Loading...
HomeMy WebLinkAboutSP 210; POINSETTIA LANE STORM DRAIN; REVISED DRAINAGE REPORT FOR STORM DRAIN LINE "A"; 1999-09-13I I I I I I I I :1 I I I I I I I I I I REVISED DRAINAGE REPORT FOR STORM DRAIN LINE "A" EXTENSION WITHIN THE SAN DIEGO NORTHERN RAILWAY ROW STATION 40+86.78 TO POINSETTIA LANE Prepared For: SHEA HOMES 10721 Treena Street Suite 200 San Diego, CA 92131 Prepared By: O'DAY CONSULTANTS, INC. 5900 Pasteur Court Carlsbad, California 92008 (760) 931-7700 ~C2/d~ Timothy O. Carroll Dat~' RCE # 55381 Exp.12/3112000 F;\MSOFFICE\WINWORD\97-! 046\DRAINAGE.DOC Revised: 8-27-99 Revised: 5-26-99 October 15, 1997 IN.: 99-1026-5 Prepared by: LBRlEGW I I I I I I I I I I I I I I I I I I I TABLE OF CONTENTS Section 1.0 INTRODUCTION 2.0 HYDROLOGY CALCULATIONS 2.1 Determination of Runoff Coefficient 2.2 Determination of Intensity 2.3 Determination of Areas 2.4 Flood Routing Method 2.5 Hydrology Calculations 2.6 Pipe Hydraulic Calculations I I I I I I I I I I I I I I I I I I I LIST OF APPENDICES Appendix HYDROLOGY Exhibit A ExhibitB Exhibit C ExhibitD ExhibitE ExhibitF Exhibit G ExhibitH Exhibit I Exhibit J Exhibit K Hydrologic Soil Groups Map -San Diego County Interpretation Study Runoff Coefficients (Rational Method) Site Location Map 100-Year, 6-Hour Precipitation Isopluvials 100-Year, 24-Hour Precipitation Isopluvials Intensity-Duration Design Chart -Q100 Hydrology Study (Avenida Encinas and Offsite Storm Drain) Section 1 Hydrology Calculations Pipe Hydraulic Calculations Proposed Hydrology Maps Schematic Drawing Storm Drain Line "A" I I I I I I I I I I I I I I I I I I I SECTIONl INTRODUCTION This drainage report has been prepared to facilitate the design procedures and calculations used to determine the proposed pipe sizing for the extension of storm drain Line A within the San Diego Northern Railway, between Station 40+86.78 to Poinsettia Lane. The drainage basin consists of approximately 256.1 acres, encompassing undeveloped lands assuming their proposed land use, together with the existing mobile home parks, commercial/retail centers and natural open space areas. The proposed storm drain extension parallels the San Diego Northern Railway between Poinsettia Lane and Ponto Drive. The developed drainage basins, storm drain layout, points of connections, inlets, outlet points, and other drainage facilities are shown on Exhibit J attached at the end of this report. The flows calculated by this study slightly differ from those numbers obtained during the master plan drainage study as shown on City of Carlsbad drawing 337-9. This is due to the minor differences in drainage area because of the most recent site studies for planning areas 5, 7 and 8, vernal pool mitigation area, changes in land uses and the known drainage patterns within the now existing Poinsettia Shores. This analyses of the existing downstream storm drain line using the updated flows from this study shows no adverse affect on the existing line. Storm drain improvements shall be designed in accordance with the following reference documents: • San Diego Area Regional Standard Drawings, dated March 1995 by the City of San Diego ("Regional Standard Drawings") • Hydrology Manual, County of San Diego, dated April 1993 ("County Design Manual"). • Handbook of Hydraulics for the Solution of Hydraulic Engineering Problems, Sixth Edition, dated 1976, by Ernest F. Brater and Horace Williams King ("King's Handbook"). • City of Carlsbad Standards for Design and Construction of Public Works Improvements in the City of Carlsbad, dated April 20, 1993. • Manual for Under Track Structures, compiled by B.J. King, Bridge Engineer, A.A. McGinnis, Assistant Engineer and J.M. Quesada, Assistant Engineer, Western Region; Los Angeles, CA, dated January 1985. I I I I I I I I I I I I I I I I I I I 2.4 Flood Routing Method The Rational Method was utilized to calculate peak storm water flows and route the calculated flows through the proposed drainage system. When two flows confluence at a junction point, the smaller of the flows has been decreased by using the Modified Rational Method. This procedure accounts for the differing times of concentration for the flows upstream of the confluence point. The smaller Q is reduced by either the ratio of the intensities or the ratio of the times of concentration. 2.5 Hydrology Calculations A summary of hydrology calculations for the developed conditions is listed in Exhibit H. Each basin is identified according to the pipe system that collected them, with its corresponding area; C-factor, length of flow path, slope of flow path, time of concentration, intensity, and total flow listed. 2.5 Pipe Hydraulic Calculations The pipe sizing and hydraulic grade lines were calculated by the "Pipe-Flow Hydraulics Computer Program" (reference: LACFCD, LACRD, and OCEMA Hydraulics criterion: © copyright 1982-95 Advance Engineering Software (AES) version 5.6B Release date: August 1, 1995. The program computes a gradually varied flow profile and pressure gradients in open channels or closed conduits. The flow in a system may alternate between supercritical, sub-critical, or pressure flow in any sequence. The study for this storm drain system produces sub-critical flow only. The output for the storm drain system are listed in Exhibit I. I I I I I I I I I I I I I I I I I I I SECTION 2 HYDROLOGY CALCULATIONS The hydrological analysis utilized to calculate the storm runoff for the 100 year storm event was the Rational Method (Q = C * I * A). Using a computer program based on the San Diego County flood control Division 1985 hydrology manual "CiviICADO/CIVILDESIGN" Engineering Software, (c) 1993 ver. 3.2 determines each component of the Rational Method equation, in which Q = Runoff (cfs) , C = Runoff coefficient, h = Rainfall intensity (incheslhour) A = Area (acres). T c = Time of Concentration (Initial, overland, street gutter or pipe). 2.1 Determination of Runoff Coefficient The runoff coefficient (C) is based on the soil group of the drainage basin. This project lies within Soil Groups A and D, as determined by referencing the soil survey maps. Runoff coefficients are also dependent on the proposed land use of each basin. Coefficients for this project were based from the County of San Diego Hydrology Manual. A weighted runoff coefficient has been calculated for each drainage basin. Exhibit B documents the coefficient calculations and any assumptions made. 2.2 Determination of Intensity Rainfall intensity (I) is a function of the six-hour precipitation measure and the time of concentration for the drainage basin, as defined by the County of San Diego Hydrology Manual (Exhibit F). 2.3 Determination of Areas The area (A) of each drainage basin was determined from the Drainage Area Map. The drainage sub-basins have been based on the ultimate anticipated land use. (See Exhibit J). I· I I I I I I I I I I I I I I I -0 I "):> C'") I I I .. ' c. " - ': .. ::.:--..... -= .. . ,.:', ~==-.. . . . \ i , \ I \ ) ' ...... ·\~.Alr \ "t' ~I ~V' i .. ~ \ \ 5! I . \\i~~\ -::--I ~'\ \ \ '. \ \ , " \ ' .. ~ ...... ..-. -...:. --. -.. - I I I I I I I I ~. I I I I I I I I II RUNOFF COEFFICIENTS (RATIONAL METHOD) L~'iD USE C:oefficieri't. C Soil Group (1) A B C D Uncieve1oped. £XI S-rIAlG • :;0 .35 .40 .-!-5 Residem:ial : Rur:!.l . .30 .35 • .l.Q . -.-.J Single ramily PRoPO:5en .40 .45 .50 .~~ ~tul 'ti-Uni ts .45 • SO .60 -" • :V ~1obile Homes (2) • .1S • SO .55 .65 Commercial ,..,) .70 .75 .80 ,., ,. \.-.. ..j.:J 80% Impervious Industrial (2) .SO .85 .90 .95 90% Impervious NOTES: (1) Ob'taL~ soil group from maps on file with ~~e Depa~ent of Sanitat~on and Flood Control. . Where actual conditions devia:ca.· si~ific::a..'l'tlr fl."U!!1 the taoula"ted ~perviousness values of 30% or 90%, the values given for coefficie~~ C, may be revised by multiplying 80% or 90% by the ratio of ac~~l i::lper/iousnes s to th e tabUlated ilIIperliousnes s . However, in no cas e shall t...~e final coefficient be less 'than 0.50. For example: Cons.:.tle;: ccmmer~~al property on 0 soil group. Actual imperviousness Tabulated imper.viousness = 80% Revised C = ~ X 0.85 = 0.53 APPE!.'lDIX IX --, .... '.-- I I I I I I I_+----l-.\.\) I I I I I--~~~~~~~~~ I ~ltl ~IT C I ~: I \ 1 I I 1:5 18 1;1 --, , ......... --.... ......... ............. I ;!!I ROckEf~I$--.... r------ \~ \ ~EGIE CT y,..----- \ "",.,.[-...,..~~~ .. ·~-..... Coe. ........... -, 't1\l~ .... ,.. ~ \ '. \'!\. \ J' \'i \ .fi .. ~ \'" \ ~ '.C , ' ..... or ". \ RANCHO \ -----------=:---'\---- \~ I 21 \ 1 l.OIIIIl.IDII SF 2 FIR TR£t PI. 3 1IOIIIDI. tT tll:~~~~IIl:ll .. ~ PORT -'-'-'---r-----c \ ( I I I ..... • I I 1 1 I -------------------.. ~ Courrry OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL ., . 45' \I~ 30' I_I "'~:-\--I . 1·.- • f1~ " ,f " ----1----15 .-1 I "'*' 33-I ~ ~I , • 1.5' . I __ II "UP" f'" "r u.s. OEPARTMENlr OF COMMERCE ,.AT,ONAL OCEANIC "NO I\'PI"51'II~HIC IIUlliNISTMATIOH SPEC'AL ITUDIEI DRANell. OffICE Of II IIHOLOGY. NATIONAL W£ATIIER IlERVICE 30' 118' It5 I 3D' 15' .....,I ~ ~ --\ II~ , 30' 15 ' 1160J \j IIt.,oj·'I'.II'IIIl ""I'nllll '{ l( I ·r -- I ~XH-U?IT ~ ,~ -, ~ >< ,= >< I) --- < I· --. .. ~ I -- Z! c: 1 0 :::l 0 ---:: :r. ~ -.- I ::> -.-.-~ --1 ~ N • -~ c::: -<:: -. U . !.;.J I . L.=.J >-- ere-0 ~ 0 ~ 1 -,.,-• ~ !.:- I' --<:::) 1 0 -V') ----I I c:: ) ~ -1 N > - ::l 1..- . ,.--1 -Co. --0 I ""-W..J v71 >- :.I "\ '" I > -:::; 0 == :&I C 1 ~ .. ..... 0 ~ III :: I:: ,." ~ %;:: V) :l< 1 -"I ~~ '- :::;..l :: ~ t; ~ ,~ c.; - ---l... :;;; -Q:: = ~ -C.j .. J :.:J ::::- 1 14 '. ~ ::E ~ ~ \ VI :i:J' % 0 .\ o _ ~ /, c.; x _ -I :;a - l-I C:. -~ 1 o~ r .: c ~ g '7. _-~ t:J -I •• .,L l. ! %!: l.U z '-l. ~< ;-~~;: Q en :: ~ a 0 1 ::~..J • %:.a c:: < 13 <coo <13;:: Vl c:: ---a. ~:o-- !-I-1.1'\ 0 1.1'\ 1.1'\ ::oJ .: Q 0 u.:.:z -t""'I -Q:.& • rr\ 1 Ol.UO 13- >-~u ron Q c:i 0..1% I-C::::O • ;:) < ~ .;) =<0 t""'I %:::a ::;lc...0 t""'I 2 ... Ou.J..J 1-10& 1 (",JOLI. < -:Q :::r I-.. ..I < 13 11& I 110 ... .. _ ........ "t""\TV VT !.J c(\ -lNTEtlSITy,.DUMTION OESIGN CIII\RT ......... L :J g ....... 1/1 ttl c: U C ,.... -- -0 . -.. .5 - - - ------- --. t1 -=...:.._--:---:----~ ~ -:.:-.. ~.:.~ -. < .-- -~ . ~. ,1 -;,.::..:..:.. ., -----: - CD .:: '.: = -~ : :. :: ... A. = '': ~ -~ .~ ::. . - -__ - -_. ..1-1. ...... J:::I~.f::I-I:ll-I··'·'· ~ ,2 gfi ~ ~~ ~ ;,~r;:;::: I> C cJ 11 ,- :3 -l -< '=t:I:I.J=ttUlll -< I ~ I I I 1-W-1-L1! 111'1" 'IUUWU I..1-U -l '. 10 30 40 50 1 6 • 1- 11111I1I1I1II1II=r:::l:l:n:.U:I:'· 1-1. __ 1_1_&_1 ___ &._1_10 ••••••• _ 1Il11ll11ll1llll-J.-I-1 I 1 1.1.J.-:LUj-llU.l1 HLLJI 2 3 4 5 6 - 15 20 1~1llutcs - - nlll';l t f nil ---lIours - ---- Directions for Application: 1) From precipitation naps detennine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed in the County Hydrolugy Manual (10. fiO and 100 yr. maps included in the Design and Procedure t1anual). 2) Adjust 6 hr. precipitation (if necessary) so that it is \~fthill the range of 45% to 65% of the 24 Iw. precipitation. (tIot ilrrlicable to Desert) 3) Plot 6 hr. precipitation on the rioht side of the chart. 4) Draw a line through the point parallel to the plotted lines . 5) This line is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency ICO yr. * 1) P6;; --2-5' in., P24::; 4.0 t P6 ::; (;",-"".J X* 'P'24 2) Adjusted *r6::; ;;1., S" in. 3) tc::; min. 4) I;; in/hr. *Not Applicable to Desert Region ,--------------------------------.------_.-- nevi sed l/RS API'HIIlTX Xl-/\ ---- - --- I I I I I I I I I I I I I I I I I I I AV~NIDA ENCINAS & OFFSITE STORM DRAIN C.T. 94-01 HYDROLOGY STUDY .MARCH 1994 JULY 1994 ODAY CONSULTANTS 7220 AVENIDA ENCINAS STE. 204 CARLSBAD CA 92008 (619) 931-7700 GEORGE O'DAY R.C.E. 32014 14 t"XH-rbtT G I /5 I I I I I I I SECTION 1 I I STORM DRAIN LINE "A" I I I I I I I I I I I I IA _.::5 __ I~ ~CISD \' e'l I .. q./ er. , o.~s:. ___ _ l-'1 I .4 ~ I"').. I l A-IS- A:-:-'G. I A -:17-- A.-'B __ _ A ~I<t I A.~J.C! 7· A.. 4.0 0.' II . 7.'1 " /1 I' ,I '0 o.~s­ o.8f A ~J:.J .. -5=0 5-0 ~'I-t o.~ O.L? I A ~'1. . ~5"' --____ . _. ~_ C;,.5 II II O.~ . _. _____ _ A_-::--:i3 ______ 7.:.~ -__________ -:: _______ 7.·1. If " o.'7S-.. __ . ___ . __ . Q., .... O.~/, I.A.....=.J,~_ ---~," 'i-.G. PJ..r\1+ frs ..... ..0.58._ _ __ .. A.--.J:-5. ______ {:,~s._ _________ -----'=-,.? .. ____ ... "_.___ " _0,.58 __ .. __ I A ~~---:;~-----~---~(.---;;---:: o-5t _ __ _ ~~-------------'-"-. 0_._. -----._. t-?-S& ___ ._. __ ... I ~-1 .Js.?> _______ -:-___ . __ ~~')___ N)~i,3!=_C __ ~~. __ o:~s__ . __ . ____ --o.l.rO _____ . __ -9>~.5 ________ _=__._. __ dk.~ ----"""'>j----:~~1';,~("Sk -'-----__ 0.'6: _____ _ ..\~---~:)----._tt_G, ----.5..-:>----Mo3iL€ _/.IOOE..... -~'-t(~)=+-q~~~'-tSf ~ __ _ _ . . -J:>~.:!2 __ . ____ _ I i2-lt 1'-t.1 ~·4 9·, _________ 'f ______ . ______________ ._ ~4., .. ___ 9.5" ... ___ ._. __ . . _,Y -\ -----.Q=..3l_ ----------:: ______ 0-::> SlRt=:E..r "_ _ 0.'-8 0.8 I ~~-~=~------=---___=~~=:_~~~:~--:-'_: ___ ~:~= :~_~_~~_~:;-=~ 0.1 ____ J:l_~J.! M,L,., __________ . _0...0_2_____________ _____ __ ... _~_~ ___ _ o.Cp c;r~c,=-i r. P-~.P, I I I I I I I I I I I I I I I I I u W. ~c;. :l...9. 