Loading...
HomeMy WebLinkAboutCDP 05-19; TOYOTA CARLSBAD; HYDROLOGY AND HYDRAULIC REPORT DWG 441-6A; 2005-04-08HYDROLOGY AND HYDRAULIC REPORT for Toyota Carl Service Facility 6030 Avenida Encinas City of Carlsbad CDP 05-19 /DWG. NO. 441-6A Prepared for: STELLAR PROPERTIES, LLC 5424 Paseo Del Norte Carlsbad, CA 92008 Prepared by: bhA, Inc. lancj planning, civil engineering, surveying 5115 Avenida Encinas, Suite L Carlsbad, CA 92008-4387 (760) 931-8700 April 08, 2005 Revised November 20,2006 W.O. 591-0804-605 AMC TABLE OF CONTENTS Discussion: Purpose and Scope Project Description Study Method Conclusions II. Calculations A. Existing Hydrology B. Developed Hydrology C. Hydraulic III. Exhibits Exhibit A: Existing Hydrology Map Exhibit B: Developed Hydrology Map IV. References L DISCUSSION PURPOSE AND SCOPE: The purpose of this report is to publish the results of hydrology and hydraulic computer analysis for the proposed Service Facility for Toyota Carlsbad at 6030 Avenida Encinas. The scope is to study the existing and proposed hydrology and hydraulics as it influences the proposed on-site storm drain facilities and the surrounding properties. lOO-year and a 50 year storm event will be used in the analysis. PROJECT DESCRIPTION: The property, which is in the City of Carlsbad, is located on the east side of Avenida Encinas, just south of the intersection of Avenida Encinas and Palomar Airport Road. The 9.76 acre site is zoned for industrial use. The project proposes the construction of Service Facility for Toyota Carlsbad. Currently, the project site is occupied by two main buildings. The first building, westem portion of the property, is the Toyota CoUision Center, a auto body and painting facility. The second building, eastem portion of the property, is being used as an office building. The office building is proposed to be demolished and a auto service facility will be constructed in its place. Currently, the site is divided into two separate drainage basins. The runoff from both basins basically flows from the northwestem corner of the property and flows in a westerly direction along a set of concrete drainage swale. The mnoff is collected by two existing catch basins near the entrances to the parking garage of the auto body and painting facility. The developed hydrology is basically the same as the existing hydrology. Because project proposes some reconfiguration of parking space, additional catch basins will be constructed in Basin 1 to catch the runoff. However, from a hydrology perspective, there is little difference between existing and developed hydrology. The method of analysis was based on the Rational Method according to the June 2003 San Diego County Hydrology Manual. The Hydrology and Hydraulic Analysis was done on HydroSoft by Advanced Engineering Software and Hydrology module of Land Developer 3 by Autodesk. The drainage basin areas were determined from the City of Carlsbad Topographic Map and the Proposed Grading Plan Plan for this project. The Rational Method provided the following variable coefficients: Soil type: Soil group D will be used for a composite mnoff coefficient for the existing and proposed hydrology because the soil type is undetermined. See County of San Diego's Soil Hydrologic Group Map in the Reference section of this report. The runoff coefficient used for this Project. Existing condition - General Industrial = 0.87 Developed condition - General Industrial = 0.87 Initial Time of concentration (in minutes) = Ti = see Table 3-2 of County of San Diego Hydrology Manual. Rainfall Intensity = I = 7.44x(P6)x(Tc) ^ 0.645 P6 for 100 year storm = 2.5 CONCLUSION: The runoff at each exit point of the project for the existing hydrology and proposed hydrology is listed below: 100 year storm event Existing (cfs/ac) Developed (cfs/ac) Basin 1 - Node 3 14.9/2.6 14.6/3.2 Basin 2 - Node 12 26.2/5.2 21.2/4.7 The hydrology for the existing and developed conditions are essentially the same. This project will not change the areas, land use, or generate any new impervious areas. Mathematically, the peak runoff rate have been reduced because the addition of new catch basins have divided the site into smaller drainage basins thus prolonged the time of concentration. This development will not harm the surrounding properties in a lOO-year storm event. II. CALCULATIONS II. CALCULATIONS EXISTING HYDROLOGY RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1459 Analysis prepared by: bHA, Inc. 5115 Avenida Encinas, Suite L Carlsbad, Calif 92008 FILE NAME: K:\HYDRO\0804-5\Exi.DATDnmnDmDnnnanmnaDnamnnDD TIME/DATE OF STUDY: 08:57 04/08/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.500 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* + + I TOYOTA CARLSBAD - SERVICE FACILITY I 1 6030 AVENIDA ENCINAS - W.O. 591-0804-605 I I EXISTING HYDROLGOY - 100 YEAR - EXISTING BASIN 1 I + + ******************************************************* FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION(FEET) = 68.30 DOWNSTREAM ELEVATION(FEET) = 66.00 ELEVATION DIFFERENCE(FEET) = 2.