Loading...
HomeMy WebLinkAboutCT 90-03; SHELLEY PROPERTY UNIT 1; ADDENDUM FOR DRAINAGE REPORT; 2002-05-01o 10 10 o o o o o o o o o o o u u ·u ~ .~ -~-" - " -_ I~ ---:... '->-.-- ~~\tc>. ptA Cb"'~"'C.--\.\)\l rQN\?I.O\IV ~ ~eQ~\ ~ I I I I I I I 'I I I I I I -I I- I I I I ADDENDUM FOR DRAINAGE REPORT SHELLEY PROPERTY-UNIT 1 CARLSBAD, CALIFORNIA CT 90-03/PUD 90-4 (N ovember 2000) " cr 90 .. 0'; u~,'( I MAY 2002 . Prepared For: CENTEX HOMES 1815 Aston Avenue, Suite 101 Carlsbad, C.A 92008 Prepared By: -PROJECT DESIGN CONSULTANTS PLANNING • ENVIRONMENTAL • ENGlNEERING • SURVEf/GPS 701 B Street, Suite 800, San Diego, CA 92101 619-235-6471 FAX 619-234-0349 Job No. 2156.00 Pr~ared By: JG Checked By: JGIDM I I' I I I I I I I I I I I I I I I :1 I Section 1.0 2.0 3.0 4.0 5.0 6.0 1 1 2 3 A B TABLE OF CONTENTS Page IN'TRODUCTION· ............................... n ........................................................ ~... 1 DRAIN'AGE BACKGROUND ............................................... :.......................... i HYDROtOGYMETHODOLOGY.................................................................. 2 RESULTS OF THE HYDROLOGIC ANALySIS.· ........................... ;.............. 2 HYDRAULIC METHODQLOGY ............................. n .................................... . 5.1 Explanation of the AES Pipeflow S0ftware ........................................ .. 5.2 Explanation of the FLOWMASTER PE Software ............................... . RESULTS OF TUE HYDRAULIC ANALySIS ................... ; ........................ .. 6.1 Storm Drainpipe Analysis ..................................................................... . 6.1 Type 'F' Catch Basin and Ditch Analyses ............................................ . TABLES Comparative Analysis: OPES Hydrology Results vs. PDC's Hydrology Results .................................................................. : ............ , ............................ .. APPENDICES Rational Method Computer Output: Storm Drain AES Pipeflow Hydraulic Analysis Computer Output Type 'F' Catch Basin and Ditch Analysis EXHIBITS Developed Conditj0ns.Draihage Map AES Pipeflow Node Map 3 3 4 4 4 4 REPORT/2156DR-ADD.DOC 11 I I I I I I I I I I I I I I I I I I I 1.0 INtRODUCTION The storm drain system at the southerly end of Shelley Property Unit 1 (project) was previously designed to convey the storm runoff from the Rice Property to an existing catch basin via a 3-foot concrete ditch. The existing catch basin currently discharges to the south of the OMWb water easement. At the request of Centex Homes, PDC has been asked to redesign the 'storm drain system that .collects the Rice Property storm runoff and convey it to the existing storm drain in Rancho Santa Fe Road. The City of Carlsbad (City) has approved the Project improvement plans. As a result, the changes per this addenduni will be done UJ:).der "Construction Change 3". The Rice Property storm runoff will be collected and conveyed via a 3-foot dhuneterconcrete ditch to the previously designed storm drain system for the Project. The Rice Property storm runoffwill enter the Project storm drain system via a Type 'F' catch basin, which consists offoUf openings and a concrete bowl around the catch basil1 box. From the Type 'F' catch basin, the Project and the Rice Property storm flow is conveyed to the existing storm drain system in Rancho Santa Fe Road via a 24-inch RCr. 2.0 DRAINAGE BACKGROUND The drainage report titled "HydrologylHydraulics Report for Olivenhain Pioneer Elementary School" (OPES report) by Rogers Engineering dated March 26, 1993, was a reference in the preparation of this addendum. It is important to note that the storm drain system in Rancho Santa Fe Road was designed to convey the 100-year storm event per the OrES report. From a drainage perspective, the OPES report accounts for the following drainage areas: • Olivenhain Pioneer Elementary School • Project • The Rice Property • The drainage areas located to the south of the. OMWD water easement REPORTI2156DR-ADD.DOC 1 I I I I I I I I I I I I I I I I 'I I I For the Project drainage area, the Rice Property drainage area, and the drainage area located to the south of the OMWD water easement, the OPES report uses the undeveloped area and ultimate condition land use to develop the design 100-yt;:ar runoff The OPES report shows a total area of 28.0 acres and a discharge of 48.2 CFS (see Exhibit A), which indudes the aforementioned drainage areas. 3.0 HYDROLOGY METHODOLOGY The hydrology methodology is straightforward. The Modified Rational Method was used to determine the 100-year storm flow for the modification of the storm drainpipe and inlet improvements. The following narrative describes developed condition drainage patterns and hydrology, The Rational Method node numbers used in the analysis and the stonn drainpipe system identification 1abels shown on Exhibit A are used in the discussion below: Developed Site Conditions Referencing Exhibit A, the 100-year storm runoff from the Rice Property is routed through the 3-foot diameter ditch that is located along the s_outherly property line of the Project, from Node 100 to Node 110., The drainage ba~ins along the 3-foot ditch are then adqed as sub basins. The Project storm flow and the Rice Property storm flow confluence at Node 110; The resulting, discharge is conveyed by a 24-inch diameter Rep to Node 120 where it confluences with a portion of the storm flow from the Olivenhain Pioneer Elementary School. Note that sto;rm flow from all the drainage areas confluence at Node 130. Section 4.0 below presents th~ results of the hydrologic analysis. 4.0 RESULTS OF THE HYDROLOGIC ANALYSIS Tahle 1 below provides the results of a comparative analysis of the OPES results versus the PDC developed condition hydrology results. REPORT/2156DR-ADD,DOC 2 I I I I I I I I I I I I I I I I I I I TABLE 1 Comparative Analysis OPES Hydrology Results vs .. PJ)C's Hydrology Results - Reference NQdeNo. Q (CFS) Area (acres) OPES report 130 48.2 .28.00 PDC Addendum , 130 512 28.38 The results show that there is a slight increase in storm flow and drainag~ area. Therefore, the PDC results were used in the hydra.ulic analysis of the storm drain system, since the PDC analysis reflects actual drainage conditions. See Appendix 1 for the AES hydrology computer output, and Exhibit A for the Dnrinage basins. 5.0 HYDRAULIC METHODOLOGY The AES Pipeflow software hydraulic model was used to determine the hydraulic grade line for the storm drain system improvements. However, FLOWMASTER, proprietary software by Haestad Methods, was used in the design of the 3-foot diameter brow ditch calculations. The following sections provide a brief description of the analytical procedures used in each model 5.1 Explanation Of the AES Pipe(low Software The AES Pipeflow model was used to determine the hydraulic grade line for the storm drain improvements for this project. The AES c<;>mputational procedure is based on solving Bernoulli's equation for the total energy at each section; ~d Manning's formula for the friction loss between the sectjons in each computational reach. Confluences are analyzed using pressure and momentum theory. ill addition, the program uses basic mathematical and hydraulic principals to calculate data such as cross sectional area, velocity, wetted perimeter, normal depth, critical depth, and pressure and momenttpn. Model input basically includes storm drain facility geometry, inverts, lengths, confluence angles, and downstream/upstream boundary conditions,. i.e., initial water surface elevations. REPORT/2156DR-ADD.DOC 3 r-------------------------------~------------------------------------------------------- I I I I I I I I I I I I I I '1 1,1" I I I 5.2 Explanation of FLOWMASTER PE Software The FLOWMASTER model computes flows, water velocities, depths and pre$sures based on several well-known formulas such as Darcy-Weisbach, Manning's, Kutter's, and Hazen- Willia;ms. For this addendum, Manning's equation was used in the design of the 3-foot diameter concrete brow ditch calculations. 6.0 RESULTS OF THE HYDRAULIC ANALYSIS In general, the storm drain improvements for this project consist of: • A system of underground drainpipes. • A Type 'F' catch basin and a concrete ditch.' 