Loading...
HomeMy WebLinkAboutCT 83-04; WINDSONG SHORES PHASE 1; SUPPLEMENT TO REVISED DRAINAGE STUDY; 1989-12-06r -(1 d p~\J~ PG Cc:Y~ -:;::::::::::: : '" .= .. -. O·I~6 ~ J CVrf"e,.~, ~. e:fp~,HZfliv~ ~ _h_'l1ID ,,--ft t; """" SUPPLEMENT TO REVISED DRAINAGE STUDY FOR WIND SONG SHORES (C.T. 83-4) DECEMBER 6, 1989 REVISED JANUARY 26, 1990 JOB NO. 300-2 This supplement adds hydraulic calculations (Page 26B) for the proposed private storm drain pipes to be lqcated along the northern edge of Lot 1 and connecting into the existing drainage system. The offsite Drainage Areas Map (Page 33) has been revised to reflect the proposed pipes. ~~~~~~~~~~==~*/~~_~/~O R.C.E. 1 594 Exp. 3/31/93 No. 14594 .Si5re .M f/yJ)RIUfL[ C~ VV'-1I;1 b),' OFF5/Te Brl-5 1# r (~S"AI¥-T-.53). . . : ['--f 2tfgA.fo f1: 2tJ8; ~ CP ~ f>-j-Z~g/ 5/tt/!5) 113'-j2",12cP s-Ir>tQ = 5tc73c,4, . d ' {}, 6/ V,,-, c, tt, 5 +;~ . , " /f/CJ14~ ~ Pi .:2 tJ8 I-zr P+ ;2,tJ3: 7,7 /-rZ "~ cF '?~~5i Cf c 3(}3 c Z drr-:;O.3~' ~~ /tJ~ ).> ., .~ • f' '. ~ Ng ~ /' ::::"" , -c.i CI) \ \ £XIST~ y.;3~Rep! , WINDSO:N .. G -'SHOR·ES. -. -.... _. '.-----_..... . .-..... "--....... --o FFS.lTE 'DRA'INAGE AR'E'AS· SHEET IOF I ~1,Crosby Mead ,Ben,ton & Asso.ci.a~es Planners,' • ' Engineers '. Surveyors j~966 La Place Court. Su~e ,7:.0. ,C8rlsba~ California 92008 (619)438':"1210. .LEGEND: j ,BASIN i BASIN AREA. COlL£Ct(ON POINT BA SIN /30UNOARY @. (li7Acl @ - ! I , I I August 1989 Sheet ~ of ~ . eev,se.o-oe:c .. l ,\.9 8.9 l~ H ii :: J n H n :: g .. /! IN 300-2-: . ..:~". SUPPLS MS t..)TA.~ JA.)J 2S "I 1..9.9D • ---~ .. ' ------~--------.--------~ - - ."."." t;t;t; ......... ::: ."."." 000 ·.,,00 _<'4 IAlL€T CALC.ULATIOfJS: I L = TOTAL C? -: L = I , S I lJ 56 "STAtJoAeP S' "T'{P6 \'A I, J JJ LET Por, @ ~/OO ': '3.03 CF5) <5-= L4070 J A~ o/~~ Cj '(= O.:t>1 ~IOO ':: 0.7 L ( A+Y) ~/z 3,o~= 0,1 L ( .~"3+,-=si) ":3/, GrzA"T€D II\lL€T @ 'WE/b. HY[)(2Dl.D6 Co( FOe EJJi12.AJ0C£ . @ r . "'- /ICf'J .., I OF /lop c= . a,s.l Te= s.~ f.A1~ ~ I':: 7.44 A= 0.02 AS! ') SLOPE = 3,SO?o ~ = c, ,. Z C FS O .. ''(-CfS 'vi / J-I::: 0.047'j '~!ie ('J.il1l.l-lUM ':::' )1::: C).a ' ~ CHA e-T ,-\!ll!. lo~ ., C AP/Clrt ::: t -8 / I i i e OF 1(P ~4" ecp ~ •. 0'70 QtOO '= I,-".(,c CFS V= . T c.::: I 0, 0(0 M I p.) • \ -10)-00111 000 ·111 en en ::Z:::Z:::Z: mmm mmm -t-t-t III en en ~ *******************************************************************~**~***** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD~LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-88 Advanced Engineering Software (aes) Vera 3.0A Release Date:12/27/88 Serial # 3106 Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES 5966 LA PLACE COURT SUITE 170 CARLSBAD CA. 92008 (619) 438 -1210 ************************** DESCRIPTION OF STUDY *****************~*****~** * WINDSONG SHORES JUNCTION ANALYSIS * * FILE: TESTJS.DAT J.N. 300 -5B 01-15-90 * * CARLSBAD, CALIFORNIA * ************************************************************************** FILE NAME: TESTJS.DAT TIME/DATE OF STUDY: 16:52 1/15/1990 ====~======================================================================= NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = PIPE