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.760 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) =0.57 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 66.00 DOWNSTREAM(FEET) = 53.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 590.00 CHANNEL SLOPE = 0.0212 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.74 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.02 AVERAGE FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 4.21 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 14.33 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 14.90 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.31 FLOW VELOCITY(FEET/SEC.) = 4.76 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 64 0.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 2.60 TC(MIN.) = 4.21 PEAK FLOW RATE(CFS) = 14.90 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1459 Analysis prepared by: bHA, Inc. 5115 Avenida Encinas, Suite L Carlsbad, Calif 92008 FILE NAME: K:\HYDRO\0804-5\EX2.DATmmDDDDOmODmDmDmmnmn TIME/DATE OF STUDY: 08:59 04/08/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.500 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* + + 1 TOYOTA CARLSBAD - SERVICE FACILITY I I 6030 AVENIDA ENCINAS - W.O. 591-0804-605 I 1 EXISTING HYDROLGOY - 100 YEAR - EXISTING BASIN 2 I + + **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 67.80 DOWNSTREAM ELEVATION(FEET) = 65.00 ELEVATION DIFFERENCE(FEET) = 2.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.594 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 7 8.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.57 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 **************************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51 »>»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = CHANNEL LENGTH THRU SUBAREA(FEET) CHANNEL BASE(FEET) = 10.00 "Z" 65.00 DOWNSTREAM(FEET) = 50.50 850.00 CHANNEL SLOPE = 0.0171 FACTOR = 20.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.787 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 13.66 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = ^ AVERAGE FLOW DEPTH(FEET) = Tc(MIN.) = 6.11 SUBAREA AREA(ACRES) = 5.10 AREA-AVERAGE RUNOFF COEFFICIENT TOTAL AREA(ACRES) = 5.20 0.23 TRAVEL TIME(MIN.) SUBAREA RUNOFF(CFS) ,870 PEAK FLOW RATE(CFS) ,03 .52 25. 68 26.18 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.33 FLOW VELOCITY(FEET/SEC.) = 4.85 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 950.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 5.20 TC(MIN. 26. 18 6.11 END OF RATIONAL METHOD ANALYSIS II. CALCULATIONS DEVELOPED HYDROLOGY **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1459 Analysis prepared by: BHA, INC 5115 Avenida Encinas Suite L Carlsbad, CA 92008 (760) 931-8700 FILE NAME: K:\HYDRO\0804-5\DEV1.DAT TIME/DATE OF STUDY: 15:09 09/19/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.500 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / 0UT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* + + I TOYOTA CARLSBAD - SERVICE FACILITY I I 6030 AVENIDA ENCINAS - W.O. 591-0804-605 I 1 DEVELOPED HYDROLOGY - 100 YEAR - DEVELOPED BASIN 1 I + + **************************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 69.70 DOWNSTREAM ELEVATION(FEET) = 68.90 ELEVATION DIFFERENCE(FEET) = 0.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.207 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 60.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.57 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 **************************************************************************** FLOW PROCESS FROM NODE 21.00 TO NODE 23.00 IS CODE = 51 »»>C0MPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 68.90 DOWNSTREAM(FEET) = 66.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.753 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.63 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.46 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 2.96 Tc(MIN.) = 6.17 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 4.00 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 TOTAL AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) = 4.50 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 1.79 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 23.00 = 340.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 62.30 DOWNSTREAM(FEET) = 57.06 FLOW LENGTH(FEET) = 277.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.74 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.50 PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) = 6.85 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 24.00 = 617.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE 24.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ^Vc************************************************************************** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 64.00 DOWNSTREAM ELEVATION(FEET) = 63.20 ELEVATION DIFFERENCE(FEET) = 0.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.207 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 60.