6.1 Storm Drainpipe Analysis In general, the drainpipe system was designed as an open channel for the lOO-year storm event. However, some segments of the drainpipe are under pressure. As a result, watertight joints wi11 be used at those locations. See· Appendix 2 for AES hydraulic analysis output, and Exhibit B for the AES Pipeflow node number locations. 6.2 . Type 'F' Catch Basin and Ditch Analyses The Type 'F' catch basin was designed to aCGommodate the 16.0 CFS from the Rice Property and the slope drainage areas along the southerly and easterly bOUJ)daries of the Project. The Type 'F' catch basin consists of four openings and a concrete bowl around the box structure. Note that only two openings are required. However, for ease of maintenance purposes and to satisfy City requirements, four openings around the box are provided. . The 3.,foot concrete ditch was designed to convey the 16.0 CFS providing 0.5 foot of freeboard. See Appendix 3 for the Type 'F' catch basin and the 3-foot diameter ditch calculations. REPORTI21S6DR-ADD.DOC 4 I I I I I I I I' I I I I I I I I I I I 1 I I I I I APPENDIX· 1 RATIONAL METHOD COMPUTER OUTPUT: I STORM DRAIN '1 I I I I I I I I I I. I I lllipORT/2156DR-ADD.DOC I 'I I 1 I I I I I ,I I' I I I I I I I I *~******************~********************~**~******************************* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE , ' Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1. SA Release Date: 01/01/2001 License ID 1509 AnalYpis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPT'ION OF STUDY **************'!r**********'* * SHELLY UNIT 1 -CONSTRUCTION CHANGE * * * * ************************************************************************** FILE NAME: C:\2156\SHELL-U1.DAT TIME/DATE OF STUDY: 18:07 04/30/2002 USER SPECIFIED HYDRQLOGY AND HYDRAULIC MODEL INFORMATION: * ------------------~-------------------------------~---------------~--~--~--- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRJ;CTI·ON SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL IC"-VAliVES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET~CROSSFALL: CURB GUTTER-GEQMETRIES: MANNING WIDTH NO. (FT) -------- 1 30.0 CRO$SFAL~ (FT) ========= 20.0 IN-/ OUT-/PARK- SIDE / SIDE/ WAY ================= 0.018/0.018/0.02U GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET HEIGHT WIDTH LIP (FT) (FT) (FT) ====== ====== 0.67 2.00 0.0312 as (M(iximum All,owable Street Flow Depth) -(Top-of~Curb) 2. (Depth)*{Velocity) Constraint =; 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIEUTARY PIPE.* HIKE CFT) ---~- 0.167 , , ' 'FACTOR (n) ======= 0.Q150 ***********************************~***************~****~***********~******* FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE. = 7 ------------------------------------------------~------------+-----~---~---- ,»»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ======================~===~==~==============~======~==========~============= USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.00 RAIN INTENSITY(INCrI/HOUR) = 3.89 TOTAL AREA(ACRES) = 6.05 ~OTAL RUNOFF(CFS) = 14.70 I I I I I I I I I I I I I I I +-----------~-----------------------~-~--~----------~----------~----------~+ 1 HYDROLQGY DATA FOR THE RICE PROPERTY -DISCHARGE POINT IS LOCATED ,I I AT THE SOUTHEAST CORNER OF SHELLEY UNIT 1 I I I +-----~--------------------------~----------------------~------------------+ ************~*************************~******************************~*****~ FLOW PROCESS FROM NODE 100.00 TO NODE 100.0'0 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ==,=================================;::=================~=================.===== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INPEPENDENT STR~AM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.00 RAINFALL INTENSITY(INC~/HR) = 3.89 TOTAL STREAM AREA(ACRES) = 6.Q5 PEAK FLOW RATE (CFS) AT CONFLUENCE = 14 .70' **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = 7 -~---------~-~---------------~--------------------~-------------------------- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< =====~===============================~~===================================== USER-SPECIFIED VALUES ARE AS FOLLQWS:. TC(MIN) = 13.00 RAIN INTENSITY(INCH/HOUR) = 3.70 TOTAL AREA(ACRES) = 0.45 TOTAL RUNOFF(CFS) = 0.70 +-------------------------------------------------------------------~------+ I HYDROLOGY DATA FOR SHELLEY UNIT 1, BASIN A8 I I +-----------------~----------------------------~-------------------------~-+ * * * * *'* * * * * * * * * * * * * * * * * * * * * * * * * * * *.* * * * * * * * * *.* * * * * * * * * * * * * * * * * * *'* * * * * * * * * * * * * * FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = 1 ------------~---~-----------------~-----------,------------~~-----~--------~- »»>DESIGNATE INDEPENPENT ST.REAM FOR CQNFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< =========r===========~=================~========================~====~==~==~ TOTAL NUMBER OF STR~S = 2 CONFLUENCE VALUES USED, FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATI.oN (MIN. ) 13 . 0,0 RAINFALL INTENSITY (INCH/HR) = 3.70 TOTAL STREAM AREA(ACRES) = 0.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.70 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) . (INCH/HOUR) 1 14.70 12.00 3.895 2 0.70 13.00 3.699 AREA (ACRE) 6:05 0.45 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** I I I I ·1 I I I I I I I I I I I I I STREAM , NUMBER 1 2 RUNOFF (CFS) 15.36 14.66 Tc (MIN. ) 12.00 13.00 INTENSITY ( INCH/HOUR) 3.895 3.699 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 15.36 Tc(MIN.) = 12.00' TOTAL AREA(ACRES) =; 6.50 LONGEST FLOWPATH FROM NODE. 0.00 TO NODE 100.00 = 0.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 110.00 IS CODE = 41 -------------~--------~-------~---~----~~--------------~-------------------- »»>COMPUTE )?IPE-FLOW TRAVEL TIME THRU SU'BAREA««< »»>'USING USER-SPECIFIED PIPESIZE (EXJ;STING ELEM~NT)««< =====================================-==============================-=========- ELEVATION DATA: UPSTREAM (FEET) = 222.83 DOWNSTREAM (FEET) = FI"OW LENGTH(FEET} = 533.10 MANNING'S N = ,0.015 DEPTH OF FLOW IN 36.0 ,INCH PIPE IS 13.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.} = 6.65 GIVEN PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 15.36 1.34 NUMBER OF PIPES -1 217.50 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE TctMIN.) = 0.00 TO NODE 13.34 110.00 533.10 FEET. *.************************************************~************************* .FLOW PROCESS FROM: NODE 100.00 TO NODE l10.00 IS CODE = 81 ~----~----------~------------~----r---~-------------~------------~-------~-,- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ================~====~=======~==============================~=============== 100 YEAR RAINFALL INTENSITY(INCH/HOPR) = 3.638 *USER SPECIFIED (SUBARE;A) : RURAL DEVELOPMENT RUNOFF COEfFICIENT, = .4500 S.C.S. CURVE NUMBER (~C II) = 0 SUBAREA AREA(ACRES) 0.38 SUBAR~A RUNQFF(CFS) TOTAL AREA (ACRES) 6.88 TOTAL RUNOFF (CFS) = TC(MIN) = 13.34 0 .. 62 15.99 * * * * * * * * * * * * * * * * * * * * * * * * *.* * * * * * *.* * * * * * * * * * * * * * * * * * *.* * * * * * * * * * * * *.* * * * * * * * *.* * * FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS'CODE =;: 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.34 RAINFALL INTENSITY (INCH/HR) =. 3.64 TOTAL STREAM: AREA(ACRES) = 6.88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.99 *******.*******.***************************************~****.