Loading...
HomeMy WebLinkAboutCT 00-02; CALAVERA HILLS PHASE II; HYDROLOGY STUDY CALAVERA HILLS PHASE II; 2002-05-03HYDROLOGY STUDY FOR CALAVERA HILLS PHASE II Prepared By: O'DAY CONSULTANTS 5900 Pasteur Court, Suite 100 Carlsbad, Califomia 92008 (760) 931-7700 May 3, 2002 George O'gay (j RCE 320 Registration Expires 12/31/04 V • Prepared By: Checked By: GO CT OD-0> TABLE 2 RUNOFF COEFFICIENTS (RATIONAL METHOD) DEVELOPED AREAS (URBAN) Land Use Residential: Single FamiIy Multi-Units Mob iIe homes Rural (lots greater than 1/2 acre) Commerci al (2) 80% Impervious Industrial(2) 90% Impervious Coefficient, C So?1 Group (1) A B c D .40 .45 .50 .55 .50 .60 .70 M .50 .55 .65 .30 .35 .40 .45 .70 .75 .80 .85 .80 .85 .90 .95 NOTES: (1) Soil Group maus axe available at the offices of the Department of Public Works. {2)whe re actual conditions deviate significantly from the tabulated impervious- ness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil.group. Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C =12 x 0.85 = 0,53 80 IV-A-9 APPENDIX IX-B Rev. 5/81 CITY OF SAN MARCOS CITY OF ENCINITAS mmTY MAP NO SCALE COUffTY OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL 100-YEAR 6-l{0Ul PS^ECiPITATIOiJ 45' ISOPLUVIALS pnECiriTATion n\ OF lOO-YEAR 6-HOUR lEuTMS Cr AM liXI! 30' 15' 33' 45' Prepn U.S. DEPARTMEN SPECIAL STUDIES BRANCH, OFFICE OF 11 30'_ 118' a by |- OF COMMERCE NATIONAL OCEANIC AND AT.^|(lSPIIEKtC ADMINISTRATION DROLOGV, NATIONAL WEATHER SERVICE 5 Revised 1/85 APPENDIX XI-F. COUNTY OF SAN DIEGO OEPARTMENT OF SANITATION 6- FLOOD CONTROL 45' 33' 30' 15 t|5 Hrepii U.S. DliPARTMtN NATIONAL OCtAMC AND A I .-, SPECIAL STUOIES BKANCII, OKl'ICE OF M 100-YEAR 24-IIOlj[l PRECIPITATIOM 20-^ISOPLUVIALS O.r 100 -YEAR 24-IIOUR PRECIPITATION IN ENTHS OF AN INCH 30 I' 30' 117' :ifii I K. APPHNniX XI-ll INTENSITY^DURATIOlStSIGN CHART TpTriTITrn.liI I H I Minliii.nmi.miuirpr. • T i.l.iu.l.ui-H injlhn ;j Equation; I » 7.44 P, D ''^^^ I = Intensity (In./Hr.) » 6 Hr. Precipitation (In.) D * Duration (Min.) Directions for Application: 1) From precipitation naps detennine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed in the County Hydrology Manual (10, 50 and 100 yr. maps included in the Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation. (Not applicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency yr. 1) Pfi = In.. Pp,= y.S . *Pfi = ^Sl* 2) Adjusted *Pg= 3-/a 94 3) t^ = 4) I = min. in/hr. "^Not Applicable to Deser Minutes niit-a-Unn Revised 1/85 APPENDIX XI-A a/es/9A/ y9^£/ps 0ir£/eL/PA/£> r/Af£ or FLOW CL//?\/SS £xa/T}p/a •• £*cac^ • Ol^er/<7/)e/£/ci¥/fnrf '/S M//7£//e^S SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAL APPROVED /V- .>v^/^ -r V URBAN AREAS OVERLAND TIME OF FLOW CURVES DATE APPENDIX X-C 2% 30 40 50 DISCHARGE (CFS.) EXAMPLE: Given: Q = iQ S= 2.5% Chort gives: Oepth = 0.4, Velocity = 4.4 f. pis. SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAL APPROVED /3./J.Miyj^ry^^tL4yhri GUTTE.f: AND ROADWAY DISCHARGE-VELOCITY CHART DATE APPENDIX X-D r\/_/\_ I -3 —/oaa 900 - BOO - TOO - £00 \ -SOO ^\ -40O Fee/ —Soaa —4aao —3ooo —zaaa £QlI/?r/OA/ 7c- .JBS 77/??e o/ co/tcej77/7z//o^ t^P-. Lsng/A o/ iva/ersAed Kf^ e/Arcf/i^e s/ooe //ne (See Append/X K-i L Aff/es Fee/ //in/z-s 4— /O- • 3ao • 200 •/oo \ £ — 4- 3- 2-\ \ /^. • SO 40 — 30 OS — NOTE jFOR NATURAL WATERSHED^ n ADD TEN MINUTES TO \ COMPLiTED TIME OF CON- I |CENTRAT10N- J /O 5 — 4^0 — JOOO \ 20OO — /aoo — /600 /aao V-/2aa - /ooa — 900 — 800 • 700 — 600 -SOO — 400 — 30O — 200 \ \ H /l^/'/tu/es — 240 /SO /£0 /OO 90 80 70 -60 - SO — 40 — 30 - 20 /8 /6 /2 /O 9 a 7 6 — 4- — J SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAL APPROVED , //• ./^-^^T^^^v^ -^^^JCAX . NOMOGRAPH FOR DETERMINATION OF TIME OF CONCENTRATION (Tc) FOR NATURAL WATERSHEDS DATE APPENDIX X-A IV-A-10 Rev. 5/81 Inlet Sizing AT ^/^lOM (Z5±35LJk^rL5i^. i^Sl ^ 3-^ - ^ ^V^yl/.. AC l.'''/z-'-''%'Z.2\' Ml Cki^,hio NL 6OAO ^REA= '/z ^l^U04 = Co^zd)bM^.H^l ' = 5.55 CPS , ^l^M?. .^^rmy^i..... . ..... . . ^ ; Ll%l^'%l ?.T8: AT -yrAr^oM /3V^-5?^ (NO/ZTM ^^cg) - l3^-50 IOOO' - 5(p' -- Q3tD6F ' /. Ad T/PE 'B-r fM6£T L'- 12,' (ir nP^him&) CM^o^ toko 41- It A-n^.&^ „ ^ %^±^Mm ^ _ Jioo-^^^^&^lW" M^BCAA X ____ (.dLEr kr i^^Mpg : „ Mia3i.L^jAr± ™ 'p.^^ 0.1 Li6~%'^^ & %ir'^ .^^rOXjS^- AT 5TAT|0^y /W^5D (NORTH SI be) ... C = = (0.65y^.'3&yi.38) T S.IH GFS /5^5:3 -/53-S5 3I.6M05F 1^5^00 • 52. i^5(:9sF G^,0°IOSF ' IM1A£L 1^' lOMlhl TVPE "S" IMI F-r CopE^NtNSi' ^IN) ..-444.. (•t+ 4il—. ^Jl^^fS I .^^ Q-onuOir^i^y^ „ \JfLz^OLLlQj33^.^D^l^^ IZ^-'O-'hll Z- _ _ :^.A.mL^^^ j^^nl /.yse g-i ^/^b mkk.. 4^^.^.' ^- Sfe- M-f25- (MJrBkerM^ --^-^^ - : Q -Dn L (A^ opJ"^ _ . i50-onLip>^^-t0^24^^^^^^^ „ , , _ -4M..i^-4^^ , .„.^_J4.-J.^L4&„ 4I;„_.CI..XLi^i:4.i- ..'^i-i.Dn.LijLv^^^i). Li:a..iLl.l -Jlli_-^^--4u-iX^ ^A'M.l^ A.Jl^J^rLM:C,jz- L±(J^ -frf Hf —fit — ~^QO—--~™^^---:»-T— \ 7/2. 4+-... _j$.-.azL£^.±.<il. 5,\g -_anL gjl......^./.. .-..|5..^s' CfS.. Q-o.-iLCfl.+.ui^ : C).5xrpn KD.-i^O-Z) ^ . W - " ^\00' Z , q.:._Q.iL/^' -^^^ _ 0.^-^^ ^ '..JlSz^^.&:r\^l^ ..Ji. lri\r^Q.^z^3l±.il.'^^ fyioQ-^ 6.tDc^.^ O.Z5a^^\'OcF$ -,(^.4^cfi> . Q -o-nLdj-i^^^i-^ _M^OnlJjh3^.tj2,P^'^..__ _ (Pt^.:=O.^LlDa.^^k'). ^. _ ^ICO^•'Z-O CF-p D .ZD CPS r.^Je„«=&. 5'^lQ.-r.Q..nL<LQ..5.?>k.") ^ jf. 4/) „ .......a.S.l.SL.l A'..L..iaM _..4-r./^l mhtisstj^^^xi^!^^^^^ ...i?te^s...5;81.£:PS..^±Z.5S^Es.- &dT<y=%. ._ w Q.-..GJL^^±tiV*'^_^....^5....... - iij &-n:^.on_LC2'i^*Qi?>^^ .a ^,_a^0.1L(A6^(el - ^-n ^...a,-?-'^ - - - _ O.bl'^ J.osc. i^'link^ _ .U'GriL(J>^M^^ -• « bn+ - an L-(.O.^^^. +Q.-^^') to,'M'-onL(o.'SS(^y-^^ Joat-, /--•ze-o' _ .e---a.ii-^.if^'~ ^ 4.2-1 -- or\/J_D<'hi, ^o.t^y^ ^\YM(d^ m^2^.m 7U)^S,O(L) Lm^?& \^ ^^.atCA+u^^^' 2-,02 - on L(.O.WO.Z^V'^ O.^i ..Ju^.l-5.L^^,.., _ML._(, = iLn . 0,3^_ J,jyic ^-l iKiief 13' mkt^Q^^llDJt^^^^^ 6i.l'^iV. ^. Q^:^.3ALce^ ^_ .. _ . a _ . ^ ^.^^A^i^^ /V _ _ ; —.— ^uu:^3^-i^:fe- ^^-^^ - - ~^ ^- • xrr 3!.©Lr:£>n_t£^'M.i.P/iO_ ^J1_QJLC0S\2^^ 3.t>\ ^jn.^u?4z Oj'^^ ^ m"- ^-l"^ ^'^^ Q-OHLU^-^^^ 4vH - on L ^. '^3>'+ o, S2J, illli .;^ |). College Blvd '7>m efw^'i'^ L- San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 11/16/01 COLLEGE BLVD HYDROLOGY STUDY SYSTEM 100 NOVEMBER 15, 2001 J.N. 98-1020 BY:CSO FILE:C0LBD2 ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2002.000 to Point/Station 2004.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 377.26(Ft.) Lowest elevation = 37 6.92(Ft.) Elevation difference = 0.34(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.45 min. TC = [1.8*(l.l-C)*distance'^.5)/{% slope'" (1/3) ] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 0.34-^(1/3)]= 6.45 Rainfall intensity (I) = 5.814 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.4 94(CFS) Total initial stream area = 0.100(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2004.000 to Point/Station 2006.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 376.920(Ft.) End of street segment elevation = 375.820(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.027 Slope from grade break to crown (v/hz) = 0.027 Street flow is on [1] side(s) of the street Distance from curb to property line = 8.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.791(CFS) Depth of flow = 0.253(Ft.), Average velocity = 2.007(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.709(Ft.) Flow velocity = 2.01(Ft/s) Travel time = 0.83 min. TC = 7.28 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.377(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 0.548(CFS) for 0.120(Ac.) Total runoff = 1.043(CFS) Total area = 0.22(Ac.) Street flow at end of street = 1.043(CFS) Half street flow at end of street = 1.043(CFS) Depth of flow = 0.273(Ft.), Average velocity = 2.113(Ft/s) Flow width (from curb towards crown)= 5.436(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2006.000 to Point/Station 2008.000 **** PIPEFLOW TRAVEL TIME (User specified size) * * * * Upstream point/station elevation = 371.45(Ft.) Downstream point/station elevation = 370.84(Ft.) Pipe length = 21.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.043 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.043(CFS) Normal flow depth in pipe = 2.95(In.) Flow top width inside pipe = 13.34(In.) Critical depth could not be calculated. Pipe flow velocity = 5.50(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 7.34 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2008.000 to Point/Station 2010.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 370.84(Ft.) Downstream point/station elevation = 363.04(Ft.) Pipe length = 205.39(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.043(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.043(CFS) Normal flow depth in pipe = 2.76(In.) Flow top width inside pipe = 12.97(In.) Critical depth could not be calculated. Pipe flow velocity = 6.07(Ft/s) Travel time through pipe = 0.56 min. Time of concentration (TC) = 7.91 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2010.000 to Point/Station 2010.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.220(Ac.) Runoff from this stream = 1.043(CFS) Time of concentration = 7.91 min. Rainfall intensity = 5.098(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3002.000 to Point/Station 3004.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 377.31(Ft.) Lowest elevation = 374.09(Ft.) Elevation difference = 3.22(Ft.) Time of concentration calculated by the urban areas overland fl ow method (App X—C) = 3.05 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope-" (1/3) ] TC = [1.8*(l.l-0.8500)*(100.00^.5)/( 3.22^^(1/3)]= 3.05 Setting time of concentration to 5 rainutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.641(CFS) Total initial stream area = 0.110(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3004.000 to Point/Station 3006.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 374.090(Ft.; End of street segment elevation = 371.600(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.027 Slope from grade break to crown (v/hz) = 0.027 Street flow is on [1] side(s) of the street Distance from curb to property line = 8.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.990(CFS) Depth of flow = 0.241(Ft.), Average velocity = 2.929(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.245(Ft.) Flow velocity = 2.93(Ft/s) Travel tirae = 0.57 min. TC = 5.57 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 6.390(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 0.652(CFS) for 0.120(Ac.) Total runoff = 1.292(CFS) Total area = 0.23(Ac.) Street flow at end of street = 1.292(CFS) Half street flow at end of street = 1.292(CFS) Depth of flow = 0.259(Ft.), Average velocity = 3.065(Ft/s) Flow width (from curb towards crown)= 4.922(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3006.000 to Point/Station 2010.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 363.67(Ft.) Downstream point/station elevation = 363.04(Ft.) Pipe length = 21.25 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.292(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.292(CFS) Normal flow depth in pipe = 3.26(In.) Flow top width inside pipe = 13.86(In.) Critical Depth = 5.10(In.) Pipe flow velocity = 5.93(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 5.63 min. ++++++++++++++++++++++++++++++++++.++++++++++++++++++++++++++++++ Process from Point/Station 2010.000 to Point/Station 2010.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.230(Ac.) Runoff from this stream = 1.292(CFS) Time of concentration = 5.63 min. Rainfall intensity = 6.347(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qraax(2) 1.043 1.292 1.000 * 0.803 * 1.000 * 1.000 * 7 . 91 5. 63 1.000 * 1.000 * 0.712 * 1.000 * 1.043) 1.292) 5.098 6.347 1.043) + 1.292) + + + 2.081 2.035 Total of 2 streams to confluence: Flow rates before confluence point: 1.043 1.292 Maximum flow rates at confluence using above data: 2.081 2.035 Area of streams before confluence: 0.220 0.230 Results of confluence: Total flow rate = 2.081(CFS) Time of concentration = 7.906 rain. Effective stream area after confluence = 0.450(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2010.000 to Point/Station 2012.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 363.04(Ft.) Downstream point/station elevation = 357.14(Ft.) Pipe length = 205.39(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.081(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.081(CFS) Normal flow depth in pipe = 4.15(In.) Flow top width inside pipe = 15.17(In.) Critical Depth = 6.53(In.) Pipe flow velocity = 6.74(Ft/s) Travel time through pipe = 0.51 min. Time of concentration (TC) = 8.41 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2012.000 to Point/Station 2012.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream nuraber 1 Stream flow area = 0.450(Ac.) Runoff from this stream = 2.081(CFS) Time of concentration = 8.41 rain. Rainfall intensity = 4.897(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4002.000 to Point/Station 4004.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 373.04(Ft.) Lowest elevation = 368.39(Ft.) Elevation difference = 4.65(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.70 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope'^ (1/3) ] TC == [1.8*(l.l-0.8500)*(100.00'^.5)/( 4.65''(l/3)]= 2.70 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.641(CFS) Total initial stream area = 0.110(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4004.000 to Point/Station 4006.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** * + * * Top of street segment elevation = 368.390(Ft.) End of street segment elevation = 364.460(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.027 Slope from grade break to crown (v/hz) = 0.027 Street flow is on [1] side(s) of the street Distance from curb to property line = 8.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.990(CFS) Depth of flow = 0.226(Ft.), Average velocity = 3.565(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.682(Ft.) Flow velocity = 3.57(Ft/s) Travel time = 0.47 min. TC = 5.47 min. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 6.467(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.850 Subarea runoff = 0.660(CFS) for 0.120(Ac.) Total runoff = 1.300(CFS) Total area = 0.23(Ac.) Street flow at end of street = 1.300(CFS) Half street flow at end of street = 1.300(CFS) Depth of flow = 0.244(Ft.), Average velocity = 3.706(Ft/s) Flow width (from curb towards crown)= 4.356(Ft.) Process from Point/Station 4006.000 to Point/Station 2012.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 357.77(Ft.) Downstream point/station elevation = 357.14(Ft.) Pipe length = 21.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.300 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.300(CFS) Normal flow depth in pipe = 3.27(In.) Flow top width inside pipe = 13.87(In.) Critical Depth = 5.12(In.) Pipe flow velocity = 5.94(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 5.53 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2012.000 to Point/Station 2012.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 2 Stream flow area = 0.230(Ac.) Runoff from this stream = 1.300(CFS) Time of concentration = 5.53 min. Rainfall intensity = 6.422(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.081 8.41 4.897 2 1.300 5.53 6.422 Qraax(1) Qmax(2) = 1.000 * 1.000 * 2.081) + 0.763 * 1.000 * 1.300) + = 3.072 1.000 * 0.657 * 2.081) + 1.000 * 1.000 * 1.300) + = 2.667 Total of 2 streams to confluence: Flow rates before confluence point: 2.081 1.300 Maximum flow rates at confluence using above data: 3.072 2.667 Area of streams before confluence: 0.450 0.230 Results of confluence: Total flow rate = 3.072(CFS) Time of concentration = 8.414 min. Effective stream area after confluence = 0.680(Ac.) Process from Point/Station 2012.000 to Point/Station 2014.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 357.14(Ft.) Downstreara point/station elevation = 345.99(Ft.) Pipe length = 205.39(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.072(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.072(CFS) Normal flow depth in pipe = 4.31(In.) Flow top width inside pipe = 15.36(In.) Critical Depth = 8.00(In.) Pipe flow velocity = 9.46(Ft/s) Travel time through pipe = 0.36 min. Time of concentration (TC) = 8.78 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.680(Ac.) Runoff from this stream = 3.072(CFS) Time of concentration = 8.78 min. Rainfall intensity = 4.766(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5002.000 to Point/Station 5004.000 **** INITIAL AREA EVALUATION **** 0.000 0.000 0.000 1.000 Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 364.46(Ft.) Lowest elevation = 359.81(Ft.) Elevation difference = 4.65(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.70 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.8500)*(100.00^.5)/( 4.65^(1/3)]= 2.70 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.641(CFS) Total initial stream area = 0.110(Ac.) Process from Point/Station 5004.000 to Point/Station 5006.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 359.810(Ft.) End of street segment elevation = 354.450(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.027 Slope from grade break to crown (v/hz) = 0.027 Street flow is on [1] side(s) of the street Distance from curb to property line = 8.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.990(CFS) Depth of flow = 0.215(Ft.), Average velocity = 4.099(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.298(Ft.) Flow velocity = 4.10(Ft/s) Travel time = 0.41 min. TC = 5.41 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 6.513(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 0.664(CFS) for 0.120(Ac.) Total runoff = 1.305(CFS) Total area = 0.23(Ac.) Street flow at end of street = 1.305(CFS) Half street flow at end of street = 1.305(CFS) Depth of flow = 0.234(Ft.), Average velocity = 4.230(Ft/s) Flow width (from curb towards crown)= 3.980(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5006.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 34 6.64(Ft.) Downstream point/station elevation = 34 6.00(Ft.) Pipe length = 21.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.305(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.305(CFS) Normal flow depth in pipe = 3.26(In.) Flow top width inside pipe = 13.87(In.) Critical Depth = 5.12(In.) Pipe flow velocity = 5.98(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 5.47 min. Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.230(Ac.) Runoff from this stream = 1.305(CFS) Time of concentration = 5.47 rain. Rainfall intensity = 6.468(In/Hr) Summary of streara data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) = 3. 1, Qmax(2) = 072 305 1.000 0.737 .000 ,000 8.78 5.47 1.000 * 1.000 * 0.623 * 1.000 * 4 .766 6.468 3.072) + 1.305) + = 3.072) + 1.305) + = 4.034 3.21f Total of 2 streams to confluence: Flow rates before confluence point: 3.072 1.305 Maximum flow rates at confluence using above data: 4.034 3.218 Area of streams before confluence: 0.680 0.230 Results of confluence: Total flow rate = 4.034(CFS) Time of concentration = 8.776 min. Effective stream area after confluence = 0.910(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 346.00(Ft.) Downstream point/station elevation = 334.40(Ft.) Pipe length = 147.74(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.034(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.034(CFS) Normal flow depth in pipe = 4.50(In.) Flow top width inside pipe = 15.59(In.) Critical Depth = 9.23(In.) Pipe flow velocity = 11.67(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 8.99 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.910(Ac.) Runoff from this streara = 4.034(CFS) Time of concentration = 8.99 min. Rainfall intensity = 4.693(In/Hr) +++++++++++++++++++++H Process from Point/Station **** INITIAL AREA EVALUATION 201.000 to Point/Station 202.000 ] Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type Initial subarea flow distance = 100.00(Ft.) Highest elevation = 377.26(Ft.) Lowest elevation = 376.92(Ft.) Elevation difference = 0.34(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.45 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope" (1/3) ] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 0 . 34-" (1/3) ] = 6.45 Rainfall intensity (I) = 5.814 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.4 94(CFS) Total initial streara area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 203.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 376.920(Ft.) 344.340(Ft.) Top of street segment elevation = End of street segment elevation = Length of street segment = 846.440(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.534(CFS) Depth of flow = 0.310(Ft.), Average velocity = 4.149(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.655(Ft.) Flow velocity = 4.15(Ft/s) Travel time = 3.40 min. TC = 9.85 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 4.424(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 4.626(CFS) for 1.230(Ac.) Total runoff = 5.120(CFS) Total area = 1.33(Ac.) Street flow at end of street = 5.120(CFS) Half street flow at end of street = 5.120(CFS) Depth of flow = 0.340(Ft.), Average velocity = 4.508(Ft/s) Flow width (from curb towards crown)= 10.165(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 204.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 336.42(Ft.) Downstream point/station elevation = 335.10(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.120(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.120(CFS) Normal flow depth in pipe = 6.76(In.) Flow top width inside pipe = 17.43(In.) Critical Depth = 10.45(In.) Pipe flow velocity = 8.44(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 9.95 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Time of concentration = 9.95 rain. Rainfall intensity = 4.396(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C Subarea runoff = 0.523(CFS) for 0.140(Ac.) Total runoff = 5.643(CFS) Total area = 1.47(Ac. 0.850 ++++++++++H Process from Point/Station 204.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** H-+++++++++++ 106.000 Upstream point/station elevation = 335.10(Ft.) Downstream point/station elevation = 334.44(Ft.) Pipe length = 21.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.643(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.643(CFS) Normal flow depth in pipe = 6.82(In.) Flow top width inside pipe = 17.46(In.) Critical Depth = 11.00(In.) Pipe flow velocity = 9.20(Ft/s) Travel time through pipe = 0.04 rain. Time of concentration (TC) = 9.98 min. Process from Point/Station 106.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 106.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.470(Ac.) Runoff from this stream = 5.643(CFS) Time of concentration = 9.98 min. Rainfall intensity = 4.385(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 Qmax(1) = ,034 , 643 ,000 ,000 Qmax(2) = 0. 934 1.000 8 . 99 9. 98 1.000 * 0.900 * 1.000 * 1.000 * 4.034) 5.643) 4.034) 5.643) 4 . 693 4 .385 + + = + + = 9.113 9.412 Total of 2 streams to confluence: Flow rates before confluence point: 4.034 5.643 Maximum flow rates at confluence using above data: 9.113 9.412 Area of strearas before confluence: 0.910 1.470 Results of confluence: Total flow rate = 9.412(CFS) Time of concentration = 9.985 min. Effective stream area after confluence = 2.380(Ac.) Process from Point/Station 106.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Time of concentration = 9.98 min. Rainfall intensity = 4.385(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 1.938(CFS) for 0.520(Ac.) Total runoff = 11.350(CFS) Total area = 2.90(Ac.) Process from Point/Station 106.000 to Point/Station 108.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 334.40(Ft.) Downstream point/station elevation = 321.00(Ft.) Pipe length = 228.56(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.350(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 11.350(CFS) Normal flow depth in pipe = 8.43(In.) Flow top width inside pipe = 17.96(In.) Critical Depth = 15.43(In.) Pipe flow velocity = 13.98(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 10.26 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 321.00(Ft.) Downstream point/station elevation = 301.40(Ft.) Pipe length = 234.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.350(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 11.350(CFS) Normal flow depth in pipe = 7. 62(In.) Flow top width inside pipe = 17.79(In.) Critical Depth = 15.43(In.) Pipe flow velocity = 15.95(Ft/s) Travel time through pipe = 0.24 min. Time of concentration (TC) = 10.50 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 1 Stream flow area = 2.900(Ac.) Runoff from this stream = 11.350(CFS) Time of concentration = 10.50 min. Rainfall intensity = 4.245(In/Hr) -+++++++++++++++++++++++ Process from Point/Station 301.000 to Point/Station 302.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 344.76(Ft.) Lowest elevation = 337.76(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.35 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 7 . OO'^ (1/3) ] = 2.35 Setting time of concentration to 5 rainutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 303.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 337.760(Ft.) End of street segment elevation = 313.960(Ft.) Length of street segment = 363.560(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.951(CFS) Depth of flow = 0.251(Ft.), Average velocity = 4.548(Ft/s) streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.713(Ft.) Flow velocity = 4.55(Ft/s) Travel time = 1.33 min. TC = 6.33 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.882 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 2.350(CFS) for 0.470(Ac.) Total runoff = 2.932(CFS) Total area = 0.57(Ac.) Street flow at end of street = 2.932(CFS) Half street flow at end of street = 2.932(CFS) Depth of flow = 0.277(Ft.), Average velocity = 4.917(Ft/s) Flow width (from curb towards crown)= 7.027(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 302.95(Ft.) Downstream point/station elevation = 301.40(Ft.) Pipe length = 69.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.932(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.932(CFS) Normal flow depth in pipe = 5.27(In.) Flow top width inside pipe = 16.38(In.) Critical Depth = 7.80(In.) Pipe flow velocity = 6.81(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 6.50 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.570(Ac.) Runoff frora this streara = 2.932(CFS) Time of concentration = 6.50 min. Rainfall intensity = 5.783(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 304.000 to Point/Station 305.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 344.76(Ft.) Lowest elevation = 337.76(Ft.) Elevation difference = 7.00(Ft.) Tirae of concentration calculated by the urban areas overland flow method (App X-C) = 2.35 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope"(l/3)] TC = [1.8*(l.l-0.8500)*(100.00'".5)/{ 7 . 00'^ (1/3) ]= 2.35 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 305.000 to Point/Station 306.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 337.760(Ft.) End of street segment elevation = 313.960(Ft.) Length of street segment = 363.560(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.951(CFS) Depth of flow = 0.251(Ft.), Average velocity = 4.548(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 5.713(Ft.) Flow velocity = 4.55(Ft/s) Travel time = 1.33 min. TC = 6.33 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.882(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 2.350(CFS) for 0.470{Ac.) Total runoff = 2.932(CFS) Total area = 0.57(Ac.) Street flow at end of street = 2.932(CFS) Half street flow at end of street = 2.932(CFS) Depth of flow = 0.277(Ft.), Average velocity = 4.917(Ft/s) Flow width (from curb towards crown)= 7.027(Ft.) Process from Point/Station 306.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 302.07(Ft.) Downstream point/station elevation = 301.40(Ft.) Pipe length = 16.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.932(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.932(CFS) Normal flow depth in pipe = 4.51(In.) Flow top width inside pipe = 15.60(In.) Critical Depth = 7.80 (In.) Pipe flow velocity = 8.47(Ft/s) Travel time through pipe = 0.03 rain. Time of concentration (TC) = 6.36 min. Process from Point/Station 110.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 110.000 Along Main Stream nxamber: 1 in normal stream number 3 Stream flow area = 0.570(Ac.) Runoff from this stream = 2.932(CFS) Time of concentration = 6.36 min. Rainfall intensity = 5.863(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 11. 350 10. 50 4 245 2 2. 932 6. 50 5 783 3 2. 932 6. 36 5. 863 Qmax(1) = 1. 000 * 1. 000 * 11 350) + 0. 734 * 1. 000 * 2 932) + 0. 724 * 1. 000 * 2 932) + 15 625 Qmax(2) = 1. 000 * 0. 619 * 11 350) + 1. 000 * 1. 000 * 2 932) + 0. 986 * 1. 000 * 2 932) + 12 851 Qmax(3) = 1. 000 * 0. 606 * 11 350) + 1. 000 * 0. 979 2 932) + 1. 000 * 1. 000 * 2 932) + = 12 681 Total of 3 streams to confluence: Flow rates before confluence point: 11.350 2.932 2.932 Maximum flow rates at confluence using above data: 15.625 12.851 12.681 Area of streams before confluence: 2.900 0.570 0.570 Results of confluence: Total flow rate = 15.625(CFS) Time of concentration = 10.502 min. Effective stream area after confluence = 4.040(Ac.) +++++++++++++++++++++++++++++++++++++H Process from Point/Station 110.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** -++++ 111.000 Upstream point/station elevation = 301.40(Ft.) Downstream point/station elevation = 299.25(Ft.) Pipe length = 52.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.625(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 15.625(CFS) Normal flow depth in pipe = 11.44(In.) Flow top width inside pipe = 17.33(In.) Critical Depth = 17.02(In.) Pipe flow velocity = 13.20(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 10.57 rain. Process from Point/Station 111.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 111.000 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.040(Ac.) Runoff from this stream = 15.625(CFS) Time of concentration = 10.57 min. Rainfall intensity = 4.228(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1301.000 to Point/Station 1302.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type Rainfall intensity (I) = 5.400 for User specified values are as follows: TC = 7.23 min. Rain intensity = a 100.0 year storm 5.40(In/Hr) Total area 0.63(Ac. Total runoff 2.38(CFS) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1302.000 to Point/Station 111.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 299.80(Ft.) Downstream point/station elevation = 299.25(Ft.) Pipe length = 25.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.380(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.380(CFS) Normal flow depth in pipe = 4.75(In.) Flow top width inside pipe = 15.87(In.) Critical Depth = 7.00(In.) Pipe flow velocity = 6.37(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 7.30 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 111.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.630(Ac.) Runoff from this stream = 2.380(CFS) Time of concentration = 7.30 min. Rainfall intensity = 5.369(In/Hr) Summary of stream data: Streara Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) 1 15.625 10.57 4.228 2 2.380 7.30 5.369 Qmax(1) = 1.000 * 1.000 * 15.625) + 0.787 * 1.000 * 2.380) + = 17.499 Qmax(2) = 1.000 * 0.690 * 15.625) + 1.000 * 1.000 * 2.380) + = 13.167 Total of 2 main strearas to confluence: Flow rates before confluence point: 15.625 2.380 Maximum flow rates at confluence using above data: 17.499 13.167 Area of streams before confluence: 4.040 0.630 Results of confluence: Total flow rate = 17.499(CFS) Time of concentration = 10.567 min. Effective stream area after confluence = 4.670(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 299.25(Ft.) Downstream point/station elevation = 293.00(Ft.) Pipe length = 211.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.499(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 17.499(CFS) Normal flow depth in pipe = 14.25 (In.) Flow top width inside pipe = 14.62(In. Critical depth could not be calculated. Pipe flow velocity = 11.66(Ft/s) Travel time through pipe = 0.30 min. Time of concentration (TC) = 10.87 min. ) Process from Point/Station 112.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 293.00(Ft.) Downstream point/station elevation = 281.25(Ft.) Pipe length = 262.78(Ft.) Manning's N = 0.013 -++ 114.000 No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow = 17.499(CFS Normal flow depth in pipe = 12.05(In.) Flow top width inside pipe = 16.94(In.) Critical depth could not be calculated. Pipe flow velocity = 13.93(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 11.18 rain. 17.499(CFS) Process from Point/Station 114.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 114.000 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.670(Ac.) Runoff from this stream = 17.499(CFS) Time of concentration = 11.18 min. Rainfall intensity = 4.076(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1501.000 to Point/Station 1502.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MULTI - UNITS area type Rainfall intensity (I) = 3.662 for User specified values are as follows: TC = 13.20 min. Rain intensity = ] 100.0 year storm 3.66(In/Hr) Total area = 13.50(Ac.) Total runoff = 40.80(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1502.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 282.70(Ft.) Downstream point/station elevation = 280.50(Ft.) Pipe length = 168.35(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 40.800(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 40.800(CFS) Normal flow depth in pipe = 21.66(In.) Flow top width inside pipe = 26.88(In.) Critical Depth = 25.76(In.) Pipe flow velocity = 10.76(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 13.4 6 min. ++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 114.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** -++++++++++++ 114.000 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 13.500(Ac.) Runoff from this stream = 40.800(CFS) Time of concentration = 13.4 6 min. Rainfall intensity = 3.617(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 17.499 40.800 Qmax(1) = Qraax(2) = 1.000 1.000 0.887 1.000 11.18 13.46 1.000 * 0.831 * 1.000 * 1.000 * 4 .076 3.617 17.499) + 40.800) + = 17.499) + 40.800) + = 51.396 56.327 Total of 2 main streams to confluence: Flow rates before confluence point: 17.499 40.800 Maximum flow rates at confluence using above data: 51.396 56.327 Area of streams before confluence: 4.670 13.500 Results of confluence: Total flow rate = 56.327(CFS) Time of concentration = 13.4 61 min. Effective streara area after confluence = 18.170(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 281.25(Ft.) Downstream point/station elevation = 273.74(Ft.) Pipe length = 172.11(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 56.327(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 56.327(CFS) Normal flow depth in pipe = 17.74(In.) Flow top width inside pipe = 29.49(In.) Critical Depth = 28.38(In.) Pipe flow velocity = 18.63(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 13.61 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 118.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 273.74(Ft.) Downstream point/station elevation = 252.22(Ft.) Pipe length = 294.43(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 56.327(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 56.327(CFS) Normal flow depth in pipe = 15.14(In.) Flow top width inside pipe = 30.00(In.) Critical Depth = 28.38(In.) Pipe flow velocity = 22.68(Ft/s) Travel time through pipe = 0.22 rain. Time of concentration (TC) = 13.83 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 18.170(Ac.) Runoff from this stream = 56.327(CFS) Time of concentration = 13.83 min. Rainfall intensity = 3.554(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 401.000 to Point/Station 402.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 313.96(Ft.) Lowest elevation = 309.16(Ft.) Elevation difference = 4.80(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.67 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope" (1/3)] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 4.80"(l/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) 2. 67 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 403.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ) 160(Ft. 620(Ft.) ) 6.0(In.) 41.000(Ft.) = 39.500(Ft. 020 ,020 Top of street segment elevation = 309 End of street segment elevation = 262 Length of street segment = 903.100(Ft Height of curb above gutter flowline = Width of half street (curb to crown) = Distance from crown to crossfall grade break Slope from gutter to grade break (v/hz) = 0 Slope from grade break to crown (v/hz) = 0 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.303(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.333(Ft.) Flow velocity = 4.71(Ft/s) Travel time = 3.19 min. Adding area flow to street fraction soil group group group group 3.756(CFS) 4.713(Ft/s) TC 8.19 rain. Decimal Decimal Decimal Decimal soil soil soil type A B C D fraction fraction fraction [COMMERCIAL area Rainfall intensity = 4. Runoff coefficient used for Subarea runoff = 4.615(CFS) Total runoff = 5.198(CFS) 000 000 000 000 ] 981(In/Hr) for a 100.0 year storm sub-area. Rational method,Q=KCIA, C for 1.090(Ac.) Total area = 1.19(Ac. 0.850 Street flow at end of street = 5.198(CFS) Half street flow at end of street = 5.198(CFS) Depth of flow = 0.329(Ft.), Average velocity = 5.064(Ft/s) Flow width (from curb towards crown)^ 9.612(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 403.000 to Point/Station 118.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 254.07(Ft.) Downstream point/station elevation = 252.00(Ft.) Pipe length = 71.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow = 5 Normal flow depth in pipe = 6.64(In.) Flow top width inside pipe = 17.37(In.) Critical Depth = 10.53(In.) Pipe flow velocity = 8.78(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 8.33 min. 5.198(CFS) 198(CFS) ++++++++++++++++++++++++++++++++++++4-+++++++++++++++++++++++++^ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Streara flow area = 1.190(Ac.) Runoff from this stream = 5.198(CFS) Time of concentration = 8.33 min. Rainfall intensity = 4.929(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501.000 to Point/Station 502.000 **** INITIAL AREA EVALUATION **** ,000 ,000 100.00(Ft.) ] Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0 Decimal fraction soil group D = 1 [COMMERCIAL area type Initial subarea flow distance = Highest elevation = 313.96(Ft.) Lowest elevation = 309.16(Ft.) Elevation difference = 4.80(Ft.) Time of concentration calculated by the urban areas overland fl ow method (App X-C) = 2. 67 min TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 4.80"(l/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) 2. 67 is C = 0.850 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 503.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segraent elevation = 309.160(Ft.) End of street segment elevation = 262.620(Ft.) Length of street segment = 903.100(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.756(CFS) Depth of flow = 0.303(Ft.), Average velocity = 4.713(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.333(Ft.) Flow velocity = 4.71(Ft/s) Travel time = 3.19 rain. TC = 8.19 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 4.981(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 4.615(CFS) for 1.090(Ac.) Total runoff = 5.198(CFS) Total area = 1.19(Ac.) Street flow at end of street = 5.198(CFS) Half street flow at end of street = 5.198(CFS) Depth of flow = 0.329(Ft.), Average velocity = 5.064(Ft/s) Flow width (from curb towards crown)= 9.612(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 503.000 to Point/Station 118.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 252.85(Ft.) Downstream point/station elevation = 252.00(Ft.) Pipe length = 17.83(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.198 (CFS) Given pipe size = 18.00 (In.) Calculated individual pipe flow = 5.198(CFS) Normal flow depth in pipe = 5.82(In.) Flow top width inside pipe = 16.84(In.) Critical Depth = 10.53(In.) Pipe flow velocity = 10.50(Ft/s) Travel time through pipe = 0.03 rain. Time of concentration (TC) = 8.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in normal stream number 3 Stream flow area = 1.190(Ac.) Runoff from this stream = 5.198(CFS) Time of concentration = 8.22 min. Rainfall intensity = 4.970(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax(1) 56. 5, Qmax(2) = Qmax(3) = 1. 1, 0. 1. 1, 1. 327 198 198 ,000 ,721 ,715 ,000 .000 . 992 000 000 000 13.83 8.33 8.22 1.000 * 1.000 * 1.000 * 0.602 * 1.000 * 1.000 * 0.594 * 0.987 * 1.000 * 3.554 4 . 929 4.970 56.327) + 5.198) + 5.198) + 56.327) + 5.198) + 5.198) + 56.327) + 5.198) + 5.198) + 63.791 44.272 43.813 Total of 3 streams to confluence: Flow rates before confluence point: 56.327 5.198 5.198 Maximum flow rates at confluence using above data: 63.791 44.272 43.813 Area of streams before confluence: 18.170 1.190 1.190 Results of confluence: Total flow rate = 63.791(CFS) Time of concentration = 13.831 min. Effective stream area after confluence = 20.550(Ac.) +++++++++++++• Process from Point/Station **** SUBAREA FLOW ADDITION 118.000 to Point/Station 118.000 * * * * Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Time of concentration = 13.83 min. Rainfall intensity = 3.554(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.195(CFS) for 0.100(Ac.) Total runoff = 63.986(CFS) Total area = 20.65(Ac.) Process from Point/Station 118.000 to Point/Station **** SUBAREA FLOW ADDITION **** -+++++ 118.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 13.83 min. Rainfall intensity = 3.554(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.254(CFS) for 0.130(Ac.) Total runoff = 64.241(CFS) Total area = 20.78(Ac.) +++++++++++++++++++++++++++++++++++++++++++++- Process from Point/Station 118.000 to Point/Station **** SUBAREA FLOW ADDITION **** -++++++++++ 118.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 13.83 min. Rainfall intensity = 3.554(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.997(CFS) for 0.510(Ac.) Total runoff = 65.237(CFS) Total area = 21.29(Ac.) Process from Point/Station 118.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 120.000 Upstream point/station elevation = 252.22(Ft.) Downstream point/station elevation = 248.40(Ft.) Pipe length = 48.70(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 65.237(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 65.237(CFS) Normal flow depth in pipe = 16.20(In.) Flow top width inside pipe = 29.90(In.) Critical depth could not be calculated. Pipe flow velocity = 24.15(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 13.8 6 min. Process from Point/Station 120.000 to Point/Station 120.000 CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 1 in normal stream number 1 Streara flow area = 21.290(Ac.) Runoff from this stream = 65.237(CFS) Time of concentration = 13.8 6 min. Rainfall intensity = 3.548(In/Hr) Process from Point/Station 601.000 to Point/Station 602.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity (I) = 4.129 for a 100.0 year storm User specified values are as follows: TC = 10.96 min. Rain intensity = 4.13(In/Hr) Total area = 2.11(Ac.) Total runoff = 4.82(CFS) Process from Point/Station 602.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 249.50(Ft.) Downstream point/station elevation = 24 8.77(Ft.) Pipe length = 26.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.820(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.820(CFS) Normal flow depth in pipe = 6.44(In.) Flow top width inside pipe = 17.26(In.) Critical Depth = 10.13(In.) Pipe flow velocity = 8.49(Ft/s) Travel time through pipe = 0.05 rain. Time of concentration (TC) = 11.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.110(Ac.) Runoff from this stream = 4.820(CFS) Time of concentration = 11.01 min. Rainfall intensity = 4.117(In/Hr) Summary of streara data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 65.237 13.86 3.548 2 4.820 11.01 4.117 Qmax(l) = 1.000 * 1.000 * 65.237) + 0.862 * 1.000 * 4.820) + = 69.392 Qmax(2) = 1.000 * 0.794 * 65.237) + 1.000 * 1.000 * 4.820) + = 56.630 Total of 2 streams to confluence: Flow rates before confluence point: 65.237 4.820 Maximum flow rates at confluence using above data: 69.392 56.630 Area of streams before confluence: 21.290 2.110 Results of confluence: Total flow rate = 69.392(CFS) Time of concentration = 13.865 min. Effective stream area after confluence = 23.400(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 122.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 248.44(Ft.) Downstream point/station elevation = 235.72(Ft.) Pipe length = 257.75(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 69.392(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 69.392(CFS) Normal flow depth in pipe = 19.59(In.) Flow top width inside pipe = 28.56(In.) Critical depth could not be calculated. Pipe flow velocity = 20.43(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 14.07 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 124.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 235.72(Ft.) Downstream point/station elevation = 217.84(Ft.) Pipe length = 255.69(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 69.392(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 69.392(CFS) Norraal flow depth in pipe = 17.44(In.) Flow top width inside pipe = 29.60(In.) Critical depth could not be calculated. Pipe flow velocity = 23.44(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 14.26 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 126.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 217.84(Ft.) Downstream point/station elevation = 205.84(Ft.) Pipe length = 169.31(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 69.392(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 69.392(CFS) Normal flow depth in pipe = 17.37(In.) Flow top width inside pipe = 29.62(In.) Critical depth could not be calculated. Pipe flow velocity = 23.56(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 14.38 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++H Process frora Point/Station 126.000 to Point/Station 128.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 205.84(Ft.) Downstream point/station elevation = 182.45(Ft.) Pipe length = 260.69(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 69.392(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 69.392(CFS) Normal flow depth in pipe = 16.14(In.) Flow top width inside pipe = 29.91(In.) Critical depth could not be calculated. Pipe flow velocity = 25.79(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 14.54 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 128.000 to Point/Station 128.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 1 in normal stream nuraber 1 Stream flow area = 23.400(Ac.) Runoff from this stream = 69.392(CFS) Time of concentration = 14.54 min. Rainfall intensity = 3.440(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 701.000 to Point/Station 702.