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.8 6 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) = 0.8 6 **************************************************************************** FLOW PROCESS FROM NODE 31.00 TO NODE 24.00 IS CODE = 51 »>»COMPUTE TRAPEZOIDAL CHANNEL FLOW«<« »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 63.20 DOWNSTREAM(FEET) = 61.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.325 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.69 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC. ) = 1.26 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 2.12 Tc(MIN.) = 5.32 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.65 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 TOTAL AREA(ACRES) = 0.4 5 PEAK FLOW RATE(CFS) = 2.4 8 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.43 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 24.00 = 240.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE 24.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.48 5.32 6.325 0.45 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 24.00 = 240.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.50 6.85 5.375 0.90 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 24.00 = 617.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.98 5.32 6.325 2 6.61 6.85 5.375 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.61 Tc(MIN.) = 6.85 TOTAL AREA(ACRES) = 1.35 **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE 24.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 41 »»>C0MPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 56.73 DOWNSTREAM(FEET) = 51.88 FLOW LENGTH(FEET) = 233.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.96 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.61 PIPE TRAVEL TIME(MIN.) = 0.4 9 Tc(MIN.) = 7.34 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 25.00 = 850.00 FEET. FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 21 »»>RATI0NAL METHOD INITIAL SUBAREA ANALYSIS<«« GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 63.20 DOWNSTREAM ELEVATION(FEET) = 62.50 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.426 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 54.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 1.15 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.15 **************************************************************************** FLOW PROCESS FROM NODE 41.00 TO NODE 25.00 IS CODE 51 »>»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 62.51 DOWNSTREAM(FEET) = CHANNEL LENGTH THRU SUBAREA(FEET) = 155.00 CHANNEL SLOPE = CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.15 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = AVERAGE FLOW DEPTH(FEET) = Tc(MIN.) = 4.66 SUBAREA AREA(ACRES) = 0.70 AREA-AVERAGE RUNOFF COEFFICIENT = TOTAL AREA(ACRES) = 0.90 0.06 TRAVEL TIME(MIN.) 09 24 58.20 0278 SUBAREA RUNOFF(CFS) = 0.870 PEAK FLOW RATE(CFS) = 4 . 01 5.16 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 2.61 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 25.00 = 255.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.16 4.66 6.587 0.90 LONGEST FLOWPATH FROM NODE 4 0.00 TO NODE 25.00 255.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) 1 6.61 7.34 LONGEST FLOWPATH FROM NODE AREA (INCH/HOUR) (ACRE) 5.142 1.35 20.00 TO NODE 25.00 850.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.36 4.66 6.587 2 10.63 7.34 5.142 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.63 Tc(MIN.) = TOTAL AREA(ACRES) = 2.25 7 . 34 * * * ** *********************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE »»>CLEAR MEMORY BANK # 1 ««< 25.00 IS CODE 12 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 2 6.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 54.20 DOWNSTREAM(FEET) = 51.03 FLOW LENGTH(FEET) = 43.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 13.54 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.63 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 7.39 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 2 6.00 = 8 93.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 62.00 DOWNSTREAM ELEVATION(FEET) = 61.20 ELEVATION DIFFERENCE(FEET) = 0.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.207 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 60.00 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.57 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.57 **************************************************************************** FLOW PROCESS FROM NODE 51.00 TO NODE 26.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 61.20 DOWNSTREAM(FEET) = 57.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00 CHANNEL SLOPE = 0.0131 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.645 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.55 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.38 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 3.15 Tc(MIN.) = 6.35 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.96 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 2.4 6 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.06 FLOW VELOCITY (FEET/SEC.) = 1.57 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 26.00 = 340.