Loading...
HomeMy WebLinkAboutCT 2017-0004; SIX ON MADISON; TEMPORARY SHORING CALCULATIONS PACKAGE; 2019-10-31ECE No ~vr~e/ L.pflltfl~ I l/1s/1~ (2.5:s- Temporary Shoring Calculation Package \.OV G 7 2019 LAND r ~i1ENT L Six on Madison Condominiums Temporary Shoring ''' ) San Diego, CA . Submitted to: Western Foundations Lakeside, CA. 10/31/2019 Design Criteria: 1. State of California CAL TRANS, TRENCHING AND SHORING MANUAL, 2011 (TSM.) 2. 2016 CBC Geotechnical Information: These calculations are based on the Geotechnical Report issued by: Firm Name: Allied Earth Technology Project Number: 18-1106E5 Dated: nov 20,18 Design Parameters: Cantilevered Shoring Active Pressure 35 pcf Passive Pressure 250 psf/ft Max Passive Pressure 0 psf Minimum Surcharge* 100 psf Factor of Safety 1.3 Calculate Active Pressure below Excavation? NO Seismic Pressure 0 H, psf Inverted triangular Distribution Arching: Pile Spacing (s) Arching Factor Soil Internal Friction Angle (0): 35 degrees ~ 3 * d 3 Drilled Pile Diameter (d): varies feet >3*d 0.08*0 (~3) For the typical spacing of feet on center: Calculated: User Input: and 2'-0" Diameter Caissons, use an Arching Factor of: and 2'-6" Diameter Caissons, use an Arching Factor of: and 3'-0" Diameter Caissons, use an Arching Factor of: Overstress Factor: 3 3 2.8 Short term increases are allowed to allowable stresses (up to 133%) per TSM 5.3 except in the following situations: 1. Excavations are not temporary (in service more than 90 days) 2. Dynamic Loadings are present (seismic, pile-driving, etc) 3. Excavations are adjacent to railroads 4. Analysis of horizontal struts. Allow overstress? Yes How Much? 130% 2 2 2 Global Parameters: Active Pressure: Passive Pressure: Max Passive Pressure: Factor Of Safety: Seismic Load ' --....,, """'°"louts 1 2-4 5 35 pcf 250 pcf 0 psf 1.3 0 H, psf OosignCu (0.) 5 lD 5 I...Ul.00 ........ lll different tram Ort 8 10 8 Resultant Surcharge Loads: EKternal Surch Surcharge 1 ~ Story House = 0.2 kif Surcharge 2 -Story House = 0.44 kif Temporary Shoring Design Parameters '""" -··-·" ~LOO -""""" """""""'-CWon --'"""""'"' Spoono (psi) (ft) (k,p) Oeo<l>(O) '"""(kip) s.,<h (ft) 1ft. ""· (0.) Oeo<l>(lf\.) 100 5 0 0 0 0 6 2.5 no max 100 10 0 0 0 0 s 2,5 no max 100 5 0 0 0 0 6 2.5 noma1t Neglect the top 1 feet of soil Desiga Results Results for Schedule • all dimensions in feet -·· ····-·-· ··-... ·--~ Beam Callout Beam Size Deflection Reg. Moment Embed. fftl Caisson Dia. Cut Height Embedment Total length Embedment Beam Callout Beam Size (ft.) (ft.) Length (ft.) (ft.) Elevation 1 Wl6X26 0.05 23.13 8.50 1 Wl6X26 2.5 8.0 9.5 17.5 59.0 2-4 W21X44 0.51 173.68 16.50 2-4 W21X44 2.5 10.0 17.5 27.5 59.0 5 Wl6X26 0.05 23.13 8.50 5 Wl6X26 2.5 8.0 9.5 17.5 59.0 Cantilevered Shoring Design -AASHTO Methodology Beam Callout: 1 Wall Height, H: 5 ft Beam Spacing, Sp: 6 ft Caisson Diameter, d: 2.5 ft Arching, Arch: 2 Active Pressure NO beyond Cut Depth? Factor Of Saftey: 1.3 Max Beam Depth?: no max Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 5 0.175 0.Q35 0 0.1 5 0.1 0 0 0 0 0 Active Pressure, <T •3: (d)(A)(H) = 0.4375 kips/ft Active Pressure, <T •: (Sp)(A)(H) = 1.05 kips/ft Active Pressure 2, o •2: (d)(A)(D) = 0.0875 D kips/ft Surch. Pressure, <T ,: (Su)(Sp) = 0.6 kips/ft Passive Pressure, 0 P: (Arch)(d)(P)(D) = 1.25 D kips/ft Force {kii:isl Arm {ftl P.1 = n .