Loading...
HomeMy WebLinkAboutCT 13-02; COASTAL 10; DRAINAGE STUDY; DWG 480-5, DWG 480-5A; 2015-11-13.i ' j '1 '1 '.J ' •. ..J ._.I ,,-1 . .J i J L__J L_J DRAINAGE STUDY FOR COASTAL 10 CONDOMINIUMS Prepared by: O'DAY CONSULTANTS, INC. 2710 Loker Avenue West Suite 100 Carlsbad, California 92010 Tel: (760) 931-7700 Fax: (760) 931-8680 CT 13-02 Job No. 131003 November 15, 2013 , Keith Hansen RCE 60223 Exp. 6/30/14 Date :-1 ' ' l_.J , _ _J SECTION 1 'Cr !, J u I ,_J ,_J SECTION2 , __ J ,. J SECTION3 ' ' SECTION 4 SECTION 5 SECTION 6 ,-' TABLE OF CONTENTS INTRODUCTION AND PROJECT DESCRIPTION HYDROLOGIC CALCULATIONS Existing Condition Analysis Proposed Condition Analysis HYDROLOGY Modified Rational Method Description Program Process HYDRAULICS CONCLUSION Vicinity Map San Diego County Soils Interpretation Study Runoff Coefficients Isopluvial Maps 100-Year, 6-Hour 100-Year, 24-Hour Intensity-Duration Design Chart-Figure 3-2 Overland Time of Flow Nomograph-Figure 3-3 Maximum Overland Flow Length & Initial Time of Concentration -Table 3-2 Nomograph for Determination of Tc for Natural Watersheds -Figure 3-4 Hydrologic calculations for 100-year Existing Conditions Hydrologic calculations for 100-year Proposed Conditions Hydraulic Calculations Exhibit A Exhibit B Existing Condition Drainage Map Proposed Condition Drainage Map .J :-1 LJ LJ ·, c._J l__j u INTRODUCTION AND PROJECT DESCRIPTION This drainage study was prepared to support the grading plans for the Coastal 10 condominium project. The project site is located southerly of Navarra Drive and approximately 400' westerly ofVieja Castilla Way in the City of Carlsbad. Consisting of 0.49 acres, this infill project is surrounded by existing developments as follows: to the east and west are existing multi-family condominiums and to the south lies the La Costa Resort and Spa golf course. Section 2 includes a Vicinity Map for the project. Currently vacant, the site was mass graded as part of the La Costa South Unit No. 1 development in the late 1960s. The lot drains moderately to the north toward Navarra Drive and includes an approximately 9' high slope on the south side. The site is covered with some vegetation including grass, shrubs, and a few trees. The project proposes to build 10 multi-family units as well as a recreation area with pool and spa facilities. Access will be provided via a 24' wide private driveway from Navarra Drive. HYDROLOGIC CALCULATIONS Existing Condition Analysis The site is part of the San Marcos Hydrologic Area (904.3) of the Carlsbad Hydrologic Unit in the San Diego Region. The site was analyzed for existing hydrologic conditions for the previously graded site that surface drains to Navarra Drive. Once storm water from the site enters the gutter, it combines with flows from the upstream portion of Navarra Drive to the west and then flows east to a cul- de-sac. At the east cul-de-sac, storm water enters a concrete ditch, combines with a larger drainage area, and then outlets into San Marcos Creek, ultimately flowing into Batiquitos Lagoon and finally the Pacific Ocean. Please refer to Section 3 for hydrologic calculations for existing conditions and Section 6 for a depiction of the hydro logic nodes and basins for the existing site. Proposed Condition Analysis Ten attached condominium units, a recreation area and a drive aisle are planned for this development. The developed site includes several BMPs throughout the project: runoff from impervious areas is directed to bioretention basins and pervious pavement is used where possible before entering private storm drains or Navarra Drive. With these BMPs in place, most of the storm water will infiltrate to the site subgrade; however, this analysis is based on the conservative assumption that infiltration will minimally reduce runoff from the site. This assumption was made to ensure that the storm drain system will still be adequately sized should these BMPs become clogged or ineffective. Ultimately, all runoff from the developed areas will be directed to Navarra Drive, as in the existing condition. See Section 4 for these calculations and Section 6 for a depiction of the hydrologic nodes and sub-basins for the proposed site. 1 _ _j '._J c.i CONCLUSION The pre-and post-development runoff is approximately 1 cfs. The bioretention areas effectively serve as detention ponds. Although hydromodification is only required to treat the 2-year runoff event, the bioretention areas have a volume large enough to detain the 100-year storm. In these calculations, it was assumed that there was a failure of the outflow pipe and a time of concentration of 20 minutes was used for the storm water to fill up the basins to the emergency inlet located 10 inches above the surface of the basins. File: G:\131003\Hydrology\131003 _ Coastal10 _ DrainageStudy _Nov2013.doc I ~_J ,, c_ _ _j L_j HYDROLOGY The hydrologic analyses were performed according to the 2003 San Diego County Hydrology Manual. The overall drainage area is less than one square mile and includes junctions of independent drainage systems; therefore, the Modified Rational Method was used for