DIAMETER(INCH) = 24.00~ PIPE FLOW(CFS) = ASSUMED DOWNSTREAM CONTROL HGL = ~3.600 FU~~ 41.60- 22.50 - =======~==================================================================== NODE 100.00 : HGL= < 43.600>;EGL= < 44.396>;FLOWLINE= < 41.600> ~ , ===============================================================~============ PRESSURE FLOW PROCESS FROM NODE 100.00 TO NODE 2.00 IS CODE = 1 UPSTREAM NODE 2.00 ELEVATION = 42.60- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = PIPE LENGTH = SF=(Q/K) **2 = HF=L*SF = ( NODE 2.00 22.50 CFS.-PIPE DIAMETER = 24.00 INCHES- 100.00 FEET-MANNINGS N = .01300...- « 22.50)/( 226.224»**2 = .0098921 100.00)*( .0098921) = .989 : HGL= < 44.589>;EGL= < 45.386>;FLOWLINE=< 42.600> -------------------------------------------------------------------~-------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .01 NODE 2.00 : HGL= < 44.620>;EGL= < 45.396>;FLOWLINE= < 42.600> --- ============================================================================ PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 5 UPSTREAM NODE 3.00 ELEVATION = 42.90 ---------------------------------------------------------------------------~ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY 1 16.6 24.00 3.142 5.284 '"3 OF Ito DELTA 90.000 HV .434 2 3 4 5 22.5 24.00 2.4 12.00 3.5 18.00 .0===Q5 EQUALS 3.142 7.162 .785 3.056 1.767 1.981 BASIN INPUT=== 36.000 22.000 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4»/«A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00538 DOWNSTREAM FRICTION SLOPE = .00989 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00764 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = .031 ENTRANCE LOSSES = .000 .796 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 1.471+ .43 -.796+( .031)+( .000) = 1.138 NODE 3.00 : HGL= < 46.101>~EGL= < 46.535>;FLOWLINE= < ' 42.900> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 1 UPSTREAM NODE 4.00 ELEVATION = 43.90 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 100.00 FEET MANNINGS N = .01300 SF=(Q/K)**2 = « 16.60)/( 226.224»**2 = .0053844 HF=L*SF = ( 100.00)*( .0053844) = .538 NODE 4.00 : HGL= < 46.640>;EGL= < 47.073>;FLOWLINE= < 43.900> ~ =========~===========================================================~====== END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM .. .. ***** NON-PRESSURE, OPEN CHANNEL CALCULATIONS **** CALCULATE DEPTH OF FLOW GIVEN~ Channel Slope = -.014758 (Ft./Ft.) - Invert elevation at pipe INLET = 50.080 (Ft.) Invert elevation at pipe OUTLET == 47.970 (Ft.) Length of pipe == 142.970 (Ft.) Given Flow Rate = 3.03 Cubic FeetlSecond *11 PIPE OPEN CHANNEL FLOW **1 l"1atlningS'> "rl" = .0.1.~~; No. of pipes = 1 Velocity (Ft./Sec.) = Given Pipe Diameter(In.) -12.00 Individual pipe flow -3.030 (CFS) " II II " II II == == l ::~:(S() " .1. n I=; ~'5Ei Total pipe area == 113.10 (In2) (GPI"! ) (!"H3D) Total perimeter of pipe == 37.70 (In.) • Nor-mal fl!-;:tlr-J d(;?pth in pipe == 7.40 (In.)-.