Loading...
HomeMy WebLinkAboutCT 00-02; CALAVERA HILLS II ADDENDUM 1 AND 2; HYDROLOGY STUDY; 2003-06-03Prepared By: O'DAY CONSULTANTS 2710 Loker Ave West, Suite 100 Carlsbad, Califomia 92008 (760) 931-7700 June 3, 2003 C r OP- HYDROLOGY STUDY FOR CALAVERA HILLS PHASE H ADDENDUM #1 AND #2 — Keith Hansen RCE 60223 Registration Expires 06/30/04 CTOO-O"^ San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/03/03 COLLEGE BLVD HYDOLOGY STUDY ADDENDUM #1 JUNE 3, 2003 J.N. 98-1020 BY:eso FILE:C0LLADA.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method Process from Point/Station 111.000 to Point/Station in ooo **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 ' ~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity (I) = 4.228 for a 100.0 year storm User specified values are as follows: TC = 10.57 min. Rain intensity = 4.23(In/Hr) Total area = 4.67(Ac.) Total runoff = 17.50(CFS) ++-^+-^+-*-+-^->-+ ++-^+-^-i--^ + -i-+ + + + ++++++++++++++++++++^++^.^+^^^_^^_^.^,^_^^^_^_^ Process from Point/Station 111.000 to Point/Station 112 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 298.35(Ft.) ' Downstream point/station elevation = 292.99(Ft.) Pipe length = 180.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.499(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 17.499(CFS) Normal flow depth in pipe = 14.23(In.) Flow top width inside pipe = 14.65 (In.) Critical depth could not be calculated. Pipe flow velocity = 11.68(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 10.82 min. Process from Point/Station 112.000 to Point/Station 113 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 292.99(Ft.) Downstream point/station elevation = 286.00(Ft.) Pipe length = 118.61(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.499(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 17.499(CFS) Normal flow depth in pipe = 10.95(In.) Flow top width inside pipe = 17.57(In.) Critical depth could not be calculated. Pipe flow velocity = 15.54(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 10.95 min. Process frora Point/Station 113.000 to Point/Station 113 ooo **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.670(Ac.) Runoff from this stream = 17.499(CFS) Time of concentration = 10.95 min. Rainfall intensity = 4.131(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++ + ^.+^+^^^^^^^^^^^^_^^_^ Process from Point/Station 1501.000 to Point/Station 1502.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MULTI - UNITS area type ] Rainfall intensity (I) = 3.662 for a 100.0 year storm User specified values are as follows: TC = 13.20 min. Rain intensity = 3.66(In/Hr) Total area = 13.50(Ac.) Total runoff = 40.80(CFS) Process from Point/Station 1502.000 to Point/Station 113 000 **** PIPEFLOW TRAVEL TIME (User specified size) ***-r * Upstream point/station elevation = 287.18(Ft.) Downstream point/station elevation = 285.33(Ft.) Pipe length = 93.66(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 40.800(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 40.800(CFS) Normal flow depth in pipe = 18.63(In.) Flow top width inside pipe = 2 9.11(In.) Critical Depth = 25.76(In.) Pipe flow velocity = 12.74(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 13.32 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 113.000 to Point/Station 113.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 13.500(Ac.) Runoff from this stream = 40.800(CFS) Time of concentration = 13.32 min. Rainfall intensity = 3.641(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 17.499 10.95 4.131 2 40.800 13.32 3.641 Qmax(l) = 1.000 * 1.000 * 17.499) + 1.000 * 0.822 * 40.800) + = 51.036 Qmax(2) = 0.881 * 1.000 * 17.499) + 1.000 * 1.000 * 40.800) + = 56.221 Total of 2 main streams to confluence: Flow rates before confluence point: 17.499 40.800 Maximum flow rates at confluence using above data: 51.036 56.221 Area of streams before confluence: 4.670 13.500 Results of confluence: Total flow rate = 56.221(CFS) Time of concentration = 13.323 min. Effective stream area after confluence = 18.170(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4. + + + ^. + ^.^. + + + ^.^^^^^ Process from Point/Station 113.