3-~ -1. or :t.s 5-~ . e·G::. .So,~ ! i..-AND Ut?E ~ C,..c::HA "" A I' A I' A II A I' I, A ~f'.l D ' --., Dr·~ IV' c:o I J=I!O " e-" ' , f' Co- ?7 0-7 0-7 0.' .. o.? 0:7 0.( D·7 0./ 0.' 0-7_ '::>~! .---.. ------- ~DT~~ .. __ ... _. ___ . .... . --.. ----------. .-.---- TUE AU.V 21.. ~I)b/.,/0-..l""c..... ~Q.e.A..s_._ A'2.£ ,S/.(Dt,J1o.) ot--.) 'I-IE.E' ~ OF Z-of e)<'1-1 11llr ~ -. .-------. --.---... - .------._---_.---_.--.-----_.--_ .. ----_.--------------_._-_ .. _-_ ...... _-----------_ .... -.----.----.... ------_ ... _-_ .. _- ---------_. _ .. _-.. _._._----------_ .. _--. __ ._---- ._----_._-----------.----.-.. -. ---.. --_.----------_. _._-_._-_._._-_._--.-. -_._-_.-. __ ._--------------_ .. _._. ---_ .. _-----------_ .... _---. ----._---_._----------- ..-----. ---_ .. -_. -----_ ..... _--_. __ .. ------------_. ---------_._-----_ .. _------_._----_._---_. -_ .. _._ .. _ .. --_._._--_._- -------_._ .. -. -----------------_._---------------------------_._- ----------_._----------------_. -------------_. --.-.. ---.. - ---_._-_. _ .... _----------------_._-_ ... _---------- ------_.-._---_._._---_ ... _---------------_.--_. __ ._--------_._._--'-.. ------_._------- --------_._----_._-------_._-_.--------._-. -_. __ ._ .. _-_ .. _._-_._----------- ------------------------------------------- POOR " QUALITY " ORIGINAL(S) I I I I I I I I I I I I I I I I I I I I' i I ! I I I I, I, I: I: I i II Ap...,::=-4 A-I -J -3 -s -5 -C- -r -9 -'1 -IQ -~ ( -IJ, -,-::, -'It -IS: -Ie,. -II -18 -14 : -~~ -?."? /:.:.. c. Q:::: c., 3.S:: S.t.r B.b 4:'1 9.1 r, c:; gO-; 10-0 Cr . , , . ':;.'J. 0'-,-; 8-1 i-t.'2 f.e r ~.e :; / -?,-Ie 7'1 . "cr, 4.0 4.4 73 ~ b.S- 7.d. .. -...... -: \' '. I' h t' \' I' II ,I I' I, .. ,. /" \,,' ,f ~c.... \.' c...:' C- ._ t, ...;-.-- I. I (.'-i-e::-~, -;-:.." .... , .~. ---~-. -... r ~ .. ' ,-. "'J . ,,", '".:.~.::~.---~.: -.,.- ----=-:~----'--. eo-- ,,--.' '..... / : .. ;., ...... :...~-1---~-:., ... .. ~ ~ .. ' - ::.. ,(. .. (.4:--',--. ~Y;" ,: ----.--- C-"" . , " it I' I, C ~.­-_"(J ---_,: .. '"":. .,L. C'~"~ .-.. -'"';.;-. ..... ~ . ..... .. <:-_. ,.. d' 'Eo -.. --.-." -~" ... -: 00.1 • < . o. -. -- l' " ;' ' ~ II -..:,. 5"1 '-.. ~ ..... .,::::. ........ 1.0~ '1 -.-, ..... r; I I I I I I I I I ' B-1 -~ .' .---""j. - : ..... - / --(:-. ,:. I.....JS>;:::. '- .-~' :- ./' ,-., --. • _ '. ..i -- -. "-: ,!~='. It"'" .,..,_~ ___ _ 7" =:,.~ ... _- ..--. C," C'" -: ;g --,.-. ....... ·'-1 ....) -I O. -" .,. :,,~._ ~..,~ ::)q -----------~------------=~~----------------------~~----------~~--------~~~---------. I I I I I I I I _L! u j \!J i :c-: . .., C; ,i.-I ,-, .. -,:) _ .... -"" . , J Ii 1/ ;:).57 \, 'f \1 /! I DS.'-' I I I 1-- I 1-- I-- I I-- I _ 3 __ 7 1 ____ 8_ -- 1----1--- 10 I II .. ----------"------. I --------------- D'~IN 17.5" 55:-, 78.'J,. _ _ __ I_~_ _ __ ______i -;.8 _3 __ 1-----.--------------------- _ ______ r~___________ _ _ _.leto • .! " I' A "2.CA 10.0 --I~~_- \~.').O 17.4 d~·95 /(-.:: ~ .. .., --,.-,..-. C:. :;-~ .... 'C ? ~_o ?-o.2:h i9.'-t-'?--:75 ?:Jo-n ?-,:J.o ;;)...0'1 so.oS-:;"'I.~ :;.5'1 5'7.75 ....,-, I , ~ .. -; ;:.50 -,g.CC-:J.2,. S-,",,~ d·~~ __ eo-~ ?.4dL> ----;)..-~- ~._I - 108.4'1 _ TI.o... -:J,.-d-.I __ ·:J:~~.C::,. __ ._. ____ . ____ . __ I--'I~ ________ ;;"\0 .. -' ------Ld.-L ~ ~7 _____ ;}...7,$ ______ ~L.J3_ -----.---~".~ -------_ _ ---'-/~PL. _~Lt<=t.s=. _______ J~I.D;;C _?-B.O ___ ~.I7. _______ 3\8.6 ___________________ _ I IS-310.1_ ___ 30.6 ____ ~.o~ _______ 31b.Q I 11 I I I I I I I I I I I I I I I I I I I EXHIBIT H San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 08/27/99 STORM DRAIN LINE "A" (TOTAL FLOW IN R.R. R.O.W.) 100 YEAR STUDY J.N. 971046-5 FILE: G:\ACCTS\971046\9746A8.RSD ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California -SiN 10125 Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation (inches) = 2.500 24 hour precipitation(inches) 4.000 Adjusted 6 hour precipitation (inches) = 2.500 P6/P24 = 62.5% San Diego hydrology manual 'c' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 0.100 to Point/Station 0.200 **** INITIAL AREA EVALUATION **** AREA A-2A User specified 'C' value of 0.950 given for subarea Initial subarea flow distance 70.00(Ft.) Highest elevation = 80.03(Ft.) Lowest elevation = 80.00(Ft.) Elevation difference 0.03(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.46 min. TC = [l.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.9500)*( 70.00A .5)/( 0.04A (1/3)]= 6.46 Rainfall intensity (I) = 5.586 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 1.061(CFS) Total initial stream area = 0.200 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 0.200 to Point/Station 0.300 **** IMPROVED CHANNEL TRAVEL TIME **** AREA A-2B Upstream point elevation = Downstream point elev"ation Channel length thru subarea Channel base width 66.50 (Ft. ) 65.00 (Ft.) 3 0 0 . 0 0 ( Ft. ) 3.000 (Ft. ) I I I I I I I I I I I I I I I I I I I Slope or 'Z' of left channel bank = SO.OOO Slope or 'z' of right channel bank = SO.OOO Estimated mean flow rate at midpoint of channel 2.388(CFS) Manning's 'N' = 0.015 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 2.388(CFS) Depth of flow = 0.lS6(Ft.), Average velocity 1.414(Ft/s) Channel flow top width = 18.623(Ft.) Flow Velocity = 1.41(Ft/s) Travel time 3.54 min. Time of concentration = 9.99 min. Critical depth = 0.143(Ft.) Adding area flow to channel User specified 'C' value of 0.860 given for subarea Rainfall intensity 4.21S(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.860 Subarea runoff 1.812(CFS) for O.SOO(Ac.) Total runoff = 2.874(CFS) Total area = 0.70(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 0.300 to Point/Station 1.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** AREA A-2C Top of street segment elevation = 63.000(Ft.) End of street segment elevation = 61.000(Ft.) Length of street segment 700.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 32.000(Ft.) Distance from crown to crossfall grade break 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.S00(Ft.) Gutter hike from flowline = 1.S00(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street Depth of flow = 0.534(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 21.970(Ft.) Flow velocity = 1.83(Ft/s) Travel time = 6.37 min. TC 16.36 min. Adding area flow to street User specified 'c' value of 0.860 given for subarea 9.032(CFS) 1. 833 ( Ft / s ) 1.72(Ft.) Rainfall intensity 3.067(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.860 Subarea runoff 7.912(CFS) for 3.000(Ac.) Total runoff = 10.786(CFS) Total area = 3.70(Ac.) Street flow at end of street = 10.786(CFS) Half street flow at end of street 10.786(CFS) Depth of flow = 0.568(Ft.), Average velocity = 1.869(Ft/s) I I I I I I I I I I I I I I I I I I I Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property Flow width (from curb towards crown)= 23.634(Ft.) 3.38(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 1.000 **** SUBAREA FLOW ADDITION **** AREA A-l User specified 'c' value of 0.950 given for subarea Time of concentration = 16.36 min. Rainfall intensity 3.067(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 1.282(CFS) for 0.440(Ac.) Total runoff = 12.068(CFS) Total area = 4.14(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 55.21(Ft.) 53.31(Ft.) Pipe length 450.00(Ft.) Manning's N = 0.013 12.068(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 24.00(In.) Calculated individual pipe flow 12.068(CFS) Normal flow depth in pipe = 16.55(In.) Flow top width inside pipe = 22.21(In.) Critical Depth = 14.98(In.) Pipe flow velocity = 5.22(Ft/s) Travel time through pipe = 1.44 min. Time of concentration (TC) = 17.79 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Sta~ion 2.000 to Point/Station 2.000 **** SUBAREA FLOW ADDITION **** AREA B User specified 'C' value of 0.950 given for subarea Time of concentration = 17.79 min. Rainfall intensity 2.905(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.950 Subarea runoff 0.938(CFS) for 0.340(Ac.) Total runoff = 13.006(CFS) Total area = 4.48(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 53.31(Ft.) 51.54(Ft.) N = 0.013 Pipe length 400.00(Ft.) Manning's No. of pipes = 1 Required pipe flow 13.006(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow 13.006(CFS) I I I I I I I I I I I I I I I I I I I Normal flow depth in pipe Flow top width inside pipe = Critical Depth = lS.S8(In.) 17.23(In.) 21.60(In.) Pipe flow velocity = S.39(Ft/s) Travel time through pipe = 1.24 min. Time of concentration (TC) = 19.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 3.000 **** SUBAREA FLOW ADDITION **** AREA B-1 User specified 'C' value of 0.850 given for subarea Time of concentration = 19.03 min. Rainfall intensity 2.781(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.850· Subarea runoff 3.92S(CFS) for 1.660(Ac.) Total runoff = 16.931(CFS) Total area = 6.14(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation Sl.S4(Ft.) SO.92(Ft.) Pipe length lS0.00(Ft.) Manning's N = 0.013 16.931(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 24.00(In.) NOTE: Normal flow is pressure flow in user The approximate hydraulic grade line above 0.896(Ft.) at the headworks or inlet selected pipe size. the pipe invert is of the pipe(s) Pipe friction loss = 0.840(Ft.) Minor friction loss = 0.676(Ft.) K-factor = 1.50 Pipe flow velocity = S.39(Ft/s) Travel time through pipe 0.46 min. Time of concentration (TC) = 19.49 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 4.000 **** SUBAREA FLOW ADDITION **** AREA C User specified 'c' value of 0.850 given for subarea Time of concentration = 19.49 min. Rainfall intensity 2.739(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.850 Subarea runoff 7.S42(CFS) for 3.240(Ac.) Total runoff = 24.473(CFS) Total area = 9.38(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 4.000 **** SUBAREA FLOW ADDITION **** AREA D User specified 'c' value of 0.850 given for subarea Time of concentration = 19.49 min. I I I I I I I I I I I I I I I I I I Rainfall intensity 2.739(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.850 Subarea runoff 13.734(CFS) for 5.900(Ac.) Total runoff = 38.207(CFS) Total area = 15.28(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station S.OOO **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = SO.92(Ft.) Downstream point/station elevation SO.47(Ft.) Pipe length 150.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 38.207(CFS) Given pipe size = 33.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 1.296(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 0.783(Ft.) Minor friction loss = 0.964(Ft.) K-factor = 1.50 Pipe flow velocity = 6.43(Ft/s) Travel time through pipe 0.39 min. Time of concentration (TC) = 19.88 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station S.OOO to Point/Station S.OOO **** SUBAREA FLOW ADDITION **** AREA E Decimal fraction soil group A Decimal fraction soil group B 1.000 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [MULTI -UNITS area type Time of concentration = 19.88 min. Rainfall intensity 2.704(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 3.614(CFS) for 2.970(Ac.) Total runoff = 41.821(CFS) Total area = 18.2S(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 6.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 50.47(Ft.) 49.7S(Ft.) N = 0.013 Pipe length 27S.00(Ft.) Manning's No. of pipes = 1 Required pipe flow 41.821(CFS) Given pipe size = 33.00(In.) NOTE: Normal flow is pressure flow in user The approximate hydraulic grade line above 2.1S4(Ft.) at the headworks or inlet selected pipe size. the pipe invert is of the pipe(s) Pipe friction loss = 1.719(Ft.) Minor friction loss = 1.155(Ft.) K-factor = 1.50 Pipe flow velocity = 7.04(Ft/s) Travel time through pipe 0.65 min. I I I I I I I I I I I I I I I I I I I Time of concentration (TC) 20.53 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 6.000 **** SUBAREA FLOW ADDITION **** AREA F Decimal fraction soil group A 1.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [MULTI -UNITS area type Time of concentration = 20.53 min. Rainfall intensity 2.648(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 6.281(CFS) for 5.270(Ac.) Total runoff = 48.101(CFS) Total area = 23.52(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 49.75(Ft.) Downstream point/station elevation 49.21(Ft.) Pipe length 180.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 48.101(CFS) Given pipe size = 36.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 1.474(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 0.936(Ft.) Minor friction loss = 1.079(Ft.) K-factor = 1.50 Pipe flow velocity = 6.80(Ft/s) Travel time through pipe 0.44 min. Time of concentration (TC) = 20.97 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 7.000 **** SUBAREA FLOW ADDITION **** AREA G Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C 1.000 0.000 0.000 Decimal fraction soil group D 0.000 [MULTI -UNITS area type Time of concentration = 20.97 min. Rainfall intensity 2.612(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 3.821(CFS) for 3.250(Ac.) Total runoff = 51.922(CFS) Total area = 26.77(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** I I I I I I I I I I I I I I I I I I I Upstream point/station elevation = 49.21(Ft.) Downstream point/station elevation 48.85(Ft.) Pipe length 120.