(H)(l/2) = 2.625 X ( 1.667 P.3=<T.3(D)= 0.000 D X ( D/2) P.2 = 0 a2(D)(l/2) = 0.000 D2 X ( D/3) P, = 0,(H) = 3.000 X ( 2.5 PE= E = 0.000 X 5 PsF =SF = 0.000 X 5 PP= n p(D)(l/2) = 0.63 D2 X ( D/3) Driving Moment, DM = X0 D3 +YD2 +ZD+C Xo: 0.00 Y: 0.00 Resisting Moment, RM = (XR)D"3 XR: 0.21 RM with F.O.S. = (XR)D"3 XR: 0.16 YR: 0 Cales of Beam(s}: ! Wall Pressures Active Pressure, A: 35 pcf Passive Pressure, P: 250 pcf Max Passive Pres: 0 psf Uniform Surcharge, Su: 100 psf Uni. Surch. Depth: 5 ft External Surcharge, E: 0 kips Depth of Ext. Surch, DE: 0 ft Seismic Force, SF: o kips Seismic Depth, Sd 0 ft Resisting Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 5 0 13.1408 2.035194 0.25 -2 -1.5 -1 -0.5 PRESSURE ksf 0 -~ +D) = = +D) = +D) = +D) = Z: 5.63 ZR: 0 Moment at O (k-tt) 4.38 0.00 D2 0.00 D3 3.00 D 0.00 D 0.00 D 0.21 D3 C: C: + + + + 2.63 D 7.5 0 0 11.88 0 <-Terms divided by 0.5 0 -2 -4 J: t w -8 0 -10 -12 -14 1.3 Cales for Beam(s): ! continued Set Driving Moment equal to Resisting Moment and solve for Oby changing the depth of Embed, D: (XD)D"3+YD"2+ZD+C-(XR)D"3 = 0.00 Determine the Depth of Zero Shear Plane: (Substitute V for D): Embedment Depth: 6.78398 ft 20% Rotational Increase per TSM 6.1: 8.14078 ft P Ai+PA2 Y+P6+PA3Y2+P5+PE+P5F-PpY2 = 0.00 Plane of Zero Shear is located at 3.00 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: MM Ax= P Ai(Y+H/3)+P dY2 /2)+PA3(Y3 /3)+P5(Y+H/2)+PE(Y+H-DE)-Pp(Y3 /3)= 23.125 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at D/3 3.00 feet below bottom of excavation Estimated Deflection Due To: Active Pressure: 0.0176 in Uniform Surcharge: 0.03294 in External Surcharge: 0 in Seismic Load: 0 in Max Deflection: 0.05054 in Static Deflection: 0.05054 in Soldier Beam Selection With Overstress Factor* Use W16X26 Mpx/0 = 135.231 k' lxx = 301 in"4 Wall Height = 5 ft Required Embed = 8.5 ft Total Beam Length = 13.5 ft Caisson Diameter= 2.5 ft * Refer to Design Criteria Sheet for Overstress information Overstress Factor = 130 % Cantilevered Shoring Design -AASHTO Methodology Bea m Ca llout: 2-4 Wall Height, H: 10 ft Beam Spacing, Sp: 8 ft Caisson Diameter, d: 2.5 ft Arching, Arc h: 2 Active Pressure NO beyond Cut Depth? Factor Of Saftey: 1.3 Max Beam Depth?: no max Driving Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 0 0 10 0.35 0.035 0 0.1 10 0.1 0 0 0 Active Pressure, rr a3: (d)(A)(H) = 0.875 kips/ft Active Pressure, n .: (Sp)(A)(H) = 2.8 kips/ft Active Pressure 2, n •1: (d)(A)(D) = 0.0875 D kips/ft Surch. Pressure, rr,: (Su)(Sp) = 0.8 kips/ft Passive Pressure, n P: (Arch)(d)(P)(D) = 1.25 D kips/ft Force (ki12sl Arm (ft} Pal= 0 .(H)(l /2) = 14.000 X ( 3.333 Pa3 = 0 a3(D) = 0.000 X ( D/2) Pa2 = 0.i(D)(l /2) = 0.000 X ( D/3) P, = n ,(H) = 8.000 X ( 5 Pe= E = 0.000 X 10 PsF =SF = 0.000 X 10 PP= n-p(D)(l/2) = 0.63 X ( 0/3) Driving Moment, DM = X0 D3 +YD2 +ZD+C Xo: 0.00 Y: 0.00 Resisting Moment, RM = (XR)D"3 XR: 0.21 RM with F.O.S. = (XR)D"3 XR: 0.16 YR: 0 Cales of Beam(s): 2-4 Wall Pressures Active Pressure, A: 35 pcf Pass ive Pressure, P: 250 pcf Max Passive Pres: O psf Uniform Surcharge, Su: 100 psf Uni. Surch. Depth: 10 ft External Surcharge, E: 0 kips Depth of Ext. Surch, DE: 0 ft +D) +D) +D) +D) Seismic Force, SF: 0 kips Seismic Depth, Sd 0 ft Resisting Pressures: Starting