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STRETUyi MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.46 6.35 5.645 0.50 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 2 6.00 = 34 0.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.63 7.39 5.118 2.25 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 26.00 = 893.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 11.59 6.35 5.645 2 12.86 7.39 5.118 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.8 6 Tc(MIN.) = 7.39 TOTAL AREA(ACRES) = 2.75 **************************************************************************** FLOW PROCESS FROM NODE 26.00 TO NODE 26.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 26.00 TO NODE 3.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 53.80 DOWNSTREAM(FEET) = 49.80 FLOW LENGTH(FEET) = 130.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.81 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.86 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 7.59 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 3.00 = 1023.00 FEET. .^..^.^tjt.^*^********************************************************************* FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 10 »>»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <«« **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 3.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 180.00 UPSTREAM ELEVATION(FEET) = 58.20 DOWNSTREAM ELEVATION(FEET) = 53.80 ELEVATION DIFFERENCE(FEET) = 4.40 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.652 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 74.44 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 2.29 TOTAL AREA(ACRES) = 0.4 0 TOTAL RUNOFF(CFS) = 2.2 9 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.29 2.65 6.587 0.40 LONGEST FLOWPATH FROM NODE 25.00 TO NODE 3.00 = 180.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 12.86 7.59 5.031 2.75 LONGEST FLOWPATH FROM NODE 20.00 TO NODE 3.00 = 1023.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 6.78 2.65 6.587 2 14.61 7.59 5.031 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.61 Tc(MIN.) = 7.59 TOTAL AREA(ACRES) = 3.15 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.15 TC(MIN.) = 7.59 PEAK FLOW RATE(CFS) = 14.61 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1459 Analysis prepared by: BHA, INC 5115 Avenida Encinas Suite L Carlsbad, CA 92008 (760) 931-8700 FILE NAME: K:\HYDRO\0804-5\DEV2.DAT TIME/DATE OF STUDY: 15:15 09/18/2006 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.500 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* + + I TOYOTA CARLSBAD - SERVICE FACILITY I I 6030 AVENIDA ENCINAS - W.O. 591-0804-605 I I DEVELOPED HYDROLOGY - 100 YEAR - DEVELOPED BASIN 2 I + + **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 64.60 DOWNSTREAM ELEVATION(FEET) = 63.7 6 ELEVATION DIFFERENCE(FEET) = 0.84 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.168 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 60.50 (Reference: Table 3-lB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.7 4 TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) = 0.74 *V,.yt^,,t.Ji.* + ******************************************************************** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51 »>»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 63.76 DOWNSTREAM(FEET) = 50.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 733.00 CHANNEL SLOPE = 0.0178 CHANNEL BASE(FEET) = 24.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.14 9 GENERAL INDUSTRIAL RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 97 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.31 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.94 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 4.16 Tc(MIN.) = 7.33 SUBAREA AREA(ACRES) = 4.60 SUBAREA RUNOFF(CFS) = 20.60 AREA-AVERAGE RUNOFF COEFFICIENT = 0.870 TOTAL AREA(ACRES) = 4.73 PEAK FLOW RATE(CFS) = 21.19 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.18 FLOW VELOCITY(FEET/SEC.) = 3.56 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = 813.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 4 21 73 TC(MIN.) 19 = 7.33 END OF RATIONAL METHOD ANALYSIS II. CALCULATIONS HYDRAULIC ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACFCAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1459 Analysis prepared by: BHA, INC 5115 Avenida Encinas Suite L Carlsbad, CA 92008 (760) 931-8700 FILE NAME: K:\HYDRO\0804-5\PIPE1.DAT TIME/DATE OF STUDY: 11:18 09/19/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 100.00- } 3.10- } 3.20- } 26.10- } 26.20- } 25.10- } 25.20- } 24.10- } 24.20- } 24.30- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 1.50 399.63 1.44*Dc 397.36 2.32* 409.99 3.51* 541.32 4.18* 541.08 4.43* 568.65 5.09* 531.86 1.29* 119.04 1.19* 83.74 } HYDRAULIC JUMP 0.89 Dc 72.39 } 24.40- } 10.00- FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 426.38 0.89*Dc 1.52* 72. 