Loading...
HomeMy WebLinkAboutCT 14-08; WESTIN HOTEL AND TIMESHARE; DRAINAGE STUDY; DWG 496-2A, ADJ 16-08; 2016-07-22AIN E STU y LOT 9 DEVELOPMENT PREPARED FOR: GRAND PACIFIC CARLSBAD, L.P. 5900 PASTEUR COURT, SUITE 200 CARLSBAD, CA 92008 f"l (760)431-8500 PREPARATION DATE: 7-22-16 Revision: 10-26-2016 PREPARED BY: ROBERT D. DENTINO RCE 45629 GRAND PACIFIC RESORT CARLSBAD, CALIFORNIA 1#.1@3~ ENGINEERING EXCEL Job No. 13-070 NOV 21 2016 ;:, 4lfd:1tJ.~B~~c:\, ,"''""~-% '" " ·",</,·~4F?t:'11zB~~;BH8] x:---/ · teten"tlnoJ~excii~n~neer~ng.net] Jfii~B'f~. · ., ~e);g~ 0 ,r-·*·-~ ~1)~!f!L -11~0 , ,~,, ~.ixce!et1) 111eering.net] " DR/\li''.i\GE STUDY -OCTOBER 2016 I I LJ L_J Table of Contents I. Project Overview .................................................................................................... 3 Location Existing Conditions Proposed Facilities II. Methodology .......................................................................................................... 4 Hydrology Hydraulics III. Calculations ........................................................................................................... 4 Determine the Watershed that the Project Affects Determine the Runoff Coefficients for the Site Calculate Q100 using the Rational Method Detention Calculations Design of Proposed Storm Drain Facilities IV. Conclusion ............................................................................................................. 9 V. Declaration of Responsible Charge ...................................................................... 9 VI. Attachments .......................................................................................................... 11 Attachments Attachment A Vicinity Map Attachment B San Diego County Drainage Manual Graphs and Tables Soils Group Map Attachment C Pre-Development Hydrologic Map Post-Development Hydrologic Map Attachment D Civil-D Pre-Development Hydrology Calculations Attachment E Civil-D Post-Development Hydrology Calculations Attachment F Storm Drain Calculations DR/\INAG[ STUDY -OCI OBLR 2016 2 Project Overview Purpose This report is in support of the Precise Grading Plans for Westin Lot 9 Development Tract no.09-03. The purpose of this report is to describe the procedures used in the hydrologic and hydraulic models, estimate peak discharge magnitudes and to size the proposed storm drain pipes in order to preserve the water quality and channel stability of the downstream watershed. Location The proposed development is located in the City of Carlsbad County of San Diego, CA on the west side of The N Crossing Drive Cul-de-sac, approximately 560 ft north from the intersection of Grand Pacific Drive and The Crossings Drive. See Attachment 1 -Vicinity Map. The site is surrounded by open space to the East and North. To the West and South lies existing hotel facilities. Existing Conditions The site is approximately 3.98 acres with a 1.36 acre graded pad. Currently the site houses a large water tank with a patch of asphalt slurry. Recently a large patch of asphalt was removed and the site was graded to make a dirt lot. The runoff for the current site is discharged into 4 different outfalls: Outfall-A -at the North-Western portion of the project. The tributary area to this outfall is labelled as Basin 1A and is only a very small area (.463 Acres). The water leaves the lot nine development area and then is discharged onto the existing hotel facility grounds. From there it is then collected by area drains and discharged into the storm sewer. Outfall-B -located at the south end of the project. The runoff contributing to this outfall comes from the 2:1 slopes to the south of the project. This area is labelled as Basin 1B and is .806 Acres. The runoff discharges from the site onto an existing parking lot where it flows through a gutter approximately 150 ft. before entering a grate and get discharged into the existing storm drain facilities. Outfall-C -lies to the East of the Project. Discharge from the site is conveyed directly onto The Crossings Drive where it is then discharged into the curb inlet in the street. The contributing area to this outfall is labelled as Basin C-1. Outfall-D -located at the North of the project. Runoff from Basin D-1 will exit the site by way of an existing ditch. Proposed Facilities The proposed development will demolish the onsite water tank. The proposed site plan includes a combination of parking areas and underground parking, swimming pools, landscaping, hotel buildings with associated structures. Infrastructure improvements are proposed to include new storm-drains as well as water and sewer main extensions and new dry utilities runs/ extensions to service the lots. In the post-development conditions the runoff for the site will still be discharge through the 4 separate outfalls: Outfall-A, at the North-Western portion of the project -For the post-developed condition the contributory area will become only slightly smaller as a building footprint will infringe upon this area and divert the runoff to different outfalls. No impermeable area on the project will contribute to this outfall. DR/\IN/\GE SI UDY -OC!OllcR 2016 3 Outfall-B, at the south end of the project -Runoff from this portion of the site will be diverted into a single bio-retention basin. After the runoff is treated by the pond it will conveyed directly into the existing brow ditch located at the bottom of the existing slope on the south portion of the property. From this brow ditch the runoff flows onto the existing parking lot where it is then collected in an existing catch basin and continuing on in the existing storm drain system. Outfall-D, to the North of the project -For the post development conditions basin D-1 will be split into 3 different basins. Flow from these basins will be diverted into 3 different bio-retention ponds. Basin D-1 will contribute to IMP (Pond) IV, Basin D-2 will contribute to IMP II and Basin D-3 will contribute to IMP-II. After the runoff is treated in the ponds it will be piped through the site through a series of storm drains and then exit the site by way of an existing ditch. Methodology Hydrology The Rational Method as outlined in the San Diego County Hydrology Manual 2003 Edition was followed in this study. The CIVILCADD/CIVILDESIGN software version 7.9 was used to calculate the Stormwater peak flows. San Diego 2003 rational method module was selected so that the changes from 2003 manual has taken into account such as time concentration and urban area runoff coefficient. Also in 2013, the program updated the slope input for initial basin's steep slope greater than 30%. The hydrology analysis was done only for 100 year storm event. The 2 and 10 year storm events were covered in the Hydromodification Analysis using Continuous Hydrologic Simulation. The hydrologic model, USEPA Storm Water Management Model (SWMM), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Hydraulics The Ifydra flow storm Sewers version 8.0 software was used in the hydraulic calculations to size the proposed storm drain pipes. Said software uses the energy-based Standard step method when computing the hydraulic profile. This methodology is an iterative procedure that applies Bernoulli's energy equation between the downstream and upstream ends of each line in the system. It uses Manning's equation to determine head losses due to pipe friction. The Hydreflow Ifydrographs version 8.0 software was used in the hydraulic calculations involving the sizing of the storage ponds onsite. This software uses the hydrograph information that is calculated using the rational method hydrograph generating program by Rick Engineering Company to determine the Peak flows from the onsite ponds and Underground pipe storage. The inputs to the hydrograph generating program were generated from the Civil D Post-Development calculations. Calculations Determine the Watershed that the Project Effects As shown in the figure below the project lies within the Carlsbad Hydologic Unit. For details see the storm water management plan. 4 " "" __ -"_ -?~~---;_--: :_. -:,? Figure 1 Carlsbad HydroJogic Unit Watershed Determine the Runoff Coefficients for the Site The runoff coefficients were calculated for each drainage area according to the percentage of permeable area in each and the soil type encountered in that area. According to the soils report for the site the site lies on a boundary between class B and class D soils, therefore part of the site is considered to be class B while the remainder is class D. The soils map from this report can be found in Attachment B of this report. This map was superimposed onto the drainage map in order to determine the percentage of each area that lies in the class B and class D soil classes. Both the Pre and Post development drainage maps can be found in Attachment C of this report. The percent impermeable surface and the percentage of area in each soil type was inputted into the Civil D program. The program then utilized table 3-1 from the San Diego County Hydrology Manual to calculate the C-value for that area. For example the drainage area from points 29 to 12 was calculated was calculated to be 77% impermeable surface. According to the above referenced table the site was considered to be High Density Residential ( 43 DU/ A). 100% of the area is located in Class D soil. Using these values and the table the following C-value can be calculated. The C values for the majority of the site were calculated using the above method, however there were several areas of the site that had been previously calculated in the Hydrology and Hydraulic Study for Carlsbad Ranch, Planning Area 5-Resort Site, Phase 1, performed by Excel Engineering, dated August 23, 2005. In order to be consistent with this previous study the Southern and Western portions of the site were assumed to be Neighborhood Commercial with a C-value of .76. Calculate Q100 using the Rational Method Hydrologic calculations were computed using the CivilD program based on 4 basins (labeled as Basin A, B, C, and D) for pre-development, post-development/no detention and post-development/with detention. The layout of the drainage areas for both Pre and Post development are shown in Attachment C of this report. The CivilD printouts of these calculations can be found in Attachment D, E and F of this report. The 100-year on-site developed peak storm flows (CFS) have been calculated. These numbers are used to size the proposed storm drain pipes and storage ponds later in this report. Detention Calculations After the 100 year flows where determined using the CivilD program the runoff flow was determined to be higher for the post development conditions than the pre-developed conditions for outfall B and D. In order to mitigate this flow, detention ponds will need to be utilized to limit the peak flow to a value that is less than DR/\l~'/\GL:SlUDY -OCi OBl:R 2016 ,,,,,., ' I L_J the pre-developed condition. An underground pipe storage will be used to mitigate the flow for Outfall B. The hydraflow hydragraphs program by Intelisolve was used to calculate the peak flows from the different storage ponds in for Outfall B and D. The program uses the following procedure to perform these calculations: I ~ I Q = CA-v2gh * Nh The phase 1 Discharge is calculated as: this is a condition where water level in the pond is less than the level of riser's crest and Nh (number of holes in the riser). A is the total area of the orifices of the stand pipe riser and is vary on each stage depend on the depth of water level in the pond. The Second Stage (Phase 2) is the phase where the water surface in the pond starts increasing higher than the riser's crest. As the depth of water increases, the flow will transition to sharp-crested weir and an orifice-type flow. The transition in this horizontal orifice and weir flow depend upon the area of the top of the riser structure. Though the transition from weir flow to orifice flow is somewhat gradual, it is commonly assumed to occur at a discrete water surface elevation to simplify the analysis. The transition water surface elevation is found by calculating the point at which the weir equation and orifice equation yield the same discharge. The sharp-crested weir has relatively thin crest such that the water will tend to develop a nappe as it flows over the crest and is calculated as follows: Q C H1.s = SCWL Where, C sew = sharp-crested weir coefficient L = Length of weir crest (ft) H = head above of weir crest, excluding velocity head (ft) The orifice flow can be calculated using this following equation: Q = CA~2g(h-hR) Where, C= 0.6 for sharp edge coefficient A= area of the horizontal orifice (ft2) g = gravitational acceleration (ft/ s2) h= elevation of water above the orifice (ft) hR = elevation of the crest of the riser orifice (ft) C is the coefficient of orifice equal to 0.6 taken from Smith's Coefficient of Discharge Table 21-9 Standard Handbook for Civil Engineers by Frederick S. Merritt, third edition. The third stage (phase 3) is when the riser totally submerged; the water surface in the pond exceeds the riser crest and the flow can enter the culvert at a faster rate than it can exit (outlet control condition). the Culvert will take control of the flow not the orifices or the riser's crest anymore, the outlet hydraulics for pipe flow can be determined from the following equation that is derived through the use of the Bernoulli and continuity principles (NRCS, 1984): Q=A~2!h n2 kp = 5087----;j; n13 Where, k= 1+km+ kpL Where, h= elevation head differential (h=head water -tail water) km = Coefficient of minor losses (use 1.0) kp = Pipe friction coefficient n = Manning's n-value D = Pipe diameter (ft) L = Culvert Length (ft) Dl?1\ii'!1\G;_: Si UDY -OC!OSU< 2016 6 Before performing the actual pond routing, the pond data was set up in a spreadsheet depth vs. storage vs. discharge relationship, please see outlet rating curve table below as sample. A more detailed table is found in Attachment H. Table 1 IMP-IV STORAGE VS DEPTH VS DISCHARGE . 2.00 258.00 3.50 259.50 4.50 260.50 5.50 • 261.50 Note: 814 998 870 1,577 814 1,812 2,682 4,259 .037 .049 .055 1.459 Clv A= Culvert A represents the discharge from the ultimate outlet pipe (18" HDPE pipe) Clv B = Culvert B represents the discharge from the orifice on the bottom of the pond (2" diameter) Wr A= Weir A represents the discharge from the top of circular riser (3 ft diameter) There is no soil percolation test data provided for this bioretention basin therefore, no infiltration rate included in the basin calculation and assumed no percolation to the native soil. Detention Pond Stage/Storage & Routing Stage-storage curves define the relationship between the depth of water (stage) and the storage (volume) available in the reservoir. Stage-storage curves are typically developed using topographic mapping and/ or grading plans for detention facility. The equation for stage-storage curve is determined by average-end area calculation as follows: V, = ( A1 + A2) (h -h ) 1,2 2 2 I Routing is the process of analyzing flows entering and leaving the pond in order to determine the change of the water surface elevation within the facility over time. The storage routing in this report is performed by Hydraflow program; the fundamental of the calculation is based on conservation of mass (inflow-outflow= L'iStorage), approximated as a finite-difference as: Sn+1 -Sn -In+ In+1 On+ On+1 /).t 2 2 Where, S,,+1 -Sn = Storage within a detention facility at a time step n and n + 1, respectively (ft3) & = time interval (sec); In+ I,,+i = inflow rate at a time step n and n+1, respectively (cuft/s); and O,, +On+! = Outflow rate at a time step n and n+1, respectively (cuft/s). Emergency Spillway Calculations For the IMPs on the project there is only one overflow spillway that can be modeled as weir. Therefore, the outlet-rating curve is straightforward. The emergency spillway must be able to convey the un-attenuated peak flow of, ignoring the storage inside of the bio-retention basins. The invert of the emergency spillway is placed just above the maximum water surface elevation. The maximum spillway depth is found by taking the difference between the top of embankment and the maximum water surface elevation. Allowing for 0.5 foot of required freeboard, the spillway flow cannot be more than 1.0 ft deep. The minimum length of the emergency spillway can be found using the broad crested weir equation: L= Q C H312 hew Storage Indication From inflow hydrograph and out-let rating curve, the storage indication is used to determine routing characteristics of the pond. This equation below is used by the computer program to demonstrate that the pond will empty within less than 72 hours and is presented in graphic shown on the next page. (. 2Sn+1 a 1 _ ( .. 25n a ·1 ( L . r . \At+ n+1) -·. !::. t -n / + n + n+1) Where, Sn = Storage within a detention facility at a time step n (ft3) 8n+I = Storage within a detention facility at a time step n+l (ft3) M = time interval (sec); 1n + 1n+I = inflow rate at a time step n and n+l, respectively (cuft/s); and on +On+I = Outflow rate at a time step n and n+l, respectively (cuft/s). Routing IMP· IV Q (cfs) Hyd. No. 2 --100 Yr a (els) 4.00 -,----r----...-----,.-----,---,----.-----,----,----,----r---~ 4.00 0.00 ..t;;~=l====::::t=-_1.'