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 51.922(CFS) Nearest computed pipe diameter 42.00(In.) Calculated individual pipe flow 51.922(CFS) Normal flow depth in pipe = 32.44(In.) Flow top width inside pipe = 35.22(In.) Critical Depth = 27.04(In.) Pipe flow velocity = 6.51(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 21.28 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 8.000 **** SUBAREA FLOW ADDITION **** AREA H Decimal fraction soil group A 1.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [MULTI -UNITS area type Time of concentration = 21.28 min. Rainfall intensity 2.588(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 1.607(CFS) for 1.380(Ac.) Total runoff = 53.529(CFS) Total area = 28.15(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 9.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 48.34(Ft.) 47.65(Ft.) N = 0.013 Pipe length 230.00(Ft.) Manning's No. of pipes = 1 Required pipe flow 53.529(CFS) Given pipe size = 39.00(In.) NOTE: Normal flow is pressure flow in user The approximate hydraulic grade line above 1.246(Ft.) at the headworks or inlet selected pipe size. the pipe invert is of the pipets) Pipe friction loss = 0.966(Ft.) Minor friction loss = 0.970(Ft.) K-factor = 1.50 Pipe flow velocity = 6.45(Ft/s) Travel time through pipe 0.59 min. Time of concentration (TC) = 21.88 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 9.000 **** SUBAREA FLOW ADDITION **** AREA A-6 User specified 'c' value of 0.700 given for subarea Time of concentration 21.88 min. Rainfall intensity = 2.542(In/Hr) for a 100.0 year storm I I I I I I I I I I I I I I I I I I I Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.700 Subarea runoff 5.161(CFS) for 2.900(Ac.) Total runoff = 5B.690(CFS) Total area = 31.05(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 9.000 **** SUBAREA FLOW ADDITION **** AREAS I & J Decimal fraction soil group A 1.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [MULTI -UNITS area type Time of concentration = 21.BB min. Rainfall intensity 2.542(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 3.1B1(CFS) for 2.7BO(Ac.) Total runoff = 61.B71(CFS) Total area = 33.B3(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 10.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 47.65(Ft.) Downstream point/station elevation 47.41(Ft.) Pipe length BO.OO(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 61.B71(CFS) Nearest computed pipe diameter 45.00(In.) Calculated individual pipe flow 61.871(CFS) Normal flow depth in pipe = 34.50(In.) Flow top width inside pipe = 38.07(In.) Critical Depth = 29.00(In.) Pipe flow velocity = 6.B2(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 22.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 10.000 **** SUBAREA FLOW ADDITION **** AREA K Decimal fraction soil group A 1.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [MULTI -UNITS area type Time of concentration = 22.07 min. Rainfall intensity 2.52B(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 5.563(CFS) for 4.890(Ac.) Total runoff = 67.433(CFS) Total area = 38.72(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 I I I I I I I I I I I I I I I I I I **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 4S.78(Ft.) Downstream point/station elevation 4S.00(Ft.) Pipe length 260.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 67.433(CFS) Nearest computed pipe diameter 4S.00(In.) Calculated individual pipe flow 67.433(CFS) Normal flow depth in pipe = 37.69(In.) Flow top width inside pipe = 33.20(In.) Critical Depth = 30.34(In.) Pipe flow velocity = 6.83(Ft/s) Travel time through pipe = 0.63 min. Time of concentration (TC) = 22.71 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 11.000 **** SUBAREA FLOW ADDITION **** AREA L Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C 1.000 0.000 0.000 Decimal fraction soil group D 0.000 [MULTI -UNITS area type Time of concentration = 22.71 min. Rainfall intensity 2.482(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 2.837(CFS) for 2.540(Ac.) Total runoff = 70.270(CFS) Total area = 41.26(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.100 to Point/Station 12.100 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 4S.00(Ft.) Downstream point/station elevation 44.37(Ft.) Pipe length 210.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 70.270(CFS) Nearest computed pipe diameter 4S.00(In.) Calculated individual pipe flow 70.270(CFS) Normal flow depth in pipe = 40.13(In.) Flow top width inside pipe = 27.97(In.) Critical Depth = 30.97(In.) Pipe flow velocity = 6.76(Ft/s) Travel time through pipe = 0.52 min. Time of concentration (TC) = 23.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.100 to Point/Station 12.100 **** SUBAREA FLOW ADDITION **** AREA M Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C 1.000 0.000 0.000 I I I I I I I I I I I I I I I I I I I Decimal fraction soil group D = 0.000 [MULTI -UNITS area type Time of concentration = 23.22 min. Rainfall intensity 2.446(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 2.301(CFS) for 2.090(Ac.) Total runoff = 72.571(CFS) Total area = 43.35(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.100 to Point/Station 13.100 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 44.37(Ft.) Downstream point/station elevation 44.04(Ft.) Pipe length 110.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 72.571(CFS) Nearest computed pipe diameter 48.00(In.) Calculated individual pipe flow 72.571(CFS) Normal flow depth in pipe = 36.38(In.) Flow top width inside pipe = 41.13(In.) Critical Depth = 30.94(In.) Pipe flow velocity = 7.11(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 23.48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.100 to Point/Station 13.100 **** SUBAREA FLOW ADDITION **** AREA N Decimal fraction soil group A 1.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [MULTI -UNITS area type Time of concentration = 23.48 min. Rainfall intensity 2.429(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 3.049(CFS) for 2.790(Ac.) Total runoff = 75.620(CFS) Total area = 46.14(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.100 to Point/Station 14.100 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 44.04(Ft.) Downstream point/station elevation 43.29(Ft.) Pipe length 250.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 75.620(CFS) Nearest computed pipe diameter 48.00(In.) Calculated individual pipe flow 75.620(CFS) Normal flow depth in pipe = 37.78(In.) Flow top width inside pipe = 39.30(In.) Critical Depth = 31.58(In.) Pipe flow velocity = 7.13(Ft/s) I I I I I I I I I I I I I I I I I I I Travel time through pipe Time of concentration (TC) 0.58 min. 24.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.100 to Point/Station 14.100 **** SUBAREA FLOW ADDITION **** AREA 0 Decimal fraction soil group A 1.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [MULTI -UNITS area type Time of concentration = 24.07 min. Rainfall intensity 2.391(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 2.560(CFS) for 2.380(Ac.) Total runoff = 78.181(CFS) Total area = 48.52(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.100 to Point/Station 15.100 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 43.29(Ft.) Downstream point/station elevation 41.97(Ft.) Pipe length 440.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 78.181(CFS) Nearest computed pipe diameter 48.00(In.) Calculated individual pipe flow 78.181(CFS) Normal flow depth in pipe = 39.09(In.) Flow top width inside pipe = 37.32(In.) Critical Depth = 32.14(In.) Pipe flow velocity = 7.14(Ft/s) Travel time through pipe = 1.03 min. Time of concentration (TC) = 25.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.100 to Point/Station 15.100 **** SUBAREA FLOW ADDITION **** AREA P Decimal fraction soil group A 1.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 0.000 [MULTI -UNITS area type Time of concentration = 25.09 min. Rainfall intensity 2.327(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 4.880(CFS) for 4.660(Ac.) Total runoff = 83.060(CFS) Total area = 53.18(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.100 to Point/Station 12.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I I I I I I I I I I I I I I I I I I Upstream point/station elevation = Downstream point/station elevation 44.34(Ft.) 44.01(Ft.) Pipe length 110.00(Ft.) Manning's N = 0.013 B3.060(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 45.00(In.) NOTE: Normal flow is pressure flow in user The approximate hydraulic grade line above 1.506(Ft.) at the headworks or inlet selected pipe size. the pipe invert is of the pipets) Pipe friction loss = 0.519(Ft.) Minor friction loss = 1.317(Ft.) K-factor = 1.50 Pipe flow velocity = 7.52(Ft/s) Travel time through pipe 0.24 min. Time of concentration (TC) = 25.34 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 12.000 **** SUBAREA FLOW ADDITION **** AREA Q User specified 'c' value of O.BOO given for subarea Time of concentration = 25.34 min. Rainfall intensity 2.313(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C O.BOO Subarea runoff 5.088(CFS) for 2.750(Ac.) Total runoff = 8B.148(CFS) Total area = 55.93(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 13.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 32.32(Ft.) Downstream point/station elevation 32.01(Ft.) Pipe length 102.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 88.14B(CFS) Nearest computed pipe diameter 51.00(In.) Calculated individual pipe flow 88.148(CFS) Normal flow depth in pipe = 39.66(In.) Flow top width inside pipe = 42.42(In.) Critical Depth = 33.59(In.) Pipe flow velocity = 7.45(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 25.57 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 13.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 55.930(Ac.) Runoff from this stream BB.14B(CFS) Time of concentration Rainfall intensity = 25.57 min. 2.299(In/Hr) I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** AREA A-16A User specified 'C' value of 0.750 given for subarea Initial subarea flow distance 200.00(Ft.) Highest elevation = 70.00(Ft.) Lowest elevation = 58.50(Ft.) Elevation difference 11.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.97 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (1/3)] TC = [1.8*(1.1-0.7500)*(200.00A .5)/( 5.75A (1/3)]= 4.97 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.750 Subarea runoff = 2.470(CFS) Total initial stream area = 0.500(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** AREA A-16B Top of street segment elevation = 67.000(Ft.) End of street segment elevation = 59.000(Ft.) Length of street segment 1140.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 32.000(Ft.) Distance from crown to crossfall grade break 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 11.609(CFS) Depth of flow = 0.402(Ft.), Average velocity = 2.386(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 15.367(Ft.) Flow velocity = 2.39(Ft/s) Travel time = 7.96 min. TC 12.96 min. Adding area flow to street User specified 'C' value of 0.700 given for subarea Rainfall intensity 3.563(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.700 Subarea runoff 9.229(CFS) for 3.700(Ac.) Total runoff = 11.699(CFS) Total area = 4.20(Ac.) Street flow at end of street = 11.699(CFS) Half street flow at end of street 5.849(CFS) Depth of flow = 0.403(Ft.), Average velocity = 2.391(Ft/s) Flow width (from curb towards crown)= 15.412(Ft.) I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 53.00(Ft.) Downstream point/station elevation 42.00(Ft.) Pipe length 900.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 11.699(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 11.699(CFS) Normal flow depth in pipe = 14.88(In.) Flow top width inside pipe = 13.62(In.) Critical Depth = 15.62(In.) Pipe flow velocity = 7.49(Ft/s) Travel time through pipe = 2.00 min. Time of concentration (TC) = 14.97 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** SUBAREA FLOW ADDITION **** AREA A-16C User specified 'C' value of 0.740 given for subarea Time of concentration = 14.97 min. Rainfall intensity 3.248(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.740 Subarea runoff 7.210(CFS) for 3.000(Ac.) Total runoff = 18.909(CFS) Total area = 7.20(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** SUBAREA FLOW ADDITION **** AREAS B-3 & B-4 User specified 'C' value of 0.500 given for subarea Time of concentration = 14.97 min. Rainfall intensity 3.248(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.500 Subarea runoff 33.127(CFS) for 20.400(Ac.) Total runoff = 52.036(CFS) Total area = 27.60(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 42.90(Ft.) Downstream point/station elevation 34.50(Ft.) Pipe length 230.