39 99. 85 1.17* 1.44*Dc 1.4 0 Dc 1.4 0 Dc 1.32 Dc 1.32 Dc 0.74 1.02 Dc 0.76 0. 64* 0.89*Dc 0.8 9 Dc 397.36 315.76 315.76 238.52 238.52 126.36 110.01 75. 02 83.11 72 . 39 72.39 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = 47.50 PIPE FLOW = 17.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 4 9.000 FEET NODE 100.00 : HGL = < 48.675>;EGL= < 50.710>;FLOWLINE= < 47.500> + + I TOYOTA CARLSBAD - SERVICE FACILITY | 1 6030 AVENIDA ENCINAS - W.O. 591-0804-605 | I DEVELOPED HYDRAULIC - 100 YEAR - PIPE 1 | + + ****************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 3.10 IS CODE = 1 UPSTREAM NODE 3.10 ELEVATION = 4 9.20 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 50.00 FEET MANNING' S N = 0. 01350 NORMAL DEPTH(FT) = 1. 12 CRITICAL DEPTH(FT) 1.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1. 44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1 .440 9 749 2 916 397. 36 0 .073 1 . 427 9 793 2 917 397. 43 0 .286 1 .414 9 841 2 919 397 . 65 0 . 633 1 .402 9 893 2 922 398. 01 1 . 112 1 .389 9 949 2 927 398. 50 1 .726 1 . 377 10 008 2 933 399. 12 2 .478 1 .364 10 071 2 940 399. 86 3 .376 I .351 10 138 2 948 400. 73 4 .431 1 .339 10 208 2 958 401. 73 5 . 654 1 .326 10 281 2 969 402. 85 7 .064 1 .314 10 358 2 981 404 . 09 8 . 682 1 .301 10 439 2 994 405. 46 10 .535 1 .288 10 523 3 009 406. 95 12 . 656 1 .276 10 610 3 025 408 . 57 15 .089 1 .263 10 702 3 043 410. 32 17 .891 1 .251 10 796 3 062 412. 20 21 .138 1 .238 10 895 3 082 414 . 21 24 . 931 1 .225 10 997 3 104 416. 35 29 .414 1 .213 11 103 3 128 418 . 63 34 .799 1 .200 11 213 3. 154 421. 05 41 .414 1 . 188 11 326 3. 181 423. 62 49 .811 1 . 175 11 444 3. 210 426. 33 50 .000 1 . 175 11 446 3. 210 426. 38 NODE 3.10 HGL 50.640>;EGL= < 52.116>;FLOWLINE= < 4 9.200> ****************************************************************************** FLOW PROCESS FROM NODE 3.10 TO NODE 3.20 IS CODE = 5 UPSTREAM NODE 3.20 ELEVATION = 4 9.50 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 14 .70 17.00 0. 00 0.00 2.30= DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 18.00 0.00 49.50 1.40 18.00 - 49.20 1.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 8.318 9.752 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS) - Q4 *V4 *COS(DELTA4))/( (A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = DOWNSTREAM: MANNING'S N = AVERAGED FRICTION SLOPE IN JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 0.01350; 0.01350; JUNCTION 5.00 FEET 0.114 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES ( 0.482)+( 0.295) = 0.777 FRICTION SLOPE = FRICTION SLOPE = ASSUMED AS 0.02286 ENTRANCE LOSSES 02112 02460 0.2 95 FEET NODE 3.20 : HGL = < 51.819>;EGL= < 52.894>;FLOWLINE= < 4 9.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2 6. 10 3.20 TO NODE ELEVATION = 26.10.IS CODE = 1 50.78 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 117.00 FEET MANNING'S N = 0.01350 SF=(Q/K)**2 = {( 14.70)/( 101.153))**2 = 0.02112 HF=L*SF = ( 117.00)*(0.02112) = 2.471 NODE 26.10 : HGL = < 54.290>;EGL= < 55.365>;FLOWLINE= < 50.780> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 26.20 2 6.10 TO NODE ELEVATION = 26.20 IS CODE = 5 50.80 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 12.20 14 . 70 2.50 0. 00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY [INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.00 0.00 50.80 1.32 18.00 - 50.78 1.40 12.00 90.00 51.03 0.68 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 6. 904 8.318 3.183 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4))/((A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01350; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01350; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01783 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.018 FEET JUNCTION LOSSES = (DY+HVl JUNCTION LOSSES = ( 0.352 ENTRANCE LOSSES HV2)+(ENTRANCE LOSSES) +( 0.000) = 0.352 01455 02112 0.000 FEET NODE 26.20 HGL 54.977>;EGL= < 55.717>;FLOWLINE= < 50.800> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 25.10 26.20 TO NODE ELEVATION = 25.10 IS CODE = 1 51.35 (FLOW IS UNDER PRESSURE) CALCULATE PIPE FLOW PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( FRICTION LOSSES(LACFCD): 12.20 CFS PIPE DIAMETER = 55.00 FEET MANNING'S (( 12.20)/( 101.153))**2 = 0. 55.00)*(0.01455) = 0.800 18.00 INCHES N = 0.01350 01455 NODE 25.10 : HGL = < 55.777>;EGL= < 56.517>;FLOWLINE= < 51.350> FLOW PROCESS FROM NODE 25.10 TO NODE 25.20 IS CODE = 5 UPSTREAM NODE 25.20 ELEVATION = 51.88 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 DIAMETER ANGLE (INCHES) (DEGREES) ELEVATION FLOW (CFS) 7.00 12.20 0.00 0.00 5.20===Q5 EQUALS BASIN INPUT FLOWLINE 18.00 18.00 0.00 0.00 0.00 0.00 0.00 CRITICAL VELOCITY ION DEPTH(FT.) (FT/SEC) 88 1.02 3. 961 35 1.32 6. 904 00 0.00 0.000 00 0. 00 0. 