Loading...
HomeMy WebLinkAboutCT 2018-0005; VILLAGE WALK; DRAINAGE STUDY; 2018-10-04DRAINAGE STUDY For VILLAGE WALK CT2018-0005 Prepared for: DMS Consultants, Inc. 123 71 S Lewis St #203 Garden Grove, CA 92840 (7 14) 740-8840 Prepared by: R·E·C Consultants, Inc. Dr. Luis Parra REC Consultants, Inc 27349 Jefferson Ave, Suite 112 Temecula, CA 92590 Telephone: 951-693-2400 Report Prepared: October 4 , 2018 ' ' Village Walk Drainage Study TABLE OF CONTENTS Chapter 1 -Executive Summary 1.1 Introduction 1.2 Summary of Existing Conditions 1.3 Summary of Proposed Condition 1.4 Summary of Results 1.5 Hydraulic Analysis 1.6 Conclusions Chapter 2 -Methodology 2.1 County of San Diego Drainage Design Criteria 2.2 Hydrograph Development Summary (from San Diego County Hydrology Manual) SECTION II Chapter 3 -Existing Condition 100-Year Hydrologic Analysis Ill Chapter 4 -Developed Condition 100-Year Hydrologic Analysis IV Chapter 5 -Modified-Puls Detention Routing (HEC-HMS) V 5.1 Rational Method Hydrographs 5.2 Stage-Storage & Stage-Discharge Relationships 5.3 HEC-HMS Modified-Puls Routing Results Chapter 6 -WSPG Hydraulic Analysis Chapter 7 -Hydrology Exhibits VI VII Village Walk Drainage Study CHAPTER 1 -EXECUTIVE SUMMARY 1.1 -Introduction The Village Walk project site is located to the south of Oak Avenue in the City of Carlsbad, California. Runoff from the site drains to a single point of discharge from the project site, the existing storm drain located within the adjacent Oak Avenue to the north of the existing site. This study analyzes existing and developed condition 100-year peak flowrates from the development to the existing point of discharge. The project site lies outside any FEMA 100-year floodplain zones. Therefore, no Letters of Map Revision will be required. Treatment of storm water runoff from the site has been addressed in a separate report - the "Storm Water Quality Management Plan for Village Walk", dated February 2018 by REC . Per County of San Diego drainage criteria, the Modified Rational Method should be used to determine peak design flowrates when the contributing drainage area is less than 1.0 square mile. Since the total watershed area discharging from the site is less than 1.0 square mile, AES computer software was used to model the pre & post developed condition runoff response per the Modified Rational Method. Methodology used for the computation of design rainfall events, runoff coefficients, and rainfall intensity values are consistent with criteria set forth in the "County of San Diego Drainage Design Manual". A more detailed explanation of methodology used for this analysis is listed in Chapter 2 of this report. Developed cond ition peak flows were calculated using AES . The corresponding hydrographs were generated using the RickRat Hydro program by Rick Engineering. Hydraulic Modified-Puls detention basin routing of the AES rational method hydrology was performed using the Army Corps of Engineers HEC-HMS 4.1 software. Village Walk Drainage Study 1.2 -Summary of Existing Conditions In existing conditions, the Village Walk project site is an existing residential lot with associated structures and pavement. Runoff from the existing site drains via overland flow to the existing storm drain system located to the north of the project site within the adjacent Oak Avenue. Per County of San Diego rainfall isopluvial maps, the design 100-year rainfall depth for the project site is 2.6 inches. The project site comprises of hydrologic soil class B soils such that a runoff coefficient of 0.25 was used for the vegetated areas. The existing site has an approximate impervious footprint of 8,574 square feet. Per the equation identified in Section 3.1 .2 of the San Diego County Hydrology Manual : C = 0.9 X (%Impervious)+ Cp X (l -% Impervious) where Cp is the pervious runoff value (in this case, 0.25), the existing condition runoff coefficient is 0.58. Table 1 below summarizes the existing condition design 100-year peak flow from the project site. Table 1 -SUMMARY OF EXISTING CONDITIONS FLOWS Drainage Runoff 100-Year Discharge Location Area Coefficient Peak Flow (Ac) (C) (cfs) Oak Avenue 0.4 0.58 1.18 1.3 -Summary of Developed Conditions The Village Walk project proposes the construction of 8 multi-family homes, inclusive of an underground parking lot and associated landscaping. Runoff from the project is drained to a receiving dual purpose detention basin to the southeast corner of the project site. Mitigated peak flows are then drained from the detention facility by an 8- inch PVC storm drain to connect to the existing storm drain located within the adjacent Oak Avenue to the north of the project site. Runoff draining towards the underground parking lot is intercepted by a trench drain and then pumped to the aforementioned detention basin . Per County of San Diego rainfall isopluvial maps, the design 100-year rainfall depth for the project site is 2.6 inches. The project site comprises of hydrologic soil class B soils such that a runoff coefficient of 0.25 was used for the vegetated areas. The developed site has an approximate impervious footprint of 11 ,701 square feet. Per the equation identified in Section 3.1.2 of the San Diego County Hydrology Manual the developed condition runoff coefficient is 0.72 . Table 2 summarizes the unmitigated developed condition design 100-year peak flow from the project site. Village Walk Drainage Study Table 2 -SUMMARY OF UNMITIGATED -DEVELOPED CONDITIONS FLOWS Drainage Runoff 100-Year Discharge Location Area Coefficient Peak Flow (Ac) (C) (cfs) Oak Avenue 0.4 0.72 1.41 • = Weighted C coefficient used, see AES output for calculations. Prior to discharging from the project site, first flush runoff will be treated via an onsite infiltration BMP in accordance with standards set forth by the Regional Water Quality Control Board and the County of San Diego's BMP Design Manual (see "Storm Water Quality Management Plan for Village Walk"). Runoff from the developed site drains to a single onsite multiple purpose detention basin. Peak flows are mitigated via this facility prior to discharging to the existing point of discharge from the project site. A summary of the detention basin is provided in Table 3. Table 3 -SUMMARY OF BMP BASIN DIMENSIONS DIMENSIONS Basin Depth to First Depth to Riser Weir Total Surface Surface Outlet (ft)(1) Invert (ft)(2> Perimeter Depth<4) (ft) Length(3) (ft) Basin 1 0.5 1.5 8 2.0 Notes: (1): It is assumed WQ volume to be stored below this elevation, only volume above this invert is available for Ql00 routing. (2): Depth of ponding beneath riser structure's surface spillway. (3): Overflow length, the internal perimeter of the riser. (4): Total surface depth of BMP from top crest elevation to surface invert. The developed condition peak flows were calculated using the modified rational. The corresponding hydrographs were generated using the RickRat Hydro program by Rick Engineering (a 10 minute time step was used to generate the hydrograph as HMS only has time step allowances for 1,2,3,4,5,6 and 10 minute increments). This hydrograph was then routed through the proposed on-site detention facility in HEC-HMS. The HMS Modified-Puls results are summarized in Table 4. It should be noted that as a conservative design approach , it has been assumed that the design capture volume was stored in the detention basin prior to the routing of the 100-year event storm, as such , all volume provided beneath the first surface outlet is not accounted for in the routing calculation. Rational method hydrographs, stage-storage, stage-discharge relationships , outlet structure configurations and HEC-HMS model output is provided in Chapter 5 of this report. Table 4 summarizes the peak inflow and discharge from the detention facility. Village Walk Drainage Study Table 4 -SUMMARY OF DETENTION BASIN ROUTING Detention Basin 100-Year Peak 100-Year Peak Peak Water Surface Inflow (cfs) Outflow (cfs) Elevation(1l (ft) Basin 1 1.41 0.86 1.0 Notes: (1) Elevation above the first surface inlet invert. 1.4 -Summary of Results Table 5 summarizes developed and existing condition drainage areas and resultant 100-year peak flow rates at the receiving discharge location from the Village Walk site. Per County of San Diego rainfall isopluvial maps, the design 100-year rainfall depth for the site area is 2.6 inches. Table 5 -SUMMARY OF PEAK FLOWS Discharge Area (ac) 100 Year Peak Flow (cfs) Location Existing Developed Difference Existing Developed Difference Oak Avenue 0.4 0.4 0.00 1.18 0.87 -0.31 As illustrated in Table 5, the proposed Village Walk project site will reduce peak flows at all point of discharge from the project site when compared to the existing condition. The total net reduction in flow from the pre-developed condition is approximately 0.31 cfs . All developed runoff will receive water quality treatment in accordance with the site specific SWQMP. Final design details will be provided at the final engineering phase of the development. 