.::::::::i=r==:r==t==:::i===±==b==-1.--1-0.00 0.0 1.7 3.3 5.0 6.7 8.3 10.0 11.7 13.3 15.0 16.7 18.3 --l-lydNo.2 --HydNo.1 Time (hrs) From the graph above, we are confident to say that the pond will not cause the draw down time exceeds more than 72 hours that may result in vector breeding. No 24 hour settlement time is needed since this is a bio-retention system not a conventional detention pond. Design of Proposed Storm Drain Facilities The proposed storm drain sizes have been shown in the Hydrologic Software and the calculations run as part of that program that the HGL within the pipes does not come within several feet of overtopping the inlet grate elevations. The maximum HGL above the top of underground storm drain pipe is less than a half foot. Therefore, no additional calculations have been done for the on-site system. DR,\i~IAG[ STUDY· OCIOl3lR 2016 8 I I I I I I I I I I I I I I Conclusio n A 100-year 6-hour storm event was analyzed to ensure the proposed project will be capable to handle runoff without damage to existing public facilities and outlet velocities will be controlled through detention systems to minimize downstream erosion. This project will not negatively impact the existing downstream storm drain facilities. The resulting 100-year total flow rates shown in Table 6 assumes that all storm water runoff from the 100-year storm is collected from the surface by the storm drain inlets and is routed to the Detention system and discharged to public storm drains. In low storm cases, the runoff generated by the site will be allowed to percolate through bio-retention systems prior to entering the public storm drainage system. This will add some additional lag times to the time of concentrations not accounted for by the CivilD hydrology program. Should these bio-retention mechanisms fail and not allow for percolation through the media, emergency spillways are provided to allow overtop the Q 100 out of the bio-retention ponding system. PEAK FLOW OVERVIEW 8 7 _____.-._ 6 ,---.._ (/) t:..L. 5 u ..._, ~ 4 r-< ~ 3 ~ 0 .....i 2 t:..L. 0 Existing After D etention Before Detention o.oo P.75 Outfall A 0.80 0.00 0.75 Existing .87 4.41 0.00 Outfall 8 Outfall C 5.09 2.65 0.00 2.06 4.41 6.87 After Detention Before Detention Table 6 -Peak Flows Summary Table DR/'INAG[ S UDY OC\01.ltR 2016 Outfall D 3.92 3.86 7.18 .I 9 l j Declaration of Responsible Charge I hereby declare that I am the engineer of work for this project. That I have exercised responsible charge over the design of the project as defined in section 6703 of the business and professions codes, and that the design is consistent with current design. I understand that the check of the project drawings and specifications by the City of Carlsbad is confined to a review only and does not relieve me, as engineer of work, of my responsibilities for project design. ENGINEER OF WORK Excel Engineering 440 State Place Escondido, CA 92029 Tel-(760)745-8118 Fax -(760)745-1890 Project Number: 13-070 Robert D. Dentino, RCE 45629 Registration Expire: December 31, 2016 DR/\II\/\G[ sruov -OCTOB[R 20 16 10-26-2016 10 Attachments DR/\IN;\GI:: STUDY -OCIOBL:R 2016 11 Attachment A Vicinity Map : ' ~ VICINITY MAP CITY OF OCEANSIDE PACIFIC OCEAN 7a CITY OF ENCINITAS NOT TO SCALE CITY OF VISTA ;, C J Attachment B San Diego County Drainage Manual Graphs and Table Soils Group Map ' id bJ ~ .... ~ ~ ~ ~ 33•3oc--Orange / ·· : .,. :--S?. / I County · ···· · ... C:f : .... I t (i;J;;;;:i;~;;~j· · •• 5:fr···· 33•15·--·- ,, ....... · -0 Q) (') ,,.. - I ~ ~ ~ ~ 33'30' ·,. +~~~<~:::c;~;:r~:.)·\·=:1 ·········1\.\/ ::~~:: ... ::::::::~ •• •.•• :· ·•••• ........ ~?~:15' 33'00' -; ~.{-: • :· 11 i. ~41''~ '--.)=> .1 I ·: :_.f.1.'./__ ll<·. '! . -, 81'-· _::~ •.• ..-1 t aa·oo· 32'45' 32'30' g !:: 0 (') (.I) ~ -:, ~ !:: g !:: .......... ----··'! 3 "O (D ~ 0 ;:;;;r ... ~-g .. /. . ' , . 4~} • -' .-·"', .. ' "' . .... 'tr\ ,83>' ( \ •• •· ·' ..... .. : ~-.··! . \ ' ' ,;:-\-·· 32'45' Mex I t ~ ~ ...... · .... ' r·· .. ·· .... ·-·L \ ~o. ·· .. \ ·· ..... t . ··. 32'30' County of San Diego Hydrology Manual • Rainfall Isopluvials 100 Year Rainfall Event-24 Hours lsopluvial (inches) DPW -C:GIS ~(IIP.~~ ~"""'"..rr,,'~ ~ SltiGIS \Xf-c Haw San Dic~u Cm,1.reJ! N THISMAPIS PROVIDEDWiTHOUTWAllRANTVOFMYl<!tlO. EITHER EXPRESS f OA:lMPUEO,!NCW~NG..1!1JTNOTLlt.lf'TEDTO,l'Hl!!IMl"W!DWARRANTJES Of MERCHANTABILnY AND FTTM:SS f'OA A PAAllCUt.AR PURPOSE Copyr!Jt,1$anGlS.A,IRij11t:1Receirwd. s TIIOiprocub~..,..ilU\inbrml,tianfrwtlhaSANOAG~g·.-1 Elnkwmalk1r,Sy&lemwlllcilcanotbe~•c.it!he IO?ittef>ll'Jf~OfSAf.oiAG.. Tblspioduo:IIIIB)'llOnlainnfOffflllliono,hi<:hhallbeflnrePloduced...m pe«nission{l(Mledbylhmal~Map,,. 3 0 3Miles ~ r C r·· ] [ g ::: Orange j !!! ::: --1 [ J ~ ? ~ [ g ~ (!1 ~ 33•30• ,, • ., County · , .• ,. Rivemide County • • ~ ,. . •. . • ,-·cc-·-... , -, ., ·, .. ··• ·.. r·-.\ i~ 33•15•-1 •) OCEANSIDE WES IN LOT 9 --.::a, .. ,~ CARLSSAO -0 ! ')) 0 .,.. ~ .,.. 33•00· 0 32•45• -------+-- 0 0 (.<) ')) :, ~"' l---------1--g !!! ::: 8 ::: • •• ·······-)\,_ ---.: ··"""'l ),//-'~;~ ~ iis ~ ,:~- \~ ........ \ ---+-+-/-33•00• (!1 ~ .••••.•. 1;:tfff··· 3 '"O CD .., ~ 32•30• County of San Diego Hydrology Manual • . Rairifall Isopluvials 100 Year Rainfall Event - 6 Hours c==~~a;:::-1 DPW •GIS ~ SlliGIS ~-a,,,.~~ ~,...,_.s~ \X•'c Hav.: San Di-.iu Cnvtrcd! N THIS MAP IS-FROVfDED WITHOVf WAAfWITY OF Nrf KIND. EITHER EXPRESS f ORIMPUEO,lNCLIJDING.eofNOTLlt.llTEDTO. 'Tl,fffMPUEOWARAANTIES. Of MERCHANTAEULm' ANO FtTNESS FOR APARTICULAA PURPOSE. ~htSanGISA11Rlghls~ s 'hriliproduct&mJYCGlltalnlrdcmwltionfMmlhefiMOA,GR~ ElntormllianSystam..t.lch~bl~l'IIC,oullho 'Millen pe~of SANDAG. lbEsprocludmsyconlaininlannabon1"hiffihD$l-,1eJ)IO<luco:,dw11h pem\llllliangrll!Hdby~Brolher.Maps. 3 0 3Miles ~ 10.0 9.0 8.0 7.0 -... :::, 0 6.0 5.0 4.0 3.0 2.0 ~ 1 -~1.0 ;:o.9 ~0.8 2 .s0.7 0.6 0.5 0.4 0.3 0.2 0. I 1'. ' ....... ' ~"' .... I I i ' 1' ... ~ ~ ~ .... .. N. 1' .... , ........ .... , ..... "' 'i.. i ! 'I,... .... ... ........ ...... N ~ ;,-{... .... , ...... ........ i ' ... ! .. l' i{ .... ~ '14: j I i""' '~ I~ ' I {J I ,I l i""IIII i ! l1 1- ......... ~J f""'"" ..L ' I I 1 ! r' 1 11 'f I l ~"/....1.._ I I l ........ I I I I I I ' I i i ' I l i I I I I { i I ' ! j I I I I i I I : 11 I I l ! I I I l ! ' I , I I I I ' J_ ... . .. .J. ................ --f .... L. .... +·· ·---~~ .j,,..._1-~ "-- I -----1--·-+-+·· ..... ···--............ +· . ......u.....u I ' -, i -+--i I I i i l I i 5 6 7 8 9 10 r L_ "', .. .. l "' "i.. ! "" ~ .. ' i.. ... """ .... "" I i. i..., ""i.. .. ~ .. .... "" i.i. l ... i..,. I .. ~ i..,. ~ i..., ""' ~ .... ~ ~ i.. ... .. l "i.. i. 1"t.i.. .. .. l ""' i. .... I ,. j "'r-. "i. "'i.. "' .. l "i.. ! .. j ' l I I l i ! I I l I I I ! ! ..j.. l .... I ; ' ' I '"• -..... ·1 ! ' I I iii! 11 l 15 20 30 Minutes I i EQUATION I = 7.44 P5 o·0.645 I = Intensity (in/hr) P5 = 6-Hour Precipitation (in) ~ D = Duration (min) ...... ~ i. ~ ' I I "i. "i. "i. i. ·"p,, loi. t' ii l r-.. ... ' .. i. i. " .... "~I .. I i. ,. r-.. 'i.. "i. 1 .. r-.., . .. ""' """ i. ! ' r-.. .... ... """" .. I" .... i. ~ ... .... .. .... r,,,."' ~"' "i. "" "r-. .. I", ~ " ~~ r-.. "'"' '" .. "'" ,. .... "' "'r.... l"'I"' I' .. ,~ '"l"'i.. ...... I r-..r.. "' .. I .... i. ,. ! l"'I"' ~ .. .. I"., N I" 1~"' ~~ '" I" .... ~ I'" I ---t,-.-... , '"--'' •· .. •· . L ... - I I II Iii II II I I I 40 50 2 3 4 Hours Duration I I I l I ! l I l I i I ' .. I 1 .. ! I 5 6 '{) ::r g ... ,, a Q. 6.0 '2. 5.5 i 5.0 g 4.5 '§' 0 4.0 i5 3.5 .!!!. 3.0 2.5 2.0 1.5 1.0 Intensity-Duration Design Chart • Template Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps induded in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. Application Form: (a) Selected frequency.~ year p (b) P5 = -~ in., P 24 = -~ 'P 6 = _EI__ c10(2) 24 (c) Adjusted P6<2> = __ in. (d) tx = __ min. (e) I= __ in./hr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. PG ... , .. 1 : 1.5 [2 -~ 2.51_ 3 .:_3.5 [ _4 __ .4.5 5 5.5 _6 Duration: I I . I I I I . I I I I I .... 5 2.63 ;3.95; 5.27, 6.59, 7.90,9.22, 10.5411.86: 13.17• 14.49, 15.81 .......... 1.:f12 fa:1ii!'4.2<i's.aofs.36:1.421 s.48:: 9.54 :10.aoi11.ssT12.12 ---fo-T.s1f1'2.sala.:i11'4.21 rs:osfs.ooi .. a.14; 1.sa' s.421'9.2i 110.11 __ 1_5 J,a~J]J1s[~.s9Ji241~.s~J:4.M[s:.19 })ii.4}:s,,ilfL'f13J:1:if 20 1.08 i1.62i2.15i2.S9)3.23l3.77; 4.31: 4.85 i 5.39 i 5.93 ! 6.46 25 o.93 : 1.40 ~1.81, 2.33 ;2:so Ta.21 t:fi:f:4:20~-(si :·5:13 l 5.60 ----:30 o:s3J1.24\1.66[2.01J2,49[2.9o\ 3.32 :3,73 :.4.15 /_4.ssf4.9s ...... _40 .o,sg ;_t.03L1,3s;1.721..2.01:2.41 :2.1a ,3.10, 3.4s: 3.79 j 4.13 _ -· so .o,ao J0.90L1 .19U ,4911 .79 :.2,09[.2,39 j 2,69 L_2.98 J...3.28 .L3.58 60 o.53 :o.ao,1.00: 1,33,1.59;1.as, 2.12, 2.391 2.65 l 2.92 !. 3.18 ---90 ·0:41 Io.61 !0.82 j 1.02 l 1.23; 1.43 ! 1.63 l 1.84 i 2.04 12.25 l 2.45 :·:~:~-J20 §:i4'Jo:5mfssro.esfJ02]T.1 il [1 .36. j'f.53. r,. 70 l) .87 f2.04 .. __ 1sc, __ ll,?9 Jll.4_4L0,59j_(),73J..Cl.88U.03L.1_.1a .J1.32 L 1.47 u.e2 ;_1.?6 180 0.26 J0.39f0.5210.65i0.78l0.9111.04 ! 1.18 ! 1.31 i 1.44 i 1.57 -·--······· .... ..... .. ... . ... ... ·•·· ., ....... ,. . •.• .. ·-j'··.. . ........ . .. , ..... •-.. , ... . 240 0.22 10.33!0.4310.54i0.6510.76! 0.87 , 0.98 , LOS : .t.19 i 1.30 ·---. ·o:r!i ro:2sfo:381o.41 lo.ss; o.661"0.15 ; o.as i o.94 : 1.03 Tf 1a .......... 360 · o: 11 To.2sio.33 ni:42 re.so i'o.sa f'o.si 1 ... o.7s l ... o:i34-:-o.92 T1.oo FIGURE I s-1 I f' --~ .'.> ff L c C Sain Dieso County Hydrology Manual Date: June 2003 1· a bl.e 3-1 Section: P~!!,e,: RUNOFt"' CO&FFlC.'1IE!\'T$ FOR URB,AN A .. REAS Land Use NRCS Ekments UndiswmeidNatural Terra.in (Naturat) Low Den:si.ty Resir.lentinl (I.DR) Low Dm;ity Resid~ntia.1 (LDR) L-ow Density Residentia.l (LDR) Mediwn Den.'>ity Resjdential (tvIDR) b.,fediwn Density Rcsidc:ntial (!\,IDR) M.edium De~[ty Residential (r.llDR.) Medium Den.s~t)· Residential (ll.IDR) High De1uil'J Ref>idential (HDR) High Demdty Ref>idential (HDR) Ca.,mm ercialllndustrial (N. Com) Commt'rcialflndu:slrial (G. Com) Commm-cia1'1ndustrial (O.P. Cow) Commerciali1ndustrial (Limited Commerci-all1ndustrial (General Couty F.lerm:mu. Penmitl'.!mt Open ~pace ResidentiaJ. i .0 DUlA or len Re!iidentinl, 2, 0 orJe1>,'i, Res:identia~ 2.9 DUiA or Jess Resj;de!ntia!I. 4.3 DUlA O!l' .Jess Res~dentiall, 7.3 DU/A or less Res:ide:ntial, 10.9 DU/A or ~ss Residen1ia3, 14.5 DU/A or Jiess Res:identia~, 24.0 DU/A or less Residentiall. 43.0 DU/A or ltISS Neighoorht0od Conlim.er.c:ial General C01nnltrclll'll OfficG f'rofesionalJ'Commercial Limited lnduxtriai General Iudustrial JO 20 25 30 40 45 so 65 80 80 85 90 90 95 .A o. 0,34 0.38 0.41 0.48 0.52 0.55 0.66 0.16 0.16 0. 80 0.83 0,83 0.87 Runoff Coeffic:ient B (),2,5 OAJ OA5 0.51 054 0.58 (J67 0.77 rxn OJ!O 0.84 0.84 0.87 1 -=~=1 c::::1 C 0.3Q Q,36 C~.42 0.45 0.48 0.54 0.57 0.60 0.69 0.78 o.·,s 0.81 0.84 0.84 run 3 6of26 0.35 OA6 OA9 052 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0 .. 85 0.85 o.:s1 *The values associated with 0% impei:viou.1 may be u:ied for direct calculm.ion of th.e coefficient ar1 dest::ribed in Sectioo 3. B .2 ('represenll.in,g the pervio!k"i runPfl coeffidem. Cp. for the soil type),. or areas that will remain undimirbed in perpetuity. Justifi.cfrtion must be given tlmtthe :mm will remein mtural fbreve,r (e.g., the area is located .in C1el/'dand National DUlA = ~·illing units per a.ere Nl(CS "'National Resources Ooni;encr11tion SeIVire 3--6 100 I l,Li ] ; z 0 -w u z '<:t I-22 ~ w w 0::: :::J 0 0 a: ~ ~ E:XA.MF!lE: Given: WamrmuF.se, Di£ltanoo (D) ·!;;l Feet Slope (s) ""1 Runoff Coefficient (C) ::::;; ,0,41 Overland Flow Ti:me (1'.) ::: 9,5, MinutElllli SOURCE: A1rpo,rt Oralna!,ile, Federal Avtalion Admlnislratiion, 1.965 T:::. 1.S{1.HJ} Vo ''It,~ ,, w:s .. ~ w ~ F ~ 0 ...I IJ,.' 10 o 5 p;:: ·~ 0 FIGURE Rational Formula • Overland Time ,of Flow Homograph 3 .• 3 " ~ r L -· San Diego Cnunty Hydrrology Manual Date: June 2003 Section: Page: 3 12 of 26 Note that the Initial Time of Concentration should be reflective of the ieneral land-use at the upstrean1 end of a drainage basin. A s.ingle lot with an area of t,11m or less acres does not have a significant effe,ct where the drainage basin area is 20 to 600 acres. Table 3-2 provides: limits of the length {Maximum Length (LM)) of sheet flow to be used in hydrology :studies. b1itial T, va]ues based on average C va1ues f~r fbe Land Use EJe1:nent are also included. 'These values ca11 be used in planning and design a.pplica:tions as described below, Exceptions may be approved by tile ''Regulating Ageni:ryn ,~then :submitted with a detailed study. Tahle3-2 MAXU\fUM OV.ERLAND FLOW LENGTH (LM) & INITIAL TIME OF CONCENTRATION .~~~--~~--,-~~~-,- Element* DU/ 5% l 't» l.O'H• Acre LM T, Natura] 70 100 6.9 LDR 100 LDR 2.9 75 4.9 43 50 75 3,.8 50 75 3.8 G. Com 4.7 4.1 75 3.6 85 3.4 O.PJCom 50 4"' ·"' .3.7 70 3.1 80 2.9 2.2 Limited l 50 4.2 3.7 70 I 3.1 80 2.9 2.2 General I. 50 3.7 3.2 70 2.7 80 :2.6 1.9 *See Table 3~1 for 1nore detailed description 3-12 ml I • ~ ~ I I - ~ I .I ~ ~ I ' ~ ri u r'l ~ .6.E feet 3H 20 u, AE T,c: Tc L ~E = ;;: =: =' EQUATION (!11~)0.3J5 Ttme of ,cc,oceDlr•tion (houni:j Watercourse Distar1ce {mile$} Cha~e in elevation .along effective slope tine (See figure 3-!HfNQ L Mlln r:•et Tc Hours! Minutes 1 00 so .ill) l!lO 21)! 1$ 3000 16 . ' 0,5 L ' 14 ' ' ' , 10 ,: .. ;9 Tc 8 1 6 N9mog!raph forJ>et•mlna:tlon ·01 Time of ConC$nfrafion (f ct or Travel lime. (liJ for Na1uro1 watershed, 3-4 Wai:ershed Divide · I 6E ! .I I D (Wahlnlhtt Computation of Effective Slope for Natural Watersheds ~ I ' FIGURE -l -.5 I _____ ,J ~- ts 16 14 12 10· 9 8 'l 6 s 4 !. ~ 0 3 (ij 'W l!1 00 u 2 'if!. UI 1;,(j: 1\;t; r" ... 1',(l 0.9 o.a 0.7 OJ;, 0.6 n 0.4 EXAMPUa: Gl',en: Q :ii 10 S" :U% C!llmt giwi: Di!plll ·::: il,4, \!tltH:lty ::: r.p&, Gutter and Roadway Discharge -Velocity Chart RESmENT!At STREET ONE SID£ ONtY FIGURE 3-6 ilJll lJ(J!:] ll001 O'OtllJ!i 1Hl!lQ13 IJ.D001 rlOlllli1i Iltll'.I0:5 DOOM tlJJcma EQUATION:V:u 1.49 R1':i s111 n l'.U) s, J(' 2n GENERAL SOLUTION ~· D {):] I !i"ffi!'I ILIJ& (1.10 ~ o.~. ~ -(J.::J i ! - ;[J.i ~ ~ FIGURE ~ l3" 7' SIT N l3" 7'44"N 3: ;,,; !2 ~ i- I i ; i i 3: ;,,; !2 ~ 411140 471140 N A Hydrologic Soil Group-San Diego County Area, California (Hydrologic Soil Group) 471170 471200 471230 4712(,0 471290 471320 471170 471200 471230 471260 471290 411320 Map Salle: 1: 1,340 if priud a, A land5Clpe (11" X 8.5") sheet. ------======-------------============>Metes 0 ~ ~ 00 ~ -------=======-------------===========~Feet 0 50 100 200 300 Map pojectjon: \'Rb MertalDr Caner CDOlt1ilates: WGS84 Edge tics: UTM Zone 1 lN WGS84 USDA Natural Resources Web Soil Survey ;ope~· 4 oil S --CoC::--:Stion --au 471350 47139J 471350 47131ll 3: ~ !!! ~ 411410 L ~ . .ce.a..-1 l3"7'S1TN 471410 3: ~ !2 ~ ~ I i ; i i 10/23/2014 of 4, l3" 7'44"N - = --LIi c-.1 CIIII Hydrologic Soil Group-San Diego County Area, California (Hydrologic Soil Group) - - - - MAP LEGEND MAP INFORMATION Area of lnternt (AOI) D Area of Interest (AOI) Solla Soll Rating Polygons D A D AID DB D BID D C 0 C/D DD D Not rated or not available Soll Rating LlnH A .-, AID .-, B ,_, BID .-, C CID D --Not rated or not available Soll Rating Points • A • AID • B • BID Natural Resources Conservation Service • C • CID • D a Not rated or not available Water Features Streams and Canals Transportation +++ Rails ,,...,, Interstate Highways _..,i, US Routes Major Roads Local Roads Background • Aerial Photography Web Soil Survey National Cooperative Soil Survey The soil surveys that comprise your AOI were mapped at 1 :24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below . Soil Survey Area: Survey Area Data: San Diego County Area, California Version 8, Sep 17, 2014 Soil map units are labeled (as space allows) for map scales 1 :50,000 or larger. Date(s) aerial images were photographed: May 3, 2010-Jun 19, 2010 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. 10/23/2014 Page 2 of 4 IC:I - ' bad Hydrologic Soil Group-San Diego County Area, California Hydrologic Soil Group Hydrologic Soil Group Hydrologic Soil Group:-San Diego County Area, California Map unit symbol Map unit name Rating Acres inAOI Percent of AOI hbd8 Las Flores loamy fine D 0.8 sand, 2 to 9 percent slopes hbdd Las Flores loamy fine D 1.4 sand, 15 to 30 percent slopes hbdz Marina loamy coarse B 1.9 sand, 2 to 9 percent slopes Totals for Area of Interest 4.1 Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (AID, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (AID, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. USDA Natural Resources '"""""" Conservation Service Web Soil Survey National Cooperative Soil Survey 20.0% 33.4% 46.6% 100.0% 10/23/2014 Page 3 of4 Hydrologic Soil Group-San Diego County Area, California Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher USDA Natural Resources ~ Conservation Service Web Soil Survey National Cooperative Soil Survey u (~1 lcc!icl 10/23/2014 Page 4 of4 ~J r=:w'j I I~ \~: Attachment C Pre-Development Hydrologic Map Post-Development Hydrologic Map .' .•. A "' ... ~ ". -' · .... ~. ·: .. \ \ \ \ \ \ \ \ \ \ \ \ \ \ .·--\ ~e-A oe-clb A=.452 AC POC "A" PRE-DEVELOPMENT=.80 CFS POST-DEVELOPEMENT=. 