- Flow top width inside pipe == 11.67 (In.) Area of flow = 73.1767 (In2) Wetted Perimeter == 21.67 (In.) Critical Depth in Pipe = 8.94 (In.) Total flow of pipe(s) -3.030 (CFS) " "" 1I == 1360. (GPl'1) " " " " == (MGD) 5 OF f(P • ***** NON-PRESSURE, OPEN CHANNEL CALCULATIONS **** CALCULATE DEPTH OF FLOW GIVEN= Channel !310pe :::: Invel'""t elevclticm Invey-t elevation Length of pipe :::: -.032547 (Ft./Ft.) - at pipe INLET :::: at pipe OUTL.ET :::: 47.610 (Ft.) 4!'5 • 100 ( Ft. ) Given Flow Rate :::: 3.03 Cubic FeetlSecond *** PIPE OPEN CHANNEL FLOW *** -f low :::: II II II :::: " " II :::: (NBD) Total pipe area:::: 113.10 (In2) Total perimeter OT plpe :::: 37.70 (In.) Normal flow depth in pipe :::: Flow top width inside pipe :::: Area of flow:::: 54.1116 (In2) Wetted Perimeter:::: 18.44 (In.) ~5 .. 80 (I n • ) _ 11.99 (I n • ) Critical Depth in Pipe:::: 8.94 (In. ) (CFS) (GPI"1 ) (l"IGD) Total flow of pipe(s):::: 3.030 " II II 11 :::: .1 ~36() • " " II II :::: 1.958 l..D OF l(P 8 n ~)t: . .\ I -~ I • • * ~~ »= * * * * * * * * * * * * :{( ~{ * * * * * * »: * * * * * * * * ;X * * ~ * * * * :::< ~~ ~,{ * * »: * »: * * * % * * ~* ~~ ~1t. * * * * »: »: * ~t: '1' -~~ * * * i~-*,* * * ****** PIPE Fl.. .. O\l-J CAL.CUI....l=4TIONS ****** ZOI TO 20 ,Il \!--V.f .. }f \}/ \1:' \y 0.], '1' ')1 \} .. oJ.. ~ ..., 'l.I! ,Jt ~}.I .. l.> 'Il *. W 'J .. '1:" "'_' -,.iI-"ott '1" " ..... If .. It '.If 'Lf,-• .}" ,l.o .. 1.' u' 'Y w 'Y \1:--.J:' \1:' "1:' -J.r .. y \y "-11 ,1.-~ 'q -.1, 'ok' W *',1.0. ',), \\. -! .. \1:-... 11' .." \},. .. • . ... ,J.-\Jt -.J' -.1./ W 'W ,'" .., ... IfI "flo ." ."f\o ,'(\ '1' ~, .". .,,, it-.7'> q. 'To '1" If· q\ 't" 'To .,.. .,\ .". ,or. -, .. ij\ .1\ "j\ • .,.. -1" If'> ':f~ 1,\ :r-'r-.,\ :1\ .Zf\ .. ". ·T· ·To .'J'I I,. .,.. +1' .~ -1' ~. "i' .,\ ..,.. "1" .,... -1' Jf'o ", .f. .,.. ,"" .". ,1" -7'0 .". .. ;\ .'flo ."f" "-T. r,o. If'. '(\ •. ~, .. ". ,'flo ." .,\ 'T. ***** NON-PRESSURE, OPEN CHANNEL CALCULATIONS **** CALCULATE DEPTH OF FLOW GIVEN~ Channel Slope ::: -.010000 (Ft./Ft.)::: -1.(000 % Invert elevation at pipe INLET = 45.710 (Ft.) Invfii!rt. el(?vat:i.cn Length of pipe = G:i.ven Flow Rate = at pipe OUTLET::: 44.450 (Ft.) .1.26.000 (Ft.) 6.60 Cubic Feet/Second *** PIPE OPEN CHANNEL FLOW *** Manning!::. lin II == .013 No. of pipes = 1 Velocit.y (Ft./Sec.) == Given Pipe Diamet.er(In.) = 24.00 Individual pipe flDt.',1 == 6.600 (CFS) (GPM) .. .. .. _. :291::"2 " II II il -4 n 2\~1t; (MGD) Total pipe at-ea = 4~5:2 . 3'=i (In2) Total perimeter of pipe -75.40 (In.) NrJrm<:!l flt-:>I;.I depth in pipe = 8"B7 (In,,)--- Flow t.op width inside pipe = 23.17 (In.) Area of flow == 152.0511 (In2) Wet.ted Peri~eter = 31.38 (In.) Critical Depth in Pipe = Total flow cf pipe(s) = .. .. II II II .. II .. = 10.9.1 (In.) 6.600 (CFS) 2(~':J .. :S:2 • ( t3F'}':"J) (!"1GD) 7 OF ICe:? " ***** NON-PRESSURE, OPEN CHANNEL CALCULATIONS **** CALCULATE DEPTH OF FLOW GIVEN~ C\"',annel Elope ::: -.010000 (Ft./Ft.) ::: I nvel"'t. e I eva ticm Invert. elevation Length of pipe ::: .;3 t pi pe INLET ::: at pi pf: OUTLET ::: 80.000 (Ft. .. ) 43 u 900 ( Ft. ) 43 . .100 (Ft.) Given Flow Rate ::: 16.60 Cubic Feet/Second *** PIPE OPEN CHANNEL FLOW *** Manningi'; "n"::: • 013 No. of pipes::: 1 Velocity (Ft./Sec.) ::: 