*************** FLOW PROCESS FROM NODE .110.00 TO NODE 110.00 IS CODE = 7 --------------~---------------~------------,-----~---~~~--------------------~ »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< =============~=========~===========================~===~===~======~========= USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.50 RAIN INTENSITY(INCH!HOUR) = 3.45 I I I I I I I I I I I I I I I I I I I I 'TOTAL AREA (ACRES') == 8.73 TOTAL RUNOFF(CFS) = 16.40 +--------------~------------~-~----~-------------------------------------~-+ I HYDROLOGY DATA FOR SHELLEY UNIT 1 (ONSITE) I I +-----------~--------~----------------~-----------------------~------------+ **************************************************************************** FLOW PROCESS FROM NODE no .00 TO NODE 110.00 IS CODE = 1 --------------------------~-------------------------~-----------------~----- »»>DES~GNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREA,M VALUES««< =================================~======================~===========~======= TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONC ENTRAT,I ON (MIN .) = 14.50 RAINFALL INTENSITY (INCH/HR) = 3.45 TOTAL STREAM AREA(ACRES) = 8.73 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.40 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 15.99 2 16.40 Tc (MIN. ) 13 .34 14.50 RAINFALL INTENSITY AND TIME CONFLUENCE FORMULA USED FOR ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc NUMBER (CFS) (MIN. ) 1 31.52 13 .34 2 31.55 14.50 OF 2, INTENSITY ( INCH/HOUR) 3.638 3.447 CONCENTRATION STREAMS. INTENSI,TY ( INCfI/HOUR) 3.638 3.447 COMPUTED CONFLUENCE ESTIMATES ARE ~S FOLLOWS: AREA (ACRE) 6.88 8.73 RATIO PEAK FLOW RATE (CFS) 31. 55 Tc (MIN.). = 14.50 TOTAL AREA(ACRES) = 15.61 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 110.00 533.10 FEET. * * * * * * * ,* * * * * * * * * * * * * * * *'* * * * * * * * * * * * * * * * * * * *'* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *-* * * FLOW PROCESS FROM NODE 110.00 TO NODE 120.00 IS CODE = 41 -------------~-----~----~-----------------~--~------------------------------ »»>COMPUTE PIPE-FLOW T~VEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PI:PESIZE (EXISTING ELEMENT)««< ===================================~==========~=====7===~=================~= ELEVATION DATA: UPSTREAM (FEET) = 211.66 DOWNSTREAM (FEET) = FLOW LENGTH(FEET) = 346.94 ~ING/S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 13.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.24 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 31.55 0.32 18'8 A3 PIPE TRAVEL TIME(!1IN.) = LONGEST FLOWPATH FROM NODE Tc (MIN.) = 0.00 TO NODE 14.82 120.00 = 880.04 FEET. *********************************************************~*****************~ I I I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS COOf!; = 1 ----~-------------------------------~-~-------------------~------------~---~ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ====:;:::==================================================-=====-============:==== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 14.82 RAINFALL INTEN$ITY(INCH/HR) = 3.40 TOTAL STREAM AREA(ACRES) = 15.61 PEAK FLOW RATE (CFS) AT CONFLUENCE = 31. 55 **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 7 ---------------------------------------------~---------------~----~-------~- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< ==:;:::============================~======~==================~=====~============ USER-SPECIFJ;ED VALUES ARE AS FOLLOWS: TC(MIN) = 21.00 RAIN INTENSITY(INCH/HOUR) = 2.71 TOTAL AREA(ACRES) =-2.27 TOTAL RUNOFF(CFS) = 3.50 +----------------------~--------------------------------------~----------~-+ I HYDROLOGY DATA FOR OLIVENHAIN PIONEER SCHOOL -PER DRAINAGE REPORT FOR I OLIVENHAIN PIONEER ELEMENTARY SCHOOL, BY ROGf!;RS ENGINEERING, I DATED 3/26/93 +----------------------------------------------------------------------~---+ **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 1 --------------~-----~-------~------------~---------~----------------~------- . »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< =========================~===============~============================~===== TOTAL NUMBER OF STREAMS = 2. CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN .. ) 21. 00 RAINFALL INTENSITY(INCH/HR) = 2.71 TOTAL STREAM AREA(ACRES) = 2.27 PEN< FLOW RATE(CFS) AT CONFLUENCE = 3.50 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 31.55 14.82 3.399 2 3.50 21.00 2.715 AREA (ACRE) 15.61 2.27 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUl1BER (CFS) (MIN. ) ( INCH/HOUR) 1 34.34 14.82 3.399 2 28.69 21. 00 2.715 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 34.34 Tc(MIN.) = 14.82 TOTAL AREA(ACRES) = 17.88 I I I I I I I I I I I I I I I I LONGEST FLOWPATH FROM NODE 0.00 TO NODE 120.,00 = 880.04 FEET. ****************~*~********************************************************* FLOW PROCESS FROM NODE 120.00 TO NODE 130.00 IS CODE = 41 --------~--~-~----------------------------------------------------~--------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ===========================================================================~ ELEVATION DATA.: UPSTREAM (FEET) = 188.33 DOWNSTREAM (FEET) 185.65 FLOW LENGTH (FEET) = 76 .. 00 MANNING'S N = . 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17,0 INCHES PIPE-FLOW VELOC~TY(FEET/SEC.) = 14.40 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 34.34 PIPE TRAVEL TIM~(MIN.) = 0.09 Tc(MIN.) = 14.90 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 130.0,0 956.04 FEET. ***********************************************************************~**** FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS COD~ == 1 »»>DESIGNATE INDEPENDEN'r STREAM FOR CONFLUENCE««< ============================================================================ TOTAL NUMBER OF STREAMS = 2 ·CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 14.90 RAINFALL INTENSITY (INCH/HR) = 3 .. 39 TOTAL STREAM AREA(ACRES) = 17.88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 34.34 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 7 ------~-------------------~--------------------------------~--------~-~----- »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< =====================================================================.======= USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 17.29 RAIN INTENSITY(INCH/HOUR} = 3.09 TOTAL AREA(ACRES} = 10.50 TOTAL RuNOFF(CFS) = 18.50 +------------------~---~-------~-----------------------------~-~--~--------+ I HYDROLOGY DATA FOR DRAINAGE BASIN TO THE SQUTH OF OLIVEN1IA.IN EASEMENT I PER DRAINAGE REPORT FOR OLIVENHAIN ELEMENTARY PIONEER SCHOOL, BY I ROGERS ENGINEERING, DATE 3/26/93 +-------------------------------------------------~-~---------------------~~ **********~***************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 1 ---------~------------~------------------------~---------------~-------~---- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES~«« ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN. ) 17 .20 RAINFALL INTENSITY (JNCH/HR) = 3.09 TOTAL STREAM AREA(ACRES) = 10.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.50 I I I I I I I I I I I I I I I I I I ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) ( INCH/HOUR) (ACRE) 1 34.34 14.90 3 .. 386 17.88 2 18.50 17.20, 3.088 10.50 RAINFALL INTENSI,TY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW Rl],TE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) ( INCH/HOUR) 1 51.2;1. 14.90 3.386 2 49.81 17.20 3.088 COMPUTED CONFLUENCE EST~MATES ARE AS FOLLOWS: . P~AK FLOW RATE (CFS.) 51. :;n Tc (MIN .. ) = 14.90 TOTAL A,REA(ACRES} = 28.38 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 130.00 956.04 FEET. ===========================================~========~==~==================== END OF STUDY SUMMARY: TOTAL AREA(ACRES} PEAK FLOW RATE(CFS} 28.38 TC(MIN.) = 51.21 14.90 ==================~=============~=~=====~=================================== =============================-==============:;::========:;::===~==========,========= END OF RATIONAL METHOD ANALYSIS I I ' I I I I I I I 'I I I I I I I I I I I- I I I I I I I -I I I I I- I I I I I I ~ REPORT/2156DR-ADD.DOC - APPENDIX 2 AES PIPE FLOW HYDRAULIC ANALYSIS COMPUTER OUTPUT 2 I I I I I I I I I I I I I I I I . . ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) copyright 1982-2001 Advanced Engin~ering Software (aes) Ver. 8.0 Release Date :01/01/Z0'01 License ID 1509 Analysis prepared by: projectDes'ign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ** **** * **** * * * * **'*** *** * ** DESCRIPTION OF STUDY *** * *.