the analyses. The Modified Rational Method is applicable to a 6-hour storm duration because the procedure uses Intensity-Duration Design Charts that are based on a 6-hour storm duration. In some cases, the 6-hour precipitation must be adjusted based on the ratio of the 6-to 24-hour precipitation. This will be performed where necessary. Modified Rational Method Description The modified rational method, as described in the 2003 San Diego County Hydrology Manual, is used to estimate surface runoff flows. The basic equation: Q = CIA C = runoff coefficient (varies with surface, soil type 'D') I= intensity= 7.44 P6 Tc-·645 (varies with time of concentration) A = area in acres For the 100-year design storm, the 6-hour rainfall amount is 2.6 inches and the 24-hour rainfall amount is 4.9 inches. Please refer to Section 2 for excerpts from the hydrology manual showing the source for C, I, and rainfall quantity. HYDRAULICS Hydraulic calculations were performed in accordance with the San Diego County Drainage Design Manual dated July 2005. Storm drains, ditch, and curb outlet were analyzed using the channel and culvert calculator embedded within Civil 3d. The software uses Manning's formula for channels. For the culvert calculator, the methods used are those generally described in HDS-5 (Hydraulic Design of Highway Culverts) to compute the hydraulic grade line (HGL). Calculations are included in Section 5. I l CITY OF OCEANSIDE 7s CITY ---, _j , __ _j I-~ -J CITY OF I __ J VICINITY MAP NO SCALE _ _j ; ,-1 L ____ -·i '---_._J ;_ _J L,_ ____ J L L L --" 117°3o·o·w : -··~+.;, ·1 -- pc;~AN$1PE .i I SITE SQIFTYPB'P' ·I l -----; -'----_,...~ • .;,T.;...,..,-S,OJ.Jl,f>lA.BEAC, I ,~ ·i '%:- 1 (1. -,0- i-_ ;. 'di -Ill i ::I -, I l l l •. : : -. h-1~ « ' -~ ;. ,_ l i l I ·1 ! I l _! 117°30'0'W 11?01s·o·w 117°0'0"W 116°45'0'W 116°30'0'W 116°1s·o·w -~~ . : ·:, ~'.. :_ ,_ ' .. L!j~:L· : ~:· , . '~' .. :J".:' .. ';<J~~~:~:} : :: . > !' • : ! , r~~--:~~-~:._~}J .. J~ I -' --I ! ---I -;-! • ~ ! · ! lf'i · ! Ri,ver,si'd~ pbµnty J · · l I l r l 1MP$RIA.L BEACH I , 11?01s·o·w 117°0'0"W i j ~ 116°45'0'W 116°30'0'W z ~...;.-~ . ._ ...... ~ .. ~,+~~~~ [:i z '..0: . ''?"""".~ :,,.: ... -< ~~: . · .. ·0=r1r··· : .. :,,, :r~ 3 -"O_ ~ ![_ (') a. C -::i ··'< ~ ? F'""-: -:-. --:--: ..;--+----·--1-~ 1;,J 116°15'0'W _ __;j L '----L County of San Diego Hydrology Manual Soil Hydrologic Group N Legend -Major Roads Incorporated City Bdy HYDROLOGIC SOIL GROUP Hydrologic Group Undefined • Hydrologic Group A Hydrologic Group B Hydrologic Group C •Hydrologic Group O "' No Soll Data Note: Soil Data Source USDNNRCS SSURGO Soils 2007 A I I I 31.50 3 Miles DP\"/ ~GJ,S :"'"'" GIS c,;,,,·, .. .,.,r, ... :,. THIS MAP IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIM!TEO TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Copyright SanGIS. All Rights Reserved This product may contain infonnation from the SANDAG Regional Information System which cannot be reproduced without the written permission of SAN DAG. This product may contain tn!bnna!1on which has been reproduced · wrt.h permission granted by Thomas Brothers Maps. _j L J [ .J C. J [ San Diee:o Countv Hydrology Manual Date: June 2003 ---- [ l L Table 3-1 [ I L. Section: Page: RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use NRCS Elements U'.ndisturhed Natural Terra:i111. (Natural) Lo;,v Density Residential (LDR) Lmv Density Residential (LDR) Low Density Residential (LDR) 1kdium Density Retidential {MDR) Medium Density Residential (1\IDR) 1vfedium. Density Residential (1'.IDR) Medium Density Residential (l\IDR) High Density Residential (HDR) High Density Residential (HDR) Commercial!TndustriaI (N. C-0111) Commercial!Tndustrial (G. Com) Commerciallludustrial (O.P. Com) Commerc:ial!fudustrial (Limited L) CommerciaVIlidustrial { General L) County Elements Permanent Open Space Residential. 1.0 DU/A or less Residential, 2.0 DUiA or less Residential, 2.9 DUIA or less ' Residential, 4.3 DU/A or less Residential, 7.3 DU/ A or less Residential 10.9 DU/A or less Residential 14. 5 DU/A or less Residential, 24.0 DU/A or less Re.sidential 43.0 DU/A or less Neighborhood Commercial General Commercial Office Professional:1Commercia1 Limited Industrial General Industrial ~··& IYIPER. O* 10 20 25 30 40 45 50 65 80 80 85 90 90 95 Runoff Coefficient ''C" Soil T-,,'.Ee A B 0.20 0.25 0.27 0.32 0.34 (1.38 038 0.41 0.41 0.45 0.48 0.51 0.52 0.54 0.55 0.5& 0.66 0.67 0.76 0.77 0.76 0 .. 77 0.80 0.80 0.83 0.84 0.83 0.84 0.87 0.87 C 0.30 0.36 0.42 0.45 0.48 0.54 0.57 {160 CL69 0.78 (US 0.81 0.84 0.84 0.87 3 6of26 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0 .. 63 0.71 0.79 0.79 OJ!2 0.85 0.85 0.87 L *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described u1 Section 3 .1.2 (repres~nting the pervious mnoff coefficient, Cp, for the soil type). or for areas that ,vill remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A = dwelling; units per acre N"'RCS = :.\"ational Resources Come1vation Service 3-6 _J L L. L i J L J [ L 1· L-[ County of San Diego ,Hydrology Manual Rai11fall hopluvials l 00 \-'car Rainfall E,,tmt ~ 6 Hours I --------loopluvlal (i!lciH>s) '~.