lcargls2lprodudslplannlng/r312.02lEnVSensAreBS 34 I ,I I I I: I I I I I 1 :1 .. 1- -I I I I I III I I I I I I I I I I I I I I I' I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan CHAPTER 3 -IDENTIFICATION OF TYPICAL POLLUTANTS, 3.1 -Anticipated Pollutants from Project Site The following table details typical anticipated and potential pollutants gen'erated by various land use types. For this current phase of the La Costa Greens Neighborhood 1.3 development, the project site will consist of a residential development and a RV site. Thus the Detached Residential development, Parking Lots and Streets, Highways and Freeways categories have been highlighted to clearly illustrate which general pollutant categories are anticipated from the project area. General Pollutant Categories Priority Project Categories Detached Residential Development Attached Residential Development Commercial Development >100,000 fe Heavy Indllnd Development Automotive Repair Shops Restaurants Hillside I/) ... s:::: (I) .S "0 (I) en x p( . 1) X I/) ... s:::: (I) .;: ... ::l z x p(1) Development> X X 5,000 ft2 Parking Lots Retail Gas Outlets , pC' .. p(1) ,1) I/) "C s:::: o ::l c($ I/) .-0 >...!!.! S::::Q. .s:::: .-> cu cu E I/) ... cu ... e'o cu..Q (I) (I) ... (I) ::r:::!! ou 1-0 x p(2) x X X X X X(4)(S) X X X X X X 0)1/) (I) I/) s:::: (I) cu c($ I/) ._ 0 (I) (I) . "C s:::: ... cu ' "C s:::: s:::: cu (!) .-I/) 'u (l)cu'" .. (I) (I) I/) ~E~ c($ ... ::l ;; ~.= I/) >< (I) ::l 0 (I) Ooen CD> 0.. p(1) p(2) p(1) x pes) x p(3) x x x x x x x x x x X H~~::~S& .. ' .' X •. ,:pi;;~ r<;~} , .. ~~~;, ~z*~f0t*M';~I:~~~':':,r:' >'. X = anticipated p = potential (1) A potential pollutant if landscaping exists on-site. (2) A potential pollutant if the project includes uncovered parking areas. (3) A potential pollutant if land use involves food or animal waste products. (4) Including petroleum hydrocarbons. (5) Including solvents. RE,kc h:\reportS\2301\15\swmp·03 doc W,O 230,.,5 8/5/20081'18 PM I I I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 3.2 -Sediment Soils or other surface materials eroded and then transported or deposited by the action of wind, water, ice, or gravity. Sediments can increase turbidity, clog fish gills, reduce spawning habitat, smother bottom dwelling organisms; and suppress aql,latic . vegetative growth. 3.3 -Nutrients Inorganic substances, such as nitrogen and phosphorous, that commonly exist in the form of mineral salts that are either dissolved or suspended in water. Primary sources of nutrients in urban runoff are fertilizers and eroded soils. Excessive discharge of nutrients to water bodies and streams can cause excessive aquatic algae and plant growth. Such excessive production, referred to as cultural. eutrophication, may lead to excessive decay of organic matter in the water body, loss of oxygen in the water, release of toxins in sediment, and the eventual death of aquatic organisms. 3.4 -Trash & Debris Examples include paper, plastic, leaves, grass cuttings, and food waste, which may have a significant impact on the recreational value of a water body and aquatic habitat. Excess organic matter can create a high biochemical oxygen demand in a stream and thereby lower its water quality. In areas where stagnant water is present, the presence of excess organic matter can promote septic conditions resulting in the growth of undesirable organisms and the release of odorous arid hazardous compounds such as hydrogen sulfide. 3.5 -Oxygen-Demanding Substances Biodegradable organic material as well as chemicals that react with dissolved oxygen in water to form other compounds. Compounds such as ammonia and hydrogen sulfide are examples of oxygen-demanding compounds. The oxygen demand of a substance can lead to depletion of dissolved oxygen in a water body and possibly the development of septic conditions. 3.6 -Oil & Grease Characterized as high high-molecular weight organic compounds. Primary sources of oil and grease are petroleum hydrocarbon products, motor products from leaking vehicles, oils, waxes, and high-molecular weight fatty acids. Elevated oil and grease content can dec-rease the aesthetic value of the water body, as well as the water quality. RE:kc h.lreportsI2301l15\sWmp-03 doc w.o.2301·15 8/5120081 18 PM I I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 3.7 -Pesticides Pesticides (including herbicides) are chemical compounds commonly used to control nuisance growth or prevalence of organisms. Excessive application of a pesticide may result in runoff containing toxic levels of its active component. 3.8 -Bacteria & Viruses Bacteria and viruses are ubiquitous microorganisms that thrive under certain environmental conditions. Their proliferation is typically caused by the transport of animal or human fecal wastes from the watershed. Water, containing excessive bacteria and viruses can alter the aquatic habitat and create a harmful environment for humans and aquatic life. Also, the decomposition of excess organic waste causes increased growth of undesirable organisms in the water. 3.9 -Organic Compounds Organic compounds are carbon-based. Commercially available or naturally . occurring organic compounds are found in pesticides, solvents and hydrocarbons. Organic compounds can, at certain concentrations, indirectly or directly constitute a hazard to life or health. When rinsing off objects, toxic levels of solvents and cleaning compounds can be discharged to storm drains. Dirt, grease and grime retained in the cleaning fluid or rinse water may also adsorb level of organic compounds that are harmful or hazardous to aquatic life. 3.10 -Metals Metals are raw material components in non-metal products such as fuels, adhesives, paints and other coatings. Primary sources of metal pollution in storm water are typically commercially available metals and metal products. Metals of concern include cadmium, chromium, copper, lead, mercury and zinc. Lead and chromium have been used as corrosion inhibitors in primer coatings and cooler tower systems. At low concentrations naturally occurring in soil, metals are not toxic. However, at higher concentrations, certain metals can be toxic to aquatic life. Humans can be impacted from contaminated groundwater resources, and bioaccumulation of metals in fish and shellfish. Environmental concerns, regarding the potential for release of metals to the environment, have already led to restricted metal usage in certain applications. RE-\(c h-\reports\2301\15\Swmp--03.dOC W.O 2301·15 8/5/20081 18 PM I' I I I I' ,I I I I I I I I ' I I I I. I I IV I 'I I I 'I I I il I ,I I I I I ,I I :1 I I La Costa Greens Neighborhood 1,3 Storm Water Management Plan CHAPTER 4 -CONDITIONS OF CONCERN 4.1 -Receiving Watershed Descriptions As shown in the watershed map on the following page, the pre-developed La Costa Greens Neighborhood 1.3 site drains to an unnamed tributary of San Marcos Creek which eventually discharges to the Batiquitos Lagoon within the San Marcos Creek watershed. Development of the site will not cause any diversion to or from the existing, watershed to the storm drain system. The Regional Water Quality Control Board has identified San Marcos Creek as part of the Carlsbad Hydrologic Unit, San Marcos Creek Watershed, and the Batiquitos Hydrologic Subarea (basin number 904.51). The beneficial use for this hydrologic subunit is found in the California Regional Water Quality Control Board San Diego Region Basin Plan, dated May 5, 1998, 4.2 -Surface Waters Beneficial uses for the Batiquitos Lagoon and San Marcos Creek include agricultural supply, contact water recreation, non-contact recreation, warm freshwater habitat, and wildlife habitat. The table at the end of this chapter titled "Water Quality Objectives" depicts the water quality objectives for the inland surface waters. 4.3 -Coastal Waters The existing beneficial uses of costal waters for Batiquitos Lagoon include contact water recreation (REC-1), non-contact water recreation (REC-2), preservation of biological habitats of special significance (BIOl), estuarine habitat (EST), wildlife habitat (WilD), rare, threatened, or endangered species (RARE), m~rihe habitat. (MAR), migration of aquatic organisms (MIGR) and spawning, reproduction, and/or early development (SPWN). Refer to the table at the end of this chapter titled "Beneficial Uses of Coastal Waters". 4.4 -303(d) Status Section 303(d) of the Federal Clean Water Act (CWA) requires the State to identify surface waters that do not meet applicable water quality standards with certain technology-based controls. The State Water Resources Control' Board has approved the 2006 303(d) List of Water Quality Limited Segment. RE:kc h:\reports\2301\1S\swmp-03.doc w,o,2301'15 815120081:18 PM - --::: ; ", (-~::'- '" " ~.' .~ ,:',; ',":., , ;. "~ ~ ~ ' .. ~ .~. :'>:.\":.:';:'\. ~ :,' '!': :.:;, \ r -- - "':'.:;'';': '! .:.', .••..•• : ':·CA .. ·.) .i;lt;~·_:S:·· 'D' . ')~:~D' :,;. ", \ . ~ ;A_.Li n. -- -,--- - ---- - LA COSTA GREENS NEIGHBORHOOD 1.3 CITY OF CARLSBAD, CAlIFORNIA - 1 I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan The project location and watersheds have been compared to the current published 303( d) List of Water Quality Limited Segment, and the nearest impaired water body is the Pacific Ocean Shoreline at Moonlight State Beach, impaired by Bacterial Indicators. 4.5 -Condition of Concern-Developed Condition Hydrology Summary Table 3 below summarizes developed conditions drainage areas and resultant 100- year peak flowrates at the storm drain discharge location. Per San Diego County rainfall isolpluvial maps, the· design 1 OO-year rainfall depth for the site area is 2.9 inches. Table 3 -Summary of Developed Conditions Peak Flows Drainage Location Drainage Area 100-Year Peak Flow (Ac) (cfs) Southern Outlet (Basin) 5.4 12.5 Northern Discharge 0.6 1.8 The majority of the runoff from the developed site will be collected and conveyed via a curb and gutter system into a storm drain system within the project site. The storm drain system flows in a southerly direction, discharging into an onsite water quality basin. The runoff in the basin discharges via an existing 24" storm drain and surface flows in a southerly direction, along the site boundary of the La Costa Greens Golf Course until it eventually drains under Alga Road via three 96" RCP culverts and discharges into the existing Alicante Detention Basin. The remainder of the runoff will be collected in a curb and gutter system and conveyed northerly, along Private Way "A" into an existing storm drain inlet, ultimately discharging into the adjacent La Costa Greens Golf Course. Peak flow rates listed above were generated based on criteria set forth in the "2003 San Diego County Hydrology Manual". For further information in regards to this rational method analysis, please refer to the "TM Drainage Study for La Costa Greens Neighborhood 1.3" dated May, 2007 by Hunsaker & Associates. 4.6 -Identification of Primary & Secondary Pollutants of Concern As stated previously in segment 3.4, the nearest 303(d) listed endangered water body the La Costa Greens Neighborhood 1.3 development is tributary to the Pacific Ocean Shoreline at Moonlight State Beach. This water body is listed as being sensitive to Bacterial Indicators. Thus, bacteria is the only primary pollutant of concern from the proposed site. Secondary pollutants generated by the project site include Nutrients Sediment, Heavy Metals, Trash and Debris, Oil and Grease, Oxygen Demanding Substances, Nutrients, Pesticides and Viruses & Bacteria. RE.kc h:\reportsI2301\15\swmp-03.doC w.o .. 2301·15 8/5/20081'18 PM -------------------... " Table 2-3. BENEFICIAL USES OF COAS·TAl WATERS r-BENEFICIAL USE Coastal Waters HydrQiogic I N R R C B E Unit Basin N A E E .0 I S Number D V C C M 0 T 1 2 M L Pac:ific Ocean * 0 • ., e e Dalla Point Harbor O. @ e 0 e Del Mar Boat Basin 0 e 0 0 e Mi~;5ion Bay e (I) 0 e CD OCI3anside Harbor e 4» ~ • • San Diego Bay 1 0 0 • tl\) • 0 " . Coastal Lagoons 'Tijuana River Estuary 11. i 1 @ @ CD Ill) * Mouth· of San Diego River 7.11 ~ * ® ~ Los Penasqultos Lagoon, 2 6.10 • @ G G San Dieguito Lagoon 5.11 ~ 0 fit fl) Batiqultos, Lagoon 4.51 e • 0 G San Elijo Lagoon ' 5.61 0 • e. @t Aqua' Hedionda .lagoon 4.31 0 f!I) 0 0 e InCludes the tidal prisms of the Otay and Sweetwater Rivers. 2 Fishing from shore or boat permitted; bilt other water contact recreational !REC-1 l' uses are prohibited. . .' . ' (J Existing Beneficial Use Table 2-3 BENEFICID.L USES 2-47 W I L D e e G) (I) G e (!lJ f)) • 0 0 e 4\)) R A R E G • • • • 6)) 11) • e e (I) tD • M A A Q R U A @ e ~ e • • • (/j) ; e liI e • " • fj ,-~a ...... 1 ...... ~:.1l'fJ1 'Ifi'\ ... -"HI ;;;:::':~:II\'I'I ... ~ ... ¥ ....... lf.UF! ~_ .... _ .1I1m. .•....• ~f!OO ...... _ ....... rnu3 '"'~'. :~::W.lB ._.IIM _,._"~.;~ : •. _ .. , .... JI'!a M S W S I P A H G W R E R N M L L e G· @ CliI f1) f!) • 4) tD 0 0 G e • e @) 0 ., Gl @ (!!) tml • f; . ", @ $ • e G Iff) CD • • 4) f) 0 March 12, 1997 .... ~ .. ~~~·._ .. :]m _ .... _: :.,JIIr.;! . .il;::' ---------.---------- , , Table 2-3. BENEFICIAL USES'OF COASTAL'WATERS -, BENEFICIAL USE Coastal Waters Hydrologic I ,N R R C B E W 'R. Unit Basin N A E E 0 ' I .. ' S I A , Number' D V :c C 'M 0 T L R , , 1 2 M L D E -, , , .. I I " , , , ' " I Coastal Lagoons -contin~ed , ' 2 ' ' :. ' , :. Buena Vista'Lagoon 4.21 • • 0 • -... Lorna Alta Slough 4.10 • • • • • .. , ..... , , Mouth of San Luis Rey River 3.11 • • • • Santa Mar~arita Lagoon 2.11 • • • '. '. : Aliso Creek Mouth 1.13 ., • ',. '. .. San Juan Creek Mouth 1.27 • • • • San Mateo Creek~Mouth 1.40 • • • • • San Onofre Creek Mouth : 1.51 '. • • ., 'lncll,ldes .the tidal prisms of the Otay and Sweetwater Rivers. 2 Fishing from shore or boat permitted, but other water contact recreational (REe-1) uses are prohibited. • Existing Beneficial Use o Potential Beneficial Use Table 2-3 BENEFICIAL USES .' " ") .. .,., 2-48 '') M A, M S W S A Q I P A H R U G W R E A R N M L L • '. • I I • • I • • • • • • • • • • , , '. • • March 12, 1997 ("") -----------. ---- - ---/ l" .~\ ......... Table 3 .. 2. WATER Qt)Al~·TY OBJECTIVES Concentrations not to be exceeded more than 10% of the time during anyone one year period. ---- Constitiuent (mg/L or as noted) Inland Surface Waters Hydrologic , Unit Basin TDS CI so 4 %Na N&P Fe Mn MBAS B ODOR Turb Color F Number NTU Units SAN LUIS REY HYDROLOGIC UNIT 903.00 Lower San Luis HA 3.10 600 250 250 60 a 0.3 0.05 0.6 0.75 none 20 20 1.0 i Monsflrat HA 3.20 500 250 250 60 a 0.3 0.05 0.6 0.75 none 20 20 1.0 Warner Valley HA 3;30 500 250 250 60 a 0.3 0.06 0.5 0.76 none 20 20 1.0 CARLSBAD HYDROLOGIC UNIT 904.00 Lorna Alta HA 4.10 --------. none 20 20 1.0 Buena Vista Creek HA 4.20 500 250 250 60 a 0.3 0.05 0.5 0.75 none 20 20 1.0 Agua Hedionda HA 4.30 600 260 260 60 a 0.3 0 .. 05 0.5 0.75 none 20 20 1.0 . EncinE.s HA 4.40 ---------none 20 20 1.0 San Marcos HA 4.60 600 250 260 60 a 0.3 0.05 Q.5 0.75 none 20 20 1.0 Escon·:lido Creek HA 4.60 500 250 250 60 a 0.3 0.05 0.5 0.75 none 20 20 1.0 SAN DIEGUITO HYDROLOGIC UNIT 905.00 Solanu Beach HA 6.10 500 250 250 60 a 0.3 0.05 0.5 0.75 none 20 20 1.0 . Hodges HA 5.20 600 250 250 60 a 0.3 0.05 0.5 0.75 none 20 20 1.0 San Pasqual HA 6.30 500 260 250 60 a 0.3 0.05 0.5 0.75 none 20 20 1.0 Santa Maria Valley . HA 6.4.0 600 250 250 60 a 0.3 0.05 0.5 0.75 none 20 20 1.0 Santa Ysabel HA 5.50 600 250 260 60 a !J.3 0.05 0.5 0.75 none 20 20 1.0 PENAS P.UITOS HYDROLOGIC UNIT 906.00 Miramar Reservoir HA 6.10 500. ·250 250 ·60 a 0.3 0.05 0.6 0.15 none 20 20 1.0 ! 0.75 I Powa)' HA 6.20 500 ·ZEO 260 60 a 0.3 d.05 0.5 none 20 20 1.0 ! . - HA • Hy:lrologic Area HSA· Hydrologic Sub Araa (Lowsr coss letters indlcato endnotos following the tobID.) TabiD 3-2 WATER QUALITY OBJECTIVES Page 3·23 Soptember 8, 1994 _ •. ~"'lJ r~'1 ._.i!:'l! ~_.".: . ..!1l\\ ffi.1 .... _:ilWil ;;;, __ .~~~ L,..::':':JiIlm : ...•. ::::.-:-:Jm9 . .. .. Jq![ft __ " •. Jt*ll ~ .... :::. < •••• ·.~_W.fl ._'.~:1YJ! · __ .~~:Jlm ." ~.J;11 · ...... ·::.Jy~1 : .. _.~~:.::v.q~~1 '" .--::]'J;~ ------------------ Tabie 2-2. BENEFICIAL USES Q·f INLAND SURFACE WATERS BENEFICIAL USE 1,2 M A I P G p: P R R 8 W C W Inland Surface Waters Hydrologic Unit U G N R W R 0 E E I A 0 I BElsin Number N R 0 0 R S W C C '0 R L L . C H 1 2 L M 0 D Sari'Diego County Coastal streams M continued Buena Vista Lagoon 4.21 See Coastal Waters-T able 2~3 Buena Vista Creek 4.22 + • QII /I) e • e Buena Vista Creek 4.21 + II 0, 0 c a 0 Agua Hedlonda 4.31 See Coastal Waters-Table 2-3 Agua Hedionda cre~k 4.32 • (/II f/) 0 0 G 0 Buena Creek 4:32 f) GIl e fJ c e • Agua Hedionda Creek 4.31' $ Gt 0 fit 0 /I) G ; LeUerbox canyon 4.31 e " " ; • Gt e ID Ganyon de las Encinas 4.40 + 0 0 III • -, Sa:n Marcos Creek Watershed ~Iatiquitos Lagoon 4.51 See Coastal Waters-Table 2-3 San Marcos Creek • 4.52 + e e • '" " unnamed Intermittent streams 4.53 + 0 0 " II • San Marcos ~reek Wat!'lrshed San, Marcos Creek 4.51 ; + G • $ • @ , Ericlnitas Creek 4.51 + CI fIJ G " •• 1 vyaterbodies are listed mullfple times if they. cross hydrologic area or sub area boundaries. III Existing Beneficial Use o Potential Bel1eflcial Use 2 Beneficial use designations apply to all tributaries to lhe indicated waterbody. if not listed separately. + Excepted From MUN. (See Text) Tabla 2·2 BENEFlel/IL USES 2-27 , R S A P R W E N e March 12, 1997 t:,u.,:,:· •• ~..... -.. " .. _,"". .---,~"....,.,,=, ,--, .... , ••. o!m'!. ""-"~,",,'7f-1 .... "'A:l~: , .. --.:.".:ft..r! . -':',,",:IlJ'1" "." •. ..lr.:, .. :,_~,;~. -,.,;.:,...Jr.' ~".,,8t - -- ."> 9 9 • - -- - -- --- --- - --- R E R PROPOSED 2006 CWA SECTION 303(d) L~ST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD :;~~:,(: Agua Hedionda Creek ':",,'1 Agua Hedionda Lagoon Aliso Creek SWRCB APPROVAL DATE: OCTOBER 25, 20M .,. ,:,-,. ,::;':'flii~l~~,:~ .. ,~;t,;!~} ;:~:' ': ;~~;~;:,::~;~:r;;~:;,?;~:,;;:: :'~" , .. :: ': :" WATEll&~P~,:,,;";,P9L~l!f1.'-AN1;!I?~R1j!~SOR':);'/; ", .... rOT1WrIAL , ,,' SOURCES , .. ESTIMATED,: PROPOSED, TWi:, SIZE: ·iFFECTED , '.;COMPLETION ' .' 90431000 90431000 90113000 Manganese Selenium Sulfates Total Dissolved Solids Indicator bacteria Sedimentation/Siltation 'j' Indicator bacteria Source Unknown Source Unknown Source Unknown Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source NonpointlPoint Sonrce NonpointlPoint Source 7 Miles 2019 7 Miles 2019 7 Miles 2019 7 Miles 2019 6.8 Acres 2006 6.8 Acres 2019 19 Miles 2005 This listing/or indicator bacteria applies to the Aliso Crel!fk mainstem and all the major tributaries 0/ Aliso Creek which are Sulphllr Creek, Wood Canyon. Aliso Hills Canyon.l)airy Fork. and English Canyon. Phosphorus Urban Runoff/Storm Sewers Unknown point source NonpointIPoint Source 19 Miles 2019 This listing/or phosphonls·applies to. the Aliso Creek mainstem and all the mqjor tributaries 0/ Aliso Creek which are SlIlphlir Creek. Wood Canyon. Aliso Hills Canyon. Dairy Fork. and English-Canyon. Pagel 0/27 Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source - --- ---- -- -,-- --- ---PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD ;,(.~t:"l~.:;< ~/:,.'~\ ,: ;,~,",,:,::' .. :J---~::~:,~. 't.\ ~';, ",'Jll!;GmN ',])Yf,~, :' " N~!l;t::' ". 9 E Aliso Creek (mouth) I." 9 L Barrett Lake " • -.j.~, • j" I~:" ,Of' -' 9 R Buena Creek 9 R Buena Vist~ Creek "~ALwif~R:\':"'-: ,',,:.,:T;:'::;':~>:':";:;i,~a;,;~~:::" ~::':, :'::;OWiiNT;t:d '.' 'C ~.' 'WATEli~lQl:lt '; POC~v.:rA:Nrr/~J'ru;~}~'()~'i' ,,':.";' SOURCES" SWRCB APPROVAL DATE: OCTOBER 25, 2006 E;STIly.lATEP, ,PR,OPqSED TMDL SIZE; AFFECTEP COMPLETION Toxicity 19 Miles 2019 This listingfor toxicity applies to the Aliso Creek mainstem and all the major tributaries of Aliso Creek which are Sulphur Creek, Wood Canyon, Aliso Hills Canyon, Dairy Fork, and English Canyon, Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source 90113000 Indicator bacteria 0.29 Acres 2005 Nonpoint/Point Source 91130000 Color 125 Acres 2019 Sonrce Unknown Manganese 125 Acres 2019 Source Unknown pH 125 Acres 2019 Source Unknown 90432000 DDT 4.8 Miles 2019 Source Unknown Nitrate and Nitrite 4.8 Miles 2019 Source Unknown Phosphate 4.8 Miles 2019 Source Unknown 90421000 Sediment Toxicity U Miles 2019 Source Unknown Page2of27 - -- ---- - --- -- ---- - PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD - ';>~~Q~~~~;',~~-,'--::':';' , S\VRCB APPROVAL DATE: OCTOBER 25,2006 9 E Buena Vista Lagoon 9 R Chollas Creek ,,~'~'. ' ~~: ... 'v",'"t,. i"': i ., '," . _' 1 9 R Cloverdale Creek -\: . ~/,>", , '" :c~~W~iiij; ,~;;:;:,:,:'::-";' ),;::r:'_:',~",:c;y" , ,-',' 'W .I\'f,~RS~P':;', -'POJ.,LU'F~l'l''1,'/S:rlUi:SSOR "'!~6:~k~' ,,', 90421000 Indicator bacteria NonpointlPoint Source Nutrients Estimated size a/impairment is 150 acres located in upper portion a/lagoon, NonpointlPoint Source Sedimentation/Siltation 90822000 Copper Indicator bacteria Lead Zinc ,', 90532000 Phosphorus Total Dissolved Solids Page30f27 NonpointlPoint Source NonpointlPoint Source NonpointlPoint Source NonpointlPoint Source NonpointlPoint Source Urban Runoff/Storm Sewers Unknown Nonpoint Source UnkI!own point source Urbal! Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source 202 Acres 2008 202 Acres 2019 202 Acres 2019 3.5 Miles 2004 3.5 Miles 2005 3.5 Miles 2004 3.5 Miles 2004 1.2 Miles 2019 i,2 Miles 2019 - -- 9 9 9 ---- -- --- ------ - PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD j r. ." ~AME" R Cottonwood Creek (San Marcos Creek watershed) B Dana Point Harbor "~' ,:,.," R De Luz Creek " ,.··.C~LWA:rER.: .':~-'~' :'~~:?'-o-'::. Co:: . ·'W.;\:rE~imp, .... ':PO~LUTANT/STRESl!OR ~: P.qTENTlAL SOURCES 90451000 90114000 90221000 DDT Source Unknown Phosphorus Source Unlmown Sediment Toxicity Source Unknown Indicator bacteria Impairment located at Baby Beach. Iron Manganese Urban Runoff/Storm Sewers Marinas and Recreational Boating Unknown Nonpoint Source Unknown point source Source Unknown Source Unknown 't, '!~ I' j ~ " 't,," , I" ,~,,-"J',,~~,! ,1'1' L El Capitan Lake 90731000 Color Source. Unknown Manganese Source Unknown pH Source Unknown .. r.-"':<.'~"' Page 4 of27 SWRCB APPROVAL DATE: OCTOBER 25,2006 ESTIMAT~D SI~E AFFECTED 1.9 Miles 1.9 Miles 1.9 Miles 119 Acres 14 Miles 14 Miles 1454 Acres 1454 Acres 1454 Acres PRQPOSED . TMl>~ COMPLETION 2019 2019 2019 2006 2019 2019 2019 2019 2019 - - ---- -- ---- ------ - PROPOSED 2006 CWA SECTION J03(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD : f .,,~'." ~.: J ,'.~:,; " .' ,-~ -",' -, '" • 1 ' I REGiON' ~Y~E:' .NAME· . :CALWATiit . '. ,::"" WA:f.E~~HED . " .. ,r9:i.tuTAN'r/STM~S(lR : " '. '~'~l'ENTiAL : " SOURCES 9 R Encinitas Creek 9 R English Canyon 9 R Escondido Creek Page50f27 SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED ,SIZE AFFECTED PROPOSED TMD~ COMPLETION 3 Miles 2019 3.6 Miles 2019 3.6 Miles 2019 3.6 Miles 2019 26 Miles 2019 26 Miles 2019 26 Miles 2019 26 Miles . 2019 26 Miles 2019 26 Miles 2019 - --- -- --- ---- -- --- - PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD :':::',~~~~: ,'~~:~~ "7=~ ~~~~ ~,.:"':';":'::'~~"~; ;!REGU)N>tm>Ji"', :;'.~ NiME' ',!' • •• ~ , ' , • -"':"' _, -I'" ~' ':::~ij~~W~T~ki: 'WATJl;RSIJED 9 E Famosa Slough and Channel 90711000 9 R Felicita Creek 90523000 9 R Forester Creek 90712000 I:., l'"~-.', ': (', ' .. :;.t '~':~'-"':\'Yr~' ,">':.," 1;'OLLtJT kNTisT)ll!;SSOR. Eutrophic Aluminum Total Dissolved Solids Fecal Coliform ",: 'p6TENTI~L , SOURCES' Nonpoint Source Source Unknown Agricultural Return Flows Urban Runoff/Storm Sewers Flow Regulation/Modification Unknown Nonpoint Sonrce Unknown point source Impairment Located at lower 1 mile, Oxygen, Dissolved pH , Urban Runoff/Storm Sewers Spills Unknown Nonpoint Source Unknown point source Source UnlqlOwn Impairment Located at IIpper 3 miles. Phosphorus Page6of27 Industrial Point Soilr,ces Habitat Modification S}lills Unknown Nonpoint Source Unknown point source Source Unknown SWRCB A:PPROVAL DATE: OCTOBER 25,2006 ESTIMATED PROPOSED TMDL SIZE AFFECTED COMPLETION 32 Acres 2019 0.92 Miles 2019 0.92 Miles 2019 6.4 Miles 2005 6.4 Miles 2019 6.4 Miles 2019 6.4 Miles 2019 - --- -- ---- ---- --- - PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER,QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD - SWRCB APPROVAL DATE: OCTOBER 25, 2006 ::~~:~~:i~;~J{~r(,:: ~,ki~<";:.:,, 'l;i-;< '~:',,::, e' ":~::'~r~:~,:;" . ".' l ;; •• < " ; ':';C~I2~'i~TER,::" , , .' " , " ,.' ':" '., , ,'.' ':",;, BQTENTIA:l; , ,: WA,TERs6En:: POLr.!J.~~'f/STru.:.~SOR:::' >, ',: ' 'SQURCES ESTIMATED SIZE AFFECT]j:I)' PROP<;>I?ED'TMDL ~OIYIPLETION 9 R Green Valley Creek 90521000 . ; ;, ~ , 9 L Guajome Lake 9Q311000 ,-' ~ , ,'.' " 9 L' Hodges, Lake 90521000 Total Dissolved Solids Impairment Located at lower J mile. Chloride Manganese Pentachlorophenol (PCP) Sulfates '.", Eutrophic Color Manganese Page7of27 Agricultural Return Flows Urban Runoff/Storm Sewers Flow Regulation/Modification Unknown Nonpoint Source Unknown point source Source Unknown Source Unknown Source Unknown Urban Runoff/Storm Sewers Natural Sources Unknown Nonpoint Source Unknown point source , I, ~ '", NonpointIPoint-Source Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point sQurce Source Unknown 6.4 Miles 2019 0.98 Miles 2019 0.98 Miles 2019 0.98 Miles 2019 0.98 Miles 2019 33 Acres 2019 1104 Acres 2019 1104 Acres 2019 - ------- -- -- - -- - -- - PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD ¥'," :::--w;~:~~':I~Y: ,;:::'~~:::'; -~'Y--;:~'~~\' -~.'" >~,.'; : ,REGION ~TYPE': " NAME ," ,I ~" 'or'" ~ -• , .. > .. ;":' :':':;::21LW'(TER"::"",::"";c",:","',!'::, 'Y:' ~~?"~ , " ':WATER$HED"'" PO~LUT~T/ST~~H~ciIi Nitrogen pH Phosphorus Turbidity " , .. : 9 R Kit Carson Creek 90521000 Pentachlorophenol (PCP) , Total Dissolved Solids ,; .. ,," ,.,',',' , .. 9 R Laguna Canyon Channel 90112000 Sediment Toxicity Page 8 of27 .. ' POTENTIAL ",', 'SOURCES Agriculture Dairies Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Source Unknown Agriculture Dairies Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Source Unknown Source Unknown Agricultural Return Flows Urban Runoff/Storm Sewers Flow RegulationlModification Unknown Nonpoint Source Unknown point source Source Unknown SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED ',PROPOSED' TMDL SIZE AFFECTED COMPLETION 1104 Acres 2019 1104 Acres 2019 1104 Acres 2019 1104 Acres 2019 0.99 Miles 2019 0.99 Miles 2019 1.6 Miles 2019 - , --------- ----- -- ---------- - PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD 1,::,1 •. ,,-~ ,1 ~-'~:~7¥:~';:~:::~'~"~ ~, ",~~',:, :,~,.::",:'::':::~~~: , ' '~ALW:A~ER ' ~':' ""~'1: " ,:" "POTENTIAL ,." " ,W~TERS.m~ ,PO~I:;(J:riNT/$1:~SSQR"," SOURCES I"~GION' ,TYPE" ~~,,:'; 9 E Lorna Alta Slough 9 R Long Canyon Creek 9 R Los Penasquitos Creek 9 E Los Penasquitos Lagoon ; ,<' < ~" ·'l!) 9 L Loveland Reservoir ,I') -'''~ ~ ] ~ • .;;, • • ". /:' , • J " ; " ;., • :. ',' 1 " 'I'f ~ ~, .'.~ t.' .'" ':'" 9 B Miss~on Bay (ar~a at mouth of Rose ~reek only) 90410000 90283000 90610000 90610000 , , 90931000 90640000 Eutrophic Nonpoint Source Indicator bacteria Nonpoint Source Total Dissolved Solids Source Unknown Phosphate Source Unknown Total Dissolved Solids Source Unknown Sedimentation/Siltation Nonpoint/Point Source Aluminum Source Unknown Mal!ganese Source Unknown Oxygen, Dissolved Source Unknown ,\. ,-"; Eutrophic Nonpoint/Point Source Page 9 of27 SWRCB APPROVAL DATE: OCTOBER 25, 2006 ]1:ST;rM.(\.TED SIZE AFFECTED PROPOSED TMDL COMPLETION' 8.2 Acres 2019 8.2 Acres 2008 8.3 Miles 2019 12 Miles 2019 12 Miles 2019 469 Acres 2019 420 Acres 2019 420 Acres 2019 420 Acres 2019 9.2 Acres 2019 - --,-,---- ------ --- --PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD 1'1: ':' ':' " ~. ,,:, .,'t:1 ';iuiGiON,'TYPE ',. NAlViE ' -.... , ' -'. " " , " I' ~ 9 B Mission Bay (area at mouth of Tecolote Creek only) 9 L Morena Reservoir ;'1-, 9 L Murray Reservoir 9 R Murrieta Creek ::i:.7cit;~TEIi:·:; . h" •• , , ' '. WA:rERS~~ ::' P6lJLUT~NT/ST~ESSoii , ", ~, ' -, ' ," Lead 90650000 Eutrophic Lead 91150000 Color Manganese pH 90711000 pH ','- 90252000 Iron Manganese Nitrogen Page 100/27 . "POT1):~TIA.L . SOURCES NonpointlPoint Source NonpointlPoint Source Nonpoint/Point Source Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED SIZE AFFECTED 9.2 Acres 3.1 Acres 3.1 Acres 104 Acres 104 Acres 104 Acres 119 Acres 12 Miles 12 Miles 12 Miles PROPOSED TMDL COMPLETION 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 - ----- --- -- ------,-PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD - \·i.:~~.:~·t;~',,:::,\:;'".':::·< ~:/ :1.:, ' :'~9.~Q~' rrY;FEf::, ,'" ,,' -,>, NA\\1E,: ,', :,' ,:',:'oj(i~i~~R:::/:";'-': :",', :", "',' ;"i "'i"~'" ,':, 0, ; POTENTIAL' " '. wifE:R'&HEi> ":POiW'fAN:P!~T~~~OR, '" ',' ,",' ,,: SOUR:CES ' , -~. , , SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED SIZE AFJi1j:CTED PROPOSED TMD~ COMPLE'f.ION 9 R Oso Creek (at Mission Viejo Golf Course) 90120000 ~ t,' ,;" ' .. " . 9 L Otay Reservoir, Lower 91031000 .':";" :,' ','.", _'1,_ .f'l "'-,'- 9 C Pacific Ocean Shoreline, Aliso HSA 90113000 Phosphorus Chloride Sulfates Total Dissolved Solids Color Iron Manganese Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point sonrce Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown Nitrogen, ammonia (Total Ammonia) Source Unknown pH (high) Source Unknown Indicator bacteria 12 Miles 1 Miles 1 Miles 1 Miles 1050 Acres 1050 Acres 1050 Acres 1050 Acres 1050 Acres 0.65 Miles Impairment located at Lagul1a Beach at Lagunita Place / Blue Lagoon Place, Aliso Beach. Nonpoint/Point Source 111<. PageJ1 0/27 2019 2019 2019 2019 2019 2019 2019 2019 2019 2005 - -- -------- - -------PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN ])IEGO REGIONAL BOARD I~~i~N 'i~;~;0:~;\~:i,iTr:~:~~~.: ;;~:':(,::,. 9 C Pacific Ocean Shoreline, Buena Vista Creek HA 9 C Pacific Ocean Shoreline, Dana Point HSA 9 C Pacific Ocean Shoreline, Escondido Creek HA ,':.',. \}j: '~i'" '" , 9 C Pacific Ocean Shoreline, Imperial Beach Pier ',1, 9 C Pacific Ocean Shoreline, Laguna Beach HSA ,,;, 1 9 C Pacific Ocean Shoreline, Lorna Alta HA .. , SWRCB APPROVAL DATE: OCTOBER 25, 2006 .':,¢AiwAi~J{'.···;f.'::·.· ;:., '<,Ci:t,:,:~r: "::;:'\:,;;;/: ">:., fQTENTIAL WAT-lilRS~i> '.POq:.UrANT/~T~S~()R""" SOURCES ~STIlYIATJ!:D .. PROPOSED TMDL COMPLETION 90421000 90114000 90461000 91010000 '<f, " ',' 90112000 90410000 SIZE AFFECTED Indicator bacteria 1.2 Miles 2008 Impairment located at Buena Vista Creek, Carlsbad City Beach at Carlsbad Village Drive, Carlsbad State Beach at Pine Avenue. NonpointJPoint Source Indicator bacteria 2 Miles 2005 Impairment located at Aliso Beach at West Street, Aliso Beach at Table Rock Drive, 1000 Steps Beach at Pacific Coast Hwy (Hospital, 9th Ave), Salt Creek (large outlet), Salt Creek Beach at Salt Creek service road, Salt Creek Beach at Dana Strand Road. Nonpoint/Point Source Indicator bacteria 0.44 Miles 2008 Impairment located at San Elijo Lagoon outlet. NonpointJPoint Source PCBs (Polychlorinated biphenyls) 0.42 Miles 2019 Source Unknown Indicator bacteria 1.8 Miles 2005 Impairment located at Main Laguna Beach, Laguna Beach at Ocean Avenue, Laguna Beach at Laguna Avenue, Laguna Beach at Cleo Street, Arch Cove at Bluebird Canyon Rbad, Laguna Beach at Dumond Drive. Nonpoint/Point Source Indicator'bacteria 1.1 Miles 2008 .Impairment located at Loma Alta Creek Mouth. NonpointJPoint Source Page12of17 - ----- - -- ------ ----PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 r~)~", ,,:~~~,,::~~f-. ", '::"~:.; -~ ... ~ ~~-u ~ ~: " l" "~:':'~~LWA.TIj:~ ,··.;~s::i:,':-" .,.:::,.'-::).'. ,; !OTENTIAL . ESTIMATED &IZE AFFl!;CTED :J.>ROPOSED TMDl1 COMPLETION . :RtG~ON TyPE. : : .~" \'lA)t'E' r .~ .wA-T~R&m;]) <' ," 'POLLm.l\NT/STIq!]SSOR; SOURCES 9 C 9 C 9 C 9 C , ~ ',1" 9 C 9 C Pacific Ocean Shoreline, Lower San Juan HSA Pacific Ocean Shoreline, San Clemente HA Pacific Ocean Shoreline, San Diego HU Pacific Ocean Shoreline, San Diequito HU 90120000 90130000 90711000 90511000 ~~~ t:J<~.1 _',_ '1' '¥ :':,' h" ,J,". ' '~ : ' Pacific Ocean Shoreline, San Joaquin Hills 90111000 HSA - •• .>',:: Pacific Ocean Shoreline, San Luis Rey HU 90311000 Indicator bacteria 1.2 Miles 2008 Impairment located at North Beach Creek, San Juan Creek (large outlet), Capistrano Beach, South Capistrano Beach at Beach Road. Nonpoint/Point Source Indicator bacteria 3,7 Miles 2005 Impairment located at Poche Beach (large outlet), Ole Hanson Beach Club Beach at Pica Drain, San Clemente City Beach at EI Portal St. Stairs, San Clemente City Beach at Mariposa St., San Clemente City Beach at Linda Lane, San Clemente City Beach at South Linda Lane, San Clemente City Beach at Lifeguard Headquarters, Under San Clemente Municipal Pier, San Clemente City Beach at Trafalgar Canyon (Trafalgar Ln.), San Clemente State Beach at Riviera . Beach, San Clemente State Beach at Cypress Shores. NonpointlPoint Source "', Indicator bacteria 0.37 Miles Impairment located at San Diego River Mouth (aka Dog Beach). NonpointlPoint Source Indicator bacteria 0.86 Miles Impairment located at San Dieguito Lagoon Mouth, Solana Beach. NonpointlPoint Source Indicator bacteria 0.63 Miles Impairment located at Cameo Cove at Irvine Cove Dr.lRiviera Way, Heisler Park-North Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Indicator bacteria 0.49 Miles Impairment located at San Luis ReI' River Mouth. NonpointlPoint Source Page130f27 2005 2005 2005 2005 - ------- --'-- ------ - PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD ":, T., : ;'1",; ~---"-'--:,:·'':!'::-~,~,:'l . .,. 'I ~ ','~b~6~,"TYiiE:I:!' . ',-",' ',., ;'~, :,'~' ·,.i .,18' .,''.' 9 C Pacific Ocean Shoreline, San Marcos HA 9 C Pacific Ocean Shoreline, Scripps HA 9 C Pacific Ocean Shoreline, Tijuana HU 9 R Pine Valley Creek (Upper) " '~.:i ,'';:t-' '." .. ; • .: " I',' ", • ~ .. 'r 1!~ 1 ,~,I. ,', ',:, t t • , 9 R Pogi Canyon Creek 9 R Prima Deshecha <:;reek :~,;:eli:~ Atiii w~i'~R,sHJi;p' , 90451000 90630000 91111000 91141000 ,' •• I,,'" , ",~. 91020000 90130000 SWRCB APPROVAL DATE: OCTOBER 25, 2006 " :' ",<' .: :.:;,;, . ;1, .: ~ .. ':, ": ,,-~ , ': ",3 .. POI!J;;U'F,ANT/STRE)SSOJl Indicator bacteria , ,;P()'PENTIAL ',' SOURCES Impairment located at Moonlight State Beach, NonpointlPoint Source , ESTIMATED SIZE AFFECTED 0.5 Miles PROPOSED TMDL COMPLETION 2005 Indicator bacteria 3.9 Miles 2019 This listingfor indicator bacteria onliy applies to the Childrens Pool Beach area o,{this ocean shoreline segment. NonpointlPoint Source Indicator bacteria Impairment located ji'on! the border, extending north along the shore. Enterococcus Phosphorus' Turbidity NonpointlPoint Source Grazing-Related Sources Concentrated Animal Feeding Operations (permitted, point source) Transient encampments Source Unknown Source Unknown • .'.' " 'I: i :I~.,' '. ',. <I'j , ~. • ,! ,j", PDT Phosphorus PageJ40/27 Source Unknown Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source 3 Miles 2010 2.9 Miles 2010 2.9 Miles 2019 2.9 Miles 2019 7.8 Mi'Ies 2019 1.2 Miles 2019 . ---- - -- '<; "",;: :.'~ 9 9 9 9 ----------- --- --PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD -'.' :'"t""_~ ;'-'j' .".'-;---'-;;""--"'- NAME .,- R Rainbow Creek R Reidy Canyon Creek B ' San Diego Bay B San Diego Bay Shoreline, 32nd St San Diego Naval Station «' , ",;:'CAI.WaTE:rt" "'~;:::', .: ,; ,.: :"" ,', 'W:A:TE;Rs~P ~,' ' POLWtAN:r/siI{1i:S80R; , . Turbidity 90222000 Iron Sulfates Total Dissolved Solids 90.462000 Phosphorus 910.10.000 POTENTIAL. -SOU1tCES Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point sonrce Source Unknown Source Unknown Source Unknown Source Unknown PCBs (Polychlorinated biphenyls) Source Unknown 90.822000 Benthic Community Effects NonpointlPoint Source Sediment Toxicity NonpointlPoint Source SWRCH APPROVAL DATE: OCTOBER 25,2006 1):I)TIMATED SIZE AFFECTED 1.2 Miles 5 Miles 5 Miles 5 Miles 3.9 Miles 10.783 Acres 10.3 Acres 10.3 Acres PROPOSED TMDL COMPLETION 2019 2019 2019 2019 20.19 20.19 20.19 2019 . ',.,1 " ~.,~., 9 B San Diego Bay Shoreline, at Americas Cup Harbor 90.810.000. Copper 88 Acres 20.19 Source Unknown Page150f27 - -- 9 9 9 9 9 9 ------- -------- - B B B B B B PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY' LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD "'::NAME '. 1i,~~W.A;~iR',,:'. . ... ;.' ";<:~:;-:"''', WAU:RSHEQ· :'" por;):,UTA:NT(STRE$sQ~ . POTENTIAL . SOuRCES' San Diego Bay Shoreline, at Coronado Cays 91010000 Copper Source Unknown San Diego Bay Shoreline, at Glorietta Bay 91010000 Copper Source Unknown ;',',: San Diego Bay Shoreline, at Harbor Island 90821000 (East Basin) Copper Source Unknown San Diego Bay Shoreline, at Harbor Island 90810000 (West Basin) Copper Source Unknown San Diego Bay Shoreline, at Marriott 90821000 Marina Copper Source Unknown , ~, San Diego Bay Shoreline, between Sampson 90822000 and 28th Streets Copper NonpointJPoint Source Mercnry NimpointJPoint Source PAHs (poiycyclic Aromatic Hydro'carbons) NonpointJPoint Source Page 16 0/27 SWRcn APPROVAL DATE: OCTOBER 25, 2006 )!:STIMA'I'ED PROPOSED' TMDL SIZE AFFECTED COlS1PLETION 47 Acres 2019 52 Acres 2019 73 Acres 2019 132 Acres 2019 24 Acres 2019 53 Acres 2005 53 Acres 2006 53 Acres 2006 - ---- -- ----- -- --- --PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD 1;;~~:~~' :-"'ft<~\:~~~;-~;'~'~I~TF~!:i~~:~~~~:;~~~:~~'~'/_ '." ")~.;,<;::::::\rii!~\::~ "'" ",.-~ ,~~~ , " , ,~--~:' ~~,njF\T~F~-~" ,-·"-o~,.~~-~t,, '_ .' ., CAI:WATER, 'I'~ c, '" 'N; '"" [":'''', "".' ",c.,. ":"::'" P0TENTIAL ;~RF;GIPN'TYPK . : NA;MJi!:": ): 9 C 9 B ;(." 9 C 9 B 9 B San Diego Bay Shoreline, Chnla Vista Marina San Diego Bay Shoreline, Downtown Anchorage " ." San Diego Bay Shoreline, G Street Pier San Diego Bay Shoreline, near Chollas Creek :\' ' San Diego Bay Shoreline, near Coronado Bridge '\VATERSHiiri 'POLEUTANT/STRESSOR' "'.~ ::~ SOURCES ,-,'; -• _" ' •• ' "'f " ". 90912000 90821000 90821000 " ~', 'I I' : ! 90822000 90822000 PCBs (Polychlorinated biphenyls) Zinc Copper Benthic Community Effects Sediment Toxicity Indicator bacteria Benthic Community Effects Se'dimentToxicity Benthic Community Effects Page 17of27 NonpointJPoint Source NonpointJPoint Source Source Unknown NonpointJPoint Source NonpointJPoint Source Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Nonpoint/Point Source Nonpoint/Point Source Nonpoint/Point Source SWRCB APPROVAL DATE: OCTOBER 25, 2006 EST~MATED' " SIZE' AFFECTED 53 Acres 53 Acres 0.41 Miles 7.4 Acres 7.4 Acres 0.42 Miles 15 Acres IS Acres 37 Acres PROf-eSED TMDL COMPLETIQ1'l' ' 2019 2019 2019 2019 2019 2006 2006 2006 2019 - -- -~, ,."."('~<,;­, " -- - -- -- --- -- - --PROPOSED 2006 CW A SECTION 303( d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD - SWRCB APPROVAL DATE: OCTOBER 25. 2006 MG'Q~' TY~J!:: :"," ,.... . . '~":' '.' ;.~i~w~~i~:.-.. ~~:~ ,-woe.:, . .', . NAME.. ',' .. ,',:-', ,WA.,l'ERS~D 'PQ.p;;P'fANT/STJ,tESSQR,· 'f POTENT:(AL . SQURG.ll;S ,ESTIMATEP SIZE-AFFECTED PROPOSED TiVWL COMPLETION 9 B 9 B :,1 9 B San Diego Bay Shoreline, near sub base San Diego Bay Shoreline, near Switzer Creek """'" San Diego Bay Shoreline, North,of24th Street Marine Terminal 90810000 90821000 'I :-J .... !', : l' 90832000 Sediment Toxicity 37 Acres Includes Crosby Street/Cesar Chavez Park area, that will receive additional monitoring. Benthic Community Effects Sediment Toxicity Chlordane NonpointlPoint Source NonpointIPoint Source NonpointlPoint Source Urban Runoff/Storm Sewers Other Boatyards NonpointlPoint Source Lindane/Hexachlorocyclohexane (HCH) Urban Runoff/Storm Sewers Other Boatyards NonpointIPoint Source PAHs (polycyclic Aromatic Hydrocarbons) Benthic Community Effects Sediment Toxicity PagelS of27 Urban Runoff/Storm Sewers Other Boatyards NonpointlPoint Source . '~. - N!lnpointIPoint Source NonpointlPoint Source 16 Acres 16 Acres .5.5 Acres 5.5 Acres 5.5 Acres 9;5 Acres 9.5 Acres 2019 2019 2019 2019 2019 2019 2019 2019 - -----,--- -- -- - -- ---PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD '''v~ ,.-, '~"""'--:~~>~'~'-7 " ,:'.~. -(, ~':;:~_~1,f . ..::. "/', -REGION" TYRE "~'~ .'" , .. . -" ,- 9 B 9 C 9 B 9. R ,-~.;~. , ,\~MiE.':/,:: :" San Diego Bay Shoreline, Seventh Street Channel San Diego Bay Shoreline, Shelter Island Shoreline Park San Diego Bay Shoreline, Vicinity of B St and Broadway Piers ',.- Sal! Diego River (Lower) ",:'<;J~l.Wf\.TJi;R: 'WATERSUEQ 90831000 90810000 90821000 90711000 .'