1.5 -Hydraulic Analysis Runoff from the project site is to be drained to the existing storm drain located within the adjacent Oak Avenue by a proposed 8-inch PVC storm drain. Public Works Department of City of Carlsbad has indicated that they have been unable to locate the improvement plans for existing 18-inch storm drain located in Oak Avenue. This storm drain originates at Lincoln Avenue, approximately 270 feet west of project site and drains easterly. In the absence of any record information and considering the project site is only 270 feet from beginning of storm drain system a HGL of 43 .05 feet being the top of existing 18-inch pipe has been used as control. In order to assess the proposed 8-inch storm drain design capacity, hydraulic analysis was undertaken using the WSPG computer program. The computed HGL is provided in Chapter 6 of this report. Village Walk Drainage Study 1.6 -Conclusions This report has been prepared in accordance with the County of San Diego Hydrology Manual. This report has evaluated and addressed the potential impacts and proposed mitigation measures. A summary of the facts and findings associated with this project and the measures addressed by this report is as follows: • The project will not alter drainage patterns on the site or increase runoff after development. • The ultimate discharge points will not be changed. • Graded areas and slopes will be hydroseeded to reduce or eliminate sediment discharge. • Identify and discuss, with appropriate backup/research information, the following question item by item for CEQA purposes. Would the project: A. Substantially alter the existing drainage patterns of the site or area, including through the alteration if the course of a stream or river, in lt manner which would result in substantial erosion or siltation on -or off-site? The project does not substantially alter the existing drainage pattern of the area and does not alter the course of a stream or river. The storm drain system for the entire project is designed to route and convey all resulting runoff from developed conditions to existing point of discharge. B. Substantially alter the existing drainage patterns of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on-or off-site? The project will not substantially alter the existing drainage pattern of the area as it will not alter the course of a stream or river, and also will not substantially increase the rate or amount of surface runoff in a manner which would result in on-or off-site flooding. C. Create or contribute runoff water which woulll exceed the capacity of existing or planned storm water drainage systems? No. All project discharge points release water at rates less than or equal to existing conditions. Village Walk Drainage Study D. Place housing within a JOO-year flood hazard area as mapped on a federal Flood Hazan/ Boundttry or Flood insurance Rate Map or other flood hazard delineation map, including County Floodplain Maps? For example; research the foregoing and provitle same (to imlicate applicability or not) in the study? The project does not place any housing within a 100-year flood hazard area. E. Place within a 100-year flood hazard area structures which would impede or redirect flood flows? There are no structures proposed within a 100-year flood hazard area. F. Expose people or structures to a significant risk of loss, injury or death involving .flooding, inclutling flooding as a result of the failure of lt levee or dttm on-sit or off-site? NA 1.7 -References "County of San Diego Hydrology Manuaf', June 2003 "San Diego County Hydraulic Design Manuaf', September 2014 "Stormwater Quality Management Plan for Village Walk", October 2018, REC Consultants. Village Walk Dra inage Study 1.8 -Declaration of Responsible Charge THIS PRELIMINARY DRA INAGE STUDY HAS BEEN PREPARED UNDER THE DIRECTION OF THE FOLLOWING REGISTERED CIVIL ENGINEER. THE REG ISTERED ENGINEER ATTESTS TO THE TECHN ICAL INFORMATION CONTAINED HEREIN AND THE ENGINEERING DATA UPON WHICH RECOMMENDATIONS, CONCLUSIONS, AND DECISIONS ARE BASED. Luis A. P rra-Rosales R.C.E. 66377 Village Walk Drainage Study CHAPTER2-METHODOLOGY 2.1 -County of San Diego Design Criteria San Diego County Hydrology Manual Date: June 2003 SECTION3 Section: Page: RATIONAL METHOD AND MODIFIED RATIONAL METHOD 3.1 THERA110NALMETHOD 3 I of26 The Rational Method (RM) is a mathematical formula used to determine the maximum runoff rate from a given rainfall. It has particular application in urban storm drainage, where it is used to estimate peak runoff rates from small urban and rural watersheds for the design of storm drains and small drainage structures. The RM is recommended for analyzing the runoff response from drainage areas up to approximately 1 square mile in size. It should not be used in instances where there is a junction of independent drainage systems or for drainage areas greater than approximately 1 square mile in size. In these instances, the Modified Rational Method (MRM) should be used for junctions of independent drainage systems in watersheds up to approximately 1 square mile in size (see Section 3.4); or the NRCS Hydrologic Method should be used for watersheds greater than approximately 1 square mile in size (see Section 4). The RM can be applied using any design storm frequency (e.g., 100-year, 50-year, 10-year, etc.). The local agency determines the design storm frequency that must be used based on the type of project and specific local requirements. A discussion of design storm frequency is provided in Section 2.3 of this manual. A procedure has been developed that converts the 6-hour and 24-hour precipitation isopluvial map data to an Intensity-Duration curve that can be used for the rainfall intensity in the RM formula as shown in Figure 3-1. The RM is applicable to a 6-hour storm duration because the procedure uses Intensity-Duration Design Charts that are based on a 6-hour storm duration. 3.1.1 Rational Method Formula The RM formula estimates the peak rate of runoff at any location in a watershed as a function of the drainage area (A), runoff coefficient (C), and rainfall intensity (I) for a duration equal to the time of concentration (Tc), which is the time required for water to 3-1 Village Walk Drainage Study 2.2 -Design Rainfall Determination 2.2.1 -100-Year, 6-Hour Rainfall lsopluvial Map -0 • ~ .. ;: ..-.a ----1--~---'icc,---~m.~~ L..1-g ~,:::.,;",t=.:::--~~-1-+-+-,.-, ...... ---~-- 2-~:: :~{)-- ....... · County of San Diego Hydrology Manual • Roinfal/ lsop/uvials IIO Year IWafall Eftllt -6 Heon DPW _GI~ -S!fiGIS ,. , ..... ' . 4N =-====•.:".==-::::=.""::",.:.:="-.._ __ .._ ----·----E :,-_:, .. -::.;-•-• :=.:,.-:;....-=-.-:------J.------------~------1---rMO' s f$ SI ., 3 o 3 -? ? ~ ~ Village Walk Drainage Study 2.2.2 -100-Year, 24-Hour Rainfall lsopluvial Map SITE LOCATION -0 I \ 32"'6'- .. ! -----+-----.,,.,.. County of San Diego Hydrology Manual • Rainfa// lsopluvials 100 Year IWnfaD Eftllt • 24 Houn --·] DPW GIS S1iiGIS • .... t .. Village Walk Drainage Study 2.3 -Runoff Coefficient Determination San Diego County Hydrology Manu&I Date: June 2003 Section: Page: Table3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS L&nd Use Runoff Coefficient "C" Soil T NRCS Elements Coun Elements ¼lMPER. A B Undisturbed Natunil TCTT&in (N&tural) Permanent Open Space o• 0.20 0.2S Low Density Rcaidcntial (LOR) Residential, 1.0 DU/A or less JO 0.27 0.32 Low Density Residential (LOR) Residential. 2.0 OU/A or less 20 0.34 0.38 Low Density Residential (LOR) Residential, 2.9 DU/A or less 2S 0.38 0.41 Medium Density Residential (MOR) Residential. 4.3 DU/A or less 30 0.41 0.4S Medium Density Reaidcntial (MOR) Reaidcntial. 7.3 DU/A or less 40 0.48 O.SI Medium Density Reaidcntial (MOR) Reaidcntial. 10.9 DU/A or leas 45 0.52 0.54 Medium Density Reaidcntial (MOR) Residential, 14.S DU/A or less so o.ss 0.S8 High Density Residential (HOR) Residential, 24.0 DU/A or leas 65 0.66 0.67 High Density Residential (HOR) Residcnti&I, 43.0 DU/A or less 80 0.76 0.77 Commcrci&Vlndustrial (N. Com) Neighborhood Commereia.1 80 0.76 0.77 Commerei&Vlndustrial (G. Com) General Commercial 85 0.80 0.80 Commercial/Industrial (0.P. Com) Office Profcssiona.1/Commcrcial 90 0.83 0.84 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 Commercial/Industrial General I. General Industrial 9S 0.87 0.87 C 0.30 0.36 0.42 0.4S 0.48 0.54 0.57 0.60 0.69 0.78 0.78 0.81 0.84 0.84 0.87 3 6 of26 D 0.3S 0.41 0.46 0.49 0.S2 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.8S 0.87 •Toe values associated with 0% impervious may be used for direct calculation of the runoff coefficient a.s described in Section 3. I .2 (representing the pervious runoff coefficient. Cp, for the soil type), or for 8.1'C&8 th&t will remain undisturbed in perpetuity. Justification must be given that the area will rema.in natura.l forever (e.g., the a.rca is located in Clevcla.od National Forest). DU/ A -dwelling units per a.ere NRCS -National Resources Cooserv&tion Service 3-6 Village Walk Drainage Study San Diego County Hydrology Manual Date: June 2003 Section: Page: • The storm frequency of peak discharges is the same as that ofl for the given T 0• 3 4 of26 • The fraction of rainfall that becomes runoff ( or the runoff coefficient, C) is independent of I or precipitation zone number (PZN) condition (PZN Condition is discussed in Section 4.1.2.4). • The peak rate of runoff is the only information produced by using the RM. 3.1.2 Runoff Coefficient Table 3-1 lists the estimated runoff coefficients for urban areas. The concepts related to the runoff coefficient