-GIS -. r,;.:t,'.v'<.:t;>-i::f.::li ,-- L 'ilt-~J!;IKi:~n:,,;:r.·Q"\}W":"IOJT"W..,,,w .. e .. !'S:.l' kl'!" "-!'C !',1!rh tll<l1;J;''Ztl s ~.~~~J:;~;~~~~~':~~i=!..'.;.~1!'f,~~~-~~;.,.,-.,,t~ C.;t7i<'U'T-....-t.:W,, .. t!~W'JI. ....... ! ~,_~,......,·nri#<!"""""""';,ntt=-t.,·~Qt;r~,...,,; ......,.a;,.,~~ ... ,,_,_i...=--............ ...,,....,.,l""ffl'J'..,...,t]~(-,. TI-t~!fl"",rt>A(t(,i:.~ar,tiOln'«!!!lr:>itt¢.t"-~~-"""'1wi!!l !>'<'1".l>,.~~ib:>·n•=tt ... ..,...1&$.,, 0 3 Miles ~ ~ L [ _J L J [ [ L _J _j L 4 J l _J L_ County of San Diego Hydrology Manual Rainfall lrnp!twials l00Yr'!'")!i®!a~ Event. ¥JI-,i~rs tooµrul/J<li ()Ht:hcs) ~~GIS :_, iL{~;),_\<G ''"'"2 N I:1~,.i~~~"';(~~~.f.~g~~,~~C~~~~~:1-s *. ~Mn,c.>1'!'{r.-.:~1,.w·l<M.'$rnors.r:::t,,111'.11u-~uJ1,d"•.n:\1'7. c.~::..,:.s . .11t~1d1;<,;1!,>;"4 Thao.;,,,,o:!:>'l:l,...,.f<'a'Clinl1"""~'""'i=t..:..itn-•,:,rb,lm.~ \'t f. =.=..:.::~~~~!Sfi'41'"'1~Mlt-t.o s 3 0 ~ ™"i>'"""l~f>l<i"d"""n·...,....i,...,,,t,1<1,:=tt".,..,,q:«n,....,,,r,t1> ~,u,i«n~,;;:i...,.;..,,_.../M!lvn~ 3 Miles .J [ tij w u. a=; UJ t) z ~ Cf) 5 UJ (f,/ 0::: ::, 0 (,) c:x: UJ I-~ J [ [ J J I 2fg%slope~ 100 1.sl ........ · · · ···. ~ ,,..,, ·~ · 2' t · · :J"'F·· 130 (f,/ w I-:.; z 0 20 ~ ~ LU ~ j:: ~ _J ~ 0 z :5 Cl'.'. UJ 6 -0 EXAMPLE: Given: Watercourse Distance {D)"' 70 Feet Slope (s) =1.3% Runoff Coefficient (C) ::: 0 .41 Overland Flow Time (T} = 9.5 Minutes T = 1.8 (1.1-C) VO 3\fs L J SOURCE: Airport Drainage, Federal Aviation Administration, 1965 FIGURE Rational Formula -Overland Time of Flow Nomograph 3.3 __ J J L .. j [_ i J [ J I J l._ J I .a C..-J [ j [ J [ r-10.0 9.0 !l.O 7.0 !'.LO (i.() 4.0 3J) 2.01 l ;:,;-..: l ·: I I 1*:111 t I ?HdJ!I rn:NJ!!'lirsd !111!1 I rni,L!;I 0.61 ; I . I 1 I l I I I 11 : 111 · Ml I f f · i · I i I i l I .j I I t ! I f I 11 · 0.4) ltl iil.illlllfllilll O.:J 0,21 l ! I I I l 1 I I I I ! I! I I i f ·I· 0.11 j ~ 8 i, 10 " " 6 , ~. Lt I-Lf, I ·!·I l I 1..1. 15 20 :J[l Minutes 4(1 50 Duration 'i' I g "" -0 @ s::l. "k,H--f-..t++"l''lit'"H'"ict'T'!'ot:!1.,._:ii'~'t" S .0 "g, *"H-d-fa~iH+p;.."'4;:i;.H,,t+i~~+ 5.5 ~ 5.0 § "!d'-~od't~~ 4.5 '§' -+,,+!-,,t++,!-8' 4.0 a, 3.i.l 2- 3.0 2.5 2.0 1.5 1 .. 0 2 3 4 5 6 Hours lntenslty-Ouratlon Design Chart • Example L J _J Directions for Application: (1) From precipitation maps determine 6 hrand 24 hr amounts for the selected frequency, These maps are included in the Coonty Hydrorogy Manual (10, 50, arid 100 yr maps. included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within I.he range of 45% to 65% of the 24 hr precipitation {not applicaple to Desert). (3) Plot 6 hr precipitation on the righ! side of the chart. (4) Draw a line through the point paraHef to the plotted lines. (5) Th.ls line is the intensity-<luration curve for the location being analyzed. Application Form: (a) Selected frequency~ year (b} p,, .. "" 3 in, p24. "' 5.5 Pa "' 54.5 %l2J Q -·~~.. -·~-·-•p ~~-24 (c) Adjusted P6C2)"" _3_ in. (d)tx"' ~min. (e} I = ~ in.lhr. Note: This chart replac-es the Intensity-Duration-Frequency curves used since 1965. P6 1 is 2 ' 2;5 3 , 3.S i 4 ,(5 5 . s:s 6 Ck•muoo 't' ,., ·i I T.,. r T .r.. 1 T .... 1 .... T , .. s 2.6::l '3.s5 5,27 6.59 7.90 9.22:l054iH.86 1:ur14.49•1s.s1 , .. 1 . 2 .. 1 :f: :;, 1aAe?·( sjo e.36 f1;l a.4l.! ;J.s4J 10.oo;t,1.66 ;2,72 10 1.66 '2.53' 3 37' 4.21 5 05 :i,9(/1 6 74 7.5a ' 8.42 . $.27 . 10. tt .• 1.s J)i>_J1jsJ?ss~:1.2{:ise;4:s(s19:Js41fi:4s~1.13·;f!~:I 20 1.os 1.a2 21s, 2.s9 I23 3.71, 4.31 '4.as 5.39 5.1>3 s.Ae '25 0-~3 :1.:.io 1.ir112:2s'2.eo':12ifj_73 4.20; 4.67' 5.13 s.iio 30 OB3 :T24 · 166' 2.07 2.4!1' 2.00: 3.32 :'3_73 ''.,l15'' 4.55-4.98 40 0.69.:1-03 1.38. 1.72 207:2:4( 276'310 i 3.45 -3.79 4.13 .. so 060 ... 0.9_0_ 1J\Li,49 ... !}9_2.09 .. 239 _269 L?)l6 ,.}28 3.58 60_().53_080100'133 159,186:212,239;2,65 2,92 318 90 0.41 ,O.llLO.B2 1.02 1.23 1.43 1.63. l.84 i 2.04 2.25 2.45 ·12oif:'l4'0.sfo66;1is5 1.02 1.19:u6't.s3iuo 1.111 2.04 150 -029 }0.4.f oss; C,.13 ;o,86; i:~rJ18. 132_;.r:.~L 1,62 .l-76 ... ,so . 0.26 . o.3s: o.52;9.ss o 1a: 0.91: rn4 ,. ,,i.s :. u,_;1,,u , .1-s,, 240 0.22 0.33 043'0.5-1,0.65 0.76. 087. 0.!!8; 1.08' 1.19 1.30 ''300 ofa:020· 6.38: C.47 Oss·o.66:o.1s · 0.85j0.94 ;To:\ 1.13 ~600:1], !0.25 0.3:H;,.4'UL50 ,Q.58, 0$7 0,75; OJW O.!J:? __ 1,00 j ~ L~·--~.~~~-.. J r_ J u ' ' i_J ,~, San Diego C01U1t_:r Hydrologj Manual Date: Jm1e 2003 Section: Page: 3 l2 of~6 Note that the Initial Time of Concentration should be reflective o.fthe general land-use at the upstream end of a drainage basin. A single lot witll an area of n:vo ar less acres does not have a significant effect ,vhere the drainage basin area is 20 to 600 acres. Table 3-2 provides limits of the length (l\fa ... ximum Length (L~.r)) of sheet flo,v to be used i11 hydrology studies. Initial Tt va:lues based on average C values for the Land Use Element a:re also included. These values can be used in planning and design applications as described belm\'. Exceptions :may be approved by the "Regulating Agenc~l' when submitted ,vith a detailed shidy. Table 3-2 )L.\...'Ul\IlThI OVERLA.1"'D FLo,v LEJ\GTH (L:l\r) & 11\"'ITL\.L TilIE OF CONCENTR.