Dept h 10 -5 = = = = = Starting Ending Ending Pressure Depth Pressure 0 26.0025 4.000627 -4 -3 -2 -1 PRESr RE /ksfl I Moment at O [k-ttl 46.67 + 0.00 D2 0.00 D3 8.00 D + 0.00 D + 0.00 D + 0.21 D3 14.00 D 40 0 0 Z: 22.00 C: 86.67 Slope 0.25 0 ZR: 0 C: 0 <-Terms divided by 1 0 -5 -101 .t:! :t: -15 f-a.. w 0 -20 -25 -30 1.3 Cales for Beam(s}: 2-4 continued Set Driving Moment equal to Resisting Moment and solve for O by changing t he depth of Embed, D: (XD)D"3+YD"2+ZD+C-(XR)D"3 = 0.00 Determine the Depth of Zero Shear Plane: (Substitute Y for D): Embedment Depth: 13.3354 ft 20% Rotational Increase per TSM 6.1: 16.0025 ft P A1+PA2 Y+P6+PA3Y2+P5+Pe+Pw PpY2 = 0.00 Plane of Zero Shear is located at 5.93 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: MMAx= P Ai(Y+H/3)+P dY2 /2)+PA3(Y3 /3)+P5(Y+H/2)+Pe(Y+H-DE)-Pp(v3 /3)= 173.683 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at D/3 5.93 feet below bottom of excavation Estimated Deflection Due To: Active Pressure: 0.26245 in Uniform Surcharge: 0.24632 in External Surcharge: 0 in Seismic Load: 0 in Max Deflection: 0.50877 in Static Deflection: 0.50877 in Soldier Beam Selection With Overstress Factor* Use W21X44 Mpx/0 = 309.431 k' lxx = 843 in"4 Wall Height = 10 ft Required Embed = 16.5 ft Total Beam Length= 26.5 ft Caisson Diameter= 2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor= 130 % Cantilevered Shorini? Desii?n -AASHTO Methodoloi?v Beam Callout: 5 Wall Height, H: 5 ft Beam Spacing, Sp: Caisson Diameter, d: Arching, Arch: Active Pressure beyond Cut Depth? Factor Of Saftey: M ax Beam Depth?: Driving Pressures: Starting Starting Depth Pressure 0 0 0 0.1 0 0 Active Pressure, n af Active Pressure, rr .: Active Pressure 2, n 02: Surch. Pressure, er,: Passive Pressure, n P: P.1 = n .(H)(l/2) = Pa3 = rr.3(0) = p a2 = (T a2(D)(l/2) = P, = rr,(H) = PE= E = PsF =SF = Driving Moment, OM = Resisting Moment, RM = 6 ft 2.5 ft 2 NO 1.3 no max Ending Ending Depth Pressure 5 0.175 5 0.1 0 0 (d)(A)(H) = (Sp)(A)(H) = (d)(A)(D) = (Su)(Sp) = (Arch)(d)(P)(D) = Force (kips) 2.625 0.000 0.000 3.000 0.000 0.000 0.63 X0D3 +YD2 +ZD+C (XR)D"3 RM with F.O.S. = (XR)D"3 Slope 0,035 0 0.4375 kips/ft 1.05 kips/ft 0.0875 D kips/ft 0.6 kips/ft 1.25 D kips/ft Arm (ft) X ( 1.667 X ( D/2) X ( 0/3) X ( 2.5 X ( 5 X ( 5 X ( 0/3) Xo: 0.00 Y: 0.00 XR: 0.21 XR: 0.16 YR: 0 Cales of Beam(s): ~ Wall Pressures Active Pressure, A: 35 pcf Passive Pressure, P: 250 pcf Max Passive Pres: 0 psf Uniform Surcharge, Su: 100 psf Uni. Surch. Depth: 5 ft External Surcharge, E: 0 kips Depth of Ext. Surch, De: 0 ft Seismic Force, SF: 0 kips Seismic Depth, Sd 0 ft Resisting Pressures: Starting Starting Ending Ending Slope Depth Pressure Depth Pressure 5 0 13.1408 2.035194 0.25 -2.5 -2 -1.5 -1 -0.5 PRESSURE ksf 0 tL +D) = = +D) = +D) +D) = = Z: 5.63 ZR: 0 I Moment at O (k-tt) 4.38 0.00 02 0.00 03 3.00 D 0.00 D 0.00 D 0.21 03 C: C: + + + + 11.88 2.63 D 7.5 0 0 0 <-Terms divided by 0.5 0 -2 -4 J: it w -8 0 -10 -12 -14 1.3 Cales for Beam(sl: ~ Set Driving Moment equal to Resisting Moment and solve for Oby changing the depth of Embed, D: Determine the Depth of Zero Shear Plane: (Substitute V for D): continued 0.00 Embedment Depth: 6.78398 ft 20% Rotational Increase perTSM 6.1: 8.14078 ft 0.00 Plane of Zero Shear is located at 3.00 feet below bottom of excavation. Determine