Loading...
HomeMy WebLinkAboutSDP 99-16; KINDERCARE CARRILLO; DRAINAGE STUDY; 2000-07-191· I I I I I I I I, I~ 1·. I. I. I) 1: I I I ·I. DRAINAGE STUDY FOR KINDERCARE .... CARRILLO RANCH Prepared by: O'DAY CONSULTANTS, INC. 5900 Pasteur Court Suite 100 . Carlsbad, California 92008-7317 Tel: (760) -931-7700 Fax: (760) 931-8680 Job No. 991031 July 19, 2000 I I I I I I I I I I I. I I I I I I I I TABLE OF CONTENTS SECTION 1 HYDROLOGY AND HYDRAULIC STUDIES FOR ON-SITE SYSTEM INTRODUCTION SECTION2 SECTION3 SECTION 4 Purpose of Study Scope STUDY AREA Soils Groups Land Uses HYDROLOGY Rational Method Description Program Process HYDRAULICS Progress Description Program Process CONCLUSION Related Material Summary Vicinity Map Runoff Coefficients Isopluvial Maps 100-Year, 6-Hour 100-Year, 24-Hour Hydrology 100 year Analysis Hydraulics 100 year Analysis 18" RCP pipe size calcs. I I I I I I I I I I I I I I I I I I I SECTION 5 Exhibit A On-Site Drainage Map I· ; I I I I I I I I I I I I I I 1· I ·I I DRAINAGE STUDY FOR KINDERCARE -CARRILLO RANC.H SECTION 1 I I I I I I. I I I I I I I I I I I I I INTRODUCTION Purpose of Study This dra~ge study was prepared to determine the runoff quantities for our site. An on-site storm drain system will be sized during thi~ study to accept both on-site and off-site drainage. Scope This study analyzes the 100-year flow and 10-year flow for the ultimate condition of the proposed site and any off-site areas. STUDY AREA Soils Groups For on-site and off-site, a worst-case condition was assumed by using soil type D for the entire site. Land Use For on-site am;l off-site conditions, commercial land use was utilized for the entire site. HYDROLOGY The rational method for storm water runoff was used for this study according to the County of San Diego Hydrology Manual and Design Procedure Manual. The CivilCADD San Diego County Rational Method Computer Program was used to model the basins and is described in this report. The pipe sizes were determined by utilizing Manning's formula. The CivilCADD program uses this formula for open channel flow as the drainage basins are routed and provides preliminary sizes of the pipes during the hydrology analysis. I I I I I I I I I I I I I I I I I Rational Method Description Th~ rational method, as described in the 1985 San Diego County Flood Control/Hydrology Manual,· is used to estimate surface runoff flows, which are then used to size both permanent apd temporary drainage and desiltation facilities. The basic equation: Q = CIA C = runoff coefficient (varies with surface) I = intensity (varies with time of concentration) A = area in acres The design storm for this project is the 100-year event; the corresponding 6-hour rainfall amount is 3.0 inches. A computer program developed by CivilCADD/CIVILDESIGN Engineering Software@ 1993, Version 3.2, was used to determine the times of concentration and corresponding intensities and flows for the various hydrological processes performed in thi~ model. This program also determines the street flow and pipeflow characteristics for each segment modeled. Program Process The rational method program is a computer-aided design program where the user develops a node link model of the watershed. The node link model is created by developing independent node link models of each interior watershed and linking these submodels together at confluence points. The program has the capability of performing calculations for l1 different hydrologic and hydraulic processes. These processes are assigned and printed in the output. They are as follows: 1. Initial sub-area input, top of stream .. 2. Street flow through sub-area, includes sub-area runoff. 3. Addition of runoff from sub-ar.ea to stream. 4. Street inlet and parallel street and pipeflow and area. 5. Pipeflow travel time (program estimated pipe size). 6. .Pipeflow travel time (user-specified pipe size). 7. Improved channel travel -Area add option. 8. Irregular channel travel time -Area add option. 9. · User-s.pecified entry of data at a point. 10. Confluence at downstream point in current stream. 11. Confluence of main streams. I I I I; I I I I I I I I I I I I I I I HYDRAULICS The Advanced Engineering Software (AES) Pipeflow Hydraulics computer program was used to calculate th~ hydraulics of the storm drain pipe system for the ultimate conditions of the proposed site. The program estimates the gradually varying water surface profile by balancing the energy equation at user-specified locations. The AES pipeflow program analyzes ·both the. supercritical and subcritical flow. From this program the hydraulic grade line, the energy grade line and losses were determined for the ultimate conditions. The bead loss computations were based on LACRD, LACFCD, and OCEMA current design manuals. The junction analy_sis was based on the L. A. Thomson equation. CONCLUSION We analyzed the on--site Storm Drain system and based on our results we concluded that the existing 18" RCP with a grade of 1.0% is adequate to drain 8.1 cfs from our site. I 1· I I I I I I I I I I :I I 'I I I I I I DRAINAGE STUDY FOR KINDERCARE -CARRILLO RANCH SECTION2 I I I I I I I I I I I I ! I I ·1 I I- I I I CITY OF OCEANS/OE PACIFIC OCEAN. '8 ··~ p. I . VICINITY _ MAP N(J $CALE· NOT TO SCALE SITE I I J I I,-,-. i I I I I I I I I I I I I ,I TABLE 2 RUNOFF COEFFICIENTS (RATIO~L METHOD) DEVELOPED .AREAS (URBAN) Coefficient, C Soi I -~-G~~up (~) Land -Use A B C D Residential: S ·i ng 1 e Fam i 1 y .40 .45 .so .55 - Multi-Units .45 .50 .60 . 70 Mobile homes .45 .50 .55 .65 Rural ( 1 ots greater than 1/2 acre) .30 .35 .40 .45 Commercial (2) .10 . 75 .Bo ® 80% Impervious Industrial {2) .80 .85 .90 .95 90% Impervious NOTl;S: (1) Soil Group -maps are available at the ·offices ·of the Department of Public Works. (2)where actual conditions deviate significantly from the tabulated impervious- ness values of 80% or 90°/o, t;he values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than ~.50. For example: Consider commercial property on D soil.group. Actual imperviousness · • 50% Tabulated· imperviousness = 80% Revised C = 50 x 0.85 = 0.53 80 IV-.A-9 APPENDIX IX-B Rev. 5/81 courrrv OF SAN DIEGO DEPARTMHIT OF SANITATION & FLOOD CONTROL 33• 45' I t i, I 15 I '.+-----t-----fi" \, ,./. ~ j ! -·- 45 1 . I" ~ -···-.. · • 1 1 1 n 1-_ ,_ • "' • .. " p,.,,,.f·d br NATIO:tAL OCEANIC AND AT. OSPIIEIUC I\D•mustRATION U.S. DEPARTMENil' OF COMMERCE IP&CIAt. lT~DIES DRANC'II, OFFICE OF II UROLOGY, N/\TIONAL WEATHER SERVICE 301 118 1 --·---'•SI --30 1 -15 1 111° 115' 30 1 .7 -·----·--15 I --l J6° -111111 I ·1 I I I I' I. I I I 1. I I 11 I ~j - " . ' - ! l -C -. ... . , ._ , 0 _., .. . ·--· ._ , ~- ._ , -;: : , . . • .,. . -: , "' .!: ! > I" ' ., . -i C: % ~> r, : -i v. c r- % ~ > ~ r- != ~ 0 en :n · '5 og ; o or . :I . r: : -. : - n "t J - > n > - r- : 2 ; ~ 00 ; ? ~ \. N 0 -V'I "I : > - - = -; r, : .; -~ ~ · - - · 2, . ~ ~~ : - ~ - - : ' " - - , - - ~ - 1 - ~ · 1 . , __ J ~ ~ ~ .: I -- , - - 7 ' - - - - · · 1 1 __ +- - + - - + . . . : . . ~ - ~ L : . , : _ J o • I .. I :~ i I /: •. -r ·_ · .l .. . :i: : : : r- , -, Ei ' ° •• o - ,, r - , I ~ r- = l C" ) -~ - > .. . - " > C: ~z ) ~ c: = ' -t- ? 0 ~ r-c: : c= : -,: : s r- er , .. . . 0 0 I -< ~ :: : , :: : , ~ ~ I -= --0 ' ·- I I I I I I I I I I I I 1- 1 I I 1, I I DRAINAGE STUDY FOR KINDERCARE -CARRILLO RANCH SECTION3 \ ' I I .I I I I I I I I I I I I I I I San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Rational method hydrology program b9-sed on Version 3.2 San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 07/19/00 ----------------_______ , ---.--------------·---·------------------------- Ql00 HYDROLOGY STUDY J.N. 99-1031 KINDERCARE BY: CSO 7/19/00 FILE: 9931SD ----------------------------------·-------------------------------------- ********* Hydrology Study Control Information********** O'Day Consultants, s·an Deigo, California -S/N 10125 Rational hydrology study storm event year is Map data precipitation entered: 100.0 6 hour, precipitation(inqhes) = 3.000 24 hour precipitation(inches) = 5.500 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 54.5% San Diego hydrology manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION**** Deqimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type Q.000 0.000 = 0.000 1.000 Initial subarea flow distance Highest elevation= 362.00(Ft.) Lowest elevati(;,n = 337. 00 (Ft. ) Elevation difference= 25.00(Ft.) ] 50.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.86 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [1.8*(1Al-0.8500)*( 50.00A.5)/( 50.00A(l/3)]= Setting time of concentrcttion to 5 minutes Rainfall intensity (I) = 7.904 for a 100.D year Effective runoff coeffic~ent used for area (Q=KCIA) Subarea runoff= 0.067(CFS) Total initial stream area= 0 .. 010 (Ac.) 0.86 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++t+++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** IMPROVED CHANNEL TRAVEL TIME**** I I I I I I 1· I I ·I I I I I I I I- I I Upstream point elevation= 337.00(Ft.) Downstream point elevation 336.lO(Ft.) Channel l~ngth thru subarea 60.00(Ft.) Channel base width 5.400(Ft.) Slope or 'Z' of left channel bank= 20.000 Slope or 'Z' of right channel bank= 20.000 Estimated meari flow rate at midpoint of qhannel Ma~ning's 'N' = 0.030 Maximum depth of channel 0.135(Ft.) Flow(q) thru subarea = 0.134(CFS) Depth of flow= 0.036(Ft.), Average velocity Channel flow top width= 6.834(Ft.) Flow Velocity = 0. 61 (Ft/s) Travel time 1.63 min. Time of concentration= 6.63 min. Critical depth= 0.026(Ft.} Adding area flow to channel Decimal fraction soil group A= Decimal frac;:tion soil group B Decimal fraction soil.group C Decimal fraction soil group D 0.000 0.000 0.000 1. 000 0.134(CFS) 0.613(Ft/s) [COMMERCIAL area type Rainfall intensity Runoff coe·fficient Subarea runoff 6. 587 ( In/Hr). for a 100. 0 year storm used for sub-area, Rational method,Q=KCIA, C = 0 .112 (CFS) ·for O. 020 (Ac.) Total runof.f = 0.17~(CFS) Total area= 0. 03 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil 9roup A Decimal fraction soil group B Decimal fraction soil group C group D 0.000 0.000 0.000 1. 