75 Q100 Q100 CFS A= .324 AC k---1/',-L--' I I I \ I I 1 I • - ' NEIGHBORHOOD COMMERCIAL C \ FACTOR IS USED TO 8£ CONSISTENT /YITH APPRO/lO HYDROLOGY ANO HYDRAULIC STUDY FOR CARLSBAD RANCH, PLANNING AREA 5-RESORT SITE, Pf/ASE I, PEl?fORMEO BY EXCcl £NC/NEER/NC, DATED AUGUST 23, 2005 \ \ \ I \ I \ I \ Q100 Q100 / \ 262 I I I I *' /v I -/ ;:,,. --,f \p="li...l 2~J ACRES POC 87% IMPERVIOUS 100% SOIL TYPE B "B" I I I ,, PRE-DELOPMENT=5.09 POST-DETENTION=4.41 -~ 'sf , ' ( / / ( I I / / / CFS , A=.965 CFS A=.955 ~ AC AC POC "D" Q100 PRE-DEVELOPMENT=3.92 CFS Q100 POST-DETENTION=3.86 CFS A=l.960 AC A=l.688 AC I I I \ \ I I \ \ I I I I .,-, I / --- POST-LJE/P£0PN.BHT HYLJ../?0£00/C .MAP \ I \ / :( ;\ '~ \ LOT.P LJ.En?LO.P.A:D?NT CA./?£SDA4 CA ' ~ I~, / 'CALE t '=JO• 6() 9() 120 I • '' ... I \ \ I . ·, ... ·. - ,;· \ ' I I ,./ / / / 7 /__.., .. .,-' @ OUTFALL "D" 168 Q100=3.92 CFS A=l.960 AC SUMMARY TABLE PR£-0£VEZOP£M£NT POST 0£VEZOP£M£NT UN-MIT/CA!EO POSf::lJEVEZOPEI.IENT MIT/CA TEO OUTFALL (}!00 (CFs) AREA (ACREs) Tc (MIN) 0100 (CFS) AREA (ACRES) Tc (MIN) 0100 (CFS) AREA (ACR£s,i--Tc (MIN) +--c:c:-:---,l---=--1---:::c::::--+---:·-·-·-· -----+--~~ A ----+--0.:c.. :.:79'------1--·'-'4.~52=--__,1--__,8.,-9,.-,4_-+-_0. {<!__1--__,· J._,4.-cc9cc---+--7.::. J.-::'Jcc----+-0. 6. __ '8_-+ __ 0._. J._4._9 _____ 7. ,J._'J __ 3.40 6.J4 !./97 5.J8 4.0J !.!97 !!.00 5.09 .965 .924 B C 2.65 !2.72 2.5J .5!7 2.45 2.5J 0.517 2.45 ---....J.-----··· 0 J.92 !.960 4.66 8.26 2.J20 4.57 J.75 2.320 !!.00 -1--''='-=.,---r--=c=c::=:-+-=-----+--='-':......-1--------------TOTAL 12.45 4.J01 17.81 4.J8J to.99 4.J8J L.....c.=..c..=._..L_....C.Cc.=_~~~-~---·~-~ .P..RB-.LJEVE.£0.P.MEH.T HY.LJ/?0£00/C AfA.P LOT .9 .0..IJ'fP£.0.P.AfB.Nr CA.i.£SBA4 CA SCALE !'=JO' 0 J0~~~60 90 11 Jt?O i I I I lclJ ,-, LJ Attachment D CivilD Pre-Development Hydrology Calculations San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2012 Version 7.9 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/09/15 13070 WESTIN LOT 9 DEVELOPMENT 100 YEAR STORM EVENT PRE-DEVELOPMENT OUTFALL A FILE: 13070PREA.RD3 ********* Hydrology Study Control Information********** Program License Serial Number 6312 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 15.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1. 000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [LOW DENSITY RESIDENTIAL (1. 0 DU/A or Less ) Impervious value, Ai = 0.100 Sub-Area C Value = 0.320 Initial subarea total flow distance 85.000(Ft.) Highest elevation= 265.000(Ft.) Lowest elevation= 260.000(Ft.) Elevation difference= 5.000(Ft.) Slope= 5.882 % Top of Initial Area Slope adjusted by User to 4.545 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.54 %, in a development type of 1.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration 8.48 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.3200)*( 100.000A.5)/( 4.545A(l/3)]= 8.48 Rainfall intensity (I) = 4.874(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.320 Subarea runoff= 0.131(CFS) Total initial stream area= 0.084(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 16.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.255(Ft.), Average velocity= ******* Irregular Channel Data*********** 0.418(CFS) 4.296(Ft/s) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL A Page 1 of 2 Information entered for subchannel number 1 : Point number 1 •x• coordinate 0.00 •y• coordinate 1. 00 2 1.50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0.030 Sub-Channel flow 0.418(CFS) flow top width= 0.764(Ft.) velocity= 4.296(Ft/s) area= 0.097(Sq.Ft) Froude number= 2.121 Upstream point elevation= 260.000(Ft.) Downstream point elevation 242.000(Ft.) Flow length= 120.000(Ft.) Travel time 0.47 min. Time of concentration= 8.94 min. Depth of flow= 0.255(Ft.) Average velocity= 4.296(Ft/s) Total irregular channel flow= 0.418(CFS) Irregular channel normal depth above invert elev. 0.255(Ft.) Average velocity of channel(s) 4.296(Ft/s) Adding area flow to channel Rainfall intensity (I)= 4.709(In/Hr) for a 100.0 year storm Decimal fraction soil group A 0.000 Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.386 0.270 0.000 0.730 Rainfall intensity= 4.709(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.373 CA= 0.169 Subarea runoff= 0.664(CFS) for 0.368(Ac.) Total runoff= 0.795(CFS) Total area= Depth of flow= 0.324(Ft.), Average velocity End of computations, total study area= 0.452(Ac.) 5.044(Ft/s) 0.452 (Ac.) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL A Page2 of2 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2012 Version 7.9 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/09/15 13070 WESTIN LOT 9 DEVELOPMENT 100 YEAR STORM EVENT PRE-DEVELOPMENT OUTFALL B FILE:13070PREB.RD3 ********* Hydrology Study Control Information********** Program License Serial Number 6312 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 24 hour precipitation(inches) = P6/P24 = 57.8% 2.600 4.500 San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1. 000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [COMMERCIAL area type (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Initial subarea total flow distance 80.000(Ft.) Highest elevation= 265.000(Ft.) Lowest elevation= 242.000(Ft.) Elevation difference 23.000(Ft.) Slope= 28.750 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 28.75 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% TC= [l.8*(1.1-0.7700)*( 100.000A.5)/( 1.94 minutes slope (1/3) l 28.750A(l/3)]= Calculated TC of 1.939 minutes is less than 5 minutes, 1. 94 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff= 0.306(CFS) Total initial stream area= 0. 058 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 17.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.461(Ft.), Average velocity= ******* Irregular Channel Data*********** 2.260(CFS) 7.090(Ft/s) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL B Page 1 of4 Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1. 00 2 1. 50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0.013 Sub-Channel flow 2.260(CFS) flow top width= 1.383(Ft.) velocity= 7.090(Ft/s) area= 0.319(Sq.Ft) Froude number= 2.602 Upstream point elevation= Downstream point elevation Flow length= 345.000(Ft.) Travel time 0.81 min. 242.000(Ft.) 230.000(Ft.) Time of concentration= 2.75 min. Depth of flow= 0.461(Ft.) Average velocity= 7.090(Ft/s) Total irregular channel flow= 2.260(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 7.090(Ft/s) Adding area flow to channel 0.461(Ft.) Calculated TC of 2.750 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I)= 6.850(In/Hr) for a 100.0 year storm Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Value= 0.770 Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.770 CA= 0.615 Subarea runoff= 3.909(CFS) for 0.74l(Ac.) Total runoff= 4.215(CFS) Total area= Depth of flow= 0.582(Ft.), Average velocity= 0.799(Ac.) 8.285(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 0.799(Ac.) Runoff from this stream 4.215(CFS) Time of concentration Rainfall intensity= 2.75 min. 6.850(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 18.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Value= 0.770 A B C D 0.000 1.000 0.000 0.000 Initial subarea total flow distance Highest elevation= 259.000(Ft.) Lowest elevation= 241.000(Ft.) 82.000(Ft.) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL B Page 2 of4 "1ll i ' ~ i lilii!l Elevation difference 18.000(Ft.) Slope= 21.951 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 21.95 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% TC= [l.8*(1.1-0.7700)*( 100.000A.5)/( 2.12 minutes slope (1/3) l 21.951A(l/3)]= Calculated TC of 2.121 minutes is less than 5 minutes, 2.12 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff= 0.253(CFS) Total initial stream area= 0.048(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 19.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.287(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1.00 2 3 1. 50 3.00 Manning's 'N' friction factor 0.013 Sub-Channel flow 0.564(CFS) 0.00 1. 00 flow top width= 0.860(Ft.) velocity= 4.575(Ft/s) area= 0.123(Sq.Ft) Froude number= 2.129 Upstream point elevation= Downstream point elevation Flow length= 110.000(Ft.) Travel time 0.40 min. 241.000(Ft.) 238.000(Ft.) Time of concentration= 2.52 min. Depth of flow= 0.287(Ft.) Average velocity= 4.575(Ft/s) Total irregular channel flow= 0.564(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 4.575(Ft/s) Adding area flow to channel 0.564(CFS) 4.575(Ft/s) 0.287(Ft.) Calculated TC of 2.522 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Value= 0.770 0.000 Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.770 CA= 0.128 Subarea runoff= 0.622(CFS) for 0.118(Ac.) Total runoff= 0.876(CFS) Total area= Depth of flow= 0.338(Ft.), Average velocity= 0.166(Ac.) 5.106(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 17.000 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL B Page 3 of4 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Depth of flow= 0.353(Ft.), Average velocity ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 1 2 3 'X' coordinate 0.00 1. 50 3.00 'Y' coordinate 1. 00 0.00 1. 00 Manning's 'N' friction factor 0.016 Sub-Channel flow 0.876(CFS) flow top width= 1.060(Ft.) velocity= 4.675(Ft/s) area= 0.187(Sq.Ft) Froude number= 1.960 Upstream point elevation= Downstream point elevation Flow length= 245.000(Ft.) Travel time 0.87 min. 238.000(Ft.) 230.000(Ft.) Time of concentration= 3.40 min. Depth of flow= 0.353(Ft.) Average velocity= 4.675(Ft/s) Total irregular channel flow= 0.876(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 4.675(Ft/s) 4.675(Ft/s) 0.353(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.166(Ac.) Runoff from this stream 0.876(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 3.40 min. 6.850(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 4.215 2.75 6.850 2 0.876 3.40 6.850 Qmax(l) 1. 000 * 1.000 * 4.215) + 1. 000 * 0.810 * 0.876) + 4.924 Qmax(2) 1. 000 * 1.000 * 4.215) + 1.000 * 1.000 * 0.876) + 5.090 Total of 2 streams to confluence: Flow rates before confluence point: 4.215 0.876 Maximum flow rates at confluence using above data: 4.924 5.090 Area of streams before confluence: 0.799 0.166 Results of confluence: Total flow rate= 5.090(CFS) Time of concentration= 3.396 min. Effective stream area after confluence End of computations, total study area= 0.965(Ac.) 0. 965 (Ac.) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL B Page 4 of 4 n San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2012 Version 7.9 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/09/15 13070 WESTIN LOT 9 DEVELOPMENT 100 YEAR STORM EVENT PRE-DEVELOPMENT OUTFALL c FILE:13070PREc.RD3 ********* Hydrology Study Control Information********** Program License Serial Number 6312 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 4.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.320 0.000 1. 000 0.000 0.000 Initial subarea total flow distance 65.000(Ft.) Highest elevation= 263.000(Ft.) Lowest elevation= 262.000(Ft.) Elevation difference 1.000(Ft.) Slope= 1.538 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85.00 (Ft) for the top area slope value of 1.54 %, in a development type of 1.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration 11.21 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.3200)*( 85.000A.5)/( 1.538A(l/3)]= 11.21 Rainfall intensity (I) = 4.069(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.320 Subarea runoff= 0.046(CFS) Total initial stream area= 0.035(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.459(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1. 00 2 1. 50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0.030 1.297(CFS) 4.097(Ft/s) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL C Page 1 of2 Sub-Channel flow l.297(CFS) flow top width= 1.378(Ft.) velocity= 4.097(Ft/s) area= 0.317(Sq.Ft) Froude number= 1.507 Upstream point elevation= Downstream point elevation Flow length= 370.000(Ft.) Travel time 1.51 min. 262.000(Ft.) 239.000(Ft.) Time of concentration= 12.72 min. Depth of flow= 0.459(Ft.) Average velocity= 4.097(Ft/s) Total irregular channel flow= 1.297(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 4.097(Ft/s) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Value= 0.781 3.751(In/Hr) for a 0.000 0.470 0.000 0.530 0.459(Ft.) 100.0 year storm Rainfall intensity= 3.751(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.763 CA= 0.705 Subarea runoff= 2.600(CFS) for 0.889(Ac.) Total runoff= 2.645(CFS) Total area= Depth of flow= 0.600(Ft.), Average velocity End of computations, total study area= 0.924(Ac.) 4.897(Ft/s) 0.924 (Ac.) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL C Page 2 of2 ~ I, L..J San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2012 Version 7.9 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/11/15 13070 WESTIN LOT 9 DEVELOPMENT 100 YEAR STORM EVENT PRE-DEVELOPMENT OUTFALL D FILE: 13070PRED.RD3 ********* Hydrology Study Control Information********** Program License Serial Number 6312 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1. 000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value= 0.870 Initial subarea total flow distance 72.000(Ft.) Highest elevation= 262.000(Ft.) Lowest elevation= 261.000(Ft.) Elevation difference= 1.000(Ft.} Slope= 1.389 % Top of Initial Area Slope adjusted by User to 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 60.00 (Ft) for the top area slope value of 1.00 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [1.8*(1.l-C)*distance(Ft.)A.5)/(% TC= [1.8*(1.1-0.8700)*( 60.000A.5)/( 3.21 minutes slopeA (1/3)] 1.000A (1/3) ]= Calculated TC of 3.207 minutes is less than 5 minutes, 3.21 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I)= 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff= 0.679(CFS) Total initial stream area= 0 .114 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 9.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation= Downstream point/station elevation 257.SOO(Ft.) 203.000(Ft.) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL D Page 1 of 6 Pipe length 300.00(Ft.) Slope= 0.1817 Manning's N 0.013 No. of pipes 1 Required pipe flow 0.679(CFS) Nearest computed pipe diameter 6.00(In.) Calculated individual pipe flow 0.679(CFS) Normal flow depth in pipe= 2.19(In.) Flow top width inside pipe= 5.78(In.) Critical Depth= 5.00(In.) Pipe flow velocity= 10.49(Ft/s) Travel time through pipe= 0.48 min. Time of concentration (TC) = 3.68 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 10.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Depth of flow= 0.252(Ft.), Average velocity ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1. 00 2 1.50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0.030 Sub-Channel flow 0.679(CFS) flow top width= 0.757(Ft.) velocity= 7.115(Ft/s) area= 0.095(Sq.Ft) Froude number= 3.530 Upstream point elevation= Downstream point elevation Flow length= 84.000(Ft.) Travel time 0.20 min. 203.000(Ft.) 168.000(Ft.) Time of concentration= 3.88 min. Depth of flow= 0.252(Ft.) Average velocity= 7.115(Ft/s) Total irregular channel flow= 0.679(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 7.115(Ft/s) 7.115(Ft/s) 0.252(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 0.114(Ac.) Runoff from this stream 0.679(CFS) Time of concentration Rainfall intensity= 3.88 min. 6.850(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.200 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.800 [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai = 0.100 Sub-Area C Value= 0.392 Initial subarea total flow distance Highest elevation= 263.000(Ft.) Lowest elevation= 257.000(Ft.) Elevation difference= 6.000(Ft.) 197.000(Ft.) Slope 3.046 % 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL D Page 2 of6 INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 3.05 %, in a development type of 1.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration 8.79 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)) TC= [l.8*(1.1-0.3920)*( 100.000A.5)/( 3.046A(l/3)]= 8.79 Rainfall intensity (I) = 4.760(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.392 Subarea runoff= l.935(CFS) Total initial stream area= 1.037(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation= 252.500(Ft.) Downstream point/station elevation 220.000(Ft.) Pipe length 176.00(Ft.) Slope 0.1847 Manning's N 0.013 No. of pipes= 1 Required pipe flow l.935(CFS) Nearest computed pipe diameter 6.00(In.) Calculated individual pipe flow 1.935(CFS) Normal flow depth in pipe= 4.07(In.) Flow top width inside pipe= 5.61(In.) Critical depth could not be calculated. Pipe flow velocity= 13.65(Ft/s) Travel time through pipe 0.21 min. Time of concentration (TC) = 9.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 10.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Depth of flow= 0.396(Ft.), Average velocity ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number •x• coordinate 'Y' coordinate 1 0.00 1. 00 2 1. 50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0.030 Sub-Channel flow 1.935(CFS) flow top width= l.189(Ft.) velocity= 8.213(Ft/s) area= 0.236(Sq.Ft) Froude number= 3.251 Upstream point elevation= Downstream point elevation Flow length= 171.000(Ft.) Travel time 0.35 min. 220.000(Ft.) 168.000(Ft.) Time of concentration= 9.35 min. Depth of flow= 0.396(Ft.) Average velocity= 8.213(Ft/s) Total irregular channel flow= 1.935(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 8.213(Ft/s) 8.213(Ft/s) 0.396(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/StatioD 10.