7,,87 Given Pipe Diameter(In.) ::: 24.00 Individual pipe flow::: 16.60 (CFS) " II 1I ::: ( (3F'I"1 ) " " 1I ::: 10.73 (l"KJD ) Total pipe area -452.39 (In2) Total perimeter of pipe -75.40 (In.) Normal flow depth in pipe ::: 1 ::,.28 (I n .. )_ Flow top width inside pipe ::: ( In. ) Area of flow::: 303.9517 (In2) Wetted Perimeter::: 44.35 (In.) Crit.ical Depth in Pipe ::: .1 '7 II 6~s (I n " ) Total flow of pipe(s) ::: 1,:;' /I f.::1~) ([:F~3) II " " 1I ::: 74~.:l... (GF'I"!) " .. .. " (l""IGD) 8 OF I tP • ****:lcj-; PIPE FLm'J C(.iLCUI....I~TIDNS **:.r.*;~* 100· vJS'&r ********************************************************~~***************** ***** NON-PRESSURE, OPEN CHANNEL CALCULATIONS **** CALCULATE DEPTH OF FLOW GIVEN: ChaFlnel Slope :::: Invert elevation I n\/ert e:l. e\lEI t..ion Length of pipe :::: _.J.. <::\ ' •• -.010000 (Ft../Ft..) - Flipe INLET ::: at pipe OUTLET :::: 100.000 (Ft.) 42.600 (Ft.) 41.600 (Ft.) Given Flow Rate :::: 22~50 Cubic Feet/Second *** PIPE OPEN CHANNEL FLOW I"lannings::. lin"::: . ()13 No. of pipes::: 1 Velocity (Ft./Sec.) ::: Given Pipe Diamet.er(In.) ::: 24.00 Individual pipe flow -22.50 (CFS) II " " .-0" .10.iOE+05 (GPI"!) " " " -.1. 4 • ::':,4 ( NDD ) Total pipe area -452.39 (In2) Total perimeter of pipe -75.40 (In.) • j\lf.J l'-iTi a 1 ·flQ~\1 cJej:!tJ-i in pip(~ := 1{;ln:i6 (Ir-iu) __ Flow top width inside pipe::: 18.63 (In.) Area of flow::: 394.8374 (In2) ~ Wetted Perimeter::: 54.06 (In.) Critical Depth in Pipe::: 20.29 (In.) Tot.al flow of pipe(s) -22.50 (CFS) Il " " Il ::: O.lO:J.OE+O!:', (GPI'·I) Il Il " .1. 4 • 54 ( \"IGD ) J L- 0 C z: -0 ~ 1\ 0 b U » 2: »- [(. cfJ 1ft Itu ~Itn -~ -t>:) . \l) @~IC 2411 gcp @ 1.0% C¥IOO -= I <.D.Lo CFS a. a. AMPAD 2~.141 50 SHEETS 22.142 100 SHEETS 22·144 200 SHEETS TO -+-@ '24" ecp '@ 1.0")0 QIOO -= ~.(O CFS I. • 1**********************************************************_**************** PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) ********************************************************************-~****** «««««««««««««««««««»»»»»»»»»»»»»»»»»»» (C) Copyright 1982,1986 Advanced Engineering Software (AES] Especially prepared for: CROSBY & ASSOCIATES CIVIL ENGINEERS «««««««««««««««««««»»»»»»»»»»»»»»»»»»» **********DESCRIPTION OF RESULTS*****************************~*~************ * WINDSONG SHORES J.N. 300 - 2 01 -26 -90 * * CARLSBAD, CALIFORNIA * * * **************************************************************************** *1**********1********************************************~**********~******* NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 203.00 FLOWLINE ELEVATION = 43.10 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 16.60 ASSUMED DOWNSTREAM CONTROL HGL = 45.100 =====================================================================~====== NODE 203.00 : HGL= < 45.100>;EGL= < 45.534>;FLOWLINE= < 43.100> «««««««««««««««««««»»»»»»»»»»»»»»»»»»» Advanced Engineering Software (AES] SERIAL No. 106891 VER. 2.3C RELEASE DATE: 2/21/86 «««««««««««««««««««»»»»»»»»»»»»»»»»»»» ===============================================================~============ PRESSURE FLOW PROCESS