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 52.036(CFS) Given pipe size = 27.00(In.) Calculated individual pipe flow 52.036(CFS) Normal flow depth in pipe = 19.64(In.) Flow top width inside pipe = 24.05(In.) Critical depth could not be calculated. Pipe flow velocity = 16.79(Ft/s) I I I I I I I I I I I I I I I I I I I Travel time through pipe Time of concentration (TC) 0.23 min. 15.19 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 13.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 27.600(Ac.) Runoff from this stream 52.036(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 15.19 min. 3.216(In/Hr) Stream No. 1 2 Qmax(l) Qmax(2) Flow rate (CFS) 88.148 52.036 1. 000 * 0.715 * 1. 000 * 1. 000 * TC (min) 25.57 15.19 1. 000 * 1. 000 * 0.594 * 1. 000 * 88.148) 52.036) 88.148) 52.036) Total of 2 streams to confluence: Flow rates before confluence point: 88.148 52.036 Rainfall Intensity ( In/Hr) 2.299 3.216 + + 125.347 + + 104.421 Maximum flow rates at confluence using above data: 125.347 104.421 Area of streams before confluence: 55.930 27.600 Results of confluence: Total flow rate = 125.347(CFS) Time of concentration 25.566 min. Effective stream area after confluence 83.530(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 14.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 31. 71 (Ft.) 31. 45 (Ft. ) Pipe length 85.00(Ft.) Manning's N = 0.013 125.347(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 60.00(In.) Calculated individual pipe flow 125.347(CFS) Normal flow depth in pipe = 43.31(In.) Flow top width inside pipe = 53.77(In.) Critical Depth = 38.39(In.) Pipe flow velocity = 8.26(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 25.74 min. I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 14.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 83.530(Ac.) Runoff from this stream 125.347(CFS) Time of concentration Rainfall intensity = 25.74 min. 2.289(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** AREA A-SA User specified 'e' value of 0.450 given for subarea Initial subarea flow distance 70.00(Ft.) Highest elevation = 76.00(Ft.) Lowest elevation = 75.00(Ft.) Elevation difference 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.69 min. TC = [1.8*(1.1-C)*distanceA .5)/(% slopeA (l/3)] TC = [1.8*(1.1-0.4500)*( 70.00A .5)/( 1.43A (l/3)]= 8.69 Rainfall intensity (I) = 4.611 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff = 0.415(CFS) Total initial stream area = 0.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 204.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** AREA A-SB Top of street segment elevation = 75.000(Ft.) End of street segment elevation = 70.000(Ft.) Length of street segment 675.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 12.000(Ft.) Distance from crown to crossfall grade break 6.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 5.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.327(Ft.), Average velocity = Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 11.579(Ft.) Flow velocity = 2.06(Ft/s) 2.905(CFS) 2.057(Ft/s) I I I I I I I I I I I I I I I I I I I Travel time = 5.47 min. TC 14.16 min. Adding area flow to street User specified 'C' value of 0.450 given for subarea Rainfall intensity 3.366{In/Hr} for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 3.635{CFS} for 2.400{Ac.} Total runoff = 4.050{CFS} Total area = 2.60{Ac.} Street flow at end of street = 4.050{CFS} Half street flow at end of street 4.050{CFS} Depth of flow = 0.355{Ft.}, Average velocity = 2.315{Ft/s} Note: depth of flow exceeds top of street crown. Flow width {from curb towards crown}= 12.000{Ft.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** SUBAREA FLOW ADDITION **** AREA A-5C User specified 'C' value of 0.450 given for subarea Time of concentration = 14.16 min. Rainfall intensity 3.366{In/Hr} for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 9.845{CFS} for 6.500{Ac.} Total runoff = 13.895{CFS} Total area = 9.10{Ac.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME {User specified size} **** Upstream point/station elevation = Downstream point/station elevation 41.50{Ft.} 34.00{Ft.} Pipe length 1500.00{Ft.} Manning's No. of pipes = 1 Required pipe flow N = 0.013 13.895{CFS} Given pipe size = 24.00{In.} Calculated individual pipe flow 13.895{CFS} Normal flow depth in pipe = 17.30{In.} Flow top width inside pipe = 21.54{In.} Critical Depth = 16.11{In.} Pipe flow velocity = 5.73{Ft/s} Travel time through pipe = 4.36 min. Time of concentration {TC} = 18.52 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 206.000 **** SUBAREA FLOW ADDITION **** AREAS A-9, A-12, A-15, A-21, A-22 & A-23 User specified 'C' value of 0.450 given for subarea Time of concentration = 18.52 min. Rainfall intensity 2.831{In/Hr} for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 36.686{CFS} for 28.800{Ac.} Total runoff = 50.581{CFS} Total area = 37.90{Ac.} I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 14.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 37.900(Ac.) Runoff from this stream 50.581(CFS) Time of concentration = Rainfall intensity = Summary of stream data: 18.52 min. 2.831(In/Hr) Stream No. 1 2 Qmax (1) Qmax(2) Flow rate (CFS) 125.347 50.581 1. 000 * 0.809 * 1. 000 * 1. 000 * TC (min) 25.74 18.52 1. 000 * 1. 000 * 0.720 * 1. 000 * 125.347) 50.581) 125.347) 50.581) Total of 2 streams to confluence: Flow rates before confluence point: 125.347 50.581 Rainfall Intensity (In/Hr) 2.289 2.831 + + 166.253 + + 140.774 Maximum flow rates at confluence using above data: 166.253 140.774 Area of streams before confluence: 83.530 37.900 Results of confluence: Total flow rate = 166.253(CFS) Time of concentration 25.737 min. Effective stream area after confluence 121.430(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 15.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 30.95 (Ft. ) 30.59 (Ft. ) Pipe length 238.57(Ft.) Manning's N = 0.013 166.253(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 72.00(In.) Calculated individual pipe flow 166.253(CFS) Normal flow depth in pipe = 59.72(In.) Flow top width inside pipe = 54.16(In.) Critical Depth = 42.13(In.) Pipe flow velocity = 6.63(Ft/s) Travel time through pipe = 0.60 min. Time of concentration (TC) = 26.34 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 16.000 I I I I I I I I I I I I I I I I I I I **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 30.39(Ft.) 30.27(Ft.) Pipe length 81.12(Ft.) Manning's N = 0.013 166.253(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 78.00(In.) Calculated individual pipe flow 166.253(CFS) Normal flow depth in pipe = 54.00(In.) Flow top width inside pipe = 72.00(In.) Critical Depth = 41.13(In.) Pipe flow velocity = 6.79(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 26.54 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 16.000 **** SUBAREA FLOW ADDITION **** AREA A-17 & A-24 User specified 'c' value of 0.450 given for subarea Time of concentration = 26.54 min. Rainfall intensity 2.245(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 8.687(CFS) for 8.600(Ac.) Total runoff = 174.940(CFS) Total area = 130.03(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 30.07(Ft.) 29.56(Ft.) Pipe length 338.94(Ft.) Manning's N = 0.013 174.940(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 78.00(In.) Calculated individual pipe flow 174.940(CFS) Normal flow depth in pipe = 55.78(In.) Flow top width inside pipe = 70.41(In.) Critical Depth = 42.23(In.) Pipe flow velocity = 6.89(Ft/s) Travel time through pipe = 0.82 min. Time of concentration (TC) = 27.36 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 18.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 29.36(Ft.) 28.85(Ft.) Pipe length 338.94(Ft.) Manning's No. of pipes = 1 Required pipe flow Given pipe size = 78.00(In.) N = 0.013 174.940(CFS) Calculated individual pipe flow 174.940(CFS) Normal flow depth in pipe = 55.78(In.) I I I I I I I I I I I I I I I I I I I Flow top width inside pipe 70.41(In.) Critical Depth = 42.23(In.) Pipe flow velocity 6.89(Ft/s) Travel time through pipe = 0.82 min. Time of concentration (TC) = 28.18 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 18.000 **** SUBAREA FLOW ADDITION **** AREA A-18 & A-25 User specified 'C' value of 0.450 given for subarea Time of concentration = 28.18 min. Rainfall intensity 2.159(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 10.592(CFS) for 10.900(Ac.) Total runoff = 185.532(CFS) Total area = 140.93(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 19.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 28.65(Ft.) 28.06(Ft.) Pipe length 396.23(Ft.) Manning's N = 0.013 185.532(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 78.00(In.) Calculated individual pipe flow 185.532(CFS) Normal flow depth in pipe = 58.78(In.) Flow top width inside pipe = 67.22(In.) Critical Depth = 43.57(In.) Pipe flow velocity = 6.91(Ft/s) Travel time through pipe = 0.96 min. Time of concentration (TC) = 29.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 20.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 27.86(Ft.) 27.31(Ft.) Pipe length 365.38(Ft.) Manning's No. of pipes = 1 Required pipe flow Given pipe size = 78.00(In.) N = 0.013 185.532(CFS) Calculated individual pipe flow 185.532(CFS) Normal flow depth in pipe = 58.50(In.) Flow top width inside pipe = 67.55(In.) Critical Depth = 43.57(In.) Pipe flow velocity = 6.95(Ft/s) Travel time through pipe = 0.88 min. Time of concentration (TC) = 30.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 20.000 I I I I I I I I I I I I I I I I I I I **** SUBAREA FLOW ADDITION **** AREA A-19 User specified 'C' value of 0.450 given for subarea Time of concentration = 30.01 min. Rainfall intensity 2.074(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 7.371(CFS) for 7.900(Ac.) Total runoff = 192.903(CFS) Total area = 148.83(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 20.000 **** SUBAREA FLOW ADDITION **** AREA A-26 User specified 'C' value of 0.580 given for subarea Time of concentration = 30.01 min. Rainfall intensity 2.074(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.580 Subarea runoff 11.545(CFS) for 9.600(Ac.) Total runoff = 204.448(CFS) Total area = 158.43(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 21.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 27.11(Ft.) 26.45(Ft.) Pipe length 440.59(Ft.) Manning's N = 0.013 204.448(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 78.00(In.) Calculated individual pipe flow 204.448(CFS) Normal flow depth in pipe = 64.50(In.) Flow top width inside pipe = 59.02(In.) Critical Depth = 45.76(In.) Pipe flow velocity = 6.97(Ft/s) Travel time through pipe = 1.05 min. Time of concentration (TC) = 31.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 21.000 **** SUBAREA FLOW ADDITION **** AREA B-1 User specified 'C' value of 0.450 given for subarea Time of concentration = 31.06 min. Rainfall intensity 2.028(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 23.087(CFS) for 25.300(Ac.) Total runoff = 227.536(CFS) Total area = 183.73(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 21.000 **** SUBAREA FLOW ADDITION **** AREA B-2 (LESS REC. AREA @ 2.1 AC) User specified 'C' value of 0.450 given for subarea I I I I I I I I I I I I I I I I I I I Time of concentration = 31.06 min. Rainfall intensity 2.028(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.450 Subarea runoff 22.266(CFS) for 24.400(Ac.) Total runoff = 249.802(CFS) Total area = 208.13(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 26.25(Ft.) 25.35(Ft.) Pipe length 300.00(Ft.) Manning's No. of pipes = 1 Required pipe flow Given pipe size = 78.00(In.) N = 0.013 249.802(CFS) Calculated individual pipe flow 249.802(CFS) Normal flow depth in pipe = 56.25(In.) Flow top width inside pipe = 69.96(In.) Critical Depth = 50.82(In.) Pipe flow velocity = 9.75(Ft/s) Travel time through pipe = 0.51 min. Time of concentration (TC) = 31.57 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 23.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 25.02(Ft.) 24.09(Ft.) Pipe length 311.00(Ft.) Manning's N = 0.013 249.802(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 78.00(In.) Calculated individual pipe flow 249.802(CFS) Normal flow depth in pipe = 56.34(In.) Flow top width inside pipe = 69.86(In.) Critical Depth = 50.82(In.) Pipe flow velocity = 9.74(Ft/s) Travel time through pipe = 0.53 min. Time of concentration (TC) = 32.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 24.