\ TION (L) Element* DU! .s~/;, F,! /0 ')<II, ~.,,O 3% S~··o 10~'o Acre L1f Ti LM Ti L1r Ti L1r Ti L~,.r Ti L!i.f Ti Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 LDR 1 50 1 'Pl k~k 70 11.5 85 10_() 100 9.5 100 8J) 100 6.4 LDR 2 50 11.3 70 10.5 85 9-2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 lOO 5.6 MDR 4.3 50 10.2 70 9.6 80 SJ 95 7.8 100 6.7 100 53 MDR 1.3 50 9-2 65 8.4 80 7.4 95 7JJ 100 6.0 100 4.8 lvIDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 11DR 14.5 50 s ,,, ' • .ii:.. 65 7.4 so 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.1 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 8.5 3.8 95 3.4 100 2.7 N. Com 50 53 60 4.5 15 4.0 85 3.8 95 3.4 100 2.7 G. Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4 '} .L. 60 3.7 70 3.1 so 2.9 90 2 .. 6 100 2.2 Limited I. 50 4.2 6D 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General I. 50 3.7 60 3.2 70 2.7 80 2.6 90 1 ·~ _.c.5 100 1.9 *See Table 3-1 for more detailed description J-12 ,._J AE feat 5(100 EQUATION T~ "' ('1.9Ll). 0.38:S . 8E Te -Time Qf e,,;meentri.ticm {hours) l. ,.. Watercourse Distance {miles) 41100 AE • Chan9e in elevation along 30 10 effective slope line jSee Figure 3-5) !foot) L M.llos Foot . Tc Hours Minutes 3000 ti ' 0.5 \, 14 ' 300 l Nomograph for Determination of '\. 12 ' ' to ' 9 8 le 1 6 3 TI me of Concentration (Tc) or Travenime {rt) for NQturalWotersheds -1 _J ~I :........J .. 1 _J ;___J Existing Conditions Q100 Calculations Coastal 10 Flow Type: Overland Flow Analysis: Nodes 100 -101 From San Diego County Hydrology Manual (2003) Soil Hydologic Groups Map Soil Group D From San Diego County Hydrology Manual (2003) Table 3-1 0% Impervious C = 0.35 Hydrology Calculations: C= 0.35 A= 0.49 L= 210 acres feet use 6E= 100 21.7 feet (max. length per San Diego County Hydrology Manual (2003) Table 3-2) feet S= 10.3 % From San Diego County Hydrology Manual (2003) Figure 3-3 T= 1.8(1.1-C)D112 S113 T; = 6.2 minutes From San Diego County Hydrology Manual (2003) Figure 3-4 L = 110 feet = 0.02 miles 6E = 40.4 feet Ti = 0. 007 hours = 0.4 minutes Total Tc= 6.7 minutes From San Diego County Hydrology Manual (2003) Figure 3-1 Pe= 2.6 inches P24 = 4.9 inches Pe/P24= 53 % Use Pe= 2.6 inches C= 0.35 I= 7.44PeD-0·545 I= 5.69 inches/hour Q= CxlxA = 1.0 cfs LJ r, I LJ l. _J ~I -, San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 03/27/13 131003 Coastal 10 Proposed Condition 100-year storm ********* Hydrology Study Control Information********** Program License Serial Number 6218 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.900 P6/P24 = 53.1% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 400.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [HIGH DENSITY RESIDENTIAL (24.0 DU/A or Less ) Impervious value, Ai= 0.650 Sub-Area C Value= 0.710 0.000 0.000 0.000 1. 000 Initial subarea total flow distance 75.000(Ft.) Highest elevation= 85.500(Ft.) Lowest elevation= 75.000(Ft.) Elevation difference 10.500(Ft.) Slope= 14.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 14.00 %, in a development type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [1.8*(1.l-C)*distance(Ft.)A.5)/(% TC= [1.8*(1.1-0.7100)*( 100.000A.5)/( 2.91 minutes slopeA (1/3)] 14.000"(1/3)]= Calculated TC of 2.913 minutes is less than 5 minutes, 2.91 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff= 0.146(CFS) LJ L .J .J L •• J Total initial stream area 0. 030 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 400.000 to Point/Station 401.000 **** USER DEFINED FLOW INFORMATION AT A POINT**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1. 000 [HIGH DENSITY RESIDENTIAL (24. 0 DU/A or Less ) Impervious value, Ai= 0.650 Sub-Area C Value = 0. 710 Rainfall intensity (I) = 2.426(In/Hr) for a 100.0 year storm User specified values are as follows: TC= 25.00 min. Rain intensity= 2.43(In/Hr) Total area= O.lOO(Ac.) Total runoff= 0.220(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 401.000 to Point/Station 402.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= Downstream point/station elevation Pipe length 21.00(Ft.) Slope No. of pipes= 1 Required pipe flow Given pipe size= 6.00(In.) 6 4 . 9 0 0 (Ft. ) 6 4 • 5 0 0 (Ft. ) 0.0190 Manning's N 0.220(CFS) Calculated individual pipe flow 0.220(CFS) Normal flow depth in pipe= 2.lB(In.) Flow top width inside pipe= 5.77(In.) Critical Depth= 2.83(In.) Pipe flow velocity= 3.39(Ft/s) Travel time through pipe= 0.10 min. Time of concentration (TC) = 25.10 min. 0. 013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 302.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 64.500(Ft.) End of street segment elevation= 63.000(Ft.) Length of street segment 70.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 1.500(Ft.) Distance from crown to crossfall grade break 0.