Loading...
HomeMy WebLinkAboutCT 2018-0005; VILLAGE WALK; DRAINAGE STUDY; 2018-05-23--... .... -.. ... .. ... ... .. --.. ... .. ... .. .. - --.. ,.. .. .. .. .. ... ... DRAINAGE STUDY For VILLAGE WALK CT2018-0005 Prepared for: OMS Consultants, Inc . 123 71 S Lewis St #203 Garden Grove, CA 92840 (714) 740-8840 Prepared by: R·E·C Consultants, Inc . Dr. Luis Parra REC Consultants, Inc 27349 Jefferson Ave, Suite 112 Temecula, CA 92590 Telephone: 951-693-2400 Report Prepared: May 23, 2018 ~ -:111'\. ._,,..,. ':"' ,-, --,) ~ I ' •• '\A,., ... -•. >. -" ..I -' .• r,, ,._ L, MAY 3 0 2018 I . ,,. ' ---·--' -11111 - ,.. -.. -.. .. "" 11111 .. .. ,,. ... "" .. ,,. .. --,.. .. .. 11111 ,,. .. ,,. .. ... ... Village Walk Drainage Study TABLE OF CONTENTS Chapter 1 -Executive Summary 1.1 Introduction 1.2 Summary of Existing Conditions 1.3 Summary of Proposed Condition 1.4 Summary of Results 1.5 Hydraulic Analysis 1.6 Conclusions Chapter 2 -Methodology 2.1 County of San Diego Drainage Design Criteria 2.2 Hydrograph Development Summary (from San Diego County Hydrology Manual) Chapter 3 -Existing Condition 100-Year Hydrologic Analysis Chapter 4-Developed Condition 100-Year Hydrologic Analysis Chapter 5 -Modified-Puls Detention Routing (HEC-HMS) 5.1 Rational Method Hydrographs 5.2 Stage-Storage & Stage-Discharge Relationships 5.3 HEC-HMS Modified-Puls Routing Results Chapter 6 -WSPG Hydraulic Analysis Chapter 7 -Hydrology Exhibits SECTION II Ill IV V VI VII ""' .. ... .. ,,.. .. , .. Village Walk Drainage Study CHAPTER 1 -EXECUTIVE SUMMARY 1.1 -Introduction 111 The Village Walk project site is located to the south of Oak Avenue in the City of Carlsbad, California . .,. Runoff from the site drains to a single point of discharge from the project site, the existing storm drain located within the adjacent Oak Avenue to the north of the existing • site . .. .. .. -Ill ""' ., ,. ... ,,.. ... ""' ... ""' .. ,,.. .. ""' .. -.. This study analyzes existing and developed condition 100-year peak flowrates from the development to the existing point of discharge . The project site lies outside any FEMA 100-year floodplain zones. Therefore, no Letters of Map Revision will be required. Treatment of storm water runoff from the site has been addressed in a separate report - the "Storm Water Quality Management Plan for Village Walk", dated February 2018 by REC. Per County of San Diego drainage criteria, the Modified Rational Method should be used to determine peak design flowrates when the contributing drainage area is less than 1.0 square mile. Since the total watershed area discharging from the site is less than 1.0 square mile, AES computer software was used to model the pre & post developed condition runoff response per the Modified Rational Method. Methodology used for the computation of design rainfall events, runoff coefficients, and rainfall intensity values are consistent with criteria set forth in the "County of San Diego Drainage Design Manual". A more detailed explanation of methodology used for this analysis is listed in Chapter 2 of this report . Developed condition peak flows were calculated using AES. The corresponding hydrographs were generated using the RickRat Hydro program by Rick Engineering. Hydraulic Modified-Puls detention basin routing of the AES rational method hydrology was performed using the Army Corps of Engineers HEC-HMS 4.1 software. ... ... .. ,,,. 1111 .. Village Walk Drainage Study 1.2 -Summary of Existing Conditions In existing conditions, the Village Walk project site is an existing residential lot with associated structures and pavement. Runoff from the existing site drains via overland flow to the existing storm drain system located to the north of the project site within the adjacent Oak Avenue . Per County of San Diego rainfall isopluvial maps, the design 100-year rainfall depth for ,,,. the project site is 2.6 inches. The project site comprises of hydrologic soil class B soils 1111 such that a runoff coefficient of 0.25 was used for the vegetated areas. The existing site has an approximate impervious footprint of 8,574 square feet. Per the equation ,,_ identified in Section 3.1.2 of the San Diego County Hydrology Manual: .. "" ' .. ... ... ,. .. .. .. .. 1111 .. .. II"' I 11111 "" .. ... C = 0.9 X (%Impervious)+ Cp X (1 -% Impervious) where Cp is the pervious runoff value (in this case, 0.25), the existing condition runoff coefficient is 0.58. Table 1 below summarizes the existing condition design 100-year peak flow from the project site . Table 1 -SUMMARY OF EXISTING CONDITIONS FLOWS Drainage Runoff 100-Year Discharge Location Area Coefficient Peak Flow IAcl (C) (cfs) Oak Avenue 0.4 0.58 1.18 1.3 -Summary of Developed Conditions The Village Walk project proposes the construction of 8 multi-family homes, inclusive of an underground parking lot and associated landscaping. Runoff from the project is drained to a receiving dual purpose detention basin to the southeast corner of the project site. Mitigated peak flows are then drained from the detention facility by an 8- inch PVC storm drain to connect to the existing storm drain located within the adjacent Oak Avenue to the north of the project site. Runoff draining towards the underground parking lot is intercepted by a trench drain and then pumped to the aforementioned detention basin. Per County of San Diego rainfall isopluvial maps, the design 100-year rainfall depth for the project site is 2.6 inches. The project site comprises of hydrologic soil class B soils such that a runoff coefficient of 0.25 was used for the vegetated areas. The developed site has an approximate impervious footprint of 11,701 square feet. Per the equation identified in Section 3.1.2 of the San Diego County Hydrology Manual the developed condition runoff coefficient is 0.72. Table 2 summarizes the unmitigated developed condition design 100-year peak flow from the project site. ,.. ... ,. .. ,.. ... ,.. ... ,.. ,. ... ,.. I -,.. ... ,.. .. ,.. .. ,,. .. ,.. -,,. .. Village Walk Drainage Study Table 2 -SUMMARY OF UNMITIGATED -DEVELOPED CONDITIONS FLOWS Drainage Runoff 100-Year Discharge Location Area Coefficient Peak Flow IAcl (Cl (cfs) Oak Avenue 0.4 0.72 1.41 *=Weighted C coefficient used, see AES output for calculat1ons. Prior to discharging from the project site, first flush runoff will be treated via an onsite infiltration BMP in accordance with standards set forth by the Regional Water Quality Control Board and the County of San Diego's BMP Design Manual (see "Storm Water Quality Management Plan for Village Walk"). Runoff from the developed site drains to a single onsite multiple purpose detention basin. Peak flows are mitigated via this facility prior to discharging to the existing point of discharge from the project site. A summary of the detention basin is provided in Table 3. Notes: Table 3 -SUMMARY OF BMP BASIN DIMENSIONS DIMENSIONS Basin Depth to First Depth to Riser Weir Total Surface Surface Outlet (ft)(1l Invert (ftfl Perimeter Depth(4l (ft) Lenath(3l lftl Basin 1 0.5 1.5 8 2.0 (1): It is assumed WQ volume to be stored below this elevation, only volume above this invert is available for QlOO routing. (2): Depth of ponding beneath riser structure's surface spillway. (3): Overflow length, the internal perimeter of the riser. (4): Total surface depth of BMP from top crest elevation to surface invert. The developed condition peak flows were calculated using the modified rational. The corresponding hydrographs were generated using the RickRat Hydro program by Rick Engineering (a 10 minute time step was used to generate the hydrograph as HMS only has time step allowances for 1,2,3,4,5,6 and 10 minute increments). This hydrograph was then routed through the proposed on-site detention facility in HEC-HMS. The HMS Modified-Puls results are summarized in Table 4. It should be noted that as a conservative design approach, it has been assumed that the design capture volume was stored in the detention basin prior to the routing of the 100-year event storm, as such, all volume provided beneath the first surface outlet is not accounted for in the routing calculation . Rational method hydrographs, stage-storage, stage-discharge relationships, outlet structure configurations and HEC-HMS model output is provided in Chapter 5 of this report. Table 4 summarizes the peak inflow and discharge from the detention facility. ,,.. .. .. ... .. ... ... ... ... ... .. ... .. ... .. .. ... .. , .. .. ,,. .. .. .. ,.. .. ,.. .. Village Walk Drainage Study Table 4 -SUMMARY OF DETENTION BASIN ROUTING Detention Basin 100-Year Peak 100-Year Peak Peak Water Surface Inflow (cfs\ Outflow (cfs) Elevation<1> (ft\ Basin 1 1.41 0.86 1.0 Notes: (1) Elevation above the first surface inlet invert . 