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 262.62(Ft.) Lowest elevation = 256.20(Ft.) Elevation difference = 6.42(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.42 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.8500)*(100.00".5)/( 6.42"(l/3)]= 2.42 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 702.000 to Point/Station 703.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 256.200(Ft.) End of street segment elevation = 193.540(Ft.) Length of street segment = 896.210(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at raidpoint of street = 4.076(CFS) Depth of flow = 0.298(Ft.), Average velocity = 5.407(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.071(Ft.) Flow velocity = 5.41(Ft/s) Travel time = 2.7 6 min. TC = 7.7 6 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.158(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 5.261(CFS) for 1.200(Ac.) Total runoff = 5.844(CFS) Total area = 1.30(Ac.) Street flow at end of street = 5.844(CFS) Half street flow at end of street = 5.844(CFS) Depth of flow = 0.326(Ft.), Average velocity = 5.852(Ft/s) Flow width (from curb towards crown)= 9.466(Ft.) +++H Process from Point/Station 703.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 128.000 Upstream point/station elevation = 186.17(Ft.) Downstream point/station elevation = 182.45(Ft.) Pipe length = 69.25{Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.844(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.844(CFS) Normal flow depth in pipe = 6.01(In.) Flow top width inside pipe = 16.97(In.) Critical Depth = 11.21(In.) Pipe flow velocity = 11.32(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 7.86 min. Process from Point/Station 128.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 128.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.300(Ac.) Runoff from this stream = 5.844(CFS) Time of concentration = 7.86 min. Rainfall intensity = 5.115(In/Hr) +++++++++++++++++++++++++++++++++++++++++++•) Process from Point/Station 801.000 to Point/Station **** INITIAL AREA EVALUATION **** -++++++ 802.000 Decimal fraction Decimal fraction Decimal fraction Decimal fraction [COMMERCIAL area Initial subarea soil group A soil group B soil group C soil group D type flow distance 000 000 000 000 = 100.00(Ft.) Highest elevation = 262.62(Ft.) Lowest elevation = 256.20(Ft.) Elevation difference = 6.42(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.42 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 6.42"(l/3)]= Setting time of concentration to 5 rainutes Rainfall intensity (I) = 6.850 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) 2.42 storm is C = 0.850 +++++++++++++++++++++++++++++++++++++++++++4-+++++++++++++++++++++^ Process from Point/Station 802.000 to Point/Station 803.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 256.200(Ft.) End of street segment elevation = 193.540(Ft.) Length of street segment = 896.210(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.076(CFS) Depth of flow = 0.298(Ft.), Average velocity = 5.407(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.071(Ft.) Flow velocity = 5.41(Ft/s) Travel time = 2.7 6 rain. TC = 7.76 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.158(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 5.261(CFS) for 1.200(Ac.) Total runoff = 5.844(CFS) Total area = 1.30(Ac.) Street flow at end of street = 5.844(CFS) Half street flow at end of street = 5.844(CFS) Depth of flow = 0.326(Ft.), Average velocity = 5.852(Ft/s) Flow width (from curb towards crown)= 9.466(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 803.000 to Point/Station 128.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 184.47(Ft.) Downstream point/station elevation = 182.45(Ft.) Pipe length = 15.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.844 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.844(CFS) Normal flow depth in pipe = 4.76(In.) Flow top width inside pipe = 15.87(In.) Critical Depth = 11.21(In.) Pipe flow velocity = 15.65(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 7.78 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 128.000 Along Main Stream number: 1 in norraal stream number 3 Streara flow area = 1.300(Ac.) Runoff from this stream = 5.844(CFS) Time of concentration = 7.78 min. Rainfall intensity = 5.151(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 3 Qmax(1) Qmax(2) Qmax(3) 69.392 5.844 5.844 1.000 0. 673 0. 668 000 000 0.993 * 000 000 000 14.54 7.86 7.78 1.000 * 1.000 * 1.000 * 0.541 * 1.000 * 1.000 * 0.535 * 0.989 * 1.000 * 3. 440 5.115 5.151 69.392) + 5.844) + 5.844) + 69.392) + 5.844) + 5.844) + 69.392) + 5.844) + 5.844) + 77.225 49.167 48.735 Total of 3 streams to confluence: Flow rates before confluence point: 69.392 5.844 5.844 Maximum flow rates at confluence using above data: 77.225 49.167 48.735 Area of streams before confluence: 23.400 1.300 1.300 Results of confluence: Total flow rate = 77. 225 (CFS) Time of concentration = 14.545 min. Effective stream area after confluence = 26.000(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 14.54 min. Rainfall intensity = 3.440(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 2.327(CFS) for 1.230(Ac.) Total runoff = 79.552(CFS) Total area = 27.23(Ac.) ++++++++++++++++++++++^ Process from Point/Station 128.000 to Point/Station **** SUBAREA FLOW ADDITION **** 128.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Time of concentration = 14. ] 54 min. Rainfall intensity = 3.440(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 3.974(CFS) for 2.100(Ac.) Total runoff = 83.526(CFS) Total area = 29.33(Ac.) +++++++++++++++++++H Process from Point/Station **** SUBAREA FLOW ADDITION 128.000 to Point/Station ^++++++++++++ 128.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 14.54 min. Rainfall intensity = 3.440(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.927(CFS) for 0.490(Ac.) Total runoff = 84.453(CFS) Total area = 29.82(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 182.45(Ft.) Downstream point/station elevation = 180.00(Ft.) Pipe length = 53.56(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 84.4 53 (CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 84.453(CFS) Normal flow depth in pipe = 19.92(In.) Flow top width inside pipe = 35.79(In.) Critical Depth = 33.69(In.) Pipe flow velocity = 21.02(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 14.59 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 130.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 29.820(Ac.) Runoff from this stream = 84.453(CFS) Time of concentration = 14.59 min. Rainfall intensity = 3.434(In/Hr) Program is now starting with Main Streara No. 2 + + H Process from Point/Station 1701.000 to Point/Station 1702.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity (I) = 3.033 for a 100.0 year storm User specified values are as follows: TC = 17.68 min. Rain intensity = 3.03(In/Hr) Total area = 15.72(Ac.) Total runoff = 30.00(CFS) +++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 1702.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 180.90(Ft.) Downstream point/station elevation = 180.50(Ft.) Pipe length = 25.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 30.000(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 30.000(CFS) Normal flow depth in pipe = 20.91(In.) Flow top width inside pipe = 16.08(In.) Critical Depth = 22.35(In.) Pipe flow velocity = 10.32(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 17.72 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 130.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 15.720(Ac.) Runoff frora this stream = 30.000(CFS) Time of concentration = 17.72 min. Rainfall intensity = 3.029(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 84.453 14.59 3.434 2 30.000 17.72 3.029 Qmax(1) = 1.000 * 1.000 * 84.453) + 1.000 * 0.823 * 30.000) + = 109.149 Qmax(2) = 0.882 * 1.000 * 84.453) + 1.000 * 1.000 * 30.000) + = 104.493 Total of 2 main streams to confluence: Flow rates before confluence point: 84.453 30.000 Maxiraura flow rates at confluence using above data: 109.149 104.493 Area of strearas before confluence: 29.820 15.720 Results of confluence: Total flow rate = 109.149(CFS) Time of concentration = 14.587 rain. Effective stream area after confluence = 45.540(Ac.) Process from Point/Station 130.000 to Point/Station 132.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 180.50(Ft.) Downstream point/station elevation = 166.47(Ft.) Pipe length = 265.82(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 109.149(CFS) Given pipe size = 36.00 (In.) Calculated individual pipe flow = 109.149(CFS) Normal flow depth in pipe = 22.4 5(In.) Flow top width inside pipe = 34.88(In.) Critical depth could not be calculated. Pipe flow velocity = 23.54(Ft/s) Travel time through pipe = 0.19 min. Time of concentration (TC) = 14.78 rain. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++- Process from Point/Station 132.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 166.47(Ft.) Downstream point/station elevation = 148.05(Ft.) Pipe length = 100.93(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 109.149(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 109.14 9(CFS) Normal flow depth in pipe = 15.46(In.) Flow top width inside pipe = 35.64(In.) Critical depth could not be calculated. Pipe flow velocity = 37.64(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 14.82 min. Process from Point/Station 133.000 to Point/Station 133.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Streara flow area = 45.540(Ac.) Runoff from this stream = 109.149(CFS) Time of concentration = 14.82 rain. Rainfall intensity = 3.399(In/Hr) Prograra is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1601.000 to Point/Station 1602.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity (I) = 2.511 for a 100.0 year storm User specified values are as follows: TC = 23.70 min. Rain intensity = 2.51(In/Hr) Total area = 21.79(Ac.) Total runoff = 36.50(CFS) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1602.000 to Point/Station 1312.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 149.45(Ft.) Downstream point/station elevation = 148.05(Ft.) Pipe length = 119.67(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 36.500(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 36.500(CFS) Normal flow depth in pipe = 20.72(In.) Flow top width inside pipe = 27.73(In.) Critical Depth = 24.59(In.) Pipe flow velocity = 10.09(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) == 23.90 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 133.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 21.790(Ac.) Runoff from this stream = 36.500(CFS) Time of concentration = Rainfall intensity = Summary of stream data: Stream No. Flow rate (CFS) 23.90 min. 2.498(In/Hr) TC (min) Rainfall Intensity (In/Hr) 109.149 36.500 Qraax(1) = Qraax(2) 1.000 1.000 0.735 1.000 14.82 23.90 1.000 * 0.620 * 1.000 * 1.000 * 3.399 2.498 109.149) + 36.500) + 109.149) + 36.500) + 131.785 116.702 Total of 2 main streams to confluence: Flow rates before confluence point: 109.149 36.500 Maximum flow rates at confluence using above data: 131.785 116.702 Area of streams before confluence: 45.540 21.790 Results of confluence: Total flow rate = 131.785(CFS) Time of concentration = 14.820 rain. Effective stream area after confluence = 67.330(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 148.05(Ft.) Downstream point/station elevation = 142.09(Ft.) Pipe length = 177.37(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 131.785(CFS) Given pipe size = 36.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 9.058(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 6.922(Ft.) Minor friction loss = 8.096(Ft.) K-factor = 1.50 Pipe flow velocity = 18.64(Ft/s) Travel time through pipe = 0.16 rain. Time of concentration (TC) = 14.98 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 134.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 67.330(Ac.) Runoff from this stream Time of concentration = Rainfall intensity = 131.785(CFS) 14.98 min. 3.376(In/Hr) Process from Point/Station **** INITIAL AREA EVALUATION 901.000 to Point/Station **** 902.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 193.96(Ft.) Lowest elevation = 188.35(Ft.) Elevation difference = 5.61(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.53 rain. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 5.61"(l/3)]= 2.53 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) -++++++++++++++ Process from Point/Station 902.000 to Point/Station 903.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 188.350(Ft.) End of street segment elevation = 153.990(Ft.) Length of street segment = 490.690(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.259(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 6.123(Ft.) Flow velocity = 4.82(Ft/s) Travel time = 1.70 min. TC = 6.70 min. Adding area flow to street Decimal fraction soil group A = 0.000 0.0150 0.0150 2.300(CFS) 4.818(Ft/s) Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.673(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = Subarea runoff = 2.845(CFS) for 0.590(Ac.) Total runoff = 3.427(CFS) Total area = 0.69(Ac.) Street flow at end of street = 3.427(CFS) Half street flow at end of street = 3.427(CFS) Depth of flow = 0.286(Ft.), Average velocity = 5.215(Ft/s) Flow width (from curb towards crown)= 7.448(Ft.) 0.850 Process from Point/Station 903.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 144.10(Ft.) Downstream point/station elevation = 143.40(Ft.) Pipe length = 70.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.427 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.427(CFS) Normal flow depth in pipe = 7.08 (In.) Flow top width inside pipe = 17.58(In.) Critical Depth = 8. 47 (In.) Pipe flow velocity = 5.31(Ft/s) Travel time through pipe = 0.22 rain. Time of concentration (TC) = 6.92 min. Process from Point/Station 134.000 to Point/Station 134.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream niimber: 1 in normal stream number 2 Stream flow area = 0.690(Ac.) Runoff from this stream = 3.427(CFS) Time of concentration = 6.92 min. Rainfall intensity = 5.556(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 1001.000 to Point/Station **** INITIAL AREA EVALUATION **** ^+++++++++++ 1002.000 0.000 0.000 0.000 1.000 Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 193.96(Ft.) Lowest elevation = 188.35(Ft.) Elevation difference = 5.61(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.53 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 5.61"(l/3)]= 2.53 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 1002.000 to Point/Station 1003.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 188.350(Ft.) End of street segment elevation = 153.990(Ft.) Length of street segment = 490.690(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.300(CFS) Depth of flow = 0.259(Ft.), Average velocity = 4.818(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.123(Ft.) Flow velocity = 4.82(Ft/s) Travel time = 1.70 min. TC = 6.70 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.673(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 2.845(CFS) for 0.590(Ac.) Total runoff = 3.427(CFS) Total area = 0.69(Ac.) Street flow at end of street = 3.427 (CFS) Half street flow at end of street = 3.427(CFS) Depth of flow = 0.286(Ft.), Average velocity = 5.215(Ft/s) Flow width (frora curb towards crown)= 7.44 8(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1003.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size] **** Upstream point/station elevation = 144.03(Ft. Downstream point/station elevation = 143.22(Ft.) Pipe length = 16.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.427(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.427(CFS) Normal flow depth in pipe = 4.65(In.) Flow top width inside pipe = 15.76(In.) Critical Depth = 8.47(In.) Pipe flow velocity = 9.47(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 6.73 min. Process frora Point/Station 134.000 to Point/Station 134.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 0.690(Ac.) Runoff from this stream = 3.427(CFS) Time of concentration = 6.73 min. Rainfall intensity = 5.658(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 131 .785 14.98 3. 376 2 3 .427 6. 92 5. 556 3 3 . 427 6.73 5 658 Qmax(1) = 1 .000 * 1.000 * 131 .785) + 0 .608 * 1.000 * 3 .427) + 0 .597 * 1.000 * 3 .427) + = 135.912 Qmax(2) = 1 .000 * 0.4 62 * 131 .785) + 1 .000 * 1.000 * 3 .427) + 0 .982 * 1.000 * 3 .427) + = 67.658 Qmax(3) = 1 .000 * 0.449 131 . 785) + 1 .000 * 0. 972 * 3 .427) + 1 .000 * 1.000 * 3 .427) + 65.936 Total of 3 streams to confluence: Flow rates before confluence point: 131 785 3.427 3. 427 Maximum flow rates at confluence using above data: 135.912 67.658 65.936 Area of streams before confluence: 67.330 0.690 0.690 Results of confluence: Total flow rate = 135.912(CFS) Time of concentration = 14.979 min. Effective stream area after confluence = 68.710(Ac.) I- + + + H Process from Point/Station 134.000 to Point/Station **** SUBAREA FLOW ADDITION **** 134.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 14.98 min. Rainfall intensity = 3.37 6(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.557(CFS) for 0.300(Ac.) Total runoff = 136.469(CFS) Total area = 69.01(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 134.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Time of concentration = 14.98 min. Rainfall intensity = 3.376(In/Hr) Runoff coefficient used for sub-area, Subarea runoff = 0.223(CFS) for ] for a 100.0 year storm Rational method,Q=KCIA, C 0.120(Ac.) Total runoff 136.692(CFS) Total area = 0.550 69.13(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 134.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 14.98 min. Rainfall intensity = 3.376(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.390(CFS) for 0.210(Ac.) Total runoff = 137.082(CFS) Total area = 69.34(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 136.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 142.09(Ft.) Downstream point/station elevation = 124.69(Ft.) Pipe length = 282.65(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 137.082(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 137.082(CFS) Normal flow depth in pipe = 24.98(In.) Flow top width inside pipe = 33.18(In.) Critical depth could not be calculated. Pipe flow velocity = 26.17(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 15.16 min. +++++++++++++++++H Process from Point/Station 136.000 to Point/Station 138.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 124.69(Ft.) Downstream point/station elevation = 110.84(Ft.) Pipe length = 195.81(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 137.082(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 137.082(CFS) Normal flow depth in pipe = 23.77(In.) Flow top width inside pipe = 34.10(In.) Critical depth could not be calculated. Pipe flow velocity = 27.70(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 15.28 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 110.84(Ft.) Downstreara point/station elevation = 90.15(Ft.) Pipe length = 214.10(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 137.082 (CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 137.082(CFS) Norraal flow depth in pipe = 21.38(In.) Flow top width inside pipe = 35.36(In.) Critical depth could not be calculated. Pipe flow velocity = 31.35(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 15.39 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream nuraber 1 Stream flow area = 69.340(Ac.) Runoff from this stream = 137.082(CFS) Time of concentration = 15.39 min. Rainfall intensity = 3.317(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1101.000 to Point/Station 1102.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 154.41(Ft.) Lowest elevation = 147.41(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.35 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 7.00"(l/3)]= 2.35 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial streara area = 0.100(Ac.) Process from Point/Station 1102.000 to Point/Station 1103.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 147.410(Ft.) End of street segment elevation = 105.410(Ft.) Length of street segment = 594.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 35.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.649(CFS) Depth of flow = 0.268(Ft.), Average velocity = 4.970(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.562(Ft.) Flow velocity = 4.97(Ft/s) Travel time = 1.99 min. TC = 6.99 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.518(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 3.330(CFS) for 0.710(Ac.) Total runoff = 3.912(CFS) Total area = 0.81(Ac.) Street flow at end of street = 3.912(CFS) Half street flow at end of street = 3.912(CFS) Depth of flow = 0.295(Ft.), Average velocity = 5.383(Ft/s) Flow width (from curb towards crown)= 7.901(Ft.) Process from Point/Station 1103.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 95.50(Ft.) Downstream point/station elevation = 91.90(Ft.) Pipe length = 70.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.912(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.912(CFS) Normal flow depth in pipe = 4.94(In.) Flow top width inside pipe = 16.06(In.) Critical Depth = 9.07(In.) Pipe flow velocity = 9.94(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 7.11 min. ++++++++++++++++H '++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.810(Ac.) Runoff from this stream = 3.912(CFS) Time of concentration = 7.11 min. Rainfall intensity = 5.459(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1201.000 to Point/Station 1202.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 154.41(Ft.) Lowest elevation = 147.41(Ft.) Elevation difference = 7.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.35 rain. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 7.00"(l/3)]= 2.35 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac. +++++++++++++++++++H Process from Point/Station 1202.000 to Point/Station 1203.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 147.410(Ft.) End of street segment elevation = 105.410(Ft.) Length of street segment = 594.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 35.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated raean flow rate at midpoint of street = 2.649(CFS) Depth of flow = 0.268(Ft.), Average velocity = 4.970(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.562(Ft.) Flow velocity = 4.97(Ft/s) Travel time = 1.99 min. TC = 6.99 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.518 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.850 Subarea runoff = 3.330(CFS) for 0.710(Ac.) Total runoff = 3.912(CFS) Total area = 0.81(Ac.) Street flow at end of street = 3. 912(CFS) Half street flow at end of street = 3.912(CFS) Depth of flow = 0.295(Ft.), Average velocity = 5.383(Ft/s) Flow width (from curb towards crown)= 7.901(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1203.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 94.15(Ft.) Downstream point/station elevation = 91.90(Ft.) Pipe length = 15.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.912(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.912(CFS) Normal flow depth in pipe = 3.79(In.) Flow top width inside pipe = 14.67(In.) Critical Depth = 9.07(In.) Pipe flow velocity = 14.47(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 7.01 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream number 3 Stream flow area = 0.810(Ac.) Runoff from this stream = 3.912(CFS) Time of concentration = 7.01 rain. Rainfall intensity = 5.509 (In/Hr) Suraraary of stream data: Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 3 Qraax(1) 137.082 3.912 3.912 1.000 0. 608 0. 602 Qmax(2) = Qmax(3) 1. C 0 C 1.000 0.991 1.000 1.000 1.000 15.39 7.11 7.01 1.000 * 1.000 * 1.000 * 0.462 * 1.000 * 1.000 * 0.455 * 0.986 * 1.000 * 137.082 3.912 3.912 137.082 3.912 3.912 137.082 3.912 3.912 3.317 5.459 5.509 + + + + + = + + + = 141.815 71.116 70.203 Total of 3 streams to confluence: Flow rates before confluence point: 137.082 3.912 3.912 Maximum flow rates at confluence using above data: 141.815 71.116 70.203 Area of streams before confluence: 69.340 0.810 0.810 Results of confluence: Total flow rate = 141.815(CFS) Time of concentration = 15.391 min. Effective stream area after confluence = 70.960(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 142.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 90.15(Ft.) Downstream point/station elevation = 69.40(Ft. Pipe length = 181.54(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 141.815(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 141.815(CFS) Normal flow depth in pipe = 20.70(In.) Flow top width inside pipe = 35.59(In.) Critical depth could not be calculated. Pipe flow velocity = 33.71(Ft/s) Travel time through pipe = 0.09 min. Tirae of concentration (TC) = 15.48 min. End of computations, total study area = 70.96 (Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 11/17/01 COLLEGE BLVD HYDROLOGY STUDY SYSTEM 100 - PART B NOVEMBER 15, 2001 J.N. 98-1020 BY:CSO FILE:C0LBD3 ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storra event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology raanual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 146.000 to Point/Station 148.000 **** INITIAL AREA EVALUATION **** Decimal fraction Decimal fraction Decimal fraction Decimal fraction [COMMERCIAL area Initial subarea soil group A = 0. soil group B = 0. soil group C = 0. soil group D = 1, type flow distance = 000 000 000 000 95.00(Ft.) Highest elevation = 73.20(Ft.) Lowest elevation = 72.30(Ft.) Elevation difference = 0.90(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.47 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.8500)*( 95.00".5)/( 0.95"(l/3)]= 4.47 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0. Subarea runoff = 0.466(CFS) Total initial stream area = 0.080(Ac.) 850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 148.000 to Point/Station 154.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 68.30(Ft.) Downstream point/station elevation = 67.66(Ft.) Pipe length = 48.27(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.4 66(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.466(CFS) Normal flow depth in pipe = 2.41(In.) Flow top width inside pipe = 12.27(In.) Critical depth could not be calculated. Pipe flow velocity = 3.30(Ft/s) Travel time through pipe = 0.24 min. Time of concentration (TC) = 5.24 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 154.000 to Point/Station 154.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Streara flow area = 0.080(Ac.) Runoff frora this stream = 0.4 66(CFS) Time of concentration = 5.24 min. Rainfall intensity = 6.643(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 152.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 104.99(Ft.) Lowest elevation = 97.57(Ft.) Elevation difference = 7.42(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.31 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.8500)* (100.00".5)/( 7.42"(l/3)]= 2.31 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 154.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 97.570(Ft.) End of street segment elevation = 73.250(Ft.) Length of street segment = 596.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 35.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.287(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 7.531(Ft.) Flow velocity = 4.00(Ft/s) Travel time = 2.4 9 min. TC = 7.4 9 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.281(In/Hr Runoff coefficient used for sub-area, Subarea runoff = 3.232(CFS) for Total runoff = 3.814(CFS) Street flow at end of street = Half street flow at end of street 2.678(CFS) 4.000(Ft/s) for a 100.0 year storm Rational method,Q=KCIA, C = 0.850 0.720(Ac.) Total area = 0.82(Ac.) 3.814(CFS) 3.814(CFS) Depth of flow = 0.313(Ft.), Average velocity = 4.315(Ft/s) Flow width (from curb towards crown)= 8.839(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 154.000 to Point/Station 154.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.820(Ac.) Runoff from this stream = 3.814(CFS) Time of concentration = 7.4 9 min. Rainfall intensity = 5.281(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) 0.466 3.814 1.000 * 5.24 7.49 1.000 * 6.643 5.281 0.466) + 1.000 * 0.701 * 3.814) + = 3.138 Qmax(2) = 0.795 * 1.000 * 0.466) + 1.000 * 1.000 * 3.814) + = 4.184 Total of 2 main streams to confluence: Flow rates before confluence point: 0.466 3.814 Maximum flow rates at confluence using above data: 3.138 4.184 Area of streams before confluence: 0.080 0.820 Results of confluence: Total flow rate = 4.184(CFS) Time of concentration = 7.485 min. Effective stream area after confluence = 0.900(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 154.000 to Point/Station 156.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 67.66(Ft.) Downstream point/station elevation = 66.80(Ft.) Pipe length = 96.73(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.184(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.184(CFS) Normal flow depth in pipe = 8.17(In.) Flow top width inside pipe = 17.92(In.) Critical Depth = 9.41(In.) Pipe flow velocity = 5.37(Ft/s) Travel time through pipe = 0.30 min. Time of concentration (TC) = 7.79 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 156.000 to Point/Station 156.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.900(Ac.) Runoff from this stream = 4.184(CFS) Time of concentration = 7.79 min. Rainfall intensity = 5.148(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 162.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 104.99(Ft.) Lowest elevation = 97.57(Ft.) Elevation difference = 7.42(Ft.) Time of concentration calculated by the urban areas overland flow raethod (App X-C) = 2.31 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"{l/3)] TC = [1.8*(l.l-0.8500)*(100.00".5)/( 7.42"(l/3)]= 2.31 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.850 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.582(CFS) Total initial stream area = 0.100(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 162.000 to Point/Station 1^.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segraent elevation = 97.570(Ft.) End of street segraent elevation = 73.250(Ft.) Length of street segraent = 596.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 44.000(Ft.) Distance from crown to crossfall grade break = 35.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.911(CFS) Depth of flow = 0.293(Ft.), Average velocity = 4.071(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.828(Ft.) Flow velocity = 4.07(Ft/s) Travel time = 2.44 min. TC = 7.44 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] Rainfall intensity = 5.300(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 3.604(CFS) for 0.800(Ac.) Total runoff = 4.187(CFS) Total area = 0.90(Ac.) Street flow at end of street = 4.187(CFS) Half street flow at end of street = 4.187(CFS) Depth of flow = 0.321(Ft.), Average velocity = 4.405(Ft/s) Flow width (from curb towards crown)= 9.208(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 156.000 to Point/Station 156.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.900(Ac.) Runoff from this stream = 4.187(CFS) Time of concentration = 7.4 4 rain. Rainfall intensity = 5.300(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 4 .184 4.187 1.000 * 0.971 * 1.000 * 1.000 * 7.79 7 . 44 1.000 * 1.000 * 0.956 * 1.000 * 5.148 5.300 4.184) + 4.187) + 4.184) + 4.187) + 8.251 8 .186 Total of 2 streams to confluence: Flow rates before confluence point: 4.184 4.187 Maximum flow rates at confluence using above data: 8.251 8.186 Area of streams before confluence: 0.900 0.900 Results of confluence: Total flow rate = 8.251(CFS) Time of concentration = 7.785 min. Effective stream area after confluence = 1.800(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 156.000 to Point/Station 158.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.80(Ft.) Downstream point/station elevation = 66.00(Ft.) Pipe length = 70.94(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.251(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 8.251(CFS) Normal flow depth in pipe = 11.52(In.) Flow top width inside pipe = 17.28(In.) Critical Depth = 13.35(In.) Pipe flow velocity = 6.91(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 7.96 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 158.000 to Point/Station 159.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.00(Ft.) Downstream point/station elevation = 63.00(Ft.) Pipe length = 22.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.251(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 8.251(CFS) Normal flow depth in pipe = 5.64(In.) Flow top width inside pipe = 16.70(In.) Critical Depth = 13.35(In.) Pipe flow velocity = 17.44(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 7.98 min. End of computations, total study area = 1.80 (Ac.) ******************************************************************.*****Jnnt.Jt.J..J..Jt PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD HYDRAULICS STUDY * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:C0LBD2.RES * ************************************************************************jt^ FILE NAME: C0LBD2.DAT TIME/DATE OF STUDY: 16:18 11/16/2001 ***************************************************************************.*.*vt GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 142.50- 4.60 } PIPE REDUCTION 4.60 142.00- } FRICTION 140.50- } JUNCTION 140.00- } FRICTION 138.50- } JUNCTION 138.00- } FRICTION 136.50- } JUNCTION 136.00- } FRICTION 134.50- } JUNCTION 134.00- } FRICTION 133.50- } JUNCTION 133.00- } FRICTION 2.97 Dc 4 .74 2.97 Dc 2.97 Dc 2.97 Dc 2.97 Dc 2.97*Dc 6881.40 6881.40 6171.76 6578.60 5808.76 5808.76 5808.76 5808.76 5808.76 4.87* 6249.23 } HYDRAULIC JUMP 6.09 6786.77 132.50- } JUNCTION 132.00- 8.28 2.93 Dc 2.93 Dc 6256.22 3916.73 3916.73 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 9083.51 1.79* 1.79* 2.16* 1.82* 2.03* 2.01* 2.15* 2.14* 2.97*Dc 2.33 1.88* 1.42* 1. 96* 1.97* 9083.51 7472.60 8354.49 7448.34 7492.16 7041.68 7065.55 5808.76 6108.68 7442.88 7159.46 4968.51 4966.16 130.50- 130.00- 128.50- 128.00- 126.50- 126.00- 124.50- 124.00- 122.50- 122.00- 120.50- 120.00- 118.50- 118.00- 116.50- 116.00- 114.50- 114.00- 112.50- 112.00- 111.50- 111.00- 110.50- 110.00- 108.50- 108.00- 106.50- 106.00- FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 2.93*Dc 6.33* 4.89* 5.07 2.4 4 Dc 2.44 Dc 2.44 Dc 2.4 4 Dc 2.4 4 Dc 2.4 4 Dc 2.4 4 Dc 2. 97 2.42 Dc 3.15 2.37 Dc 2.37 Dc 2.37*Dc 3916.73 4084.19 3450.12 3070.10 2277 . 40 2277.41 2277.40 2277.41 2277.40 2277.41 2277.40 2208.09 2055.10 1835.28 1621.36 1621.37 1621.36 4.42* 740.08 } HYDRAULIC JUMP 1.45 Dc 1.45 Dc 1.45 Dc 1.69 1.42 Dc 2.19 1.29 Dc 1.29 Dc 1.29*Dc 416.51 416.51 416.51 372.00 347.48 300.37 214.75 214 .75 214.75 2.43* 203.46 } HYDRAULIC JUMP 2.93*Dc 1.78 1.87 1.35* 1.46* 1.45* 1.48* 1.46* 1. 65* 1.65* 1.79* 1.59* 1.75* 1.28* 1.57* 1.58* 2.37*Dc 1.03 1.17* 1.22* 1.30* 1.05* 1.15* 0.64* 0.73* 0.72* 1.29*Dc 0.38 3916.73 3377.57 3221.56 3546.48 3240.07 3268.64 3214.82 3241.60 2870.80 2872.47 2661.57 2652.22 2421.29 2510.30 2034.92 2019.80 1621.36 493.80 450.13 438.88 425.63 397.09 372.88 359.88 310.12 312.07 214.75 92.37 105.50 105.00 2012.50 2012.00 2010.50 2010.00 208.50 2008.00 2006.50 2006.00 } JUNCTION } FRICTION } JUNCTION } FRICTION } JUNCTION } FRICTION } JUNCTION } FRICTION } JUNCTION 0.77 Dc 0. 69 0.67*Dc 0.64 0.54*Dc 0.54 0.38*Dc 0.38 Dc 0.38*Dc 0.47* 53.12 37.45 37.35 23.64 22.66 11.75 9.38 9.38 9.38 10.13 0.55* 0.37* 0.66*Dc 0.35* 0.54*Dc 0.23* 0.38*Dc 0.28* 0.38*Dc 0.38 Dc 61.59 57.42 37.36 29.15 22.66 12.97 9.38 10.77 9.38 9.38 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 142.50 FLOWLINE ELEVATION = 69.40 PIPE FLOW = 141.82 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 74.000 FEET NODE 142.50 : HGL = < 71.188>;EGL= < 87.369>;FLOWLINE= < 69.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 142.00 142.50 TO NODE 142.00 IS CODE = 7 ELEVATION = 69.40 (FLOW IS SUPERCRITICAL) CALCULATE SUDDEN PIPE REDUCTION LOSSES(LACRD): PIPE FLOW = 141.82 CFS PIPE DIAMETER: UPSTREAM = 36.00 INCHES; DOWNSTREAM = 36.00 INCHES FLOW VELOCITY = 32.28 FEET/SEC. VELOCITY HEAD = 16.18 FEET PIPE REDUCTION LOSS COEFFICIENT KC = 0.000 HC(PER LACFCD)=KC*(DOWNSTREAM VELOCITY HEAD) = ( 0.000)*( 16.18) = 0.000 NODE 142.00 : HGL = < 71.188>;EGL= < 87.369>;FLOWLINE= < 69.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 140.50 142.00 TO NODE 140.50 IS CODE = 1 ELEVATION = 89.90 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 141.82 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 177.54 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.72 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.16 2.97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 FLOW DEPTH (FT) 2.162 070 328 793 13.484 17.425 21.641 26.163 31.028 36.277 41.962 48.144 54.899 62.318 70.522 79.659 89.932 101.608 115.068 130.867 149.865 173.505 177.540 145 127 109 091 074 056 038 021 003 985 967 950 932 914 897 879 861 844 826 808 790 788 VELOCITY (FT/SEC) 25.992 26.222 26.458 26.699 26.946 27.199 27.458 27.724 27.996 28.275 28.560 28.853 29.153 29.461 29.776 30.099 30.431 30.771 31.120 31.477 31.844 32.221 32.271 SPECIFIC ENERGY(FT) 12.660 12.828 13.003 13.185 13.373 13.568 13.771 13.981 14.199 14.425 14.659 14.903 15.155 15.418 15.690 15.973 16.267 16.573 16.891 17.221 17.564 17.922 17.969 PRESSURE-1- MOMENTUM(POUNDS) 7472.60 7529.79 7588.57 7648.98 7711.05 7774.82 7840.36 7907.69 7976.86 8047.94 8120.96 8196.00 8273.09 8352.30 8433.70 8517.34 8603.31 8691.66 8782.47 8875.82 8971.79 9070.46 9083.51 NODE 140.50 : HGL = < 92.062>;EGL= < 102.560>;FLOWLINE= < 89.900> ******************************************************************* + ****jt.^.j.^.^.^t FLOW PROCESS FROM NODE UPSTREAM NODE 140.00 140.50 TO NODE ELEVATION = 140.00 IS CODE = 5 90.40 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 137.08 141.82 2.37 2.36 0.01== DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY ;iNCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 36.00 0.00 90.40 2.97 36.00 - 89.90 2.97 18.00 90.00 91.90 0.58 18.00 90.00 91.90 0.58 =Q5 EQUALS BASIN INPUT=== 30.623 26.001 3.737 3.732 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (A1-I-A2) *16 .1)+FRICTION LOSSES UPSTREAM: MANNING'S N = DOWNSTREAM: MANNING'S N = AVERAGED FRICTION SLOPE IN JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 0.01300; 0.01300; JUNCTION 4.00 FEET 0.302 FEET (DY+HV1-HV2)-I-(ENTRANCE LOSSES) ( 2.119)-^( 2.099) = 4.219 FRICTION SLOPE = 0.09103 FRICTION SLOPE = 0.05985 ASSUMED AS 0.07544 ENTRANCE LOSSES = 2.099 FEET NODE 140.00 : HGL = < 92.216>;EGL= < 106.778>;FLOWLINE= < 90.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 138.50 140.00 TO NODE 138.50 IS CODE = 1 ELEVATION = 110.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 137.08 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 210.10 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.78 CRITICAL DEPTH(FT) 2.97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.03 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-t- CONTROL( FT) (FT) (FT/SEC) ENERGY( FT) MOMENTUM (POUNDS) 0 .000 2.027 26.968 13. 327 7448.34 3 .815 2.017 27.114 13. 440 7484.26 7 .831 2.007 27.263 13. 556 7520.72 12 .065 1.997 27.414 13. 674 7557.74 16 .537 1.988 27.567 13. 795 7595.32 21 .271 1.978 27.722 13. 919 7633.47 26 .295 1.968 27.879 14. 044 7672.20 31 . 641 1.958 28.038 14. 173 7711.52 37 .344 1.949 28.200 14. 304 7751.43 43 .449 1. 939 28.363 14 . 438 7791.96 50 .009 1. 929 28.529 14 . 575 7833.10 57 .086 1.919 28.697 14 . 715 7874.87 64 .758 1. 909 28.868 14. 858 7917.27 73 .120 1.900 29.041 15. 003 7960.32 82 .294 1.890 29.216 15. 152 8004.04 92 .434 1.880 29.394 15. 304 8048 . 42 103 .747 1.870 29.574 15. 460 8093.48 116 .508 1.860 29.757 15. 619 8139.23 131 .108 1.851 29.942 15. 781 8185.69 148 .115 1.841 30.130 15. 946 8232.87 168 .412 1.831 30.321 16. 116 8280.77 193 .480 1.821 30.514 16. 289 8329.41 210 .100 1.816 30.614 16. 378 8354.49 NODE 13 8.50 : HGL = < 112. 697>;EGL= < 123.997>, FLOWLINE= < 110.67 0> ****************************************************************************** FLOW PROCESS FROM NODE 138.50 TO NODE 138.00 IS CODE = 5 UPSTREAM NODE 138.00 ELEVATION = 111.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 137.08 36.00 0.00 111.00 DOWNSTREAM 137.08 36.00 - 110.67 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 2.97 27.155 2.97 26.976 0.00 0.000 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) Q4*V4*COS(DELTA4) )/( (A1-I-A2) * 16.1)-l-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06735 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06626 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06680 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.267 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)-I-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.469)-l-( 0.000) = 0.469 NODE 138.00 : HGL = < 113.015>;EGL= < 124.465>;FLOWLINE= < 111.000> ****************************************************************************** FLOW PROCESS FROM NODE 138.00 TO NODE 136.50 IS CODE = 1 UPSTREAM NODE 136.50 ELEVATION = 124.52 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 137.08 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 191.81 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 .98 CRITICAL DEPTH(FT) 2.97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.15 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 000 2. 149 25. 286 12.084 7041.68 4 449 2. 143 25. 371 12.144 7061.94 9 117 2. 136 25. 456 12.205 7082.41 14 023 2. 129 25. 543 12.266 7103.10 19 189 2. 123 25. 630 12.329 7124.01 24 641 2. 116 25. 718 12.392 7145.13 30 .409 2. 109 25. 806 12.457 7166.47 36 .526 2. 102 25. 896 12.522 7188.04 43 .032 2. 096 25. 986 12.588 7209.83 49 .976 2. 089 26. 077 12.655 7231.85 57 .413 2. 082 26. 169 12.723 7254.09 65 .412 2. 076 26. 262 12.792 7276.57 74 .057 2. 069 26. 356 12.862 7299.28 83 .451 2. 062 26. 450 12.933 7322.23 93 .725 2. 056 26. 546 13.004 7345.41 105 .046 2. 049 26. 642 13.077 7368.83 117 .638 2. 042 26. 739 13.151 7392.50 131 .799 2. 036 26 837 13.226 7416.41 147 .950 2. 029 26 936 13.302 7440.57 166 .707 2. 022 27 036 13.379 7464.98 189 .025 2. 016 27 136 13.457 7489.64 191 .810 2 015 27 147 13.465 7492.16 NODE 136.50 : HGL = < 126.669>;EGL= < 136.604>;FLOWLINE= < 124.520> ****************************************************************************** FLOW PROCESS FROM NODE 136.50 TO NODE 136.00 IS CODE = 5 UPSTREAM NODE 136.00 ELEVATION = 124.85 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 137.08 36.00 0.00 124.85 DOWNSTREAM 137.08 36.00 - 124.52 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 2.97 25.394 2.97 25.294 0.00 0.000 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4) ) / ( (A1-1-A2) *16.1)-l-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05704 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.228 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY-^HV1-HV2)-I-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.401)-l-( 0.000) = 0.401 05730 05677 0.000 FEET NODE 136.00 : HGL = < 126.991>;EGL= < 137.005>;FLOWLINE= < 124.850> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 134.50 136.00 TO NODE 134.50 IS CODE = 1 ELEVATION = 141.92 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 137.08 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 278.65 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2 .09 CRITICAL DEPTH(FT) 2. 97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2. 97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 000 2. 969 19. 421 8. 830 5808.76 0 383 2. 934 19. 494 8. 839 5812.67 1 365 2. 899 19. 591 8. 862 5822.97 2 824 2. 864 19. 707 8. 8 98 5838.49 4 713 2. 828 19. 840 8. 944 5858.65 7 012 2. 7 93 19. 989 9. 001 5883.09 9 725 2. 758 20 153 9. 068 5911.59 12 865 2. 722 20 331 9. 145 5944.02 16 .457 2. 687 20 523 9. 232 5980.29 20 .539 2. 652 20 729 9. 328 6020.36 25 .159 2. 616 20 949 9. 435 6064.24 30 .380 2. 581 21 182 9. 553 6111.94 36 .281 2. 546 21 430 9 681 6163.51 42 .965 2. 511 21 691 9 821 6219.01 50 .561 2. 475 21 .967 9 973 6278.53 59 .239 2. 440 22 .258 10 138 6342.17 69 .226 2 405 22 .564 10 316 6410.04 80 .827 2 369 22 .886 10 507 6482.28 94 .476 2 334 23 .224 10 714 6559.04 110 .809 2 299 23 .579 10 937 6640.49 130.810 156.137 189.895 239.064 278.650 2.263 2.228 2.193 2.157 2.lil 23.952 24.343 24.753 25.183 25.386 11.177 11.435 11.713 12.011 12.155 6726.81 6818.20 6914.89 7017.12 7065.55 NODE 134.50 : HGL = < 144.889>;EGL= < 150.750>;FLOWLINE= < 141.920> ********************************* + **************************************>**.jtjr.yt FLOW PROCESS FROM NODE 134.50 TO NODE 134.00 IS CODE = 5 UPSTREAM NODE 134.00 ELEVATION = 142.25 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 131.79 137.08 2.08 2.06 1.15== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 36.00 0.00 142.25 2.96 36.00 - 141.92 2.97 18.00 90.00 143.42 0.54 18.00 90.00 143.42 0.54 ^=Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 18.644 19.427 1.177 1.166 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS (DELTA4) ) / ( (A1-^A2) *16 .1) -^FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03896 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.156 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY-I-HV1-HV2)(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.599)-l-( 1.172) = 1.771 03904 03888 1.172 FEET NODE 134.00 HGL < 147.122>;EGL= < 152.520>;FLOWLINE= < 142.250> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 133.50 134.00 TO NODE ELEVATION = 133.50 IS CODE = 1 147.80 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 131.7 9 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 17 3.37 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS ===> NORMAL PIPEFLOW IS PRESSURE FLOW RESULTS NORMAL DEPTH(FT) = 3.00 CRITICAL DEPTH(FT) = 2.96 UPSTRE;^ CONTROL ASSUMED FLOWDEPTH(FT) 1.88 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 14.436 29.242 44.463 FLOW DEPTH VELOCITY (FT) 1.883 1. 927 1.970 2.013 (FT/SEC) 28.199 27.465 26.775 26.124 SPECIFIC ENERGY(FT) 14.239 13.647 13.108 12.617 PRESSURE-I- MOMENTUM (POUNDS) 7442.88 7268.10 7104.72 6951.97 60 153 2 056 25.511 12 168 6809. 15 76 374 2 100 24.933 11 759 6675. 63 93 196 2 143 24.388 11 385 6550. 85 110 702 2 186 23.875 11 042 6434. 30 128 990 2 229 23.390 10 730 6325. 52 148 176 2 273 22.933 10 444 6224. 09 168 396 2 316 22.502 10 183 6129. 65 173 370 2 326 22.405 10 126 6108. 68 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.87 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE-^ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM{POUNDS) 0.000 4.872 18.644 10.270 6249.23 173.370 6.091 18.644 11.489 6786.78 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-t-MOMENTUM BALANCE OCCURS AT 65.26 FEET UPSTREAM OF NODE 134.00 | I DOWNSTREAM DEPTH = 5.331 FEET, UPSTREAM CONJUGATE DEPTH = 2.180 FEET | NODE 133.50 : HGL = < 149.683>;EGL= < 162.039>;FLOWLINE= < 147.800> ************************************************************************** + j,jt.jt FLOW PROCESS FROM NODE 133.50 TO NODE 133.00 IS CODE = 5 UPSTREAM NODE 133.00 ELEVATION = 148.30 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 109.15 36.00 0.00 148.30 2.93 33.269 DOWNSTREAM 131.79 36.00 - 147.80 2.96 28.208 LATERAL #1 22.63 18.00 45.00 148.30 1.48 12.839 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-f A2 )* 16 . 