~' .... ~ :~' ~~~ "."I~ ,: ri ~ ,,"'J' 'POL;LUTANT/STRES~OR , Benthic Community Effects Sediment Toxicity Indicator bacteria Benthic Community Effects Indicator bacteria totEN'rlAL, , SOURCES NonpointlPoint Source NonpointlPoint Source Unknown Nonpoint Source Unknown point source NonpointlPoint Source SWRCB APPROVAL DATE: OCTOBER 25, 2006 ESTIMATED SIZE AFFECTED 9 Acres 9 Acres 0.42 Miles 9.9 Acres 9.9 Acres PROPQSED J'MDL COMPLETION 2008 2008 2006 2019 2006 Estimated size o/impairment is 0.4 miles around the shoreline o/the bay. Sediment Toxicity Fecal Coliform Lower 6 miles. LOlV Dissolved Oxygen Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source NonpointlPoint Source Urban Runoff/Storm Sewers Wastewater NonpointlPoint Source Impairment trimscends adjacent G.alwater wtareshed 90712. Page190f27 Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source 9.9 Acres 2019 16 Miles 2005 16 Miles 2019 - -- ------'-- --- -- ---PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD :.: to' , ,~, ',' ~ ~ ~ ". , l~, ~ , ;~, " ,:' , ','1': I .) : R¥(jIO:N, TYf.K ';' .':; 9 E San Elijo Lagoon 9 R San Juan Creek 9 E San Juan Creek (mouth) ::~~IwAiiiii·-,'-~~.'''' .,"'::, W~*Jt~~D)" , fQ~~VTANT/~TRJ1:S~OR , '<,'"'':'---~-----' r,QTEN'f!;\L , SOUll<;;~S' 90461000 ,',", 90120000 90120000 Phosphorus Impairment transcends adjacent Calwater watershed 90712. Total Dissolved Solids Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Impairment transcends adjacent Calwater watershed 90712, Urban Runoff/Storm Sewers Flow Regulation/Modification Natural Sources Eutrophic Unknown Nonpoint Source Unknown point source Estimated size of impairment is 330 acres, NonpointlPoint Source Indicator bacteria Estimated size of impairment is 150 acres. Nonpoint/Point Source Sedimentation/Siltation Estimated size of impairment is 150 acres. NonpointlPoint Source \~ , l '," DDE Source Unknown Indicator bacteria NonpointlPoint Source ) ~': Indicator bacteria Nonpoint/Point Source Page 20 of27 SWRCB APPROVAL DATE: OCTOBER 25,2006 E~TIMATED SIZE AFFECTED 16 Miles 16 Miles 566 Acres 566 Acres 566 Acres 1 Miles 1 Miles 6:.3 Acres PROPOSED TMDL COMPLETION 2019 2019 2019 2008 2019 2019 2005 2008 - - - 9 9 9 - ---- ------ - - -- - PROPOSED 2006 CWA SECTION 303(d) LIST OF 'YATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD .... :;\. :'::; "'~~::'~~E" R San Luis Rey River ':"11" R San Marcos Creek L San Marcos Lake ',.'" ,,: ... C8i.WA;:r~~,.: -; '"(.", .', .,' , ;' ,'\ ... :.::~"":'.:" P9TENTIAL , ;:'WATtR~m::P" " !,O~T,J'fANT/SrJ,m~~b,lr:, ", 'SOURCES 90311000 90451000 90452000 Chloride Impairment located at lower 13 miles, Total Dissolved Solids DDE Phosphorus Sediment Toxicity AlIlmonia as Nitrogen Nutrients' Page 21 of27 Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Industrial Point Sources Agriculture-storm runoff Urban Runoff/Storm Sewers Surface Mining Flow Regulation/Modification Natural Sources Golf course activities Unknown Nonpoint Source Unknown point source Source Unknown Source Unknown Source Unknown Source Unknown Source Unknown SWRCB APPROVAL DATE: OCTOBER 25, 2006 'ESTIMATED PROPOSED TMDL SIZE AFFECTED COMPLETION 19 Miles 2019 19 Miles 2019 19 Miles 2019 19 Miles 2019 19 Miles 2019 17 Acres 2019 17 Acres 2019 - ·1 I ---' ---- --,--- ------PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25, 2006 '"' ",'--~ ".i:"':': 1< ':;:. :~:'~:~:/" .. ~ I:." T,):' k~ '-:-) },~61Ql'\l..",T,Y~Jl;",: .. -, :.-, NA,~J!;?,.-" ,; ",' ,', ,', » ::': " ,~Ai;A:iEii';, "___:::'::~}~:i.':-:-/ "},~i,;:'_':;' ,:: ',i,WAl'E;RSf(ED, ','POr;J!;U'fANT/SJRE~SOR, , POTENTIAL , ESTJMATEQ, , PROPOSED'1;MDL ., -" "'SOUR~ES SIZE:AFFECTED COMPLETION Phosphorus 17 Acres 2019 Source Unknown 9 L San Vicente Reservoir 90721000 Chloride 1058 Acres 2019 Source Unknown Color 1058 Acres 2019 Source Unknown Manganese 1058 Acres 2019 Source Unknown pH (high) 1058 Acres 2019 Source Unknown Sulfates 1058 Acres 2019 Source Unknown : .~ 9 R Sandia Creek 90222000 Iron 1.5 Miles 2019 Source Unknown Manganese 1.5 Miles 2019 Source Unknown Nitrogen 1.5 Miles 2019 Source Unknown Sulfates 1.5 Miles 2019 Source Unknown Page22of27 - - - 9 9 9 9 - -- - --- - - ------ - PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD • '1-'" ~:~:;:~:;f. ~~~", ,'::, '~~~;~-:-:':,':,'~:~,:, ';:'Q~L\v~T~It ;',,,":", I:',;:::';'; " ' " ",': Wf'\TERSIWD'" POLLU:rANT(~TRl):S,SO~ Total Dissolved Solids ", E Santa Margarita Lagoon 90211000 Eutrophic R Santa Margarita River (Upper) 90222000 Phosphorus • ~>; ~, "» ••••• ~.'''. '"~,, "J, • R Segunda Deshecha Creek 90130000 Phosphorus Turbidity ">"~'" .".( .,,-', ,.. ). ,,~_, ,h, " ";1,1 '1.,,< '",' : R Soled!id Canyon 90610000 Sediment Toxicity Page 23 0/27 "":: ','" ~O~~~i'IAL '., ' 'SOlmCES Urban Runoff/Storm Sewers Flow RegulationlModification Natural Sources Unknown Nonpoint Source Unknown point source NonpointiPoint Source Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source Urban Runoff/Storm Sewers Unknown Nonpoint Source Unknown point source ConstructionlLand Development Urban Runoff/Storm Sewers Channelization Flow RegulationIModification Unknown' Nonpoint Source Unknown'point source Ii,;,! Source Unknown SWRCB APPROVAL DATE: OCTOBER 25. 2006 ESTJMA-TED SIZE AFFECTED 1.5 Miles 28 Acres 18 Miles 0.92 Miles 0.92 Miles 1.7 Miles PROPOSED TMDL COMPLETION 2019 2019 2019 2019 2019 2019 - - - 9 L -- - --- -- -- -- --- - PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD -,j:-=-:' jl'~ ~i' :i--:; 'i~-"~':",'¥ ';:~AM~ , Sutherland Reservoir Sweetwater Reservoir ",,' ... ~ ,'<;:;ALWA:r~R . : f.:" .. ' ,: ,. '~'WAWE~IQ1:.Q' ." POi:.r;WAN,\f/STRE;S~QR, 90553000 Color Manganese pH 90921000 Oxygen, Dissolved POTEN:r,IAL S9VR<';ES Urban Rnnoff/Storm Sewers Unknown Nonpoint Source Unknown point source Source Unknown Source Unknown Source Unknown SWRCB APPROVAL DATE: OCTOBER 25,2006 EST~MATED' "PROPOSED TMDL SIZE AFFECTED COMPLETION 561 Acres 2019 561 Acres 2019 561 Acres 2019 925 Acres 2019 9 R Tecolote Creek 90650000 Cadmium 6.6 Miles 2019 NonpointiPoint Source Copper 6.~ Miles 2019 NonpointiPoint Source Indicator bacteria 6.6 Miles 2006 NonpointiPoint Source Lead 6.6 Miles 2019 Nonpoint/Point Source Phosphorus 6.6 Miles 2019 Sonrce Unknown. Toxicity 6.6 Miles 2019 NonpointiPoint Source Page24of27 - -- ---- --- --,----- --PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD :':~,~~~~'::~~:~.':~~' ,~, '::':: N~~~',';, .. ~:~' " ; '-"'''' ,5,,',. 9 R Temecula Creek 9 R Tijuana River " ;-'c~t:w~~iR, :,'-:', .. :>,"" " : .' ,," !'W~~:ERS~P' ,.'. ,PO~LUTAN'J.'/S:rR!iSSOR ',' Turbidity Zinc 90251000 Nitrogen Pbosphorus Total Dissolved Solids 91111000 Eutrophic Indicator bacteria Low Dissolved Oxygen Pesticides Solids Synthetic Organics Page 25 of27 SWRCB APPROVAL DATE: OCTOBER 25. 2006 , POTl(:NTIAL ' ESTIMATED PROPOSED T!\1DL SO~CES ", SIZEAFI!'ECTED' COMPLETION 6.6 Miles 2019 Source Unlmown 6.6 Miles 2019 NonpointJPoint Source 44 Miles 2019 Source Unknown 44 Miles 2019 Source Unknown 44 Miles 2019 Source Unknown 6 Miles 2019 NonpointJPoint Source 6 Miles 2010 NonpointJPoint Source 6 Miles 2019 NonpointlPoint Source 6 Miles 2019 Nonpoint/Point Source 6 Miles 2019 NonpointlPoint Source 6 Miles 2019 Nonpoint/Point Source - ----- - - ------ - - -- - PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS ~:,~~~: :~;:'::~~i~~:< ~,';.'>~-~-~':~;~' ~ ''''~'''-',:.:>." 'I :,'~GI9rt,I~Ji:I,Y'", NA~' 9 E Tijuana River Estuary , , SAN DIEGO REGIONAL BOARD '," .'~ ':.::: ,.:·'!/>·~1~~~~~ 91111000 ," (': /,!,' . I', ,'''' • "~"I' ., .~, ~>.- pt)};'W*~NT!~TIWS~O~' Trace Elements Trash Eutrophic -POTENTiAI" .SOUR<;:ES NonpointJPoint Source NonpointJPoint Sonrce Estimated size ojimpairment is 1 acre. NonpointIPoint Source Indicator bacteria Estimated size ojimpairment is 150 acres. NonpointIPoint Source Lead Estimated size ojimpairment is 1 acre. Low Dissolved Oxygen Nickel NonpointJPoint Source Urban Runoff/Storm Sewers Wastewater Unknown Noupoint Source Unknown point source Estimated size ojimpairment is 1 acre. NonpointIPoint Source Pesticides Estimated size ojimpairment is 1 acre. NonpointJPoint Source Thallium Estimated size ojimpairment is 1 acre .. NonpointIPoint Source Trash Estimated size ojimpairment is. 1 aqre. NonpointJPoint Source Page 26 oj27 SWRCB APPROVAL DATE: OCTOBER 25, 2006 E;STIMATED P~OPO~E:Q l'MDL 'SIZE AFFI):<:;TE:Q COMPLETION 6 Miles 2019 6 Miles 2019 1319 Acres 2019 1319 Acres 2010 1319 Acres 2019 1319 Acres 2019 1319 Acres 2019 1319 Acres 2019 1319 Acres 2019 1319 A,cres 2019 - -------- -- ------ - - PROPOSED 2006 CWA SECTION 303(d) LIST OF WATER QUALITY LIMITED SEGMENTS SAN DIEGO REGIONAL BOARD SWRCB APPROVAL DATE: OCTOBER 25. 2006 .;.----:'.:: ... :.~~ . .-,:,;.'~~;' '> .. ,,,,. '.: .... ;" .,'.~.. , .. -,.'''''. '. ~ , . -. -; fCALvvATER; . . '.','''' '.::. "" POTEN'f.IAL . :. .. , ,.WATEiiSH'ED POIlLP:TANT/STIt¢S~Q~:: ;: .. : _' .:SOuRCES ESTIMATED " PROPOSED>EMDL SIZ;E AFFECTED' COi\.tPLETION Turbidity 1319 Acres 2019 Source Unknown c·:,·------. -. . AB'BREVIATIONS . --- REGIONAL WATER OUALITY CONTROL BOARDS WATER BODY TYPE 1 North Coast B= Bays and Harbors 2 San Francisco Bay C= Coastal Shorelines/Beaches 3 Central Coast E= Estuaries 4 Los Angeles L = LakeslReserviors 5 Central Valley R= Rivers and Streams 6 Lahontan S= Saline Lakes 7 Colorado River Basin T= Wetlands, Tidal 8 Santa Ana W= Wetlands, Freshwater 9 San Diego CALWATER WATERSHED "Calwater Watershed" is the State Water Resources Control Board hydrological subunit area or an even smaller area delineation. GROUP A PESTICIDES OR CHEM A aldrin, dieldrin, chlordane, endrin, heptachlor, heptachlor epoxide, hexachlorocyclohexane (including lindane), endosulfan, and toxaphene Page 27 of27 - .-., ,--,. -.. --.......... - ----.~~{!.'ia "''U.\'i~~~)'' l! .... -\£~,~ 1 .. t."\~~i2tdi 'TL.tt~~ 1fll'i~ ~.U.fl.:!{tlliC~ ~¥Q~h·;e...ll t:qol~a I-)W~ t:'eVc.lr:!.t!1trll£W,I ~l~~:.l ------I::::.~~JS~~ ~::JCuru.-':JQ"'..I =-==i.f:~.:..,;.n =P'~"""JA --.!.~J:I~li" ...... 1.::!i-I'-.~' Table 2-2. BENEFICIAL USES OF INLAND SURFACE WATERS BENEFICIAL USE 1,2 M A J P G F P 'R R B W C W R S Hydrologic Unit U G N R W 'R 0 E E I A 0 I A P Inland Surface Waters Basin Number N R 0 0 R S W C C '0 R L L R W -C H 1 2 L M 0 0 E N Salt' Diogo Couilly Coastai Stroarns -contllllIer! BUena Vista Lagoon 4.21 See Coastal Waters-Tabie 2-3 Buena VIsta Creek 4.22 + til 9 iii 0 III 1 :1-·1-· Buena Vista Creek 4.21 . + Il) iIJ Q 11) till Agua Hed/onda 4.31 See Coastal Waters" Table 2-3 Agua Iiedionda Creek 4.32 (JJ Ill! 0 Q @ fill IfJ I----I-------- Buena Creel< 4.32 0 I) '41 l1li lit I\!I all ----I- Agua I-Iedionda Creal< 4.31 @ fJJ tit tJ 0 0 ~ : i----'--------LeUerbox canyon 4.31 0 6J U & III 0 £)I - Canyon de las Encinas 4.'10 + 0 at til /rj/ San Marcos Creek Watershed Bat/quitos Lagoon 4.51 See Coastal Walers-Table 2"3 ! San Marcos Creek + III 0 G 0 r-+~-I-i , 4.52 unnamed InleonlUen! streams 4.53 + €I 0 II) II!I San Marcos Craele Wat,ersl1od San Marcos Creele : Enc/nllas Creek '--- o Existing BeneficIal Use o Potenllal BSI1I:1f1dal Use. -I-Excepted From MUN (See Text) Tablu 2-2 nENEI'leiAL USES 4.51 + G e G D '" 4.51 + 'Eli (01 0 0 " 1 Walerbodies ~ra listed mull/pIe limes jf they cross.hydrologlc area or sub area boundarIes. 2 Benellclal use desfgnaUons apply to all tributarIes 10 Ihe Ind/caled waterbody, IT not Iisled separatelY. March 12, 1997 2-27 --.--r ... ·.,,-.. · .• ~I I ---.-- - - --. -. --_ .... -.... -~, -~, -~ - - - - - - ,!_.,.....~.. I':I ...... ~ t~ I~ I~ I~~ '.UAM.~ ~ •••• ".~-..• ---->..01..->..0. __ ..... ---• ...---- " Table"2-3. BENEFICIAL· USES OF COAS'TAl WATERS BENEFICIAL USE Coastal VVaters Hydrologic I N R R C ,8 E' W R Unit Basin N A E E .0 I S I A Number D V C ·c M 0 T L R 1 2 M L D E Pacific Ocaan @ @ (/lib ® ~ ~ (fb (!J Dana· Point Harbor (jj) 0 e' ® @ ~ @ Del Mar Boat Basin @ ~ 9 @) ® 0 @ ----- Mission Bay @ (!D @) @ 61b fI9 ~ OceansIde Harbor <WI (IJ» ~ ® ® ~ ~ San Diego Bay 1 C!0 $ @) 0 $ 0 @ .$ m Coastal Lagoons : Tijuana RIver Estuary • 11.1'1 ,@ 0 @ (t) 0 (0 " I-- Mouth of San Diego River 7.11 @ $ ~ @ 0 ~ Los Penasqultos Lagoon 2-6.10 ~~ @ fJ 0 Q OJ) , San Diegulto Lagoon 6.11 ® ~ ~ 4Ri I®' IlJti Batlqultos, Lagoon 4·.61 @ f&' 0 @ CJ.l) tlJ} San EliJo Lagoon . 5.61 @ 0 ~ @) Ill) @ Aqua' Hedlonda .Lagoon 4.31. ,!19 '$ ® 6) iit m @ I Includes the t!dal prisms of the' Dtay and S·wectwnter.Rivers. 2. Flshlna tram shore or bont permitted, but other water contact r~crB.atiimal (REC-1) usos IIfll prohIbIted. ® Existing BenefIcIal Use Tabla .2-3 BENEfICIAL USES 2-47 M A M S W s A Q I P A H R U G W R . E A R N M L L ftl) @ 6J I\l). @ ~ @ @ f$ -(!l) ~ @) ~ -- @ ~ W· Itl» Ill!) 0 6ll) ® --* til) (\lP @i IU) .-11) G) ([lP 0}') ® ~ ~ @ e • (J)} --- ~ $ ~. to) @I 0 I ~ -- @ G1.l ~ @ dl) fDJ t!b @ March 12, 19!J7 - ------,------------,:,~_:"'I LW.Mik~,1J '.Il.I;~:e ;ij'iIjJ;i.~\1iJ!IDi.\i'!.~ !MfiKilWll I~~ !U3'J.In.~ !JJ!/lLiI'~o!l ,Jt.U:ii~~ :lIllUl!iw}lffilI ,I'",,~, .""~I\~d ''''l''.v~~ ..• ""u~!lllr",llil .,:;:.a"rllf4W ~ .. .:,(I"J~ll • 1 .... \~~.c·J:IE.'i1 . ._ •. ('~ • .:....:.l!i . . ' '. , ...... ,.. . Table 3-3M WATER QUALITY OBJECTIVES Concentrations not to bll excllfldlld more than 10% of the time during anyone year period. Constituent (mg/L of as noted) Ground Water Hydrologic Turb Color Basin Unit TD5 CI 801 %Na N03 Fe Mn MBAS 8 ODOR NTU UnIts F Number BUllna Vista Creek HA 4.20 EI Salta HSA a 4.2'1 3500 nOD 500 60 45 0.3 0.06 0.6 2.0 nona 6 15 1.0 1000 b ADO b· 10 b 0.05 b ~---------Visla HSA a 4.22 500 b GO 0.3 b 0.5 0.75 b none 6 lG 1.0 .. --A(JuiJ /-Iedlonda HA iJ 4.30 1200 500 500 60 10 0.3 0.05 ' 0.5 0.76 nanu 5 Hi 1.0 --------Los Monos HSA aJ 4.31 3600 800 500 60 45 0.3 0.05 0.6 2.0 nona 5 16 1.0 ---------Enol.nas· I-IA Il 4.40 3600 b 000 b 500 b GO 45 b 0.3 b 0.05 b . 0.5 2.0 b none 5 Hi 1.0 '------"-'- San Marcos J-IA ae· 4.50 1000 400 500 60 10 0.3 0.05 0.5 0.75 none (j 16 1.0 lJatJqulto5 HSA aflk 4.51 3500 800 500 60 45 0.3 0.05 0.6 2.0 nona (j Hi 1.0 I Escondido Creak HA Q 4.60 750 300 300 60 10 0.3 0.05 0.5 0.75 none 5 15 1.0 ----San EIIJo . j·ISA a 4.61 2800 700 600 60 4·1i 0.3 0.05 0.5 1.0 none 5 '15 'l.0 Escondido HSA 4.62 1000 300 400 60 10 0.3 0.05. 0.5 0.75 none 5 15 1.0 SAN DIEGUITO HYDROLOGIC UNIT 905.00 I Solana Beach. .. Hit a 5.10' 1500 b 500 b 500 b 60 4.5 b 0.B5 b 0.15 b 0.5 0.76 b none 5 15 1.0 I Hodgfls HA 5.20 1000 b 400 b 500 b GO 10 b 0.3 b 0.05b 0.6 0.75 b nooo G ./ fj 1.()' I San Pasqual 1000 b 400 b ~ HA 5.30 500 b 60 10 b 0.3 b 0.05 b 0.5 0.75 b none 5 16 1.0 Santa Marla Valley' HA 5.40 1000 40~ . 500 60 10 0.3 0.05 .0.5 0.75 nOlle 5 15' . ,-:0-1 -----Sunta YSilbel HA 5.50 500 250 250 66 5 0.3 0.05 0.6 0.75 none 5 ')5 1.0 PENASQUITOS HYDROLOGIC UNIT 906.00 " Mlrarnilr Reservoir HA af 6.10 1200 500 600 60 10 0.3 0.05 0.5 0.75 none 5 15 '1.0 POWDY' /-IA 6.20 760 q 300 300 60 10 0.3 0.05 0.6 0.75 nono 5 15 1.0 . --Sorlpps .. HJ\ 6.30 ----------.. -----'-Mfriimar HA-g 6.40 760 300 300 60 10 0.3 0.05 0.1i 0.76 , none 6 15 1.0 TecoiotB ... '-----'-----HA 6.50 -------- -----" ---- HA • J/ydr%n/o ArUIl lisA· Hyd(!l/o"lc sub Arca (Lowor COGO lollors !odlcatd 1!odonta. follawl,:,o tho tublc.) Tulile 3-3 WATEn QUALITY OIlJECTJVES J'ano 3·29 DClober 13. 1 !J9,1 I . I; I . I 'It I, I: I 'I ~I I, I I II I I I II _~~_~ _________________ ~_ .... -------------------------.,.....----..,------------ I I I I, I I I I I I I' I: I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Chapter 5 -TREATMENT CONTROL BMP DESIGN 5.1 -BMP Location To provide maximum water quality treatment for flows generated by the proposed residential development, a BMP "treatment train" is to be employed within' the La Costa Greens Neighborhood 1.3 development at the two (2) developed discharge locations. Developed site flows will receive primary treatment via FloGard curb inlet filters, these flows will then receive secondary treatment via an Extended Detention Basin prior to discharging from the project site to the south. D'eveloped site flows will receive primary treatment via CDS treatment unit, prior to discharging from the project site to the north. The CDS treatment unit and the extended detention basin will be placed at the downstream end of their respective storm drain systems, prior to discharge to from the site. The enclosed map shows the location of the proposed flow-based BMPs. 5.2 -Determination of Treatment Flow Flow-based BMPs shall be designed to mitigate the maximum flowrate of runoff produced from a rainf~1I intensity of 0.2 inch per hour. Such BMP's utilize either mechanical devices (such as vaults that produce vortex effects) or non-mechanical devices (based on weir hydraulics and specially designed filters) to promote settling and removal of pollutants from the runoff. The 85th percentile flow calculations were performed using the Rational Method. The basic Rational Method runoff procedure is as follows: Design flow (0) = C * I * A Runoff Coefficient (C) -The weighted runoff coefficient for the treatment unit was determined using the areas analyzed in the final engineering hydrology report. the, runoff coefficient is based on the following characteristics of the watershed: Land Use -Single Family Residential Soil Type -Hydrologic soil group D was a~sumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer c;:tt or near the surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission. RE kc h \reportS\2301\1S\Swmp-03 (joe W 0 2301-15 8/5/200~ 1 18 PM - ------------------_ .• --.• ------~ 120 I SCALE 1'"~0' "'/'.f2.J ~G ~ lillln 1 ><,; :-I<P.3 LEGEND WATERSHED BOUNDARY FLOWLINE IMPERVIOUS AREAS PERVIOUS AREAS CURB INLET STENCILING SOURCE CONTROL BMPs: -LANDSCAPING MANUFACTURED SLOPES SHAll BE LANDSCAPED WITH SUITABLE GROUND COVER OR INSTAllED WITH AN EROSION CONTROL SYSTEM. -AUTOMOBilE USE RV OWNERS SHOULD BE EDUCATED AS to THE PROPER USE, STORAGE, AND DISPOSAL OF THESE POTENTIAlSTORMWATER CONTAMINANTS -STORM WATER SYSTEMS STENCILING AND SIGNAGE SITE DESIGN BMPs: -MINIMIZE IMPERVIOUS FOOTPRINT -SLOPE & CHANNEL PROTECTION/HlllSIDELANDSCAPING TREATMENT CONTROL BMPs: -CDS TREATMENT UNIT (MP-51) TARGETING COARSE SEDIMENTS & TRASH -FLO-GARD FilTER INSERT (MP-52) TARGETING COARSe SEDIMENTS & TRASH -EXTENDED DETENTION BASIN (TC-22) TARGETING COARSE SEDIMENTS & TRASH, POllUTANTS THAT TEND TO ASSOCIATE WITH FINE PARTICLES DURING TREATMENT , , "'::_': 0-1 T PREPARED BY:_ • HUNSAKER ~f~,~9~~TES nNNfG Wf11WJp1etSlNlt INti1mJNG s.n r.tesa. CI tm1 st1KVE'I'IiCn~SOII·fX(&SI)53I-1111 ----- DATE: CITY LANDSCAPE CITY BUILDING bEPT. SHEET 1 OF 1 I I I I I' I I' I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Rainfall Intensity (I) -Regional Water Quality Control Board regulations and NPDES criteria have established that flow-based BMPs shall be designed to mitigate a rainfall intensity of 0.2 inch per hour. Watershed Area (A) -Corresponds to total area draining to treatment unit (acres). The 85th percentile flow rate has been calculated using the Rational Method. Required data for the Rational Method Treatment flow determination is as follows: Table 4 -Summary of 85th Percentile Flow Rates Calculations Treatment Drainage Rainfall Runoff 85th Percentile Area Intensity Unit (acres) (inches/hour) Coefficient F'low (cfs) CDS Unit 0.4 0.2 0.57 0.1 -- FloGard Inlet 1.2 0.2 0.57 0.1 Filter 1 FloGard Inlet 0.6 0.2 0.57 0.1 Filter 2 --- FloGard Inlet 0.9 0.2 0.57 0.1 Filter 3 FloGard Inlet 2.6 0.2 0.57 0.3 Filter 4 , -----' Rational method calculations predict 85th percentile flows of approximately 0.1 cfs, 0.1 cfs, 0.1 cfs, 0.1 cfs and 0.3 cfs from the proposed La Costa Greens . neighborhood 1.3 project site. 5.3 -Determination of Treatment Volume Volume-based BMPs are designed using the volume of runoff produced from a 24- hour 85th percentile storm event, as determined from the local historical rainfall record. The 85th percentile rainfall for the La Costa Greens Neighborhood 1.3 site is 0.67 inches (see Isopluvial Map). Such facilities are typically designed to store the first flush runoff event below the principle spillway elevation (riser, weir, etc.) while providing a means for low flow orifice dewatering over an extended period of time. Outlet structures will be designed to convey runoff greater than the 85th percentile runoff in the event that the riser becomes clogged. Design flowrates for this analysis were generated using the Rational Method. Using the following input for the Rational Method: RE:kc h:\reports\2~01\15\swmp-O~ doc w.o 2301·15 8/5/20081'18 PM I I I I I I I '1 I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Table 5 -Summary of Volume Based 85th Percentile Calculations Rainfal 85 Treatment Area Drainage Area Precipitat ion Runoff Percentile (acres) (inches ) Coefficient· Volume (ac-ft) Extended Detention 5.4 0.67 0.57 0.2 Basin 5.4 -BMP Unit Sizing 5.4.1 CDS Unit Sizing Calculations show that a CDS Model PMSU 20 15 treatment unit would be required to treat the design 85th percentile flow. This unitis an in line system and does not require the construction of a special diversion box upstream of the treatment unit. The following table shows the treatment capacities of the proposed CDS units. Table 6 -CDS UNIT TREATMENT CAPACITY TABLE Treatment Unit CDS Unit 85th Pct. Design Flow (cfs) 0.4* 5.4.2 FloGard Unit Sizing Recommended CDS Model PMSU 20-15 Treatment Capacity (cfs) 0.7 * = inclusive ,of offsite flows In accordance with FloGard manufacturer guidelines, the FldGard curb inlet filter units are to be sized to fit the proposed curb inlets within the project site. Inlet filter units are typically not sized in accordance with the treatment flows directed to the specific inlet. The units are typically sized per the inlet opening, such that all flows directed to the inlet are treated by the unit in question. Typically, curb inlet filters (such as the FloGard unit) have a pre fabricated diversion structure within the inlet filter unit, ensuring peak flows are conveyed via the receiving inlet to the receiving storm drain. 5.5 -CDS Treatment Units The Continuous Deflective Separation (CDS) storm water pollution control devices are designed for the sustainable removal and retention of suspended solids and floatables from storm water. CDS technology utilizes a non-blocking, non-screening process to remove pollutants from storm water flow. RE'kc h.\reports\2301\15\swmp-03.doc W O. 2301-15 8/512008 1 18 PM I I I I I I I I I I I I I I I II I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan According to CDS information, these units capture fine sands and solids and are capable of removing more than 80 percent of annual total suspended solids from storm water. Additionally, CDS units are reported to remove 100 percent of floatables as well the following: 100% of all particles in the storm water equal to or greater than one-half the size of the screen opening 93% of all particles equal to or greater than one-third the size of the screen opening 53% of all particles equal to or greater than one-fifth the size of the screen opening Standard CDS units have no moving parts (they are gravity-driven by the hydraulic energy in the storm water flow)), require no power or supporting infrastructure, and according to CDS information will not clog. Screen and supporting hardware are made of stainless steel and designed to resist corrosion. The units are installed below ground. CDS units have large sump capacities relative to their design flows and only need to be cleaned out with a standard vactor truck one to four times per year. This operation eliminates workers' exposure to materials captured in the units. 5.6 -FloGard Curb Inlet Filter Insert The treatment BMPs proposed on-site includes four (4) FloGard Curb Inlet Filter Insert, these filters will be placed at the proposed curb inlet located within Private Way "B". FloGard Curb Inlet Filter Inserts are designed to collect silt and sediment, trash and debris, and petroleum hydrocarbons (oils and greases) from storm water runoff. The units are designed to fit just under the inlet opening to prevent pollutants from entering downstream storm drain systems. A built-in, dual high-flow bypass allows flows to bypass the device without impeding the system's maximum design flows, while retaining sediment and larger floatables. A Fossil Rock Filter Media pouch ,is used to collect petroleum hydrocarbons. Product information on the FloGard Curb Inlet Filter Insert unit is provided at the end of this chapter. 5.7 -Extended Detention Basin The La Costa Greens Neighborhood 1.3 site contains one (1) volume-based BMP. This basin will collect a portion of the first flush runoff volume and retain it in the basin for a period of 24-48 hours. RE:kc h.\reports\2301\1S\swmp-03 doc W O. 2301-15 81512008 1 18 PM I I .1 I I -I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan The runoff volumes contained below the overflow elevation of the basin riser will be slowly discharged from the treatment control basin via a low flow orifice in the basin riser. After passing through the riser, an outlet pipe will dewater the basin and discharge runoff to the natural drainage course downstream. Excess runoff volume will discharge from the basin via an overflow riser, which has been adequately sized to convey the 100 year peak flows. Runoff will be collected and treated in the Water Quality Basin between the basin bottom elevation and the riser top elevation. Treatment will include the settling of pollutants and filtering through the heavy vegetation in the Water Quality Basin. In developed conditions, the basin base elevation will be 293 feet while the top elevation is 300 feet. Dewatering will occur via one (1) 1.6-inch orifice built into the side of the 4-foot x 4- foot basin riser. This orifice, located at an invert elevation coincident with the basin bottom elevation of 293 feet, will provide the runoff with a 24 to 48 hour residence time prior to full basin dewatering. The 4-foot x 4-foot riser box, which will sur.round the outlet pipe, will be built to a top elevation of 298.2 feet. Any peak flows in excess of this elevation (exceeding 298.2 feet in the basin) will spill over the top of the riser and drop to the basin outlet pipe. A debris rack will be constructed at the top of the riser to prevent large debris from entering the storm drain system. In addition, a safety fence or other type of protection will surround the basin in order to prohibit access to the riser structure by the public (for safety purposes). A trash and debris rack will be fitted to the base of the 4-foot x 4-foot riser structure to prevent clogging of the 1.6-inch orifice. Stage storage calculations, orifice calculations, riser overflow calculations, HEC- HMS output results and calculations for the 1.6-inch orifice have been provided at the end of this chapter. 5.7 -Pollutant Removal Efficiency Table The table below shows the generalized pollutant removal efficiencies for hydrodynamic separators, drainage inserts and extended detention basins (settling basins). Bioretention Wet Ponds Infiltration Pollutants of Facilities & Facilities or Concern (LID) Wetlands Practices High High High High High High Medium Medium High Media Filters High High Low High-rate High-rate· media biofilters High Medium Low filters High Medium Low RE:de h:lreports12301l15Iswmp-04.doc w.o. 2301-15 10121200~ 11:33'AM I I I I I I I I I I I I I I I !I I I -I La Costa Greens Neighborhood 1.3 Storm Water Management Plan POLLUTANTS THAT TEND POLLUTANTS THAT TEND POLLUTANT COARSE SEDIMENT & TRASH TO ASSOCIATE WITH FINE TO BE DISSOLVED PARTICLES DURING TREATMENT FOLLOWING TREATMENT Sediment X X Nutrients X X Heavy Metals X Organic X Compounds Trash & Debris X Oxygen Demanding X Substances Bacteria X Oil & Grease X Pesticide X NOTE: Shaded text Illustrates Pnmary Pollutants. of Concern 5.8 -BMP Unit Selection Discussion 5.8.1 Extended Detention Basins Extended detention basins collect the first flush runoff volume and retain it i.n the basin for a period of 24-48 hours. 85 th percentile runoff volume, contained below the overflow elevation of the basin riser, will be slowly discharged from the treatment control basin via low flow orifices in the basin riser. After passing through the riser, an outlet pipe will dewater the basin and discharge runoff to the natural drainage course downstream. Advantages • Due to the simplicity of design, extended detention basins are relatively easy and inexpensive to construct and operate. • Extended detentions basins can provide substantial capture of sediment and the toxics fraction associated with particulates. • Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency relationships resulting from the increase of impervious cover in the watershed. Limitations • Limitation of the diameter of the orifice may not allow use of extended detention in watersheds of less than 5 acres (would require an orifice with a diameter of less than 0.5 inches that would be prone to clogging). • Dry extended detention ponds have only moderate pollutant removal when compared to some other structural stormwater practices, and they are relatively ineffective at removing soluble pollutants .. • Dry ponds can detract from the value of a home due to the adverse aesthetics of dry, bare areas and inlet and outlet structures. RE kc h.\rep0r1s\2301\1S\swmp-03.doc w.o.2301·15 81512006·1.16 PM I I I I I I I I I I I I I I I I I 'I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Conclusion: Due to site treatment efficiency for pollutants of concern, an extended detention basin was incorporated within the La Costa Greens Neighborhood 1.3 projeCt site. 5.8.2 Vegetated Swale Vegetated swales are open, shallow channels with vegetation covering the side slopes and bottom that collect and slowly convey runoff through filtering by the vegetation in the channel, filtering through a subsoil matrix, and/or infiltration into the underlying soils. Swales can be natural or manmade. They trap particulate pollutants (suspended solids and trace metals), promote infiltration, and reduce the velocity of stormwater runoff. Vegetated swales can serve as part of a stormwater drainage system and can replace curbs, gutters and stormwater systems. Advantages • If properly designed, vegetated, and operated, swales can serve as an aesthetic, potentially inexpensive urban development or roadway drainage conveyance measure with significant collateral water quality benefits. Limitations • Can be difficult to avoid channelization. • May not be appropriate for industrial sites or locations where spills may occur. • Grassed swales cannot treat a very large drainage area. Large areas may be divided and treated using multiple swales .. • A thick vegetative cover is needed for these practices to function properly. • They are impractical in areas with steep topography. • They are not effective and may even erode when flow velocities are high, if the grass cover is not properly maintained. • In some places, their use is restricted by law: many local municipalities require curb and gutter systems in residential areas. • Swales are more susceptible to failure if not properly maintained than other treatment BMPs. Conclusion: Due to the minimal footprint area available for the BMP treatment units and low treatment efficiency for pollutants of concern, construction of a vegetated swale is not a feasible option for the La Costa Greens Neighborhood 1.3 project site. RE kc h.\repons\2301\1S\swmp-03 doc w.o.2301-15 8/5/20081 18 PM .-------------------------------------------------------------------~----------- I I I I I I I I I I .1 I I I I I !I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 5.8.3 Infiltration Basins An infiltration basin is a shallow impoundment that is designed to infiltrate stormwater. Infiltration basins use the natural filtering ability of the soil to remove pollutants in stormwater runoff. Infiltration facilities store runoff until it gradually exfiltrates through the soil and eventually into the water table. This practice has high pollutant removal efficiency and can also help recharge groundwater, thus helping to maintain low flows in stream systems. Infiltration basins can be challenging to apply on many sites, however, because of soils requirements. In addition, some studies have shown relatively high failure rates compared with other management practices. Advantages • Provides 100% reduction in the load discharged to surface waters. • The principle benefit of infiltration basins is the approximation of pre- development hydrology during which a significant portion of th.e . average rainfall runoff is infiltrated and evaporated rather than flushed directly to creeks. . • If the water quality volume is adequately sized, infiltration basins can be useful for providing control of channel forming (erosion) and high frequency (generally less than the 2-year) flood events. Limitations • May not be appropriate for industrial sites or locations where spills may occur. • Infiltration basins require a minimum soil infiltration rate of 0.5 inches/hour, not appropriate at sites with Hydrologic Soil Types C and D. • Infiltration rates exceeding 2.4 inches/hour, the runoff should be treated prior to infiltration to protect groundwater quality. • Not suitable on fill sites or steep slopes. • Risk of groundwater contamination in very coarse soils. • Upstream drainage area must be completely stabilized before construction. • Difficult to restore functioning of infiltration basins once clogged. Conclusion: Due to the type D clay soils typically located in the region and limited footprint available, infiltration basins are not a feasible option for the La Costa Greens Neighborhood 1.3 project site. RE:kc h-\reports\2301\15\swmp-03 doc w o. 2301~ 15 8/5/2008' 1 B PM I I I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 5.8.4 Wet Ponds Wet ponds are constructed basins that have a permanent pool of water throughout the year (or at least throughout the wet season) and differ from constructed wetlands primarily in having a greater average depth. Ponds treat incoming stormwater runoff by settling and biological uptake. The primary removal mechanism is settling as stormwater runoff resides in this pool, but pollutant uptake, particularly of nutrients, also occurs to some degree through biological activity in the pond. Wet ponds are among the most widely used stormwater practices. While there are several different versions of the wet pond design, the most common modification is the extended detention wet pond, where storage is provided above the permanent pool in order to detain stormwater runoff and promote settling. Advantages • If properly designed, constructed and maintained, wet basins can provide SUbstantial aesthetic/recreationc;ll value and wildlife and wetland habitat. • Ponds are often viewed as a public amenity when integrated with a park setting. • Due to the presence of the permanent wet pool, properly designed and maintained wet basins can provide significant water quality improvements across a relatively broad spectrum of constituents including dissolved nutrients. • Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency relationships resulting from the increase of impervious cover in a watershed. Limitations • Some concern about safety when constructed where there is public access. • Mosquito and midge breeding is likely to occur in ponds .. • Cannot be placed on steep unstable slopes. • Need for base flow or supplemental water if water level is to be maintained. • Require a relatively large footprint. • Depending on volume and depth, pond designs may require approval from the State Division of Safety of Dams. Conclusion: Due to the minimal footprint area available for the BMP treatment units and proximity to residences (vector issues) wet ponds are not a feasible option for the La Costa Greens Neighborhood 1.3 project site. RE:kc h.\reports\2301\1S\swmp.03.aOc W.O 2301·15 8/5/20081.18 PM I I I I I I I I I I I I I I I I I II I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 5.S.5 Media Filters Stormwater media filters are usually two-chambered including a pre-treatment settling basin and a filter bed filled with sand or other absorptive filtering media. As stormwater flows into the first chamber, large particles settle out, and then finer particles and other pollutants are removed as stormwater flows through the filtering media in the second chamber. . Advantages • Relatively high pollutant removal, especially for sediment and associated pollutants. • Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency relationships resulting from the increase of impervious cover in a watershed. Limitations • More expensive to construct than many other BMP's. • May require more maintenance than some other BMP's depending upon the sizing of the filter bed. • Generally require more hydraulic head to operate properly (min 4 feet). • High solids loads will cause the filter to clog. • Work best for relatively small, impervious watersheds. • Filters in residential areas can present aesthetic and safety problems if constructed with vertical concrete walls. • Certain designs maintain permanent sources of standing water where mosquito's and midge breeding is likely to occur. Conclusion: Due to the fact that other BMP's provided higher levels of treatment efficiency for pollutants of concern, media filters were not incorporated within the La Costa Greens Neighborhood 1.3 project site. RE Jc.c h:\reports\2301\1S\swmp.03 doc W.O 2301·15 6/5/2006116 PM I '1 I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 5.S.6 Drainage Inserts Drainage inserts are manufactured filters or fabric placed in a drop inlet to remove sediment and debris. There are a multitude of inserts of various shapes and configurations, typically falling to one of three different groups: socks, boxes and trays. The sock consists of a fabric, usually constructed of polypropylene. The fabric may be attached to a frame or the grate of the inlet holds the sock. Socks are meant for vertical (drop) inlets. Boxes are constructed of plastic or wire mesh. Typically a polypropylene "bag" is placed in the wire mesh box. The bag takes form of the box. Most box products are one box; that is, the setting area and filtration through media occur in the same box. Some products consist of one or more trays and mesh grates. The trays may hold different types of media. Filtration media vary by manufacturer. Types include polypropylene, porous polymer, treated cellulose and activated carbon. Advantages • Does not require additional space as inserts as the drain inserts are already a component of the standard drainage systems. • Easy access for inspection and maintenance. • As there is no standing water, there is little concern for mosquito breeding. • A relatively inexpensive retrofit option. Limitations • Performance is likely significantly less than treatment systems that are located at the end of the drainage system such as ponds and vaults. • Usually not suited for large areas or areas with trash or leaves that can plug the insert. Conclusion: As part of a BMP treatment train, curb inlet filter units were incorporated within the project. RE:kc h:\reports\2301\1S\swmp-03 doc w. o. 2301-15 8/5/2008 1'18 PM I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 5.8.7 Hydrodynamic Separator Systems Hydrodynamic separators are flow-through structures with a settling or separation unit to remove sediments and other pollutants that are widely used in storm water treatment. No outside power source is required, because the energy of the flowing water allows the sediments to efficiently separate. Depending on the type of unit, this separation may be by means of swirl action or indirect filtration. Variations of this unit have been designed to meet specific needs. Hydrodynamic separators are most effective where the materials to be removed from runoff are heavy particulates -which can be settled -or floatables -which can be captured, rather than solids with poor settleability or dissolved pollutants. In addition to the standard units, some vendors offer supplemental features to reduce the velocity of the flow entering the system. This increases the efficiency of the unit by allowing more sediments to settle out. Advantages • May provide the desired performance in less space and therefore less cost. • May be more cost-effective pre-treatment devices than traditional wet or dry basins. • Mosquito control may be less of an issue than with traditional wet basins. Limitations • As some of the systems have standing water that remains between storms, there is concern about mosquito breeding. • It is likely that vortex separators are not as effective as wet vaults at removing fine sediments, on the order 50 to 100 microns in diameter and less. • The area served is limited by the capacity of the largest models. • As the products come in standard sizes, the facilities will be oversized in many cases relative to the design treatment storm, increasing cost. • The non-steady flows of stormwater decreases the efficiency of vortex separators from what may be estimated or determined from testing under constant flow. • Do not remove dissolved pollutants. • A loss of dissolved pollutants may occur as accumulated organic matter (e.g., leaves) decomposes in the units. Conclusion When compared to other BMP treatment options, Hydro-dynamic separator units provided a good overall treatment solution due to limited foot print constraints, vector control, maintenance and treatment effectiveness criteria for the pollutants of concern generated by the northern portion of the project site. RE kc h:\reports\2301\1S\swmp-03 doc w 0.2301·15 8/5/20081.18 PM I I I I I I I I I I I I I I I I I I I 85TH PERCENTILE PEAK FLOW AND VOLUME DETERMINATION Modified Rational Method· Effective for Watersheds < 1.0 mi2 Hunsaker & Associates· San Diego Note: Only Enter Values in Boxes -Spreadsheet Will Calculate Remaining Values Project Name La Costa Greens 1 .3 Work Order 2353-183 I Jurisdiction City of Carlsbad I BMP Location IExtended Detention Basin 85th Percentile Rainfall = (from County Isopluvial Map) 0.67 linches Developed Drainage Area = acres 1-~---1 Natural Drainage Area = acres ~~~~ .... ~ .... ~~~ .... ~~~~ Total Drainage Area to BMP = acres Dev. Area Runoff Coefficient = Nat. Area Runoff Coefficient = Runoff Coefficient = RATIONAL METHOD RESULTS I V=CPA where V= C= P= A= 85th Percentile Runoff Volume (acre-feet) Runoff Coefficient USing·the Total Drainage Area: C= P= A= V= 85th Percentile Rainfall (inches) Drainage Area (acres 0.57 0.67 inches 5.4 acres 0.17 acre-feet I I I I I I I I I I I I I I I I I I I 85TH PERCENTILE PEAK FLOW AND VOLUME DETERMINATION Modified Rational Method -Effective for Watersheds < 1.0 mi2 Hunsaker & Associates -San Diego Note: Only Enter Values in Boxes -Spreadsheet Will Calculate Remaining Values Project Nam.;..e;"'_--I!,,!,L~a~C~o..;.st~a~G.;..;r_e_e_ns....;.;1'..;.3------I1 Work Order 2353-183 I ---~~~~~~-~ Jurisdiction City of Carlsbad I ~--~~~~~~--~ BMPLocati..;.o~n __ ~I.;..F.;..lo.;..G..;.a.;..rd~ln.;..le..;.t.;..F.;..ilt..;.e.;..rU..;.n..;.i.;..t4~ _________________ ~ Developed Drainage Area = Natural Drainage Area = Total Drainage Area to BMP = Dev. Area Runoff Coefficient = Nat. Area Runoff Coefficient = Runoff Coefficient = RATIONAL METHOD RESULTS Q = CIA where Q= C= 1= A= Using the Total Drainage Area: C= 1= A= Q= I 2.6 I acres r 0.0 lacres I I 2.6 acres 0.57 I I 0.57 85th Percentile Peak Flow (cfs) Runoff Coefficient Rainfall Intensity (0.2 inch/hour per RWQCB mandate) Drainage Area (acres) , 0.57 0.2 inch/hour 2.6 acres 0.30 cfs I I I I I I I I I I I I I I I I I I I 85TH PERCENTILE PEAK FLOW AND VOLUME DETERMINATION Modified Rational Method· Effective for Watersheds < 1.0 mi2 Hunsaker & Associates· San Diego Note: Only Enter Values in Boxes -Spreadsheet Will Calculate Remaining Values Project Name La Costa Greens 1.3 Work Order 2353-183 J Jurisdiction City of Carlsbad I BMP Location IFloGard Inlet Filter Unit 1 Developed Drainage Area = acres t--~_--I .;..N.;.;a.;.;.tu;;;.r..;..;al;....;D;..;r~a.;.;.in;.;.;a~ge~A;..;re.;.;.a~=~~_..L..