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 23.34(Ft.) 22.16(Ft.) Pipe length 209.00(Ft.) Manning's N = 0.013 249.802(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 78.00(In.) Calculated individual pipe flow 249.802(CFS) Normal flow depth in pipe = 45.09(In.) Flow top width inside pipe = 77.04(In.) Critical Depth = 50.82(In.) Pipe flow velocity = 12.57(Ft/s) I I I I I I I I I I I I I I I I I I I Travel time through pipe Time of concentration (TC) 0.28 min. 32.38 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 24.000 to Point/Station 24.000 **** SUBAREA FLOW ADDITION **** AREAS K-l, K-2 & U User specified 'c' value of 0.700 given for subarea Time of concentration = 32.38 min. Rainfall intensity 1.974(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.700 Subarea runoff 14.786(CFS) for 10.700(Ac.) Total runoff = 264.587(CFS) Total area = 218.83(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 24.000 to Point/Station 24.000 **** SUBAREA FLOW ADDITION **** AREA A-20A User specified 'C' value of 0.580 given for subarea Time of concentration = 32.38 min. Rainfall intensity 1.974(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.580 Subarea runoff 2.862(CFS) for 2.500(Ac.) Total runoff = 267.450(CFS) Total area = 221.33(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 24.000 to Point/Station 25.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 22.14(Ft.) 21.88(Ft.) Pipe length 50.00(Ft.) Manning's N = 0.013 267.450(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 78.00(In.) Calculated individual pipe flow 267.450(CFS) Normal flow depth in pipe = 48.42(In.) Flow top width inside pipe = 75.69(In.) Critical Depth = 52.65(In.) Pipe flow velocity = 12.35(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 32.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 25.000 **** SUBAREA FLOW ADDITION **** AREA A-20B & A-27 User specified 'C' value of 0.580 given for subarea Time of concentration = 32.45 min. Rainfall intensity 1.971(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.580 Subarea runoff 18.066(CFS) for 15.800(Ac.) Total runoff = 285.516(CFS) Total area = 237.13(Ac.) I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 26.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 21.30(Ft.) 19.48(Ft.} Pipe length 310.40(Ft.) Manning's N = 0.013 285.516(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 84.00(In.) Calculated individual pipe flow 285.516(CFS) Normal flow depth in pipe = 46.13(In.) Flow top width inside pipe = 83.59(In.) Critical Depth = 53.29(In.) Pipe flow velocity = 13.20(Ft/s) Travel time through pipe = 0.39 min. Time of concentration (TC) = 32.84 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 27.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 19.06(Ft.) 17.97(Ft.) Pipe length 206.30(Ft.) Manning's N = 0.013 285.516(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 84.00(In.) Calculated individual pipe flow 285.516(CFS) Normal flow depth in pipe = 47.63(In.) Flow top width inside pipe = 83.24(In.) Critical Depth = 53.29(In.) Pipe flow velocity = 12.68(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 33.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 27.000 to Point/Station 28.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 17.55(Ft.) 14.45(Ft.) Pipe length 583.00(Ft.) Manning's No. of pipes = 1 Required pipe flow Given pipe size = 84.00(In.) N = 0.013 285.516(CFS) Calculated individual pipe flow 285.516(CFS) Normal flow depth in pipe = 47.53(In.) Flow top width inside pipe = 83.27(In.) Critical Depth = 53.29(In.) Pipe flow velocity = 12.72(Ft/s) Travel time through pipe = 0.76 min. Time of concentration (TC) = 33.88 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 28.000 to Point/Station 29.000 I I I I I I I I I I I I I I I I I I I **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 14.03(Ft.) 13.80(Ft.) Pipe length 74.30(Ft.) Manning's N = 0.013 285.516(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 84.00(In.) Calculated individual pipe flow 285.516(CFS) Normal flow depth in pipe = 57.00(In.) Flow top width inside pipe = 78.46(In.) Critical Depth = 53.29(In.) Pipe flow velocity = 10.27(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 34.00 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 29.000 **** SUBAREA FLOW ADDITION **** AREAS J-l, J-2 & J-5 User specified 'C' value of 0.800 given for subarea Time of concentration = 34.00 min. Rainfall intensity 1.9l3(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.800 Subarea runoff 1.837(CFS) for 1.200(Ac.) Total runoff = 287.352(CFS) Total area = 238.33(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 29.000 **** SUBAREA FLOW ADDITION **** AREA J-4 User specified 'C' value of 0.300 given for subarea Time of concentration = 34.00 min. Rainfall intensity 1.913(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.300 Subarea runoff 0.402(CFS) for 0.700(Ac.) Total runoff = 287.754(CFS) Total area = 239.03(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 29.000 **** SUBAREA FLOW ADDITION **** AREAS I, J-3, S & W User specified 'c' value of 0.700 given for subarea Time of concentration = 34.00 min. Rainfall intensity 1.913(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.700 Subarea runoff 22.899(CFS) for l7.l00(Ac.) Total runoff = 310.653(CFS) Total area = 256.l3(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 30.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 13.47(Ft.) I I I I I I I I I I I I I I I I I I I Downstream point/station elevation = 12.19(Ft.) Pipe length 425.43(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 310.653(CFS) Given pipe size = 84.00(In.) Calculated individual pipe flow 310.653(CFS) Normal flow depth in pipe = 61.50(In.) Flow top width inside pipe = 74.40(In.) Critical Depth = 55.72(In.) Pipe flow velocity = 10.28(Ft/s) Travel time through pipe = 0.69 min. Time of concentration (TC) = 34.69 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 11. 86 (Ft.) Pipe length 396.00(Ft.) Manning's No. of pipes = 1 Required pipe flow Given pipe size = 84.00(In.) 10.67 (Ft.) N = 0.013 310.653(CFS) Calculated individual pipe flow 310.653(CFS) Normal flow depth in pipe = 61.59(In.) Flow top width inside pipe = 74.30(In.) Critical Depth = 55.72(In.) Pipe flow velocity = 10.28(Ft/s) Travel time through pipe = 0.64 min. Time of concentration (TC) = 35.33 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 32.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 10.34 (Ft.) Pipe length 209.00(Ft.) Manning's No. of pipes = 1 Required pipe flow Given pipe size = 84.00(In.) 9.67 (Ft. ) N = 0.013 310.653(CFS) Calculated individual pipe flow 310.653(CFS) Normal flow depth in pipe = 60.00(In.) Flow top width inside pipe = 75.89(In.) Critical Depth = 55.72(In.) Pipe flow velocity = 10.57(Ft/s) Travel time through pipe = 0.33 min. Time of concentration (TC) = 35.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 33.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 9.34(Ft.) Pipe length 171.00(Ft.) Manning's No. of pipes = 1 Required pipe flow 6.73 (Ft. ) N = 0.013 310.653(CFS) I I I I I I I I I I I I I I I I I I I Given pipe size 84.00(In.) Calculated individual pipe flow 310.653(CFS) Normal flow depth in pipe = 36.61(In.) Flow top width inside pipe = 83.31(In.) Critical Depth = 55.72(In.) Pipe flow velocity = 19.28(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 35.81 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 34.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation 6.40(Ft.) 6.35(Ft.) Pipe length 16.00(Ft.) Manning's N = 0.013 310.653(CFS) No. of pipes = 1 Required pipe flow Given pipe size = 84.00(In.) Calculated individual pipe flow 310.653(CFS) Normal flow depth in pipe = 60.56(In.) Flow top width inside pipe = 75.35(In.) Critical Depth = 55.72(In.) Pipe flow velocity = 10.45(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) 35.83 min. End of computations, total study area = 256.13 (Ac.) I I I I I I I I I I I I I I I I I I EXHIBIT I ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-95 Advanced Engineering Software (aes) Ver. 5.6B Release Date: 08/01/95 License 10 1423 Analysis prepared by: O'Day Consultants, Inc. 7220 Avenida Encinas, Suite 204 Carlsbad, CA 92009 (tel) 619-931-7700 (fax) 619-931-8680 ************************** DESCRIPTION OF STUDY ************************** * STORM DRAIN LINE "A" STUDY 8-B (TOTAL FLOW IN R.R. R.O.W.) * * 100 YEAR STORM J.N. 971046-5 * * FILE G:\ACCTS\971046\9746AB.DAT * ************************************************************************** FILE NAME: 9746AB.DAT TIME/DATE OF STUDY: 13:44 8/ 4/1999 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*,, indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL NUMBER PROCESS 34.00- } FRICTION 33.00- } JUNCTION 33.10- } FRICTION 32.00- } JUNCTION 32.10- } FRICTION 31.00- } JUNCTION 31.10- } FRICTION 30.00- } JUNCTION 30.10- } FRICTION 29.00- } JUNCTION 29.10- } FRICTION 28.00- } JUNCTION 28.10- PRESSURE HEAD(FT) 5.40 5.38 5.08 4.64 Dc 4.64*Dc 4.96* PRESSURE+ MOMENTUM (POUNDS) 10717.10 10703.09 10483.42 10355.52 10355.52 10424.93 5.33* 10652.68 } HYDRAULIC JUMP 5.18 10544.69 4.64*Dc 10355.52 5.10* 10493.91 6.00* 10602.31 5.87* 10408.71 5.26* 9663.95 FLOW DEPTH(FT) 3.49* 3.44* 3.32* 3.93* 4.64*Dc 4.64 Dc 4.64 Dc 3.92* 4.64*Dc 4.64 Dc 3.89 3.62 3.95 PRESSURE+ MOMENTUM (POUNDS) 11545.96 11672.82 12008.03 10769.01 10355.52 10355.52 10355.52 10783.27 10355.52 10355.52 9504.69 9823.75 9452.93 I I } FRICTION } HYDRAULIC JUMP 27.00-4.44 Dc 9261.70 3.50* 10026.98 } JUNCTION I 27.10-4.44 Dc 9261. 70 3.81* 9577.71 } FRICTION 26.00-4.44 Dc 9261.70 3.53* 9964.05 I } JUNCTION 26.10-4.44 Dc 9261.70 3.89* 9502.80 } FRICTION 25.30-4.44*Dc 9261.70 4.44*Dc 9261.70 I } JUNCTION 25.20-6.01* 10069.17 3.93 8595.50 } FRICTION I 25.00-5.72* 9627.93 4.30 Dc 8497.27 } JUNCTION 25.10-6.47* 10859.28 4.15 8747.46 } FRICTION I 24.00-6.31* 10566.68 4.39 Dc 8705.88 } JUNCTION 24.10-6.46* 10307.09 3.79 8073.01 } FRICTION I 23.00-5.51* 8797.39 4.24 Dc 7933.31 } JUNCTION 23.10-6.36* 10118.27 4.24 Dc 7933.31 I } FRICTION 22.00-5.99* 9480.53 3.55 8291.26 } JUNCTION 22.10-5.57* 8873.05 4.24 Dc 7933.31 I } FRICTION 21. 00-5.20* 8454.11 4.24 Dc 7933.31 } JUNCTION I 21. 10-5.93* 8127.12 3.82 Dc 6100.17 } FRICTION 20.00-6.50* 9176.09 3.82 Dc 6100.17 } JUNCTION I 20.10-6.45* 8642.26 3.63 Dc 5368.95 } FRICTION 19.00-6.30* 8361.20 3.14 5538.64 } JUNCTION I 19.10-6.10* 7973.81 3.63 Dc 5368.95 } FRICTION 18.00-5.92* 7659.14 3.63 Dc 5368.95 I } JUNCTION 18.10-5.84* 7283.64 3.52 Dc 4957.54 } FRICTION 17.00-5.64* 6952.04 3.03 5120.61 I } JUNCTION 17.10-5.42* 6593.75 3.52 Dc 4957.54 } FRICTION I 16.00-5.25* 6352.49 3.52 Dc 4957.54 } JUNCTION 16.10-5.22* 6104.88 3.42 Dc 4627.56 } FRICTION I 15.00-5.18* 6042.91 2.95 4784.13 } JUNCTION 15.10-4.89* 5604.19 3.51 Dc 4729.54 I } FRICTION I I I I I I I I I I I I I I I I I I I I 14.00-4.91* 5618.03 3.51 Dc 4729.54 } JUNCTION 14.10-5.57* 5475.64 3.12 Dc 3374.98 } FRICTION l3.00-5.42* 5263.24 3.12 Dc 3374.98 } JUNCTION l3 .10-5.53* 4471.l7 2.66 Dc 2165.51 } FRICTION 12.00-5.33* 4234.72 2.66 Dc 2165.51 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 34.00 FLOWLINE ELEVATION = 6.35 PIPE FLOW = 311.00 CFS PIPE DIAMETER = 84.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 11.750 NODE 34.00 : HGL = < 9.841>;EGL= < 13.924>;FLOWLINE= < 6.350> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 33.00 34.00 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : 33.00 IS CODE = 1 6.40 (FLOW IS SUPERCRITICAL) PIPE FLOW 311.00 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 16.00 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 5.05 CRITICAL DEPTH (FT) = 4.64 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.44 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 3.439 16.524 7.681 11672.82 14.874 3.487 16.233 7.582 11554.70 16.000 3.491 16.211 7.574 11545.96 NODE 33.00 : HGL = < 9.839>;EGL= < 14.081>;FLOWLINE= < 6.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 33.10 33.00 TO NODE ELEVATION = CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) ( INCHES) (DEGREES) UPSTREAM 311.00 84.00 20.00 DOWNSTREAM 311.00 84.00 LATERAL #1 .00 .00 .00 LATERAL #2 .00 .00 .00 33.10 IS CODE = 5 6.73 (FLOW IS SUPERCRITICAL) FLOWLINE CRITICAL VELOCITY ELEVATION DEPTH (FT.) (FT/SEC) 6.73 4.64 17.318 6.40 4.64 16.529 .00 .00 .000 .00 .00 .000 Q5 .00===Q5 EQUALS BASIN INPUT=== I I I I I I I I I I I I I I I I I I I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300: FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300: FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01074 JUNCTION LENGTH 4.00 FEET .01141 .01006 FRICTION LOSSES .043 FEET ENTRANCE LOSSES .000 FEET JUNCTION LOSSES (DY+HVI-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( .622) + ( .000) = .622 NODE 33.10 : HGL = < 10.046>:EGL= < 14.704>:FLOWLINE= < 6.730> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 32.00 33.10 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : 32.00 IS CODE = 1 9.34 (FLOW IS SUPERCRITICAL) PIPE FLOW 311.00 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 171.00 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 3.05 CRITICAL DEPTH(FT) = 4.64 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.93 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 3.928 13.986 6.967 10769.01 3.755 3.893 14.141 7.000 10814. 