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area l.037(Ac.) Runoff from this stream= l.935(CFS) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL D Page 3 of 6 Time of concentration Rainfall intensity= 9.35 min. 4.574(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.410 0.000 0.000 0.000 1. 000 Initial subarea total flow distance 65.000(Ft.) Highest elevation= 258.000(Ft.) Lowest elevation= 236.000(Ft.) Elevation difference 22.000(Ft.) Slope= 33.846 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 33.85 %, in a development type of 1.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [1.8*(1.l-C)*distance(Ft.)A.5)/(% TC= [1.8*(1.1-0.4100)*( 100.000A.5)/( 3.84 minutes slopeA(l/3)] 33.846A(l/3)]= Calculated TC of 3.840 minutes is less than 5 minutes, 3.84 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I)= 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.410 Subarea runoff= 0.236(CFS) Total initial stream area= 0. 084 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 23.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.401(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1.00 2 1. 50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0.030 Sub-Channel flow 1.254(CFS) flow top width= 1.203(Ft.) velocity= 5.196(Ft/s) area= 0.241(Sq.Ft) Froude number= 2.045 Upstream point elevation= Downstream point elevation Flow length= 167.000(Ft.) Travel time 0.54 min. 236.000(Ft.) 216.000(Ft.) Time of concentration= 4.38 min. Depth of flow= 0.401(Ft.) Average velocity= 5.196(Ft/s) Total irregular channel flow= 1.254(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 5.196(Ft/s) Adding area flow to channel 1. 254 (CFS) 5.196(Ft/s) 0.401(Ft.) Calculated TC of 4.375 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I)= 6.850(In/Hr) for a 100.0 year storm 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL D Page 4 of 6 Ld ~ Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1. 000 [LOW DENSITY RESIDENTIAL (1. 0 DU/A or Less ) Impervious value, Ai = 0.100 Sub-Area C Value = 0.410 Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.410 CA= 0.332 Subarea runoff= Total runoff= Depth of flow= 2.036(CFS) for 0.725(Ac.) 2.272(CFS) Total area= 0.501(Ft.), Average velocity= 0.809(Ac.) 6.028(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 10.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Depth of flow= 0.417(Ft.), Average velocity ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 1 2 3 'X' coordinate 0.00 1. 50 3.00 'Y' coordinate 1. 00 0.00 1. 00 Manning's 'N' friction factor 0.030 Sub-Channel flow 2.272(CFS) flow top width= 1.25l(Ft.) velocity= 8.715(Ft/s) area= 0.261(Sq.Ft) Froude number= 3.364 Upstream point elevation= Downstream point elevation Flow length= 150.000(Ft.) Travel time 0.29 min. 216. 000 (Ft.) 168.000(Ft.) Time of concentration= 4.66 min. Depth of flow= 0.417(Ft.) Average velocity= 8.715(Ft/s) Total irregular channel flow= 2.272(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 8.715(Ft/s) 8.715(Ft/s) 0.417(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 3 Stream flow area= 0.809(Ac.) Runoff from this stream 2.272(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 4.66 min. 6.850(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 0.679 3.88 6.850 2 1.935 9.35 4.574 3 2 .272 4.66 6.850 Qmax(l) 1. 000 * 1. 000 * 0.679) + 1.000 * 0.415 * 1.935) + 1. 000 * 0.832 * 2 .272) + 3.373 Qmax(2) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL D Page 5 of6 0.668 * 1.000 * 0.679) + 1.000 * 1.000 * 1.935) + 0.668 * 1. 000 * 2.272) + 3.906 Qmax(3) 1. 000 * 1.000 * 0.679) + 1. 000 * 0.498 * 1.935) + 1.000 * 1. 000 * 2 .272) + 3. 916 Total of 3 streams to confluence: Flow rates before confluence point: 0.679 1.935 2.272 Maximum flow rates at confluence using above data: 3.373 3.906 3.916 Area of streams before confluence: 0.114 1.037 0.809 Results of confluence: Total flow rate= 3.916(CFS) Time of concentration= 4.662 min. Effective stream area after confluence End of computations, total study area= 1.960(Ac.) 1. 960 (Ac.) 13070 LOT 9 DEVELOPMENT PRE-DEVELOPMENT OUTFALL D Page 6 of6 M w ~ ; I ! j l..iii ~ I : I ~ ' u Attachment E CivilD Post-Development Hydrology Calculations ' ~ r, San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2012 Version 7.9 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 07/19/16 13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT POST-DEVELOPMENT UNMITIGATED OUTFALL A ********* Hydrology Study Control Information********** Program License Serial Number 6312 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.500 24 hour precipitation(inches) = 4.500 P6/P24 = 55.6% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 16.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.395 0.000 0.170 0.000 0.830 Initial subarea total flow distance 138.000(Ft.) Highest elevation= 263.000(Ft.) Lowest elevation= 242.000(Ft.) Elevation difference 21.000(Ft.) Slope= 15.217 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 15.22 %, in a development type of 1.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration 5.12 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.3947)*( 100.000A.5)/( 15.217A(l/3)]= 5.12 The initial area total distance of 138.00 (Ft.) entered leaves a remaining distance of 38.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.27 minutes for a distance of 38.00 (Ft.) and a slope of 15.22 % with an elevation difference of 5.78(Ft.) from the end of the top area Tt = [ll.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr) 13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT POST-DEVELOPMENT UNMITIGATED OUTFALL A Page 1 of 2 0.265 Minutes Tt=[(ll.9*0.0072A3)/( 5.78)]A.385= 0.27 Total initial area Ti 5.12 minutes from Figure 3-3 formula plus 0.27 minutes from the Figure 3-4 formula 5.39 minutes Rainfall intensity (I) = 6.276(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.395 Subarea runoff= 0.503(CFS) Total initial stream area= 0.203 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 16.000 **** SUBAREA FLOW ADDITION**** Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less ) Impervious value, Ai= 0.100 Sub-Area C Value= 0.320 6.276(In/Hr) 0.000 1. 000 0.000 0.000 Time of concentration= 5.39 min. for a 100.0 year storm Rainfall intensity= 6.276(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.367 CA= 0.119 Subarea runoff= 0.243(CFS) for 0.12l(Ac.) Total runoff= 0.746(CFS) Total area End of computations, total study area= 13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT POST-DEVELOPMENT UNMITIGATED OUTFALL A 0. 324 (Ac.) 0.324 (Ac.) Page 2 of 2 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2012 Version 7.9 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 10/25/16 13070 WESTIN LOT 9 DEVELOPMENT POC - B POST-DEVELOPMENT NO DETENTION 100 YR STORM EVENT FILE:13070POSTB.RD3 ********* Hydrology Study Control Information********** Program License Serial Number 6312 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 18.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [COMMERCIAL area type {Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value= 0.770 Initial subarea total flow distance 80.000{Ft.) Highest elevation= 265.000{Ft.) Lowest elevation= 242.000{Ft.) Elevation difference 23.000{Ft.) Slope= 28.750 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 28.75 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [l.8*(1.l-C)*distance{Ft.)A.5)/(% TC= [l.8*(1.1-0.7700)*{ 100.000A.5)/( 1.94 minutes slopeA (1/3)] 28.750A(l/3)]= Calculated TC of 1.939 minutes is less than 5 minutes, 1. 94 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area {Q=KCIA) is C = 0.770 Subarea runoff= 0.375{CFS) Total initial stream area= 0. 071 {Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 37.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.290{Ft.), Average velocity= ******* Irregular Channel Data*********** 0.802{CFS) 6.344{Ft/s) 13070 WESTIN LOT 9 DEVELOPMENT POC - B POST-DEVELOPMENT NO DETENTION Page 1 of7 Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1. 00 2 1. 50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0.013 Sub-Channel flow 0.802(CFS) flow top width= 0.871(Ft.) velocity= 6.344(Ft/s) area= 0.126(Sq.Ft) Froude number= 2.935 Upstream point elevation= Downstream point elevation Flow length= 155.000(Ft.) Travel time 0.41 min. 242.000(Ft.) 234. 000 (Ft.) Time of concentration= 2.35 min. Depth of flow= 0.290(Ft.) Average velocity= 6.344(Ft/s) Total irregular channel flow= 0.802(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 6.344(Ft/s) Adding area flow to channel 0.290(Ft.) Calculated TC of 2.346 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Decimal fraction soil group A 0.000 Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Value= 0.770 1.000 0.000 0.000 Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.770 CA= 0.179 0.855(CFS) for 0.162(Ac.) Subarea runoff= Total runoff= Depth of flow= l.229(CFS) Total area= 0.34l(Ft.), Average velocity= 0. 233 (Ac.) 7.059(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37.000 to Point/Station 37.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 0.233(Ac.) Runoff from this stream l.229(CFS) Time of concentration Rainfall intensity= 2.35 min. 6.850(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 24.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Value= 0.770 0.000 1.000 0.000 0.000 Initial subarea total flow distance Highest elevation= 264.000(Ft.) Lowest elevation= 260.590(Ft.) Elevation difference= 3.410(Ft.) 178.000(Ft.) Slope 1.916 % 13070 WESTIN LOT 9 DEVELOPMENT POC -B POST-DEVELOPMENT NO DETENTION Page 2 of 7 ~ -.i piillf, I Top of Initial Area Slope adjusted by User to 1.843 % Bottom of Initial Area Slope adjusted by User to 1.843 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 75.00 (Ft) for the top area slope value of 1.84 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration 4.20 minutes TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.7700)*( 75.000A.5)/( l.843A(l/3)]= 4.20 The initial area total distance of 178.00 (Ft.) entered leaves a remaining distance of 103.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.29 minutes for a distance of 103.00 (Ft.) and a slope of 1.84 % with an elevation difference of 1.90(Ft.) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr) 1.289 Minutes Tt=[(ll.9*0.0195A3)/( l.90)]A.385= 1.29 Total initial area Ti 4.20 minutes from Figure 3-3 formula plus 1.29 minutes from the Figure 3-4 formula 5.48 minutes Rainfall intensity (I) = 6.453(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff= 0.979(CFS) Total initial stream area= 0. 197 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 24.000 to Point/Station 37.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= Downstream point/station elevation Pipe length 125.00(Ft.) Slope No. of pipes= 1 Required pipe flow Given pipe size= 12.00(In.) 255.770(Ft.) 235.000(Ft.) 0.1662 Manning's N 0.979(CFS) Calculated individual pipe flow 0.979(CFS) Normal flow depth in pipe= 2.ll(In.) Flow top width inside pipe= 9.14(In.) Critical Depth= 4.98(In.) Pipe flow velocity= 10.53(Ft/s) Travel time through pipe= 0.20 min. Time of concentration (TC) = 5.68 min. 0.013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37.000 to Point/Station 37.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.197(Ac.) Runoff from this stream 0.979(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 5.68 min. 6.308(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 1.229 2.35 6.850 2 0. 979 5.68 6.308 Qmax (1) 1.000 * 1.000 * 1. 229) + 1.000 * 0.413 * 0. 979) + 1.633 Qmax(2) 0.921 * 1.000 * 1.229) + 1.000 * 1.000 * 0. 979) + 2 .111 Total of 2 streams to confluence: Flow rates before confluence point: 1.229 0. 979 13070 WESTIN LOT 9 DEVELOPMENT POC - B POST-DEVELOPMENT NO DETENTION Page 3 of 7 Maximum flow rates at confluence using above data: 1.633 2.111 Area of streams before confluence: 0.233 0.197 Results of confluence: Total flow rate= 2.lll(CFS) Time of concentration 5.683 min. Effective stream area after confluence 0. 430 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37.000 to Point/Station 17.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.530(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 1 'X' coordinate 0.00 'Y' coordinate 1. 00 2 1.50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0. 013 Sub-Channel flow 2.859(CFS) flow top width= l.590(Ft.) velocity= 6.785(Ft/s) area= 0.421(Sq.Ft) Froude number= 2.323 Upstream point elevation= 235.000(Ft.) Downstream point elevation 230.000(Ft.) Flow length= 189.000(Ft.) Travel time 0.46 min. Time of concentration= 6.15 min. Depth of flow= 0.530(Ft.) Average velocity= 6.785(Ft/s) Total irregular channel flow= 2.859(CFS) 2.859(CFS) 6. 785 (Ft/s) Irregular channel normal depth above invert elev. 0.530(Ft.) Average velocity of channel(s) 6.785(Ft/s) Adding area flow to channel Rainfall intensity (I) = 5.996(In/Hr) for a 100.0 year storm Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Value= 0.770 0.000 0.000 Rainfall intensity= 5.996(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.770 CA= 0.592 Subarea runoff= Total runoff= Depth of flow= l.440(CFS) for 0.339(Ac.) 3.550(CFS) Total area= 0.575(Ft.), Average velocity= 0.769(Ac.) 7.163(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 0.769(Ac.) Runoff from this stream 3.550(CFS) Time of concentration Rainfall intensity= 6.15 min. 5. 996 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 13070 WESTIN LOT 9 DEVELOPMENT POC - B POST-DEVELOPMENT NO DETENTION Page 4 of 7 ~ I I ~ Process from Point/Station 20.000 to Point/Station **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [COMMERCIAL area type (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Initial subarea total flow distance 92.000(Ft.) Highest elevation= 263.000(Ft.) Lowest elevation= 241.000(Ft.) Elevation difference= 22.000(Ft.) Slope= 23.913 % Top of Initial Area Slope adjusted by User to 23.171 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) 21.000 for the top area slope value of 23.17 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% TC= [l.8*(1.1-0.7700)*( 100.000A.5)/( 2.08 minutes slope (1/3) l 23.171A(l/3)]= Calculated TC of 2.084 minutes is less than 5 minutes, 2.08 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff= 0.364(CFS) Total initial stream area= 0.069(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.306(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1.00 2 1.50 0.00 3 3.00 1.00 Manning's 'N' friction factor 0. 013 Sub-Channel flow 0. 673 (CFS) flow top width= 0.919(Ft.) velocity= 4.780(Ft/s) area= 0.14l(Sq.Ft) Froude number= 2.153 Upstream point elevation= Downstream point elevation Flow length= 110.000(Ft.) Travel time 0.38 min. 2 4 1 . 0 0 0 ( Ft . ) 238. 000 (Ft.) Time of concentration= 2.47 min. Depth of flow= 0.306(Ft.) Average velocity= 4.780(Ft/s) Total irregular channel flow= 0. 673 (CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 4.780(Ft/s) Adding area flow to channel 0. 673 (CFS) 4. 780 (Ft/s) 0.306(Ft.) Calculated TC of 2.467 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.970 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.030 13070 WESTIN LOT 9 DEVELOPMENT POC - B POST-DEVELOPMENT NO DETENTION Page 5 of7 [COMMERCIAL area type {Neighborhod Commercial Impervious value, Ai= 0.800 Sub-Area C Value= 0.771 Rainfall intensity= 6.850{In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area {Q=KCIA) is C = 0.770 CA= 0.143 0.618{CFS) for 0.117{Ac.) Subarea runoff= Total runoff= Depth of flow= 0.982{CFS) Total area= 0.353{Ft.), Average velocity= 0. 186 (Ac.) 5.254(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 17.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Depth of flow= 0.175(Ft.), Average velocity 3.215{Ft/s) ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 1 2 3 'X' coordinate 0.00 0.10 10.00 'Y' coordinate 0.50 0.00 0.50 Manning's 'N' friction factor 0.016 Sub-Channel flow 0.982(CFS) flow top width= 3.495{Ft.) velocity= 3.215{Ft/s) area= 0.305(Sq.Ft) Froude number= 1.917 Upstream point elevation= Downstream point elevation Flow length= 245.000(Ft.) Travel time 1.27 min. 238.000(Ft.) 230. 000 (Ft.) Time of concentration= 3.74 min. Depth of flow= 0.175(Ft.) Average velocity= 3.215(Ft/s) Total irregular channel flow= 0. 982 {CFS) Irregular channel normal depth above invert elev. 0. 175 {Ft.) Average velocity of channel(s) 3.215(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.186{Ac.) Runoff from this stream 0.982{CFS) Time of concentration= Rainfall intensity= Summary of stream data: 3.74 min. 6.850{In/Hr) Stream No. Flow rate (CFS) TC {min) Rainfall Intensity (In/Hr) 1 3.550 6.15 5. 996 2 0.982 3.74 6.850 Qmax { 1) 1.000 * 1.000 * 3.550) + 0.875 * 1. 000 * 0. 982) + 4.410 Qmax(2) 1.000 * 0.608 * 3.550) + 1.000 * 1.000 * 0.982) + 3.140 Total of 2 streams to confluence: Flow rates before confluence point: 3.550 0.982 13070 WESTIN LOT 9 DEVELOPMENT POC - B POST-DEVELOPMENT NO DETENTION Page 6 of 7 ' ~ fll!ll I I 1.1 - I ' '~<iii Maximum flow rates at confluence using above data: 4.410 3.140 Area of streams before confluence: 0.769 0.186 Results of confluence: Total flow rate= 4.410(CFS} Time of concentration= 6.147 min. Effective stream area after confluence End of computations, total study area= 0. 955 (Ac.) 0. 