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width= 1.000(Ft.) Gutter hike from flowline = 1.250(In.) Manning's Nin gutter= 0.0130 Manning's N from gutter to grade break 0.0130 Manning's N from grade break to crown= 0.0130 Estimated mean flow rate at midpoint of street= 0.220(CFS) I _J LJ 'r :J ' L,.......J Depth of flow= 0.103(Ft.), Average velocity= 2.161(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.000(Ft.) Flow velocity= 2.16(Ft/s) Travel time= 0.54 min. TC= 25.64 min. Adding area flow to street Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [HIGH DENSITY RESIDENTIAL (24.0 DU/A or Less ) Impervious value, Ai= 0.650 Sub-Area C Value= 0.710 2.386(In/Hr) 0.000 0.000 0.000 1. 000 for a The area added to the existing stream causes a a lower flow rate of Q 0.169(CFS) 100.0 year storm therefore the upstream flow rate of Q = 0.220(CFS) is being used Rainfall intensity= 2.386(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.710 CA= 0.071 Subarea runoff O.OOO(CFS) for O.OOO(Ac.) Total runoff= 0.220(CFS) Total area= O.lOO(Ac.) Street flow at end of street= 0.220(CFS) Half street flow at end of street= O.llO(CFS) Depth of flow= 0.103(Ft.), Average velocity= 2.161(Ft/s) Flow width (from curb towards crown)= 1.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 302.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= O.lOO(Ac.) Runoff from this stream 0.220(CFS) Time of concentration= 25.64 min. Rainfall intensity= 2.386(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 302.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [HIGH DENSITY RESIDENTIAL (24.0 DU/A or Less ) Impervious value, Ai= 0.650 Sub-Area C Value= 0.710 0.000 0.000 0.000 1. 000 Initial subarea total flow distance Highest elevation= 74.400(Ft.) Lowest elevation= 63.BOO(Ft.) 1 8 0 . 0 0 0 ( Ft . ) Elevation difference 10.600(Ft.) Slope= Top of Initial Area Slope adjusted by User to Bottom of Initial Area Slope adjusted by User 5.889 % 5.000 % to 2.000 % L_J i I Li INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 5.00 %, in a development type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration 4.00 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.7100)*( 95.000A.5)/( 5.000A(l/3)]= 4.00 The initial area total distance of 180.00 (Ft.) entered leaves a remaining distance of 85.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.08 minutes for a distance of 85.00 (Ft.) and a slope of 2.00 % with an elevation difference of 1.70(Ft.) from the end of the top area Tt = [ll.9*length(Mi)A3)/(elevation change(Ft.))JA.385 *60(min/hr) 1.077 Minutes Tt=[(ll.9*0.0161A3)/( 1.70)JA.385= 1.08 Total initial area Ti 4.00 minutes from 1.08 minutes from the Figure 3-4 formula Rainfall intensity (I) = 6.782(In/Hr) Effective runoff coefficient used for area Subarea runoff= 0.481(CFS) Figure 3-3 formula plus 5.08 minutes for a 100.0 year storm (Q=KCIA) is C = 0.710 Total initial stream area= 0 .100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 302.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= O.lOO(Ac.) Runoff from this stream 0.48l(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 5.08 min. 6.782(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity ( In/Hr) 1 0.220 25.64 2.386 2 0.481 5.08 6.782 Qmax(l) 1.000 * 1. 000 * 0.220) + 0.352 * 1. 000 * 0.481) + 0.389 Qmax(2) 1. 000 * 0.198 * 0.220) + 1. 000 * 1. 000 * 0.481) + 0.525 Total of 2 main streams to confluence: Flow rates before confluence point: 0.220 0.481 Maximum flow rates at confluence using above data: 0.389 0.525 Area of streams before confluence: 0.100 0.100 Results of confluence: Total flow rate= 0.525(CFS) ~! : _ _J ,~ --, Time of concentration 5.079 min. Effective stream area after confluence 0. 200 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 202.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 64.000(Ft.) End of street segment elevation= 63.900(Ft.) Length of street segment 16.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 1.500(Ft.) Distance from crown to crossfall grade break 0.500(Ft.) Slope from gutter to grade break (v/hz) = 1.000 Slope from grade break to crown (v/hz) 1.000 Street flow is on [2] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 2.000 Gutter width= 1.000(Ft.) Gutter hike from flowline = 1.250(In.) Manning's Nin gutter= 0.0130 Manning's N from gutter to grade break 0.0130 Manning's N from grade break to crown= 0.0130 Estimated mean flow rate at midpoint of street= Depth of flow= 0.205(Ft.), Average velocity= Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.lOl(Ft.) Flow velocity= 2.16(Ft/s) Travel time= 0.12 min. Adding area flow to street Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [HIGH DENSITY RESIDENTIAL (24.0 DU/A or Less ) Impervious value, Ai= 0.650 Sub-Area C Value= 0.710 TC= 5.20 6.677(In/Hr) 0.000 0.000 0.000 1. 000 min. for a 0. 683 (CFS) 2.160(Ft/s) 100.0 year storm Rainfall intensity= 6.677(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.710 CA= 0.142 Subarea runoff 0.423(CFS) for O.OOO(Ac.) Total runoff= 0.948(CFS) Total area= 0.200(Ac.) Street flow at end of street= 0.948(CFS) Half street flow at end of street= 0.474(CFS) Depth of flow= 0.240(Ft.), Average velocity= 2.404(Ft/s) Flow width (from curb towards crown)= 1.136(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 202.