1.4 -Summary of Results Table 5 summarizes developed and existing condition drainage areas and resultant 100-year peak flow rates at the receiving discharge location from the Village Walk site . Per County of San Diego rainfall isopluvial maps, the design 100-year rainfall depth for the site area is 2.6 inches . Table 5 -SUMMARY OF PEAK FLOWS Discharge Area (ac) 100 Year Peak Flow (cfs) Location Existina Developed Difference Existina Developed Difference Oak Avenue 0.4 0.4 0.00 1.18 0.87 -0.31 As illustrated in Table 5, the proposed Village Walk project site will reduce peak flows at all point of discharge from the project site when compared to the existing condition. The total net reduction in flow from the pre-developed condition is approximately 0.31 cfs . All developed runoff will receive water quality treatment in accordance with the site specific SWQMP. Final design details will be provided at the final engineering phase of the development. 1.5 -Hydraulic Analysis Runoff from the project site is to be drained to the existing storm drain located within the adjacent Oak Avenue by a proposed 8-inch PVC storm drain . Public Works Department of City of Carlsbad has indicated that they have been unable to locate the improvement plans for existing 18-inch storm drain located in Oak Avenue. This storm drain originates at Lincoln Avenue, approximately 270 feet west of project site and drains easterly. In the absence of any record information and considering the project site is only 270 feet from beginning of storm drain system a HGL of 43.05 feet being the top of existing 18-inch pipe has been used as control. In order to assess the proposed 8-inch storm drain design capacity, hydraulic analysis was undertaken using the WSPG computer program. The computed HGL is provided in Chapter 6 of this report. ... .. ,.. .. ... .. ,. .. """ lllr ... .. .. Village Walk Drainage Study 1.6 -Conclusions This report has been prepared in accordance with the County of San Diego Hydrology Manual. This report has evaluated and addressed the potential impacts and proposed mitigation measures. A summary of the facts and findings associated with this project and the measures addressed by this report is as follows: • The project will not alter drainage patterns on the site or increase runoff after development. • The ultimate discharge points will not be changed. • Graded areas and slopes will be hydroseeded to reduce or eliminate sediment discharge . • Identify and discuss, with appropriate backup/research information, the following question item by item for CEQA purposes. Would the project: A. Substantially alter the existing drainage patterns of the site or area, including through the alteration if the course of a stream or river, in a manner which would result in substantial erosion or siltation on -or off-site? .,. The project does not substantially alter the existing drainage pattern of the area and does not alter the course of a stream or river. ,. .. ... .. ... ... ... .. ... .. .. ... .. .. :., The storm drain system for the entire project is designed to route and convey all resulting runoff from developed conditions to existing point of discharge. B. Substantially alter the existing drainage patterns of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on-or off-site? The project will not substantially alter the existing drainage pattern of the area as it will not alter the course of a stream or river, and also will not substantially increase the rate or amount of surface runoff in a manner which would result in on-or off-site flooding . C. Create or contribute runoff water which would exceed the capacity of existing or planned storm water drainage systems? No. All project discharge points release water at rates less than or equal to existing conditions . ,,,. ... ,,,. 1111 -I ... Village Walk Drainage Study D. Place housing within a JOO-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood insurance Rate Map or other flood hazard delineation map, including County Floodplain Maps? For example; research the foregoing and provide same (to indicate applicability or not) in the study? The project does not place any housing within a 100-year flood hazard area. E. Place within a JOO-year flood hazard area structures which would impede or redirect flood ,,. flows? ... There are no structures proposed within a 100-year flood hazard area. ,,. -., F. Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam on-sit or off-site? ,.. .. NA ,.. .., 1.6 -References I"" "County of San Diego Hydrology Manuaf', June 2003 ... "San Diego County Hydraulic Design Manuaf', September 2014 ,,. 11w "Stormwater Quality Management Plan for Village Walk", April 2018, REC Consultants. ,,. -,.. .. ,.. ... ,,. ,,. - ... ... .. ,,. ... ,,. .. ' ... .. ... .. .. ,,. ... ,,. .. ,,. ... ,.,. .. .. .. .. ... .. ,.. .. Village Walk Drainage Study 1. 7 -Declaration of Responsible Charge THIS PRELIMINARY DRAINAGE STUDY HAS BEEN PREPARED UNDER THE DIRECTION OF THE FOLLOWING REGISTERED CIVIL ENGINEER. THE REGISTERED ENGINEER ATTESTS TO THE TECHNICAL INFORMATION CONTAINED HEREIN AND THE ENGINEERING DATA UPON WHICH RECOMMENDATIONS, CONCLUSIONS, AND DECISIONS ARE BASED. Luis A. Parra-Rosales R.C.E. 66377 ,.. ... .. ... ,. ... ... ... ... .. ,,.. -,. .. ... .. -... ,.. ... .. ... - Village Walk Drainage Study CHAPTER 2 -METHODOLOGY 2.1 -County of San Diego Design Criteria San Diego County Hydrology Manual Date: June 2003 SECTION3 Section: Page: RATIONAL METHOD AND MODIFIED RATIONAL METHOD 3.1 TID:RA110NALM1:THOD 3 1 of26 The Rational Method (RM) is a mathematical formula UBed to determine the maxiJD11m runoff rate from a given rainfall. It bas particular application in umao storm drainage, when: it is used to estimate peak runoff rates from small urbao and rural watenheds for the design of storm drains and small drainage structures. The RM is recommended for analyzing the runoff response from drainage areas up to approximately I square mile in size. It should not be used in ins1aru:es where there is a junction of independent drainage systems or for drainage areas greater than approximately I square mile in size. In these inswu:es, the Modified Rational Method (MRM) should be used for junctioos of independent drainage systems in wateisheda up to approximately 1 square mile in size (aee Section 3.4); or the NRCS Hydrologic Method should be used for wateisheda greater than approximately I square mile in size (see Section 4). The RM cao be applied using any design storm frequency (e.g., 100-ycar, SO-year, JO-year, etc.). The local agency determines the design storm frequency that must be used baaed on the type of project and specific local requirements. A discussion of design storm frequency is provided in Section 2.3 of this maoual. A procedure bas been developed that converts the 6-hour and 24-hoor precipitation isopluvial map data to an Intensity-Doratioo curve that cao be used for the rainfall intensity in the RM formula as shown in Figure 3-1. The RM is applicable to a 6-hoor storm duratioo because the procedure uses Intensity-Duration Dcaign Charts that are based oo a 6-hoor storm duration. 3.1.1 Rational Method Formula The RM fonnula estimates the peak rate of runoff at any location in a watenhed as a function of the drainage area (A), runoff coefticieot (C), and rainfall intensity (I) for a duration equal to the time of concentration (T,), which is the time required for w-to 3-1 Village Walk Drainage Study 2.2 -Design Rainfall Determination 2.2.1 -100-Year, 6-Hour Rainfall lsopluvial Map ~ .. ;:: ;: .. f County of San Diego Hydrology Manual • Rainfalllsoplwials IN Y-Ralafal -• 6 e..n --) DPW -CGIS S!"ffGIS ..:=--..:::::. •• H~ '-'1),,..,.( -..•.t +N :-:.:=-:::.=;:;.-..:=- I ---------··--------------=--==~-==-----.. :=-.::---.--=--=--- J O 3 -~ Village Walk Drainage Study 2.2.2 -100-Year, 24-Hour Rainfall lsopluvial Map f :: ; .. ~ " h rt• ·-ga'!ll!'J==~ I ~, I --I I I I . • I I s,.,.,. SITE LOCATION ,..., ~ '\:/ ~--¥ ·f ~r--'""'~~ ":-d µ i\\~' ~f::7;._e r·· H ..... -1 ~ • . , ...l .•• • -· -"T"" ~~ ·, ••• _,;.,...~~ i ·-.r. .. r1 ••• :-;:; .... ~0-~- .. , . ~r~ ... -· lit ·t:-i ... : .. -.. t t i. +-,._+ ' I .-:: Ht ;: t 1"'.l ? County of San Diego Hydrology Manual • Rainfall Isopluvials IN Year Ralafall Ennl-24 HNn -~, DPW •GIS ..=---..:.==.. S!JiGIS 'lkH,.,n\..,,,"-.,(~ +N :.-:.:::..-::=r";;"~~-===-:..,.._:::,;..:9.:0-- =5=~.==:--==--=--=--=--· J O J-!!!!iiiil'!!!'! I 1 I 1 r 1 Village Walk Drainage Study I l ..-1 r , 2.3 -Runoff Coefficient Determination Son Diep, County Hyd,olosy Manual Dale: June 2003 r 1 ' 1 r 1 ' 1 Table3-l , 1 r , ..