**** * * ** * *** * ** *''k**** * SHELLEY UNIT 1 -F:CQL-DE-SAC OF CALLE CATALONIA T:RANCHO SANTA FRRD * * SD CONVEYS SHELLEY UNIT 1 ~ THE RICE PROPERTY STORM FLOWS * * THE RICE PROPERTY FLOW ENTERS SD SYST. VIA 3-FT CONC. BROW DITCH * ************************************************************************** FILE N~E: C:\2156\1000.DAT TIME/DATE OF STUDY: 18: 42 04/30/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*,, indicates nodal point UPSTREAM RUN MODEL PROCESS FRICTION PRESSURE PRESSuRE+ HEAD (FT) MOMENTUM (POUNDS) 5.39* 2303.41 } HYDRAULIC JUMP 2.31 pc 1398.06 NODE NUMBER 1000.00'- } 1010.00- } FRICTION+BEND 1020.00- } JUNCTION 1030.00- } FRICTION 1040.00- } JUNCTION 1050.00- } FRICTION 2.31*Dc 1398.06 3.43* 1204.02 } HYDRAULIC JUMP 2.50 1021.94 3.07 1019.00 1. 88 Dc 802.17 1060.00- } 1070.00- } 1080.00- } FRICTION+BEND FRICTION JUNCTION 1090.00- } FRICTION 1100.00- } JUNCTION 1105.00- } FRICTION 1110.00- } JUNCTION 1l15.00- 1. 88 Dc 802.17 1. '88*D.c 802.17 4.~2* 817.69 } HYDRAULIC JUMP 1.46*Dc 311.77 2.07* 376.61 } HYDRAULIC JUMP 1.46*Dc 311.77 2.73* 285.31 RUN data used.) DOWNSTREAM FLOW PRESSURE+ MOMENTUM (POUNDS) 1928. "77 DEPTH (FT) 1.38 1.56* 1717.2'9 2.31*Dc 1398.06 1.33 1114.38· 1.26* 1168.99 1. 05* 1198.80 1.21* 1034.06 1.48* 875.52. 1.88*Dc 802.17 0.94 393.60 1. 46*Dc 311.77 1. 09 349.70 1. 46*Dc 311. 77 0.74 . 152,65 I 1 1 1 1 I' 1 I I 1 I. I I I 1 ·1 I 1 } FRICTION li20.00-, 1. 51 * , 150.23 1.08 Dc 127.31 } CATCH BASIN 1120.00-1.87* 123.54 1. 0$ Dc 40.9,2 -------------------------------------------------~-------~-------------------- MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 --------------------------~---------~-----~-----------~--~----------~--------~ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASEl) ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, ANDOCEMA 'DESIGN MANUALS. * * * * * * * * * * * * * *.* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *.* * *.* ** * ** * * * *.* * * * * -I; * *.* 1: 1: ** * * DOWNSTREAM PIPE F~OW CONTROL DATA: NODE NUMBER = 1000.00 FLOWLINE ELEVA~ION = 175.11 PIPE FLOW = 51.21 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 180.500 FEET NODE 1000.00 : HGL = < 180.500>jEG:I:.,= < 182.190>jFLOWLINE=,;:: 175.110> *************************************************************************~**** 1000.00 TO NODE 1010.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 1010.00 ELEVATION = 182.29 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 51.21 CFS PIPE DIAMETER = 30.00 ~NCHES PIPE LENGTH = 151.86 FEET MANNING'S N = 0.01300 HYDRAULTC JuMp: DOWNSTREAM RUN ANALySIS RESULTS NORMAL DEPTH(FT) = 1.36 CRITJ:CAL DEPTH{FT) = 2.31 ======================================================~========~=====~======== UPSTREAM CONTROL ASSUMED FLOWD~PTH(FT) = 1.56 ============================*====================================~============ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: --------------~-~-------------.--------------------~-------~-------~----------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0.000 1. 556 15.934 5.502 1717,29 2.459 1.549 16.030 5.541 1725.23 5.055 1.541 16.128 5.582 1733.31 7.798 1.533 16.226 5.624 174L 53 10.703 1.525 16.326 5.666 1749.90 13.785 1.517 16.428 5.710 1758.42 17.065 1.509 16.530 5.755 1767.08 20.562 1.501 16.635 5.800 ' 1775.90 24.303 1.493 16.740 5.841 178.4.88 28.317 1.485 16.847 5.895 1794".01 32.639 1.477 16.956 5.944 1803.30 37.313 1.469 17.i066 5.995 1$12.15 42.390 1.461 17 .178 6.046 1822.37 47.937 1.453 17.292 6.099 1$32.16 54.036 1.445 17.407 6.153 1842.1.2 60.792 1.438 17.523 6.209 1852.25 68.344 1.430 17.6.42 6.2'65 1862.56 76.881 1.422 17.762 6.324 1873.06 86.668 1.414 17.884 6.383 18-83.73 98.092 1.406 18 .. 007 6.444 1894.60 111.753 1.398 18.133 6.507 1~Q5. 65 I I I I I ·1 -I· I I I I I I ,I I I I I 128.658 150.694 151. 860 1.390 1 .. 382 1.382 18.260 18.389 18.394 6.571 . 6.636 6.639 191.6.90 1928.35 1928.77 -------------~----~------------------------~----~-----------------------~----~- HYDRAULIC JUM~: UPSTREAM RUN ANA~YSIS RESULTS ============================================================================== POWNSTREAM CONTROL ASSUMED PRESSURE IiEAD(FT)= 5.39 ==========~==========~============~==============================~============ PRESSURE FLOW PROFILE COMPUTED INFORMA~ION: --~--------------------------~---~~---~------------~--------~-------~----~--~-- DISTANCE FROM CONTROL (FT) 0.000 91.188 PRESSURE HEA.D(FT) 5.390 2.500 VELOCITY (FT/SEC) 10.432 10.432 SPECIFIC ENERGY (FT) 7.080 4.190 PRESSURE+ MOMENTUM (POUNDS) 2303.41 1418.l9 ===================~====================================~======~============== ASSUMED DOWNS"TREAM PRESSURE HEAD (FT) = 2 .50 =======================-==========================================;========~====:;: GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------~--------------~--~------------~-------------~----------~-------~------- DIS'J:'ANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) CFT) CFT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 91.188 2.500 10.429 4.190 1418.19 91.391 2.493 10.432 4.183 1416.20 91.567 2.485 10.437. 4 .. 178 1414.44 91. 727 2.478 10.444 4.173 1412.84 91.873 2.470 10.452 4.168 1411.37 92.0.08 2.463 10.461 4.163 :1,410.01 92.133 2.455 10.471 4.159 1408.74 92.249 2..448 10.482 4.155 1407.56 92 .357 2.441 10.494 4.152 1406.47 92 .456 2.433 10.506 4.148 1405.45 92.548 2.426 10.520 4.145 1404.52 92..634 2.418 10.534 4.142 1403.65 92.712 2.411 10.548 4.140 1402.85 92.784 2.403 10.564 4.137 1402.l2 92.849 2.396 10.580 4.135 1401. 45 92.908 2.389 10.596 4,133 1400.85 92.961 2.381 10.613 4 .. 131 1400.~1 93.008 2.374 10.631 4.130 1399 .. 83 93.050 2.366 10.649 4.128 1399.41 93.086 2.359 10.668 4.127 1399.05 93.116 2.352 10.68'7 4.126 1398.75 93.140 2 .~44 10.707 4.125 l398.50 93.159 2.337 10.727 4.125 1398.31 93.173 2.329 10.748 4.124 1398.17 93.181 2.322 1·0.770 4.124 1398·09 93.184 2.3;1.4 10.791 4.124 1398.06 151.860 2.314 10.791 4.124 1398.06 ------------------------END OF HYDRAULIC JUMP ANMYSIS-----------------,..-~--,...­I PRESSURE+MOMENTUM BALA:NCE OCCURS AT 41.05 FEET UPS,TREAM OF NODE 1000.00 I I DOWNSTREAM DEPTH = 4.089 FEET, UPSTREAM CONJtJGATE DEPTH = 1.398 FEET I -------------~~--------------------,...--------~---------~--------------------~-- NODE 1010.00 : HGL = < 183.846>iEGL= < 187.792>iFLOWLINE= < 182.290> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 1020.00 101a.00 TO NODE 1020.00 IS CODE = 3 ELEVATION = 185.05 (FLOW IS SUPERCRITICAL;) I I I I I I I I I I I I I I I I I I I --------..:..._------------------:----------------------,--------":------------_.:..._---------::- CALCULATE PIPE-BEND LOSSES (OCEMA) : PIPE FLOW = 51. 21 CFS PIPE DIAMETER 30.00 INCHES .CENTRAL ANGLE = 33. 000 DEGREES MANNING'S N = 0.01300 PIPE LENGTE = 58.39 FEET -----------..;..-------------------.---;---~---:;...-----'---------------------------------- NORMAL DEPTH(FT) = 1.36 CRITICAL DEPTH(FT} = 2.31 ========================================~=================~=======~==========~ U)?STREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.31 ==================================================~====================~====== GRADUALLY VARIED FLOW PROFILE COM:PllTED INFOIDmTION: ----------~---------~------------~------~--------------------~--------~------- DISTANCE; FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM ( POUNDS) 0.000 2.314 10.791 4.124 1398.06 0.072 2.276 10.912 4.126 l398.77 0.287 2.238 11.045 4.133 1400 . .87 0.651 2.200 11.191 4.146 1404.36 1.172 2.161 11.349 4.163 1409.24 1.859 2.123 11. 520 4.185 '1415.53 2.727 2.085 11. 704 4.213 1423.26 3.795 2.047 11.901 4.247 1432.47 5.082 2.008 12.112 4,288 1443.21 6.617 1.970 12.337 4.335 1,455.55 8.432 1.932 12.577 4.390 1469.56 10.566 1. 894 1:?832 4.452 1485.30 13.071 1.855 1;3.104 4.524 1502.88 16.008 1. 817 13.394 4.605 i522.39 19.457 1. 779 13.702 4.696 1543.95 23.521 1. 741 14.030 4.799 1567.67 28.339 1. 703 14.378 4.915 1593.70 34.095 1. 664. 14.750 5.045 1622.18 41. 052 1.626 15.146 5.190 i653.29 49.595 1.588 15.568 5.353 1687.22 58.390 1. 556 15.934 . 5.502 1717.29 ---------------------~------~-------------------------------------~----------- NODE 1020.00 : HGL = < 187 . 