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= 0.200(Ac.) Runoff from this stream 0.948(CFS) Time of concentration= 5.20 min. ·, ,_J :_J [_J Rainfall intensity= 6.677(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 200.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1. 000 [HIGH DENSITY RESIDENTIAL (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Initial subarea total flow distance 10.000(Ft.) Highest elevation= 85.000(Ft.) Lowest elevation= 80.000(Ft.) Elevation difference 5.000(Ft.) Slope= 50.000 % Top of Initial Area Slope adjusted by User to 7.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 7.00 %, in a development type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% TC= [l.8*(1.1-0.7100)*( 95.000A.5)/( 3.58 minutes slopeA (1/3) J 7.000A(l/3) ]= Calculated TC of 3.577 minutes is less than 5 minutes, 3.58 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff= 0.049(CFS) Total initial stream area= O.OlO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 201.000 **** USER DEFINED FLOW INFORMATION AT A POINT**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [HIGH DENSITY RESIDENTIAL (24.0 DU/A or Less ) Impervious value, Ai= 0.650 Sub-Area C Value= 0.710 0.000 0.000 0.000 1. 000 Rainfall intensity (I) = 2.426(In/Hr) for a 100.0 year storm User specified values are as follows: TC= 25.00 min. Rain intensity= 2.43(In/Hr) Total area= 0.160(Ac.) Total runoff= 0.290(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201.000 to Point/Station 202.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 63. 9 0 0 (Ft. ) l_J u LJ --, L _J Downstream point/station elevation= Pipe length 21.00(Ft.) Slope= No. of pipes= 1 Required pipe flow Given pipe size= 6.00(In.) 63.000(Ft.) 0.0429 Manning's N 0.290(CFS) Calculated individual pipe flow 0.290(CFS) Normal flow depth in pipe= 2.04(In.) Flow top width inside pipe= 5.69(In.) Critical Depth= 3.27(In.) Pipe flow velocity= 4.92(Ft/s) Travel time through pipe= 0.07 min. Time of concentration (TC) = 25.07 min. 0.013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 202.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= 0.160(Ac.) Runoff from this stream 0.290(CFS) Time of concentration= 25.07 min. Rainfall intensity= 2.421(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 0.948 5.20 6.677 2 0.290 25.07 2. 421 Qmax(l) 1.000 * 1. 000 * 0.948) + 1. 000 * 0.207 * 0.290) + 1. 008 Qmax(2) 0.363 * 1. 000 * 0. 948) + 1. 000 * 1. 000 * 0.290) + 0.634 Total of 2 main streams to confluence: Flow rates before confluence point: 0.948 0.290 Maximum flow rates at confluence using above data: 1.008 0.634 Area of streams before confluence: 0.200 0.160 Results of confluence: Total flow rate= 1.008(CFS) Time of concentration= 5.202 min. Effective stream area after confluence End of computations, total study area= 0. 360 (Ac.) 0.400 (Ac.) !~ (. _ _J _ _J A. Ditch at top of slope, diameter = 12" and depth = 6" The hydrology study assumed that a portion of the slope would drain to Node 200. A minor adjustment to the grading plan resulted in both the 0.01 acre and 0.03 acre subareas draining to Node 400. Assuming same C and I (conservative since most of area will be landscaped): Adjusted Q = (0.71) (6.85) (0.04) = 0.19 cfs Using the Civil 3D channel calculator: Section Type = Circular Btm vl/idth (rt) -0- Side Slope, z: 1 = -0- Diameter(fl) =! 1.00 Inv Elev(fl) = · 100.00 Slope(%)= 1.00 n-vaiue = 0 .. 023 Compute by= Known a Q(cfs)= 0 .. 19 Run Depth= 0.21' < 0.5' ~ okay tev (ft) D-75 ditch Depth (ft) 102.00 -.-------.-------.-------,, 2.()0 101.50 -l-------+------+-------ir-1.50 101.00 -+------+---=---=--+------f-1.00 100.50 -l-------+------+------r-0.50 \ 'v" I '-------_/ 100.00 -!-------+--=---=:c--+------r-0.00 99.50 -!-------+------+------r--0.50 0 2 -Channel -W.S. Depth Q Ye_ . (opWidtl (rt) (cfs) (fl) (fl) 0.21 0.190 0.121 1.57 0.95 018 0.82 Reach (ft) Energy (ft) 0.25 B. 4" HDPE pipe downstream of ditch and 'F' catchbasin, in bioretention basin The D-75 ditch drains to an 'F' box and then to a 4" HDPE pipe within the bioretention basin. Using the Civil 3D channel calculator to check the 4" pipe: lev (fl} 4 inch HDPE west Section Type = Circular 101.00 Btm Width (ft) -0- Side Slope. z: 1 = -0- Diameler(ft) = 0.33 100.75 Inv Elev(fl) = 100.00 Slope(%)= 1.00 n-value = 0.013 10().50 Compute by= Known O . a (els)= 0.19 ,....--..,. =ar Run , ) 10025 100.00 99.75 0 -Channel -W .. S. -~----~----.,_,._,_,,---=-""'· i._,_J Depth Q Area Veloc Wp Ye .. opWldU Energy (fl) (els) (sqrt) (ft/S) (fl) (fl) (fl) (fl) 0.28 0.190 0.077 2.45 0.77 0.25 0.24 0.37 L.·J Depth= 0.28' < 0.33' 7 okay :·-;i l ... J r, C. 3"HDPE pipe underdrain downstream of 4" HDPE at Node 402 Two 3" underdrains are proposed at Node 402 with a maximum Q = 0.22 cfs. Using the Civil 3D culvert calculator, a 3" pipe will operate with outlet control. .. .) 8J .· Length (ft)= 23.20 Sl~pe 6~) =; 1.98 HwDepth (ft) 3-in underdrain Elev (ft) Inv Elev Up= 65.05 70.00 ~------------------~-~ 4.95 ; Rise (in)= 3.0 Shape=' Cir Span (in)=• 3.0 No. Barrels =' n-value 0.013 Inlet Edge= Sq Edge Top Elev=: 69.00 Top Width (ft)= 5.00 Crest Len (fl) = 5 . .00 Q Min (cfs) =i 0.22 Q Max (cfs) = 0.22 a Iner (cfs) =; 1.00 Tailwater (ft) =: (dc+D)/2 1r Run tream invert elevation. 