-1 Section: ..... , RUNOFF COEFFICIENTS FOR URBAN AREAS LandUoe I Runoft"Coeffici-2l "'C"' SoilType NRCSEJemm,uo -%IMPER. A B Undisturbed Natt.sal Terrain (N.....i) PuUWIWt Open Space O" 0.20 0.25 Low Density Peetdendel (lDR) Raidendal. 1.0 DU/A or leu 10 0.27 0.32 Low Dc:mity R ddentfel (lDR) 'tee:1dcmdel 2.0 'DU/A cw lea 20 0.34 0.38 Low Dmaity Poridrntiel (I.DR) :"'eridmtieJ 2.9 DU/A or 1w 25 0.38 0.41 Medium Dimauy Jtmidmtid (MDR) Reridentiel 4.3 DU/A cw leu 30 0.41 0.45 Medium n.sity ;sterdrneiel (MDR) Peridenriel 7 .3 DU/A or leu 40 0.48 0.51 Medium Demity Reeiderdiel (MDR) Roeidmti:1 10.9 DU/A 01" 1-45 0.52 0.54 Medium I>emity Rm' t ld(MDR) Peridenriel 14.S DU/A or 1w 50 o.ss o.sa Hipo..;ty-.i-tial (IIDR) Reridenfiel 24.0 DU/A or 1-65 0.66 0.67 Hqil, o..ity -.i-tial (IIDR) ~ 43.0 DU/A or•-80 0.76 0.77 ~ (N. Com) N-Commen,ial 80 0.76 0.77 ~ (G. Com) a-a!C oW 85 0.80 0.80 ~(0.P.Com) Office Plof sicnellC oW 90 0.83 0.84 ~ (Llmiu,d I.) U..-1'.nduatrial 90 0.83 0.84 ---~ 9.87 o.arr r I C 0.30 0.36 0.42 0.4.S 0.-48 0.54 0.57 0.60 0.69 0.78 0.78 0.81 0.84 0.84 0.87 r l 3 6of26 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 o.as 0.85 0.87 ~ vdDes ciatod with 0% impCll'Yioua may be u:aed ftJr dinct celndsti of die nmoff cocfflcicrd • deac:nl,ed in SoctioD 3.1.2 (npnNDtina 1ho pervioua nmotr coefflcicnt,, ep, fbr tho aoil type). or for__. that will win undisturbod in perpetuity. Justification must be afVCll'I ttw the area will nm,am natural fi:Jftwcr (o.a .• the area it localed in CleveblDd Natioaal Pormt). DU/A• ctweUi:na uai&s par acre NR.CS •Natioaal ~Con 11tic11 'Service 3-6 I I ' 1 ,, r 1 ,,,. .. - ,,,. .. ... ... ,.. .. ... ... ,,,. .. .. ... ' .. ,.. .. -Ill .. ... --.. ... ,,,. Ill ,,,. .. .. Ill .. .. Village Walk Drainage Study San Diego County Hydrology Mmual Date: June 2003 Section: Page: • The storm frequency of peak discharges is the same as that of I for the given T, . 3 4of26 • The fraction of rainfall that becomes runoff ( or the runoff coefficieot, C) is independeot of I or precipitation zone number (PZN) condition (PZN Condition is discussed in Section 4.1.2.4). • The peak rate of runoff is the only infmmatioo produced by using the RM. 3.1.2 Runoff Coefficient Table 3-1 lists the estimated runoff coefficients for urban sreas. The concepts related to the runoff coefficient were evaluated in a report entitled Evaluation. Rationo/ Mefhod '"C"" Values (Hill, 2002) that was reviewed by the Hydrology Manual Committee. The Report ill available at San Diego County Deportment of Public Works, Flood Control Section and on the San Diego County Department of Public Works web page. The runoff coefficients sre based on land use and soil type. Soil type can be determined from the soil type map provided in Appendix A. An appropriate runoff coefficient (C) for each type of land use in the subsrea should be selected from this table and multiplied by the percentage of the total ares (A) included in that class. The sum of the products for all land uses ill the weighted runoff coefficient (l:[CAJ). Good engineering judgment should be used when applying the values presented in Table 3-1, as adjustments to these values may be appropriate based on site-specific characteristics. In any event, the impervious percentage ("lo Impervious) as given in the table, for any area, shall govern the selected value for C. The runoff coefficient can also be calculated for an ares based on soil type and impervious percentage using the following formula: ,. .. ,. .. ,. .. ,. .. ,. ... .. ... .. ,.. .. ,. 1111 ... .. ... 1111 ,. ... ,. ... ... .. Ill ,. .. ... 1111 Village Walk Drainage Study Son Di ... County Hydrology Manual Date: June 2003 Section: Page: 3 Sof26 C = 0.90 x (%Impervious)+ C,, x (1 -% Impervious) Where: C,, = Pervious Coefficient Runoff Value for the soil type (shown in Table 3-1 as Undisturbed Natural Terrain/Permanent Open Space, 0% Impervious). Soil type can be determined from the soil type map provided in Appendix A. The values in Table 3-1 are typical for most urban areas. However, if the basin contains rural or agricultursl land use, parks, golf courses, or other types of nonurban land use that are expected to be permanen~ the appropriate value should be selected based upon the soil and cover and approved by the local agency . ,.. .. Ill .. ,,. .. .. .. ... -.. , .. ,. - "" -,.. .. ... .. .. .. , .. .. .. .. .. -,.. .. Village Walk Drainage Study 2.4 -Urban Watershed Overland Time of Flow Nomoqraph San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 12of26 Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot wi1h an area of two or loss acres does not have a significant effect whore 1he drainage basin area is 20 to 600 acres. Table 3-2 provides limita of 1ho length (Maximum Length (LM)) of shoot flow to be used in hydrology studios. Initial T, values based on average C values for the Land Use Element are also included. These values cao ho used in planning and design applications as described below. Exceptions may be approved by 1ho "Regulating Agency" when submitted wi1h a detailed stody . Table3-2 MAXIMUM OVERLAND FLOW LENGTH (L.,) & INITIAL TIME OF CONCENTRATION (T.) Element• DU/ .5% 1 o/o 2% 3% 5% 10% Acre 4t T; 4t T, LM T, LM T, LM T, LM T; Natural so 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 IDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 IDR 2 so 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 IDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 so 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 so 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N.Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G.Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General I. 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 •see Table 3-1 for more detailed description 3-12 ,.. ' .. "" 1111 "" .. ,. .. "'" -,. .. "" ,.. .. ,. ... ,.. ... ... ... ... .. I"" ... ... ... .. Village Walk Drainage Study ~ w ~ ~ w " ~ ~ w ~ ~ § ~ ~ 0 EXAMPLE: Given Watercourse Distance (DJ = 70 Feet Slope (s) = 1.3% Runoff Coefficient (C) = 0.41 Overland Ftow Time (T) = lil.5Minlllea T= 1.8(1.1-C)VD 'V. SOURCE: Airport Drainage, Federal Aviation Administration, 1965 J<'IGURE Rational Formula -Overland Time of Flow Nomograph I 3.3 I Village Walk Drainage Study 2.5 -County of San Diego Intensity-Duration Curve 1 1',, 10.0 9.0 8.0 7.1 " ,r--... r-.J. 6.0 I 5.0 4. l 1, lr-{_ 3. l I 2., 1--. o I i 0 . ~1., ~o. ·~o. 9 B " so . 7 0. 0. 6 5 0. 4 0. 3 0.2 ! I ' I'-. I'-. 1'-i,.. ..... I', ..... .... ...... ...... , ' r-. ' "' ' "'i,.,. ... ... ' ' . ... , ~ ... ,~, ' ...... ..... . ... ' '' ' ....... ... ~ ...... "'i:::~ ' l'-1', ,, ' ... ... , I'-,, ... I lli1 l I I I 111111 II I I I I I l ll lllllll I 111 111111 II EQUATION I = 7.44 Ps D-0-645 I I = Intensity (in/hr) I P 6 = 6-Hour Precipitation (in) D = Duration (min) U.lllll ,, ,~, ... ......... ... ...... i-..,' ~ ... ,,, ' ... , I' ' ' ,~ I ... "' i,.,. ', I II ... ' ', I 1-., .,::,111 11111111 11111111 0. I 5 i; i' ii ii 1·0 f5 20 :io ,o so i Duration 3 Hours Minutes I I I I I I 'l$Wil 5 6 'r' I g "0 3. 6.0 >!. 5.5 2! 5.o ~r 4_5-::, 40 I 3.5 ~ 3.0 2.5 2.0 1,5 1.0 Intensity-Duration Design Chart -Template Dlrec:tlons for Application: (1) From precipitation maps detennine 6 hr and 24 hr amounts for the selected frequency. These maps are induded in the County Hydrology Manual (10. 50, and 100 yr maps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. Application Fonn: (a) Selected frequency~ year p (b) Ps = 2L_ in., P24 = _.iL ,..'.:..2..p = 2.L_ %(2) 24 (c) Adjusted p6c2> = __ in. (d) Ix = __ min. (e) I = ___ in.Jhr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. P6 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 'Duration l I I I I I I I I I 5 2.63 3.95 5.27 6.59 7.90 9.22 10.54 1186 13.t7 14.49 15.81 1 2.12 3.18,4.24 5.30_6.36.J.42 a.48 9.54 10.60, 11.66 12.n 10 1.~ 2.53 337_4.21 5.05.~90 6.74 758 8.42 9.27 10,11 1~ 1~_1.95 2.59 3.24 3.89~.54~5.19 5.84_6.49 7.13 ! 7.78 20 1.08 1.62 2.15 2.69 3.23 3.77 4.3_1_ ·~ 5.39 t 5.93 6.46 25 0.93 1.40 1.87 2.33 2.80 3.27 3.73 4.20 4.67 5.13 5.80 : ~:: :~: ::: ~~~ ~: ~:i: ~~ ~:~ ~-.!; ~:~ ::~ 50 o.8040.90, 1.19 1.49 1.79 2.09 2.39 2.69 2.98 3.28 3.58 80 0.53 080 1.06 1.33 1 59 1 86 2.12 2.39 2.65 2.92 3 18 90 0 41 0 61 0 82 1.02 1.23 1 43 1.63 1.84 0 2.04 2.25 2.45 120 0.34 0 51 0 68 0 85 1.02 1 19 1.36 1.53 1.70 1.87 2.04 1so o.29 ·o.«!oss o.73 o.88 1.00 1.18 1.32 1.41 1.62 1.16 :: ~ g::r~:~·g:: ~:-{~!-~~ ~:: :~ :-~ :~ 300 0.19 0.28 0.38 0•1 0.56 0.66 0.75 0.85 0.94 1.03 1.13 360 0.17 0.2510.33 0.42 0.50'0~58 0.67 0.75 0.84-0.92 1.00 3-1 E C ... .. .. ... ""' .. ,. .. ... .. .. llo ... .. ... 1111 .. .. .. .. ... .. .. ,.. 