000 6.63 min. Decimal fraction soil ~COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 6.587(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.392(CFS) for 0.070(Ac.) Total runoff= 0.571(CFS) Total area= 0 .10 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station· 104.000 to Point/Station 104.000 **** SUBAREA FLOW ADDITION**** Declmal fraction soil group A= 0. QUO 0.000 = 0,000 Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D 1.000 [COMMERCIAL area type Time of concentration= Rainfall intensity Runoff coefficient used 6.63 min. 6.587(In/Hr) for a 100.0 year storm for sub-area, Rational method,Q=KCIA, C 0.850 I I I I I I I I I ·I I I I ,1 ! ·1 I I I Subarea runoff= Total runoff= 1.120(CFS) for 0.200(Ac.) 1.691(CFS) Total area 0.30(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 **** ·PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 334.35(Ft.) Downstream point/station elevation 332.83(Ft.) Pipe length 50.66(Ft.) Manning's N = 0.011 No. of pipes= 1 Required pipe flow = 1.69l(CFS) Given pipe size= 12.00(In.). Calculated individual pipe flow 1.69l(CFS) Normal flow depth ih pipe = 3. 93 (In.) Flow top width inside pipe= ll.26(In.) Critical Depth= 6.63(In.) Pipe flow velocity= 7.56(Ft/s) Travel time through pipe= 0.11 min. Time of concentration (TC) = 6.74 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil group A= 0.000 Decimal fraction soil group B 0.000 Decimal fraction so:j.l group C 0.000 Decimal fraction soil group D 1.000 [COMMERCIAL area type 6. 74 min. Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 6.517(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.443(CFS) for 0.080(Ac.) Total runoff= 2.134fCFS) Total area= 0.38 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION**** group A= 0.000 group B = 0.000 group C = 0.000 group D 1.000 6. 74 ,min. Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [COMMERCIAL area type Time of c.oncentration Rainfall intensity Runoff coefficient Subarea runoff 6.517(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 1.44.0(CFS) for 0.260(Ac.) Total runoff= 3.574(GFS) Total area= 0.64(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1d6.000 to Point/Station 108.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I .I I I I. I I I I I I I I I I I I I Upstream p0int/station elevation 332.83(Ft.) Downstream point/station elevation 332.60(Ft.) Pipe length 7. 70 (.Ft.) Manning's N = 0. 011 No. of. pipes= 1 Required pipe flow 3.574(CFS) Given pipe size = 12. 00 (In.) Calculated indivi~ual pipe flow = 3.574(CFS) Normal flow depth in pipe= 5.94(In.) Flow top width inside pipe= 12.00(In.) Critical Depth= 9.68(In.) Pipe flow velocity= 9.22(Ft/s) Travel time through pipe= 0.01 min. Time of concentrat;ion (TC) = 6.76 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 t.o Point/Station 108.000 **·** SUBAREA FLOW ADDITION **** Decimal fraction soil group A Decimal fraction soil group B = Decimal fraction soil group C group D 0.000 0.000 0.000 1.000 6.76 min. Decimal fraction soil [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 6.508(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C O.lll(CFS) for 0.020(Ac.) Total runoff= 3.685(CFS) Total area= 0. 66 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108. ooo· to Point/Station 110. 000 **** PlPEFLOW TRAVEL TIM!!: (User specified size) **** Upstream point/ station e;Levation = 3,32: 60 (Ft. ) Downstream point/station elevation 330.76(.Ft.) Pipe length. 61.02 (Ft.) Manning's N = 0. 011 No. of pipes= 1 Required pipe flow = 3,685(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow 3.685(CF$) Normal flow depth in pipe= 6.03(In.) Flow top width inside pipe= 12.00(In.) Critical Depth= 9.82(In.) Pipe flow velocity= 9.33(Ft/s) Travel time through pipe= 0.11 min. Time of concentrat;ion (TC) -6.87 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil group A = 0.000 Decimal fraction soil group :f3 = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I I I I I I I I I I I I I I I I I I I ]. 6.87 min. [COMMERCIAL area type· Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 6.441(In/Hr) for a 100.0 year storm used for sµb-area, Rational method,Q=KCIA, C 0-.219(CFS) for 0.040(Ac.) Total runoff= 3.904(CFS) Total area= 0. 70 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Po;i.nt/Statiori 110.000 to Point/Station ll0.000 **** SUBAREA FLOW ADDITION**** Decimal fraQtion soil group A Decimal fraction soil group B Decimal fraction soil group C group D 0.000 0.000 0.000 1. 000 6. 87 m:i;n. Decimal fraction soil [COMMERCIAL area type Time· of concentrat.ion Rainfall intf;'!nsity Runoff coefficient Subarea runoff 6.441(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.383(CFS) for 0.070(Ac.) Total runoff= 4.287(CFS) Total area.= 0. 77 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D = [COMMERCIAL area type 0.000 0.000 0.000 1.000 Time of concent:r;ation = 6 .. 87 mtn. Rainfall intensity= 6.44l(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C - Subarea runoff O. 219 (CFS) for O. 040 (Ac.) Total runoff= 4.506(CFS) Total area= 0. 81 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station ll0. 000 to Point/Station ll2. 000 **** PIPEFLOW TRAVEL TIME (Use:r specified size) **** Upstream point/station elevation== 330.76(Ft.) Downstream point/station elevation= 330.40(Ft.). Pipe length 17.61(Ft.) Manning's N = 0.011 No. of pipes= 1 Required pipe flow 4.506(CFS) Given pipe size=;, 12.00(Ih,) Calculated individual pipe flow 4.506(CFS) Normal flow depth in pipe= 7.75(In.) Flow top width inside pipe = 11. 48 (In,) Critical Depth= 10.64(In.) Pipe flow velocity= 8.4l(Ft/s) Travel time throµgh pipe= 0.03 min. Time of concentration (TC) = 6.90 min. I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 112.000 **** SUBAREA FLOW ADDITroN **** group A = 0.000 group B = 0.000 group C 0.000 group D 1.000 6.90 min. D!:lcimal fraction soil Decimal -fraction soil Decimal fraction soil Decimal fraction soil [COMMERCIAL area type Time of concentration Rain£all intensity Runoff coefficient Subarea runoff= Total runoff= 6.420(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.164(CFS) for 0.030(·Ac.) 4.670(CFS) Total ar~a = 0. 84 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Qpstream point/station elevation= 330.40(Ft.) Downstream point/station elevation= 329.28(Ft.) Pipe length = 56.14(Ft.) Manning's N = 0.011 No. of pipes= 1 Required pipe flow 4.670(CFS) Given pipe size= 12.00(In.t Calculated individual pipe flow 4.670(CFS) Normal flow depth in pipe= 8.02(In.) Flow·top width inside pipe= ll.30(In.) Critical Depth= 10.17(In.) Pipe flow velocity= 8.39(Ft/s) Travel time through pipe= 0.11 min. Time of concentration (TC) = 7 .·01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 t'o Point/Station 114.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D 0.000 0.000 0.000 1.000 7.01 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff ~oefficient Subarea runoff 6.354(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.1621CFS) for 0.030(Ac.) Total runoff= 4.83Z(CFS) Total area= 0. 87 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Po·int/Station 114. 000 to Point/Station 114. 000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil group A Decimal fraction soil group B 0 .. 000 0.000 I I I I I I I I I I I I I I I I I I I Decimal fraction soil group C Decimal fraction soil group D 0.000 1.000 7.01 min. 6. 354 (In/Hr) .for a 100. 0 year storm used for sub-area, Rational method,Q=KCIA, C [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff - Total ruri,of.f 0.324(CFS) for 0.060(Ac.) 5.156{CFS) Total area= 0. 93 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 329.28(Ft.) Downstream point/station elevation 328.60(Ft.) Pipe length 32.52(Ft.) Manning's N = 0.011 No. of pipes= 1 Required pipe flow· 5.156(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow 5.156(CFS) Normal flow depth in pipe = 8. 4 7 (In. ) Fldw top width inside pipe= 10.93(In.) Critical Depth= 11,09(In.) Pipe flow velocity= 8.70(Ft/s) Travel time through pipe= 0.06 min. Time of concentration (TC) = 7.08 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 116.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type 0.000 -0.000 0.000 1.000 Time of concentration 7.08 min. Rcl,infall intensity -6.318('.l:n/Hr) ;for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C S~barea runoff 0.161(CFS) for 0.030(Ac.) Total runoff= 5.317(CFS) Total area= 0. 96 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 118.000 **** PIPEFLOW TRAVEL TIME (User s:pecified size) **** Upstream point/station elevation= 3:28.60(Ft.) Downst-ream point/station ele;va,tion = 328 .13 {Ft.). Pipe length = 22.31(Ft~) Manning's N = 0.011 No. of pipes= 1 Required pipe flow 5.~17(CFS) Given pipe size= 12.00(In.) Ccl,lculated individual pipe flow 5.317(CFS) Normal flow depth in pipe= 8.66(In.) Flow top width inside pipe = 10. 7 6 o:n. ) Critical Depth = 11.18 (In.) I I I I I I I I I I I I I I I I I I I Pipe flow velocity= 8.77(Ft/s) Travel time through pipe Time of concentration (TC) = 0.04 min. 7.12 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118,000 to Point/Station 118.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group group A= B C D = 0.000 :o. 000 0.000 1.000 7.12 min. · Decimal fraction soil [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 6,294(In/Hr) for a 100.0 year storm used for sub~area, Rational method,Q=KCIA, C 0.107(CFS) for 0.020(Ac.) Total runoff= 5.424(CFS) Total area= 0. 98 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 328.i3(Ft.) :Downstream point/station elevation 326. 95 (Ft.) Pipe length 57.63(Ft.) Manning's N = 0.011 No. of pipes= 1 Required pipe flow = 5.424(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow 5.424(CFS) Norma·l flow depth in pipe = 8. 91 (In.) Flow top width inside pipe=' 10.SO(In.) Critical Depth= 11.24(In.) Pipe flow velocity= 8.68(Ft/s) Travel time through pipe= 0.11 min. Time of concentration (TC) = 7.23 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from .Point/Statibn 120. 000 to Point/Station 120. 000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil group A Decimal fraction soil group B = Decimal fraction soil group C Decimal fraction soil group D = [COMMERCIAL area type 0.000 0.000 0.000 1.000 Time ·of concentration 7. 23 min. Rainfi?-11 intensity= 6.23l(In/Hr~ for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C Subarea runoff = 0. 371 (GFS) for O. 070 (Ac.) Total runoff= 5.795(CF?l Total area= 1. OS (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 122.000 I I I I I I I I I I .I I I I I I I I I **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 326.95(Ft.) Downstream point/station elevation 325.36(Ft.) Pipe length 63.54(Ft.) Manning's N ~ 0.011 No. of pipes= 1 Required pipe flow 5.795(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow = 5.795(CFS) Normal flow depth in pipe= .8.66(In.) Flow top width inside pipe == 10. 