364'>iEGL= '< 189.174>iFLOWLINE= < 185.050> ****************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1030.00 IS CODE = 5 UPSTREAM.~ODE 1030.00 ELEVATION = 185.65 (FLOW IS .AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT. } UPSTREAM 34.34 24.00 0.00 185.65 1.9:). DOWNSTREAM 51.21 30.00 185.05 2.31 L.ATERAL #1 8.08 24.0.0 45.00 185.55 1. 01 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 8.79===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4)}/((Al+A2}*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N=0.01300i FRICTION SLOPE = 0.02304 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE =, 0.01350 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01827 V~LOCITY (F,:[,/SEC) 10.931 10.795 2.572 0.000 1 1 1 1 1 I 1 I I I I 1 -I 1 I I I JUNCTION LENGTH = FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 4 .. 00 FEET 0.073 FEET ENTRANCE LOSSES (DY+HVI-HV2)+(ENTRANCE LOSSES) ( 1.401)+( 0.362) = 1.763 0.362 FEET NODE 1030.00 :. HGL = < 189.081>iEGL= < 190.937>iFLOWLINE= < 185.650> **************************~*************************************************** FLOW PROCESS FROM NODE UPSTR~ NODE 1040.00 1030.00 TO NODE 104-0.00 IS CODE = 1 ELEVATION =188.33(-HYDRAULI~ JUMP OCCURS:) ---------------~------------------~------------------------------------------- CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 34.34 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 76.00 FEET ~ING/S N 0.01300 --------- - - --------:!"-----~~ ----- ---- - ---- --------------- ----------- - ------------- HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS -----------------------------------------~-----------~---~--,----------------~- NORMAL DEPTH(FT) = 1.36 CRITICAL DEPTH(FT) = 1.91 ===================.============,===;:::====::===============================:======-== UPSTREAM CONTROL ASSUMED FLOWDEP'l'H(FT) = 1.26 ====================================================~====~========~=======~=== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ---------------------------------------------------------~------------------~-- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POQNDS) 0.000 1.258 16.494 5.485 1168.99 3.256 1.262 16.429 $.456 1165.26 6.629 1.267 16.366 5.42$ 1161.58 10.130 1,271 16.303 5.400 1157.93 13.770 1.275 16.24Q 5.373 1154.32 17.564 1. 27"9 16.178 5.346 1150.75 21. 526 1.283 16.117 5.319 1147.22 25.616 1.288-16 .. 056 5.293 1143.73 30.034 1.292 15.996 5.267 1140.28 34.627 1.296 15.936 5.242 11%.86 39.485 1.300 15.876 5.217 1133.48 44.644 1. 305 15.818 5.192 1130.14 50.149 1.309 15.759 5.168 11,26.83 56.055 1.313 15.702 5.144 1123.56 62.433 1.317 15.644 5.120 H20.33 69.373 1.321 15.588 5 :097 1117.13 76.000 1.:325 15.539 5.077 111,4.3$ ---------~----~-----------~-----~------~----~~~---------~---------~-~----~---- HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ===========================================~=========~=~============~====~==== DOWNSTREAM COl'lTROL ASSUMED PRESSURE HEAD(FT) = 3.43 =========================~~===~===~===================================~======= PRESSURE FLOW PROFILE COMPUTED INFORMATION: -----.--------------------------~---~--~---------------------------~---------~- DISTANCE FROM CONTROL-(FT) 0.000 76.000 PRESSURE HEAD (FT) 3.431 2.502 VELOCI':I.'Y (FT/SEC) iO.931 :I.0.93i SPECIFIC ENERGY (FT) 5.2$7 4.3:58 PRESSURE+ MOMENTUM (POUNDS) 1204.0~ ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ , PRESSDRE+MOMENTUM BALANCE OCCURS AT 30.94 FEET UPSTREAM OF NODE 1030.00 , I DOWNSTREAM DEPTH = 3. 053 FEET, UPSTREAM CONJUGATE DEPTH = 1.305 FEET ., ---------------.,;...--.;... --- - - - -- -- --:----~---------- - - - -------- ----- - -- --~ _._--.;;.... -.,... -::---- I I I I I I I I I I I I I I I I I I NODE 1040.00 : HGL = < 189.588>;EGL= < 193.815>;FLOWLINE= < 188.330> ***************t****~**~**********************************************~******* 1040.00 TO NODE 1050.00 IS COPE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 1050.00 ELEVATION = 188.43 (FLOW IS SUPERCRITICAL) CA(.,CULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLIN~ CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT. ) (FT/SEC) UPSTREAM 31.55 24.00 0.00 188.4'3 1.88 DOWNSTREAM 34.34 24.00 188.33 1.91 LATERAL #1 2.79 18.00 90.00 188.76 0.63 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2 *V2 -Ql *Vl *COS (DELTAl) -Q3 *V3'*COS( DELTA3 ) - Q4*V4*COS ('DELTA4» / «Al+A2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06565 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04428 AVERAGED FRICTION SLOPE IN JUNCTION AS$UMED AS 0.05497 4.00 FEET 1-8.841 16.4'99 3.029 0.000 JUNCTION LENGTH FRICTION LOSSES = 0.220 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES JUNCTION LOSSES = (DY+HVI-HV2)+(ENTRANCE LOSSES) ( 1.179)+( 0.000) = 1.179 NODE 1050.00 : HGL = < 189.482>;EGL= < 194.994>;FLOWLINE= < 188.43·0> * * * * * * * * * *.* * * *.* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *.*.* * * * FLOW PROCESS FROM NODE 105.0.00 TO NODE 1060.00 IS CODE = 1 UPSTREAM NODE 1060.00 ELEVATION. = 208.71 (FLOW IS SUPERCRITICALY CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 31.55 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 302.87 FEET MANNING'S N 0.01300 ------------------------------------------------------~-----------------~--~--- NORMAL DEPTH(FT) = 1. 05 CRITICAL DEPTH(FT) = 1. 88 =================================~=~~========================================= UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.21 ======~=====~=========================~==~==========================~========= GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -----~-----------------~----------------------------------------~-------------~ DISTANCE FROM FLOW DEPTH VELOCJ;TY SPECIFIC PRESSt]RE.+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMEN':rUM (POUNDS) 0.000 1.212 15.843 5.111 1034.06 " 1.807 1.205 15.947 5.156 1039.60 3.713 1.198 16.052 5 .. 202 3,045.24 5.728 1.192 16.160 5.249 1050.98 7.861 1.185 16.268 5.297 1056.82 10.125 1.178 16.378 5.346 1062.77 12.533 1.172 10.490 5.397 1068.82 15.101 1.165 16.604 5.449 1074.98 17.847 1.158 16.719 5.502 1081.24 20.793 1..152 16.836 5.556 1087.62 23.966 1.1.45 16.955 5.612 1094.12 27.398 1.139 17.076 5.669 1100.73 31.125 1.132 17.198 5.728 1107.46 1 1 1 1 I 1 :1 1 1 1 1 1 1 I I I I 35.198 1.125 17.323 5.788 i114.31 39.675 1.119 17.449 5.849 1121. 28 44 .. 635 1.112 17.577 5.913 1128.37 50.18Q 1.105 17.707 5.977 1135.60 56.449 1. 099 17 . 84'0 6.·044 i142.95 63.636 1.092 17.974 6.112 1150.44 72.026 1.085 18.111 6.182 115!;!.0.6 82.060 1.079-18.249 6.253 1165.-83 94.479 1.072 18.390 6.327 1173.73 110.668 1. 066 18.533 6.402 1181.77 133.744 1.059 18.679 6.480 1189.97 173.706 1.052 18.826 6.559 1198.31 302.870 1.052 18.835 6.564 1198.80 ---~-~-----~---------------~-----------~------------------------.---~--------~- NODE 1060.00 : HGL = < 209.922>;EGL= < 213.821>iFLOWLINE= < 208.710> ~**************************~*****************~******************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1070.00 IS CODE = 3 UPSTREAM NODE 1070.00 ELEVATION == 211.03. (FLOW IS SUPERCRITICAL.) ----,-----------------~--------------------------------~---~--------~--------- CALCULATE PIPE-BEND LOSSES (OCEMA) : PIPE FLOW = 3·1.55 CFS CENTRAL ANGLE = 35.500 DEGREES PIPE LENGTH = 34.62 FEET PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 -------------------------~-------~--------~-------~-----------------~--------- NORMAL DEPTH(FT) = 1. 05 CRITICAL DEPTH(FT) = 1.88 =====================-=====================.===============-==~======.============ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.48 =========::;=====~======:==================-============::;:===============;::===::;::===== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: --------------..:..------------------------------------------~-----....;....;.,----,----------- DISTANCE FROM FLOW J;lE;PTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM. (.POUNDS) 0.000 1.4'83 12.628 3.961 875.52 1. 05.1 1.465 12.786 4.005 882.46 2.192 1.448 12.949 4·.053 889.'78 3.434 1.430 13.119 4,104 897.49 4.786 1.413 13.294 4.159 905.62 6.258, 1.395 13.476 4.217 914.16 7.866 1.378 13.664 4.279 923.15 9.624 1.360 1;3.860 4.345 932.59 11.550 1.343 14.062 4.415 942.51 13.666 1.325 14.272 4.490 952.92 15.998 1.308 14.490 4.570 9.63.8;3 18.577 1.290 14.716 4.655 97-5.28 21.441 1.273 14.950 4.746 987.2~ 24.639 1. 