955 (Ac.) 13070 WESTIN LOT 9 DEVELOPMENT POC -B POST-DEVELOPMENT NO DETENTION Page 7 of7 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2012 Version 7.9 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 10/13/16 OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT POST-DEVELOPMENT BEFORE DETENTION FILE:13070POSTC.RD3 ********* Hydrology Study Control Information********** Program License Serial Number 6312 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 27.000 to Point/Station 41.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.030 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.970 [COMMERCIAL area type (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.789 Initial subarea total flow distance 175.000(Ft.) Highest elevation= 264.000(Ft.) Lowest elevation= 259.000(Ft.) Elevation difference= 5.000(Ft.) Slope= 2.857 % Top of Initial Area Slope adjusted by User to 1.333 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 60.00 (Ft) for the top area slope value of 1.33 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% TC= [l.8*(1.1-0.7894)*( 60.000A.5)/( 3.93 minutes slopeA (1/3) l l.333A(l/3)]= Calculated TC of 3.935 minutes is less than 5 minutes, 3.93 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I} = 6.850(In/Hr} for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.789 Subarea runoff= l.233(CFS) Total initial stream area= 0.228(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 41.000 to Point/Station 2.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.374(Ft.), Average velocity= l.849(CFS} 8.817(Ft/s) OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 1 of 20 PT /~ ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1. 00 2 1. 50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0.013 Sub-Channel flow l.849(CFS) flow top width= l.122(Ft.) velocity= 8.817(Ft/s) area= 0.210(Sq.Ft) Froude number= 3.593 Upstream point elevation= Downstream point elevation Flow length= 180.000(Ft.) Travel time 0.34 min. 258.000(Ft.) 245.200(Ft.) Time of concentration= 4.28 min. Depth of flow= 0.374(Ft.) Average velocity= 8.817(Ft/s) Total irregular channel flow= l.849(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 8.817(Ft/s) Adding area flow to channel 0.374(Ft.) Calculated TC of 4.275 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Decimal fraction soil group A 0.000 Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Value= 0.770 1.000 0.000 0.000 Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.780 CA= 0.356 Subarea runoff= Total runoff= Depth of flow= l.203(CFS) for 0.228(Ac.) 2.436(CFS) Total area= 0.415(Ft.), Average velocity= 0.456(Ac.) 9.445(Ft/s) EXCEL ENGINEERING NOTE: This peakflow enters gravel storage underneath the pervious paver, calculated by using Rick Engineering hydrograph program and then entered in the Civi13D Hydraflow Hydrograph program as follows: OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 2 of 20 Hyd. No. 11 Inflow to perv paver Hydrograph type Storm frequency Time interval = Manual = 100 yrs = 5min Peak discharge Time to peak Hyd. volume = 2.440 cfs = 4.08 hrs = 3,672 cuft a {cts) 3.00 2.00 1.00 0.00 I 0.0 1.0 2.0 Inflow to perv paver Hyd. No.11-100Year ,) 3.0 4.0 5.0 6.0 a (cfs) 3.00 2.00 1.00 0.00 7.0 Time{hrs) -HydNo.11 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 4.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= Downstream point/station e l evation Pipe length 128.00(Ft .) Slope No. of pipes= 1 Required pipe flow Given pipe size= 12.00(In.) 24 5 .200(Ft.) 237.750 (Ft .) 0.0582 Manning's N 2. 436 (CFS ) Calculated individual pipe flow 2.436(CFS) Normal flow depth in pipe ~ 4 .37 (In.) Flow top width inside pipe= 11.SS(In.) Critical Depth= 8.02(In.) Pipe flow velocity= 9.42(Ft/s ) Travel time through pipe = 0 .23 min. Time of concentration (TC) = 4.50 min. 0. 013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 4.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal s tream number 1 Stream flow area= 0.456(Ac .) Runoff from this stream 2.436(CFS) Time of concentration Rainfall intensity= 4.50 min. 6 .850(In/Hr) OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 3 of 20 6 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 28.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [COMMERCIAL area type (Neighborhod Commercial } Impervious value, Ai = 0.800 Sub-Area C Value = 0. 790 Initial subarea total flow distance 61.000(Ft.} Highest elevation= 242.000(Ft.} Lowest elevation= 241.220(Ft.} Elevation difference 0.780(Ft.} Slope= 1.279 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 60.00 (Ft} for the top area slope value of 1.28 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration 3.98 minutes TC= [l.8*(1.l-C}*distance(Ft.}A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.7900)*( 60.000A.5}/( l.279A(l/3}]= 3.98 The initial area total distance of 61.00 (Ft.} entered leaves a remaining distance of 1.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.04 minutes for a distance of 1.00 (Ft.} and a slope of 1.28 % with an elevation difference of O.Ol(Ft.) from the end of the top area Tt = [ll.9*length(Mi)A3)/(elevation change(Ft.))JA.385 *60(min/hr) 0.042 Minutes Tt=[(ll.9*0.0002A3)/( O.Ol)JA.385= 0.04 Total initial area Ti 3.98 minutes from Figure 3-3 formula plus 0.04 minutes from the Figure 3-4 formula= 4.02 minutes Calculated TC of 4.024 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA} is C = 0.790 Subarea runoff= 0.476(CFS) Total initial stream area= 0. 088 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 28.000 to Point/Station 38.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.539(Ft.}, Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1. 00 2 1. 50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0.016 Sub-Channel flow l.496(CFS) flow top width= l.618(Ft.) velocity= 3.429(Ft/s) area= 0.436(Sq.Ft) Froude number= 1.164 Upstream point elevation= Downstream point elevation Flow length= 222.000(Ft.} 2 41 . 2 2 0 ( Ft . ) 2 3 9 . 0 0 0 ( Ft . } Travel time 1.08 min. Time of concentration= 5.10 Depth of flow= 0.539(Ft.) Average velocity= 3.429(Ft/s) min. l.496(CFS} 3.429(Ft/s} OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 4 of 20 Total irregular channel flow= Irregular channel normal depth Average velocity of channel(s) Adding area flow to channel Rainfall intensity (I) = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Va l ue= 0.787 1 . 496 (CFS) above invert elev. 3.429(Ft/s) 6.76l(In/Hr) for a 0.000 0.160 0.000 0.840 0.539(Ft.) 100.0 year storm Rainfall intensity= 6.76l(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCI A) is C = 0.787 CA= 0.366 Subarea runoff= l .999(CFS) for 0.377 (Ac.) Total runoff= 2 .476(CFS) Total area= Depth of flow= 0.65l(Ft.), Average vel ocity= 0. 465 (Ac.) 3.889(Ft/s) EXCEL ENGINEERING NOTE: This peakflow enters detention pipe storage underneath the parking lot adjacent to BMP-3 pond, calculated by using Rick Engineering hydrograph program and then entered in the Civil3D Hydraflow Hydrograph program as follows: Hyd. No.13 inflow to det pipe Hydrograph type Storm frequency Time interval Q (cfs) 3.00 2.00 1.00 0.00 0.0 1.0 -HydNo.13 = Manual = 100 yrs = 5min 2.0 Peak discharge Time to peak Hyd. volume Inflow to det pipe Hyd. No. 13-100 Year ~ 3.0 4.0 5.0 = 2.500 cfs = 4.08 hrs = 3,720 cuft 6.0 Q(cfs) 3.00 2.00 1.00 0.00 7.0 Time (hrs) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38.000 to Point/Stati on 4.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= Downstream point/station elevation Pipe length 104.00(Ft.) Slope 239 .000(Ft .) 237.750 (Ft.) 0.0120 Manning 's N 0.013 OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 5 of 20 I I No. of pipes= 1 Required pipe flow 2.476(CFS} Given pipe size= 12.00(In.} Calculated individual pipe flow 2.476(CFS} Normal flow depth in pipe= 6.94(In.} Flow top width inside pipe= ll.85(In.} Critical Depth= 8.09(In.} Pipe flow velocity= 5.27(Ft/s} Travel time through pipe= 0.33 min. Time of concentration (TC} = 5.43 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 4.000 **** SUBAREA FLOW ADDITION**** Rainfall intensity (I} = Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type (Neighborhod Commercial} Impervious value, Ai= 0.800 Sub-Area C Value= 0.790 6.494 (In/Hr} 0.000 0.000 0.000 1.000 Time of concentration= 5.43 min. for a 100.0 year storm Rainfall intensity= 6.494(In/Hr} for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA} is C = 0.789 CA= 0.665 Subarea runoff l.841(CFS} for 0.378(Ac.} Total runoff= 4.317(CFS} Total area= 0.843(Ac.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 4.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.843(Ac.} Runoff from this stream 4.317(CFS} Time of concentration= Rainfall intensity= Summary of stream data: 5.43 min. 6.494 (In/Hr} Stream No. Flow rate (CFS} TC (min} Rainfall Intensity (In/Hr} 1 2.436 4.50 6.850 2 4.317 5. 43 6. 4 94 Qmax(l) 1.000 * 1.000 * 2. 436) + 1.000 * 0.829 * 4.317) + 6.013 Qmax(2} 0.948 * 1.000 * 2. 436) + 1.000 * 1.000 * 4.317) + 6. 626 Total of 2 streams to confluence: Flow rates before confluence point: 2.436 4.317 Maximum flow rates at confluence using above data: 6.013 6.626 Area of streams before confluence: 0.456 0.843 Results of confluence: Total flow rate= 6.626(CFS} Time of concentration 5.432 min. Effective stream area after confluence 1. 299 (Ac.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 39.000 OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 6 of 20 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= Downstream point/station elevation Pipe length 80.00(Ft.) Slope No. of pipes= 1 Required pipe flow Given pipe size= 12.00(In.) 233. 850 (Ft.) 233.000(Ft.) 0.0106 Manning's N 6.626(CFS) 0.013 NOTE: Normal flow is pressure flow in user The approximate hydraulic grade line above 3.574(Ft.) at the headworks or inlet selected pipe size. the pipe invert is of the pipe(s) Pipe friction loss= 2.766(Ft.) Minor friction loss= l.658(Ft.) K-factor= 1.50 Pipe flow velocity= 8.44(Ft/s) Travel time through pipe 0.16 min. Time of concentration (TC) = 5.59 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 39.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= l.299(Ac.) Runoff from this stream 6.626(CFS) Time of concentration Rainfall intensity= 5.59 min. 6.375(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 45.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Value= 0.790 A 0.000 B 0.000 C 0.000 D 1.000 Initial subarea total flow distance 59.000(Ft.) Highest elevation= 241.000(Ft.) Lowest elevation= 238.250(Ft.) Elevation difference 2.750(Ft.) Slope= 4.661 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 4.66 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% TC= [l.8*(1.1-0.7900)*( 95.000A.5)/( 3.26 minutes slope (1/3) l 4.661A(l/3)]= Calculated TC of 3.256 minutes is less than 5 minutes, 3. 26 resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.790 Subarea runoff= 0.195(CFS) Total initial stream area= 0.036(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 39.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Depth of flow= 0.183(Ft.), Average velocity ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 1 2 'X' coordinate 0.00 0.10 'Y' coordinate 0.50 0.00 3.858(Ft/s) OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 7 of 20 ~ [ I - ~ I ' 3 1.50 0.50 Manning's 'N' friction factor 0.016 Sub-Channel flow 0.195(CFS) flow top width= 0.550(Ft. velocity= 3.858(Ft/s) area= 0.05l(Sq.Ft) Froude number = 2.244 Upstream point elevation= Downstream point elevation Flow length= 86.000(Ft.) Travel time 0.37 min. 238.250(Ft.) 233.000 (Ft .) Time of concentration = 3.63 min. Depth of flow= 0.183(Ft.) Average velocity= 3.858(Ft/s) Total irregular channel flow= 0.195(CFS) Irregular channel normal depth above invert elev. 0.183(Ft.) Average velocity of channel(s) 3.858(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 39 .000 **** SUBAREA FLOW ADDITION**** Calculated TC of 3.627 minutes is less than 5 minutes, resetting TC to 5 .0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [COMMERCIAL area type (Neighborhod Commercial ) Impervious value, Ai= 0.800 Sub-Area C Value= 0.790 Time of concentration= 3.63 min. Rainfall intensity= 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.790 CA = 0.039 Subarea runoff 0.070(CFS) for 0.013(Ac .) Total runoff= 0.265(CFS) Total area= 0.049(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 39 .000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.049(Ac.) Runoff from this stream 0 .265(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 3.63 min. 6.850(In/Hr) Stream No. Flow rate (CFS ) TC (min) Rainfall Intensity ( In/Hr) 1 6. 626 5.59 6.375 2 0.265 3.63 6.850 Qmax(l) 1 .000 * 1 .000 * 6. 62 6) + 0.931 * 1.000 * 0.265) + 6.873 Qmax(2) 1.000 * 0. 64 9 * 6. 62 6) + 1.000 * 1.000 * 0. 265) + 4.565 Total of 2 streams to confluence: Flow rates before confluence point: 6.626 0.265 OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 8 of 20 Maximum flow rates at confluence usi ng above data: 6.873 4.565 Area of streams before confluence: 1.299 0.049 Re sults of confluence: Total flow rate= 6.873(CFS) Time of concentration= 5.590 min . Effective stream area after confluence End of computations, total study area= l.348 (Ac .) 1 . 348 (Ac .) EXCEL ENGINEERING NOTE: This section discuss detention calculation in the system. First detention calculation from nodes 27-41-2. A hydrograph was created in the previous pages and then routed to gravel storage at node 2. This pervious paver has gravel storage of 36 inch thick with circular shaped surface. Volume is calculated manually by multiplying surface area x depth x 0.4 (porosity). Note: paver thickness and sand bed are not counted. Hyllrallow Hydrograpt"' Extension ror AuloCAOe> C ivtl )0® 2015 by Autodos • Inc. v10.4 Pond No. 6 • storage! Pond Data Pond ttorao• 11 band on uHr-dtflntd Y1lue1. Sta~ I Storage Table Stage(ft) Elevation (ft) Contour 1re1 (sqft) 0.00 24t .74 nla 1.00 24Z.74 n/a 2.00 20.74 nil 3.00 244.74 "'· Ina. Storage (~uft) 0 1.028 1,028 ,028 Morn!-ay. 10/ 17 12016 Total storage {cuft) 0 1.028 2.056 3,084 C ulv•rt I Orifice Structures Weir Structures RIH(ln) Span (In) No. llalTe la tnvon El. (fl) Length (It) Slope(%) N-Valu. OriflceC~ff. Multl~1"9' 300 200 000 5:.~ff'h [A] [BJ [CJ [PrfRsrJ : 12.00 0.50 2.00 0.00 • 12.00 0.50 2.00 0.00 • 1 2 0 • 240.74 241.741 244.50 0.00 • 128.00 0.00 0.00 0.00 • 1.00 0.00 0.00 nJ• , .OtJ .013 .013 1\/o • 0.60 0.60 0.60 0.60 . "'· Yes Yes No 2001notlv.:a CulwC-l'r, 2-4<1 50 aoo•-;. 'i i \,\'crA-C.!Qv 203 - ,--- 0 50anCM"'- C,Ml-1...,2<17< ~ // //////. r///// ,; CrestL•n (ft) CreatEl.(fl) WolrCoeff. Weir Type Muhl•St191 Exfil.(lnlhr) TWElev.(tl) ~~c~~~~ ~ --\..... ~ NTS [A] (BJ [CJ = 8.00 0.00 0.00 • 245.31 0.00 0.00 • J,33 3.33 J.33 • 1 • Yes No No • 0.000 (by Wet a oa) • 0.00 ...,, "'"""" [le-, 4174 Culv,L 12601 r of 1:2 01n @ I C:l% [DJ 0.00 000 33J. No OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 9 of 20 Hyd. No.12 ouflow paver Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name Storag& Indication method used. Q (cfs) 3.00 2.00 1.00 0.00 ... 0 15 30 = Reservoir = 100 yrs = 5min = 11 -Inflow to perv paver = storage Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage ouflow paver Hyd. No. 12 •• 100 Year - ' i I 45 60 75 90 105 = = = = = - 120 0.094 cfs 6.00 hrs 3,616 cuft 244.74 ft 3,083 cuft Q (ds) 3.00 2.00 1.00 135 0.00 150 -HydNo.12 -HydNo.11 II I 11 1 I Total storage used = 3,083 cufl Time (hrs) (Node 2) 36" Gravel Storage underneath pervious paver as detention Qin =2.44 cfs Qout=0.096 cfs = 0.1 cfs OUTFALL C · 13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 10 of 20 EXCEL ENGINEERING NOTE: This section discuss detention calculation in the system. Detention calculation from nodes 26-28-38. A hydrograph was created in the previous pages and then routed to detention pipe storage between nodes 38 and 4. Hydrograph Report Hydraflow Hydrographs Extension for AutoCAD® Civil 30® 2015 by Autodesk, Inc. v10.4 Hyd. No. 14 outflow Hydrograph type Storm frequency Time interval Inflow hyd . No. Reservoir name Storage Indication method used. Q (cfs) 3.00 2.00 1.00 0.00 , 0 60 = = = = = Reservoir Peak discharge 100 yrs Time to peak 5 min Hyd. volume 13 - inflow to det pipe Max. Elevation det pipe Max. Storage outflow Hyd. No. 14 --100 Year ,- '~ -J t\ ~ 120 180 240 300 Monday, 10 I 24 / 2016 = 0.695 cfs = 250 min = 3,720 cuft = 276.55 ft = 758 cuft I• \,. 360 Q (cfs) 3.00 2.00 1.00 0.00 420 -HydNo.14 -HydNo.13 11 1 11 I I I Total storage used = 758 cuft Time (min) (Node 38) 36" Gravel Storage underneath pervious paver as detention Qin= 2.5 cfs Qout= 0.696 cfs = 0.7 cfs OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 11 of 20 Pond Report Hydra/low Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4 Pond No. 7 -det pipe Pond Data Monday, 10 /24 /2016 UG Chambers -Invert elev. = 238.22 ft, Rise x Span = 3.00 x 3.00 ft, Barrel Len = 124.20 ft, No. Barrels = 1, Slope = 0.50%, Headers = No Stage I Storage Table Stage (ft) Elevation (ft) Contour area (sqft) Iner. Storage (cuft) Total storage (cuft) 0.00 238.22 n/a 0 0 0.36 238.58 n/a 12 12 0.72 238.94 n/a 65 78 1.09 239.31 n/a 105 182 1.45 239.67 n/a 124 306 1.81 240.03 n/a 133 439 2.17 240.39 n/a 133 572 2.53 240.75 n/a 124 696 2.90 241 .12 n/a 105 801 3.26 241 .48 n/a 65 866 3.62 241 .84 n/a 12 878 Culvert I Orifice Structures Weir Structures [AJ [BJ [CJ [PrfRsrJ [AJ [BJ [CJ [DJ Rlse(ln) 12.00 4.00 Inactive 0.00 Crest Len {ft) = 16.00 0.00 0.00 0.00 Span {In) = 12.00 4.00 36.00 0.00 Crest El. (ft) = 243.00 0.00 0.00 0.00 No. Barrels = 1 1 0 WeirCoeff. = 3.33 3.33 3.33 3.33 Invert El. (ft) = 237.88 238.20 238.20 0.00 Weir Type = 1 Length (ft) = 50.00 0.00 0.00 0.00 Multi-Stage = Yes No No No Slope (%) = 0.50 0.