7 6 (In.) Critical Depth = 11. 39 ( In. ) Pipe flow velocity= 9.55(Ft/s) Travel time through pipe~ 0.11 min. Time of concentration (TC) = 7.34 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122. 000 to Point/Station 12·2. 000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= l.050(Ac.J Runoff from this stream 5.795(CFS) Time of concentration= 7.34 min. Rainfall intensity= 6.17llin/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type 0.000 = 0.000 = 0.000 1.000 Initial subarea flow distance Highest elevation = 361. 00 (Ft.) Lowest elevation= 337.90(Ft.) Elevation difference= 23.l0(Ft.) ] 50.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 0.89 min. TC= [1.8*(t.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.8500)*( 50.00A.5)/( 46.20A(l/3)]= Setting time of concentration to 5 minutes Rainfail intensity (I) = 7.904 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff= 0.067(CFS) 1otal initial stream area= 0. 010 (Ac .. ) 0.89 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Stat~on 204.000 **** IMPROVED CHANNEL TRAVEL TIME**** I I I I I I I I I I I I I I I I I I I Upstream point elevation= 337.90(Ft.) Oownstream point elevation 335.70(Ft.) Channel length thru subarea 105.00(Ft.) Channel base width 8.200(Ft.) Slope or 'Z' of left channel bank = 20. 00.0 Slope or 'Z' of right channel bank = 20 .:000 Estimated mean flow rate at m~dpoint of channel Manning's 'N' = D.030 Maximum depth of channel = 0 .. zoo (Ft.)- Flow (q) thru subarea = 0.134(CFS) Depth of flow = 0. 0·2 6 (Ft. ) , Average velocity = Channel flow top width= 9.227(Ft.) Flow Velocity= 0.60(Ft/s) Travel time 2,91 min. Time of concentration= 7.91 min. Critical depth= 0.020(Ft.) Adding area flow to channel Decimal fra.ction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D 0.000 0.000 0.000 1.000 0.134(CFS) 0.601(Ft/s) 5.878(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C [COMMERCIAL area type Rainfall intensity Runoff coefficient Subarea runoff~ Total runoff= 0.lOO(CFS) for 0.020(Ac.) 0.167(CFS) Total area= 0.03(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil group A Decim~l fraction soil group B Decimal fraction soil group C Decimal fraction soil group D 0.000 0.000 0.000 1.000 7.91 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.878(In/Hr) for a 100.0 year storm used. for sub-area, Rational method,Q=KCIA, C 0. 650 (CFS) for O .130 (Ac.) Total runoff= 0.817(CFS) Total area= 0.16 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** SUBAREA FLOW ADDITION**** group A 0.000 group B 0.000 group C 0.000 group D 1.000 7.91 min. Becimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [COMMERCIAL area type Time of concentration= Rainfall intensity Runoff coefficient Subc.trea runoff= 5.878(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.500(CFS) for O.lOO(Ac.) 0.850 I I I I I I I I I I I I. I I I I I I I Total runoff 1. 316 (CFS) 'Total area 0. 26 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (User Specified size) **** Upstream p9int/station elevation = 333. 70 (Ft.). Downstream point/station elevation= 333.lO(Ft.) Pipe length 51.7l(Ft.) Manning's N = 0.011 No. of pipes= 1 Required pipe flow 1.316(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow = 1.316(CFS) Normal flow depth in pipe= 4.43(In.) Flow top width inside pipe = 11. 58 (In.) Criticai Depth= 5.82(In.) Pipe flow velocity= 5.00(Ft/s) Trave~ time through pipe= 0.17 min. Time of concentration (TC) = 8.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 206.000 **** SUBAREA FLOW ADDITION**** group A 0.000 group B ~ 0.000 group C 0.000 group D 1.000 8,09 Il\in. Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [COMMERCIAL a·rea type Time of concentration Rainfall intensity Runoff coefficient $U:barea runoff 5.797(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.493(CFS) for O.lOO(Ac.) Total runoff= 1.809{CFS) Total area= 0.36(Ac.) 0.850 ++++++++++++++++++++++++++++++++~+++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Pb-int/Station 208.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/statioi;i elevation= 333.lO(Ft.) Downstream point/station elevation= 332.40(Ft.) Pipe length 68.66(Ft.) Manning's N = 0.011 No. of pipes= 1 Required pipe flow = 1.809(CFS) Given pipe size = 12. 00 (In.) C:alculated individual pipe flow = 1. 8.09 (CFS) Normal flow ·depth i-h pipe = 5. 47 (In.) Flow top width inside pipe= 11.95(In.) Critical Depth= 6.87(In.) Pipe flow velocity= 5.20{Ft/s) Travel time through pipe= 0.22 min. Time of concentration (TC) = 8.31 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 I I I I I I I I I I I I I I I I I I I **** SUBAREA FLOW ADDITION**** Decimal fraction soil .Decimal fraction soil Decimal fraction soil Decimal f~action soil [COMMERCIAL area type group group gro:up group A B C - b = 0.000 0.000 0.000 1.000 Time of concentration 8.31 min. Rainfall intensity= 5.697(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rationai method,Q=KCIA, C 0.850 Subarea runoff= 0.823(CFS) for 0.170(Ac.)· Total runoff= 2.632(CFS) Total area= 0.53(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Poit)t/Station 208.000 to Point/Station 122.000 **** PIPEFLOW TRAVEL TIME (User specified stze) **** Upstre9-m point/station elevation= 332.40(Ft.) Downstream point/station elevation 325.36(Ft.) Pipe length 59.85(Ft.) Manning~s N = 0.011 No. of pipes= 1 Required pipe flow -2.632(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow 2.632(CFS) Normal flow depth in pipe = 3. 4 7 (In. ) Flow top width ins-ide pipe = 10. 88 (In.) Critical Depth= 8.34(Iri..) Pipe flow velocity= 13.98(Ft/s) Travel time through pipe= 0.07 min. Time of concentration (TC) = 8.38 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 122.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: · In Main Stream number: 2 Stream flow area= 0.530(Ac.) Runoff from this stream -2.632(CFS) Time of concentration= 8.38 min. Rainfall intensity= 5.666(In/Hr} Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (miri.) (In/Hr) 1 5.795 7.34 6.171 2 2.632 8.38 5.666 Qmax(l) = 1.000 * 1. 000 * 5.795) + 1. 000 * 0,876 * 2.632) + 8 .101 Qmax(2) 0.918 * 1.000 -Ii 5.795) + 1. 000 * 1.000 *· 2.632) + 7.953 I I I I I I I I I I I I I I I I ,, I I Total of 2 main streams to confluence: Flow rates before confluence point: 5.795 2.632 Maximum flow rates at confluence using above data: 8.101 7.953 Area of streams before confluence: 1.050 0.530 Resblts of confluence: Total flow rate= 8.l0l(CFS) Time of concentration= 7.340 min. Effective s,tream area after confluence End of computations, total study area= 1.580(Ac.) 1.58 (Ac.) f-n>tZM Dt2A•N-i..JNE A I I I I I I I I I I I I I I I I I I ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: . LACFCD., LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULT~NTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760) 931-7700 (Fa,x) (760) 931-8680 *·************************* DESCRIPTION OF STUDY *******************.******* * QlOO HYDRAQLICS -STORM DRAIN LINE A * * J.N. 99~1031 * * BY: CSO 7/19/00 * ************************************************************************** FILE NAME: 9931SDA.DAT TIME/DATE OF STUDY: 12:23 07/19/2000 *****~*****~****************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEA:D(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 122.50-1.50* 154.65 1.10 De 134.02 } JUNCTION 122.00-1.55* 134.42 b.74 117. 45 } FRICTION 120.50-1.16* 115.58 0.95 De 106.66 } JUNCTION 120.00-1. 62* 127.36 0.76 102.66 } FRICTION 118. 50-1.~9* 116.33 0.94 De 95.89 } JUNCTION 118. 00-1. 66* 126.77 0.78 97.96 } FRICTION 116.50-1. 55* 121.19 0.93 De 93.17 } JUNCTION 116.00-3.18* 196.90 0.75 95.16 } FRICTION 114.50-2.99* 187.51 0.92 De 88.89 } JUNCTION 114.00-3.42* 196.76 0.68 84.54 } FRICTION 112.50-2.99* 175.72 0.90 De 76.47 } JUNCTION 112. 00-3.22* 183.43 0. 71 77.51 } FRICTION 110. 50-3.06* 175.69 0.89 De 72. 62 } JUNCTION 110. 00-3.54* 182.58 0.52 70.18 I I I I I I I I I I I I I I I I I I I } FRICTION 108.50-2.17* 115.37 0.82 De 54.40 } JUNCTION 108.00-2.31* 120.19 0.62 56.85 } FRICTION 106.50-2.14* 111. 63 0.81 De 51. 93 } JUNCTION 106.00-2. 72* 115. 64 0.34 25.88 } FRICTION 104.50-1.28* 45.14 0.55 De 19.01 } JUNCTION 104. oo.,.. 1.44* 46.01 0.17 De 1.09 . . ' ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE= 25 ---------------------·------------·-------------------------------------------- NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUrATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL NODE NUMBER= 122.50 PIPE FLOW= 8.10 CFS DATA: ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE ELEVATION= PIPE DIAMETER= 18.00 326.860 FEET 325.36 INCHES ------· -----------------.----------------------------------------------------- NODE 1~2.50 : HGL = < 326 .. 860>;EGL= < 327.:L86>;FLOWLINE= < 325.360> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 122.00 122.50 TO NODE 122.00 IS CODE= 5 ELEVATION= 325.36 (FLOW IS UNDER PRESSURE) ------------------------------. ----------------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) ·(INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 5.80 12.00 45.00 325.36 0.95 DOWNSTREAM 8.10 18.00 325.36 1.10 LATERAL #1 2.30 12.00 0.00 325.36 0.65 LATERAL #2 0.00 0.00 .o. 00 0.00 0.00 Q5 O.OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4 ). ) / ( (Al+A2) *16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01897 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00426 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01162 JUNCTION LENGTH= 4.00 FEET VELOCITY (FT/SEC) 7.385 4.584 2.928 0.000 FRICTION LOSSES 0.046 FEET ENTRANCE LOSSES 0.000 FEET jUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.570)+( 0.000) = 0.570 NODE 122.00 : HGL = < 326.909>;EGL= < 327.756>;FLOWLINE= < 325.360> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 120.50 122.00 TO NODE ELEVATION= 120.50 IS CODE= 1 326.95 (FLOW IS UNDER PRESSURE) -----.-. ·--------------------------------------------,------------------------ CALCULATE FRICTJON LOSSES(LACFCD): I I I I, I I I I I I I I I I, I I I PIPE ·FLOW PIPE LEN(3TH SF=(Q/K)**2 HF=L*SF = ( 5.80 CFS 63.54 FEET ( ( 5. 