2"55 15.193 4.842 999.87 28.229 1.238 15.445 4.944 .1013.05 32.290 1.220 15.707 5.054 102·6.87 34.620 1.212 15.843 5.111 1034.06 -----------------------------------------------------------~-------~--------~- NODE 1070.00 : HGL = < 212.51.3>iEGL= < 214.991>iFLOWLINE= < 211. 030> **************************k********************.******.*************~********* F~OW PROCESS FROM NODE UPSTREAM NODE; 1080.00 1070.00 TO NODE 1080.00 IS COJ;lE = 1 ELEVATION = 2.11.69 (FLOW IS SUPERCRITICAL) ~--~------------------------------------------------------~-------------------- I I I I I I I I I I I I I I I I CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 31.55 CFS PIPE DIAMETER. = 24.00 INCHES PIP~ LENGTH = 9.45 FEET MANNING'S N 0.Oi300 ----------------~--------------.--------------~---------------~----------~----- NORMAL DEPTH(FT) == 1. 05 CRITICAL DEPTH(FT) = 1. 88 ====================~====================='=========================~==~====~== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.88 =========~========================~=====================================~===== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0.000 1. 884 10.279 3.526 802.17 0.055 1.851 10.392 3.528 . 802.69 0.218 1.817 10.520 3.537 804.21 0.490 1. 784 10.662 3.550 806.72 0.876 1. 750 10.819 3.569 810.19 1.381 1. 717 10.991 3.594 814 .. 65 2.015 1.683 11.177 3.624 ·820.09 2.792 1.650 11.379 3.661 826.56 3.725 1.616 11. 595 3.705 834.08 4.834 1.583 11.828 3.757 842.71 6.143 1.549 12.078 3.816 852.49 7.680 1.516 12.346 3.884 863.48 9.450 1.483 12.628 3.961 875.52 -------------------------------------------------------~-----------------~--~- NODE 1080.00 : HGL = < 213.544>;EGL= < 215.186>;FLOWLINE= < ·211.660> ****************************************************************************** FLOW PROCESS FROM NODE 1080.00 TO NODE 1090.00 IS CODE == 5 UPSTREAM NODE 1090.00· ELEVATION = 21l.98 (FLOW IS AT CRITICAL DEPT-f!) ------------~-----------------------------------------------~----------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) UPSTREAM 16.40 24.00 0.00 211.98 1.46. DOWNSTREAM 31. 55 24.00 21:1.66 1 .. 88 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 15.15==::=Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FoRMuLAE US~D: DY= (Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4»/«Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.0130.0; FRICTION $LOPE = 0.00526 DOWNSTREAM: MANNING'S N == 0.01300; FRICTION SLOPE = 0.01681 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01103 4.00 FEET VELOCITY (FT/SEC) 5.Z20 10.282 0.000 0.000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.044 FEET ENTRANCE LOSSES 0.328 FEET (DY+HV1-HV2)+{ENTRANCE LOSSES) = ( 1.214)+( 0.328) = 1.542 --------------~~----------~-------~---,--------~---------------------~-------- NODE 1090.00 : HGL= < 216.3:05>; EGL= < 216.728>; FLOWLINE,:= < 211. 980> * * *.* * * * * * * *.* * * * * * * * *.* * * *.* * * * * * * * * * * * * * * * * * * * * * * * * .).; * * * * * * * * * * * * * * *<* * * * * * * * * *.* * * FLOW PROCESS FROM NODE 1090.00 TO NODE 1100.00 IS CODE = 1 UPSTREAM NODE 1100.00 ELEVATION = 217.44 (HYDRAULIC JUMP OCCURS) I I I I I I I I I I I I I I I ~-----~~----------~---------------~----------~-------------------------------- CAL~ULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 16.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 197.57 FEET MANNING'S N 0.01300 -------------------------------------~-------~~-------------~--------~--~----~ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSISRES~TS ---------~------------7----~~~----------------------------------------~~--~--- NORMAL DEPTH(.FT) = 0.92 CRITICAL DEPTH(FT) = 1.46 =========================================~========~~=====~================~=== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.46 ===========-==========================================================-:;:======== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMAT~ON: ----------'-- -------------- ----..... -----.-------- ---- - --- ------------ - ---::---------- DISTANCE FROM FLOW DEP'I:'H VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (F:I') (FT/SEC) ENERGYCFT) MOMENTUM (POUNDS) 0.000 1.459 6.679 2.152 :?11.77 0.035 1.437 6.784 2.152 3.11.88 0.136 1.41,6 6.895 '2'.154 312.19 0.310 1.394 7.010 2.158 312.11 0.565 1.373 7.130 2.163 3i3.44 0.910 1.352 7.256 2.170 314.40 1.354 1.330 7,388 2.178 315.59 1.910 1.309 7.525 2.189 317 • 02 2.592 1.287 7.669 2.201 318.71 3.416 1.266 7.820 2.216 320.67 4.403 1.245 7.977 2.233 322.90 5.577 1.223 8.142 2.253 325.42 6.969 1.202 8.314 2.276 328.15 8.615 1.181 8.495 2.302 331.49 10.562 1.159 8.685 2.33:1 334.88 12.872 1 .. 138 ' 8.884 2.364 338.72 15.625 1.116 9.093 2.401 342.94 18.929 1.095 9.313 .2.443 347.55 22.938 1. 074 ~.544 2.489 352 . .57 27.876 1.052 9.788 2.541 358.05 34.090 1.031 10.044 2.598 363.99 42.165 1. 009 10.3la 2.662 370.43 53.195 0.988 10.600 2.734 377.41 69.640 0.967 10.991 2.813 384.96 99.393 0.945 11..220 2.901 393,12 197.570 0.9440 11.239 2.906 393.60 ----------------~-------~----..... -----~--------------.-~--~-~-----~7~----------~-~ HYDRAULIC JUMP: UPSTREAM RUN AN.?\LYSIS RESULTS ==========~==========~===========~============================================ DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.32 ================================~========~=======~==========~=~==============~ PRESSURE FLOW PROFILE COMPUTED INFORMATION: --:--~------------ ----- ---------,------ ------------- -"'":"'-------- - ---- - - ---------~---- DISTANCE FROM CONTROL (FT:) 0.000 103.877 PRESSURE HEAD (FT) 4.325 2.000 VE,LOCITY (FTjSEC) 5 . .220 5.2;20 SPECIFIC ENERGY (FT) 4.748 2.423 PRESSUR,E+ MOMENTUM (POUNDS) 817.69 361.94 ===~====7======~=========================================~==~================= ASSUMED DOWNSTREAM PRESSORE HEAP(FT) = 2.00 ===================================~=========================~================ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I I I I I I I I I I, I I I I, I I I I ] DISTANCE FROM CONTROL (FT) 10.3.877 10.4.762 10.5.577 10.6.349 10.7.0.87 10.7.794 108.473 10.9.125 10.9.752 110..;35.4 110..931 111.481 112.0.0.6 112.50.5 112.975 l13.417 113.828 114.20.7 114.553 114.B62 115.133 115.363 115.549 115.687 115.773 115.80.3 197.570 FLOW DEPTH (FT) 2.0.0.0. 1.978 1.957 1.935 1.914 1. 892 1. 870. 1.849 1. 827 l.8G6 1. 784 1. 762 1. 741 1. 719 1. 698 1.676 1.654 1.,633 1.611 1.590 1.568 1.546 1.525 1.50.3 1.482 1.460. 1.460. VELOCITY (FT/SEC) 5.219 5.229 5.247 5.270. 5.298 5.330 5.366 5. .40.5 5.447 5.493 5.542 5.593 5.648 5.70.6 5.768 5.832 5.90.0. 5.,971 6.045 6.123, 6.20.5 6.290. 6.380. 6.473 6.571 6.673 6,673 SPECIFIC ENERGY (FT) 2.423 2.403 2.385 2.;367 2.350. 2.333 2.;318 2.30.3 2.288 2.274 2.261 2.248 .2.236 2.225 2.214 2.204 2.195 2.187 2.179 2.172 2.166 '2.161 2.157 2.154 2 .~52 2.152 2.152 FRESSURE+ MOMENTUM (POUNDS.) 361. 94 358.0.3 354.38 350..93 347;64 344.50. 341.50 338.64 335.91 33.3.31 330. . .86 3'28.53 32'6.35 324.30. 322.39 320..63 319.0.1 3.17.55 3;1.6.24 , 315.'09 3'14.10. 313 .27 312.62 312.15 311.87 311.77 311.77 -----------~------------END OF HYDRAULIC JUMP ANALYSIS-----------..,---------~-.., I PRESSURE+MOMENTUM BALANCE OCCURS AT 96.77 FEET UPSTREAM OF ~ODE 10.90..0.0. I I DOwNS'I'REA]:1 DE)?TH = 2.159 FEET, UPSTREAM: CONJUGATE DEPTH = 0..945 FEET, I NODE: 110.0.. Go. : HGL = < 218.899>; EGL= < 219.592>; FLOWLINE= < .217.440.> ****************************************************************************** FLOW PROCESS FROM NODE' 110.0..0.0. TO NODE 1105.00 IS CODE = 5 UPSTREAM NODE 110.5.0.0. ELEVATION = 217.77 (FLOW IS AT CRITICAL DEPTH) --;.....-------,.;;...------,----------------~--------~--------""":'----------~------------""":'...;;-~ CALCULATE JuNCTION LOSSES: PIPE FLOW DIAMETER ANGJ:.,E FLOWLINE CRITJ;CAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT. ) UPSTREAM 16.40. 24.0.0. 72.0.0. 217.77 1.46 DOWNSTREAM ,16.40. 24.0.0. 217.44 1.4.6 LATERAL' #1 0..0.6 0..0.0. 0..0.0. 