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01350; FRICTION SLOPE = 0.00479 DOWNSTREAM: MANNING'S N = 0.01350; FRICTION SLOPE = 0.01455 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00967 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.048 FEET ENTRANCE LOSSES = 0.148 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.545)+( 0.148) = 0.693 JUNCTION LOSSES = JUNCTION LOSSES = NODE 25.20 : HGL = < 56.966>;EGL= < 57.210>;FLOWLINE= < 51.880> FLOW PROCESS FROM NODE 25.20 TO NODE 24.10 UPSTREAM NODE 24.10 ELEVATION = 56.73 IS CODE = 1 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.00 CFS PIPE DIAMETER = PIPE LENGTH = 231.00 FEET MANNING'S 18.00 INCHES N = 0.01350 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.09 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 221.264 PRESSURE HEAD(FT) 5.086 1.500 VELOCITY (FT/SEC) 3. 961 3. 961 SPECIFIC ENERGY(FT) 5.330 1.744 PRESSURE+ MOMENTUM(POUNDS) 531.86 136.44 NORMAL DEPTH(FT) = 0.73 CRITICAL DEPTH(FT) = 1. 02 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 221.264 222.350 223.360 224.325 225.253 226.150 227.018 227.859 FLOW DEPTH VELOCITY (FT) 500 481 462 443 424 405 386 367 (FT/SEC) 3. 960 3. 970 SPECIFIC ENERGY(FT) 987 010 037 068 103 141 744 726 709 693 677 662 647 633 PRESSURE+ MOMENTUM(POUNDS) 136.44 134.47 132.62 130.85 129.15 127.52 125.96 124 . 46 228.673 1. 348 4.182 1. 620 123.03 229.460 1.329 4.227 1. 606 121.66 230.221 1.310 4 . 275 1.594 120.35 230.954 1.291 4 . 326 1.581 119.12 231.000 1.289 4 . 330 1.581 119.04 NODE 24.10 : HGL = < 58.019>;EGL= < 58 .311>;FL0WLINE= < 56.730> ****************************************************************************** FLOW PROCESS FROM NODE 24 .10 TO NODE 24 .20 IS CODE = 5 UPSTREAM NODE 24.20 ELEVATION = 57. 06 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 4 .50 12. 00 0.00 57.06 0.89 5.730 DOWNSTREAM 7.00 18.00 -56.73 1.02 4.331 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0. 000 Q5 2 . 50= ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01350; FRICTION SLOPE = 0.01720 DOWNSTREAM: MANNING'S N = 0.01350; FRICTION SLOPE = 0.00444 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01082 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.054 FEET ENTRANCE LOSSES = 0.058 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.390)+( 0.058) = 0.448 NODE 24.20 : HGL = < 58.249>;EGL= < 58.759>;FLOWLINE= < 57.060> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 24.30 24.20 TO NODE ELEVATION = 24.30 IS CODE = 1 61.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.50 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 197.00 FEET MANNING'S N = 0.01350 0.89 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.7 6 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.64 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.298 2. 627 3. 988 5.385 6.822 8.302 9.830 11.413 FLOW DEPTH VELOCITY (FT) 0. 640 0. 645 0. 650 0. 655 0. 660 0. 665 0. 669 0. 674 0. 679 (FT/SEC) 8 . 467 8.394 8.322 8.252 8 .183 8.116 8.050 7 . 985 7.922 SPECIFIC ENERGY(FT) 1.754 1.740 1.726 1.713 700 688 676 665 654 PRESSURE+ MOMENTUM(POUNDS) 83.11 82. 64 82.17 81, 81, 80, 73 29 87 80. 46 80.06 79. 68 13 056 0 684 7 859 1 644 79 31 14 767 0 689 7 798 1 634 78 95 16 556 0 694 7 738 1 624 78 60 18 435 0 698 7 680 1 615 78 27 20 418 0 703 7 622 1 606 77 94 22 522 0 708 7 566 1 597 77 63 24 771 0 713 7 510 1 589 77 32 27 197 0 718 7 456 1 582 77 03 29 839 0 723 7 403 1 574 76 75 32 757 0 727 7 351 1 567 76 48 36 035 0 732 7 300 1 560 76 22 39 806 0 737 7 250 1 554 75 97 44 289 0 742 7 200 1 547 75 73 49 900 0 747 7 152 1 541 75 49 57 568 0 752 7 105 1 536 75 27 70 278 0 756 7 059 1 530 75 06 197 000 0 757 7 049 1 529 75 02 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1.19 DISTANCE FROM CONTROL(FT) 0.000 67.620 PRESSURE HEAD(FT) 1. 189 1.000 VELOCITY (FT/SEC) 5.730 5.730 SPECIFIC ENERGY(FT) 1. 699 1.510 PRESSURE+ MOMENTUM(POUNDS) 83.74 74 . 47 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 67 . 620 1 .000 5 728 1 510 74 47 68 .820 0 . 995 5 731 1 506 74 27 69 .729 0 . 991 5 736 1 502 74 10 70 .507 0 . 986 5 743 1 499 73 94 71 .195 0 . 982 5 752 1 496 73 79 71 .813 0 . 977 5 761 1 493 73 65 72 .376 0 . 973 5 771 1 490 73 52 72 .891 0 . 968 5 783 1 488 73 40 73 . 364 0 . 964 5 795 1 485 73 28 73 .801 0 . 959 5 808 1 483 73 18 74 .204 0 . 955 5 822 1 481 73 08 74 .577 0 . 950 5 837 1 479 72 99 74 . 920 0 . 946 5 852 1 478 72 91 75 .236 0 . 941 5 868 1 476 72 83 75 .526 0 . 936 5 885 1 475 72 76 75 .790 0 . 932 5 902 1 473 72 69 76 .030 0 . 927 5 920 1 472 72 63 76 .245 0 . 923 5 939 1 471 72 58 76 .436 0 . 918 5 958 1 470 72 54 76 .603 0 . 914 5 978 1 469 72 50 76 .746 0 . 909 5 999 1 468 72 46 76 .865 0 . 905 6 020 1 468 72 44 76 . 958 0 . 900 6 042 1 467 72 41 77 .026 0 . 896 6 064 1 467 72 40 77 .068 0 .891 6 087 1 4 67 72 39 77 .082 0 .886 6 111 1 467 72 39 197.000 0.886 6.111 1.467 72.39 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 63.47 FEET UPSTREAM OF NODE 24.20 | I DOWNSTREAM DEPTH = 1.012 FEET, UPSTREAM CONJUGATE DEPTH = 0.757 FEET | NODE 24.30 : HGL = < 61.640>;EGL= < 62.754>;FLOWLINE= < 61.