69.00 68.00 67.00 66.00 65.00 64 .. 00 -1 05 63.00 -2.05 0 5 10 15 20 25 30 35 4() 45 --CirCulvert -HGL --Embank Reach (ft) ....-----------,.-----------------·-------------· Q Veloc Depth Total Pipe ·over On Up On Up On (cfs) : (cfs) · (cfs) (ft/s) (Ws) i (in) ; (in) ; (ft) Up ! Hw (ft) (ft) 0.22 0.22 0.00 4.49 4.48 2.97 3.00 64.84 66.22 66.37 HGL H;.v/D 5.30 Upstream headwater= 66.4 < 69.0 (finish grade ofbioretention basin)~ ok , __ j D. 4" HDPE pipe downstream of 4" subdrain in pervious pavement: Q = 0.48 cfs Using the Civil 3D culvert calculator, a 4" pipe will operate with outlet control. 4-in fur pervious pvmt Inv Elev On =: 62.77 Length (ft)= 37.40 Slope(%)=· 0.51 Elev (ft) :---:, Inv Elev Up =. 62.96 66.00 4-in for pervious pvmt Hw Depth (ft) 3.04 Rise (in)=' 4.0 Shape= Cir Span (in)= 4.0 65 .. 00 ~ No. Barrels = n-value 0.013 Inlet Edge= Sq Edge 64.00 Top Elev= 65.00 Top Width (ft)= 5.00 Crest Len (ft) = ! 5.00 6300 1-·; ? .. '\ ~/ ..., ,.Jel 1...,.<, iH ,7jl ~ ;;./ .,.i •'•/ / / / ··,,, 2t/ r,,,, I roi!.04 104 0.04 o Min (els)= 0.48 1_J o Max (els) 0.48 Q Iner (els) 1.00 62.00 -0.96 Tallwater (It)= (dc+D)/2 ear Run 61.00 -1.96 0 5-10 15 20 25 30 35 40 45 50 55 60 -Cir Culvert -HGL ---Embank Reach (ft) ,, ------ Q Veloc Depth HGL Total! Pipe lover/ On Up On i Up On Up Hw Hw/D i (cfs): (cfs) • (cfs) (fUs) ! (ft/s) (In) (in) (ft) (ft) (ft) ·-, 0.48 0.42 0.06 4.78 4.76 3.94 4.00 63.10 64.80 64.97 6.04 ,_J Upstream headwater= 64.97 < 65.0 (finish surface of street) 7 ok LJ ,;---; -·1 I " L _J E. 4" HDPE pipe downstream of 4" subdrain in bioretention basin, east side of project site: Q = 0.29 cfs Using the Civil 3D culvert calculator, a 4" pipe will operate with inlet control. Inv Elev On= 62.79 Length (ft)= 9.80 Slope(%)= 19.18 Elev (ft) Inv Elev Up=: 64.67 68.00 Rise (In)= 4.0 Shape= Cir 67.00 Span (In)=: 4.0 No. Barrels = 66.00 n-value =' 0.013 Inlet Edge Sq Edge 65 .. 00 Top Elev 67.70 Top Width (fl)= 5.00 64.00 Crest Len (fl) = 5.00 a Min (cfs) = 0.29 a Max (cfs) 0.29 63.00 a Iner (cfs) = 1.00 Tailwaler (ft) = (dc+D)/2 62.00 Run 61.00 l I ,_ / l ~ -~ ~ --2' ~ 0 2 3 --Cir Culvert east 4-in east -------------t-----~ ~ I'\ i\ ~ :::.J ~ ~ ~ 1--"" 6 ~ ~ I-"' ~ 4 5 6 7 S 10 11 -HGL ---Embank r --- Hw Depth (ft) nlet1 on 3.33 2.33 1.33 trol 0.33 -0.67 -1.67 -2.67 -3.67 12 13 14 Reach (ft) -------Veloc Depth HGL On Up On ' Up On Up Hw ' Hw/0 . ' (flls) (Ills), (in) l (in) • (ft) (fl) (ft) ' 0.29 0.29 0.00 3.40 3.54 3.78 3.56 63.10 64.97 65.30 1.89 Upstream headwater= 65.30 < 67.7 (finish grade ofbioretention basin)~ ok '1 ,, '.1 ,_j ,---ci ~-..l ---, .J ,_.) 1 (_J l____i F. D-25 curb outlet, east side of project site: Q = 0.48 cfs + 0.29 cfs = 0. 77 cfs Using the Civil 3D culvert calculator, a 4" pipe will operate with inlet control. Section Type = Rectangular Btm Width (ft) 3.00 Side Slope, z:1 =; -0- Tot Depth (fl)= 0.25 Inv Elev(fl) =, 100.00 Slope(%)= 2.00 n-value 0.013 Compute by= KnownQ a (cfs) 0 . .77 Run Depth= 0.09' < 0.25' ~ ok Elev (ft) D-25 curb outlet 101.00 ~--~-------~-~--~--~--,- 100.75 -+---+----+----+---+----+----+---+---+- 100.50 -!---+----+---+---+----+---!---+---+- Depth (ft) 1.00 0.75 0.50 100.25 ---+----+---+---+----+---!---,-·--~ 0.25 99.75 -0.25 0 .5 1.5 2 2. . .5 3 3.5 4 Channel --w.s Reach (ft) Depth a Wp Ye ;-opWidtl Energy (ft) (cfs) (fl/s) (fl) (fl) (ft) (fl) 0.09 0.770 0.270 2.85 3.18 0.13 3.00 0.22 ,-, '1 LJ l _ _j G. Emergency overflow for bioretention basins: Qmax = 0.29 cfs For 4" diameter opening: A = 0.09 sq.ft. P = 2 (3.14) (.33/2) = 1.04' P 12 = 0.52' (to allow for clogging) Q IP = 0.29 I 0.52 = 0.56 From exhibit on next page, H = 0.32' 7 okay, below top of wall ·1 ---, ~,. '....cs' : _JI· r --, JI ·. ·~1r . : ~· , I \ -I • I . • -11 ,·-1 JI --1 ,~, ._J ,. -. , 1073. 02 .L ~·~---~~I T -;.. I W ·-· .. ...... .. .•. . . · .. .. ··11 .. ...:...-..:... I I I I I I l I I I 1--o--{ I I I I I I E l I I I I l I 1\1 1f I I = c:. -p I 2..(0 + b) I--. 1;-I I I I I l Ill l I --.--... A•SC\.V ... -.. i l v1 I -i--i-I ! vv I I -.... I -u,r ... : .... , . , .. : .... :· .. -: .... , .... : .... : .. ·r·rr: I "v f I I LI I I I I I I . -:: l I 71 I I I .,i I I I I I I .: ~ I I -:;.• f ' I 1 I I I I I I 1 • = ~ ... I I I l ;y~ 1 · · I l I 71 I I I I I I ~ ~-I I I I I l I • t: . I 1111/·1 I I 11 I I l I I I I :::::: "'=-I I I I I l I = ~ l I I I I l(ah IKI I I I \Y Io ,l ,, 15.1:~ 111 wY: · I = -... ~ . r. Ul I I I I I I I Al II I I I ·1 I f I ,::i E i..i. I I I I I -. .l/1 I I I I I. I I I I I I I l I ;; ' L1. -0 ·';.. . IYI I I I l I I I I I I I · I I 11 1· -... -I I I = ... ---I I ... I I 1-.:Pr I l I l I I l I I I I I ---:: ... -.i: ~ VJ,?!, l?.loHftrf?, ~ 11 1 I I I l I I l · l 1 I - 1· ~ -t: C --la UJ vr -I l ., I ---. - ~lj,r. I I I i I I I I I I I l l I 1 ' I I I I ;: I I ' :. I t I I I I I I I I I I I I t t I I I I ·I I l I ,;,. Q I I I I f I I I I I I I ! . I ! I I I I l I I I l I ..; = -H:'.!.05 UIP to lo.;.l:~r.iVEl(C!.i1 hri?v.1::s I I I I I I I I I I I I ; I ~ ~ HE:A6s Al:,of::l1J.b.FA~Eln,b hr,'"JL1~s I I I I I l I I I I I I I ~ . . . . 4 ~ t,R ~ c; I I l I I· I I I I 11 l --H :::..?s a • ,\F.