~~---'acres Total Drainage Area to BMP = acres Dev. Area Runoff Coefficient = Nat. Area Runoff Coefficient = Runoff Coefficient = RATIONAL METHOD RESULTS I Q = CIA where Q = C= 1= A= 85th Percentile Peak Flow (cfs) Runoff Coefficient Using the Total Drainage Area: C= 1= A= Q= Rainfall Intensity (0.2 inch/hour per RWQCB mandate) Drainage Area (acres) 0.57 0.2 inch/hour 1.2 acres 0.14 cfs I I I' I I I I I I I I I 1 I I I I I I 85TH PERCENTILE PEAK FLOW AND VOLUME DETERMINATION Modified Rational Method -Effective for Watersheds < 1.0 mi2 Hunsaker & Associates -San Diego Note: Only Enter Values in Boxes -Spreadsheet Will Calculate Remaining Values Project Name La Costa Greens 1.3 Work Order 2353-183 I Jurisdiction City of Carlsbad I BMP Location IFloGard Inlet Filter Unit 2 Developed Drainage Area = I--~~-I acres .;.N.;.;;a;;.;.tu;;;;.r.;;;a;..;1 D;..;r..;;.a.;.;.in;.;.a;:;:.ge..;..;..A;;..re;..a_=""""""" ....... _-'-_~--.I acres Total Drainage Area to BMP = acres Dev. Area Runoff Coefficient = Nat. Area Runoff Coefficient = Runoff Coefficient = RATIONAL METHOD RESULTS I Q = CIA where Q= C= 1= A= 85th Percentile Peak Flow (cfs) Runoff Coefficient Using the Total Drainage Area: C= 1= A= Q- Rainfall Intensity (0.2 inch/hour per RWQCB mandate) Drainage Area (acres) 0.57 0.2 inch/hour 0.6 acres 0.07 cfs I I I I I I I I I I I I I I I I I I I 85TH PERCENTILE PEAK FLOW AND VOLUME DETERMINATION Modified Rational Method· Effective for Watersheds < 1.0 mi2 Hunsaker & Associates -San Diego Note: Only Enter Values in Boxes -Spreadsheet Will Calculate Remaining Values Project Name La Costa Greens 1.3 Work Order 2353-183 I Jurisdiction City of Carlsbad I BMP Location IFloGard Inlet Filter Unit 3 Developed Drainage Area = acres I-~~-I Natural Drainage Area = acres ~~~~~~--~~~--~~~~ Total Drainage Area to BMP = acres Dev. Area Runoff Coefficient = Nat. Area Runoff Coefficient = Runoff Coefficient = RATIONAL METHOD RESULTS I Q = CIA where Q= C= 1= A= 85th Percentile Peak Flow (cfs) Runoff Coefficient Using the Total Drainage Area: C= 1= A= Q= Rainfall Intensity (0.2 inch/hour per RWQCB mandate) Drainage Area (acres) 0.57 0.2 inch/hour 0.9 acres 0.10 cfs I I I I I I I I I I, I I I I I I I I I 85TH PERCENTILE PEAK FLOW AND VOLUME DETERMINATION Modified Rational Method -Effective for Watersheds < 1.0 mi2 Hunsaker & Associates -San Diego Note: Only Enter Values in Boxes -Spreadsheet Will Calculate Remaining Values Project Name La Costa Greens 1.3 Work Order 2353-183 I Jurisdiction City of Carlsbad I BMP Location ICDS Unit Developed Drainage Area = acres I--~~----t Natural Drainage Area = acres ~~~~--~--~~~--~~~--Total Drainage Area to BMP = acres Dev. Area Runoff Coefficient = Nat. Area Runoff Coefficient = Runoff Coefficient = RATIONAL METHOD RESULTS I Q = CIA where Q= C= 1= A= 85th Percentile Peak Flow (cfs) Runoff Coefficient Using the Total Drainage Area: C= 1= A= Q= Rainfall Intensity (0.2 inch/hour per RWQCB mandate) Drainage Area (acres) 0.57 0.2 inch/hour 0.4 acres 0.05 cfs I I I I I I I I I I I I I I I I I I I La Costa Greens 1.3 Extended Detention Basin Results Project: La Costa Greens 1.3 Run Name: Run 1 Reservoir: I Reservoir-' Start of Run: 01Jan01 0000 End of Run: 03Jan01 0000 Execution Time 020ct081128 Basin Model: Basin 1 Mel. Model: Met' Control Specs: Control 1 Volume Units: r. Inches r Acre-Feet Computed Results --------------------- Peak Inflow: 0.0 (efs) Date/Time of Peak Inflow: 31 Dec 00 2400 Pe<lk ,tCloe: Peak Outflow: 0_15200 (efs) Date/Time of Peak Outflow: 31 Dec 00 2400 T otallnflow : (in) Peak Storage: 0.17050 (ac-n) Total 0 utflow : (in) Peak Elevation: 288.20 (ft) Print J ----," Close Print Close I I I I I I I I I I I I I I I I I I I RATING TABLE FOR FLOW OVER RISER BOX Detention Basin La Costa Greens Neighborhood 1.3 4' x4' Concrete Riser (3' x 3' opening) WEIR EQUATION Q = CLH312 where C = Weir Coefficient ORIFICE EQUATION = 3.0 when H = 0.5 feet = 3.3 when H >= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) Q = CA(2gH) 1/2 C = Orifice Coefficient =0.60 A = Cross Sectional Area of Orifice (ff) 9 = Gravitational Constant (32.2 ftls2) H = Water Height over Centroid of Orifice (ft) Water Height (feet) Riser Length (feet) Riser Width (feet) Weir Coeff. Weir Length (feet) Orifice Coeff. Orifice Area (ff) Weir Flow (cfs) Orifice Weir Orifice Flow Flow Flow CLOGGING FACTOR 10% (cfs) (cfs) (cfs) 0.2 3 3 2.80 12.00 0.6 9.00 3.01 19.38 2.70 16.47 0.3 3 3 2.86 12.00 0.6 9.00 5.64 23.74 5.08 20.18 0.4 3 3 2.92 12.00 0.6 9.00 8.86 27.41 7.98 23.30 0.5 3 3 3.00 12.00 0.6 9.00 12.73 30.64 11.46 26.05 ~ :'·~~~91$l~~t~~1·, ,;~:],S1~.EI%'~1~ ~~~1Q~~::~~fZ~1j[tR{::iQ@t~i;:;}7m@JE/}~~~~iB1~:~S;5.7;;;":6~~Ji~~~~,;::"tS~~8f5a~:f~tf. 0.8 3 3 3.20 12.00 0.6 9.00 27.48 38.76 24.73 32.95 1 3 3 3.32 12.00 0.6 9.00 39.84 43.33 35.86 36,83 513112007 HJEXCEL\23S2\ 183\Exlended 8asln\OVerfiow-Riser-xis I I ,I I I I I I I I I I I I I I I I I 10/2/2008 STAGE-STORAGE TABLE LA COSTA GREENS 1.3 EXTENDED DETENTION BASIN Elevation Area ' Total Volume (ft) (acres) (acre-ft.) 293.0 0.0106 0.0000 294.0 0.0184 0.0145 295.0 0.0268 0.0371 296.0 0.0358 0.0683 297.0 0.0453 0.1089 298.0 0.0554 0.1592 298.2 0.0575 0.1705 299.0 0.0661 0.2200 1 of 1 H:\EXCEL\2393\15\Copy of Staye-Storage.xls I I I I I I I I I I I I I I I I I I DISCHARGE RATING CURVE Riser Perforations Calculations Based on Orifice Equation BOTTOM ELEVATION OF HOLE NO.1: HOLE NO.1 DIAMETER: NUMBER OF ORIFICES: WEIR EQUATION Q: CLH312 where Headwater Elevation (feet) 293.00 294.00 295.00 296.00 297.00 298.00 298.20 299.00 300.00 C: Weir Coefficient : 3.0 when H : 0.5 feet : 3.3 when H >: 1.0 feet L: Length of the Weir (feet) H.: Water Height over Weir (feet) Hole 1 (1) Riser-Orif (cfs) 0.000 0.065 0.093 0.115 0.133 0.149 0.152 0.164 0.177 H:IEXCEL123521183IExtended BasIOIORIFICE-Basin.xlsSheeI3 LA COSTA GREENS 1.3 ORIFICE CALCULATIONS 293.00 feet 1.6 inches 1.0 0.133333 feet 0.013963 area (sq ft) Orifice Equation ... Qorifice = CA(2gh)1/2 where C : Orifice Coefficient 0.60 (per Brater & King "Handbook of Hydraulics") A : Cross Sectional Area of the Orifice g : Gravitational Constant 32.2 feetls" h : Effective Head on the Orifice Measured from the Centroid of the Opening centroid ell top oforific 293.07 293.13 101212008 I HMS * Summary of Results for Reservoir-l I Project La Costa Greens 1.3 Run Name Run 1 I start of Run 01Jan01 0000 Basin Model Basin 1 End of Run 03Jan01 0000 Met. Model Met 1 I Execution Time 020ct08 1128 Control Specs Control 1 storage Elevation (cfs) (cfs) I Date Time Reservoir Reservoir Inflow outflow I 1 ~ ____________________________ (_a_C_-f_t_)--------------------(_f_t_)----------------______________________________ --J 31 Dec 00 2400 0.17050 298.20 0.00000 0.15200 01 Jan 01 0001 0.17029 298.20 0.00000 0.15194 01 Jan 01 0002 0.17008 298.19 0.00000 0.15189 01 Jan 01 0003 0.16987 298.19 0.00000 0.15183 01 Jan 01 0004 0.16966 298.19 0.00000 0.15178 01 Jan 01 0005 0.16945 298.18 0.00000 0.15172 01 Jan 01 0006 0.16924 298.18 0.00000 0.15167 01 Jan 01 0007 0.16904 298.17 0.00000 0.15161 01 Jan 01 0008 0.16883 298.17 0.00000 0.15156 01 Jan 01 0009 0.16862 298.17 0.00000 0.15150 01 Jan 01 0010 0.16841 298.16 0.00000 0.15144 01 Jan 01 0011 0.16820 298.16 0.00000 0.15139 01 Jan 01 0012 0.16799 298.16 0.00000 0.15133 01 Jan 01 0013 0.16778 298.15 0.00000 0.15128 01 Jan 01 0014 0.16758 298.15 0.00000 0.15122 01 Jan 01 0015 0.16737 298.14 0.00000 0.15117 01 Jan 01 0016 0.16716 298.14 0.00000 0.15111 01 Jan 01 0017 0.16695 298.14 0.00000 0.15106 01 Jan 01 0018 0.16674 298.13 0.00000 0.15100 01 Jan 01 0019 0.16654 298.13 0.00000 0.15095 01 Jan 01 0020 0.16633 298.13 0.00000 0.15089 01 Jan 01 0021 0.16612 298.12 0.00000 0.15084 01 Jan 01 0022 0.16591 298.12 0.00000 0.15078 01 Jan 01 0023 0.16570 298.12 0.00000 0.15073 01 Jan 01 0024 0.16550 298.11 0.00000 0.15067 01 Jan 01 0025 0.16529 298.11 0.00000 0.15062 01 Jan 01 0026 0.16508 298.10 0.00000 0.15056 01 Jan 01 0027 0.16487 298.10 0.00000 0.15051 01 Jan 01 0028 0.16467 298.10 0.00000 0.15045 01 Jan 01 0029 0.16446 298.09 0.00000 0.15040 01 Jan 01 0030 0.16425 298.09 0.00000 0.15034 01 Jan 01 0031 0.16405 298.09 0.00000 0.15029 01 Jan 01 0032 0.16384 298.08 0.00000 0.15023 01 Jan 01 0033 0.16363 298.08 0.00000 0.15018 01 Jan 01 0034 0.16342 298.07 0.00000 0.15012 01 Jan 01 0035 0.16322 298.07 0.00000 0.15007 01 Jan 01 0036 0.16301 298.07 0.00000 0.15001 01 Jan 01 0037 0.16280 298.06 0.00000 0.14996 01 Jan 01 0038 0.16260 298.06 0.00000 0.14990 01 Jan 01 0039 0.16239 298.06 0.00000 0.14985 01 Jan 01 0040 0.16219 298.05 0.00000 0.14979 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I. Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 Reservoir Storage (ac-ft) 0.16198 0.16177 0.16157 0.16136 0.16115 0.16095 0.16074 0.16054 0.16033 0.16013 0.15992 0.15972 0.15951 0.15930 0.15910 0.15889 0.15869 0.15848 0.15828 0.15807 0.15787 0.15767 0.15746 0.15726 0.15705 0.15685 0.15664 0.15644 0.15624 0.15603 0.15583 0.15562 0.15542 0.15522 0.15501 0.15481 0.15461 0.15440 0.15420 0.15400 0.15379 0.15359 0.15339 0.15319 0.15298 0.15278 0.15258 0.15238 0.15217 0.15197 0.15177 Reservoir Elevation (ft) 298.05 298.05 298.04 298.04 298.03 298.03 298.03 298.02 298.02 298.02 298.01 298.01 298.01 298.00 298.00 297.99 297.99 297.99 297.98 297.98 297.97 297.97 297.97 297.96 297.96 297.95 297.95 297.95 297.94 297.94 297.93 297.93 297.92 297.92 297.92 297.91 297.91 297.90 297.90 297.90 297.89 297.89 297.88 297.88 297.88 297.87 297.87 297.86 297.86 297.86 297.85 Page: 2 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000' 0.00000 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.90000 0.00000 0.,00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.14974 0.14968 0.14963 0.14957 0.14952 0.14946 0.14941 0.14936 0.14930 0.14925 0.14919 0.14914 0.1-4908 0.14903 0.14897 0.14890 0.14884 0.14877 0.14871 0.14864 0.14858 0.14851 0.14845 0.14838 0.14832 0.14825 0.14819 0.14812 0.14806 0.14799 0.14793 0.14786 0.14780 0.14773 0.14767 0.14760 0.14754 0.14747 0.14741 0.14735 0.14728 0.14722 0.14715 0.14709 0.14702 0.14696 0.14689 0.14683 0.14677 0.14670 0.14664 I I I I I I I I I I I I I I II I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 Reservoir storage (ac-ft) 0.15157 0.15137 0.15116 0.15096 0.15076 0.15056 0.15036 0.15016 0.14996 0.14975 0.14955 0.14935 0.14915 0.14895 0.14875 0.14855 0.14835 0.14815 0.14795 0.14775 0.14755 0.14735 0.14715 0.14695 0.14675 0.14655 0.14635 0.14615 0.14595 0.14575 0.14555 0.14535 0.14515 0.14495 0.14475 0.14456 0.14436 0.14416 0.14396 0.14376 0.14356 0.14336 0.14317 0.14297 0.14277 0.14257 0.14237 0.14218 0.14198 0.14178 0.14158 Reservoir Elevation (ft) 297.85 297.84 297.84 297.84 297.83 297.83 297.82 297.82 297.82 297.81 297.81 297.80 297.80 297.80 297.79 297.79 297.78 297.78 297.78 297.77 297.77 297.76 297.76 297.76 297.75 297.75 297.74 297.74 297.74 297.73 297.73 297.72 297.72 297.72 297.71 297.71 297.70 297.70 297.70 297.69 297.69 297.69 297.68 297.68 297.67 297.67 297.67 297.66 297.66 297.65 297.65 Page: 3 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 outflow (cfs) 0.14657 6.14651 0.14644 0.14638 0.14632 0.14625 0.14619 0.14612 0.14606 0.14600 0.14593 0.14587 0.14580 0.14574 0.14568 0.14561 0.14555 0.14548 0.14542 0.14536 0.14529 0.14523 0.14517 0.14510 0.14504 0.14498 0.14491 0.14485 0.14479 0.14472 0.14466 0.14460 0.14453 0.14447 0.14441 0.14434 0.14428 0.14422 0.14415 0.1440-9 0.14403 0.14396 0.14390 0.14384 0.14377 0.14371 0.14365 0.14358 0:14352 0.14346 0.14340 I I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 Reservoir Storage (ac-ft) 0.14139 0.14119 0.14099 0.14079 0.14060 0.14040 0.14020 0.14001 0.13981 0.13961 0.13942 0.13922 0.13902 0.13883 0.13863 0.13843 0.13824 0.13804 0.13785 0.13765 0.13745 0.13726 0.13706 0.13687 0.13667 0.13648 0.13628 0.13609 0.13589 0.13570 0.13550 0.13531 0.13511 0.13492 0.13472 0.13453 0.13433 0.13414 0.13395 0.13375 0.13356 0.13336 0.13317 0.13298 0.13278 0.13259 0.13240 0.13220 0.13201 0.13182 0.13162 Reservoir Elevation (ft) 297.65 297.64 297.64 297.63 297.63 297.63 297.62 297.62 297.61 297.61 297.61 297.60 297.60 297.59 297.59 297.59 297.58 297.58 297.58 297.57 297.57 297.56 297.56 297.56 297.55 297.55 297.54 297.54 297.54 297.53 297.53 297.52 297.52 297.52 297.51 297.51 297.51 297.50 297.50 297.49 297.49 297.49 297.48 297.48 297.47 297.47 297.47 297.46 297.46 297.46 297.45 Page: 4 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.14333 0.14327 0.14321 0.14315 0.14308 0.14302 0.14296 0.14289 0.14283 0.14277 0.14271 0.14264 0.14258 0.14252 0.14246 0.14239 0.14233 0.14227 0.14221 0.14215 0.14208 0.14202 0.14196 0.14190 0.14183 0.14177 0.14171 0.14165 0.14159 0.14152 0.14146 0.14140 0.14134 0.14128 0.14121 0.14115 0.14109 0.14103 0.14097 0.14091 0.14084 0.14078 0.14072 0.14066 0.14060 0.14054 0.14047 0.14041 0.14035 0.14029 0.14023 I I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0400 0401 0402 0403 0404 Reservoir Storage (ac-ft) 0.13143 0.13124 0.13104 0.13085 0.13066 0.13046 0.13027 0.13008 0.12989 0.12969 0.12950 0.12931 0.12912 0.12893 0.12873 0.12854 0.12835 0.12816 0.12797 0.12778 0.12758 0.12739 0.12720 0.12701 0.12682 0.12663 0.12644 0.12625 0.12606 0.12587 0.12567 0.12548 0.12529 0.12510 0.12491 0.12472 0.12453 0.12434 0.12415 0.12396 0.12377 0.12358 0.12339 0.12320 0.12302 0.12283 0.12264 0.12245 0.12226 0.12207 0.12188 Reservoir Elevation Page: 5 (ft) 297.45 297.44 297.44 297.44 297.43 297.43 297.42 297.42 297.42 297.41 297.41 297.41 297.40 297.40 297.39 297.39 297.39 297.38 297.38 297.38 297.37 297.37 297.36 297.36 297.36 297.35 297.35 297.34 297.34 297.34 297.33 297.33 297.33 297.32 297.32 297.31 297.31 297.31 297.30 297.30 297.30 297.29 297.29 297.28 297.28 297.28 297.27 297.27 297.27 297.26 297.26 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000' 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.14017 0.14010 0.14004 0.13998 0.13992 0.13986 0.13980 0.13974 0.13968 0.13961 0.13955 0.,13949 0.13943 0.1393:7 0.13931 0.13925 0.13919 0.13913 0.13907 0.13900 0.13894 0.13888 0.13882 0.13876 0.13870 0.13864 0.13858 0.13852 0.13846 0.13840 0.13834 0.13828 0.13821 0.13815 0.13809 0.13803 0.i3797 0.13791 0.13785 0.13779 0.13773 0.13767' 0.13761 0.13755 0.13749 0.13743 0.13737 0.13731 0.13725 0.13719 0.13713 I I I I I I I I I I I I I I II I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 Reservoir Storage (ac-ft) 0.12169 0.12150 0.12131 0.12113 0.12094 0.12075 0.12056 0.12037 0.12018 0.12000 0.11981 0.11962 0.11943 0.11924 0.11906 0.11887 0.11868 0.11849 0.11831 0.11812 0.11793 0.11775 0.11756 0.11737 0.11718 0.11700 0.11681 0.11662 0.11644 0.11625 0.11606 0.11588 0.11569 0.11551 0.11532 0.11513 0.11495 0.11476 0.11458 0.11439 0.11421 0.11402 0.11383 0.11365 0.11346 0.11328 0.11309 0.11291 0.11272 0.11254 0.11235 Reservoir Elevation (ft) 297.25 297.25 297.25 297.24 297.24 297.24 297.23 297.23 297.22 297.22 297.22 297.21 297.21 297.21 297.20 297.20 297.19 297.19 297.19 297.18 297.18 297.18 297.17 297.17 297.16 297.16 297.16 297.15 297.15 297.15 297.14 297.14 297.14 297.13 297.13 297.12 297.12 297.12 297.11 297.11 297.11 297.10 297.10 297.09 297.09 297.09 297.08 297.08 297.08 297.07 297.07 Page: 6 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 outflow (cfs) 0.13707 0.13701 0.13695 0.13689 0.13683 0.13677 0.13671 0.13665 0.13659 0.13653 0.13647 0.13641 0.13635 0.13629 0.13623 0.13617 0.13611 0.13605 0.13599 0.13593 0.13587 0.13581 0.13575 0.13569 0.13564 0.13558 0.13552 0.13546 0.13540 -0.13534 0.13528 0.13522 0.13516 0.13510 0.13504 0.13498 0.13492 0.13486 0.13481 0.13475 0.13469 0.13463 0.13457 0.13451 0.13445 0.13439 0.13433 0.13428 0.13422 0.13416 0.13410 I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0456 0457 0458 0459 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 Reservoir storage (ac-ft) 0.11217 0.11199 0.11180 0.11162 0.11143 0.11125 0.11106 0.11088 0.11070 0.11051 0.11033 0.11014 0.10996 0.10978 0.10959 0.10941 0.10923 0.10904 0.10886 0.10868 0.10849 0.10831 0.10813 0.10795 0.10776 0.10758 0.10740 0.10722 0.10703 0.10685 0.10667 0.10649 0.10631 0.10612 0.10594 0.10576 0.10558 0.10540 0.10522 0.10504 0.10486 0.10468 0.10450 0.10431 0.10413 0.10395 0.10377 0.10359 0.10341 0.10323 0.10305 Reservoir Elevation Page: 7 (ft) 297.07 297.06 297.06 297.05 297.05 297.05 297.04 297.04 297.04 297.03 297.03 297.02 297.02 297.02 297.01 297.01 297.01 297.00 297.00 296.99 296.99 296.99 296.98 296.98 296.97 296.97 296.96 296.96 296.95 296.95 296.95 296.94 296.94 296.93 296.93 296.92 296.92 296.91 296.91 296.90 296.90 296.90 296.89 296.89 296.88 296.88 296.87 296.87 296.86 296.86 296.86 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.13404 0.13398 0.13392 0.13386 0.13381 0.13375 0.13369 0.13363 0.13357 0.13351 0.13345 0.13340 0.13334 0.13328 0.13322 0.13316 0.13310 0.13305 0.13298 0.13290 0.13282 0.13274 0.13266 0.13258 0 .. 13250 0.13241 0.13233 0.13225 0.13217 0.13209 0.13201 0.13193 0.13185 0.13177 0.13169 0.13161 0.13153 0.13145 0.13137 0.13129 0.13121 0.13113 0.13105 0.13097 0.13089 0.13081 0.13073 0.13065 0.13057 0.13049 0.13041 I I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 Reservoir storage (ac-ft) 0.10288 0.10270 0.10252 0.10234 0.10216 0.10198 0.10180 0.10162 0.10144 0.10126 0.10109 0.10091 0.10073 0.10055 0.10037 0.10019 0.10002 0.09984 0.09966 0.09948 0.09931 0.09913 0.09895 0.09878 0.09860 0.09842 0.09824 0.09807 0.09789 0.09772 0.09754 0.09736 0.09719 0.09701 0.09683 0.09666 0.09648 0.09631 0.09613 0.09596 0.09578 0.09561 0.09543 0.09526 0.09508 0.09491 0.09473 0.09456 0.09438 0.09421 0.09404 Reservoir Elevation (ft) 296.85 296.85 296.84 296.84 296.83 296.83 296.83 296.82 296.82 296.81 296.81 296.80 296.80 296.79 296.79 296.79 296.78 296.78 296.77 296.77 296.76 296.76 296.75 296.75 296.75 296.74 296.74 296.73 296.73 296.72 296.72 296.72 296.71 296.71 296.70 296.70 296.69 296.69 296.69 296.68 296.68 296.67 296.67 296.66 296.66 296.66 296.65 296.65 296.64 296.64 296.63 Page: 8 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.13033 0.:1:3025 0.13017 0.13009 0.13001 0.12993 0.12985 0.12977 0.12969 0.12961 0.12954 0.12946 0.12938 0.12930 0.12922 0.12914 '0.12906 0,12898 0.12890 0.12883 0.12875 0.12867 0.12859 0.12851 0.12843 0.12835 0.12828 0.12820 0.12812 0.12804 0.12796 0.12788 0.12781 0.12773 0.12765 0.12757 0.12750 0.12742 0.12734 0.12726 0.12718 0.12711 0.1270'3 0.12695 0.12687 0.12680 0.12672 0.12664 0.12656 0.12649 0.12641 I I I I I I I I I I I I I I I I I I II Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 071~ 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 Reservoir storage (ac-ft) 0.09386 0.09369 0.09351 0.09334 0.09317 0.09299 0.09282 0.09265 0.09247 0.09230 0.09213 0.09195 0.09178 0.09161 0.09144 0.09126 0.09109 0.09092 0.09075 0.09057 0.09040 0.09023 0.09006 0.08989 0.08972 0.08954 0.08937 0.08920 0.08903 0.08886 0.08869 0.08852 0.08835 0.08818 0.08801 0.08784 0.08767 0.08749 0.08732 0.08715 0.08698 0.08682 0.08665 0.08648 0.08631 0.08614 0.08597 0.08580 0.08563 0.08546 0.08529 Reservoir Elevation Page: 9 (ft) 296.63 296.63 296.62 296.,62 296.61 296.61 296.60 296.60 296.60 296.59 296.59 296.58 296.58 296.57 296.57 296.57 296.56 296.56 296.55 296.55 296.54 296.54 296.54 296.53 296.53 296.52 296.52 296.51 296.51 296.51 296.50 296.50 296.49 296.49 296.49 296.48 296.48 296.47 296.47 296.46 296.46 296.46 296.45 296.45 296.44 296.44 296.44 296.43 296.43 296.42 296.42 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.12633 0.12626 0.12618 0.:).2610 0.12602 0.i2595 0.,12587 0.12579 0.12572 0.12564 0.12556 0.12549 0.12541 0.12533 0.12526 0.12518 0.12510 0.12503 0.12495 0.12488 0.12480 0.12472 0.12465 0.12457 0.12449 0.12442 0.12434 0.12427 0.12419 0.12411 0.124'04 0.12396 0.12389 0.12381 0.12374 0.12366 0.12359 0.12351 0.12343 0.12336 0.12328 0.12321 0.12313 0.12306 0.12298 0.12291 0.12283 0.12276 0.12268 0.12261 0.12253 I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 Reservoir Storage (ac-ft) 0.08512 0.08495 0.08479 0.08462 0.08445 0.08428 0.08411 0.08395 0.08378 0.08361 0.08344 0.08327 0.08311 0.08294 0.08277 0.08260 0.08244 0.08227 0.08210 0.08194 0.08177 0.08160 0.08144 0.08127 0.08110 0.08094 0.08077 0.08061 0.08044 0.08027 0.08011 0.07994 0.07978 0.07961 0.07945 0.07928 0.07912 0.07895 0.07879 0.07862 0.07846 0.07829 0.07813 0.07796 0.07780 0.07764 0.07747 0.07731 0.07714 0.07698 0.07682 Reservoir Elevation (ft) 296.41 296.41 296.41 296.40 296.40 296.39 296.39 296.39 296.38 296.38 296.37 296.37 296.36 296.36 296.36 296.35 296.35 296.34 296.34 296.34 296.33 296.33 296.32 296.32 296.32 296.31 296.31 296.30 296.30 296.29 296.29 296.29 296.28 296.28 296.27 296.27 296.27 296.26 296.26 296.25 296.25 296.25 296.24 296.24 296.23 296.23 296.23 296.22 296.22 296.21 296.21 Page: 10 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0 .. 00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.12246 0.12238 0.12231 0.12223 0.12216 0.12209 0.12201 0.12194 0.12186 0.12179 0.12171 0.12164 0.12156 0.12149 0.12142 0.12134 0.12127 0.12119 0.12112 0.12105 0.12097 0.12090 0.12082 0.12075 0.12068 0.12060 0.12Q53 0.12046 0.12038 0.12031 0.12024 0.12016 0.12009 0.12002 0.11994 0.11987 0.11980 0.11972 0.11965 0.11958 0.11950 0.11943 0.11936 0.11928 0.11921 0.11914 0.11907 0.11899 0.11892 0.11885 0.11878 I I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 Reservoir storage (ac-ft) 0.07665 0.07649 0.07633 0.07616 0.07600 0.07584 0.07567 0.07551 0.07535 0.07519 0.07502 0.07486 0.07470 0.07454 0.07437 0.07421 0.07405 0.07389 0.07373 0.07356 0.07340 0.07324 0.07308 0.07292 0.07276 0.07260 0.07244 0.07227 0.07211 0.07195 0.07179 0.07163 0.07147 0.07131 0.07115 0.07099 0.07083 0.07067 0.07051 0.07035 0.07019 0.07003 0.06987 0.06971 0.06956 0.06940 0.06924 0.06908 0.06892 0.06876 0.06860 Reservoir Elevation (ft) 296.21 296.20 296.20 296.19 296.19 296.19 296.18 296.18 296.17 296.17 296.17 296.16 296.16 296.15 296.15 296.15 296.14 296.14 296.13 296.13 296.13 296.12 296.12 296.11 296.11 296.11 296.10 296.10 296.09 296.09 296.09 296.08 296.08 296.07 296.07 296.07 296.06 296.06 296.05 296.05 296.05 296.04 296.04 296.03 296.03 296.03 296.02 296.02 296.02 296.01 296.01 Page: 11 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 O.OQOOO 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 outflow (cfs) 0.11870 0 .. 11863 0.11856 0.11849 0.11841 0.11834 0.11827 0.1:1,820 0.11812 0.11805 0.11798 0.11791 0.11784 0.117'76 0~11769 0.11762 0.11755 0.11748 0.11741 0.11733 0.11726 0.11719 0.11712 0.11705 0.11698 0.11691 0.11683 0.11676 0.11669 0.11662 0.11655 0.11648 0.11641 0.11634 0.11626 0.11619 0.11612 0.11605 0.11598 0.11591 0.11584 0.11577 0.11570 0.11563 0.11556 0.11549 0.11542 0.11534 0.11527 0.11520 0.11513 I I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 1000 1001 Reservoir storage (ac-ft) 0.06844 0.06828 0.06813 0.06797 0.06781 0.06765 0.06749 0.06734 0.06718 0.06702 0.06687 0.06671 0.06655 0.06640 0.06624 0.06608 0.06593 0.06577 0.06561 0.06546 0.06530 0.06515 0.06499 0.06484 0.06468 0.06453 0.06437 0.06422 0.06406 0.06391 0.06376 0.06360 0.06345 0.06329 0.06314 0.06299 0.06283 0.06268 0.06253 0.06238 0.06222 0.06207 0.06192 0.06177 0.06161 0.06146 0.06131 0.06116 0.06101 0.06086 0.06071 Reservoir Elevation (ft) 296.00 296.00 295.99 295.99 295.98 295.98 295.97 295.97 295.96 295.96 295.95 295.95 295.94 295.94 295.93 295.93 295.92 295.92 295.91 295.91 295.90 295.90 295.89 295.89 295.88 295.88 295.87 295.87 295.86 295.86 295.85 295.85 295.84 295.84 295.83 295.83 295.82 295.82 295.82 295 .. 81 295.81 295.80 295.80 295.79 295.79 295.78 295.78 295.77 295.77 295.76 295.76 Page: 12 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.;1.1506 0.11499 0.11488 0.11477 0.11465 0.11454 0.11443 0.11432 0.11421 0.11410 0.11399 0.11388 0.11377 0.11366 0.11355· 0.11344 0.ln33 0.11322 0.11311 0.11300 0.11289 0.11278 0.11267 0.11256 0.11245 0.11234 0.11223 0.11212 0.11201 0.11190 0.11180 0.11169 0.11158 0.11147 0.11136 0.11125 0.11115 0.11104 0.11093 0 •. 11082 0.11072 0.11061 0.11050 0.11039 0.11029 0.11018 0.11007 0.10996 0.10986 0.10975 0.10964· I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 Reservoir Storage (ac-ft) 0.06055 0.06040 0.06025 0.06010 0.05995 0.05980 0.05965 0.05950 0.05935 0.05920 0.05905 0.05890 ·0.05875 0.05861 0.05846 0.05831 0.05816 0.05801 0.05786 0.05771 0.05757 0.05742 0.05727 0.05712 0.05698 0.05683 0.05668 0.05653 0.05639 0.05624 0.05609 0.05595 0.05580 0.05565 0.05551 0.05536 0.05522 0.05507 0.05493 0.05478 0.05464 0.05449 0.05435 0.05420 0.05406 0.05391 0.05377 0.05362 0.05348 0.05333 0.05319 Reservoir Elevation (ft) 295.75 295.75 295.74 295.74 295.73 295.73 295.72 295.72 295.71 295.71 295.70 295.70 295.69 295.69 295.68 295.68 295.67 295.67 295.67 295.66 295.66 295.65 295.65 295.64 295.64 295.63 295.63 295.62 295.62 295.61 295.61 295.60 295.60 295.59 295.59 295.59 295.58 295.58 295.57 295.57 295.56 295.56 295.55 295.55 295.54 295.54 295.53 295.53 295.52 295.52 295.52 Page: 13 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 outflow (cfs) 0.10954 0.10943 0.10933 0.10922 0.10911 0.10901 0.10890 0.10880 0.10869 0.10859 0.10848 0.10837 0.10827 0.10816 0.10806 0.10795 0.10785 0.10774 0.10764 0.10754· 0.10743 0.10733 0.10722 0.10712 0.10701 0.10691 0.10681 0.10670 0.10660 0.10650 0.10639 0.10629 0.10619 0.10608 0.10598 0.10588 0.10577 0.10567 0.10557 0.10547 0.10536 0.10526 0.10516 0.10506 0.10496 0.10485 0.10475 0.10465 0.10455 0.10445 0.10435 I I I I I I I I I I I I I I I I I I II Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 1053 1054 1055 1056 1057 1058 1059 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 Reservoir Storage (ac-ft) 0.05305 0.05290 0.05276 0.05262 0.05247 0.05233 0.05219 0.05205 0.05190 0.05176 0.05162 0.05148 0.05133 0.05119 0.05105 0.05091 0.05077 0.05063 0.05049 0.05034 0.05020 0.05006 0.04992 0.04978 0.04964 0.04950 0.04936 0.04922 0.04908 0.04894 0.04880 0.04866 0.04852 0.04838 0.04824 0.04811 0.04797 0.04783 0.04769 0.04755 0.04741 0.04728 0.04714 0.04700 0.04686 0.04672 0.04659 0.04645 0.04631 0.04618 0.04604 Reservoir Elevation (ft) 295.51 295.51 295.50 295.50 295.49 295.49 295.48 295.48 295.47 295.47 295.47 295.46 295.46 295.45 295.45 295.44 295.44 295.43 295.43 295.42 295.42 295.42 295.41 295.41 295.40 295.40 295.39 295.39 295.38 295.38 295.38 295.37 295.37 295.36 295.36 295.35 295.35 295.34 295.34 295.34 295.33 295.33 295.32 295.32 295.31 295.31 295.30 295.30 295.30 295.29 295.29 Page: 14 Inf~ow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outf~ow (cfS) 0.10424 0.10414 0.10404 0.10394 0.10384 0.10374 0.1036'4 0.10354 0.10344 0.10334 0.10324 0.10314 0.10304 0.10294 0.,10284 0.10274 0.10264 0.10254 0.10244 0.10234 0.10224 0.10214 0.10204 0.10194 0.10184 0.10174 0.10165 0.10155 0.10145 0.10135 0.10125 0.10115 0.10105 0.10096 0.10086 0.10076 0.10066 0.10057 0.10047 0.100;37 0.10027 0.10018 0.10008 0.09998 0.09988 0.09979 0.09969 0.09959 0.09950 0.09940 0.09930 I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 Reservoir Storage (ac-ft) 0.04590 0.04577 0.04563 0.04549 0.04536 0.04522 0.04509 0.04495 0.04481 0.04468 0.04454 0.04441 0.04427 0.04414 0.04400 0.04387 0.04373 0.04360 0.04346 0.04333 0.04320 0.04306 0.04293 0.04279 0.04266 0.04253 0.04239 0.04226 0.04213 0.04200 0.04186 0.04173 0.04160 0.04146 0.04133 0.04120 0.04107 0.04094 0.04080 0.04067 0.04054 0.04041 0.04028 0.04015 0.04002 0.03989 0.03976 0.03962 0.03949 0.03936 0.03923 Reservoir Elevation (ft) 295.28 295.28 295.27 295.27 295.26 295.26 295.26 295.25 295.25 295.24 295.24 295.23 295.23 295.23 295.22 295.22 295.21 295.21 295.20 295.20 295.20 295.19 295.19 295.18 295.18 295.17 295.17 295.17 295.16 295.16 295.15 295.15 295.14 295.14 295.14 295.13 295.13 295.12 295.12 295.11 295.11 295.11 295.10 295.10 295.09 295.09 295.09 295.08 295.08 295.07 295.07 Page: 15 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 outflow (cfs) 0.09921 0.09911 0.09901 0.09892 0.09882 0.0987:3 0.09863 0.09853 0.09844 0.09834 0.09825 0_.09815 0.09806 0.09796 0.09787 0.09777 0.09768 0.09758 0.09749 0.09739 0.09730 0.09720 0.09711 0.09702 0.09692 0.09683 0.09673 0.09664 0.09655 0.09645 0.09636 0.09626 0.09617 0.0960e 0 .. 09598 0.09589 0.09580 0.09571 0.09561 0.09552 0.09543 0.09533 0.09524 0.09515 0.09506 0.09496 0.09487 0.09478 0.09469 0.09460 0.09450 I I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 Reservoir storage (ac-ft) 0.03910 0.03897 0.03884 0.03871 0.03858 0.03845 0.03833 0.03820 0.03807 0.03794 0.03781 0.03768 0.03755 0.03742 0.03730 0.03717 0.03704 0.03691 0.03678 0.03666 0.03653 0.03640 0.03627 0.03615 0.03602 0.03590 0.03577 0.03564 0.03552 0.03539 0.03527 0.03514 0.03502 0.03489 0.03477 0.03465 0.03452 0.03440 0.03428 0.03415 0.03403 0.03391 0.03378 0.03366 0.03354 0.03342 0.03330 0.03317 0.03305 0.03293 0.03281 Reservoir Elevation (ft) 295.06 295.06 295.06 295.05 295.05 295.04 295.04 295.04 295.03 295.03 295.02 295.02 295.01 295.01 295.01 295.00 295.00 294.99 294.99 294.98 294.97 294.97 294.96 294.96 294.95 294.95 294.94 294.94 294.93 294.92 294.92 294.91 294.91 294.90 294.90 294.89 294.89 294.88 294.88 294.87 294.86 294.86 294.85 294.85 294.84 294.84 294.83 294.83 294.82 294.82 294.81 Page: 16 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.09441 0.09432 0.09423 0.09414 0.09405 0.09396 0.09386 0.09377 0.09368 0.09359 0.09350 0.09341 0.09332 0.09323 0.09314 0.09305 0.09292 0.09277 0.09261 0.09245 0.09229 0.09213 0.09198 0.09182 0.09166 0.09151 0.09135 0.09120 0.09104 0.09089 0.09073 0.09058 0.09042 0.09027 0.09011 0.08996 0.08981 0.08965 0.08950 0.08935 0.08920. 0.08904 0.08889 0.08874 0.08859 0.08844 0.08829 0.08814 0.08799 0.08784 0.08769 I I I I I I I I I I I I I I I i I I I I 1- Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 '1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 Reservoir storage (ac-ft) 0.03269 0.03257 0.03245 0.03233 0.03221 0.03209 0.03197 0.03185 0.03173 0.03161 0.03149 0.03138 0.03126 0.03114 0.03102 0.03090 0.03079 0.03067 0.03055 0.03044 0.03032 0.03020 0.03009 0.02997 0.02985 0.02974 0.02962 0.02951 0.02939 0.02928 0.02916 0.02905 0.02894 0.02882 0_02871 0.02859 0.02848 0.02837 0.02825 0.02814 0.02803 0.02792 0.02780 0.02769 0.02758 0.02747 0.02736 0.02724 0.02713 0.02702 0.02691 Reservoir Elevation (ft) 294.80 294.80 294.79 294.79 294.78 294.78 294.77 294.77 294.76 294.76 294.75 294.75 294.74 294.74 294.73 294.73 294.72 294.72 294.71 294.71 294.70 294.69 294.69 294.68 294.68 294.67 294.67 294.66 294.66 294.65 294.65 294.64 294.64 294.63 294.63 294.62 294.62 294.61 294.61 294.60 294.60 294.59 294.59 294.58 294.58 294.57 294.57 294.56 294.56 294.55 294_55 Page: 17 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.08754 0.08739 0.08724 0.08709 0.08694 0.08679 0.08664 0.08650 0.08635 0.08620 0.08606 0.08591 0.08576 0.08562 0.08547 0.08532 0.08518 0.08503 0.08489 0.08474 0.08460 0.08445 0.08431 0.08411 0.08402 0.08388 0.08374 0.08359 0.08345 0.08331 0.08317 0.08303 0.08288 0.08274 0.08260 0.08246 0.08232 0.08218 0.08204 0.08190 0.08176 0.08162 0.08148 0.08134 0.08120 0.08107 0.08093 0.08079 0.08065 0.08051 0.08038 I I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1500 1501 1502 1503 1504 1505 1506 1507 Reservoir Storage (ac-ft) 0.02680 0.02669 0.02658 0.02647 0.02636 0.02625 0.02614 0.02603 0.02592 0.02581 0.02570 0.02560 0.02549 0.02538 0.02527 0.02516 0.02506 0.02495 0.02484 0.02473 0.02463 0.02452 0.02441 0.02431 0.02420 0.02410 0.02399 0.02388 0.02378 0.02367 0.02357 0.02346 0.02336 0.02325 0.02315 0.02305 0.02294 0.02284 0.02273 0.02263 0.02253 0.02242 0.02232 0.02222 0.02212 0.02201 0.02191 0.02181 0.02171 0.02161 0.02150 Reservoir Elevation (ft) 294.54 294.54 294.53 294.53 294.52 294.52 294.52 294.51 294.51 294.50 294.50 294.49 294.49 294.48 294.48 294.47 294.47 294.46 294.46 294.45 294.45 294.44 294.44 294.43 294.43 294.42 294.42 294.42 294.41 294.41 294.40 294.40 294.39 294.39 294.38 294.38 294.37 294.37 294.36 294.36 294.36 294.35 294.35 294.34 294.34 294.33 294.33 294.32 294.32 294.31 294.31 Page: 18 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.08024 0.08010 0.07997 0.07983 0.07969 0.07956 0.07942 0.07929 0.07915 0.07902 0.07888 0.07875 0.07861 0.07848 0.07835 0.07821 0.07808 0.07795 0.07781 0.07768 0.07755 0.07742 0.07728 0.07715 0.07702 0.07689 0.07676 0.07663 0.07650 0.07637 0.07624 0.07611 0.07598 0.07585 0.07572 0.07559 0.07546 0.07533 0.07520 0.07507 0.07495 0.07482 0.07469 0.07456 0.07444 0.07431 0.07418 0.07406 0.07393 0.07380 0.07368 I I Date Time Reservoir Storage Reservoir Elevation Inflow (cfs) outflow (cfs) (ac-ft) (ft) I ~--------------------~ 01 Jan 01 1508 0.02140 294.31 0.00000 0.07355 01 Jan 01 1509 0.02130 294.30 0.00000 0.07343 I 01 Jan 01 1510 0.02120 294.30 0.00000 0.07330 01 Jan 01 1511 0.02110 294.29 0.00000 0.07318 01 Jan 01 1512 0.02100 294.29 0.00000 0.07305 01 Jan 01 1513 0.02090 294.28 0.00000 0.07293 01 Jan 01 1514 0.02080 294.28 0.00000 0.07280 I 01 Jan 01 1515 0.02070 294.27 0.00000 0.07268 01 Jan 01 1516 0.02060 294.27 0.00000 0.07255 01 Jan 01 1517 0.02050 294.27 0.00000 0.07243 I 01 Jan 01 1518 0.02040 294.26 0.00000 0.07231 01 Jan 01 1519 0.02030 294.26 0.00000 0.07218 01 Jan 01 1520 0.02020 294.25 0.00000 0.07206 I 01 Jan 01 1521 0.02010 294.25 0.00000 0.07194 01 Jan 01 1522 0.02000 294.24 0.00000 0.07182 01 Jan 01 1523 0.01990 294.24 0.00000 0.07169 01 Jan 01 1524 0.01980 294.23 0.00000 0.07157 I 01 Jan 01 1525 0.01970 294.23 0.00000 0.07145 01 Jan 01 1526 0.01961 294.23 0.00000 0.07133 01 Jan 01 1527 0.01951 294.22 0.00000 0.07121 I 01 Jan 01 1528 0.01941 294.22 0.00000 0.07108 01 Jan 01 1529 0.01931 294.21 0.00000 0 .. 07096 01 Jan 01 1530 0.01921 294.21 0.00000 0.07084 I 01 Jan 01 1531 0.01912 294.20 0.00000 0.07072 01 Jan 01 1532 0.01902 294.20 0.00000 0.07060 01 Jan 01 1533 0.01892 294.20 0.00000 0.07048 I 01 Jan 01 1534 0.01883 294.19 0.00000 0.07036 01 Jan 01 1535 0.01873 294.19 0.00000 0.07024 01 Jan 01 1536 0.01863 294.18 0.00000 0.07012 I 01 Jan 01 1537 0.01854 294.18 0.00000 0.07000 01 Jan 01 1538 0.01844 294.17 0.00000 0.06988 01 Jan 01 1539 0.01834 294.17 0.00000 0.06976 I 01 Jan 01 1540 0.01825 294.17 0.00000 0.06964 01 Jan 01 1541 0.01815 294.16 0.00000 0.06952 01 Jan 01 1542 0.01806 294.16 0.00000 0.06941 I 01 Jan 01 1543 0.01796 294.15 0.00000 0.06929 01 Jan 01 1544 0.01787 294.15 0.00000 0.06917 01 Jan 01 1545 0.01777 294.14 0.00000 0.06905 I 01 Jan 01 1546 0.01767 294.14 0.00000 0.06893 01 Jan 01 1547 0.01758 294.14 0.00000 0.06882 01 Jan 01 1548 0.01749 294.13 0.00000 0.06870 I 01 Jan 01 1549 0.01739 294.13 0.00000 0.06858 01 Jan 01 1550 0.01730 294.12 0.00000 0.06846 01 Jan 01 1551 0.01720 294.12 0.00000 0.06835 01 Jan 01 1552 0.01711 294.12 0.00000 0.06823 I 01 Jan 01 1553 0.01701 294.11 0.00000 0.06811 01 Jan 01 1554 0.01692 294.11 0.00000 0.06800 01 Jan 01 1555 0.01683 294.10 0.00000 0.06788 I 01 Jan 01 1556 0.01673 294.10 0.00000 0.06777 01 Jan 01 1557 0.01664 294.09 0.00000 0.06765 01 Jan 01 1558 0.01655 294.09 0.00000 0.06754 I Page: 19 I I I I I I I I I I I I I I I I I I i I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Ja,n 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 1559 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 Reservoir Storage (ac-ft) 0.01645 0.01636 0.01627 0.01618 0.01608 0.01599 0.01590 0.01581 0.01572 0.01562 0.01553 0.01544 0.01535 0.01526 0.01517 0.01508 0.01499 0.01490 0.01481 0.01472 0.01463 0.01454 0.01445 0.01436 0.01427 0.01418 0.01410 0.01401 0.01392 0.01384 0.01375 0.01367 0.01358 0.01350 0.01342 0.01333 0.01325 0.01317 0.01309 0.01301 0.01293 0.01285 0.01277 0.01269 0.01261 0.01254 0.01246 0.01238 0.01231 0.01223 0.01215 Reservoir Elevation (ft) 294.09 294.08 294.08 294.07 294.07 294.07 294.06 294.06 294.05 294.05 294.05 294.04 294.04 294.03 294.03 294.03 294.02 294.02 294.01 294.01 294.01 294.00 294.00 293.99 293.98 293.98 293.97 293.97 293.96 293.95 293.95 293.94 293.94 293.93 293.93 293.92 293.91 293.91 293.90 293.90 293.89 293.89 293.88 293.88 293.87 293.86 293.86 293.85 293.85 293.84 293.84 Page: 20 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 outflow (cfs) 0.06742 0.06731 0.06719 0.06708 0.06696 0.06685 0.06673 0.06662 0.06651 0.06639 0.06628 0.06617 0.06605 0.06594 0.06583 0.06572 0.06560 0.06549 0.06538 0.06527 0.06516 0.06505 0.06477 0.06437 0.06398 0.06358 0.06319 0.06280 0.06242 0.06203 0.06165 0.06127 0.06089 0.06052 0.06015 0.05978 0.05941 0.05904 0.05868 0.05832 0.05796 0.05760 0.05725 0.05689 0.05654 0.05620 0.05585 0.05551 0.05516 0.05483 0.05449 I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 Reservoir Storage (ac-ft) 0.01208 0.01201 0.01193 0.01186 0.01179 0.01171 0.01164 0.01157 0.01150 0.01143 0.01136 0.01129 0.01122 0.01115 0.01108 0.01101 0.01094 0.01088 0.01081 0.01074 0.01068 0.01061 0.01055 0.01048 0.01042 0.01035 0.01029 0.01023 0.01016 0.01010 0.01004 0.00998 0.00991 0.00985 0.00979 0.00973 0.00967 0.00961 0.00955 0.00949 0.00944 0.00938 0.00932 0.00926 0.00921 0.00915 0.00909 0.00904 0.00898 0.00893 0.00887 Reservoir Elevation (ft) 293.83 293.83 293.82 293.82 293.81 293.81 293.80 293.80 293.79 293.79 293.78 293.78 293.77 293.77 293.76 293.76 293.75 293.75 293.75 293.74 293.74 293.73 293.73 293.72 293.72 293.71 293.71 293.71 293.70 293.70 293.69 293.69 293.68 293.68 293.68 293.67 293.67 293.66 293.66 293.65 293.65 293.65 293.64 293.64 293.63 293.63 293.63 293.62 293.62 293.62 293.61 Page: 21 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.05415 0.05382 0.05349 0.05316 0.05283 0.05251 0.05218 0.05186 0.05154 0.05123 0.05091 0.05060 0.05028 0.04998 0.04967 0.04936 0.04906 0.04876 0.04846 0.04816 0.04786 0.04757 0.04727 0.04698 0.04669 0.04641 0.04612 0.04584 0.04555 0.04527 0.04500 0.04472 0.04444 0.04417 0.04390 0.04363 0.04336 0.04309 0.04283 0.04256 0.04230 0.04204 0.04178 0.04152 0.04127 0.04102 0.04076 0.04051 0.04026 0.04001 0.03977 I I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 Reservoir storage (ac-ft) 0.00882 0.00876 0.00871 0.00865 0.00860 0.00855 0.00850 0.00844 0.00839 0.00834 0.00829 0.00824 0.00819 0.00814 0.00809 0.00804 0.00799 0.00794 0.00789 0.00784 0.00779 0.00774 0.00770 0.00765 0.00760 0.00756 0.00751 0.00746 0.00742 0.00737 0.00733 0.00728 0.00724 0.00719 0.00715 0.00710 0.00706 0.00702 0.00697 0.00693 0.00689 0.00684 0.00680 0.00676 0.00672 0.00668 0.00664 0.00660 0.00656 0.00651 0.00647 Reservoir Elevation (ft) 293.61 293.60 293.60 293.60 293.59 293.59 293.59 293.58 293.58 293.58 293.57 293.57 293.56 293.56 293.56 293.55 293.55 293.55 293.54 293.54 293.54 293.53 293.53 293.53 293.52 293.52 293.52 293.51 293.51 293.51 293.51 293,50 293.50 293.50 293.49 293.49 293.49 293.48 293.48 293.48 293.47 293.47 293.47 293.47 293.46 293.46 293.46 293.45 293.45 293.45 293.45 Page: 22 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.03952 0.03928 0.03904 0.03880 0.03856 0.03832 0.03809 0.03785 0.03762 0.03739 0.03716 0.03693 0.03670 0.03647 0.03625 0.03603 0.03581 0.03559 0.03537 0.03515 0.03493 0.03472 0.03450 0.03429 0.03408 0.03387 0.03366 0.03345 0.03325 0.03304 0.03284 0.03264 0-.03244 0.03224 0.03204 0.03184 0.03165 0.03145 0.03126 0.03107 0.03087 0.03068 0.03049 0.03031 0.03012 0.02994 0.02975 0.02957 0.02939 0.02920 0.02903 I I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01. Jan 01. 01 Jan 01 01. Jan 01. 01. Jan 01 01. Jan 01 01. Jan 01 01. Jan 01. 01. Jan 01 01. Jan 01. 01. Jan 01 01. Jan 01 01. Jan 01 01. Jan 01. 01. Jan 01 01. Jan 01 01. Jan 01. 01 Jan 01 01. Jan 01. 01. Jan 01. 01. Jan 01 01. Jan 01. 01. Jan 01 01 Jan 01 01 Jan 01 01. Jan 01 01. Jan 01. 01. Jan 01 01 Jan 01. 01. Jan 01 01 Jan 01. 01 Jan 01. Time 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1.851 1852 1853 1854 1.855 1856 1857 1858 1.859 1900 1901. 1902 1.903 1904 1905 1.906 1907 1.908 1.909 191.0 1911 1912 191.3 1.914 191.5 1916 1917 1918 191.9 1920 1921 1922 Reservoir Storage (ac-ft) 0.00643 0.00640 0.00636 0.00632 0.00628 0.00624 0.00620 0.0061.6 0.00612 0.00609 0.00605 0.00601. 0.00598 0.00594 0.00590 0.00587 0.00583 0.00579 0.00576 0.00572 0.00569 0.00565 0.00562 0.00558 0.00555 0.00551. 0.00548 0.00545 0.00541. 0.00538 0.00535 0.00531. 