1) -l-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.1307 5 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07548 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.10311 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0.619 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-I-HVI-HV2 )-1-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.863)-H( 0.000) = 4.863 NODE 133.00 : HGL = < 149.715>;EGL= < 166.902>;FLOWLINE= < 148.300> ****************************************************************************** FLOW PROCESS FROM NODE 133.00 TO NODE 132.50 IS CODE = 1 UPSTREAM NODE 132.50 ELEVATION = 166.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 109.15 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 96.93 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.28 CRITICAL DEPTH(FT) 2. 93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.96 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.965 22.239 9.650 4968.51 1.609 1.938 22.599 9.873 5036.41 3.343 1. 910 22.973 10.111 5107.42 5.215 1.883 23.362 10.363 5181.67 7.240 1.856 23.767 10.632 5259.33 9.434 1.828 24.187 10.918 5340.55 11.817 1.801 24.625 11.223 5425.50 14.411 1.774 25.080 11.547 5514.38 17.244 1.746 25.555 11.893 5607.37 20.346 1.719 26.049 12.262 5704.70 23.756 1.692 26.564 12.655 5806.59 27.520 1. 664 27.101 13.076 5913.29 31.694 1.637 27.661 13.525 6025.07 36.348 1. 610 28.246 14.006 6142.20 41.570 1.582 28.857 14.521 6265.00 47.474 1.555 29.496 15.073 6393.79 54.212 1.528 30.164 15.665 6528.94 61.985 1.500 30.864 16.301 6670.84 71.081 1.473 31.597 16.985 6819.91 81.919 1.446 32.365 17.721 6976.60 95.150 1.418 33.170 18.514 7141.41 96.930 1. 415 33.258 18.602 7159.46 NODE 132.50 HGL < 168.265>;EGL= < 175.950>;FLOWLINE= < 166.300> *********************************************************^^^^^t***^^*^^^^.^.J^.^^.J^.,^.j^.J^J^J^..^..^. FLOW PROCESS FROM NODE 132.50 TO NODE 132.00 IS CODE = 5 UPSTREAM NODE 132.00 ELEVATION = 166.63 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 109.15 36.00 0.00 166.63 2.93 22.234 DOWNSTREAM 109.15 36.00 - 166.30 2.93 22.246 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS (DELTA4) ) / ( (Al-t-A2) *16.1)-t-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; DOWNSTREAM: MANNING'S N = 0.01300; AVERAGED FRICTION SLOPE IN JUNCTION JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.183 FEET FRICTION SLOPE = 0.04574 FRICTION SLOPE = 0.04580 ASSUMED AS 0.04 577 ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)-t-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.322)+( 0.000) = 0.322 NODE 132.00 : HGL = < 168.596>;EGL= < 176.272>;FLOWLINE= < 166.630> ***********************************************************************vti.*.*.^^nt FLOW PROCESS FROM NODE 132.00 TO NODE 130.50 IS CODE = 1 UPSTREAM NODE 130.50 ELEVATION = 179.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 109.15 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 261.80 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.92 CRITICAL DEPTH(FT) = 2. 93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2. 925 15.540 6. 677 3916.73 0.205 2.885 15.634 6.683 3919.03 0.779 2.845 15.747 6.697 3925.48 1. 686 2.804 15.877 6. 721 3935.64 2. 914 2.764 16.023 6.753 3949.26 4.465 2.724 16.184 6.793 3966.20 6.350 2.683 16.359 6.841 3986.39 8.588 2.643 16.548 6.898 4009.80 11.206 2. 603 16.752 6.963 4036.42 14 .241 2.562 16.970 7.037 4066.30 17.739 2.522 17.203 7.120 4099.48 21.757 2.482 17.451 7.213 4136.05 26.369 2.441 17.714 7.317 4176.08 31.668 2.401 17.993 7.431 4219.71 37.772 2.361 18.288 7.557 4267.04 44.835 2. 320 18.600 7. 696 4318.25 53.061 2.280 18.931 7.848 4373.47 62.728 2.240 19.279 8.015 4432.91 74.229 2.199 19.648 8 .197 4496.77 88.136 2.159 20.037 8.397 4565.27 105.345 2.119 20.448 8.615 4638.66 127.351 2.078 20.882 8.854 4717.21 156.967 2.038 21.341 9.114 4801.23 200.511 1. 998 21.825 9.399 4891.04 261.800 1. 966 22.227 9.642 4966.16 NODE 130.50 : HGL = < 182. 425>;EGL= < 18 6.177>;FLOWLINE= < 179.500> ****************************************************************************** FLOW PROCESS FROM NODE 130.50 TO NODE 130.00 IS CODE = 5 UPSTREAM NODE 130.00 ELEVATION = 180.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 84.45 36.00 0.00 180.00 2.81 11.947 DOWNSTREAM 109.15 36.00 - 179.50 2.93 15.545 LATERAL #1 24.69 30.00 90.00 180.50 1.69 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.01===Q5 EQUALS BASIN INPUT=== 5.030 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01989 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0.119 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.615)+( 0.750) = 2.366 01603 02376 0.750 FEET NODE 130.00 : HGL = < 186.327>;EGL= < 188.543>;FLOWLINE= < 180.000> ******************************************************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 128.50 130.00 TO NODE 128.50 IS CODE = 1 ELEVATION = 182.20 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 84.45 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 47.56 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 84.45)/( 666.983))**2 = 0.01603 HF=L*SF = ( 47.56)*(0.01603) = 0.762 NODE 128.50 : HGL = < 187.089>;EGL= < 189.306>;FLOWLINE= < 182.200> ****************************************************************************** FLOW PROCESS FROM NODE 128.50 TO NODE 128.00 IS CODE = 5 UPSTREAM NODE 128.00 ELEVATION = 182.70 (FLOW IS UNDER PRESSURE) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 69.39 84.45 3.93 3. 90 7.23= DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 30.00 0.00 182.70 2.44 36.00 - 182.20 2.81 18.00 90.00 183.70 0.76 18.00 90.00 183.70 0.76 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 25.649 11.947 2.224 2.207 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1 *V1 *COS (DELTAl) -Q3*V3*COS (DELTA3) - Q4 *V4 *COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05224 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.209 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.517)+( 0.443) = 4.960 08846 01603 0.443 FEET NODE 128.00 : HGL = < 184.050>;EGL= < 194.2 66>;FLOWLINE= < 182.700> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 126.50 128.00 TO NODE ELEVATION = 126.50 IS CODE = 1 205.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 69.39 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 256.69 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.35 CRITICAL DEPTH(FT) 2.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.46 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.465 23.213 9.837 3240.07 2. 935 1.460 23.304 9.898 3251.48 6.014 1.455 23.396 9.960 3263.00 9.248 1.450 23.489 10.023 3274.63 12.653 1.446 23.583 10.087 3286.37 16.245 1.441 23.678 10.152 3298.23 20.043 1.436 23.773 10.217 3310.19 24.071 1.431 23.869 10.284 3322.28 28.354 1.427 23.966 10.351 3334.47 32.923 1.422 24.064 10.419 3346.79 37.816 1.417 24.163 10.489 3359.23 43.077 1.412 24.263 10.559 3371.78 48.761 1.408 24.363 10.630 3384.46 54.937 1.403 24.465 10.702 3397.25 61.689 1.398 24.567 10.776 3410.18 69.129 1.393 24.670 10.850 3423.23 77.401 1.389 24 .774 10.925 3436.40 86.703 1.384 24.879 11.001 3449.70 97.309 1.379 24.985 11.079 3463.14 109.625 1.374 25.092 11.157 3476.70 124.276 1.370 25.200 11.237 3490.40 142.312 1.365 25.309 11.317 3504.23 165.700 1.360 25.419 11.399 3518.20 198.863 1.355 25.530 11.482 3532.30 255.987 1.350 25.642 11.566 3546.55 256.690 1.350 25.641 11.566 3546.48 NODE 126.50 : HGL = < 207.135>;EGL= < 215.507>;FLOWLINE= < 205.670> ****************************************************************************** FLOW PROCESS FROM NODE 126.50 TO NODE 126.00 IS CODE = 5 UPSTREAM NODE 126.00 ELEVATION = 206.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 69.39 69.39 0.00 0.00 0.00= DIAMETER ANGLE ELEVATION 206.00 205.67 0.00 0.00 =Q5 EQUALS BASIN INPUT=== [INCHES) (DEGREES) 30.00 0.00 30.00 0.00 0.00 0.00 0.00 FLOWLINE CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 2.44 23.449 2.44 23.220 0.00 0.000 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY={Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06912 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.276 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.484)+( 0.000) = 0.484 07000 06825 0.000 FEET NODE 126.00 : HGL = < 207 . 453>;EGL= < 215 . 991>; FLOWLINE= < 206. OOO ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 124.50 126.00 TO NODE ELEVATION = 124.50 IS CODE = 1 217.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 69.39 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 165.31 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.45 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.48 2.44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 3.466 7.085 10.869 14.834 18.998 23.381 28.006 32.903 38.103 43.645 49.578 55.958 62.858 70.368 78.605 87.722 97.926 109.510 122.898 138.754 158.185 165.310 FLOW DEPTH VELOCITY (FT) 1.475 474 473 472 471 470 469 468 467 466 465 464 463 4 62 461 459 458 457 456 455 454 453 453 [FT/SEC) 23.010 23.030 23.050 23.070 23.090 23.110 23.130 23.150 23.170 23.190 23.210 23.231 23.251 23.271 23.292 23.312 23.333 23.353 23.374 23.394 23.415 23.435 23.441 SPECIFIC ENERGY(FT) 9.702 9.715 9.728 9.741 9.755 9.768 9.781 ,795 ,808 ,822 ,835 , 849 9.862 9.876 9.890 9.903 9. 917 9.931 9. 945 9. 959 9.973 9. 987 9.991 9. 9. 9. 9. 9. PRESSURE+ MOMENTUM(POUNDS) 3214.82 3217.30 3219.78 3222.27 3224.76 3227.25 3229.75 3232.26 3234 .77 3237.29 3239.81 3242.34 3244.87 3247.41 3249.95 3252.50 3255.06 3257.62 3260.18 3262.75 3265.33 3267.91 3268.64 NODE 124.50 : HGL = < 219.145>;EGL= < 227.372>;FLOWLINE= < 217.670> ****************************************************************************** FLOW PROCESS FROM NODE 124.50 TO NODE 124.00 IS CODE = 5 UPSTREAM NODE 124.00 ELEVATION 218.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 69.39 30.00 0.00 218.00 2.44 69.39 30.00 - 217.67 2.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== 23.232 23.017 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/ ( (A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06834 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06673 AVEPAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06753 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.270 FEET ENTRANCE LOSSES = 0.000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.473)+( 0.000) = 0.473 JUNCTION LOSSES = JUNCTION LOSSES = NODE 124.00 HGL < 219.464>;EGL= < 227.845>;FLOWLINE= < 218.000> + ^Ht*.*.Vt******************************************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 122.50 124.00 TO NODE ELEVATION = 122.50 IS CODE = 1 235.55 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 69.39 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 251.69 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1. 45 CRITICAL DEPTH(FT) = 2.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1. 65 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.839 5.827 8. 980 12.312 15.841 19.588 23.575 27.832 32.390 37.290 42.578 48.313 54.567 61.430 69.019 77.487 FLOW DEPTH (FT) 1. 1. 1. 1. 1. 1, 1. 1, 1 1 649 642 634 626 618 610 603 595 587 579 1.571 564 556 548 540 533 525 VELOCITY (FT/SEC) 20.192 20.301 20.412 20.524 20.637 20.752 20.869 20.987 21.106 21.228 21.350 21.475 21.601 21.729 21.858 21.990 22.123 SPECIFIC ENERGY(FT) 7.984 8.045 8.107 8.171 8.236 8.302 8.369 8.438 8.509 8.581 8.654 8.729 8.806 8.884 8.964 9.046 9.129 PRESSURE+ MOMENTUM(POUNDS) 2870.80 2883.81 2897.03 2910.45 2924.08 2937.92 2951.97 2966.24 2980.72 2995.44 3010.37 3025.54 3040.94 3056.58 3072.46 3088.59 3104.96 87.045 1.517 22.258 9.214 3121.59 97.982 1.509 22.394 9.301 3138.48 110.727 1.501 22.533 9.390 3155.63 125.943 1.494 22.674 9. 481 3173.05 144 .740 1.486 22.816 9.574 3190.73 169.203 1.478 22.961 9.669 3208.70 204.012 1.470 23.107 9.766 3226.94 251.690 1.464 23.225 9.845 3241.60 122.50 HGL = < 237. 199>;EGL= < 243.534>;FLOWLINE= < 235.550> NODE ****************************************************************************** FLOW PROCESS FROM NODE 122.50 TO NODE 122.00 IS CODE = 5 UPSTREAM NODE 122.00 ELEVATION = 235.88 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 69.39 69.39 0.00 0.00 0.00- DIAMETER ANGLE (INCHES) FLOWLINE CRITICAL DEPTH(FT.) (DEGREES) ELEVATION 30.00 0.00 235.88 2.44 30.00 - 235.55 2.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 20.212 20.198 0.000 0.000 0.04804 0.04796 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVEE<AGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04800 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.192 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.338)+( 0.000) = 0.338 ENTRANCE LOSSES 0.000 FEET NODE 122.00 HGL < 237.528>;EGL= < 243.872>;FLOWLINE= < 235.880> jt.yHt*j,****.********************************************************************* FLOW PROCESS FROM NODE 122.00 TO NODE 120.50 IS CODE = 1 UPSTREAM NODE 120.50 ELEVATION = 248.27 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 69.39 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 253.75 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.64 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.79 2.44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 3.190 6.543 10.073 FLOW DEPTH (FT) 1.795 1.788 1.782 1.776 VELOCITY (FT/SEC) 18.394 18.462 18.532 18.602 SPECIFIC ENERGY(FT) 7.051 7.084 7.118 7.152 PRESSURE+ MOMENTUM(POUNDS) 2661.57 2669.34 2677.22 2685.20 13.797 1.770 18.673 7.187 2693.28 17.734 1.763 18.744 7.222 2701.46 21.906 1.757 18.816 7.258 2709.74 26.339 1.751 18.889 7.295 2718.13 31.062 1.745 18.963 7.332 2726.63 36.110 1.738 19.038 7.370 2735.23 41.527 1.732 19.113 7.408 2743.94 47.363 1.726 19.189 7.447 2752.75 53.680 1.720 19.266 7.487 2761.68 60.556 1.714 19.343 7.527 2770.72 68.088 1.707 19.422 7.568 2779.88 76.401 1.701 19.501 7.610 2789.14 85.661 1.695 19.581 7.652 2798.52 96.091 1.689 19.662 7.695 2808.02 108.006 1.682 19.743 7.739 2817.64 121.864 1.676 19.826 7.784 2827.37 138.378 1.670 19.909 7.829 2837.23 158.742 1.664 19.993 7.875 2847.21 185.192 1.658 20.079 7.921 2857.31 222.758 1.651 20.165 7.969 2867.53 253.750 1.648 20.206 7.992 2872.47 120.50 HGL = < 250 065>;EGL= < 255.321>;FLOWLINE= < 248.270> NODE ****************************************************************************** FLOW PROCESS FROM NODE 120.50 TO NODE 120.00 IS CODE = 5 UPSTREAM NODE 120.00 ELEVATION = 248.60 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 65.24 69.39 4.15 0.00 0.00= DIAMETER ANGLE (INCHES) (DEGREES] FLOWLINE ELEVATION 30.00 0.00 248.60 30.00 - 248.27 18.00 90.00 249.27 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 2.42 2.44 0.78 0.00 VELOCITY (FT/SEC) 19.858 18.399 3. 985 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04284 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.171 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.989)+( 0.000) = 0.989 04739 03828 0.000 FEET NODE 120.00 : HGL = < 250.186>;EGL= < 256.310>;FLOWLINE= < 248.600> ****************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 118.50 IS CODE = 1 UPSTREAM NODE 118.50 ELEVATION = 251.55 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 65.24 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 4 4.70 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.42 CRITICAL DEPTH(FT) 2.42 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.75 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM{POUNDS) 0.000 1.753 17.741 6.643 2421.29 2.298 1.739 17.888 6.711 2436.87 4.740 1.726 18.038 6.782 2452.89 7.337 1.713 18.191 6.855 2469.34 10.106 1.700 18.348 6.931 2486.25 13.063 1.687 18.509 7.010 2503.61 16.229 1.674 18.672 7.091 2521.44 19.626 1.660 18.840 7 .175 2539.75 23.282 1. 647 19.011 7.263 2558.56 27.228 1.634 19.186 7.353 2577.87 31.503 1.621 19.365 7.447 2597.70 36.153 1.608 19.547 7.545 2618.06 41.235 1.595 19.734 7 . 646 2638.97 44.700 1.586 19.852 7.710 2652.22 NODE 118.50 : HGL = < 253.303>;EGL= < 258.193>;FLOWLINE= < 251.550> ^^rir*************************************************************************** FLOW PROCESS FROM NODE 118.50 TO NODE 118.00 IS CODE = 5 UPSTREAM NODE 118.00 ELEVATION = 252.88 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 56.33 30.00 0.00 252.88 2.37 22.205 DOWNSTREAM 65.24 30.00 - 251.55 2.42 17.746 LATERAL #1 3.75 18.00 90.00 252.55 0.74 2.509 LATERAL #2 3.72 18.00 45.00 252.55 0.74 2.489 Q5 1.44===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05252 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.210 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 2.648)+( 0.978) = 3.626 06909 03595 0.978 FEET NODE 118.00 : HGL = < 254.163>;EGL= < 261.819>;FLOWLINE= < 252.880> jt^jt + Vt***Vt********************************************************************* FLOW PROCESS FROM NODE 118.00 TO NODE 116.50 IS CODE = 1 UPSTREAM NODE 116.50 ELEVATION = 273.57 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 56.33 CFS PIPE DIAMETER 30.00 INCHES PIPE LENGTH = 290.43 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 1.27 CRITICAL DEPTH(FT) 2.37 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.57 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.568 17.373 6.258 2034.92 2.113 1.556 17.529 6.330 2049.50 4.356 1.545 17.687 6.405 2064.46 6.739 1.533 17.849 6.483 2079.80 9.276 1.521 18.015 6.563 2095.52 11.983 1.509 18.183 6. 646 2111.65 14.877 1.497 18.356 6.732 2128.18 17.981 1.485 18.532 6. 821 2145.14 21.317 1.473 18.711 6.913 2162.52 24.916 1.461 18.895 7.009 2180.35 28.812 1.449 19.083 7.107 2198.63 33.045 1.438 19.274 7.210 2217.37 37.669 1.426 19.470 7.316 2236.59 42.745 1. 414 19.670 7.425 2256.30 48.355 1.402 19.874 7.539 2276.52 54.600 1.390 20.083 7.657 2297.25 61.616 1.378 20.297 7.779 2318.52 69.588 1.366 20.516 7. 906 2340.33 78.772 1.354 20.739 8.037 2362.71 89.545 1.343 20.968 8.174 2385.67 102.492 1.331 21.201 8.315 2409.22 118.593 1.319 21.441 8.462 2433.39 139.684 1.307 21.686 8. 614 2458.19 169.892 1.295 21.936 8.772 2483.64 222.457 1.283 22.193 8.936 2509.76 290.430 1.283 22.198 8.939 2510.30 NODE 116.50 : HGL = < 275. 138>;EGL= < 27 9.828>;FLOWLINE= < 273.570> ****************************************************************************** FLOW PROCESS FROM NODE 116.50 TO NODE 116.00 IS CODE = 5 UPSTREAM NODE 116.00 ELEVATION = 273.90 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE DEGREES) ELEVATION 0.00 273.90 273.57 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== (CFS) (INCHES 56.33 30.00 56.33 30.00 0.00 0.00 0.00 0.00 CRITICAL DEPTH(FT.) 2.37 2.37 0.00 0.00 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03570 VELOCITY (FT/SEC) 17.217 17.379 0.000 0.000 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03655 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03612 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.14 4 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.256)+( 0.000) = 0.256 NODE 116.00 : HGL = < 275.481>;EGL= < 280.084>;FLOWLINE= < 273.900> ^,.^,^,^,^,^r^,^,i,.^,^,^,^,^,^,^,^r*•k*********************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 114.50 IS CODE = 1 UPSTREAM NODE 114.50 ELEVATION = 280.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 56.33 CFS PIPE PIPE LENGTH = 168.11 FEET DIAMETER = 30.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.53 CRITICAL DEPTH(FT) = 2.37 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.37 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.101 0.399 0.893 1.588 2.4 93 3. 622 4.992 6.626 8.552 10.805 13.429 16.478 20.020 24 .142 28.957 34.613 41.314 49.345 59.124 71.303 86.971 108.177 139.522 168.110 FLOW DEPTH (FT) 2.366 2, 2. 2. 2, 2. 2. 2, 2, 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1, 1. 1. 1, 1. ,332 .299 ,266 ,232 ,199 ,165 ,132 .099 ,065 ,032 ,999 ,965 ,932 ,898 ,865 ,832 ,798 ,765 ,731 .698 ,665 , 631 ,598 ,581 VELOCITY (FT/SEC) 11.715 11.813 11.922 12.042 12.173 12.314 12.465 12.627 12.800 12.984 13.179 13.386 13.605 13.836 14.081 14.339 14.611 14.899 15.203 15.524 15.863 16.221 16.599 16.999 17.211 SPECIFIC ENERGY(FT) 4 .498 4.501 4.507 4.519 534 555 ,580 ,610 , 644 ,685 ,731 ,783 ,841 , 906 , 979 , 060 ,149 ,247 ,356 , 476 ,608 ,753 ,912 .088 4 , 4. 4 , 4. 4 , 4, 4 , 4 4. 4 . 4 . 5. 5, 5, 5. 5. 5, 5, 5. 6. 6.184 PRESSURE+ MOMENTUM(POUNDS) 1621.36 1622.05 1624.08 1627.38 1631.95 1637.77 1644.85 1653.20 1662.85 1673.82 1686.16 1699.90 1715.10 1731.81 1750.11 1770.05 1791.71 1815.19 1840.58 1867.97 1897.50 1929.27 1963.43 2000.13 2019.80 NODE 114.50 : HGL = < 282.866>;EGL= < 284.998>;FLOWLINE= < 280.500> ^^jntjnm.*jn;^t******************************************************************* FLOW PROCESS FROM NODE 114.50 TO NODE 114.00 IS CODE = 5 UPSTREAM NODE 114.00 ELEVATION = 282.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 17.50 18.00 0.00 282.00 1.45 9.903 56.33 30.00 - 280.50 2.37 11.719 33.90 30.00 45.00 281.50 1.98 6.906 0.00 0.00 0.00 0.00 0.00 0.000 4.93===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02204 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.088 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.514)+( 0.427) = 2.940 02775 01632 0.427 FEET NODE 114.00 : HGL = < 286.416>;EGL= < 287.939>;FLOWLINE= < 282.000> ^t.4.^,^tV,Vt* + ********************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 112.50 114.00 TO NODE ELEVATION = 112.50 IS CODE = 1 292.82 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.50 CFS PIPE DIAMETER = PIPE LENGTH = 258.78 FEET MANNING'S 18.00 INCHES N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.03 CRITICAL DEPTH(FT) 1.45 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 1.170 11.833 3.345 450. 13 1 377 1.164 11.890 3.360 451. 53 2 836 1.158 11.947 3.376 452. 96 4 383 1.153 12.006 3.392 454. 43 6 027 1.147 12.065 3.409 455. 92 7 777 1.141 12.125 3.426 457. 46 9 645 1.136 12.186 3.443 459. 02 11 642 1.130 12.248 3.461 460. 62 13 .785 1.125 12.311 3.479 462 26 16 .090 1.119 12.375 3.498 463 93 18 .578 1.113 12.440 3.518 465 64 21 .276 1.108 12.506 3.538 4 67 39 24 .213 1.102 12.573 3.558 469 17 27 . 430 1.096 12.641 3.579 470 99 30 .973 1.091 12.710 3.601 472 .84 34 . 907 1.085 12.780 3. 623 474 .74 39 .313 1.079 12.851 3. 646 476 . 67 44.303 1.074 12.924 3.669 478.65 50.034 1.068 12.997 3.693 480.66 56.736 1.062 13.072 3.717 482.72 64.763 1.057 13.147 3.743 484.82 74.712 1.051 13.224 3.768 486.96 87.701 1.046 13.302 3.795 489.14 106.241 1.040 13.382 3.822 491.37 138.389 1.034 13.462 3.850 493.64 258.780 1.034 13.468 3.852 493.80 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 4.42 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD( FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 4. 416 9. 903 5. 939 740.08 207.441 1. 500 9. 903 3. 023 418.54 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 1 .50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 207.441 1. 500 9. 900 3. 023 418.54 207.571 1. 498 9. 901 3. 021 418.33 207.680 1. 496 9. 903 3. 019 418.15 207.777 1. 4 93 9. 905 3. 018 417.99 207.865 1. 491 9. 907 3. 016 417.84 207.945 1. 489 9. 910 3. 015 417.70 208.018 1 487 9. 913 3. 014 417.57 208.085 1 485 9. 917 3. 013 417.45 208.146 1 483 9. 921 3. 012 417.34 208.202 1 480 9. 925 3 Oil 417.24 208.254 1 478 9. 929 3 010 417.14 208.301 1 476 9. 934 3 009 417.06 208.344 1 474 9. 938 3 009 416.98 208.383 1 472 9 943 3 008 416.90 208.418 1 470 9 948 3 007 416.84 208.450 1 4 67 9 954 3 007 416.78 208.478 1 465 9 959 3 006 416.73 208.503 1 .463 9 965 3 006 416.68 208.524 1 .461 9 971 3 .006 416.64 208.543 1 .459 9 977 3 . 005 416.61 208.558 1 .457 9 .983 3 .005 416.58 208.570 1 .454 9 .989 3 .005 416.55 208.580 1 .452 9 .995 3 . 005 416.54 208.587 1 .450 10 .002 3 .004 416.52 208.591 1 .448 10 .009 3 .004 416.51 208.592 1 .446 10 .016 3 .004 416.51 258.780 1 .446 10 .016 3 .004 416.51 HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 2.151 FEET, 161.12 FEET UPSTREAM OF NODE 114.00 UPSTREAM CONJUGATE DEPTH = 1.043 FEET NODE 112.50 HGL < 293.990>;EGL= < 296.165>;FLOWLINE= < 292.820> .4.^^^^^.*..^^*.* + *** + + **************************************************************** FLOW PROCESS FROM NODE 112.50 TO NODE 112.00 IS CODE = 5 UPSTREAM NODE 112.00 ELEVATION = 293.15 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 17.50 18.00 0.00 293.15 1.45 11.363 17.50 18.00 - 292.82 1.45 11.837 0.00 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02937 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.117 FEET ENTRANCE LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.210)+( 0.000) = 0.210 02812 03061 0.000 FEET JUNCTION LOSSES JUNCTION LOSSES NODE 112.00 HGL < 294.371>;EGL= < 296.376>;FLOWLINE= < 293.150> ********** jti..ynm.^t** + *********************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 111.50 112.00 TO NODE ELEVATION = 111.50 IS CODE = 1 299.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 207.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.22 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.30 1.45 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNE 0.000 1. 304 10.726 3. 092 425. 63 1.484 1. 300 10.750 3. 096 426. 06 3.053 1. 297 10.773 3. 100 426. 50 4.715 1 293 10.797 3 105 426 96 6.478 1 290 10.821 3 109 427 42 8.352 1 287 10.845 3 114 427 89 10.347 1 283 10.869 3 119 428 38 12.476 1 280 10.894 3 124 428 87 14.756 1 276 10.919 3 129 429 38 17.203 1 .273 10.945 3 134 429 .89 19.840 1 .269 10.970 3 .139 430 .42 22.691 1 .266 10.996 3 .145 430 .95 25.789 1.262 11 .022 3.150 431.49 29.173 1.259 11 .049 3.156 432.05 32.893 1.255 11 .076 3.161 432.62 37.012 1.252 11 .103 3.167 433.19 41. 614 1.248 11 .130 3.173 433.78 46.814 1.245 11 .157 3.179 434.38 52.770 1.242 11 .185 3.186 434.98 59.716 1.238 11 .214 3.192 435.60 68.015 1.235 11 .242 3.198 436.23 78.274 1.231 11 .271 3.205 436.87 91.630 1.228 11 .300 3.212 437.52 110.643 1.224 11 .329 3.219 438.18 143.518 1.221 11 .359 3.225 438.86 207.000 1.221 11 .360 3.226 438.88 111.50 HGL = < 300 304>;EGL= < 302.092>;FLOWLINE= < 299.000 NODE ****************************************************************************** FLOW PROCESS FROM NODE 111.50 TO NODE 111.00 IS CODE = 5 UPSTREAM NODE 111.00 ELEVATION = 299.50 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 15.63 18.00 0.00 299.50 1.42 11.852 DOWNSTREAM 17.50 18.00 - 299.00 1.45 10.730 LATERAL #1 1.87 18.00 90.00 299.50 0.51 1.633 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/ ( (A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03173 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02535 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02854 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.114 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.638)+( 0.000) =0.638 NODE 111.00 : HGL = < 300.548>;EGL= < 302.729>;FLOWLINE= < 299.500> ****************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 110.50 IS CODE = 1 UPSTREAM NODE 110.50 ELEVATION = 301.15 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.63 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 47.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.01 CRITICAL DEPTH(FT) = 1.42 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.15 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 270 616 047 570 193 8. 928 10.786 12.781 14.931 17.255 19.in 22.527 25.542 28.867 32.562 36.706 41.405 46.806 47.000 FLOW DEPTH (FT) 1.148 1. 1. 1. 1. 1, 1. 1, 1, 1, 1, ,143 ,137 , 132 , 126 ,121 ,115 ,109 ,104 ,098 ,093 1.087 ,082 ,076 ,071 ,065 ,059 ,054 ,048 ,048 VELOCITY (FT/SEC) 10.763 10.816 10.870 10.924 10.979 11.035 11.092 11.150 11.209 11.268 11.329 11.390 11.452 11.516 11.580 11.645 11.711 11.778 11.846 11.848 SPECIFIC ENERGY(FT) 2.948 3. 3. 3. 3. 3. 3. 3. 3. 961 973 986 999 013 027 041 056 071 3.087 3.103 120 137 154 172 190 209 229 229 PRESSURE+ MOMENTUM(POUNDS) 372.88 373.97 375.10 376.25 377.43 378.63 379.87 381.13 382.42 383.74 385.10 386.48 387.89 389.33 390.81 392.32 393.86 395.43 397.04 397.09 NODE 110.50 : HGL = < 302.298>;EGL= < 304.098>;FLOWLINE= < 301.150> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 110.50 TO NODE ELEVATION = 110.00 IS CODE = 5 301.65 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 11.35 15. 63 2.15 2.12 0.00= DIAMETER ANGLE FLOWLINE CRITICAL 18.00 0.00 301.65 1.29 18.00 - 301.15 1.42 18.00 90.00 301.65 0.55 18.00 45.00 301.65 0.55 =Q5 EQUALS BASIN INPUT=== VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 15.816 10.767 2.967 2.926 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*VI*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08184 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02541 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05362 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0.322 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.075)+( 0.000) = 2.075 NODE 110.00 : HGL = < 302.289>;EGL= < 306.173>;FLOWLINE= < 301.650> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 108.50 110.00 TO NODE ELEVATION = 108.50 IS CODE = 1 320.82 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.35 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH = 230.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.64 CRITICAL DEPTH(FT) 1.29 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.73 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0.727 13.353 3. 498 310.12 1 .048 0.724 13.440 3. 530 311.84 2 .152 0.720 13.528 3. 564 313.58 3 .316 0.716 13.617 3. 598 315.36 4 .547 0.713 13.708 3. 632 317.16 5 .851 0.709 13.799 3. 668 318.98 7 .235 0.705 13.892 3. 704 320.84 8 .709 0.702 13.986 3. 741 322.72 10 .282 0.698 14.082 3. 779 324.64 11 .967 0. 694 14.178 3. 818 326.58 13 .778 0.691 14.276 3. 857 328.55 15 .734 0. 687 14.375 3. 898 330.55 17 . 855 0.683 14.476 3. 939 332.58 20 .168 0.680 14.578 3. 982 334.65 22 .707 0.67 6 14.681 4 . 025 336.74 25 .515 0. 672 14.786 4 . 069 338.87 28 .650 0.669 14.892 4 . 115 341.03 32 .188 0.665 15.000 4. 161 343.23 36 .238 0.661 15.109 4. 208 345.46 40 .959 0.658 15.220 4. 257 347.73 46 .596 0. 654 15.332 4. 307 350.03 53 .562 0. 650 15.446 4 . 357 352.36 62 .629 0.647 15.562 4. 409 354.74 75 .534 0.643 15.679 4 . 463 357.15 97 .849 0.639 15.798 4. 517 359.60 230 .000 0.639 15.811 4 . 523 359.88 NODE 108.50 HGL < 321.547>;EGL= < 324.318>;FLOWLINE= < 320.820> ****************************************************************************** FLOW PROCESS FROM NODE 108.50 TO NODE 108.00 IS CODE = 5 UPSTREAM NODE 108.00 ELEVATION = 321.15 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 11.35 18.00 0.00 321.15 DOWNSTREAM 11.35 18.00 - 320.82 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 1.29 1.29 0.00 0.00 13.456 13.357 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05287 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05184 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05236 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 4.00 FEET 0.209 FEET ENTRANCE LOSSES = 0.000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.367)+( 0.000) = 0.367 NODE 108.00 HGL = < 321.873>;EGL= < 324.685>;FLOWLINE= < 321.150> ****************************************************************** + + ***.jHt.j..jtVt.i.^t FLOW PROCESS FROM NODE 108.00 TO NODE 106.50 IS CODE = 1 UPSTREAM NODE 106.50 ELEVATION = 334.27 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.35 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 224.56 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.70 CRITICAL DEPTH(FT) 1.29 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .286 7.035 2.055 214.75 0 .023 1 .263 7.146 2.056 214.86 0 .094 1 .240 7.265 2.060 215.19 0 .217 1 .216 7.393 2.065 215.74 0 .397 1 .193 7.529 2.074 216.53 0 .640 1 .170 7.675 2.085 217.57 0 .952 1 .146 7.831 2.099 218.86 1 .343 1 .123 7.997 2.116 220.42 1 .823 1 . 100 8.173 2.138 222.26 2 .402 1 .076 8.362 2.163 224.41 3 .096 1 .053 8.562 2.192 226.87 3 . 924 1 .029 8.776 2.226 229.66 4 . 905 1 .006 9.004 2.266 232.81 6 .069 0 .983 9.247 2.311 236.34 7 .451 0 .959 9.506 2.363 240.28 9 .095 0 .936 9.782 2.423 244.66 11 .063 0 . 913 10.078 2.491 249.50 13 . 435 0 .889 10.395 2.568 254.85 16 .328 0 .866 10.734 2.656 260.75 19 . 911 0 .843 11.098 2.757 267.25 24 .447 0 .819 11.489 2.870 274.39 30 .379 0 .796 11.910 3.000 282.24 38 .538 0 .773 12.364 3.148 290.86 50 .791 0 .749 12.855 3.317 300.34 73 .133 0 .726 13.385 3.510 310.76 224 .560 0 .723 13.452 3.535 312.07 NODE 106.50 : HGL = < 335. 556>;EGL= < 336.325>;FLOWLINE= < 334.270> ****************************************************************************** FLOW PROCESS FROM NODE 106.50 TO NODE 106.00 IS CODE = 5 UPSTREAM NODE 106.00 ELEVATION = 334.60 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 4.03 11.35 5.07 0.00 DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION 18.00 0.00 334.60 18.00 - 334.27 18.00 90.00 334.60 0.00 0.00 0.00 DEPTH(FT.) 0.77 1.29 0.87 0.00 (FT/SEC) 2.280 7.037 2.869 0.000 2.25===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00616 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.025 FEET ENTRANCE LOSSES = JUNCTION LOSSES = {DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.635)+( 0.154) = 0.789 00147 01086 0.154 FEET NODE 106.00 HGL < 337.034>;EGL= < 337.114>;FLOWLINE= < 334.600> ****************************************************.*.ytVt***************** ****** FLOW PROCESS FROM NODE UPSTREAM NODE 105.50 106.00 TO NODE 105.50 IS CODE = 1 ELEVATION = 345.82 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.03 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 143.74 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.38 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.55 0.77 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.307 0. 1. 1. 1. 2. 2. 3, 641 004 400 833 306 824 392 019 710 477 330 285 8.360 9.579 10.973 FLOW DEPTH (FT) 0.554 0. 547 0.540 0.533 0.526 0.518 0.511 0.504 0.4 97 0.490 0.483 0.476 0.468 0.461 0.454 0.447 0.440 VELOCITY (FT/SEC) 6.791 6.911 SPECIFIC ENERGY(FT) 1.271 035 164 297 435 577 725 877 8.036 8.200 8.370 8.547 8.731 8.922 9.121 9.327 289 309 330 353 377 403 431 461 493 527 564 604 646 691 739 792 PRESSURE+ MOMENTUM(POUNDS) 61.59 62.27 62.98 63.73 64.52 65.35 66.23 67 .14 68.11 69.12 70.18 71.29 72.46 73. 69 74.98 76.33 77.75 12.584 0.433 9.543 1.848 79.24 14.474 0.426 9.767 1.908 80. 81 16.728 0.418 10.001 1.972 82.45 19.482 0.411 10.245 2.042 84 .18 22.965 0.404 10.500 2.117 86.00 27.602 0.397 10.766 2.198 87.91 34.352 0.390 11.044 2.285 8 9. 92 46.287 0.383 11.336 2.379 92.04 143.740 0.382 11.381 2.394 92.37 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.43 PRESSURE FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM CONTROL(FT) 0.000 12.190 PRESSURE HEAD(FT) 2.434 1.500 VELOCITY (FT/SEC) 2.281 2.281 SPECIFIC ENERGY(FT) 2.514 1.581 PRESSURE+ MOMENTUM(POUNDS) 203.46 100.51 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 12.190 12.562 12.925 13.283 13.635 13. 14. 14. 14, 15. 15. 15. 16. 16. 16. 17. 17. 17. 17. 18. 18, 18, 18. 18. 18. 18. 143. FLOW DEPTH (FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) ,982 ,325 ,663 , 995 ,322 , 643 ,957 ,264 ,563 853 , 132 ,400 ,655 ,894 ,116 ,317 ,494 , 644 ,759 ,835 ,863 ,740 1. 1. 1. 1. 1, 1. 1, 1, 1, 1. 1. 1. 1. 1. 1, 1. 1. 1, 0, 0, 0, ,500 ,471 ,441 ,412 .383 ,354 ,324 ,295 ,266 ,237 ,207 , 178 ,149 ,120 .090 ,061 ,032 .002 , 973 ,944 , 915 0.885 0.856 0.827 0.798 0.768 0.768 2. 2, 2, 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. 3. 581 552 524 4 97 470 443 417 391 365 340 316 292 268 246 223 202 182 163 145 128 113 099 088 080 074 072 072 PRESSURE+ MOMENTUM(POUNDS) 100.51 97. 94 91 88 85 82 80 ,37 ,33 ,35 ,46 ,64 ,91 ,27 77.71 75.25 72.89 70.63 68.47 66.43 64 . 51 ,280 ,290 ,310 ,335 ,365 ,400 ,440 ,484 ,532 ,585 ,643 ,706 ,774 .848 , 928 015 109 3.210 3.320 3.440 3.570 3.711 3.8 65 4.034 4.219 4.422 4.422 EfjD OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 13.17 FEET UPSTREAM OF NODE 106.00 DOWNSTREAM DEPTH = 1.422 FEET, UPSTREAM CONJUGATE DEPTH = 0.382 FEET 62. 61. 59. 58. 56. 55. 54. 54 . 53. 71 04 50 11 87 78 86 13 58 53.24 53.12 53.12 NODE 105.50 : HGL = < 346.374>;EGL= < 347.091>;FLOWLINE= < 345.820> ****************************************************************************** FLOW PROCESS FROM NODE 105.50 TO NODE 105.00 IS CODE = 5 UPSTREAM NODE 105.00 ELEVATION = 346.15 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 3.07 18.00 0.00 346.15 DOWNSTREAM 4.03 18.00 - 345.82 LATERAL #1 0.96 18.00 90.00 346.15 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 0.67 9.119 0.77 6.793 0.37 2.885 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03317 4.00 FEET 0.133 FEET ENTRANCE LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.719)+( 0.000) = 0.719 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 04897 01738 0.000 FEET NODE 105.00 : HGL = < 346.518>;EGL= < 347.810>;FLOWLINE= < 346.150> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2012.50 105.00 TO NODE 2012.50 IS CODE = 1 ELEVATION = 356.97 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 3.07 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 201.39 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0 .36 CRITICAL DEPTH(FT) 0.67 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.66 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 0.000 0. 657 4 122 0 921 37.36 0.023 0. 645 4 .223 0 922 37.41 0.066 0. 633 4 .328 0 924 37.50 0.132 0. 621 4 .438 0 927 37.64 0.223 0. 609 4 .553 0 932 37.82 0.342 0. 598 4 . 675 0 937 38.05 0.492 0. 586 4 .802 0 944 38.33 0.678 0. 574 4 .937 0 952 38.66 0.905 0. 562 5 . 078 0 963 39.05 1.179 0. 550 5 .227 0 975 39.49 1.506 0. 538 5 .384 0 989 40.00 1.896 0. 526 5 .551 1 005 40.57 2.358 0. 514 5.726 1 .024 41.21 2. 907 0. 502 5. 913 1 .046 41.93 3.558 0. 491 6.110 1 .071 42.73 4.334 0. 479 6.320 1 .099 43.61 5.263 0. 4 67 6.544 1 .132 44 .59 6.384 0. 455 6.782 1 .169 45.66 7.752 0. 443 7.036 1 .212 46.84 9.446 0. 431 7.308 1 .261 48.14 11.592 0. 419 7.599 1 .316 49.57 14.399 0. 407 7. 911 1 .380 51.13 18.259 0. 395 8.246 1 .452 52.85 24.054 0. 383 8. 608 1 .535 54.73 34.615 0. 372 8. 999 1 .630 56.80 201.390 0. 368 9.117 1 .660 57.42 2012.50 HGL = < 357. 627>;EGL= < 357.891>;FLOWLINE= < 356.970> ****************************************************************************** FLOW PROCESS FROM NODE 2012.50 TO NODE 2012.00 IS CODE = 5 UPSTREAM NODE 2012.00 ELEVATION = 357.30 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 08 07 99 0.00 0.00= DIAMETER ANGLE (INCHES) (DEGREES) 0.00 18.00 0.00 357.30 18.00 - 356.97 18.00 90.00 357.30 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY ELEVATION DEPTH(FT.) (FT/SEC) 0.54 6.515 0.67 4.124 0.37 2.909 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02609 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00542 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0157 6 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.063 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.423)+( 0.000) = 0.423 NODE 2012.00 : HGL = < 357.655>;EGL= < 358.314>;FLOWLINE= < 357.300> ****************************************************************************** FLOW PROCESS FROM NODE 2012.00 TO NODE 2010.50 IS CODE = 1 UPSTREAM NODE 2010.50 ELEVATION = 362.87 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.08 CFS PIPE PIPE LENGTH = 201.39 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.35 CRITICAL DEPTH(FT) = 0.54 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.54 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ICE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ .OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 0 .542 3.611 0. 745 22.66 0.014 0 .534 3.681 0. 745 22.67 0.050 0 .527 3.755 0. 746 22.70 0.108 0 .519 3.831 0. 747 22.74 0.192 0 .511 3.910 0. 749 22.80 0.304 0 .504 3.993 0. 751 22.88 0.448 0 .496 4.078 0. 754 22. 98 0.627 0 .488 4.167 0. 758 23.09 0.847 0 .481 4.259 0. 762 23.23 1.111 0 .473 4.355 0. 767 23.38 1.427 0 .465 4.455 0. 773 23.56 1.802 0 .457 4.559 0. 780 23.76 2.247 0 .450 4.668 0. 788 23.98 2.771 0 . 442 4.781 0. 797 24.22 3.392 0 .434 4.900 0. 807 24.49 4.126 0 .427 5.024 0. 819 24.79 5.001 0 .419 5.153 0. 831 25.12 6.050 0 .411 5.289 0. 846 25.47 7.320 0 . 403 5.431 0. 862 25.86 8.884 0 .396 5.580 0. 879 26.28 10.848 0 .388 5.736 0. 899 26.73 13.397 0 .380 5. 900 0. 921 27.22 16.874 0 .373 6.073 0. 946 27.75 22.049 0 .365 6.255 0. 973 28.32 31.395 0 .357 6.447 1. 003 28.94 201.390 0 .355 6.513 1. 014 29.15 NODE 2010.50 : HGL = < 363.412>;EGL= < 363.615>;FLOWLINE= < 362.870> ****************************************************************************** FLOW PROCESS FROM NODE 2010.50 TO NODE 2010.00 IS CODE = 5 UPSTREAM NODE 2010.00 ELEVATION = 363.20 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 1.04 2.08 1.04 0.00 0.00= DIAMETER ANGLE (INCHES) FLOWLINE CRITICAL DEPTH(FT.) [DEGREES) ELEVATION 18.00 0.00 363.20 0.38 18.00 - 362.87 0.54 18.00 90.00 363.20 0.38 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 5. 921 3. 612 2. 949 0. 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02024 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.081 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.363)+( 0.000) = 0.363 03545 00502 0.000 FEET NODE 2010.00 : HGL = < 363.434>;EGL= < 363.978>;FLOWLINE= < 363.200> ****************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 208.50 IS CODE = 1 UPSTREAM NODE 208.50 ELEVATION = 370.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.04 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 201.39 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0.23 CRITICAL DEPTH(FT) 0.38 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.38 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.379 2.962 0.516 9.38 0.008 0.373 3.028 0.516 9.38 0.029 0.367 3.097 0.516 9.40 0.064 0.361 3.169 0.518 9.42 0.114 0.356 3.244 0.519 9.45 0.181 0.350 3.322 0.521 9.49 0.268 0.344 3.404 0.524 9.54 0.376 0.338 3.489 0.527 9. 60 0.509 0.332 3.578 0.531 9. 67 0. 669 0.326 3.671 0.535 9.75 0.861 0.320 3.768 0.541 9.85 1.090 0.314 3.870 0.547 9.95 1.362 0.308 3.976 0.554 10.07 1. 684 0.302 4.088 0.562 10.20 2.065 0.296 4.205 0.571 10.34 2.517 0.290 4.329 0.582 10.50 3.057 0.284 4.459 0.593 10.67 3.706 0.279 4.595 0.607 10.87 4 .494 0.273 4.740 0.622 11.07 5.466 0.267 4 .892 0.639 11.30 6. 690 0.261 5.053 0.657 11.55 8.282 0.255 5.223 0.679 11.82 10.460 0.249 5.403 0.703 12.11 13.709 0.243 5.594 0.729 12.42 19.591 0.237 5.798 0.759 12.77 201.390 0.234 5.919 0.778 12. 97 NODE 208.50 HGL < 371.049>;EGL= < 371.186>;FLOWLINE= < 370.670> ****************************************************************************** FLOW PROCESS FROM NODE 2008.50 TO NODE 2008.00 IS CODE = 5 UPSTREAM NODE 2008.00 ELEVATION = 371.00 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.04 18.00 90.00 371.00 0.38 4.527 DOWNSTREAM 1.04 18.00 - 370.67 0.38 2.963 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*C0S(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01654 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00500 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01077 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.043 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.414)+( 0.000) = 0.414 NODE 2008.00 : HGL = < 371. 282>; EGL= < 371. 600>; FLOWLINE= < 371.000> ****************************************************************************** FLOW PROCESS FROM NODE 2008.00 TO NODE 2006.50 IS CODE = 1 UPSTREAM NODE 2006.50 ELEVATION = 371.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.04 CFS PIPE PIPE LENGTH = 16.25 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.27 CRITICAL DEPTH(FT) = 0.38 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.38 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.011 0.037 0.080 0.140 0.221 0.324 0.452 0. 607 0.794 1. 1. 1. 1. 2. 2. 3. ,016 ,279 ,589 , 954 ,384 ,890 ,490 4.206 5.071 129 ,453 ,163 6. 7. 9. 11.484 14.922 FLOW DEPTH (FT) 0.379 0.375 0.371 0.367 0.362 0.358 0.354 0.350 0.346 0.341 0.337 0.333 0.329 0.325 ,320 ,316 0.312 0.308 0.304 0.299 0.295 0.291 0.287 0.282 VELOCITY (FT/SEC) 2.962 3.009 3.057 0, 0, 107 158 210 264 320 378 437 498 561 626 693 7 62 834 908 985 064 146 231 319 410 505 SPECIFIC ENERGY(FT) 0.516 0.516 0.516 0.517 0.517 0.518 0.520 0.521 0.523 0.525 0.527 0.530 0.533 0.536 0.540 0.545 0.549 0.554 0.560 0.566 0.573 0.581 0.589 0.598 PRESSURE+ MOMENTUM(POUNDS) 9.38 9.38 9.39 9.40 9.42 9.44 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 46 49 53 56 61 66 71 77 84 91 99 10.08 10.17 10.27 10.37 10. 49 10. 61 10.74 16.250 0.282 4.525 0.600 10.77 NODE 2006.50 HGL < 371.679>;EGL= < 371.816>;FLOWLINE= < 371.300> ****************************************************************************** FLOW PROCESS FROM NODE 2006.50 TO NODE 2006.00 IS CODE = 5 UPSTREAM NODE 2006.00 ELEVATION = 371.30 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 04 04 0.00 0.00 DIAMETER (INCHES) 18.00 18.00 0.00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 0.00 0.00 371.30 371.30 0.00 0.00 CRITICAL DEPTH(FT.) 0.38 0.38 0.00 0.00 VELOCITY (FT/SEC) 2.211 2.949 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*VI*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00220 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00493 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00357 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.028)+( 0.000) = 0.028 NODE 2006.00 : HGL = < 371.768>;EGL= < 371.844>;FLOWLINE= < 371.300> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2006.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 371.30 371.68 FOR DOWNSTREAM RUN ANTU^YSIS END OF GRADUALLY VARIED FLOW ANALYSIS ************************************^r^,•^r•^,*^,*^r^,^,^,^,^,^r^r^c^r^r^,^f^r***•^,i,^:^c*^,^,*^r^,^c***^,^c^,^, PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE P * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:11660.RES * ******************************-k****************ir*-k**i,**ic**i,***ir****ic*-k**** FILE NAME: 11660.DAT TIME/DATE OF STUDY: 12:35 11/17/2001 ********************************************************^^^^^^^^^j^^^^^^^.^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 116.60- 1.50 157.34 0.55* 235.51 } FRICTION 116.76- 1.11 Dc 137.42 0.81* 157.17 } MANHOLE 116.77- l.ll*Dc 137.42 l.ll*Dc 137.42 } FRICTION 117.21- 1.24* 139.73 1.11 Dc 137.42 } JUNCTION 117.22- 1.57* 109.59 0.78 Dc 55.88 } FRICTION 117.15- 1.17* 71.84 0.78 Dc 55.88 } JUNCTION 117.16- 1.13* 45.50 0.21 3.60 } FRICTION 117.63- 0.66* 13.49 0.25 Dc 3.44 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. *******************************************************************.y^^jj..^.^.^j^.j..^.^j^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 116.60 FLOWLINE ELEVATION = 63.00 PIPE FLOW = 8.25 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 64.500 FEET NODE 116.60 : HGL = < 63.545>;EGL= < 66.684>;FLOWLINE= < 63.000> ****************************************************************************** FLOW PROCESS FROM NODE 116.60 TO NODE 116.76 IS CODE = 1 UPSTREAM NODE 116.76 ELEVATION = 65.87 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 8.25 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 21.83 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.47 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.81 1.11 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )L(FT) (FT) (FT/SEC) ENERGY( FT) MOMENTUM(POUN 0 000 0. 806 8.530 1. 936 157 . 17 0 310 0. 792 8.708 1. 971 159 .24 0 653 0. 779 8.895 2. 008 161 .45 1 030 0. 766 9.090 2. 050 163 .81 1 447 0. 753 9.294 2. 095 166 .32 1 908 0. 739 9.507 2. 144 169 .00 2 417 0. 726 9.730 2. 197 171 .86 2 983 0. 713 9.963 2. 255 174 .90 3 610 0. 