FROM NODE 203.00 TO NODE 202.00 IS CODE = L UPSTREAM NODE 202.00 ELEVATION = 43.90 ---------------------------------------------------------------------------~ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 80.00 FEET MANNINGS N = .Ol300 SF=(Q/K)**2 = « 16.60)/( 226.224»**2 = .0053844 HF=L*SF = ( 80.00)*( .0053844) = .431 NODE 202.00: HGL= < 45.531>;EGL= < 45.964>;FLOWLINE= < 43.900> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .37 NODE 202.00: HGL= < 45.900>;EGL= < 46.334>;FLOWLINE= < 43.900> ============================================================================ PRESSURE FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 5 UPSTREAM NODE 202.00 ELEVATION = 43.90 -----------------------------------------------------------------------~---- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 6.6. 24.00 3.142 2.101 .000 2 16.6 24.00 3.142 5.284 3 10.0 18.00 1.767 5.659 60.000 4 .0 .00 .000 .000 .000 5 .0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4»/«A1+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00085 DOWNSTREAM FRICTION SLOPE = .00538 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00312 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = .003 ENTRANCE LOSSES = .000 HV .069 .434 JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = .450+ .069-.434+( .003)+( .000) = .088 NODE 202.00: HGL= < 46.353>;EGL= < 46.422>;FLOWLINE= < 43.900> ==================================================================~========= PRESSURE FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 1 UPSTREAM NODE 203.00 ELEVATION = 45.16 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( NODE 203.00 6.60 CFS PIPE DIAMETER ~ 24.00 INCH~S 126.00 FEET MANNINGS N = .01300 « 6.60)/( 226.224»**2 = .0008512 126.00)*( .0008512) = .107 : HGL= < 46.461>;EGL= < 46.529>;FLOWLINE= < 45.160> ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .70 NODE 203.00: HGL= < 47.160>;EGL= < 47.229>;FLOWLINE= < 45.160> ============================================================================ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM '" ***************************************************************************~ PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD~LACRD,& OCEMA HYDRAULICS CRITERION) **************************************************************************** «««««««««««««««««««»»»»»»»»»»»»»»»»»»» (C) Copyright 1982,1986 Advanced Engineering Software [AES] Especially prepared for: CROSBY & ASSOCIATES CIVIL ENGINEERS «««««««««««««««««««»»»»»»»»»»»»>-»»»»»»> **********DESCRIPTION OF RESULTS******************************************** * WINDSONG SHORES J.N. 300 - 2 01 -26 -90 * * CARLSBAD, CALIFORNIA * * * ********************************************~******************************* **************************************************************************** NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE ·MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD, LACFCD , AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 203.00 FLOWLINE ELEVATION = 43.10 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 16.60 ASSUMED DOWNSTREAM