0.00528 0.00525 0.00522 0.00518 0.0051.5 0.0051.2 0.00509 0.00506 0.00503 0.00500 0.00497 0.00493 0.00490 0.00487 0.00484 0.00481 0.00478 0.00475 0.00473 Reservoir Elevation (ft) 293.44 293.44 293.44 293.44 293.43 293.43 293.43 293.43 293.42 293.42 293.42 293.41 293.41 293.41 293.41 293.40 293.40 293.40 293.40 293.39 293.39 293.39 293.39 293.39 293.38 293.38 293.38 293.38 293.37 293.37 293.37 293.37 293.36 293.36 293.36 293.36 293.36 293.35 293.35 293.35 293.35 293.34 293.34 293.34 293.34 293.34 293.33 293.33 293.33 293.33 293.33 Page: 23 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 outflow (cfs) 0.02885 0.02867 0.02849 0.02832 0.02814 0.02797 0.02780 0.02763 0.02746 0.02729 0.02712 0.02695 0.02679 0.02662 0.02646 0.02629 0.02613 0.02597 0.02581 0.02565 0.02550 0.02534 0.0251.8 0.02503 0.02487 0.02472 0.02457 0.02442 0.02427 0.0241.2 0.02397 0.02382 0.02367 0.02353 0.02338 0.02324 0.0231.0 0.02295 0.02281. 0.02267 0.02253 0.02239 0.02226 0.02212 0.021.98 0.021.85 0.02171 0.02158 0.02145 0.02132 0.02118 I I I I I I I I I I I I I I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Reservoir Storage (ac-ft) 0.00470 0.00467 0.00464 0.00461 0.00458 0.00455 0.00453 0.00450 0.00447 0.00444 0.00442 0.00439 0.00436 0.00433 0.00431 0.00428 0.00425 0.00423 0.00420 0.00418 0.00415 0.00413 0.00410 0.00407 0.00405 0.00402 0.00400 0.00398 0.00395 0.00393 0.00390 0.00388 0.00385 0.00383 0.00381 0.00378 0.00376 0.00374 0.00371 0.00369 0.00367 0.00365 0.00362 0.00360 0.00358 0.00356 0.00354 0.00351 0.00349 0.00347 0.00345 Reservoir E~evation (ft) 293.32 293.32 293.32 293.32 293.32 293.31 293.31 293.31 293.31 293.31 293.30 293.30 293.30 293.30 293.30 293.30 293.29 293.29 293.29 293.29 293.29 293.28 293.28 293.28 293.28 293.28 293.28 293.27 293.27 293.27 293.27 293.27 293.27 293.26 293.26 293.26 293.26 293.26 293.26 293.25 293.25 293.25 293.25 293.25 293.25 293.25 293.24 293.24 293.24 293.24 293.24 Page: 24 Inf~ow (cfs) 0.00000 0.00000 0.,00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.02105 0.02092 0.02080 0.02067 0.02054 0.02041 0.02029 0.02016 0.02004 0.01992 0.01979 0.01967 0.01955 0.01943 0.01931 0.01919 0 .. 01907 0.01896 0.01884 0.01872 0.01861 0.01849 0.01838 0.01827 0.01815 0.01804 0.01793 0.01782 0.01771 0.01760 0.01749 0.01739 0.01728 0.0171.7 0.01707 0.01696 0.01686 0.01675 0.01665 0.01655 0.01645 0.01635 0.01624 0.01614 0.01605 0.01595 0.01585 0.01575 0.01565 0.01556 0.01546 I I I I I I I I I I I I II I I I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2100 2101 2102 2103 2104 Reservoir Storage (ac-ft) 0.00343 0.00341 0.00339 0.00336 0.00334 0.00332 0.00330 0.00328 0.00326 0.00324 0.00322 0.00320 0.00318 0.00316 0.00314 0.00312 0.00311 0.00309 0.00307 0.00305 0.00303 0.00301 0.00299 0.00297 0.00296 0.00294 0.00292 0.00290 0.00288 0.00287 0.00285 0.00283 0.00281 0.00280 0.00278 0.00276 0.00274 0.00273 0.00271 0.00269 0.00268 0.00266 0.00264 0.00263 0.00261 0.00260 0.00258 0.00256 0.00255 0.00253 0.00252 Reservoir Elevation (ft) 293.24 293.23 293.23 293.23 293.23 293.23 293.23 293.23 293.23 293.22 293.22 293.22 293.22 293.22 293.22 293.22 293.21 293.21 293.21 293.21 293.21 293.21 293.21 293.21 293.20 293.20 293.20 293.20 293.20 293.20 293.20 293.20 .293.19 293.19 293.19 293.19 293.19 293.19 293.19 293.19 293.18 293.18 293.18 293.18 293.18 293.18 293.18 293.18 293.18 293.17 293.17 Page: 25 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.01537 0.01527 0.01518 0.01508 0.01499 0.01490 0.01481 0.01472 0.01463 0.01454 0.01445 0.01436 0.01427 0.01418 0.01409 0.01401 0.01392 0.01384 0.01375 0.01367 0.01358 0.01350 0.01341 0.01333 0.01325 0.01317 0.01309 0.01301 0.01293 0.01285 0.0121'7 0.01269 0.01261 0.01253 0.01246 0.01238 0.01230 0.01223 0.01215 0.01208 0.01200 0.01193 0.01186 0.01178 0.01171 0.01164 0.01157 0.01150 0.01142 0.01135 0.01128 I I Date Time Reservoir Storage Reservoir Elevation Inflow (cfs) Outflow (cfs) (ac-ft) (ft) I ~----------------~--~ 01 Jan 01 2105 0.00250 293.17 0.00000 0.01122 01 Jan 01 2106 0.00249 293.17 0.00000 0.01115 I 01 Jan 01 2107 0.00247 293.17 0.00000 0.01108 01 Jan 01 2108 0.00246 293.17 0.00000 0.01101 01 Jan 01 2109 0.00244 293.17 0.00000 0.01094 01 Jan 01 2110 0.00243 293.17 0.00000 0.01087 01 Jan 01 2111 0.00241 293.17 0.00000 0.01081 I 01 Jan 01 2112 0.00240 293.17 0.00000 0.01074 01 Jan 01 2113 0.00238 293.16 0.00000 0.01067 01 Jan 01 2114 0.00237 293.16 0.00000 0.01061 I 01 Jan 01 2115 0.00235 293.16 0.00000 0.01054 01 Jan 01 2116 0.00234 293.16 0.00000 0.01048 01 Jan 01 2117 0.00232 293.16 0.00000 0.01041 I 01 Jan 01 2118 0.00231 293.16 0.00000 0.01035 01 Jan 01 2119 0.00229 293.16 0.00000 0.01029 01 Jan 01 2120 0.00228 293.16 0.00000 0.01022 01 Jan 01 2121 0.00227 293.16 0.00000 0.01016 I 01 Jan 01 2122 0.00225 293.16 0.00000 0.01010 01 Jan 01 2123 0.00224 293.15 0.00000 0.01004 01 Jan 01 2124 0.00222 293.15 0.00000 0.00997 I 01 Jan 01 2125 0.00221 293.15 0.00000 0.00991 01 Jan 01 2126 0.00220 293.15 0.00000 0.00985 01 Jan 01 2127 0.00218 293.15 0.00000 0.00979 I 01 Jan 01 2128 0.00217 293.15 0.00000 0.00973 01 Jan 01 2129 0.00216 293.15 0.00000 0.00967 .01 Jan 01 2130 0.00214 293.15 0.00000 0.00961 I 01 Jan 01 2131 0.00213 293.15 0.00000 0.00955 01 Jan 01 2132 0.00212 293.15 0.00000 0.00949 01 Jan 01 2133 0.00210 293.15 0.00000 0.00943 I 01 Jan 01 2134 0.00209 293.14 0.00000 0.00938 01 Jan 01 2135 0.00208 293.14 0.00000 0.00932 01 Jan 01 2136 0.00207 293.14 0.00000 0.00926 I 01 Jan 01 2137 0.00205 293.14 0.00000 0.00920 01 Jan 01 2138 0.00204 293.14 0.00000 0.00915 01 Jan 01 2139 0.00203 293.14 0.00000 0.00909 I 01 Jan 01 2140 0.00202 293.14 0.00000 0.00904 01 Jan 01 2141 0 . 00200 293.14 0.00000 0.008'98 01 Jan 01 2142 0.00199 293.14 0.00000 0.00892 I 01 Jan 01 2143 0.00198 293.14 0.00000 0.00887 01 Jan 01 2144 0.00197 293.14 0.00000 0.00882 01 Jan 01 2145 0.00195 293.13 0.00000 0.00876 I 01 Jan 01 2146 0.00194 293.13 0.00000 0.00871 01 Jan 01 2147 0.00193 293.13 0.00000 0.00865 01 Jan 01 2148 0.00192 293.13 0.00000 0.00860 01 Jan 01 2149 0.00191 293.13 0.00000 0.00855 I 01 Jan 01 2150 0.00189 293.13 0.00000 0.00849 01 Jan 01 2151 0.00188 293.13 0.00000 0.00844 01 Jan 01 2152 0.00187 293.13 0.00000 0.00839 I 01 Jan 01 2153 0.00186 293.13 0.00000 0.00834 01 Jan 01 2154 0.00185 293.13 0.00000 0.00829 01 Jan 01 2155 0.00184 293.13 0.00000 0.00824 I Page: 26 I I Date Time Reservoir Reservoir Storage Elevation Inflow (cfs) Outflow (cfs) 1 ~ ______________________________ (a_C_-_f_t_) _____________________ (_ft_) __________________________________________________ ~ 01 Jan 01 2156 0.00183 293.13 0.00000 0.00819 01 Jan 01 2157 0.00181 293.13,0.00000 0.00814 I 01 Jan 01 2158 0.00180 293.12 0.00000 0.00809 01 Jan 01 2159 0.00179 293.12 0.00000 0.00804 01 Jan 01 2200 0.00178 293.12 0.00000 0.00799 01 Jan 01 2201 0.00177 293.12 0.00000 0.00794 01 Jan 01 2202 0.00176 293.12 0.00000 0.00789 I 01 Jan 01 2203 0.00175 293.12 0.00000 0.00784 01 Jan 01 2204 0.00174 293.12 0.00000 0.00779 01 Jan 01 2205 0.00173 293.12 0.00000 0.00774 I 01 Jan 01 2206 0.00172 293.12 0.00000 0.00770 01 Jan 01 2207 0.00171 293.12 0.00000 0.00765 01 Jan 01 2208 0.00170 293.12 0.00000 0.00760 I 01 Jan 01 2209 0.00169 293.12 0.00000 0.00755 01 Jan 01 2210 0.00167 293.12 0.00000 0.00751 01 Jan 01 2211 0.00166 293.11 0.00000 0.00746 I 01 Jan 01 2212 0.00165 293.11 0.00000 0.00742 01 Jan 01 2213 0.00164 293.11 0.00000 0.00737 01 Jan 01 2214 0.00163 293.11 0.00000 0.00732 01 Jan 01 2215 0.00162 293.11 0.00000 0.00728 I 01 Jan 01 2216 0.00161 293.11 0.00000 0.00723 01 Jan 01 2217 0.00160 293.11 0.00000 0.00719 01 Jan 01 2218 0.00159 293.11 0.00000 0.00715 I 01 Jan 01 2219 0.00158 293.11 0.00000 0.00710 01 Jan 01 2220 0.00157 293.11 0.00000 0.00706 01 Jan 01 2221 0.00156 293.11 0.00000 0.00701 I 01 Jan 01 2222 0.00156 293.11 0.00000 0.00697 01 Jan 01 2223 0.00155 293.11 0.00000 0.00693 01 Jan 01 2224 0.00154 293.11 0.00000 0.00689 I 01 Jan 01 2225 0.00153 293.11 0.00000 0.00684 01 Jan 01 2226 0.00152 293.10 0.00000 0.00680 01 Jan 01 2227 0.00151 293.10 0.00000 0.00676 I 01 Jan 01 2228 0.00150 293.10 0.00000 0.00672 01 Jan 01 2229 0.00149 293.10 0.00000 0.00668 01 Jan 01 2230 0.00148 293.10 0.00000 0.00664 I 01 Jan 01 2231 0.00147 293.10 0.00000 0.00659 01 Jan 01 2232 0.00146 293.10 0.00000 0.00655 01 Jan 01 2233 0.00145 293.10 0.00000 0.00651 I 01 Jan 01 2234 0.00144 293.10 0.00000 0.00647 01 Jan 01 2235 0.00144 293.10 0.00000 0.00643 01 Jan 01 2236 0.00143 293.10 0.00000 0.00639 I 01 Jan 01 2237 0.00142 293.10 0.00000 0.00635 01 Jan 01 2238 0.00141 293.10 0.00000 0.00632 01 Jan 01 2239 0.00140 293.10 0.00000 0.00628 I 01 Jan 01 2240 0.00139 293.10 0.00000 0.00624 01 Jan 01 2241 0.00138 293.10 0.00000 0.00620 01 Jan 01 2242 0.00137 293.09 0.00000 0.00616 01 Jan 01 2243 0.00137 293.09 0.00000 0.00612 I 01 Jan 01 2244 0.00136 293.09 0.00000 0.00609 01 Jan 01 2245 0.00135 293.09 0.00000 0.00605 01 Jan 01 2246 0.00134 293.09 0.00000 0.00601 I Page: 27 I I I I I I I I I I I I I I I, I I I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 , 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 Reservoir Storage (ac-ft) 0.00133 0.00132 0.00132 0.00131 0.00130 0.00129 0.00128 0.00128 0.00127 0.00126 0.00125 0.00125 0.00124 0.00123 0.00122 0.00121 0.00121 0.00120 0.00119 0.00119 0.00118 0.00117 0.00116 0.00116 0.00115 0.00114 0.00114 0.00113 0.00112 0.00111 0.00111 0.00110 0.00109 0.00109 0.00108 0.00107 0.00107 0.00106 0.00105 0.00105 0.00104 0.00103 0.00103 0.00102 0.00102 0.00101 0.00100 0.00100 0.00099 0.00098 0.00098 Reservoir Elevation (ft) 293.09 293.09 293.09 293.09 293.09 293.09 293.09 293.09 293.09 293.09 293.09 293.09 293.09 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.08 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 293.07 Page: 28 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 outflow (cfs) 0.00597 0.00594 0.00590 0.00586 0.00583 0.00579 0.00576 0.00572 0.00569 0.00565 0.00562 0.00558 0.00555 0.00551 0.00548 0.00545 0.00541 0.00538 0.00535 0.00531 0.00528 0.00525 0.00522 0.00518 0.00515 0.00512 0.00509 0.00506 0.00503 0.00499 0.00496 0.00493 0.00490 0.00487 0.00484 0.00481 0.00478 0.00475 0 .. 00472 0.00470 0.00467 0.00464 0.00461 0.00458 0.00455 0.00452 0.00450 0.00447 0.00444 0.00441 0.00439 I I I I I I I I I I I I I I I I I' I I Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2400 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 Reservoir storage (ac-ft) 0.00097 0.00097 0.00096 0.00095 0.00095 0.00094 0.00094 0.00093 0.00093 0.00092 0.00091 0.00091 0.00090 0.00090 0.00089 0.00089 0.00088 0.00088 0.00087 0.00087 0.00086 0.00085 0.00085 0.00084 0.00084 0.00083 0.00083 0.00082 0.00082 0.00081 0.00081 0.00080 0.00080 0.00079 0.00079 0.00078 0.00078 0.00077 0.00077 0.00076 0.00076 0.00076 0.00075 0.00075 0.00074 0.00074 0.00073 0.00073 0.00072 0.00072 0.00071 Reservoir Elevation (ft) 293.07 293.07 293.07 293.07 293.07 293.07 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.06 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 Page: 29 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00436 0.00433 0.00431 0.00428 0.00425 0.00423 0.00420 0.00418 0.00415 0.00412 0.00410 0.00407 0.00405 0.00402 0.004'00 0.00397 0.00395 0.00393 0.00390 0.00388 0.00385 0.00383 0.00381 0.00378 0.00376 0.,00374 0.00371 0.00369 0.00367 0.00365 0.00362 0.00360 0.00358 0.00356 0.00353 0.00351 0.00349 0.00347 0.00345 0.00343 0.00341 0.00339 0.00336 0.00334 0.00332 0.00330 0.00328 0.00326 0.00324 0.00322 0.00320 I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 Reservoir Storage (ac-ft) 0.00071 0.00071 0.00070 0.00070 0.00069 0.00069 0.00068 0.00068 0.00068 0.00067 0.00067 0.00066 0.00066 0.00066 0.00065 0.00065 0.00064 0.00064 0.00064 0.00063 0.00063 0.00062 0.00062 0.00062 0.00061 0.00061 0.00060 0.00060 0.00060 0.00059 0.00059 0.00059 0.00058 0.00058 0.00058 0.00057 0.00057 0.00056 0.00056 0.00056 0.00055 0.00055 0.00055 0.00054 0.00054 0.00054 0.00053 0.00053 0.00053 0.00052 0.00052 Reservoir Elevation (ft) 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.05 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 293.04 Page: 30 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006 0.00000 Outflow (cfs) 0.00318 0.00316 0.00314 0.00312 0.00310 0.00309 0.00307 0.00305 0.00303 0.00301 0.00299 0.00297 0.00296 0.00294 0.00292 0.00290 0.00288 0.00287 0.00285 0.00283 0.00281 0.00280 0.00278 0.00276 0.00274 0.00273 0.00271 0.00269 0.00268 0.00266 0.00264 0.00263 0.00261 0.00260 0.00258 0.00256 0.0025!? 0.00253 0.00252 0.00250 0.00249 0.00247 0.00246 0.00244 0.00243 0.00241 0.00240 0.00238 0.00237 0.00235 0.00234 I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 Reservoir Storage (ac-ft) 0.00052 0.00051 0.00051 0.00051 0.00051 0.00050 0.00050 0.00050 0.00049 0.00049 0.00049 0.00048 0.00048 0.00048 0.00048 0.00047 0.00047 0.00047 0.00046 0.00046 0.00046 0.00046 0.00045 0.00045 0.00045 0.00044 0.00044 0.00044 0.00044 0.00043 0.00043 0.00043 0.00043 0.00042 0.00042 0.00042 0.00041 0.00041 0.00041 0.00041 0.00040 0.00040 0.00040 0.00040 0.00039 0.00039 0.00039 0.00039 0.00039 0.00038 0.00038 Reservoir Elevation (ft) 293.04 293.04 293.04 293.04 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 293.03 Page: 31 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00232 0.00231 0.00229 0.00228 0.00227 0.00225 0.00224 0.00222 0.00221 0.00220 0.00218 0.00217 0.00216 0.00214 0.00213 0.00212 0.00210 0.00209 0.00208 0.00207 0.00205 0.00204 0.00203 0.00202 0.00200 0.00199 ·0.00198 0.00197 0.00195 0.00194 0.00193 0.00192 0.00191 0.00189 0.00188 0.00187 0.00186 0.00185 0.00184 0.00183 0.00181 0.00180 0.00179 0.00178 0.00177 0.00176 0.00175 0.00174 0.00173 0.0017.2 0.00171 I I Date Time Reservoir storage Reservoir Inflow Elevation (cfs) Outflow (cfs) I, ~ ______________________________ (a_C_-_f_t_) _____________________ (f_t_) __________________ --------------------------------~ 02 Jan 01 0211 0.00038 293.03 0.00000 0.00170 02 Jan 01 0212 0.00038 293.03 0.00000 0.00168 I 02 Jan 01 0213 0.00037 293.03 0.00000 0.00167 02 Jan 01 0214 0.00037 293.03 0.00000 0.00166 02 Jan 01 0215 0.00037 293.03 0.00000 0.00165 02 Jan 01 0216 0.00037 293.03 0.00000 0.00164 02 Jan 01 0217 0.00036 293.03 0.00000 0.00163 I 02 Jan 01 0218 0 .00036 293.02 0.00000 0.00162 02 Jan 01 0219 0.00036 293.02 0.00000 0.00161 02 Jan 01 0220 0.00036 293.02 0.00000 0.00160 02 Jan 01 0221 0.00036 293.02 0.00000 0.00159 02 Jan 01 0222 0.00035 293.02 0.00000 0.'00158 02 Jan 01 0223 0.00035 293.02 0.00000 0 .. 00157 02 Jan 01 0224 0.00035 293.02 0.00000 0.00156 I 02 Jan 01 0225 0.00035 293.02 0.00000 0.00155 02 Jan 01 0226 0 . 00034 293.02 0.00000 0.00155 02 Jan 01 0227 0.00034 293.02 0.00000 0.00154 I 02 Jan 01 0228 0.00034 293.02 0.00000 0.00153 02 Jan 01 0229 0.00034 293.02 0.00000 0.00152 02 Jan 01 0230 0.00034 293.02 0.00000 0.00151 I 02 Jan 01 0231 0.00033 293.02 0.00000 0.00150 02 Jan 01 0232 0.00033 293.02 0.00000 0.00149 02 Jan 01 0233 0.00033 293.02 0.00000 0.00148 I 02 Jan 01 0234 0.00033 293.02 0.00000 0.00147 02 Jan 01 0235 0.00033 293.02 0.00000 0.00146 02 Jan 01 0236 0.00032 293.02 0.00000 0.00145 I 02 Jan 01 0237 0.00032 293.02 0.00000 0.00144 02 Jan 01 0238 0.00032 293.02 0.00000 0.00143 02 Jan 01 0239 0.00032 293.02 0.00000 0.00143 I 02 Jan 01 0240 0.00032 293.02 0.00000 0.00142 02 Jan 01 0241 0.00031 293.02 0.00000 0.00141 02 Jan 01 0242 0.00031 293.02 0.00000 0.00140 I 02 Jan 01 0243 0.00031 293.02 0.00000 0.00139 02 Jan 01 0244 0.00031 293.02 0.00000 0.00138 02 Jan 01 0245 0.00031 293.02 0.00000 0.00137 02 Jan 01 0246 0.00030 293.02 0.00000 0.00137 I 02 Jan 01 0247 0.00030 293.02 0.00000 0.00136 02 Jan 01 0248 0 . 00030 293.02 0.00000 0'.00135 02 Jan 01 0249 0.00030 293.02 0.00000 0.0013~ I 02 Jan 01 0250 0.00030 293.02 0.00000 0.00133 02 Jan 01 0251 0.00030 293.02 0.00000 0.00132 02 Jan 01 0252 0 .00029 293.02 0.00000 0.00132 I 02 Jan 01 0253 0.00029 293.02 0.00000 0.00131 02 Jan 01 0254 0.00029 293.02 0.00000 0.00130 02 Jan 01 0255 0.00029 293.02 0.00000 0.00129 I 02 Jan 01 0256 0.00029 293.02 0.00000 0.00128 02 Jan 01 0257 0 .00028 293.02 0.00000 0.00128 02 Jan 01 0258 0.00028 293.02 0.00000 0.00127 I 02 Jan 01 0259 0.00028 293.02 0.00000 0.00126 02 Jan 01 0300 0.00028 293.02 0.00000 0.00125 02 Jan 01 0301 0.00028 293.02 0.00000 0.00124 Page: 32 I I Storage Elevation (cfs) (cfs) I Date Time Reservoir Reservoir Inflow Outflow I L-______________________________ (a_C_-_f_t_l _____________________ (f_t_) __________________ ------------------~------------~ 02 Jan 01 0302 0.00028 293.02 0.00000 0.00124 02 Jan 01 0303 0.00027 293.02 0.00000 0.00123 I 02 Jan 01 0304 0.00027 293.02 0.00000 0.00122 02 Jan 01 0305 0.00027 293.02 0.00000 0.00121 02 Jan 01 0306 0.00027 293.02 0.00000 0.00121 02 Jan 01 0307 0.00027 293.02 0.00000 0.00120 02 Jan 01 0308 0.00027 293.02 0.00000 0.00119 02 Jan 01 0309 0.00026 293.02 0.00000 0.00118 I 02 Jan 01 0310 0.00026 293.02 0.00000 0.00118 02 Jan 01 03U 0.00026 293.02 0.00000 0.00117 02 Jan 01 0312 0.00026 293.02 0.00000 0.00116 I 02 Jan 01 0313 0.00026 293.02 0.00000 0.00116 02 Jan 01 0314 0 .00026 293.02 0.00000 0.00115 02 Jan 01 0315 0.00025 293.02 0.00000 0.00114 I 02 Jan 01 0316 0.00025 293.02 0.00000 0.00113 02 Jan 01 0317 0.00025 293.02 0.00000 0.00113 02 Jan 01 0318 0.00025 293.02 0.00000 0.00112 I 02 Jan 01 0319 0.00025 293.02 0.00000 0.00111 02 Jan 01 0320 0.00025 293.02 0.00000 0.00111 02 Jan 01 0321 0.00025 293.02 0.00000 0.00110 I 02 Jan 01 0322 0.00024 293.02 0.00000 0.00109 02 Jan 01 0323 0.00024 293.02 0.00000 0.00109 02 Jan 01 0324 0.00024 293.02 0.00000 0.00108 I 02 Jan 01 0325 0.00024 293.02 0.00000 0.00107 02 Jan 01 0326 0.00024 293.02 0.00000 0.00107 02 Jan 01 0327 0.00024 293.02 0.00000 0.00106 I 02 Jan 01 0328 0.00024 293.02 0.00000 0.00105 02 Jan 01 0329 0.00023 293.02 0.00000 0.00105 02 Jan 01 0330 0.00023 293.02 0.00000 0.00104 I 02 Jan 01 0331 0.00023 293.02 0.00000 0.00103 02 Jan 01 0332 0.00023 293.02 0.00000 0.00103 02 Jan 01 0333 0.00023 293.02 0.00000 0.00102 I 02 Jan 01 0334 0.00023 293.02 0.00000 0.00102 02 Jan 01 0335 0.00023 293.02 0.00000 0.00101 02 Jan 01 0336 0.00022 293.02 0.00000 0.00100 02 Jan 01 0337 0.00022 293.02 0.00000 0.00100 I 02 Jan 01 0338 0.00022 293.02 0.00000 0.00099 02 Jan 01 0339 0.00022 293.02 0.00000 0.00098 02 Jan 01 0340 0.00022 293.02 0.00000 0.00098 I 02 Jan 01 0341 0.00022 293.01 0.00000 0.00097 02 Jan 01 0342 0.00022 293.01 0.00000 0.00097 02 Jan 01 0343 0.00021 293.01 0.00000 0.00096 I 02 Jan 01 0344 0.00021 293.01 0.00000 0.00095 02 Jan 01 0345 0.00021 293.01 0.00000 0.00095 02 Jan 01 0346 0.00021 293.01 0.00000 0.00094 I 02 Jan 01 0347 0.00021 293.01 0.00000 0.00094 02 Jan 01 0348 0.00021 293.01 0.00000 0.00093 02 Jan 01 0349 0.00021 293.01 0.00000 0.00093 I 02 Jan 01 0350 0.00021 293.01 0.00000 0.00092 02 Jan 01 0351 0.00020 293.,01 0.00000 0.00091 02 Jan 01 0352 0.00020 293.01 0.00000 0.00091 Page: 33 I I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 0353 0354 0355 0356 0357 0358 0359 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 Reservoir storage (ac-ft) 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00019 0.00019 O.OOOB 0.00019 0.00019 0.00019 0.00019 0.00019 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00016 0.00016 0.00016 0.00016 0.00016 0.00016 0.00016 0.00016 0.00016 0.00016 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 Reservoir Elevation (ft) 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 Page: 34 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00090 0.00090 0.00089 0.00089 0.00088 0.00088 0.00087 0.00086 0.00086 0.00085 0.00085 0.00084 0.00084 0.00083 0.00083 0.00082 0.00082 0.00081 0.00081 0.00080 0.00080 0.00079 0.00079 0.00078 0.00078 0.00077 0.00077 0.00076 0.00076 0.00076 0.00075 0.00075 0.00074 0.00074 0.00073 0.00073 0.00072 0.00072 0.00071 0.00071 . 0.00071 0.00070 0.00070 0.00069 0.00069 0.00068 0.0006!,! 0.00068 0.00067 0.00067 0.00066 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan ()1 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 Reservoir storage (ac-ft) 0.00015 0.00015 0.00015 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 Reservoir Elevation (ft) 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 Page: 35 'Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow {cfs) 0.00066 0.00066 0.00065 0.00065 0.00064 0.00064 0.00064 0.00063 0.00063 0.00062 0.00062 0.00062 0.00061 0.00061 0.00060 0.00060 0.00060 0.00059 0.00059 0.00059 0.00058 0.00058 0.00058 0.00057 0.00057 0.00056 0.00056 0.00056 0.00055 0.00055 0.00055 0.00054 0.00054 0.00054 0.00053 0.00053 0.00053 0.00052 0.00052 0.00052 0.00051 0.00051 0.00051 0.00051 0.00050 0.00050 0.00050 0.00049 0.00049 0.00049 0.00048 I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02. Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 Reservoir storage (ac-ft) 0.00011 0.00011 0.00011 0.00011 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 Reservoir Elevation (ft) 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 293.01 Page: 36 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 outflow (cfs) 0.00048 0.00048 0.00048 0.00047 0.00047 0.00047 0.00046 0.00046 0.00046 0.00046 0.00045 0.00045 0.00045 0.00044 0.00044 0.00044 0.00044 0.00043 0.00043 0.00043 0.00043 0.00042 0.00042 0.00042 0.00041 0.00041 0.00041 0.00041 0.00040 0.00040 0.00040 0.00040 0.00039 0.00039 0.00039 0.00039 0.00039 0.00038 0.00038 0.00038 0.00038 0.00037 0.00037 0.00037 0.00037 0.00036 0.00036 0.00036 0.00036 0.00036 0.00035 I I Date Time Reservoir Storage Reservoir Elevation Inflow (cfs) Outflow (cfs) IIL-______________________________ (a_c_-_f_t_) _____________________ (f_t_) __________________________________________________ ~ 02 Jan 01 0626 0.00008 293.01 0.00000 0.00035 02 Jan 01 0627 0.00008 293.01 0.00000 0.00035 I 02 Jan 01 0628 0.00008 293.01 0.00000 0.00035 02 Jan 01 0629 0.00008 293.01 0.00000 0.00034 02 Jan 01 0630 0.00008 293.01 0.00000 0.00034 02 Jan 01 0631 0.00008 293.01 0.00000 0.00034 02 Jan 01 0632 0.00008 293.01 0.00000 0.00034 II 02 Jan 01 0633 0.00008 293.01 0.00000 0.00034 02 Jan 01 0634 0.00007 293.01 0.00000 0.00033 02 Jan 01 0635 0.00007 293.01 0.00000 0.00033 I 02 Jan 01 0636 0.00007 293.01 0.00000 0.00033 02 Jan 01 0637 0.00007 293.01 0.00000 0.00033 02 Jan 01 0638 0.00007 293.01 0.00000 0.00033 II 02 Jan 01 0639 0.00007 293.00 0.00000 0.00032 02 Jan 01 0640 0.00007 293.00 0.00000 0.00032 02 Jan 01 0641 0.00007 293.00 0.00000 0.00032 02 Jan 01 0642 0.00007 293.00 0.00000 0.00032 II 02 Jan 01 0643 0.00007 293.00 0.00000 0.00032 02 Jan 01 0644 0.00007 293.00 0.00000 0.00031 02 Jan 01 0645 0.00007 293.00 0.00000 0.00031 II 02 Jan 01 0646 0.00007 293.00 0.00000 0.00031 02 Jan 01 0647 0.00007 293.00 0.00000 0.00031 02 Jan 01 0648 0.00007 293.00 0.00000 0.00031 I 02 Jan 01 0649 0.00007 293.00 0.00000 0.00030 02 Jan 01 0650 0.00007 293.00 0.00000 0.00030 02 Jan 01 0651 0.00007 293.00 0.00000 0.00030 II 02 Jan 01 0652 0.00007 293.00 0.00000 0.00030 02 Jan 01 0653 0.00007 293.00 0.00000 0.00030 02 Jan 01 0654 0.00007 293.00 0.00000 0.00030 I 02 Jan 01 0655 0.00007 293.00 0.00000 0.00029 02 Jan 01 0656 0.00007 293.00 0.00000 0.00029 02 Jan 01 0657 0.00006 293.00 0.00000 0.00029 II 02 Jan 01 0658 0.00006 293.00 0.00000 0.00029 02 Jan 01 0659 0.00006 293.00 0.00000 0.00029 02 Jan 01 0700 0.00006 293.00 0.00000 0.00028 I 02 Jan 01 0701 0.00006 293.00 0.00000 0.00028 02 Jan 01 0702 0.00006 293.00 0.00000 0.00028 02 Jan 01 0703 0.00006 293.00 0.00000 0.00028 I 02 Jan 01 0704 0.00006 293.00 0.00000 0.00028 02 Jan 01 0705 0.00006 293.00 0.00000 0.00028 02 Jan 01 0706 0.00006 293.00 0.00000 0.00027 02 Jan 01 0707 0.00006 293.00 0.00000 0.00027 I 02 Jan 01 0708 0.00006 293.00 0.00000 0.00027 02 Jan 01 0709 0.00006 293.00 0.00000 0.00027 02 Jan 01 0710 0.00006 293.00 0.00000 0.00027 I 02 Jan 01 0711 0.00006 293.00 0.00000 0.00027 02 Jan 01 0712 0.00006 293.00 0.00000 0.00026 02 Jan 01 0713 0.00006 293.00 0.00000 0.00026 II 02 Jan 01 0714 0.00006 293.00 0.00000 0.00026 02 Jan 01 0715 0.00006 293.00 0.00000 0.00026 02 Jan 01 0716 0.00006 293.00 0.00000 0.00026 Page:. 37 I I I Date Time Reservoir storage Reservoir Elevation Inflow (cfs) Outflow (cfs) IIL-______________________________ (a_c_-_f_t_) _____________________ (f_t_) __________________________________________________ ~ 02 Jan 01 0717 0.00006 293.00 0.00000 0.00026 02 Jan 01 0718 0.00006 293.00 0.00000 0.00025 I 02 Jan 01 0719 0.00006 293.00 0.00000 0.00025 02 Jan 01 0720 0.00006 293.00 0.00000 0.00025 02 Jan 01 0721 0.00006 293.00 0.00000 0.00025 02 Jan 01 0722 0.00006 293.00 0.00000 0.00025 02 Jan 01 0723 0.00006 293.00 0.00000 0.00025 I 02 Jan 01 0724 0.00005 293.00 0.00000 0.00025 02 Jan 01 0725 0.00005 293.00 0.00000 0.00024 02 Jan 01 0726 0.00005 293.00 0.00000 0.00024 II 02 Jan 01 0727 0.00005 293.00 0.00000 0.00024 02 Jan 01 0728 0.00005 293.00 0.00000 0.00024 02 Jan 01 0729 0.00005 293.00 0.00000 0.00024 I 02 Jan 01 0730 0.00005 293.00 0.00000 0.00024 02 Jan 01 0731 0.00005 293.00 0.00000 0.00024 02 Jan 01 0732 0.00005 293.00 0.00000 0.00023 02 Jan 01 0733 0.00005 293.00 0.00000 0.00023 I 02 Jan 01 0734 0.00005 293.00 0.00000 0.00023 02 Jan 01 0735 0.00005 293.00 0.00000 0.00023 02 Jan 01 0736 0.00005 293.00 0.00000 0.00023 I 02 Jan 01 0737 0.00005 293.00 0.00000 0.00023 02 Jan 01 0738 0.00005 293.00 0.00000 0.00023 02 Jan 01 0739 0.00005 293.00 0.00000 0.00022 I 02 Jan 01 0740 0.00005 293.00 0.00000 0.00022 02 Jan 01 0741 0.00005 293.00 0.00000 0.00022 02 Jan 01 0742 0.00005 293.00 0.00000 0.00022 I 02 Jan 01 0743 0.00005 293.00 0.00000 0.00022 02 Jan 01 0744 0.00005 293.00 0.00000 0.00022 02 Jan 01 0745 0.00005 293.00 0.00000 0.00022 I 02 Jan 01 0746 0.00005 293.00 0.00000 0.00021 02 Jan 01 0747 0.00005 293.00 0.00000 0.00021 02 Jan 01 0748 0.00005 293.00 0.00000 0.00021 I 02 Jan 01 0749 0.00005 293.00 0.00000 0.00021 02 Jan 01 0750 0.00005 293.00 0.00000 0.00021 02 Jan 01 0751 0.00005 293.00 0.00000 0.00021 I 02 Jan 01 0752 0.00005 293.00 0.00000 0.00021 02 Jan 01 0753 0.00005 293.00 0.00000 0.00021 02 Jan 01 0754 0.00005 293.00 0.00000 0.00020 I 02 Jan 01 0755 0.00005 293.00 0.00000 0.00020 02 Jan 01 0756 0.00004 293.00 0.00000 0.00020 02 Jan 01 0757 0.00004 293.00 0.00000 0.00020 I 02 Jan 01 0758 0.00004 293.00 0.00000 0.00020 02 Jan 01 0759 0.00004 293.00 0.00000 0.00020 02 Jan 01 0800 0.00004 293.00 0.00000 0.00020 02 Jan 01 0801 0.00004 293.00 0.00000 0.00020 I 02 Jan 01 0802 0.00004 293.00 0.00000 0.00019 02 Jan 01 0803 0.00004 293.00 0.00000 0.00019 02 Jan 01 0804 0.00004 293.00 0.00000 0.00019 I 02 Jan 01 0805 0.00004 293.00 0.00000 0.00019 02 Jan 01 0806 0.00004 293.00 0.00000 0.00019 02 Jan 01 0807 0.00004 293.00 0.00000 0.00019 I Page: 38 I I Date Time Reservoir Reservoir Inflow Outflow storage Elevation (cfs) (cfs) 1I~ ______________________________ (a_c_-_f_t_) _____________________ (f_t_) ____________________________________________ ~ ____ ~ 02 Jan 01 0808 0.00004 293.00 0.00000 0.00019 02 Jan 01 0809 0.00004 293.00 0.00000 0.00019 I 02 Jan 01 0810 0.00004 293.00 0.00000 0.00018 02 Jan 01 0811 0.00004 293.00 0.00000 0.00018 02 Jan 01 0812 0.00004 293.00 0.00000 0.00018 02 Jan 01 0813 0.00004 293.00 0.00000 0.00018 02 Jan 01 0814 0.00004 293.00 0.00000 0.000i8 II 02 Jan 01 0815 0.00004 293.00 0.00000 0.00018 02 Jan 01 0816 0.00004 293.00 0.00000 0.00018 02 Jan 01 0817 0.00004 293.00 0.00000 0 .. 00018 I 02 Jan 01 0818 0.00004 293.00 0.00000 0.00018 02 Jan 01 0819 0.00004 293.00 0.00000 0.00017 02 Jan 01 0820 0.00004 293.00 0.00000 0.00017 I 02 Jan 01 0821 0.00004 293.00 0.00000 0.00017 02 Jan 01 0822 0.00004 293.00 0.00000 0.00017 02 Jan 01 0823 0.00004 293.00 0.00000 0.00017 I 02 Jan 01 0824 0.00004 293.00 0.00000 0.00017 02 Jan 01 0825' 0.00004 293.00 0.00000 0.00017 02 Jan 01 0826 0.00004 293.00 0.00000 0.00017 I 02 Jan 01 0827 0.00004 293.00 0.00000 0.00017 02 Jan 01 0828 0.00004 293.00 0.00000 0.00017 02 Jan 01 0829 0.00004 293.00 0.00000 0.00016 02 Jan 01 0830 0.00004 293.00 0.00000 0.00016 I 02 Jan 01 0831 0.00004 293.00 0.00000 o. 000~6 02 Jan 01 0832 0.00004 293.00 0.00000 0 .. 00016 02 Jan 01 0833 0.00004 293.00 0.00000 0.00016 I 02 Jan 01 0834 0.00004 293.00 0.00000 0.00016 02 Jan 01 0835 0.00004 293.00 0.00000 0.00016 02 Jan 01 0836 0.00004 293.00 0.00000 0.00016 II 02 Jan 01 0837 0.00003 293.00 0.00000 0.00016 02 Jan 01 0838 0.00003 293.00 0.00000 0.00016 02 Jan 01 0839 0.00003 293.00 0.00000 0.00015 I 02 Jan 01 0840 0.00003 293.00 0.00000 0.00015 02 Jan 01 0841 0.00003 293.00 0.00000 0.00015 02 Jan 01 0842 0.00003 293.00 0.00000 0.00015 I 02 Jan 01 0843 0.00003 293.00 0.00000 0.00015 02 Jan 01 0844 0.00003 293.00 0.00000 0.00015 02 Jan 01 0845 0.00003 293.00 0.00000 0.00015. I 02 Jan 01 0846 0.00003 293.00 0.00000 0.00015 02 Jan 01 0847 0.00003 293.00 0.00000 0.00015 02 Jan 01 0848 0.00003 293.00 0.00000 0.00015 I 02 Jan 01 0849 0.00003 293.00 0.00000 0.00015 02 Jan 01 0850 0.00003 293.00 0.00000 0.00014 02 Jan 01 0851 0.00003 293.00 0.00000 0.00014 I 02 Jan 01 0852 0.00003 293.00 0.00000 0.00014 02 Jan 01 0853 0.00003 293.00 0.00000 0.00014 02 Jan 01 0854 0.00003 293.00 0.00000 0.00014· I 02 Jan 01 0855 0.00003 293.00 0.00000 0.00014 02 Jan 01 0856 0.00003 293.00 0.00000 0.00014 02 Jan 01 0857 0.00003 293.00 0.00000 0.00014 02 Jan 01 0858 0.00003 293.00 0.00000 0.00014 I Page: 39 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 0859 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 Reservoir Storage (ac-ft) 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 40 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00014 0.00014 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0 .. 00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.0001;2 0.00012 0.00012 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 Reservoir storage (ac-ft) 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 41 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00010 0.00010 0.00010 0.00010 0.00010 0,00010 0.00010 0.00010 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 "0.00008 0.00008 0.00008 0.00008 0.00008 0.00008" 0.00008 0.00008 0.00008 0.00008 0.00'008 0.00008 0.00008 0.00008 0.00007 0.00007 0.00007 0.00007 0.00007 I I Date Time Reservoir storage Reservoir Elevation Inflow (cfs) OUtflow (cfs) 1L-______________________________ <a_C_-_f_t_) _____________________ (f_t_> __________________________________________________ ~ 02 Jan 01 1041 0.00002 293.00 0.00000 0.00007 02 Jan 01 1042 0.00002 293.00 0.00000 0.00007 I 02 Jan 01 1043 0.00002 293.00 0.00000 0.00007 02 Jan 01 1044 0.00002 293.00 0.00000 0.00007 02 Jan 01 1045 0.00002 293.00 0.00000 0.00007 02 Jan 01 1046 0.00002 293.00 0.00000 0.00007 02 Jan 01 1047 0.00002 293.00 0.00000 0.00007 I 02 Jan 01 1048 0.00002 293.00 0.00000 0.00007 02 Jan 01 1049 0.00002 293.00 0.00000 0.00007 02 Jan 01 1050 0.00002 293.00 0.00000 0.00007 I 02 Jan 01 1051 0.00002 293.00 0.00000 0.00007 02 Jan 01 1052 0.00002 293.00 0.00000 0.00007 02 Jan 01 1053 0.00002 293.00 0.00000 0.00007 I 02 Jan 01 1054 0.00001 293.00 0.00000 0.00007 02 Jan 01 1055 0.00001 293.00 0.00000 0.00007 02 Jan 01 1056 0.00001 293.00 0.00000 0.00007 I 02 Jan 01 1057 0.00001 293.00 0.00000 0.00007 02 Jan 01 1058 0.00001 293.00 0.00000 0.00007 02 Jan 01 1059 0.00001 293.00 0.00000 0.00007 I 02 Jan 01 1100 0.00001 293.00 0.00000 0.00006 02 Jan 01 1101 0.00001 293.00 0.00000 0.00006 02 Jan 01 1102 0.00001 293.00 0.00000 0.00006 02 Jan 01 1103 0.00001 293.00 0.00000 0.00006 I 02 Jan 01 1104 0.00001 293.00 0.00000 0.00006 02 Jan 01 1105 0.00001 293.00 0.00000 0.00006 02 Jan 01 1106 0.00001 293.00 0.00000 0.00006 I 02 Jan 01 1107 0.00001 293.00 0.00000 0.00006 02 Jan 01 1108 0.00001 293.00 0.00000 0.00006 02 Jan 01 1109 0.00001 293.00 0.00000 0.00006 I 02 Jan 01 1110 0.00001 293.00 0.00000 0.00006 02 Jan 01 1111 0.00001 293.00 0.00000 0.00006 02 Jan 01 1112 0.00001 293.00 0.00000 0.00006 I 02 Jan 01 1113 0.00001 293.00 0.00000 0.00006 02 Jan 01 1114 0.00001 293.00 0.00000 0.00006 02 Jan 01 1115 0.00001 293.00 0.00000 0.00006 I 02 Jan 01 1116 0.00001 293.00 0.00000 0.00006 02 Jan 01 1117 0.00001 293.00 0.00000 0.00006 02 Jan 01 1118 0.00001 293.00 0.00000 0.00006 I 02 Jan 01 1119 0.00001 293.00 0.00000 0.00006 02 Jan 01 1120 0.00001 293.00 0.00000 0.00006 02 Jan 01 1121 0.00001 293.00 0.00000 0.00006 I 02 Jan 01 1122 0.00001 293.00 0.00000 0.00006 02 Jan 01 1123 0.00001 293.00 0.00000 0.00006 02 Jan 01 1124 0.00001 293.00 0.00000 0.00006 02 Jan 01 1125 0.00001 293.00 0.00000 0.00006 I 02 Jan 01 1126 0.00001 293.00 0.00000 0.00006 02 Jan 01 1127 0.00001 293.00 0.00000 0.00005 I 02 Jan 01 1128 0.00001 293.00 0.000,00 0.00005 02 Jan 01 1129 0.00001 293.00 0.00000 0.00005 02 Jan 01 1130 0.00001 293.00 0.00000 0.00005 02 Jan 01 1131 0.00001 293.00 0.00000 0.00005 I Page: 42 I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 Reservoir Storage (ac-ft) 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 43 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.000'04 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 I I I I I I I I I I il I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 Reservoir Storage (ac-ft) 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 Reservoir El.evation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 44 Infl.ow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outfl.ow (cfs) 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003 0.00003 0.00-003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.-00003 0.00003 0.00003 0.00003 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1400 1401 1402 1403 1404 Reservoir storage (ae-ft) 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 45 Inflow (efs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000' 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (efs) 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.·00002 0.00002 0.00002 0.00002 0.00002 0.<)0002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 I I I I I I I I I I I I I I I I I II I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 1405 1406 1407 1408 1409 1410 1411 1412 141.3 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 Reservoir storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 46 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 OUtflow (cfs) 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 1456 1457 1458 1459 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 Reservoir storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 47 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0,.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 ,0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 Reservoir Storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir El.evation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 48 Infl.ow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 OUtfl.ow (cfs) 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.000'01 0.00001 0.00001 0.00001 0.00001 0.00001, 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.0000;1. 0.00001 0.00001 0.00001 0.00001 0.00001 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 Reservoir Storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 49 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 . Outflow (cfs) 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.0000:1, 0.00001 0.00001 0.00001 0.0.0001 0.00001 0.00001 . 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 Reservoir storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 50 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.000-00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 T:ime 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 Reservo:ir Storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservo:ir Elevat:ion (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 51 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00000 0.'00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 ,02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 2000 2001 Reservoir Storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 52 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 Reservoir Storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 53 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 OUtflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0'.00000 0.00000 0.00000 0.00000 0.00000 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 2053 2054 2055 2056 2057 2058 2059 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 Reservoir Storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 54 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00600 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000 I I I I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 Reservoir Storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 55 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 OUtflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 I~--------------------~ Inflow Outflow (cfs) I I I I I I I I I I I I I I I I Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 Reservoir storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Page: 56 (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 I~--------------------~ I I I I I I I I I I I I I I I I I 1- Date 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01_ 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 02 Jan 01 Time 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2400 Reservoir Storage (ac-ft) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Reservoir Elevation Page: 57 (ft) 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 293.00 Inflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Outflow (cfs) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 I I I I I I I I I I I I. I I II I -' :§ z :li ·1 -' (3 Z :t: f:rl ;;.. (Jl I C> z ~ ~ :.: I Fiberglass Oil Baffle -",--.. ---------- LEFT-HANDED UNIT SHOWN HERE ct Separation Screen I & Sump Access 'I <t MH Riser Stack bCQ9 ~ ~ Top Cop ~ ___________ Appro,. Wt. d=:). 3550 # , . ___ 5'(6 Manhole Riser Sections ~ Approx. Wt. = 1950 # (1.5 ft. riser section) 2600 # (2.0 ft. riser section) 3250 # (2.5 ft. riser section) 3900 # (3.0 ft. riser section) Fiberglass Inlet /. Separdtion Chamber .Component / App,o,. wt. = .. 3900 # (Typ.) Inlet Pipe / (~------"---.. --- SEPARATION CHAMBER COMPONENT Approx. Wt. = 1950 # (1.5 ft. riser section) 2600 # (2.0 ft. riser section) 3250 # (2.5 ft. riser section) 3900 # (3.0 ft. riser section) Separation Slab, ~ Approx. Wt. = 21 qO # .. Sump, & Base ______ Approx, Wt. = 4800 # SECTION SIZES MAY VARY ACCORDING TO LOCAL PRECASTERS SPECIFICATIONS. DATE CD S MODEL PMSU20 _15 I-DRA-W-N _0_1 /_1_0/_02~---"-'+~SH=EEf~ TYPICAL ASSEMBLY APPROV. J.S.F. R. HOWARD 1 I I I I I I I I I I I I I I I I I I I 60" ID MH, (6'-0" OD) FIBERGLASS INLET AND CYLINDER FLOW PIPE INLET NOTE: PLAN VIEW 24"¢ MH COVER AND FRAME PIPE OUTLET 24"¢ MH COVER AND FRAME THE INTERNAL COMPONENTS ARE SHOWN IN THE RIGHT-HAND CONFIGURATION-THESE COMPONENTS MAY BE FURNISHED IN THE MIRROR IMAGE TO THAT SHOWN (LEFT-HAND CONFIGURATION). CDS MODEL PMSU20_15, 0.7 CFS CAPACITY STORM WATER TREATMENT UNIT PROJECT NAME CITY, STATE DRAWN: W. LORSCHEIDER APPROV. 16360 S. MONTEREY RD. SUITE 250 MORGAN HILL, CA. 95037 TEL: (888) 535-7559 seA' 1 "=2' SHEET' 2 I I I I I I I I I I I I I I I I I. I I 60" ID MH, (6'-0" OD) SIDE AND BOTIOM FLANGES FASTENED TO MH wi 316SS EXPANSION ANCHORS, (SIX . MINIMUM, SUPPLIED BY CDS) PIPE INLET SECTION B-B CENTER OF MH r---RISER SECTIONS CENTER OF SCREEN, r---21 ,,¢ SUMP OPENING CORES PROVIDED BY PRECASTER ; (SEE NOTE #3) MH PIPE OUTLET ATIACH SCREEN TO SLAB USING 4 ANCHOR BOLTS, (SUPPLIED BY CDS) OIL BAFFLE (FASTEN TO MH WI 316SS ANCHORS, SUPPLIED BY CDS) NOTES: 25"¢ SEPARATION SCREEN, SEE NOTE #2 '--__ ,316 SS SHEAR PLATE, DETAIL ON SHEET 4. 1. THE INTERNAL COMPONENTS ARE SHOWN IN THE RIGHT-HAND CONFIGURATION. 2. FOR PROPER INSTALLATION. GREEN FLANGE: ON SCREEN FACES UP; 'RED FLANGE FACES DOWN & FASTENS TO SEPARATION SLAB. 3. OVERSIZED CORES ARE PROVIDED TO ACCOUNT FOR DIFFERENT PIPEWALL THICKNESSES-ENSURE SUFFICIENT EXCAVATION DEPTH TO ATIAIN (EXTERNAL) SUMP INVERT ELEVATION (SEE SHEET 4). CDS MODEL PMSU20_15, 0.7 CFS CAPACITY STORM WATER TREATMENT UNIT PROJECT NAME CITY, STATE JOS# DATE: DRAWN: W. LORSCHEIDER APPROV. 16360 S. MONTEREY RD. SUITE 250 MORGAN HILL, CA. 95037 TEL: (888) 535-7559 seAL 1"=2' SHEET 3 I I I I I I I I I I I I I I I I I I I FINISHED GRADE EL= X.XX'± SECTION A-A ELEVATION VIEW <t CDS MH 24"¢ MH COVER AND FRAME, 1YP. Of. TWO <t SEPARATION CHAMBER GRADE RINGS AND/OR GROUT AS NEEDED I I FIBERGLASS SEPARATION CYLINDER & INLET .... " /"----- ,+--.---4--.1----- '~VARIES 1. ... ~ -r'1 /,'.. . r /L _ INV EL=X.XX' ENSURE CORRECT DEPTH BELOW PIPE ~RT FOR PROPER UNIT INSTALLATION, (SEE NOTE #1). .." ", ~ rrl' ~ .c:· ' ~ ~.: L 1"-2" TYPICAL, t SEE NOTE #1 SUMP EXTERIOR INV., EL=X.XX' SUMP 14" '" : . '';' , INJERNAL SEPARATION SLAB 1--1---5'-0" ---~ 1------6'-0" -----I NOTES: 1. OVERSIZED CORES ARE PROVIDED TO ACCOUNT FOR DIFFERENT PIPEWALL THICKNESSES-ENSURE SUFFICIENT EXCAVATION DEPTH TO ATTAIN INDICATED (EXTERNAL) SUMP INVERT ELEVATION. 2. FOR PROPER INSTALLATION. GREEN FLANGE ON SCREEN FACES UP & FASTENS TO FIBERGLASS CYLINDER FLANGE; RED FLANGE FASTENS TO SEPARATION SLAB WITH PROVIDED ANCHOR BOLTS. CDS MODEL PMSU20~15, 0.7 CFS CAPACITY STORM WATER TREATMENT UNIT PROJECT NAME CITY, STATE DRAWN: W. LORSCHEIDER APPROV. _, 16360 S. MONTEREY RD. SUITE 250 MORGAN HILL. CA. 95037 TEL: (888)535-7559 seA 1:30 SHEET 4 I I I I I I I I I I I I I I "I I I I <t RISER SECTIONS ® <t SEPARATION I SECTIONS --~~~~~~~~~~===.