700 10.208 2. 319 178 .14 4 310 0. 686 10.465 2. 388 181 .59 5 091 0. 673 10.734 2. 463 185 .25 5 967 0. 660 11.018 2. 546 189 . 16 6 953 0. 647 11.316 2. 636 193 .32 8 069 0. 633 11.630 2. 735 197 .74 9 339 0. 620 11.961 2. 843 202 .45 10 795 0. 607 12.310 2. 961 207 .47 12 480 0. 593 12.679 3. 091 212 .83 14 450 0. 580 13.069 3. 234 218 .53 16 785 0. 567 13.481 3. 391 224 .62 19 603 0. 554 13.919 3. 564 231 .12 21 830 0. 545 14.213 3. 684 235 .51 Ilf 5.76 HGL = < 66 67 6>;EGL= < 67.806>;FLOWLINE= < 65. 870 ****************************************************************************** FLOW PROCESS FROM NODE 116.76 TO NODE 116.77 IS CODE = 2 UPSTREAM NODE 116.77 ELEVATION = 66.20 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 8.25 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 0.833 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05*( 0.833) = 0.042 NODE 116.77 HGL 67.313>;EGL= < 67.848>;FLOWLINE= < 66.200> ****************************************************************************** FLOW PROCESS FROM NODE 116.77 TO NODE 117.21 IS CODE = 1 UPSTREAM NODE 117.21 ELEVATION = 66.60 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.25 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 66.94 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.25 & 1.50 CRITICAL DEPTH(FT) = NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. 1.11 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.11 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.036 0.148 0.343 0.631 1. 1. 2. 2, 3, 4 . FLOW DEPTH (FT) 1.113 ,021 ,524 154 ,926 ,859 976 6.302 7.872 9.725 11.914 14.506 17.589 21.281 25.752 31.247 38.147 47.093 59.286 66.940 118 124 129 135 140 146 152 157 163 168 174 180 185 191 196 202 208 213 219 224 230 236 238 VELOCITY (FT/SEC) 5.869 5. 5. 5. 5. 5. SPECIFIC ENERGY(FT) 838 808 779 750 721 693 665 638 611 584 558 532 507 482 458 433 410 386 363 341 5.318 5.296 5.287 648 648 648 648 649 649 650 650 651 652 653 654 655 656 658 659 661 662 664 666 668 669 671 672 PRESSURE+ MOMENTUM(POUNDS) 137.42 137.42 137.44 137.46 137.50 137.54 137.59 137.66 137.73 137.81 137.90 138.00 138.11 138.22 138.35 138.48 138.62 138.77 138.93 139.10 139.28 139.46 139.65 139.73 NODE 117.21 : HGL = < 67.838>;EGL= < 68.272>;FLOWLINE= < 66.600> FLOW PROCESS FROM NODE 117.21 TO NODE 117.22 IS CODE = 5 UPSTREAM NODE 117.22 ELEVATION = 67.00 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 4.19 DIAMETER ANGLE FLOWLINE CRITICAL [INCHES) (DEGREES) ELEVATION DEPTH(FT. 18.00 0.00 67.00 0.78 8.25 18.00 - 66.60 1.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.06===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 2. 371 5.289 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00159 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00609 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00384 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES = 0.087 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.297)+( 0.087) = 0.384 NODE 117.22 HGL < 68.569>;EGL= < 68.657>;FLOWLINE= < 67.000> ****************************************************************************** FLOW PROCESS FROM NODE 117.22 TO NODE 117.15 IS CODE = 1 UPSTREAM NODE 117.15 ELEVATION = 67.50 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.19 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 92.73 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 1.57 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1 .569 2.371 1. 657 109.59 18.216 1 .500 2.371 1. 587 101.95 NORMAL DEPTH(FT) 0.7 9 CRITICAL DEPTH(FT) 0.78 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 18.216 1 .500 2.370 1. 587 101.95 25.313 1 .472 2.381 1. 560 98.91 32.098 1 .443 2.400 1. 533 95.95 38.726 1 .415 2.425 1. 506 93.07 45.247 1 .386 2.456 1. 480 90.26 51.688 1 .358 2.490 1. 454 87.53 58.067 1 .329 2.530 1. 429 84 . 89 64.395 1 .301 2.573 1. 404 82.32 70.683 1 .272 2. 621 1. 379 79.85 76.938 1 .244 2. 674 1. 355 77.46 83.167 1 .215 2.731 1. 331 75 .17 89.374 1 .187 2.793 1. 308 72. 98 92.730 1 . 171 2.829 1. 296 71.84 NODE 117.15 : HGL = < 68.671>;EGL= < , 7 96>;FLOWLINE= < 67.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 117.16 117.15 TO NODE 117.16 IS CODE = 5 ELEVATION = 67.83 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.47 18.00 90.00 67.83 0.25 DOWNSTREAM 4.19 18.00 - 67.50 0.78 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 3.72===Q5 EQUALS BASIN INPUT=== 0.329 2.830 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00002 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00175 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0008 9 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.025 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.142)+( 0.025) = 0.167 NODE 117.16 : HGL = < 68.961>;EGL= < 68.963>;FLOWLINE= < 67.830> ***********************************************************.y^..^..^..^.^.^..^^.J^.^..^.^^^^^^.^^ FLOW PROCESS FROM NODE 117.16 TO NODE 117.63 IS CODE = 1 UPSTREAM NODE 117.63 ELEVATION = 68.30 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.47 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4 4.27 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.21 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.13 0.25 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY( FT) MOMENTUM(POUNDS) 0 .000 1.131 0. 329 1. 133 45 50 3 .303 1.096 0. 340 1. 098 42 43 6 . 605 1.061 0. 352 1. 063 39 47 9 . 907 1.026 0. 365 1. 028 36 60 13 .207 0.991 0. 379 0. 993 33 85 16 .506 0.956 0. 395 0. 958 31 21 19 .803 0. 920 0. 413 0. 923 28 68 23 .098 0.885 0. 433 0. 888 26 26 26 . 392 0.850 0. 455 0. 853 23 96 29 . 682 0.815 0. 479 0. 819 21 78 32 . 970 0.780 0. 506 0. 784 19 71 36 .253 0.745 0. 536 0. 749 17 76 39 .531 0.710 0. 571 0. 715 15 93 42 .802 0. 675 0. 609 0. 681 14 22 44 .270 0.659 0. 629 0. 665 13 49 NODE 117.63 : HGL = < 68.959>;EGL= < 68.965>;FLOWLINE= < 68.300> **********************************************************************.^.^J^J^.^J^J^.^ UPSTREAM PIPE FLOW CONTROL DATA: FLOWLINE ELEVATION = 68.30 68.55 FOR DOWNSTREAM RUN ANALYSIS NODE NUMBER = 117.63 ASSUMED UPSTREAM CONTROL HGL END OF GRADUALLY VARIED FLOW ANALYSIS ******************************************ir************ir***********-),*********ic PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE Z A * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:11018A.RES * *********************************^,****^,****^r***^r***^r***^,•k*^,*^,^c•k^k*•k•k•k****** FILE NAME: 11018A.DAT TIME/DATE OF STUDY: 11:22 11/17/2001 ***************************************^,***^c*****^r****^r*******^,^r*^k*^c•k*•k^r****^e* GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 110.18- 0.76 Dc 51.07 0.42* 78.10 } FRICTION 110.20- 0.76*Dc 51.07 0.76*Dc 51.07 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ******************************************ir*********i,*i(ir-k-k**i,**ir*-k*********ic-k* DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 110.18 FLOWLINE ELEVATION = 91.90 PIPE FLOW = 3.91 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 92.100 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.20 FT.) IS LESS THAN CRITICAL DEPTH( 0.7 6 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 110.18 : HGL = < 92.317>;EGL= < 93.790>;FLOWLINE= < 91.900> ***** + ****************************************************.i^..j..j.j^.^^j^.^..j..^.^.^.^^.^^^^^^ FLOW PROCESS FROM NODE 110.18 TO NODE 110.20 IS CODE = 1 UPSTREAM NODE 110.20 ELEVATION = 95.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.91 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = NORMAL DEPTH(FT) 65.25 FEET MANNING'S N = 0.01300 0.4 0 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.76 0.76 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .756 4 . 377 1 .054 51. 07 0 .010 0 .742 4. 483 1 .054 51. 10 0 .043 0 .728 4 . 595 1 .056 51. 19 0 . 101 0 .714 4. 712 1 .059 51. 34 0 . 187 0 .700 4. 835 1 .063 51. 55 0 .304 0 .686 4 . 964 1 .069 51. 83 0 .457 0 .672 5. 101 1 .076 52. 18 0 . 650 0 . 658 5. 245 1 .085 52. 61 0 . 889 0 . 643 5. 396 1 .096 53. 11 1 .181 0 . 629 5. 557 1 .109 53. 70 1 .532 0 .615 5. 727 1 .125 54 . 37 1 . 955 0 . 601 5. 906 1 . 143 55. 14 2 .459 0 .587 6. 097 1 .165 56. 02 3 .062 0 .573 6. 299 1 .190 57. 00 3 .781 0 . 559 6. 515 1 .218 58. 09 4 . 641 0 .545 6. 744 1 .251 59. 31 5 . 676 0 .531 6. 989 1 .290 60. 66 6 .929 0 .517 7. 250 1 .333 62. 16 8 .465 0 .502 7. 530 1 .383 63. 82 10 .374 0 .488 7. 830 1 .441 65. 64 12 .800 0 .474 8. 153 1 .507 67. 66 15 . 984 0 .460 8. 500 1 .583 69. 88 20 . 375 0 .446 8. 875 1 .670 72. 32 26 . 990 0 . 432 9. 281 1 .770 75. 02 39 .081 0 .418 9. 720 1 .886 77. 99 65 .250 0 .417 9. 736 1 .890 78. 10 NODE 110.20 : HGL = < 96.256>;EGL= < 96.554>;FLOWLINE= < 95.500> *************************************************************************.^..^.j^.^..^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 110.20 FLOWLINE ELEVATION = 95.50 ASSUMED UPSTREAM CONTROL HGL = 96.26 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ********************************************************J^^J^J^.^J^^.^J^.J^.^.^.^.^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE Z B * * NOVEMBRER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:11018B.RES * ***************************************************************j^.j..^..^^^.j^,.^..^.^.^ FILE NAME: 11018B.DAT TIME/DATE OF STUDY: 11:23 11/17/2001 **********************ir******^,**********^^*********^^,^r^,***^,******^rir^r**•^r**^,^,^,^!^,^, GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 110.18- 0.76 Dc 51.07 0.35* 95.88 } FRICTION 110.20- 0.76*Dc 51.07 0.76*Dc 51.07 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. **************************************************************jj..^..j..^^.^..^..^..^.^^.^..^^.^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 110.18 FLOWLINE ELEVATION = 91.90 PIPE FLOW = 3.91 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 92.100 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.20 FT.) IS LESS THAN CRITICAL DEPTH( 0.7 6 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 110.18 : HGL = < 92.254>;EGL= < 94.593>;FLOWLINE= < 91.900> ***********************************************************************^^.^^.^.^jj. FLOW PROCESS FROM NODE 110.18 TO NODE 110.20 IS CODE = 1 UPSTREAM NODE 110.20 ELEVATION = 94.15 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.91 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 11.25 FEET MANNING'S N = 0 01300 NORMAL DEPTH(FT) 0.29 CRITICAL DEPTH(FT) 0.76 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.76 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.756 4 .377 1.054 51.07 0.005 0.738 4 .518 1.055 51.12 0.019 0.719 4 .668 1.058 51.28 0.046 0.701 4 .828 1.063 51.54 0.085 0. 682 4 .999 1.070 51. 91 0.140 0. 664 5 .183 1.081 52.42 0.212 0. 645 5 .380 1.095 53.05 0.304 0. 626 5 .591 1.112 53.83 0.420 0. 608 5 .819 1.134 54.76 0.563 0.589 6 .065 1.161 55.87 0.739 0.571 6 .331 1.194 57.15 0. 953 0.552 6 .620 1.233 58.64 1.214 0.534 6 .934 1.281 60.36 1.532 0. 515 7 .277 1.338 62.32 1.919 0. 4 97 7 . 652 1.406 64 . 55 2.391 0.478 8 .063 1.488 67.09 2.972 0.460 8 .516 1.586 69.98 3.692 0.441 9 .017 1.704 73.26 4.595 0.422 9 .573 1.846 76. 99 5.748 0.404 10 .194 2.019 81.24 7.251 0.385 10 .890 2.228 86.08 9.280 0.367 11 . 674 2.484 91.62 11.250 0.354 12 .270 2.693 95.88 NODE 110.20 : HGL = < 94. 906>;EGL= < 95.204>;FLOWLINE= < 94.150> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 110.20 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 94.15 94.91 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE OA * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:10325A.RES * ************************************************************************** FILE NAME: 10325A.DAT TIME/DATE OF STUDY: 11:34 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 103.25- 2.58* 214.70 0.59 45.06 } FRICTION 103.30- 1.99* 149.71 0.71 Dc 43.10 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.25 FLOWLINE ELEVATION = 143.42 PIPE FLOW = 3.4 3 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 14 6.000 FEET NODE 103.25 : HGL = < 146.000>;EGL= < 14 6.059>;FLOWLINE= < 143.420> ****************************************************************************** FLOW PROCESS FROM NODE 103.25 TO NODE 103.30 IS CODE = 1 UPSTREAM NODE 103.30 ELEVATION = 14 4.08 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW 3.4 3 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 66.25 FEET MANNING S N = 0.01300 SF={Q/K)**2 = ( 3.43)/ ( 105.047))**2 = 0 00107 HF=L*SF = ( 66 25)* (0.00107) = 0.071 NODE 103.30 : HGL = < 146.071>;EGL= < 146.129>;FLOWLINE= < 144.080> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.30 FLOWLINE ELEVATION = 144.08 ASSUMED UPSTREAM CONTROL HGL = 144.79 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE OB * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:10325B.RES * ************************************************************************** FILE NAME: 10325B.DAT TIME/DATE OF STUDY: 11:36 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 103.25- 2.58* 214.70 0.45 56.09 } FRICTION 103.30- 1.98* 148.87 0.71 Dc 43.10 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.25 FLOWLINE ELEVATION = 143.42 PIPE FLOW = 3.4 3 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 146.000 FEET NODE 103.25 : HGL = < 14 6. OOO; EGL= < 14 6 . 059>; FLOWLINE= < 143.420> ****************************************************************************** FLOW PROCESS FROM NODE 103.25 TO NODE 103.30 IS CODE = 1 UPSTREAM NODE 103.30 ELEVATION = 144.03 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.4 3 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 12.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 3.43)/( 105.043))**2 = 0.00107 HF=L*SF = ( 12.25)* (0.00107) = 0.013 NODE 103.30 : HGL = < 146.013>;EGL= < 146.072>;FLOWLINE= < 144.030> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.30 FLOWLINE ELEVATION = 14 4.03 ASSUMED UPSTREAM CONTROL HGL = 144.74 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE Y * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:10150.RES * ************************************************************************** FILE NAME: 10150.DAT TIME/DATE OF STUDY: 11:28 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM {POUNDS) 101.50- 1.96 Dc 789.20 1.47* 885.56 } FRICTION 101.60- 1.96*Dc 789.20 1.96*Dc 789.20 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 101.50 FLOWLINE ELEVATION = 148.30 PIPE FLOW = 36.50 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 149.700 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.40 FT.) IS LESS THAN CRITICAL DEPTH( 1.96 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 101.50 : HGL = < 149.765>;EGL= < 151.524>;FLOWLINE= < 148.30O ****************************************************************************** FLOW PROCESS FROM NODE 101.50 TO NODE 101.60 IS CODE = 1 UPSTREAM NODE 101.60 ELEVATION = 149.95 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 36.50 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 115.67 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 .43 CRITICAL DEPTH(FT) 1. 96 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.96 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1. 964 7. 439 2. 824 789.20 0 .052 1. 943 7. 533 2. 825 789.35 0 .213 1. 921 7. 631 2. 826 789.78 0 .494 1. 900 7. 732 2 829 790.50 0 .908 1. 878 7. 835 2. 832 791.53 1 .468 1. 857 7. 942 2 837 792.88 2 .189 1. 835 8. 053 2 843 794.54 3 .091 1. 814 8. 166 2 850 796.54 4 .196 1. 792 8. 284 2 858 798.88 5 .528 1. 770 8. 405 2 868 801.57 7 .120 1. 749 8. 530 2 879 804.63 9 .009 1. 727 8. 659 2 8 92 808.07 11 .240 1. 706 8. 793 2 907 811.89 13 .870 1. 684 8. 931 2 924 816.12 16 . 970 1. 663 9. 074 2 942 820.76 20 . 634 1. 641 9. 221 2 962 825.83 24 . 984 1. 620 9. 374 2 985 831.35 30 .183 1. 598 9. 532 3 010 837.33 36 .463 1. 576 9. 695 3 037 843.79 44 . 164 1. 555 9. 865 3 067 850.76 53 .810 1. 533 10. 040 3 100 858.24 66 .284 1. 512 10. 222 3 135 866.26 83 .236 1. 490 10. 410 3 174 874.85 108 .378 1. 469 10. 606 3 217 884.02 115 . 670 1. 465 10. 638 3 224 885.56 NODE 101.60 HGL < 151.914>;EGL= < 152.774>;FLOWLINE= < 149.950> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 101.60 FLOWLINE ELEVATION = 14 9.95 ASSUMED UPSTREAM CONTROL HGL = 151.91 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE W A * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:9735A.RES * ************************************************************************** FILE NAME: 9735A.DAT TIME/DATE OF STUDY: 11:39 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 128.50- 2.47* 227.07 0.54 122.93 } FRICTION } HYDRAULIC JUMP 97.40- 0.93*Dc 86.41 0.93*Dc 86.41 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 128.50 FLOWLINE ELEVATION = 183.10 PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 185.570 FEET NODE 128.50 : HGL = < 185.570>;EGL= < 185.740>;FLOWLINE= < 183.100> ****************************************************************************** FLOW PROCESS FROM NODE 97.35 TO NODE 97.40 IS CODE = 1 UPSTREAM NODE 97.40 ELEVATION = 186.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 65.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.53 CRITICAL DEPTH(FT) = 0.93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 . 933 5.055 1.330 86.41 0 .015 0 . 917 5.161 1.330 86.45 0 .061 0 .900 5.272 1.332 86.57 0 .143 0 .884 5.389 1.335 86.78 0 .263 0 . 868 5.511 1.340 87 . 07 0 .427 0 .851 5. 640 1.346 87.47 0 . 641 0 .835 5.775 1.353 87 . 96 0 . 910 0 .819 5.917 1.363 88.55 1 .242 0 .803 6.067 1.374 89.26 1 . 646 0 .786 6.224 1.388 90.08 2 .132 0 .770 6.391 1.405 91.02 2 .715 0 .754 6.566 1.424 92.09 3 . 409 0 .737 6.751 1.446 93. 30 4 .235 0 .721 6. 948 1.471 94.65 5 .218 0 .705 7.155 1.500 96.16 6 .392 0 .689 7.375 1.534 97.84 7 .799 0 .672 7.609 1.572 99. 69 9 .499 0 .656 7.857 1.615 101.74 11 . 574 0 .640 8.122 1.665 103.99 14 .146 0 .623 8.404 1.721 106.46 17 .405 0 . 607 8.705 1.785 109.17 21 .666 0 .591 9.027 1.857 112.15 27 .526 0 .575 9.372 1.939 115.41 36 .321 0 .558 9.742 2.033 118.98 52 .344 0 .542 10.140 2.140 122.89 65 .250 0 .542 10.144 2.141 122.93 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT ) = 2.47 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 . 470 3.305 2.640 227.07 23 . 456 1 .500 3.305 1. 670 120.10 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) ( FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 23 .456 1 .500 3.304 1.670 120.10 23 .978 1 .477 3.314 1. 648 117.72 24 .475 1 .455 3.333 1. 627 115.45 24 .956 1 .432 3.358 1.607 113.26 25 .425 1 .409 3.388 1.588 111.15 25.882 1.387 3.422 1. 568 109.10 26.328 1.364 3.460 1. 550 107.13 26.763 1.341 3.502 1. 532 105.23 27.186 1.318 3.548 1. 514 103.41 27.598 1.296 3.598 1. 497 101.66 27.999 1.273 3.651 1. 480 99.99 28.387 1.250 3.709 1. 464 98.39 28.761 1.228 3.771 1. 449 96. 88 29.122 1.205 3.837 1. 434 95.46 29.467 1.182 3.907 1. 420 94.12 29.795 1.160 3.982 1. 406 92.87 30.106 1.137 4.062 1. 393 91.72 30.397 1.114 4 .147 1. 382 90. 67 30.666 1.092 4.238 1. 371 89.72 30.911 1.069 4.334 1. 361 88.88 31.129 1.046 4.436 1. 352 88.15 31.318 1.024 4.545 1. 344 87.54 31.473 1.001 4.660 1. 338 87.06 31.591 0.978 4.784 1. 334 86.70 31.666 0.955 4.915 1. 331 86.48 31.692 0.933 5.055 1. 330 86.41 65.250 0.933 5.055 1. 330 86.41 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 23.41 FEET UPSTREAM OF NODE 97.35 | I DOWNSTREAM DEPTH = 1.502 FEET, UPSTREAM CONJUGATE DEPTH = 0.553 FEET j NODE 97.40 : HGL = < 186.933>;EGL= < 187.330>;FLOWLINE= < 186.000> ******* + *****************************************************************^^.^^.j. UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 97.40 FLOWLINE ELEVATION = 186.00 ASSUMED UPSTREAM CONTROL HGL = 186.93 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ***********************************************************************.J^^.^.^.^.^.^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE W B * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:9735B.RES * *************************************************************************.^. FILE NAME: 9735B.DAT TIME/DATE OF STUDY: 11:41 11/17/2001 ************************************************************************.j^.^..jtj^.^.^, GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*." indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 128.50- 2.47* 227.07 0.53 125.77 } FRICTION 97.36- 1.26* 99.34 0.93 Dc 86.41 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. **************************************************************************.J^..^.^..^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 128.50 FLOWLINE ELEVATION = 183.10 PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 185.570 FEET NODE 128.50 : HGL = < 185.570>;EGL= < 185.740>;FLOWLINE= < 183.100> *****************************************************************************.jj. FLOW PROCESS FROM NODE 97.35 TO NODE 97.36 IS CODE = 1 UPSTREAM NODE 97.36 ELEVATION = 184.30 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 5.8 4 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 11.25 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.47 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 9.365 PRESSURE HEAD(FT) 2. 470 1.500 VELOCITY (FT/SEC) 3.305 3.305 SPECIFIC ENERGY(FT) 2.640 1.670 PRESSURE+ MOMENTUM(POUNDS) 227.07 120.10 NORMAL DEPTH(FT) = 0.42 CRITICAL DEPTH(FT) = 0. 93 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM{POUNDS) 9.365 1 .500 3.304 1.670 120.10 9.574 1 . 477 3.314 1.648 117.72 9. 773 1 .455 3.333 1. 627 115.45 9. 967 1 .432 3.358 1.607 113.26 10.155 1 .409 3.388 1.588 111.15 10.339 1 .387 3.422 1.568 109.10 10.518 1 . 364 3.460 1.550 107.13 10.692 1 .341 3.502 1.532 105.23 10.862 1 .318 3.548 1.514 103.41 11.027 1 .296 3.598 1.497 101.66 11.188 1 .273 3.651 1.480 99. 99 11.250 1 .264 3.674 1.474 99.34 NODE 97.36 : HGL = < 185. 564>;EGL= < 185.774>;FLOWLINE= < 184.300> ***********************************************************************.^.J..^..^^^.J^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 97.36 FLOWLINE ELEVATION = 184.30 ASSUMED UPSTREAM CONTROL HGL = 185.23 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE X B * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:9787B.RES * ************************************************************************** FILE NAME: 9787B.DAT TIME/DATE OF STUDY: 11:38 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM (POUNDS) 130.50- 3.87* 1117.78 1.69 753.13 } FRICTION 97.89- 3.84* 1111.77 1.86 Dc 741.72 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 130.50 FLOWLINE ELEVATION = 180.50 PIPE FLOW = 30.00 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 184.370 FEET NODE 130.50 : HGL = < 184.370>;EGL= < 185.786>;FLOWLINE= < 180.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 97.8 9 97.87 TO NODE 97.89 IS CODE = 1 ELEVATION = 180.90 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 30.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 21.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 30.00)/{ 226.223))**2 = 0.01759 HF=L*SF = ( 21.00)*(0.01759) = 0.369 NODE 97.89 : HGL = < 184.739>;EGL= < 186.155>;FLOWLINE= < 180.900> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 97.89 FLOWLINE ELEVATION = 180.90 ASSUMED UPSTREAM CONTROL HGL = 182.76 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8 680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE U A * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:8738A.RES * ************************************************************************** FILE NAME: 8738A.DAT TIME/DATE OF STUDY: 11:46 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 87.38- 1.15 82.95 0.58* 92.56 } FRICTION 87.40- 0.88*Dc 74.13 0.88*Dc 74.13 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 87.38 FLOWLINE ELEVATION = 252.55 PIPE FLOW = 5.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 253.700 FEET NODE 87.38 : HGL = < 253.130>;EGL= < 254.184>;FLOWLINE= < 252.550> ****************************************************************************** FLOW PROCESS FROM NODE 87.38 TO NODE 87.40 IS CODE = 1 UPSTREAM NODE 87.40 ELEVATION = 254.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 66.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.57 CRITICAL DEPTH(FT) = 0.88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.88 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.017 0.070 0.162 0.298 0.483 0.722 1.021 1.390 1.836 2.370 3.007 3.7 62 4 . 655 5.713 6. 967 8.462 10.256 12.433 15.113 18.484 22.863 28.840 37.744 53.841 66.250 FLOW DEPTH (FT) 0.878 0.866 0.853 0.841 0.828 0.816 0.804 0.791 0.779 0.766 0.754 0.742 0.729 0.717 0.704 0.692 0. 680 0.667 0. 655 0.642 0. 630 0.618 0.605 0.593 0.580 0.580 VELOCITY (FT/SEC) 4.837 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 SPECIFIC ENERGY(FT) 1.242 921 009 099 193 291 393 499 609 724 844 969 099 235 377 526 681 844 014 193 381 578 786 8.004 8.235 8.237 ,242 ,243 .245 .247 .251 .256 1.261 1.268 1.275 1.285 1.295 307 321 336 354 373 395 419 446 476 510 547 588 634 634 PRESSURE+ MOMENTUM(POUNDS) 74.13 74.16 74 .23 74.34 74.51 74 .73 75.00 75.33 75.72 76.17 76. 68 77.25 77 . 90 78.62 79.41 80.29 81.24 82 .29 83.43 84 . 67 86.01 87.46 89.03 90.72 92.54 92.56 NODE 87.40 : HGL = < 255.178>;EGL= < 255.542>;FLOWLINE= < 254.300> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 87.40 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 254.30 255.18 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE U B * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:8738B.RES * ************************************************************************** FILE NAME: 8738B.DAT TIME/DATE OF STUDY: 11:47 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 87.38- 1.15 82.95 0.59* 90.42 } FRICTION 87.40- 0.88*Dc 74.13 0.88*Dc 74.13 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 87.38 FLOWLINE ELEVATION = 252.55 PIPE FLOW = 5.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 253.700 FEET NODE 87.38 : HGL = < 253.145>;EGL= < 254.131>;FLOWLINE= < 252.550> ****************************************************************************** FLOW PROCESS FROM NODE 87.38 TO NODE 87.40 IS CODE = 1 UPSTREAM NODE 87.40 ELEVATION = 253.11 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 5.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 13.83 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.51 CRITICAL DEPTH(FT) = 0.88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.88 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0. 014 0.059 0.139 0.256 0.415 0.622 0.883 1.204 1.595 2.066 2 . 628 3.298 4.095 5.042 6.172 7.524 9.156 11.146 13.609 13.830 FLOW DEPTH (FT) 0.878 0.863 0.848 0.833 0.819 0.804 0.789 0.774 0.759 0.744 0.730 0.715 0.700 0.685 0.670 0.655 0.640 0.626 0.611, 0.596 0.595 VELOCITY (FT/SEC) 4.837 4.938 5.044 5.154 5.270 5 5 5 5 5 6 6 6 6 6 7 SPECIFIC ENERGY(FT) 1.242 392 519 652 792 940 095 258 430 612 804 007 7.221 7.449 7.691 7.947 7.966 242 244 246 250 255 262 270 281 293 307 323 342 364 389 418 451 488 530 577 581 PRESSURE+ MOMENTUM(POUNDS) 74.13 74.17 74.27 74.44 74 . 68 75.00 75.40 75.88 76.45 77.12 77.88 78.75 79.72 80.81 82.03 83.38 84 .86 86.50 88.30 90.27 90.42 NODE 87.40 : HGL = < 253.988>;EGL= < 254.352>;FLOWLINE= < 253.110> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 87.40 FLOWLINE ELEVATION = 253.11 ASSUMED UPSTREAM CONTROL HGL = 253.99 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE V * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:8768.RES * ************************************************************************** FILE NAME: 8786.DAT TIME/DATE OF STUDY: 11:44 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 87.86- 0.84 Dc 66.74 0.72* 69.13 } FRICTION 87.90- 0.84*Dc 66.74 0.84*Dc 66.74 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 87.86 FLOWLINE ELEVATION = 24 9.27 PIPE FLOW = 4.80 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 250.100 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.83 FT.) IS LESS THAN CRITICAL DEPTH( 0.84 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 87.86 : HGL = < 249.991>;EGL= < 250.498>;FLOWLINE= < 249.270> ****************************************************************************** FLOW PROCESS FROM NODE 87.86 TO NODE 87.90 IS CODE = 1 UPSTREAM NODE 87.90 ELEVATION = 24 9.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH 22.00 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.70 CRITICAL DEPTH(FT) 0.84 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.84 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .842 4 . 699 1. 185 66.74 0 .015 0 .836 4. 737 1. 185 66.74 0 .063 0 .831 4. 776 1. 185 66.76 0 .146 0 .825 4 . 816 1. 186 66.78 0 .267 0 .820 4 . 857 1. 186 66.81 0 .431 0 .814 4 . 898 1. 187 66.85 0 . 642 0 .809 4. 940 1. 188 66.91 0 . 905 0 .803 4. 983 1. 189 66. 97 1 .227 0 .797 5. 026 1. 190 67.04 1 . 614 0 .792 5. 071 1. 191 67.12 2 .075 0 .786 5. 116 1. 193 67.21 2 .620 0 .781 5. 162 1. 195 67.32 3 .263 0 .775 5. 209 1. 197 67.43 4 .018 0 .770 5. 256 1. 199 67.56 4 . 906 0 .764 5. 305 1. 201 67 . 69 5 .953 0 .758 5. 355 1. 204 67.84 7 .191 0 .753 5. 405 1. 207 68.00 8 . 667 0 .747 5. 456 1. 210 68.17 10 .445 0 .742 5. 509 1. 213 68.35 12 .617 0 .736 5. 562 1. 217 68.55 15 .330 0 .731 5. 617 1. 221 68.75 18 .826 0 .725 5. 672 1. 225 68. 98 22 .000 0 .721 5. 710 1. 228 69.13 NODE 87 . 90 HGL < 250.342>;EGL= < 250.685>;FLOWLINE= < 24 9.500> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 87.90 FLOWLINE ELEVATION = 249.50 ASSUMED UPSTREAM CONTROL HGL = 250.34 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ********************************^,*****^r**•^,***•^,^,*^,***^r*^r*^r*^,^,^,^,^,.k*•k^,•^r^,^,*^,^r^c***^, PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE HH * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:7788.RES * **********************************************************^j^^^j^.^.jj.^.^.^^.^^.^^^ FILE NAME: 7788.DAT TIME/DATE OF STUDY: 13:04 11/17/2001 *************************************************************.^..jt^.^jj,.j,^j^.^..^^^.^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 7788.00- 3.90* 351.18 0.40 21.75 } FRICTION 7789.00- 3.61* 318.84 0.51 Dc 19.78 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ***************************************^,****^^^r****•^,***^,**^,^c^,^r^,^,^c^,^c***^r*^r**^r•k** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7788.00 FLOWLINE ELEVATION = 299.50 PIPE FLOW = 1.87 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 303.400 FEET NODE 7788.00 : HGL = < 303.400>;EGL= < 303.417>;FLOWLINE= < 299.500> *********************************************************************.^..^..j^.^..^^.jj..^.j^ FLOW PROCESS FROM NODE 7788.00 TO NODE 778 9.00 IS CODE = 1 UPSTREAM NODE 7789.00 ELEVATION = 299.80 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.87 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 21.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.87)/( 105.063))**2 = 0.00032 HF=L*SF = ( 21.00)*(0.00032) = 0.007 NODE 7789.00 : HGL = < 303.407>;EGL= < 303.424>;FLOWLINE= < 299.800> ************************************************************************^.j..j.j^^.^. UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7789.00 FLOWLINE ELEVATION = 299.80 ASSUMED UPSTREAM CONTROL HGL = 300.31 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE S A * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:7735A.RES * ************************************************************************** FILE NAME: 7735A.DAT TIME/DATE OF STUDY: 11:53 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 77.35- 1.14* 57.55 0.42 44.91 } FRICTION } HYDRAULIC JUMP 77.40- 0.65*Dc 35.17 0.65*Dc 35.17 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 77.35 FLOWLINE ELEVATION = 301.15 PIPE FLOW = 2.93 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 302.290 FEET NODE 77.35 : HGL = < 302.290>;EGL= < 302.354>;FLOWLINE= < 301.150> ****************************************************************************** FLOW PROCESS FROM NODE 77.35 TO NODE 77.40 IS CODE = 1 UPSTREAM NODE 77.40 ELEVATION = 302.95 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.93 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 65.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.42 CRITICAL DEPTH(FT) 0.65 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.65 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .650 3. 987 0.897 35.17 0 .012 0 .641 4 . 065 0.898 35.18 0 .049 0 .632 4 . 145 0.899 35.22 0 .115 0 .622 4 . 228 0. 900 35.28 0 .211 0 .613 4 . 314 0. 902 35.37 0 .342 0 .603 4 . 403 0.905 35.48 0 .511 0 .594 4 . 4 97 0.908 35. 63 0 .724 0 .585 4. 594 0.913 35.80 0 .985 0 .575 4 . 694 0.918 36.00 1 .302 0 .566 4. 800 0.924 36.24 1 .682 0 .557 4. 909 0.931 36.51 2 .134 0 .547 5. 023 0.939 36.81 2 .670 0 .538 5. 143 0.949 37.15 3 .306 0 .528 5. 267 0. 959 37.53 4 .058 0 .519 5. 397 0. 972 37.95 4 . 950 0 .510 5. 534 0. 985 38.41 6 .014 0 .500 5. 67 6 1.001 38. 91 7 .291 0 .491 5. 826 1.018 39.46 8 .841 0 .482 5. 982 1.038 40.06 10 .749 0 .472 6. 147 1.059 40.71 13 .151 0 .463 6. 320 1.083 41.42 16 .270 0 .453 6. 502 1.110 42.19 20 .529 0 .444 6. 693 1.140 43.01 26 .875 0 .435 6. 895 1.173 43. 91 38 .348 0 .425 7. 108 1.210 44 . 87 65 .250 0 .425 7 . 116 1.212 44 . 91 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.14 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1 . 140 2 033 1. 204 57 . 55 0 . 648 1 .120 2 069 1 187 56. 01 1 .290 1 . 101 2 107 1 170 54 . 52 1 . 926 1 .081 2 148 1 153 53. 06 2 .556 1 .062 2 190 1 136 51. 65 3 . 179 1 .042 2 235 1 120 50. 29 3 .794 1 .023 2 283 1 103 48. 98 4 .401 1 .003 2 333 1 087 47 . 71 4 . 999 0 .983 2 386 1 072 46. 49 5 .586 0 .964 2 441 1 056 45. 32 6 .162 0 . 944 2 500 1 041 44. 21 6 .726 0 .925 2 563 1 027 43. 15 7 .276 0 .905 2 628 1 012 42. 14 7 .811 0 .885 2 698 0 999 41. 20 8.328 0.866 2.772 0.985 40.31 8.826 0.846 2.851 0. 972 39.48 9.302 0.827 2.934 0.960 38.71 9.753 0.807 3.023 0. 949 38.02 10.176 0.787 3.117 0.938 37.38 10.566 0.768 3.217 0. 929 36.83 10.919 0.748 3.325 0. 920 36.34 11.229 0.729 3.439 0.913 35. 93 11.489 0.709 3.562 0.906 35.61 11.689 0.690 3.694 0. 902 35.37 11.820 0. 670 3.835 0.898 35.22 11.867 0.650 3.987 0.897 35.17 65.250 0. 650 3.987 0.897 35.17 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 5.80 FEET UPSTREAM OF NODE 77.35 | I DOWNSTREAM DEPTH = 0.956 FEET, UPSTREAM CONJUGATE DEPTH = 0.425 FEET | NODE 77.40 : HGL = < 303. 600>; EGL= < 303.847>; FLOWLINE= < 302.950 ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 77.40 FLOWLINE ELEVATION = 302.95 ASSUMED UPSTREAM CONTROL HGL = 303.60 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD LINE SB * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:7735B.RES * ************************************************************************** FILE NAME: 7735B.DAT TIME/DATE OF STUDY: 11:54 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 77.35- 1.14* 57.55 0.39 48.56 } FRICTION } HYDRAULIC JUMP 77.40- 0.65*Dc 35.17 0.65*Dc 35.17 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 77.35 FLOWLINE ELEVATION = 301.15 PIPE FLOW = 2.93 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 302.290 FEET NODE 77.35 : HGL = < 302.290>;EGL= < 302.354>;FLOWLINE= < 301.150> ****************************************************************************** FLOW PROCESS FROM NODE 77.35 TO NODE 77.40 IS CODE = 1 UPSTREAM NODE 77.40 ELEVATION = 301.90 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 2.93 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 12.75 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.34 CRITICAL DEPTH(FT) = 0.65 0. 65 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0 .650 3. 987 0. 897 35.17 0.009 0 .638 4 . 089 0. 898 35.19 0.036 0 .626 4. 195 0. 899 35.25 0.083 0 .614 4 . 307 0. 902 35.36 0.154 0 .601 4. 425 0. 905 35.51 0.250 0 .589 4 . 549 0. 910 35.72 0.375 0 . 577 4. 679 0. 917 35. 97 0.534 0 .564 4. 817 0. 925 36.28 0.730 0 .552 4. 962 0. 935 36.65 0. 970 0 .540 5. 116 0. 946 37.07 1.260 0 .528 5. 278 0. 960 37.56 1.608 0 .515 5. 450 0. 977 38.12 2.024 0 .503 5. 633 0. 996 38.76 2.520 0 .491 5. 827 1. 018 39.47 3.113 0 . 479 6. 034 1. 044 40.27 3.824 0 .466 6. 255 1. 074 41.15 4 . 678 0 . 454 6. 4 90 1. 108 42.14 5.714 0 . 442 6. 742 1. 148 43.23 6. 984 0 .429 7. Oil 1. 193 44.43 8.563 0 .417 7. 301 1. 245 45.76 10.572 0 . 405 7 . 613 1. 305 47.23 12.750 0 .395 7. 888 1. 362 48.56 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.14 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1 . 140 2 033 1 .204 57 . 55 0 .298 1 . 120 2 069 1 . 187 56. 01 0 .594 1 .101 2 107 1 . 170 54. 52 0 .886 1 .081 2 148 1 . 153 53. 06 1 .176 1 .062 2 190 1 .136 51. 65 1 .461 1 .042 2 235 1 .120 50. 29 1 .743 1 .023 2 283 1 . 103 48 . 98 2 .021 1 .003 2 333 1 .087 47 . 71 2 .294 0 .983 2 386 1 .072 46. 49 2 .562 0 . 964 2 441 1 .056 45. 32 2 .825 0 . 944 2 500 1 .041 44. 21 3 .081 0 . 925 2 563 1 .027 43. 15 3 .331 0 . 905 2 628 1 .012 42. 14 3 .573 0 .885 2 698 0 . 999 41. 20 3 .806 0 .866 2 772 0 .985 40. 31 4 .030 0 .846 2 851 0 . 972 39. 48 4 .244 0 .827 2 934 0 .960 38. 71 4 .445 0 .807 3 023 0 .949 38. 02 4 . 634 0.787 3.117 0. 938 37. 38 4. 806 0.768 3.217 0.929 36. 83 4 . 962 0.748 3.325 0.920 36. 34 5. 098 0.729 3.439 0.913 35. 93 5. 210 0.709 3.562 0. 906 35. 61 5. 297 0.690 3.694 0. 902 35. 37 5. 353 0. 670 3.835 0.898 35. 22 5. 373 0.650 3.987 0.897 35. 17 12. 750 0.650 END OF 3.987 HYDRAULIC JUMP 0.897 35. 17 I PRESSURE+MOMENTUM BALANCE OCCURS AT 2.12 FEET UPSTREAM OF NODE 77.35 | I DOWNSTREAM DEPTH = 0.996 FEET, UPSTREAM CONJUGATE DEPTH = 0.405 FEET | NODE 77.40 : HGL = < 302.550>;EGL= < 302.797>;FLOWLINE= < 301.900> ******************************^c****^c*•k*****^,*****^,^c****^c^,*•k*•k***^r^c*^r^c*^r^,^,^,^,^,^,^, UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 77.40 FLOWLINE ELEVATION = 301.90 ASSUMED UPSTREAM CONTROL HGL = 302.55 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ***************************************************************************JJ..^J^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE T * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:8261.RES * ************************************************************************** FILE NAME: 8261.DAT TIME/DATE OF STUDY: 11:50 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 82.61- 3.64* 1389.25 1.64 1099.43 } FRICTION 82.70- 2.81* 1133.95 2.15 Dc 997.66 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 82.61 FLOWLINE ELEVATION = 281.00 PIPE FLOW = 40.80 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 284.640 FEET NODE 82.61 : HGL = < 284.640>;EGL= < 285.713>;FLOWLINE= < 281.000> ****************************************************************************** FLOW PROCESS FROM NODE 82.61 TO NODE 82.70 IS CODE = 1 UPSTREAM NODE 82.70 ELEVATION = 282.70 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 40.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 87.58 FEET MANNING S N = 0.01300 SF=(Q/K)**2 = (( 40.80)/( 410.173))**2 = 0 00989 HF=L*SF = ( 87 58)* (0.00989) = 0.867 NODE 82.70 : HGL = < 285.507>;EGL= < 286.579>;FLOWLINE= < 282.700> ***********************************************************j^.^..^.^.^.^..^..^^^.^^.^^.^^^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 82.70 FLOWLINE ELEVATION = 282.70 ASSUMED UPSTREAM CONTROL HGL = 284.85 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE R * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:7271.RES * ************************************************************************** FILE NAME: 7271.DAT TIME/DATE OF STUDY: 12:18 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 106.50- 1.70* 139.64 0.69 91.70 } FRICTION 72.80- 1.42* 109.44 0.77 86.02 } JUNCTION 72.90- 1.15 81.78 0.61* 85.97 } FRICTION 73.00- 0.87*Dc 72.64 0.87*Dc 72.64 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 106.50 FLOWLINE ELEVATION = 334.60 PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 336.300 FEET NODE 106.50 : HGL = < 336.300>;EGL= < 336.458>;FLOWLINE= < 334.600> ****************************************************************************** FLOW PROCESS FROM NODE 72.71 TO NODE 72.80 IS CODE = 1 UPSTREAM NODE 72.80 ELEVATION = 334.92 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.64 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 16.25 FEET MANNING'S N = 0. 01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD FT) = 1.70 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 11.897 PRESSURE HEAD(FT) 1.700 1.500 VELOCITY (FT/SEC) 3.192 3.192 SPECIFIC ENERGY(FT) 1.858 1. 658 PRESSURE+ MOMENTUM(POUNDS) 139.64 117.59 NORMAL DEPTH(FT) = 0. 64 CRITICAL DEPTH(FT) 0.92 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 11.897 13.213 14.465 15.678 16.250 FLOW DEPTH (FT) 1.500 1. 477 1.453 1.430 1.419 VELOCITY (FT/SEC) 3.191 3.201 3.220 3.245 3.259 SPECIFIC ENERGY(FT) 1. 658 1.636 1.614 1.594 1.584 PRESSURE+ MOMENTUM(POUNDS) 117.59 115.13 112.78 110.51 109.44 NODE 72.80 : HGL = < 336. 339>;EGL= < 336.504>;FLOWLINE= < 334.920> ****************************•k********•k********^r**^c***^t^,**^ric********^r^r*•^c^c**•t:*^,^c FLOW PROCESS FROM NODE 72.80 TO NODE 72.90 IS CODE = 5 UPSTREAM NODE 72.90 ELEVATION = 335.25 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER (CFS) (INCHES) UPSTREAM 5.12 18.00 DOWNSTREAM 5.64 18.00 LATERAL #1 0.00 0.00 LATERAL #2 0.00 0.00 Q5 0.52===Q5 EQUALS BASIN INPUT=== ANGLE (DEGREES) 0.00 0.00 0.00 FLOWLINE ELEVATION 335.25 334.92 0.00 0.00 CRITICAL DEPTH(FT.) 0. 87 0. 92 0.00 0.00 VELOCITY (FT/SEC) 7.580 3.260 0. 000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: DOWNSTREAM: MANNING'S MANNING'S N = 0.01300; N = 0.01300; AVERAGED FRICTION JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = SLOPE IN JUNCTION 4.00 FEET 0.04 4 FEET (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 0.216)+( 0.033) = 0.249 FRICTION SLOPE = 0.01965 FRICTION SLOPE = 0.0024 9 ASSUMED AS 0.01107 ENTRANCE LOSSES = 0.033 FEET NODE 72.90 : HGL = < 335 . 860>; EGL= < 336 . 753>; FLOWLINE= < 335.250 *** + ****************************************************************^^.y^.^^.^.j^.^^^ FLOW PROCESS FROM NODE 72.90 TO NODE 73.00 IS CODE = 1 UPSTREAM NODE 73.00 ELEVATION = 336.25 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.12 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4 6.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.59 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.87 0.87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.017 0.072 0.168 0.309 0.500 0.747 1. 1. 1, 2. 3, 3. 4 . 5. 7. ,056 , 435 ,893 ,442 ,094 ,866 ,778 ,855 ,131 8. 648 10.466 12.667 15.371 18.765 23.165 29.157 38.064 46.000 FLOW DEPTH (FT) 0.871 0.860 0.849 0.838 0.827 0.815 0.804 0.793 0.782 0.771 0.760 0.749 0.738 0.727 0.716 0.705 0. 694 0.682 0.671 0. 660 0. 649 0.638 0. 627 0. 616 0. 610 VELOCITY (FT/SEC) 4.810 SPECIFIC ENERGY(FT) 885 963 044 127 214 303 396 4 92 592 696 803 915 6.030 6.151 6.276 6.406 6.542 6. 684 6.831 985 145 313 488 578 230 231 231 233 235 238 241 246 251 257 264 272 281 292 304 1.317 1.331 1.347 365 385 407 431 458 487 503 PRESSURE+ MOMENTUM(POUNDS) 72. 64 72.66 72.71 72.80 72.94 73.11 73.33 73.58 73.89 74.24 74.64 75.09 75.59 76.15 76.76 77.43 78.17 78.97 79.84 80.78 81.79 82.88 84 . 06 85.32 85. 97 NODE 73.00 : HGL = < 337 .121>; EGL= < 337 . 480>; FLOWLINE= < 336.250 ************************-k************1,ic*********************^r**************.ir** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 73.00 FLOWLINE ELEVATION = 336.25 ASSUMED UPSTREAM CONTROL HGL = 337.12 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE Q * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:7125.RES * ************************************************************************** FILE NAME: 7125.DAT TIME/DATE OF STUDY: 11:56 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 71.25- 0.43 Dc 12.45 0.31* 14.42 } FRICTION 71.30- 0.43*Dc 12.45 0.43*Dc 12.45 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 71.25 FLOWLINE ELEVATION = 346.15 PIPE FLOW = 1.30 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 346.400 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.25 FT.) IS LESS THAN CRITICAL DEPTH( 0.43 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 71.25 : HGL = < 346.462>;EGL= < 346.832>;FLOWLINE= < 346.150> ****************************************************************************** FLOW PROCESS FROM NODE 71.25 TO NODE 71.30 IS CODE = 1 UPSTREAM NODE 71.30 ELEVATION = 34 6.47 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 16.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.30 CRITICAL DEPTH(FT) 0.43 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.43 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .427 3.138 0. 580 12.45 0 .008 0 .422 3.190 0. 580 12.45 0 .033 0 .417 3.244 0. 580 12.46 0 .077 0 .412 3.300 0. 581 12.48 0 .141 0 .407 3.357 0. 582 12.50 0 .228 0 .402 3.416 0. 583 12.53 0 .341 0 .397 3. 477 0. 584 12.56 0 .482 0 .392 3.540 0. 586 12. 60 0 .654 0 .387 3.605 0. 588 12. 65 0 .862 0 .381 3. 672 0. 591 12.71 1 . Ill 0 .376 3.741 0. 594 12.77 1 .407 0 .371 3.813 0. 597 12. 85 1 .756 0 .366 3.887 0. 601 12.93 2 .168 0 .361 3.963 0. 605 13.02 2 . 654 0 .356 4.043 0. 610 13.11 3 .229 0 .351 4.125 0. 616 13.22 3 .911 0 .346 4.210 0. 622 13.34 4 .727 0 .341 4.298 0. 628 13.47 5 .713 0 .336 4.390 0. 636 13.60 6 .923 0 .331 4.485 0. 644 13.75 8 .439 0 .326 4 .584 0. 653 13. 91 10 .399 0 .321 4.686 0. 662 14.08 13 .064 0 .316 4 .793 0. 673 14.26 16 .250 0 .312 4.882 0. 682 14.42 NODE 71.30 HGL < 346.897>;EGL= < 347.050>;FLOWLINE= < 346.470> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 71.30 FLOWLINE ELEVATION = 346.47 ASSUMED UPSTREAM CONTROL HGL = 34 6.90 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE EE * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:6925.RES * ************************************************************************** FILE NAME: 6925.DAT TIME/DATE OF STUDY: 11:59 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2012.50- 0.43 Dc 12.45 0.32* 14.25 } FRICTION 69.30- 0.43*Dc 12.45 0.43*Dc 12.45 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2012.50 FLOWLINE ELEVATION = 357.30 PIPE FLOW = 1.30 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 357.600 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.30 FT.) IS LESS THAN CRITICAL DEPTH( 0.43 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 2012.50 : HGL = < 357.616>;EGL= < 357.972>;FLOWLINE= < 357.300> ****************************************************************************** FLOW PROCESS FROM NODE 69.25 TO NODE 69.30 IS CODE = 1 UPSTREAM NODE 69.30 ELEVATION = 357.60 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 16.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.31 CRITICAL DEPTH(FT) 0.43 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.43 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0.427 3. 138 0.580 12.45 0 .008 0.422 3. 188 0.580 12. 45 0 .033 0.417 3. 240 0.580 12.46 0 .077 0.412 3. 293 0.581 12.47 0 .142 0.407 3. 348 0.582 12.49 0 .230 0. 403 3. 405 0.583 12.52 0 .343 0.398 3. 463 0.584 12.55 0 .485 0.393 3. 523 0.586 12.59 0 .658 0.388 3. 585 0.588 12. 64 0 .867 0.383 3. 648 0. 590 12. 69 1 .118 0.378 3. 714 0.593 12.75 1 .414 0.374 3. 782 0.596 12.82 1 .7 65 0.369 3. 852 0.599 12.89 2 .178 0.364 3. 925 0. 603 12. 97 2 .665 0.359 4 . 000 0.608 13.06 3 .241 0.354 4 . 077 0.613 13.16 3 . 925 0.349 4 . 157 0.618 13.27 4 .742 0.345 4 . 240 0. 624 13.38 5 .729 0.340 4 . 326 0.631 13.51 6 .939 0.335 4 . 415 0. 638 13. 64 8 .454 0.330 4. 507 0. 646 13.79 10 .413 0. 325 4 . 603 0. 654 13. 