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 2 86.00 (Ft.) Downstream point/station elevation = 280.75(Ft.) Pipe length = 145.67(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 56.221(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 56.221(CFS) Normal flow depth in pipe = 18.89(In.) Flow top width inside pipe = 28.97(In.) Critical Depth = 28.38(In.) Pipe flow velocity = 17.28(Ft/s) Travel tirae through pipe = 0.14 min. Time of concentration (TC) = 13.46 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 280.75(Ft.) Downstream point/station elevation = 273.74(Ft.) Pipe length = 173.61(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 56.221(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 56.221(CFS) Normal flow depth in pipe = 18.19(In.) Flow top width inside pipe = 29.31(In.) Critical Depth = 28.38(In.) Pipe flow velocity = 18.07(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 13.62 min. End of computations, total study area = 18.17 (Ac.) f *******************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 *************************^ DESCRIPTION OF STUDY ************************** * OLLEGE BLVD HYDRAULICS ^ * ADDENDUM #1 ^ * BY:CSO J.N. 98-1020 FILE:COLADA.RES * ************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FILE NAME: COLADA.DAT TIME/DATE OF STUDY: 11:18 06/03/2 003 ************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN PRESSURE+ NODE MODEL PRESSURE PRESSURE+ FLOW NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) 116.00-2 .36 Dc 1615 .47 1 .55* } FRICTION .55* 114.50-2 .36 Dc 1615 .47 1 .69* } JUNCTION .69* 114.00-2 . 36 Dc 1615 47 1 .72* } FRICTION .72* 113.50-2 36*Dc 1615 47 2 36*Dc } JUNCTION 36*Dc 113.00-4 59* 759 21 0 95 } FRICTION } HYDRAULIC JUMP 112.50-1 61 430 71 1 19* } JUNCTION 19* 112.00-1 45 Dc 416. 51 1. 22* } FRICTION 22* 111.50-1. 45*Dc 416. 51 1. 45*Dc 2054 .01 1901 .32 1873 .76 1615 47 530 92 446 12 439 12 416 . 51 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED'ON'THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. w^^iiiA DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 116.00 FLOWLINE ELEVATION = 273.90 PIPE FLOW = 56.20 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 275.450 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.55 FT.) IS LESS THAN CRITICAL DEPTH( 2.36 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 116.00 : HGL = < 275.446>;EGL= < 280.275>;FLOWLINE= < 273.900> *******************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 116.00 TO NODE 114.50 IS CODE = 1 UPSTREAM NODE 114.50 ELEVATION = 280.58 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 56.20 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 169.61 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.53 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.69 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2 .36 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) 0 .000 1 .685 15 .960 5 .643 2 .839 1 .679 16 .028 5.670 5 .826 1 .673 16 .096 5.698 8 .975 1 .666 16 .165 5 . 727 12 .301 1 .660 16 .235 5.755 15 .822 1 .654 16 .305 5.785 19 .557 1 .647 16 .377 5.814 23 .529 1 .641 16 .449 5.845 27 .767 1 .635 16 .521 5 . 876 32 .302 1 .628 16 .595 5. 907 37 .173 1 .622 16 669 5.939 42 .427 1 .616 16 744 5 . 972 48 .121 1 .609 16 820 6.005 54 .324 1 .603 16 897 6.039 61 .127 1 .597 16 974 6.073 68 .644 1 590 17 052 6.108 77 026 1 584 17 132 6 .144 86 477 1 578 17. 212 6.181 97 284 1 571 17. 292 6 .218 109 868 1 565 17. 374 6.255 124 879 1 559 17. 457 6.294 143 408 1 552 17. 540 6.333 167 500 1. 546 17. 625 6.373 169. 610 1. 546 17 . 630 6.375 NODE 114.50 HGL PRESSURE+ MOMENTUM{POUNDS) 1901.32 1907.29 1913.35 1919.49 1925.72 1932.03 1938.43 1944.91 1951.49 1958.15 1964.91 1971.76 1978.70 1985.74 1992.87 2000.10 2007.43 2014.86 2022.38 2030.01 2037.74 2045.58 2053.52 2054.01 < 282.265>;EGL= < 286.223>;FLOWLINE= < 280.580: *************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 114.50 TO NODE 114 00 IS CODE = 5 ^^UPSTREAM NODE 114.00 ELEVATION = 280.91 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT ) UPSTREAM 56.20 30.00 0.00 280.91 2.36 VELOCITY (FT/SEC) 15.650 DOWNSTREAM 56.20 30.00 - 280.58 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 2 .36 0.00 0 .00 15.965 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02893 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.116 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.206)+( 0.000) = 0.206 02823 02963 0.000 FEET NODE 114.00 HGL < 282.626>;EGL= < 286.429>;FLOWLINE= < 280.910> *****************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 114.00 TO NODE 113.50 IS CODE = 1 UPSTREAM NODE 113.50 ELEVATION = 285.33 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 56.2 0 CFS PIPE PIPE LENGTH = 141.67 FEET DIAMETER = 3 0.