02 7.872 3.858 14.299 7.035 10861. 76 12.388 3.823 14.461 7.072 10912.29 17.339 3.788 14.627 7.112 10965.69 22.772 3.753 14.797 7.155 11022.04 28.737 3.718 14.97l 7.201 11081.40 35.295 3.683 15.150 7.249 11143.87 42.516 3.648 15.333 7.301 11209.52 50.483 3.613 15.520 7.355 11278.45 59.296 3.578 15.712 7.414 11350.74 69.075 3.543 15.909 7.475 11426.49 79.966 3.508 16.111 7.541 11505.81 92.153 3.473 16.318 7.610 11588.79 105.865 3.438 16.530 7.684 11675.55 121.398 3.403 16.748 7.761 11766.20 l39.143 3.368 16.972 7.844 11860.86 159.627 3.333 17.202 7.931 11959.65 171. 000 3.316 17 .313 7.974 12008.03 ------------------------------------------------------------------------------ NODE 32.00 : HGL = < 13.268>: EGL= < 16.307>;FLOWLINE= < 9.340> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 32.10 CALCULATE JUNCTION LOSSES: 32.00 TO NODE ELEVATION = 32.10 IS CODE = 5 9.67 (FLOW IS SUPERCRITICAL) I I I I I I I I I I I I I I I I I I I PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 311.00 84.00 .00 9.67 4.64 DOWNSTREAM 311.00 84.00 9.34 4.64 LATERAL #1 .00 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00392 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00648 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00520 6.00 FEET 11.481 13.990 .000 .000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .031 FEET ENTRANCE LOSSES .000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .051)+( .000) = .051 NODE 32.10 : HGL = < 14.311>;EGL= < 16.358>;FLOWLINE= < 9.670> ****************************************************************************** 31.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 31.00 32.10 TO NODE ELEVATION = 10.34 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 311.00 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 209.00 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 5.00 CRITICAL DEPTH(FT) = 4.64 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.64 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 4.641 11. 477 6.688 10355.52 .126 4.656 11.437 6.688 10355.67 .520 4.670 11. 397 6.689 10356.11 1. 205 4.685 11.358 6.689 10356.84 2.209 4.699 11.318 6.690 10357.86 3.564 4.714 11.279 6.690 10359.17 5.306 4.728 11.241 6.691 10360.75 7.477 4.743 11. 202 6.692 10362.63 10.127 4.757 11.164 6.694 10364.78 13.315 4.771 11.127 6.695 10367.21 17.112 4.786 11.089 6.697 10369.92 21.600 4.800 11.052 6.698 10372.90 26.885 4.815 11.016 6.700 10376.15 33.095 4.829 10.979 6.702 10379.67 40.391 4.844 10.943 6.704 10383.47 48.983 4.858 10.907 6.707 10387.53 59.144 4.872 10.872 6.709 10391.85 71.246 4.887 10.837 6.712 10396.44 85.812 4.901 10.802 6.714 10401.29 103.603 4.916 10.767 6.717 10406.39 I I I I I I I I I I I I I I I I I I NODE 125.806 154.402 193.113 209.000 31.00 : HGL = < 4.930 4.945 4.959 4.963 10.733 10.699 10.665 10.656 15.303>;EGL= < 6.720 6.723 6.726 6.727 17.067>;FLOWLINE= < 10411.76 10417.38 10423.26 10424.93 10.340> ****************************************************************************** 31.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 31.10 31. 00 TO NODE ELEVATION = 10.67 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 311.00 84.00 30.00 10.67 DOWNSTREAM 311.00 84.00 10.34 LATERAL #1 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00301 JUNCTION LENGTH 5.00 FEET 4.64 4.64 .00 .00 .00276 .00327 9.900 10.659 .000 .000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .015 FEET ENTRANCE LOSSES .000 FEET (DY+HV1-HV2) + (ENTRANCE LOSSES) ( .450)+( .000) = .450 NODE 31.10 : HGL = < 15.995>;EGL= < 17.517>;FLOWLINE= < 10.670> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 30.00 31.10 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 311.00 CFS 30.00 IS CODE = 1 11.86 (HYDRAULIC JUMP OCCURS) PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 396.00 FEET MANNING'S N .01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 5.13 CRITICAL DEPTH(FT) = 4.64 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.92 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 3.916 14.036 6.977 10783.27 7.501 3.945 13.909 6.952 10747.28 14.882 3.974 13.785 6.927 10713.09 22.136 4.003 13.663 6.904 10680.67 29.256 4.032 13.544 6.883 10649.99 36.233 4.061 13.427 6.863 10621.01 I I I I I I I I I I I I I I I I I I II 43.061 4.090 13.312 6.844 10593.71 49.728 4.119 13 .199 6.826 10568.04 56.226 4.148 13.088 6.810 10543.97 62.544 4.177 12.979 6.795 10521.49 68.668 4.206 12.872 6.781 10500.56 74.588 4.235 12.767 6.768 10481.15 80.286 4.264 12.664 6.756 10463.23 85.749 4.293 12.563 6.746 10446.79 90.958 4.322 12.463 6.736 10431. 79 95.894 4.351 12.365 6.727 10418.21 100.534 4.380 12.269 6.719 10406.02 104.855 4.409 12.175 6.713 10395.21 108.829 4.438 12.082 6.707 10385.75 112.424 4.467 11. 991 6.702 10377.61 115.606 4.496 11.902 6.697 10370.78 118.334 4.525 11.814 6.694 10365.24 120.562 4.554 11.728 6.691 10360.96 122.237 4.583 11. 643 6.690 10357.93 123.297 4.612 11. 559 6.689 10356.12 123.668 4.641 11.477 6.688 10355.52 396.000 4.641 11. 477 6.688 10355.52 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 5.33 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) .000 13.256 26.910 40.999 55.562 70.648 86.309 102.608 119.620 137.430 156.142 175.881 196.801 219.090 242.988 268.802 296.939 327.945 362.592 396.000 FLOW DEPTH (FT) 5.325 5.318 5.310 5.303 5.295 5.287 5.280 5.272 5.264 5.257 5.249 5.241 5.234 5.226 5.218 5.211 5.203 5.196 5.188 5.181 VELOCITY (FT/SEC) 9.897 9.911 9.926 9.940 9.955 9.969 9.984 9.999 10.014 10.029 10.044 10.059 10.074 10.089 10.104 10.120 10.135 10.151 10.166 10.179 SPECIFIC ENERGY (FT) 6.847 6.844 6.841 6.838 6.835 6.832 6.828 6.825 6.822 6.819 6.816 6.813 6.811 6.808 6.805 6.802 6.799 6.796 6.794 6.791 PRESSURE+ MOMENTUM (POUNDS) 10652.68 10646.40 10640.18 10634.02 10627.92 10621. 89 10615.91 10610.00 10604.14 10598.36 10592.63 10586.96 10581. 36 10575.82 10570.34 10564.93 10559.58 10554.29 10549.06 10544.69 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 341.99 FEET UPSTREAM OF NODE 31.10 I DOWNSTREAM DEPTH = 5.192 FEET, UPSTREAM CONJUGATE DEPTH = 4.139 FEET I NODE 30.00 : HGL = < 15.776>;EGL= < 18.837>;FLOWLINE= < 11.860> ****************************************************************************** I I I I I I I I I I I I I I I I I I 30.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 30.10 30.00 TO NODE ELEVATION = 12.19 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 311.00 84.00 .00 12.19 4.64 DOWNSTREAM 311.00 84.00 11. 86 4.64 LATERAL #1 .00 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00392 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00654 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00523 5.00 FEET VELOCITY (FT/SEC) 11.481 14.040 .000 .000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .026 FEET ENTRANCE LOSSES .000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .041)+( .000) = .041 NODE 30.10 : HGL = < 16.831>;EGL= < 18.878>;FLOWLINE= < 12.190> ****************************************************************************** 29.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 29.00 30.10 TO NODE ELEVATION = 13.47 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 311.00 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 425.43 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 5.13 CRITICAL DEPTH(FT) = 4.64 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.64 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 4.641 11.477 6.688 10355.52 .183 4.661 11.423 6.688 10355.79 .752 4.681 11.369 6.689 10356.60 1.743 4.700 11.315 6.690 10357.95 3.196 4.720 11. 262 6.691 10359.82 5.157 4.740 11. 210 6.692 10362.22 7.681 4.759 11.159 6.694 10365.13 10.827 4.779 11.108 6.696 10368.56 14.671 4.798 11. 057 6.698 10372.49 19.296 4.818 11. 007 6.701 10376.93 24.806 4.838 10.958 6.703 10381. 87 31.326 4.857 10.909 6.706 10387.29 39.005 4.877 10.861 6.710 10393.21 48.034 4.896 10.813 6.713 10399.62 58.648 4.916 10.766 6.7l7 10406.50 71.153 4.936 10.720 6.721 10413.86 I I I I I I I I I I I I I I I I 85.951 4.955 10.674 6.726 10421.69 103.588 4.975 10.628 6.730 10429.99 124.827 4.995 10.583 6.735 10438.75 150.787 5.014 10.539 6.740 10447.97 183.203 5.034 10.495 6.745 10457.65 224.981 5.053 10.451 6.751 10467.77 281. 573 5.073 10.408 6.756 10478.34 365.226 5.093 10.366 6.762 10489.36 425.430 5.100 10.349 6.765 10493.91 ------------------------------------------------------------------------------ NODE 29.00 : HGL = < 18.570>;EGL= < 20.235>;FLOWLINE= < 13.470> ****************************************************************************** 29.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 29.10 29.00 TO NODE ELEVATION = 13.80 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 286.00 84.00 .00 13.80 DOWNSTREAM 311.00 84.00 13.47 LATERAL #1 .00 .00 .00 19.97 LATERAL #2 .00 .00 .00 19.97 Q5 25.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00246 JUNCTION LENGTH 5.00 FEET CRITICAL DEPTH (FT.) 4.44 4.64 .00 .00 .00187 .00305 VELOCITY (FT/SEC) 8.146 10.352 .000 .000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .012 FEET ENTRANCE LOSSES .333 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .262) + ( .333) = .595 NODE 29.10 : HGL = < 19.799>;EGL= < 20.830>;FLOWLINE= < 13.800> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 28.00 29.10 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 286.00 CFS PIPE LENGTH = 74.30 FEET NORMAL DEPTH(FT) = 4.76 28.00 IS CODE = 1 14.03 (FLOW IS SUBCRITICAL) PIPE DIAMETER = 84.00 INCHES MANNING'S N .01300 CRITICAL DEPTH(FT) = 4.44 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 6.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 5.999 8.144 7.030 10602.31 28.805 5.950 8.201 6.995 10525.64 57.668 5.900 8.261 6.960 10450.83 I I I I I I I I I I I I I I I I I I I 74.300 5.871 8.296 6.941 10408.71 NODE 28.00 : HGL = < 19.901>iEGL= < 20.971>iFLOWLINE= < 14.030> ****************************************************************************** 28.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 28.10 28.00 TO NODE ELEVATION = 14.45 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 286.00 84.00 10.00 14.45 4.44 DOWNSTREAM 286.00 84.00 14.03 4.44 LATERAL #1 .00 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300i FRICTION SLOPE = .00240 DOWNSTREAM: MANNING'S N = .01300i FRICTION SLOPE = .00193 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00217 JUNCTION LENGTH 5.00 FEET VELOCITY (FT/SEC) 9.228 8.298 .000 .000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .011 FEET ENTRANCE LOSSES .000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .057)+( .000) = .057 NODE 28.10 : HGL = < 19.705>iEGL= < 21.028>iFLOWLINE= < 14.450> ****************************************************************************** 27.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 27.00 28.10 TO NODE ELEVATION = 17.55 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 286.00 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 583.00 FEET MANNING'S N .01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 3.96 CRITICAL DEPTH(FT) = 4.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 3.497 14.876 6.935 10026.98 10.435 3.516 14.775 6.907 9993.68 21.091 3.534 14.676 6.881 9961.28 31.987 3.553 14.578 6.855 9929.78 43.146 3.572 14.481 6.830 9899.15 54.594 3.590 14.386 6.806 9869.38 66.361 3.609 14.291 6.783 9840.47 78.483 3.628 14.199 6.760 9812.40 90.999 3.647 14.107 6.739 9785.16 I I I I I I I I I I I I I I I I I I I 103.959 3.665 14.016 6.7l8 9758.73 117.420 3.684 13.927 6.698 9733.11 131.452 3.703 13.839 6.678 9708.28 146.140 3.721 13.752 6.660 9684.23 161.589 3.740 13.666 6.642 9660.96 l77.934 3.759 13.581 6.625 9638.45 195.345 3.777 13.497 6.608 9616.68 214.048 3.796 13.415 6.592 9595.66 234.349 3.815 13.333 6.577 9575.37 256.678 3.834 13.253 6.562 9555.80 281.661 3.852 13.173 6.549 9536.94 310.272 3.871 13.094 6.535 9518.78 344.143 3.890 13.0l7 6.522 9501. 32 386.333 3.908 12.940 6.510 9484.54 443.712 3.927 12.864 6.499 9468.44 538.328 3.946 12.790 6.487 9453.01 583.000 3.946 12.789 6.487 9452.93 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 5.26 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL ( FT) .000 5.337 10.588 15.750 20.818 25.786 30.649 35.402 40.036 44.546 48.922 53.157 57.239 61.157 64.901 68.454 71. 802 74.928 77.810 80.425 82.748 84.748 86.388 87.627 88.416 88.694 583.000 FLOW DEPTH (FT) 5.255 5.223 5.190 5.158 5.125 5.093 5.061 5.028 4.996 4.963 4.931 4.899 4.866 4.834 4.801 4.769 4.736 4.704 4.672 4.639 4.607 4.574 4.542 4.510 4.477 4.445 4.445 VELOCITY (FT/SEC) 9.225 9.284 9.344 9.406 9.468 9.532 9.597 9.663 9.730 9.798 9.868 9.940 10.012 10.086 10.161 10.238 10.317 10.396 10.478 10.561 10.645 10.731 10.819 10.909 11. 