0.0.0 0..00 LATERAL #2 0..0.0. 0..0.0. 0..0.0. 0..00 0.0.0. Q5 G.GG===Q5 EQUALS BASIN INPUT=== LACFCD ANP oeEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DEJ:.,TA4»/((A1+A2)*16.1)+FRICTIGN LOSSES UPSTREAM: MANNING'S N = 0..0.130.0.; FRICTION S);.,OPE = Q.GG526 DOWNSTREAM: MANNING'S N = 0..0.1.30.0.; FRICTION SLOPE == G.QG674 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0..0.0.60.0. JUNCTION LENGTH 4.0..0 FEET VELOCJ;TY (FT/SEC) 5.220. 6.675 0. .. 0.0.0. ,0..0.0.0. FRICTION LOSSES 0..0.24 FEET ENTRANCE LOSSES 0, DOC) FEET JUNCTION tOSSES (DY+HV1~HV2)+(ENTRANCE LOSSES) I I :1 I I I I ·1 I I I I I I JUNCTION LOSSES = ( 0.676)+( 0.000) = 0.676 ---~------~~--------------~----~---~------~----,-------------~-------~~-------- NODE 1105.00 : HGL = < 219.845>iEGL= < 220.268>iFLOWLINE= -< 2i7.770> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 1110.00 11'05.00 TO NODE 1110.00 IS CODE = 1 ELEVAT::I:ON = 21~.63 (HYDRAULIC JuMp OCCURS) --------------------------~------~~---~---------------~--~-------------------- CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW ;L6. 40 CFS . PIPE DIAMETER = 2·4.00 INCHES PIPE LENGTH = 42.51 fE~TMANNING/S N = 0.01300 -------------------------------~--~---------~--------------------------------- HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS R:ESULTS -~ ------- -------------- -_.-- -------------------...!.. --::-~ ------ - -------:--- --~ - -~ - - ---.- NORMAL DEPTH(FT) = LOl CRITICAL DEPTH(FT) = 1.46 ============================~===~=========================~=============,~===== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1..46 ==============~=========~============================~======================== GRADUALLY VARIED FLOW PROFI4E COMPUTED INFORMATION: --------------------------------------------~---------~~~-----~~-------------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSPRE+ CO:NTROL(~T) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0,000 1.460 6.673 2.152 311. 77 0.034 1.442 6.761 2.152 311.84 0.139 1.424 6.852 2.154 312.05 0.323 1.406 6.947 2.156 312.40 0.594 1.388 7.045 2.159 312.90 0.960 1.370 7,147 2.164 313.55 1.431 1.352 7.253 2.170 314.37 2 . b2.1 1.334 7.363 2.177 315.35 2.743 1.316 7.477 2.185 316.49 3.615 1.298 7.595 2.195 317.82 4.656 1.281 7.118 2.206 319.32 5.893 1.263 1.845 2.219 321. 02 7.354 1.245 7.978 2.233 322.91 9.078 1.227 8.115 2.250 325.01 11.111 1.209 8.258 2.268 327·32 13.516 1.191 8.407 2.289 329.85 16.374 1.173 8.562 2.312 332.61 19.792 1.155 8.724 2.337 335.61 23.927 1.137 8.892 2.365 338.87 29.001 1.119 9.066 2.396 342.39 35.36.5 1.101 9.249 2.430 346.18 42.510 1. 086 9.413 2.462 349.70 -----------------------------~-----------~--------------~-----------------~--- HYDRAULIC JUMP: UPSTREAM RUN ~ALYSIS RESULTS =================================================================~============ DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.07 ==============;::=======.===================================:::;::::=====;:====='=====;==== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ---~-----------------~------------------~------~-------------------~----~----- DISTANCE FROM CONTROL (FT) 0.000 4:995 PRESSURE HEAD (FT) 2.075 2.000 VELQCITY (FT/SEC) 5.220 5.220 SPECIFIC:: ENERGY (FT) 2.498 2.423 PRESSURE+ MOMENTUM ( POUNDS) 376.61 3·61.94 ===========================~==========~==============~=================~==~=~= ASSUMED DOWNSTREAM PRE/3SURE HEAD (FT) = 2.00 I I I I I I I I I I I I I I I I I I I =================================================================:::::c==-======-=== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE 'FROM CONTROL (FT) 4.995 6.310 7.515 8.654 9.741 10.782 11.781 12.742 13.665 14.552 15.402 16.216 16.992 17.730 18.428 19.084 19.697 20.263 20.781 21.246 21. 655 ,22.003 22.286 22.496 22.62,9 22.675 42.510 FLOW DEPTH (FT) 2.000 1.978 1. 957 1.935 1.914 1.892 1. 870 1.849 1. 827 1.806 1. 784 1.762 1. 741 1. 719 1. 698 1. 676 1.654 1. 633 1.611 1.590 1.568 1. .';>46 1.525 1.503 1.482 1.460 1.460 VELOCITY (FT/SEC) 5.219 5.229 5.247 5.270 5.298 5.330 5.366 5.405 5.447 5.493 5.542 5.593 5.648 5.706 5.768 5.832 5.900 5.971 6.045 6.123 6.205 6.290 6.380 6.473 6.571 6.673 6.673 SPECIFIC ENERGY (FT) 2.423 2.403 2.385 2.367 2.350 2.333 2.318 2.303 2.288 2.274 2.261 2.248 2,.236 2.225 2.214 2.204 2.195 2.187 ~.119 2.172 2.166 2.161 2.1.57 2.154 2.152 2.152 2.152 PRESSTJRE+ MOMENTUM (POUNDSJ 361. 94 35,8.03 354.38 350.93 347.64 344.50 341. 50 .338.64 335.91 333.3'1 '330.86 32'8.53 326.35 324.30 322.39 ;320.63 319.01 '317.55 316.24 3,15.09 3'14.10 313 ,27 3,12.62 312.15 ~11. 87 311. 77 311.77 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------I PRESSURE+MOMENTUM BALANCE OCCURS AT 10.98 FEET U1?STREAM OF NODE 1105.00 I DOWNSTREAM DEPTH = 1.888 FEET, UPSTREAM CONJUGATE DEPTH = 1.112 FEET I NODE 1110.00 : HGL : < 220.090>;EGL= < 220.782>;FLOWLINE= < 218.630> *~~***************~*********************************************************** 1110.00 TO NODE 1115.00 IS CODE = 5 FLOW PROCESS FROM, NODE UPSrREAM NODE 1115.00 ELEVAT+ON = 219.13 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE' FLOWLINE CRITIC.lI.L (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. } UPSTREAM 7.80 i8.0o. 90.00 219.13 1. 08 DOWNSTREAM 16.40 24.00 218.63 1.46 LATERAL #1 0.00 0.00 0.00 0.00 ,0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 8.60~==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS.(DELTA1}-Q3*V3*COS(DELTA3}- Q4*V4*COS(DELTA4»/((Al+A2)*i6.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00551 DOWNSTREAM: MANNING"S N = 0.Q1300iFRICTION SLOPE = 0.00674 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00613 VELOCITY CFT/SEC) 4.414 6.675 0,000 0.000 I I I I I I I I I I I I I I I JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.025 FEET ENTRANCE LOSSES 0.138 FEET = (DY+HVI-HV2) + (ENTRANCE LOSSES) ( 1.245)+{ 0.138) = 1.383 ----~--------------~-----------~--------~------------------------~--------~--- NODE 1115.00 : HGL = < 221.862>iEGL= < 222.165>iFLOWLINE= < 219.130> ****************************************************************************** FLOW PROCESS FROM NODE 1115.00 TO NODE 1120.00 IS CODE = 1 UPSTREAM :NODE 1120.0.0 ELEVATION = 2'20.70 (FLOW IS UNDER PRESSURE)' CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 7.80 CFS ~I:i?E DIAMETER = 18.00 INCHES PIPE LENGTH 62.57 FEET MANNING'S NO. 01300 SF=(Q/K)~*2 « 7.80)/( 105.043»**2 = 0.00551 HF=L*St = ( 62.57)*(0.00551) = 0.345 -------------~----------~--------------~---------~--------~----~----~-7---~--- NODE 1120.00 : HGL = < 224.20'l>iEGL= < 222.510>iFLOWLINE= < 220.700> ****************************************************************************** FLOW PROCESS FROM NODE 1120.00 TO NODE 1120.00 IS CODE = 8 UPSTREAM NODE 1120.00 ELEVATION = 220.70 (FLOW IS uNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(~ACFCD) : PIPE FLOW = 7.80 CFS PIPE DIAMETER = FLOW VELOCITY = 4.41 FEET/SEC. VELOCITY HEAD = CATCH BASIN ENERGY LOSS = .2* (VELOCIry HEAD) = .2*( 18.00 INCHES 0.303 FEET 0.3(3) = 0.061 NODE 1120.00 : HG~ = < 222.570>iEGL= < 222.570>iFLOWLINE= < 220.70.0> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL BATA: NODE NuMBER = 1120.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 220.70 221.78 FOR DOWNSTREAM RUN ANALYSIS ======================================~============"========::;:==========.===::;==== END OF GRADUALLY VARIED FLOW ~ALYSIS I I I I I I I I I I I I I I I I I I I 3 I I' I I APPENDIX 3 I TYPE. 'F' CATCH BASIN ANALYSIS. I AND DITCH ANALYSIS I I I I I I I I >1 I I I I REPORT/2IS6DR-ADD.DOC 3 I I I I I I I I I I I I I I I' I I I I PROJECTDESIGN CONSULTANTS PLANNING ENGINEERING SURVEYIN,G 701 B Street, Suite 720, San Diego, CA 92101 (619) 235-6471 • Fax (619) 234-0349 PROJECT 5Heu..ey Uk! II 1 "': }:}OIA:3ti tU14 ' SUBJECT n~ . IF' C'A-T{}( P,?~!J.' . . , PAGE OF_~~--,,-­ JOB NO. --,-_~'-,----------,--_-'-'- , DRAWN BY J:c,q DATE '~i leI Oz, CHECKED BY DATE __ ~ ~lOO= 16. '1 ';;1r j&,O t.?S .-~M"E atf:-1tE PLlJuJ ~ 1 ~PeIJ lAiq S . 3' 1 0·1'5 c f} If ZJrt 1 / C " D. "2.1 -[<.,kC~'S HJtJ.iO~k.. 0,1/121 (3 x. D.18t;) Vt~ hi ""P h '= OJ n 1 tJ . \ 7' L (J. fJ'5 \' 4-fJcrr OetRtG Fll)uJ·' " C flJ?t~ wete.. FlAW . . ~/z, . t ... Qw -::. C L H I to; 2.