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.65 CRITICAL DEPTH(FT) = 2 .36 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 .36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.111 0 .442 0 . 989 1.759 2.760 4.005 5.513 7.306 9.413 11.870 14.722 18.024 21.846 26.277 31.431 37.462 44.578 53.069 63.365 76.130 92.480 114.508 FLOW DEPTH (FT) 2 .365 2 .336 2 .308 2 .279 2.251 2 .223 2 2 2 2 2 2 2 , 1, 1. 1, 1, 1. 1. 1. 1. 1. 1. 194 166 137 109 080 052 024 995 967 938 910 882 853 825 796 768 739 VELOCITY (FT/SEC) 11.691 11.774 11.865 11.963 12.070 12.184 12 .306 12 .435 12.572 12 .717 12.869 13 .030 13 .199 13.376 13.562 13.757 13.962 14.176 14.400 14.636 14.882 15.139 15.409 SPECIFIC ENERGY(FT) 4 .488 4 , 4. 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 490 495 503 515 529 547 568 593 622 654 690 730 775 4.825 4.879 939 004 075 153 237 329 429 PRESSURE+ MOMENTUM(POUNDS) 1615 .47 1615.96 1617.43 1619.82 1623.14 1627.36 1632.48 1638.51 1645.46 1653.34 1662.17 1671.97 1682.76 1694 . 58 1707.46 1721.42 1736.51 1752.78 1770.26 1789.00 1809.07 1830.52 1853.41 141.670 1.716 15.646 5.519 1873 .76 NODE 113.50 : HGL = < 287.695>;EGL= < 289.818>;FLOWLINE= 285 .330> *********************************^^^^.^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 113.50 TO NODE 113.00 IS CODE = 5 .00 ELEVATION = 2 86.66 (FLOW IS AT CRITICAL DEPTH) UPSTREAM NODE 113 CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 17.50 56.20 33 .54 0.00 DIAMETER (INCHES) 18.00 30.00 30.00 0.00 ANGLE (DEGREES) 0.00 45.00 0.00 FLOWLINE ELEVATION 286.66 285 .33 286.66 0.00 5.16===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.45 2 .36 1.97 0.00 VELOCITY (FT/SEC) 9.903 11.695 6.833 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0 02200 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.088 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.529)+( 0.425) = 2 954 02775 01624 0.425 FEET NODE 113.00 : HGL = < 291.249>;EGL= < 292.772>;FLOWLINE= < 286.660>" *************************, FLOW PROCESS FROM NODE 113.00 TO NODE 112 50 IS CODE = 1 ^^UPSTREAM NODE 112.50 ELEVATION = 292.82 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 114.61 FEET MANNING'S N 0 . 01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.94 CRITICAL DEPTH^FT^ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.19 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.45 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 . 000 1 .187 11.669 3 .302 446.12 1 .034 1 . 177 11.763 3.327 448.41 2 .144 1 .167 11.860 3.353 450 . 80 3 .338 1 .157 11.960 3.380 453 .28 4 .623 1 .147 12.063 3.408 455.87 6 .009 1 .137 12.168 3 .438 458.55 7 .505 1 .128 12.276 3 .469 461.35 9 .125 1 .118 12.387 3 .502 464 .24 10 .883 1 .108 12 .501 3.536 467.25 12.795 1 098 12 618 3 572 470 37 14.881 1 088 12 738 3 610 473 60 17.167 1 079 12 862 3 649 476 96 19.682 1 069 12 989 3 690 480 43 22.463 1 059 13 119 3 733 484 03 25.558 1 049 13 253 3 778 487 75 29.026 1 039 13 390 3 825 491 61 32 .947 1 030 13 531 3 874 495 60 37.430 1 020 13 676 3 926 499 73 42.626 1 010 13 825 3 980 504 00 48.756 1 000 13 978 4 036 508 41 56.163 0 990 14 .135 4 .095 512 98 65.425 0 980 14 .296 4 .156 517 70 77.620 0 971 14 .462 4 .220 522 59 95.176 0 961 14 .633 4 .288 527 64 114.610 0 955 14 .743 4 .332 530 92 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.59 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 114.610 PRESSURE HEAD(FT) 4.589 1.610 VELOCITY (FT/SEC) 9.903 9.903 SPECIFIC ENERGY(FT) 6 .112 3 .133 PRESSURE+ MOMENTUM(POUNDS) 759.21 430.71 -- END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 99.56 FEET UPSTREAM OF NODE 113.00 I DOWNSTREAM DEPTH = 2.002 FEET, UPSTREAM CONJUGATE DEPTH = 1.088 FEET NODE 112.50 HGL < 294.007>;EGL= < 296.122>;FLOWLINE= < 292.820> *******************************************************jt********************** FLOW PROCESS FROM NODE 112.50 TO NODE 112.00 IS CODE = 5 UPSTREAM NODE 112.00 ELEVATION = 293.10 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH{FT.) (FT/SEC) UPSTREAM 17.50 18.00 0.00 293.10 1.45 11.374 DOWNSTREAM 17.50 18.00 - 292.82 1.45 11.672 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS{DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02894 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.116 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.206)+( 0.000) = 0.206 02817 02971 0.000 FEET NODE 112.00 : HGL = < 294.319>;EGL= < 296.328>;FLOWLINE= < 293.100> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 111.50 112.00 TO NODE ELEVATION = 111.50 IS CODE = 1 298.