80) / ( 63.54)*(0.01897) PIPE DIAMETER= 12.00 INCHES MANNING'S N O. 01100 42.106}}**2 = 0.01897 1.206 ------------------------------------------------------------------------------ NODE 120.50 : HGL = < 328.115>;EGL= < 328.96l>;FLOWLINE= < 326.950> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 120.00 120.50 TO NODE 120.00 IS CODE= 5 ELEVATION= 326.95 (FLOW IS UNDER PRESSURE} ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLQWLINE CRITICAL (CFS} (INCHES} (DEGREES} ELEVATION DEPTH(FT.} UPSTREAM 5.42 12.00 Q.00 326.95 0.94 DOWNSTREAM 5.80 12.00 326.95 0.95 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.60 0.00 0.00 Q5 0.38===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1}-Q3*V3*COS(DELTA3)- , Q4*V4*CO.S (DELTA4_}} / ( (Al+A2) *16.1} +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01657 DOWNSTREAM.: MANNING'S N = 0.01100.; FRICTION SLOPE= 0.01897 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01777 JUNCTION LENGTH 4·. 00 FEET . VELOCITY (FT/SEC} 6.901 7.385 0.000 0.000 FRICTION LOSSES = 0. 071 FEET ENTRANCE LOSSE'S = 0 .169 FEET JUNCTION LOSSES (DY+HV1-HV2}+(ENTRANCE LOSSES) JUNCTION_ LOSSES = ( 0 .178) + ( 0 .169} = 0. 34'8 ----------------------------------------------------, ------------------------- NODE 120.00 : HGL = < 328.570>;EGL= < 329.309>;FLOWLINE= < 326.950> * * * * *'* * * *'* * * * ** * ** * * * *'* * ** * * * * * *·* ***** ** ** * * * ** * *** *** * * * ** * * * * * * * * * * * * * * * * *** 120.00 TO NODE 118.50 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 118.50 ELEVATION = 328 .13 CFLOW IS UNDER PRESSURE} --------------------------------------------~ --------------------------------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH~ SF=.(Q/K) **2 HF=L*SF = ( 5.42 CFS PIPE DIAMETER= 12.00 INCHES 57.63 FEET MANNING'S N = 0.01100 (( 5.42)/( 42.106}}**2 = 0.01657 57.63}*(0.01657) 0.955 ______________ , ___________________ ,_. ________________ , ------------------------ NODE 118.50 : HGL = < 329.525>;EGL= < 330.264>;FLOWLINE= < 328.130> ****************************************************************************** FLOW PROCESS ·FROM NODE UPSTREAM .NODE 118. 00 118.50 TO NODE 118.00 IS CODE= 5 ELEVATION= 328.13 (FLOW IS UNDER PRESSURE) -------.---------------------------------------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES} (DEGREES} ELEVATION DEPTH (FT.) (FT/SEC} UPSTREAM 5.32 12.00 0.00 328.13 0.93 6.774 DOWNSTREAM 5.42 12.00 328 .13 0.94 6.901 LATERAL #1 o.oo 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.10===Q5 EQUALS BASIN INPUT=== I I I: I I ·1 I I I I' I. I I ., I I I LACFCD AND OGEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.l)+FR;I:CTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01596 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01657 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01627 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.065 FEET ENTRANCE.LOSSES 0.148 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.092)+( 0.148) = 0.240 -·------.----------------------------------· ---------------------------------- NODE 118.00 : HGL = < 329.792>;EGL= < 330.504>;FLOWLINE= < 328.130> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 116.50 118.00 TO NODE 116.50 IS CODE= 1 ELEVATION== 328.60 (FLOW IS UNDER PRESSURE) ----·.---------------------·-.--------------------------------------.---------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 5.32 CF$ PIPE DIAMETER= 12.00 INCHES 22.31 FEET MANNING'S N 0.01100 (( 5.32)/( 42.107))**2 = 0.01596 22.31)*(0.01596) 0.356 ------------------------------------------------------------------------------ NODE 11.6.50 : HGL = < 330 .. 148>;EGL= < 330.860>;FLOWLINE= < 328.600> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 116.00 116.50 TO NODE 116.00 rs CODE= 5 ELEVATION= ~28.60 _ (FLOW rs UNDER PRESSURE) ------------------------------· ----------------------------------------------- CAI,,CULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 5.16 12.00 90.0.0 328.60 0.92 DOWNSTREAM 5.32 12.00 328.60 0.93 LATERAL #1 o.oo 0.00 b.00 0.00 0.00 LATERAL #2 0.00 0. 90 0.00 0.00 0.00 Q5 0.16===Q5 EQUALS BASIN INPUT=== LACFCD AND OGEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.l)+FRICTION LOSSES UPSTR.EAM: MANNING'S N = 0.0.1100; FRICTION SLOPE= 0.01502 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01596 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01549 JUNCTION LENGTH= 4.00 FEET VELOCITY (FT/SEC) 6.570 6.774 0.000 0.000 FRICTION LOSSES 0.062 FEET E))JTRANCE LOSSES 0.142 FEET JUNCTION LOSSES= (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 1.445)+( 0.142) = 1.587 ------------------------------------------------------------------------------ NODE 116.00 : HGL = < 331.777>;EGL= < 332.447>;FLOWLINE= < 328.600> **~**************************************~************~*********************** FLOW PROCESS FROM NODE UPSTREAM NODE 114.50 116.00 TO NODE 114.50 IS CODE= 1 ELEVATION= 329.28 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): I I I I I I I' I I I I I I ,, I I I' I I PIPE FLOW = PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 5.16 CFS 32.52 FEET (( 5.16)/( 32.52)*(0.01502) PIPE DIAMETER= 12.00 INCHES MANNING'S N 0'.01100 42.105))**2 = 0.01502 = 0.488 ---------·--------.--------------------·-------------------------------------- NODE 114.50 : HGL = < 332.266>;EGL= < 332.936>;FLOWLINE= < 329.280> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 114.00 114.50 TO NODE 114.00 IS CODE= 5 ELEVATION= 329.28 (FLOW IS UNDER PRESSURE) ----.------------------------.------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL ·#2 FLOW (CFS) 4.67 5.16 0.00 0.00 DIAMETER (INCHES) 12.00 12.00 0.00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 329.28 329.28 0.00 0.00 0.00 0.00 Q5 Q.49===Q~ EQUALS BA.SIN INPUT=== LACFCD AND OCEMA FLOW.JUNCTION FORMULAE USED: DY=(Q2*V2-Qi*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- CRITICAL DEPTH (FT.) 0.90 0.92 0.00 0.00 Q4*V4*COS (DELTA4)) / ( (Al+A2) *16 .1) +FRICTION LOSSES UPSTREAM.: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01230 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01502 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01366 JUNCTION LENGTH = .4. 00 FEET VELOCITY (FT/SEC) 5.946 6.570 0.000 0.000 FRICTION LOSSES.= 0.055 FEET ENTRANCE LOSSES 0.134 FEET JUNCTION LOSSES= (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0 .. 176) + ( Q .134) = 0. 310 ------------------------------------------------------------------------ NODE 114.00 : HGL = < 332.697>;~GL= < 333.246>;FLOWLINE= < 329.280> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 112.50 114.00 TO NODE 112.50 IS CODE= 1 ELEVATION= 330.40 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH SF=·(Q/K) **2 HF=L*SF = ( 4.67 CFS PIPE DIAMETER= 12.00 INCHES 56.14 FEET MANNING'S N = 0.01100 (( 4.67)/( 42.106))**2 = 0.01230 56.14}*(0.01230) 0.691 ------------.--------------------------------------------·-------------------- NODE 112.50 : HGL = < 333.387>;EGL= < 333.936>;FLOWLINE= < 330.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 112. 00 112.50 TO NODE 112.00 IS CODE= 5 ELEVATION~ 330.40 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) 0PSTREAM 4.51 12.00 0.00 330.40 0.89 5.742 DOWNSTREAM 4.67 12.00 330.40 0 . .90 5.946 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.16===Q5 EQUALS BASIN It,JPUT=== I I I I I I I I I I I I ' I I I I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)~ Q4*V4*COS(DELTA4))/((Al+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01147 DOWNSTREAM: MANNING'S N = 0.01100; FRICT.ION SLOPE= 0.01230 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01189 JUNCTION LENGTH= 4.00 FEET FRICTION LOSSES .0.048 FEET ENTRANCE LOSSES= 0.110 FEET JUNCTION LOSSES= (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 0.085)+( O.tlO) = 0.194 ------------------------------------------------------· ----------------------- NODE 112.·00 : HGL = < 333.619>;EGL= < 334.131>;FLOWLINE= < 330.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110 . 5 0 112.00 TO NODE 110.50 IS CODE= 1 ELEVATION= 33Q.76 (FLOW IS UNDER PRESSURE) ----------------------------------~--------· -, ---------.----------------------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.51 CFS PIPE DIAMETER= 12.00 INCHES 0 .01100 PIPE LENGTH SF=(Q/K)**2 HF=L*SF == ( 17.61 FEET (( , 4.51)/(, 17.61)*(0.01147) MANNING'S N 42.107))**2 = 0.01147 0.202 NODE 110.50 : HGL = < 333.82l>;EGL= < 334.333>;FLOWLINE= < 330.760> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 110.50 TO NODE 110.00 IS CODE= 5 ELEVATION= 330.76 (FLOW IS UNDER PRESSURE) ---------------------------------------------·--------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHE$) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 3.69 12.00 0.00 33(). 76 0.82 DOWNSTREAM 4.51 12.00 330.76 0.89 LATERAL #1 0.80 12.00 90.00 330.76 0.37 LATERAL #2 o.oo 0.00 0.00 0.00 0.00 Q5 0.02===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*CO$(DELTA4))/((Al+A4)*l6.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00768 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01147 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00958 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 4.698 5.742 1.019 0.000 FRICTION LOSSES JUNCTION LOSSES jUNCTION LOSSES 0.038 FEET ENTRANCE LOSSES 0.102 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) = ( 0.208)+( 0.102) =· 0.310 -------------------------------------------·----------------------------------NODE 110.00 : HGL = < 334.300>;EGL= < 334.643>;FLOWLINE= < 330.760> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 108.50 110.00 TO NODE 108.50 IS CODE= 1 ELEVATION= 332.60 (FLOW IS UNDER PRESSURE) ----------------------------------------------------------· ------------------- CALCULATE FRICTION LOSSES(LACFCO): I .1 I 1· I I 1: I· .1 I I I I I. I. I I I 1· PIPE FLOW PIPE LENGTH - SF=(Q/K)**2 HF=L*SF = ( 3.69 CFS 61,02 FEET ( .( 3.-69) / ( 61.02)*(0.00768) PIPE DIAMETER= 12.00 INCHES MANNING'S N 0.01100 42.105))**2 = 0.00768 0.469 ----------------------------------J ------------------------------------------ NODE 108.50 : HGL = < 334.769>;EGL= < 335.lll>;FLOWLINE= < 332.600> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 108.00 108.50 TO NODE 108.00 IS CODE= 5 ELEVATION= 332.60 (FLOW IS UNDER PRESSURE) . -----------------------·----------------------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 3.57 12.00 0.00 332. 60' 0.81 DOWNSTREAM 3.69 12.00 3;32. 