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 24.40 24.30 TO NODE ELEVATION = 24.40 IS CODE = 2 61.33 (FLOW IS AT CRITICAL DEPTH) PIPE DIAMETER 12.00 INCHES CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 4.50 CFS AVERAGED VELOCITY HEAD = 0.580 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 0.580) = NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS 0.029 NODE 24 .40 HGL < 62.216>;EGL= < 62.7 97>;FLOWLINE= < 61.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 10.00 24.40 TO NODE ELEVATION = 10.00 IS CODE = 1 62.13 (FLOW UNSEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.50 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 80.00 FEET MANNING'S N = 0.01350 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 1.00 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.89 FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 0 886 6. 111 1. 467 72. 39 0 012 0 891 6. 087 1. 467 72. 39 0 050 0 896 6. 064 1. 467 72. 40 0 113 0 .900 6. 042 1. 467 72 41 0 203 0 905 6. 020 1 468 72. 44 0 319 0 . 909 5. 999 1 468 72 46 0 461 0 . 914 5. 978 1 469 72 50 0 631 0 . 918 5 958 1 470 72 54 0 827 0 . 923 5 939 I 471 72 58 1 051 0 . 927 5 920 1 472 72 63 1 302 0 .932 5 902 1 473 72 69 1 581 0 . 936 5 885 1 475 72 76 1 886 0 . 941 5 868 1 476 72 83 2 .219 0 .946 5 852 1 478 72 91 2 .578 0 . 950 5 837 1 479 72 99 2 . 963 0 . 955 5 822 1 481 73 08 3 .374 0 . 959 5 808 1 483 73 18 3 .809 0 .964 5 795 1 485 73 28 4 .269 0 . 968 5 783 1 488 73 40 4 .753 0 . 973 5 771 1 490 73 52 5 .259 0 . 977 5 761 1 493 73 .65 5 .787 0 . 982 5 752 1 496 73 .79 6 . 336 0 .986 5 .743 1 499 73 94 6 . 906 0 . 991 5 .736 1 502 74 .10 7.495 0.995 5.731 1.506 74.27 8.106 1.000 5.728 1.510 74.47 ===> FLOW IS UNDER PRESSURE 80.000 1.518 5.730 2.028 99.85 NODE 10.00 : HGL = < 63.648>;EGL= < 64.158>;FLOWLINE= < 62.130> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 10.00 FLOWLINE ELEVATION = 62.13 ASSUMED UPSTREAM CONTROL HGL = 63.02 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS III. EXHIBITS IV. REFERENCES / ilUD \ 1126 3- ! I I I I I I I I I I I I i I I miles 1 1n. - 1900 ft. 33-30^ Oranqe 33-15* :33"00^ 32-45' 32'3(r 33^30' County of San Diego Hydrology Manual Soil Hydrologic Groups Legend Soil Groups I Group A Group B I Group C Group D Undetermined Data Unavailable DPW GIS SanGIS \C'C Hav-C .San V>iz^} Cx>vcrcd! mOWeO WITHOUT WARRANTY OF ANY MMO. B1>Cn EXPRESS MCUOWA BUT NOT UMTTEO TO. TIC WPUED WMRIMTIE9 AND niNESS FDR A PARTCULAR PUMPOBE. DO *nii tM SANOAO Rigkral 3 0 3 Miles <6 tl- Q. e o 1 "5. I- II 1 ti c tt) 3 IS d c <N" 1 c ~'<D *— CL. •a <o 1 It CO £L < c o E o h-1 S c IS fn ro c •3. M t: 10 «S3 •I I z ^ ™ g (- <0 U) w !g i>. D I m ^ <" « »- er> -i-2 ;:; 0! f- irf ul i— »1 _ *0:0 COf CO t •» C^ O tflit1> (Xll(M l .. ^jjg 2 2 « "0 lfl •« x's S ^ 8 W!r>:NiC>J 10 "ff IT rv :o Jilr f(3>i<T'i:w 5 V T- o o> •-i^]-.-::.'!0 N 0 A «0 Pi — O O 5 ? S 2 o P 8 g R Si 8 S' O «0 4" (0 ; W tJ g 8 g«? 2 g c, !e $ S — —lOiOiOid ^TfCS r*ri Si S5 M 8 8 b p ? a 1^ i OJ; in : 3^ — o 00 000 ^SSS 3'?!SR8Si CMICNi —, —)— O 0)O 6-Hour Preclpltatinn (Inches) o irj o 10 id iH vl' n n. E .2 • ti OS JZ O C Q C .S 3 D IS c B c o <^ V M O" oi «5 CO O U> W K t>_ •-ood o Directions for Application: (1) Froin precipitation maps deiermine 6 hr and 24 hr amounts . for the selected frequency, inese maps are included in the County Hydrology i^-tenual (10,50, arid 100 yr maps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessan/} so that it is within the range of 45% lo 65% ol the 24 hr precipitation (nol applicaple to Desert). (3) Plot 6 hr precipitatiDn on the right side of the chart. (4) Drav.' a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. Application Form: (a) Selected frequency. IO year in., p. 24 P24 in. (c) Adjusted Pg'^' = (d) l^= min. (e) I = in-zlir. Note: This chart replaces the Intensihy-Duraticn-Frequency curves used since 1965. P8 Oucaticn S 1 I ! 2.5 3.5 : I i 4.5 I 5.5 i 6 20 25 30 "*a 50 • 60 '90 120 jisd ISO 240 300 360 2.63 l3.95^ 2.12 2.18 1.68 Tio f.08 2.53 1.95 1.62 1.40 0.S3 H,24 c;i»Ti7q3 c.eo law C.4J 1Q.61 •CJ29T6.'44 '0.26'^C.39 'Ci2"l0.33 <!.ia10.26 0.17 "025 5.271 6.S9 HtSAX 5.30 3.37! 4.21 7.90iSJS2i 6.3S*7;42i 2 £9!324 3.B9 2 ISi Tfl7l 2.69 iaa 3.23 16612.07 1 19! T.49 0.82: 1.02 aes [ bis 0.59 i 6.73 0.52i 0.65 0 43^0.5* 0,28! C.47 3 33'C.42 2.49 Z07 1.79 "1.59 1.23 iioa O.SS 1C.54!ll.85[iai7 a^1"9;5A iJOBO 4.S4i a.77i 5.19 : 5.84 4.31 ' 4l85 5.901 3-73 i 4.20 2.41} 2.091 1.8C' .!.«]. 1.19! 1.03! 2.76 ! 3.10 2.12 i 2J39 1.63 1 1.84 1.36 j 1.S3 ' 1.181 1-32 0 65*C76l 0.56! 0.66! 0.50:0.58; 1.04 C75 C57 1.18 0.85 0.75 6.4° a3o 4.67 4;i5 3.45 Z9S 2,65 2.04 I.Ti)' 1.47 Ul tX)5 0.94 0.84 1T.S6 9i7' 7.13 5.93 ai3 4iS ili Z92 2.25 li7 1.62 1.44 115 1.03 0.92 15JI 12.72 Tb.'ii 7.78 6.46 5.60 4.98' 3.58 3.13 2.45 2.04 1.76 1.57 1.3C' 1.13 1.0>3 FIGURE intensity-Durartion Design Chart - Template 2C 30 43 50 1 Minutes Duration Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts - for the seleded frequency. These maps are included in the County Hydrology ^-tenual (10,50. and 100 yr maps included In th© Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% lo 65% ot the 24 hr precipitation (not applicaple to Dssert). (3) Plot 6 hr precipitafion on the right side of the chart. (4) Drav; a line through the point parallel to the plotted lines. (5) This line is the intensity-duration cur/e for the location being analyzed. Application Form: (a) Setected frequency' _ (I3)P6= in..P24 (c) Adjusted Pg'^'' = ^in. (d) t^= min. (e) 1 = in-'hr. Note: This chart replaces the Intensity-Durafion-Frequency curves used since 1965. . year ^24 IJ[ 2 Ilfl 2.5 I I ! 