& ~ ""JJ4~ 11 l41tIDBook 1!.e.. ~~,t..)( ~)(Ii)o/z' =v-H" o.rA' . 1 D.14Lf J L O/uS \ 04-WEiLl?, PWuJ =-V uJB1 f.,F LouJ ftoV5fl AJ '5 I I I I I 3-FT CONC. BROW DITCH ALONG SOUTHERLY BOY OF SHELLEY UNIT 1 Worksheet for Circular Chan riel Project Description Worksheet Flow Element Method Solve For Input Data Mannings Coefficient Slope Diametl;lr .Discharge CONC DITCH ALONG S-SDY OF l Circular Channel Manning's Formula _ Channel DElpth 0.015 0.010000 ftlft 36 in 15.99 cfs I ~R_e_s_ul_ts _______ ---,.'.,.-;. ______ ,--_ I I I I I I I I Depth Flow Area Wetted Perimeter Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full Flow Type 1.08 ft 2.3 ft2 3.86 ft 2.88 ft 1.28 ft 36.0 % 0,005380, ftlft 6.99 ftls 0.76 ft 1.84 ft 1.38 62.18 efs 57.80 cfs 0.000765 ftlft Supercritical Project Engineer: Adolph Lugo t:\ ... \conc brow ditch at south bdy-of unit 1.fm2 Project Design Consultants FiowM<;Ister v6.1 [6'14oj 05/10102 12:31 :08 PM © Haestad Methods, Inc. 37 Brookside Road Waterl;)Ury, CT 06708 tlSA (203) 755-1666 Page 1 of 1 . I I I I I I I I I I I I I I I I I I Project Description Worksheet Flow Element Method Solve For Section Data Mannings Coefficient Slope Depth Diameter Discharge 3-FT CONC. DITCH ALONG SOUTHERLY BOY OF SHELLEY lJNIT 1 Cross Section for Circular Channel CONG DITCH ALONG S-BDY OF L Circular Channel Manning's 'Formula Channel Depth 0.015 0.010000 ftlft 1.08 ft 36 in 15.99 cfs 36 in V:1~ H:1 NTS Project Engineer: Adolph Lugo t:\. .. \com: brow ditch at south I;ldy of unif1.fm2 Project Design COl1sultants FlowMaster v6.1 [6140] 05/1 0/02 12:31 :20 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 - ----- - - -.. --.. -.-~-.,., .. ~ ... ~. lIIIIII"-Z~.-­ NOT TO SCALE .. -.. -' \ '" <0 -" '" ! " , ,<, '1' . , \t-' ,\ ( , . ", 1'1. \ " V '~S\ .' ~)~ J , . , i/' /" ,', !. \~-' ,,,--/ ___ '. x /68: /~ " _: --,'"""'--_-i-_~_ J' : ", .. , ,'I . ,-f '. . \ i. \f' ',-l \1, , ! L __ _ , 17C18 "''>;,,'. "", 1- ,&:i~ ',,' / "-" , , , -_/-- '/" , / -'/', " , .' ' . '/ -/ .', : .. /:: x :9j~1- /' )- / --/:' " .. / --. !,'. , / . ! -;' : , I SHELLEY RANCH -UNIT 1 DEVELOPED CONDITIONS 100 YEAR DRAINAGE MAP EXHIBIT "B" \ '-.' x 2{0.9 SCHOOL SITE .,--' "/,, ~~~-_-_-_ _,-< __ •• _ J \ -' \ -,~---- ,-' --/' '.-: " 214.7 --,,---- / .: --,- 4.23 AC 0,00 = 7.B cfs < 220.5 , >( Z}U2 , x 220.! --_. --. --?~ .. ---------------'~ ----, . ~ , ~ ~~~~ , I I I I I I AS \ ! 1.85 AC Q,oo =5.0 efs \ , . , I '. : i t I : ' '. , \ \ : :, I:: 22S?'( , .\ ,,'-'--~7 / / " .;/497 /' / / /' -- )( 2488 -/ 38/ __ -tT',7,8'8 ___ ._. \ \ 2 ~ 2.f,?] ;,+69.28 _' ___ -->-~ ~IC -.::.' :..:.:. __ /'''-............. .~. ~ " , g I \_ ..,F-r._ 1 2>00 -1- 7··· .. 1 ,~-~ 'j ~'-6 J' _ '-' ' «---:-:-- 1 -~-- . }, J~#~"] --. --- Poo. x 257. 7 --,-- '" 2585 x ~?58 7 --x~.2~r- t~"-i=~,· ... ·, ...... ~~ .. ~~ .. _"'::r __ ... ..::.._~·~"""~~Jo ___ , y_~:~~.~.OJ • • 8 ~~\ \ 26J.J , .f6.!. <I , x 261.'- x 260.8 ~ 259.5 x .?jg C .--' , , , . i , AJ 0.1 AC o LD CO f- U 4.4 AC 0,00=8.4 efs AB ·0.45 AC =0.7 efs I ,~ ---------; -' ~~ EXIS" 20' TYPE B-2 INLET PER OWG. JJI-2 ~~ 6A1 -tn", PVT, TYPE A CURB INLET , 2A "W' -~ PER OWG. JJ1-,. ",," --.... - -• -•••• -• IIII!I_ •.• -•• ----.--..... - --<-,:,.·::,~·:",;.~~~··--I--'-:-::~.~ PVT 1~;:;~; ~ ~442% . ."59 _ PER OWG. JJI-2A owe. JJI-2A ...... . PVT, 24" RCP @ ~ J.50% . ~PER OWG, JJI-2A EXISTING TYPE B BROW PER owe, JJI-2A " ;/{)] A9 0.25 AC 0,00 =0.4 efs , , -f-- CA 24" Rep, /:54 T85' 10 L...----;":;-'---, 0.3 AC 0)00 =0.9 efs 0.26 AC 0,00 =0,8 efs ----,,) • /-'4."'. EXISTING TYPE "A" STRAIGHT HEADWALL PER O,JO WITH LIGHT CLASS RIP-RAP ENERGY OISSIPATOR OvrR GEOTEXTILE FILTER FA8RIC (2.64' THK) QI00~14.7 cis, VI00=11.8 Ips PER owe's, J42-6A & 68 REMOvr RIPRAP AND CONSTRUCT J" WIDE CONCRETE BROW DITCH PER 0-75 LEGEND At 3.02 AC 0,00 = 6.3 efs -------- SUBBASIN NAME DRAINAGE AREA Q (in cfs) (FOR 100 YEAR) BASIN LIMITS BASIN LIMITS FOR EXISTING TYPE A CURB INLET A T SCHOOL SITE PROJECT BOUNDARY Project Design Consultants PLANNI,VC ENCINEERING SURV EYING 701 "8"' Street. Suite BOO, San Diego. Ca. 92101 619-235'6./71 FAX 23./-0349 Job no. /424.10 , , , , , \ /666 / , ",25 '. , I >.t! • \ I ! iNJ .. '~ -/ / . , // ~ !74) I; •. 1 //. / /- f i ' / ' , , . . ,/ / / '95J / ! .\\ . . I I \, \ ) --or - \ \ \ .\ ,-" ':J." < :9.1-1 / " /;;3 () -y SHELLEY RANCH -UNIT 1 EXISTING CONDITIONS 100 YEAR DRAINAGE MAP EXHIBIT "A" / -,--,-- SCHooL '" J-r r' v 1:: , . , I XZI7_" )I ~ .l.?O! 2.'5.J ~ote > '"- : : I' I I \ ' ! , , ..: 223' I ~: " ',~, -; _.- , I' x 2.?.92 :'30,:' , • ;;'19 I , :'1,':/_9 " L'd9 ;"'Sf-"-~ CO\ TC';'lS AOl.~ A;o";"J~''I'I\T~ • .:-1,:.,' , x ./23.7 ~ , \ , ',.? .10. 5 \ ! .8 250. " (: 50,.1 I .\-- " 246:1 " ;;'18.2 ! / <' , .7.10.,'; \ -. \ " '/,'5 \ . , , ) (' , ,"-1-" , ---. •• -,<}! ____ I .-'/'-1 • ~57.! , --> , • ;;'449 r----_______ -",T ;:44 • ••. _'6.'1 -', - / -" - -,- , , , ~ '.----"- " ;.7486 • NJ! , .,..J5' •. 'JJ _' P cyc;ro""c E.:::"-J<re~: '.~ '~-:-'a5 " --' / . I , ;, ; , "- ; i ----. -". --t - ~ ,/586 -s'"" • 2587 x-Z59! • .1590 " ..,"'58.8 -~~--~--,-.------- ---. " ,( .i49'z .' x 244.' , \ -. \ -, :., , ~. ~ : \ , '. I . \, ~ 24J 9 , , '.< 2523 a •• :-"5.90 1 , -'Gyg'0~"C: ::~'"-~'""~~t \ \ \ '\ ' 24:; I \ ,~ ~ ~ \ ' \ -" .--->:-;:-.<>-,"'5-,,0 'bc"s ' ',/, ' ~pc' ,,,~_ "'G~ ','. ,~,-'%: -: J '-"~~ : .?~4c < .?!4 5 LEGEND EI 9.J AC O!ao = 15.6 efs ----- SUBBASIN NAME DRAINAGE AREA Q (in cfs) (FOR 100 lEAR) BASIN LIMITS PROJECT BOUNDARY Project Design Consultants PLANNING ENGINEERING SURVEYING 701 "B" Street, Suite 800, San Diego, Ca. 92101 619 ·235·6471 FAX 234· 0349 Job no, 1424,10 . • ! .. ,.f· ,. --"~", .- 154.8 ,'.', ~. " 18~5 T: \Engr\1424 \unit-l \EXHIBIT5\CC20RNEXH-I.dwg 05/13/02 08'15.'19 AM PDT "t; .. I It x 165' ~ . --- .r-, .,,-. ""-.. . "". ."" / . . ''K 7 -- '-.. .. "//8.8 " 1787 l __ _ Tc - I .: ./ / I / .'" / UlvlT 1 .., If"""" >", r·t' f<='" EXHIBIT 'A' (CONSTRUCTION CHANGE TO 100 YEAR DRAINAGE MAP) . . \ \ , / . . '. "',' MH \ \ \ ':>09.91 ( "I." :)1 '4 \ \ ~ 210.9 \ ,-- -&., v . \ ,,,~"':,,, __ ""'-~·T· --"\ 'ue , 22&12 x 2/75 _. Gote Gotc , , i . , i : \ ~-",' x )21:'. J , ,-, r'i JOOI L>ur .:.....J r. j-r r L> G HYDROLOGY DA TA FOR THE PIONEER ELE. SCHOOL PER REPORT BY ROGERS ENG .. OA TEO 3/26/93. r=m~A~C q 0,00 =3.50 efs Tc = 21 min. EXIST. 20' nPE B-2 INLET PER OWG. 331-2 ~E;~IST.. PVT. TYPE A CURB INLET PER OWG. 331-2A 2/88 • ?PO? c " 220.! x 220.5 " 2/9.5 • HYDROLOGY OA TA FOR BY POC, OA TED II /lJ/LV. , I i , \ / / / x 2-1;'6 '-. / '" 24V.---- / / J $ )(.N4.9 >, , ~ ~ 24:: G-- ---.. • )( 237.0 " 216.5 I j/ "" 37 ---~ ----- \ \ • 8 " 9 f) ] " 8· 8 o o 8 8 c L I I r , . I i 39 1 L. ] x 2466 --- 8 J x 2fl9 x 2JI.6 [ --- I @2J04 IJ \ \ \ • , .. ·.~·'--~ifj!Llb . ~ 250.J ~, n )( 244.<1 n co " 243/ """ u u )( 2'?~6 \ . \ : \ .\ '. I' , '. " I : I 3' BROW01TCliTYPE ~ WM)f .. ' o 75 (DEP NO r . .' .. " 22'-1 -',~.J.22.J./ fooal, , '. i .. ~ : ' -" 25,6.3 /f*/ " .~,,-,'. -~ "2571 """ , .. . -. --. - .. .. . ' .. )-;'" - -. ~--". x 259.8 27+5IJ.OJ _ h'" ", ,~ .~ / . a 1 r", >. '" ; '" ... . 0,00 =0.7 efs Tc = 13 min. / .' 0,00=·14.7 efs . '--Tc = 12 min, IE/A. .,222.83 LEGEND At 3.02 AC 0,00 =6.3 efs -_._ .. _- INODE 1001 HYDROLOGY DATA FOR THE RICE PROPERTY PER DWG. 342-6B SUBBASIN NAME DRAINAGE AREA Q (in cfs) (FOR 100 m.R) : -' ' " t '" \. ! . •• -, < ". : " BASIN LlMI TS .. '.' BASIN LIMITS FOR EXlSnNG TYPE A CURB INLET AT ScHDOL . SITE PROJECT BOUNDARY . AES RA nONAL METHOD NODE NUMBER ' .. ; ,.'" "2278 )( AC " 10.5 AC 0,00 = 18.5 efs Tc = 17,2 min. HYDROLOGY DA TA FOR THE PIONEER ELE. SCHOOL PER REPORT BY ROGERS ENG., OA TEO 3/26/93. '-[lasT. PVT. 24" Rep @ ~ 3.50% PER OWG. 331-2A EXISTING nPE B BROW 01 PER owe. 331-2A " 2102 A7 0.25 AC 0,00 =0.4 cfs 0,00 = 0.9 efs 0,00 =0,8 efs EXISTING TYPE "A" STRAIGHT HEADWALL PER 0-30 mTH UGHT CLASS RIP-RAP ENERGY DISSIPATOR OVER GEOTEXTILE ALTER FABRIC (2.64' THK.) QI00=14.7 cfs, Vroo=11.B fps PER OWG'S. 342-6A '" 6B REMOVE RIPRAP AND CONSTRUCT J' mOE CONCRETE BROW DITCH PER 0-75 , . . Project Design' Consultants·· PLANNING. ENGINEERING 701 "J!' Street, Suite BOO. San 619 '235'6471 FAX 234'0349 . . '« • , .