60 0.82 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 O.QO 0.00 Q5 0.12===Q5 EQPALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00719 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00768 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00743 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 4.545 -4. 698 0.000 0.000 FRICTION LOSSES 0.030 FEET ENTRANCE LOSSES 0.069 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSS~S) JUNCTION LOSSE$ ( 0.052)+( 0.069) = 0.120 NODE 108 .. 00 : HGL = < 334.911>;EGL= < 335.232>;FLOWLINE= < 332.600> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 106.50 108.00 TO NODE 106.50 IS CODE= 1 ELEVATION= 332.83 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------- CALCULATE FRICTION LOSSES(LAGFCD): PIPE FLOW = 3.57 CFS PIPE DIAMETER= 12.00 INCHES PIPE LENGTH 7.70 FEET 1 MANNING'S N = 0.01100 SF=(Q/K)**2 (( 3.57)/( 42.104))**2 = 0.00719 HF=L*SF = ( 7.70)*(0.00719) 0.055 ------------------------------------------------------------------------------ NODE 106.50 : HGL = < 334.966>;EGL= < 335.287>;FLOWLINE= < 332.830> *********************************·********************************************* FLOW PROCESS FROM NODE UPSTREAM NODE i06.00 106.50 TO NODE 106.00 IS CODE= 5 ELEVATION= 332.83 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 1. 69 12.00 0.00 332.83 0.55 2.152 DOWNSTREAM 3.57 12.00 332.83 0.81 4.545 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 l .. 88===Q5 EQUALS BASIN IN)?UT=== I I I I I I I. I I I' I ,, I. I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3").,. Q4*V4*COS (DELTA4)) / ( (Al+A2) *16 .1.) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00161 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00719 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00440 JUNCTION LENGTH 4.00 FEET F.RICTION LOSSES = 0. 018 FEET ENTRANCE LOSSES O. 064 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.267)+( 0.064) = 0.331 ----·-· ----------------------------------------------------------------------- NODE 106.00 : HGL = < 335.546>;EGL= < 335.618>;FLOWLINE= < 332.830> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 104.50 106.00 TO NODE 104.50 IS CODE= 1 ELEVATION= 334,35 (FLOW IS UNDER PRESSURE) --·----------------------------------------, _________________________________ _ CALCULATE FRICTION PIPE FLOW PIPE LENGTH LOSSES(LACFCD): 1.69 CFS PIPE DIAMETER= 12.00 INCHES 50.66 FEET MANNING'S N 0.01100 SF=(Q/K)**2 = HF=L*SF = ( {( 1.69)/( 42.108))**2 = 0.00161 50.66)*(0.00161) 0.082 -------.------------------------------------------------·--------------------- NODE 104.50 : HGL = < 335.627>;EGL= < 335.699>;FLOWLINE= < 334.350> ****************************************************************************** FLOW PROCESS FROM NOPE UPSTREAM NODE 104.00 104.50 TO NODE 104.00 IS CODE= 5 ELEVATION= 334.35 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 0.18 12.00 0.00 334.35 0.17 DOWNSTREAM 1. 69 12.00 334.35 0.55 LATERAL :11=1 0.00 0.00 0.00 0.00 0.00 LATERAL :11=2 0.00 0.00 0.00 0.00 0.00 Q5 1.51===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMUI,,AE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.;t..)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00002 DOWNSTREAM: MANNING'S N = 0 .·01100; FRICTION SLOPE = 0. 00161 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00081 JUNCTION LENGTH= 4.00 FEET VELOCITY (FT/SEC) 0.226 2.152 0.000 0.000 FRICTION LOSSES 0.003 FEET ENTRANCE LOSSES 0.014 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.074)+{ 0.014) = 0.089 ------------------------------------------------------------------------------ NODE 104.00 : HGL = < 335.787>;EGL= < 335.788>;FLOWLINE= < 334.350> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 104.00 FLOWLINE ELEVATION= 334.35 ASSUMED UPSTREAM CONTROL HGL,= 334.52 FOR DOWNSTREAM RUN ANALYSIS I I I I I I I· ~ I :1 I I I 1· I I: I· I I: , END OF GRADUALLY VARIED FLOW ANALYSIS ·1 I I I I I I I I I I I I I I ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD-, LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Malys is pre)?a:i=eq, by: O'DAY CONSULTANTS 5900 Pasteur Court Suit~ 100 Carlsbad, CA 92008 (Tel.) (760) 931-7700 (Fax) (760) 931-8680 * *'*** * * * * ** *** **** * * * * * * * * DESCRIPTION' OF STUDY, ** * * * * * * * * ** * * ** ** * * * * * * * * * ,QlOO HYDRAULICS -STORM DRAIN LINE B * * J.N. 99-1031 * * BY: CSO 7/19/00 * ************************************************************************** FILE NAME: 9931SDB.DAT TIME/DATE OF STUDY: 12:33 07/19/2000 ***************************¼*****~**~***************************************** GRADU.AµLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indi_cates nodal point data used,) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 12_2. 50-1.50* 154. 65 1.10 De 134.02 } JUNCTION 122.00-1. 65* 73.53 0.30 67.81 } FRICTION } HYDRAULIC JUMP - 208.50-0.70*Dc 34.16 0.70*Dc 34.16 } JUNCTION 208 .·00-1.12* 38.61 0.46 22.39 } FRICTION } HYDRAULIC JUMP 206.50-0.57 De 20.80 0.46* 22.22 } JUNCTION 206. 00-0.49*Dc 13.78 0.49*Dc 13.78 } FRICTION 204.50-0.69* 1(:i.73 0. 49 De 13.78 } JUNCTION 204.00-0.86* 17.78 0.17 De 1.01 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF 'ENERGY BALANCE$ USED IN EACH PROFILE= 25 -----------------------------------------------· ------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGI:i! MANUALS. * * * * *·* * * ** * * * * * * * ** * * ** * * * * * * * * *-* * * * * * * ** * * *'** *-* * * * ** * * * * * ** * * * * * * * * * * * * * * * * * * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 122.50 FLOWLINE ELEVATION= 325.36 PIPE FLOW= S.10 CFS PIPE DIAMETER= 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 326.860 FEET --------------------------·----------------· ------------· --------------------- I I I I I I I I I I I I I I I I I I I NODE 122.50 : HGL = < 326.860>;EGL= < 327.186>;FLOWLINE= < 325.360> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 122.00 122.50 TO NODE 122.00 IS CODE= 5 ELEVATION= ~25.36 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULA';rE JUNCTION LOSSES: PIPE fLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 2.63 12.00 o.oo 325.36 0.70 3.348 DOWNS_TREAM 8.10 18.00 325.36 1.10 4.584 LATERAL #1 5.33 12.0.0 45.00 325.36 0.93 6.786 LA'rERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.14===Q5 EQUALS BA.SIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00390 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00426 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS b.00408 JUNCTION LENGTH= 4.00 FEET FRICTION LOSSES= 0.016 FEET ENTRANCE LOSSES= 0.065 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. -.-, ------------------.------------------------------------------------------- NODE 122.00 : HGL = < 327.012>;EGL= < 327.186>;FLOWLINE= < 325.360> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2.08.50 122.00 TO NODE 208.50 IS CODE= 1 ELEVATION = 332. 40 .(HYDRAULIC JUMP OCCURS) -----------------------------------------------,---------------. -------------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.63 CFS PIPE DIAMETER= 12.00 INCHES PIPE LENGTH= 59.85 FEET MANNING'S N 0.01100 ---------------------------------------------------·-------------------------- HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------.----- NORMAL DEPTH(FT) = 0.29 CRITICAL DEPTH(FT) = 0.70 ====-=" ====.=======-============--===---=-·-·=--·-----------=----====-===--=== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.70 ==--=------------------------------------------------------------------------- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -------.--.--------~------------------------·--------------------------------- DISTANCE FROM GONTROL(FT) 0.000 0.007 0.029 0.068 0.126 0.206 0.310 0.444 0. 611 0.817 1. 068 FLOW DEPTH (FT) 0.695 0.679 0.663 0.646 0.630 0.614 0.598 0.581 0.565 0.549 0.533 VELOCITY (FT/SEC) 4 .512 4.632 4.760 4.897 5.044 5.201 5.370 5.551 5.746 5. 956 6.182 SPECIFIC ENERGY.(FT) 1.011 1. 012 1.015 1.019 1.025 1.034 1.046 1.060 1.078 1.100 1.126 PRESSUR.E+ MOMENTUM(POUNDS) 34.16 34.18 34.27 34.41 34.63 34.91 35.26 35.70 36.22 36.83 37.55 I I I I I I I I I 1· I I I I I I 1.372 1. 741 2.187 2. 727 3.383 4.183 5.170 6.399 7. 956 9.973 12.674 16.478 22.335 33.290 59.850 0.516 0.500 0.484 0. 4-68 0.451 0.435 0.419 0.403 0.386 0.370 0.354 0.338 0.321 0.305 0.305 6.427 6.693 6.982 7.296 7. 63,9 8.015 8.4.28 8.883 9.386 9.945 10.569 11. 269 ·12. 058 12.954 12.990 1.158 1.196 1.241 1.295 1.358 1. 433 1. 522 1. 629 1. 755 1. 907 2.090 2.311 2.581 2.912 2.926 38.38 39.33 40.41 41. 64 43.03 44.60 46.38 48.40 50.67 53.25 56.17 59.49 63.29 67.64 67.81 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ==· ==========·====-===--==---=----==---===--=-==-==========-================== DOWNS.T.REAM CONTROL ASSUMED PRESSURE HEAD (FT) = 1 . 65 ===-==---=------------------------------------·------------=-=--============== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0.000 5.734 PRESSURE HEAD(FT) 1.652 1.000 VELOCITY (FT /S·EC) 3.349 3.349 SPECIFIC ENERGY(FT) 1. 826 1.174 PRESSURE+ MOMENTUM(POUNDS) 73.53 41. 57 === ·==·==-==========·====== ·=========== -=====--================================ ASSUMED DOWNSTREAM PRE$SURE HEAD(FT) = 1.00 =========.=·--====-==·" -==--------=--------------------==---====-============= GRADUALLY VARIED FLOW P,ROFILE COMPUTEO INFORMATION: -------------------------------_-------------,-------,------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 5.734 1.000 3.348 1.174 41. 57 5.835 0.988 3.355 1.163 41.01 5.929 0.976 3.369 ,1.152 40.49 6.019 0.963 3.387 1.142 39.99 6.106 0.951 3.409 1.132 39.51 6.189 0.939 3.434 1.122 39.05 6.270 b. 927 3,. 461 1.113 38.61 6.348 0.915 3.492 1.104 38.19 6.424 0.902 3,525 1.095 37.79 6.496 Q.890 3.560 1.087 37.40 6.566 0.878 3.598 1.079 37.04 6.633 0.866 3.639 1.072 36.69 6.697 0.854 3.682 1.064 36.37 6.758 0.841 3. 728 1.057 36.06 6.815 0.829 3.776 1.051 35.77 6.869 0.817 3.827 1.045 35.51 6.920 0.805 3.881 1.039 35.26 6.967 o. 793 3.938 1.034 35.04 7.009 0.780 3.998 1.029 34.84 7.047 0.768 4.061 1.024 34.67 7.080 0.756 4.127 ;t..021 34.51 7.109 0.744 4.197 1.017 34.39 7.132 0.732 4.270 1. ff15 34.29 7.149 0.719 4.347 1.013 34.22 I· I I I I I I I I I I I I I I I I I I 7.159 0.707 4.428 1.012 34.17 7.163 0~695 4.512 1.011 34.16 59.850 0.695 4.512 1.011 34.16 -~---------------------~END OF HYDRAULIC JUMP ANALYSIS-------~---------------- ! PRESSURE+MOMENTUM BALANCE OCCURS AT 1.03 FEET UPSTREAM OF NODE 122.00 I I . DOWNSTREAM DEPTH = 1. 535 FEET, UPSTREAM CONJUGATE DEPTH = 0. 