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 175.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.21 CRITICAL DEPTH(FT) 1.45 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.45 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .446 10 016 3 004 416. 51 0 .097 1 .436 10 047 3 005 416. 56 0 .377 1 .427 10 081 3 006 416. 69 0 .827 1 .417 10 118 3 008 416. 92 1 .442 1 .408 10 157 3 Oil 417. 22 2 .220 1 .399 10 198 3 014 417. 60 3 .166 1 .389 10 241 3 019 418 . 06 4 .285 1 .380 10 286 3 024 418. 60 5 .588 1 .370 10 334 3 030 419. 21 7 .087 1 .361 10 383 3 036 419 . 90 8 .801 1 .352 10 435 3 043 420 . 66 10 .752 1 .342 10 488 3 051 421. 49 12 . 970 1 .333 10 544 3 060 422 . 39 . 15 .491 1 .323 10 601 3 070 423 . 37 18 .364 1 .314 10 661 3 080 424 . 42 21 .650 1 .304 10 722 3 091 425. 55 25 .431 1 .295 10 786 3 103 426. 75 29 .821 1 .286 10 851 3 115 428. 02 34 .977 1 .276 10 919 3 129 429. 37 41 . 132 1 .267 10 988 3 143 430. 79 48 .647 1 .257 11 060 3 158 432 . 29 58 .129 1 .248 11 134 3 174 433 . 87 70 .715 1 .239 11 210 3 191 435. 52 88 . 960 1 .229 11 288 3 209 437. 25 121 .069 1 .220 11 368 3 228 439 . 07 175 .000 1 .219 11 370 3 228 439 . 12 NODE 111.50 : HGL = < 299.546>;EGL= < 301.104>;FLOWLINE= < 298.100> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 111.50 FLOWLINE ELEVATION = 2 98.10 ASSUMED UPSTREAM CONTROL HGL = 299.55 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ***************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE T ^ * NOVEMBER 16, 2001 (REVISED JUNE 2, 2003) J.N 98-1020 ! * BY:eso FILE:8261.RES * **************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FILE NAME: 8261.DAT TIME/DATE OF STUDY: 09:38 06/02/2003 **********************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3-84* 1450.50 1.71 1070 74 } FRICTION ^ 3-23* 1262.71 2.15 Dc 997.66 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED'ON'THE'MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. *********************-^****-..*-.*->.************^**^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 82.61 FLOWLINE ELEVATION = 2 85.66 PIPE FLOW = 40.80 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 2 89.500 FEET NODE 82.61 : HGL = < 289.500>;EGL= < 290.573>;FLOWLINE="<" 285'660>"" **********************, FLOW PROCESS FROM NODE 82.61 TO NODE 82.70 IS CODE = 1 ELEVATION = 287.18 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 40.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 91.66 FEET MANNING'S N = 0 01300 SF=(Q/K)**2 = (( 40.80)/( 410.171))**2 = 0.00989 HF=L*SF = ( 91.66)*(0.00989) = 0.907 NODE 82.70 : HGL = < 290.407>;EGL= < 291.480>;FLOWLINE= < 287.180> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 82.70 FLOWLINE ELEVATION = 2 87.18 ASSUMED UPSTREAM CONTROL HGL = 289.33 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS INSERT MAP HERE San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/03/03 COLLEGE BLVD HYDROLOGY STUDY ADDENDUM #2 JUNE 3, 2003 J.N. 98-1020 BY:eso FILE:COLADB.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method Process from Point/Station 126.000 to Point/Station 126.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 ' ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity (I) = 3.466 for a 100.0 year storm User specified values are as follows: TC = 14.38 min. Rain intensity = 3.47(In/Hr) Total area = 23.40(Ac.) Total runoff = 69.39(CFS) +++++ +++++++ +++++++++++++++++++++++++++++++^..^^+^^^^^^^^^^_i__i__^_^_^_^_^_^_^^^^_^ Process from Point/Station 126.000 to Point/Station 128 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 205.84(Ft.) Downstream point/station elevation = 182.45(Ft.) Pipe length = 260.69(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 69.392(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 69.392(CFS) Normal flow depth in pipe = 16.14(In.) Flow top width inside pipe = 29.91(In.) Critical depth could not be calculated. Pipe flow velocity = 25.79(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 14.55 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in normal stream nuraber 1 Stream flow area = 23.400(Ac.) Runoff from this stream = 69.392(CFS) Time of concentration = 14.55 min. Rainfall intensity = 3.440(In/Hr) +++++++++ ++++++++ + + +++++++++++++++++++++ + +++^.