~~- 11 GA.. 316 STAINLESS STEEL SEPARATION PLATE-(OPTIONAL) (FOR USE WITH SORBENTS-lYP.) 9-24" OD NOT TO SCALE NOTES: @ 5'-0" F1BEJIASS SEPARATION CYUNDER &: INLET ® I. 6'-0" VARIES ~.:" IJl l~1 5'-4"± 14", DEPTH BELOW SEE PIPE INVERT NOTE ~ 0 1 " 1. APPLY BUTYL MASTIC AND/OR GROUT TO SEAL JOINTS OF MANHOLE STRUCTURE. APPLY LOAD TO MASTIC S~L IN JOINTS OF MH SECTIONS TO COMPRESS SEALANT IF NECESSARY. UNIT MUST BE WATER TIGHT, HOLDING WATER UP TO FLOWLINE INVERT (MINIMUM). " " 2. IF SEPARATION SLAB IS NON-INTEGRAL TO THE SEPARATION SECTION OF THE UNIT, SET AND VERIFY TOP ELEVATION BEFORE PLACING MORE PRECAST COMPONENTS OR BACKFILLING. ENSURE 24" FROM TOP OF SEPARATION SLAB TO PIPE INVERT. 3. GROUT PIPE CONNECTIONS TO SEAL JOINT. " 4. SET BOTTOM OF OIL BAFFLE 14" ABOVE SEPARATION SLAB FLOOR; DRILL AND INSERT A MINIMUM OF TEN (10) ~" x 3 ~" SS EXPANSION BOLTS @ 12" O.C. EQUALLY SPACED THRU TOP "AND SIDE BAFFLE FLANGES TO SECURE TO RISER WALL; FILL ANY GAPS WITH AN APPROPRIATE SEALANT MAT'L.-(HARDWARE SUPPLIED BY CDS). 5. FASTEN FIBERGLASS CYLINDER/INLET TO SCREEN ASSEMBLY USING FOUR (4) SETS OF ~" x 1 ~"SS HEX HEAD BOLTS W/ NUTS AND WASHERS; IN THE LEFT-HANDED CONFIGURATION THE "RED" COLORED FLANGE SHOULD FACE UP; IN THE RIGHT-HANDED CONFIGURATION, THE "GREEN" COLORED FLANGE SHOULD FACE UP-(HARDWARE SUPPLIED BY CDS TECHNOLOGIES). 6. CENTER SCREEN ASSEMBLY OVER SUMP OPENING AND POSITION FIBERGLASS INLET AGAINST RISER WALL W/ INLET PIPE REASONABLY CENTERED WITHIN THE CDS INLET O~IFICE; FASTEN SCREEN TO SEPARATION SLAB USING FOUR (4) ~" x 3 i" SS EXPANSION BOLTS-(HARDWARE SUPPLIED BY CDS TECHNOLOGIES); IF STAiNLESS STEEL SEPARATION PLATE (SEE INSET) IS PROVIDED, PLACE PLATE WITHIN THE SCREEN CYLINDER AND OVER THE 21"¢ SUMP ACCESS HOLE (NO FASTENING REQUIRED). 1. DRILL & INSERT A MINIMUM OF SIX" (6) ~" x 3 ~" SS EXPANSION BOLTS EQUALLY SPACED TO SECURE FIBERGLASS CDS INLET TO RISER WALL; FILL ANY GAPS BETWEEN FLANGE AND MH W/ AN APPROPRIATE SEALANT MATERIAL IF NECESSARY -(HARDWARE SUPPLIED BY CDS TECHNOLOGIES). 8. GRADE RINGS AND/OR GROUT TO MATCH FINISHED GRADE ELEVATION AS NEEDED. CDS MODEL PMSU20_15 CONSTRUCTION NOTES JOB# DATE: DRAWN: APPROV. 5/8/02 J.S.F. 16360 S. MONTEREY RD. SUITE 250 MORGAN HILL, CA. 95037 TEL: (888) 535-7559 SCA N.T.S. SHEET 5 I 'i" ;:1 I I ;a I : s I '~ CDS Technologies, lpc., CDS TECHNOLOGY Continuous Deflective Separation (CDS®) is an innovative technology th~t is revolutionizing liquidsisolids separation in storm water and combined sewer overnow inciusuy. lne tecImology accomplishes high efficiency separation of settleable particulate matter and virtually 100 percent captu,re of floatable material. Its application is ideal to any situation where removal of ~oss pollutants is desITed. The primary features of the CDS® system are: EFFECTIVE: capturing more than 95% of solid pollutants NON-BLOCKING: unique design takes advantage of indirectJiltration and propeJ;"1y proportioned hydraulic forces that virtually makes the unit unblockable. NON-MECHANICAL: the CDS® unit has no moving parts and requires no supporting mechanical package to affect solid separation from stormwater flows. . LOW MAINTENANCE COSTS: because the system has no moving p,art;s and is constructed of durable materials. + COMPACT AND FLEXIBLE: design and size flexibility enable units embodying the CDS® technology to be used in a variety of configurations and in limited spaces. mGR FLOW EFFECTIVENESS: the tecb:O.ology remains highly effective across a broad spectrum of flow ranges, with hydraulic loadlngs exceeding 80 gallons per square foot of plan surface area ASSURED POLLUTANT CAPTURE: all materials captured are retained during high flow conditions. • SAFE AND EASY POLLUTANT REMOVAL: extraction methods allow safe and easy removal ofpol1utants without manual handling. .. COST EFFECTIVE: total costs are lower per mass material capfured compared to exi~ting available alternatives. CDS® offers small separation units to process flows of 1 cubic foot per second (cfs) or less. The smallest unit is ideal for small drainage areas such' as parking lots. CDS® offers a range of premanufactured units sized to process typical drainage flows from new arid existing urban developments. CDS® also offers design services for larger cast in place units to meet the treatment requirements of more significant runoff flows generated by larger drainage areas. To date, CDS® can design units capable of processing up to 300cfs. CDS® units are available in precast reinforced concrete modules for all applications processing. flows up to 64 cubic feet per second. For applications requiring larger flow processing, units are designed complete with construction specifications for cast in place construction. Units can be readily adapted to pipelines, box culverts, and open channels with varying geometric shapes. I ~ .. _-..... ,]I • \ I~ I;~ . ' CDS Technologies, Inc., CDS Technologies® includes mUltiple "Manhole" units in its Model lineup. These are uniquely designed for in line use on small pipelines to 36" in diameter, where desired process flows are 6 cfs or less. The CDS® technology including its high flow bypass weir is neatly packaged inside of standard manhole stacks from 4' to 8' diameter. These particular units have been specially con£gured to allow an effective oil baffle system to be installed increasing the capacity to hold greater quantities of free oil should the need arise. For piping larger than 36", CDS Tecbnologies® recomm~nds using a standard be~ide line unit "\vifu a diversion weir box designed specifically to accommodate the larger pipe. ' .HYDROLOGIC ANALYSIS In storm water applications, an analysis of the catchment in terms of its size, topography and land use will provide information for detemrining the flow to be expected for vario1lS return penods. Based on the pollutograph (if known), a CDS® unit can be d~signed for the flow that mobilizes the gross pollution in the catchment. Since there are variations in catchment response due to region, land use and topography, CDS Tecbnologies® recommends the selection of a design flow for treatment· having a' return.period between.three mOI!~s .. and· one year. Typically, it is not necessary to design cDS® units to process a conveyance system's design: flow in order to achieve a very high level of pollutant removal. An effective design recogIuzes that the vast majority of pollutants are mobilized :in flows that are well below the "design capacity" for the conveyance facility. Field evaluations to determine pollutant mobilization 'flows' in combined sewer overflows have determined that the pollutants are released and mobilized with flows having return periods of 3 to 6 months. The majority of pollutants in storm water are mobilized:in s?Jillar events . It "is well recognized that even though the three-month to one-year event is well below the average system's capacity, the actual volume that is generated in the catchment from events smaller than these is about 95% of the total annual volume generated by the catchment. It is worth noting that a VERY small quantity of solid pollution actually travels in these higher flows, therefore, from a practical perspective, designing for the three month to one year event is virtually designing to treat nearly 100% of the runoff that will be transport:ing pollution. HYDRAULIC DESIGN Every CDS® installation requires a detailed hydraulic analysis to ensure the final installation will. properly perform to effect optimum solids separation without blocking the separation screen. Proper design requires knowledge of the conveyance system, and i~ perfonnance through its design flow range and the hydraulic perfonnance of the selected CDS® unit through the same flow range. After the CDS® design flow is determined, the appropriate standcq-d model can be selected from TABLE A on Page 6. Each model on Page 6 identifies a reference PAGE on which additional, detailed information. about the selected model is available. The design flow is diverted into the CDS® unit by constructing a diversion weir across the flo';"" path of the conveyance facility. The' approximate height of the weir can be established by determining the hydraulic grade line (HGLdls) in the system :immediately doWnstream. of the CDS® unit and adding the CDS HEAD LOSS (beds) identified on the PAGE referenced for the unit selected. The sum of the above represents the HGLuls required at the entrance to the diversion weir. ? : .1; 11£1 CDS Technologies, Inc., HGLuls= HGLdls + beds The height of the CDS diversion weir can then be determined to be: Maximum Water Surface or HGL Upstream ofthe CDS Installation The head loss identified in the Tables on Pages 9 -13 represents the ideal hydraulic installation .. The head required to operate a CDS® unit at the CDS® design flow does not control the maximum rise' in water surface upstream of the CDS® unit. At the CDS® design flow; the HGL .is at the top of the diversion weir. For most installations this is well below finished grade. The maximum increase in water surface occurs when the conveyance system reaches its design flow. When this flow occurs, the actual flow through the CDS® may be altered, with the balance of flow passing over the diversion weir. Based on laboratory measurements and analysis, it has been established that the actual head loss under system design flow will not exceed 1.3 x y2/2g in a well-designed diversion structure, where V is the design flow velocity in the syst~m when the pipe is flowing. To assure passage of system design flow waugh the weir area, the unobstructed area provided above the weir must be equal to or greater than the cross sectional area for the pipe1.i::iJ.e entering the weir box. In recognition of the potential that the CDS® may :fill up with captured material and lose its conveyance capacity, the hydraulic evalua~on must include analysis under this scenario to understand the potential for flooding upstream. The effects of the diversion weir primarily influence the rise in the water surface under the conveyance system design flow. The actual effect can be controlled by properly desigrring the weir length and clear height above the weir to take advantage of the potential energy that ca:t:J. be developed in the system without inducing flooding upstream.. CDS Technologies recommends that the head loss across the weir be limited to no more than 1.4 times the CDS® unit headloss at its design flow to ensure that it continues to operate properly during the conveyance system's peak flows. ' An example of the hydraulic design process is provided under Appendix B. STRUCTURAL DESIGN All CDS® units are designed to withstand equivalent fluid pressures that the unit may experience during its life. The water table at the installation site should be known, or a conservative estimate will be made on the maximum expected. Units are analyzed assuming that it is empty and full buoyant force is acting on it. The foundation material needs to be adequate to support the structure's weight without allowing differential settlement. The materials for manufacture of precast units are fully described in Appendix 0 "Product & Installation Specifications" of this Manual'. All cast in place concrete designs are based on using structural concrete'with minimum ultimate strength of 4,000 pounds per square inch (psi), with steel r.einforcement having a minimum ultimate yield strength of 60(1 03) psi. Concrete and steel reinforcement are as noted in Appendix D, unless otherwise specified for site-specific conditions. 3 -, I ~.:. I ·, 1,;1' .,. ~ I ·· I~ I~ I~ I~ I~ I~ I ~. ~' I~ ~ I ~ I ~ I. ~ 1 ~ I~ I ~~ ~ <= I~ CDS Tecbnologies, Inc., CDS MODEL DESIGNATION CDS@' units are identified by their process screen diameter. . They are also identified by its 3.pplic3.ti0n :vith "SW" designo:oting "~trrrm Vl::!ter", "SlP' d~5:!~:::~""g ".st~~ TJ:ci!" "CS" designating "Combined Sewer". Model families are designated by the letter "P", PM, or "C", designating, "Precast", Precast Manhole, or "Cast" in place, along with the application letters and a pair of number designations such as PSWXX_XX. The first XX represents the 'separation screen diameter in feet; the second _XX designates the height of the separation screen in feet (see TABLE A on page 7 for further' description of unit designations). General manufacturing details and weights' are included for the various models under Appendix A. CDSV~LECO~ONENTS The variable components in a CDS@ unit withln a model family are the' screen height, the screen aperture (opening), sump diameter and depth, and twe of cover. Screen Height The screen height is important within a model family because it controls the design flow that can pass through the unit without clogging the screen. In-general, screen heights can vary between 60 to 150 percent of the screen diameter. Screen Aperture The standard screen for storm water applications is 4700 microns (.185 inches) for coarse screening. A 2400 micron (0.095) is available where there is a need to separate finer sediments than those removed by the 4700 micron screen. . The screen aperture (opening) is important because it sets the capture parameter for settleable pollutants. In general, a CDS® unit with a 4700 micron screen will capture 93% of all particles as small as 1/3 the short dimension of the screen opening. This has been determined through extensive pilot work. performed by Tony Wong, PhD, Monash University. Tony Wong's technical paper, fully describing the hydraulic basis on which CDS® achieve effective solid separation, is readily available. Sump The sump is another variable that can be adjusted for site-specific conditions and utility preference. Each Model Family is equipped with a standard sump. However, the diameter and depth can be adjusted to meet site-specific requirements. CDS® Covers Covers can be provided with each CDS® unit. A pedestrian traffic cover is standard with ~ach unit. The cover is designed with an inspection/cleanout hatch. The entire cover may be removed to facilitate cleanout. . If required, a traffic bearing cover will be designed, fabricated and furnished. If a traffic, bearing cover is desired, the utility should so advise CDS Tecbnologies® to include it in the quote. 4 I I~ """ I~ 1 I~ I- CDS Technologies, Inc., CDS@ SU:rvrP CLEAN OUT Sump c1eanout is a critical component of a successful CDS@ operation. The sump is the depository for all settleable pollutants captured by CDS®. The ~ethods for maintenance and cleanout are generally specific, dependent on the preferences of a given agency. The sta:J;ldard model is provided with a standard sump that can be cleaned by methods selected by the utility. At the utility's discretion, a unit can be cleaned using a vacuum truck or a small clamshell bucket, or a basket can be provided to :fit a standard sump. If the utility chooses to use a basket, "it should advise CDS@ Technologies so it can be included in a quote. CDS@MAINTENANCE CDS@ maintenance can be site and drainage area specific. The unit should be inspected periodically tp assure its condition to handle anticipated runoff. Ifpollutant loadings are known, then a preventive maintenance schedule can be developed based on runoff volumes processed. Unfortunately, that is seldom the case. CDS Technologies® recommends the following for Storm Water Applications: New Installation -Check the condition of the unit after every runoff event for"the first 30 days. Checldng includes a visual inspection to" ascertain that the unit is functioning properly and measuring the amount of deposition that has occurred in the unit. This can be done with a "dip stick" that is calibrated so the depth of deposition can be tracked. Based on the behavior of the unit relative to storm events, inspections can be scheduled on projections using storm events vs. pqllutant buildup. Oneoing Operation -During the wet season, the tmit should be inspected at least once every thirty days. The floatables should be removed and the sump cleaned when the sump is above 85% full. At .least once a year, the unit should be pumped down and the scre~n, carefully inspected for damage and to ensure that it is properly fastened. Ideally, the screen should be power washed for the inspection. Maintenance Cycle -The standard maintenance cycle for a CDS device is a minimum of once a year. Maintenance may be required more frequently depending on the pollutant load in the drainage. However, if the actual pollutant load is properly estimated, the sump capacity can be . adjusted to hold an annual pollutant load. The CDS® unit is a confined space. Properly trained people equipped with required safety gear will be required to enter the unit to perform the detailed inspection. " I I~ TABLE A MODEL PERFORMA,NCE CAPABILITY MODEL DESIGN FLOW RATE REFERENCE PAGE Ii' """: NUMBER I CFS MGD M 3/sec r.~'-------~I------~-----r~--~--~----~ PMIU20 15 0.7 0.5 .02 I'~: PMSU20_15_4 'I 0.7 ~ I' 0.5 PMSU20_15 I 07 0.5 PMSU20_20 II 1 1 ·.'}6-_ ,.1 1 0.7 I .02 'II I I .02 I~ I~ I~ I~ I~ I~ , 41 Z E o PMSU20_25 1.0 ':~~~~ !~ ·1·· ~f· "~=I ;:~ I '~~~~-~~4~: L .4:~~~~]· 3.0 6.0 3.9 PSWC30_30 I 3.0 1.9 -PSW940_40 . ~6.0'" ..... ,.. 3.9 PSWC56_40 PSWC56_53 -.... -.~.. .. PSWCS6_68 PSW30_30 PSW50_42 PSW50_50 PSW70_70 PSW100_60 P$W100_80 PSW100_100 CSW150_134 CSW200_164 CSW240_160 I :. 'I 9.0 I 5.8 I 14 "'1 9.0 19 -l 12 ~~Q' : '~]. ,'.: 9.0 5.8 11 7.1 26 17 30 19 50 32 64 41 '148 95 270 174 300 194 .03 I ·1 .~ ~~ ... '1 l~ ~j~~:_ J '\ I I .17 .31 .74 .85 1.4 1.8 4.2 7.6 8.5 9 10 11 12 Conversion: 1cfs ~ 0.0283 cubic meters per second, or 1 M /sec ~ 35.31cfs , 1 cfs ~ 0.64512 MGD or 1 MGD ~'1.55 cfs MODEL DESIGNATIONS PMSU= Precast Manhole storm Water Unit -----, PSWC= Precast Storm Water Concentric PSW = Precast Storm Water CSW = Cast in Place Storm Water Tenths of a I Screen Diam~ter I I Screen Height ......... ,....., X X _ X X (L or .R)* Feet J 1 I L Tenths of a Foot Foot :J Feet . * L <Jr R designates the location of the CDS when baking down'stream, (L)eft represents being placed on the Left side of the storr:ndrain, (R)ight is placed on the right side. I Il I ~:::~-':;·/i· GENERAL DESCRIPTION OF UNIT I ~ I ~ I ~ I ~. I ~ I 2 I ~ .' I. n i't I ~ I d! I lU: I 2J. I' lJ. I :1 I":; I II h. HIGH FLOW . BYPASS ~ CONVEYANCE CONDUIT SEPARATION SCREEN-- 1-<1---WEIR BOX:----.J SEPARATION / CHAMBER~ r-INLET / DIVERSION WEIR CONVEYANCE CONDUIT' . OUTLET CONTROL WEIR CDS OUTLET PLAN VIEW (RIGHT HAND UNIT) 7 ..--------------------------~-~~-~~ I Id I;~ GENERAL DESCRIPTION OF UNIT 1~1 1~1 I~ I t~ 151 I~, I~ ! I~, , I~ ! I~ I' ~. I~' r ~ I~ ~' = I~', .. t!:! Ii, 1J1%.o1' ~ " INLET DIVERSION WEIR EXISTING GRADE~-~ AC~ESS COVER CONVEYANCE CONDUIT ~~~~ CONVEYANCE ~~-~~~Pl:==::::::::::1~~~~~~~p~' ~ CONDUIT ELEVATION a I I I~ I ..I t~· I I ~ , I~ I~ I ~ I E! I ~ I !illll b'~ " " I ;r~ = I ~ = I 'I @ i ~ I ..... I I' ~ I I !fS! "'" I ~ =.J I I mi -=-J I I EE -=--" I ! ~;;! =-t PREC'AST MANHOLE MOO'ELS PROCESSES FLOWS 0.75 ! ,I I VARIES TO 6.5 CFS ' f~ \. .r .:.:: ~ t'---~--2 -:-.: \. ~ ""\. J f"' "'"\ I I I I"" I ~-----#A'--------~ A -FOOT PRINT PIAMETER D -DEPTH BELOW PIPE INVERT. VARIES **TREATMENT ***DESIGN DEPTH HEAD LOSS BELOW FOOT PRECAST DESIGN PRINT @ DESIGN SCREEN PIPE MODEL FLOW RATE TREATMENT DIA./HT. INVERT DIAMETER " NUMBER FLOW RAT~ -"On uA n cfs MGD m 3/sec ft. m ft. ft. 'ft. PMIU20_15 0.7 0.5 0.02 0,45 0.11 2/1.5 4.2 4.8 PMSU20_15_4 0.7 0.5 0.02 0.35 0.1-1 2/1.5 3.5 - 4 4.8 PMSU20_15 0.7 0.5 0.02 0.35 0.11 2/l.5 5.1 6.0 PMSU20_20 1.1 0.7 0.03 0,48 0.15 2/2.0 5.7 6.0 -PMSU20_25 1.6 1.0 0.05 0.62 0.19, 2/2.5 6'.0 6.0 PMSU30_20 2.0 1.3 0.06 0.65 0.20 3/2.0' 6.2 7.2 PMSU30_30 3.0 1.9 0.08 0.70 0.21 3/2.8 7.2 7.2 PMSU40_30 4.5 3.0 0.13 0.85 0.26 4/3.0 8.6 '9.5 PMSU40_40 6.0 3.9 0.17 0.88 0.27 4/4.0 9.6 9.5 .*Starid,?rd' screen' opening is 4700 microns (.185 in.). Screens also available in 2400 microns (.095 in.). **This is the minimum flow that will receive treatment before bypass is allowed. These precast manhole units are capable, of by passing the Q25 year event. CDS Engineers are readi'ly available to provide hydraulic consultations on all applications. ***The headlass during a bypass event is a function of the v,eloc!ty head. The typical coefficient of headloss "K CDS" ranges from 1.3 to 2.5 H = X' (r L J~[1.3JV1L -"COl: -CD: Ii., 25 /1.1 Q I I I I I I I I 1 I I I I, I I I I I Storm Water Treatment Performance Review -Revised June 2004 TREATMENT OF STORM WATER RUNOFF Structural Pollution Control Measures SUMMARY OVERVIEW The following is an overview of the enclosed information about CDS Technologies' Continuous Deflective Separation (CDS), non-blocking screening process. This packet will enable storm water managers to evaluate CDS's storm water treatment on an objective basis using third party field performance evaluations and laboratory test results of this innovative Best Management Practices (BMP) Structural Storm Water Quality Control Measure. In compliance with the objectives of Phase II Storm Water Quality Regulations or EPA's Combined Sewer Overflow Control Policy, CDS Technologies provides a Best Available Technology un-matched in its effectiveness and simplicity. A separate informational packet is available on the application of CDS's nQn-plocking screening technology to treat Combined Sewer Overflows (CSOs) and Sanitary Sewer Overflows (SSOs). The CDS technology features a patented non-blocking, indirect screening technique developed in Australia in 1992 to remove pollutants from storm water runoff. The technology was introduced in the United States in 1996 and has gained rapid acceptance. This technology successfully captures total suspended solids (ISS), sediments, oils and greases and trash and debris (including floatables, neutrally buoyant. and negatively buoyant debris) under very high flow rate conditions. Continuous Deflective Separation (CDS) is an innovative technology that separates solids from liquids and is an accepted Best Management Practice (BMP) well suited to treat a large range of storm water flows and conditions. The components of a CDS unit consist of a sump, separation chamber (which contains a stationary screen cylinder), inlet/outlet and diversion Weir. Treatment flows are diverted into the CDS separation chamber through either the installation ofa diversion' structure situated within the alignment of the storm drain/channel ("Inline Unitsn), or immediately off the storm drain/channel alignment (=Offline Units~). The CDS Technology employs multiple primary clarification treatment processes to remove pollutants from storm flows in a very small footprint: Deflective Screening/FiltratJon, $wirl ConcentrationNortexing, Diffusion Settlement and Baffling. A detailed review of the treatment flow path shows the application of each of these primary clarification processes. Treatment flows are introduced tangentially along the stainless steel screen by the CDS unit's intake structure located above the cylindrical screen. A balanced set of hydraulics is pr.oduced in the separation chamber. ' These balanced hydraulics provide washing flows across the stainless steel screen surface, which prevent any clogging of the apertures as well as establish the hydraulic regiment necessary to separate solids through deflective separation I swirl concentration J vortex separation. Vortex separation produces a low energy, quiescent zone in the middle of the swirl that enables effective settlement of fines through a much wider range of flowrates than could otherwise be achieved using a simple settling tank in the same footprint. Particles within the diverted treatment flow are retained by the deflective, screen and are maintained in a circular motion, forcing them to the center of the separation chamber, creating an enhanced swirl concentration of solids (Vortex separation), until they settle into the sump.' Additionally, the hydraulic boundary layer and 1 of 16 I I I I I I I I I I I I I I I, I I I Storm Water Treatment Performance Review -Revised June 2004 deflective force that exist at the stainless steel screen face enhance the separation efficiency of the va rtexing , swirl concentration of solids beyond that which CQuid be achieved by a basic smooth cylinder walled vortex chamber. The. pollutants captured in the sump located below the swirl concentration/vortexing screening chamber are isolated from high velocity bypass flows through the unit preventing the scouring loss of trapped pollutants. Scouring losses occur in those structural BMP's that are designed such that the deposition zone of settled material is integral to the treatment flow path. Treated water flows across the entire face of the screen cylinder surface area. This creates the lowest exit velocity rate (under-f1owrate) from the CDS separation chamber of any vortexing separator available to date. This low underflow rate greatly enhances the separation capacity of . the vortexing solids separation process beyond that of a basic smooth cylinder Walled vortexing unit. Besides the quiescence zone in the middle of the swirl separation chamber, the lowest flow rate velocities occur in the annular and volute spaces behind the screen. The flow paSSing through the stainless steel separation screen is dispersed I diffused into the annular space behind the screen at extremely low velocities so that st~aight settling occurs as the flow goes beneath the oil baffle and then exits the unit. In short there is no other piece of the equipment that brings this multitude of primary clarification processes together in one treatment system. No other single system can approach the capabilities and capacities of a CDS unit. ' A unique advantage of the CDS Technology is the ability to treat a wide range of flows from 20 liters per second (Vs) to 8498-l/s [0.7 to 300 cubic feet per second (cfs)} which allows large drainage basins to be treated by a few strategically located facilities, thereby reducing overall life cycle costs of the treatment system. I,n addition to reducing the capital and maintenance costs this innovative equipment requires a small footprint for installation using minimal real estate, saving this valuable resource for other uses. MULTIPLE CDS UNIT CONFIGURATIONS CDS units are available in 3 different types of configuratiqns and can have either an internal or external diversion weir: Off-line (PSW. PSWC & CSW). In-line (PMSU), aod Drop-!n!e?t (PMIU). Figure 1, provides an illustration of a typical, Offline PSW, PSWC & CSW model CDS 'unit. Figure 2 is an illustration of our Inline PMSU model unit and Figure 3 shows our Drop-Inlet storm water treatment units. . 2 of 16 POOR QUALITY ORIGINAL S I I I I I I I I I I I I I I I I I I I Storm Water Treatment Performance Review -Revised June 2004 Storm Diversion W'eir Storm DraiI). Outlet Catchment Sqmp With: Clean out Basket Figure 1 Schematic of an Offline CDS Unit Off-line Units: CDS off-line units are available in precast (PSW & PSWG prefix models) and cast-in-place (CSW prefix models) reinforced concrete structures. These Offline units can also be installed hi parallel or series. The precast PSW & PSWC models are standard units, designed to treat flows up to 1813-lIs (64-cfs). The cast-in-place, CSW prefix models, ,can be constructed to treat flows up to 8.4-m3/s (300-efs). The diversion weir, box structure can be designed to accommodate multiple inlet pipes and bypass very large flood flows. For applications requiring larger flow processing, units are designed complete with construction specifications for cast-in- place construction. 3 of 16 I I I I I I I I I I I I I I I I I I I Storm Water Treatment Performance Review -Revised June 2004 Inlet Storm Drain Separation Screen Figure 2 Schematic of an Inline CDS Unit OilBaffl~ CatC"hment Sump In-line Units: CDS In-line (PMSU prefix mode!) units are smaller pre-manufactured systems configured inside standard precast manhole structures. These Inline, PMSU, units are sized to process flows of 20 to 171-l/s (0.7 -6-cfs) from new and. existing urban deveIopm"er.1ts. The cbs unit can be placed within new or retrofitted into eXisting storm water collection systems. Its remarkably small footprint takes little space and requires no supporting infrastructure. These smaller PMSU .units are ideal for treating the runoff from parking lots and vehicle maihtenance . yards. 4 of 16 I I I I I I I I I I I I I I I I I I I Storm Water Treatment Performance Review • Revised June 2004 Inlet Grate Separation Screen Catchment Sump Figure 3 Schematic of a Drop-In CDS Unit . Oil Baffle Storm Drain Drop-Inlet Unit: this pre-manufactured drop-inlet. (PMIU prefix) unit is designed to proqe5s flows of 0.7-cfs (20-1/5) or less and is ideal for small drainage areas such as parking lots. This IJnit is configur.ed inside a small diameter precast manhole that enables the PMIU unit to function as a typical drop-inlet and would be installed in lieu of a catch b"!sin or-storm drain inlet. 5 of16 .--~ - -.... I I I I I I' I I I '1 I I I I I I II I I Storm Water Treatment Performance Review -Revised June 2004 MAJOR STORM WATER POLLUTION CONTROL APPLICATIONS CDS Technologies storm water treatment systems are appropriate structural BMPs tb treat the storm water runoff from: '. . Q Retail, Commercial, Industrial and Residential Developments Q Parking Lots, Vehicle Maintenance Yards • Road Improvement ,Projects • Inter-modal Transportation Facilities' • Solid Waste Management Facilities and Tran~fer Stations • Pre-Treatment to Wetlands and Detention, and Retention Ponds • Pretreatment I Screening of Storm Water Pump, Stations • Combined Sewage Overflows • Sanitary Sewer Overijows, ' CDS Technologies offers solid separation units to treat storm water runoff from the catchment areas subject to the land use activities listed above as well as the runoff from vehicle parking' and other areas subject to the buildup of oil, grease, sedimen,t, trash and debris. CDS units can also treat the effluent from vehicle maintenance yards and wash racks. . , . CDS effectively captures the following list of storm water pollutants of concern. • Suspended Solids • Fine, Medium and Coarse Sediments • Oil & Grease o Trash, Debris, Vegetation • Floatables • Neutrally Buoyant Material • Nutrients (Total Phosphorus) FIELD PERFORMANCE EVALUATIONS AND LABORATORY REPORTS Total Suspended Solids! Sediment & Phosphorus TSS is generally understood to be sediments and other fine solids that are small en.ough to be suspended in the water column while water is flowing. TSS is usually made up of maRY different ,sized particles of varying density. .' 6 of 16 I I I I I I I I 'I I I I I I I I I Storm Water Treatment Performance Review -Revised June 2004 The primary study "Particle Removal Using Continuous Deflection Separation" that establishes CDS TSS removal efficiencies was performed by Professor Scott Wells, Portland State University. The Portland State University study used multiple test runs to establish CDS removal efficiencies using a particle size distribution (PSD) that ranged from 0 to 600-microns (~m), [0.0 to 0.6 millimeters] in size on CDS units operating at varying flow rates up to and including the CDS's low flow treatment capacity. The results of the test runs are presented in the following tables. Table 1, TSS Removal Efficiencies -2400-J.Im Screen, 20_15 Series' (Portland State University) Processed Flowrate as a % %TSS I Of CDS Low Flow Treatmen ' Test Run -TSS J Sediment Sample Capacity Removal 87.52 I F-110 TSS / Sediment 47.7 99.47 #17 TSS I Sediment 93.50 I TSS Removal Average at 47.7 % of CDS's Low Flow Treatment Capacity 83.14 I F-110 TSS I Sediment 63.7 99.54 I #17 TSS / Sediment 91.34 I TSS Removal Average at-e3.7 % of CDS's Lciw Flow Treatment Capacity - 71.18 F-110 TSS I Sediment 79.6 98.23 #17 TSS / Sediment 84.705 TSS Removal Average at 79.6 % of CDS's Low Flow Treatment Cap_acity 68.32 I F-110 TSS 1 Sediment 95.5 95.59 #17 TSS I Sediment 81.96 TSS Removal Average at 95.5 % of CDS's Low Flow Treatment Capacity 7 of 16 I I I I I I I I I I I I I I I I I Storm Water Treatment Performance Review -Revised June 2004 Table 2 TSS Removal Efficiencies -4700-flm Screen, 20_15 Series (Portland State University) Processed Flowrate as a % 01 % TSS I CDS Low Flow.Treatment Removal Capacity Test Run -TSS I Sediment Sample 86.45 I F-110 TSS I Sediment S 47.7 99.61 I #17 TSS I Sediment 93.03 I TSS Removal Average at 47.7 % of CDS's Low Flow Treatment Capacity 63.~ I 78.12 I F-110 TSS I Sediment I 98.62 I #17 TSS I Sediment I 88.37 I TSS Removal Average at 63.7 % of GDS's Low Flow Treatment Capacity 74.7 I F-110 TSS I Sediment 79.6 97.4 J #17 TSS I Sediment 86.05 I TSS Removal Average at 79.6 % of CDS's Low Flow Treatment Capacity 63.47 I F-110 TSS I Sediment 95.5 94.42 I #17 TSS f Sediment 78.95 I TSS Removal Average at 95.5 % of CDS's Low Flow Treatment Capacity Table 3. TSS Removal Efficiencies -2400-flm Screen. 20_20 Series (Portland State University) Processed Flowrate as a % I % TSS Of CDS Low Flow Treatment R Q val Capacity erne Test Run -TSS I Sediment Sample 83.16 F-110 TSS I Se~jjment 40.5 98.13 I #17 TSS J Sediment 90.65 I TSS Removal Average at 40.5 % of CDS's Low Flow Treatment Capacity 71.71 F-110 TSS I Sediment 60.8 96.10 I #17 TSS I Sediment 83.91 I TSS Removal Average at 60.8 % of CDS's Low Flow Treatment Capaci!y 61.14 I F-110TSS I Sediment 81.0 92.26 I #17 TSS I Sediment 76.70'1 TSS Removal Average at 81.0 % of CDS's Low Flow Treatment Capac!!y . 56.32 I F-110 TSS I Sedim~nt 101.3 85.13 I #17 TSS I Sediment : 70.73 I TSS Removal Average at 101.~ % of CDS's Low Flow Treatment Capacity 8 of 16 I I I I I I I -I I 1 I I I I I I -I I I Storm Water Treatment Performance Review -Revised June 2004 Figure 4 shows a graphical performance curve for the total TSS removal efficiencies for each test shown in Tables 1 thru 3. . "<f. >; tJ J:: 11.1 ~ iU > 0 S CIl ~ 120.0 100.0 80.0 60.0 40.0 20.0 ~ ... ~ I I, +-----------~~====~~~~--------~ ! ~~ ! 0.0 -+---,------,-----,----,----,------1. 0.0 20.0 40.0 60.0 80.0 100.0 120.0 % of CDS's Units Low Flow Treatment Capacity --2400-MICRON F110 - . -TSS I Sediment. . 20_15 Series -I>-2400 MICRON #17 TSS-' Sediment, 20_15 Series --4700 Micron F110 TSS 'Sedimen~ 20_15 Series --4700 Micron #17 TSS 'Sediment 20_15 Senes ' ....... 2400-MICRON F110 -TSS I Sedimen~ 20_20 Senes --2400 MICRON #17 TSS I Sediment. 20_20 Series Figure 4 -Total TSS Removal Efficiencies -Portland State The results can be summarized by stating that CDS units operating at 100% of their treatment capacity were demonstrated to remove, on average, 80% of the TSS. At flowrates less than the low flow treatment capacity of a given CDS unit, TSS removal efficiency increases. During any given wet season a typical CDS storm water treatment unit is expected to be operating for the majority of the time in a range between 10 to 70% of its low flow hydraulic treatment capacity. A properly sized CDS unit is capable of removing more than 80% of the TSS. 80% average annual removal performance forecast satisfies most project specifications. The particle size distribution of the TSS I Sediment to be removed represents the most significant factor in determining weather a structural BMP will achieve the removal goals for a given project. 9 of 16 I I I I I I I I I I I I I ,I I II I I I Storm Water Treatment Performance Review -Revised June 2004 Figure 5 provides the PSD of the F-11 0 TSS I Sediment & the #17 TSS I Sediment samples use in the Portland State University Study. lOD I !! j iii II,' I I I! i II ffiIi ' 'II lLl' '.L4 11 111,1 ,I ,I III,! ',i I,! I!,: '!! I ! i II II ~~'+I~i~!W!!~I~; __ ~I~1 ~1~1~I,Ii;~!!I!~I~~~:'~~~IWII~I~,~~~~~--~,~I~'~I~il~1 501 I 1I111il, I IIIJIIII II lilill ~F-110TSS/Sediment-2400 ao -1---+-1 !---!-II 11-+++11111+--; I -+-, +-!-II ~IIII'+!-Il -HI 1'++1 I +++111 ~III ' Series 20_20 ,o~-+~~~+--+~++~~~~~~~ I 11111111 I -I I : 11111 11111111 -ii-#17 TSSfSediment-PJI Senes ~ Qo~-+~~~~-+~~~+-4+-H++~~ ~ 111111111 III!IIIII 11111111 ~ 501 IIIIIIII! I 11 111111.1 ! 1111111 ~F-110 TSS/Sediment-2400 Series 20_15 :.: 40 ~I -+-!-I 1-!-!-1IH+i+ IIIII-l-+-Il +-1+1 1++H-1I11-I--H-/I-H~, 1-+++1I1~11I ::~I -l-I !---!-II 11-+++1111+--11 -+-1 ...!,.L.l-1!-l--H-iIIII~II/++-IH-+ 111+++1 II+H-l111 -S-AvaragedSub100-micronBiltcl1 lJ I 111/1111 YfIIIlIYi ~ 1/ 11111 III '--0-1---'-/"""""""11"""""""1111"--1 --;-1 "'-';11""""""111..,..,..,...J11 . 0~1 ~1~II,~III~IV~I~I~III~~I":~~I~.I~II~III~I!~I~II~II~1111_I~I~I!!~I:H l lO lOO lOOO looeD lOOOOO Figure 5 • Particle Size Distribution of TSS I Sediment Used in Portland State Test When the Particle Size Distribution Curves of the TSS I Sediment used in the Portlarid State study are plotted along with 23 field evaluations of Particle Size Distributions of Solids Found on Streets and Suspended in Road Runoff, Walker, et aI., one can' readily see that the PSD used in the Portland State University study compares favorably with the TSS and sediment found in our urban catchments. Comparing the results of the Portland State performance evaluation against the 23 field evaluations provides the basis of reasonable forecasts. 10 of 16 .... ----------~-----:-------,,.....-------------~~~~--~-~----~ I I I I I I I I I I I I I I I I I I- Storm Water Treatment Performance Review -Revised June 2004 '00 I ror-~~~~+H7-~~~-H~~~~~~~* I i'lll I II ilU- ,. -, m '00 ,0:0 ,0:00 CRCCH Report February 1999 Pcrtide Siza (rriam) Figure 6. Particle Size Distribution of Solids Found on Street and Suspended in Road Runoff 10:000 Previous independent studies and evaluations of first generation CDS separators also showed TSS removal capacity. The CRC report entitled RREMOVAL OF SUSPENDED SOUDS AND ASSOCIATED POLLUTANTS BY A CDS GROSS POLLUTANT TRAPQ describes an extensive_ independent monitoring program performed by the CRC, of a CDS unit installed at Coburg, an inner suburb of Melbourne, Australia. This field evaluation included monitoring performanqe of the CD~ unit for removal of total suspended solids (ISS), total phosphorus and total nitrogen. This report provides additional information regarding nutrients and fine sediments transportation in storm water and the ability of CDS units to effect their removal. In the case of TSS, the CDS unit effectively reduced concentration levels below 75-mg/L in effluent from the CDS with a mean removal-efficiency of approximately 70%. Particulate phosphorus removal was measured at 30%. The TSS removal efficiencies mentioned above are a function of flow rate, TSS concentration and particle size distribution. Laboratory results show CDS capture efficiencies of as much as 60% of 75-lJm size particles. Field evaluations show that CDS units capture particles smaller than 34-j.IIil. CDS Technologies is uniquely suited to meet the challenge of effectively removing total' suspended solids (TSS) and the associated pollutants in storm water runoff. The most effective proof of this -capability can be found by analyzing the material that is trapped in the sump of a CDS unit. Eight separate studies involving 15 separate "cleanoutsR of the CDS sump have been conducted to analyze the physical characteristics and chemical composition of the sediments. - 11 of 16 I I I I I I I I I I I I I I I I I I ._--------------------------------_._ .. -.-------------_. -_ .. _.. ----,---------_.-. Storm Water Treatment Performance Review -Revised June 2004 The results of two independently conducted studies involving five separate sump ·cleanout" events are shown in the following figure. The other studies have found similar results. IOD J . I I 1111111· I I I I "III I I I: 1111 so I J I I I 111111 I I I I II ! II ·1 I I I III 1 ~J I I IIIII I ' 1·;''1' II! II I I 111I I I Ii. :;; I I I I ! IIII I I I III Iii f so l ! $:J I I 1111111 I I LillI! 9 ~ I I I " I II I! II 1111'11 if . 1 c _0 1 I I 1111111 I' . ~l~s'a~~ah, 1/4/~1 ·f _. , •• " 0 ~ I E za 1 I I I 111111 I I -"'!-·lssaquah,7/2/01 u. 2Q I I I 1111110 I 'I -a-Brisbane City Kalioga Park, 4/17/99 10 1 --SrisbaoeCity Kalioga Park, 5/17/99 a i ! I I ---Brisbane Ciiy Kalinga Park, 6/3(99 I I I 'I;: I I r I I J i. i. 1QD IODO' 100DO ' Particle Size (Microns) Figure 7" Particle Size Distribution of Sediment Captured in CDS . . The study conducted at Issaquah, Washington involved the two "cleanouts" reported the following results. T bl 4 P rt" I S" D" t"b f a e " a IC e Ize IS rr u Ion 0 fS d" . t F e Imen Ol,ln d" CDSS In um..Q.s Sampling Sump Material Particle Size Period Mean Median I % % % (mm) (mm) Gravel" Sand:! SiltlClay'l Fall Period (1) I 0.14 0.12 '\ 0.00 67.84 ' 32.16 Fall Period (2) 0.17 0.17 I 0.00 74.50 1 25.50 Winter/Spring Period (1) I 0.09 0.10 I 0.00 I 60,90 1 39.10 WinterlSpring Period (2) 0.06 1 0.06 1 0.00 1 39.46 1 60.54 1 Particles between 2 and 64 mm in size considered graver 2 Particles between 0.075 and 1 mm in size are considered sand 3 Particles < 0.075 mm in size are considered silt/clay The study conducted by Brisbane City involved three "clean outs" and found that 27% of the material trapped in the CDS sump was silt/clay sized, 50% was sand sized and 23% was classified as gravel. The TSS removal efficiencies mentioned above are a function of flow rate, TSS concentration, PSD and the characteristics of those particles. 