4.5 I 2.63J3.95 527 2.12 |3.18 1 68 i2S3 1.30 11.95 1.08 !l.62 0-93jl.4O 0.83 11.24 0.69 11,03 0.60 !0.90 C.53 Q80 C.41 i0.61 10.51 C.29 10.44 C.22 C.19 C.17 4,241 3.37] 2.£9j 2 15: 187 i 66 1 19 1 C6 Oi!2 068 :0.S9 0.39l0,52 333 0 43 028 3 28 0.2510.33 6.59 5.30 4.2-. 3.24 2.69 2.33 2.07 1.72 1.49 1.33 i.ce C.85 0.73 0.65 C54 C47 G.4Z 7.90iS.22i 6.JS' 7 42* 5.05] 5 90 3B9|4S4 3 23 3"^* ;2.8t-la.27i 2«9l2_90' ?a7jS 41^ 1.7912.091 1 551186 1 23 1 43 1.02! 1.19; OSS 103 07S'C91 oss'ce OSS C€6 CJiOiti.sO^ 10.54 6.48 e.74 5.19 4.31 a 73 2.76 2,39 2.12 1.63 1.36 1.18 1.04 CS7 C.7S C.67 111 Il.85iiai7j 9.5* i.l0.50| 7.58 ra42 i 5*11 6.49 I 4.85 5X13 1 ! 4.20 1 4.67 I ! 3^1 4.15 f i 3-10 I 3.45 f 2 69 I a9B ' 2 J9 1 2X>5 ! 1.84 ! 204 1 I 1.53 ! 1:70 i i 1.32 ! 1.47 I i M8 ! 1.31 ' 0 98 , 1 05 * 0 65 094 [ 0.75 ! 0.84 ' 5.5 I UiS,15_8l 11.56! 12.72 9.27 ! 10.11 13 5 9- &13 4.56 3..73 3.2S 2.92 2J25 yzi 1.62 1.44 1.1S •• 03 0.92 7.78 6.46 5.60 4.93 4.13 3.58 3.13 2.45 2.04 1.76 1.57 1.3C 13 1.0Q FIGURE Intensity-Duration Design Chart - Template I LL..L.^ 2 -ffeAje. - 6 HatJf^ 2 XH- H^an San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 6 of 26 Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff CoefFicient "C" Soil Type NRCS Elements County Elements % IMPER. A B C D Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 0.30 0.35 Low Density Residential (LDR) Residential, LO DU/A or less 10 0.27 0.32 0.36 0.41 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 0.54 0.57 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 0.60 Medium Density. Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0,79 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 0.79 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0,84 0.85 Commercial/Industrial (Limited L) Limited Industrial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (General I.) General Industrial 95 0.87 0.87 0.87 0.87 *The values associated with 0% impervious may be used for direct calculation ofthe ninoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 12 of 26 Note that the Initial Time of Concentration should be reflective ofthe general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. Table 3-2 provides limits ofthe length (Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial Ti values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) Element* DU/ .5% 1% 2% 3% 5% 10% Element* Acre LM Ti LM Ti LM Tl LM Ti LM Ti LM Ti Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N. Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G. Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General I. 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 *See Table 3-1 for more detailed description 3-12 AE Feet Tc = .5000 .4000 .3000 -2000 — 1000 900 ^0 -500^ -400 -30O -200 • 100 — 50 — 40 • 30 — 20 10 Tc L AE EQUATION /l1.9LnO-385 V AE y Time of concentration (hours) Watercourse Distance (miles) Change in elevation along effective slope line (See Figure 3-5) (feet) Tc Hours s — 100 90 80 70 S \ \ L \ Miles Feet S ^1-\ - \ 0.5- 4000 3000 .2000 1800 I— 1600 1400 1200 -1000 •900 •800 •700 — 600 • 500 I—400 •300 • 200 \ Minutes • 240 •1$0 120 -60 - 50 -40 L-30 -20 h-18 16 — 14 — 12 -10 9 — 8 — 7 6 —3 AE SOURCE: California Division of Highways (1941) and Kirpich (1940) Tc Nomograph for Determination of Time of Concentration (Tc) or Travel Time (Tt) for Natural Watersheds FIGURE Watershed Divide Watershed Divide. Stream Profile Area "A" = Area "B" SOURCE: California Division of Highways (1941) and Kirpich (1940) Design Point (Watershed Outlet)' FIGURE Computation of Effective Siope for Natural Watersheds 20 . 18 • 16 . 14 • 12 . 10 • a. o CO "5 (U 55 o 2 • 1.8 • 1.6 • 1.4 • 1.2 • 1.0 . 0.9 • 0.8 • 0.7 . 0.6 • 0.5 . 0.4 • Concrete Gutter 5 6 7 8 9 10 Discharge (C.F.S.) EXAMPLE: Given: Q = 10 S = 2.5% Chart fllve.s: Depth = 0.4, Velocity = 4.4 f.p.s, SOURCE: San Diego County Department of Special District Services Design Manual 30 40 50 FIGURE Gutter and Roadway Discharge - Velocity Chart c-0.3 .0.2 -0.15 0.10 0.09 -0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 r 0.009 0.008 0.007 r 0,006 EQUATION: V = r49. R"^ s"^ n f-0.2 0,3 -0.4 t.0.5 0.6 ;.0.8 0.9 1.0 B - ill Q. o W : 0.005 0.00'^^^^ r'OOOS 0.002 0.001 - 0.0009 0.0008 0.0007 0.0006 0.0005 '- 0.0004 - 0.0003 r 4 6 7 8 9 10 L 20 SOURCE: USDOT, FHWA, HDS-3 (1961) .50 -40 -30 -20 •10 8 X3 C o 7 (U U) i-. <u Cl. I <u -2 GENERAL SOLUTION ^0.01 0.02 •0.04 , -0.03 c % o O M LUrO.05 0.06 0.07 0.08 1-0.09 i-0.10 • 1.0 .0.9 •0.8 • 0.7 •0.6 •0.5 0.2 -0.3 •0.4 FIGURE Manning's Equation Nomograph