305 FEET I ------------------------------------------------------------------------------ NODE 208.50 : HGL = < 333.095>;EGL= < 333.41l>;FLOWLINE= < 332.400> ****************************************************************************** FI,.OW PROCESS FROM NODE 208.50 TO NODE 208.00 IS CODE= 5 UPSTREAM NODE 208.00 ELEVATION= 332.40 (FLOW IS AT CRITICAL DEPTH) ---------------------------------------· -------------------------------------- CALCULATE PIPE JUNCTION LOSSE$: UPST.REAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE (CF$) (JNCHES) (DEGRE~S) 1.81 12.00 0.00 2.63 12.00· 0.00 0.00 0.00 0.00 0.00 0.00 FLOWLINE ELEVATION 332.40 332.40 0.00 0.00 0.82===Q5 EQliALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- CRITICAL DEPTH (FT.) 0.57 0.70 0.00 0.00 Q4*V4*COS (DELTA4)) / (. (Al+A2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLO?E = 0.00185 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00567 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00376 JUNCTION LENGTH= 4.00 FEET VELOCITY (FT/SEC) 2.305 4.514 0.000 0.000 FRICTION LOSSES 0.015 FEET ENTRANCE LOSSES 0.063 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.131)+( 0.063) = 0.194 NODE 208.00 : HGL = < 333.523>;EGL= < 333.605>;FLOWLINE= < 332.400> ****************************************************************************** FLOW PROCE$S FROM NODE ·uPSTREAM NODE 206.50 208'.00 TO NODE 206.50 rs CODE= 1 ELEVATION= 333.10 (HYDRAULIC JUMP OCCURS) -------------· ---------------------------------------------------------------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 1.81 CFS .PIPE DIAMETER= 12.00 INCHES PIPE LENGTH = 68. 66 FEET MANNING'S N O. 01100 ---------------------------------~---------------------.---------,------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS . . ----------------------------------------------------------.------------------- NORMAL DEPTH(FT) = 0. 46 CRITICAL DEPTH(FT) = 0.57 ========--·===================-==================.===========·================= UPSTREAM CONTROL ASSUMED FLOWD~PTH(FT) = 0.46 ==============-=·===='==========· ==-========================================== GRADUALLY VARIED FLOW PROFILE COMPUTEP INFORMATION: DISTANCE FROM -FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.462 !;i .104 0. 867 22.22 0.685 o. 462 5.108 0.867 22.22 1. 400 0.461 5.111 0. 867 22.23 2.150 0.461 5.115 0. 868 22.24 I I I I ·1 I I I I I I I I I I I I I I 2.935 0.461 5 .119 0.868 22.25 3.762 0.461 5.122 0.868 22.25 4.632 0.460 5.126 0.868 22.26 5.552 0.460 5. 12·9 0.869 22.27 6.526 0.460 5.133 0.869 22.27 7.562 0.460 5.136 0.869 22.28 8.668 0.459 5.140 0.870 22.29 9.852 0.459 5.144 0.870 22.30 11. 128 0.459 5.147 0.870 22.30 12.508 0.459 5.151 0. 871 22.31 14.012 0.458 5.154 0.871 22.32 15.664 0.458 5.158 0. 871 22.32 17.493 0.458 5.161 0.872 22.33 19.543 0.458 5.165 0. 872 22.34 21. 873 0.457 5.169 0. 872 22.35 24.568 0.457 5.172 0.873 22.35 27. 763 0.457 5.176 0. 873 22.36 31. 682 0.457 5.180 0.873 22.37 36.746 0.456 5.183 0.874 22.38 43.900 0.456 5.187 0.874 22.38 56.177 0.456 5.190 0.874 22.39 68,. 660 0.456 5.191 0.874 22.39 ---·---------, __________________ , --________________ , -------------------------- HYDRAULIC JUMP: UPSTREAM RUN ANALYSI$ RESULTS ---.==---=----------·-----------.-----------------=· ---===-===========-====-=- DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.12 ----==---=------------------------,---------------------=---===--============= PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 14. 727 PRESSURE HEAD(FT) 1.123 1.000 VELOCITY (FT/SEC) 2.305 2,305 SPECIFIC ENERGY(FT) 1.205 1.082 PRESSURE+ MOMENTUM(POUNDS) 38.61 32.59 =========.-. = -==========================-===== -== --=========================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 =======================--====-==---==---==---================================= GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------·----------------------------------------------------------------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) EJNERGY(FT) MOMENTUM(POUNDS) 14. 7Z7 1.000 2.304 1.082 32.59 16.675 0.983 2.313 1.066 31. 78 18.537· 0.966 2.329 1.050 31.01 20.351 0.949 2.349 1.034 30.25 22.125 0.932 2.374 1.019 29.53 23 .. 866 0.915 2.403 1.004 28.82 25.576 0.897 2.435 0.990 28.13 27.257 0.880 2.471 0.975 27.47 28.908 0.863 2.510 0.961 26.83 30.530 0.846 2.553 0.947 26,22 32.122 0.829 2.599 0.934 25.63 33.681 0.812 2.649 0.921 25.07 35.206 0.795 2.703 0.908 24.54 36.693 0. 778 2.760 0.896 24.04 38.140 0.761 2.822 0.885 23.56 39.541 0.744 2.889 0.873 23.12 40.890 0. 727 2.9-60 0.863 22. 71 I I I I I I I I 1· I I I I ·1 I I 1· I I 42.181 0.709 3.037 0.853 22.34 43.404 0.692 3.119 0.843 22.00 44.548 0,675 3.206 0.835 21.69 45.600 0.658 3.301 0.827 21.43 46.542 0.641 3.402 0.821 21.21 47.349 0.624 3.511 0.815 21.03 47.990 0.6.07 3.628 0.811 20.90 48.422 0.590 3.754 0.809 20.82 48.584 0.573 3.890 0.808 20.80 68.660 0.573 3.890 0.808 20.80 ------------------------END OF HYDRAULTC JUMP ANALYSIS------------------------ 1 PRESSURE+MOMENTQM BALANCE OCCURS AT 42.10 FEET UPSTREAM OF NODE 208.00 I I DOWNSTREAM DEPTH= 0.710 FEET, UPSTREAM CONJUGATE DEPTH= 0.457 FEET I ---------------------·---------------·---------------------------------------- NOD~ 206.50 : HGL == < 333.562>;EGL= < 333.967>;'FLOWLINE= < 333.100> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 206.00 206.50 TO NODE 206.00 IS CODE= 5 ELEVATION= 333.70 (FLOW IS SUPERCRITICAL) ---------------------------------· -------------------------------------------- .CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATI01'!' DEPTH (FT.) UPSTREAM 1. 32 12.00 0.00 333.70 0.49 DOWNSTREAM 1. 81 12.00 333.10 0.57 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.49===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY={Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00435 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00.973 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS Q.00704 JUNCTION LENGTH -. 4. 00 FEET VELOCITY (FT/SEC) 3.490 5.106 0.000 0.000 FRICTION LOSSES= 0.028 FEET ENTRANCE LOSSES 0.081 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.327)+( 0.081) = 0.408 --,--------------------------------------------------------------------------- NODE 206.0Q : HGL = < 334.185>;EGL= < 334.375>;FLOWLINE= < 333.700> **************************************************•*************************** FLOW PROCESS FROM NODE UPSTREAM. NODE 204.50 206.00 TO NODE 204.50 IS CODE= 1 ELEVATION= 333.71 (FLQW IS SUBCRITICAL) -------------------------------· _______ . _____ . _______ , ------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.32 CFS PIPE DIAMETER= 12.00 INCHES PIPE LENGTH= 51.71 FEET MANNING'S N 0.01100 ===> NORMAL PIPEFLOW IS PRESSURE FLOW -,-----------. _______________________________________ , ________________________ _ NORMAL DEPTH(FT) = 1.00 CRITICAL DEPTH(FT) 0.49 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.49 =========-======·====-==--=---=-=-=---==·-·=--===-===-======================== GRADUALLY VARIE:D FLOW PROFILE COMPUTED INFORMATION: I I I I I I I I I ·1 I I I I I I I DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL{FT) {FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) Q.000 0.485 3.489 0.675 13.78 ,O. 415 0.506 3.309 0. 676 13.82 1. 713 0.527 3.147 0.681 13.93 3.979 0.547 3.000 Q.687 14.10 7.297 0.568 2. 867 0.696 14.34 11. 752 0.588 2.746 0.706 14.63 17.429 0.609 2 .. 6.35 0. 717 14.98 24. 413 0.630 2.534 o. 729 15.38 32. 785 0.650 2.441 0.743 15.82 42. 62·4 0. 671 2.356 0.757 16.31 51.710 0.687 2.293 0. 76·9 16.73 ------------------------------------------------------------------------------ · NODE 204.50 : HGL = < 334.397>;EGL= < 334.479>;FLOWLINE= < 333.710> . ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 204.00 204.50 TO NODE 204.00 IS CODE= 5 ELEVATION= 333.71 (FLOW IS SUBCRITICAL) ----------------------------------.------------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM DOWNSTREAM LAT.EB.AL #1 LATERAL #2 Q5 0.17 12.00 1.32 12.00 0.00 0.00 0.00 0.00 1.15===Q5 EQUALS 0.00 333. 71 333.71 0.00 0.00 0.00 0.00 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- 0.17 0. 49 0.00 0.00 .Q4*V4*COS(DELTA4))/((Al+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0. 01100.; FRICTION $LOPE = 0. 00002 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00147 AVERAGED FRICTION SLOPE IN JUNCTION A,SSUMED ~S 0.00074 JUNCTION LENGTH~ 4.00 FEET FRICTION LOSSES= 0.003 FEET ENTRANCE LOSSES 0.016 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.072)+( 0.016) = 0.088 0.239 2.294 0.000 0.000 ------------,----------------------------------------------------------------- NODE 204.00 : HGL = < 334.566>;EGL= < 334.567>;FLOWLINE= < 333.710> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 204.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION= 333.71 333.88 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS I I I I I I .I I I I I I I I ·1 I I I ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760) 931-7700 (Fax) (760) 931-8680 ************************** DESCRIPTION OF STUDY************************** * Ql00 HYDRAULICS -STORM DRAIN LINE C * * * * J.N. 99-J,031 * BY: CSO 7/19/00 ****************~**************¼***************************~************** FILE NAM~: 9931SDC.DAT TIME/DATE OF STUDY: 14:11 07/19/2000 ***************~********************************************************¼***** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 122.50-1.50* 154.65 1.10 De 134.02 } JUNCTION 122.00-1.55* 13.4. 42 0.74 117.45 } FRICTION 120.50-1.16* 115.58 0.95 De 106.66 } JUNCTION 120.00-1.62* 127.36 0. 76 102.66 } FRICTION 118. 50-1.39* 116. 33 0.94 De 95.89 } JUNCTION 118.00--1. 66* 126. 77. 0.78 97. 96 } FRICTION 116.50-1. 55* 121.19 0.93 De 93.17 } JUNCTION 116. Q0-3.18* 196.90 0.75 95.16 } FRICTION 114.:ib-2.99* 187.51 0.92 De 88.89 } JUNCTION 11-4. 00-3.42* 196. 76 0.68 84.54 J FRICTION 112. §0-2.99* 175.72 0.90 De 76. 47 } JUNCTION 112.00-3.2-2* 183.43 0. 71 77.51 } FRICTION 110.50-3.06* 175.69 0.89 De 72. 62 } JUNCTION 110.00-3.56* 151.38 0.26 8.88 I I I I I I I I I I I I I I I I I I I ., } FRIC';I'ION 111. 50-3.10* 129.25 0.37 De 7.23 } JUNCTION 111. 0-0-3.14* 129.48 0.14 1. 64 } FRICTION 113. 50-3.02* 123.60 0.19 De 1. 40 } JUNCTION 113. 00-3.02* 123.61 0.19 De 1. 40 --------·---------------------------------------------------------------------- MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE= 25 ----------------------.