12 of 16 I I I I I I I I I '1 I I I I' I I I· I I Storm Water Treatment performance Review -Revised June 2004 These field evaluations show CDS units capturing particles as small as 34-microfls. Laboratory results show CDS capture efficiencies of as much as 60% of 75-micron size particles. Brevard County, Florida completed an is-month study entitled "THE USE OF A CDS UNIT FOR SEDIMENT CONTROL IN BREVARD COUNTY" that included detailed monitoring and analysis of 5 storm events. The CDS unit designed for 9 cfs using a 4700-micron screen achieved effective removals of 52% TSS and 31 % phosphorus. This is noteworthy in that the cbs was placed downstream of a "grassy swalen• Fortunately, for our evaluation purposes, the grassy swale didn't work very well. If you would like to see these reports, CDS Technologies can provide copies of any or all six. The report titles are: 1. FROM ROADS TO RIVERS -GROSS POLLUTANT REMOVAL FROM URBAN WATERWAY'S . 2. STORMWATER GROSS POLLUTANTS, INDUSTRY REPORT 3. A DECISION-SUPPORT-SYSTEM FOR DETERMINING EFFECTIVE TRAPPING STRATEGIES FOR GROSS POLLUTANTS 4. REMOVAL OF SUSPENDED SOLIDS AND ASSOCIATED POLLUTANTS BY A CDS GROSS POLLUTANT TRAP 5. MANAGEING URBAN STORMWATER USING CONSTRUCTED WETLANDS 6.· THE USE OF A CDS UNIT FOR SEDIMENT CONTROL IN BREVARD CO.UNTY For more information on the CRC for Catchment Hydrology visit their website: www.catchment.crc.org.au. The full Brevard County report is available on: www.stormwater- resources.com/. You can also visit our website. www.cdstech.com.to obtain more information on the above-mentioned reports. . Oil & Grease Removal Given that oil and grease and I?ther total petroleum hydrocarbons (TPH) are primary water qu.ality constituents -of concern from m'any catchment areas such as vehicle parking areas; it should be understood that a CDS unit can effectively and efficiently control TPH pollutants as they' are transported through the storm drain system during dry weather (gFosS spills) and w~t weather flows. CDS devices can capture 80% of fee oil and grease coming, into the unit without the use of oil sorbent materials. CDS units are equipped with an oil baffle to capturl? and retain oil and grease. Laboratory tests performed by Professor Wells from the Portland State University, Portland Oregon ~2003), have shown that the CDS unit, without the use of sorbent materials, was capable of capturing up to 80% of free oil and grease from storm water. CDS units can also accommodate the addition of oil sorbents within their separation chambers. The addition of the oil sorbents can ensure the permanent removal of up to 90% of the free oil and grease from the storm water runoff. Efiluent concentrations of 1 to 3-ppm can be expected from a 13 of 16 I I I I I I I I I I I I I I I I I I I Storm Water Treatment Performance Review -Revised June 2004 CDS unit using sorbent material in its separation chamber. It needs to be emphasized that the addition of sorbents is not a requirement for CDS units to effectively control oil and grease from storm water. The conventional oil bafile within a unit assures satisfactory oil and grease removal. The addition of sorbents is a unique-enhancement capability special to" CDS units, enabling increased oil and grease capture efficiencies beyond that obtainable by conventional oil baffle systems. Once in contact with the sorbent media, the oil and grease canno"t escape the CDS unit. The oil sorbent material is non-leaching and essentially solidifies the oil and grease. The addition of sorbents can be done at anytime after installation when there are land use activities within the" catchment area that merit the consideration of this additional control measure. Specifications for the application of oil sorbent material and an engineer's value estimate for the conservative application of sorbent on pounds per acre of impervious area per year basis are readily available upon request. As the oil and grease in storm water are pollutants of concern, a general understanding should be developed on how oil and grease are transported in storm water if their effective removal is 'to be achieved. Oil and grease are transported in stonn water and wash rack effluent in four different ways: 1. 2. 3. 4: Attached to trash and debris such as styrofoam and leaves Attached to coarse and fine sediments Free or floating oil and grease Suspended and emulsified within the storm water flow The CDS unit is effective at removing oil transported by the first three methods. Researchers studying the quality of stonn water runoff have advised that 50 to 80% of the total oil and grease within storm water are attached to sediments. A CDS unit will capture and retain the sediments containing the attached oil and greases iii its sump until removed through routine maintenance operations. These sediments have been estimated to contain 50-90% of the total amount of oil "and grease in storm water runoff. Oil Spill Test In addition to the regular capture test perfonned to measure the removal of free oil and grease from storm water, Professor Wells also performed an oil spill test. The unit performed extremely well in the oil spill test, with the peak oil concentration in the effluent occurring right as the addition of oil to the unit stopped. This showed a capture rate of more than 99.75% of the oil dumped into the unit (82,000 mgll). This would be a very effective means of containing an oil spill. An oil storage capacity chart for the CDS unit is available o~ request. For further information on oil and grease" and CDS perfonnance also available is 'CDS Capability of Capturing Hydrocarbones" This paper covers extensively the origin of oil and grease in stormwater and the performance of CDS technology in that regard. 14 of 16 I I I I I I I I I I I I I" I I I I I I Storm Water Treatment Performance Review -Revised June 2004 Gross Pollutants Regardless of the size of the storm event being treated CDS storm water treatment units will ensure the permanent removal of 100% of floatables as well as 100% of the solids equal to or larger than the 4.7 mm or 2.4-mm screen openings for flows up to and including their full hydraulic treatment capacities. CDS units are the only storm water treatment devices available that can guarantee 100% removal of any particles equal to or larger than the screen aperture dimension (screen apertures used for storm water are either 4700 or 2400 microns) regardless of the specific gravity of those particles. In contrast, BMP's that depend on baffles and detention time are not effective at removal of debris that does not float or sink well (neutrally buoyant) especially during high flow events "where turbulence results in most debris behaving as if it were neutrally buoyant. In a CDS unit, because debris is retained by a physical screening "process, material previously captured cannot wash out during high flow and the CDS unit will retain 100% of the material it has captured. The Cooperative Research Centre (CRC) for Catchment Hydrology, Monash University, Melbourne, Australia has completed an extensive 18-month field study and do"cumented their findings in three (3) separate reports. This field study foc"used on determining transportation of pollutants in storm water and the trapping efficiency of various storm water treatment systems under real service conditions. The results of the evaluated storm water treatment systems were compared in detail. The results achieved by the CDS technology, in these field evaluations are " very positive. For example, on p. 63 of the FROM ROADS TO RIVERS, GROSS POLLUTANT REMOVAL FROM URBAN WATERWAYS, the CDS unit was described as 99% efficient over a 12 ":"month period. The focus of these reports looked at the means to effect the removal of gross po((utants from storm water flows. Though the initial application of CDS units was used to capture gross pollutants, the continuous deflective separation process is proving to be effective in a variety of storm water, wastewater, and industrial applications calling for the efficient separation af suspended and fine solids from liquids. A CDS unit makes an ideal pretreatment for oil/water separators, preventing the: concentration of solids within the storm water runoff or effluent from wash racks from overwhelming and clogging conventional oil/water separators. 15 of 16 I I I I I I I I I I I I I I. I .1' I I Storm Water Treatment Performance Review -Revised June 2004 CDS Technologies is presently working with a number of cities to enhance the effectiveness of installed oil/water separators. It appears to be quite common for installed, oil/water separators', consisting of coalescing plate modules, or corrugated plate packs to become ineffective, because of the significant vegetation, sediment and debris loading that interferes with the coalescing of oil and grease globules. Many of these oil/water separator installations represent significant capital . improvement projects that never achieve their design performance due to the solids content of the, storm water runoff or wash rack effluent. The additional expenditure for the installation of a CDS unit as a pre-treatment to these oil/water separators usually represents a small percentage of the project cost and will assure the efficient performance of the oil water sepC?rator .. In conclusion, we hope you find this information useful in selecting the best post construction storm water treatment BMP for this project and we look forWard' to discussing potential applications for CDS units to treat your storm water runoff. We welcome the opportunity to arrange an E?ducational presentation of the CDS storm water treatment technology, covering planning, design, construction . and maintenance issues. We have a working tabletop model of a CDS unit that replicates the performance of full size CDS units. For more information, please phone toll free (888) 535~7559 or go to our website at www.cdstech.com or e-mail usatcds@cdstech.com. and we will.be happy to assist you. ' 16 of 16 I I I I I I 'I I I I I I I I . 1 I I I Vortex Separator Description Vortex separators: (alternatively, swirl concentrators) are gravity separators, and in principle are essentially wet vaults. The difference from wet vaults, however, is that.the vortex separator is round, rather than rectangular, and the water moves in a centrifugal fashion before exiting. By having the water move in a circular fashion, rather than a straight line as is the case With a standard wet vault, it is possible to obtain significant removal of suspended sediments and attached pollutants with less space. Vortex separators were originally developed for combined sewer overflows (CSOs), where it is used primarily to remove coarse inorganic solids. Vortex separation has been adapted to stormwater treatment by several manufactp.rers. California Experience There are currently about 100 installations in California. Advantages . • May provide the desired performance in less space and therefore less cost. • May be more cost-effective pre-treatment devices than traditional wet or dry basins. • Mosquito control may be less of an issue than with traditional wet basins. Limitations • .As some of the systems have standing water that remains between·storms, there is concern about mosquito breeding. . • It is likely that vortex separators are not as effective as wet vaults at removing fine sediments, on the order 50 to 100 microns in diameter and less. • The' area served is limited by the capacity of the largest models. • .As the products come in standard sizes, the facilities will be oversized iIi many cases relative to the design treatment storm, increasing the cost . • The non-steady flows of stormwater decreases the efficiency of yortex separators from what ~ay be estimated or determined from testing under constant flow. • Do not remove dissolved pollutants. • A los~ of dissolved pollutants may occur as accumulated organic January 2003 California Stormwater BMP Handbook New Development and Redevelopment www.cabmp~and~ooks,cori1 MP-51 Design Considerations • ServiceArea • Settling Velocity • Appropriate Sizing • Inlet Pipe Diameter Targeted Constitl,lents ../ Sediment ./ Nutrients ./ Trash ./ Metals Bacteria ./ Oil and Grease ./ Organics Legend (Removal Effe~tiveness) • Low ... Medium • High Stormwater Quality Association ..... • • 1 of 5 I I I I I I I I I I I' I I. I I I MP-51 Vortex Separato-r matter (e.g., leaves) decomposes in the units. Design and Sizing Guidelines The stormwater enters, typically below the effluent line, tangentially into the basin, thereby imparting a circular motion in the system. Due to centrifugal forces created by the circular motion, the suspended particles move to the center of the device where they settle to the bottom. There are two general types of vortex separation: free vortex and dampened (or impeded) vortex .. Fr~e vortex separation becomes dampened vortex separation by the placement of radial baffles on the weir-plate that impede the free vortex-flow pattern It has been 'stated with respect to CSOs that the practical lower limit of vortex separation is a particle with a settling velocity of 12 to 16.5 feet per hour (o.~o to 0.14 cm/s). As such, the focus for vortex separation in CSOs has been with settleable solids generally 200 microns and larger, given 'the presence of the lighter organic solids. For inorganic sediment, the above settling velocity range represents a particle diameter of 50 to 100 microns. Head loss is a function of the size of the target particle. At 200 microns it is normally minor but increases significantly if the goal is to remove smaller particles. The commercial separators applied to stormwater treatment vary considerably with respect to geometry, and the inclusion of radial baffles and internal circular chambers. At one extreme IS the inclusi6n of a chamber within the round concentrator. Water flows initiCllly around the perimeter between the inner and outer chambers, and then into the inner chamber, giving rise to a sudden change in velocity that purportedly enhances removal efficiency. The opposite ,extreme is to introduce the water tangentially into a round manhole with :no internal parts of any kind except for an outlet hood. Whether the inclusion of chambers and baffles gives better performance is unknown. Some contend that free vortex, also identified as swirl concentration, creates less turbulence thereby increasing removal efficiency. One product is unique in that it includes a static separator screen. • Sized is based on the peak flow of the design treatment event as specified by local government. • If an in-line facility, the design peak flow is four times the peak of the design treatment event. ' • If an off-'line facility, the design peak flow is equal to the peak of the design treatm~nt event. • Headloss differs with the product and the model but is generally on the order of one foot or less in most cases. ' Construction/Inspection Considerations No special considerations. Performance Manufacturer's differ with respect to performance claims, but a general statement is that the manufacturer's design and rated capacity (cfs) for each model is based on and believed to achieve an aggregate reduction of 90% of all particles with a specific gravity of 2.65 (glacial sand) down to 150 microns, and to capture the floatables, and oil and grease. Laboratory tests 9f two products support this claim. The stated performance expectation therefore implies that a 2 of 5 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com I I I I I I I I I' I I I I I I I I I Vortex Separator MP-51 lesser removal efficie'ncy is obtained with particles less than 150 microns, and the lighter, organic settleables. Laboratory tests of one of the products foUnd about 60% removal of 50 micron sand at the expected average operating flow rate Experience with the use of Vetrtex separators for treating combined sewer overflows (CSOs), the original application of this technology, suggests that the lower practical limit for particle. removal are particles with a settling velocity of 12 feet per hour (Sullivan, 1982), which, represents.a particle diameter of 100 to 200 microns, depending on the specific gravity of the particle .. l'lie CSo experience therefore seems consistent with the limited experience with treating stormwater, summarized above Traditional treatment technologies such as wet ponds and extended detention basins are generally believed to be more effective at removing very small particles, down to the range of 10 to 20 microp.s. Hence, it is intuitively expected that vortex separators do not perform as 'well as the traditional wet and dry basins, and filters. Whether this matters depends on the particle size distribution of the sediments in stormwater. If .the distrib'\ltion leans towards small material, there should be a marked difference between vortex separators' and, say, traditional wet vaults. There are little data to support this conjecture In comparison to other treatment technologies, such as wet ponds and grass swales, there are few studies of vortex separators. Only two of manufactured products currently available have been field tested. Two field studies have been conducted. Both achieved in excess of 80% removal of TSS. However, the test was conducted in the Northe:;tst (NewY'ork state and Maine) where it is possible the stormwater contained significant quantities of deicing sand. Consequently, the influent TSS concentratio'ns and particle size are both likely considerably higher than is found in California stormwater. These data suggest that if the stormwater particles are for the most part fine (i.e., less than 50 microns), vortex separators will not be as efficient as traditional treatment BMPs such as wet ponds and swales, if the latter are sized according to the recommendations of this handbook. ' There are no equations that provide a straightforward determination of efficiency as a function of unit configuration and size. Design specifications of commercial separators are derived from empirical equations that are unique and proprietary to each manufacturer~ However, some general relationships between performance and the geometry of a separator have been developed. CSO studies have found that the primary determinants of performaIJ,.ce of vortex separators are the diameters of the inlet pipe and chamber with all other geometry proportional to these two. Sulllvan et al. (1982) found that performance is related to the ratios of chamber to inlet diameters, D2/D1, and height between the inlet and outlet and the inlet diameter, Hl/D1, shown in Figure 3. The relationships are: as D2/D1 approaches one, the efficiency decreases; and, as the H1/D1 ratio decreases, the efficiency decreases. These relationships may allow qualitative comparisons of the alternative designs of manufacturers. Engineers who wish to apply these concepts should review relevant publications presented in the References. Siting Criteria There are no particularly unique siting criteria. The size of the drainage area that can be' served by vortex separators is directly related to the capacities of the largest models. January 2003 California Stormwater BMP Handbook New Development and Redevelop'ment www.cabmphandbooks.com 3 of 5 I I I I I I I I I I I I I . 1 I I I I MP-51 Vortex Separator Additional Design Guidelines . Vortex separators have two capacities if positioned as in-line facilities, a treatment capacity and a hydraulic capacity. Failure to recognize the difference between the two may lead·to significant under sizing; i.e., too small a model is selected. This observation is relevant to three of the five products. rhese three technologies all are designed to experience a unit flow rate of about 24 gallons/square foot of separator footprint at the peak of the design treatment event. This is the horizontal area of the separator zone within the container, not the total footprint of the unit. At this unit flow rate, laboratory tests by these manufacturers have established that the . performance will meet the general claims previously described. However, the units are sized to handle 100 gallons/square foot at the peak of the hydraulic event. Hence, in selecting a particular model the design engineer must be certain to match the peak flow of the design event to the stated treatment capacity, not the hydraulic capacity. The former is one-fourth the latter. If the unit is positioned as an off-line facility, the model selected is based on the capacity equal to the peak of the design treatment event. . . Maintenance Maintenance consIsts of the removal of accumulated material with an eductor truck. It may be necessary to remove and dispose the floatables separately due to the presence of petroleum . product. Maintenance Requirements Remove all accumulated sediment, and litter and other floatables, annually, unless experience indicates the need for more or less frequent maintenance. Cost Manufacturers provide costs for the units including delivery. Ipstallation costs are generally on the order of 50 to 100 % of the manufacturer's cost. For most sites the units are cleaned annually. Cost Considerations The different geometry of the several manufactured separators suggests that when comparing the costs ofthese systems to each other, that local conditions (e.g., groundwater levels) may . affect the relative cost-effectiveness. . References and Sources of Additional Information Field, R., 1972, The swirl concentrator as a combined sewer overflow regulator facility, EPA/R2- 72-008, U.S. EIivironmental Protection Agency, Washington, D.C . Field, R., D. Averill, T.P. O'Connor, and P. Steel, 1997, Vortex separation technology, Water Qu~. Res. J .. Canada, 32, 1, 185 Manufacturers technical materials Sullivan, R.H., et al., 1982, Design manual -swirl and helical bend pollution control devices, EPA-600/8-82/013, U.S. Environmental Protection Agency, Washington, D.C. . . Sullivan, R.H., M.M. Cohn, J.E. Ure, F.F. Parkinson, and G. Caliana, 1974, Relationship between diameter and height for the design of a swirl concentrator as a combined sewer overflow regulator, EPA 670/2-74-039, U.S. Environmental ProtectionAgency, Washington,. D.C. 4 of 5 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com . JanUi:lrY 2003 I I I I I I I I I I I. I I I Vortex Separator MP-51 Sullivan, R.H., M.M. Cohn, J.E. Ure, F.F. Parkinson, and G. Caliana, 1974, The swirl concentrator as a grit separator device, EPA670/2-74-026, U.S. Environmental Protection Agency, Washington, D.C. Sullivan, R.H., M.lv,L Cohn, J.E. Ure, F.F. Parkinson, and G. Caliana, 1978, Swirl primary separator device and pilot demonstration, EPA600 / 2-78-126, U.S. Environmental Prot.ection Agency, Washington, D.C. . January 2.003 California Stormwater BM? Handbook New Development and Redevelopm~nt www.cabmphandbooks.com I I I( I I I I I I I I I I I rl I I I I ~ I Drain Inserts' Description Drain inserts are manufactured filters or fabric placed·in a drop inlet to remove sediment and debris. There are a multitude of inserts of various shapes and configurations, typically falling into one of three different groups: socks, boxes, and trays. The sock consists of a fabric, usually constructed of polypropylene. The fabric may be attached to a frame or the grate of the inlet holds· the sock. Socks are meant for vertical (drop) inlets .. Boxes are constructed of plastic or wire mesh. Typically a polypropylene ''bag'' is placed in the wire mesh box. The bag takes the form of. the box. Most box products are one box; that is, the setting area and filtration through media occur in the same box. Some :products consist of one or more trays or mesh grates. The trays may hold different types of media. Filtration media vary by man.ufacturer. Types include polypropylene, porous polyiller, treated cellulose, and activated carbon. California Experience The number of installations is unknown but likely exceeds a thousand. Some users have reported that these systems require considerable maintenance to prevent plugging and bypass. Adva'ntages • Does not require additional space as inserts as the drain inlets are already a component of the standard drainage systems. • Easy access for inspection and maintenance. • As there is no standing water, there is little concern for mosquito breeding. • A relatively inexpensive retrofit option. Limitations Performance is likely significantly less than treatment systems that are located at the end of the drainage system such as ponds and vaults. Usually not suitable for large areas or areas with trash or leaves than can plug t,he insert. Design and Sizing Guidelines Refer to manufacturer's guidelines. Drain inserts come any' many configurations but can be placed into three general groups:. socks, boxes, and trays. The sock consists of a fabric, usually constructed of polypropylene. The fabric may be attache9. to a frame or the grate of the inlet holds the sock. Socks are meant for vertical (drop) inlets~ Boxes are constructed of plastic or wire mesh. Typically a polypropylene ''bag'' is placed in the wire mesh box. The bag takes the form of the box. Most box products are January 2003 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com MP-52 Design Considerations • Use with other BMPs • Fit and Seal Capacity within Inlet . Targeted Constituents . . . ./ Sedimen't ./ Nutrients ./ Trash ./ Metals Bacteria ./ Oil and Grease ./ Organics Removal Effectiveness See New Development and Redevelopment Handbook-8ection 5. Stormwater Quality Association 1 of 3 I I I I I I I I I I I I I I I I MP-52 Drain Inserts one box; that is, the setting area and filtration through media occurs· in the same box. One manufacturer has a double-box. Stormwater enters the first box where setting occurs. The stormwater flo\IVs into the second box where the filter media is located. Some products consist of one or more trays or mesh grates. The trays can hold different types 'ot media. Filtration media vary with the manUfacturer: types include polypropylene, porous polynier, treated cellulose, and ac~vated carbon. Construction/Inspection Considerations Be certain that installation is done in a manner that makes certain that the stormwater enters the unit and does not leak around the perimeter. Leakage between the frame of the ins'ert and the frame of the drain inlet Gan easily occur with vertical (drop) inlets. Performance' . Few products have performance data collected under field conditions .. Siting Criteria It is recommended that inserts be used only for retrofit situations or as pretreatment where other treatment BMPs presented in this section area used. Additional Design Guidelines , .' Follow guidelines provided by individual manufacturers. Maintenance Likely require frequent maintenance, on the order of several tiines per year. Cost • The initial cost 9findiVidual inserts ranges from less than $100 to about $2,000. The cost of using multiple units in curb inlet mains varies with the size of the inlet. • The low cost of inserts may tend to favor the use of these systems over otheI', more effective treatment BMPs. However, the low cost of each unit may be offset by the number of units that are ;r.equired, more frequent maintenance, and' the shorter structural life (and therefore replacement) . References and Sources of Additional Information Hrachovec, R, and G. Minton, 2001, Field testing of a sock-type catch basin insert, Plan~t CPR, Seattle, Washington Interagency Catch Basin Insert Committee, Evaluation of Commercially-Available Catch Basin Inserts for the Treatment of Stormwater Runoff from Developed Sites, 1995 Larry Walker Associates, June 1998, NDMP Inlet/In.-Line Control Measure Study Report Manufacturers literature Santa Monica (City), Santa Monica Bay Municipal Stormwater/Urban Runoff Project - Evaluation of Potential Catch basin Retrofits, Woodward Clyde, September 24,1998 2 of 3 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 . -.-.. -.. - -'l ( I I I I I I .1 I I I II I I~ I Drain Inse.rts . . Woodward Clyde, June 11, 1996, Parking Lot Monitoring Report,. Santa Clara ValIeyNonpoint Source Pollution Control Program. . January 2003 California Stormwater BMP Handbook New'Development and Redevelopment www.cabmphandbooks.com 3 of3 I I I I I I I I I I I I I I I I I I I Extended Detention Basin Description Dry extended detention ponds (a.k.a. dry ponds, extended detention basins, detention ponds, extended detention ponds) are basins whose outlets have been designed to detain the stormwater runoff from a water quality design storm for some minimum time (e.g., 48 hours) to allow particles and associated pollutants to settle. Unlike wet ponds, these facilities do not have a large permanent pool. They can also be used to provide flood coritrol by including additional flood detention" storage. California Experience Caltrans constructed and monitored 5 extended detention basins in southern California with design drain times of 72 hours. Four of the basins were earthen, less costly and had substantially better load reduction because' of infiltration that occurred, than the concrete basin. The Caltrans study reaffirmed the flexibility and perfqrmance of this conventional technology. The small headloss and few siting constraints suggest that these devices are one of the most applicable technologies for stormwater treatment. Advantages • Due to the simplicity of design, extended detention basins are relatively easy and inexpensive to construct and operate. • Extended detention basins can provide substantial capture of sediment and the toxics fraction associated with particulates. • Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency January 2003 Errata 5-06 . California Stormwater BMP HandbOOK New Development and Redevelopment www.cabmphandbook.com . TC-22 Desig n. Considerations • Tributary Area • Area Required • . Hydraulic Head -Targeted Constituents 0 Sediment 0 Nutrients 0 Trash 0 Metals 0 Bacteria 0 Oil and Grease 0 Organics Legend (Removal Effectiveness) • Low • High A. Medium A. • • A. A. A. A. Ci>..LlFOR.'lIAStORMWA'l'ER Q~l-\t.rr"i A.4fi0r.l .. \T1Q~ 1 of io I I I I I I I I I I I I I I I I I I I TC-22 Extended Detention Basin relationships resulting from the increase of impervious cover in a watershed. Limitations • Limitation of the diameter of.the orifice may not allow use of extended detention in watersheds ofless than 5 acres (would require an orifice With a diameter ofless than 0.5 inches that would be prone to clogging). • Dry extended detention ponds have only moderate pollutant removal when compared to . some other structural stormwater practices, and they are relatively ineffective at removing soluble pollutants. • Although wet ponds can increase property values, dry ponds can actually detract from the value of a home due to the adverse aesthetics of dry, bare areas and inlet and outlet structures. Design and Sizing Guidelines • Capture volume determined by local requirements or sized to treat 85% of the annual runoff volume. • Outlet designed to discharge the capture volume over a period of hours .. • Length to width ratio of at least 1.5:1 where feasible. • Basin depths optimally range from 2 to 5 feet. • Include energy dissipation in the inlet design to reduce resuspension of accumulated sediment .. • A maintenance ramp and perimeter access should be included in the design to facilitate access to the basin for maintenance activities and for vector surveillance and control. • Use a draw down time of 48 hours in most areas of California. Draw down times in e~cess of 48 hours may result in vector breeding, and should be used only after coordination with local vector control authorities. Draw down times ofless than 48 hours should be limited to BMP drainage areas with coarse soils that readily settle and to watersheds where warming may be determined to downstream fisheries. Construction/Inspection Considerations • Inspect facility after first large to storm to determine whether the desired residence time has been achieved. . • When constructed with small tributary area, orifice sizing is critical and inspection should ver.ify that flow through additional openings such as bolt holes does not occlJ.r. Performance One objective of stormwater management 'practices can be to reduce the flood hazard associated with large storm events by reducing the peak flow assocIated with these storms. Dry extended detention basins can easily be designed for flood control, and this is actually the prim~ry purpose of most detention ponds. 2 of 10 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Errata 5-06 I I I I I I I I I I I I I I I I I I I Extended Detention Basin TC-22 Dry extended detention basins provide moderate pollutant removal, provided that the recommended design features are incorporated. Although they can be effective at removing some pollutants through settling, they are less effective at removing soluble pollutants because of the absence of a permanent pool. Several studies are available on the effectiveness of dry extended detention ponds including one recently concluded by Caltrans (2002). The load reduction is greater than the concentration reductio;n because of the substantial infiltration that occurs. Although ,the infiltration of stormwater is clearly beneficial to surf~ce receiving waters, there is the potential for groundwater contamination. Previous research on the effects of incidental infiltration on groundwater quality indicated that the risk of contamination is minimal. There were substantial differences in the amount of infiltration that were observed in the ' earthen basins during the Caltrans, study. On average, approximately 40 perceI!t of the runoff entering the unlined basins infiltrated and was not discharged. The percentage ranged from a high of about 60 percent to a low of only about 8 percent for the different facilities. Climatic conditions and local water table elevation are likely the principal causes of this difference. The least infiltration occurred at a site located on the coast where humidity is higher and the baSIn invert is within a few meters of sea level. Conversely, the most infiltration occurred ~t a facility located' well inland in Los Angeles County where the climate is much warmer and tjie ,humidity is less, resulting in lower soil moisture content in the basin floor at the beginning of storms. ' Vegetated detention basins appear 'to have greater pollutant removal than concrete basins. In the Caltrans study, the concrete basin exported sediment and associated pollutants during a number of storms. Export was not as common in the earthen basins, where the vegetation appeared to help stabilize the retained sediment. Siting Criteria' Dry extended detention ponds are among the most widely applicable stormwater management practices and are especially useful in retrofit situations where their low hydraulic head ' requirements allow them to be sited within the constraints of the existing storm drain system. In . addition, many communities have detention basins designed for flood control. It is possible to modify these facilities to incorporate features that provide water quality treatment and/or channel protection. Although dry extended detention ponds can be applied rather broadly, designers need to ensure that they are feasible at the site in question. This section provides basic guidelines for siting dry 'extended detention ponds. -, In general, dry extended detention ponds should be used on sites with a minimum area: of 5 acres. With-this size catchment area, the orifice size can be on the order of 0.5 inches. On smaller sites, it can be challenging to provide channel or water qualitY cOhtrol because the orifice diameter at the outlet needed to control relatively small storms becomes very small and - thus prone to clogging. In addition, it is generally more cost-effective to control larger drainage areas due to the economies of scale. Extended detention basins can be used with almost all soils and geology, 'with minor design adjustments for regions of rapidly percolating soils such as sand. In these areas, extended . detention ponds may need an impermeable liner to prevent ground water contamination._ January 2003 Errata 5-06 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbook.com 3 of 10 I 1 I I I I I I I I' I I I I I I I I TC-22 Extended Detention Basin The base of the extended detention facility should not intersect the water table. A permanently wet bottom may become a mosquito breeding ground. Research in Southwest Florida (Santana et al., 1994) demonstrated that intermittently flooded systems, such as dry extended detention ponds, produce more mosquitoes than other pond systems, particularly when the facilities ' remained ,wet for more than 3 days following heavy rainfall. A study in Prince George's County, Maryland, found that stormwater management practices can increase stream temperatures (Galli, 1990). Overall, dry extended detention ponds increased temperature by about 5°F. In cold water streams, dry ponds should be'designed to detain stormwater for a relatively short time (Le., 24 hours) to minimize the amount of warming that occurs in the basin. Additional Design Guidelines In order to enhance the effectiveness of extended detention basins, the dimensions of the 'basin must be sized appropriately. Merely providing the required storage volume will not ensure' maximum constituent removal. By effectively configuring the basin, the designer will create a long flow path, promote the establishment oflow velocities, and'avoid having stagnantareas'of the basin. To promote settling and to attain an'appealing environment, the design of the basin should consider the length to width ratio, cross-sectional areas, basin slopes and pond configuration, and aesthetics (young et al., 1996). Energy dissipation structures should be included for the basin inlet to, prevent resuspension of accumulated sediment. The use of stilling basins for this purpose should be avoided because the standing water provides a breeding area for mosquitoes. Extended detention facilities should be sized to completely capture the water quality volume. A micropoql is often recommended for inclusion in the design and one is shown in the schematic diagram. These small permanent pools greatly increase the potential for mosquito breeding and complicate maintenance activities; consequently, they are 'not recommended for use in California. A large aspect ratio may improve the performance of det~ntion basins; consequently, the outlets should be placed to maximize the flowpath through the facility. The ratio of flowpath length to width from the inlet to the outlet should be at least 1.5:1 (L:W) where feasible. Basin depths optimally range from 2 to 5 feet. The facility's qrawdown time should be regulated by an orifice or weir. In general, the outflow structure should have a trash rack or other acceptable means of preventing clogging at the entrance to the outflow pipes. The outlet design implemented by Caltrans in the facilities con~tructed in San Diego County used an outlet riser with orifices Figure 1 Example of Extended Detention Outlet Structure 4 of 10 California Stormwater 'BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Errata 5-06 I I I I I .. I I I I I I I I I I I I I Extended Detention Basin TC-2-2 sized to discharge the water quality volume, and the riser overflow height was set to the design storm elevation. A stainless steel screen was placed around the outlet riser to ensure that the orifices would not become clogged with debris. Sites either used a separate riser or broad crested' weir for overflow of runoff for the 25 and greater year storms. A picture of a typical outlet is presented in Figure 1. The outflow structure should be sized to allow for complete drawdown of the water qualitY volume in 72 hours. No more than 50% ofthe water quality volume should drain from the. facility within the first 24 hours. The .outflow structure can be fitted with a valve so that discharge from the basin can be halted in case of an accidental spill in the watershed. Summary of Design Recommendations -(1) Facility Sizing -The required water quality volume is determined by local regulations .