11111 ... .. ... ' 1111 Village Walk Drainage Study 2.6 -Model Development Summary (from County of San Diego Hydrology Manual) San Diego County Hydrology Manual Date: June 2003 3.2 DEVELOPING INPlIT DATA FOR THE RATIONAL METHOD Section: Page: 3 20of26 This section describes the development of the neoessary data to perfonn RM calculations. Section 3.3 describes the RM calculation process. Input data for calculating peak flows and T,'s with the RM should be developed as follows: I. On a topographic base map, outline the overall drainage area boundary, showiog adjacent dlains, existing and proposed dlains, end overland flow paths. 2. Verify the accuracy of the drainage map in the field. 3. Divide the drainage area into subareas by locating significant points of interest. These divisions should be based on topography, soil type, end land use. Ensure that en appropriate first subarea is delineated. For natural areas, tho first subarea flow path length should be loss then or equal to 4,000 feet plus tho overland flow length (Table 3-2). For developed areas, tho initial subarca flow path length should be consistent with Table 3-2. The topography end slope within the initial subarea should be generally unifonn. 4. Working from upstream to downstream, assign a number representing each subarea in the drainage systmn to each point of interest. Figure 3-8 provides guidelines for node numbers for geographic infollll8tion system (GIS)-based studies. S. Measure each sub.,.. in the drainage area to detennine its size in acn:s (A) . 6, Detcrmino the length and effective slope of the flow path in each subarea. 7. Identify the soil type for each subarea . 3-20 .. .. Ill .. 11111 .. .. I"' - I"' 11111 ,. 1111 Ill "" -.. Ill • -... I"" -... .. .. .. II B ,...\ r..,.. .\ ' ·. ' ·-··.,.J '• ,.; w '·· J f I J 0 C ... .. ... .. ... ... ... .. .. .. ... '"' .. I"" I .. C !'"' .. .. .. '"' 1111 Village Walk Drainage Study San Diogo County Hydrology Manual Date: June 2003 Section: Page: 3 22of26 8. Determine the runoff eoefficient (C) for each subarea based on Table 3-1. If the subarea contains more than one type of development classificati~ use a proportionate average for C. In determining C for the subarea, use future land use taken from the applicable community plan, Multiple Speciea conservation Plan, National Forest land use plan, etc • 9. Calculate the CA value for the suharea. 10. Calculate the ~CA) value(s) for the subareas upstream of the point(s) of interest . 1 I. Determine Po and P24 for the study using the isopluvial maps provided in Appeodix B . If necessary, adjust the value for P6 to be within 45% to 65% of the value for P24 . See Section 3.3 for a deacription of the RM calculation proceas. 3.3 l'ERFoRMING RATIONAL MEmoo CALCULATIONS This section describes the RM calculation process. Using the input data, calculation of peak flows and T ,'s should be performed as follows: I. Determine T, for the first subarea. Use Table 3-2 or Figure 3-3 as discussed in Section 3.1.4. If the watembed is natural, the travel time to the downstream eod of the first subarea can be added to T,to obtain theT. Refer to paragraph 3.1.4.2 (a) . 2. Determine I for the subarea using Figure 3-1. If T, was less than 5 minutes, use the 5 minote time to determine intensity for calculatiog the flow. 3. Calculate the peak discharge flow rate for the suharea, where Q,,-~CA) I. In case that the downstream flow rate is less than the upstream flow rate, due to the long travel time that is not offset by the additional subarea runoff, use the upatrcam peak flow for design purposes until downstream flows increase again. ~22 .. "" ' ~ , ... -... - ... ... - ... .. ... -... "" ~ .. -... - Village Walk Drainage Study Son Diego Cow,fy Hydrology Manual Date: June 2003 4. Estimate the T1 to the next point of interest S. Add the Tt to the previous To t.o obtain a new Tc, Section: Page: 6. Continue with step 2, above, until the final point of interest is reached. 3 23 of26 Note: The MRM should be used to calculate the peak discharge when there is a junction from independent subareas into the drainage system. 3.4 MODIFIED RATIONAL METHOD (FOR JtJNCTION ANALYSIS) The pu,pose of this section is to describe the steps necesaary to develop a hydrology report for a small watershed using the MRM. It is neceasuy to use the MRM if the wstershed contains junctions of independent drainage syatems. The process is based on the deaign manuals of the City/County of San Diego. The general process description for using this method, including an example of the application of this method. is described below. The engineer shoold only use the MRM for drainage areas up to approximately I square mile in size. If the wstershed will significantly exceed I square mile then the NRCS method described in Section 4 should be used. The engineer msy choose to use either the RM or tho MRM for calculstions for up to an approximately I-square-mile area and then transition the study to the NRCS method for additional downstream areas that exceed approximately 1 square mile. The transition process is described in Section 4. 3.4.1 Modlliod Rational Method General Proceo• Description Tho general process for the MRM differs from the RM only when a juncticm of independent drainage systems is reached. Tho peak Q, T ~ and I for each of the independent drainage systems at the point of the junction are calculated by the RM. Tho independent drainage systems sre then combined using the MRM procedure descnl,ed below. The peak Q, T ~ and I for each of tho independent drainage systems at tho point of the junction must be calculated prior to using tho MRM procedure to combine tho independent drainage systems, as these "" Ill .. 11111 "" ' 111111 Ill" 1111 .. .. ... ... ... .. ... .. .. .. ... .. ... .. ... .. - 111111 .. .. ... .. .. .. .. .. Village Walk Drainage Study San Di°"" County Hydrology Manual Date: June 2003 Section: Page: 3 24of26 values will be used for tho MRM calculations. After the independent dniinage sys1mls have been combined, RM calculations are continued to tho next point of interest. 3.4.2 Procedure for Combining Independent Drainage S)'lteml at a Junction Calculate the peak Q, T,, and I for each of the independent drainage systems at the point of the junction. These values will be used for the MRM calculations . At the junction of two or more independent dniinage sys1mls, the respective peak flows are combined to obtain the maximum flow out of the junction at Tc. Based on the approximation that total runoff increases directly in proportion to time, a general equation may be written to determine the mi,wnum Q and its corresponding T, using the peak Q, T,, and I for each of the independent drainage systems at the point inunediately before the junction. The general equation roquires that contributing Q's be numbenxl in order of increasing T, . Let Q,, T1, and l1 correspond to the tributary area with the shortest T,. Likewise, let Q,, T2, and I, correspond to the tributary area with tho next longer T,; Q,, T,, and I, correapond to the tnlnmuy area with the next longer T,; and so on. When only two independent dniinage systems are combined, leave Q,, T ,, and I, out of the equation. Combine the independent dniinage sys1mls using the junction equation below: Junction Equation: T 1 < T2 < T 3 On-0,+70,+;Q, ' ' "" - ,. - ,.. ... "" ... "" ... "" ... "" ... "" -.. 1111 .. 1111 .. .. '"" ' .. Village Walk Drainage Study San Di ... County Hydrology Manual Date: June 2003 Section: Page: 3 25 of26 Calculate Qr1, Qn, and Qn. Select tho largest Q and use the T, associated with that Q for further calculations (soo tho three Notes for options). If tho largest calculated Q's an: equal (e.g., Qn = Qn > Qn), use the shorter of tho T,'s associated with thst Q. This equation may be expanded for a junction of more thso thn:e independent drainage systems using tho same concept. Tho concept ia thst when Q from a selected subaroa (e.g., Q,) is combined with Q from another suban:a with a shorter T, (e.g., Q,), tho Q from the suban:a with the shorter T, is reduced by the ratio of tho l's (I,/11); and when Q from a selected suban:a (e.g., Q,) ia combined with Q from another suban:a with a longer T, (e.g., Q,), the Q from the subaroa with tho longer T, is mluced by tho ratio of tho To's (T,!r,). Note #1: At a junction of two independent drainage systems thst have tho same T,. tho tributary flows may be added to obtain tho Q,. This can be verified by using tho junction equation above. Let Q,, T,, and I, = 0. When T 1 and T2 are the same, It and 12 are also the same, and T1ff2 and Iv'11 = 1. T1ff2 and 12'11 are cancelled from tho equations. At this poin~ Qn = Qn = Q, + Q,. ~: In tho upstream part of a watershed, a conservative computation ia acceptable. When tho times of concentration (To's) ere relatively close in magnitude (within 10%), use the shorter T, for tho intensity and the equation Q = :E(CA)I . Note #3: . An optional method of determining tho T, is to use tho equation T, = [(L (CA)7.44 P,)IQ] 1.5' This equation ia from Q = l:(CA)I = L{CA)(7.44 Po!T/" ) and solving for T,. The advantage in this option ia thst the T, ia consistent with tho peak flow Q, and avoids iDappropriate fluctuation in downstream flows in some cases. :1-25 .. 