--------· --· ------------------------------------------- NOTE: STEADY FLOW HYDRAULIC HEAD~LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 122.50 PIPE FLOW= 8.10 CFS ·ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE ELEVATION= 325.36 PIPE DIAMETER= 18.00 INCHES 326.860 FEET ------------------------------------------------------------------------------ NODE 122.50 : HGL = < 326.860>;EGL= < 327.186>;FLOWLINE= < 325.360> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 122.00 122.50 TO NODE 122.00 IS CODE= 5 ELEVATION= 325.36 (FLOW IS UNDER PRESSURE) --------------------. ----------------------------.------·--------------------- CALCULATE JQNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 5.80 12.00 45.00 325.36 0.95 DOWNSTREAM 8.10 18.00 325.36 1.10 LATERAL #1 2.30 12.00 0.00 325.36 .0. 65 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 O.OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2~Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01897 DOWNSTREAM: MANNING'S N = 0.61100; FRICTION SLOPE= 0.00426 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01162 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 7.385 4.584 2.928 0.000 FRICTION LOSSES= 0.046 FEET · ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.570)+( 0.600) = 0.570 ------------. -------------·--------------------------------------------------- NODE 122.00 : HGL = < 326.909>;EGL= < 327.756>;FLOWLINE= < 325.360> ***************************~************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 120.50 122.00 TO NODE 120.50 IS CODE= l ELEVATIO~ = 326.95 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------- ·CALCULATE FRICTION LOSSES (LACFCD): PIPE FLOW 5.80 CFS PIPE DIAMETER= 12.00 INCHES PIPE LENGTH= SF=·(-Q/K) **2 HF=;L*SF = ( 63. 54 FEET MANNING'S N O. 01100 (( 5.80)/( 42.106))**2 = 0.01897 63,5A)*(0.01897) 1.206 I I I I I I I I I I I I I I I I I NQDE 120.50 : HGL = < 328.115>;EGL= < 328.961>;FLOWLINE~ < 326.950> ****************************************************************************** 120.00 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 120 .. 00 120.50 TO NODE ELEVATION= 326.95 (FLOW IS UNDER PRESSURE) -.-------.-----------------------, ---------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCH)!:S) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 5.42 12.00 0.00 326.95 0.94 DOWNSTREAM 5.80 12.00 326~95 0.95 LATERAL #1 0.00 0.,00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.38===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS (DEI;,TA3)·- Q4*V4*COS (DELTA4)) / ( (Al+A2) *16.1) +FRICTION LOSSE$ UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01?57 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE== 0.01897 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01777 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 6.901 7.385 0.000 0.000 FRICTION LOSSES O. 071 FEET ENTR:ANCE LOSSES = 0 .169 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION, LOSSES ( 0.178)+( 0.169) = 0.348 ------------------------------------------------------------------------------ NODE 120.00 : HGL = < 328.570>;EGL= < 329.309>;FLOWLINE= < 326.950> ****************************************************************************** 120.00 TO NODE 118.50 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 118. 50 ELEVATION= 328.13 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 5.42 CFS PIPE DIAMETER= 12.00 INCHES 57.63 FEET MANNING'S N = 0.01100 (( 5.42)/( 42.106))**2 = D.01657 57.63)*(0.01657) 0.955 --. ------------------------------------------------------------------------ NODE 118.50 : HGL = < 329.525>;EGL= < 330.264>;FLOWLINE= < 328.130> ****************************************************************************** 118.50 TO NODE 118.00 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 118.00 ELEVATION= ;328.13 (FLOW IS UNDER PRESSURE) -----------------------------------------------~ ·------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 5.32 12.00 0.00 328.13 DOWNSTREAM 5.42 12.00 .a. 328.13 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.10===Q5 EQUALS BASIN IN·PUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4)) / ( (Al+A2) *16.li+FRICTION LOSSES CRITICAL VELOCITY DEPTH (FT.) (FT/SEC) 0.93 6.774 0.94 6.901 0.00 0.000 0.00 0.000 I' I I I I I I I I I I I I I I ·1 I I I UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01596 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01657 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01627 JUNCTION LENGTH= 4.00 FEET FRICTION LOSSES 0.065 FEET ENTRANCE LOSSES 0.148 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.092)+( 0.148) = 0.240 ------------------------------------------------------------------------------ NODE 118.00 : HGL = < 329.792>;EGL= < 330.504>;FLOWLINE= < 328.130> ***************************************~************************************** 118 .,00 TO NODE 116. 50 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 116.50 ELEVATION = 328. 60 (FLOW IS UNDER PRESSURE) -, -------------------------------"--------------------------------------------- CALCUI,,ATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 5.32 CFS PIPE DIAMETER= 12.00 INCHES 22.31 FEET ~NNING'S N = 0.01100 = (( 5.32)/{ 42.107))**2 = 0.01596 22.31)*(0.01596} 0.356 -----------------------. ------------------------------------------------------ NODE 116.50 : HGL = < 330.148>;EGL= < 330.860>;FLOWLINE= < 328.600> ****************************************************************************** 116.50 TO NODE 119.00 IS COD~= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 116.00 ELEVATION= 328.60 (FLOW IS UNDER PRESSURE) ---------------------------------------------·-------.------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 5.16 12.00 90.00 328.60 0.92 DOWNSTREAM 5.32 12.00 328.60 0.93 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0. Oci 0.00 Q5 0.16===Q5 EQUALS BASIN INPUT=== iACFCD AND OCEMA FLOW JUNCTION FdRMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*CbS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01502 DOWNSTREAM: MANNING'S N = 0.01.100; FRICTION SLOPE= 0.01596 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01549 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 6.570 6.774 0.000 0.000 FRICTION LOSSES 0.062 FEET ENTRANCE LOSSES 0.142 FEET · JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 1.445)+( 0.142) = 1.587 __ , ____________ . -------------------------------------------------------------- NODE 116..00 : HGL = < 331.777>;EGL= < 332.447>;FLOWLINE= < 328.600> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 114.50 116.00 +O NODE 114.50 IS CODE= 1 ELEVATION= 329.28 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH= SF=(Q/K).**2 HF=L*SF = ( 5.16 CFS PIPE DIAMETER= 12.00 INCHES 32.52 FEET ·MANNING'S N = 0.01100 (( 5.16)/( 42.105))**2 = 0.01502 32.52)*(0.01502) = 0.488 I I I I I I I .I I I I I I I I I I I I --------------------------·--------------------------------------------------- NODE 114.50 : HGL = < 332.266>;EGL= < 332.936>;FLOWLINE= < 329.280> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 114.00 114.50 TO NODE 114.00 IS CODE= 5 ELEVATION= 329.28 {FLOW IS UNDER PRESSURE) ----, ----------·-------------------------------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL {CFS) {INCHES) {DEGREES.) ELEVATION DEPTH {FT.) UPSTREAM 4.67 12.00 0.00 329.28 0.90 DOWNSTREAM 5.16 12.00 329.28 0.92 LATERAL u 0.00 0.00 0.00 b.00 0.00 LATERAL #2 o. oo· 0.00 0.00 0.00 0.00 Q5 0.49===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS{DELTA3)- Q4*V4*COS(DELTA4))/({Al+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01230 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01502 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS-0.01366 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 5.946 6.570 0.000 0.000 FRJCTION LOSSES -0.055 FEET ENTRANCE LOSSES 0.134 FEET JUNCTI.ON LOSSES JUNCTION LOSSES (DY+HV1-RV2)+(ENTRANCE LOSSES) ( 0.176)+( 0.134) = 0.310 ----.--------------------------------. ---------------------------------------- NODE 114.00 : HGL = < 332.697>;EGL= < 333.246>;FLOWLINE= < 329.280> ****************************************************************************** fLOW PROCESS FROM NODE UPSTREAM ~ODE 112.50 114.00 TO NODE 112.50 IS CODE= 1 ELEVATION= 330.40 (FLOW IS UNDER PRESSURE) -----------·------.------~---·--------------'--------------------------------- CALCULATE FRICTION PIPE FLOW PIPE LENGTH= LOSSES(LACFCD): 4.67 CFS PIPE DIAMETER= 12.00 INCHES 56.14 FEET MANNING'S N 0.01100 SF= (Q/K)· **2 HF=L*SF = ( (( 4.67)/( 42.106))**2 = 0.01230 56,14~*(0.01230) 0.691 NODE 112.50 : HGL = < 333.387>;EGL= < 333.936>;FLOWLINE= < 330.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 112.00 112. 50 TO NODE 112. 00 IS CODE = 5 ELEVATION= 330.40 (FLOW IS UNDER PRESSURE) ----------------------------------------------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (:CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 4.51 12.00 0.00 330.40 DOWNSTREAM 4.67 1~.00 330.40 LATERAL #J. 'O. 00 0.60 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.16===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA~)- Q4*V4*COS {DELTA4)) / ( (Al+A2) *16 .1) +FRICTION LOSSES CRITICAL VELOCITY DEPTH (FT.) (FT/SEC) 0.89 5.742 0.90 5.946 0.00 0.000 0.00 0.000 I I I I I I I I I I I I I I I I I I UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01147 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01230 AVERAG;ED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01189 JUNCTION LENGTH= 4.00 FEET FRICTION LOSSES 0.048 FEET ENTRANCE LOSSES 0.110 FEET JUNCTION LOSSES== (DY+HV1-HV2)+(ENTRANCE LOSSE$.) JUNCTION LOSSES= ( 0.085)+( 0.110) = 0.194 NODE 112.00 : HGL = < 333.619>;EGL= < 334.131>;FLOWLINE= < 330.400> * *** * * * * * ** *** * **** ** ** * * * * *'* *** * ** ***·******* *·** ** * * * * ** * ** * ** *** * ** ** **** * * * * FLOW PROCESS FROM NODE UPSTREAM NODE 110.50 112.00 TO NODE 110.50 IS CODE= 1 ELEVATION·= 330.76 (FLOW IS UNDER PRESSURE) ------------------------------------------·--.---.---------------------------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE l;.,ENGT,H SF=(Q/K)**2 HF=L*SF == ( 4.51 CFS. PIPE DIAMETER= 12.00 INCHES 17.61 FEET MANNING'S N 0.01100 {{ 4.51)/{ 42rl07}}**2 = 0.01147 17.61)*(0.01147) 0.202 ----------------------------------------------------------------------------- NODE 110.50: HGL = < 33;3.82.l>;EGL= < 334.333>;FLOWLINE= < 330.760> * * * *·* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *'* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE UPSTREAM NODE :j.10. 