were evaluated in a report entitled Evaluation, Rational Method "C" Values (Hill, 2002) that was reviewed by the Hydrology Manual Committee. The Report is available at San Diego County Department of Public Works, Flood Control Section and on the San Diego County Department of Public Works web page. The runoff coefficients are based on land use and soil type. Soil type can be determined from the soil type map provided in Appendix A. An appropriate runoff coefficient (C) for each type of land use in the subarea should be selected from this table and multiplied by the percentage of the total area (A) included in that class. The sum of the products for all land uses is the weighted runoff coefficient (E[CA]). Good engineering judgment should be used when applying the values presented in Table 3-1, as adjustments to these values may be appropriate based on site-specific characteristics. In any event, the impervious percentage (% Impervious) as given in the table, for any area, shall govern the selected value for C. The runoff coefficient can also be calculated for an area based on soil type and impervious percentage using the following formula: Village Walk Drainage Study San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 5 of26 C = 0.90 x (%Impervious)+ Cp x (1 -% Impervious) Where: Cp = Pervious Coefficient Runoff Value for the soil type (shown in Table 3-I as UndistlU'bed Natural Terrain/Permanent Open Space, 0"/4 Impervious). Soil type can be determined from the soil type map provided in Appendix A. The values in Table 3-1 are typical for most urban areas. However, if the basin contains rural or agricultural land use, parks, golf courses, or other types of nonurban land use that are expected to be permanent, the appropriate value should be selected based upon the soil and cover and approved by the local agency. 3-5 Village Walk Drainage Study 2.4 -Urban Watershed Overland Time of Flow Nomograph San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 12 of26 Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. Table 3-2 provides limits of the length (Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial T; values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGm (LM) & INITIAL TIME OF CONCENTRATION (T1) Element• DU/ .5% 1% 2% 3% 5% 10% Acre LM T; LM T; LM T; LM T; LM T; LM T; Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N.Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G.Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General I. 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 •see Table 3-1 for more detailed description 3-12 Village Walk Drainage Study .... w w u.. ~ w u z <( .... en iS w en a: ::, 0 u a: w .... <( ;: 0 EXAMPLE Given Watercourse Distance (D) = 70 Feet Slope (s) = 1.3% Runoff Coeff1C1ent (C) = 0.41 Overland Flow Time (T):: 9.5 Minutes SOURCE Airport Drainage, Federal Av1at1on Adm1nistratton, 1965 T = 1.8 (1.1-C) Vo 'Vs en w .... ::, z 20 ~ ~ w ::; ;::: ;: 0 ....I u.. 10 0 z :5 a: w > 0 t I G K E Rational Formula -Overland Time of Flow Nomograph I 3-3 I Village Walk Drainage Study 2.5 -County of San Diego Intensity-Duration Curve 100 9.0 8.0 70 N 1'.I~ 'l1-J 11 I I 60 5.0 4.0 30 20 7 0.6 5 4 '-17' I',,., I 1'. r-.... ~ -l I~ r---.. Ji-, ' "-, ... I I I I I I I ! 0 3 2 ....... I "i'J I I 11 r--. 1--l"j,.._N, I N-. 11 .......... J -,.J' N.. ''l' ..... , .. J' I J'i. :J ~ h!. M l ;:;~ ~ ~ ... ~ .J -.~ 'h-l ~ I"" ~ 11 11 I i[ I I I I I I 111_11 I 11 1 II~ I ~ " ~I I I 1"' I J I ~ I ~j 1, ... ~ ~, I \1 1'r ~ I I I I I ~ 11 Ir I I I I I I I I I I I • + 0, 1 I I 7 8 9 10 15 20 30 M.nutes I I 11111111111 I 11 I Iii 11 I I 111111111111 I I I II II ii 11 I 111111111111 I I 11 I EQUATION I = 7.44 P5 o-0,645 IT II I = Intensity (in/hr) P5 = 6-Hour Precipitation (in) ~ I D =I Duration (min) II ~'tll I, II lJ, 1-1 I I I I II '1{ J I l h I l I I 1 1m 1 1 I I~ I ' I, ~ I ' II ... ,1 %1~11~ ~ ij 1 11 ~~~ ·' ~ I I I I II I I ~ '-.I " l '-..L "II JI II I I ~ I I Ii"""' I 1""-l I II.! "-1111 ~,.111 fi-... ~I I ~ II 'i' .,Jj ' N-1 II 11 I I II 'l...J ~ J IT't4 l'4 ~ I I 11 II :' I I ~ I rt 11,W.1 I " -W m 111 t I '-~I I I I ', I ~ I I ' +--+ I 40 50 1 Hours Ourat,on c;, I ~ i 60 12 5.5 ~ 5.0 :::, 45 g 4.o l 3.5 ~ 30 25 2.0 1 5 1.0 Intensity-Duration Design Chart • Template Directions for Appllcatlon: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (nol applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed Application Fonm: (a) Selected frequency .!QQ__ year p (b) Ps = _l&___ in .. P24 = _!1__ ,i2-= 2lL__ %121 24 (c) Adjusted p6(2) = __ in. (d) Ix= __ min. (e) I = __ in./hr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. P6 1.5 2 2.5 3 3.5 4.5 5.5 DurallDn I I I I I I I 5 2 63 395 527 659 790 922 10.S,4 1186 1317 14◄9 1581 7 2 12 3 18 4 24 5 30 6 36 7 42 8 48 95' 10&0 1166 12n 10 168 253 337 421 sos 590 574 7 58 842 927 10 11 15 130 195 259 324 3.89 45" 519 584 6 49 7 13 778 20 I 08 162 2 15 269 323 3n 431 485 539 593 646 25 093140187 233 280327 373 • 20 467 513 560 30 083 124 166 207 2 49290 332 3 73 415 4 56 498 40 069 103 138 172 207 241 276 310 345 3 79 413 50 060 090 1.19 149 179 209 239 269 298 328 358 60 053 080 106 133 159 186 212 239 265 292 318 90 0 41 061 082 102 123 143 163 I 84 204 2 25 245 120 0 34 051 068 085 1 02 1 19 136 1 53 I 70 1 87 204 150 029 044 059 073 088 103 118 I 32 147 I 62 176 180 026 039°052 065 078 091 1 04 I 18 1 31 1 .. I 57 240 022 033 043 054 065 076 0 87 098 108 119 1 30 300 019 028 038 0 47 056 066 075 085 094 1 OJ I 13 360 017 025 033 0 42 050 058 067 0 75 084 092 1.00 F G IJ R 3-1 E Village Walk Drainage Study 2.6 -Model Development Summary (from County of San Diego Hydrology Manual) San Diego County Hydrology Manual Date: June 2003 3.2 DEVELOPING INPUT DATA FOR THE RATIONAL METHOD Section: Page: 3 20 of26 1bis section describes the development of the necessary data to perform RM calculations. Section 3.3 describes the RM calculation process. Input data for calculating peak flows and T 0's with the RM should be developed as follows: 1. On a topographic base map, outline the overall drainage area boundary, showing adjacent drains, existing and proposed drains, and overland flow paths. 2. Verify the accuracy of the drainage map in the field. 3. Divide the drainage area into subareas by locating significant points of interest. These divisions should be based on topography, soil type, and land use. Ensure that an appropriate first subarea is delineated. For natural areas, the first subarea flow path length should be less than or equal to 4,000 feet plus the overland flow length (Table 3-2). For developed areas, the initial subarea flow path length should be consistent with Table 3-2. The topography and slope within the initial subarea should be generally uniform. 4. Working from upstream to downstream, assign a number representing each subarea in the drainage system to each point of interest. Figure 3-8 provides guidelines for node numbers for geographic information system (GIS)-based studies. 5. Measure each subarea in the drainage area to determine its size in acres (A). 6. Determine the length and effective slope of the flow path in each subarea. 7. Identify the soil type for each subarea. 3-20 Village Walk Drainage Study Study Are■ SC •• r ··1 / . ! ·1 t.i _,,,) ·. ,.,,· l-· D Study Area LA 0 Define Study Are■■ (Two-Letter 10) @ Denn■ Mapa (or Subregion■ on Region B■ala) © Define Model Sub■Na■on Map Baal■ .... ( ~ ........... .. ... +-···· @ Define Major Ftowpath■ In Study Area © Define Region■ on Study AN■ Baal■ Node•---------~ Subar■a ID• (LA010112) Map·-------~ 1 Study Ar■~;;; : 1 @ Define Model Node■ {lnters■ctton of Subare■ Bound■rlaa with Flowpath Lina■) GIS/Hydrologlc Modal Data Baa■ Linkage Setup: Node■, SubaN■a, Unka LA 01 01 03 0 Number Node■ Village Walk Drainage Study San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 22 of26 8. Determine the runoff coefficient (C) for each subarea based on Table 3-1. If the subarea contains more than one type of development classification, use a proportionate average for C. In determining C for the subarea, use future land use taken from the applicable community plan, Multiple Species Conservation Plan, National Forest land use plan, etc. 9. Calculate the CA value for the subarea. l 0. Calculate the 2:(CA) value(s) for the subareas upstream of the point(s) of interest. 11 . Determine P6 and P24 for the study using the isopluvial maps provided in Appendix B. If necessary, adjust the value for P6 to be within 45% to 65% of the value for P24. See Section 3 .3 for a description of the RM calculation process. 3.3 PERFORMING RATIONAL METHOD CALCULATIONS This section describes the RM calculation process. Using the input data, calculation of peak flows and Tc's should be performed as follows: l. Determine T; for the first subarea. Use Table 3-2 or Figure 3-3 as discussed in Section 3.1.4. If the watershed is natural, the travel time to the downstream end of the first subarea can be added to Ti to obtain the T .. Refer to paragraph 3.1.4.2 (a). 2. Determine I for the subarea using Figure 3-1. If Ti was less than 5 minutes, use the 5 minute time to determine intensity for calculating the flow. 3. Calculate the peak discharge flow rate for the subarea, where Qp = 2:(CA) I. In case that the downstream flow rate is less than the upstream flow rate, due to the long travel time that is not offset by the additional subarea runoff, use the upstream peak flow for design purposes until downstream flows increase again. 