000 11.093 11.093 SPECIFIC ENERGY (FT) 6.578 6.562 6.547 6.532 6.518 6.505 6.492 6.479 6.467 6.455 6.444 6.434 6.424 6.414 6.406 6.398 6.390 6.383 6.377 6.372 6.367 6.364 6.361 6.358 6.357 6.357 6.357 PRESSURE+ MOMENTUM (POUNDS) 9663.95 9634.16 9605.40 9577.67 9550.99 9525.37 9500.84 9477.39 9455.05 9433.84 9413.76 9394.84 9377.09 9360.54 9345.19 9331.06 9318.19 9306.57 9296.24 9287.22 9279.52 9273.17 9268.19 9264.60 9262.43 9261.70 9261.70 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 40.47 FEET UPSTREAM OF NODE 28.10 I DOWNSTREAM DEPTH = 4.993 FEET, UPSTREAM CONJUGATE DEPTH = 3.946 FEET I I I I I I I I I I I I I I I I I I I I NODE 27.00 : HGL = < 21.047>;EGL= < 24.485>;FLOWLINE= < 17.550> ****************************************************************************** 27.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 27.10 27.00 TO NODE ELEVATION = 17.97 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 286.00 84.00 .00 17.97 4.44 DOWNSTREAM 286.00 84.00 17.55 4.44 LATERAL #1 .00 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00603 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00804 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00704 JUNCTION LENGTH 5.00 FEET VELOCITY (FT/SEC) 13.347 14.880 .000 .000 FRICTION LOSSES .035 FEET ENTRANCE LOSSES .000 FEET JUNCTION LOSSES JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .064)+( .000) = .064 NODE 27.10 : HGL = < 21. 783>;EGL= < 24.549>;FLOWLINE= < 17.970> ****************************************************************************** 26.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 26.00 27.10 TO NODE ELEVATION = 19.06 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 286.00 CFS PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 206.30 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 3.97 CRITICAL DEPTH (FT) = 4.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.53 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 3.533 14.684 6.883 9964.05 10.077 3.550 14.592 6.859 9934.33 20.372 3.568 14.501 6.835 9905.38 30.906 3.585 14.411 6.812 9877.20 41. 699 3.603 14.322 6.790 9849.77 52.779 3.621 14.234 6.769 9823.09 64.174 3.638 14.147 6.748 9797.15 75.920 3.656 14.062 6.728 9771.94 88.056 3.673 13.977 6.709 9747.44 100.631 3.691 13.894 6.690 9723.65 113.702 3.709 13.811 6.672 9700.55 127.336 3.726 13.730 6.655 9678.15 141.620 3.744 13.649 6.638 9656.43 I I I I I I I I I I I I I I I I I I I NODE 156.656 172.577 189.552 206.300 26.00 : HGL = < 3.761 3.779 3.797 3.813 13.569 13.491 13.413 13.343 22.593>;EGL= < 6.622 6.607 6.592 6.579 25.943>;FLOWLINE= < 9635.37 9614.98 9595.25 9577 .71 19.060> ****************************************************************************** 26.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 26.10 26.00 TO NODE ELEVATION = 19.48 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) UPSTREAM 286.00 84.00 .00 19.48 4.44 DOWNSTREAM 286.00 84.00 19.06 4.44 LATERAL #1 .00 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00566 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00777 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00671 VELOCITY (FT/SEC) 13.027 14.689 .000 .000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 5.00 FEET .034 FEET ENTRANCE LOSSES .000 FEET (DY+HVI-HV2) + (ENTRANCE LOSSES) ( .061)+( .000) = .061 NODE 26.10 : HGL = < 23.368>;EGL= < 26.003>;FLOWLINE= < 19.480> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 25.30 25.40 TO NODE ELEVATION = CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 286.00 CFS 25.30 IS CODE = 1 20.98 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 84.00 INCHES PIPE LENGTH = 255.40 FEET MANNING'S N .01300 NORMAL DEPTH (FT) = 3.84 CRITICAL DEPTH(FT) = 4.44 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.44 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 4.445 11. 093 6.357 9261.70 .121 4.421 11.163 6.357 9262.11 .499 4.397 11.234 6.358 9263.33 1.157 4.373 11.307 6.359 9265.38 2.120 4.349 11. 380 6.361 9268.27 3.420 4.325 11.455 6.363 9272.00 5.092 4.300 11. 530 6.366 9276.61 7.175 4.276 11. 607 6.370 9282.08 I I I I I I I I I I I I I I I I I I 9.718 4.252 11. 685 6.374 9288.44 12.777 4.228 11. 764 6.379 9295.70 16.420 4.204 11.844 6.384 9303.86 20.726 4.180 11.926 6.390 9312.96 25.797 4.156 12.008 6.397 9322.99 31. 754 4.132 12.092 6.404 9333.97 38.754 4.108 12.17 8 6.412 9345.91 46.996 4.084 12.264 6.421 9358.84 56.744 4.060 12.352 6.431 9372.76 68.355 4.036 12.442 6.441 9387.69 82.328 4.012 12.532 6.452 9403.65 99.396 3.988 12.625 6.464 9420.64 120.695 3.964 12.718 6.477 9438.70 148.128 3.940 12.813 6.491 9457.83 185.263 3.916 12.910 6.505 9478.05 240.117 3.892 13.008 6.521 9499.38 255.400 3.888 13.023 6.523 9502.80 ------------------------------------------------------------------------------ NODE 25.30 : HGL = < 25.425>;EGL= < 27.337>;FLOWLINE= < 20.980> ****************************************************************************** 25.20 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 25.20 25.30 TO NODE ELEVATION = 21.01 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 268.00 84.00 .00 21.01 4.30 DOWNSTREAM 286.00 84.00 20.98 4.44 LATERAL #1 .00 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 .00 Q5 18.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00163 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00375 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00269 JUNCTION LENGTH 5.00 FEET VELOCITY (FT/SEC) 7.622 11.096 .000 .000 FRICTION LOSSES .013 FEET ENTRANCE LOSSES .382 FEET JUNCTION LOSSES (DY+HV1-HV2) + (ENTRANCE LOSSES) JUNCTION LOSSES ( .203)+( .382) = .585 NODE 25.20 : HGL = < 27.020>;EGL= < 27. 922>;FLOWLINE= < 21.010> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 25.00 25.20 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 268.00 CFS PIPE LENGTH = 50.00 FEET NORMAL DEPTH (FT) = 3.71 25.00 IS CODE = 1 21.30 (FLOW IS SUBCRITICAL) PIPE DIAMETER = 84.00 INCHES MANNING'S N .01300 CRITICAL DEPTH(FT) = 4.30 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 6.01 I I I I I I I I I I I I I I I I I I I ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) .000 6.010 7.620 6.912 10069.17 12.247 5.941 7.694 6.861 9958.11 24.333 5.873 7.772 6.811 9850.35 36.253 5.804 7.853 6.763 9745.96 48.003 5.736 7.938 6.715 9645.00 50.000 5.724 7.953 6.707 9627.93 NODE 25.00 : HGL = < 27.024>;EGL= < 28.007>;FLOWLINE= < 21. 300> ****************************************************************************** 25.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 25.10 25.00 TO NODE ELEVATION = 21.88 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 268.00 78.00 90.00 21. 88 DOWNSTREAM 268.00 84.00 21. 30 LATERAL #1 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00211 JUNCTION LENGTH 9.00 FEET CRITICAL DEPTH (FT.) 4.39 4.30 .00 .00 .00246 .00177 VELOCITY (FT/SEC) 8.081 7.955 .000 .000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .019 FEET ENTRANCE LOSSES .000 FEET NODE (DY+HV1-HV2)+(ENTRANCE LOSSES) (1.355)+( .000) = 1.355 25.10 : HGL = < 28.347>;EGL= < 29.362>;FLOWLINE= < 21.880> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 24.00 25.10 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 268.00 CFS PIPE LENGTH = 50.00 FEET 24.00 IS CODE = 1 22.14 (FLOW IS SUBCRITICAL) PIPE DIAMETER = 78.00 INCHES MANNING'S N .01300 NORMAL DEPTH(FT) = 4.04 CRITICAL DEPTH(FT) = 4.39 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 6.47 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) .000 FLOW DEPTH (FT) 6.467 VELOCITY (FT/SEC) 8.079 SPECIFIC ENERGY (FT) 7.482 PRESSURE+ MOMENTUM (POUNDS) 10859.28 I I I I I I I I I I I I I I I I I I I NODE 27.181 50.000 24.00 : HGL = < 6.384 6.310 8.106 8.143 28.450>;EGL= < 7.405 7.340 29.480>;FLOWLINE= < 10702.03 10566.68 22.140> ****************************************************************************** 24.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 24.10 24.00 TO NODE ELEVATION = 22.16 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 250.00 78.00 .00 22.16 DOWNSTREAM 268.00 78.00 22.14 LATERAL #1 18.00 18.00 45.00 24.64 LATERAL #2 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4) )/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00222 JUNCTION LENGTH 4.00 FEET 4.24 4.39 1. 45 .00 .00214 .00230 7.539 8.145 10.186 .000 FRICTION LOSSES .009 FEET ENTRANCE LOSSES .000 FEET JUNCTION LOSSES (DY+HV1-HV2) + (ENTRANCE LOSSES) JUNCTION LOSSES ( .027)+( .000) = .027 NODE 24.10 : HGL = < 28.624>;EGL= < 29.506>;FLOWLINE= < 22.160> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23.00 24.10 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 250.00 CFS 23.00 IS CODE = 1 23.34 (FLOW IS SUBCRITICAL) PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 209.00 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 3.76 CRITICAL DEPTH(FT) = 4.24 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 6.46 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 6.464 7.537 7.346 10307.09 23.087 6.375 7.566 7.264 10137.10 44.863 6.286 7.608 7.185 9974.54 65.758 6.197 7.661 7.108 9818.14 85.967 6.107 7.723 7.034 9667.42 105.601 6.018 7.792 6.962 9522.16 124.730 5.929 7.870 6.892 9382.31 143.399 5.840 7.955 6.823 9247.88 161.637 5.751 8.047 6.757 9118.91 179.460 5.662 8.146 6.693 8995.51 I I I I I I I I I I I I I I I I I NODE 196.875 209.000 23.00 : HGL = < 5.573 5.510 8.253 8.334 28.850>;EGL= < 6.631 6.589 29.929>;FLOWLINE= < 8877.79 8797.39 23.340> ****************************************************************************** 23.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 23.10 23.00 TO NODE ELEVATION = 24.09 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 250.00 78.00 90.00 24.09 4.24 DOWNSTREAM 250.00 78.00 23.34 4.24 LATERAL #1 .00 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00203 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00215 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00209 VELOCITY (FT/SEC) 7.572 8.336 .000 .000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 9.00 FEET .019 FEET ENTRANCE LOSSES .000 FEET NODE (DY+HV1-HV2) + (ENTRANCE LOSSES) (1.416)+( .000) = 1.416 23.10 : HGL = < 30.455>;EGL= < 31.345>;FLOWLINE= < 24.090> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 22.00 23.10 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 250.00 CFS 22.00 IS CODE = 1 25.02 (FLOW IS SUBCRITICAL) PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 311.00 FEET MANNING'S N .01300 NORMAL DEPTH (FT) = 4.70 CRITICAL DEPTH(FT) = 4.24 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 6.36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 6.365 7.570 7.255 10118.27 60.699 6.298 7.602 7.196 9996.52 118.357 6.231 7.639 7.138 9878.27 173.881 6.165 7.682 7.081 9763.26 227.854 6.098 7.730 7.026 9651.38 280.688 6.031 7.782 6.972 9542.55 311.000 5.992 7.814 6.941 9480.53 NODE 22.00 : HGL = < 31.012>;EGL= < 31. 961>;FLOWLINE= < 25.020> I I I I I I I I I I I I I I I I I I I ****************************************************************************** 22.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 22.10 22.00 TO NODE ELEVATION = 25.35 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 250.00 78.00 .00 25.35 DOWNSTREAM 250.00 78.00 25.02 LATERAL #1 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*V1*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00204 JUNCTION LENGTH 5.00 FEET CRITICAL DEPTH (FT.) 4.24 4.24 .00 .00 .00212 .00197 VELOCITY (FT/SEC) 8.260 7.817 .000 .000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .010 FEET ENTRANCE LOSSES .000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .018)+( .000) = .018 NODE 22.10 : HGL = < 30.919>;EGL= < 31. 979>;FLOWLINE= < 25.350> ****************************************************************************** 21.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 21.00 22.10 TO NODE ELEVATION = 26.25 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 250.00 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 300.00 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 4.69 CRITICAL DEPTH (FT) = 4.24 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 5.57 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 5.569 8.258 6.629 8873.05 27.185 5.534 8.302 6.605 8828.31 54.586 5.499 8.347 6.582 8784.49 82.240 5.464 8.394 6.559 8741.60 1l0.191 5.429 8.441 6.536 8699.65 138.486 5.394 8.490 6.514 8658.64 167.180 5.359 8.540 6.492 8618.59 196.333 5.324 8.592 6.470 8579.51 226.017 5.288 8.644 6.449 8541. 41 256.312 5.253 8.698 6.429 8504.31 287.317 5.218 8.753 6.409 8468.21 300.000 5.204 8.775 6.401 8454.11 NODE 21.00 : HGL = < 31.454>;EGL= < 32. 651>;FLOWLINE= < 26.250> I I I I I I I I I I I I I I I I I I I ****************************************************************************** 21.