94 13 .074 0.320 4 . 702 0. 664 14.11 16 .250 0.316 4. 785 0.672 14.25 NODE 69.30 : HGL = < 358. 027>;EGL= < 358.180>;FLOWLINE= < 357.600> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 69.30 FLOWLINE ELEVATION = 357.60 ASSUMED UPSTREAM CONTROL HGL = 358.03 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1423 Analysis prepared by: O'DAY CONSULTANTS 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (Tel.) (760)931-7700 (Fax) (760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * COLLEGE BLVD - LINE DD * * NOVEMBER 16, 2001 J.N. 98-1020 * * BY:CSO FILE:6725.RES * ************************************************************************** FILE NAME: 6725.DAT TIME/DATE OF STUDY: 12:15 11/17/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2010.50- 0.43 Dc 12.33 0.32* 14.11 } FRICTION 67.30- 0.43*Dc 12.33 0.43*Dc 12.33 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2010.50 FLOWLINE ELEVATION = 363.20 PIPE FLOW = 1.2 9 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 363.400 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.20 FT.) IS LESS THAN CRITICAL DEPTH( 0.43 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 2010.50 : HGL = < 363.515>;EGL= < 363.870>;FLOWLINE= < 363.200 ****************************************************************************** FLOW PROCESS FROM NODE 67.25 TO NODE 67.30 IS CODE = 1 UPSTREAM NODE 67.30 ELEVATION = 363.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.29 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH 16.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.30 CRITICAL DEPTH(FT) 0.43 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.43 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.425 3.131 0.577 12.33 0.008 0.420 3.181 0.577 12.33 0.033 0.415 3.233 0.578 12.34 0.077 0.411 3.286 0.578 12.35 0.142 0.406 3.341 0.579 12.37 0.229 0.401 3.397 0.580 12.40 0.342 0.396 3.455 0.582 12.43 0.483 0.391 3.515 0.583 12.47 0.655 0.387 3.577 0.585 12.51 0.863 0.382 3.640 0.588 12.57 1.112 0.377 3.706 0.590 12.62 1.408 0.372 3.774 0.593 12. 69 1.757 0.367 3.844 0.597 12.76 2.168 0.362 3. 916 0. 601 12.84 2.653 0.358 3.991 0.605 12.93 3.226 0.353 4.068 0.610 13.03 3.906 0.348 4.148 0.615 13.14 4 .720 0.343 4.231 0. 621 13.25 5.702 0.338 4.317 0. 628 13.37 6.906 0.334 4.405 0. 635 13.51 8.414 0.329 4.497 0.643 13.65 10.364 0.324 4.593 0.652 13.80 13.013 0.319 4.692 0.661 13.97 16.250 0.315 4.776 0.670 14.11 NODE 67.30 : HGL = < 363. 925>;EGL= < 364.077>;FLOWLINE= < 363.500> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 67.30 FLOWLINE ELEVATION = 363.50 ASSUMED UPSTREAM CONTROL HGL = 363.93 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ' .i2^.„lfc!:>fe:6k^._..,....i£lSiJ iie^^jQiiLtoii^„.v±^..3_ I'^AM.-. LfiU,*'!^.-[jt)i:*r:- 'andbook owing full; minimum ihe pipe end should lannel immediately I end of the apron ) well-defined chan- ailwater conditions )uld be equal to the ition for Minimum (30-cm) pipe onto a 2 a riprap apron. Water Conveyance and Energy Dissipation 7.55 3D„ 10-- 50 100 200 Discharge, ft'^/sec I \ 1 1 lllll H 1 I llllll .2 .3 .4 .5.6.7.8.91 2 3 45678 10 Discharge, m^/sec -H 1 1- 15 20 25 Fig. 7.46 Design of riprap outlet protection from a round pipe flowing full; maximum tailwater conditions. (6, 14) Solution: Since the pipe discharges onto a flat area with no defined channel, a mini- mum tailwater condition can be assumed. By Fig. 7.45, the apron length L„ and median stone size cf^o are 10 ft (3 m) and 0.3 ft (9 cm), respectively. The upstream apron width IV„ equals 3 times the pipe diameter D„: W„ = 3 X D„ = 3(1 ft) = 3 ft [3(0.3 m) = 0.9 m] The downstream apron width equals the apron length plus the pipe diameter: = 1 ft + 10 ft = 11 ft (0.3 m + 3.0 m = 3.3 m) Note; When a concentrated flow is discharged onto a slope (as in this example), gul- lying can occur downhill from the outlet protection. The spreading of concentrated flow ' ' •9^ - \^ I lfc> Cannon Road 932 Qfrn^rr^ X t _ L 04 iisil: = 3.82 AC m 3.15. . ass 6.62 CF5 CM.. .o.cn M"-•- 0.2(s>^ 10 0..55 0. ii>3 CF5 3.13 a55 36.01 CF3 AAA,, 032 iia^ - I. 16 AC ID ^.3& 2..8icFS OS . 10 0.55" 01 OFS. 11,51 ' 42.28 AC . . n.H a 55" ALIA 3.16 3.61 . .. .G -^1 10 0. 7*^ 1! 'i It- ! 1 41 !r .•I 1 ; i 1 : J4, 4li 4JJ ^5 =^ u.^A^ Mtet-l'-aeA 144^ ^ \.i^Aei -- \.(^k .„ CJk^ Q.f^k ilii>il6^g-S^ r26i^ > 1.4^4- . 14-. (ei((. At, .n.4r^(0(g — ^ .... ©l-^^„iL.--... - •f- f 1 •tf1' ill CH^M . ^ rtk^l.^... ^ L't^co^ 36J^ .23.U.... .. imi^ .'14,=.23 .Mih. Slmiid Q - aA ^ J.. • 26.04- CPS Y;^/O0O ^ 900 - BOO - TOO - eoo \ SOO \ ~—40O Fee/ SOOO —4000 —ZOOO —2000 £Qa/9r/0A/ re - 77/ne a/ concen/neL/fom Leng//t of nva/ersJred //U/V 7£ L £>///ere/rcm if* e/evah'an a/ong e/fecfy're s/ot>e fine CSee i^tpenddc X-B) y. M//es A4/Atf/es 240 —,300 --200 -/OO — 20 SFOR NATURAL WATERSHEDS^ M AOO TEN MINUTES TO J \ COMPUTED TIME OF CON- I !l CENTRATION- \ /O H SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAL APPROVED '^•7^' /I'^fi^^^'^^^LlA^ 16-2^ mil /4 • NOMOGRAPH FOR DETERMINATTON OF TIME OF CONCENTRATION (Tc) FOR NATURAL WATERSHEDS DATE APPENDIX X-A IV-A-10 Rev. 5/81 O'Day Consultants 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (Tel.) 760-931-7700 (Fax) 760-931-8680 l<-( 8.00') * * * * *^^^Yiater Surface ( 1.09')'^'^'^* * * * * * * * * * ***************** ***************** Rectangular Open Channel Flowrate 88.040 CFS Velocity 10.065 fps Depth of Flow 1.093 feet Critical Depth 1.555 feet Total Depth 1.093 feet Base Width 8.000 feet Slope of Channel 0.950 % X-Sectional Area 8.747 sq. ft. Wetted Perimeter 10.187 feet AR'^(2/3) 7.902 Mannings 'n' 0.013 X^.M TP" ^^^^^ ^ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 125+89.87 * * NOVEMBER 27, 2001 J.N. 98-1020 * * BY:CSO FILE:12599.RES * ************************************************************************** FILE NAME: 125.89 TIME/DATE OF STUDY: 13:55 11/27/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 125.89- 4.86* 476.62 0.66 68.03 } FRICTION 125.99- 4.71* 460.55 0.83 Dc 63.48 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 125.89 FLOWLINE ELEVATION = 36.04 PIPE FLOW = 4.62 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 40.900 FEET NODE 125.89 : HGL = < 40.900>;EGL= < 41.006>;FLOWLINE= < 36.040> ****************************************************************************** FLOW PROCESS FROM NODE 125.89 TO NODE 125.99 IS CODE = 1 UPSTREAM NODE 125.99 ELEVATION = 36.20 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.62 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 7.41 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 4.62)/( 105.037))**2 = 0.00193 HF=L*SF = ( 7.41)*(0.00193) = 0.014 NODE 125.99 : HGL = < 40.914>;EGL= < 41.020>;FLOWLINE= < 36.200> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 125.99 FLOWLINE ELEVATION = 36.20 ASSUMED UPSTREAM CONTROL HGL = 37.03 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 126+14.21 * * NOVEMBER 27, 2001 J.N. 98-1020 * * BY:CSO FILE:12614.RES * ************************************************************************** FILE NAME: 12599.DAT TIME/DATE OF STUDY: 14:03 11/27/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 126.14- 4.06* 398.77 0.72 87.22 ^ |<|} FRICTION 3.84* 374.41 0.91 Dc 80.78 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 126.14 FLOWLINE ELEVATION = 36.84 PIPE FLOW = 5.55 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 40.900 FEET NODE 126.14 : HGL = < 40.900>;EGL= < 41.053>;FLOWLINE= < 36.840> ****************************************************************************** FLOW PROCESS FROM NODE 126.14 TO NODE 125.99 IS CODE = 1 UPSTREAM NODE i2'5.9'»,^ ELEVATION = 37.10 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 5.55 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 13.99 FEET MANNING'S N = 0.01300 SF={Q/K)**2 = (( 5.55)/( 105.047))**2 = 0.00279 HF=L*SF = ( 13.99)* (0.00279) = 0.039 NODE li&r?5 : HGL = < 40.939>;EGL= < 41.092>; FLOWLINE= < 37.100> ****************************************************************.j^j^.j^.j^^.^^^^^^.j.^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = A*6rr«rT*^ FLOWLINE ELEVATION = 37.10 ASSUMED UPSTREAM CONTROL HGL = 38.01 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 131+63.79 LINE C FREE * * NOVEMBER 20, 2001 J.N. 98-1020 * * BY:CSO FILE:13100QCF.RES * ************************************************************************** FILE NAME: 13100QCF.DAT TIME/DATE OF STUDY: 14:11 11/21/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 131.63- 3.50* 1203.95 1.51 528.25 } FRICTION 132.20- 3.04* 947.19 1.45 534.82 } JUNCTION 132.30- 0.67* 15.00 0.27 7.01 } FRICTION } HYDRAULIC JUMP 132.20- 0.33*Dc 6.62 0.33*Dc 6.62 } JUNCTION 132.15- 0.41* 7.24 0.33 Dc 6.62 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 131.63 FLOWLINE ELEVATION = 39.00 PIPE FLOW = 27.59 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 42.500 FEET NODE 131.63 : HGL = < 42.500>;EGL= < 42.628>;FLOWLINE= < 39.000> ****************************************************************************** FLOW PROCESS FROM NODE 131.63 TO NODE 132.20 IS CODE = 1 UPSTREAM NODE 132.20 ELEVATION = 39.51 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.59 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 102.60 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.52 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.50 1.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.500 2.867 3.628 1203.95 17.301 3.425 2.882 3.554 1159.70 34.169 3.350 2.910 3.481 1116.49 50.807 3.274 2.947 3.409 1074.24 67.278 3.199 2.991 3.338 1032.99 83.615 3.124 3.043 3.268 992.82 99.837 3.049 3.101 3.198 953.77 102.600 3.036 3.112 3.186 947.19 NODE 132.20 : HGL = < 42.54 6>;EGL= < 42.696>;FLOWLINE= < 39.510> ****************************************************************************** FLOW PROCESS FROM NODE 132.20 TO NODE 132.30 IS CODE = 5 UPSTREAM NODE 132.30 ELEVATION = 42.01 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.79 18.00 45.00 42.01 0.33 1.035 DOWNSTREAM 27.59 42.00 39.51 1.62 3.112 LATERAL #1 26.80 42.00 45.00 42.02 1.59 6.279 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00034 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00069 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00051 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.002 FEET ENTRANCE LOSSES = 0.000 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 132.30 HGL < 42.680>;EGL= < 42.696>;FLOWLINE= < 42.010> ****************************************************************************** FLOW PROCESS FROM NODE 132.30 TO NODE 132.20 IS CODE = 1 UPSTREAM NODE 132.20 ELEVATION = 42.42 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.7 9 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 37.50 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0.27 CRITICAL DEPTH(FT) = 0.33 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: S FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ Li (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNt 0.000 0.330 2.734 0.447 6. 62 0.006 0.328 2.762 0.447 6.62 0.023 0.326 2.790 0.447 6.62 0.053 0.323 2.819 0.447 6.63 0.097 0.321 2.848 0. 447 6. 63 0.156 0.319 2.877 0. 447 6. 64 0.233 0.317 2.908 0.448 6. 64 0.328 0.314 2.938 0.448 6. 65 0.445 0.312 2.970 0.449 6. 66 0.585 0.310 3.002 0.450 6.67 0.752 0.307 3.034 0.450 6.68 0.950 0.305 3.067 0.451 6.70 1.183 0.303 3.101 0.452 6.71 1.456 0.300 3.135 0.453 6.73 1.778 0.298 3.171 0.454 6.74 2.156 0.296 3.206 0.455 6.76 2.604 0.293 3.243 0. 457 6.78 3.138 0.291 3.280 0.458 6.80 3.781 0.289 3.318 0.460 6.83 4.566 0.286 3.357 0. 461 6.85 5.546 0.284 3.396 0.463 6.88 6.808 0.282 3.437 0. 465 6. 91 8.517 0.279 3.478 0.4 67 6.94 11.042 0.277 3.520 0.469 6.97 15.569 0.275 3.563 0. 472 7.00 37.500 0.274 3.567 0.472 7.01 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.194 2.385 3.571 4.751 5. 926 7 .094 8.255 9.408 10.552 11.685 12.805 FLOW DEPTH (FT) 0.670 0. 656 0.642 0.629 0. 615 0.602 0.588 0.575 0.561 0.547 0.534 0.520 VELOCITY (FT/SEC) 1.035 1.063 1.093 1.124 1 1 1 1 1 1 1 1 157 192 229 268 309 353 400 450 SPECIFIC ENERGY(FT) 0.686 0. 674 0.661 0. 648 0.636 0.624 0.612 0.600 0.588 0.576 0.564 0.553 PRESSURE+ MOMENTUM(POUNDS) 15. 00 14.41 13.83 13.28 12.74 12.23 11.73 11.25 10.80 10.36 9. 95 9.56 13 912 0.507 1. 504 0.542 9.19 15 002 0.493 1. 561 0.531 8.84 16 074 0.480 1. 622 0.521 8.51 17 123 0. 466 1. 687 0.510 8.21 18 147 0.453 1. 758 0.501 7. 93 19 139 0.439 1. 833 0.491 7. 67 20 094 0.425 1. 915 0.482 7.44 21 003 0.412 2. 004 0.474 7.23 21 855 0.398 2. 100 0.467 7.06 22 636 0.385 2. 205 0.460 6. 91 23 325 0.371 2. 319 0.455 6.78 23 892 0.358 2. 445 0.450 6.70 24 292 0.344 2. 582 0.448 6. 64 24 450 0.330 2. 734 0.447 6. 62 37 500 0.330 2. 734 0. 447 6. 62 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 22.14 FEET UPSTREAM OF NODE 132.30 I DOWNSTREAM DEPTH = 0.393 FEET, UPSTREAM CONJUGATE DEPTH = 0.275 FEET NODE 132.20 : HGL 42.750>;EGL= < 42.867>;FLOWLINE= < 42.420> ****************************************************************************** FLOW PROCESS FROM NODE 132.20 TO NODE 132.15 IS CODE = 5 UPSTREAM NODE 132.15 ELEVATION = 42.42 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 0.79 18.00 0.00 42.42 DOWNSTREAM 0.79 18.00 - 42.42 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 0.33 2.000 0.33 2.735 0.00 0.000 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00207 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00499 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00353 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.028)+( 0.000) = 0.028 NODE 132.15 HGL = < 42.833>;EGL= < 42.895>;FLOWLINE= < 42.420> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 132.15 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 42.42 42.75 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 131+63.79 LINE D FREE * * NOVEMBER 20, 2001 J.N. 98-1020 * * BY:CSO FILE:13100QDF.RES * ************************************************************************** FILE NAME: 13100QDF.DAT TIME/DATE OF STUDY: 15:48 11/20/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 131.63- } 132.20- } 132.30- } 134.05- } 134.10- } 134.50- } 134.55- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 3.50* } 134.60- } FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION 3.04* 2.60* 1203.95 947.19 738.84 } HYDRAULIC JUMP 1.59*Dc 505.10 1.40* 160.93 } HYDRAULIC JUMP 1.08*Dc 134.70- 1.49* 0. 83* 0. 90* 144.62 122.37 62. 97 64.81 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 1.52 1.56 1.49 1.59*Dc 0.91 1.08*Dc 0.63 0.77 Dc 0.77 Dc 527.92 525.40 508.46 505.10 151.30 144.62 66. 48 62.39 62.39 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 131.63 FLOWLINE ELEVATION = 39.00 PIPE FLOW = 27.59 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 42.500 FEET NODE 131.63 : HGL = < 42.500>;EGL= < 42.628>;FLOWLINE= < 39.000> ****************************************************************************** FLOW PROCESS FROM NODE 131.63 TO NODE 132.20 IS CODE = 1 UPSTREAM NODE 132.20 ELEVATION = 39.51 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.59 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 102.60 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.52 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.50 1. 62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.500 2.867 3.628 1203.95 17.301 3.425 2.882 3.554 1159.70 34.169 3.350 2.910 3.481 1116.49 50.807 3.274 2.947 3.409 1074.24 67.278 3.199 2.991 3.338 1032.99 83.615 3.124 3.043 3.268 992.82 99.837 3.049 3.101 3.198 953.77 102.600 3.036 3.112 3.186 947.19 NODE 132.20 : HGL = < 42. 54 6>;EGL= < 42.696>;FLOWLINE= < 39.510> ****************************************************************************** FLOW PROCESS FROM NODE 132.20 TO NODE 132.30 IS CODE = 5 UPSTREAM NODE 132.30 ELEVATION = 40.02 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 26.80 27.59 0.79 0.00 0.00= DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 42.00 45.00 40.02 1.59 3.491 42.00 - 39.51 1.62 3.112 24.00 45.00 40.02 0.31 0.251 0.00 0.00 0.00 0.00 0.000 ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00078 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.003 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES JUNCTION LOSSES = ( 0.118)+( 0.000) = 0.118 00087 00069 ENTRANCE LOSSES = 0.000 FEET NODE 132.30 HGL < 42.624>;EGL= < 42.814>;FLOWLINE= < 40.020> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 134.05 132.30 TO NODE ELEVATION = 134.05 IS CODE = 1 40.92 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 26.80 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 181.16 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 1.49 CRITICAL DEPTH(FT) 1.59 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.59 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.595 6.277 2.207 505.10 0.020 1.591 6.298 2.207 505.11 0.082 1.587 6.320 2.207 505.12 0.191 1.582 6.341 2.207 505.15 0.350 1.578 6.363 2.207 505.19 0.564 1.574 6.385 2.208 505.24 0.840 1.570 6.407 2.208 505.30 1.183 1.566 6.429 2.208 505.37 1. 601 1.562 6.451 2.208 505.46 2.105 1.558 6.474 2.209 505.55 2.703 1.553 6.496 2.209 505.66 3.411 1.549 6.519 2.210 505.78 4.244 1.545 6.542 2.210 505.91 5.222 1.541 6.565 2.211 506.05 6. 370 1.537 6.588 2.211 506.21 7.721 1.533 6. 612 2.212 506.37 9.317 1.529 6.635 2.213 506.55 11.218 1.524 6. 659 2.213 506.74 13.504 1.520 6. 683 2.214 506.94 16.294 1.516 6.707 2.215 507.16 19.774 1.512 6.731 2.216 507.38 24.252 1.508 6.755 2.217 507.62 30.310 1.504 6.780 2.218 507.87 39.251 1.500 6.805 2.219 508.14 55.262 1.495 6.829 2.220 508.42 181.160 1.495 6.833 2.220 508.46 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.60 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 8.355 16.680 24.973 FLOW DEPTH (FT) 2.604 2.564 2.524 2.483 VELOCITY (FT/SEC) 3.490 3.547 3.607 3. 670 SPECIFIC ENERGY(FT) 2.794 2.760 2.726 2.693 PRESSURE+ MOMENTUM(POUNDS) 738.84 722.63 706.88 691.59 33 .231 2 .443 3. 736 2 .660 676.79 41 . 452 2 .403 3. 805 2 .628 662.48 49 . 633 2 .362 3. 878 2 .596 648.68 57 .769 2 .322 3. 954 2 .565 635.39 65 .857 2 .281 4 . 034 2 .534 622.64 73 .890 2 .241 4. 118 2 .504 610.42 81 .862 2 .201 4. 206 2 .475 598.77 89 .765 2 .160 4 . 298 2 .447 587.69 97 .591 2 .120 4 . 395 2 .420 577.21 105 .327 2 .079 4 . 498 2 .394 567.33 112 .961 2 .039 4 . 605 2 .369 558.08 120 .473 1 .999 4. 718 2 .345 549.48 127 .844 1 .958 4. 838 2 .322 541.55 135 .045 1 .918 4 . 964 2 .301 534.32 142 .041 1 .878 5. 097 2 .281 527.80 148 .782 1 .837 5. 237 2 .263 522.03 155 .202 1 .797 5. 386 2 .248 517.05 161 .207 1 .756 5. 544 2 .234 512.87 166 .652 1 .716 5. 711 2 .223 509.55 171 .310 1 .676 5. 888 2 .214 507.11 174 .779 1 .635 6. 076 2 .209 505.61 176 .256 1 .595 6. 277 2 .207 505.10 181 . 160 1 .595 6. 277 2 .207 505.10 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 172.88 FEET UPSTREAM OF DOWNSTREAM DEPTH = 1.657 FEET, UPSTREAM CONJUGATE DEPTH NODE 132.30 = 1.531 FEET NODE 134.05 : HGL = < 42.515>;EGL= < 43.127>;FLOWLINE= < 40.920> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 134.10 134.05 TO NODE ELEVATION = 134.10 IS CODE = 5 42.92 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 9.20 26.80 17.57 0.00 0.03= DIAMETER ANGLE (INCHES) (DEGREES) FLOWLINE CRITICAL ELEVATION DEPTH(FT.) 24.00 0.00 42.92 1.08 42.00 - 40.92 1.59 42.00 90.00 42.92 1.28 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT^—= VELOCITY (FT/SEC) 3.902 6.279 5.516 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00313 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.312)+( 0.122) = 1.434 0.00234 0.00391 0.122 FEET NODE 134.10 HGL < 44.325>;EGL= < 44.561>;FLOWLINE= < 42.920> ****************************************************************************** FLOW PROCESS FROM NODE 134.10 TO NODE 134.50 IS CODE = 1 UPSTREAM NODE 134.50 ELEVATION = 43.32 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 40.31 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.89 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.08 1.08 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1. 083 5. 295 1.519 144.62 0 .022 1. 075 5. 343 1.519 144.63 0 .092 1. 068 5. 391 1.519 144.66 0 .213 1. 060 5. 440 1.520 144 .72 0 .391 1. 052 5. 491 1.521 144.80 0 .631 1. 044 5. 542 1.522 144.91 0 .940 1. 037 5. 594 1.523 145.04 1 .326 1. 029 5. 647 1. 524 145.20 1 .797 1. 021 5. 701 1.526 145.38 2 .364 1. 014 5. 756 1.528 145.59 3 .040 1. 006 5. 812 1.531 145.83 3 .840 0. 998 5. 870 1.533 146.09 4 .783 0. 990 5. 928 1.536 146.38 5 .892 0. 983 5. 988 1.540 146.70 7 .195 0. 975 6. 049 1.543 147.05 8 .732 0. 967 6. 111 1.547 147.43 10 .551 0. 959 6. 174 1.552 147.83 12 .719 0. 952 6. 239 1.556 148.27 15 .331 0. 944 6. 305 1.562 148.74 18 . 524 0. 936 6. 372 1.567 149.24 22 .512 0. 928 6. 441 1.573 149.78 27 .653 0. 921 6. 511 1.580 150.35 34 . 619 0. 913 6. 583 1.586 150.95 40 .310 0. 909 6. 623 1.590 151.30 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.067 2.118 3.153 4.171 5.170 6.150 7.109 FLOW DEPTH VELOCITY (FT) 405 392 379 366 353 1.340 1.328 1.315 (FT/SEC) 3. 901 ,940 , 981 ,022 ,065 ,109 ,154 ,200 SPECIFIC ENERGY(FT) 1.641 1 1 1 1 1 1 1 633 625 618 610 603 596 589 PRESSURE+ MOMENTUM(POUNDS) 160.93 159.75 158.61 157.50 156.44 155.41 154.43 153.48 8.045 1. 302 4. 248 1.582 152.58 8.958 1. 289 4. 296 1.576 151.72 9.845 1. 276 4. 347 1.570 150.91 10.704 1. 263 4 . 398 1.564 150.14 11.534 1. 250 4. 451 1.558 149.41 12.332 1. 238 4. 505 1.553 148.74 13.095 1. 225 4. 561 1.548 148.10 13.821 1. 212 4. 619 1.543 147.52 14.505 1. 199 4. 678 1.539 146.99 15.145 1. 186 4. 739 1.535 146.51 15.736 1. 173 4. 802 1.531 146.07 16.273 1. 160 4. 866 1.528 145.70 16.751 1. 147 4. 933 1.525 145.37 17.163 1. 135 5. 001 1.523 145.10 17.501 1. 122 5. 071 1.521 144.89 17.757 1. 109 5. 144 1.520 144.74 17.920 1. 096 5. 218 1.519 144.65 17.978 1. 083 5. 295 1.519 144.62 40.310 1. 083 5. 295 1.519 144.62 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 10.24 FEET UPSTREAM OF NODE 134.10 | I DOWNSTREAM DEPTH = 1.270 FEET, UPSTREAM CONJUGATE DEPTH = 0.918 FEET | NODE 134.50 : HGL = < 44.403>;EGL= < 44.839>;FLOWLINE= < 43.320> ****************************************************************************** FLOW PROCESS FROM NODE 134.50 TO NODE 134.55 IS CODE = 5 UPSTREAM NODE 134.55 ELEVATION = 43.65 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 4.80 24.00 90.00 43.65 0.77 1.910 DOWNSTREAM 9.20 24.00 - 43.32 1.08 5.297 LATERAL #1 4.40 24.00 90.00 43.65 0.74 2.424 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4) )/ ( (A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00055 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00507 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00281 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.011 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.360)+{ 0.000) = 0.360 NODE 134.55 : HGL = < 45.142>;EGL= < 45.199>;FLOWLINE= < 43.650> ****************************************************************************** FLOW PROCESS FROM NODE 134.55 TO NODE 134.60 IS CODE = 1 UPSTREAM NODE 134.60 ELEVATION = 4 4.20 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.80 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 54.25 FEET NORMAL DEPTH(FT) = 0.62 MANNING'S N = 0.01300 CRITICAL DEPTH(FT) = 0.77 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.765 5.518 8.258 10.982 13.690 16.381 19.051 21.699 24.321 26.915 29.477 32.002 34.484 36.918 39.294 41.604 43.836 45.973 47.997 49.883 51.598 53.095 54.250 FLOW DEPTH (FT) 1.492 1.463 1. 434 1.405 1.377 1.348 1.319 1, 1, 1. 1. 1. 1. 1. 1. 1. ,290 ,261 ,232 ,204 ,175 , 146 ,117 ,088 ,059 1.031 1.002 0.973 0. 944 0.915 0.886 0.858 0.830 VELOCITY (FT/SEC) 1.909 1.948 1.990 2.034 2.081 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 131 183 239 299 362 430 501 578 659 747 840 941 048 164 289 3.424 3.570 3.729 3.893 SPECIFIC ENERGY(FT) 1.549 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1, 1, 1, 1, 1, 1, 1, 1 1 1 1 1 1 522 496 470 444 418 393 368 343 319 295 272 249 227 205 185 165 146 128 112 097 084 074 ,066 PRESSURE+ MOMENTUM(POUNDS) 122.37 118.26 114.26 110.38 106.62 102.98 99.47 96.08 92.83 89.71 86.74 83.90 81.21 78.67 76.29 74.07 72.01 70.13 68.43 66.91 65. 60 64 .49 63. 60 62. 97 NODE 134.60 : HGL = < 45.030>;EGL= < 45.266>;FLOWLINE= < 44.200> ****************************************************************************** FLOW PROCESS FROM NODE 134.60 TO NODE 134.70 IS CODE = 5 UPSTREAM NODE 134.70 ELEVATION = 4 4.20 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 4.80 24.00 0.00 44.20 4.80 24.00 - 44.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00305 JUNCTION LENGTH = 4.00 FEET 0.77 0.77 0.00 0.00 0.00264 0.00346 3.525 3.894 0.000 0.000 FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.023)+( 0.000) = 0.023 NODE 134.70 : HGL = < 45.095>;EGL= < 45.288>;FLOWLINE= < 44.200> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 134.70 FLOWLINE ELEVATION = 44.20 ASSUMED UPSTREAM CONTROL HGL = 4 4.97 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 131+63.7 9 LINE E FREE * * NOVEMBER 20, 2001 J.N. 98-1020 * * BY:CSO FILE:13100QEF.RES * ************************************************************************** FILE NAME: 13100QEF.DAT TIME/DATE OF STUDY: 09:05 11/21/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 131.63- 3.50* 1203.95 1.52 527.98 } FRICTION 132.20- 3.04* 947.19 1.54 526.44 } JUNCTION 132.30- 2.60* 737.89 1.49 508.46 } FRICTION } HYDRAULIC JUMP 134.05- 1.59*Dc 505.10 1.59*Dc 505.10 } JUNCTION 134.10- 2.05* 424.24 1.18 296.51 } FRICTION 134.15- 1.75* 348.05 ' 1.28 Dc 293.64 } JUNCTION 134.20- 1.77* 350.61 1.28 Dc 293.64 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD, LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 131.63 FLOWLINE ELEVATION = 39.00 PIPE FLOW = 27.59 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 42.500 FEET NODE 131.63 : HGL = < 42.500>;EGL= < 42.628>;FLOWLINE= < 39.000> ****************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 132.20 131.63 TO NODE ELEVATION = ***********************************.j^ 132.20 IS CODE = 1 39.51 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.59 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 102.60 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.52 CRITICAL DEPTH(FT) = 1. 62 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.500 2.8 67 3. 628 1203.95 17.301 3.425 2.882 3.554 1159.70 34.169 3.350 2.910 3.481 1116.49 50.807 3.274 2. 947 3.409 1074.24 67.278 3.199 2.991 3.338 1032.99 83.615 3.124 3.043 3.268 992.82 99.837 3.049 3.101 3.198 953.77 102.600 3.036 3.112 3.186 947.19 NODE 132.20 : HGL = < 42.546>;EGL= < 42.696>;FLOWLINE= < 39.510> ****************************************************.jt^^^j^^^^^^^^^^^j^^^^^^^^^^^ FLOW PROCESS FROM NODE UPSTREAM NODE 132.30 132.20 TO NODE ELEVATION = 132.30 IS CODE = 5 40.02 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 26.80 27.59 0.79 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 42.00 45.00 40.02 1.59 42.00 - 39.51 1.62 18.00 45.00 42.01 0.33 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 3.494 3.112 1.270 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/( (A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00078 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.003 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.116)+( 0.000) = 0.116 00087 00069 0.000 FEET NODE 132.30 : HGL = < 42.622>;EGL= < 42.812>;FLOWLINE= < 40.020> **************************************************************^J^.J^.^.J^..J^..^.^.J^.J^.^.^^^^^ FLOW PROCESS FROM NODE 132.30 TO NODE 134.05 IS CODE = 1 UPSTREAM NODE 134.05 ELEVATION = 40.92 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 26.80 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 181.16 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.4 9 CRITICAL DEPTH(FT) = 1.59 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.59 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1.595 6.277 2. 207 505.10 0 .020 1.591 6.298 2. 207 505.11 0 .082 1.587 6.320 2. 207 505.12 0 191 1.582 6.341 2. 207 505.15 0 350 1.578 6.363 2. 207 505.19 0 564 1.574 6.385 2. 208 505.24 0 .840 1.570 6.407 2. 208 505.30 1 .183 1.566 6.429 2. 208 505.37 1 .601 1.562 6.451 2. 208 505.46 2 .105 1.558 6.474 2. 209 505.55 2 .703 1.553 6.496 2. 209 505.66 3 .411 1.549 6.519 2. 210 505.78 4 .244 1.545 6.542 2. 210 505.91 5 .222 1.541 6.565 2. 211 506.05 6 .370 1.537 6.588 2. 211 506.21 7 .721 1.533 6.612 2. 212 506.37 9 .317 1.529 6. 635 2. 213 506.55 11 .218 1.524 6. 659 2. 213 506.74 13 .504 1.520 6.683 2. 214 506.94 16 .294 1.516 6.707 2. 215 507.16 19 .774 1.512 6.731 2. 216 507.38 24 .252 1.508 6.755 2. 217 507.62 30 .310 1.504 6.780 2. 218 507.87 39 .251 1.500 6.805 2 219 508.14 55 .262 1.495 6.829 2 220 508.42 181 .160 1.495 6.833 2 220 508.46 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2. 60 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 8.334 16.638 24.910 33.147 41.348 49.508 57.623 FLOW DEPTH VELOCITY (FT) 2.602 2.562 2.522 2.481 2.441 2.401 2.360 2.320 (FT/SEC) 3.493 550 610 673 .739 ,809 ,881 , 957 SPECIFIC ENERGY(FT) 2 2 2 2 2 2 2 2 792 758 724 691 658 626 594 563 PRESSURE+ MOMENTUM(POUNDS) 737 .89 721.74 706.05 690.83 676.09 661.83 648.08 634.85 65.690 2.280 4.037 2.533 622.14 73.702 2.240 4.121 2.503 609.98 81.653 2.199 4.209 2.474 598.38 89.536 2.159 4.301 2.446 587.34 97.341 2.119 4.398 2.419 576.90 105.057 2.078 4.501 2.393 567.06 112.669 2.038 4.608 2.368 557.85 120.162 1.998 4.721 2.344 549.29 127.512 1. 957 4 . 840 2.322 541.39 134.693 1.917 4.966 2.300 534.19 141.668 1.877 5.099 2.281 527.70 148.389 1.837 5.239 2.263 521.96 154.790 1.796 5.388 2.247 516.99 160.776 1.756 5.545 2.234 512.84 166.203 1.716 5.712 2.223 509.53 170.845 1.675 5.889 2.214 507.10 174.301 1.635 6.077 2.209 505.61 175.772 1.595 6.277 2.207 505.10 181.160 1.595 6.277 2.207 505.10 1 PRESSURE+MOMENTUM BALANCE OCCURS AT 172.22 FEET UPSTREAM OF NODE 132.30 | 1 DOWNSTREAM DEPTH = 1.659 FEET, UPSTREAM CONJUGATE DEPTH = 1.530 FEET 1 NODE 134.05 : HGL = < 42. 515>;EGL= < 43 . 127>;FLOWLINE= < 40.920> *********************************************************************.^^.^^J^^^.^.^ FLOW PROCESS FROM NODE 134.05 TO NODE 134.10 IS CODE = 5 UPSTREAM NODE 134.10 ELEVATION = 41.42 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 17.57 42.00 90.00 41.42 1.28 3.005 DOWNSTREAM 26.80 42.00 - 40.92 1.59 6.279 LATERAL #1 9.20 18.00 0.00 41.42 1.17 5.206 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.03===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00073 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00391 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00232 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.122 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.358)+( 0.122) = 0.481 NODE 134.10 : HGL = < 43.468>;EGL= < 43.608>;FLOWLINE= < 41.420> ***************************************************************************.^.j^^ FLOW PROCESS FROM NODE 134.10 TO NODE 134.15 IS CODE = 1 UPSTREAM NODE 134.15 ELEVATION = 41.70 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 17.57 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = NORMAL DEPTH(FT) 55.22 FEET 1.18 MANNING'S N = 0.01300 CRITICAL DEPTH(FT) = 1.28 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) ( FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 2.048 3.004 2.188 424.24 5. 894 2.017 3.060 2.162 415.02 11. 765 1. 986 3.117 2.137 406.09 17. 611 1. 955 3.177 2.112 397.45 23. 430 1. 925 3.240 2.088 389.09 29. 219 1.894 3.305 2.064 381.03 34. 975 1.863 3.373 2.040 373.27 40. 694 1.833 3.444 2.017 365.81 46. 371 1.802 3.518 1.994 358.67 52. 004 1.771 3.596 1.972 351.84 55. 220 1.754 3.642 1.960 348.05 NODE 134 .15 : HGL = < 43.454>;EGL= < 43.660>;FLOWLINE= < 41.700> ****************************************************************************** FLOW PROCESS FROM NODE 134.15 TO NODE 134.20 IS CODE = 5 UPSTREAM NODE 134.20 ELEVATION = 41.70 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 17.57 42.00 0.00 41.70 1.28 3.611 DOWNSTREAM 17.57 42.00 -41.70 1.28 3.643 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = ASSUMED AS 0.00120 AVERAGED FRICTION JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = SLOPE IN JUNCTION 4.00 FEET 0.005 FEET (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 0.008)+( 0.000) = 0.008 ENTRANCE LOSSES 00118 00121 0.000 FEET NODE 134.20 : HGL = < 43.466>;EGL= < 43.668>;FLOWLINE= < 41.700> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 134.20 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 41.70 42.98 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 131+63.79 LINE F FREE * * NOVEMBER 20, 2001 J.N. 98-1020 * * BY:CSO FILE:13100QFF.RES * ************************************************************************** FILE NAME: 13100QFF.DAT TIME/DATE OF STUDY: 15:54 11/20/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 3.50* 131.63- } FRICTION 132.20- } JUNCTION 132.30- } FRICTION 134.05- } JUNCTION 134.10- } FRICTION 134.50- } JUNCTION 134.55- |^.(/^ 134 • SO' 1^4-.1311 70- } FRICTION } JUNCTION 3.04* 1203.95 947.19 2.62* 743.29 } HYDRAULIC JUMP 1.59*Dc 505.10 1.40* 160.93 } HYDRAULIC JUMP 1.08*Dc 1.76* 1.14* 1.15* 144.62 162.82 76.68 77.48 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 527.83 1.52 1.60 Dc 1.49 1.59*Dc 0.91 1.08*Dc 0.51 0.74 Dc 0.74 Dc 524.58 508.76 505.10 151.30 144.62 67.42 55. 81 55.81 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 131.63 FLOWLINE ELEVATION = 39.00 PIPE FLOW = 27.59 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 42.500 FEET NODE 131.63 : HGL = < 42.500>;EGL= < 42.628>;FLOWLINE= < 39.000> ****************************************************************************** FLOW PROCESS FROM NODE 131.63 TO NODE 132.20 IS CODE = 1 UPSTREAM NODE 132.20 ELEVATION = 39.51 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.59 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 102.60 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.52 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.50 1.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.500 2.867 3.628 1203.95 17.301 3.425 2.882 3.554 1159.70 34.169 3.350 2. 910 3.481 1116.49 50.807 3.274 2.947 3.409 1074.24 67.278 3.199 2.991 3.338 1032.99 83.615 3.124 3.043 3.268 992.82 99.837 3.049 3.101 3.198 953.77 102.600 3.036 3.112 3.186 947.19 NODE 132.20 : HGL = < 42.54 6>;EGL= < 42.696>;FLOWLINE= < 39.510> ****************************************************************************** FLOW PROCESS FROM NODE 132.20 TO NODE 132.30 IS CODE = 5 UPSTREAM NODE 132.30 ELEVATION = 40.01 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 26.80 42.00 45.00 40.01 1.59 3.476 DOWNSTREAM 27.59 42.00 -39. 51 1.62 3.112 LATERAL #1 0.79 24.00 45.00 40.02 0.31 0.251 LATERAL #2 0.00 0.00 0.00 0. 00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00077 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.003 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.117)+( 0.000) = 0.117 00086 00069 0.000 FEET NODE 132.30 : HGL = < 42.625>;EGL= < 42.813>;FLOWLINE= < 40.010> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 134.05 132.30 TO NODE ELEVATION = 134.05 IS CODE = 1 40.92 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 26.80 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 181.16 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.4 9 CRITICAL DEPTH(FT) = 1.59 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.59 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.595 6.277 2.207 505.10 0.021 1.591 6.299 2.207 505.11 0.085 1.586 6.322 2.207 505.13 0.198 1.582 6.344 2.207 505.16 0.363 1.578 6.367 2.207 505.20 0.585 1.573 6.390 2.208 505.25 0.870 1.569 6.413 2.208 505.32 1.226 1.565 6.436 2.208 505.40 1.659 1.560 6.459 2.209 505.49 2.181 1.556 6.483 2.209 505.60 2.802 1.552 6.506 2.209 505.71 3.535 1.547 6.530 2.210 505.84 4 .398 1.543 6.554 2.210 505.98 5.411 1.539 6.578 2.211 506.14 6. 601 1.534 6. 603 2.212 506.31 8 .001 1.530 6.627 2.212 506.49 9. 656 1.526 6. 652 2.213 506.68 11.626 1.521 6.677 2.214 506.89 13.995 1.517 6.702 2.215 507.11 16.887 1.513 6.727 2.216 507.35 20.494 1.508 6.753 2.217 507.59 25.136 1.504 6.778 2.218 507.86 31.415 1.500 6. 804 2.219 508.13 40.684 1.495 6.830 2.220 508.42 57 .280 1.491 6.856 2.221 508.72 181.160 1.491 6.860 2.222 508.76 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.615 3.474 2.803 743.29 8 .340 2.575 3.532 2.768 726.79 16.650 2.534 3.592 2.734 710.75 24.927 2.493 3.655 2.700 695.18 33.169 2 452 3.721 2. 667 680.11 41.372 2 411 3.790 2 634 665.53 49.534 2 370 3.863 2 602 651.47 57.651 2 330 3. 939 2 571 637.93 65.717 2 289 4.019 2 540 624.94 73.728 2 248 4.103 2 510 612.49 81.677 2 207 4.191 2 480 600.62 89.556 2 166 4 .284 2 452 589.33 97.355 2 126 4.381 2 424 578.64 105.063 2 085 4 . 484 2 397 568.57 112.665 2 044 4.592 2 372 559.15 120.145 2 003 4.706 2 347 550.38 127.480 1 962 4.826 2 324 542.29 134.643 1 921 4.953 2 303 534.91 141.596 1 881 5.086 2 283 528.27 148.290 1 840 5.228 2 264 522.38 154.660 1 799 5.378 2 248 517.29 160.608 1 758 5.537 2 234 513.03 165.992 1 717 5.705 2 223 509.64 170.586 1 677 5.884 2 214 507.15 173.994 1 636 6.074 2 209 505.62 175.438 1 595 6.277 2 207 505.10 181.160 1 595 6.277 2 207 505.10 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 171.68 FEET UPSTREAM OF I DOWNSTREAM DEPTH = 1.663 FEET, UPSTREAM CONJUGATE DEPTH NODE 132.30 = 1.526 FEET NODE 134.05 : HGL = < 42.515>;EGL= < 43.127>;FLOWLINE= < 40.920> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 134.10 134.05 TO NODE ELEVATION = 134.10 IS CODE = 5 42.92 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 9.20 26.80 17.57 0.00 0.03= DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 24.00 0.00 42.92 1.08 42.00 - 40.92 1.59 42.00 90.00 42.92 1.28 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 3. 902 6.279 5.516 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = DOWNSTREAM: MANNING'S N = AVERAGED FRICTION SLOPE IN JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 0.01300; 0.01300; JUNCTION 4.00 FEET 0.013 FEET (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 1.312)+( 0.122) = 1.434 FRICTION SLOPE = 0. FRICTION SLOPE = 0. ASSUMED AS 0.00313 ENTRANCE LOSSES = 00234 00391 0.122 FEET NODE 134.10 : HGL < 44.325>;EGL= < 44.561>;FLOWLINE= < 42.920> ****************************************************************************** FLOW PROCESS FROM NODE 134.10 TO NODE 134.50 IS CODE = 1 UPSTREAM NODE 134.50 ELEVATION = 43.32 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 40.31 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.89 CRITICAL DEPTH(FT) = 1.08 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.08 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0.000 1.083 5.295 1.519 144.62 0.022 1.075 5.343 1.519 144.63 0.092 1.068 5.391 1.519 144.66 0.213 1.060 5.440 1. 520 144.72 0.391 1.052 5.491 1.521 144.80 0.631 1. 044 5.542 1.522 144.91 0. 940 1.037 5.594 1.523 145.04 1.326 1.029 5.647 1.524 145.20 1.797 1.021 5.701 1.526 145.38 2.364 1.014 5.756 1.528 145.59 3.040 1.006 5.812 1.531 145.83 3.840 0. 998 5.870 1.533 146.09 4.783 0.990 5.928 1.536 146.38 5.8 92 0.983 5.988 1.540 146.70 7.195 0.975 6.049 1.543 147.05 8.732 0.967 6.111 1.547 147.43 10.551 0. 959 6.174 1.552 147.83 12.719 0. 952 6.239 1.556 148.27 15.331 0.944 6.305 1.562 148.74 18.524 0. 936 6.372 1.567 149.24 22.512 0. 928 6.441 1.573 149.78 27.653 0.921 6.511 1.580 150.35 34.619 0. 913 6.583 1.586 150.95 40.310 0.909 6. 623 1.590 151.30 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.067 2.118 3.153 4.171 5.170 6.150 7 .109 FLOW DEPTH VELOCITY FT) 405 392 379 366 353 340 328 315 (FT/SEC) 901 940 981 022 065 109 154 200 SPECIFIC ENERGY(FT) 1. 641 1 1 1 1 1 1 1 633 625 618 610 603 596 589 PRESSURE+ MOMENTUM(POUNDS) 160.93 159.75 158.61 157.50 156.44 155.41 154.43 153.48 8.045 1.302 4.248 1.582 152.58 8. 958 1.289 4.296 1.576 151.72 9.845 1.276 4.347 1.570 150.91 10.704 1.263 4.398 1.564 150.14 11.534 1.250 4.451 1.558 149.41 12.332 1.238 4.505 1.553 148.74 13.095 1.225 4.561 1.548 148.10 13.821 1.212 4.619 1.543 147.52 14.505 1.199 4 . 678 1.539 146.99 15.145 1.186 4.739 1.535 146.51 15.736 1.173 4.802 1.531 146.07 16.273 1.160 4 .866 1.528 145.70 16.751 1.147 4.933 1.525 145.37 17.163 1.135 5.001 1.523 145.10 17.501 1.122 5.071 1.521 144.89 17.757 1.109 5.144 1.520 144.74 17.920 1.096 5.218 1.519 144.65 17.978 1.083 5.295 1.519 144.62 40.310 1.083 5.295 1.519 144.62 1 PRESSURE+MOMENTUM BALANCE OCCURS AT 10.24 FEET UPSTREAM OF NODE 134.10 1 1 DOWNSTREAM DEPTH = 1.270 FEET, UPSTREAM CONJUGATE DEPTH = 0.918 FEET 1 NODE 134.50 : HGL = < 44 403>;EGL= < 44 .839>;FLOWLINE= < 43.320> ****************************************************************************** FLOW PROCESS FROM NODE 134.50 TO NODE 134.55 IS CODE = 5 UPSTREAM NODE 134.55 ELEVATION = 43.32 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 4.40 24.00 90.00 43.32 0.74 1.504 DOWNSTREAM 9.20 24.00 - 43.32 1.08 5.297 LATERAL #1 4.80 24.00 90.00 43.32 0.77 2.011 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 o.OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00034 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00507 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00271 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.011 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.275)+( 0.000) = 0.275 NODE 134.55 : HGL = < 45.078>;EGL= < 45.114>;FLOWLINE= < 43.320> ****************************************************************************** FLOW PROCESS FROM NODE 134.55 TO NODE 134.60 IS CODE = 1 UPSTREAM NODE ELEVATION = 43.90 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 4.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 24.25 FEET NORMAL DEPTH(FT) = 0.48 MANNING'S N = 0.01300 CRITICAL DEPTH(FT) = 0.74 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.76 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0.000 1.758 1.503 1.794 162.82 1. 676 1.718 1.532 1.754 155.68 3.345 1.677 1.564 1.715 148.71 5.007 1.636 1.599 1.67 6 141.91 6.662 1.595 1.637 1.637 135.31 8.309 1.554 1.679 1.598 128.90 9.946 1.513 1.725 1.560 122.69 11.574 1.472 1.774 1.521 116.70 13.189 1.432 1.828 1.483 110.93 14.793 1.391 1.886 1.446 105.39 16.381 1.350 1.950 1.409 100.08 17.952 1.309 2.019 1.372 95.02 19.504 1.268 2.094 1.336 90.20 21.032 1.227 2.176 1.301 85.65 22.534 1.186 2.266 1.266 81.36 24.004 1.146 2.364 1.232 77.35 24.250 1.139 2.382 1.227 76.68 NODE 131-60 : HGL = < 45.039>;EGL= < 45.127>;FLOWLINE= < 43.900> ********* *i **************** -iA^j^ -^i*** ****************************************** FLOW PROCESS FROM NODE UPSTREAM NODE TO NODE ELEVATION = 134.70 IS CODE = 5 43.90 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 4 . 40 4 0 0 40 00 00 DIAMETER (INCHES) 24 .00 24.00 0.00 0.00 ANGLE [DEGREES) 0.00 0.00 0.00 FLOWLINE ELEVATION 43.90 43.90 0.00 0. 00 CRITICAL DEPTH(FT.) 0.74 0.74 0.00 0.00 VELOCITY (FT/SEC) 2.361 2.382 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/( (A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00098 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.007)+( 0.000) = 0.007 NODE t34-HW) : HGL = < 45.047>;EGL= < 45.134>; FLOWLINE= < 43.900> ****************************************************************************** 00096 00099 0.000 FEET UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = jr94 .70 |^4"*'7^ FLOWLINE ELEVATION = 43.90 ASSUMED UPSTREAM CON^ilOL HGL = 44. 64 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ^X^^M M' ^ ^^^^ p ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 135+^2.77 FREE * * NOVEMBER 20, 2001 J.N. 98-1020 * * BY:CSO FILE:13500Q.RES * ************************************************************************** FILE NAME: 13500Q.DAT TIME/DATE OF STUDY: 15:55 11/20/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM (POUNDS) 135.42- 3.00* 775.94 1.34 372.20 } FRICTION } HYDRAULIC JUMP 138.40- 1.45*Dc 368.37 1.45*Dc 368.37 } JUNCTION 138.50- 1.60* 374.50 1.45 Dc 368.37 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 135.42 FLOWLINE ELEVATION = 42.10 PIPE FLOW = 20.42 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 4 5.100 FEET NODE 135.42 : HGL = < 45.100>;EGL= < 45.230>;FLOWLINE= < 42.100> ****************************************************************************** FLOW PROCESS FROM NODE 135.42 TO NODE 138.40 IS CODE = 1 UPSTREAM NODE 138.40 ELEVATION = 44.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.42 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 337.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 1.33 CRITICAL DEPTH(FT) 1.45 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.45 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.451 6.028 2.015 368.37 0.021 1.446 6.054 2.015 368.38 0.085 1.441 6.079 2.015 368.40 0.196 1.437 6.104 2.016 368.43 0.360 1.432 6.130 2.016 368.47 0.581 1.427 6.156 2.016 368.52 0.864 1.423 6.182 2.016 368.59 1.217 1.418 6.208 2.017 368.67 1.648 1.413 6.235 2.017 368.77 2.166 1.409 6.261 2.018 368.87 2.783 1.404 6.288 2.018 368.99 3.512 1.399 6.316 2.019 369.13 4.370 1.395 6.343 2.020 369.27 5.377 1.390 6.371 2.021 369.43 6.560 1.385 6.399 2.021 369.60 7.952 1.381 6.427 2.022 369.79 9.597 1.376 6.455 2.023 369.99 11.556 1.371 6.484 2.024 370.20 13.913 1.367 6.513 2.026 370.43 16.789 1.362 6.542 2.027 370.67 20.377 1.357 6.571 2.028 370.93 24.995 1.353 6. 601 2.030 371.20 31.242 1.348 6.631 2.031 371.48 40.465 1.343 6. 661 2.033 371.78 56.981 1.338 6. 691 2.034 372.09 337.000 1.337 6.701 2.035 372.20 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 12.739 25.113 37.292 49.326 61.242 73.056 84.778 96.414 107.965 119.432 130.812 FLOW DEPTH VELOCITY (FT) 3.000 2.938 2.876 2.814 ,752 ,690 ,628 ,566 ,504 ,442 ,380 ,318 (FT/SEC) 2.888 SPECIFIC ENERGY(FT) 3.130 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 902 929 964 006 055 110 171 238 313 394 483 069 009 951 8 93 835 778 722 667 613 559 507 PRESSURE+ MOMENTUM(POUNDS) 775.94 749.23 723.21 697.79 673.00 648.87 625.42 602.70 580.74 559.57 539.25 519.79 142.097 2.256 3.579 2.455 501.26 153.280 2.194 3.685 2.405 483.68 164.349 2.132 3.799 2.357 467.10 175.285 2.070 3. 923 2.310 451.57 186.067 2.008 4.059 2.264 437.14 196.664 1.946 4.206 2.221 423.86 207.032 1.884 4.367 2.181 411.80 217.115 1.822 4.542 2.143 401.01 226.827 1.761 4.734 2.109 391.59 236.042 1.699 4. 945 2.078 383.61 244.562 1.637 5.177 2.053 377.17 252.047 1.575 5.432 2.033 372.39 257.851 1.513 5.715 2.020 369.41 260.472 1.451 6.028 2.015 368.37 337.000 1.451 6.028 2.015 368.37 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 252.61 FEET UPSTREAM OF DOWNSTREAM DEPTH = 1.569 FEET, UPSTREAM CONJUGATE DEPTH NODE 135.42 | = 1.338 FEET j NODE 138.40 HGL 45.451>;EGL= < 46.015>;FLOWLINE= < 44.000> ****************************************************************************** FLOW PROCESS FROM NODE 138.40 TO NODE 138.50 IS CODE = 5 UPSTREAM NODE 138.50 ELEVATION = 44.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 20.42 20.42 0.00 0.00 0.00- DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION 36.00 36.00 0. 00 0.00 0.00 0.00 0.00 44 .00 44.00 0.00 0.00 DEPTH(FT.) 1.45 1.45 0.00 0.00 VELOCITY (FT/SEC) 5.306 6.030 0. 000 0.000 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS{DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = DOWNSTREAM: MANNING'S N = AVERAGED FRICTION SLOPE IN JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 0.01300; 0.01300; JUNCTION 4.00 FEET 0.014 FEET (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 0.027)+( 0.000) = 0.027 FRICTION SLOPE = 0.00299 FRICTION SLOPE = 0.00420 ASSUMED AS 0.00360 ENTRANCE LOSSES = 0.000 FEET NODE 138.50 : HGL = < 45.605>;EGL= < 46.042>;FLOWLINE= < 44.