(3) (5) January 2003 Errata 5-06 or the basin should be sized to capture and treat 85% of the annual runoff vdlume. - See Section 5.5.1 of the handbook for a discussion of volume-based design. Basin Configuration - A high aspect ratio may improve the performance of deteption basins; consequently, the outlets should be placed to maximize the flowpath through the facility. The ratio of flowpath length to width from the inlet to the outlet should be at least 1.5:1 (L:W). The flowpath length is defined as the distance frpm the inlet to the outlet as measured at the surface. The width is defined as the mean width of the basin. Basin depths optimally range from 2 to 5 feet. The basin may include a sediment forebay to provide the opportunity for larger particles to settle out. A micropool should not be incorporated in the design because of vector co~c~rns. For online facilities, the principal and emergency spillways must be sized to ptoyide 1.0 foot of freeboard during·the 25-year event.and to safely pass the flow from lOa-year storm. Pond Side Slopes -Side slopes of the pond should l?e 3:1 (H:V) or flatter for grass stabilized slopes. Slopes steeper than 3:1 (H:V) must be stabilized with an appropriate slope stabilization practice. Basin Lining -Basins must be constructed to prevent possible contaminatiOJ,l of groundwater below the facility. Basin Inlet -Energy dissipation.is required at the basin inlet to reduce resuspension . of accumulated sediment and to reduce the tendency for short-circuiting.. . Outflow Structure -The facility's drawdown time should be regulated by a gate valve or orifice plate. In general, the outflow structure should have a trash rackor other acceptable means of preventing clogging at the entrance to "the outflow pipes .. The outflow structure should be sized to allow for completedrawdown of the water quality volume in 72 hours. No more than 50% of the water quality volume should drain from the facility within the first 24 hours. The outflow structure should be fitted with a valve so that discharge from the basin can be halted in case of ~ . accidental spill in the watershed. This same valve also can be uSed to regulate the rate of discharge from the l;>asin. California Stormwater BMP Handbook New D-evelopment and Redevelopment www.cabmphandbook.com 5 of 10 I 'I I )'1 I I I I I I. I I I I '1 I TC-22 Extended Detention Bas'in The discharge through a control orifice is calculated from: Q = CA(2g(H-Ho))O.5 where: Q = discharge (ft3/s) C = orifice coefficient A = area of the orifice (ft2) g = gravitational constant (32.2) . H = water surface elevation (ft) Ho= orifice elevation (ft) Recommended values for Care 0.66 for thin materials and 0.80 when the material is thicker than the orifice diameter. This equation. can be implemented in spreadsheet form with the pond stage/volume relationship to calculate drain time. To do this, use the initial height of the water above the orifice for the water quality volume. Calculate the discharge and assume that it remains constant for approximately 1O,minutes. Based on that discharge, estimate the total discharge during that interval and the new elevation based on the stage volume relationship. Continue to iterate until H is approximately equal to Ho• When using multiple orifices the discharge from each is summed. (6) Splitter Box -When the pond is designed as an offline facility, a splitter structure is used to isolate the water quality volume. The splitter box, or other flow diverting approach, should be designed to convey the 2s-year storm event while providing at least 1.0 foot of freeboard along pond side slopes. (7) Erosion Protection at the Outfall-For online facilities, special consideration should be given to the facility's outfall location. Flared pipe end sections that discharge at or near the stream invert are preferred. The channel immediately below the pond outfall should be modified to conform to natural dimensions, and lined with large stone riprap placed over filter cloth. Energy dissipation may be required to reduce flow velocities from the primary spillway to non-erosive velocities. (8) Safety Considerations -Safety is provided either by fencing of the facility or by managing the contours of the pond to eliminate dropoffs and other hazards. Earthen side slopes should not exceed 3:1 (H:V) and should terminate on· a flat safety bench. area. Landscaping can be used to impede access to the facility. The primary spillway opening must not permit access by small children. Outfall pipes above 48 inches in diameter should be fenced. Maintenance Routine maintenance activity is often thought to consist mostly of sediment and trash and debris removal; however, these activities often constitute only a small fraction of the maintenance hours. During a recent study by Crutrans, 72 hours of main,tenancewas performed annually, but only a little over 7 hours was spent on sediment and trash removal. The largest recurring activity was vegetation management, routine mowing. The largest absolute number of hours was associated with vector control because of mosquito breeding that occurred in the stilling basins (example of standing water to be avoided) installed as energy dissipaters. In :most cases, basic housekeeping practices such as removal of debris accumulations and vegetation 6 of 10 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Errata 5-06 I I I I· I I I I I I I ·1 I I I .1 I I I Extended Detention Basin TC-22 management to ensure that the basin dewaters completely in 48-72 hours is sufficient to prevent creating mosquito and other vector habitats. Consequently, maintenance costs should be estimated based primarily on the mowing frequency . and the time required. Mowing should be done at least annually to avoid establishment of woody vegetation, but may need to be performed much more frequently if aesthetics are an important consideration. Typical activities and frequencies include: • Schedule semiannual inspection for the beginning and end of the wet season for standing . water, slope stability, sediment accumulation, trash and debris, and presence of burrows. • Remove accumulated trash and debris in the basin and around the riser pipe during the semiannual inspections. The frequency of this activity may be altered to meet specific site conditions. • Trim vegetation at the beginning and end of the wet season and inspect monthly to prevent establishment of woody vegetation and for aesthetic and vector reasons~ • Remove accumulated sediment and re-grade about every 10 Yel'll'S or when the accumulated- sediment volume exceeds 10 percent of the basin volume. Inspect the basin each year for accumulated sediment volume. Cost Construction Cost The construction costs associated with extended detention basins vary considerably. One recent study evaluated the cost of all pond systems (Brown' ahd Schueler, 1997). Adjusting for inflation, the cost of dry extended detention ponds can be estimated with the equation: where: C = Construction, design, and permitting cost, and V = Volume (ft3). Using this equation, typical construction costs are: $ 41,600 for a 1 acre-foot pond $ 239,000 for a 10 acre-foot pond $ 1,380,000 for a 100 acre-foot pond \ . Interestingly, these costs are generally slightly higher than the predicted cost of wet ponds - (according to Brown and Schueler, 1997) on·a cost per total volume basis, which highlights the difficulty of developing reasonably accurate construction estimates. In addition,a typical facility constructed by Caltrans cost about $160,000 with a capture volume of only 0.3 ac-ft. An economic concern associated with dry ponds is that they might detract slightly from the value of adjacent properties. One study found that dry ponds can actually detract from t4e January 2003 Errata 5-06 California Stormwater'BMP Handbook New Development and Redevelopment www.cabmphandbook.com 7 of 10 I I I I I I I I I I I I I I I I I I I TC-22 Extended Detention Ba·sin perceived value .of homes adjacent to a dry pond by between 3 and 10 percent (Emmerling- Dinovo, 1995). Maintenance Cost For ponds, the annual cost of routine maintenance is typically estimated at about 3 to 5 percent of the construction cost (EPA website). Alternatively, a community can estimate the cost of the maintenance activities outlined in the maintenance section. Table 1 presents the maintenance costs estimated by Caltrans based on their experience with five basins located in southern California. Again, it should be emphasized that the vast majority of hours are related to vegetation management (mowing). Table·l Estimated Average Annual Maintenance Effort Activity Labor Hours Equipment & Cost Material ($) Inspections 4 7 183 Maintenance 49 126 . 2282 Vector Control 0 0 o' Administration 3 0 132 Materials 535 535 Total 56 $668 $3,1.32 References and Sources of Additional Information Brown, W., and T. Schueler. 1997. The Economics of Storm water BMPs in the Mid-Atlantic Region. Prepared for Chesapeake Research Consortium. -Edgewater, MD. Center for Watershed Protection. Ellicott City, MD. . Denver Urban Drainage and Flood Control District. 1992. Urban Storm Drainage Criteria Manual-Volume 3: Best Management Practices. Denver, CO. Emmerling-Dinovo, C. 1995. Stormwater Detention Basins and'Residential Locational Decisions. Water Resources Bulletin 31(3): 515-521 Galli, J. 1990. Thermal Impacts Associated with Urbanization and Stormwater Management Best Management Practices. Metropolitan Washington Council of Governments. Prepared for Maryland Dep,artment of the Environment, Baltimore, MD. . GKY, 1989, Outlet Hydraulics of Extended Detention Facilities for the N oi'thern Virgihia Planning District Commission. MacRae, C. 1996. Experience from Morphological Research 'on Canadian Streams: Is Control of the Two-Year Frequency Runoff Event the Best Basis for Stream Channel Protection? In Effects of Watershed Development and Management on Aquatic Ecosystems. American Society of Civil Engineers. Edited by L. Roesner. Snowbird, UT. pp. 144-162. 8 of 10 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 Errata 5-06 I I I I I I I I I I I . 1 I I I I I I I Extended Detention Basin TC-22 Maryland Dept ofthe Environment, 2000, Maryland Stormwater Design Manual: Volumes 1 & 2, prepared by MDE and Center for Watershed Protection.. http://www.mde.state.md.us/environment/wma/stormwatermanual/index.html Metzger, M. E., D. F. Messer, C. 1. Beitia, C. M. Myers, and V. 1. Kramer. 2002. The Dark Side Of Stormwater Runoff Management: Disease Vectors Associated With Structural BMPs. StQrmwater 3(2): 24-39· Santana, F., J. Wood, R. Parsons, and S. Chamberlain. 1994. Control of Mosquito Breeding in Permitted Stormwater Systems. Prepared for Southwest Florida Water Management District, Brooksville, F1. Schueler, T. 1997. Influence of Ground Water on Performance of Stormwater Ponds in Florida. Watershed'Protection Techniques 2(4):525-528. Watershed Management Institute (WMI). 1997. Operation, Maintenance, and Management of Stormwater Management Systems. Prepared for U.S. Environmental Protection Agency, Office of Water. Washington, DC. Young, G.K., et al., 1996, Evaluation and Management of Highway RunojfWater Quality, Publication No. FHWA-PD-96-032, U.S. Department of Transportation, Federal Highway Administration, Office of Environment and Planning. Information Resources Center for Watershed Protection (CWP), Environmental Quality Resources, and Loiederman Associates. 1997. Maryland Stormwater Design Manual. Draft. Prepared for Maryland Department of the Environment, Baltimore, MD. Center for Watershed Protection (CWP). 1997. Stormwater EMP Design Sl.f.pplementfor Cold Climates. Prepared for U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds. Washington, DC . U.S. Environmental Protection Agency (USEPA). 1993. Guidance Specifying Management Measuresjor Sources ojNonpoint Pollution in Coastal Waters: EPA-840-B-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC. January 2003 Errata 5-06 California Stormwater BM? Handbook New Development and Redevelopment www.cabmphandbook.com 9 of 10 I I I I I I I I I I I I I I I I I I TC-22 Extended Detention Basin MAXIMUM OF ED POOL ANTI-5EEP COLLAR FILTER DIAPHRAGM Schematic of an Extended Detention Basin (MOE, 2000) 10 of 10 California Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks .. com EMERGENCY SPILLWAY· PLAN VIEW SPILLWA'I' PROFILE January 2003 Errata 5-06 I I I I I I I, I I I I I 1 I 12" I 1 I US PATENT I I Altach to catch basin wall or ~--~ 1/ TOPVlEW FRONTVlEW _____ Catch Basin Wall Stainless S~ Debris Trap o (optional) !IIIIIIIII~_ FulerUner Support Basket SIDEVlEW Debris Trap I Uner NOTES: 1. Ao-GanF!.4-PLUS (curil mount) high capacity catch basin Inserts are aVaIlable in sizes to fitmostinduslly.standartl catch basin sizes<md styles (see specifier chart). ,Refer to the AD'GartlTh4-pLUS (wall mount) insert for devices to fit non-standard or combination style catch basins. 2. filter insert shall ~a~ both an '1nitial" fittering bypass and wultimale" higMiow bypass feature. . 3. Filter assenilly shall be constructed from Stainless steel {Type3D4}. 4. Allowa minimum of 'Z.Q" of clearance betwaen the bottom of grate and top of inlet or ouHet pipe(s}. Refer to the Ao-GardThl insert for "shallow" installations. 5. Filler medium shall be Rubberizerm Installed and maintained in accordance v.ilh manufacturer recommendations. .FLO .. GARD™ +PLUS CATCH BASIN FILTER INSERT (Curb Mount) CURB INLET KriStar Enterprises, Inc., Santa Rosa, CA (800) 57~819 1 12" 1 06/04 I I: I' I I I I "I I I I I I; I II. I I I' I .us PATENT FILTER BODY CURB INLET-SIDE V1BN SCALE: NONE FILTER BASKET FOSSIL RocR FILTER MEDIUM POUCH CURB OPENING '3/8'iX3" ANCHOR BOLT (3 PER SECTION) .FLO .. GARO™+PLUS CATCH BASIN FILTER INSERT .(Curb Mount-Installation Options) CURB INLET KriStar Enterprises, Inc., Santa Rosa, CA (800) 579-8819 06/04 I I, I I I I I: I I I I I I I I I ,I I I us PATENT INLET FLOW COLLECTION mAY OPTIONAL RECESSED MOUNT SCAlE: NONE FLO-GARO'+PLUS (REMOVABlE) FLOATING EDGE EXAMPLE: SAN DIEGO REGIONAL STANDARD AATERTlGH'i SEAL (CURVED UF"V\!tIRD) CURB lNLETlYPE "S" FLODGARD™ +PLUS CATCH BASIN FI~TER INSERT (Curb Mount-Installation Options) CURB INLET· RECESSED MouNT KriStar Enterprises, Inc., Santa Rosa, CA (800) 579-8819 ,06/04 I I I I I I. I I I I I I· I; I I I il' I I I US PATENT CATCH BASIN FILTER BODY FILTER BASKET FOSSIL ROC~ FILTER MEDIUM POUCH '. ". PIPE INLET PIPE INLET FLOWLINE 3/8" X 3" ANCHOR BOLT (3 PER SECTION) PIPE INLET.;.SIDE VI.EW SCALE: NONE .FLOmGARDTM +PLUS' CATCH BASIN FILTER INSERT .(Curb Mount-Installation Options) PIPE INLET KriStar Enterprises, Inc., Santa Rosa; CA (800) 579-8819 06/04 I I I I I I I I I I I I I I I RoGardS);.Plus Filter installed SPECIAER CHART Model No. FGP-24C1 FGP-30Cl FGP-36C1 FGP-42C1 FGP-48C1 FGP-5.0Cl FGP-6.0Cl FGN.OCl FGP-8.OCI FGP-10.0CI FGP-12.0Cl FGP-14.OCI FGP-16.0Cl FGP-18.0CI FGP-2i.OCI FGP-28.OCI JnletWidth (in)' 24 .30 36 42 48 :60 72 84 96 .120 .144 168 .192 216 252 336 Solids Storage Filtered Row Tot~ Bypass .Capacity (cu tt) (cfs) . Cap. refs) 0.9 .0.8 .5.6 .1.1 1.n 6.7 .1.4 1.2 7.9 .1.6 .1.4 8.8 .1.9 .1.5· 9.9 2.3 .1.8 11.6 2.8 2.2 .13.8 3.2 2.5 .15.9 3.7 2.9 .18.0 .4.6 3.5 21.9 5.6 4.2 26.2 6.5 .4.9 30.1. .7.5 5.6 34.4 .8.3 6.2 38.2 .9.7 .7.2 .44.3 .13.0 9.5 58.6 .·Dmenslons shown are approximate -submtt exact measurements when ordenng NOTES: .1. Storage capacity reflects 80% of maximum sonds collection prior 10 Impeding littering bypass. 2. Filtered flow rate includes a safety factor of 2. .3. RoGarc:I®!-Plus calch Basin FIller Inserts are available In Ihe standard sizes (see above) or in custom sizes. . can for details on custom size Inserts. 4. Available willi recessed mount package including fiberglass tray allowing maintenance access irom manhole. 5. FloG~Plus filler Inserts should be used in conjuncUon with a regular maintenance program. Asfer 10 manllfaclureJ's recommended maintenance guidelines. US PATENT .FLOGARD® +PLUS .CATCH BA~IN FILTER INSERT (Curb Mount) .CURBINLET KriStar Enterprises, Inc., Santa Rosa, CA (BOO) 579-8819 09105 I I I I I' I I I I, I I I I I I 1 Oil and Grease and Particle Removal by KriStar Flo-Gard and Flo- Gard High Capacity Storm drain Insert.S by Michael K. Stenstrom Sim-LinLau Civil and Environmental Engineering Department University of California, Los Angeles 4173 Engineering I Los Angeles, CA 90095-1~93 February 20, 2002 I I I I I I I I I I I I .... I I I I I I Summary A series of experiments was performed in a small but full-scale catch basin simulator to determine the efficiency of various Kristar (Fossil Filter) catch basin inset"t.S to remove oil and grease and suspended solids. Catch basin inserts are devices used Ll1 stonnwater collection systems to remove various poUutailts, including suspended solids. litter ai1d oil 8J.""ld grease. Devices from several other manufacturers have also been tested in this same facility. This work builds upon an earlier project to develop catch basin inserts, which was funded in part by the Santa Monica Bay Restoration Project and in part by a consortium of cities and agencies. All experi.lnents were conducted in a full-scale "mock" catch basin (36 inch wide opening) located in a laboratory at UCLA. The catch basin is constructed of plywood 8J.""ld stands above grade to allow easy access and installation of prototype devices. Tlie· catch basi.'1 operates wit.1-t tap water at flow rates from near zero to 200 gallons per minute (GPM). Various levels of contaminants can be added to the influent to simulate stonnwater. Tests were perfonned on two types of inserts, called Flo-GardTI~ and Flo-GardTI•1 High Capacity, over flo·w rates ranging from 15 to 25 gallons per minute (GPt-I1). Testing was performed to determine oil and grease removal rate for i.nii.uent concentrations that. varied from 16 mgIL to 36 mgIL for thne periods from 30 to 180 mh"1.utes. Total suspended solids (TSS) removal was evaluated for concentrations from 65 to 100 mgJL fur 30rninute periods. Automobile crank case oil was used to simulate oil and grease in stortnwater. Graded sand was used to simulate TSS in stonnwater. Two types of sorbents were used for the oil and grease studies: Fossil Rock™, an aluminum silicate.· sorbent, and Rubberizer™, an organic polymer. Both are cO.rr1J.llercially available for this and other app lications . Oil B...nd grease removal efficiency ranged from 70 to 80% for most conditions. Sand removal was nearly 100% for particles 30 mesh (589 to 833 !-lm) and larger, 20% for particles 60 mesh (250 to 420 rom) and nearly zero for smaller pa...-ticies. E}..llerimental Methods Figure 1 show is a schematic diagram of the experimental facility. BuildLng water (tap water) is connected to the catch bash. sitnulator via a 3-LT1.ch diameter pipe: Two flow meters are provided. The flrst is an ultrasonic flow meter (Dynasonic UST-603, Naperville, IL) that uses Doppler effect to dete~ine the velocity of flowing particles. From the velocity and kno ..... vn pipe di8..\-neter, the flow is calculated. In this application, there are too few particles in the tap water and a small quantity of air is added to simulate particles. A second flow meter (Signet +GF+, ColeMParmer: Chicago, IL) using a paddle wheel is also used. The paddle wheel rotations are cotmted and the flow rate is proportional to the rotations; different calibrations axe provided for different pipe I I I I I I I I I I I I I I I I I : I I' I ... -~ -... --;::. ............ . Air Injection Point i I 3 in. Tap water line. I . \ .j __ '_'~;~~ ___ -::: .. _:::-, .....!L~ ____ -=)of~1 Stilling 1. ___ ---. Control Valve ""_: /.----1===' I Chamber I I!~ 1~ I ·1 f f \. . /1. Doppler Effect '" ...... ",/' '--------' Flow Meter Paddle Wheel Flow Meter EJJ1<""'..j Contaminant ----. ,', ,/1. Reservoir. Metering Pump .~ w E d -IJ.. CU -0 § :b \ J ~----~ Kristar Insert ~kli«~ _____ '--:''f Effluent Sample Point I i i ! I Influent Sample Point I I I I I I I I I I I I I I I I I I I diameters. The ultrasonic meter is used for higher flows while the paddle wheel meter is more convenient for low flows. The paddle wheel meter was generally used during these experirnents. The pipe connects to the stilling basin, which discharges into a 24 inch-wide flume. The purpose of the stillil"1g basin is to dainpen -velocities from the inlet as well as to h,sure a constant flow rate. The flume is 10 feet long and connects to the catch basin. All contaminants (oil and grease, sand, etc.) were introduced into the 24-inch flume. Liquids were pumped into the flume using a peristaltic metering pump. The sand was "sprinkled" into the flow from preweighed sample bottles over 1 or 2-minute intervals. In this way the appropriate amounts of sand were released every one or two minutes. This process was continued throughout the test. The flume provides adequate mixing to disperse all materials.' . Test Sequence. iru4.uent samples were collected from the free surface as the water spilled into the inlet device. Effluent samples were collected by pasSltlg glass sample bottles below the inlet device. Tests were begun by coilecting a influent sample prior to the introduction of any contaminants to the flume. Next the m~termg pump was turned on. Effluent samples were collected periodically for the test dura.tion. Generally 10 to 12 samples were collected for' each test, and samples were evenly distributed over time. Two additional influent samples were collected at times equal to approximately one-third and tvvo-thirds of the test duration. At the end of the test, the metering pump was turned off. In previous testing sampling continued for 30 minutes after ending oil and grease addition. For aluminum silicate, Rubberizer and OARs sorbents at the concentrations used in the:;e studies, it was shown that no measurable oil and grease desorbs. In some cases the sor-bents were reusecj, which simulates sequential rainfalL For these tests, the sorbent was allowed to drY but' was not modified jn anyway. Samples were generally analyzed within 16 hours after the tests were completed. OU and gre.ase removal test. Tests were generally performed for 30 minutes (see Table 1 for a summary ofall tests). Used crankcase lubricatL'1g oil (from automobiles) was used as the oil and grease source. One batch'rvas used for all tests. influent oil and grease samples were co 1Iected as the oil/water combination flowed into the insert. Effluent samples were collected by capturing flow from the bottom of the insert. Efficiencies were calculated by subtracting the measured effluent concentrations from the average influent concentration. All tests were performed at constant flow rate. Oil and Grease Analysis. Oil and grease was measured using a solid phase extraction (SPE) tech11ique developed earlier by the authors (Lau and Stenstr~m, 1997). This technique uses a known yoluqle of sample (geneFal1y 500 mi for this study), which is pumped through an SPE column at a const8.1l.t but low rate (e.g., 5 mlImin). The oil8.1"1d grease in the sample is sorbed on the SPE column. After the sample is pumped through the colurnn., it is eluted with a small volume 'ofsolyent (5 ml):methylene chloride and hexane. Tne sample bottle is also washed with a small volume ofisopropanol. The tyy"O I I I I I I I I I I I I I I I I I I I .~. solvent volumes are combined and placed in a tfu.-red container. The solvents are allowed to dry at 50°C using a gentle nitrogen purge. The residue is weighed and the results are reported as mgIL based upon the original sample volume. This method has the advantages of higher recovery, especially for the more volatile components in oil and grease, and using less solvent. By using different sample volumes is it possible to have different detection limits, and the limit with 500-ml sarnple volume is typically 0.25 mgIL. This method does not quantitatively measure oil and grease ,adsorbed 'LO solids and an alternate technique must be used for partic1e-bouIld oil and grease. However, this is not h-nportant for this study because no particles where added to the tap water used for oil a.T1d grease testing. Sand particle removal test. Sand particles were prepared by sieving sands from various sources, but mostly from sand used for concrete construction. A series of ASTM standard sieves were used. Particles were selected to demonstrate removal efficiency, as opposed to simulate particles found in storm water: For the screen provide in the high capacity FIe Gard, sieve sizes of la, 30, 40, 60 and 100 (2000, 833, 589,420,250, 149 f.lm respectively) were selected. Equal. known masses of each sand particle size were , released into t.;'e flume over a 30 minute test which flowed into the insert. 'Below the hlsert, a fine'screen, correspondLTlg to 325 mesh (45 f.lID), captured the particles not. removed by the insert. At the end of the test:, the 325-mesh screen was removed 8.!."ld t.he retaLT1ed sand particles were collected, dried, sieved and weighed. The weight of recovered particles in each sieve size was compared to the amount of sand released into the flume to calculate efficiency. As expected the large particles were removed well, while the smaller particles were removed poorly. The smallest sandpardcles are smaller t.l1an the mesh openings. Three sand removal tests were performed. One was performed at 25 gallons per minute (GPM) and two were performed at 15 GPM. Sand was added to create l..>+1uent concentrations equal to 65 to 100 mg/L Inserts The tvvo inserts tested were standard units and were modified only to allow them to be accurately positioned LT1 the simulated catch basin. This required the end brackets to be modified to allow attachment. The pollutant removal par!.S of the inserts (e.g., sorbent pouches, screens) were not modified. The Flo-Gard insert measured 35 LTlches long by 22 inches 'wide and was open in the middle. The opening was 27 inches long an.d 15 inches wide. The area.betvveen the opening and the outside dimensions is a trough of screen and contained 6 pouches or "sausages" of sorbent. The opening is provided to allow high flows to bypass. T~e sorbent pouches can be replaced in both models without removing t.;'e insert. The Flo- Gard high capacity insert was 35 inches long by 17 inches deep. The central section is fully enclosed and forms a bag that retains Etter and .debris. The internai dimensions are 32. long by 12 irlches wide, fu."ld t.h.e bag is 28 inches deep. Sorbent pouches (12) are, · .~ ... _. --- -------- I I I I I clipped to the sides and bottom of the bag. Two types of bags were tested; the bottom of Table1. Oil and grease removal test conditions used. Test No. Insert Type Sorbent Flow rate Duration Infh!e.!1l conc. (GPlvI) (mL.i) (mglL) ·1 Flo-Gard High Capacity Fossil Rock .15 30 16 2 From test 1 15 30 29 3 From test 2 15 180 26 I 4 Flo-Gard Fossil Rock 15 30 34 5 From test 4 15 30 34 6 From test 5 15 180 34 I 7 Flo-Garcf''' High Capacity, Rubberizer 15 30 36 non-woven bottom 8 From test 7 15 30 31 I 9 From test 8 15 180' 23 10 Flo-GarcfiM High Capacity Rubberizer 15 30' 22 11 From test 10 15 30 24- I 12 From test 11 15 180 30 I I I Table 2. Particle removal test conditions used. Test No. Insert Type Mesh No. Particle Flow rate Duration 1niluedt conc. size(um) (GPlYf) (min) (mgIL) 13 Flo-Card :t-l1gh 20,30, 2000,833, 15 30 65 Capacity 40,60, 589,420, 100 250,149 14 Flo-G-"rd }lJgh 20,30. 2000,833, 1 -30 100 .J Capacity 40,60, 589,420, 100 250,149 15 Flo-Gaia High 20,30. 2000,333, 25 30' .. 65 Capacity 40,60, 589: 420, 100 250, 149 16 F1o-Gard 20,30, 2000,833, 15 30 65 I 40,60, 589,420, 100 250,149 17 Flo-Gard 20,30, 2000,833, 15 30 100 40,60, 589,420, I 100 250, 149 18 Flo-Gard 20,30, 2000,833, 25 30 65 40,60, 589,420, I 100 250, 149 19 Flo-Gaid :High 20,30, 2000,833, ?-30 65 _J Capacity, non-woven 40,60, 589,420, bottom 100 250, 149 20 Flo-Gard }i:ig,i 60,100, 250,149, ?-30 65 _J I Capacity, non-woven 200 75 bottom I I, I I I I I I I I I I I I I I I I I I I one was screen,just like the walls, while the other was non-woven polypropylene. Manufacturer's litera~re should be consulted for more precise information. Results and Discussion Figure 2 (top) shows the results of the first two sedes of test (3 tests each). Two insert configurations (Flo-Gard and Flo-Gard High Capacity) were evaluated. Bothused alumi11um silicate (Fossil Rock) sorbents. The first two t.ests for each insert were conducted over a 30-minute period. The third test was conducted over a: 180-minute period. The first two tests were used to establish the remoyalefficiency of the unit. The third test was performed to see if any decline irl removal efficiency would occur due to saturation of the sorbent. The initial removal efficiency of both inserts was approximately 85% arid decline slightly during the first 60 minutes. The high capacity unit showed less decline in removal rate after the thir<;l test, as expected. The normal capacity unit declined to approximately 60% .. removal after 240 minutes, while the high capacity il"lSert Mcline to 70%. The high capacity insert has greater sorbent mass and has greater volume for litter and debris retention. Rubberizer sorbent was also used in the high capacity insert. RubberizeI' has greater . specific gravity than aluminum silicate (0.10 to 0.13 for aluminum silicate versus 0.26. for Rubberizer). Rubberizer has less tendency to abrade than aluminum silicate sorbents. . Both have particles sizes approximately 2 to 3 nun. Sorbent pouches containing Rubberizer were substituted in each insert in exactly the same way as aluminmn silicat~ pouches were used. Figure2 (middle) compares the removal efficiencies with Rubberizer and aluminum silicate. The Rubberizer has lower initial removal efficiency, but declines less over tirne. After 240 minutes, the efficiency of both sorbents was approximately 70%. Figure 2 (bottom) compares a modified screen to a normal screen using Rubberizer as sorbents. The difference in t.'1e screen is the bottom construction. The modified screen has a non-woven bottom composed of polypropylene mesh. The polypropylene mesh is also a good oil and grease sorbent: It has a very fine mesh and is more subject to clogging than the more open screen. The non-woven bottom produces higher effici~ncy during the initial phases of the tests, EiJ."1d approxi..-nates the same re~oval efficiency as aluminum silicate sorbent. Figures 3 and 4 show the pa.rticle removal rates ofFlo-Gard and Flo-Gard High Capacity inserts. Sand was sieved us1."1g ASTrA screens to produce the particle size groupings shown on the horizontal axis of each graph. Sieves were chosen to select particles that were Jarger, equal to and less than the nominal screen size openings. Figure 5 shows a photomicrograph of the mesh with a millimeter ruler, and both irJ.Serts used the same size me~h. The openings are approximately 500 !-lm. The elongated openings at the surface of the ruler are an artifact of cutting the mesh. . I I I I I I I I I I I I I I I I I I I Removal rates are consistent with t.l1e average mesh opening (500 !lIn). Particles much larger(580 to 2,000 j.ll11) were alrnost completely removed. Very little removal occlliled with smaller particles smaller than 420!lffi. Removal rates at higher flow rates or concentrations were slightly higher, suggesting that accumulation ofparticles at the screen might be forming a "dynawlc" filter. Head loss for the flows and amounts of particles removed were not observably different from head loss with.out partic1es. More accumulation of particles would be necessary to observe head loss. Conclusions The performance of these two devices is consistent with the better devices tested,in our taboratory (Lau, Khan a,nd Stenstrom, 2001). The differences in perfo,rmance, as measured by these tests is small, and the selection of pro ducts could be based upon other considerations, such as cost, durability and potential for clogging. I I .-: I I I I I I I ,I I I ','I I I I II Figure 2. , i I I 1¥ g g c: .': 1~ :::..,;1 ~! 1:::;;: ~~~------------------------~~ ,co , ' • • • ; • I F..ii.""~= = i·~ _i=.:.:. .. ! ........ + .............. h ... ~ .. ~ .... h ..... _ ... i :F~~I;~+~==~~:~:~r.~=1 +-t--··t~·j·-··i--··,···I Q $J 1;Q ,5:) . ::'!Ul ~:J lir;;a{r.:'Jn) 1:;1 2..,~ tt= ~ ;3r:S.!.!::\ ~~~----------------------------~> 1::1 2."l~ t=: u::: ~r.t:=1 ~~~(~----------~~~------------~~~ '00 so "" ~ '" , , . ¥ j :2 c_ a._ ... .;_~ ~ ::J : •••• ---... i-.~ ... -. :~~:=i~:~~:j~ __ :_ ... ~~L~=--=r~ ..... _.~. ~ ~ I I ---0-rGti-.'rr·'. n.u!::t~'L.=r ___ ...... _-l ........... _ .......... E. ............ __ • --0 FGH. RubQEri= i g : ; n· .. ······ .... · __ .. 1··· .. ······ ... ·_ .. ·f-.. __ ·····_···i··_·_· .. _·· ...... i· .. · ..... · .. · .. ···· I I ! ~ .. ,. . "" ~ ~ w m Oil and grease removal efficiency ofFlo-Gard™ insert (tests H2). I I I I I I I 1-:- I i I I I I I I I I I I I I -;-15 GPM (65 rngll 88) 120{ i 100 ................. _.:;: =e "'""-=:.; _ .... --_ .. _. l ¥ ~ 1 't\' --3 -25 GPM (65 rng/L S8) 80 t .. _---+---l-->, -_. -_ -&--15 GPM (100 moILSS] --l o 20 (833- 2000 urn) 30 (589- 833 urn) 40 (420- 589 urn) Mesh No. (particles size) 60 (250- 420 urn) ,. iOQ (149· 250 urn) Figure 3. Par-Jcie removal efficiency ofFlo-Gard'iM insert (tes'"LS 16-18). 120 t . . I 1 ~ j ~ ~ 15 GPM (65 rnall 5S) 00 ~ ·-.. ····-.. ··-·-·"ie=s·-·~ .. ·1\-·--'= _ 25 GPM (65 rn~ 5S) •••. , ......... \ 80 t'-"---'-;---'-'--r-rj -~--15 GPM (100 mgIL SS) --I 6Ot--t---f~-~-+-'--~--'1 40 J-'--'-r----r-"F-r---r------' 20 E-.... -.. --.... J.. •• -.---.-.--!.-... _ .. _-h~.-.-....... --. ...;..._ .. _.-_ .... . ~ I I I ~ ! o I I I I ,. I 20 SO 40 60 100 (833-(589-{420-{250-(149- 2000 urn)· 833 urn) 589 urn) 420 urn) 250 urn) Mesh'No. (particles sizs) Figure 4. Particle removal efficiency ofFlo-Gardi 1.l High Capacity (tests 13-15). .--... ,-----"'-,-------~-----..... __ .. _._._--_.-.-_ .. -....... .. . __ . -..... --, --~. -' .,. -~ .... --. -~ ~ .. -' -.. . -_. -. -.--..... -. "" ,".. ,', .. --_.--. ".--_.---------. ... .. . _ ..... -.. --..• ::-.-.:~.-.-.----.. I I I'· I 'I I, Ii' .- II~ I!,': I I . I ' I. ; I I I Figure 5. I I I I I I I I I I I I I I I· I I I I I I References Lau, 8-1. and M. K. Stenstrom, "Application of Oil Sorbents in Oil and Grease Removal from StorIDwater RUi1off," Proceedings of the 68th Annual Water Environment Federation Conference and Exposition, Miami Beach, FL, October 21-25, #: 9572008, Vol. 3, pp. 685-695, 1995. Lau, S-1. and M.K. Stenstrom, "Solid Phase Extraction for Oil and Grease Analysis," Water Environment Research, Vol. 69, No.3, pp. 368-374, 1997. Lau S-L., E. Khan, and M.K. Stenstrom, "Catch Basin Inserts to Reduce Pollution fro~ Storrnwater," Water Science and Technology, Vol. 44, pp. 23-34., 2001. I, I; I, I. I" I 'I: I I 1 I VI I I, I I I I I' I. I' I I I I ·1 I 1 I I I 1 1 '1 1 1 I· I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan CHAPTER 6 -SOURCE.CONTROL 6.1 -Landscaping Manufactured slopes shall be landscaped with suitable ground cover or installed with an erosion control system. Homeowners will be educated as to the proper routine maintenance to landscaped areas including trimming, pruning, weeding, mowing, replacement or substitution of vegetation in ornam~ntal and required landscapes. Per the RWQCB Order, the following landscaping activities are deemed unlawful· and are thus prohibited: Discharges of sediment Discharges of pet waste Discharges of vegetative clippings Discharges of other landscaping or construction-related wastes. During landscaping operations both during and after construction, landscape maintenance should be completed proactively. When these operations are in progress, bare or disturbed areas should be re-seeded/re-vegetated as quickly as possible to ensure that erosion is minimized. In addition, when landscape maintenance operations require the stockpiling of materials for longer than a period. of one day, these stockpiles should be covered to minimize the opportunity for rainfall to come in contact with the material. . 6.2 -Urban Housekeeping Fertilizer applied by homeowners, in addition to organic mattersuch as leaves and lawn clippings, all result in nutrients in storm water runoff. Consumer use of excessive herbicide or pesticide contributes toxic chemicals to runoff. Homeowners will be educated as to the proper application of fertilizers and herbicides to lawns and gardens. The average household contains a wide variety of toxins such as oil/grease, antifreeze, paint, household cleaners and solvents. Homeowners will be educated as to the proper use, storage, and disposal of these potential storm water runoff contaminants. Per the RWQCB Order, the following housekeeping activities are deemed unl~wful and are thus prohibited: Discharges of wash water from the cleaning or hosing of impervious surfaces including parking lots, streets, sidewalks, driveways, patios, plazas, and outdoor eating and drinking areas (landscape irrigation and lawn watering, as well as non-commercial washing of vehicles in residential zones,· is exempt from this restriction) RE.kc h:lreportsI2301115\swmp-03 doc w o. 2301'15 8/5/20081'18 PM I I I I I I I I I I I I I I I I I· I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Discharges of pool or fountain water containing chloride, biocides, or other chemicals Discharges or runoff from material storage areas containing chemicals, fuels, grease, oil, or other hazardous materials Discharges of food-related wastes (grease, food processing, trash bin wash water, etc.). 6.3 -Automobile Use Urban pollutants resulting from automobile use include oil, grease, antifreeze, hydraulic fluids, copper from brakes, and various fuels. Hom'eown!3rs will be educated as to the proper use, storage, and disposal of these potential storm water contaminants. Per the RWQCB Order, the following automobile use activities are deemed unlawful and are thus prohibited: Discharges of wash water from the hosing or cleaning of gas stations, auto repair garages; or other types of automotive service facilities. Discharges resulting from the cleaning, repair, or maintenance of any type of equipment, machinery, or facility including motor vehicles, cement- related equipment, port-a-potty servicing, etc. Discharges of wash water from mobile operations such as mobile automobile washing, steam cleaning, power washing, and carpet cleaning. The Homeowners Association will make all homeowners aware of the aforementioned RWQCB regulations through a homeowners' education program (note: examples are from the City of Carlsbad). Homeowners should be notified via HOA newsletter prior to the rainy season (Oct. 1 st) of storm water requirements. 6.4 -Integrated Pest Management (lPM) Principles Integrated pest management (IPM) is an ecosystem-based pollution prevention strategy that focuses on long-term prevention of pests or their damage through a combination of techniques such as biological control, habitation manipulation, modification of cultural practices, and use of resistant plant varieties. Pesticides are used only after monitoring indicates they are needed according to established guidelines. Pest control materials are selected and applied in a manner that minimizes risks to human health, beneficial and non-target organisms, and the environment. More information may be obtained at the UC Davis website (http://www.ipn.ucdavis.eduIWATER/U/index.html). RE:kC h:lreports\23.o1115Iswmp-.o3 doc 'w 0' 23.01·15 6/5/200,61'18 PM I I I I I I' I I I I I I I' I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan IPM is achieved via the following: Common Areas: -Eliminate and/or reduce the need for pesticide use in the project design by: (1) Plant pest resistant or well-adapted plant varieties such as native plants. (2) Discouraging pests by modifying the site and landscape design. Home Owners: Educate homeowners on applicable pest resistant plants and native species and also encouraging onsite landscaping design. . Pollution prevention is the primary "first line of defense'.' because pollutants that are never used do not have to be controlled or treated (methods which are inherently less efficient). -Distribute IPM educational materials to future.site residents/tenants.' Minimally, educational materials must address the following topics:· (1) Keeping pests out of buildings and landscaping using barriers, screens and caulking. . (2) Physical pest elimination techniques, such as, weeding, squashing, trapping, washing, or pruning out pests. (3) Relying on natural enemies to eat pests. (4) Proper use of pesticides as a last line of defense. 6.5 -Storm Water Conveyance Systems Stenciling and Signage The proposed development will incorporate concrete stamping, or equival~nt, of all storm water conveyance system inlets and catch basins within the project area with prohibitive language (e.g., "No Dumping -I Live in «name receiving water»"), satisfactory to the City Engineer. Stamping may also be required in Spanish. 6.6 -Efficient Irrigation Practices All Home Owners' Association (HOA) maintained landscaped areas will include rain shutoff devices to prevent irrigation during and after precipitation. Flow reducers and shutoff valves triggered by pressure drop will be used to control water loss from broken sprinkler heads or lines. 6.7 -Pet Ownership Responsibility . All open space areas will feature signage and pet waste collection bags to insure that pet waste is collected, preventing any sources ·of potential bacterial pollutants. RE:kc h IJ"eportS\2301\1S\Swmp.