+++++^..^^.+.^.^^^^^^^^^^^^_^_^_^_ Process from Point/Station 701.000 to Point/Station 702.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 262.62 (Ft.) Lowest elevation = 256.20(Ft.) Elevation difference = 6.42(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.42 min. TC = [1.8*(l.l-C)*distance".5)/(% slope^(l/3)] TC = [1.8*(l.l-0.8500)*(100.00".5)/{ 6.42*(l/3)]= 2.42 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++ + ++++++++++++++++++.^++.^.j.^.^.^^^^^^^^^^_^_^_^_^^_^ Process from Point/Station 702.000 to Point/Station 703.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segraent elevation = 256.200(Ft.) End of street segment elevation = 193.540(Ft.) Length of street segment = 896.210(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000 (In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.076(CFS) Depth of flow = 0.298(Ft.), Average velocity = 5.407(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.071(Ft.) Flow velocity = 5.41(Ft/s) Travel time = 2.76 min. TC = 7.76 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.158(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 5.261(CFS) for 1.200 (Ac.) Total runoff = 5.844(CFS) Total area = 1.30(Ac.) Street flow at end of street = 5.844(CFS) Half street flow at end of street = 5.844(CFS) Depth of flow = 0.326(Ft.), Average velocity = 5.852(Ft/s) Flow width (from curb towards crown)= 9.466(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 703.000 to Point/Station 128.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 186.13 (Ft.) Downstream point/station elevation = 182.95(Ft.) Pipe length = 68.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.844(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.844(CFS) Normal flow depth in pipe = 6.23(In.) Flow top width inside pipe = 17.13(In.) Critical Depth = 11.21(In.) Pipe flow velocity = 10.76(Pt/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 7.87 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.300(Ac.) Runoff from this stream = 5.844(CFS) Time of concentration = 7.87 min. Rainfall intensity = 5.113(In/Hr) ++++++++++ +++++++++++++++++++++++++++++++++++++++++++^.^.^.^^++^.^.^^^.^^^^^ Process from Point/Station 801.000 to Point/Station 802.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = l.OOO [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 262.62(Ft.) Lowest elevation = 256.20(Ft.) Elevation difference = 6.42(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.42 min. TC = [1.8*(l.l-c)*distance*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.8500)*{100.00".5)/( 6.42*{l/3)]= 2.42 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial stream area = 0.100 (Ac.) +++++ + +++ ++++++++++++++++++++++++++++ + +++^.^^.^^.^^^^^^^^^^^^_^_i_^_j^_i__i_^^_^^_^_^ Process from Point/Station 802.000 to Point/Station 803.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 256.200(Ft.) End of street segment elevation = 193.540(Ft.) Length of street segment = 896.210(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.076(CFS) Depth of flow = 0.298(Ft.), Average velocity = 5.407(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.071(Ft.) Flow velocity = 5.41(Ft/s) Travel time = 2.76 min. TC = 7.76 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.158(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 5.261(CFS) for 1.200(Ac.) Total runoff = 5.844(CFS) Total area = 1.30(Ac.) Street flow at end of street = 5.844(CFS) Half street flow at end of street = 5.844(CFS) Depth of flow = 0.326(Ft.), Average velocity = 5.852(Ft/s) Flow width (from curb towards crown)= 9.466(Ft.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4. + + + + + + + + + + + + + + + + + + + + .^. + + + ^..^.^^.^^.^^^^^^^^^^ Process from Point/Station 803.000 to Point/Station 128.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 184.42(Ft.) Downstream point/station elevation = 182.95(Ft.) Pipe length = 15.