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 138.50 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 4 4.00 45.45 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 139+85.09 FREE * * NOVEMBER 20, 2001 J.N. 98-1020 * * BY:CSO FILE:13900Q.RES * ************************************************************************** FILE NAME: 13900Q.DAT TIME/DATE OF STUDY: 15:52 11/20/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 139.85- 4.00* 2349.17 2.37 1759.64 } FRICTION 140.91- 3.13* 1861.87 2.55 Dc 1746.54 } JUNCTION 141.00- 3.17* 1874.30 2.55 Dc 1746.54 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 139.85 FLOWLINE ELEVATION = 44.90 PIPE FLOW = 71.16 CFS PIPE DIAMETER = 48.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 4 8.900 FEET NODE 139.85 : HGL = < 48.900>;EGL= < 49.398>;FLOWLINE= < 44.900> ****************************************************************************** FLOW PROCESS FROM NODE 139.85 TO NODE 140.91 IS CODE = 1 UPSTREAM NODE 140.91 ELEVATION = 46.00 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 71.16 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 194.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.37 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.00 2.55 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 4.000 5.661 4.498 2349.17 16.405 3.942 5.678 4 .443 2306.07 31.518 3.884 5.708 4 .390 2265.08 45.957 3.826 5.748 4.339 2225.65 59.906 3.768 5.796 4.290 2187.62 73.465 3.710 5.851 4 .242 2150.94 86.694 3.652 5.912 4 .195 2115.59 99.635 3.594 5.979 4.150 2081.58 112.315 3.536 6.052 4.105 2048.92 124.750 3.478 6.132 4.062 2017.63 136.952 3.420 6.218 4.021 1987.76 148.924 3.362 6.309 3.981 1959.33 160.667 3.304 6.408 3. 942 1932.40 172.172 3.246 6.512 3.905 1907.01 183.429 3.188 6.624 3.870 1883.21 194.000 3.132 6.738 3.838 1861.87 NODE 140.91 : HGL = < 4 9.132>;EGL= < 4 9.838>;FLOWLINE= < 46.000> ****************************************************************************** FLOW PROCESS FROM NODE 140.91 TO NODE 141.00 IS CODE = 5 UPSTREAM NODE 141.00 ELEVATION = 4 6.00 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 71.16 48.00 0.00 46.00 2.55 6.672 DOWNSTREAM 71.16 48.00 46.00 2.55 6.740 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. 00262 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. 00268 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00265 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES = 0.011 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.019)+( 0.000) = 0 . 019 NODE 141.00 : HGL = < 4 9.165>;EGL= < 4 9.857>;FLOWLINE= < 46.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 141.00 FLOWLINE ELEVATION = 46.00 ASSUMED UPSTREAM CONTROL HGL = 48.55 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 143+43.12 FREE * * NOVEMBER 20, 2001 J.N. 98-1020 * * BY:CSO FILE:14300Q.RES * ************************************************************************** FILE NAME: 14300Q.DAT TIME/DATE OF STUDY: 09:26 11/21/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 143.43- 2.00* 320.42 } FRICTION 143.68- } JUNCTION 143.70- } FRICTION 144.45- } JUNCTION 144.50- } FRICTION 144.55- } JUNCTION 144.60- } HYDRAULIC JUMP 1.36*Dc 256.65 1.91* 231.90 } HYDRAULIC JUMP 1.08*Dc 144.82 1.53* 1.08* 1.09* 123.08 68.72 69.47 DOWNSTREAM RUN FLOW PRESSURE+ DE PTH(FT) MOMENTUM(POUNDS) 294.02 0. 98 1.36*Dc 0.75 1.08*Dc 0.51 0.71 Dc 0.71 Dc 256.65 174.19 144.82 59.35 50.52 50.52 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 143.43 FLOWLINE ELEVATION = 51.80 PIPE FLOW = 14.20 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 53.800 FEET NODE 143.43 HGL < 53.800>;EGL= < 54.117>;FLOWLINE= < 51.800> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 143.68 143.43 TO NODE ELEVATION = 143.68 IS CODE = 1 52.65 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 38.86 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.91 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.36 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1. 357 6.254 1. 965 256.65 0.030 1. 339 6.347 1. 965 256.72 0.125 1. 322 6.445 1. 967 256.92 0.289 1. 304 6.546 1. 969 257.26 0.532 1. 286 6.651 1. 973 257.74 0.861 1. 268 6.760 1. 978 258.38 1.286 1. 250 6.873 1. 984 259.17 1.818 1. 232 6.991 1. 991 260.12 2.471 1. 214 7.113 2. 000 261.23 3.260 1. 196 7.240 2. Oil 262.53 4.204 1. 178 7.373 2. 023 264.00 5.327 1. 160 7.510 2. 037 265.65 6.656 1. 142 7.654 2. 053 267.51 8 .227 1. 125 7.803 2. 071 269.57 10.083 1. 107 7.959 2. 091 271.84 12.281 1 089 8.121 2. 113 274.33 14.897 1 071 8.290 2. 139 277.06 18.032 1 053 8.467 2 167 280.03 21.829 1 035 8.652 2 198 283.26 26.497 1 017 8.845 2 233 286.76 32.361 0 999 9.047 2 271 290.55 38.860 0 984 9.227 2 307 294.02 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2 .000 4.519 2 .317 320.42 1.333 1 .974 4.530 2 .293 315.69 2.578 1 . 949 4.550 2 .270 311.24 3.769 1 .923 4.577 2 .248 306.98 4.918 1 .897 4.608 2 .227 302.89 6.028 1 .871 4.645 2 .207 298.96 7.103 1 .846 4.685 2 .187 295.19 8 .145 1 .820 4.729 2 .168 291.58 9. 153 1.7 94 4.778 2 .149 288.12 10. 129 1.769 4.830 2 .131 284.81 11. 071 1.743 4.886 2 .114 281.66 11. 97 9 1.717 4.945 2 .097 278.68 12. 851 1.692 5.009 2 .081 275.85 13. 687 1.666 5.077 2 .066 273.20 14. 482 1.640 5.148 2 .052 270.72 15. 236 1.614 5.224 2 .038 268.42 15. 945 1.589 5.304 2 .026 266.30 16. 606 1.563 5.389 2 .014 264.37 17. 214 1.537 5.478 2 .004 262.63 17 . 766 1.512 5.573 1 . 994 261.10 18. 254 1.486 5.672 1 .986 259.78 18 . 674 1.4 60 5.776 1 .979 258.68 19. 018 1.434 5.886 1 .973 257.81 19. 278 1.409 6.002 1 .969 257.17 19. 442 1.383 6.125 1 .966 256.78 19. 500 1.357 6.254 1 .965 256.65 38 . 860 1.357 6.254 1 . 965 256.65 1 PRESSURE+MOMENTUM BALANCE OCCURS AT 8.90 FEET UPSTREAM OF NODE 143.43 | 1 DOWNSTREAM DEPTH = 1.801 FEET, UPSTREAM CONJUGATE DEPTH = 1.006 FEET 1 NODE 143.68 : HGL = < 54 007>;EGL= < 54 . 615>;FLOWLINE= < 52.650> ****************************************************************************** FLOW PROCESS FROM NODE 143.68 TO NODE 143.70 IS CODE = 5 UPSTREAM NODE 143.70 ELEVATION = 52.98 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.21 24.00 0.00 52.98 1.08 2.978 DOWNSTREAM 14.20 24.00 - 52.65 1.36 6.255 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 4.99===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00144 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00610 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00377 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES = 0.122 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.292)+( 0.122) = 0.414 NODE 143.70 : HGL = < 54.891>;EGL= < 55.029>; FLOWLINE= < 52.980> ****************************************************************************** FLOW PROCESS FROM NODE 143.70 TO NODE 144.45 IS CODE = 1 UPSTREAM NODE 144.45 ELEVATION = 55.24 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.21 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 112.77 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.73 CRITICAL DEPTH(FT) = 1.08 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.08 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1.084 5. 297 1.520 144.82 0 .024 1.070 5. 384 1.520 144.86 0 .098 1.056 5. 473 1.521 144.97 0 .228 1.042 5. 566 1.523 145.17 0 .419 1.028 5. 661 1.526 145.44 0 . 678 1.014 5. 760 1.529 145.80 1 .013 1.000 5. 863 1.534 146.25 1 .432 0. 986 5. 969 1.539 146.79 1 . 947 0. 972 6. 079 1.546 147.43 2 .570 0.958 6. 193 1.554 148.16 3 .315 0.944 6. 312 1.563 148.99 4 .201 0.930 6. 435 1.573 149.93 5 .250 0.916 6. 563 1.585 150.97 6 .489 0. 902 6. 696 1.599 152.13 7 .954 0.888 6. 834 1.614 153.41 9 .688 0.874 6. 978 1.631 154.82 11 .752 0.860 7. 127 1.649 156.35 14 .225 0.846 7 . 283 1.670 158.02 17 .219 0.832 7. 446 1.693 159.83 20 .898 0.818 7. 615 1.719 161.79 25 . 519 0.804 7. 792 1.748 163.91 31 . 507 0.790 7. 977 1.779 166.19 39 . 666 0.776 8. 170 1.813 168.64 51 .795 0.762 8. 372 1.851 171.28 73 . 675 0.748 8. 584 1.893 174.11 112 .770 0.748 8. 590 1. 894 174.19 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.91 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 1. 636 3.246 4.834 6.399 7.941 9. 461 10.957 12.428 13.872 FLOW DEPTH VELOCITY (FT) 1.911 878 845 812 779 746 713 680 646 613 (FT/SEC) 2.977 3.006 3.039 3.077 3.119 3.165 3.215 3.269 3.328 3.391 SPECIFIC ENERGY(FT) 2.049 2. 1. 1. 1, 1, 1. 1, 1. 1, ,019 , 989 , 959 ,930 , 901 ,873 ,846 ,818 ,7 92 PRESSURE+ MOMENTUM(POUNDS) 231.90 226.05 220.36 214.81 209.42 204.18 199.11 194.22 189.49 184.96 15.288 1. 580 3 .458 1. 766 180.61 16.672 1. 547 3 .531 1. 741 176.46 18.022 1. 514 3 .608 1. 716 172.52 19.335 1. 481 3 .691 1. 693 168.79 20.606 1. 448 3 .780 1. 670 165.29 21.830 1. 415 3 .875 1. 648 162.01 23.001 1. 382 3 . 977 1. 627 158.98 24.113 1. 349 4 .086 1. 608 156.21 25.158 1. 315 4 .202 1. 590 153.70 26.124 1. 282 4 .327 1. 573 151.46 27.001 1. 249 4 .461 1. 558 149.52 27.774 1. 216 4 .604 1. 546 147.89 28.424 1. 183 4 .759 1. 535 146.58 28.929 1. 150 4 .925 1. 527 145.62 29.261 1. 117 5 .104 1. 522 145.03 29.381 1. 084 5 .297 1. 520 144.82 112.770 1. 084 5 .297 1. 520 144.82 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 17.4 6 FEET UPSTREAM OF NODE 14 3.70 | I DOWNSTREAM DEPTH = 1.528 FEET, UPSTREAM CONJUGATE DEPTH = 0.748 FEET | NODE 144.45 : HGL = < 56.324>;EGL= < 56.760>;FLOWLINE= < 55.240> ****************************************************************************** FLOW PROCESS FROM NODE 144.45 TO NODE 144.50 IS CODE = 5 UPSTREAM NODE 144.50 ELEVATION = 55.57 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH{FT.) (FT/SEC) UPSTREAM 4.07 24.00 45.00 55.57 0.71 1.578 DOWNSTREAM 9.21 24.00 - 55.24 1.08 5.299 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 5.14===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00037 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00507 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00272 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.011 FEET ENTRANCE LOSSES = 0.087 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.292)+( 0.087) = 0.379 NODE 144.50 : HGL = < 57.100>;EGL= < 57.139>;FLOWLINE= < 55.570> ****************************************************************************** FLOW PROCESS FROM NODE 14 4.50 TO NODE 14 4.55 IS CODE = 1 UPSTREAM NODE 144.55 ELEVATION = 55.98 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.07 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 17.71 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.46 CRITICAL DEPTH(FT) = 0.71 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.53 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .530 1.578 1.569 123.08 1 .367 1 .4 97 1. 613 1.537 118.13 2 .729 1 . 464 1.651 1.506 113.31 4 .084 1 .431 1. 691 1.476 108.63 5 .431 1 .398 1.734 1.445 104.09 6 .771 1 .365 1.781 1.415 99.71 8 . 101 1 .333 1.830 1.385 95.47 9 .421 1 .300 1.883 1.355 91.39 10 .730 1 .267 1.939 1.325 87.46 12 .025 1 .234 2.000 1.296 83.70 13 .306 1 .201 2.065 1.267 80.11 14 .570 1 . 168 2.135 1.239 76.68 15 .814 1 . 135 2.211 1.211 73.44 17 .036 1 . 102 2.292 1.184 70.37 17 .710 1 .084 2.341 1.169 68.72 NODE 144.55 HGL 57.064>;EGL= < 57.149>;FLOWLINE= < 55.980> ********************************************************************* ********* FLOW PROCESS FROM NODE UPSTREAM NODE 144.60 14 4.55 TO NODE ELEVATION = 144.60 IS CODE = 5 55.98 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) 4.07 24.00 4.07 24.00 0.00 0.00 0.00 0.00 (DEGREES) ELEVATION 0.00 55.98 55.98 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT== CRITICAL DEPTH(FT.) 0.71 0.71 0.00 0.00 VELOCITY (FT/SEC) 2.319 2.341 0.000 0.000 00097 00099 0.000 FEET LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/( (A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00098 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.007)+( 0.000) = 0.007 NODE 144.60 : HGL = < 57.072>;EGL= < 57.156>;FLOWLINE= < 55.980> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 144.60 FLOWLINE ELEVATION = 55.98 ASSUMED UPSTREAM CONTROL HGL = 56.69 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 149+50.88 * * NOVEMBER 20, 2001 J.N. 98-1020 * * BY:CSO FILE:14900Q.RES * ************************************************************************** FILE NAME: 14 900Q.DAT TIME/DATE OF STUDY: 10:22 11/21/2001 ****************************************************************'************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 149.50- 2.00* 201.01 0.41 38.67 } FRICTION } HYDRAULIC JUMP 148.99- 0.59*Dc 31.94 0.59*Dc 31.94 } JUNCTION 149.00- 0.69* 33.40 0.59 Dc 31.94 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 149.50 FLOWLINE ELEVATION = 57.50 PIPE FLOW = 2.84 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 59.500 FEET NODE 149.50 : HGL = < 59.500>;EGL= < 59.513>;FLOWLINE= < 57.500> ****************************************************************************** FLOW PROCESS FROM NODE 14 9.50 TO NODE 148.99 IS CODE = 1 UPSTREAM NODE 148.99 ELEVATION = 60.36 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.84 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 143.17 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0.40 CRITICAL DEPTH(FT) = 0.59 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.59 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .587 3. 694 0.799 31.94 0 .014 0 .579 3. 759 0.799 31.95 0 .054 0 . 572 3. 827 0.800 31.97 0 .122 0 .565 3. 897 0.801 32.02 0 .220 0 .557 3. 969 0.802 32.09 0 .353 0 .550 4 . 043 0.804 32.17 0 .524 0 .543 4. 120 0.806 32.27 0 .738 0 .535 4 . 200 0.809 32.40 0 .999 0 .528 4 . 282 0.813 32.55 1 .315 0 .521 4 . 367 0.817 32.71 1 . 692 0 .513 4. 456 0.822 32. 90 2 .139 0 .506 4. 547 0.827 33.12 2 .668 0 .498 4. 642 0.833 33.36 3 .292 0 .491 4 . 741 0.840 33. 62 4 .028 0 . 484 4 . 843 0.848 33. 91 4 .899 0 . 476 4 . 949 0.857 34.23 5 .934 0 .469 5. 059 0.867 34.58 7 .172 0 .462 5. 174 0.878 34.95 8 .669 0 . 454 5. 293 0.890 35.36 10 .506 0 .447 5. 418 0.903 35.80 12 .810 0 .440 5. 547 0.918 36.28 15 .793 0 .432 5. 682 0.934 36.79 19 .850 0 .425 5. 823 0.952 37.34 25 .874 0 .418 5. 970 0.971 37.92 36 .724 0 .410 6. 124 0.993 38.55 143 . 170 0 .409 6. 152 0.997 38. 67 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.839 5.668 8.489 11.305 14.115 16.919 19.717 22.507 25.289 28.061 30.821 FLOW DEPTH VELOCITY [FT) 000 944 887 831 774 718 661 605 548 492 435 379 (FT/SEC) 0. 904 0. 911 0.924 0.942 0.964 0.98 9 018 051 088 130 177 229 SPECIFIC ENERGY(FT) 2.013 1 1 1 1 1 1 1 1 1 1 1 956 900 844 788 733 677 622 566 511 457 402 PRESSURE+ MOMENTUM(POUNDS) 201.01 190.01 179.17 168.54 158.15 148.04 138.22 128.72 119.56 110.76 102.34 94 .30 33.568 1. 322 1.288 1. 348 86. 67 36.298 1. 266 1.355 1. 294 79.46 39.007 1. 209 1.430 1. 241 72.68 41.691 1. 153 1.514 1. 188 66.34 44.342 1. 096 1.611 1. 136 60.46 46.951 1. 040 1.721 1. 086 55.05 49.506 0. 983 1.847 1. 036 50.12 51.989 0. 927 1. 994 0. 988 45.71 54.374 0. 870 2.165 0. 943 41.83 56.623 0. 814 2.366 0. 901 38.51 58.678 0. 757 2.605 0. 863 35.79 60.444 0. 701 2.894 0. 831 33.73 61.758 0. 644 3.248 0. 808 32.41 62.311 0. 588 3. 688 0. 799 31. 94 143.170 0. 588 3.688 0 799 31. 94 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 56.56 FEET UPSTREAM OF NODE 14 9.50 j I DOWNSTREAM DEPTH = 0.815 FEET, UPSTREAM CONJUGATE DEPTH = 0.410 FEET | NODE 148.99 : HGL = < 60.947>;EGL= < 61.159>;FLOWLINE= < 60.360> ****************************************************************************** FLOW PROCESS FROM NODE 148.99 TO NODE 149.00 IS CODE = 5 UPSTREAM NODE 14 9.00 ELEVATION = 60.36 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2.84 24.00 0.00 60.36 0.59 2.961 DOWNSTREAM 2.84 24.00 - 60.36 0.59 3.689 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00242 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00446 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00344 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.026)+( 0.000) = 0.026 NODE 14 9.00 : HGL = < 61.04 9>;EGL= < 61.185>;FLOWLINE= < 60.360> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 14 9.00 FLOWLINE ELEVATION = 60.36 ASSUMED UPSTREAM CONTROL HGL = 60.95 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 152+38.88 FREE * * NOVEMBER 20, 2001 J.N. 98-1020 * * BY:CSO FILE:15200Q.RES * ************************************************************************** FILE NAME: 15200Q.DAT TIME/DATE OF STUDY: 16:17 11/20/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 152.38- 3.00* 1057.71 1.69 868.96 } FRICTION } HYDRAULIC JUMP 153.34- 2.01*Dc 833.12 2.00*Dc 833.12 } JUNCTION 153.35- 2.21* 844.60 2.01 Dc 833.12 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 152.38 FLOWLINE ELEVATION = 55.90 PIPE FLOW = 38.01 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 58.900 FEET NODE 152.38 : HGL = < 58.900>;EGL= < 59.349>;FLOWLINE= < 55.900> ****************************************************************************** FLOW PROCESS FROM NODE 152.38 TO NODE 153.34 IS CODE = 1 UPSTREAM NODE 153.34 ELEVATION = 57.70 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 38.01 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 199.03 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 1. 67 CRITICAL DEPTH(FT) 2.01 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.005 7.570 2.895 833.12 0.054 1.992 7.627 2.895 833.18 0.205 1. 978 7.685 2.896 833.36 0.464 1.965 7.744 2. 897 833.64 0.840 1.952 7.804 2.898 834.03 1.345 1. 939 7.865 2. 900 834.54 1.992 1. 925 7.928 2.902 835.16 2.797 1.912 7.991 2.904 835.91 3.779 1.899 8.056 2. 907 836.77 4 .958 1.886 8.122 2.911 837.75 6.361 1.872 8.190 2.914 838.86 8.020 1.859 8.258 2. 919 840.10 9.972 1.846 8.328 2. 924 841.46 12.265 1.833 8.400 2.929 842.96 14.959 1.819 8.472 2. 935 844.59 18.131 1.806 8.546 2. 941 846.36 21.882 1.793 8.622 2. 948 848.26 26.351 1.780 8.699 2.955 850.31 31.729 1.766 8.778 2.963 852.50 38.300 1.753 8.858 2 . 972 854.84 46.501 1.740 8.939 2.981 857.33 57.067 1.727 9.023 2. 991 859.98 71.374 1.713 9.108 3. 002 862.78 92.513 1.700 9.195 3.014 865.74 130.407 1. 687 9.283 3.026 868.86 199.030 1.686 9.286 3.026 868.96 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 6.274 12.062 17 .579 22.890 28.027 33.011 37.854 42.563 47.142 51.593 55.913 FLOW DEPTH VELOCITY (FT) 3. 000 2. 960 2. 920 2.881 2.841 801 761 722 682 642 602 563 (FT/SEC) 5. 376 390 415 448 488 533 583 639 699 764 834 909 SPECIFIC ENERGY(FT) 3.449 3.412 3.376 3.342 3.309 3.277 3.246 3.216 3.187 3.158 3.131 3.105 PRESSURE+ MOMENTUM(POUNDS) 1057.71 1041.21 1025.63 1010.71 996.37 982.59 969.33 956.61 944.43 932.78 921.68 911.14 60.100 2.523 5.989 3 080 901.18 64 .146 2.483 6.074 3 056 891.80 68.044 2.443 6.164 3 034 883.03 71.783 2. 404 6.259 3 012 874.88 75.349 2.364 6.360 2 992 867.38 78.724 2.324 6.467 2 974 860.54 81.888 2.284 6.580 2 957 854.39 84.814 2.245 6.699 2 942 848.96 87.468 2.205 6.824 2 928 844.28 89.809 2.165 6. 957 2 917 840.36 91.785 2.125 7.097 2 908 837.26 93.327 2.085 7.245 2 901 834.99 94.345 2.046 7.401 2 897 833.60 94.719 2.006 7.565 2 895 833.12 199.030 2.006 7.565 2 895 833.12 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 74.89 FEET UPSTREAM OF DOWNSTREAM DEPTH = 2.369 FEET, UPSTREAM CONJUGATE DEPTH NODE 152.38 = 1.689 FEET NODE 153.34 : HGL = < 59.705>;EGL= < 60.595>;FLOWLINE= < 57.700> ********************************************************************.j^.^.^^..j^^.^.j..^^.^ FLOW PROCESS FROM NODE UPSTREAM NODE 153.35 153.34 TO NODE ELEVATION = 153.35 IS CODE = 5 57.70 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 38.01 38.01 0.00 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 36.00 0.00 57.70 2.01 36.00 - 57.70 2.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 6.817 7.568 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Q1*V1*COS(DELTAl)-Q3 *V3 *COS(DELTAS)- Q4 *V4 *COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.004 66 4.00 FEET 0.019 FEET (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 0.034)+( 0.000) = 0.034 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 0.00409 FRICTION SLOPE = 0.00524 ENTRANCE LOSSES = 0.000 FEET NODE 153.35 : HGL = < 59.908>;EGL= < 60.629>;FLOWLINE= < 57.700> ***********************************************************************.H.j^^^.^.j.^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 153.35 FLOWLINE ELEVATION = 57.70 ASSUMED UPSTREAM CONTROL HGL = 59.71 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS **********************************************************************.jj..^^^^.^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 157+09.15 FREE * * NOVEMBER 20, 2001 J.N. 98-1020 * * BY:CSO FILE:15700Q.RES * **********************************************************************jj.j^j^^ FILE NAME: 15700Q.DAT TIME/DATE OF STUDY: 16:18 11/20/2001 *************************************************************************^j^.^.^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 157.09- 2.00* 196.28 0.23 5.01 } FRICTION } HYDRAULIC JUMP 158.12- 0.27*Dc 4.76 0.27*Dc 4.76 ) JUNCTION 158.12- 0.35* 5.31 0.27 Dc 4.76 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. *****************************************************************************.j^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 157.09 FLOWLINE ELEVATION = 57.50 PIPE FLOW = 0.63 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 59.500 FEET NODE 157.09 : HGL = < 59.500>;EGL= < 59.501>;FLOWLINE= < 57.500> ****************************************************************************** FLOW PROCESS FROM NODE 157.09 TO NODE 158.12 IS CODE = 1 UPSTREAM NODE 158.12 ELEVATION = 59.40 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.63 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 187.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.23 CRITICAL DEPTH(FT) 0.27 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.27 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0 .272 2. 454 0. 366 4 .76 0.004 0 .271 2. 477 0. 366 4.76 0.018 0 .269 2. 500 0. 366 4.76 0.041 0 .267 2. 524 0. 366 4 .77 0.076 0 .265 2. 548 0. 366 4.77 0.122 0 .264 2. 573 0. 366 4.77 0.182 0 .262 2. 598 0. 367 4.78 0.256 0 .260 2. 624 0. 367 4.78 0.347 0 .258 2. 650 0. 367 4.79 0.456 0 .257 2. 676 0. 368 4.79 0.586 0 .255 2. 703 0. 368 4.80 0.739 0 .253 2. 730 0. 369 4.81 0.920 0 .251 2. 758 0. 369 4.82 1.132 0 .250 2. 786 0. 370 4.83 1.382 0 .248 2. 815 0. 371 4.84 1.67 6 0 .246 2. 844 0. 372 4.85 2.023 0 .244 2. 874 0. 373 4.86 2.437 0 .243 2. 904 0. 374 4 .87 2. 935 0 .241 2. 935 0. 375 4.89 3.543 0 .239 2. 966 0. 376 4.90 4 .302 0 .237 2. 998 0. 377 4.92 5.279 0 .236 3. 031 0. 378 4.94 6. 602 0 .234 3. 064 0. 380 4.95 8.555 0 .232 3. 097 0. 381 4 . 97 12.053 0 .230 3. 132 0. 383 4 . 99 187.000 0 .229 3. 164 0. 384 5.01 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 6. 805 13.609 20.412 27.214 34.015 40.816 47.616 54 .415 61.212 68.008 74.802 FLOW DEPTH (FT) 000 931 862 793 724 654 585 516 447 378 309 240 VELOCITY (FT/SEC) 0.200 0.203 0.207 0.212 0.219 0.227 0.236 0.246 0.259 0.273 0.289 0.308 SPECIFIC ENERGY(FT) 2.001 1, 1. 1, 1. 1, 1, 1, 1, 1. 1 1 932 862 793 724 655 586 517 448 379 310 241 PRESSURE+ MOMENTUM(POUNDS) 196.28 182.79 169.52 156.55 143.94 131.75 120.01 108.75 98.01 87.79 78.14 69.05 81. 594 1. 171 0.330 1.172 60.55 88. 383 1. 102 0.355 1.104 52. 63 95. 168 1. 032 0.385 1.035 45.32 101. 947 0. 963 0.421 0.966 38.61 108 . 718 0. 894 0.4 63 0.898 32.50 115. 477 0. 825 0.515 0.829 26. 99 122. 220 0. 756 0.579 0.761 22.09 128. 936 0. 687 0. 659 0. 694 17.78 135. 609 0. 618 0.763 0.627 14.07 142. 211 0. 549 0.900 0.561 10.95 148 . 682 0. 480 1.088 0. 498 8.43 154. 885 0. 410 1.357 0.439 6.51 160. 446 0. 341 1.768 0.390 5.24 163. 684 0. 272 2.454 0.366 4.76 187. 000 0. 272 2.454 0.366 4.76 END OF HYDRAULIC JUMP I PRESSURE+MOMENTUM BALANCE OCCURS AT 174.28 FEET UPSTREAM OF I DOWNSTREAM DEPTH = 0.305 FEET, UPSTREAM CONJUGATE DEPTH NODE 157.09 = 0.230 FEET NODE 158.12 : HGL = < 59.672>;EGL= < 59.766>;FLOWLINE= < 59.400> ***************************************************************************.^.^^ FLOW PROCESS FROM NODE 158.12 TO NODE 158.12 IS CODE = 5 UPSTREAM NODE 158.12 ELEVATION = 59.40 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 0.63 24.00 0.00 59.40 DOWNSTREAM 0.63 24.00 - 59.40 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 o.0O===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 0.27 0.27 0.00 0.00 VELOCITY (FT/SEC) 1.734 2.455 0.000 0. 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00182 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00490 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00336 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.027)+( 0.000) = 0.027 NODE 158.12 HGL 59.746>;EGL= < 59.793>;FLOWLINE= < 59.400> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 158.12 FLOWLINE ELEVATION = 59.40 ASSUMED UPSTREAM CONTROL HGL = 59.67 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS **********************************************************^,^,^,^,^,^,^,.^.^.^.^.^.l^^^^^^^_^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 160+32.52 LINE BB * * NOVEMBER 21, 2001 J.N. 98-1020 * * BY:CSO FILE:16040Q.RES * ******************************************************.(,.^.^^^j^.^.^.^^^^^^^^^^^^ FILE NAME: 16040Q.DAT TIME/DATE OF STUDY: 08:29 11/21/2001 *************************************************************i,i,i,i,i,.^.i,^,^^.^.f^.^.^.i^.i^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS 160.00-3 00* 750 94 1.30 314.94 } FRICTION 160.40-2 91* 713 03 1.36 Dc 314.05 } JUNCTION 160.45-3 09* 737 38 0.71 221.66 } FRICTION 160.25-2 41* 457 71 1.07 Dc 174.47 } JUNCTION 160.30-2 21* 354 72 0.72 76.80 } FRICTION 160.40-1 71* 206 71 0.77 Dc 76.27 } JUNCTION 160.50-1 71* 207 09 0.77 Dc 76.27 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. *************************************************************.^.^.J^.^.J^J^J^^.^^^.^..l^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 160.00 FLOWLINE ELEVATION = 58.7 0 PIPE FLOW = 18.05 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 61.700 FEET NODE 160.00 : HGL = < 61.700>;EGL= < 61.801>;FLOWLINE= < 58.700> ************************************************************JJ.^^J^. ************** FLOW PROCESS FROM NODE UPSTREAM NODE 160.40 160.32 TO NODE 160.40 IS CODE = 1 ELEVATION = 58.80 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.05 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 20.58 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.30 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.36 DISTANCE FROM CONTROL(FT) 0.000 15.441 20.580 FLOW DEPTH (FT) 3.000 2.934 2 . 912 VELOCITY (FT/SEC) 2.553 2.567 2.575 SPECIFIC ENERGY(FT) 3.101 3.037 3.015 PRESSURE+ MOMENTUM(POUNDS) 750.94 722.56 713.03 NODE 160.40 : HGL = < 61.712>;EGL= < 61.815>;FLOWLINE= < 58.800> ****************************************************************j^..j..jj.^^^j^.^.j^^^^^.^ FLOW PROCESS FROM NODE UPSTREAM NODE 160.45 160.40 TO NODE ELEVATION = 160.45 IS CODE = 5 58.80 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 11.42 18.05 6. 62 0.00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY [INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 36.00 90.00 58.80 1.07 36.00 - 58.80 1.36 36.00 0.00 58.80 0.81 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 1. 616 2.575 0. 937 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/( (A1+A2 )* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00029 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00065 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00047 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.001 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.116)+( 0.000) = 0.116 NODE 160.45 HGL 61.891>;EGL= < 61.931>;FLOWLINE= < 58.800> *********************************************************************.ir****i FLOW PROCESS FROM NODE UPSTREAM NODE 160.25 160.45 TO NODE 160.25 IS CODE = 1 ELEVATION = 59.47 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.42 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 13.29 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 3.09 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM{POUNDS) 0.000 3.091 1.616 3.131 737.38 1.810 3.000 1.616 3.041 697.37 NORMAL DEPTH(FT) 0.56 CRITICAL DEPTH(FT) 1.07 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 1.810 3.000 1 615 3 041 697.37 3.337 2.923 1 626 2 964 663.69 4.854 2.846 1 647 2 888 630.57 6.364 2.769 1 675 2 812 598.08 7.867 2.691 1 708 2 737 566.31 9.364 2.614 1 746 2 662 535.33 10.854 2.537 1 791 2 587 505.23 12.337 2.460 1 840 2 513 476.05 13.290 2.410 1 876 2 465 457.71 NODE 160.25 : HGL = < 61.880>;EGL= < 61.935>;FLOWLINE= < 59.470> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 160.30 160.25 TO NODE ELEVATION = 160.30 IS CODE = 5 59.80 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 5.96 36.00 90.00 59.80 DOWNSTREAM 11.42 36.00 - 59.47 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 5.4 6===Q5 EQUALS BASIN INPUT=== FLOWLINE CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 0.77 1.069 1.07 1.876 0.00 0.000 0.00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/ ( (A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00020 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.001 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.079)+( 0.011) = 0.090 00010 00030 0.011 FEET NODE 160.30 : HGL = < 62.007>;EGL= < 62.025>;FLOWLINE= < 59.800> ****************************************************************************** FLOW PROCESS FROM NODE 160.30 TO NODE 160.40 IS CODE = 1 UPSTREAM NODE 160.40 ELEVATION = 60.30 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.96 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 98.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.72 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.21 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.77 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2 .207 1 069 2.225 354.72 11.389 2 .150 1 099 2.169 335.29 22.772 2 .092 1 132 2.112 316.45 34.147 2 .034 1 168 2.056 298.21 45.514 1 . 977 1 206 1. 999 280.59 56.873 1 .919 1 248 1. 943 263.59 68.220 1 .862 1 293 1.887 247.24 79.557 1 .804 1 342 1.832 231.53 90.879 1 .746 1 396 1.776 216.48 98.500 1 .707 1 434 1.739 206.71 NODE 160.40 : HGL 62.007>;EGL= < 62.039>;FLOWLINE= < 60.300> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 160.50 160.40 TO NODE ELEVATION = 160.50 IS CODE = 5 60.30 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 5.96 5.96 0.00 0.00 0.00= DIAMETER ANGLE (INCHES) (DEGREES) FLOWLINE CRITICAL VELOCITY ELEVATION 36.00 0.00 60.30 36.00 - 60.30 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== DEPTH(FT.) 0.77 0.77 0.00 0.00 (FT/SEC) 1.433 1.435 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00021 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00021 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00021 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.001 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.001)+( 0.000) = 0.001 NODE 160.50 : HGL = < 62.009>;EGL= < 62.041>;FLOWLINE= < 60.300> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 160.50 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 60.30 61.07 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * CANNON ROAD - 160+32.52 FREE * * NOVEMBER 21, 2001 J.N. 98-1020 * * BY:CSO FILE:16000Q.RES * ************************************************************************** FILE NAME: 16000Q.DAT TIME/DATE OF STUDY: 08:38 11/21/2001 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 160.00- 3.00* 750.94 1.30 314.94 } FRICTION 160.40- 2.91* 713.03 1.36 Dc 314.05 } JUNCTION 160.45- 2.67* 532.20 0.78 87.40 } FRICTION 161.02- 1.99* 289.16 0.81 Dc 87.14 } JUNCTION 161.03- 2.00* 289.52 0.81 Dc 87.14 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 160.00 FLOWLINE ELEVATION = 58.70 PIPE FLOW = 18.05 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 61.700 FEET NODE 160.00 : HGL = < 61.700>;EGL= < 61.801>;FLOWLINE= < 58.700> ****************************************************************************** FLOW PROCESS FROM NODE 160.32 TO NODE 160.40 IS CODE = 1 UPSTREAM NODE 160.40 ELEVATION = 58.80 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.05 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 20.58 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.30 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.00 1.36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.000 2.553 3.101 750.94 15.441 2.934 2.567 3.037 722.56 20.580 2.912 2.575 3.015 713.03 NODE 160.40 : HGL = < 61.712>;EGL= < 61.815>;FLOWLINE = < 58.800> ****************************************************************************** FLOW PROCESS FROM NODE 160.40 TO NODE 160.45 IS CODE = 5 UPSTREAM NODE 160.45 ELEVATION = 59.13 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 6.62 36.00 0.00 59.13 0. 81 0.996 DOWNSTREAM 18.05 36.00 58.80 1. 36 2.575 LATERAL #1 11.40 18.00 45.00 59.13 1. 29 6.451 LATERAL #2 0.00 0.00 0.00 0.00 0. 00 0.000 Q5 0.03===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1* COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00009 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00065 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00037 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.001 FEET ENTRANCE LOSSES = 0.021 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 160.45 : HGL = < 61.800>;EGL= < 61.815>;FLOWLINE= < 59.130> ****************************************************************************** FLOW PROCESS FROM NODE 160.45 TO NODE 161.02 IS CODE = 1 UPSTREAM NODE 161.02 ELEVATION = 59.81 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.62 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 147.42 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.77 CRITICAL DEPTH(FT) = 0.81 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) ( FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 .670 0 996 2. 685 532.20 16 .301 2 .595 1 018 2. 611 501.95 32 .589 2 .521 1 044 2. 538 472.46 48 .866 2 .446 1 072 2. 464 443.76 65 . 133 2 .372 1 104 2. 391 415.91 81 . 390 2 .297 1 139 2. 318 388.95 97 . 637 2 .223 1 178 2. 245 362.91 113 .874 2 .149 1 222 2. 172 337.84 130 .099 2 .074 1 269 2. 099 313.76 146 .313 2 .000 1 322 2. 027 290.70 147 . 420 1 .995 1 326 2. 022 289.16 NODE 161.02 : HGL = < 61.805>;EGL= < 61.832>;FLOWLINE= < 59.810> ****************************************************************************** FLOW PROCESS FROM NODE 161.02 TO NODE 161.03 IS CODE = 5 UPSTREAM NODE 161.03 ELEVATION = 59.81 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 6.62 36.00 0.00 59.81 0.81 1.326 DOWNSTREAM 6.62 36.00 - 59.81 0.81 1.327 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*VI*COS(DELTAl)-Q3*V3*C0S(DELTAS) - Q4*V4*COS(DELTA4))/((A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00016 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.001 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.001)+( 0.000) = 0.001 00016 00016 0.000 FEET NODE 161.03 HGL 61.806>;EGL= < 61.833>;FLOWLINE= < 59.810> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 161.03 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 59.81 60.62 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS *****************************************************************.j.jj..j^j^.^..^^^j^^.^..^j^. * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 * Inside Diameter ( 18.00 in.) AA/\/\/\AAAAAA/SAAAAAAAAA Water ( 6.75 in.) { 0.563 ft.) I I V Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 18 inch Pipe Flowing Full 4 . 620 CFS 7 . 631 fps 18. 000 inches 6. 750 inches 0. 563 feet 0. 828 feet 0. 375 2. 160 % 0. 605 sq. ft 1. 977 feet 0. 275 0. 013 0. 193 % ****************************************************************************** * O'Day Consultants, Inc. * 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 18.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water I I ( 7.77 in.) ( 0.648 ft.) I I V Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'-(2/3) Mannings 'n' Min. Fric. Slope, 18 inch Pipe Flowing Full 5. 550 CFS 7 . 590 fps 18. 000 inches 7. 773 inches 0 648 feet 0 913 feet 0 432 1 860 % 0 731 sq. ft 2 151 feet 0 356 0 .013 0 .279 O ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct. , Suite 100 * * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 * Inside Diameter ( 18.00 in.) * * * * * * AAAAAAAAAAAAAAAAAAAAA A * Water * | I * * I I ( 3.33 in.) ( 0.277 ft.) * * V Circular Channel Section Flowrate 0.800 CFS Velocity 3.558 fps Pipe Diameter 18.000 inches Depth of Flow 3.329 inches Depth of Flow 0.277 feet Critical Depth 0.334 feet Depth/Diameter (D/d) 0.185 Slope of Pipe 1.040 % X-Sectional Area 0.225 sq. ft. Wetted Perimeter 1.334 feet AR-^(2/3) 0.069 Mannings 'n' 0.013 Min. Fric. Slope, 18 inch Pipe Flowing Full 0.006 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 * *^^ Inside Diameter ( 42.00 in.) * * * * AAAAAAAAAAAAAAAAAAAAA Water * j I I * (18.16 in.) { 1.513 ft.) I I V Circular Channel Section Flowrate 27.600 CFS Velocity 6.926 fps Pipe Diameter 42.000 inches Depth of Flow 18.159 inches Depth of Flow 1.513 feet Critical Depth 1.617 feet Depth/Diameter (D/d) 0.432 Slope of Pipe 0.500 % X-Sectional Area 3.984 sq. ft, Wetted Perimeter 5.023 feet AR'^(2/3) 3.414 Mannings 'n' 0.013 Min. Fric. Slope, 42 inch Pipe Flowing Full 0.075 % ****************************************************************************** * O'Day Consultants, Inc. * 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 24.00 in.) A/\AAAAAAA/\AAAAAAAA/\A/\ Water * * ( 10.69 in.) ( 0.891 ft.) I Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 9. 200 CFS 6. 805 fps 24 000 inches 10 687 inches 0 891 feet 1 086 feet 0 445 0 990 % 1 352 sq. ft 2 922 feet 0 809 0 013 0.165 % StatuDeAiia 'X>' ****************************************************************************** * O'Day Consultants, Inc. * 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 42.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water ( 0.94 in.) ( 0.078 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) . . . . Slope of Pipe X-Sectional Area Wetted Perimeter AR'-(2/3) Mannings 'n' Min. Fric. Slope, 42 inch Pipe Flowing Full 26. 800 GPM 1. 113 fps 42. 000 inches 0. 935 inches 0 078 feet 0 071 feet 0 022 0 500 % 0 054 sq. ft 1 048 feet 0 007 0 .013 0 .000 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 * Inside Diameter ( 42.00 in.) * * * * AAAAAAAAAAAAAAAAAAAAA Water * * (14.16 in.) ( 1.180 ft.) * * I * * I Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) . . . . Slope of Pipe X-Sectional Area Wetted Perimeter AR'-(2/3) Mannings 'n' Min. Fric. Slope, 42 inch Pipe Flowing Full 17. 600 CFS 6 172 fps 42 000 inches 14 158 inches 1 180 feet 1 284 feet 0 337 0 510 % 2 851 sq. ft 4 336 feet 2 156 0 013 0 .031 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 * * Inside Diameter ( 24.00 in.) * * * * * * AAAAAAAAAAAAAAAAAAAAA Water ( 7.12 in.) ( 0.593 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 4 . 400 CFS 5. 637 fps 24. 000 inches 7. 117 inches 0. 593 feet 0. 738 feet 0. 297 1. 030 % 0. 780 sq. ft 2. 304 feet 0 379 0 013 0 038 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * *J^ (Tel) 760-931-7700 (Fax) 760-931-8680 * *^m Inside Diameter ( 24.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water * ( 7.51 in.) ( 0.625 ft.) I * V Circular Channel Section Flowrate 4.800 CFS Velocity 5.717 fps Pipe Diameter 24.000 inches Depth of Flow 7.506 inches Depth of Flow 0.625 feet Critical Depth 0.770 feet Depth/Diameter (D/d) 0.313 Slope of Pipe 1.000 % X-Sectional Area 0.840 sq. ft. Wetted Perimeter 2.374 feet AR^(2/3) 0.420 Mannings 'n' 0.013 Min. Fric. Slope, 24 inch Pipe Flowing Full 0.045 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 * * Inside Diameter ( 36.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water * ( 16.04 in.) ( 1.336 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 36 inch Pipe Flowing Full 20. 420 CFS 6. 708 fps 36. 000 inches 16. 036 inches 1. 336 feet 1. 450 feet 0. 445 0. 560 % 3. 044 sq. ft 4 . 384 feet 2. 387 0. 013 0 094 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * *J^ (Tel) 760-931-7700 (Fax) 760-931-8680 *^ * * Inside Diameter ( 48.00 in.) * * * * AAAAAAAAAAAAAAAAAAAAA Water * 1 ( 28.37 in.) ( 2.364 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) Slope of Pipe X-Sectional Area Wetted Perimeter AR'"(2/3) Mannings 'n' Min. Fric. Slope, 48 inch Pipe Flowing Full 0.24 6 % 1 .200 CFS 9 .208 fps 8 .000 inches 8 .371 inches 2 .364 feet 2 .554 feet 0 .591 0 .570 % 7 .732 sq. ft 7 .016 feet 8 .250 0 .013 ****************************************************************************** * O'Day Consultants, Inc. * * * 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 24.00 in.) * * AAAAAAAAAAAAAAAAAAAAA * Water * 1 * ( 10.91 in.) ( 0.909 ft.) Circular Channel Section 14. 200 CFS 10. 218 fps 24 . 000 inches 10 911 inches 0 909 feet 1 354 feet 0 455 2 190 % 1 390 sq. ft 2 960 feet 0 .839 0 .013 Min. Fric. Slope, 24 inch Pipe Flowing Full 0 .394 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * *0^ (Tel) 760-931-7700 (Fax) 760-931-8680 * Inside Diameter ( 24.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water * ( 8.81 in.) ( 0.734 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR^(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 9. 200 CFS 8. 800 fps 24. 000 inches 8. 812 inches 0. 734 feet 1. 079 feet 0. 367 2. 000 % 1. 046 sq. ft 2. 604 feet 0. 569 0. 013 0 165 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * *^^ (Tel) 760-931-7700 (Fax) 760-931-8680 * * Inside Diameter ( 24.00 in.) * * * * * AAAAAAAAAAAAAAAAAAAAA t Water * I ( 5.59 in. ( 0.466 ft. * * V Circular Channel Section Flowrate 4.100 CFS Velocity 7.37 9 fps Pipe Diameter 24.000 inches Depth of Flow 5.592 inches Depth of Flow 0.4 66 feet Critical Depth 0.711 feet Depth/Diameter (D/d) 0.233 Slope of Pipe 2.320 % X-Sectional Area 0.556 sq. ft. Wetted Perimeter 2.015 feet AR^(2/3) 0.236 Mannings 'n' 0.013 Min. Fric. Slope, 24 inch Pipe Flowing Full 0.033 •8 O'Day Consultants 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (Tel.) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 24.00 in.) AAAAAAAAAAAAAAAAAAAAA Water I * ( 4.80 in.) ( 0.400 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) ... . Slope of Pipe X-Sectional Area Wetted Perimeter AR^(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 2. 800 CFS 6. 263 fps 24 000 inches 4 800 inches 0 400 feet 0 585 feet 0 200 2 000 % 0 447 sq. ft 1 .855 feet 0 .173 0 .013 0 .015 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * *^^ (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 36.00 in.) * * * * * * * AAAAAAAAAAAAAAAAAAAAA Water * ( 20.11 in.) ( 1.676 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) Slope of Pipe X-Sectional Area Wetted Perimeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 36 inch Pipe Flowing Full 0.325 % 38. 000 CFS 9. 359 fps 36. 000 inches 20. 111 inches 1. 676 feet 2. 005 feet 0. 559 0. 900 % 4. 061 sq. ft 5. 065 feet 3. 505 0. 013 ****************************************************************************** * O'Day Consultants, Inc. * 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 24.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water Circular Channel Section 2.68 in.) 0.223 ft.) Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 0. 600 CFS 3. 124 fps 24. 000 inches 2. 678 inches 0. 223 feet 0. 265 feet 0. 112 1. 020 % 0. 192 sq. ft 1. 362 feet 0. 052 0. 013 0.001 % ****************************************************************************** * O'Day Consultants, Inc. * * * 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 36.00 in.) AAAAAAAAAAAAAAAAAAAAA Water ( 15.56 in.) ( 1.297 ft.) I I V Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR^(2/3) Mannings 'n' Min. Fric. Slope, 36 inch Pipe Flowing Full 18 100 CFS 6 186 fps 36 000 inches 15 560 inches 1 297 feet 1 365 feet 0 432 0 490 % 2 926 sq. ft 4 304 feet 2 262 0 013 0.074 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * *^^ (Tel) 760-931-7700 (Fax) 760-931-8680 * *^^ Inside Diameter ( 36.00 in.) * * * * AAAAAAAAAAAAAAAAAAAAA Water ( 9.29 in.) ( 0.774 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) Slope of Pipe X-Sectional Area Wetted Perimeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 36 inch Pipe Flowing Full 0.010 % 6 600 CFS 4 567 fps 36 000 inches 9 292 inches 0 774 feet 0 803 feet 0 258 0 460 % 1 445 sq. ft 3 197 feet 0 851 0 013 ****************************************************************************** * O'Day Consultants, Inc. * * * 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 36.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water Circular Channel Section I I 7.94 in.) 0.662 ft.) I I V Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) . . . . Slope of Pipe X-Sectional Area Wetted Perimeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 36 inch Pipe Flowing Full 11 400 CFS 9 841 fps 36 000 inches 7 945 inches 0 662 feet 1 075 feet 0 221 2 560 % 1 158 sq. ft 2 934 feet 0 623 0 013 0.029 % ****************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Ct., Suite 100 * * Carlsbad, CA 92008 * *^^ (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 36.00 in.) * * * * * * * AAAAAAAAAAAAAAAAAAAAA Water * | I * I ( 8.63 in.) ( 0.719 ft.) I I V Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) Slope of Pipe X-Sectional Area Wetted Perimeter AR^(2/3) Mannings 'n' Min. Fric. Slope, 36 inch Pipe Flowing Full 0.008 % 6 .000 CFS 4 . 609 fps 36 .000 inches 8 .631 inches 0 .719 feet 0 .768 feet 0 .240 0 .510 % 1 .302 sq. ft 3 .070 feet 0 .735 0 .013 Private Storm Drain Village K San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 12/12/01 VILLAGE K HYDROLOGY STUDY SYSTEM 100 AND 200 DECEMBER 12, 2001 J.N. 98-1020 BY:CSO FILE:VLK100 ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 427.70(Ft.) Lowest elevation = 425.90(Ft.) Elevation difference = 1.80(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.14 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.5500)*(100.00'^.5)/( 1.80^(1/3)]= 8.14 Rainfall intensity (I) = 5.003 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.303(CFS) Total initial stream area = 0.110(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 425.940(Ft.) End of street segment elevation = 394.700(Ft.) Length of street segment = 416.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.784(CFS) Depth of flow = 0.195(Ft.), Average velocity = 4.165(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.929(Ft.) Flow velocity = 4.16(Ft/s) Travel time = 1.66 min. TC = 9.80 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 4.437(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.854(CFS) for 0.350(Ac.) Total runoff = 1.157(CFS) Total area = 0.46(Ac.) Street flow at end of street = 1.157(CFS) Half street flow at end of street = 1.157(CFS) Depth of flow = 0.219(Ft.), Average velocity = 4.276(Ft/s) Flow width (from curb towards crown)= 4.099(Ft.) + + +++ +++ + + + + + + + + + + + + + + + + + + + + + ++++ + + + + + + + + +++ + + + + + +++ + +++ + + + -|-(-+-)-H-|--h + -H-(. Process from Point/Station 105.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 425.950(Ft.) End of street segment elevation = 393.500(Ft.) Length of street segment = 44 6.