CONTROL HGL = 45.100 ======~===================================================================== NODE 203.00 : HGL= < 45.100>;EGL= < 45.534>;FLOWLINE= < «««««««««««««««««««»»»»»»»»»»»»»»»»»»» Advanced Engineering Software [AES] SERIAL No. 106891 VER. 2.3C RELEASE DATE: 2/21/86 «««««««««««««««««««»»»»»»»»»»»»»»»»»»» ===~=============================================================~========== PRESSURE FLOW PROCESS FROM NODE 203.00 TO NODE 202.00 IS CODE = 1 UPSTREAM NODE 202.00 ELEVATION = 43.90 ---------------------------------------------------------------~--~--------- CALCULATE PRESSURE FLOW FRIGTION LOSSES(LACFCD): PIPE FLOW = 16.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 80.00 FEET MANNINGS N = .01300 SF=(Q/K)**2 = « 16.60)/( 226.224»**2 = .0053844 HF=L*SF = ( 80.00)*( .0053844) = .431 NODE 202.00: HGL= < 45.531>;EGL= < 45.964>;FLOWL1NE= < 43.900> ------------------------------------------------------------~----~---------~ , PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .37 NODE 202.00: HGL= < 45.900>;EGL= < 46.334>;FLOWLINE= < 43.900) ==========================================================~==============~~= PRESSURE FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 5 UPSTREAM NODE 202.00 ELEVATION = 43.90 ----------------------------------------------------------------~-~---~-~--- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 6.6 24.00 3.142 2.101 .000 2 16.6 24.00 3.142 5.284 3 10.0 18.00 1.767 5.659 60.000 4 .0 .00 .000 .000 .000 5 .0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1}-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4})/«Al+A2)*16.1) UPSTREAM MANNINGS N = .01300 DOWNSTREAM MANNINGS N = .01300 UPSTREAM FRICTION SLOPE = .00085 DOWNSTREAM FRICTION SLOPE = .00538 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00312 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = .003 ENTRANCE LOSSES = .000 HV .069 .434' JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)' JUNCTION LOSSES = .450+ .069-.434+( .003)+( .000) = .088 NODE 202.00: HGL= < 46.353>;EGL= < 46.422>;FLOWLINE= < 43.900) ==========================================================================~= PRESSURE FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 1 UPSTREAM NODE 203.00 ELEVATION = 45.16 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 6.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 126.00 FEET MANNINGS N = .01300 SF=(Q/K)**2 = « 6.60}/( 226.224})**2 = .0008512 HF=L*SF = ( 126.00)*( .0008512) = .107 NODE, 203.00: HGL= < 46.461>;EGL= < 46.529>;FLOWLINE= < 45.160> ---------------------------------------------------------------~----------~~ PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = .70 NODE 203.00: HGL= < 47.160>;EGL= < 47.229>;FLOWLINE= < 45.160> ================================================================~=========== END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM j 'On <_ 55- :r: (0 r b IS1 ~ 9:>-::; \N rn >< - (}l ~ -~ ~ \ 45-z: 0 0 1) -b (j') -<. 40- (J) -i m 5 :"1J 1I exIST ~0::l:a.)O CU:.~ .. tvOt.)T 106 s:G.L::'41o.01 ~eg OJ)£C. ~H6L=4fD.4 lQ:') "'Z-'5EE CA.Lc... "/' . ".----~ .