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.844(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.844(CFS) Normal flow depth in pipe = 5.16(In.) Flow top width inside pipe = 16.28(In.) Critical Depth = 11.21(In.) Pipe flow velocity = 13.96(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 7.78 min. ++++ +++ +++++ + + ++++++++++++++++++ + +++++++++^.^.+.^^.^.^^^^^^^^^^^^_^^_i__^^_i__^^_^_^ Process from Point/Station 128.000 to Point/Station 128 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 1.300(Ac.) Runoff from this stream = 5.844(CFS) Time of concentration = 7.78 min. Rainfall intensity = 5.150(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 69 .392 14 .55 3 440 2 5 . 844 7 . 87 5 113 3 5 . 844 7 .78 5 150 Qmax(1) = 1 .000 * 1 000 * 69 .392) + 0 673 * 1 000 * 5 . 844) + 0 668 * 1 000 * 5 844) + - Qmax(2) = 1 000 * 0 541 * 69 392) + 1 000 * 1 000 * 5 844) + 0 993 * 1 000 * 5 844) + - Qmax(3) = 1 000 * 0. 535 * 69 392) + 1 000 * 0. 989 * 5 844) + 1. 000 * 1. 000 * 5. 844) + = n .226 49.175 48.735 Total of 3 streams to confluence: Flow rates before confluence point: 69.392 5.844 5.844 Maximum flow rates at confluence using above data: 77.226 49.175 48.735 Area of streams before confluence: 23.400 1.300 1.300 Results of confluence: Total flow rate = 77.226(CFS) Time of concentration = 14.548 min. Effective stream area after confluence = 26.000(Ac, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Time of concentration = 14, ] 55 rain. Rainfall intensity = 3.440(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C Subarea runoff = 2.327(CFS) for 1.230(Ac.) Total runoff = 79.553(CFS) Total area = 27.23(Ac. 0 .550 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A Decimal fraction soil group B fraction soil group C fraction soil group D FAMILY area type concentration = 14. .000 .000 .000 .000 Decimal Decimal [SINGLE FAMILY area type ] Time of concentration = 14.55 min. Rainfall intensity = 3.440(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 3.973(CFS) for 2.100(Ac.) Total runoff = 83.526(CFS) Total area = 29.33(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 14.55 min. Rainfall intensity = 3.440(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.550 Subarea runoff = 0.927(CFS) for 0.490(Ac.) Total runoff = 84.453(CFS) Total area = 29.82(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 182.45 (Ft.) Downstream point/station elevation = 178.12(Ft.) Pipe length = 84.94(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 84.453(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 84.453(CFS) Normal flow depth in pipe = 19.29(In.) Flow top width inside pipe = 35.91(In.) Critical Depth = 33.69(In.) Pipe flow velocity = 21.92(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 14.61 min. End of computations, total study area = 29.82 (Ac.) *************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD HYDRAULICS * * ADDENDUM #2 ^ * BY:CSO J.N. 98-1020 FILE:COLADB.RES * ******************************^*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FILE NAME: COLADB.DAT TIME/DATE OF STUDY: 11:05 06/03/2003 ****************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM{POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 130.00- 5.83* 3862.78 1.80 3330.25 } FRICTION } HYDRAULIC JUMP 3.76 2951.51 1.95* 3103.02 } JUNCTION 128.00- 3.98 2737.16 1.39* 3441.38 } FRICTION 126-50- 2.44*Dc 2277.95 2.44*Dc 2277.95 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE =25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ******************************^*^.»^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 130.00 FLOWLINE ELEVATION = 178 87 PIPE FLOW = 84.40 CFS PIPE DIAMETER = 3 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 184.700 FEET NODE 130.00 : HGL = < 184.700>;EGL= < 186.914>;FLOWLINE= < 178.870> *********************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 130.00 TO NODE 128.50 IS CODE = 1 UPSTREAM NODE 128.50 ELEVATION = 182.20 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 84.40 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 78.94 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.70 CRITICAL DEPTH(FT) = 2 .81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 3 .238 6.656 10.269 14.095 18.157 22.478 27.087 32.016 37.306 43.003 49.165 55.859 63.172 71.213 78.940 FLOW DEPTH (FT) 1.945 1 1. 