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.522 (CFS) Depth of flow = 0.235 (Ft.), Average velocity = 4.399 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.933(Ft.) Flow velocity = 4.40(Ft/s) Travel time = 1.69 min. TC = 11.4 9 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 4.005(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.639(CFS) for 0.290(Ac.) Total runoff = 1.796 (CFS) Total area = 0.75 (Ac.) Street flow at end of street = 1.796(CFS) Half street flow at end of street = 1.796(CFS) Depth of flow = 0.'245 (Ft.), Average velocity = 4.531(Ft/s) Flow width (from curb towards crown)= 5.420(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-^++-^-n-(-(-l-^-(-l- Process from Point/Station 106.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 11.49 min. Rainfall intensity = 4.005(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 2.026(CFS) for 0.920(Ac.) Total runoff = 3.822(CFS) Total area = 1.67(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-t--f-f-i--i-)-i-|.+-(. Process from Point/Station 106.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 11.49 min. Rainfall intensity = 4.005(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.661(CFS) for 0.300(Ac.) Total runoff = 4.483(CFS) Total area = 1.97(Ac.) +++ + ++++++++++ +++ +++ + +++++++++ + + ++++++++++++++ ++++++++ + +++ + + ++-t- + -|-H--|-H- Process from Point/Station 106.000 to Point/Station 108.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 390.00(Ft.) Downstream point/station elevation = 379.00(Ft.) Pipe length = 205.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.483(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.483(CFS) Normal flow depth in pipe = 5.23(In.) Flow top width inside pipe = 16.35(In.) Critical Depth = 9.75(In.) Pipe flow velocity = 10.50(Ft/s) Travel time through pipe = 0.33 min. Time of concentration (TC) = 11.82 min. Process from Point/Station 108.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 37 9.00(Ft.) Downstream point/station elevation = 368.40(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.483(CFS) Given pipe size = 18. 00(In.) Calculated individual pipe flow = 4.483(CFS) Normal flow depth in pipe = 5.25(In.) Flow top width inside pipe = 16.36(In.) Critical Depth = 9.75(In.) Pipe flow velocity = 10.46(Ft/s) Travel time through pipe = 0.32 min. Time of concentration (TC) = 12.14 min. ++++++++++++++++++ ++++++++++++++++++++++++++++++ ++++-|-H-(-+++H.++-(-H+-(-H-+++ Process from Point/Station 106.000 to Point/Station 110.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 393.500(Ft.) End of street segment elevation = 376.300(Ft.) Length of street segment = 4 05.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.801(CFS) Depth of flow = 0.332(Ft.), Average velocity = 4.533(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.781(Ft.) Flow velocity = 4.53(Ft/s) Travel time = 1.49 min. TC = 13.63 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.588(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.553(CFS) for 0.280(Ac.) Total runoff = 5.035(CFS) Total area = 2.25(Ac.) Street flow at end of street = 5.035 (CFS) Half street flow at end of street = 5.035(CFS) Depth of flow = 0.336(Ft.), Average velocity = 4.583(Ft/s) Flow width (from curb towards crown)= 9.980(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 110.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 393.500(Ft.) End of street segment elevation = 376.300(Ft.) Length of street segment = 405.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.326 (CFS) Depth of flow = 0.341(Ft.), Average velocity = 4.644(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.220(Ft.) Flow velocity = 4.64(Ft/s) Travel time = 1.45 min. TC = 15.08 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.361(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.481(CFS) for 0.260(Ac.) Total runoff = 5.516(CFS) Total area = 2.51(Ac.) Street flow at end of street = 5.516(CFS) Half street flow at end of street = 5.516(CFS) Depth of flow = 0.344(Ft.), Average velocity = 4.682(Ft/s) Flow width (from curb towards crown)= 10.371(Ft.) ++++++++++++++++H Process from Point/Station 110.000 to Point/Station **** SUBAREA FLOW ADDITION **** 110.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Time of concentration = 15.08 min. Rainfall intensity = 3.361(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 2.754(CFS) for 1.4 90(Ac.) Total runoff = 8.270(CFS) Total area = 4.00(Ac.) ] +++++++++++++++++++++++-I Process from Point/Station **** SUBAREA FLOW ADDITION 110.000 to Point/Station h++ 110.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Time of concentration = 15.08 min. Rainfall intensity = 3.361(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.405(CFS) for 0.760(Ac.) Total runoff = 9.675(CFS) Total area = 4.76(Ac.) ] +++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++-(-h-l-»-+-(-H-)--H.+ Process from Point/Station 110.000 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation -- 368 . 40 (Ft.) Downstream point/station elevation = 365.40(Ft.) Pipe length = 60.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.675 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.675(CFS) Normal flow depth in pipe = 8.05(In.) Flow top width inside pipe = 17.90(In.) Critical Depth = 14.41(In.) Pipe flow velocity = 12.65(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 15.16 min. ++ ++++ + +++ + + + + + ++++++ ++++++ +++++++ +++++ + +++++++++++ + + + + + + ++-(-+ + Process from Point/Station 112.000 to Point/Station 112.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.760(Ac.) Runoff from this stream = 9.675(CFS) Time of concentration = 15.16 min. Rainfall intensity = 3.350(In/Hr) Program is now starting with Main Stream No. 2 h++++++++-i Process from Point/Station 202.000 to Point/Station **** INITIAL AREA EVALUATION **** 204.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 135.00(Ft.) Highest elevation = 422.30(Ft.) Lowest elevation = 420.80(Ft.) Elevation difference = 1.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.11 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.5500)*(135.00'^.5)/( 1.11'^ (1/3) ] = 11.11 Rainfall intensity (I) = 4.094 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.270(CFS) Total initial stream area = 0.120 (Ac.) + +++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ + + +++ ++-|--h-H-h-H- Process from Point/Station 204.000 to Point/Station 206.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 420.800(Ft.) End of street segment elevation = 402.400(Ft.) Length of street segment = 425.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.201(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel; Halfstreet flow width = 3.224(Ft.) 0.653(CFS) 3.163(Ft/s) Flow velocity = 3.16(Ft/s) Travel time = 2.24 min. TC = 13.35 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.637(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.680(CFS) for 0.340(Ac.) Total runoff = 0.950(CFS) Total area = 0.46(Ac.) Street flow at end of street = 0.950(CFS) Half street flow at end of street = 0.950(CFS) Depth of flow = 0.223(Ft.), Average velocity = 3.282(Ft/s) Flow width (from curb towards crown)= 4.325(Ft.) Process from Point/Station 205.000 to Point/Station 206.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 420.800(Ft.) End of street segment elevation = 402.400(Ft.) Length of street segment = 425.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.2 91(CFS) Depth of flow = 0.241(Ft.), Average velocity = 3.451(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.212(Ft.) Flow velocity = 3.45(Ft/s) Travel time = 2.05 min. TC = 15.40 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decirtial fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.316(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.602(CFS) for 0.330(Ac.) Total runoff = 1.552(CFS) Total area = 0.79(Ac.) Street flow at end of street = 1.552(CFS) Half street flow at end of street = 1.552(CFS) Depth of flow = 0.252(Ft.), Average velocity = 3.572(Ft/s) Flow width (from curb towards crown)= 5.762(Ft.) ++++++++++++++++++H Process from Point/Station **** SUBAREA FLOW ADDITION **** ++++++++++++++ 206.000 to Point/Station 206.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 15.40 min. Rainfall intensity = 3.316(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.550(CFS) for 0.850(Ac.) Total runoff = 3.102(CFS) Total area = 1.64(Ac.) +++++++++++++++++++-I Process from Point/Station **** SUBAREA FLOW ADDITION t-+++++++++++++++++++++++++++-l- 206.000 to Point/Station 206.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 15.40 min. Rainfall intensity = 3.316(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 2.079(CFS) for 1.140(Ac.) Total runoff = 5.182(CFS) Total area = 2.78(Ac.) l-+++++++++++++++++++++++++++++++++++++++++++++++-H-H-(-|- + Process from Point/Station 206.000 to Point/Station 208.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 402.400(Ft.) End of street segment elevation = 378.630(Ft.) Length of street segment = 240.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.260(Ft.), Average velocity = 0.0150 0.0150 .5.377(CFS) 5.550(Ft/s) streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.180(Ft.) Flow velocity = 5.55(Ft/s) Travel time = 0.72 min. TC = 16.12 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.220(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.550 Subarea runoff = 0.372(CFS) for 0.210(Ac.) Total runoff = 5.554(CFS) Total area = 2.99(Ac.) Street flow at end of street = 5.554 (CFS) Half street flow at end of street = 2.777 (CFS) Depth of flow = 0.262(Ft.), Average velocity = 5.586{Ft/s) Flow width (from curb towards crown)= 6.282(Ft.) +++H Process from Point/Station 208.000 to Point/Station 208.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 16.12 min. Rainfall intensity = 3.220(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.212(CFS) for 0.120(Ac.) Total runoff = 5.766(CFS) Total area = 3.11(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-H-H-I-I-I-I-+-H.I.+ Process from Point/Station 208.000 to Point/Station 210.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 373.20(Ft.) Downstream point/station elevation = 369.00(Ft.) Pipe length = 70.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.766 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.766(CFS) Normal flow depth in pipe = 5.7 9 (In.) Flow top width inside pipe = 16.82 (In.) Critical Depth = 11.12(In.) Pipe flow velocity = 11.74(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 16.22 min. ++++ +++ + ++++++++++++++++++++++++++++++++++++++++ +++++++ + + + ++++ + -t-)-(-(.+-H. Process from Point/Station 210.000 to Point/Station 212.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 369.00(Ft.) Downstream point/station elevation = 368.70(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.766(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.766(CFS) Normal flow depth in pipe = 9.52(In.) Flow top width inside pipe = 17.97(In.) Critical Depth = 11.12(In.) Pipe flow velocity = 6.08(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 16.30 min. + H Process from Point/Station 214.000 to Point/Station 212.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 376.700(Ft.) End of street segment elevation = 371.800(Ft.) Length of street segment = 340.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side{s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.090(CFS) Depth of flow = 0.406(Ft.), Average velocity = 3.177(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.471(Ft.) Flow velocity = 3.18(Ft/s) Travel time = 1.78 min. TC = 18.08 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 2.989(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.575(CFS) for 0.350(Ac.) Total runoff = 6.341(CFS) Total area = 3.46(Ac.) Street flow at end of street = 6.341(CFS) Half street flow at end of street = 6.341(CFS) Depth of flow = 0.410(Ft.), Average velocity = 3.208(Ft/s) Flow width (from curb towards crown)= 13.691(Ft.) Process from Point/Station 213.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 212.000 Top of street segment elevation = 37 6.700(Ft.) End of street segment elevation = 371.800(Ft.) Length of street segment = 340.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.415(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.925(Ft.) Flow velocity = 3.24(Ft/s) Travel time = 1.75 min. TC = 19.83 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 2.817(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.4 65(CFS) for 0.300(Ac.) Total runoff = 6.806(CFS) Total area = 3.76(Ac.) Street flow at end of street = 6.806(CFS) Half street flow at end of street = 6.806(CFS) Depth of flow = 0.418{Ft.), Average velocity = 3.263{Ft/s) Flow width (from curb towards crown)= 14.083(Ft.) 6.616(CFS) 3.241(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++•^-^-n--l-+-(-+-l-l-++-t-^+-^->.-(- Process from Point/Station 212.000 to Point/Station 212.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 19.83 min. Rainfall intensity = 2.817(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.565(CFS) for 1.010(Ac.) Total runoff = 8.371(CFS) Total area = 4.77(Ac.) ++++++++++++++-I Process from Point/Station **** SUBAREA FLOW ADDITION 212.000 to Point/Station 212.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 19.83 min. Rainfall intensity = 2.817(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.837(CFS) for 0.540(Ac.) Total runoff = 9.207(CFS) Total area = 5.31(Ac.) Process from Point/Station 212.000 to Point/Station •*** PIPEFLOW TRAVEL TIME (User specified size) *•** Upstream point/station elevation = 368.70(Ft.) Downstream point/station elevation = 367.00(Ft.) Pipe length = 170.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.207(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.207(CFS) Normal flow depth in pipe = 13.05(In.) Flow top width inside pipe = 16.07(In.) Critical Depth = 14.08(In.) Pipe flow velocity = 6.70(Ft/s) Travel time through pipe = 0.42 min. Time of concentration (TC) = 20.26 min. !• + + + + 216.000 Process from Point/Station 216.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 112.000 Upstream point/station elevation = 367.00(Ft.) Downstream point/station elevation = 365.40(Ft.) Pipe length = 160.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.207(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.207(CFS) Normal flow depth in pipe = 13.05(In.) Flow top width inside pipe = 16.07(In.) Critical Depth = 14.08(In.) Pipe flow velocity = 6.70(Ft/s) Travel time through pipe = 0.40 min. Time of concentration (TC) = 20.65 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++-^-l-+-^-l-t--^--^-^++.|.+ Process from Point/Station 112.000 to Point/Station 112.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 5.310(Ac.) Runoff from this stream = 9.207(CFS) Time of concentration = 20.65 min. Rainfall intensity = 2.744(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 9.675 15.16 3.350 9.207 20.65 2.744 Qmax(1) = Qmax(2) = 1.000 * 1.000 * 9.675) + 1.000 * 0.734 * 9.207) + = 16.433 0.819 * 1.000 * 9.675) + 1.000 * 1.000 * 9.207) + = 17.133 Total of 2 main streams to confluence: Flow rates before confluence point: 9.675 9.207 Maximum flow rates at confluence using above data: 16.433 17.133 Area of streams before confluence: 4.760 5.310 Results of confluence: Total flow rate = 17.133(CFS) Time of concentration = 20.654 min. Effective stream area after confluence = 10.070(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 112.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 365.40(Ft.) ~ Downstream point/station elevation = 364.50(Ft.) Pipe length = 100.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.133 (CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 17.133(CFS) Normal flow depth in pipe = 16.22(In.) Flow top width inside pipe = 22.47(In.) Critical Depth = 17.91(In.) Pipe flow velocity = 7.59(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 20.87 min. ++ +++++++++++++++++++++++ +++++++++++++++++++++++ + ++++++++++++++++++-(-+-H Process from Point/Station 114.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 364.50(Ft.) Downstream point/station elevation = 342.60(Ft.) Pipe length = 112.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.133(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 17.133(CFS) Normal flow depth in pipe = 6.72(In.) Flow top width inside pipe = 21.55(In.) Critical Depth = 17.91(In.) Pipe flow velocity = 23.79(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 20.95 min. End of computations, total study area = 10.07 (Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 12/12/01 VILLAGE K HYDROLOGY STUDY SYSTEM 300 AND 400 DECEMBER 12, 2001 J.N. 98-1020 BY:CSO FILE:VLK300 ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++-i-++++++++++++++++++++-t-i-+-t-i-++H-t.+++++ Process from Point/Station 302.000 to Point/Station 304 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ' ~" ~ ~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 160.00(Ft.) Highest elevation = 427.40(Ft.) Lowest elevation = 424.20(Ft.) Elevation difference = 3.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 9.94 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.5500)*(160.00''.5)/( 2 . 00'^ (1/3) ] = 9.94 Rainfall intensity (I) = 4.398 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.435(CFS) Total initial stream area = 0.180(Ac.) +++++++++++++++-^-^-^^--l--^+++^.-^-^-^++++++++++++++^.+++++^.+^.^^^^^^_^_^^^_l^_J^^_^ Process from Point/Station 304.000 to Point/Station 306 000 ..... . STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** * * * * Top of street segment elevation = 424.200(Ft.) End of street segment elevation = 421.650(Ft.) Length of street segment = 270.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown =0.0150 Estimated mean flow rate at midpoint of street = 0.689(CFS) Depth of flow = 0.249(Ft.), Average velocity = 1.652(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.610(Ft.) Flow velocity = 1.65(Ft/s) Travel time = 2.72 min. TC = 12.66 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.762(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.435(CFS) for 0.210(Ac.) Total runoff = 0.870(CFS) Total area = 0.39(Ac.) Street flow at end of street = 0.870(CFS) Half street flow at end of street = 0.870(CFS) Depth of flow = 0.263(Ft.), Average velocity = 1.730(Ft/s) Flow width (from curb towards crown)= 6.327(Ft.) +++++ ++++ +++++ + +++++++ + ++++++++++ + +++++++++++++++++++++-f-(-(-H--I-.(-(.+++ Process from Point/Station 305.000 to Point/Station 306.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 424.200(Ft.) End of street segment elevation = 421.650(Ft.) Length of street segment = 270.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.104 (CFS) Depth of flow = 0.279(Ft.), Average velocity = 1.819 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.103(Ft.) Flow velocity = 1.82(Ft/s) Travel time = 2.47 min. TC = 15.14 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.353(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.387(CFS) for 0.210(Ac.) Total runoff = 1.257(CFS) Total area = 0.60(Ac.) Street flow at end of street = 1.257(CFS) Half street flow at end of street = 1.257(CFS) Depth of flow = 0.288(Ft.), Average velocity = 1.871(Ft/s) Flow width (from curb towards crown)= 7.546(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-!-(--h-H-t-H-f-+-H-l..H Process from Point/Station 306.000 to Point/Station 306.000 **** SUBAREA FLOW ADDITION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 15.14 min. Rainfall intensity = 3.353(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.180(CFS) for 0.640(Ac.) Total runoff = 2.437(CFS) Total area = 1.24(Ac.) +++ + +++++ +++ + + ++++++++++++++++++++++++++++++++++++++++ +++++++-f-H-H-H-»-H-(- Process from Point/Station 306.000 to Point/Station 306.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 15.14 min. Rainfall intensity = 3.353(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.586(CFS) for 0.860(Ac.) Total runoff = 4.023(CFS) Total area = 2.10(Ac.) +++ + +++++ + +++++++++++++++++ + + + + +++++ +++++++++++++ ++++++++ + ++++-H-H-H-H--H-)-+ Process from Point/Station 306.000 to Point/Station 308.000 PIPEFLOW TRAVEL TIME (User specified size) ***' Upstream point/station elevation = 416.80(Ft.) Downstream point/station elevation = 416.40(Ft.) Pipe length = 40.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.02 3 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.023(CFS) Normal flow depth in pipe = 7.73(In.) Flow top width inside pipe = 17.82(In.) Critical Depth = 9.21(In.) Pipe flow velocity = 5.55(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 15.26 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 308.000 to Point/Station 310.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 416.40(Ft.) Downstream point/station elevation = 411.40(Ft.) Pipe length = 222.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.023 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.023(CFS) Normal flow depth in pipe = 6.20(In.) Flow top width inside pipe = 17.11(In.) Critical Depth = 9.21(In.) Pipe flow velocity = 7.46(Ft/s) Travel time through pipe = 0.50 min. Time of concentration (TC) = 15.75 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-h Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.100(Ac.) Runoff from this stream = 4. 023(CFS) Time of concentration = 15.75 min. Rainfall intensity = 3.268(In/Hr) Program is now starting with Main Stream No. 2 -H-H-l- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -l--H-t- + -H Process from Point/Station 402.000 to Point/Station 404.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 140.00(Ft.) Highest elevation = 425.00(Ft.) Lowest elevation = 423.60(Ft.) Elevation difference = 1.40(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.71 min. TC = [1.8*(l.l-C)*distance^.5)/(% slope^{l/3)] TC = [1.8*(l.l-0.5500)*(140.00^.5)/( 1. 00-^ (1/3) ] = 11.71 Rainfall intensity (I) = 3.956 for a lOO.O year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.326(CFS) Total initial stream area = 0.150(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-H-H-H Process from Point/Station 404.000 to Point/Station 406.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 423.600(Ft.) End of street segment elevation = 418.800(Ft.) Length of street segment = 80.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.4 90(CFS) Depth of flow = 0.124(Ft.), Average velocity = 3.532(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 3.53(Ft/s) Travel time = 0.38 min. TC = 12.09 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.876(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.320(CFS) for 0.150(Ac.) Total runoff = 0.64 6(CFS) Total area = 0.30(Ac.) Street flow at end of street = 0.64 6(CFS) Half street flow at end of street = 0.323(CFS) Depth of flow = 0.138(Ft.), Average velocity = 3.786(Ft/s) Flow width (from curb towards crown)= 1.500(Ft.) ++-H+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 406.000 SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Time of concentration = 12, ] ,09 min. Rainfall intensity = 3.87 6(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.426(CFS) for 0.200(Ac.) Total runoff = 1.072(CFS) Total area = 0.50(Ac.) ++++++++++++++++++++++++++++++++-H-H-(-H-H-H-|-)-(-H-H-!.+++.(. Process from Point/Station 406.000 to Point/Station 310.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 417.70(Ft.) Downstream point/station elevation = 411.40(Ft.) Pipe length = 60.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 1.072(CFS) Given pipe size = 18.00 (In.) Calculated individual pipe flow = 1.072(CFS) Normal flow depth in pipe = 2.19(In.) Flow top width inside pipe = 11.77(In.) Critical Depth = 4.63(In.) Pipe flow velocity = 8.74(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 12.21 min. +++ + ++++++++++++++++++++++++ +++++++++++++++++++++++++++-|-H-H-H-)-|-f-t-(-t-|-|. + + Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.500(Ac.) Runoff from this stream = 1.072(CFS) Time of concentration = 12.21 min. Rainfall intensity = 3.852(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) = 4.023 1.072 1.000 * 0.848 * 1.000 * 1.000 * 15.75 12.21 1.000 * 1.000 * 0.775 * 1.000 * 3.268 3.852 4.023) + 1.072) + = 4.023) + 1.072) + = 4.933 4.190 Total of 2 main streams to confluence: Flow rates before confluence point: 4.023 1.072 Maximum flow rates at confluence using above data; 4.933 4.190 Area of streams before confluence: 2.100 0.500 Results of confluence: Total flow rate = 4.933(CFS) Time of concentration = 15.753 min. Effective stream area after confluence = 2.600(Ac.) I-+++++H Process from Point/Station 310.000 to Point/Station 312.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 411.40(Ft.) Downstream point/station elevation = 405.60(Ft.) Pipe length = 75.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.933(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.933(CFS) Normal flow depth in pipe = 5.00(In.) Flow top width inside pipe = 16.13(In.) Critical Depth = 10.25(In.) Pipe flow velocity = 12.30(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 15.85 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 308.000 to Point/Station 312.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 425.940(Ft.) End of street segment elevation = 413.100(Ft.) Length of street segment = 458.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.341(CFS) Depth of flow = 0.360(Ft.), Average velocity = 3.965(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.156(Ft.) Flow velocity = 3.96(Ft/s) Travel time = 1.93 min. TC = 17.78 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.022(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.715(CFS) for 0.430(Ac.) Total runoff = 5.648(CFS) Total area = 3.03(Ac.) Street flow at end of street = 5.648(CFS) Half street flow at end of street = 5.648(CFS) Depth of flow = 0.365(Ft.), Average velocity = 4.018(Ft/s) Flow width (from curb towards crown)= 11.416(Ft.) Process from Point/Station 308.000 to Point/Station 312.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 425.940(Ft.) End of street segment elevation = 413.100(Ft.) Length of street segment = 458.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.937(CFS) Depth of flow = 0.370(Ft.), Average velocity = 4.066(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.652(Ft.) Flow velocity = 4.07(Ft/s) Travel time = 1.88 min. TC = 19.66 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 2.833(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.483(CFS) for 0.310(Ac.) Total runoff = 6.131(CFS) Total area = 3.34(Ac.) Street flow at end of street = 6.131(CFS) Half street flow at end of street = 6.131(CFS) Depth of flow = 0.373(Ft.), Average velocity = 4.097(Ft/s) Flow width (from curb towards crown)= 11.806(Ft.) ++++++++++++++++H Process from Point/Station 312.000 to Point/Station **** SUBAREA FLOW ADDITION **** 312.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 19.66 min. Rainfall intensity = 2.833(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.309(CFS) for 0.840(Ac.) Total runoff = 7.440(CFS) Total area = 4.18(Ac.) +++++++++++H Process from Point/Station 312.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 314.000 Upstream point/stat ion elevation = 405.60(Ft.) Downstream point/station elevation = 395.90(Ft.) Pipe length = 125.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.440 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.440(CFS) Normal flow depth in pipe = 6.19(In.) Flow top width inside pipe = 17.10(In.) Critical Depth = 12.67(In.) Pipe flow velocity = 13.83(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 19.81 min. + ++++++++ + +++++++++++++++++++++ +++++++-l--(-H-H-H-f.-H Process from Point/Station 314.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 395.90(Ft.) Downstream point/station elevation = 385.90(Ft.) Pipe length = 198.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.440 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.440(CFS) Normal flow depth in pipe = 6.94 (In.) Flow top width inside pipe = 17.52(In.) Critical Depth = 12.67(In.) Pipe flow velocity = 11.84(Ft/s) Travel time through pipe = 0.28 min. Time of concentration (TC) = 20.09 min. h++++++++ 316.000 + ++++++++++++++++++++ +++++++++++++++ ++++ +++++++++++++++-H-+-(-+-(-++-|-)-(. + .(.++ Process from Point/Station 316.000 to Point/Station 318.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 385.90(Ft.) Downstream point/station elevation = 385.55(Ft.) Pipe length = 55.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.440(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.440(CFS) Normal flow depth in pipe = 13.20(In.) Flow top width inside pipe = 15.92(In.) Critical Depth = 12.67(In.) Pipe flow velocity = 5.36(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 20.26 min. I-+ Process from Point/Station 318.000 to Point/Station 320.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 385.55(Ft.) Downstream point/station elevation = 384.90(Ft.) Pipe length = 42.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Recjuired pipe flow = 7.440 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.440(CFS) Normal flow depth in pipe = 9.73(In.) Flow top width inside pipe = 17.94 (In.) Critical Depth = 12.67(In.) Pipe flow velocity = 7. 63(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 20.35 min. -h+++++++++++++++++++++++++++++++++++++++++++++++++++++++- Process from Point/Station 312.000 to Point/Station 320.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 413.100(Ft.) End of street segment elevation = 392.000(Ft.) Length of street segment = 390.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.876 (CFS) Depth of flow = 0.307(Ft.), Average velocity = 4.754(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.519(Ft.) Flow velocity = 4.75(Ft/s) Travel time = 1.37 min. TC = 21.72 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 2.656(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.716(CFS) for 0.490(Ac.) Total runoff = 8.155(CFS) Total area = 4.67(Ac.) Street flow at end of street = 8.155(CFS) Half street flow at end of street = 4.078(CFS) Depth of flow = 0.310(Ft.), Average velocity = 4.792(Ft/s) Flow width (from curb towards crown)= 8.651(Ft.) Process from Point/Station **** SUBAREA FLOW ADDITION **** 1-++++++++++++++++-H-H-H 320.000 to Point/Station 320.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Time of concentration = 21.72 min. Rainfall intensity = 2.656(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.154(CFS) for 0.790(Ac.) Total runoff = 9.310(CFS) Total area = 5.46(Ac ) ] ++++- Process from Point/Station **** SUBAREA FLOW ADDITION 320.000 to Point/Station h + +++ + + ++-|--H 320.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 21.72 min. Rainfall intensity = 2.656(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.365(CFS) for 0.250(Ac.) Total runoff = 9.675(CFS) Total area = 5.71(Ac.) +++++++H Process from Point/Station **** SUBAREA FLOW ADDITION h+++++H 320.000 to Point/Station -++ 320.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 21.72 min. Rainfall intensity = 2.656(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.219(CFS) for 0.150(Ac.) Total runoff = 9.894(CFS) Total area = 5.86(Ac.) ++++++H Process from Point/Station 320.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 322.000 Upstream point/station elevation = 384.90(Ft.) Downstream point/station elevation = 381.10(Ft.) Pipe length = 30.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.894 (CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.894(CFS) Normal flow depth in pipe = 6.32(In.) Flow top width inside pipe = 17.18(In.) Critical Depth = 14.55(In.) Pipe flow velocity = 17.87(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 21.75 rain. End of computations, total study area = 5.86 (Ac. Villages X and W 56^ 0CHii>ir H4 hi San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 02/07/01 VILLAGE X T.M. HYDROLOGY STUDY SYSTEM 100 & 200 JAN. 25, 2001 J.N. 98-1020 BY: CSO ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 / 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -H--I--!•-(- Process from Point/Station 102.000 to Point/Station 104.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 110.00(Ft.) Highest elevation = 265.80(Ft.) Lowest elevation = 262.10(Ft.) Elevation difference = 3.70(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.93 min. TC = [1. 8* (1.1-C) *distance^. 5) / (% slope'" (1/3) ] TC = [1.8*(l.l-0.5500)*(110.00'".5)/( 3.36"(l/3)]= 6.93 Rainfall intensity (I) = 5.550 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.153(CFS) Total initial stream area = 0.050(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -1- + + + + + + + + + + + + + + + + + + + -I--(- + + -)--h-H-t- Process from Point/Station 104.000 to Point/Station 104.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 6.93 min. Rainfall intensity = 5.550(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.153(CFS) for 0.050(Ac.) Total runoff = 0.305(CFS) Total area = 0.10(Ac.) +++ ++++ ++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ + + + -|-|-(-t-H- Process from Point/Station 104.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 261.10(Ft.) Downstream point/station elevation = 260.80(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.305(CFS) Nearest computed pipe diameter = 6.00(In.) Calculated individual pipe flow = 0.305(CFS) Normal flow depth in pipe = 2.86(In.) Flow top width inside pipe = 5.99(In.) Critical Depth = 3.35(In.) Pipe flow velocity = 3.31(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 7.08 min. + + + + + + + + + +++++ + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + + + + + ++-f-(-+-(-H H-H-H- + -H-I--)--(--1-1- Process from Point/Station 103.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 7.08 min. Rainfall intensity = 5.473(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.181(CFS) for 0.060(Ac.) Total runoff = 0.486(CFS) Total area = 0.16(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -I--H-I- + -H-H + -I-I--I--I- + + -I--I- Process from Point/Station 106.000 to Point/Station 108.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 260.80(Ft.) Downstream point/station elevation = 260.40(Ft.) Pipe length = 43.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.486(CFS) Nearest computed pipe diameter = 6.00(In.) Calculated individual pipe flow = 0.486(CFS) Normal flow depth in pipe = 3.91(In.) Flow top width inside pipe = 5.71(In.) Critical Depth = 4.26(In.) Pipe flow velocity = 3.58(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 7.28 min. + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + +++ + + + + + +++ + + + + + + + + + + + + +++ + + + + + + -h-H-(--H + -(- + Process from Point/Station 108.000 to Point/Station 108.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.160(Ac.) Runoff from this stream = 0.486(CFS) Time of concentration = 7.28 rain. Rainfall intensity = 5.376(In/Hr) Program is now starting with Main Stream No. 2 ++ +++++ +++++++ ++++++++++ +++ + + + ++++++++++ ++++++ + + + +++++++++++-I--I--l-H-I--1-1--)-(--(- Process from Point/Station 202.000 to Point/Station 204.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 135.00(Ft.) Highest elevation = 272.70(Ft.) Lowest elevation = 271.35(Ft.) Elevation difference = 1.35(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.50 min. TC = [1.8*(l.l-C)*distance'".5)/(% slope'" (1/3) ] TC = [1. 8* (1.1-0.5500) * (135.00" . 5) / ( 1. 00-" (1/3) ] = 11.50 Rainfall intensity (I) = 4.002 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.352(CFS) Total initial stream area = 0.160(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + -t- + -l- + + -H-t--t--|- + -l--l.-l--l--|. Process from Point/Station 204.000 to Point/Station 206.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 271.350(Ft.) End of street segment elevation = 264.950(Ft.) Length of street segment = 350.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.925(CFS) Depth of flow = 0.202(Ft.), Average velocity = 2.195(Ft:/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.288(Ft.) Flow velocity = 2.19(Ft/s) Travel time = 2.66 min. TC = 14.16 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.500(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.001(CFS) for 0.520(Ac.) Total runoff = 1.353(CFS) Total area = 0.68(Ac.) Street flow at end of street = 1.353(CFS) Half street flow at end of street = 0.677(CFS) Depth of flow = 0.226(Ft.), Average velocity = 2.253(Ft/s) Flow width (from curb towards crown)= 4.4 48(Ft.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -(•-H-l-l-l-f-H-H-I--I--H--I--I--t-H--H-l--I- + -1. Process from Point/Station 206.000 to Point/Station 206.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 14.16 min. Rainfall intensity = 3.500(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.675(CFS) for 0.870(Ac.) Total runoff = 3.028(CFS) Total area = 1.55(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -|- + -f-l- + -H--|-l- + -|--|-|--(--H + -l- + + Process from Point/Station 206.000 to Point/Station 108.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 263.00(Ft.) Downstream point/station elevation = 260.40(Ft.) Pipe length = 80.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.028(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 3.028(CFS) Norraal flow depth in pipe = 6.43(In.) Flow top width inside pipe = 8.13(In.) Critical depth could not be calculated. Pipe flow velocity = 8.97(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 14.31 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-i--(-i--i-+ Process from Point/Station 108.000 to Point/Station 108.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.550(Ac.) Runoff from this stream = 3.028(CFS) Time of concentration = 14.31 min. Rainfall intensity = 3.477(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(l) = Qmax(2) 0.486 3.028 000 000 0.647 * 1.000 * 7.28 14.31 1.000 * 0.509 * 000 * 000 * 5.376 3.477 0.486) + 3.028) + 0.486) + 3.028) + 2.027 3.342 Total of 2 main streams to confluence: Flow rates before confluence point: 0.486 3.028 Maximum flow rates at confluence using above data: 2.027 3.342 Area of streams before confluence: 0.160 1.550 Results of confluence: Total flow rate = 3.342(CFS) Time of concentration = 14.309 min. Effective stream area after confluence = 1.710(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++-I-+-1- Process from Point/Station 108.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 260.40(Ft.) Downstream point/station elevation = 217.10(Ft.) Pipe length = 590.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = Nearest computed pipe diameter = 9. Calculated individual pipe flow = 3. Normal flow depth in pipe = 5.19(In.) Flow top width inside pipe = 8.89(In.) 3.342(CFS) 00(In.) 342(CFS) Critical depth could not be calculated. Pipe flow velocity = 12.68(Ft/s) Travel time through pipe = 0.7 8 min. Time of concentration (TC) = 15.08 min. + + + + + + + + + + + + +++ + + + + + + + + + + + + +++ + + +++ + + + + + + + + + + + + + + + + + + + + + + -l-l--|--|-|-|- + -(-H-|--H-l. Process from Point/Station 110.000 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 217.10(Ft.) Downstream point/station elevation = 215.40(Ft.) Pipe length = 75.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.342(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 3.342(CFS) Normal flow depth in pipe = 6.19(In.) Flow top width inside pipe = 11.99(In.) Critical Depth = 9.38(In.) Pipe flow velocity = 8.18(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 15.24 min. + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + +++ + + + + + +++ + + + + + + + + + -l-l--|--|--l--|--|--|-t-|-|--t-H-l--t.+ Process from Point/Station 108.000 to Point/Station 112.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 262.200(Ft.) End of street segment elevation = 217.300(Ft.) Length of street segment = 590.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.261(CFS) Depth of flow = 0.252(Ft.), Average velocity = 4.915(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.753(Ft.) Flow velocity = 4.92(Ft/s) Travel time = 2.00 min. TC = 17.24 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.083(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.594(CFS) for 0.940(Ac.) Total runoff = 4.936(CFS) Total area = 2.65(Ac.) Street flow at end of street = 4.936(CFS) Half street flow at end of street = 2.468(CFS) Depth of flow = 0.261(Ft.), Average velocity = 5.050(Ft/s) Flow width (from curb towards crown)= 6.215(Ft.) + + + + + +++ + + ++++ ++++++ +++++++++ + + ++++++++++++++++++++++ ++-l-+-l-t--l-H--(--f--|- + -l.-l-l-|- Process from Point/Station 112.000 to Point/Station 112.000 **** SUBAREA FLOW ADDITION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Time of concentration = 17.24 min. Rainfall intensity = 3.083(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational raethod,Q=KCIA, C = 0.550 Subarea runoff = 3.069(CFS) for 1.810(Ac.) Total runoff = 8.006(CFS) Total area = 4.46(Ac.) ] +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I--1--I--1--I- Process from Point/Station 112.000 to Point/Station 112.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Tirae of concentration = 17.24 min. Rainfall intensity = 3.083(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 2.645(CFS) for 1.560(Ac.) Total runoff = 10.651(CFS) Total area = 6.02(Ac.) + +++++ + + + + +++ + +++++ +++ + + + +++++++++++++ + + + ++++++++++++++++-1-1-1-1--l-l--H-H-l--|-l--(- + Process from Point/Station 112.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 215.40(Ft.) Downstream point/station elevation = 214.45(Ft.) Pipe length = 95.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = Nearest computed pipe diaraeter = 18 Calculated individual pipe flow = 10 Norraal flow depth in pipe = 12.84(In.) Flow top width inside pipe = 16.28(In.) Critical Depth = 15.03(In.) Pipe flow velocity = 7.90(Ft/s) Travel tirae through pipe = 0.20 min. Time of concentration (TC) = 17.44 min 10.651(CFS) 00 (In.) 651(CFS) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + -1- + -!--H-H-H-H-H-H-I--I- Process from Point/Station 114.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 214.45(Ft.) Downstream point/station elevation = 175.00(Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 10.651(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 10.651(CFS) Normal flow depth in pipe = 6.22(In.) Flow top width inside pipe = 8.32(In.) Critical depth could not be calculated. Pipe flow velocity = 32.71(Ft/s) Travel tirae through pipe = 0.05 min. Time of concentration (TC) = 17.48 min. End of computations, total study area = 6.02 (Ac.) San Diego County Rational Hydrology Prograra CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational raethod hydrology prograra based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 02/06/01 VILLAGE X T.M. HYDROLOGY STUDY SYSTEM 400 JAN. 25, 2001 J.N. 98-1020 BY: CSO FILE: VLX400 ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storra event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method + + + + + + + + + + + + + + + + + + + + +++ + + +++++ + + + + + + + + + + + +++ + + + + + + + -I--H-I- ++-I-I--I-I--I--I-I--I-1.-1.-1--I.+ Process from Point/Station 402.000 to Point/Station 404.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 272.70(Ft.) Lowest elevation = 271.70(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 9.90 min. TC = [1.8*(l.l-C)*distance'".5)/(% slope'" (1/3) ] TC = [1.8* (1.1-0.5500) * (100. 00-^.5) / { 1.00"(l/3)]= 9.90 Rainfall intensity (I) = 4.409 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.461(CFS) Total initial streara area = 0.190(Ac.) + + + +++++++++++++ ++++++++++++++++++++++++++++++++++-I--I--I--I--I--1.+-1--I--1--I.-1--1--1.-1-1-+-I--I--I. Process frora Point/Station 404.000 to Point/Station 406.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 271.350(Ft.) End of street segment elevation = 257.600(Ft.) Length of street segment = 275.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance frora crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at raidpoint of street = 0.934(CFS) Depth of flow = 0.155(Ft.), Average velocity = 4.316(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 4.32(Ft/s) Travel time = 1.06 min. TC = 10.96 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 4.129(In/Hr) for a 100.0 year storra Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.550 Subarea runoff = 0.886(CFS) for 0.390(Ac.) Total runoff = 1.346(CFS) Total area = 0.58(Ac.) Street flow at end of street = 1.346 (CFS) Half street flow at end of street = 0.673(CFS) Depth of flow = 0.194(Ft.), Average velocity = 3.666(Ft/s) Flow width (from curb towards crown)= 2.849(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 406.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 10.96 min. Rainfall intensity = 4.129(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.550 Subarea runoff = 2.816{CFS) for 1.240(Ac.) Total runoff = 4.162(CFS) Total area = 1.82(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 406.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 10.96 min. Rainfall intensity = 4.129(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.659(CFS) for 0.290(Ac.) Total runoff = 4.821(CFS) Total area = 2.11(Ac.) End of computations, total study area = 2.11 (Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/16/01 VILLAGE X T.M. HYDROLOGY STUDY SYSTEM 500, 600, 700, & 900 MARCH 16, 2001 J.N. 98-1020 BY: CSO FILE: VLX500 ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) - 2.600 P6/P24 = 60.5% San Diego hydrology raanual 'C values used Runoff coefficients by rational method + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++-H++-|-l-l-|-l-++-|--|--l--l--|-|-f+ + -1- Process ftom Point/Station 502.000 to Point/Station 504.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 110.00(Ft.) Highest elevation = 221.50(Ft.) Lowest elevation = 212.00(Ft.) Elevation difference = 9.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.06 min. TC = [1.8* (1.1-C) *distance'".5) / (% slope'" (1/3) ] TC = [1. 8* (1.1-0.5500) * (110.00'^. 5) / ( 8 . 64'" (1/3) ] = 5.06 Rainfall intensity (I) = 6.797 for a lOO.O year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.299(CFS) Total initial stream area = 0.080(Ac.) + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + -f + + + + + + + + -|- + -l--I--I--I--I--I--l-l--H-H-I--|- + -|--t--H-l- Process from Point/Station 504.000 to Point/Station 506.000 **** STREET- FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 212.000(Ft.) End of street segment elevation = 209.600(Ft.) Length of street segraent = 235.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estimated raean flow rate at raidpoint of street = 0.356(CFS) Depth of flow = 0.145(Ft.), Average velocity = 1.869(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.87(Ft/s) Travel tirae = 2.10 min. TC = 7.16 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 5.436(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.136(CFS) for 0.380(Ac.) Total runoff = 1.435(CFS) Total area = 0.46(Ac.) Street flow at end of street = 1.435(CFS) Half street flow at end of street = 0.718(CFS) Depth of flow = 0.247(Ft.), Average velocity = 1.774(Ft/s) Flow width (from curb towards crown)= 5.495(Ft.) -i-+-l--i-+-l--t--l-l-++-l--l--l-l-++++-i-++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 506.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 7.16 rain. Rainfall intensity = 5.436(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.794(CFS) for 0.600(Ac.) Total runoff = 3.229(CFS) Total area = 1.06(Ac.) + -|--l--l- + -|--l--H-l--|--|--l--l-|- + -l- + -f+ 4- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 506.000 to Point/Station 508.