-D3.doc w.o.2301-15 8/5/20081;18 PM - - - - --_. - - - - - -... - - - --. In the City of Carlsbad, storm drains flow directly into local creeks, lagoons and the ocean without treatment. Storm water pollution is a serious problem for our natural environment and for people who live near streams or wetlands. Storm water pollution comes from a variety of sources including oil., fuel, and fluids, from vehicles and heavy equipments, pesticide runoff from landscaping, and from materials such as concrete and mortar from construction activities. The City of Carlsbad is committed to improving water quality and reducing the amount of po"utailts that enter our pr~ciolls waterways. A Clean EnV'oronment ~s Importarut to A~~ of Usl E City of Carlsbad 1635 Faraday Avenue Carlsbad, CA 92008 Storm Water HOTline: 760-602-2799 stormwater@ci.carlsbad.ca.us M~rch 2003 • - - - - - -_. - - - - - - - --. - - - Po!iution Preventuon is up to YOU! Did you know that storm drains are NOT connected to sanitary sewer systems or treatment plants? The primary p'urpose of storm drains is to carry rainwater away from developed areas to prevent flooding. Untreated po lIutants such as concrete and mortar flow di rectly into creeks, lagoons and the ocean and are toxic to fish, wildlife, and the aquatic environment. Disposing of these materials into storm drains causes serious ecological problems-and is PROHIBITED by law. Do the job Right! This brochure was designed for do-it- yourself remodelers, homeowner~, masons and bricklayers, contractors, and anyone else who uses concrete or mortar to complete a construction project. Keep storm water prot~ction in mind whenever you or people you hire work on your house· or property. Best Management Practices Best Management Practices or BMPs are procedures and practices that help to prevent pollutants such as chemicals, concrete, mortar, pesticides, waste, paint, and other hazardous materials from entering our storm drains. All these sources add up to a pollution problem. But each of us can do our part to keep storm water clean. These efforts add up to a pollution solution! What YOU Cam Do: • Set up and operate small mixers on tarps or heavy plastic drop cloths. • Don't mix up more fresh concrete or mortar than you will need for a project. • Protect applications of fresh concrete and mortarfrom rainfall and runoff until the material has dried. • Always store both dry and wet materials under cover, protected from rainfall and runoff and away from storm drains or waterways. • Protect dry materials from wind'. Secure bags of concrete mix and mortar after they are open. Don't allow dry proqucts tp blow into driveways, sidewalks, streets, gutters, or storm drains. • Keep all construction debris awCJY from the street, gutter and storm dr-ains . • Never dispose of washout into the street, storm drains, landscape drains, drainage ditches, or streams. Empty mixing containers and wash out chutes onto dirt areas that do not flow to' streets, drains or waterways, or allow material to dry and dispose of properly. • Never wash excess material from bricklaying, patio, driveway or sidewalk construction into a street or storm drain. Sweep up and dispose of small amounts of excess dry concrete, grout, and mortar in the trash. • Wash concrete or brick areas only when the wash water can flow onto a dirt area without further runoff or drain onto a surface which has been bermed so that the water and solids can be pumped off or vacuumed up for proper disposal. • Do not place fill material, soil or compost piles on the sidewalk or street. • If you orY9ur contractor keep a dumpster at your site, be sure it is securely covered with a lid or tarp when not in use. • During cleanup, check the street and gutters for sediment, refuse, or debris. Look around the corner or down the street and clean up any materials that may have already traveled away from your property. - -- - know that storm drains are ~onnected to sanitary sewer and treatment plants? purpose of storm drains areas to prevent flooding. storm water and the it carries, flow.direc.t1y into years, sources of water like industrial waters from have been greatly reduced. now, the majority of water fertilizers from farms and failing septic tanks, pet residential carwashing into sources add up to a pollution But each of us can do small help clean up our waler and up to a pollution solution! ---- - What's the problem with fertilizers and pesticides? Fertilizer isn't a problem-IF it's used carefully. If you use too much fertilizer or apply it at the wrong time, it can easily wash off your lawn or garden into storm drains and then flow untreated into lakes or streams. Just like in your garden, fertilizer in lagoons and streams makes plants grow. In water bodies, extra ertilizer . . can mean extra algae and aquatic plant growth. Too much algae harms water quality and makes boating, fishing and swim ming unpleasant. As algae decay, they use up oxygen in the water that fish and other wildlife need. ----.-.- Fertilizer photo Is used courtesy of the Water Quality Consortium, a cooperative venture between the Washington State Department of Ecology, King County and the cities of Bellevue, Seattle and Tacoma. Storm Water HOTline: 760-602-2799 stormwater@ci.carlsbad.ca.us I I. i i. i ) CitY'of Carlsbad 1635 Faraday Avenue . Carlsbad CA 92008 www.c1.carlsbad.ca.us 1\ . lo(jP'inled on recycled paper - --- - -- - opportunities, recreation, and add beauty 10 our YOU can help keep our and ocean clean by following tips: into the street or gutter. yard waste or start your own pile. soaker hoses or micro- system and water early in the have a spray head sprinkler consider adjusting your method to a cycle and Instead of watering for 15 strpighl, break up the -- -- - session into 5 minute intervals allowing water to soak in before the next application. ;(~~: /,:;,(1,\ ";"I,~!~tfJ5:'i ',': ~lJ ~!,~. ~,",i,': I: .'~~h"f l.ii\l.l~.,' ,l "': ··.r<: m:1. ~JJI";.l ,,-'·t't l,jj" \ "1',. ·~'~·'Ili(:;·(· ", .""'1" .r"·,· "':.' ,~,:( .... i-.;,\l'<I '~:l.: .... '.p~.:' h\' " i. ".11, ' .. :' i'·"~: .. -I'~'. 'r-"':. v '~: .. -~~l~ '~~4".~~ ;,r,'"l "1"\'\ :'~;' .. ~~ :~~ •. Keep irrigation systems well- maintained and water only when needed to save money and prevent over-watering. • Use fertilizers and pesticides sparingly. • Have your soil tested to determine the nutrients needed to maintain a healthy lawn. • Consider using organic fertilizers- they release nutrients more slowly. • Leave mulched grass clippings on the lawn to act as a natural fertilizer. ---- - • Use pesticides only when absolutely necessary. Use the least toxic product intended to target a specific pest, such as insecticidal soaps, boric acid, etc. Always read the label and use only-as directed. • Use predatory insects to control harmful pests when possible. • Properly dispose of unwanted pesticides and fertilizers at Household Hazardous Waste collection facilities. For more information on landscape irrigation, please call 760-438-2722. Master Gardeners San Diego County has a Master Gardener progr~m through the University of California Cooperativei : Extension. Master -- - Gardeners can provide good about dealing with specific - Gardener Hotline at tlb!Hj~4-:ltltiO( 9 am-3 pm, by experienced who are available to answer questions. Information from Gardeners is free to the public. '. - - -- -- que los desagues de ':"I'antarillas no esttm al sistema de drenaje 6 a las plantas de tratamiento negras? principal del desagGe 6 las " es remover el agua de lIuvia y inundaciones. EI agua que entra va directamente a los y el oceano junto con la depositada en las y las calles. conttibuimos a un gran contaminaci6n. jPero cada puede hacer algo para y participar en la soluci6n - --- "Cual es el problema creado por el uso de fertilizantes y pesticidas? EI fertilizante no es un problema 51 se usa con cuidado. Usar un exceso de fertilizante 6 en la temporada incorrecta resulta en el que el fertilizante se deslave con la lIuvia y se vaya por el desagGe 6 alcantarillas a nuestros arroyos, lagos y eloceano. Los fertilizantes en nuestros lagos y arroyos hacen que las plantas crezcan, tal como en el jardln. Pera en el oceano el fertilizante causa que las algas y plantas acuilticas sobrecrezcan. Y el exceso de algas marinas pueden ser dafiinas a la caUdad del agua y causar que la pesca, nataci6n y navegaci6n sean desagradables. AI echarse a perder las algas consumen el oxigeno del agua que los peces y otros animales necesitan para sobrevivir. - -- - La fotografia al frente es cortesia del Consorclo de Call dad de Agua, en cooperacion con el Departamento Ecol6gico del Estado de Washington, el Condado de King, y las c1udades de Bellevue, Seattle y Tacoma. - Linea de Asistencia: 760·602·2799 sto rmwater@ci.carlsbad.ca.us Ciudad de Carlsbad 1635 Faraday Avenue Carlsbad CA" 92008 www.ci.carlsbad.ca.us l ~ Printed on recycled paper -- --- ---- el medio ambiente limpiD es nr.nrtante para nuestra salud y la Conservar el agua limpia oportunidades para usos recreativos, habitat para y agrega belleza a Todos podemos ayudar los arroyos, las lagunas, y el sencillamente siguiendo o usar maquinas inEirlnras no permita que las hojas y el cesped recien cortado en las alcantarillas 0 el I:sjlreferible, convertir estos soerdicios del jardin en abono. , .. preferible regar por la manana. ~~:.cictomas de riego automatico eficientes si seprograman de cinco minutos y mas r.1IP-ntp-mente para que el agua bien la tierra. -- --- • Mantener los sistemas de irrigaci6n Iimpios y en buenas condiciones es importante para reducir el desperdicio del agua. Regar solamente cuando sea necesario reduce el uso del agua y ahorra dinero. ," .. 1 ,~:'~~Ih ; ":;';","i.\';/;~:; ,:1., .',,'" ,~~,::' .. >:~:,~/ .' ", ?~I, ',"' 't,tt .. ",,<, .1\> " \i ',. rI r'{.II'.1~;-. . ", ,.11 ·jflRfl ~~I8. .. ;1 .,""1 ",.a,\" ;.,. ,~ '. ,'i''': .... '\'!;~ .... :' .. ·.b"··· . (f'~~·i&·~.;.il .! .:.?,~;.')\~.'1:;';.\:'';~~;';·'" '.: tr .. 'l.!~~!~i,;~:".';l'~i. "!y.,Y 1: t:'"f\"u •.• ~llJu·:.,·':t!i\(f1'I~~'''' .:,.~,~~:,.J~l}\:-(.\ ;:.,~. t i ~ "':.'~,\~\<'.'; f, ii," \,:.. .. 1~'~V.~Jo~H k~ "r", .. ,\~.f.}'~\"''!'''i :w.·~ "·"i ',j"n: " .. -.,,'" ':f') ·~I'I!WI''''··''·'';,.:··;f:':· if,'.l" u···~ .. ~f,'ir~~ .. :'r !~.~~J)'/ k·"{1\,~,<,·'··~ .,,,';',~I; • ' ," . yv·\"~j:,..: v"""r'" I'i ! \.~ •. !~.\ ,.' ';' ." ..... ' . ,. , .. JI~' '~'".J .. J'~ :' ;. ··t;:i" "'~: • Para mas informaci6n sabre sistemas de riego lIame al 760-438·2722. • Los peslicidas y fertilizantes deben usarse solamente cuando sea absolutamente necesario. • Para mantener un pasto saludable se recomienda hacer un analisis de la' tierra para determinar cuales fertilizantes apiicar y en que temporada. • Es recomendable usar ferliilzantes organlcos en vez de productos quimicos. - --_.- • En ocasiones se puede dejar el sacate recien cortado sobre el pasto ya que actua como un fertilizante natural. • EI uso de pesticidas debe ocurrir 8610 como ultimo recurso. Es preferible usar productos que sean bajos en t6xicos, por ejemplo jab ones insecticidas, acido b6rico, etc. Seguir las Instrucciones en la etlqueta y usar el producto correctamente evila contaminar el agua de riego y lIuvia . • Cuando sea posible es preferible usar insectos predadores para controiar plagas. Los pesticidas y fertilizantes vencidos deben desecharse legalmente lIevandolos a los centros de colecci6n de substancias t6xicas localizados en varias ciudadesdel con dado de San Diego. L1ame al 760·602·2799 para pptener mas informacion. ' I --- - Master Gardeners EI con dado de San Diego y la de California Extensi6n Cooperativ,fl:; creado el programa de Master Los expertos de esle programa disponibles para proporcionar sobre plantas y plagas. Usted lIamar a la linea de Master Garden(3rs.j 858·694·2860 de lunes a viernes 9am y 3pm para obtener respuesta~· pregunlas. La pagina Internet mastergardenerssandiego.org es recur80 con informacion sobre temas. Esta informa~i6n es totalmenl . : ..... . gratis al publico. - ------------------- '. ' .. .. . " ,,:. :: ' !.,;' I":' (~ ~. ~{~: .. :l " . t~:~: i=' "':,,1 Iot"J ir'i,!: ~t: :t.· " •... : .. ti;~:'~:::': , 1 .:~. t' ; ;::' .. \~k< ;\,~~':: :,' fj~<.:1 ~::l' .' .. . :: .. , .... , ::::;: .;,::,~: '" ::I:::'~:~" .;11',1:'" ': ::',:\1,: !:.,' ',' 1.:'_:: ':. '. ' . A clean;environment is importatltt9,~,I,I,()fus! Did you know that storm drains are NOT connected to sanitary sewer systems and treatment plants? The primary purpose of storm drains is to carry rainwater away from developed areas to prevent flooding. Untreated storm water and the pollutants it carries, flow directly into creeks, lagoons and th,e ocean. In recent years, sources of water pollution like industrial waters from factories have been greatly reduced. However now, the majority of water pollution occurs from things like cars leaking oil, fertilizers from farms, lawns and gardens, failing septic tanks, pet. waste and residential car washing into . the storm drains and into the ocean and waterways. All these sources add up to a pollution problem! But each of us can do small t~ings to help clean up our wa.ter and that adds up to a pollution solution! Motor oil photo is used courtesy of the Water Quality Consortium, a cooperative venture between the Washington State Department of Ecology, King County and the cities of Bellevue, Seattle and Tacoma. Only Rain in the Storm Drain! City of Carlsbad Storm Water Protection Program City of Carlsbad 1635 Faraday Avenue Carlsbad CA 92008 Storm Water HOTline: 760-602-2799 . Funded by a grant from the California . Integratec\ Waste ltl'.C\'CI.I', Management Board USl;!) 0.11, l ~ Printed on recycled paper Motor Oil :'(6;~IY Rain in the Storm Drain! ":-::\.:-:-::.:,:.':., .. ';':'.':', ' .. ",' " :.:~ ~. :~ .. ' }~: }.,:. :::\~;i-i(;;·.: ;L::Dj;:)~;;;!!1~::a:::: 'j:;: .,·)~::D:I;/~}· ;:\: ';. .'/.:{ . ~;ii:·: ',' •... ::.:~.~.{: City of Carlsbad Storm Water Protection Program ,'.:' t, '. :m;;:>~<""·,~, '::", : .. :. ; .::.:: -------------------.. .. -:. . -. l:,~::,',~:t' ~, ·l ", :,: I :::'; ,',J;:.:.: : • ~.... t :):~ .. '.~:.' ~;:','- I"; .: .••. :;,,'.'.:;r· ", ',1, r,1 ~' ~i{~ ::', What's the problem with motor oil? Oil does not dissolve in water. It lasts a long time and sticks to everything from beach sand to bird feathers. Oil and other petroleum products are toxic to people, wildlife and plants. One pint of oil can make a slick larger than a football field. Oil that leaks from our cars onto roads and driveways Is washed into storm drains, and then usually flows ?;:L~:: directly to a creek or lagoon and finally to the ocean. Used motor oil is the largest single source of oil pollution in our ocean, creeks and lagoons. Americans spill 180,million gallons of used oil each year into our waters. This is 16 times the amount spilled by the Exxon Valdez in Alaska. I; V:~7',j:O;11 • ,'j Iff' ~.: j':,' 1:': I.~ .. :\" h " I"' m:;" I" :;"" lei" c":' , f~lf.~,;, " ", I' .:., ~r, How can YOU help keep our environment clean? Having a clean environment is of primary importance for our health and economy. Clean waterways provide commercial opportunities, recreation, fish habitat and add beauty to our landscape. YOU can help keep our ocean, creeks and lagoons clean by applying the following tips: • Stop drips. Check for oil leaks regularly and fix them promptly. Keep your car tuned td reduce oil use. • Use ground cloths or drip pans beneath your vehicle if you have leaks or are doing engine work. • Clean ~p spills immediately. Collect all used oil in containers with tight fitting lids. Do not mix different engine flUids. • When you change your oil, dispose of it properly. Never dispqse , of oil or other engine fluids down the storm drain, on the ground or into a ditch. • Recycle used motor oil. There are several locations in Carlsbad that accept used motor oil. For hours and , locations, call 760-434-2980. • Buy recycled ("refined") motor oil to use in your car. ---~--------------- mary purpose of storm drains is to ° rainwater away from developed ° : iareas to prevent flooding. Untreated o~t~Jorm water and tbe pollutants it :o:o:,carries, flow directly into creeks, ° ° )~goons and the ocean. ,j't':-.:' . ,o/>~O(i):recent years, sources of water like industrial waters from have been greatly reduced. HmMC\lCr now, the majority of water tian occurs from things like cars g oil, fertilizers from farms and s, failing septic tanks, pet waste .,residential car washing into the sources add up to a pollution But each of us can do small to help clean upour water and ataaas up to a pollution solution! Pet waste photo is used courtesy of the Water Quality Consortium, a cooperative venture between the Washington State Department of Ecology, King County and the cities of Bellevue, Seattle and Tacoma. Storm Water HOTline: 760-602-2799 stormwater@ci.carlsbad.ca.us !!'~flii~~ii~~~,~~'~~t~~);i;,::~! I I I ! I www.ci.carlsbad.ca.us l.~Printed on recycled paper --.--- - - - -- ---. --- -- - ,in our neighborhoods. Pet of ba~teria that can make This bacteria gets IIt1Ui.lIILU the storm drain and ends (creeks, lagoons and ocean. ~':' ' . a ends up in shellfish living bodies. People who , contribute up to 25% of I f bacteria found in our local . . sible and clean up after It's as easy as 1-2-3! importance for and economy. provide opportunities, , fish habitat and up pet w~ste in your yard patios, driveways and· surfaced areas. Never into the street or The best way to dispose.of pet waste is to flush it down. the toilet· because . . .it gets· treated by a s~wage treatment plant.' . Other disposal methods for pet waste include sealing ·it in a bag and. placing.in trash or burying small. .'., quantities in your yard to decompose. Be sure to keep it away from vegetable gardens. ----------------~.-- A Clean Environment is Important to A II of Us! . In the City of Carlsbad, storm drains flow directly into local creeks, lagoons and the ocean without treatment. Storm water pollution is a serious problem for our natural environment and for people who live near streams or wetlands. Storm water pollution comes from a variety of sources including oil, fuel, and fluids, from vehicles and heavy equipment, pesticide runoff from landscaping, and from materials such as concrete, mortar and soil from construction activities. The City of Carlsbad is committed to improving water quality and reducing the amount of pollutants that enter our precious waterways. Storm Water Protection Program stormwater@ci.carlsbad.ca.us 760-602-2799 City of Carlsbad. 1635 Faraday Avenue Carlsbad, CA 92008 l.. ~ Printed on recycled paper -------------------- It's All Just Water I Isn't It? Although we enjoy the fun and relaxing times in them, the water used in swimming pools and spas can cause problems for our creeks, lagoons and the ocean if not disposed of properly. When you drain your swimming pool, fountain or spa to the street, the high concentrations of chlorine and other chemicals found in the water flows directly to our storm drains. Did you know that these storm drains are NOT connected to sanitary sewer systems and treatment plants? The primary.purpose of storm drains is to carry rainwater away from developed areas to prevent flooding. Improperly disposing of swimming pool and spa water into storm drains may be hqrmful to the environment. Best Management Practices Best Management Practices or BMPs are procedures that help to prevent pollutants like chlorine and sediment from entering our storm drains. Each of us can do our part to keep storm water clean. Using BMPs adds up to a pollution solution! How Do I Get Rid of Chlorine? Pool and spa water may be discharged to the storm drain if it has been properly dechlorinated and doesn't contain other chemicals. The good news is that chlorine naturally dissipates over time. Monitor and test for chlorine levels in the pool over a period of 3 to 5 days. Drain the water before algae starts to grow. Consider hiring a professional pool service company to clean your pool, fountain, or spa and make sure they dispose of the water and solids properly. For more information about discharging wastewater to the sanitary sewer, please contact the Encina Wastewater Authority at (760) 438- 3941. Before you discharge your swimming .pool or spa water to the storm drain, the water: • Must not contain chlorine, hydrogen peroxide, acid, or any other chemicals. • Can not carry debris or vegetation. • Should have an acceptable pH of 7-8. + Can ,not contain algae Qr harmful bacteria (no "green"present). + Flow must be controlled So that it does not cause erosion problems. Pool Filters Cle~ln filter~ over a lawn or other landscaped area Where the discharge can be absorbed. Collect materials on filter cloth and. dispose into the trash. Di.atomaceous earth cannot' be discharged into the street or storm drain systems. Dry it out as much as pOSSible, bag it in plastic and dispose into the trash. Acid Washing . Acid cleaning wash water is NOT allowed into the storm drains. Make sure acid washing is done in a proper and safe manner that is not harmful to people or the environment. It may be discharged into the sanitary sewer through a legal sewer connection after the pH has been adjusted to no lower than 5.5 and no higher than 11. Do the Job Rightl • Use the water for irrig~tion. Try draining de-chlorinated pool. water gradually onto a land,sc~ped area. Water dischc;Irged to . . landscape must not cross property lines and must not produce runoff. + Do . not use copper-based algaecides·; Control algae with chlorine or other alternatives to copper-based pool chemicals. Copper is harmful to the aquatic environment. . + During pool construction, contain ALL materials and dispose of properly. Materials such as cement, Gunite, mortar, , and sediment must not ~e discharged into the storm Qrains. I I ~I I "I I 'I .' I I I I 'I ·1 I I, I I I I . 'I I I I I I I I I I I I I I I : I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan CHAPTER 7 -SITE DESIGN & LOW IMPACT DEVELOPMENT (LID) BMPs 7.1 -Site Design & LID BMPs Priority projects, such as the La Costa Greens Neighborhood 1.3 development, shall be designed to minimize, to the maximum extent practicable the introduction of pollutants and conditions of concern that may result in significant impact, generated, from site runoff to the storm water conveyance system. Site design & LID .components can significantly reduce the impact of a project on the environment. Low Impact Development is an innovative stormwater management approach with the basic principle that is modeled after nature: manage rainfall runoff at the source using uniformly distributed decentralized micro-scale controls. LID's goal is to mimic a site's predevelopment hydrology by using design practices and techniques that effectively capture, filter, store, evaporate, detain and infiltrate runoff dose to its source. 7.2:.... Minimize Impervious Footprint Methods of accomplishing this goal include: Construct streets, sidewalks, and parking lots to the minimum widths necessary to be in accordance with standards set forth by the City of Carlsbad. Incorporating landscaped buffer areas between sidewalks and streets. 7:3 -Conserve Natural Areas The proposed La Costa Greens Neighborhood 1.3 site has been mass graded per the "Grading & Erosion Control Plans for La Costa Greens Neighborhoods 1.01- 1.03" and is awaiting future development. As such, there currently is no natural area to conserve in ultimate developed conditions. 7.4 -Permeable Pavements Site design BMP alternatives such as pervious pavements were also considered for use within the La Costa Greens Neighborhood 1.3 project site. However, the use of pervious pavements has several disadvantages such as: Many pavement engineers and contractors lack expertise with this technology. RE,kc h \reports1230111SlSwmp-03 doc w.o 2301-15 8/5120061 18 PM I I I I I I I I I I I I I I- I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Porous pavement has a tendency to become clogged if improperly . installed or maintained. . Porous pavement has a high rate of failure. Anaerobic conditions may develop in underlying soils if the soil is unable to dry out between storm events. This may impede microbiological decomposition. These factors listed influenced the decision to not include pervious pavements within the site design. 7.5 -Minimize Directly Connected Impervious Areas Methods of accomplishing this goal include: Draining rooftops into adjacent landscaping prior to discharging to the storm drain. Draining roads, sidewalks and impervious trails into adjacent landscaping. The discharging roof drains to receiving swales will be implemented within all residential project lots. Draining 85th percentile flows via the pervious, vegetated portions of the residential developments allows these flows to infiltrate within each lot, preventing low flows discharging to the adjacent curb and gutter. 7.6 -Protect Slopes & Channels Methods of accomplishing this goal include: Use of natural drainage systems to the maximum extent practicable. Stabilize permanent channel crossings. Planting native or drought tolerant vegetation on slopes. Energy dissipaters, such as riprap, at the outlets of new storm drains, culverts, conduits, or channels that enter unlined channels. All slopes will be stabilized by erosion control measures. All outfalls will be equipped with an energy dissipation device and/or a riprap pad to prevent erosion. 7.7 -Residential Driveways & Guest Parking As this is a single family residential development, driveways have been proposed for the pr9ject site. Residential streets will have curb and gutters and will also allow for parking along the street. To account for this a BMP treatment train is provided down stream at the storm drain discharge point. RE:kc h \reportS\2301\15\swmp-03.doc w.o.2301-15 8/5/20081 18 PM I I I I I I I I I I I I I I I I· I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 7.8 -Maximize Canopy Interception & Water Conservation Landscaping on site will incorporate the planting of native, drought tolerant vegetation to meet this requirement. 7.9 -Trash Storage Areas Trash storage areas could be sources of bacteria pollutants. As such, elll outdoor trash container areas shall meet the following requirements. A "trash containment area" refers to an area where a trash receptacle or receptacles are located for use as a repository for solid wastes. Design for such areas will include: -Paved with an impervious surface, designed not to allow run-on from adjoining areas, screened or walled to prevent off-site transport of trash, -Provide attached lids on all trash containers that exclude rain, roof or awning to minimize direct precipitation. It should be noted that no trash storage areas will be located on the La Costa Greens Neighborhood 1.3 project site. Each individual resident is to store trash in their respective garage until weekly collection. RE;kc h;\reports'4301\1~lswmp-03 doc W 0 2301·15 815120081'18 PM I I I. I I I, I I I I I I I I -I' :1 II I I: I I I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan CHAPTER 8 -OPERATIONS & MAINTENANCE PLAN 8.1 -Maintenance Requirements Maintenance of the site BMPs will be the responsibility of the Homeowners Association. A maintenance plan will be developed and will include the following information: Specification of routine and non-routine maintenance activities to be performed A schedule for maintenance activities Name, qualifications, and contact information for the parties responsible for maintaining the BMPs For proper maintenance to be performed, the storm water treatment facility must be accessible to both maintenance personnel and· their equipment and materials. 8.1.1 CDS Treatment Units Flow-based storm water treatment devices should be inspected periodically to assure their condition to treat anticipated runoff. Maintenance of the proposed CDS units includes inspection and maintenance 1 to 4 times per year. Maintenance of the CDS units involves the use of a "vactor truck", which clears the grit chamber of the treatment unit by vacuuming all the grit, oil and grease, and water from the sump. Typically a 3-man crew is required to perform the maintenance of the treatment unit. Proper inspection includes a visual observation to ascertain whether the unit is functioning properly and measuring the amount of deposition in the unit. Floatables should be removed and sumps cleaned when the sump storage exceeds 85 percent of capacity specifically, or when the sediment depth has accumulated within 6 inches of the dry-weather water level. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. The operational and maintenance needs of a CDS unit include: Inspection of structural integrity and screen for damage. Animal and vector control. Periodic sediment removal to optimize performance. Scheduled trash, debris and sediment removal to prevent obstruction·. The facility will be inspected regularly and inspection visits will be completely documented. Preventive maintenance activities to be instituted at a CDS are: RE:kc h.\reportS\2301)1S\swmp-03 doc. w.o.2301·15 8/5/2008 118 PM I I I I I I I I I I I I I I I I I II I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Trash and Debris Removal -trash and debris accumulation will be monitored during both the dry and wet season and after every large storm event (rainfall events in excess of 1 inch). Trash and debris will be removed from the CDS unit annually (at the end of the wet season). Trash and debris will also be removed when material accumulates to 8.5% of CDS unit's sump capacity, or when the floating debris is 12 inches deep (whichever occurs first). Sediment Removal -sediment accumulation will be monitored during botH the wet and dry season, and after every large storm (1.0 inch). Sediment will be removed from the CDS unit annually (at the end of the wet season). Sediment will also be removed when material accumulates to 85% of CDS unit's sump capacity, or when the floating debris is 12 inches,deep (whichever occurs first). Disposal of sediment will comply with applicable local, county, state or federal requirements. Corrective maintenance is required on an emergency or non-routine basis to correct problems and to restore the intended operation and safe function of a CDS unit. Corrective maintenance activities include: Structural Repairs -Once deemed necessary, repairs to structural components of a CDS unit will be completed within 30 working days. Qualified individuals (i.e., the manufacturer representatives) will conduct repairs where structural damage has occurred. 8.1.2 FloGard Curb Inlet Filter Unit Maintenance of the FloGard filter treatment unit requires quarterly annual inspections during the dry season (June through September) and monthly during the wet season (October through May). 'The units need to be cleaned out quarterly to remove trash, debris and excess sediment. The FloGard filter treatment unit requires replacing annually at which time the filter shall be disposed of in accordance with state and federal environmental protection requirements. The replacement filter is then placed into the existing bracket within the downstream cleanout. Maintenance of the site BMPs will be the responsibility of the Homeowners Association. A maintenance plan will be developed and will include the folloVl(ing information: Specification of routine and non-routine maintenance activities to be performed A schedule for maintenance activities Name, qualifications, and contact information for the parties responsible for maintaining the BMP.s For proper maintenance to be performed, the storm water treatment facility must be accessible to both maintenance personnel and their equipment and materials. RE:kc h:\reportS\2301\1S\swmp-03.doc w.o.2301-15 8/512008118 PM I I I I' I I I I I I I I I ·1 I I I I I La Costa ,Greens Neighborhood 1.3 Storm Water Management Plan 8.1.2 Extended Detention Basin Typically, extended detention basin maintenance activities include unclogging of the outlet structure, vegetation removal, and excess sediment removal. Proper maintenance is required to insure optimum performance of the basin. General BMP inspections should check for structural integrity of the riser, debris and litter removal to prevent blockage of outlet orifices, etc. Fencing should be provided at the top of the basins to serve as protection to the public from the safety hazards inherent with standing water in the basin. For proper maintenance to be performed, the storm water treatment facility must be accessible to both maintenance personnel and their equipment and materials. Factors that affect the operational performance of a extended detention basin include mowing, control of pond vegetation, removal of accumulated bottom sediments, removal of debris from all inflow and outflow structures, unclogging of orifice perforations, etc. Periodic inspections should be performed following each sign'ificant storm. The basin should be inspected at least twice a year to evaluate facility operation. . Periodic inspections of the Detention Basin should be performed at regular' intervals throughout the year. Additional inspections will be required after major rainfall events (defined per this Storm Water Management Plan as 24-hour rainfall events in excess of 1 inch). During the periodic and post-major event rainfall inspections, the inspector: must identify any repairs and maintenance activities deemed necessary, including the removal of trash, debris, and sediment from the basin area. All riser orifices should be unclogged during the periodic and post-rainfall inspections. A Registered Civil Engineer will conduct an annual inspection of the basin. This inspection will include a thorough inspection of the basin area, outlet structure and internal gabion structure. The engineer will identify any required repairs as well as corrective maintenance activity required to maintain the hydraulic performance of the basins. Annual maintenance activities will include the removal of the heavy vegetation that will inevitably grow in the basin. Roughly ~ half of the vegetation should be removed from the basin at each annual maintenance session, including all woody or aquatic vegetation and other obstructions to flow. Aif sediment, trash, and debris should be removed from the basin at the annual maintenan'ce session. Sediment removed during periodic, post-major rainfall event, and annual maintenance can be placed in a sanitary landfill or used for composting activities. If no basin maintenance takes places for a period of longer than 1 year, then trapped pollutants may be deemed hazardous and special requirements may apply to disposal activities. In such a case, removals would require testing prior to disposal in a sanitary landfill RE:kc h \reportS\2301\15\Swmp-03.doc w.o.2301-15 8/5120081 18 PM .... -----------------------------------~--------- I I I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan 8.2 -Schedule of Maintenance Activities 8.2.1 -FloGard Curb Inlet Filter Insert Target Maintenance Dates -June 15th , September 15th (Dry Season Inspections) Maintenance Activity -Regular inspection to ensure that filter unit is functioning properly, has not become clogged, and does not need to be replaced; - Target Maintenance Dates -15th of each month; October through April (Rainy Season Inspections) Maintenance Activity -Regular inspection to ensure that filter unit is functioning properly, has not become clogged, and does not need to be replaced; Target Maintenance Date -March 15th , June 15th , September 15th, December 15th Maintenance Activity -Quarterly cleanouts; Cleanout filter, remove trash, debris and excess sediment. Target Maintenance Dates -March 15th Maintenance Activity -Annual filter replacement; Remove and replace filter. Dispose of used filter according to state and federal environmental protection guidelines. Place new filter in existing bracket below the storm drain entrance. 8.2.2 -CDS Treatment Units Target Maintenance Dates -June 15th and August 15th, Bimonthly Inspections June through September (Dry Season Inspections) Maintenance Activity -Regular inspection to ensure that unit is functioning properly, has not become clogged, and does not need to be cleared out. Target Maintenance Dates -15th of each month; Monthly inspections October through May (Rainy Season Inspections) Maintenance Activity -Regular inspection to ensure that unit is functioning properly, has not become clogged, and does not need to be cleared out. Check unit within 24 hours of rainfall event. Target Maintenance Date -May 15th Maintenance Activity -Annual inspection and cleanout, dear grit chamber unit with vactor truck, perform visual inspection, and remove floatables. For proper maintenance to be performed, the storm water treatment facility must be accessible to both maintenance personnel and their equipment and materials. 8.2.3 -Extended Detention Basin Target Maintenance Dates -June 15th and August 15th , Bimonthly Inspections June through September (Dry Season Inspections) • RE:kc-h'\reportsI2301115Iswmp.03,doc, w 0_ 2301.15 ~/512008 1:18 PM I I I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Maintenance Activity -Regular inspection to ensure that unit is functioning properly, has not become clogged, and does not need to be cleared out. Target Maintenance Dates -15th of each month; Monthly inspections October through May (Rainy Season Inspections) Maintenance Activity -Regular inspection to ensure that unit is functioning properly, has not become clogged, and does not need to be cleared out. Check unit within 24 hours of rainfall event. Target Maintenance Date -May 15th Maintenance Activity -Annual inspection and cleanout, clear grit chamber unit with vactor truck, perform visual inspection, and remove floatables. For proper maintenance to be performed, the storm water treatment facility must be accessible to both maintenance personnel and their equipment and materials. 8.3 -Annual Operations & Maintenance Costs The following costs are intended only to provide a magnitude of the costs involved in maintaining BMPs. Funding shall be provided by the HOA for the La Costa Greens development. 8.3.1 -FloGard Curb Inlet Filter Insert An approximate annual maintenance cost for the proposed FloGard Curb Inlet Filter Insert is outlined below. Costs assume a 3 man crew: Periodic Inspection and Cleanout ($100 per inlet x 4 times a year x 4 unit) = $1600 Annual Filter Replacement = $200/unit x 4 inlet = $800 FloGard Subtotal = $1,600 + $800 = $2,400 8.3.2 -CDS Treatment Units Periodic Inspection, Maintenance and Monitoring = $800 Annual Cleanout Costs = $1,000 CDS Subtotal = $800 + $1,000 = $1,800 8.3.2 -Extended Detention Basin Maintenance of the Extended Detention Basin reaches 1 feet of sediment depth. Assume 2 cleanouts per year. The associated storage volume associated with the detention basin at a depth of 1 feet is 0.02 acre-feet (40 cubic yards) Annual Silt removal cost =2 * 40 CY * $15/CY = $1,200 RE,kc h:\reportS\2301\1 S\swmp-03 doc W,O, 2301-15,8/5/20081'18 PM " I I I I I I I I I I I I I I I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Annual Inspection by Engineer = $1,000 Periodic and Post-Major Rainfall Inspections and Trash/Debris/Sediment Cleanout: Assume (4) periodic and post-major rainfall inspections per year Assume (3) man crew Assume 4-hour c1eanout time Assume $50 hourly rate Annual Periodic Inspection and Maintenance Cost = $2,400 Detention Basin Subtotal = $1,200 + $1,000 + $2,400 = $4,600 BMP Subtotal = $4,600 + $2,400 + $1,800= $8,800 10% Contingency = $880 Approximate Total Annual Maintenance Costs = $9,680 8.4 -Responsible Party The Owner, or the "successor in interest to the City" (Le. Home Owner's Association, Property Management Group etc.) is required to acknowledge responsibility for obtaining training, inspections, maintenance, repair and upkeep of all storm water BMPs located on the La Costa Greens 1.3 project site. The Owner/Responsible party also acknowledges that there are significant penalties for submitting false information. Penalties include fines and possible imprisonment for these violations. Owner/Responsible Party: Mr. Kirk Philo L.C. Greens 1.3 LLC 4747 Morena Blvd. Suite 100 San Diego, CA 92117 Ph: (858) 490-2300 Des ig nated Representative: Mr. Kirk Philo L.C. Greens 1.3 LLC 4747 Morena Blvd. Suite 100 San Diego, CA 92117 Ph: (858) 490-2300 24-hour Phone Number: (858) 490-2300 RE:kc h'\[eporls\2301\1S\swmp-03 doc W.O 2301-15 8/5/20081·18·PM I I I I I~ I I I I I I I I I .. I I I :1 I il . I I I I I I I, I I I I .1 I I I I I I I La Costa Greens Neighborhood 1.3 Storm Water Management Plan Chapter 9 -FISCAL RESOURCES 9.1 -Agreements (Mechanisms to Assure Maintenance) There are multiple flow-based BMP treatment units within the proposed La Costa Greens Neighborhood 1.3 development for storm water quality treatment. Funding for the water quality treatment devices will be provided by the La Costa Greens HOA. The La Costa Greens HOA will be responsible to perform the maintenance activities and to ensure adequate funding. The City of Carlsbad Watershed Protection, Stormwater Management, and Discharge Control Ordinance require ongoing maintenance of BMPs to ensure the proper function and operation of theses BMPs. The treatment unit will require maintenance activities as outlined in Section 8 of this report. RE'kc n lrepocts12301115\swmp-03.doo w.o 2301-15 ~/5/2p08 1.18 PM LEGEND PROJECT BOUNDARY WATERSHED BNDY WATERSHED ID NODE DRAINAGE DIRECTION .----.. --------- EXISTING STORM DRAIN PROPOSED STORM DRAIN == =E'iI~ ====== o 60 120 180 ~~~:i~_~ SCALE 1"=60' J~::::::::r PROJECT SITE COSTA CITY' OF ENCINITAS VICINITY MAP , ' , , ",,/ _ 's1 ""tit, /~ !iii ,-", ;--1 ~~S! ! l lli1 . , '1 ......... , , ._-,,:;,0'l_4 , , . NTS .. I .. I I I I j I ' 1.3 ,.PROPOSED RV STORAGE ""I I I I I I I / CE/:':,W'S",V ! \ I I I I Q ... = IQ.Pefs. Tc = 6.:1 min. ,_ H/ I / /'" -- ---------: x nZS NEI 1.3 " / CAMINO VIDA ROBLE ) .( I NEI(;HBORHOOD 1.3 i FUTURE MULTI-FAMILY DENTIAL SITE ! FUTURE MULTI-FAMILY; RESIDENTIAL SITE .. ~ --- ( 11&/\. 8/5/2008 "-f---. I \ \ \ \ \ , \ , \ \ \ PREPARED BY: HUNSAKER & ASSOCIATES SAN DI[GO, INC PLANNING 10179 Huennekem Street ENGINEERING San Diego, Ca 92121 SURVEYING PH(858)558-4500· FX(858)558·1414 \ , .. ,( .. \ , 1 \ " '. . DEVELOPED CONDITION HYDROLOGY MAP FOR LA COSTA GREENS NEIGHBORHOODS 1.2 & 1.3 DEVELOPER IMPROVEMENTS c SHEET 1 OF XHIBIT 10.1 CITY OF CARLSBAD, CALIFORNIA 1 R: \0510\&Hyd\0510$HOB-NEIGH 1.2 & 1.3-FE-INT100.dwg[ 7692]Aug-21-2006: 11:53 ;;: I c, '" coO G' ""' 0 oi