3-22 Village Walk Drainage Study San Diego County Hydrology Manual Date: June 2003 4. Estimate the T1 to the next point of interest 5. Add the T1 to the previous T0 to obtain a new T0• Section: Page: 6. Continue with step 2, above, until the final point of interest is reached. 3 23 of26 Note: The MRM should be used to calculate the peak discharge when there is a junction from independent subareas into the drainage system. 3.4 MODIFIED RATIONAL METHOD (FOR JUNC'TION ANALYSIS) The pwpose of this section is to describe the steps necessary to develop a hydrology report for a small watershed using the MRM. It is necessary to use the MRM if the watershed contains junctions of independent drainage systems. The process is based on the design manuals of the City/County of San Diego. The general process description for using this method, including an example of the application of this method, is described below. The engineer should only use the MRM for drainage areas up to approximately I square mile in size. If the watershed will significantly exceed 1 square mile then the NRCS method described in Section 4 should be used. The engineer may choose to use either the RM or the MRM for calculations for up to an approximately I-square-mile area and then transition the study to the NRCS method for additional downstream areas that exceed approximately I square mile. The transition process is described in Section 4. 3.4.1 Modified Rational Method General Process Description The general process for the MRM differs from the RM only when a junction of independent drainage systems is reached. The peak Q, Tc, and I for each of the independent drainage systems at the point of the junction are calculated by the RM. The independent drainage systems are then combined using the MRM procedure described below. The peak Q, Tc, and I for each of the independent drainage systems at the point of the junction must be calculated prior to using the MRM procedure to combine the independent drainage systems, as these 3-23 Village Walk Drainage Study San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 24 of26 values will be used for the MRM calculations. After the independent drainage systems have been combined, RM calculations are continued to the next point of interest. 3.4.2 Procedure for Combining Independent Drainage Systems at a Junction Calculate the peak Q, Tc, and I for each of the independent drainage systems at the point of the junction. These values will be used for the MRM calculations. At the junction of two or more independent drainage systems, the respective peak flows are combined to obtain the maximum flow out of the junction at Tc• Based on the approximation that total runoff increases directly in proportion to time, a general equation may be written to determine the maximum Q and its corresponding Tc using the peak Q, Tc, and I for each of the independent drainage systems at the point immediately before the junction. The general equation requires that contributing Q's be numbered in order of increasing Tc. Let Q1, T1, and 11 correspond to the tributary area with the shortest Tc. Likewise, let Q2, T2, and Ii correspond to the tributary area with the next longer Tc; Q3, T3, and l3 correspond to the tributary area with the next longer Tc; and so on. When only two independent drainage systems are combined, leave Q3, T3, and l3 out of the equation. Combine the independent drainage systems using the junction equation below: Junction Equation: T1 < T2 < T3 3-24 Village Walk Drainage Study San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 25 of26 Calculate Qn, Qn, and Qn. Select the largest Q and use the Tc associated with that Q for further calculations (see the three Notes for options). If the largest calculated Q's are equal (e.g., Qr1 =On> Qn), use the shorter of the Tc's associated with that Q. This equation may be expanded for a junction of more than three independent drainage systems using the same concept. The concept is that when Q from a selected subarea (e.g., Qi) is combined with Q from another subarea with a shorter Tc (e.g., Q1), the Q from the subarea with the shorter Tc is reduced by the ratio of the l's (l:z/11); and when Q from a selected subarea (e.g., Qi) is combined with Q from another subarea with a longer Tc (e.g., Q3), the Q from the subarea with the longer Tc is reduced by the ratio of the Tc's (T:z/f3). Note #1 : At a junction of two independent drainage systems that have the same Tc, the tributary flows may be added to obtain the Qp. This can be verified by using the junction equation above. Let Q3, T3, and 13 = 0. When T1 and T2 are the same, 11 and Ii are also the same, and T1/f2 and l:z/11 = 1. T1/f2 and I:z/11 are cancelled from the equations. At this point, QT1 = On = Qi + Qi. Note #2: In the upstream part of a watershed, a conservative computation is acceptable. When the times of concentration (Tc's) are relatively close in magnitude (within 10%,), use the shorter Tc for the intensity and the equation Q = 1:(CA)I. Note #3: . An optional method of determining the Tc is to use the equation Tc= [(L (CA)7.44 P6)/Q] 1.ss This equation is from Q = L(CA)I = L(CA)(7.44 P6"c'645 ) and solving for Tc, The advantage in this option is that the Tc is consistent with the peak flow Q, and avoids inappropriate fluctuation in downstream flows in some cases. 3-25 Village Walk Drainage Study CHAPTER 3 -100 YEAR HYDROLOGIC ANALYSIS FOR EXISTING CONDITIONS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference : SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver . 22 .0 Release Date : 07/01/2015 License ID 1643 Analysis prepared by: ************************** DESCRIPTION OF STUDY************************** * VILLAGE WALK -EXISTING CONDITIONS 100-YEAR ANALYSIS * WEIGHTED C=0 .58 (IMP=8574 SQ .FT , PER=8224 SQ .FT , CLASS B SOIL) * ************************************************************************** FILE NAME : VWEX100.DAT TIME /DATE OF STUDY : 09 :48 02/12/2018 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION : 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100 .00 6-HOUR DURATION PRECIPITATION (INCHES) = 2 .600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18 .00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE : USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREET FLOW MODEL* * * * HALF-CROWN TO STREET-CROSSFALL : CURB GUTTER-GEOMETRIES : MANNING WIDTH CROSS FALL IN-I OUT -/PARK-HEIGHT WIDTH LIP NO . (FT) (FT) SIDE I SIDE/ WAY (FT) (FT) (FT) -------------------------- 1 30 .0 20 .0 0 .018/0 .018/0 .020 0 .67 2 .00 0.0313 GLOBAL STREET FLOW-DEPTH CONSTRAINTS : 1 . Relative Flow-Depth= 0 .00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2 . (Depth)*(Velocity) Constraint= 6 .0 (FT*FT/S ) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE .* HIKE FACTOR (FT) (n) ======= 0 .167 0.0150 **************************************************************************** FLOW PROCESS FROM NODE 1 .00 TO NODE 2 .00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .5800 S.C.S . CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 90 .00 UPSTREAM ELEVATION(FEET) = 54 .41 DOWNSTREAM ELEVATION(FEET) = 51 .81 ELEVATION DIFFERENCE(FEET) = 2 .60 SUBAREA OVERLAND TIME OF FLOW(MIN .) = 6.196 WARNING : INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH= 88 .89 (Reference : Table 3 -lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION ' 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5 .965 SUBAREA RUNOFF(CFS) 0 .48 TOTAL AREA(ACRES) = 0 .14 TOTAL RUNOFF(CFS) 0 .48 **************************************************************************** FLOW PROCESS FROM NODE 2 .00 TO NODE 3 .00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA : UPSTREAM(FEET) = 51 .81 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 134 .80 CHANNEL SLOPE CHANNEL BASE (FEET ) 5 .00 "Z" FACTOR= 2 .000 MANNING 'S FACTOR= 0 .035 MAXIMUM DEPTH (FEET ) = 1 .00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5 .227 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .5800 S .C.S . CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS ) 0 .86 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC .) AVERAGE FLOW DEPTH(FEET) 0 .10 TRAVEL TIME(MIN .) Tc(MIN.) = 7 .60 SUBAREA AREA(ACRES) 0 .25 AREA-AVERAGE RUNOFF COEFFICIENT TOTAL AREA (ACRES) = 0 .4 SUBAREA RUNOFF(CFS) 0 .580 PEAK FLOW RATE(CFS ) END OF SUBAREA CHANNEL FLOW HYDRAULICS : DEPTH(FEET ) = 0 .13 FLOW VELOCITY (FEET/SEC .) 1. 60 1. 41 47 .87 0 .0292 0 . 76 1.18 LONGEST FLOWPATH FROM NODE 1 .00 TO NODE 1. 77 3 .00 = 224 .80 FEET . END OF STUDY SUMMARY : TOTAL AREA(ACRES ) PEAK FLOW RATE(CFS) 0 .4 TC (MIN .) = 1.18 END OF RATIONAL METHOD ANALYSIS 7 .60 Village Walk Drainage Study CHAPTER 4 -100 YEAR HYDROLOGIC ANALYSIS FOR DEVELOPED CONDITIONS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003 ,1985 ,1981 HYDROLOGY MANUAL (c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver . 22 .0 Release Date : 07/01/2015 License ID 1643 Analysis prepared by: ************************** DESCRIPTION OF STUDY************************** * VILLAGE WALK -DEVELOPED CONDITIONS 100-YEAR ANALYSIS * WEIGHTED C=0 .72 (IMP=11701 SQ .FT ., PER=4484 SQ .FT ., CLASS B SOIL ************************************************************************** FILE NAME : C:\AES\VWDEV100 .DAT TIME /DATE OF STUDY : 11 :18 05/23/2018 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION : 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2 .600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6 .00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0 .95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSS FALL: CURB GUTTER-GEOMETRIES: WIDTH CROSS FALL IN-I OUT-/PARK-HEIGHT WIDTH LIP NO. (FT) (FT) SIDE I SIDE/ WAY (FT) (FT) (FT) -------------------------- 1 30 .0 20 .0 0 .018/0 .018/0 .020 0 .67 2 .00 0 . 0313 GLOBAL STREET FLOW-DEPTH CONSTRAINTS : 1. Relative Flow-Depth= 0 .00 FEET as (Maximum Allowable Street Flow Depch) -(Top-of-Curb) 2. (Depth)*(Velocity) Constraint= 6 .0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* HIKE (FT) 0.167 MANNING FACTOR (n) 0 .0150 **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER -SPECIFIED RUNOFF COEFFICIENT= .7200 S .C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 60 .00 UPSTREAM ELEVATION(FEET) = 51 .20 DOWNSTREAM ELEVATION(FEET) = 50 .60 ELEVATION DIFFERENCE(FEET) = 0 .60 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.~98 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.599 SUBAREA RUNOFF(CFS) 0 .52 TOTAL AREA(ACRES) = 0 .11 TOTAL RUNOFF(CFS) 0 .52 **************************************************************************** FLOW PROCESS FROM NODE 2 .00 TO NODE 3 .00 IS CODE= 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 50 .60 DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 183 .00 CHANNEL SLOPE CHANNEL BASE(FEET) 3 .00 "Z" FACTOR= 1.000 MANNING 'S FACTOR= 0 .035 MAXIMUM DEPTH(FEET) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5 .297 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7200 S .C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 1.00 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC .) AVERAGE FLOW DEPTH (FEET) 0 . 22 TRAVEL TIME (MIN .) Tc(MIN.) = 7.45 1. 02 1. 4:C 2 .15 48 .77 0 .0100 SUBAREA AREA(ACRES) 0 .26 SUBAREA RUNOFF(CFS) 0 .720 0.99 AREA-AVERAGE RUNOFF COEFFICIENT TOTAL AREA(ACRES) = 0 .4 PEAK FLOW RATE(CFS) 1. 41 END OF SUBAREA CHANNEL FLOW HYDRAULICS : DEPTH(FEET) = 0 .27 FLOW VELOCITY(FEET/SEC .) LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1. 60 3 .00 = 243 .00 FEET . +--------------------------------------------------------------------------+ ROUTED FLOW FROM HMS MODEL I C=0 .69, A=0 .4 , Tc=7 .45+5=12 .45 min, Q=0 .8 cfs I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE= >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS : TC(MIN) = 12 .45 RAIN INTENSITY(INCH/HOUR) = 3 .80 TOTAL AREA(ACRES) = 0 .40 TOTAL RUNOFF(CFS) = 0 .86 7 **************************************************************************** FLOW PROCESS FROM NODE 3 .00 TO NODE 4 .00 IS CODE= 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SU3AREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA : UPSTREAM(FEET) = 45 .00 DOWNSTREAM(FEET) 41 .55 FLOW LENGTH(FEET) = 202 .00 MANNING 'S N = 0 .013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4 .0 INCHES PIPE-FLOW VELOCITY(FEET/SEC .) 4 .53 ESTIMATED PIPE DIAMETER(INCH) = 9 .00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 0 .86 PIPE TRAVEL TIME(MIN .) = 0.74 LONGEST FLOWPATH FROM NODE Tc (MIN .) = 1.00 TO NODE 13 .19 4.00 445 .00 FEET . **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4 .00 IS CODE= 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3 .664 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .7200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT= 0 .5705 SUBAREA AREA(ACRES) 0 .01 SUBAREA RU~OFF(CFS) TOTAL AREA(ACRES) = 0 .4 TOTAL RUNOFF(CFS) = TC(MIN .) = 13.19 END OF STUDY SUMMARY : TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 0 . 4 TC (MIN . ) = 0.87 END OF RATIONAL METHOD ANALYSIS 13 .19 0 .04 0 .87 Village Walk Drainage Study CHAPTER 5 -MODIFIED-PULS DETENTION ROUTING 5.1 -Rational Method Hydrograph TIONAL METHOD HYDROGRAPH PROGRAM >PYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 4/12/2018 HYDROGRAPH FILE NAME Text1 v!E OF CONCENTRATION 10 MIN. ·!OUR RAINFALL 2.6 INCHES SIN AREA 0.4 ACRES RUNOFF COEFFICIENT 0.72 AK DISCHARGE 1.41 CFS E (MIN)= 0 TIME (MIN)= 10 TIME (MIN) = 20 E (MIN)= 30 '1E (MIN)= 40 E (MIN)= 50 TIME (MIN)= 60 E (MIN)= 70 il!E (MIN)= 80 AE (MIN)= 90 TIME (MIN)= 100 TIME (MIN)= 110 E (MIN)= 120 E (MIN}= 130 E (MIN}= 140 TIME (MIN)= 150 E (M IN)= 160 '1E (MIN}= 170 E (MIN)= 180 TIME (MIN)= 190 TIME (M IN )= 200 E (M IN )= 210 v'I E (M IN )= 220 E (M IN )= 230 TIME (MIN)= 240 E (MIN)= 250 il!E (M IN )= 260 v'IE (MIN)= 270 TIME (M IN )= 280 TIME (M IN }= 290 E (MIN)= 300 v'I E (MIN)= 310 . E (MIN)= 320 TIME (MIN)= 330 E (MIN )= 340 E (M IN )= 350 JI E (M IN )= 360 Tf E (MIN)= 370 DISCHARGE (CFS) = 0 DISCHARGE (CFS)= 0 DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.2 DISCHARGE (CFS)= 0.2 DISCHARGE (CFS) = 0.2 DISCHARGE (CFS)= 1.41 DISCHARGE (CFS)= 0.2 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0.1 DISCHARGE (CFS)= 0 DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0 Village Walk Drainage Study 5.2 -Stage-Storage & Stage-Discharge Relationships Outlet structure for Discharge of Detention Basin 1 Low orifice: 1 " Number: 0 Cg-low: 0.62 Middle orifice: 1 " number of orif: 0 Cg-middle: 0.62 invert elev: 0. 75 ft h H/D-low H/D-mid Qlow-orif (ft) --(els) 0.000 0.000 0.000 0.000 0.100 1.200 0.000 0.000 0.200 2.400 0.000 0.000 0.300 3.600 0.000 0.000 0.400 4.800 0.000 0.000 0.500 6.000 0.000 0.000 0.600 7.200 0.000 0.000 0.700 8.400 0.000 0.000 0.800 9.600 0.600 0.000 0.900 10.800 1.800 0.000 1.000 12.000 3.000 0.000 1.100 13.200 4.200 0.000 1.200 14.400 5.400 0.000 1.300 15.600 6.600 0.000 1.400 16.800 7.800 0.000 1.500 18.000 9.000 0.000 Stage-Storage Calculations Area (ft2) Volume Volume Elev (ft) (ft3) (Ac-ft} 0 440 0 0 0.5 440 220 0.005051 1 440 440 0.010101 1.5 440 660 0.015152 Lower slot Invert: B h Upper slot 0.00 ft 1.00 ft 0.167 ft Invert: 0.00 ft B: 0.00 ft h O 167 ft QI ow-weir Qtot-low Qmid-orif (els) (cfs) (els) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Emergency Weir Invert: B: 1.000 ft 8 ft Qmid-weir Qtot-med Qslot-low (els) (cfs) (cfs) 0.000 0.000 0.000 0.000 0.000 0.098 0.000 0.000 0.277 0.000 0.000 0.380 0.000 0.000 0.459 0.000 0.000 0.527 0.000 0.000 0.586 0.000 0.000 0.641 0.000 0.000 0.691 0.000 0.000 0.737 0.000 0.000 0.781 0.000 0.000 0.823 0.000 0.000 0.862 0.000 0.000 0.900 0.000 0.000 0.936 0.000 0.000 0.971 Qslot-upp Qemer Qtot (cfs) (cfs) (cfs) 0.000 0.000 0.000 0.000 0.000 0.098 0.000 0.000 0.277 0.000 0.000 0.380 0.000 0.000 0.459 0.000 0.000 0.527 0.000 0.000 0.586 0.000 0.000 0.641 0.000 0.000 0.691 0.000 0.000 0.737 0.000 0.000 0.781 0.000 0.784 1.607 0.000 2.218 3.080 0.000 4.075 4.975 0.000 6.274 7.210 0.000 8.768 9.739 Village Walk Drainage Study 5.3 -HEC-HMS Modified-Puls Routing Results Project: VW Simulation Run: Q100 Reservoir: Reservoir-1 Start of Run: 01 Jan2000, 00:00 Basin Model: Q100 End of Run : 01Jan2000, 07:00 Meteorologic Model: Met 1 Compute Time: 12Apr2018, 14:06:41 Control Specifications: Control 1 Volume Units:IN Computed Results Peak Inflow: 1.410 (CFS) Peak Discharge : 0.855 (CFS) Inflow Volume : n/a Discharge Volumen/a Date/Time of Peak Inflow: 01Jan2000, 04:10 Date/Time of Peak Discharge 0 1Jan2000, 04: 15 Peak Storage: 0.0 (AC-FT) Peak Elevation : 1.009 (FT) Reservoir "Reservoir-1" Results for Run "0100" 0.012 -,--------------------------~1.20 0.010 0.008 [ 0.006 ! 0.004 0.002 - 1.6 1.4 1.2 1.0 0.8 f 0.6 0.4 0.2 0.0 00:00 01:00 02:00 I • · · • · • Run:Q100 Element:Reservoir-1 Result:Storage -Run:Q100 Element:Reservoir-1 Result:Outflow 03:00 \._ .._____ -- 04:00 05:00 06:00 Run:O100 Element:Reservoir-1 Result:Pool Elevation ---Run:Q 100 Element:Reservoir-1 Result:Combined Inflow 1.00 0.80 o.60 I 0.40 0.20 07:00 01Jan2000 Project: VW Simulation Run: Q100 Reservoir: Reservoir-1 Start of Run: 01 Jan2000, 00:00 End of Run: 01Jan2000, 07:00 Compute Time: 12Apr2018, 14:06:41 Date Time Inflow (CFS) 01Jan2000 00 :00 0.000 01Jan2000 00 :01 0.004 01Jan2000 00 :02 0.008 01Jan2000 00:03 0.012 01Jan2000 00:04 0.016 01Jan2000 00:05 0.020 01Jan2000 00:06 0.024 01Jan2000 00:07 0.028 01Jan2000 00:08 0.032 01Jan2000 00:09 0.036 01Jan2000 00:10 0.040 01Jan2000 00:11 0.040 01Jan2000 00:12 0.040 01Jan2000 00:13 0.040 01Jan2000 00:14 0.040 01Jan2000 00:15 0.040 01Jan2000 00:16 0.040 01Jan2000 00:17 0.040 01Jan2000 00:18 0.040 01Jan2000 00:19 0.040 01Jan2000 00:20 0.040 01Jan2000 00:21 0.041 01Jan2000 00:22 0.042 01Jan2000 00:23 0.043 01Jan2000 00:24 0.044 01Jan2000 00:25 0.045 Basin Model: Q100 Meteorologic Model: Met 1 Control Specifications:Control 1 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.001 0.001 0.0 0.002 0.002 0.0 0.004 0.004 0.0 0.006 0.005 0.0 0.008 0.007 0.0 0.010 0.010 0.0 0.013 0.012 0.0 0.015 0.015 0.0 0.018 0.018 0.0 0.021 0.021 0.0 0.024 0.023 0.0 0.026 0.025 0.0 0.028 0.027 0.0 0.029 0.029 0.0 0.031 0.030 0.0 0.032 0.031 0.0 0.033 0.032 0.0 0.034 0.033 0.0 0.035 0.034 0.0 0.036 0.035 0.0 0.037 0.036 0.0 0.037 0.037 0.0 0.038 0.038 0.0 0.039 0.038 Page 1 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 00:26 