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfll.(ln/hr) = 0.000 (by Wet area) Multi-Stage = n/a Yes Yes No TW Elev. (ft) = 0.00 Note: Culvert/Orifice outflows are analyzed under inlet (le) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage (ft) Stage I Discharge Elev (ft) 4.00 ~----,----""T"----r-----,--------,----~-----,-----,------,,-----r 242.22 0.00 --'-"==------'-----'-----'------l..-----'-------L-------'------''-----'-----'-238.22 0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 -TotalQ Discharge ( cfs) OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 12 of 20 4 00 3.00 2.00 100 0.00 Stage (ft) -- 16.00 ft Riser WeirA -Elev. 243.00 4.00 in orifice CulvB -Inv. 238.20 \ LI \ Top of pond Elev 241 84 \ - - Section CulvA • 50.0 LF of 12.0 in@ 0.50% ~ \_ ottom of pond lev. 238.22 ---100-yr EXCEL ENGINEERING NOTE : A The detention values then re-entered in civilD by replacing the upstream inflow hydrographs with user defined flow from Hydra/low hydrograph detention routing. San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2012 Version 7.9 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 10/19/16 OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT POST-DEVELOPMENT AFTER DETENTION FILE: 13070POSTC1.RD3 ********* Hydrology Study Control Information********** Program License Serial Number 6312 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation (inches ) = 2 .600 24 hour precipitation(inches) = 4.500 P6/P24 = 57 .8% San Diego hydrology manual 'C' values used 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 2.000 **** USER DEFINED FLOW INFORMATION AT A POINT**** User specified 'C' value of 0.780 given for subarea Rainfall intensity (I) = 4 .27l (In/Hr) for a 100 .0 year storm User specified values are as follows: OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 13 of 20 TC= 10.40 min. Rain intensity= 4.27(In/Hr) Total area= 0.456(Ac.) Total runoff= O.lOO(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 4.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= Downstream point/station elevation Pipe length 128.00(Ft.} Slope No. of pipes= 1 Required pipe flow Given pipe size= 12.00(In.) 245.200(Ft.) 237.750(Ft.) 0.0582 Manning's N 0.lOO(CFS) Calculated individual pipe flow O.lOO(CFS) Normal flow depth in pipe= 0.91(In.) Flow top width inside pipe= 6.34(In.) Critical Depth= l.55(In.) Pipe flow velocity= 3.67(Ft/s) Travel time through pipe= 0.58 min. Time of concentration (TC) = 10.98 min. 0.013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 4.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 0.456(Ac.) Runoff from this stream O.lOO(CFS) Time of concentration Rainfall intensity= 10.98 min. 4. 124 ( In/Hr} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38.000 to Point/Station 38.000 **** USER DEFINED FLOW INFORMATION AT A POINT**** User specified 'C' value of 0.790 given for subarea Rainfall intensity (I) = 4.271(In/Hr) for a 100.0 year storm User specified values are as follows: TC= 10.40 min. Rain intensity= 4.27(In/Hr) Total area= 0.465(Ac.) Total runoff= 0.700(CFS} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38.000 to Point/Station 4.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= Downstream point/station elevation Pipe length 104.00(Ft.} Slope No. of pipes= 1 Required pipe flow Given pipe size= 12.00(In.) 239.000(Ft.} 237.750(Ft.) 0.0120 Manning's N 0.700(CFS) Calculated individual pipe flow 0.700(CFS) Normal flow depth in pipe= 3.44(In.) Flow top width inside pipe= 10.85(In.) Critical Depth= 4.18(In.) Pipe flow velocity= 3.76(Ft/s) Travel time through pipe= 0.46 min. Time of concentration (TC) = 10.86 min. 0. 013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 4.000 **** SUBAREA FLOW ADDITION**** Rainfall intensity (I) = Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group A B C D 4.154(In/Hr) 0.000 0.000 0.000 1.000 for a 100.0 year storm OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 14 of 20 [COMMERCIAL area type (Neighborhod Commercial Impervious value, Ai= 0.800 Sub-Area C Value= 0.790 Time of concentration= 10.86 min. Rainfall intensity= 4.154(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.790 CA= 0.666 Subarea runoff 2.066(CFS} for 0.378(Ac.) Total runoff= 2.766(CFS} Total area= 0.843(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 4.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.843(Ac.} Runoff from this stream 2.766(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 10.86 min. 4. 154 (In/Hr} Stream No. Flow rate (CFS} TC (min} Rainfall Intensity (In/Hr} 1 0.100 10.98 4.124 2 2.766 10.86 4.154 Qmax ( 1) 1.000 * 1.000 * 0.100) + 0.993 * 1.000 * 2. 766) + 2.847 Qmax (2) 1.000 * 0.989 * 0.100) + 1.000 * 1.000 * 2. 766) + 2.865 Total of 2 streams to confluence: Flow rates before confluence point: 0.100 2.766 Maximum flow rates at confluence using above data: 2.847 2.865 Area of streams before confluence: 0.456 0.843 Results of confluence: Total flow rate= 2.865(CFS) Time of concentration 10.861 min. Effective stream area after confluence l.299(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 39.000 **** PIPEFLOW TRAVEL TIME (User specified size} **** Upstream point/station elevation= Downstream point/station elevation Pipe length 80.00(Ft.) Slope No. of pipes= 1 Required pipe flow Given pipe size= 12.00(In.} 233.850(Ft.} 233.000(Ft.} 0.0106 Manning's N 2.865(CFS} Calculated individual pipe flow 2.865(CFS} Normal flow depth in pipe= 7.97(In.} Flow top width inside pipe= ll.34(In.} Critical Depth= 8.71(In.) Pipe flow velocity= 5.17(Ft/s} Travel time through pipe= 0.26 min. Time of concentration (TC} = 11.12 min. 0.013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 39.000 **** CONFLUENCE OF MINOR STREAMS**** OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 15 of 20 I Ld ,,__ Along Main Stream number: 1 in normal stream number 1 Stream flow area= 1.299(Ac.) Runoff from this stream 2.865(CFS) Time of concentration Rainfall intensity= 11. 12 min. 4.091(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 45.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1. 000 [COMMERCIAL area type (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.790 Initial subarea total flow distance 59.000(Ft.) Highest elevation= 241.000(Ft.) Lowest elevation= 238.250(Ft.) Elevation difference 2.750(Ft.) Slope= 4.661 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 4.66 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [1.8*(1.l-C)*distance(Ft.)A.5)/(% TC= [l.8*(1.1-0.7900)*( 95.000A.5)/( 3.26 minutes slopeA (1/3)] 4,661 A (1/3) ]= 3.26 Calculated TC of 3.256 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.790 Subarea runoff= 0.195(CFS) Total initial stream area= 0.036(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 39.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Depth of flow= 0.183(Ft.), Average velocity ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.10 0.00 3 1.50 0.50 Manning's 'N' friction factor 0.016 Sub-Channel flow 0.195(CFS) flow top width= 0.550(Ft.) velocity= 3.858(Ft/s) area= 0.05l(Sq.Ft) Froude number= 2.244 Upstream point elevation= Downstream point elevation Flow length= 86.000(Ft.) Travel time 0.37 min. 238.250(Ft.) 233.000(Ft.) Time of concentration= 3.63 min. Depth of flow= 0.183(Ft.) Average velocity= 3.858(Ft/s) Total irregular channel flow= 0.195(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) 3.858(Ft/s) 3.858(Ft/s) 0.183(Ft.) OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 16 of 20 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 39.000 **** SUBAREA FLOW ADDITION**** Calculated TC of 3.627 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [COMMERCIAL area type (Neighborhod Commercial) Impervious value, Ai= 0.800 Sub-Area C Value= 0.790 Time of concentration= Rainfall intensity= 3.63 min. 6.850(In/Hr} for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA} is C = 0.790 CA= 0.039 Subarea runoff 0.070(CFS} for 0.013(Ac.} Total runoff= 0.265(CFS} Total area= 0.049(Ac.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 39.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.049(Ac.} Runoff from this stream 0.265(CFS} Time of concentration= Rainfall intensity= Summary of stream data: 3.63 min. 6.850(In/Hr} Stream No. Flow rate (CFS) TC (min} Rainfall Intensity (In/Hr} 1 2.865 11.12 4.091 2 0. 265 3.63 6.850 Qmax(l) 1.000 * 1.000 * 2.865) + 0.597 * 1.000 * 0. 265) + 3.023 Qmax(2) 1.000 * 0.326 * 2.865) + 1.000 * 1.000 * 0. 265) + 1.200 Total of 2 streams to confluence: Flow rates before confluence point: 2.865 0.265 Maximum flow rates at confluence using above data: 3.023 1.200 Area of streams before confluence: 1.299 0.049 Results of confluence: Total flow rate= 3.023(CFS} Time of concentration 11.118 min. Effective stream area after confluence l.348(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 39.000 **** 6 HOUR HYDROGRAPH **** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Hydrograph Data -Section 6, San Diego County Hydrology manual, June 2003 Time of Concentration= 11.12 Basin Area= 1.35 Acres 6 Hour Rainfall= 2.600 Inches OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 17 of 20 I I Runoff Coefficient 0.787 Peak Discharge= 3.02 CFS Time (Min) Discharge (CFS) 0 0.000 11 0. 164 22 0. 168 33 0.175 44 0.179 55 0.187 66 0. 192 77 0.202 88 0.208 99 0.221 110 0.228 121 0.245 132 0.254 143 0.276 154 0.289 165 0.321 176 0.340 187 0.390 198 0.423 209 0.517 220 0.589 231 0.865 242 1. 219 253 3.023 264 0.694 275 0. 464 286 0.363 297 0.304 308 0.265 319 0.236 330 0.214 341 0. 197 352 0.183 363 0 .171 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ End of computations, total study area= 1.348 (Ac.) EXCEL ENGINEERING NOTE: Next calculation is the ultimate detention at the downstream BMP-3: biofiltration as detention pond to attenuate the peak flow. OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 18 of 20 = 3.020 cfs = 4.22 hrs Hyd. No.1 BMP 3 Inflow Hydrograph type Storm frequency nme interval Manual 100 yrs = 11 min Peak discharge Time to peak Hyd. volume = 9,075 cuft Q(cfs) 4.00 3 00 2.00 1.00 0.00 ,/ 0.0 0.9 -HydNo.1 1.8 Pond No. • -BMPl w11h Gravel Pond Data BMP 3 Inflow H)'d. No 1 -100 Year I I L-/ 2.8 3.7 'I'--- ' 4.6 5.5 Pond slorlfe Is b1Md on u,er-dtflned velues. Stage/ Storage Table Stage (t) e,.., .. tton (ft) Contour •re• ( sqft: Iner Storage (euft) Tot•I ,tonoge (c..rt) 0.00 2.3-4.75 rta 0 0 .. so 236.25 rte 1.174 1,174 3.00 237.75 rte 1,174 2,J.Ca S 50 2:0.25 rte 3,3'1 5,689 Culvert I Orifice Structures Weir Strvctures [4J [BJ [CJ [PrfRuJ [AJ [BJ H1se(1nj " 1800 3.00 0.50 0.00 c,.stLen in) = 12.00 o.ou S1111n (11) • 1800 300 050 000 CrHIEl.(fi) • 240 00 0.00 Ne. Bareis = I 1 I 0 \Yolr Coeff = 3 33 3 33 lrmtrt B. (ft) • 2:n.29 23925 234.75 0.00 \YllirT-= I Length [ft) • 1560 0.00 0.00 0.00 Multi.Stage • Yes No Slepe (~) -o.w 000 0 00 n/o N-V81ue z .013 013 013 n/e Ont,eecoen • o.w 0.60 0.60 0.60 f.xfil.~n/hr) • 0.000 (Dy wee arta) llluht..Si.ge .. "'' Yes YB$ No 1W Elev. (II = 000 Q (cls) 4.00 300 2.00 1.00 000 6.4 rme(hrs) [CJ 0.00 000 3 33 No [DJ 0.00 000 333 0 ~-o.i1,~"''0r'1Cot oot'JOW5 M e,iff>t_td vr!ff' lnill (te.)~ttl Ollflettoc)ccr•,ot ,vtw ,is,,,,a•~•d 10t ontw;.e~1UY11 (te.)¥.d ,n~ (1) Stage I Storage I Discharge Table Stage Storqe Ele\elior ClvA Clv8 n cuft ft Cfl cfl 0.00 0 231.75 J.00 0.00 ·.so 1,174 235 25 ~-00 0.00 )00 z.~& ~775 J 011. 000 S.50 5.6~9 24) 25 5 23 oc 0.22 le ClvC PrlRsr Wrll. WrB cfs els cfs cfs 0.00 o.oc 0.00 le 0 DC o o· k. 0 OC o.o· 1c 4 ~ WrC cf• WrO ertil User Total els els cf• cfs o.ooc oooc 0~ 5.22E OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 19 of 20 I I I I I I I I I I I I I I I I I I I I Hyd.No.2 BMP3 Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name Storage Indication method used. = = = = = Reservoir 100 yrs 11 min 1 -BMP 3 Inflow BMP3 with Gravel Peak discharge = 2.059 cfs Time to peak = 4.40 hrs Hyd. volume = 7,842 cuft Max. Elevation = 240.25 ft Max. Storage = 5,478 cuft BMP3 a (cfs) Hyd. No. 2 --100 Year a (cfs) 4.00 4.00 3.00 2.00 1.00 I ~ nr,, I I I I 1111 1/1 I I I 0.00 0.0 0.9 1.8 2.8 3.7 -HydNo.2 -HydNo.1 Qi n= 3.02 cfs Qout = 2.059 = 2 .06 cfs J , ' ~ ' 4.6 5.5 6.4 7.3 .___ ..... I Total storage used e 5,478 cuft 8.3 3.00 2.00 1.00 0.00 9.2 Time (hrs) OUTFALL C -13070 LOT 9 DEVELOPMENT 100 YEAR STORM EVENT Page 20of 20 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)l991-2012 Version 7.9 Rational method hydrology program based on San Diego County Flood Control Division 2003 h ydrology manual Rational Hydrology Study Date: 10/25/16 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D FILE: 13070POSTDdet.RD3 ********* Hydrology Study Control Information********** Program License Serial Number 6312 Rational hydrology study storm event year is English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) - 24 hour precipitation(inches) = P6/P24 = 57.8% 2.600 4.500 San Diego hydrology manual 'C' values used bmp1 Hydrograph type = Reservoir Stonn frequency = 100 yrs Time interval = 5min Inflow hyd. No. = 5 -BMP1 Reservoir name = BMP 1 bmp1 100.0 Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage a (cts) 3.00 Hyd. No. 6 -100 Year 2.00 1.00 _) ~ 0.00 f. 11 I IJ" 0.0 1.0 2.0 3.0 4.0 5.0 = = = = = ·- 6.0 --HydNo 6 -HydNo 5 c:=::J Tolal slOl'age used = 685 cufl 1.420 crs 4.17 hrs 3,287 cuft 261.50 ft 685 curt a (eta) 3.00 200 1.00 0.00 7.0 Time (hrs) 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D Page 1 of 12 I I I I I I I I I I I I I I I I Pond Report HydrafbwHydrogrlll)hs Ellle"6ion fc, AJto:::A~Ci\113)®2015 )Y Au;~s~ Inc vlO , Pond No. 3 • BMP 1 Pond Data Pond ltongt I• baaed oa user-driMd YIIHs. Stage I Storage Table '"'101ft) ~lovdlcn Cftl C-cur .,,. • ., (cq+.I 0.00 26(0( 00 1 50 261 SC 00 Iner. Sto·ogo (1ufl) 0 745 TIP-$08Y 10/ 2;/ 2016 Total otor:1go (,u11) C 74~ Culven t Ortflct Struc1Ure1 Weir Strvc11.1re1 [Al (BJ (CJ (PrfRsrJ (A) [BJ (CJ (DJ Rise Cin) • 12.00 0.00 2.00 0.00 Crea Lffl lit) = 12.00 o.co 0.00 0.00 s.,... c,n) • 12.00 o.oo 6.00 O.OC• c .. .aE.(f:) • 21>1 311 0(0 000 0 00 No. krell • 1 0 4 C• 'ltelrCceff • 333 U3 3.33 S 33 hvtrtEI. 1ft) • 2>6.75 0.00 26(UO C•.OC• 'ltelrType = 1 Length (ftl • 5').00 0.00 0.00 0.00 Muh-Slagt : YH No N> tlo Slo,e1%) -H.00 0.00 0.00 rva N-V1lua • .(•13 .013 .013 rla OritceCmff • 060 0.60 0.60 0.6C Erfll (ln'hrl " O.S90 (by Wot area) llllull-tt• • n:~ No Yes Ho lWEl ... (t) • 0.00 ~<* ('Wf!t'(),,IN ~ tf• ~~ .l"'d,,t W'lii'i4 !1tl .....,eui.t lbl">c(),l"lllaf 'N•+t l"lff"I ~4W/'li»d f•tetllt•....,....~• (<I ~'ttill~r'N-(t) Stage I Stor11ge I Discharge Table Stat• St0fa9e E'-ation CIYA CIY I CIYC ft cuft ft ell els cb 0.00 0 2EO.CO 0.00 0.00 1.:K) 74:1 Zfl1 :lO 0.771,. • %61\. Po ra No. 3 -BMP 1 1200ftR,..- WorA. Ekw 26' l9 --. 20,c.601'ICY(at Cu!YC. ,.,.. 260 60 ~ -100 -- -000 S:&90 fn) '' ·,, Pro.eel 13-070 DEl !:NTION CALCS.gpw Pr1Rer V.'r I\ \Yrlil w,c V.rD Exfil u.er Tool cf• cle cb cf1 cle cfl cfs ch 0.00 0.000 c..oco 1.40 0.000 2 711 H)d••llow flydrog,lfllw ~""'°" fo, AYtoCAO• c;.130.'1201~ by Autodaslt Joe •10 4 Tapolpa"' ciev 2a, so 1 ---'-~-nu .... ~ NTS , o!oond 6000 Cu1YA·5=c,r ;f1201@:l~OJ' -10Jv- ,,,~ nyo~,aph • 5 w .. ,a, ·BM>, I Tuesday 1012512016 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AITTR DETENTION -OUTFALL D Page 2 of 12 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 1.000 **** USER DEFINED FLOW INFORMATION AT A POINT**** User s pecified 'C' value of 0.770 given for subarea Rainfall intensity (I) = 4.271(In/Hr) for a 100.0 year storm User s pecified values are as follows: TC= 10.40 min . Rain intensity= 4.27(In/Hr) Total area= 0 .420 (Ac .) Total runoff= l.420(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 46.000 **** PIPEFLOW TRAVEL TIME (Use r s pecified size) **** 256.000 (Ft .) 235.710(Ft.) Upstream point/station elevation= Downstream point/station elevation Pipe l ength 343.00(Ft.) Slope No. of pi pes= 1 Required pi pe flow 0.0592 Manning's N l.420(CFS) 0. 013 Given pipe size= 12.00(In.) Calculated individual pipe flow l.420(CFS ) Normal flow depth in pipe= 3.29(In.) Flow top width inside pipe= 10.70(In.) Cr itical Depth -6 .0S(In .) Pipe flow velocity= 8.14(Ft/s) Travel time through pi pe = 0.70 min. Time of concentration (TC) = 11.10 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 46.000 to Point/Station 46.000 **** CONFLUENCE OF MINOR STREAMS**** Along Ma in Stream number: 1 in normal s tream number 1 Stream flow area= 0.420 (Ac.) Runoff f rom this stream 1.420(CFS) Time of conce ntration Rainfall intensity= 11.10 min. 4.095(In/Hr) 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D Page 3 of 12 I I I I I I I I I I I I I I I I I I Hyd.No.8 BMP 2 Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name Reservoir 100 yrs 5min 1 -Inflow Hyd BMP2 BMP2 5..,._ lncficabon IMlhod .. ed £.dllrol,on nlnocted ~om - Q(cls) 200 1.00 0.00 0.0 0.8 1.7 BMP2 Hyd. No. 8 •• 100 Year /, 111 V 2.5 3.3 Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage 4.2 l'I 50 = 0.795 els = 4.08 hrs 1,168 curt 240.18 ft = 358 cuft Q(cls) 200 1.00 0.00 5.8 --HydNo.8 --HydNo 7 c::::::::J Total Moragc UIGd = 358 cull Tome (ln) Pc nd No. 4 -BMP 2 100 "' .. "" [In 1400.S \ ~:.:d!!::'w~ --:;: -- ~ooo 1-..11 :,,r.