1111 .. .. .. ' 1111 "" - "" ... ... "" ... !""' 1111 ... .. "' .. C "' - Village Walk Drainage Study CHAPTER 3 -100 YEAR HYDROLOGIC ANALYSIS FOR EXISTING CONDITIONS Ill' ' 1111 Ill' .. !"" .. I"" .. I"" ... ... .. ... ... ... ... ... ... ... ... .. -.. -- -.. - ******************************************~********************************* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1643 Analysis prepared by: ************************** DESCRIPTION OF STUDY************************** * VILLAGE WALK -EXISTING CONDITIONS 100-YEAR ANALYSIS * WEIGHTED C=0.58 (IMP=8574 SQ.FT, PER=8224 SQ.FT, CLASS B SOIL) * ************************************************************************** FILE NAME: VWEX100.DAT TIME/DATE OF STUDY: 09:48 02/12/2018 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS * * * *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: WIDTH CROSSFALL IN-/ OUT-/PARK-HEIGHT WIDTH LIP HIKE NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) MODEL* MANNING FACTOR In) ========= ==========--===== ====== 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth= 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Constraint= 6.8 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1. 00 TO NODE 2.00 IS CODE= 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ==================--==========-----=========--------===--------------------- *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .5800 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 90.00 UPSTREAM ELEVATION(FEET) = 54.41 DOWNSTREAM ELEVATION(FEET) = 51.81 ELEVATION DIFFERENCE(FEET) = 2.60 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.196 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN C 11111 Ill 11111 Ill 11111 1111 '"' .. ... - '"' .. ... .. '"' ... ,.. .. ... ,.. -.. -- ... -- THE MAXIMUM OVERLAND FLOW LENGTH= 88.89 (Reference: Table 3-18 of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.965 SUBAREA RUNOFF(CFS) 0.48 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) 0.48 ******************************************~********************************* FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE= 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ====================================================-===========--=========- ELEVATION DATA: UPSTREAM(FEET) = 51.81 DOWNSTREAM(FEET) 47.87 CHANNEL LENGTH THRU SUBAREA(FEET) = 134.80 CHANNEL SLOPE 0.0292 CHANNEL BASE(FEET) 5.00 "Z" FACTOR= 2.000 MANNING'S FACTOR= 0.035 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.227 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .5800 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 0.86 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) 1.60 AVERAGE FLOW DEPTH(FEET) 0.10 TRAVEL TIME(MIN.) 1.41 Tc(MIN.) = 7.60 SUBAREA AREA(ACRES) 0.25 SUBAREA RUNOFF(CFS) 0.76 AREA-AVERAGE RUNOFF COEFFICIENT 0.580 TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) 1.18 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1. 77 3.00 = 224.80 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 0. 4 TC (MIN. I = 1. 18 7.60 --=====------=====--------====--------===---------==---------===------------ ============================================================================ END OF RATIONAL METHOD ANALYSIS .. ... 1111 ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... ... .. • ,. -.. -... .. -.. Village Walk Drainage Study CHAPTER 4 -100 YEAR HYDRO LOGIC ANALYSIS FOR DEVELOPED CONDITIONS -UNMITIGATED .. .. .. .. .. .. '"" .. '"" .. .. ... .. ... .. ... .. .. .. ,.. ... ... ... .. .. ... ---------- **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2015 Advanced Engineering Software (aes) Ver. 22.0 Release Date: 07/01/2015 License ID 1643 Analysis prepared by: ************************** DESCRIPTION OF STUDY************************** * VILLAGE WALK -DEVELOPED CONDITIONS 100-YEAR ANALYSIS * WEIGHTED C=0.72 (IMP=ll701 SQ.FT,, PER=4484 SQ.FT., CLASS B SOIL ************************************************************************** FILE NAME: C:\AES\VWDEV100.DAT TIME/DATE OF STUDY: 11:18 05/23/2018 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT{YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE= 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* * * HALF-CROWN TO STREET-CROSSFALL: WIDTH CROSS FALL IN-I OUT-/PARK- NO. (FT) (FT) SIDE I SIDE/ WAY CURB HEIGHT (FT) GUTTER-GEOMETRIES: WIDTH LIP HIKE (FT) (FT) (FT) MANNING FACTOR lnl ========= ================= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth= 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)* (Velocity) Constraint = 6.0 (FT*FT/Sl *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* 0. 167 0.0150 **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE= 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED{SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT .7200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = UPSTREAM ELEVATION(FEET) = 51.20 DOWNSTREAM ELEVATION(FEET) = 50.60 ELEVATION DIFFERENCE(FEET) = 0.60 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) SUBAREA RUNOFF(CFS) 0.52 60.00 5.298 6.599 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) 0.52 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE= 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< I"' 11111 ... 11111 .. C ... .. .. ... ... .. ... ... ... .. ... .. ... .. ... -... 1111 1111 ... .. =---------------=-===-------------======----------=========-----=-========== ELEVATION DATA: UPSTREAM(FEET) = 50.60 DOWNSTREAM{FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 183.00 CHANNEL SLOPE CHANNEL BASE(FEET) 3.00 "Z" FACTOR= 1.000 MANNING'S FACTOR= 0.035 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.297 *USER SPECIFIED{SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .7200 S.C.S. CURVE NUMBER {AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) AVERAGE FLOW DEPTH(FEET) 0.22 TRAVEL TIME(MIN.) 1.02 1. 42 2.15 48.77 0.0100 Tc(MIN.) = 7,45 SUBAREA AREA(ACRES) 0. 2 6 SUBAREA RUNOFF(CFS) 0.720 0. 99 AREA-AVERAGE RUNOFF COEFFICIENT TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) 1. 41 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.27 FLOW VELOCITY{FEET/SEC.) LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1. 60 3.00 = 243.00 FEET. +--------------------------------------------------------------------------+ ROUTED FLOW FROM HMS MODEL I C=0.69, A=0.4, Tc=7.45+5=12.45 min, Q=0.8 cfs I +--------------------------------------------------------------------------+ **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE= 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.45 RAIN INTENSITY(INCH/HOUR) = 3.80 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = 0.86 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE= 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRO SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< =-----===============--================================----============----- ELEVATION DATA: UPSTREAM(FEET) = 45.00 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 202.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 4.53 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 0.86 PIPE TRAVEL TIME(MIN.) = 0.74 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 1.00 TO NODE 13.19 4.00 41. 55 1 445.00 FEET . **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE= 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< =--------============--===================================================== 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.664 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT= .7200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT= 0.5705 SUBAREA AREA{ACRES) 0.01 SUBAREA RUNOFF{CFS) TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS} = TC{MIN.) = 13.19 0.04 0.87 ===----============================================--------==--------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 0.4 TC(MIN.) = 0.87 13.19 ==--===================------===========--================-=========---~---- --===================----=================================-============---== END OF RATIONAL METHOD ANALYSIS ,,,. .. C ,,,. .. "'" ... .. ... .. "'" .. "'" .. ... ... .. ,,,. ... ,,,. 