0.046 0.0 0.040 0.039 01Jan2000 00:27 0.047 0.0 0.041 0.040 01Jan2000 00:28 0.048 0.0 0.042 0.041 01Jan2000 00:29 0.049 0.0 0.043 0.042 01Jan2000 00:30 0.050 0.0 0.044 0.043 01Jan2000 00:31 0.050 0.0 0.045 0.044 01Jan2000 00:32 0.050 0.0 0.046 0.045 01Jan2000 00:33 0.050 0.0 0.046 0.045 01Jan2000 00:34 0.050 0.0 0.047 0.046 01Jan2000 00:35 0.050 0.0 0.047 0.046 01Jan2000 00:36 0.050 0.0 0.048 0.047 01Jan2000 00:37 0.050 0.0 0.048 0.047 01Jan2000 00:38 0.050 0.0 0.049 0.048 01Jan2000 00:39 0.050 0.0 0.049 0.048 01Jan2000 00:40 0.050 0.0 0.049 0.048 01Jan2000 00:41 0.050 0.0 0.049 0.048 01Jan2000 00:42 0.050 0.0 0.050 0.049 01Jan2000 00:43 0.050 0.0 0.050 0.049 01Jan2000 00:44 0.050 0.0 0.050 0.049 01Jan2000 00 :45 0.050 0.0 0.050 0.049 01Jan2000 00:46 0.050 0.0 0.050 0.049 01Jan2000 00 :47 0.050 0.0 0.050 0.049 01Jan2000 00:48 0.050 0.0 0.050 0.049 01Jan2000 00:49 0.050 0.0 0.050 0.049 01Jan2000 00 :50 0.050 0.0 0.051 0.050 01Jan2000 00 :51 0.050 0.0 0.051 0.050 01Jan2000 00 :52 0.050 0.0 0.051 0.050 01Jan2000 00 :53 0.050 0.0 0.051 0.050 01Jan2000 00 :54 0.050 0.0 0.051 0.050 01Jan2000 00 :55 0.050 0.0 0.051 0.050 01Jan2000 00 :56 0.050 0.0 0.051 0.050 Page 2 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 00:57 0.050 0.0 0.051 0.050 01Jan2000 00:58 0.050 0.0 0.051 0.050 01Jan2000 00:59 0.050 0.0 0.051 0.050 01Jan2000 01:00 0.050 0.0 0.051 0.050 01Jan2000 01 :01 0.050 0.0 0.051 0.050 01Jan2000 01 :02 0.050 0.0 0.051 0.050 01Jan2000 01 :03 0.050 0.0 0.051 0.050 01Jan2000 01 :04 0.050 0.0 0.051 0.050 01Jan2000 01 :05 0.050 0.0 0.051 0.050 01Jan2000 01 :06 0.050 0.0 0.051 0.050 01Jan2000 01 :07 0.050 0.0 0.051 0.050 01Jan2000 01 :08 0.050 0.0 0.051 0.050 01Jan2000 01:09 0.050 0.0 0.051 0.050 01Jan2000 01 :1 0 0.050 0.0 0.051 0.050 01Jan2000 01 :11 0.050 0.0 0.051 0.050 01Jan2000 01 :12 0.050 0.0 0.051 0.050 01Jan2000 01 :13 0.050 0.0 0.051 0.050 01Jan2000 01 :14 0.050 0.0 0.051 0.050 01Jan2000 01 :15 0.050 0.0 0.051 0.050 01Jan2000 01 :1 6 0.050 0.0 0.051 0.050 01Jan2000 01 :17 0.050 0.0 0.051 0.050 01Jan2000 01 :18 0.050 0.0 0.051 0.050 01Jan2000 01 :1 9 0.050 0.0 0.051 0.050 01Jan2000 01 :20 0.050 0.0 0.051 0.050 01Jan2000 01 :21 0.051 0.0 0.051 0.050 01Jan2000 01:22 0.052 0.0 0.051 0.050 01Jan2000 01 :23 0.053 0.0 0.052 0.051 01Jan2000 01 :24 0.054 0.0 0.052 0.051 01Jan2000 01 :25 0.055 0.0 0.052 0.051 01Jan2000 01 :26 0.056 0.0 0.053 0.052 01Jan2000 01 :27 0.057 0.0 0.054 0.052 Page 3 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 01 :28 0.058 0.0 0.054 0.053 01Jan2000 01 :29 0.059 0.0 0.055 0.054 01Jan2000 01 :30 0.060 0.0 0.056 0.054 01Jan2000 01 :31 0.060 0.0 0.056 0.055 01Jan2000 01 :32 0.060 0.0 0.057 0.056 01Jan2000 01 :33 0.060 0.0 0.057 0.056 01Jan2000 01 :34 0.060 0.0 0.058 0.057 01Jan2000 01:35 0.060 0.0 0.058 0.057 01Jan2000 01:36 0.060 0.0 0.059 0.058 01Jan2000 01 :37 0.060 0.0 0.059 0.058 01Jan2000 01 :38 0.060 0.0 0.059 0.058 01Jan2000 01 :39 0.060 0.0 0.060 0.058 01Jan2000 01 :40 0.060 0.0 0.060 0.059 01Jan2000 01 :41 0.060 0.0 0.060 0.059 01Jan2000 01:42 0.060 0.0 0.060 0.059 01Jan2000 01 :43 0.060 0.0 0.060 0.059 01Jan2000 01 :44 0.060 0.0 0.060 0.059 01Jan2000 01 :45 0.060 0.0 0.060 0.059 01Jan2000 01:46 0.060 0.0 0.061 0.059 01Jan2000 01:47 0.060 0.0 0.061 0.059 01Jan2000 01 :48 0.060 0.0 0.061 0.060 01Jan2000 01 :49 0.060 0.0 0.061 0.060 01Jan2000 01:50 0.060 0.0 0.061 0.060 01Jan2000 01 :51 0.060 0.0 0.061 0.060 01Jan2000 01 :52 0.060 0.0 0.061 0.060 01Jan2000 01 :53 0.060 0.0 0.061 0.060 01Jan2000 01 :54 0.060 0.0 0.061 0.060 01Jan2000 01 :55 0.060 0.0 0.061 0.060 01Jan2000 01 :56 0.060 0.0 0.061 0.060 01Jan2000 01 :57 0.060 0.0 0.061 0.060 01Jan2000 01 :58 0.060 0.0 0.061 0.060 Page 4 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 01 :59 0.060 0.0 0.061 0.060 01Jan2000 02:00 0.060 0.0 0.061 0.060 01Jan2000 02:01 0.061 0.0 0.061 0.060 01Jan2000 02:02 0.062 0.0 0.061 0.060 01Jan2000 02:03 0.063 0.0 0.062 0.060 01Jan2000 02:04 0.064 0.0 0.062 0.061 01Jan2000 02:05 0.065 0.0 0.063 0.061 01Jan2000 02:06 0.066 0.0 0.063 0.062 01Jan2000 02:07 0.067 0.0 0.064 0.062 01Jan2000 02 :08 0.068 0.0 0.064 0.063 01Jan2000 02:09 0.069 0.0 0.065 0.064 01Jan2000 02:10 0.070 0.0 0.066 0.064 01Jan2000 02:11 0.070 0.0 0.066 0.065 01Jan2000 02:12 0.070 0.0 0.067 0.066 01Jan2000 02:13 0.070 0.0 0.068 0.066 01Jan2000 02:14 0.070 0.0 0.068 0.067 01Jan2000 02:15 0.070 0.0 0.069 0.067 01Jan2000 02:16 0.070 0.0 0.069 0.068 01Jan2000 02:17 0.070 0.0 0.069 0.068 01Jan2000 02:18 0.070 0.0 0.069 0.068 01Jan2000 02:19 0.070 0.0 0.070 0.068 01Jan2000 02:20 0.070 0.0 0.070 0.069 01Jan2000 02:21 0.071 0.0 0.070 0.069 01Jan2000 02 :22 0.072 0.0 0.071 0.069 01Jan2000 02 :23 0.073 0.0 0.071 0.070 01Jan2000 02 :24 0.074 0.0 0.071 0.070 01Jan2000 02 :25 0.075 0.0 0.072 0.071 01Jan2000 02:26 0.076 0.0 0.073 0.071 01Jan2000 02 :27 0.077 0.0 0.073 0.072 01Jan2000 02 :28 0.078 0.0 0.074 0.073 01Jan2000 02 :29 0.079 0.0 0.075 0.073 Page 5 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 02:30 0.080 0.0 0.076 0.074 01Jan2000 02:31 0.080 0.0 0.076 0.075 01Jan2000 02:32 0.080 0.0 0.077 0.075 01Jan2000 02:33 0.080 0.0 0.078 0.076 01Jan2000 02:34 0.080 0.0 0.078 0.077 01Jan2000 02:35 0.080 0.0 0.079 0.077 01Jan2000 02:36 0.080 0.0 0.079 0.077 01Jan2000 02:37 0.080 0.0 0.079 0.078 01Jan2000 02:38 0.080 0.0 0.080 0.078 01Jan2000 02:39 0.080 0.0 0.080 0.078 01Jan2000 02:40 0.080 0.0 0.080 0.078 01Jan2000 02:41 0.081 0.0 0.080 0.079 01Jan2000 02:42 0.082 0.0 0.081 0.079 01Jan2000 02:43 0.083 0.0 0.081 0.079 01Jan2000 02:44 0.084 0.0 0.082 0.080 01Jan2000 02:45 0.085 0.0 0.082 0.081 01Jan2000 02:46 0.086 0.0 0.083 0.081 01Jan2000 02:47 0.087 0.0 0.084 0.082 01Jan2000 02:48 0.088 0.0 0.084 0.083 01Jan2000 02:49 0.089 0.0 0.085 0.083 01Jan2000 02:50 0.090 0.0 0.086 0.084 01Jan2000 02:51 0.090 0.0 0.087 0.085 01Jan2000 02:52 0.090 0.0 0.087 0.085 01Jan2000 02:53 0.090 0.0 0.088 0.086 01Jan2000 02:54 0.090 0.0 0.088 0.087 01Jan2000 02:55 0.090 0.0 0.089 0.087 01Jan2000 02:56 0.090 0.0 0.089 0.087 01Jan2000 02:57 0.090 0.0 0.089 0.088 01Jan2000 02:58 0.090 0.0 0.090 0.088 01Jan2000 02:59 0.090 0.0 0.090 0.088 01Jan2000 03:00 0.090 0.0 0.090 0.088 Page 6 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 03:01 0.092 0.0 0.091 0.089 01Jan2000 03:02 0.094 0.0 0.091 0.089 01Jan2000 03:03 0.096 0.0 0.092 0.090 01Jan2000 03:04 0.098 0.0 0.093 0.091 01Jan2000 03:05 0.100 0.0 0.094 0.092 01Jan2000 03:06 0.102 0.0 0.095 0.093 01Jan2000 03:07 0.104 0.0 0.096 0.094 01Jan2000 03:08 0.106 0.0 0.098 0.096 01Jan2000 03:09 0.108 0.0 0.099 0.097 01Jan2000 03:10 0.110 0.0 0.101 0.099 01Jan2000 03 :11 0.111 0.0 0.102 0.101 01Jan2000 03 :12 0.112 0.0 0.103 0.104 01Jan2000 03 :13 0.113 0.0 0.104 0.106 01Jan2000 03 :14 0.114 0.0 0.105 0.107 01Jan2000 03 :15 0.115 0.0 0.106 0.109 01Jan2000 03:16 0.116 0.0 0.107 0.110 01Jan2000 03:17 0.117 0.0 0.108 0.112 01Jan2000 03:18 0.118 0.0 0.108 0.113 01Jan2000 03:19 0.119 0.0 0.109 0.114 01Jan2000 03:20 0.120 0.0 0.110 0.115 01Jan2000 03:21 0.122 0.0 0.110 0.117 01Jan2000 03:22 0.124 0.0 0.111 0.118 01Jan2000 03:23 0.126 0.0 0.112 0.119 01Jan2000 03:24 0.128 0.0 0.113 0.121 01Jan2000 03:25 0.130 0.0 0.114 0.123 01Jan2000 03:26 0.132 0.0 0.115 0.125 01Jan2000 03:27 0.134 0.0 0.116 0.126 01Jan2000 03:28 0.136 0.0 0.117 0.128 01Jan2000 03:29 0.138 0.0 0.118 0.130 01Jan2000 03:30 0.140 0.0 0.119 0.132 01Jan2000 03:31 0.142 0.0 0.120 0.134 Page 7 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 03:32 0.144 0.0 0.121 0.136 01Jan2000 03:33 0.146 0.0 0.122 0.138 01Jan2000 03:34 0.148 0.0 0.123 0.140 01Jan2000 03:35 0.150 0.0 0.125 0.142 01Jan2000 03:36 0.152 0.0 0.126 0.144 01Jan2000 03:37 0.154 0.0 0.127 0.146 01Jan2000 03:38 0.156 0.0 0.128 0.148 01Jan2000 03:39 0.158 0.0 0.129 0.150 01Jan2000 03:40 0.160 0.0 0.130 0.152 01Jan2000 03:41 0.168 0.0 0.132 0.154 01Jan2000 03:42 0.176 0.0 0.134 0.158 01Jan2000 03:43 0.184 0.0 0.136 0.163 01Jan2000 03:44 0.192 0.0 0.139 0.168 01Jan2000 03:45 0.200 0.0 0.143 0.174 01Jan2000 03:46 0.208 0.0 0.146 0.181 01Jan2000 03:47 0.216 0.0 0.150 0.188 01Jan2000 03:48 0.224 0.0 0.154 0.195 01Jan2000 03:49 0.232 0.0 0.158 0.202 01Jan2000 03:50 0.240 0.0 0.162 0.209 01Jan2000 03:51 0.250 0.0 0.167 0.217 01Jan2000 03:52 0.260 0.0 0.171 0.225 01Jan2000 03:53 0.270 0.0 0.176 0.234 01Jan2000 03:54 0.280 0.0 0.181 0.243 01Jan2000 03:55 0.290 0.0 0.186 0.252 01Jan2000 03:56 0.300 0.0 0.191 0.261 01Jan2000 03:57 0.310 0.0 0.197 0.271 01Jan2000 03:58 0.320 0.0 0.202 0.279 01Jan2000 03:59 0.330 0.0 0.208 0.285 01Jan2000 04:00 0.340 0.0 0.214 0.292 01Jan2000 04:01 0.447 0.0 0.227 0.305 01Jan2000 04:02 0.554 0.0 0.252 0.331 Page 8 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 04:03 0.661 0.0 0.287 0.367 01Jan2000 04:04 0.768 0.0 0.332 0.405 01Jan2000 04:05 0.875 0.0 0.386 0.448 01Jan2000 04:06 0.982 0.0 0.449 0.492 01Jan2000 04:07 1.089 0.0 0.519 0.539 01Jan2000 04:08 1.196 0.0 0.599 0.585 01Jan2000 04:09 1.303 0.0 0.686 0.633 01Jan2000 04:10 1.410 0.0 0.781 0.682 01Jan2000 04:11 1.288 0.0 0.869 0.723 01Jan2000 04:12 1.166 0.0 0.936 0.753 01Jan2000 04:13 1.044 0.0 0.983 0.773 01Jan2000 04:14 0.922 0.0 1.007 0.839 01Jan2000 04:15 0.800 0.0 1.009 0.855 01Jan2000 04:16 0.678 0.0 0.998 0.780 01Jan2000 04:17 0.556 0.0 0.977 0.771 01Jan2000 04:18 0.434 0.0 0.940 0.755 01Jan2000 04:19 0.312 0.0 0.890 0.732 01Jan2000 04:20 0.190 