· Pro.•::t 1J.-070Dt1[NIIONCALCSgpw Mvd'lllo-~.uw .. .._" • .t..mCAOIC"' J:)Y 2'1l9t,\...t0ffl,,, '"< v10,4 CW140H --, --..._ p;;- ~ NTS I .. _ ,.,. c ......... :lr ,,,10 ~10~"" ". wo.-llfl'I• IJM.t -""c•Jftde\lP1 I Tuosd,oy 1012~/2016 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D Page 4 of 12 Pond No. 4 • BMP 2 Pond Data Pond 1torage 11 bHed o~ U$tr-defined v,t,n. Stage I Storage Table St,ge(ft) 000 1.00 Elev1llon (ft) 239 75 Contour ua (•cit) 240 25 Culvert I Orifice Stnictures (A] RiH(n) • 12 00 Sp,n ~n) = 12.00 No. 81rrels • 1 lnv•rt Iii. (II) : 236.10 Length (ft) = 66 00 Slope(%) • 050 N-Valn • .013 OTifict Coeff. • 0.60 MUlll·Sl'9t = "'" (DJ 000 0.00 0 0.00 000 000 .013 0.60 NO 00 00 [CJ 2.00 12.00 2 2111.7S 0.00 000 .01l 0.60 Yet (PrfRsr) 0 co 0.(0 0 o.co 0 co nle n/1 O.fO No Iner. Storage (cult) D 459 lolal aloroge (cuft) 0 459 Weir Structures c ,.al len (II) CrntEl.(ftl WtlrCoefl. W•ir Ty,,. M11ti-Stag0 EJlfil.(inlhr) TVIEIW. (Ill (A] [DJ • 12.0C 0 00 z 240.(3 0.00 • 3.33 3.53 =• = Yes No = 1.38C (by Wei area) = 000 (CJ 0.00 0.00 3.33 (DJ 0.00 0.00 3.33 N? No Nat Clhtr!IOlll<e Q.Cfl°'"' "IM!yze4 Wldt· lnll< IC) lndOUCol(O<) '""'°' w .. ,_. _ klr .,,..,. """"""'IICJ""' ...,,,.,,....,. (• Stage I Storage I Discharge Table !bge fl 0.00 1 00 Stor,ge Elev1tlon Clv A Clv B ClvC PrfRsr Wr A WrB w,c Wr D Ellfil User ToUII cul\ ft cfe cl& .,,. cf& cfa cf• cf& cf• cfe cfa C 4SS 230.26 240.25 ).00 >.27 DC 0.00 I 04 le 0.00 4.12 o.o::ro 0.0:>0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 47.000 **** USER DEFINED FLOW INFORMATION AT A POINT**** User specified 'C' value of 0.790 given for subarea Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm User specified values are as fol lows: TC• 5.00 min. Rain intensity= 6.85(In/Hr) Total area = 0.232(Ac.) Total runoff= 0.800(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 47.000 to Point/Station 46.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 236.380 (Ft.) Downstream point/station elevation• 235.710(Ft.) Pipe length 38.00(Ft.) Slope• 0.0176 Manning 's N -0.013 No. of pipes - 1 Required pipe flow 0.SOO(CFS) Given pipe size• 12.00(In.) Calculated individual pipe flow 0.800 (CFS) Normal flow depth in pi pe= 3.34(In.) Flow top width inside pipe • 10.76(In.) Critical Depth= 4.48(In.) Pipe flow velocity= 4.48(Ft/s) Travel time through pipe= 0.14 min. Time of concentration (TC) = 5.14 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 46.000 to Point/Station 46.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0 .232(Ac.) Runoff from this stream 0.800(CFS) Time of concentration• Rainfall intensity= Summary of stream data: Stream No. Flow rate (CFS) 5.14 min. 6.728(In/Hr) TC (min) Rainfall Intensity ( In/Hr) 0.000 5.15t 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D Page 5 of 12 I I I I I I I I I I I I I I I I I I 1 1 .420 11.10 4 .095 2 0.800 5.14 6. 728 Qmax(l) 1.000 * 1.000 * 1 .420) + 0 .609 * 1.000 * 0. 800) + 1 .907 Qmax(2) 1.000 * 0. 4 63 * 1 . 420) + 1 .000 * 1.000 * 0 . 800) + = 1.458 Total of 2 streams to confluence: Flow rates before confluence point: 1 .420 0 .800 Maximum flow rates at confluence using above data : 1 .907 1.458 Area of streams before confluence: 0 .420 0.232 Results of confluence: Total flow rate = l.907(CFS) Time of concentration 11.102 min. Effective stream area after confluence 0 . 652 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 46.000 to Point/Station 33 .000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 235.710(Ft.) 234.340 (Ft .) Upstream point/station elevation= Downstream point/station elevation Pipe length 131.00(Ft .) Slope No . of pipes= 1 Required pipe flow 0.0105 Manning 's N 1. 907 (CFS) 0. 013 Given pipe size= 18.00(In.) Calculated individual pipe flow l .907(CFS) Normal flow depth in pipe = 5 .13(In.) Flow top width inside pipe= 16.25(In.) Critical Depth= 6.24(In.) Pipe flow velocity= 4.59(Ft/s) Travel time through pipe= 0 .48 min . Time of concentration (TC) = 11 .58 min . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 33.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 0.652(Ac.) Runoff from this stream l .907 (CFS) Time of concentration 11.58 min. Rainfall intensity -3.986(In/Hr) 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D Page 6 of 12 Hyd. No. 4 BMP4 Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name = Reservoir = 100 yrs = 5 min = 3 • BMP 4 Inflow = BMP4 Storage lnd1c.at on metllod used Ext ltretion elClracted from Outflow a (cfs) 3.00 2.00 1.00 '1 11111 11111 0.00 0.0 I I.Jr 1.0 BMP4 Hyd. No 4 -100 Year 20 3.0 4.0 Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage ~ ... 5.0 6.0 = = = = = 1.780 cfs 4.08 hrs 3,333 curt 259.20 ft 651 cuft Q(cfs) 3.00 2.00 1.00 0.00 7 0 -HydNo.4 -HydNo.3 c=:::::J Total storage used = 651 cvf\ Time (hrs) 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D Page 7 of 12 I I I I I I I I I I I I I I I I I I I Pond No. 2 • BMP 4 Pond Data Pond 1tor111e 11 baaed on 111tr-1leflned values. Stage I Storage Tabl• si.ve (ft) Elevation (fl) Contour nrH (aqfl) Iner. Stor•v-(cufl) Total ator•ge (cufl} 0.00 257.70 00 1.50 259 20 00 Culvert I Orifice Structures [AJ [BJ [CJ Rlse{ln) = 12.00 0.00 2.00 Sp•n(ln) = 12.00 0.00 8.00 No. Bar,rels = 1 0 4 lnvol't E.I. (ft) • 2S2.70 0.00 258.M> Ltngth (ft) = 162.00 0.00 0.00 $lopt 1•.41 = 13.00 0.00 0.00 N·VIIU. :: .013 013 013 Orifice Coeff. a 060 0.60 0.60 111111 ultl.Suige = n/a No Yet [PrfRsrJ 0.00 0.00 0 0.00 0.00 nJa n/8 0.60 No 0 0 711 711 Weir Structure~ Crest Len (ft) CrHI El. (fl) WelrCoeff. Weir Type Multi-St-age Exfll.(lnllv) lW Elev. (fl) [A] (BJ • 12.00 0.00 " 259.04 0.00 = 3 33 333 "'1 = Yos No • 0.730(byWelDfea) = 0.00 (CJ (DJ 0.00 0.00 0.00 0.00 333 3 33 No No -C\llvol1'0nfoc,o outilc>v4oro ""'Y'""' 1MTder lnl• fir;/..., .. ,.., (O<l ..,.."'11 Wolr -·•-••lor -trill<e cordd•..,• lo<I-.,..,.,_._ (t) Stage I Storage I Discharge Table St..ge Storage Elevetlon Clv A Clv 8 Clv C PrlRar Wr A Wr B Wr C Wr D Exfll User Total n ~"'" n ~. ~. ~,, m m m m m ~fl m ~fl 0.00 1.50 Po n 0 711 257.70 259.20 No. 2 -BMP 4 0.00 8.02 lc ... AA ,0. .... Wo •A • Clo¥ 259 04 ::) ,nx1n,H~rs \.oUft'W' • 11·y .,__, -\ ._ 1.00 -ox, '/'~l'//1'. '~/I'.'' ,,,--... ., s:;aoe:,h, P•o,ecl 13-070 DI: TENTION CALCS gpw -- 000 1.54 le T .. Clev 259 20 1---- ~ NTS 000 2.56 0.000 0.000 0000 4.096 H)<f •llo,,.· 4yo,og•"1'~• E>tor, o, for AutoCl,Ol c~, 3Dt 2015 by A-111< of<C •'0 ~ \ ....__ ~ i..v CMl)On(j 5770 Culv4-1&,: rc11n n Ii) 1300'.i -ttt'lv" hi°" ~~,fll)h • 3 Menua . a•1? • r'low I Tuesday 10 / 2512015 13070 LOT 9 DEVELOPMENT· 100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION · OUTFALL D Page 8 of 12 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29 .000 to Point/Station 12.000 **** USER DEFINED FLOW INFORMATION AT A POINT**** User specified 'C' value of 0.780 given for subarea Rainfall intensity (I) = 6.850 (In/Hr) for a 100.0 year storm User s pecified values are as follows : TC= 5 .00 min . Rain intensity= 6.85 (In/Hr) Total area= 0.48l(Ac.) Total runoff= l .780 (CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 33.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= Downstream point/station elevation Pipe length 162.00 (Ft.) Slope No . of pipes= 1 Required pipe flow Given pipe s ize= 12.00(In.) 255.200 (Ft.) 234.340 (Ft .) 0.1288 Manning 's N l.780 (CFS) Calculated individual pipe flow l.780 (CFS ) Normal flow depth in pipe -3.02(In.) Flow top width inside pipe = 10.42(In.) Critical Depth= 6.82(In.) Pipe flow velocity= ll.46(Ft/s) Travel time through pipe • 0.24 min. Time of concentration (TC) = 5.24 min. 0.013 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 33 .000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.481(Ac.) Runoff from this stream l.780(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 5.24 min. 6.650(In/Hr) Stream No . Flow rate (CFS ) TC (min) Rainfall Inte nsity ( In/Hr) 1 1.907 11 . 58 3.986 2 1 .780 5 .24 6.650 Qmax(l) 1.000 * 1.000 * 1.907) + 0.599 * 1.000 * 1.780) + -2. 974 Qmax(2) 1.000 * 0. 452 * 1.907) + 1.000 * 1.000 * 1. 780) + = 2. 642 Total of 2 streams to confluence: Flow rates before confluence point: 1.907 1 .780 Max imum flow rates at confluence using above data: 2.974 2.642 Area of streams before confluence: 0.652 0.481 Results of confluence: Total flow rate= 2.974(CFS) Ti me of concentration 11.578 min. Effective stream area after confluence 1.133 (Ac .) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 32 .000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 234.340 (Ft.) 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D Page 9 of 12 I I I I I I I I I I I I I I I I I 221.000(Ft.) Downstream point/station elevation= Pipe length 127.00(Ft.) Slope= No. of pipes= 1 Required pipe flow 0.1050 Manning's N 2.974(CFS) 0.013 Given pipe size= 18.00(In.) Calculated individual pipe flow 2.974(CFS) Normal flow depth in pipe= 3.59(In.) Flow top width inside pipe= 14.39(In.) Critical Depth= 7.86(In.) Pipe flow velocity= 11.84(Ft/s) Travel time through pipe= 0.18 min. Time of concentration (TC) = 11.76 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 11.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Depth of flow= 0.464(Ft.), Average velocity ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 1 2 3 'X' coordinate 0.00 1.50 3.00 'Y' coordinate 1. 00 0.00 1. 00 Manning's 'N' friction factor 0.030 Sub-Channel flow 2. 974 (CFS) flow top width= l.392(Ft.} velocity= 9.210(Ft/s) area= 0.323(Sq.Ft) Froude number= 3.370 Upstream point elevation= Downstream point elevation Flow length= 171.000(Ft.} Travel time 0.31 min. 221.000(Ft.) 168.000(Ft.) Time of concentration= 12.07 min. Depth of flow= 0.464(Ft.) Average velocity= 9.210(Ft/s} Total irregular channel flow= 2.974(CFS} Irregular channel normal depth above invert elev. Average velocity of channel(s} 9.210(Ft/s) 9.210(Ft/s) 0.464(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 11.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= l.133(Ac.) Runoff from this stream 2.974(CFS) Time of concentration Rainfall intensity= 12.07 min. 3.881(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 35.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 [LOW DENSITY RESIDENTIAL (1. 0 DU/A or Less ) Impervious value, Ai = 0.100 Sub-Area C Value= 0.410 Initial subarea total flow distance Highest elevation= 244.000(Ft.) Lowest elevation= 231.000(Ft.) 57. 000 (Ft.) 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D Page 10 of 12 Elevation difference 13.000(Ft.) Slope= 22.807 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft} for the top area slope value of 22.81 %, in a development type of 1.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration TC= [1.8*(1.l-C}*distance(Ft.}A.5)/(% TC= [1.8*(1.1-0.4100)*( 100.000A.5}/( 4.38 minutes slopeA(l/3)] 22.807A(l/3)]= 4.38 Calculated TC of 4.380 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I} = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA} is C = 0.410 Subarea runoff= 0.132(CFS} Total initial stream area= 0.047(Ac.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 36.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** Estimated mean flow rate at midpoint of channel Depth of flow= 0.337(Ft.}, Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1. 00 2 1. 50 0.00 3 3.00 1. 00 Manning's 'N' friction factor 0.030 Sub-Channel flow 0.845(CFS} flow top width= l.OlO(Ft.} velocity= 4.977(Ft/s) area= 0.170(Sq.Ft} Froude number= 2.138 Upstream point elevation= Downstream point elevation Flow length= 108.000(Ft.} Travel time 0.36 min. 231.000(Ft.} 216.000(Ft.} Time of concentration= 4.74 min. Depth of flow= 0.337(Ft.} Average velocity= 4.977(Ft/s} Total irregular channel flow= 0.845(CFS} Irregular channel normal depth above invert elev. Average velocity of channel(s) 4.977(Ft/s} Adding area flow to channel 0.845(CFS} 4. 977 (Ft/s} 0. 337 (Ft.} Calculated TC of 4.741 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I} = 6.850(In/Hr} for a 100.0 year storm Decimal fraction soil group A 0.000 Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [LOW DENSITY RESIDENTIAL (1.0 DU/A or Less } Impervious value, Ai= 0.100 Sub-Area C Value= 0.410 0.000 0.000 1.000 Rainfall intensity= 6.850(In/Hr} for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA} is C = 0.410 CA= 0.228 Subarea runoff= Total runoff= Depth of flow= l.427(CFS} for 0.508(Ac.} l.559(CFS} Total area= 0.423(Ft.}, Average velocity= 0. 555 (Ac.) 5.800(Ft/s} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 36.000 to Point/Station 11.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D Page 11 of 12 l ..•. ; - ""' ! I ~ Depth of flow= 0.362(Ft.), Average velocity= 7.93l(Ft/s) ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 1 'X' coordinate 0.00 'Y' coordinate l. 00 2 1.50 0.00 3 3.00 l. 00 Manning's 'N' friction factor 0.030 Sub-Channel flow l.559(CFS) flow top width= l.086(Ft.) velocity= 7.93l(Ft/s) area= 0.197(Sq.Ft) Froude number= 3.285 Upstream point elevation= Downstream point elevation Flow length= 150.000(Ft.) Travel time 0.32 min. 216.000(Ft.} 168.000(Ft.) Time of concentration= 5.06 min. Depth of flow= 0.362(Ft.) Average velocity= 7.931(Ft/s) Total irregular channel flow= l.559(CFS} Irregular channel normal depth above invert elev. Average velocity of channel(s} 7.931(Ft/s} 0.362(Ft.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 11.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.555(Ac.} Runoff from this stream l.559(CFS} Time of concentration= Rainfall intensity= Summary of stream data: 5.06 min. 6.801(In/Hr) Stream No. Flow rate (CFS} TC (min) Rainfall Intensity (In/Hr) 1 2. 974 12.07 3.881 2 1.559 5.06 6.801 Qmax (1) 1.000 * 1.000 * 2. 974) + 0.571 * 1.000 * 1. 559) + 3.863 Qmax(2} 1.000 * 0.419 * 2. 974) + 1.000 * 1.000 * 1. 559) + 2.805 Total of 2 streams to confluence: Flow rates before confluence point: 2.974 1.559 Maximum flow rates at confluence using above data: 3.863 2.805 Area of streams before confluence: 1.133 0.555 Results of confluence: Total flow rate= 3.863(CFS} Time of concentration= 12.066 min. Effective stream area after confluence End of computations, total study area= l.688(Ac.} 1.688 (Ac.} 13070 LOT 9 DEVELOPMENT -100 YR STORM EVENT POST-DEVELOPMENT AFTER DETENTION -OUTFALL D Page 12 of 12 Attachment F Storm Drain Network P,rcrt1 1 Outfall Project File: POC-C 2-4.stm Number of lines: 2 Date: 10/24/2016 Storm Sewers v10.40 E -(/) ~ N () (.) 0 a. Q) ~ C1) ---0 ~ l. ~ C1) ~ C1) "' E ~ 0 .., "' L£'8£Z '13 ·r.u1 oc:·svc: ·13 w,~ -oo·cz+ ~ ets 88' L£Z '13 ·r.u1 88'L£Z '13 ·r.u1 UI l"O 0 o·cvz ·13 ·pwo ~ :u 1 -00'9Z+O BlS SL'L£C: '13 ·r.u1 o·ovz ·13 ·pwo -oo·oo+o ets g > Q) uJ 0 0 ll") in N 0 0 Ii) in N 0 ~ .... in N 0 ~ :ii N 0 0 ,....: v N 0 0 (") v N \ 0 0 (") v N ' \ \ \ \\ 0 0 0) C') N 0 0 0) C') N ~ ll ..: (§ ~ I ... " 5: t;; ~ c:i i(' ,I~ ~ a 0 0 Ii) C') N 0 C') 0 N 0 .... 0 0 0 co R g 0 0 Ii) C') N 0 (0 0 in 0 v 0 C') 0 N .c u ro Q) 0:::: ...J (.9 w ...J (.9 0 J: 0 stcfrril sewef ,1abliiLti6n1 Station Len Drng Area Rn off AreaxC Tc Rain Total Cap ~el coeff (I) flow full Line To Iner Total Iner Total Inlet Syst Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) 1 End 26.000 0.00 0.00 0.00 0.00 0.00 0.0 12.7 0.0 0.10 2.52 1.56 2 1 97.000 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.10 2.53 1.44 - Project File: POC-C 2-4.stm NOTES:lntensity = 127.16 / (Inlet time+ 17.80) '0.82 ; Return period =Yrs. 100 ; c = cir e = ellip b = box Pipe Invert Elev Size Slope Dn Up (in) (%) (ft) (ft) 12 0.50 237.75 237.88 12 0.51 237.88 238.37 Number of lines: 2 HGLElev Dn Up (ft) (ft) 237.88 238.02 238.04 238.50 p ~--- Grnd I Rim Elev Dn Up (ft) (ft) 240.00 243.00 243.00 245.20 -J-ge 1 Line ID Run Date: 10/24/2016 Storm Sewers v10.40 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 12 0.10 237.75 237.88 0.13 0.06 1.67 0.04 237.92 0.604 26.000 237.88 238.02 0.14 O.Q7 1.46 0.03 238.06 0.411 0.508 0.132 0.62 0.02 2 12 0.10 237.88 238.04 0.16 0.06 1.20 0.02 238.07 0.237 97.000 238.37 238.50 j 0.13** 0.06 1.69 0.04 238.54 0.626 0.431 nla 1.00 0.04 Project File: POC-C 2-4.stm I Number of lines: 2 I Run Date: 10/24/2016 Notes: ; ** Critical depth.; j-Line contains hyd. jump. ; c = cir e = ellip b = box - 11r---cllll -~~ er::-. .&l':~~ -~ If,'.--:"~ ~·-------fi ... c,~ .occ'.~~-'li:.:..::...·"_-.]I ~~-·;,..;J ~-"'-· ,-::::i [. -1 f ] r":: .. -1 .[--).. !:--i IC l l .. J ...1: ll ,--~ 1:·--"'Hydraf ow ttGL \;omp1Ii:at1on t'rdceadre · ·· General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HG Ls until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 I Col. 7). Col. 9 Velocity head (Velocity squared I 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16). Col. 18 Velocity head (Velocity squared I 2g). Col. 19 The elevation of the energy grade line at the upstream end. HGL + Velocity head. (Col. 14 + Col. 18). Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream)+/-tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). ] F[ Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan Project File: POC-D 1-33.stm (,---. r-,a ,.-"-. .,---) ar---. --., -,J!II IIIL,-11 'fL,._:,lfl 11(_,_, 1t, _::Jiil l;":,,_,e:g 'Tl -r-' ',.,,. }!