----- ---", --------...",- ___ /(1]0 _/0/0 Ie" tZcP L UG.G.E.O CbJJIJ • to ~ . l1! . w A. AMPAD 22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS ..!l. ~ s-J 1+ R2.e£ 'R.»c:AeD 0 K. eXIST GeATe:b I ~u::;r ! .. *************************************************************************** ****** PIPE FLOW CALCULATIONS ****** *********************************************************************~.i**** ***** NON-PRESSURE~ OPEN CHANNEL CALCULATIONS **** CALCULATE DEPTH OF FLOW GIVEN: Channel Slope = -.010000 (Ft./Ft.) = -1.0000 % Invert elevation at pipe INLET = 39.950 (Ft.) Invert elevation at pipe OUTLET = 38.950 (Ft.) .1. 00 • 000 (F t.. ) Length of pipe = Given Flow Rate = 22.50 Cubic FeetlSecond *** PIPE OPEN CHANNEL FLOW *** 1"1annings "n" = ,,013 No. of pipe~ = 1 Velocity (Ft./Sec.) = 8.21 Given Pipe Diameter(In.) = 24.00 Individual pipe flow = 22.50 (CFS) II II II = o. 10:1,OE+O:':=' (GPl"I) II II II _, .1. 4 . ;:'4 ( t'lGD ) Total pipe area = 452.39 (In2) Total perimeter of pipe = 75.40 (In.) Nor'mal 'flov-J dept.h in pipe:= 19.::'6 (In.)_ Flow t.op width inside pipe := .1.8.63 (In.) Area of flow := 394.8374 (In2) Wett.ed Perimeter = 54.06 (In.) Critical Depth in Pipe = 20.29 Total flow of pipe(s) -22.50 II " II II = o . .1.010E+O~, II II II lJ = (In. ) (CFS) (GPI'1 ) (1'1GD) 14 o.R If&, " *******************************************************~ ~****************** ****** PIPE FLOW CALCULATIONS ****** \00' WE'ST *****************************************~**************:~*****~*~*******=** ***** NON-PRESSURE, OPEN CHANNEL CALCULATIONS **** CALCULATE DEPTH OF FLOW GIVEN~ Channel Slope = -.030000 (Ft./Ft.) = -3.0000 % Invert elevation at pipe I~LET == 38.700 (Ft.) Invert elevat10n at pipe OUTLET = 35.700 (Ft.) Length of pipe = Given Flow Rate = 100 • 000 (F t. ) 22.60 Cubic FeetlSecond *** PIPE OPEN CHANNEL FLOW Mannings "n" = . or::; No. of pipes = 1 Velocity (Ft./Sec.) = Given Pipe Diameter(In.) = 24.00 Individual pipe flow -22.60 (CFS) II II II o . .i014E+O~1 (GPl"1) II II !l _ 14 . 6.1. ( I"ISD ) Total pipe area -452.39 (In2) Total perimeter of pipe = 75.40 (In.) 1:2 .. 92 ~ No ,"'m,::!l, flow depth in pipe == 1::::' .. 0:3 (In,)_ ~ Flo~'\I top width inside pipe = 23.90 (In.) Area of flow = 252.0345 (In2) Wetted Perimeter = 39.86 (In.) Critical Depth in Pipe = 20.33 (In.) Total flow of pipe(s) == 22.60 (CFS) II II " II 0.1014E+05 (GPM) II " II II == .1. 4 . 6.1. ( l"ISD ) r .. .,' ~ ~ • Q z 0 u • W en a:: If! >-... u f c (,,) 0 0.3 o~ o:r . 0.6 005. 0.4 ,0.3 ~~~~--~--~~~~ CHART 1-103.68 / STANDARD ·GUTTgR NOTE'S: -PARAMETERS- y ........... .,tlll tit Hr • ._ L. ... tt •• Ia., I'.,. -ttl". ~ CtMa ... -ft./tt. -GRATE OATA- . Cle., I ••••• -3S 3 .... • Cle., w.ft. ( •• )-~4· .1,."" •• t .... '.n-I·.I~~' .• 2- NOTE: For grades of 10% or steeper -no capacity credit is allowed. Average depth of flow over tne ~ Qrate measured upstream before =y_ gSx drawdown starts 2 O.I~OJ-:---:o+.:-~::--..r...~::--I~O.J OJ!5 Q2 0.3 0.4 AVERAGE DEPTH.OF FL.OW-FT. SHT. NO. CITY OF SAN DIEGO :.. DESIGN GUIDE ,REv. CAPACITY CURVES FOR GRATING INLETS complete i ilel'CepWn r:Nf!r the grate,AII Sa-SpociIgs