1111 ,,,. -,,,. -,,,. .. Village Walk Drainage Study CHAPTER 5 -MODIFIED-PULS DETENTION ROUTING 5.1 -Rational Method Hydrograph >PYRIGHT 1992, 2001 RICK ENGINEERING COMPANY ,r'ATE 411212018 ~OGRAPH FILE NAME Text1 !E OF CONCENTRATION 10 MIN. ~ R RAINFALL 2.6 INCHES J AREA 0.4 ACRES t FF COEFFICIENT 0.72 AK DISCHARGE 1.41 CFS f'(MIN) a 0 "'(MIN) a 10 IE (MIN) a 20 IE (MIN) a 30 t(MIN) a 40 (MIN) a 50 (MIN) a 60 IE (MIN) a 70 t(MIN) a 80 (MIN) a 90 (MIN) a 100 IE(MIN)a 110 ,1,;.(MIN) a 120 ('"(MIN) a 130 \,,(MIN) a 140 IE (MIN) a 150 IE (MIN) a 160 ""'(MIN)a 170 11,,,.(MIN) a 180 ll'l""(MIN) a 190 IE (MIN) a 200 /lia(MIN) a 210 I (MIN) a 220 llloo(MIN) a 230 IE (MIN) a 240 l\f,,(MIN) a 250 r(MIN) a 260 L(MIN) a 270 ~(MIN) a 280 IE (MIN) a 290 ""'(MIN) a 300 L(MIN) a 310 ll!"'(MIN) a 320 IE (MIN) a 330 ,jli,(MIN) a 340 I (MIN) a 350 llloo(MIN) a 360 !E (MIN) a 370 .. ... .. .. .. - .. DISCHARGE (CFS) a 0 DISCHARGE (CFS) a 0 DISCHARGE (CFS) a 0 DISCHARGE (CFS) a 0 DISCHARGE (CFS) a 0 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.2 DISCHARGE (CFS) a 0.2 DISCHARGE (CFS) a 0.2 DISCHARGE (CFS) a 1.41 DISCHARGE (CFS) a 0.2 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0.1 DISCHARGE (CFS) a 0 DISCHARGE (CFS) a 0 DISCHARGE (CFS) a 0 ~ .. ~ Village Walk .. Drainage Study .. ~ C .. .. C "" .. 5.2 -Stage-Storage & Stage-Discharge Relationships ... .. ... I. '"" .. ... -... - "" .. ... .. ~ .. .. -.. i. .. .. r' .. Outlet structure for Discharge of Detention Basin 1 Low orifice: 1 " Number: 0 Cg-low: 0.62 Middle orifice: 1 " number of orif: 0 Cg-middle: 0.62 invert elev: 0.75 ft h H/D-low H/D-mid Qlow-orif (ft) . . (cfs) 0.000 0.000 0.000 0.000 0.100 1.200 0.000 0.000 0.200 2.400 0.000 0.000 0.300 3.600 0.000 0.000 0.400 4.800 0.000 0.000 0.500 6.000 0.000 0.000 0.600 7.200 0.000 0.000 0.700 8.400 0.000 0.000 0.800 9.600 0.600 0.000 0.900 10.800 1.800 0.000 1.000 12.000 3.000 0.000 1.100 13.200 4.200 0.000 1.200 14.400 5.400 0.000 1.300 15.600 6.600 0.000 1.400 16.800 7.800 0.000 1.500 18.000 9.000 0.000 Stage-Storage Calculations Elev (ft) Area (ft2) Volume Volume (ft3) (Ac-ft) 0 440 0 0 0.5 440 220 0.005051 1 440 440 0.010101 1.5 440 660 0.015152 Lower slot Invert: B h Upper slot 0.00 ft 1.00 ft 0.167 ft Invert: 0.00 ft B: 0.00 ft h O 167 ft Qlow-weir Qtot-low Qmid-orif (cfs) (cfs) (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Emergency Weir Invert: B: 1.000 ft 8 ft Qmid-weir Qtot-med Qslot-low (cfs) (cfs) (cfs) 0.000 0.000 0.000 0.000 0.000 0.098 0.000 0.000 0.277 0.000 0.000 0.380 0.000 0.000 0.459 0.000 0.000 0.527 0.000 0.000 0.586 0.000 0.000 0.641 0.000 0.000 0.691 0.000 0.000 0.737 0.000 0.000 0.781 0.000 0.000 0.823 0.000 0.000 0.862 0.000 0.000 0.900 0.000 0.000 0.936 0.000 0.000 0.971 Qslot-upp Qemer Qtot (cfs) (cfs) (cfs) 0.000 0.000 0.000 0.000 0.000 0.098 0.000 0.000 0.277 0.000 0.000 0.380 0.000 0.000 0.459 0.000 0.000 0.527 0.000 0.000 0.586 0.000 0.000 0.641 0.000 0.000 0.691 0.000 0.000 0.737 0.000 0.000 0.781 0.000 0.784 1.607 0.000 2.218 3.080 0.000 4.075 4.975 0.000 6.274 7.210 0.000 8.768 9.739 Village Walk Drainage Study 5.3 -HEC-HMS Modified-Puls Routing Results Project: VW Simulation Run: 0100 Reservoir: Reservoir-1 Start of Run: 01Jan2000, 00:00 Basin Model: 0100 End of Run: 01Jan2000, 07:00 Meteorologic Model: Met 1 Compute Time: 12Apr2018, 14:06:41 Control Specifications: Control 1 Volume Units:IN Computed Results Peak Inflow: 1.410 (CFS) Peak Discharge: 0.855 (CFS) Inflow Volume: n/a Discharge Volumen/a Date/Time of Peak Inflow: 01Jan2000, 04:10 Date/Time of Peak Discharge01Jan2000, 04: 15 Peak Storage: 0.0 (AC-Fr) Peak Elevation: 1.009 (Fr) Reservoir "Reservoir-1" Results for Run "0100" 0.012 0.010 0.008 [ 0.006 ! 0.004 0.002 1.6 1.4 1.2 1.0 0.8 i I 0.6 0.4 0.2 0.0 00:00 01:00 02:00 I Run:Q100 Element:Reservoir-1 Result:Storage -Run:Q100 Element:Reservoir-1 Result:Outflow 03:00 / 04:00 05:00 06:00 Run:Q100 Element:Reservoir-1 Result:Pool Elevation ---Run:Q100 Element:Reservoir-1 Result:Combined Inflow 1.20 1.00 0.80 o.60 I 0.40 0.20 07:00 01Jan2000 .. Ill .. 1111 "" .. ... i.. ... "" .. .. .. .. ... .. "" .. .. .. .. .. ,,. .. "" .. "" .. Project: VW Simulation Run: Q100 Reservoir: Reservoir-1 Start of Run: 01Jan2000, 00:00 End of Run: 01Jan2000, 07:00 Compute Time: 12Apr2018, 14:06:41 Date Time Inflow (CFS) 01Jan2000 00:00 0.000 01Jan2000 00:01 0.004 01Jan2000 00:02 0.008 01Jan2000 00:03 0.012 01Jan2000 00:04 0.016 01Jan2000 00:05 0.020 01Jan2000 00:06 0.024 01Jan2000 00:07 0.028 01Jan2000 00:08 0.032 01Jan2000 00:09 0.036 01Jan2000 00:10 0.040 01Jan2000 00:11 0.040 01Jan2000 00:12 0.040 01Jan2000 00:13 0.040 01Jan2000 00:14 0.040 01Jan2000 00:15 0.040 01Jan2000 00:16 0.040 01Jan2000 00:17 0.040 01Jan2000 00:18 0.040 01Jan2000 00:19 0.040 01Jan2000 00:20 0.040 01Jan2000 00:21 0.041 01Jan2000 00:22 0.042 01Jan2000 00:23 0.043 01Jan2000 00:24 0.044 01Jan2000 00:25 0.045 Basin Model: 0100 Meteorologic Model: Met 1 Control Specifications:Control 1 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.001 0.001 0.0 0.002 0.002 0.0 0.004 0.004 0.0 0.006 0.005 0.0 0.008 0.007 0.0 0.010 0.010 0.0 0.013 0.012 0.0 0.015 0.015 0.0 0.018 0.018 0.0 0.021 0.021 0.0 0.024 0.023 0.0 0.026 0.025 0.0 0.028 0.027 0.0 0.029 0.029 0.0 0.031 0.030 0.0 0.032 0.031 0.0 0.033 0.032 0.0 0.034 0.033 0.0 0.035 0.034 0.0 0.036 0.035 0.0 0.037 0.036 0.0 0.037 0.037 0.0 0.038 0.038 0.0 0.039 0.038 Page 1 Ill 11111 Ill .. .. ' .. .. .. C .. -... ... .. .. .. -... -... -.. ... .. Ill Ill Ill .. - Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 00:26 0.046 00:27 0.047 00:28 0.048 00:29 0.049 00:30 0.050 00:31 0.050 00:32 0.050 00:33 0.050 00:34 0.050 00:35 0.050 00:36 0.050 00:37 0.050 00:38 0.050 00:39 0.050 00:40 0.050 00:41 0.050 00:42 0.050 00:43 0.050 00:44 0.050 00:45 0.050 00:46 0.050 00:47 0.050 00:48 0.050 00:49 0.050 00:50 0.050 00:51 0.050 00:52 0.050 00:53 0.050 00:54 0.050 00:55 0.050 00:56 0.050 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.040 0.039 0.0 0.041 0.040 0.0 0.042 0.041 0.0 0.043 0.042 0.0 0.044 0.043 0.0 0.045 0.044 0.0 0.046 0.045 0.0 0.046 0.045 0.0 0.047 0.046 0.0 0.047 0.046 0.0 0.048 0.047 0.0 0.048 0.047 0.0 0.049 0.048 0.0 0.049 0.048 0.0 0.049 0.048 0.0 0.049 0.048 0.0 0.050 0.049 0.0 0.050 0.049 0.0 0.050 0.049 0.0 0.050 0.049 0.0 0.050 0.049 0.0 0.050 0.049 0.0 0.050 0.049 0.0 0.050 0.049 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 Page 2 .. 1111 "" ' II -.. "" ... "" .. ... "" .. "" .. "" .. -.. .. .. "' .. -.. -.. Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 00:57 0.050 00:58 0.050 00:59 0.050 01:00 0.050 01 :01 0.050 01:02 0.050 01:03 0.050 01:04 0.050 01:05 0.050 01:06 0.050 01:07 0.050 01:08 0.050 01:09 0.050 01 :10 0.050 01 :11 0.050 01:12 0.050 01:13 0.050 01:14 0.050 01 :15 0.050 01:16 0.050 01:17 0.050 01:18 0.050 01:19 0.050 01:20 0.050 01:21 0.051 01:22 0.052 01:23 0.053 01:24 0.054 01:25 0.055 01:26 0.056 01:27 0.057 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.052 0.051 0.0 0.052 0.051 0.0 0.052 0.051 0.0 0.053 0.052 0.0 0.054 0.052 Page 3 "" I .. .. .. .. .. ... ... ... .. ... .. ... .. -.. -... ... ... .. Ill -• -• --- "" Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 01:28 0.058 01:29 0.059 01:30 0.060 01:31 0.060 01:32 0.060 01:33 0.060 01:34 0.060 01:35 0.060 01:36 0.060 01:37 0.060 01:38 0.060 01:39 0.060 01:40 0.060 01:41 0.060 01:42 0.060 01:43 0.060 01:44 0.060 01:45 0.060 01:46 0.060 01:47 0.060 01:48 0.060 01:49 0.060 01:50 0.060 01:51 0.060 01:52 0.060 01:53 0.060 01:54 0.060 01:55 0.060 01:56 0.060 01:57 0.060 01:58 0.060 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.054 0.053 0.0 0.055 0.054 0.0 0.056 0.054 0.0 0.056 0.055 0.0 0.057 0.056 0.0 0.057 0.056 0.0 0.058 0.057 0.0 0.058 0.057 0.0 0.059 0.058 0.0 0.059 0.058 0.0 0.059 0.058 0.0 0.060 0.058 0.0 0.060 0.059 0.0 0.060 0.059 0.0 0.060 0.059 0.0 0.060 0.059 0.0 0.060 0.059 0.0 0.060 0.059 0.0 0.061 0.059 0.0 0.061 0.059 0.0 0.061 0.060 0.0 0.061 0.060 0.0 0.061 0.060 0.0 0.061 0.060 0.0 0.061 0.060 0.0 0.061 0.060 0.0 0.061 0.060 0.0 0.061 0.060 0.0 0.061 0.060 0.0 0.061 0.060 0.0 0.061 0.060 Page 4 ... -... -... .. ... -.. ----... -... --... -... ... ---... -.. ... ----11111 ... .. ... - Date Time 01Jan2000 01:59 01Jan2000 02:00 01Jan2000 02:01 01Jan2000 02:02 01Jan2000 02:03 01Jan2000 02:04 01Jan2000 02:05 01Jan2000 02:06 01Jan2000 02:07 01Jan2000 02:08 01Jan2000 02:09 01Jan2000 02:10 01Jan2000 02:11 01Jan2000 02:12 01Jan2000 02:13 01Jan2000 02:14 01Jan2000 02:15 01Jan2000 02:16 01Jan2000 02:17 01Jan2000 02:18 01Jan2000 02:19 01Jan2000 02:20 01Jan2000 02:21 01Jan2000 02:22 01Jan2000 02:23 01Jan2000 02:24 01Jan2000 02:25 01Jan2000 02:26 01Jan2000 02:27 01Jan2000 02:28 01Jan2000 02:29 Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 0.060 0.0 0.061 0.060 0.060 0.0 0.061 0.060 0.061 0.0 0.061 0.060 0.062 0.0 0.061 0.060 0.063 0.0 0.062 0.060 0.064 0.0 0.062 0.061 0.065 0.0 0.063 0.061 0.066 0.0 0.063 0.062 0.067 0.0 0.064 0.062 0.068 0.0 0.064 0.063 0.069 0.0 0.065 0.064 0.070 0.0 0.066 0.064 0.070 0.0 0.066 0.065 0.070 0.0 0.067 0.066 0.070 0.0 0.068 0.066 0.070 0.0 0.068 0.067 0.070 0.0 0.069 0.067 0.070 0.0 0.069 0.068 0.070 0.0 0.069 0.068 0.070 0.0 0.069 0.068 0.070 0.0 0.070 0.068 0.070 0.0 0.070 0.069 0.071 0.0 0.070 0.069 0.072 0.0 0.071 0.069 0.073 0.0 0.071 0.070 0.074 0.0 0.071 0.070 0.075 0.0 0.072 0.071 0.076 0.0 0.073 0.071 0.077 0.0 0.073 0.072 0.078 0.0 0.074 0.073 0.079 0.0 0.075 0.073 Page 5 ---.. .. 