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 21.10 21.00 TO NODE ELEVATION = 26.45 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 205.00 78.00 3.00 26.45 DOWNSTREAM 250.00 78.00 26.25 LATERAL #1 45.00 42.00 90.00 29.40 LATERAL #2 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00185 CRITICAL DEPTH (FT.) 3.82 4.24 2.09 .00 .00133 .00238 VELOCITY (FT/SEC) 6.458 8.778 6.081 .000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 6.00 FEET .011 FEET ENTRANCE LOSSES .000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .373)+( .000) = .373 NODE 21.10 : HGL = < 32.376>;EGL= < 33.024>;FLOWLINE= < 26.450> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 20.00 21.10 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : 20.00 IS CODE = 1 27'.11 (FLOW IS SUBCRITICAL) PIPE FLOW 205.00 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 440.59 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 5.39 & 6.50 CRITICAL DEPTH(FT) = 3.82 NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 5.93 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) .000 440.590 FLOW DEPTH (FT) 5.926 6.496 VELOCITY (FT/SEC) 6.456 6.176 NODE 20.00 : HGL = < 33.606>;EGL= < SPECIFIC ENERGY (FT) 6.574 7.089 PRESSURE+ MOMENTUM (POUNDS) 8127.12 9176.09 34.199>;FLOWLINE= < 27.110> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 20.10 20.00 TO NODE ELEVATION = CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) ( INCHES) (DEGREES) UPSTREAM 186.00 78.00 3.00 DOWNSTREAM 205.00 78.00 20.10 IS CODE = 5 27.31 (FLOW IS SUBCRITICAL) FLOWLINE CRITICAL VELOCITY ELEVATION DEPTH (FT.) (FT/SEC) 27.31 3.63 5.612 27.11 3.82 6.178 I I I I I I I I I I I I I I I I I I I LATERAL #1 LATERAL #2 Q5 19.00 18.00 68.00 31.26 .00 .00 .00 .00 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00133 JUNCTION LENGTH 5.00 FEET 1. 46 .00 .00117 .00150 10.752 .000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .007 FEET ENTRANCE LOSSES .000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .047)+( .000) = .047 NODE 20.10 : HGL = < 33.757>;EGL= < 34.246>;FLOWLINE= < 27.310> ****************************************************************************** 19.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 19.00 20.10 TO NODE ELEVATION = 27.86 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 186.00 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 365.38 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 4.89 CRITICAL DEPTH(FT) = 3.63 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 6.45 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 6.447 5.611 6.936 8642.26 167.491 6.384 5.626 6.876 8518.97 320.856 6.322 5.647 6.817 8397.92 365.380 6.303 5.654 6.799 8361.20 NODE 19.00 : HGL = < 34.163>;EGL= < 34. 659>;FLOWLINE= < 27.860> ****************************************************************************** 19.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 19.10 19.00 TO NODE ELEVATION = 28.06 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 186.00 78.00 .00 28.06 DOWNSTREAM 186.00 78.00 27.86 LATERAL #1 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES CRITICAL DEPTH (FT.) 3.63 3.63 .00 .00 UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00109 VELOCITY (FT/SEC) 5.754 5.656 .000 .000 I I I I I I I I I I I I I I I I I I I DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00111 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00110 JUNCTION LENGTH 5.00 FEET FRICTION LOSSES .005 FEET ENTRANCE LOSSES .000 FEET JUNCTION LOSSES (DY+HV1-HV2) + (ENTRANCE LOSSES) JUNCTION LOSSES ( .010)+( .000) = .010 NODE 19.10 : HGL = < 34.155>;EGL= < 34.669>;FLOWLINE= < 28.060> ****************************************************************************** 18.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 18.00 19.10 TO NODE ELEVATION = 28.65 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 186.00 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 396.23 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 4.91 CRITICAL DEPTH (FT) = 3.63 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 6.10 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL ( FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 6.095 5.753 6.609 7973.81 106.012 6.048 5.780 6.567 7888.28 211. 682 6.000 5.809 6.524 7803.80 317.408 5.953 5.839 6.483 7720.38 396.230 5.918 5.863 6.452 7659.14 NODE 18.00 : HGL = < 34.568>;EGL= < 35.102>;FLOWLINE= < 28.650> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 18.10 18.00 TO NODE ELEVATION = 18.10 IS CODE = 5 28.85 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 175.00 78.00 .00 28.85 DOWNSTREAM 186.00 78.00 28.65 LATERAL #1 11. 00 18.00 90.00 32.85 LATERAL #2 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00104 JUNCTION LENGTH 5.00 FEET FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .005 FEET ENTRANCE LOSSES (DY+HV1-HV2) + (ENTRANCE LOSSES) ( .071)+( .000) = .071 CRITICAL DEPTH (FT.) 3.52 3.63 1. 27 .00 .00098 .00110 VELOCITY (FT/SEC) 5.569 5.865 6.225 .000 .000 FEET I I I I I I I I I I I I I I I I I I I NODE 18.10 : HGL = < 34.691>;EGL= < 35. 173>;FLOWLINE= < 28.850> ****************************************************************************** 17.00 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 17.00 18.10 TO NODE ELEVATION = 29.36 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 175.00 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 338.94 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 4.65 CRITICAL DEPTH (FT) = 3.52 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 5.84 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 5.841 5.568 6.323 7283.64 80.625 5.794 5.601 6.281 7201.83 161.910 5.746 5.637 6.240 7121. 09 244.035 5.698 5.674 6.198 7041.44 327.191 5.650 5.712 6.157 6962.88 338.940 5.644 5.717 6.152 6952.04 NODE 17.00 : HGL = < 35.004>;EGL= < 35.512>;FLOWLINE= < 29.360> ****************************************************************************** 17.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 17.10 17.00 TO NODE ELEVATION = 29.56 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 175.00 78.00 .00 29.56 DOWNSTREAM 175.00 78.00 29.36 LATERAL #1 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00105 JUNCTION LENGTH 5.00 FEET CRITICAL DEPTH (FT. ) 3.52 3.52 .00 .00 .00108 .00102 VELOCITY (FT/SEC) 5.923 5.719 .000 .000 FRICTION LOSSES .005 FEET ENTRANCE LOSSES .000 FEET JUNCTION LOSSES JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .009)+( .000) = .009 NODE 17.10 : HGL = < 34.976>;EGL= < 35.521>;FLOWLINE= < 29.560> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 16.00 17 .10 TO NODE ELEVATION = 16.00 IS CODE = 1 30.07 (FLOW IS SUBCRITICAL) I I I I I I I I I I I I I I I I I I I CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 175.00CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 338.94 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 4.65 CRITICAL DEPTH(FT) = 3.52 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 5.42 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 5.416 5.921 5.961 6593.75 60.391 5.385 5.952 5.936 6547.48 122.004 5.355 5.982 5.911 6501. 73 184.972 5.324 6.014 5.886 6456.49 249.440 5.293 6.046 5.861 6411.76 315.576 5.262 6.079 5.837 6367.56 338.940 5.252 6.090 5.828 6352.49 NODE 16.00 : HGL = < 35.322>;EGL= < 35.898>;FLOWLINE= < 30.070> ****************************************************************************** 16.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 16.10 16.00 TO NODE ELEVATION = 30.27 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) UPSTREAM 166.00 78.00 19.00 30.27 3.42 DOWNSTREAM 175.00 78.00 30.07 3.52 LATERAL #1 9.00 18.00 85.00 34.27 1.16 LATERAL #2 .00 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00104 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00114 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00109 JUNCTION LENGTH 5.00 FEET VELOCITY (FT/SEC) 5.808 6.092 6.135 .000 FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .005 FEET ENTRANCE LOSSES .000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .120)+( .000) = .120 NODE 16.10 : HGL = < 35.494>;EGL= < 36.018>;FLOWLINE= < 30.270> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 15.00 16.10 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 166.00 CFS PIPE LENGTH = 81.12 FEET NORMAL DEPTH(FT) = 4.49 15.00 IS CODE = 1 30.39 (FLOW IS SUBCRITICAL) PIPE DIAMETER = 78.00 INCHES MANNING'S N .01300 CRITICAL DEPTH(FT) = 3.42 I I I I I I I I I I I I I I I I I I I ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 5.22 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 5.224 5.806 5.748 6104.88 54.570 5.195 5.837 5.724 6062.79 81.120 5.181 5.852 5.713 6042.91 NODE 15.00 : HGL = < 35.571>;EGL= < 36.103>;FLOWLINE= < 30.390> ****************************************************************************** 15.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 15.10 15.00 TO NODE ELEVATION = 30.59 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 166.00 72.00 19.00 30.59 DOWNSTREAM 166.00 78.00 30.39 LATERAL #1 .00 .00 .00 .00 LATERAL #2 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00130 CRITICAL DEPTH (FT. ) 3.51 3.42 .00 .00 .00155 .00106 VELOCITY (FT/SEC) 6.723 5.854 .000 .000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 5.00 FEET .007 FEET ENTRANCE LOSSES .000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .083)+( .000) = .083 NODE 15.10 : HGL = < 35.483>;EGL= < 36.185>;FLOWLINE= < 30.590> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 14.00 15.10 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 166.00 CFS 14.00 IS CODE = 1 30.95 (FLOW IS SUBCRITICAL) PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 238.57 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 4.97 & 6.00 CRITICAL DEPTH(FT) = 3.51 NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) .000 FLOW DEPTH (FT) 4.893 VELOCITY (FT/SEC) 6.721 SPECIFIC ENERGY (FT) 5.595 PRESSURE+ MOMENTUM (POUNDS) 5604.19 I I I I I I I I I I I I I I I I I I II 54.644 4.896 6.717 5.598 5607.59 111.793 4.899 6.714 5.600 5610.99 171.671 4.902 6.710 5.602 5614.41 234.531 4.905 6.706 5.604 5617.82 238.570 4.906 6.706 5.604 5618.03 NODE 14.00 : HGL = < 35.856>;EGL= < 36.554>;FLOWLINE= < 30.950> ****************************************************************************** 14.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 14.10 14.00 TO NODE ELEVATION = 31.45 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 126.00 66.00 90.00 31.45 DOWNSTREAM 166.00 72.00 30.95 LATERAL #1 16.00 24.00 .00 33.95 LATERAL #2 24.00 24.00 45.00 33.95 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00148 JUNCTION LENGTH 6.00 FEET CRITICAL DEPTH (FT.) 3.12 3.51 1. 44 1. 73 .00141 .00154 VELOCITY (FT/SEC) 5.303 6.708 5.093 7.639 FRICTION LOSSES .009 FEET ENTRANCE LOSSES .000 FEET JUNCTION LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES ( .902)+( .000) = .902 NODE 14.10 : HGL = < 37.020>;EGL= < 37.457>;FLOWLINE= < 31.450> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 13.00 14 .10 TO NODE ELEVATION = CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 126.00 CFS 13.00 IS CODE = 1 31.71 (FLOW SEALS IN REACH) PIPE DIAMETER = 66.00 INCHES PIPE LENGTH = 85.55 FEET MANNING'S N .01300 ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD (FT) = 5.57 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) .000 42.903 PRESSURE HEAD (FT) 5.570 5.500 VELOCITY (FT/SEC) 5.303 5.303 SPECIFIC ENERGY (FT) 6.007 5.937 PRESSURE+ MOMENTUM (POUNDS) 5475.64 5371.88 NORMAL DEPTH(FT) = 3.33 CRITICAL DEPTH(FT) = 3.12 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 5.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I I I I I I I I I I I I I I I I I I I DISTANCE FROM CONTROL (FT) 42.903 85.550 FLOW DEPTH (FT) 5.500 5.424 VELOCITY (FT/SEC) 5.302 5.316 NODE 13.00 : HGL = < 37.134>;EGL= < SPECIFIC ENERGY (FT) 5.937 5.863 PRESSURE+ MOMENTUM (POUNDS) 5371.88 5263.24 37.573>;FLOWLINE= < 31.710> ****************************************************************************** 13.10 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 13.10 13.00 TO NODE ELEVATION = 32.01 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 88.00 60.00 .00 32.01 DOWNSTREAM 126.00 66.00 31. 71 LATERAL #1 38.00 30.00 90.00 34.51 LATERAL #2 .00 .00 .00 .00 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00121 JUNCTION LENGTH 5.00 FEET FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES .006 FEET ENTRANCE LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) ( .274)+( .000) = .274 CRITICAL DEPTH (FT.) 2.66 3.12 2.08 .00 .00114 .00128 VELOCITY (FT/SEC) 4.482 5.318 7.741 .000 .000 FEET NODE 13.10 : HGL = < 37.535>;EGL= < 37.847>;FLOWLINE= < 32.010> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 12.00 13 .10 TO NODE ELEVATION = 12.00 IS CODE = 1 32.32 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 88.00 CFS PIPE DIAMETER = PIPE LENGTH SF=(Q/K) **2 HF=L*SF = ( 102.50 FEET MANNING'S N (( 88.00)/( 2604.445))**2 = .00114 102.50)*( .00114) = .117 60.00 INCHES .01300 NODE 12.00 : HGL = < 37.652>;EGL= < 37.964>;FLOWLINE= < 32.320> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 12.00 FLOWLINE ELEVATION = 32.32 ASSUMED UPSTREAM CONTROL HGL = 34.98 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS EXHIBIT K SCHEMATIC DRAWING STORM DRAIN LINE 'ff" NOT DRAWN TO SCALE NODE 12 NODE 106 NODE 15 NODE 17 NODE 18 NODE 23 NODE 14 NODE 16 NODE 27 NODE 32 NODE 26 NODE 28 r'\JDBS'\971046'\DR-SCEM 9-10-99 8,04,40 OM < 1 f; I 'r'-' <. ,