the Maximum Moment at Point of Zero Shear: MMAx= P Ai(Y+H/3)+P dY2 /2)+PA3(Y3 /3)+P5(Y+H/2)+PE(Y+H-DE)-Pp(Y3 /3)= 23.125 k-ft Determine the Pile Deflection: (Use superposition principle) -Utilize a point of fixity at 0/3 3.00 feet below bottom of excavation Estimated Deflection Due To: Active Pressure: 0.0176 in Uniform Surcharge: 0.03294 in External Surcharge: 0 in Seismic Load: 0 in Max Deflection: 0.05054 in Static Deflect ion: 0.05054 in Soldier Beam Selection With Overstress Factor* Use W16X26 Mpx/0 = 143.363 k' lxx = 301 in"4 Wall Height = 5 ft Required Embed = 8.5 ft Total Beam Length = 13.5 ft Caisson Diameter = 2.5 ft *Refer to Design Criteria Sheet for Overstress information Overstress Factor= 130% Lateral Earth Pressure on Lagging Design S~readsheet HIii.i\ ., I:" Ill ;,no•u>. ln~ut Surcharge Information Below: Surcharge# 1 2 3 Surcharge Load, Q (psf) : 0 0 0 Distance from Wall to close 0 0 0 Footing edge, Ll (ft) Footing Width, a (ft) 1 10 0 Distance from Wall to far Footing 7 13 0 edge, L2 (ft) Max Wall Height (ft) 10 14 14 Max Beam Spacing (ft) 8 8.5 8 Depth Below TOW (ft) 1 0 0 Boussinesq Pressure Distribution on Wall 0 •r 2 j 4 j 6 .s::. ... c.. cu 0 8 ' ;;; 3: 10 • ,I 12 ;, ., 14 J. 16 0 0.2 0.4 0.6 0.8 Surcharge Lateral Pressure, PSF 1 L1 = Distance from wall to left edge of strip load L2" Distance from wall to right edge of strip load a= width of surcharge strip J PR=P(n/180) -+-Surcharge #1 Pressure _._Surcharge #2 Pressure Surcharge #3 Pressures Wall Lateral Earth Pressure on Lagging Design Spreadsheet Surcharge #1 Maximum Depth of Excavation: Maximum Beam Spacing Active Pressure: Max Uniform Surcharge: Max External Surcharge: 10 feet 8 feet 35 pcf 100 psf 0.00 psf 2.5 feet Lagging without external surcharges (other than uniform required surcharge) have been shown to have a maximum lagging load of 400psf per TSM, 2011. The walls of this shoring system do not have an external surcharge, therefore limit the lagging design to 400psf (TSM 5-8) Minimum Caisson Diameter Maximum Clear Spacing 5.5 feet (between slurry columns) Lagging Lateral Uniform External Depth Pressure Surcharge Surcharge (ft) (psf) (psf) (psf) 1 35 100 0.0 2 70 100 0.0 3 105 100 0.0 4 140 100 0.0 5 175 100 0.0 6 210 100 0.0 7 245 100 0.0 8 280 100 0.0 9 315 100 0.0 10 350 100 0.0 11 385 0 0.0 12 400 0 0.0 13 400 0 0.0 14 400 0 0.0 15 400 0 0.0 16 400 0 0.0 17 400 0 0.0 18 400 0 0.0 19 400 0 0.0 20 400 0 0.0 21 400 0 0.0 Check Douglas Fir Larch; fb = 850psi f'b = fb 850 1.25 f'b = 1478.4688 1 Using Rough Sawn Lagging (approximately 1/8" Larger than Dressed) Sx of 3x12 Lagging: 13.1 inA3 for Sx of 4x12 Lagging: Sx of 6x12 Lagging: 24.9 61.3 in113 for in113 for Lagging Mom. Required Required Total Load Mmax = wL,..2/8 Sx Lagging (psf) 135.0 170.0 205.0 240.0 275.0 310.0 345.0 380.0 415.0 450.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 3x12 Lagging 4x12 Lagging 6x12 Lagging 1 (lb-ft/ft) 306.3 385.7 465.1 544.5 623.9 703.3 782.7 862.1 941.5 1020.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 (inA3) 2.00 3.00 4.00 4.00 5.00 6.00 6.00 7.00 8.00 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 * CFu 1.1 Size 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 3x12 Lagging 1 Surcharge 1 Resultant Force = Resultant Height (above base) = 1.15 0 kips ##### ft