0.0 0.826 0.703 01Jan2000 04:21 0.184 0.0 0.758 0.670 01Jan2000 04:22 0.178 0.0 0.693 0.637 01Jan2000 04:23 0.172 0.0 0.633 0.604 01Jan2000 04 :24 0.166 0.0 0.575 0.572 01Jan2000 04:25 0.160 0.0 0.522 0.540 01Jan2000 04:26 0.154 0.0 0.472 0.508 01Jan2000 04:27 0.148 0.0 0.425 0.476 01Jan2000 04:28 0.142 0.0 0.382 0.445 01Jan2000 04 :29 0.136 0.0 0.343 0.414 01Jan2000 04:30 0.130 0.0 0.306 0.385 01Jan2000 04 :31 0.127 0.0 0.274 0.353 01Jan2000 04:32 0.124 0.0 0.245 0.323 01Jan2000 04 :33 0.121 0.0 0.219 0.297 Page 9 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 04:34 0.118 0.0 0.197 0.271 01Jan2000 04:35 0.115 0.0 0.178 0.237 01Jan2000 04:36 0.112 0.0 0.163 0.210 01Jan2000 04:37 0.109 0.0 0.151 0.189 01Jan2000 04:38 0.106 0.0 0.141 0.171 01Jan2000 04:39 0.103 0.0 0.133 0.157 01Jan2000 04:40 0.100 0.0 0.126 0.145 01Jan2000 04:41 0.098 0.0 0.120 0.135 01Jan2000 04:42 0.096 0.0 0.116 0.126 01Jan2000 04:43 0.094 0.0 0.1 12 0.120 01Jan2000 04:44 0.092 0.0 0.109 0.114 01Jan2000 04:45 0.090 0.0 0.106 0.109 01Jan2000 04:46 0.088 0.0 0.104 0.105 01Jan2000 04:47 0.086 0.0 0.102 0.101 01Jan2000 04:48 0.084 0.0 0.100 0.098 01Jan2000 04:49 0.082 0.0 0.098 0.096 01Jan2000 04:50 0.080 0.0 0.096 0.094 01Jan2000 04:51 0.079 0.0 0.094 0.092 01Jan2000 04:52 0.078 0.0 0.092 0.090 01Jan2000 04:53 0.077 0.0 0.091 0.089 01Jan2000 04:54 0.076 0.0 0.089 0.087 01Jan2000 04:55 0.075 0.0 0.088 0.086 01Jan2000 04:56 0.074 0.0 0.086 0.084 01Jan2000 04:57 0.073 0.0 0.085 0.083 01Jan2000 04:58 0.072 0.0 0.083 0.082 01Jan2000 04:59 0.071 0.0 0.082 0.080 01Jan2000 05:00 0.070 0.0 0.081 0.079 01Jan2000 05:01 0.070 0.0 0.080 0.078 01Jan2000 05:02 0.070 0.0 0.079 0.077 01Jan2000 05:03 0.070 0.0 0.078 0.076 01Jan2000 05:04 0.070 0.0 0.077 0.075 Page 10 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 05:05 0.070 0.0 0.076 0.075 01Jan2000 05:06 0.070 0.0 0.076 0.074 01Jan2000 05:07 0.070 0.0 0.075 0.074 01Jan2000 05:08 0.070 0.0 0.075 0.073 01Jan2000 05:09 0.070 0.0 0.074 0.073 01Jan2000 05:10 0.070 0.0 0.074 0.072 01Jan2000 05:11 0.069 0.0 0.074 0.072 01Jan2000 05:12 0.068 0.0 0.073 0.072 01Jan2000 05:13 0.067 0.0 0.073 0.071 01Jan2000 05:14 0.066 0.0 0.072 0.071 01Jan2000 05:15 0.065 0.0 0.071 0.070 01Jan2000 05:16 0.064 0.0 0.071 0.069 01Jan2000 05:17 0.063 0.0 0.070 0.068 01Jan2000 05:18 0.062 0.0 0.069 0.068 01Jan2000 05:19 0.061 0.0 0.068 0.067 01Jan2000 05:20 0.060 0.0 0.067 0.066 01Jan2000 05 :21 0.059 0.0 0.067 0.065 01Jan2000 05 :22 0.058 0.0 0.066 0.064 01Jan2000 05 :23 0.057 0.0 0.065 0.064 01Jan2000 05 :24 0.056 0.0 0.064 0.063 01Jan2000 05:25 0.055 0.0 0.063 0.062 01Jan2000 05:26 0.054 0.0 0.062 0.061 01Jan2000 05:27 0.053 0.0 0.061 0.060 01Jan2000 05 :28 0.052 0.0 0.060 0.059 01Jan2000 05 :29 0.051 0.0 0.059 0.058 01Jan2000 05 :30 0.050 0.0 0.058 0.057 01Jan2000 05 :31 0.050 0.0 0.057 0.056 01Jan2000 05:32 0.050 0.0 0.057 0.055 01Jan2000 05:33 0.050 0.0 0.056 0.055 01Jan2000 05:34 0.050 0.0 0.055 0.054 01Jan2000 05:35 0.050 0.0 0.055 0.054 Page 11 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 05:36 0.050 0.0 0.054 0.053 01Jan2000 05:37 0.050 0.0 0.054 0.053 01Jan2000 05:38 0.050 0.0 0.054 0.052 01Jan2000 05:39 0.050 0.0 0.053 0.052 01Jan2000 05:40 0.050 0.0 0.053 0.052 01Jan2000 05:41 0.050 0.0 0.053 0.052 01Jan2000 05:42 0.050 0.0 0.052 0.051 01Jan2000 05:43 0.050 0.0 0.052 0.051 01Jan2000 05:44 0.050 0.0 0.052 0.051 01Jan2000 05:45 0.050 0.0 0.052 0.051 01Jan2000 05:46 0.050 0.0 0.052 0.051 01Jan2000 05:47 0.050 0.0 0.052 0.051 01Jan2000 05:48 0.050 0.0 0.052 0.051 01Jan2000 05:49 0.050 0.0 0.052 0.051 01Jan2000 05:50 0.050 0.0 0.052 0.050 01Jan2000 05:51 0.049 0.0 0.051 0.050 01Jan2000 05:52 0.048 0.0 0.051 0.050 01Jan2000 05:53 0.047 0.0 0.051 0.050 01Jan2000 05:54 0.046 0.0 0.050 0.049 01Jan2000 05:55 0.045 0.0 0.050 0.049 01Jan2000 05:56 0.044 0.0 0.049 0.048 01Jan2000 05:57 0.043 0.0 0.049 0.048 01Jan2000 05:58 0.042 0.0 0.048 0.047 01Jan2000 05:59 0.041 0.0 0.047 0.046 01Jan2000 06:00 0.040 0.0 0.047 0.046 01Jan2000 06:01 0.036 0.0 0.046 0.045 01Jan2000 06:02 0.032 0.0 0.044 0.043 01Jan2000 06:03 0.028 0.0 0.043 0.042 01Jan2000 06:04 0.024 0.0 0.041 0.040 01Jan2000 06:05 0.020 0.0 0.038 0.037 01Jan2000 06:06 0.016 0.0 0.036 0.035 Page 12 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 06:07 0.012 0.0 0.033 0.032 01Jan2000 06:08 0.008 0.0 0.030 0.030 01Jan2000 06:09 0.004 0.0 0.027 0.027 01Jan2000 06:10 0.000 0.0 0.024 0.024 01Jan2000 06:11 0.000 0.0 0.021 0.021 01Jan2000 06:12 0.000 0.0 0.018 0.018 01Jan2000 06:13 0.000 0.0 0.016 0.016 01Jan2000 06:14 0.000 0.0 0.014 0.014 01Jan2000 06:15 0.000 0.0 0.012 0.012 01Jan2000 06:16 0.000 0.0 0.011 0.011 01Jan2000 06:17 0.000 0.0 0.009 0.009 01Jan2000 06 :18 0.000 0.0 0.008 0.008 01Jan2000 06 :19 0.000 0.0 0.007 0.007 01Jan2000 06 :20 0.000 0.0 0.006 0.006 01Jan2000 06 :21 0.000 0.0 0.006 0.005 01Jan2000 06 :22 0.000 0.0 0.005 0.005 01Jan2000 06 :23 0.000 0.0 0.004 0.004 01Jan2000 06 :24 0.000 0.0 0.004 0.004 01Jan2000 06:25 0.000 0.0 0.003 0.003 01Jan2000 06:26 0.000 0.0 0.003 0.003 01Jan2000 06:27 0.000 0.0 0.002 0.002 01Jan2000 06:28 0.000 0.0 0.002 0.002 01Jan2000 06:29 0.000 0.0 0.002 0.002 01Jan2000 06:30 0.000 0.0 0.002 0.002 01Jan2000 06:31 0.000 0.0 0.001 0.001 01Jan2000 06:32 0.000 0.0 0.001 0.001 01Jan2000 06:33 0.000 0.0 0.001 0.001 01Jan2000 06:34 0.000 0.0 0.001 0.001 01Jan2000 06:35 0.000 0.0 0.001 0.001 01Jan2000 06:36 0.000 0.0 0.001 0.001 01Jan2000 06:37 0.000 0.0 0.001 0.001 Page 13 Date Time Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 01Jan2000 06:38 0.000 0.0 0.001 0.001 01Jan2000 06:39 0.000 0.0 0.000 0.000 01Jan2000 06:40 0.000 0.0 0.000 0.000 01Jan2000 06:41 0.000 0.0 0.000 0.000 01Jan2000 06:42 0.000 0.0 0.000 0.000 01Jan2000 06:43 0.000 0.0 0.000 0.000 01Jan2000 06:44 0.000 0.0 0.000 0.000 01Jan2000 06:45 0.000 0.0 0.000 0.000 01Jan2000 06:46 0.000 0.0 0.000 0.000 01Jan2000 06:47 0.000 0.0 0.000 0.000 01Jan2000 06:48 0.000 0.0 0.000 0.000 01Jan2000 06:49 0.000 0.0 0.000 0.000 01Jan2000 06:50 0.000 0.0 0.000 0.000 01Jan2000 06:51 0.000 0.0 0.000 0.000 01Jan2000 06:52 0.000 0.0 0.000 0.000 01Jan2000 06:53 0.000 0.0 0.000 0.000 01Jan2000 06:54 0.000 0.0 0.000 0.000 01Jan2000 06:55 0.000 0.0 0.000 0.000 01Jan2000 06:56 0.000 0.0 0.000 0.000 01Jan2000 06:57 0.000 0.0 0.000 0.000 01Jan2000 06:58 0.000 0.0 0.000 0.000 01Jan2000 06:59 0.000 0.0 0.000 0.000 01Jan2000 07:00 0.000 0.0 0.000 0.000 Page 14 Village Walk Drainage Study CHAPTER 6 -WSPG HYDRAULIC ANALYSIS ************************************* Water Surface Profile Gradient (WSPG) XP WSPG Engine Version 1 .3 06/09/2010 XP Software www .xpsoftware.com ************************************* INPUT FILE ************************************* C:\XPS\wspg2010\Samples\DE.wsx Computed 04/12/18 14 :32 :54 TITLE INFORMATION ************************************* WARNING SUMMARY ************************************* RESULTS ************************************* Main Line Composite Profile : ELEMENT TYPE STATION INVERT NAME ELEV GROUND ELEV ---------------------------------------------- H# "Node2" Outlet 0.00 41.66 45.00 HYDRAULIC JUMP at 44 .05 of length 0 .01 "i .p ." 41 .10 42 .61 45 .95 "i .p ." 43 . 97 42 .68 46. 02 Ii i •P• II 44.05 42 .68 46 . 02 "i •P • II 44 .05 42 .68 4 6 . 02 "i .p ." 172 .01 45 .64 48 .98 "i.p. II 191 .05 46 .08 49 . 42 "i .p ." 197 .45 46 . 23 49 .57 "i .p ." 200 .65 46 .30 49 .64 "i .p ." 202 .54 46.34 49 .68 "i •P • II 203 .74 46 .37 49 . 71 "i •P• II 204.46 46.39 49. 73 "i .p ." 204.86 46.40 49. 74 "Linkl" Reach 205.00 46 .40 48 .20 "Nodel 11 Headwrk 205.00 46 .40 48 .20 w.s . DEPTH Q VELOC . VELOC . ELEV HEAD ------------------------------- 43 .050 1 .390 0 .90 2 .58 0 .10 43 .277 0.667 0 .90 2 .58 0 .10 43 .282 0.605 0 .90 2 .70 0 .11 43 .281 0.603 0 .90 2 . 71 0 .11 43 .008 0.329 0 .90 5.24 0 .43 45 .966 0.329 0 .90 5.24 0 .43 46 .417 0.340 0 .90 5 .03 0 .39 46 .578 0.353 0 .90 4.80 0 .36 46 .666 0.366 0 .90 4 .58 0 .33 46 .724 0.381 0 .90 4 .36 0 .30 46.767 0 . 396 0 .90 4 .16 0 .27 46 . 800 0 .413 0 .90 3 . 97 0 .24 46.827 0.430 0 .90 3.78 0 .22 46 .848 0 .448 0 .90 3.61 0 .20 46.849 0 .449 0 .90 3.60 0.20 *) in the W.S .ELEV column indicates flooding , it is set whenever W.S .ELEV > GROUND ELEV i .p . = intermediate point processing results for reaches ENERGY SUPER CRITICAL FROUDE SLOPE NORMAL CROSS GRADE LN ELEV DEPTH NUMBER DEPTH SECTION ---------------------------------- 43 .15 0 .000 0 .449 0 .000 0.00000 0.000 Pipe 43 .38 0.000 0 .449 0 .098 0 .02312 0.329 Pipe 43.40 0.000 0.449 0.513 0 .02312 0.329 Pipe 43. 40 0.000 0.449 0 .519 0 .02312 0.329 Pipe 4 3. 43 0.000 0 .449 1 .818 0 .02312 0 .329 Pipe 46.39 0.000 0 .449 1. 818 0 .02312 0 .329 Pipe 46.81 0.000 0 .449 1 .713 0 .02312 0 .329 Pipe 46.94 0.000 0.449 1 .594 0 .02312 0 .329 Pipe 46.99 0.000 0.449 1 .481 0 .02312 0 .329 Pipe 47 .02 0.000 0 .449 1.375 0 .02312 0 .329 Pipe 47 .04 0.000 0 .449 1. 275 0.02312 0 .329 Pipe 47 .04 0.000 0 . 449 1.181 0 .02312 0 .329 Pipe 47 .05 0.000 0 .449 1 .092 0 .02312 0 .329 Pipe 47 .05 0.000 0 .449 1 .007 0 .02312 0 .329 Pipe 47 .05 0.000 0 .449 0 .000 0.00000 0 .000 Pipe Village Walk Drainage Study CHAPTER 7 -HYDROLOGY MAPS LEGEND HYDROLOGY BOUNDAR IES INI TIAL SUB -AREA FLOWPATH ~-·· .. a, 5 0 "' "" :,. F I I ~I N 55"5 7' 22"E Q • EXIST. BUILDING • I ·,, I I I I I I 1 I I I I S55"54'29"W ~ 79.97' I I I I ' I I J I I I I 2 / ' ' 80.00' I I I I I ' ' \ I I j EXIST. wool FENCE FD 3/4" IP LS 1959 3c l~) a--~P <v,..,.