>rm Sec ... _51.40 J. -E] f~] [~-~j .IL ~torm Sewer Tabulation _] ] ] ~e1 Station Len Drng Area Rn off Area x C Tc Rain Total Cap ~el Pipe Invert Elev HGLElev Grnd I Rim Elev Line ID coeff (I) flow full Line To Iner Total Iner Total Inlet Syst Size Slope Dn Up Dn Up On Up Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 1 End 122.50( 0.00 0.00 0.00 0.00 0.00 0.0 3.1 0.0 5.86 12.04 7.60 12 11.44 220.00 234.01 220.95 234.96 230.00 246.67 33-32 2 1 103.38( 0.00 0.00 0.00 0.00 0.00 0.0 2.3 0.0 3.53 12.35 3.61 18 1.38 234.01 235.44 234.96 236.16 246.67 243.20 A-7 3 2 25.800 0.00 0.00 0.00 0.00 0.00 0.0 2.1 0.0 3.53 10.74 4.24 18 1.05 235.44 235.71 236.16 236.43 243.20 243.20 A-6 4 3 40.000 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 1.26 4.14 2.77 12 1.35 235.71 236.25 236.43 236.72 243.20 240.00 A-8 5 3 24.000 0.00 0.00 0.00 0.00 0.00 0.0 1.8 0.0 2.38 10.93 3.30 18 1.08 235.71 235.97 236.43 236.55 243.20 241.83 A-5 6 5 170.00( 0.00 0.00 0.00 0.00 0.00 0.0 0.8 0.0 2.38 6.19 5.84 12 3.02 236.22 241.35 236.65 242.01 241.83 246.30 A-4 7 6 52.980 0.00 0.00 0.00 0.00 0.00 0.0 0.5 0.0 2.38 5.75 5.65 12 2.60 241.60 242.98 242.05 243.64 246.30 253.00 A-3 8 7 34.330 0.00 0.00 0.00 0.00 0.00 0.0 0.3 0.0 2.38 13.45 4.33 12 14.27 242.98 247.88 243.64 248.54 253.00 254.00 A-2 9 8 56.600 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 2.38 13.52 4.33 12 14.42 247.88 256.04 248.54 256.70 254.00 261.33 A-1 10 9 5.500 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 2.38 12.80 4.33 12 12.91 256.04 256.75 256.70 257.41 261.33 261.33 A-1 11 1 25.440 0.00 0.00 0.00 0.00 0.00 0.0 0.7 0.0 2.53 13.47 3.86 12 14.31 234.01 237.65 234.96 238.33 246.67 248.00 8-4 12 11 72.730 0.00 0.00 0.00 0.00 0.00 0.0 0.3 0.0 2.53 12.82 4.44 12 12.97 237.65 247.08 238.33 247.76 248.00 255.00 8-3 13 12 27.500 0.00 0.00 0.00 0.00 0.00 0.0 0.2 0.0 2.53 12.81 4.44 12 12.95 247.08 250.64 247.76 251.32 255.00 258.00 8-2 14 13 29.360 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 2.53 12.83 4.44 12 12.98 250.64 254.45 251.32 255.13 258.00 259.04 8-1 Project File: POC-D 1-33.stm Number of lines: 14 Run Date: 10/25/2016 NOTES:lntensity = 127.16 / (Inlet time+ 17.80)' 0.82; Return period =Yrs. 100 ; c = cir e = ellip b = box Storm Sewers v10.40 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss {in) (cfs) (ft) (ft) (ft) (sqft) (ftls) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 12 5.86 220.00 220.95 0.95 0.77 7.60 0.90 221.85 0.000 122.50 b234.01 234.96 0.95** 0.77 7.60 0.90 235.86 0.000 0.000 n/a 1.00 0.90 2 18 3.53 234.01 234.96 0.95 0.83 2.99 0.28 235.24 0.000 103.38 b235.44 236.16j 0.72** 0.83 4.24 0.28 236.44 0.000 0.000 n/a 1.00 0.28 3 18 3.53 235.44 236.16 0.72* 0.83 4.24 0.28 236.44 0.000 25.800 235.71 236.43 0.72** 0.83 4.24 0.28 236.71 0.000 0.000 n/a 1.00 0.28 4 12 1.26 235.71 236.43 0.72 0.37 2.09 0.18 236.61 0.000 40.000 236.25 236.72j 0.47** 0.37 3.44 0.18 236.91 0.000 0.000 n/a 1.00 0.18 5 18 2.38 235.71 236.43 0.72 0.64 2.86 0.22 236.64 0.000 24.000 235.97 236.55 j 0.58** 0.64 3.75 0.22 236.77 0.000 0.000 n/a 0.30 n/a 6 12 2.38 236.22 236.65 0.43* 0.32 7.36 0.29 236.94 0.000 170.00 D241.35 242.01 0.66** 0.55 4.33 0.29 242.30 0.000 0.000 n/a 0.51 0.15 7 12 2.38 241.60 242.05 0.45* 0.34 6.97 0.29 242.34 0.000 52.980 242.98 243.64 0.66** 0.55 4.33 0.29 243.93 0.000 0.000 n/a 0.15 0.04 8 12 2.38 242.98 243.64 0.66* 0.55 4.33 0.29 243.93 0.000 34.330 247.88 248.54 0.66** 0.55 4.33 0.29 248.83 0.000 0.000 n/a 0.82 0.24 9 12 2.38 247.88 248.54 0.66* 0.55 4.33 0.29 248.83 0.000 56.600 256.04 256.70 0.66** 0.55 4.33 0.29 256.99 0.000 0.000 n/a 0.15 0.04 10 12 2.38 256.04 256.70 0.66* 0.55 4.33 0.29 256.99 0.000 5.500 256.75 257.41 0.66** 0.55 4.33 0.29 257.70 0.000 0.000 n/a 1.00 0.29 11 12 2.53 234.01 234.96 0.95 0.57 3.28 0.31 235.27 0.000 25.440 237.65 238.33 j 0.68** 0.57 4.44 0.31 238.64 0.000 0.000 n/a 0.91 n/a 12 12 2.53 237.65 238.33 0.68* 0.57 4.44 0.31 238.64 0.000 72.730 247.08 247.76 0.68** 0.57 4.44 0.31 248.07 0.000 0.000 n/a 0.72 n/a 13 12 2.53 247.08 247.76 0.68* 0.57 4.44 0.31 248.07 0.000 27.500 250.64 251.32 0.68** 0.57 4.44 0.31 251.63 0.000 0.000 n/a 0.75 n/a 14 12 2.53 250.64 251.32 0.68* 0.57 4.44 0.31 251.63 0.000 29.360 254.45 255.13 0.68** 0.57 4.44 0.31 255.44 0.000 0.000 n/a 1.00 n/a Project File: POC-D 1-33.stm I Number of lines: 14 I Run Date: 10/25/2016 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. ; c = cir e = ellip b = box ---~· ---.sre----..-"·-,.., ll!E --·• ,., .. ,_ L_:J c·::i 1::=::1 C'.3 l~y:'.11 C:I CJI ~:I 1:=~I Hya fafrow PIG· om putatioi1 fTrdceb u're n111 --c::::I General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure. Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 I Col. 7). Col. 9 Velocity head (Velocity squared / 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head. (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16). Col. 18 Velocity head (Velocity squared / 2g). Col. 19 The elevation of the energy grade line at the upstream end. HGL + Velocity head. (Col. 14 + Col. 18). Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream)+/-tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). I I G) r m G) r ::;u (l) Q) 0 -:::I" :§ 0 0, 0 ...... 0 0 ...... 0, 0 N 8 N 0, 0 w 0 0 w 0, 0 • 0 0 • 0, 0 ~ 0 0, 0, 0 Ol 8 N 0 (0 0 0 N N 0, 0 0 {~ ?: ~ ·~ 0 . I = :.> ~ f;°' ~ I l~ N 0, ... 00 I ~ 8 ~ !:; N • ' 0 CX> 0 B) !:; ' ...... ...... 0 ~ 0, @ * 0 CX> * I 0, N (0 CX> 0 !:; ' ...... N : '@) N 0) 0 * ' '\. \ ~ ... ~ i ~ \ I I .. ~ 0 i I N • ...... 0 0 \ \ = ~-0 ,) ~ \ I V _J 0\ \ ....... 1.-.J \ -~ r --- ' ~ -~ - ' ~ 8 {i:l s ...... 0 ...._ r ...... ...... • "? :ii. @ N * ...... N co ...... ':I!. 0 I V I\ ~ " N 0, --J 0 0 V V \ I\ ' --- / ~ ' '\ N --J w 0 0 N CX> (0 0 0 m (b < :§ Sta 0+00.00 -Outfall -0 Gmd. El. 230.1 Inv. El. 220.00 Sta 1 +22.50 - Rim El. 246.67 Inv. El. 234.01 Inv. El. 234.01 Sta 2+25.88 -I Gmd. El. 243.~ Inv. El. 235.44 Inv. El. 235.44 Sta 2+51.68 -I Rim El. 243.20 Inv. El. 235.71 Inv. El. 235.71 Sta 2+75.68-1 Rim El. 241.8: Inv. El. 235.97 Inv. El. 236.2:l In n: 1 Out In .n: 2 0 Out In n:3 Out In n:5 Out In Sta 4+45.68 -Ln:6 Rim El. 246.30 Inv. El. 241.35 Inv. El. 241.60 Sta 4+98.66 -I Gmd. El. 253.C Inv. El. 242.98 Inv. El. 242.98 Sta 5+32.99 -I Gmd. El. 254.C Inv. El. 247.88 Inv. El. 247.88 Sta 5+89.59 -I Rim El. 261 .33 Inv. El. 256.04 -----Rim El. 261 .33 Out In n:7 ,o Out In n:8 0 Out In n:9 Out In n: 10 Inv. El. 256.75 Out u. ... 0 .., 3 u. (D ~ (D .., "t a ... --(D ""O -, .Q. ::!l ~ ""O 0 () ' 0 ...... I w w CJ> 3 I I I I I I ~ . LJ 'l'J JOO 5WvSi ·13 ·11u1 i-o·esz ·13 w1~ • £0'SS+ ~ BJS i,g·osi '13 'IIUI i,g·osi ·13 ·11u1 UI JOO 0 o·ssz ·13 ·pwo £~ :u1 • L9'S(';+ ~ BIS 80'Lt,('; '13 ·11u1 80'LVZ '13 'IIUI u1 JOO 0 o·ssi ·13 ·pwo U :u1 u1 JOO • H '86+0 BIS S9'L£('; '13 'IIUI S9"L£('; ·13 ·11u1 '8V('; '13 'PWE) • »·si+o BIS ~O't,£('; '13 'IIUI ~o·v£i ·13 ·11u1 L9'9t,Z '13 WI~ oo·oo+o BJS -~ > Cl) uJ 0 0 ,...: ,..._ N 0 C> ,..._ ,..._ N 0 0 ,...: co N 0 0 ,...: co N 0 0 ,...: I{) N I \ \ 0 C> ,..._ I{) N 1\ ~~ ~ I\ \ I\ \ ' 0 0 ,...: v N "' 0 0 ,...: v N ~ g ~ ~b ~ .. .. : ~ r ~ -_J ,; @ .~ ... l•i \ ... l....i 0 C> ,..._ M N ~ 0 I{) a, N ... @ ~ ... I -0 0 I{) ,...: N I ,1 I 0 0 ,...: M N (\ ~, I I ff!. r;; l<t ... 0 0 ,...: N N I{) ,..._ 0 I{) I{) N 0 0 I{) ,..._ 0 I{) ~ ~ . ti ~ ~ J 0 0 ,...: N N I{) N 0 2 -.c (.) co Cl) a= ...J 0 w ...J 0 J: Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil JD® Pla n Project File: POC-C 38-4 Adj.stm Number of lines: 9 Date: 10/25/201 6 - - - -- - -----~ 40 -stJrrll Se\\fef-12~bll1litilin1 ) -~]Qe 1 Station Len Drng Area Rn off Areax C Tc Rain Total Cap ~el Pipe Invert Elev HGLElev Grnd I Rim Elev Line ID coeff (I) flow full Line To Iner Total Iner Total Inlet Syst Size Slope On Up Dn Up Dn Up Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (Ws) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 1 End 26.750 0.00 0.00 0.00 0.00 0.00 0.0 4.4 0.0 2.48 2.48 4.02 12 0.49 237.75 237.88 238.42 238.69 .239.00 241.00 2 1 3.250 0.00 0.00 0.00 0.00 0.00 0.0 4.3 0.0 2.48 36.98 2.67 36 0.31 238.22 238.23 238.79 238.79 241.00 242.90 3 2 57.360 0.00 0.00 0.00 0.00 0.00 0.0 1.5 0.0 2.48 47.42 2.69 36 0.51 238.23 238.52 238.91 239.01 242.90 243.00 4 3 5.250 0.00 0.00 0.00 0.00 0.00 0.0 1.3 0.0 2.48 50.41 3.30 36 0.57 238.52 238.55 239.01 239.04 243.00 245.00 5 4 20.070 0.00 0.00 0.00 0.00 0.00 0.0 0.3 0.0 2.48 47.08 3.30 36 0.50 238.55 238.65 239.04 239.14 245.00 245.20 6 5 10.530 0.00 0.00 0.00 0.00 0.00 0.0 0.3 0.0 2.48 18.59 5.63 12 27.26 238.67 241.54 239.14 242.21 245.20 244.49 7 6 17.530 0.00 0.00 0.00 0.00 0.00 0.0 0.2 0.0 2.48 6.37 4.40 12 3.19 241.54 242.10 242.21 242.77 244.49 245.00 8 7 22.070 0.00 0.00 0.00 0.00 0.00 0.0 0.1 0.0 2.48 6.34 4.40 12 3.17 242.10 242.80 242.77 243.47 245.00 245.50 9 8 11.070 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 2.48 6.42 4.40 12 3.25 242.80 243.16 243.47 243.83 245.50 247.00 Project File: POC-C 38-4 Adj.stm Number of lines: 9 Run Date: 10/25/2016 NOTES:lntensity = 127 .16 I (Inlet time + 17.80) ' 0.82 ; Return period =Yrs. 100 ; c = cir e = ellip b = box Storm Sewers v10.40 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 12 2.48 237.75 238.42 0.67 0.56 4.40 0.30 238.73 0.766 26.750 237.88 238.69 0.81 0.68 3.64 0.21 238.90 0.497 0.632 0.169 0.50 0.10 2 36 2.48 238.22 238.79 0.57 0.94 2.64 0.11 238.90 0.219 3.250 238.23 238.79 0.56 0.92 2.70 0.11 238.91 0.233 0.226 0.007 0.99 0. 11 3 36 2.48 238.23 238.91 0.68 0.75 2.08 0.17 239.08 0.000 57.360 238.52 239.01 j 0.49** 0.75 3.30 0.17 239.18 0.000 0.000 n/a 1.00 0.17 4 36 2.48 238.52 239.01 0.49* 0.75 3.30 0.17 239.18 0.000 5.250 238.55 239.04 0.49** 0.75 3.30 0.17 239.21 0.000 0.000 n/a 1.00 0.17 5 36 2.48 238.55 239.04 0.49* 0.75 3.30 0.17 239.21 0.000 20.070 238.65 239.14 0.49** 0.75 3.30 0.17 239.31 0.000 0.000 n/a 1.49 0.25 6 12 2.48 238.67 239.14 0.47 0.36 6.85 0.30 239.44 0.000 10.530 241.54 242.21 0.67** 0.56 4.40 0.30 242.52 0.000 0.000 n/a 0.15 0.05 7 12 2.48 241.54 242.21 0.67* 0.56 4.40 0.30 242.52 0.000 17.530 242.10 242.77 0.67** 0.56 4.40 0.30 243.08 0.000 0.000 n/a 1.00 0.30 8 12 2.48 242.10 242.77 0.67* 0.56 4.40 0.30 243.08 0.000 22.070 242.80 243.47 0.67** 0.56 4.40 0.30 243.78 0.000 0.000 n/a 1.00 0.30 9 12 2.48 242.80 243.47 0.67* 0.56 4.40 0.30 243.78 0.000 11.070 243.16 243.83 0.67** 0.56 4.40 0.30 244.14 0.000 0.000 n/a 1.00 0.30 Project File: POC-C 38-4 Adj.stm l Number of lines: 9 I Run Date: 10/25/2016 Notes:* Normal depth assumed.;** Critical depth.; j-Line contains hyd. jump. ; c = cir e = ellip b = box ·_--. c~=1 c:1 1c··3 r·=i c··.i C:I Storrr£·:-::Jv10' Hyarafl"ow f1G'L re c:J ---- General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to detemiine energy losses due to pipe friction. In a standard step, iterative procedure. Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 I Col. 7). Col. 9 Velocity head (Velocity squared I 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head. (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the Sor Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 I Col. 16). Col. 18 Velocity head (Velocity squared I 2g). Col. 19 The elevation of the energy grade line at the upstream end. HGL + Velocity head. (Col. 14 + Col. 18). Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream)+/-tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). I~~~~~~~~~~~~ :x: G) 17" m G) r ::0 CD Q) 0 =r a N ~ 0 0 N ~ 0 0 t 0 0 N ~ (0 0 0 N i 0 0 N 0, (0 0 0 0 I---..-.----T--rr~""T"T""---r---.--------,--+---r--r--r--r-t-r-1r--r~--+--.--.----.-.---~ ~ 1--',!!~--4-"''"*-+--+-h'4--+-+--+-+-+-+-t--if----i--t-t-+-+--+-+~ ~ ; ~ i ~ I i -1\ ill I I i I ~ ~ 11' I I I I I I I I I I I I I I I I I I -.J 0, I .... ~~ 0 C 0 c; ' ~, 1 [V ~ ~ ~ N f-+--~-+-+--+-l-++H+-H-l~+-+-+-J--i--+-.+--+--1-l~~ [\ 0, I I 11-1 .... l\ .... o,f-+--+-i!i.-+.-+--+-l---H-1~~+-+-+-J--i--+-+--+--1-l~~ 0 N N .. 0 ~ ~ • c:: t m ro < ;i -Sta 0+00.00 -Outfall Gmd. El. 239.00 Inv. El. 237.75 In Sta 0+26. 75 • Ln: 1 Rim El. 241.00 Inv. El. 237.88 Out Inv. El. 236.22 In Sta 0+30.00 -Ln: 2 Gmd. El. 242.90 Inv. El. 238.23 Out Inv. El. 238.23 In Sta 0+87.36 -Ln: 3 Gmd. El. 243.00 Inv. El. 238.52 Out Inv. El. 238.52 In Sta 0+92.61 -Ln: 4 Gmd. El. 245.00 Inv. El. 238.55 Out Inv. El. 238.55 In Sta 1+12.68 -Ln: 5 Rim El. 245.20 Inv. El. 238.65 Out Inv. El. 238.67 In Sta 1 +23.21 -Ln: 6 Gmd. El. 244.49 Inv. El. 241 .54 Out Inv. El. 241 .54 In Sta 1+40.74-Ln: 7 Gmd. El. 245.00 Inv. El. 242.10 Out Inv. El. 242.10 In Sta 1+62.81 -Ln: 8 Gmd. El. 245.50 Inv. El. 242.80 Out Inv. El. 242.80 In ~ 1 11 I I ~l~I I • 11 1 I~ D I I I I ~ I I I I i tl'.: ~ N "t ~ ~ Sta 1+73.88 -Ln: 9 0 t .,,. R ~ c:: . !D . !D im El. 247.00 N ~ 0 0 ~ .:... g g g g Inv. El. 243.16 Out ~ @ ~ N 0, *- Cf; ~ 0 .., 3 Cf; (D ~ (D .., "t a .. --(D ""O -, .Q. :::!l in ""O 0 () () <,.) 00 .& ~ CJ) 3 Hyafafiow Storm ~ewers t:xtensrorrror Project File: POC-B.stm Number of lines: 7 Date: 10/24/2016 Storm Sewers v10.40 Storm Sewer Tabulation Page 1 Station Len Drng Area Rn off Area x C Tc Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd I Rim Elev Line ID coeff (I) flow full Line To Iner Total Iner Total Inlet Syst Size Slope Dn Up Dn Up On Up Line (ft) (ac) (ac) (C) (min) (min) (In/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 1 End 5.000 0.00 0.00 0.00 0.00 0.00 0.0 7.2 0.0 0.98 3.66 5.12 6 42.60 232.52 234.65 232.99 235.12 235.00 237.00 2 1 34.000 0.00 0.00 0.00 0.00 0.00 0.0 7.1 0.0 0.98 3.51 5.11 6 39.26 234.65 248.00 235.12 248.47 237.00 253.00 3 2 37.000 0.00 0.00 0.00 0.00 0.00 0.0 6.9 0.0 0.98 2.36 5.11 6 17.65 248.00 254.53 248.47 255.00 253.00 260.89 4 3 1.500 0.00 0.00 0.00 0.00 0.00 0.0 6.8 0.0 0.98 447.5 6.82 X fflb 131 .32 255.68 257.65 255.74 257.89 260.89 261.58 5 4 1.500 0.00 0.00 0.00 0.00 0.00 0.0 6.7 0.0 0.98 0.00 0.19 X fflb -110.0 D257.43 255.78 260.93 260.93 261 .58 262.00 6 5 38.000 0.00 0.00 0.00 0.00 0.00 0.0 0.5 0.0 0.98 71 .14 0.10 42 0.50 255.59 255.78 260.93 260.93 262.00 261 .97 7 6 15.000 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.98 9.39 0.55 18 0.80 255.78 255.90 260.93 260.93 261 .97 262.00 Project File: POC-8.stm Number of lines: 7 Run Date: 10/24/2016 NOTES:lntensity = 127.16 / (Inlet time+ 17.80) '0.82 ; Return period =Yrs. 100 ; c = cir e = ellip b = box -- - - - - ---------- =-J r J t J 1 L _ J r J ;, [-1 ~ Hydrauhc Grade [1ne Computaf1ons -] .J J E ;ge1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 6 0.98 232.52 232.99 0.47 0.19 5.12 0.41 233.40 0.000 5.000 234.65 235.12 0.47** 0.19 5.11 0.41 235.53 0.000 0.000 n/a 0.75 n/a 2 6 0.98 234.65 235.12 0.47* 0.19 5.11 0.41 235.53 0.000 34.000 248.00 248.47 0.47** 0.19 5.11 0.41 248.88 0.000 0.000 n/a 0.69 n/a 3 6 0.98 248.00 248.47 0.47* 0.19 5.11 0.41 248.88 0.000 37.000 254.53 255.00 0.47** 0.19 5.11 0.41 255.41 0.000 0.000 n/a 0.15 n/a 4 42 0.98 255.68 255.74 0.06* 0.09 10.89 0.12 255.86 0.000 1.500 257.65 257.89 0.24** 0.36 2.76 0.12 258.01 0.000 0.000 n/a 0.17 0.02 18 B 5 42 0.98 257.43 260.93 3.50* 5.25 0.19 0.00 260.93 0.001 1.500 255.78 260.93 3.50 5.25 0.19 0.00 260.93 0.001 0.001 0.000 0.19 0.00 18 B 6 42 0.98 255.59 260.93 3.50 9.62 0.10 0.00 260.93 0.000 38.000 255.78 260.93 3.50 9.62 0.10 0.00 260.93 0.000 0.000 0.000 0.50 0.00 7 18 0.98 255.78 260.93 1.50 1.77 0.55 0.00 260.94 0.009 15.000 255.90 260.93 1.50 1.77 0.55 0.00 260.94 0.009 0.009 0.001 1.00 0.00 Project File: POC-8.stm I Number of lines: 7 I Run Date: 10/24/2016 Notes: * Normal depth assumed.; ** Critical depth. ; c = cir e = ellip b = box Storm Sewers v1 o., Hydraflow HGL Computation Procedure General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 I Col. 7). Col. 9 Velocity head (Velocity squared / 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head. (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL -Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 I Col. 16). Col. 18 Velocity head (Velocity squared/ 2g). Col. 19 The elevation of the energy grade line at the upstream end. HGL + Velocity head, (Col. 14 + Col. 18). Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream -EGL downstream)+/-tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). c-~_:1 .::-'31 1 .. :1 c=a l[:::::11 £.:::-1 c~ £--:i Page 1 £~~--c::=n !£.~JI S!2 I 0 3 (J) (1) :i: (1) iii I G) r m G) r :::0 (I) O> 0 ~ :§ N N w 0 0 0 ...... 0 N 0 :s .i,. 0 g: a, 0 -..J 0 CX> 0 (0 0 ...... 0 0 ...... 0 ...... N 0 ...... w 0 ...... .i,. 0 I (J ~ E ' C (E i 0 N N w 0 0 N w a, 0 0 -i ' l\ K ' 0 ~ ;~ N w O> 0 0 N .i,. !!> 0 0 \ I\. \ i\ ~ f\ ~~ I\ i\ ·..: &-~, ,~ r-- I ' ~ I .... I m. I~ :. i ~ p. i ~ i.. :~ ~ !,-... = ~ : : ~ ·~ l,.a. ID OD I~ I i ; I" to, "' b @ p CX> 0 '#. i.. t; 5 ~ N ~ 0 0 \ ' \ \ 1 ~ I: ... ~ . I~ I:) i N a, N 0 0 I/ 1.../ --t\ N a, N 0 0 \ I/ i\ I\ ~ N -..J 0, 0 0 N -..J 0, 0 0 N CX> CX> 0 0 N CX> CX> 0 0 m m < ;:i; ....... Sta 0+00.00 -1 Gmd. El. 235.1 Outfall -:o Inv. El. 232.52 In Sta 0+05.00 • Gmd. El. 237.0 Ln: 1 0 Out In Inv. El. 234.65 Inv. El. 234.65 Sta 0+39.00 • l Gmd. El. 253.0 Inv. El. 248.00 Inv. El. 248.00 Sta O+ 76.00 • I Rim El. 260.89 Inv. El. 254.53 Inv. El. 255.68 Sta O+ 77.50 • I Gmd. El. 261.! Inv. El. 257.65 Inv. El. 257.43 Sta O+ 79.00 • I Rim El. 262.0C Inv. El. 255.78 Inv. El. 255.59 Sta 1+17.00 • n:2 ,o Out ·n n:3 Out ·n n:4 8 Out ·n n:5 Out ·n n:6 Rim El. 261 .97 Inv. El. 255.78 Inv. El. 255.78 Sta 1 +32.00 • I Rim El. 262.00 Inv. El. 255.90 Out ·n n:7 Out I CJ. fl I a I I I D D I 3