~'\/ 9. ; L , , 1.!. t-'F I ON -= t s::-cioR le OF::ri~'i!X)N l!SI llN!Qt:.'c"INITtl I I I I I I I I I l 11 I I I I I I I ,I I l I I I I l I I I I I I -= I I I I ! .I I I I I I I I l I I I I I :u ..:t .J ... .~ .a .7 .: .:; Lo . t l " a c 7 c ~ t~ V au;u:.u, OF PUBLIC Ro:..:is CAPACITY OF GRATE INLET IN SUM? orvz::.2o);T"WO Vf~Srt,c.:. WATER PONDED ON GP.AT:: .. . . .. ----------- l /! Hi i: i ii I il ' I I I I' I I I I I I I I I I I / T~J : : ( ' ! / , ' ' !/ ' i ij I I I I J I I I I I I I I I I ' ' I \ I ' ' I ; I I ! I I I \ I I ', '' , I \ ;\ ' if ':i i I I I I I I I ~ I I I I I I I I I I I I I I I I I I I /\ I I I I I I I / , I ' / / ©2013 O'Doy Consultants, Inc. X \ . \ . ' \ "' '"' "1a ~ 00 . x"' / ,· ·. ' \ "' - ~ §:I C:5 ~ Cl:: :§: ~ \ "' U\ I I I I I I I I I I I I I ~/ I X I CJ / / : I I t I i i / ( i j ;g ' ~ ' \ t i ~,··. ' ' "' i x\cS; '-0: i 1 ' , I ' ......... ,. .... "-~----/·~. ------ (68.23 TC/FS) -. •, ! , i ~ i , ! ! I i --x x / / ,, , ' / u <1: l_ l X ) (69.12 TC) (68.JJ FS) "'y . 69 ' \ / ' ' / ,, I I ' ; r,-. i \ \ ,, / _.,.,··· ----- '" . 8 ' / ! / J j j ,/ / I l , , --·--- /," J , ' ' (759 Tw) ! / / 049 ACRES / ; / >)+·~-§4¥@ ' .. ,/· . , .. / / ,/ (7J. I BW) / ,1 i ~ . / / / 1 (75.8/15.3 TW) <.,,,:, ' J I ~\ 1 ii I (72.6 BW) i ~ ~~ i / ' I I . ' ' f ! / ! I ./ ' ' ! ., , ' , I ' ! "'j I ' ' j I , , ; ' f , ' j I ' ' ' , , / j ! i I ' \ 1 j ' ' \. \ BENCHMARK: 16!99 FS / / ( / / ( ' / / \ \ / / i DESCRIPTION: aSB-020 R(X) JJR/"f:N TO REFUSAL W/ CAP AIK'o l.S. 6215 LOCATION: 5.0 FOOT BACK OF Ct/RB ON THE S()(JTH SIDE OF LA COSTA A "f:NUE, 220 FEIT ~ST OF ROt.lEHIA STREIT RECORD FROM: R.O.S. 11271 ELEVATION: 104.25 OATU/rl: N. V.G.JJ. OF 1929 , , ; . I I I _J ' j I J x"'! ~I ' /1 i I / I ! I I I I ,/ \ I I I \ ' ' \ '' ' i j / < ( (~ I I .,· i ! I / C, w °' ::, ; i u <( V, w "" °' D <r BJ ; ,' / ! ! ! 0 I / ; ( SHEET 1 OF 1 SHEET o' 10· ---- -5 20' SCALE: 1" = 10' / , ,,,- I I /// / PREPARED: A/ARCH 6, 2013 2710 Loker Avenue West Suite 100 Corlsbod, Colifornio 92010 760-931 -7700 fa x: 760-931 -8680 DRAINAGE STUDY EXISTING CONDITION COASTAL 10 Civil Engineering Planning Processing Surveying DESIGNED BY: A.M. OATE: MARCH 2013 DRAWN BY: ~J~.S~. ___ SCALE: 1" = 10' PROJECT MGR.· K.W.H. JOB NO.: 131003 ENGINEER OF WORK DATE: KEITH W. HANSEN RCE: 60223 C: \Users\MegCarroll\Documents\l-REDP\1-Job_Files\1330-Navarro\DroinogeStudy\FromODay_Oct 8 2013\Exhibit -Exis ting Cond1t1on.dwg Xrefs: 1303AMAP; 1.303TP I I I i I : ! I ' I 1 ' ' J \ I I I \ i, l I J ' ) ~- I :JI .. i I I I I I I I I I I I I I I i I I I I I I I I I I i ' I i I/ ' ' ii 'I I I I I I I I I I I I I I I I I , I , I , I : j ! ! i/ .>.{ I I I I I I I I I I I I I I I I I . I I I ! I I I I ! I I I / ©2013 O'Day Consultants, Inc. I x' I I I I I I lo I I I I .-I I ~/\ ii ~ :1 ~I ? ! I I I I I I I I I ~I ' ' I I I i I X ,.6 6 ., . I , -! .,J ~ ~ I I ; I .~ ) /' .. ,· -. . : ,' . / ,/ _.,,,.,.,,., . ;',__.--.,.. , ~ :;, I r I I I I I I I I I ...,_ __ I I I I I I I,. I ,/ • . u <[ .. -"'"'•· ._ -~ ~ ' ' . i == . / L------.-:-.-, i . I . ' •' ! ! I X SHEET 1 OF 1 SHEET ·-----~,-; i ( ··.· ...... )!,/ ,c: ) / ' I , . / . ' ', ' / I ! ,• ---=·D~•7c ·--::::z 20' o· 10' ---,,· / ----- ~. i ~ -j ~ --~--+·----..... -, __ -c;-, ..... --·-··-· .,,,,.. .., .•. ,. 00 . ; r;l:::_ ~=-. =--===----==----,.:(~;;;t:;TC'C'=: .. , ... ~. ii; . . .... ,. ' .... ~> _ "'" rm.f/ ~ ,/' =·>··· )4 ". 75 76 ,• -. ;..-,--77 5 • ' SCALE: 1 ~ 10 "'"'""·-··~ ..... ::~;=_.::~== .... -··.·-·. -... ..... " ...... , ~ .. -,-' /' / ..... -·/ ·-_ ( \ r ····-."-· .. 7._;, ·o-····,.,, 0 () 72· -·· ---. } I -," i ._ I .l I I I I I I ' I I --- 0.16 AC \ ' ,---\ I I I I I I I I -r--~I ' ' i I I T b10 ""!!!~~~11111111111117,11111111111111111~ ~ \ == :1 /11'" ---I i I I I I I I \ . I . . / : .. ,,. --0~ 13 A C ,. ,. I I I _ _J / / • C / / / / / / J I ' / --;-- •' , / ./ / / ' I ·_/ , -· .. \ . I 1/: · I'-""·,::::_:~-. --.... ~--------,/· ... I --...___ ---...___ --...___ ., . ; i ; ----~ ,,:· : ! ; j ----------------~ r ! V: I /~~;; I I I J I I .. I ' -I ; -. I , - I/ -_J --. 75 -~ ... · / / / / /' \ i I I ··SPA · . ~ / / ~ ~ .;l . / I ' # II II II - / - j I I -/ ! ----- I i s=Q ' ,' i I ',-. \ ' \ \ \ \ \ ·, ' \ \ \ \ \ 90,... -"80 \ \ \ ; l ! I - \ \ I . I I \ \ f Cb· ' i ·! ' ,• i \ BENCHMARK: DESCRIPTION : LOCATION1 RECORD FROM: ELEVATION: CLSB-020 ROO !)RIVEN TO REFUSAL W.r/ CAP IIK'O LS. 6215 BACK OF C/JRB ON 5.0 roo7m Sf/)£ OF LA COSTA ':&ff!:. 220 FEET YEST OF RO/IERIA STR££T R.Qs. 11211 · · 1929 /fN.25 l)A TIJ/1.· N. V. G./1 OF I I I I I I I I ·. I ! j J ! NODE. 150 ' / \ .--- I I I I I . /// / .)' ,, / / / / DRAINAGE STUDY PROPOSED CONDITION COASTAL 10 Civil Engineering Planning Processing Surveying DESIGNED BY: A.M. SCALE: .~1 ·----::-1-::-0_', DRAWN BY: __,J~·5~· -::-;::~, JOB NO.: 131003 "GR. K.W.H. PROJECT M ··'--~- DATE: MARCH 2013 ENGINEER OF WORK DATE: KEITH W. HANSEN RCE: 60223 \1330-Novarra\Drainag s\1-REDP\1-Job_Files ti C· \Users \MegCarroll \Docum~;~JASITE; 1303agrd, 1303au . 1303AMAP lJOJTP, Xre fs ' Cond1t1on d1 0 t 8 2013\Exh1b1t -Proposeo eStudy\FrornOOay_ c