1111 ---1111 -.. .. -.. ... .. .. .. .. .. ,.. ... ... .. .. ... -.. -.. -.. .. .. Date Time 01Jan2000 02:30 01Jan2000 02:31 01Jan2000 02:32 01Jan2000 02:33 01Jan2000 02:34 01Jan2000 02:35 01Jan2000 02:36 01Jan2000 02:37 01Jan2000 02:38 01Jan2000 02:39 01Jan2000 02:40 01Jan2000 02:41 01Jan2000 02:42 01Jan2000 02:43 01Jan2000 02:44 01Jan2000 02:45 01Jan2000 02:46 01Jan2000 02:47 01Jan2000 02:48 01Jan2000 02:49 01Jan2000 02:50 01Jan2000 02:51 01Jan2000 02:52 01Jan2000 02:53 01Jan2000 02:54 01Jan2000 02:55 01Jan2000 02:56 01Jan2000 02:57 01Jan2000 02:58 01Jan2000 02:59 01Jan2000 03:00 Inflow Storage Elevation Outflow (CFS) (AC-FT) (FT) (CFS) 0.080 0.0 0.076 0.074 0.080 0.0 0.076 0.075 0.080 0.0 0.077 0.075 0.080 0.0 0.078 0.076 0.080 0.0 0.078 0.077 0.080 0.0 0.079 0.077 0.080 0.0 0.079 0.077 0.080 0.0 0.079 0.078 0.080 0.0 0.080 0.078 0.080 0.0 0.080 0.078 0.080 0.0 0.080 0.078 0.081 0.0 0.080 0.079 0.082 0.0 0.081 0.079 0.083 0.0 0.081 0.079 0.084 0.0 0.082 0.080 0.085 0.0 0.082 0.081 0.086 0.0 0.083 0.081 0.087 0.0 0.084 0.082 0.088 0.0 0.084 0.083 0.089 0.0 0.085 0.083 0.090 0.0 0.086 0.084 0.090 0.0 0.087 0.085 0.090 0.0 0.087 0.085 0.090 0.0 0.088 0.086 0.090 0.0 0.088 0.087 0.090 0.0 0.089 0.087 0.090 0.0 0.089 0.087 0.090 0.0 0.089 0.088 0.090 0.0 0.090 0.088 0.090 0.0 0.090 0.088 0.090 0.0 0.090 0.088 Page6 C .. .. ill .. 1111 .. ' .. !"" .. .. .. -.. ... -... .. .... .. -.. .. .. "" • "" 1111 ... -... -.. .. Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 03:01 0.092 03:02 0.094 03:03 0.096 03:04 0.098 03:05 0.100 03:06 0.102 03:07 0.104 03:08 0.106 03:09 0.108 03:10 0.110 03:11 0.111 03:12 0.112 03:13 0.113 03:14 0.114 03:15 0.115 03:16 0.116 03:17 0.117 03:18 0.118 03:19 0.119 03:20 0.120 03:21 0.122 03:22 0.124 03:23 0.126 03:24 0.128 03:25 0.130 03:26 0.132 03:27 0.134 03:28 0.136 03:29 0.138 03:30 0.140 03:31 0.142 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.091 0.089 0.0 0.091 0.089 0.0 0.092 0.090 0.0 0.093 0.091 0.0 0.094 0.092 0.0 0.095 0.093 0.0 0.096 0.094 0.0 0.098 0.096 0.0 0.099 0.097 0.0 0.101 0.099 0.0 0.102 0.101 0.0 0.103 0.104 0.0 0.104 0.106 0.0 0.105 0.107 0.0 0.106 0.109 0.0 0.107 0.110 0.0 0.108 0.112 0.0 0.108 0.113 0.0 0.109 0.114 0.0 0.110 0.115 0.0 0.110 0.117 0.0 0.111 0.118 0.0 0.112 0.119 0.0 0.113 0.121 0.0 0.114 0.123 0.0 0.115 0.125 0.0 0.116 0.126 0.0 0.117 0.128 0.0 0.118 0.130 0.0 0.119 0.132 0.0 0.120 0.134 Page 7 "'" .. ""' ' -.. "'" 11111 ""' .. I"' .. .. ... ... ... .. ... .. "" .. .. .. .. .. "" .. "" ---.. .. .. -.. - Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 03:32 0.144 03:33 0.146 03:34 0.148 03:35 0.150 03:36 0.152 03:37 0.154 03:38 0.156 03:39 0.158 03:40 0.160 03:41 0.168 03:42 0.176 03:43 0.184 03:44 0.192 03:45 0.200 03:46 0.208 03:47 0.216 03:48 0.224 03:49 0.232 03:50 0.240 03:51 0.250 03:52 0.260 03:53 0.270 03:54 0.280 03:55 0.290 03:56 0.300 03:57 0.310 03:58 0.320 03:59 0.330 04:00 0.340 04:01 0.447 04:02 0.554 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.121 0.136 0.0 0.122 0.138 0.0 0.123 0.140 0.0 0.125 0.142 0.0 0.126 0.144 0.0 0.127 0.146 0.0 0.128 0.148 0.0 0.129 0.150 0.0 0.130 0.152 0.0 0.132 0.154 0.0 0.134 0.158 0.0 0.136 0.163 0.0 0.139 0.168 0.0 0.143 0.174 0.0 0.146 0.181 0.0 0.150 0.188 0.0 0.154 0.195 0.0 0.158 0.202 0.0 0.162 0.209 0.0 0.167 0.217 0.0 0.171 0.225 0.0 0.176 0.234 0.0 0.181 0.243 0.0 0.186 0.252 0.0 0.191 0.261 0.0 0.197 0.271 0.0 0.202 0.279 0.0 0.208 0.285 0.0 0.214 0.292 0.0 0.227 0.305 0.0 0.252 0.331 Page 8 -.. -• 1111" 1111 -.. .. .. - ,.. 11111 -.. ,.. 11111 ,.. .. -... ,.. 11111 -11111 -1111 .. .. -11111 ,.. .. ,.. .. Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 04:03 0.661 04:04 0.768 04:05 0.875 04:06 0.982 04:07 1.089 04:08 1.196 04:09 1.303 04:10 1.410 04:11 1.288 04:12 1.166 04:13 1.044 04:14 0.922 04:15 0.800 04:16 0.678 04:17 0.556 04:18 0.434 04:19 0.312 04:20 0.190 04:21 0.184 04:22 0.178 04:23 0.172 04:24 0.166 04:25 0.160 04:26 0.154 04:27 0.148 04:28 0.142 04:29 0.136 04:30 0.130 04:31 0.127 04:32 0.124 04:33 0.121 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.287 0.367 0.0 0.332 0.405 0.0 0.386 0.448 0.0 0.449 0.492 0.0 0.519 0.539 0.0 0.599 0.585 0.0 0.686 0.633 0.0 0.781 0.682 0.0 0.869 0.723 0.0 0.936 0.753 0.0 0.983 0.773 0.0 1.007 0.839 0.0 1.009 0.855 0.0 0.998 0.780 0.0 0.977 0.771 0.0 0.940 0.755 0.0 0.890 0.732 0.0 0.826 0.703 0.0 0.758 0.670 0.0 0.693 0.637 0.0 0.633 0.604 0.0 0.575 0.572 0.0 0.522 0.540 0.0 0.472 0.508 0.0 0.425 0.476 0.0 0.382 0.445 0.0 0.343 0.414 0.0 0.306 0.385 0.0 0.274 0.353 0.0 0.245 0.323 0.0 0.219 0.297 Page 9 -.. .. .. .. .. -.. ... .. "" .. ,,,. .. ... .. .. .. ... .. .. .. -.. .. .. .. .. .. ... ... .. ... .. Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 04:34 0.118 04:35 0.115 04:36 0.112 04:37 0.109 04:38 0.106 04:39 0.103 04:40 0.100 04:41 0.098 04:42 0.096 04:43 0.094 04:44 0.092 04:45 0.090 04:46 0.088 04:47 0.086 04:48 0.084 04:49 0.082 04:50 0.080 04:51 0.079 04:52 0.078 04:53 0.077 04:54 0.076 04:55 0.075 04:56 0.074 04:57 0.073 04:58 0.072 04:59 0.071 05:00 0.070 05:01 0.070 05:02 0.070 05:03 0.070 05:04 0.070 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.197 0.271 0.0 0.178 0.237 0.0 0.163 0.210 0.0 0.151 0.189 0.0 0.141 0.171 0.0 0.133 0.157 0.0 0.126 0.145 0.0 0.120 0.135 0.0 0.116 0.126 0.0 0.112 0.120 0.0 0.109 0.114 0.0 0.106 0.109 0.0 0.104 0.105 0.0 0.102 0.101 0.0 0.100 0.098 0.0 0.098 0.096 0.0 0.096 0.094 0.0 0.094 0.092 0.0 0.092 0.090 0.0 0.091 0.089 0.0 0.089 0.087 0.0 0.088 0.086 0.0 0.086 0.084 0.0 0.085 0.083 0.0 0.083 0.082 0.0 0.082 0.080 0.0 0.081 0.079 0.0 0.080 0.078 0.0 0.079 0.077 0.0 0.078 0.076 0.0 0.077 0.075 Page 10 -.. -.. ... --... .. .. ,.. , .. ,.. .. -.. ,.. .. .. .. .. .. .. .. -1111 -.. .. .. .. Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 05:05 0.070 05:06 0.070 05:07 0.070 05:08 0.070 05:09 0.070 05:10 0.070 05:11 0.069 05:12 0.068 05:13 0.067 05:14 0.066 05:15 0.065 05:16 0.064 05:17 0.063 05:18 0.062 05:19 0.061 05:20 0.060 05:21 0.059 05:22 0.058 05:23 0.057 05:24 0.056 05:25 0.055 05:26 0.054 05:27 0.053 05:28 0.052 05:29 0.051 05:30 0.050 05:31 0.050 05:32 0.050 05:33 0.050 05:34 0.050 05:35 0.050 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.076 0.075 0.0 0.076 0.074 0.0 0.075 0.074 0.0 0.075 0.073 0.0 0.074 0.073 0.0 0.074 0.072 0.0 0.074 0.072 0.0 0.073 0.072 0.0 0.073 0.071 0.0 0.072 0.071 0.0 0.071 0.070 0.0 0.071 0.069 0.0 0.070 0.068 0.0 0.069 0.068 0.0 0.068 0.067 0.0 0.067 0.066 0.0 0.067 0.065 0.0 0.066 0.064 0.0 0.065 0.064 0.0 0.064 0.063 0.0 0.063 0.062 0.0 0.062 0.061 0.0 0.061 0.060 0.0 0.060 0.059 0.0 0.059 0.058 0.0 0.058 0.057 0.0 0.057 0.056 0.0 0.057 0.055 0.0 0.056 0.055 0.0 0.055 0.054 0.0 0.055 0.054 Page 11 .. 1111 ,.. Ill ,.. ... ... ""' ... "" ... ""' .. "'" ... .. - ""' .. .. .. ... ""' ""' ... Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 05:36 0.050 05:37 0.050 05:38 0.050 05:39 0.050 05:40 0.050 05:41 0.050 05:42 0.050 05:43 0.050 05:44 0.050 05:45 0.050 05:46 0.050 05:47 0.050 05:48 0.050 05:49 0.050 05:50 0.050 05:51 0.049 05:52 0.048 05:53 0.047 05:54 0.046 05:55 0.045 05:56 0.044 05:57 0.043 05:58 0.042 05:59 0.041 06:00 0.040 06:01 0.036 06:02 0.032 06:03 0.028 06:04 0.024 06:05 0.020 06:06 0.016 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.054 0.053 0.0 0.054 0.053 0.0 0.054 0.052 0.0 0.053 0.052 0.0 0.053 0.052 0.0 0.053 0.052 0.0 0.052 0.051 0.0 0.052 0.051 0.0 0.052 0.051 0.0 0.052 0.051 0.0 0.052 0.051 0.0 0.052 0.051 0.0 0.052 0.051 0.0 0.052 0.051 0.0 0.052 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.051 0.050 0.0 0.050 0.049 0.0 0.050 0.049 0.0 0.049 0.048 0.0 0.049 0.048 0.0 0.048 0.047 0.0 0.047 0.046 0.0 0.047 0.046 0.0 0.046 0.045 0.0 0.044 0.043 0.0 0.043 0.042 0.0 0.041 0.040 0.0 0.038 0.037 0.0 0.036 0.035 Page 12 .. ... .. ,,. 1111 .. ,.. ' -,.. ... ... .. - ... -- -.. .. ... .. .. ... ,,. ... .. ... Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 06:07 0.012 06:08 0.008 06:09 0.004 06:10 0.000 06:11 0.000 06:12 0.000 06:13 0.000 06:14 0.000 06:15 0.000 06:16 0.000 06:17 0.000 06:18 0.000 06:19 0.000 06:20 0.000 06:21 0.000 06:22 0.000 06:23 0.000 06:24 0.000 06:25 0.000 06:26 0.000 06:27 0.000 06:28 0.000 06:29 0.000 06:30 0.000 06:31 0.000 06:32 0.000 06:33 0.000 06:34 0.000 06:35 0.000 06:36 0.000 06:37 0.000 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.033 0.032 0.0 0.030 0.030 0.0 0.027 0.027 0.0 0.024 0.024 0.0 0.021 0.021 0.0 0.018 0.018 0.0 0.016 0.016 0.0 0.014 0.014 0.0 0.012 0.012 0.0 0.011 0.011 0.0 0.009 0.009 0.0 0.008 0.008 0.0 0.007 0.007 0.0 0.006 0.006 0.0 0.006 0.005 0.0 0.005 0.005 0.0 0.004 0.004 0.0 0.004 0.004 0.0 0.003 0.003 0.0 0.003 0.003 0.0 0.002 0.002 0.0 0.002 0.002 0.0 0.002 0.002 0.0 0.002 0.002 0.0 0.001 0.001 0.0 0.001 0.001 0.0 0.001 0.001 0.0 0.001 0.001 0.0 0.001 0.001 0.0 0.001 0.001 0.0 0.001 0.001 Page 13 "" .. ,,.. - "" i ... "" .. "" .. .. -.. .. ... .. .. .. ,... .. .. .. .. .. ... -.. ... .. .. Date 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 01Jan2000 Time Inflow (CFS) 06:38 0.000 06:39 0.000 06:40 0.000 06:41 0.000 06:42 0.000 06:43 0.000 06:44 0.000 06:45 0.000 06:46 0.000 06:47 0.000 06:48 0.000 06:49 0.000 06:50 0.000 06:51 0.000 06:52 0.000 06:53 0.000 06:54 0.000 06:55 0.000 06:56 0.000 06:57 0.000 06:58 0.000 06:59 0.000 07:00 0.000 Storage Elevation Outflow (AC-FT) (FT) (CFS) 0.0 0.001 0.001 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 0.0 0.000 0.000 Page 14 ,,. '111 ... Ill ""' .. II"' .. ... ... I"" .. I"" 11111 ,.. .. ,.. ... Ila "" --11111 ,.. -.. .. ,,. .. Village Walk Drainage Study CHAPTER 6 -WSPG HYDRAULIC ANALYSIS r 1 f 1 f 1 ,-I ,-1 ************************************* Water Surface Profile Gradient (WSPG) XP WSPG Engine Version 1.3 06/09/2010 XP Software www.xpsoftware.com ************************************* INPUT FILE ************************************* C:\XPS\wspg2010\Samples\DE.wsx Computed 04/12/18 14:32:54 TITLE INFORMATION ************************************* WARNING SUMMARY ************************************* RESULTS ************************************* f I f J r 1 -------------------==================------------------------- Main Line ---------------------------------=---------------------------- Composite Profile: ELEMENT TYPE STATION INVERT GROUND w.s. DEPTH NAME ELEV ELEV ELEV f 1 f I ,-I f I ' 1 f I I I ' 1 f I ' -i ir-1 Q VELOC. VELOC. ENERGY SUPER CRITICAL FROUDE SLOPE NORMAL CROSS HEAD GRADE LN ELEV DEPTH NUMBER DEPTH SECTION ---------------------------------------------------------------------------------------------------- II# "Node2" Outlet 0.00 41. 66 4 5. 00 43.050 1. 390 0.90 2.58 0.10 HYDRAULIC JUMP at 44.05 of length 0.01 "i .p." 41.10 42.61 45.95 43.277 0.667 0.90 2.58 0.10 "i .p." 43. 97 42. 68 4 6. 02 43.282 0.605 0.90 2.70 0 .11 "i .p." 44.05 42.68 4 6. 02 43.281 0.603 0. 90 2.71 0 .11 "i .p. tt 44.05 42.68 4 6. 02 43.008 0. 32 9 0. 90 5.24 0.43 "i .p. It 172.01 45.64 4 8. 98 45.966 0.329 0.90 5.24 0.43 "i .p." 191.05 4 6. 08 49.42 46.417 0.340 0.90 5.03 0.39 "i .p." 197.45 46.23 49.57 46.578 0.353 0.90 4.80 0.36 "i .p." 200.65 46.30 4 9. 64 46.666 0.366 0.90 4.58 0.33 "i .p. 11 202.54 46.34 4 9. 68 46.724 0.381 0.90 4.36 0.30 "i .p. tt 203.74 46.37 49. 71 46.767 0. 396 0.90 4.16 0. 27 "i .p." 204.46 46.39 4 9. 73 46.800 0. 413 0.90 3. 97 0.24 "i .p." 204.86 4 6. 4 0 4 9. 74 46.827 0.430 0. 90 3.78 0.22 "Linkl" Reach 205.00 4 6. 4 0 48.20 46.848 0.448 0. 90 3.61 0.20 "Nadel" Headwrk 205.00 46.40 48.20 46.849 0.449 0. 90 3.60 0.20 *} in the W.S.ELEV column indicates flooding, it is set whenever W.S.ELEV > GROUND ELEV i.p. = intermediate point processing results for reaches 43.15 0.000 0.449 0.000 0.00000 0.000 Pipe 43.38 0.000 0. 44 9 0.098 0.02312 0.329 Pipe 43.40 0.000 0.449 0.513 0.02312 0.329 Pipe 43.40 0.000 0.449 0.519 0.02312 0.329 Pipe 43.43 0.000 0.449 1. 818 0.02312 0.329 Pipe 46.39 0.000 0.449 1. 818 0.02312 0.329 Pipe 46.81 0.000 0.449 1. 713 0.02312 0.329 Pipe 46. 94 0.000 0.449 1. 594 0.02312 0.329 Pipe 46.99 0.000 0.449 1. 481 0.02312 0.329 Pipe 47.02 0.000 0.449 l. 375 0.02312 0.329 Pipe 47.04 0.000 0.449 1. 275 0.02312 0.329 Pipe 47.04 0.000 0.449 1.181 0.02312 0.329 Pipe 47.05 0.000 0.449 1.092 0.02312 0.329 Pipe 47.05 0.000 0.449 1. 007 0.02312 0.329 Pipe 47.05 0.000 0.449 0.000 0.00000 0.000 Pipe .. ... II"' Village Walk Drainage Study - "" ... "" 11111 "" ... -... ,,.. ... I"' CHAPTER 7 -HYDROLOGY MAPS .. ,,.. .. I"' ... I"' ... -... .. ... -... ... ... I"' ... ... ... -... ... ... \ ,._o,~ ~I .'""'"·_.""". _,-_---,,-·,-ore_._. : ~/4; IP -r~ "/UJ -· . . -· •!O. --.-_. -__ . . g·~g . ·1 ___ .;.;__•"';:_~-'-____;'---"-"-,;_;;~t ...... R -•-'•~~•~~~==-'-===·-• -.,• =•=;=-• ". ------------.-,.--1111!!1 f N55"57'22"E ...,,. 79.97' ,._o,~ LEGEND HYDROLOGY BOUNDARI ES INI TIAL SUB-AREA FLOWPATH ~···--- K c., FD TAG ON TOP OF WALL in 0 0 ~ N It c., if '< WM'.isJ t/ 7 7 / 7 / 7 / 7 / 7 7 7 / / ~ l,,-''.) !t1," ~/ 7 7 / 7 / / / 7 / / / 7 7 _.- / I ~ I I I ) ~'sG V / / / / / ( I-' / / / / ;/ I ~ "' X (.f) ,-< CD C ,--/ Q z / C, / ~ / /• c., /1 ( / / / / / / r / I I I I I ~ I i I ~I y / 7 / / ; 7t-/-?~/-7~/-7~;-/~/-/~; h,-r/~-;-;~;-;~;-/~/-?~j~ ; j ,...------, / / , ) --( .. _ 2 / / z Z z EXIST BUILDING / ...__ __ _.,, / v a , > ' ( ' r/1//////////////1 / / ' ' ' / 1 / / ) / / / I I I I ;· I I ' ' \ I I I I I 1 S55"54'29"W 80.00' I I I EXIST. wool FENCE FD 3/4" IP LS 7959 ,< I !~) ...,_ ~p '\,,+-- ct> LS2 9 q_ ;:,-"' <'-' co O> O> ~ 0 p v I') z I "Y,s,, ,<'~ 3 O TELE ~p ~~C_R/W __ 0 100 = 1.18 CFS A = 0.4 Ac Tc 7.6 Min -- I SCALE: 1 "=1 O' (/) z 0 (/) > w 0:: 0 CL CL <( w I-- <( 0 z 0 I-- Q_ Cl:'. u (/) w 0 0 z 0 -+-,:: (I) E ,:: CJ) e c: > >-,:: (I) u.J > ,._ • ::J CJ)(/) ,:: .... "C (I) ,:: ~ 0 ·-_J-C') ,:: u.J ·:;: u z w X 0 C. 0 -N 0) I N n N ~ 0) <l) --:, 0 <.O c-~ <l> N > 0) 0 <( <( 0 "O (.) N C 0) 0 • I L> 0 N " o> n U1 -~ N o~ N 0) v c -.... 0 <.O N 1/l ~ .. z 3:: <( Cl:'. 0 u C 1/) +--' C 0 +--' ::J 1/) C 0 u 0 w Y'. u w I u (X) 0 0 N 2: 0.. 0 _J ~ 0) <( w > w 0 w 0::: 0.. I f- ((l I X w w _J <( z 0::: s 0 LL w _J C) <( <( 0 _J 0 _J <( -CD > (I) _J 0::: <( 0 w C) F= <( I--z t; I---w w <(-:, ~ 0::: ~ (/) Q_ SHEET 1 OF 1 SHE ETS ~ • "O 0 -6 ~ :,: I > 0 0 I ~ 0.. / ~ 0 3' • ~ .2 > 0 / " -C .8 a " § " (/) :> 0 0, "' 0 ,.._ / " 0 0 <( / a: ! ro 0 N ...___ U) ...__ N I ro 0 N ...__ U) ' N i LEGEND (PROTECT% 12\s EXIST. OVERHEAD PO'M:R LINE sco HYDROLOGY BOUNDARIES INITIAL SUB -AREA FLO WP A TH r II I .. I II raiWMI •. ---- ~------- ~I 'tJ I FD 3/4" IP '<l "f LS 7959 I;,'> "<tr ~ I <rj 4 1 0 100 = 0.87 CFS A = 0.4 Ac Tc = 13.2 Min EXI ST. SINGLE FAMILY RESIDENCE 48.10 FF 8" DIA (SDR35) OVERFLOW 49.00 F!' 0 /ooRC; rn,,. e,ec (e,oa o V, I "" "'I)=_ RETENTION AREA) /': i" S ~f= )=_ t-t-0 1~ 0 •"'' 0<0 O -~ O<D <O so 00Ti1-_ •'\c:, -O<O 0 r-r}' • .., ~ ~ci~ "'"' ~OOOTG -:.:=c·~ 50.10TG "' -.i ci 0 "' 48.BCINV \ ..n :.Oj"-' 49.1 OINV \ ~ V")i,,O.....__,. •8 9IJINV \ "°"'°' -- -----1 J:: ...____ IJ I ?~ I < • --.c.::.'.'!!!V I ~ -d: n ,i + i~ 2"' PVC DRAIN 0~L i -p11 L,r lT 3 • • 46.5 0 45.83 = I a GFF 46.50 GFF = = PAD 4 . 3 PAD = E I l " I ~ " I/ ~ ~1,0 . I I (h LANDING .,.-~ . LANDING .,., 46.50FS . 11--. • 46.50FS 11 I -1.1 1 .. ·.,. t /'"' 5'.00TG 49.48JNV I ~,---~ I 5i .OOTG ":, &e:, 51.00TG 49.35INV ~'\ '\0-2 '£ 49.25INV ":i -.,. -. <?" ~ . u.. ;;; glee -1' 11 S~ •N ... I I . . " . ·Ctr-. ' . .,,,~ ;I ... ---= l I 5,.COTG .1.9.141NV I EXIST. REFANING WALL (PROTECT IN PLACE) EXISTING OCEANMI ST COND OMINIUM S SLOT INVERT 6" FROM BASIN INVERT 2 Btot = BOX DIMENSION , 2.. I f-------"---1 J_ I I 2" ~-~T F.F. ELEVATION 57.30 18" DETENTION BA SIN OUTLE T DEA T/L -SECTION (TYP) (NOT TC SC/4!...E) "'' SD . o,-/ .. ~·- '5207 -I -t \ o/ ~-'. -,,.-• ..I ... ! 51.00TG 49.04INV .. -"<t . .. '"' 51.00TG 48.93INV AeMP = AAMENDED = Aeor SEE RISER /DETAIL ? 0 3" /MULCH BA SIN DE TAIL /NOT ro SC/4L EJ I -. I H = 6" I 18" AMMENOED SOIL ~ 0 -I - BASIN I.LI <.) z I.LI Cl (/) I.LI 0::: >--_J :::E <( LL ~ => :::E i--: (/) x I.LI FD TAG ON TOP OF WALL SCALE : 1"=10 (/) z 0 (/) > w Cl:'. 0 0.. 0.. 4: w f-<{ 0 z 0 .== 0.. Cl:'. u (/) w 0 f--+--+--+-+--1--l 0 --;; 0 z .8 -~~~-'-----'---I el C 0 (.) 0 ....... C Q) E C 0> 2 C > >-c Q) w > .... • :::J O> (/1 C ·,._ -u a, C ~ 0 ·-_J O> C w > u CXJ ~ w ··o _J i:':! N <{ 4: I u 0 If) (/) .. z 3: 4: Cl:'. 0 X CJ u.. 0 u C (f) ....., C 0 ....., :; (f) C 0 (.) .. 0 w :,,: u w :r: u co 0 0 N > w 0 ~ 0) _J 4: f-- Cf) 0 0... I f- a) I X w w (9 <( z <( I.O z s§~ ' LL w co ...J (9 0 4: <( ~ u j u ~ > ffi ...J 0:: 4: u w <( F= 0::: f-0 t; f-w w -, w 0 :r: Cl:'. (/) 0.. SH EET 1 OF 1 SHE ETS V) "' 0 C> 8 ,-.. / ~ 0 u "' / "-