00 110.50 TO NODE 110.00 IS CODE= 5 ELEVATION= 330.76 (FLOW IS UNDER PRESSURE) ----------------------------------------------:-------------------------------CALCULATE JUNCTION LO$SES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES-) ELEVATION DEPTH(FT.) UPSTREAM 0.80 12.00 90.00 330.76 0.37 DOWNSTREAM 4.51 12.00 330.76 0.89 LATERAL #1 3.69 12.00 0.00 330. 76 0.82 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.02===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION :FORMULAE USED0: DY={Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = o.01ioo; FRICTION SLOPE= 0.00036 DOm,JSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.01147 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00592 . JUNCTION LEJ-lGTH = 4. 00 FEET VELOCITY (FT/SEC) 1.019 5.742 4.698 0.000 FRICTION LOSSES= 0.024 FEET ENTRANCE LOSSES= 0.102 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING iPRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. ------------------------------------------------------------------------------ NODE 110.00 : HGL = < 334.317>;EGL= < 334.333>;FLOWLINE= < 330.760> *******************~********************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 111.50 110.00 TO NODE 111.50 IS CODE= 1 ELEVATION= ~31.22 (FLOW IS UNDER PRESSURE) --------, --------------------------------------------------.------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE I,iENGTH SF=(q/K)**2 HF=L*SF =c ( 0.80 CFS PIPE DIAM~TER = 12.00 INCHES 23. 07 FEET MANNING'S N O. 01100 ( ( 0 . 8 0 ). / ( 4 2 . 0 9 8 ) ) * * 2 = 0 . 0 0 0.3 6 23.071*(0.00036) 0.008 I I I I I I I I I I I I I I I I I I NODE 111.50 : HGL = < 334.325>;EGL= < 334.34l>;FLOWLINE= < 331.220> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 111.00 111.50 TO NODE 111.00 IS CODE= 5 ELEVATION= 331.22 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) . (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 0.22 12.00 45.00 331.22 0.19 DOWNSTREAM 0.80 12.00 331. 22 0.37 LATERAL #1 0.00 0.00 -0. OQ 0.00 0.00 LATERAL #2 ·O. 00 0.00 0.00 0.00 0.00 Q5 0.58===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*CO$(DELT,A.4))/((Al+A2)*16.l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00003 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00036 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00019 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 0.280 1.019 0.000 0.000 FRICTION LOSSES 0.001 FEET ENTRANCE LOSSES 0.003 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 0.016)+( 0.003) = 0.020 ---------------------------------------~-------------------------------------- NODE 111.00 : HGL = < 334.359>;EGL= < 334.361>;FLOWLINE= < 331.220> *******************k********************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 113.50 111.00 TO NODE 113.50 IS CODE= 1 ELEVATION= 331.34 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 0.22 CFS PIPE DIAMETER= 12.00 INCHES 0. 01100 PIPE LENGTH SF={Q/K)**2 HF=L*SF = ( ( ( 6.01 FEET o.22) / ( 6.01)*(0.00003) MANNING'S N 39.857))**2 = 0.00003 ~ 0.000 ------------------------------------------------·----· ------------------------ NODE 113.50 : HGL = < 334.360>;EGL= < 334.361>;:FLOWLINE= < 331.340> ****************************************************************************** 113.50 TO NODE 113.00 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 113. 00 ELEVATION = 331. 34 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 0.22 12. 00 . 0.00 331. 34 0.19 0.280 DOWNSTREAM 0.22 12.00 33·1. 34 0.19 0.280 LATERAL #1 0,. 00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0 .. OO===Q5 EQUALS BASIN INPUT=== LA<;:FCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*GOS(DELTA1)-Q3*V3*COS(DEiTA3)- Q4 ~V 4 *COS ( DELTA4) ) / ( (Al+A2) * 16. 1) + FRICTION LOSSES I I I I I I I I ·I I I -I I I I I I I I UPSTREAM: MANNING'S N = 0.01100; FR~CTION SLOPE= 0.00003 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE= 0.00003 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00003 JUNCTION LENGTH= 4.00 FEET FRICTION LOSSES= 0.000 FEET ENTRANCE LOSSES= 0.000 FEET ** C~UTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 113.00 : HGL = < 334.360>;EGI,,= < 334.361>;FLOWLINE= < 331.340> *************************************************************************~**** ·UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 113.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATJON ~ 331.34 331.53 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS I I I I I I I I ,I I - I I 'I I :I ·1. I I Ii - DRAINAGE STUDY FOR \ ' KINDERCARE -CARRILLO RANCH SECTION4 I************************************************~**************************** O'Day Consultants, Inc.. * * I I ·I I -I I I I I I I I I I I I I I 5900 Pasteur Co.urt, Suite 100 * Carlsbad, CA 92008 * (Tel} 760-931-7'700 (Fax} 760-931-8680 * Inside Diameter 18. QO in.} * * * * * * * AAAAAAAAAAAAAAAAAAAAA * Water * * * * 'k * * * * * Circular Channel Section Flowrate ................. . 8.100 Velocity ................. . 7. 4-86 Pipe Qiameter ............ . 18.000 Depth of Flow ............ . 10.598 bepth of Flow ............. , 0.883 Critical Depth ............ · 1.103 Depth/Diameter (D/d} .... . 0.589 Slope of Pipe ............ . 1.000 x~sectional Area ......... . 1.082 Wetted Perimeter ......... . 2.624 ARA (2/3) ................. . 0.600 Mannings 'n' ............. . 0.011 Min. Frie~ Slope, 18 inch Pipe Flowing Full ..... . 0.426 A I I I I 10.60 in.} 0.883 ft.} I I V CFS fps inches inches feet feet % sq. ft. feet % I_ I I I. I I I I I I ·1 1· I I 11 I . I· I ,,. I DRAINAGE STUDY FOR -- KINDERCARE -CARRILLO RANCH SECTIONS .:._. -r,. - '• ~' ' ,.:· " • _I\. • •• <" ·-.~· ""'·.· ,, ,. ': . ,,~' ,, I . I i l I >'I . ; ' \\ \· !\ ' ' \'\ \ I, \· /- ·' ,. __ j - \ .. \ . f\.· \ I \ \ ' . \ \ \ \ \ . i \\ \ \ \ \ '\· ·,. \ ·, ·\ \ \ \ \ \ I ©2900 iO'Day · Consultants, . Inc. . ' . ~ . . . --. . -.. ,.\-" ", ,. ~ . ,; -, ' l \ ' ' ' ' ' I \ I I ! ,/ \ \ .-/ / \ \ \ ,', \ ·,, :, \ .., ' \ \\ ' ' "l ~ /, '; ~ \ I ' '.'. ',; 't \ ' ,, ., ' /' ---1-;_ , i• I , ,· • •'-1' I I l ·.·, t,',_11 ', '1 ·, '', 1,1 l I •, -,,1·.1 j ·1 ,_ "! , I ' \ ·,. •',' 1,1 J t ·,,'.',',.I 1 ! '10 ',' ',' t ! ',o ,I' I I ', 'I I ' I '·:. ·1 I I_ . ·, , I \ I I . \ \ l 1 , 1 '· I '· :\[,! i \I', ·, ' ' \ I ' '· ,, 1\ '; I " ' ' i ,1 I I I . :. \ ' I I i, I I ! \ i ' ' ,, \ I ' ' ' ' 1 ', 11 I I -1 .. I I I, I ' ' 'I I \ ' I I I ; ' ' ' I + ', l I ! ! I \ I I ' I ' ! ! I ,l ,' i i ·, '1 I I I I , I I ' ' i,r, ' i ·1 L l i l ' I I i i ~,,1· 1)1 '. . l !'l i '::j ti! I .. ', J I : -d •• ! 1 I i I ! I .' i . i I ,., I . I I . ,, rll · 1l 1 C I I i 1 ' ' I I i \\'i'; 11 ~-----,,. i!II ! • '. . i'/ 11 } :, I !, ' I \ ', I I I I ! , I ' _1 I t _r ' I I I i I ! I , ! I · ; I I I I l ·'" I · ;,.--1 ; I ;-L ,----·-· ' ' I I ' ! ·. i 1 \ ) : I .,, \ I I 1· \ ,' \''I 1 ·1 ,-~--,, ,•, I' , ---\\''-! ··: II I \ I, I I_ '',I,\ I ','-._ 1',. i ----.• '-\1!1\ I \ I I I ), i \ ,. !I I I I I: I I I I', -I I I I I ' I I I 1 , I , l ' t • ! .! l ' " · r 1 · 1 I • i, ! I ' .',! . • : ! -:-I i --..1 !' 'ii I : ! I ' . \ ' ,. \! 'i Ii 1 '; !'. ; 1t-\._: • ., ~ , I It I I I_ I I ' I ' I_ ' i, • I I ' , I I ' I ' I I ' . . . ' ' I I I . ' • I r 1- 1 I I • ' . ' t\"i ',,'',.\\\ -·, ': · "1' 1· .,·, ;\, · ..... I ~ ·,1 I I , L !, ' ' ' ' .~, . ' (' ·, ·, '.-. ~-- ---·--i,_ f -----.. ~·- ! ! ! i I ! I I ,. I I 1 , •• , l , 1 ' . . ' ' \ ·,_ ', \\,,\ \1'·:-\~l\ '·, ',\ ·, ,· \ I . ' ., ' I \\ ', ', . . . ',".' \ ·, ... \':,, ' '-,_ \ -\. \ . \ .-\ ' ' \ '.\ \ \ • \ __ .,,/ \ .o~~ CONS U~NT S 5900 Po,teur Court Suite 100 Corlsbod, Colifornio _92008 760--931-7700 F o_~: 7(50-93_1-8680 . Civit Engineering Planning Processing Surveying ; ' ' \ + ' ' i I 1 .~-y, + I . \ DESIGNED BY; .,,C.=0,_, __ DRA'M>I BY: J.S., $,$, PROJECT MGR.: G.O'D. -/ ·, / ·-' + / ; / / ' '· DATE:. MARCH 2000 1• a 20' SCALE: JOB NO,: 99-1031 -! ,' j ! + 0. ~·:.;. .1 --·'11 I' " " 'i ! ···.I! >• --t,:-.~ \ '"-, ~/!/:;.'.i,.-~ i .. ,-; ' .. --: --! ) + .,., j 1 '• \ -... ~ ~~;!"---. __ / ' ' i \ , \ ' . \', " ' ' f .,. -.... __ _ . "AS-BUILT !----~-----~------! P.E. EXP. ENGINEER OF. WORK: 'REVIEWED BY: DATE: GEORGE O'DAY RCE: 32014 INSPECTOR . ·-··. ,_, ... '' + '' ,i " DATE '.>A TE ' ' ,f l ,. __ ! ' ---. - i . ' ; I \ ' ' / ·-- '{-----_ .J I l . L· -~-----1 -~-~-!. l .-r .-:.--=-=-~ -I- / ' ' ' •, I' ) / / / / ,.-' / ' I ' / '.:t.' ,\ I ' \ BENCHMARK: DESC.RIPTION:. LOCATION: SlREET CENTERLINE MONUMENT - CENTERLINE Of EL CAMINO REAL 0.28 MILE N'LY OF PALOMAR .AIRPORT ROAD; STA; 249+07,56 PER COUNTY or SAN DIEGO R-1800. I : I . I 1 ' ' ' ! i ' 11 / ' ' ' ' . '1 I i ; ' . ' ' ' ' i 1 I I I I I • ' . ' ' . ' ' ' . ' ' ' ' ' ' . ' ' .. ' ' . ' ' .. ... .. ,I ;' / / ' ' '- I I DAlE INITIAL RECORD. FROM: COUNTY Of' SAN DIEGO VERTICAL CONTROL BOOK ·307.1!74> DATUM: M.S.L ENGINEER . OF WORK ELEVATION: . -. ,; '• . / -J I / ·, i ' ', ' ' ' ' ' ' ' ' ' ' '--i 1 .; i ' -1. ' ·r I \.I ., ' f ,\ > .. ~-· - ' I --+- l ) / ) > -1 : ./ I i ( . /: -, 0 r}' ,, J • :-'.iF /. ,_ .. ,-, 0 ;; ' I I I /-' ' ' i I I : . " .. . ,' :/:{ {-, ,' ~' ,, -~-,i '•·\· ·>-/ i f I_. I ! : ; -i I i ,' i /: I: . ... ., ' . ' ' . I , ·, ', ::--.,. , /j:, ~~ ., !_.; ·'"1 ., t.: •:; ,!... :),- ·:, ·:.r ~'<' ·. I ·-., i --.. ,._ ·-7 __ ', ' - I 1_,' .--. I / u I ->l I . .' .: : /' ·, ', i . ~ __ , ,..._ . . ' ' _-,,• -.'' /. I -,1 ·; j'! ' \ I I I I I, /' ' ,' ·,' . '' ' . ' ' ' . ' i>-:---- ' ' '. I i ,' ' I ', ' ' ' . ,, ' : I J : i I t ' I '' '. ,) ' . 'J .· '! l ' I r o I ~ " I '• I 'i ' -• :i/!. ' I' i ! " ' • I I' 1.):, ·., -j ' --I-- :-----'--~ . .550'-__l--; '. ' ' ' ' •. , l . REVISION DESCRIPTION I ' : t- (' - --+ ii / ,I i i / ,j '--i I-Q'' ,, __ ;.; / ; i i i /./ ; (' '. o; : 0' I . " '{ I ·' / I X I SHEET l ··, .--.,:., O' 5' 20' ----10 40' SCALE: 1 ' = 20' O"DA. y CONSULT A.NTS JUL 1 g 2000 OATEPRINiED DRAINAGE STUDY CITY OF· CARLSBAD ENGINEERING DEPARTMENT I SHEETS I KINO£HCAH!. CAHH/llO RANCH APPROVED Ll0'11) !l. HUBBS PE 23889 EXPIRES 12-31-01 · CITY ENGINEER OWN BY: DAlE INITIAL DATE INITIAL CHKD BY:· __ _ OTHER APPROVAL ClTY APPROVAL RVWO BY: G\..OBS\99l0-3l\.9931DSOJ.D'w'G 7-19-00 2'36"48 p,,1 tSt mtr: ffll7lJTI.. 99JIC-, 9931MAP, 99Jl9l[. HJtSD-J. 99Jf?POI' PROJECT NO, ' . DATE ·,, - ' (' .. ·, ,.-,