1, 1, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 936 926 916 907 897 887 877 868 858 848 839 829 819 810 801 VELOCITY (FT/SEC) 17.395 17.495 17.597 17.700 17.805 17.911 18.018 18.127 18.238 18.350 18.463 18.578 18.695 18.813 18.934 19.039 SPECIFIC ENERGY(FT) 6.647 6.692 6.737 6.784 6.832 6.881 6.931 983 036 090 145 201 259 319 379 433 PRESSURE+ MOMENTUM(POUNDS) 3103.02 3116.51 3130.24 3144.22 3158.44 3172.92 3187.66 3202 .65 3217.91 3233.45 3249.25 3265.34 3281.70 3298.36 3315.31 3330.25 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.83 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 78.940 PRESSURE HEAD(FT) 5.830 3 .764 VELOCITY (FT/SEC) 11.940 11.940 ---END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 59.33 FEET UPSTREAM OP NODE I DOWNSTREAM DEPTH = 4.277 FEET, UPSTREAM CONJUGATE DEPTH SPECIFIC ENERGY(FT) 8.044 5 . 978 PRESSURE+ MOMENTUM(POUNDS) 3862.78 2951.51 130.00 1.894 FEET NODE 128.50 : HGL = < 184.145>;EGL= < 188.847>;FLOWLINE= < 182.200> **********************************^***^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PLOW PROCESS PROM NODE 128.50 TO NODE 128.00 IS CODE = 5 UPSTREAM NODE 128.00 ELEVATION = 182.70 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CPS) 69.40 84.40 3.93 3.90 DIAMETER (INCHES) 30.00 36.00 18.00 18.00 ANGLE (DEGREES) 0.00 90.00 90.00 FLOWLINE ELEVATION 182.70 182 .20 183.70 183.70 CRITICAL DEPTH(FT.) 2 .44 2 .81 0.76 0.76 7.17===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 24.817 17.400 4 .386 4.375 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05465 JUNCTION LENGTH = 6.00 PEET FRICTION LOSSES = 0.328 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.864)+( 0.940) = 4.804 08112 02818 0.940 PEET NODE 128.00 HGL < 184.087>;EGL= < 193.651>;FLOWLINE= < 182.700> ***************************************************************************^^^^t FLOW PROCESS FROM NODE UPSTREAM NODE 126.50 128.00 TO NODE 126.50 IS CODE = 1 ELEVATION = 205.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 69.40 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 255.69 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.34 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 2.44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2 .44 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (PT) (FT/SEC) ENERGY(PT) MOMENTUM(POUNDS) 0 .000 2 .438 14 .226 5 .583 2277 .95 0 .114 2 .395 14 .342 5 .590 2280 .20 0 .432 2 .351 14 .486 5 .611 2286 .40 0 .935 2 .307 14 .655 5 .644 2296 .12 1 .618 2 .263 14 .847 5 .688 2309 .13 2 .486 2 .220 15 .061 5 . 744 2325 .35 3 .548 2 .176 15 298 5 812 2344 73 4 .818 2 .132 15 558 5 893 2367 32 6 .317 2 .088 15 839 5 986 2393 18 8 .070 2 .044 16 145 6 094 2422 41 10 . 108 2 .001 16 475 6 218 2455 14 12 .474 1 .957 16 830 6 358 2491 55 15 .216 1 .913 17 212 6 516 2531 82 18 .399 1 .869 17 622 6 695 2576 17 22 .105 1 .826 18 063 6 895 2624 86 26 .441 1 .782 18 537 7 121 2678 18 31 .548 1 . 738 19 045 7 374 2736 47 37 .618 1 .694 19 591 7 658 2800 10 44 .925 1 .651 20 177 7 976 2869 50 53 .868 1 .607 20 808 8 334 2945 14 65 .070 1 .563 21 488 8 737 3027 56 79 .576 1 .519 22 220 9 191 3117 39 99 .348 1 .476 23 010 9 702 3215 . 33 128 .800 1 .432 23 865 10 281 3322 . 19 182 .103 1 .388 24 790 10 936 3438. 87 255 .690 1 .387 24 810 10 951 3441. 38 NODE 126.50 : HGL = < 208.108>;EGL= < 211.253>;FLOWLINE= < 205.670> ****************************************************************************** UPSTREAM PIPE PLOW CONTROL DATA: NODE NUMBER = 126.50 FLOWLINE ELEVATION = 205.67 ASSUMED UPSTREAM CONTROL HGL = 208.11 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ***************************************************************^.JJ.^.(^J^^^.^.^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE W A * * NOVEMBER 16, 2001 (REVISED JUNE 2, 2003) J.N. 98-1020 * * BY:eso FILE:9735A.RES * ********************************************************^^*^^t^^t^^^^j^^^^^^^j^ FILE NAME: 9735A.DAT TIME/DATE OP STUDY: 08:53 06/02/2003 ******************************************************^j^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS POR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RXJN DOWNSTREAM RUN NODE MODEL PRESSTOE PRESSURE+ PLOW PRESSURE+ NUMBER PROCESS HEAD(PT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 128.50- 0.93 Dc 86.41 0.58* 114.97 } FRICTION 97.40- 0.93*Dc 86.41 0.93*Dc 86.41 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY PLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtTLAE PROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ********************************************** ********^*^^^^^^^^^^^^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 128.50 FLOWLINE ELEVATION = 183.70 PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 184.080 PEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.3 8 PT.) IS LESS THAN CRITICAL DEPTH( 0.93 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH POR UPSTREAM RUN ANALYSIS NODE 128.50 : HGL = < 184.277>;EGL= < 185.628>;FLOWLINE= < 183.700> *****************************************************^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 97.35 TO NODE 97.40 IS CODE = 1 UPSTREAM NODE 97.40 ELEVATION = 185.96 (PLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH 65.25 PEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) C .56 CRITICAL DEPTH(FT) 0.93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM PLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0. 933 5 055 1 330 86. 41 0 .016 0. 918 5 151 1 330 86 . 44 0 .068 0. 903 5 252 1 332 86 . 54 0 .158 0. 888 5 357 1 334 86. 71 0 .292 0. 873 5 467 1 338 86. 96 0 .474 0. 859 5 582 1 343 87. 28 0 .709 0. 844 5 702 1 349 87. 68 1 .005 0. 829 5 828 1 357 88. 17 1 .370 0. 814 5 959 1 366 88. 74 1 .812 0. 799 6 097 1 377 89. 41 2 .344 0. 784 6 242 1 390 90. 17 2 . 978 0 . 770 6 394 1 405 91. 04 3 .733 0. 755 6 554 1 422 92 . 01 4 .628 0 . 740 • 6 722 1 442 93 . 10 5 .690 0 . 725 6 898 1 465 94. 30 6 . 954 0. 710 7 084 1 490 95. 64 8 .465 0. 696 7 280 1 519 97. 10 10 .283 0. 681 7 487 1 552 98 . 72 12 .496 0 . 666 7 706 1 589 100. 48 15 .230 0. 651 7 937 1 630 102 . 41 18 .680 0 . 636 8 182 1 676 104. 51 23 .176 0. 621 8 442 1 729 106. 80 29 .334 0 . 607 8 718 1 787 109. 29 38 .542 0. 592 9 Oil 1 853 112 . 00 55 .250 0. 577 9 323 1 927 114. 95 65 .250 0 . 577 9 325 1 928 114. 97 NODE 97.40 : HGL = < 186.893>;EGL= < 187.2 90>;PLOWLINE= < 185.960> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 97.40 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 185.96 186.89 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS *******************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Pax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE W B ^ * NOVEMBER 16, 2001 (REVISED JUNE 2, 2003) J.N. 98-1020 * * BY:CSO FILE:9735B.RES * *****************************.^*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FILE NAME: 9735B.DAT TIME/DATE OF STUDY: 09:00 06/02/2003 *****************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) ^28-50- 0.93 DC 86.41 0.63* 105 45 ) FRICTION ^"^•36- 0.93*DC 86.41 0.93*Dc 86.41 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE =25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************^*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 128.50 FLOWLINE ELEVATION = 183.70 PIPE FLOW = 5.84 CPS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 184.080 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH{ 0.38 FT.) IS LESS THAN CRITICAL DEPTH( 0.93 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH POR UPSTREAM RUN ANALYSIS NODE 128.50 : HGL = < 184.330>;EGL= < 185.398>;FLOWLINE= < 183.700> *****************************^*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^ FLOW PROCESS PROM NODE 97.35 TO NODE 97.36 IS CODE = 1 UPSTREAM NODE 97.36 ELEVATION = 184.25 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 11.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.51 CRITICAL DEPTH(FT) = 0 .93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.014 0.058 0.136 0.252 0.409 0.614 872 191 579 048 609 279 076 027 164 528 178 0 1 1 2 2 3 4 5 6 7 9 11.195 11.250 FLOW DEPTH (FT) 0.933 916 899 882 866 849 832 815 798 782 765 748 731 714 698 681 664 647 630 630 VELOCITY (FT/SEC) 5 .055 5.164 5.279 5.400 5.527 ,661 . 802 ,950 ,106 .272 6.446 6.630 .826 .033 .253 .486 .735 8.000 8.283 8.289 SPECIFIC ENERGY(FT) 1.330 1.330 1.332 1.335 .340 .347 ,355 .365 ,378 ,393 1.410 1.431 .455 .483 ,515 .552 .594 .642 .696 .698 1, 1. 1, 1. 1, 1. 1. 1. PRESSURE+ MOMENTUM(POUNDS) 86 .41 86.45 86.58 86.80 87.12 87.54 88.06 88.70 89.46 90.34 91.35 92.50 93.80 95.26 96.89 98.71 100.72 102.94 105.39 105.45 NODE 97.36 : HGL = < 185.183>;EGL= < 185.580>;PLOWLINE= < 184.250> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 97.36 FLOWLINE ELEVATION = 184.25 ASSUMED UPSTREAM CONTROL HGL = 185.18 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS INSERT DRAWINGS HERE