__ 9 Q_ <:; <X) a, cri 0 N 3 O TELE --*pp __._~R/W;___ 0 100 = 1.18 CFS A= 0.4 Ac Tc= 7.6 Min r- SCALE: 1 "=1 O' (/] z 0 (/] > w Cl'.'. 0 Q_ Q_ <( w t- <( 0 z 0 t- Q_ Cl'.'. u (/] w 0 V rn 0 5 f-+---+--+--+---+----a 3- 0 z • -C 0 1--------....._ ............................... ;;: > u " ~ .. 0 w wN _J t-I <( <(~ u 00 (/] z w ~ CL 0 _J w > w 0 w 0::: CL I f- CD I >< w w w (9 F' <( t-z t--w <( ~o::: (/] SHEET z ;;; <( Cl'.'. 0 ~ _J ~ w (9 <( _J _J > t-u w -:, 0 Cl'.'. Q_ 1 OF 1 SHEETS X 0 u.. 0 (.) C [/) _..., C 0 ::i [/) C 0 u 0 w :,:: u w I u <X) 0 0 N en <( z 0:: 0 LL ...J <( u -0 <( co (/) ...J 0:: <( u C 0 u V, :, 0 "' "' 0 '.> " 0 u 5- II I ~G ~ I 1 \1 ! II ii I ,':l').~<oi" "-~ l--,l~-"'""''1:1.,.~-'--+-!+-11 __ 40_• ___ 11 ___ -t I "-'' ,s I : y ~ I 11 11 :: : ms, rn~ cc J ~"" r: :~ ~ 11 I (PROTECT IN PL E) T 111 ~1.,.6 // EXIST. OVERHEAD ~' \] I 4 0 100 = 0.87 CFS A= 0.4 Ac Tc= 13.2 Min EXIST. SINGLE FAMILY RESIDENCE • / ·v, ·y PROPOSED RETAINING WALL W/BLOCK WALL (MAX HEIGHT-6) PROPOSED 5' HIGH BLOCK WALL 1111 1 POMWOEQRl,rlL[IQNE I ,,;.'o~: I 111 -Ji EXIST.WOOD F~0; I EXIST DRIVEWA1 I .CA¥ A,, (PROTECT .P.: ·.J TRASH ENCL. 48.10 FF 8" DIA. (SDR35) OVERFLOW 49.00 FF ','o'f>-- 11 1 ~-111 7<3 /II -[D 1£t "\"f ii-PGEsR/61~/sTEDB 3:cOc:g_ r~~if~+1i:A:~E~l)PE (FROM2'f>'."'-oC) 3:c,r~ f 3:ct;' re, ~i ;;0 -~".;:,. II \~~').9~ic'-~~IN3~~~~~6 EP ~I ·" ~\ ,,..,; .v 1n--f--! -ft == A~~, ~~/4" IP ~'.\-' L, gli=; ~ --50.00TGwc-§i'lo-~ 5000Tf~·'l,1 ;-~lilo!~'o;~c,C\ 50.00TG {:'> g~ \1,\..50.00TG 50 OOTG #8 ~ ..,,.,., c:. o"E1/TEN Tl ON BASIN ~\)t" """' ,...," 11 '½ 'vs LS 2789 ' ;:;;g~ 50.IOTG i ,v ~ ..,. ' , ' J,,,.,~c,~48.80',NV '1 I -----...:-il,-"'--..'1_,..':J.½[);c,:/4-------8.?0INV 4:_·.601NV I ~ -,.... -')<:,·,~/ 408U.T5L3EINTV r-;~!!!,I Ill . Y'. II \.' ST 3+4999 ,s , I Ill I 1: F'~ l '-' ,G 49.IOINV I;! 4900l~Wi· ,,.,,,.,_ 48.91JtNV ;:: ./ ''/ ' / /-,- ~~oi~i~i48" (SDR35) STORM 146 9~~~-!~1!~FL PtVEMENT\, ~ 81 1 II~;?>' _... I • "'i6612% 4 ♦ TRASH "'.')J!AN~-r I :0 Nc: ---------1 il: -............. IJ ------I -<:,\l -............. ~~ r--so' ~ -----... ., v-I \ ~ L 1 ~;::, ----~ DRAIN CONNECTION To EXIST. W :::: zo ,'CYc_vvv · .. ·.'-"' MIN ,50' . • . .,, ·. •57. ~ '=-' ,9 ~A~"'H-:;3'!~,-"'-~s!4=~~~~SD~~;::a~=~~?12'~)-~/~~-··"~'=~~=t~<2~,•~,-,~··~-·r •\l·'/, -•-~-,,-., ::' -:a SD ., ---., ' ~ o. -, ,..; ,,\':,):' G / ' :-:; ll!,._'U ' . , ... 1,c '-'' '),:,.. I .\ • -.c;o /,Al-\,..,<>L"l',_..-....., "'/, "'..,. :~:~<~---~ ;,,;;!"''.,;..,-SD -<~'.' ~ ');tj,'4';,.r olm/t,f(O 24.82'y~ ,"")·~ 18"DIA.RCPPERSDRDSTDPLAND-9.____ :=i I '"~I 111:e=f.%'. "HS' 10' .· t--·.c-, !,i ~•~)oi~"-{:' 'N <':,\l~'1,r -~N I 1.")r .. ~ / e:--"-'C' .,_,...,,, C/ _.. ' ! __,...--1 3 (41.66)1NV-IN (41.55)1NY-OUT "-_ ic" ~ lss VY a .. · •," . • //-.~ ~ ~ I ,;?, /'\'\I J: II __,;;,':> ~ -v+l~ ~ 1 ..L \ ~" ~ , ST 3+28.44 OAK AVENUE~ 2;"'--1 -1 § ""I \...~ " 5 c--~A/ -1:://:c , ' i % ~s:-"' -~ :! --~()~c..,~,+_~_.cJ~-Bu-1LD1N_G_L1NE':>~':>6-s.L ~.;,I -1 :~ 1k ' , '----✓ II ! • ! I ~I >'" 0 t,J'.?,v . ' / LLLLLLL! ;:c • •.·. • 6f ij,f-f-LLLL' ' ., ';:8s:-o:·,,.~ SD n 0'' --SDF -4 -SDF .-' z >- ST 3+31.44 ..,,,-;:: <J S'j I, 11'\.. ! ~ / '-?/ t:t:t:hltl:~ 4 • ~/; Fi LLLLL~!;' t: -'.f'(G-\_PROPOSED 4"¢ PVC \_ PROPOSED 4"¢ PVC =="== -RETENTION BAS'i'I,/ ell~~ PROPOSED SEWER MANHOLE .....,__ I w>= -~t .. &' ~0 · , L'o.-G.11 .. :··· CQljC, __ ·· •. ·:()'.~ie~lnlEcc L DRAIN PIPE !@ S~D.50% I I SUMP TANK W/GRATE ~ ==''= ~ t,ORCE MAIN FROM SUMP I SEE DETAIL S~~t.T 2) ~~is 48.20RIM 1i" . "!';"-' J · . ' . · .. · . . . rLL~tLLL L DRAIN AN~ PUMP I r UMP DECORATIVE ROCK @SUMP PUMP _/ "> "_ .-, 1 O . ·. . . EEG:...t.1.c ·, ·.· W,,,Tf R. MEJER. • ~L~L 'l':'U e fil [ •""'\) I ~-OUTLET FOR EROSION PROTECTION n ~r!,_co IC!, ..-~,~x~~o (34.20)INV ouT ) I -, w -c1r=· ; cc=L .,, . . . ). 'h.L ,'IP"" ,_ L ,s ',V Jw ,, (34.30)1NV IN :,; ST, 3+ · ~ . IO% II Z%... ~~!--l-1-L ' t,( ABANDCTNED • · iLLt::' '" "" PROPOSED 12" WIDE I I I I I ~ 11 1 ~ ~ ' 0 DlfY, 41to : / ·. ",~¥ ~~~H!l"v>:' __.:_ ·. (~ttslaotf-J::ldi:CITE t:---GRATE DRAIN :::i I PROPOSED 5 .. sEwER 2·0 Pvc ul PROPOSED\;" SEWER ~"so -~ 1 ~ i ~ ,<oJ" ,J ~ ~<o' !):\ , IK\.. ~ .· • ,~ . ~ .. o_ j~~~~htc1l: t: 45.30TG gi I r@S~l.9% ORAi~ PIPE---! r@S=l.0% rS <O ,.,i<,/ .. 33 11 1 w > ,s ui ,11· ·1.L'v r?,: ·. · · LLLLLL I • • ···• LLLLLLLLLL L I / I I I I ' I '.'.: 19.oo· ."'¾s ~ ~D.. ~o I 8 l,s,,icrv1 [// \ ·. 11_~"·'.l, !:o.~t:t:~ ~%'..\•.1". '. '°~"><. •. ~k:t:t:f--J~k-f--t: t: •""'\) t:'l"l l :,a> ~--y"1· z I V/ _ •u '.i::.filLLLL I " ,S •.• ', 7· · 'v,;;--..: •61=i LLL L -,s I ·· I ~ ~o;,: , ~ ". \\~.J/ ~ 111111 ;:EXIST.SEWERL~tRAL~ I ~-/~i~f'· ~~ ·?t_"~;·,7_5:·. ! ; -.. .,,, ' %t' 2"¢JVC I 2"0PVC ¥t ~: "'~,~ 1111 ~ ~ ~ (TO ~ ABAND1 Nf~ . st -~-I I ~ s ➔ · ' 1 ~<3 ,f1 M~ ~ $ ~ -BB .-1x--BB -49 _20 FF ff:; __ ~ I DRAlf PIPE + SD / ORAi~ PIPE so----~ ~ i:~\.. V ~i~~~iv z~ 11 1 ;::,'---(#JiJl o._o._ I«' "l,z~ ·.·.~ ~ ;,.? ~'-~~ ~o' 48.53PAD " '..:..:.".'.._ '~ -'\.'. (5 UW Y ~ro 2 i:p 0 ~ :, ct: \J CL ~_; 0 9 "" "" '.k II .§'i," ~ t'l : §: co <C I;~ ~ ';' T 11 l\.t:; ,.,. / _ .. · \ {2,<c,I ,s + ' '"~, 2"• ~C +N ~-:: "-. I "'-. IJf~"° ~ '-:: r-e---z ! 0 WO 0, I 1/V ~9. 5' 10.55""'-< CIDI 2" PVC DRAIN 7\~ 2"~ PVC DRAIN ~ {?}; NI "' - I ~ ~ ; g ~ I~; t ~; j'u"•.__£ "-~ 'lf ;'>62 ~ < ]H ,____Plf U NI T 4 >---~~ I T 5 UN I T 6 ~1~ "'~:c, 7 U N IT 8 / ~ ~ "~~ tl i 46.50 GFF 46.50 GFF 46.50 GFF 46.50 GFF E 11 1 ~ L......_,L2J4~9!.!._7jl.'_Jl-1~ I -,,, ,'. ,; :::: !:~~ ~:; . C 45.83 PAO 4 i 3 PAO 45.83 PAO , 45.83 jf 45.83 PAO 45.83 PAD 45.83 PAD i 0--LE;;~H ~':,i ~ 11 1 ~ ~ Iii-$;~ II 48.10TG "l/ '\l/ '\l/ ..... I 'I _, "V _, O' ;_ f::: 25.03' ~ 4 j B II I 20• I I ~I~• p' ~ . / 46.601NV I • <~~~ Jl ,n II < g v, ◄t < :X (f) < ii <,, :Xly, LA1N,DING<,, "i,j,,M,;= "',,.,--'I"' 4 ;.;_· r-~ V;: II I LANDING l -!,._ LANDING ~~= -!,._ LANDING 'l$j~~ -La. LANDING '~~= LANDING -~ ... ' -v• II I IJ, ''' r,« a ~ c--.........._ -~/ 49_20 / 46.SOFS t\,. 46.50FS fr,.. 46.SOFS . /'i'-46.SOFS 46.SOFS "' 46.50FS fl\. '¾ 5 T c:5 ~ ~~~t:JN~ o~A~g~E~~B~11gH~~R~E T Mv~~~ ;:~N ~~ I , sea II 111111~~ \t J~l~-7~· Yl:lit~~liol~-=':l=:~::"~~~~~~s:=t:=;4;~~i ~o'F+=-~"';:;;;:d-c:~1~J 1-'-1r"'--"'-...--=""'~ ·1 ~ ~=~ .. ~~~_,_J 1-~~---t----\I 11\. I . -h: ("UK »J ~~c DJN __ ,"IP". --¼;1,.,;$'_"'_"',.h~ 4~~~1iv / EXISTING UTILITIES PER DOC. NO. 2002-0!S 44, w, 11 ... · ·•~ · · :,l 7:0 STEPS;['' ~~,.~a .· · '~ 4ll.S7INV _-,· '" --· -t . 5· ¢ (-Si'lR.l!l1 ·YVG-BHAlN P1Pf-:--, k\l/c ·□·.5□%. ;, · · c:, / , v ,v ·--, c ~ ., "" RECORDED 05/24/02 AND PROPOSED 10'? · I ~ 11 .. · ,s " ., , ""'1/ _, -.,"!?' " I -s=0.50% --:p· "'°" ~ Ill \ CC. ., o, ✓ -J_✓,c. .I ;cc, ' ~ "/., 7' / IRREVOCABLE OFFER OF DEDICATION FOR PUBLIC [// II ,s,., ... =--,,.,_ .. :. -..... ~ . .. -.. . .. ' . ii . . .. ~ .. ' ~ -? ACCESS EASEMENT 11 1 ST 2+7002 PER ow"-~,30-b Ill ~ I I .cj.:J IN '¾ ~ ;-;>",k"v~ I -Ji, I I ·52·00 TW \ I I I '--52007 ' l "' l ,c / '\ I :Xlcn < ~1~ -' !,._ LANDING !Cl 1' 46.SOFS ~ 11 I "' -ti I . v·· S:N ,c:; . . Ll,~ ., ...,_,.,....,i:...., 0,--, 51.00TG I :r: 3c Cl 51.00TG t-u.. 0 I - 11 1 ti6N9!)i~~(~t~o) ~N'o siornALK I I ' :-:<o \)I I PPI ~-°'~~-· II FD 314° IP '<> _, c5' ~ • 0,----. s1.00TG ' _ "'~c,\!i3 /"' s1.00TG / s100TG \ ":i~c,~1.ooTG / s1.00Tc / 11 1 ,(, EXIST POWER PO E I ':,() I ~-'\"~ l LS 7959 ½"' "'ca' ~ \_§b e, 49.60iNV ~ ~"'~ ~ ~ 6 8 49481NV 49.351NV ':,'o'\:f" ~ t 49.251NV 49.141NV JI (?~ ,~ rt!JI 48.931NV 0 <,, -;;: 5,.G 49.041NV =i oo <o() 2!; ()' '\ FD TAG ON ?~ ., lffil -, • I ·"' \51.00TG ~ V} c/,ui :;:J 3c 0 (? 6' II ~~~-~"(PROTECT 1N PLA .EJ fa .'~ I II 1-.·. s __ .. ·. II 49 _7o1Nv z _r, Ex1sT. REFANING WALL ..... '" -:,'v T II 8 :;;! (PROTECT IN PLACE) ~ 0 I I EXIST. CURB & IGUTTER L JO ! ! I I ii ~ I II~ -(lJ 3c !D !Cl EXISTING OCEANMIST CONDOMINIUMS (PROTECT IN p ACE) 26· 111 • I ? 110• ··. 1 / I 111 ' , " ' .. ···•· 2 !I ,. "---....__ ___ ✓ (PROTECT w: CE) ' ' " :S, ,<:,\Te ~-1o1.i\ .· " ,s 'l-;i . EXIST. OVERKEAD I _P_O_W_ER_LI-NE--+------t-~"51Tt~-t---H--·. . . 0 sea II ... · __ .,,\\-1 ,,, 11 ,,,,wM I ·. EXIST. SIDEWAL F.F. ELEVATION 5 7.30 Btot = BOX DIMENSION LEGEND 18" HYDROLOGY BOUNDARIES SLOT INVERT , r I f----=---j J_ I I 2" I N I TIAL SUB-AREA ---- FLOWPA TH --·--- 6" FROM BASIN INVERT ~-~T DE TENTION BASIN OUTLE T DEA TIL -SECTION (TYP) /NOT TO SCALE) t- 0 0 ,...; "' C, N !,._ 0 !D - AeMP = AAMENDED = Aeor SE£ RISER /DETAIL 0 3-- MULCH BASIN DETAIL /NiJT TO SCALE/ 0 "'~ &l ,:;, ....,eo ..J ,,., -TOP OF WALL Vl !D !Cl '-/"-0 I z ..J i3 ..J w <( (lJ 3c H = 24" '"T ~ I H = 6" /8" AMMENOED SOIL SCALE: 1"=10 (/) z 0 (/) > w a:: 0 Q_ Q_ <( w f- <( 0 z 0 f- Q_ a:: u (/) w 0 V "' 0 > f--+-+---+-+--1--l '?, c:i z • -C 0 --~....___.__,___,_"---l ~ Cl -C: Q) E C: 0, 2 C: ·-> >-s::: Q) Lu i:: • :::J o,V) C: ·c -u Q) C: ~ Cl --_J 0, C: Lu > ·-u --ro .. .. 5 w ~N~ z <t: I u 0 Ll) (/) > w 0 I- (./) 0 0... I I- en -I >< w w (9 <( z w <( ~ a:: f-0 f-w w :r: (/) SHEET :s'. <( a:: 0 ::::s::: __J ~ w (9 <( __J __J > f-u w -, 0 O'.'. Q_ 1 LO 0 0 0 ! CX) .,.... 0 N f-u OF 1 SH EETS X D lL 0 N 0) I N t') N ::::5 (f) C 0 u 0 w ::,::: u w :r: u CX) 0 0 N 0) <( z D::'. 0 LL _J <( u 0 <( Cll (/) _J D::'. <( u C 0 (.) lf> ::, a '" "' 0 / " 0 u <( / I