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **+* Upstream point/station elevation = 200.60(Ft.) Downstream point/station elevation = 199.50(Ft.) Pipe length = 45.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.229(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 3.229(CFS) Normal flow depth in pipe = 5.93(In.) Flow top width inside pipe = 12.00(In.) Critical Depth = 9.23(In.) Pipe flow velocity = 8.34(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 7.25 rain. -1--1-+-1-I..I.-I.-1--1-1-1.-I-1-I-I--I-1--I--I-I--I--I-++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 508.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream nuraber: 1 Stream flow area = 1.060(Ac.) Runoff frora this streara = 3.229(CFS) Time of concentration = 7.25 min. Rainfall intensity = 5.392(In/Hr) Prograra is now starting with Main Streara No. 2 + ^. +-I--I--I--I-.(.-I--1-+ + + +-H +-H-H-H +-H-H +-H-H-H +-H-H-I--H-H-H-H-H-H-H-H-H-H-H-H-H +-H +-H Process from Point/Station 602.000 to Point/Station 604.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 239.70(Ft.) Lowest elevation = 238.20(Ft.) Elevation difference = 1.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.65 min. TC = [1. 8* (1.1-C) *distance'^. 5) / (% slope'" (1/3) ] TC = [1.8*(l.l-0.5500)*(100.00".5)/( 1.50^(1/3)]= 8.65 Rainfall intensity (I) = 4.811 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.476(CFS) Total initial stream area = 0.180(Ac.) -1--H-l--I-+ -I--t--|- + -|.-I--I--I-+ + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + Process from Point/Station 604.000 to Point/Station 606.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 238.200(Ft.) End of street segment elevation = 211.200(Ft.) Length of street segment = 775.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.79 9 (CFS) Depth of flow = 0.223(Ft.), Average velocity = 3.095(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.337(Ft.) Flow velocity = 3.10(Ft/s) Travel time = 4.17 min. TC = 12.82 min. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.732(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.550 Subarea runoff = 2.053(CFS) for 1.000(Ac.) Total runoff = 2.529(CFS) Total area = 1.18(Ac.) Street flow at end of street = 2.529(CFS) Half street flow at end of street = 1.264(CFS) Depth of flow = 0.244(Ft.), Average velocity = 3.251(Ft/s) Flow width (frora curb towards crown)= 5.352(Ft.) +-I.-1.++-1.++++-1-1-+-I-+-1-1--I-+++++++++++++++++++++++++++++++++++++++++++++++++ +++ Process frora Point/Station 606.000 to Point/Station 606.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 12.82 min. Rainfall intensity = 3.732(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.550 Subarea runoff = 4. 516(CFS) for 2.200(Ac.) Total runoff = 7.044(CFS) Total area = 3.38(Ac.) + -,--^-|..l-t-l. + + -l.-|--|-|-t-l--|-|-l--H-|--|-l- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 606.000 to Point/Station 606.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 12.82 min. Rainfall intensity = 3.732(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = Subarea runoff = 2.525(CFS) for 1.230(Ac.) Total runoff = 9.569(CFS) Total area = 4.61(Ac.) 0.550 -I- + 4--1--H-H-I-I-I--H-H-H-H-l-l--l-l-H- + + + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 606.000 to Point/Station 508.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 201.20(Ft.) Downstream point/station elevation = 199.50(Ft.) Pipe length = 85.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 9.569(CFS) Nearest computed pipe diaraeter = 15.00(In.) Calculated individual pipe flow = 9.569(CFS) Normal flow depth in pipe = 10.99(In.) Flow top width inside pipe = 13.27(In.) Critical Depth = 14.07(In.) Pipe flow velocity = 9.94(Ft/s) Travel tirae through pipe = 0.14 min. Time of concentration (TC) = 12.96 rain. .|..|. + + + .H + + + -H-H-H-l--H-H-H + -H-H-H-H-H-H-H-H-H-H + + -H-H-H-H-H-H-H-H-H-H-H + -H-f-H-H-H + -f + Process frora Point/Station 508.000 to Point/Station 508.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara nuraber: 2 Streara flow area = 4.610(Ac.) Runoff from this stream = 9.569(CFS) Time of concentration = 12.96 min. Rainfall intensity = 3. 705(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) = 3 9 1. 1. 0. 1. 229 ,569 , 000 ,000 687 000 7.25 12. 96 1.000 * 0.559 * 1.000 * 1.000 * 5.392 3.705 3.229) + 9.569) + 3.229) + 9.569) + 8.57S 11.788 Total of 2 main streams to confluence: Flow rates before confluence point: 3.229 9.569 Maxiraum flow rates at confluence using above data: 8.578 11.788 Area of strearas before confluence: 1.060 4.610 Results of confluence: Total flow rate = 11.788(CFS) Tirae of concentration = 12.964 rain. Effective streara area after confluence = 5.670(Ac.) -l-l--i--i.-l--l--l-++-|.-i--l--l--i--l--l--l-l-l-(-++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 510.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 199.50{Ft.) Downstreara point/station elevation = 198.95(Ft.) Pipe length = 225.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 11.788(CFS) Nearest coraputed pipe diaraeter = 24.00(In.) Calculated individual pipe flow = 11.788(CFS) Normal flow depth in pipe = 17.67(In.) Flow top width inside pipe = 21.15(In.) Critical Depth = 14.79(In.) Pipe flow velocity = 4.76(Ft/s) Travel time through pipe = 0.7 9 rain. Tirae of concentration (TC) = 13.75 min. -1--1--1--1-I.-1.+++-I--I--I--I-+-I--I--I--I-++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 510.000 to Point/Station 510.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in normal streara nuraber 1 Stream flow area = 5.670(Ac.) Runoff from this stream = 11.788(CFS) Tirae of concentration = 13.75 min. Rainfall intensity = 3.567(In/Hr) -i-++-i.-i--i--t--|.+-i-i--i--i--i--i--i--i--l-i--i--i--i-i-++++++++++++++++++++++++++++++++++++++++++++++ + Process from Point/Station 702.000 to Point/Station 704.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 228.30(Ft.) Lowest elevation = 223.30(Ft.) Elevation difference = 5.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.79 min. TC = [1.8* (1.1-C) *distance'^. 5) / (% slope'^ (1/3) ] TC = [1.8*(l.l-0.5500)*{100.00'".5)/( 5 . 00'" (1/3) ] = 5.79 Rainfall intensity (I) = 6.232 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.651(CFS) Total initial stream area = 0.190(Ac.) ^-4..,.^.^-^++.l.+-l-l-l-l-l-l-l-l-l-l-l-l-l-+-l-+++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 704.000 to Point/Station 706.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 211.300(Ft.) End of street segment elevation = 206.700(Ft.) Length of street segment = 200.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline =• 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.080(CFS) Depth of flow = 0.205(Ft.), Average velocity = 2.461(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.418(Ft.) Flow velocity = 2.46(Ft/s) Travel time = 1.35 min. TC = 7.14 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 5.442(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.748(CFS) for 0.250(Ac.) Total runoff = 1.400(CFS) Total area = 0.44(Ac.) Street flow at end of street = 1.400(CFS) Half street flow at end of street = 0.700(CFS) Depth of flow = 0.221(Ft.), Average velocity = 2.503(Ft/s) Flow width (from curb towards crown)= 4.208(Ft.) +-^.f+++-l.-|.+-l-l-l-l--i-l-l-i-+++++ + ++++++++++ ++++++++++++++++++-l-+++++++++++++++ +++ Process frora Point/Station 706.000 to Point/Station 706.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Tirae of concentration = 7.14 rain. Rainfall intensity = 5.442(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 3.233(CFS) for 1.080(Ac.) Total runoff = 4.632(CFS) Total area = 1.52(Ac.) -)--|.+.i-(-i-+-i-i-i-i-i-i-i-i-i-i--i-i-i-++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 706.000 to Point/Station 510.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 199.76(Ft.) Downstream point/station elevation = 198.95(Ft.) Pipe length = 40.63(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 4.632(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 4.632(CFS) Normal flow depth in pipe = 7.97(In.) Flow top width inside pipe = 11.34(In.) Critical Depth = 10.74(In.) Pipe flow velocity = 8.37(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 7.22 min. -H+-l--|. + -|--H-H-|. + -|--|--(-l-l- + + -l- + + +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 510.000 to Point/Station 510.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Streara flow area = 1.520(Ac.) Runoff from this streara = 4.632(CFS) Time of concentration = 7.22 min. Rainfall intensity = 5.403(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 11.788 2 4.632 Qmax(l) = 1.000 * 0.660 * Qmax(2) = 1.000 * 1.000 * 13.75 7.22 1.000 * 1.000 * • 0.525 * 1.000 * 11.788) 4.632) 11.788) 4.632) 3.567 5. 403 + + = + + = 14.846 10.825 Total of 2 streams to confluence: Flow rates before confluence point: 11.788 4.632 Maximum flow rates at confluence using above data: 14.846 10.825 Area of streams before confluence: 5.670 1.520 Results of confluence: Total flow rate = 14.846(CFS) Tirae of concentration = 13.752 min. Effective stream area after confluence = 7.190(Ac.) ++^..H-l. + .(.++-|-l-+-l-|-l-|-|-|-|-H-++++ +++++++++++++ +++++++++++++++++++ + ++++++++++ + Process frora Point/Station 510.000 to Point/Station 512.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size] * * * * Upstream point/station elevation = 198.95(Ft.) Downstream point/station elevation = 187.75(Ft.) Pipe length = 280.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 14.846(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 14.846(CFS) Normal flow depth in pipe = 11.93(In.) Flow top width inside pipe = 12.10(In.) Critical depth could not be calculated. Pipe flow velocity = 14.18(Ft/s) Travel time through pipe = 0.33 min. Time of concentration (TC) = 14.08 min. +-,.++^-|.+-i.++-i-i-i--i--i--i-i-i-i-+-i-i-i-+++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 512.000 to Point/Station 514.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 187.75(Ft.) Downstreara point/station elevation = 187.45(Ft.) Pipe length = 30.00 (Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 14.846 (CFS) Nearest coraputed pipe diameter = 21.00(In.) Calculated individual pipe flow = 14.846(CFS) Normal flow depth in pipe = 14.11(In.) Flow top width inside pipe = 19.72(In.) Critical Depth = 17.14(In.) Pipe flow velocity = 8. 63(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 14.14 min. .H.-^-l. + .l-l-l-|-|-l--l--|-H + -|-l-|-l-l-|-l- +++ + + + + + + + + + +++ + + + + + + +++ + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 506.000 to Point/Station 511.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 209.600(Ft.) End of street segment elevation = 206.800(Ft.) Length of street segment = 280.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = Depth of flow = 0.453(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel; Halfstreet flow width = 15.799(Ft.) Flow velocity = 2.96(Ft/s) Travel time = 1.58 rain. TC = 15.71 min. Adding area flow to street Decimal fraction soil group A soil group B soil group soil group 15.393(CFS) 2.962(Ft/s) Decimal Decimal Decimal [SINGLE C D fraction fraction fraction FAMILY area type Rainfall intensity = 3 Runoff coefficient used for Subarea runoff = 0.954(CFS) Total runoff = 15.800(CFS) Street flow at end of street = 000 000 000 000 ] 273(In/Hr) for a 100.0 year storm sub-area. Rational method,Q=KCIA, C = 0.550 for . 0.530(Ac.) Total area = 7.72(Ac.) 15.800(CFS) Half street flow at end of street = 7.900(CFS) Depth of flow = 0.456(Ft.), Average velocity = 2.980(Ft/s) Flow width (from curb towards crown)= 15.963(Ft.) .^ +++ + -H + -H + + + + -l--l--|.-|.-|-+-|-.|- + -|--|--|--l--|--|--l--|--|-+-l--t-+-l--l--l- + -l-+++++++++++++++++ ++++ +++ + + +++++ Process from Point/Station 511.000 to Point/Station 514.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 206.800(Ft.) End of street segment elevation = 196.500(Ft.) Length of street segment = 300.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.38 9(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12. 603(Ft.) Flow velocity = 4.80(Ft/s) Travel tirae = 1.04 rain. TC = Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 16.230(CFS) 4.799(Ft/s) 16.76 min. Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.140(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.550 Subarea runoff = 0.725(CFS) for 0.420(Ac.) Total runoff = 16.525(CFS) Total area = 8.14(Ac.) Street flow at end of street = 16.525 (CFS) Half street flow at end of street = 8.263(CFS) Depth of flow = 0.391(Ft.), Average velocity = 4.820(Ft/s) Flow width (from curb towards crown)= 12.696(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 514.000 to Point/Station 514.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 16.7 6 min. Rainfall intensity = 3.140(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff == 5.060 (CFS) for 2. 930 (Ac.) Total runoff = 21.586(CFS) Total area = 11.07(Ac.) -I-I--I-++-I-+-I--1-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + Process from Point/Station 514.000 to Point/Station 516.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 187.45(Ft.) Downstream point/station elevation = 185.00(Ft.) Pipe length = 122.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 21.586(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 21.586(CFS) Normal flow depth in pipe = 14.39(In.) Flow top width inside pipe = 19.51(In.) Critical Depth = 19.57(In.) Pipe flow velocity = 12.30(Ft/s) Travel time through pipe = 0.17 rain. Tirae of concentration (TC) = 16.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 516.000 to Point/Station 516.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream nuraber: 1 Stream flow area = 11.070(Ac.) Runoff from this stream = 21.586(CFS) Time of concentration = 16.92 min. Rainfall intensity = 3.120(In/Hr) Program is now starting with Main Stream No. 2 .H-+-1-I-1.-1--I--I--I- ++++++ +++ + +++++++++ + +++++++ + + ++++++++++++++ + ++++++++ + + + + + + + + Process from Point/Station 902.000 to Point/Station 904.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 80.00(Ft.) Highest elevation = 270.30(Ft.) Lowest elevation = 269.40(Ft.) Elevation difference = 0.90(Ft.) Time of concentration calculated by the urban areas overland flow raethod (App X-C) = 8.51 min. TC = [1.8*(l.l-C)*distance".5)/(% slope'" (1/3) ] TC = [1.8*(l.l-0.5500)*( 80.00'".5)/( 1.13^^(1/3)]= 8.51 Rainfall intensity (I) = 4.860 for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.347(CFS) Total initial streara area = 0.130(Ac.) + .l.-l- + -l-.l-(-t-l- + -l-l--H-l--|--l--|--l--|-l--|--|- + -l-|- + + + + + + + +++ + + + + + +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 904.000 to Point/Station 906.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 269.400(Ft.) End of street segment elevation = 242.800(Ft.) Length of street segraent = 240.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance frora crown to crossfall grade break = 18.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = 1.0 96(CFS) Depth of flow = 0.142(Ft.), Average velocity = 6.055(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 6.05(Ft/s) Travel time = 0.66 min. TC = 9.17 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 4.631(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.426(CFS) for 0.560(Ac.) Total runoff = 1.774(CFS) Total area = 0.69(Ac.) Street flow at end of street = 1.774(CFS) Half street flow at end of street = 0.887(CFS) Depth of flow = 0.183(Ft.), Average velocity = 5.678(Ft/s) Flow width (from curb towards crown)= 2.317(Ft.) .1..1. + -I-1. + + + + -I-I-I-1-1-I-1-I--I-H-H + + + + + + + + + + + + + + + + + + ++++++ + + +++ + +++ + + + + + + + + + + + + + + + + + Process from Point/Station 906.000 to Point/Station 906.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 9.17 min. Rainfall intensity = 4.631(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.550 Subarea runoff = 0.891(CFS) for 0.350(Ac.) Total runoff = 2.665(CFS) Total area = 1.04(Ac.) -^.(.+.^-l.+-l--l-l-l-l-l-l-+-l-l-l-l-l-l-l-+++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 906.000 to Point/Station 910.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 236.40(Ft.) Downstream point/station elevation = 208.00(Ft.) Pipe length = 350.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 2.665 (CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.665(CFS) Normal flow depth in pipe = 4.39(In.) Flow top width inside pipe = 9.00(In.) Critical Depth = 8.44(In.) Pipe flow velocity = 12.47(Ft/s) Travel time through pipe = 0.47 min. Time of concentration (TC) = 9.64 min. + .,--l..i.-I--I-.1.+-1-1-+-I-1--1.-l-l--H-H-!- + +++++++++++++++++++++++++++++++++++++++++++-•-•-+-•-+++ Process from Point/Station 906.000 to Point/Station 910.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 242.800(Ft.) End of street segment elevation = 215.500(Ft.) Length of street segment = 350.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000 (Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated raean flow rate at midpoint of street = 3.255 (CFS) Depth of flow = 0.235(Ft.), Average velocity = 4.750(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 4.900(Ft.) Flow velocity = 4.75(Ft/s) Travel tirae = 1.23 rain. TC = 10.87 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 4.151(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.550 Subarea runoff = 1.050(CFS) for 0.460(Ac.) Total runoff = 3.716(CFS) Total area = 1.50(Ac.) Street flow at end of street = 3.716(CFS) Half street flow at end of street = 1.858 (CFS) Depth of flow = 0.243(Ft.), Average velocity = 4. 850(Ft/s) Flow width (from curb towards crown)= 5.297(Ft.) -I- + + + + -1--H--l-l-H-H--I-I- + + + + + + + + + + + + + +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + +++ + Process from Point/Station 910.000 to Point/Station 910.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 10.87 min. Rainfall intensity = 4.151(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.550 Subarea runoff = 3.927(CFS) for 1.720(Ac.) Total runoff = 7.643(CFS) Total area = 3.22(Ac.) + -I--I--I--I-H-l--I--I- + + + + + + + + + + + + + + + + + + + + +++++ + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + Process frora Point/Station 910.000 to Point/Station 912.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 208.00(Ft.) Downstream point/station elevation = 204.00(Ft.) Pipe length = 85.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 7.643 (CFS) Nearest computed pipe diaraeter = 12.00(In.) Calculated individual pipe flow = 7.643(CFS) Normal flow depth in pipe = 8.39(In.) Flow top width inside pipe = 11.01(In.) Critical depth could not be calculated. Pipe flow velocity = 13.02(Ft/s) Travel tirae through pipe = 0.11 rain. Tirae of concentration (TC) = 10.98 rain. -^.H + ^.-(.++-l-4.-|.++.l.-l--l--|.-l-l-l-l-l-t-l-+-l-l-l-l-++-l-i-+++-l-++++++++++++++++++++++++++++++++++ Process from Point/Station 912.000 to Point/Station 516.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 204.00(Ft.) Downstream point/station elevation = 185.00(Ft.) Pipe length = 220.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 7.643(CFS) Nearest coraputed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.643(CFS) Normal flow depth in pipe = 6.82(In.) Flow top width inside pipe = 11.89(In.) Critical depth could not be calculated. Pipe flow velocity = 16.58(Ft/s) Travel time through pipe = 0.22 min. Tirae of concentration (TC) = 11.20 min. -i-+-i-.i-i-i--i-)-+-|.-i--i-i--i-i-i-i-+-i-+-i-+-i-+++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 516.000 to Point/Station 516.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Streara flow area = 3.220(Ac.) Runoff frora this stream = 7.643(CFS) Tirae of concentration = 11.20 min. Rainfall intensity = 4.072(In/Hr) Summary of stream data ; Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 21 586 16. 92 3 . 120 2 7 643 11. 20 4 .072 Qraax(1) = 1 000 * 1. 000 * 21 586) + 0 766 * 1. 000 * 7 643) + = 27.442 Qmax(2) = 1 .000 * 0. 662 * 21 586) + 1 .000 * 1. 000 * 7 643) + = 21.930 Total of 2 main streams to confluence: Flow rates before confluence point: 21.586 7.643 Maxiraura flow rates at confluence using above data; 27.442 21.930 Area of strearas before confluence: 11.070 3.220 Results of confluence: Total flow rate = 27.442(CFS) Time of concentration = 16.922 min. Effective stream area after confluence = 14.290(Ac.) + + ++++++++ ++++++++++++++ + + +++++++++++ + +++++++ +++ ++++++++++++-l-+ ++-|-H-|--|--(--|- Process from Point/Station 516.000 to Point/Station 518.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 185.00(Ft.) Downstream point/station elevation = 178.40(Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 27.442(CFS) Nearest computed pipe diameter = 18.00 (In.) Calculated individual pipe flow = 27.442(CFS) Normal flow depth in pipe = 12.36(In.) Flow top width inside pipe = 16.70(In.) Critical depth could not be calculated. Pipe flow velocity = 21.21(Ft/s) Travel tirae through pipe = 0.07 min. Time of concentration (TC) = 16.99 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-I-+-I-I-+-I--I- Process from Point/Station 911.000 to Point/Station 913.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 214.900(Ft.) End of street segment elevation = 211. 300(Ft.) Length of street segraent = 95.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 27.557(CFS) Depth of flow = 0.442(Ft.), Average velocity = 5.651(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.283(Ft.) Flow velocity = 5.65(Ft/s) Travel time = 0.28 min. TC = 17.27 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.079(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.203(CFS) for 0.120(Ac.) Total runoff = 27.645(CFS) Total area = 14.41(Ac.) Street flow at end of street = 27.645(CFS) Half street flow at end of street = 13.823(CFS) Depth of flow = 0.443(Ft.), Average velocity = 5.655(Ft/s) Flow width (frora curb towards crown)= 15.303(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 913.000 to Point/Station 518.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 211.300(Ft.) End of street segment elevation = 191.100(Ft.) Length of street segraent = 310.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated raean flow rate at midpoint of street = 28.058(CFS) Depth of flow = 0.413(Ft.), Average velocity = 6.97 6(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.815(Ft.) Flow velocity = 6.98(Ft/s) Travel time = 0.74 rain. TC = 18.01 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 2.997(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.709(CFS) for 0.430(Ac.) Total runoff = 28.354(CFS) Total area = 14.84(Ac.) Street flow at end of street = 28.354(CFS) Half street flow at end of street = 14.177(CFS) Depth of flow = 0.414(Ft.), Average velocity = 6.994(Ft/s) Flow width (from curb towards crown)= 13.873(Ft.) -H-I-I- + -I--1- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -1- Process from Point/Station 518.000 to Point/Station 518.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 18.01 min. Rainfall intensity = 2.997(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.550 Subarea runoff = 1.236(CFS) for 0.750(Ac.) Total runoff = 29. 591(CFS) Total area = 15.59(Ac.) -I--H--H-H-1-I-I--I--I-H-I- + -I-1--I- + + + + + + + + + + + + + + + + +++ + + + + + + + +++ + + +++ +++ + + + +++ + + + + + + + + + + + Process from Point/Station 518.000 to Point/Station 518.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 18.01 rain. Rainfall intensity = 2.997(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.550 Subarea runoff = 0.181(CFS) for 0.110(Ac.) Total runoff = 29.772(CFS) Total area = 15.70(Ac.) -i--(.-i-i--i--i-i--i-+-i--i--i-i-+-i--i-i--i-i--l--i--i-++++ ++++++++++++++++++++++++++++++++++++++ + ++++ + Process from Point/Station 518.000 to Point/Station 518.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Tirae of concentration = 18.01 min. Rainfall intensity = 2.997(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational raethod,Q=KCIA, C = 0.550 Subarea runoff = 0.033(CFS) for 0.020(Ac.) Total runoff = 29.805(CFS) Total area = 15.72(Ac.) -l-+++-l--l--l--l--i-(--l-l- + -l--l-l--i--l--i-++++++ ++++++++++++++++++++++++++++++++++++++++ +++++ Process from Point/Station 518.000 to Point/Station 520.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 178.40(Ft.) Downstream point/station elevation = 174.50(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 29.805(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 29.805(CFS) Normal flow depth in pipe = 12.87(In.) Flow top width inside pipe = 16.25(In.) Critical depth could not be calculated. Pipe flow velocity = 22.06(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 18.05 min. End of computations, total study area = 15.72 (Ac' Villages Y and X ^Jj;i^.^^^^^{^^^ ^J CA^~._^:^( -----X^-i^/'o Pii^e lO±Jtl ro .12.. t ^ 7 1--V^ 7 ^0,11 L^.-^^-,!) J2J^---Z&JS.-^,/^-._ PiP*e r ^ o (^ "? J ^ 4- ^ ^ ^y^^/^C^ (P Z^llj^^ tlll^^ - 7c ^ /^.3C> ..^^ ^^-Z-^.-ZLxT^iT _ _ - ti ih ^CA^. + (9,?»y ^6.^5 Z'f"/^cfi(^ ^,ozvo MT no p"^v. So ai(= ^:CA = <^.^s+ /.5-^- Rio /=^0 ^ lf*W To 3-fHO^ " gCP <0 3,7(:y. /-/g.'^ L'^lo.lh' r-0.,1, -7 LD-3 47 HYDRAULIC CRAOE LINE PROJECT INLET STATION Outlet U>ter Surface Elev. ^) 'o Hf JUMCTION LOSS Final H Inlet Uilcr Surface Elev. Rim Elev. INLET STATION Outlet U>ter Surface Elev. ^) 'o Hf QiVi Hi m • IVigle HA Hi 1.3 Ht \ Final H Inlet Uilcr Surface Elev. Rim Elev. fll fn :5) (fl) il) (8) lm Xil 15.1 X12 ) -US ri7) (1 R 1 f 201 f 211 zs 7^ lm Xil 15.1 X12 -US K** ) zf «\'^ .oil. 1,10 IS.I Z5 pM • o.yt m Z1Z> ?S .otl l.oi sm hU I'll mo n m] a 71 10HH% 20 m 11 ,0V-a% m sm 5.77 2io.tl 3.02 in% 207. S2. M fl'O S.i-I o ZV" 5,(?«f 2(r'2 iP.b Z5.S 0 D Z.l'\ 1 1 . • US ZH" % •oil /.21 hp o D Z.b') zn> .oo7 I.PO Hi-0.35-lL 2g Ho-0.25 _ 0 2g 2 FIHAL H-Hf • 17" Hi-H-Hj^H,, SEE LD-72(0)67 90° K - 0.70 80° K- 0.66 70° K • 0.61 60° K" 0.55 50° K 40° K 0.47 0.38 30° K- 0.28 25° K* 0.22 20° K -0.16 15* K-O. 10 IC1.ZO ^2'7. y3> K) *** *************************************************************************** * O'Day Consultants, Inc. * 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 STA. To ZHAC^") Inside Diameter ( 24.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water * ( 11.53 in.) ( 0.961 ft.) I Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diaraeter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'"(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 25. 000 CFS 16. 750 fps 24. 000 inches 11. 532 inches 0. 961 feet 1. 766 feet 0. 480 5. 600 % 1. 493 sq. ft 3. 064 feet 0. 924 0 013 1.222 % *** ****************************************************************** O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 ********* * * * * Inside Diameter ( 24.00 in.) AAAAAAAAAAAAAAAAAAAAA * Water * I ( 12.41 in.) ( 1.034 ft.) I I V Circular Channel Section 25 000 CFS 15 249 fps .24 000 inches 12 412 inches Depth of Flow 1 034 feet Critical Depth 1 759 feet Depth/Diaraeter (D/d) 0 517 4 360 % 1 639 sq. ft 3 210 feet AR'"(2/3) 1 047 Mannings 'n' 0 013 Min. Fric. Slope, 24 inch 1 221 % *** *************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Court, Suite 100 * * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 * STA. TO STA. Inside Diameter ( 24.00 in.) * * AAAAAAAAAAAAAAAAAAAAA * Water * * { 7.32 in.) ( 0.610 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) Slope of Pipe X-Sectional Area Wetted Perimeter AR'"(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 1.221 % 25. 000 CFS 30. 848 fps 24. 000 inches 7. 316 inches 0. 610 feet 1. 765 feet 0. 305 29 . 940 % 0. 810 sq. ft 2 . 340 feet 0. 400 0 013 *** *************************************************************************** O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 24.00 in.) AAAAAAAAAAAAAAAAAAAAA Water ( 15.55 in.) ( 1.296 ft.) Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'"(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 39. 400 CFS 18. 293 fps 24. 000 inches 15 550 inches 1 296 feet 1 951 feet 0 648 5 350 % 2 154 sq. ft 3 742 feet 1 .490 0 .013 3 .033 % ***************************************** ****************.^J^.^J_,^.^^^^^^^^^^^^^^^^ * O'Day Consultants, Inc. * * 5900 Pasteur Court, Suite 100 * * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 * Inside Diameter ( 24.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water ( 15.97 in.) ( 1.331 ft.) I Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Periraeter AR'^(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 34 .300 CFS 15 . 448 fps 24 .000 inches 15 .971 inches 1 .331 feet 1 .916 feet 0 .665 3 .760 % 2 .220 sq. ft 3 .816 feet 1 .547 0 .013 2.299 % *** ***************************************************************************. * O'Day Consultants, Inc. * * 5900 Pasteur Court, Suite 100 * * Carlsbad, CA 92008 * *J^ (Tel) 760-931-7700 (Fax) 760-931-8680 * Inside Diameter ( 24.00 in.) * * * * * * * AAAAAAAAAAAAAAAAAAAAA A * Water * | I I I * * ( 12.09 in.) ( 1.008 ft.) * V Circular Channel Section Flowrate 29.600 CFS Velocity 18.659 fps Pipe Diameter 24.000 inches Depth of Flow 12.094 inches Depth of Flow 1.008 feet Critical Depth 1.853 feet Depth/Diaraeter (D/d) 0.504 Slope of Pipe 6.670 % X-Sectional Area 1.586 sq. ft. Wetted Periraeter 3.157 feet AR"(2/3) 1.003 Mannings 'n' 0.013 Min. Fric. Slope, 24 inch Pipe Flowing Full 1.712 % *** ***************************** * * ********************************* **i,^,i,^^,^,^^^^^^^ O'Day Consultants, Inc. * 5900 Pasteur Court, Suite 100 * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 Inside Diameter ( 24.00 in.) AAAAAAAAAAAAAAAAAAAAA * Water * I ( 11.91 in.) ( 0.993 ft.) Circular Channel Section Flowrate Velocity , Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'"(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 29. 600 CFS 19. 019 fps 24 . 000 inches 11. 912 inches 0. 993 feet 1. 858 feet 0. 496 7. 020 •% 1. 556 sq. ft 3. 127 feet 0. 977 0. 013 1. 712 % ****************************************^^^^^^^^^^^^^^^^^^^^^^^^ O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 ************** * ^74' l^i^^ ro ^74. /rf37 Inside Diameter ( 24.00 in.) * * AAAAAAAAAAAAAAAAAAAAA * Water * I ( 18.65 in.) ( 1.554 ft.) I I V Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR"(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 26. 200 CFS 10. 002 fps 24. 000 inches 18. 652 inches 1. 554 feet 1. 78 9 feet 0. 777 1. 490 % 2. 620 sq. ft 4 . 317 feet 1. 878 0. 013 1. 342 % *** ***********************************************************^^^^^^^^^^^^^^^^ * O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 * * * * $74. IZt^l to SlA. Inside Diameter ( 24.00 in.) * * AAAAAAAAAAAAAAAAAAAAA * Water * I I ( 10.97 in.) ( 0.914 ft.) Circular Channel Section Flowrate , Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Perimeter AR'"(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 25 .500 CFS 18 .231 fps 24 .000 inches 10 .966 inches 0 .914 feet 1 .779 feet 0 .457 6 .940 % 1 .399 sq. ft 2 .969 feet 0 .847 0 .013 1 .271 % ***r ******* *************** * * * ************************ *******************^ O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (Tel) 760-931-7700 (Fax) 760-931-8680 ********* * * * * srA. lotz'f To <.TA- \2Adl Inside Diameter { 24.00 in.) AAAAAAAAAAAAAAAAAAAAA * Water * * ( 9.77 in.) ( 0.814 ft.) I Circular Channel Section Flowrate Velocity Pipe Diameter , Depth of Flow , Depth of Flow Critical Depth Depth/Diameter (D/d) Slope of Pipe X-Sectional Area Wetted Perimeter AR'"(2/3) Mannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full 19. 300 CFS 16. 075 fps 24. 000 inches 9. 766 inches 0. 814 feet 1. 579 feet 0. 407 6. 020 % 1. 201 sq. ft 2. 7 67 feet 0. 688 0. 013 0. 728 % ^* ***************************************************************************** * O'Day Consultants, Inc. * * 5900 Pasteur Court, Suite 100 * * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 * Inside Diameter ( 18.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water * * * I I ( 5.86 in.) { 0.489 ft.) I I V Circular Channel Section Flowrate Velocity Pipe Diameter Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Periraeter AR'"{2/3) Mannings 'n' Min. Fric. Slope, 18 inch Pipe Flowing Full 6. 200 CFS 12. 410 fps 18. 000 inches 5. 8 62 inches 0. 489 feet 0. 959 feet 0. 326 6. 620 % 0. 499 sq. ft 1. 822 feet 0. 211 0. 013 0. 348 % CHART 2 ) (2) (3) 1- 6. I- 6. m m BUREAU or PUBLIC ROAOS JAN. I9S3 HEADWATER SCALES 2 83 REVISED MAY 1964 HEADWATER DEPim FOR ^6N C R ETBM3J B ES'CU LyjEBJ S WITH INLETS^olsrfROL 5-22 S.lf l-^w/t> r^|.(^/ ***r *******************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ O'Day Consultants, Inc. * 5900 Pasteur Court, Suite 100 * Carlsbad, CA 92008 * (Tel) 760-931-7700 (Fax) 760-931-8680 * STA.^/VI^ -TD STA. 2?-eA| ' Inside Diaraeter ( 18.00 in.) AAAAAAAAAAAAAAAAAAAAA * Water * ( 7.97 in.) { 0.664 ft.) Circular Channel Section Flowrate , Velocity Pipe Diameter , Depth of Flow Depth of Flow Critical Depth Depth/Diameter (D/d) .... Slope of Pipe X-Sectional Area Wetted Periraeter AR'"(2/3) Mannings 'n' Min. Fric. Slope, 18 inch Pipe Flowing Full 17. 000 CFS 22. 520 fps 18. 000 inches 7. 968 inches 0. 664 feet 1. 444 feet 0. 443 16. 000 % 0. 755 sq. ft 2. 184 feet 0. 372 0. 013 2. 619 a o ****************** ***********************************************.J^.J^*J^^.^J^^.^^^^^^ * O'Day Consultants, Inc. * * 5900 Pasteur Court, Suite 100 * * Carlsbad, CA 92008 * *^^ (Tel) 760-931-7700 (Fax) 760-931-8680 * Pec APe-oyJ -ro %nA, 7o^-^\ Inside Diameter ( 9.00 in.) * * * * * * * AAAAAAAAAAAAAAAAAAAAA A * Water * j i I I * * ( 7.53 in.) ( 0.628 ft.) i I * v_ Circular Channel Section Flowrate 9.000 CFS Velocity 22.793 fps Pipe Diameter 9.000 inches Depth of Flow 7.532 inches Depth of Flow 0.628 feet Critical Depth Greater than Pipe Diameter Depth/Diameter (D/d) 0.837 Slope of Pipe 16.900 % X-Sectional Area 0.395 sq. ft. Wetted Perimeter 1.733 feet AR^(2/3) 0.147 Mannings 'n' 0.010 Min. Fric. Slope, 9 inch Pipe Flowing Full 17.513 % Village L-2 7c. iL4^ ^Ortf^'t^ J >il^/rti LiZ L-l^^H^-JM^^Tig^^^ ,^_±-/g/-r /JK£ m- -4+1- .4-~^. v4«^,..<.)^«^2^-<<^;^ INTENSITY-DUKATION DESIGN CHART I 3= -J-m n o 3 •3 ^ • O , 20 hutes 30 ^0 50 1 Z , 3 Hours Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed In the County Hydroloay Manual (10, 50 and ICQ yr. maps Included in the Design and Procedure Manual). ?.) Adjust 6 hr. precipitation (if necessary) so that it 1s within the ranfie of 45% to 65% of the 24 hr. precipitation. (Not r-pplicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line Is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency fOO yr. 1) Pg'^li^n-. P24'% ' TT 2) Adjusted *Pg= -'^^ 24 in. min. 3) t^ = i_ 4) I = $tB^ In/hr. *Not Applicable to Desert Region APPENDIX XI R^Tsed 1/85 JNTENSITY-DUKATION DESIGN CHART ''iTfllf'TTIfiiiIT'HtJ-rn1111nn.itiiiitmfre.—; ".' i'i'i:iu.i ui Hirrifhn j Equations I 7.44 P, o I • Intensity (In./Hr.) Pg « 6 Hr. Precipitation (In.) Duration (Min.) IT; ii'i I I!; im cn I 20 nutes 30 10 50 1 Z , 3 Hours Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed In the County Hydrolony Manual (10, 50 and 100 yr. maps included in th( Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so that it is within the rancie of 45% to 65Z of the 24 hr. precipitation. (Not r.prlicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency J0^__yr. 1) Pg » li^L^n-. P24* *''6 '^i^'^* "P7 2) Adjusted *Pg= 24 In. 3) ^c-min. 4) I • &tB^ 1n/hr. *Not Applicable to Desert Region APPENDIX XI M-14 seci 1/85 INTENSITY-DURATION DESIGN CHART ^iTrlTnTnlliirri'iNmii'ii'iiii;iiiiiitmini t",' i' i ui'HTnifhni 1 Equation: I 7.44 P. D "'^'^^ I • Intensity (In./Hr.) 6 Hr, Precipitai Duration (Min.) Pg " 6 Hr, Precipitation (In.) en I e -1 -a 1 (9 n rt o 3 n ^ 20 mnutes Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed in the County Hydrolony Manual (10, 50 and ICQ yr. maps included in the Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so that it is within the range of 455; to 65% of the 24 hr. precipitation. (Not r.prlicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line Is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency i^O yr. 1) Pg-ll^ln.. P24= \ ^^ii-'^' TT 2) Adjusted *Pg= ^* ^ 3) t^ = S min. 4) I » 6*B^ in/hr. 24 in. *Not Applicable to Desert Region APPENDIX XI RWrsed 1/85 nMV>nf •(nn INTENSITY-DUR/\TION DESIGN CHART iTfirmn Equation Intensity (In./Hr.) 6 Hr. Precipitation Duration en I X o c -s •n -t ro o r+ cu r+ O 3 n ro t/t i:io 20 Minutes 30 40 50 1 nil»-nf ^rin 2 . 3 Hours Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed In the County Hydrolony Manual (10, 50 and 100 yr. maps included in th« Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation. (Not r.pplicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency /^^ yr. 1) Pg = ll^in.. P24=4il_. 2) Adjusted *P, 24 in. mm. 2^ ^c = 4) I = 3S in/hr. *Not Applicable to Desert Region AnA|NDIX XI Revised 1/85 INTENSITY-DURy\TION DESIGN CHART 'i ' j I'^l^iTflTlillilliii I'•"•ii'iliiinii.n.iiumfp:; ,-. i I 'LI-^.I ui Hinnhni Equation} I a 7.44 P, D Intensity (In./Hr.) 6 Hr. Precipitation (In.) Duration (Min.) iii 41 20 Minutes 30 40 50 1 2 . 3 Hours Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed in the County Hydrolony Manual (10, 50 and 100 yr. maps included in th Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation. (Not r.pplicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency 1^ yr 1) Pfi = li^in.. P9A= 43 2) Adjusted *Pg= 3) 4) 24 Pg = %* '24 In. c I = min. 3"^ in/hr. *Not Applicable to Desert Region /^AENOIX XI Revised 1/85 INTENSITY-DU/V\TI0N^SI6N CHART pTflimnrnh j Equation llTnriTTTT I TTDimfr:, , , , i I ii i.mnifiini 7.44 P, D o Intensity (In./Hr.) 6 Hr. Precipitation (In.) Duration (Min.) 15 20 Minutes Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed In the County Hydrolony Manual (10, 50 and 100 yr. maps included in the Design and Procedure Manual). 2) Adjust 6 hr. precipitation (If necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation. (Not applicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line is the Intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency fOO yr. 1) Pg = 2fA.in.. Ppd= i>S . *Pfi = iM^* 2) Adjusted *Pg= 3) t^- 4) I «« 24 24 in. min. In/hr. *Not Applicable to Desert Region APPENDIX XI IV-A-14 Revised 1/85 Erosion and Sediment Control t^r^i^yhtrr* • -ri^f— T &t &c tvAr^ G ^ >^i/&T \ m:mmmw-A/^. ^j^/ B0i^sc ^^UM i Co -rj<i<j/^ ^ A/ A^C f^i\t^A%t^^ A^I^A^. T r [r^A^Tfl OtkC0^ CPtBO^ OA^^S. S4A/^>I5^^. ^'^f^^? L/Si^ go 7/4 oe-r foh^ Z ^/c-A r\/^/a.^ 'K. iTThe Adj A-f^U(l STofii^ niu/DPD IZy -equivalent stabilization measures have been employed. These measures include the use of such BMPs as blankets, reinforced channel liners, soil cement, fiber matrices, geotextiles, or other erosion resistant soil coverings or treatments. (2) Where background native vegetation covers less than 100 percent of the surface, such as in arid areas, the 70 percent coverage criteria is adjusted as follows: If the native vegetation covers 50 percent ofthe ground surface, 70 percent of 50 percent (.70 X .50=.35) would require 35 percent total unifonn surface coverage. Sediment Control The SWPPP shall include a description or illustration of BMPs which will be implemented to prevent a net increase of sediment load in storm water discharge relative to preconstruction levels. Sediment control BMPs are required at appropriate locations along the site perimeter and at all operational intemal inlets to the storm drain system at all times during the rainy season. Sediment control practices may include filtration devices and barriers (such as fiber rolls, silt fence, straw bale barriers, and gravel inlet filters) and/or settling devices (such as sediment traps or basins). Effective filtration devices, barriers, and settling devices shall be selected, installed and maintained properly. A proposed schedule for deployment of sediment control BMPs shall be included in the SWPPP. These are the most basic measures to prevent sediment fiom leaving the project site and moving into receiving waters. Limited exemptions may be authorized by the RWQCB when work on active areas precludes the use of sediment control BMPs temporarily. Under these conditions, the SWPPP must describe a plan to establish perimeter controls prior to the onset of rain. During the nonrainy season, the discharger is responsible for ensuring that adequate sediment control materials are available to control sediment discharges at the downgrade perimeter and operational inlets in the event of a predicted storm. The discharger shall consider a full range of sediment controls, in addition to the controis listed above, such as straw bale dikes, earth dikes, brush barriers, drainage swales, check dams, subsmface drain, sandbag dikes, fiber rolls, or other contiols. At a minimum, the discharger/operator must implement an effectivcf combination of erosion and sediment control on all disturbed areas during the rainy season. Ifthe discharger chooses to rely on sediment basins for treatment purposes, sediment basins shall, at a minimum, be designed and maintained as follows: Option 1: Pursxiant to local ordinance for sediment basin design and maintenance, provided that the design efficiency is as protective or more protective of water quality than Option 3. OR Option 2: Sediment basin(s), as measured from the bottom of the basin to the principal outiet, shall have at least a capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length ofthe basin shall be more than twice the width of the basin. The length is determined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. OR Option 3: Sediment basin(s) shall be designed using the standard equation: As=I.2Q/Vs Where: As is the minimum surface area for trapping soil particles ofa certain size; Vs is the settling velocity of the design particle size chosen; and Q=C x I x A where Q is the discharge rate measured in cubic feet per second; C is the runoff coefiBcient; I is the precipitation intensity for the 10-year, 6-hour rain event and A is the area draiiung into the sediment basin in acres. The design particle size shall be the smallest-soil grain size detennined by wet sieve analysis, or the fine silt sizedv(0.01m^ particle, and the Vs used shall be 100 percent of the calculated sefflSigvelocity. The length is determined by measuring the distance between the inlet and the outiet; the length shall be more than twice the dimension as the width; the depth shall not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency (two feet of storage, two feet of capacity). The basin(s) shall be located on the site where it can be maintained on a year-round basis and shall be maintained on a schedule to retain the two feet of capacity; OR Option 4: The use ofan equivalent surface area design or equation, provided that the design efficiency is as protective or more protective of water quality than Option 3. A sediment basin shall have a means for dewatering within 7-calendar days following a storm event. Sediment basins may be fenced if safety (worker or public) is a concem. The outflow from a sediment basin that discharges into a natural drainage shall be provided with outlet protection to prevent erosion and scour of the embankment and channel. Crosion and Sediment Control Handbook 8.3d O Protection Tlie oiilfldw Irotn a sediment basin may discharge into a storm drain sysiem or illll) a iialiiral drainageway. hi the latter situation, outlet protection is required lo ensure llial enision of the embankment and the natural channel does not IK I 111 . Figure 8.27 depicts a pipe protruding in midair; water tailing out the end u( the pipe tiocled the embankment and completely filled the channel below with -sediment. The pipe outlet should be at the bottom of the embankment. The bottom of the pipe shoidd be flush with the ground. Outlet protection, such as a riprap iipron, should be provided (see Chap. 7). 8.4 DESIGN AND INSTALLATION OF SEDIMENT TRAPS 8.4 a Design Factors Surface At-ea A sediment trap is a small sediment basin that drains an area of less than 5 acres (2 ha). It is sized l)y using a rule of thumb based on applying the surface area toriiuila, A = \.2(j/V,, to a set of typical local conditions. To simplify the design process, a design storm and design particle size are preselected for a given geo- t;ra[)hii:al area. Tlie rational method is applied to a hypothetical 1-acre (0.4-ha) site to lind the Q to be used in the surface area formula. The design capacity is 4 Sediment Retention Structures 8.39 l''ig. 8.27 Impriiper installation: pipe extends beyond embankment. then expressed in square feet (square meters) of SUrfftCe ftKmhuifeCl W (hectare) of drainage area. In the San Francisco Bay Area, for example, the authors designed the stan- dard sediment trap on the basia of a moderately high rainfall of 30 in (762 mm) per year and a 0.02-mm design particle size. The 10-year, 6-hr storm at a site in the Bay Area with 30 in (762 mm) annual rainfall is 2.5 in (64 mm), or 0.42 in/ hr (11 mm/hr). A runoff coeflicient C of 0.5 was chosen to represent a smooth, graded area with no vegetation (Table 4.1). Applying the rational method, we have Q = C X i X A ~ 0.5(0.42 in/hr)(l acre) - 0.21 ftVsec Using the surface area formula and the 0.02-mm particle's settling velocity gives us 1,2Q 1.2(0.21 ftVsec) A = v.. 0.00096 ft/sec 263 ftVacre (60 m^/ha) This formula means that there should be 263 ft' of sediment trap surface area (when the trap is full of water) for each acre of drainage area to the trap. Por areas with significantly different rainfalls or soil textures, trap sizes can be adjusted by reapplying the formula. Determining a standard trap size per acre of drainage area makes design sim- pler. Because the drainage area of traps is small, precise sizing is normally not necessary. If, however, the downstream impacts would be substantial were the structure to fail or a different design storm or design particle size is desired, the trap should be sized by applying the sediment basin sizing procedures. Depth If a sediment trap is to be effective, sufficient settling depth must be provided and must be supplemented with a certain amount of storage depth. In the trap designed for the San Francisco Bay Area, a minimum depth of 2 ft (0.6 m) was chosen; this provides 1 ft (0.3 m) of settling and 1 ft (0.3 m) of storage. That is equivalent to 19.4 ydVacre (36.7 m^/ha) of drainage area, of which 9.7 yd' (8.4 m ') is intended for sediment storage. For many sites this minimum depth may not provide storage capacity for an entire season's sediment yield. To plan for a season's storage capacity, calculate the sediment yield and find the depth required on the basis of the surface area of the trap. If the soils in an area are relatively uniform, a standard depth per acre could be calculated by making assumptions about the factors in the USLE in much the same way as the standard surface area was determined by using the rational method and surface area formulas. Cleaning If dej)th for one season's sediment yield cannot be provided, either because of the site conditions or because a maximum depth limit is imposed by a local juris- diction, periodic cleaning will have to be done. Since cleaning is difBcult to guar- antee, it is worthwhile to look for other ways to reduce the required depth (e.g., reduce sediment yield). •JO n < (t 00 in m 2; o (-H X X t-t I n KJ o 3 c m COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOO CONTROL '•5' 30' 15' 33' U5 Pf.p NATIONAL OCEANIC ANO AT SPECIAL STUDIES DKANCII. OFFICE OF I V 30' lO-YEAR 6-nOlJli PRECIPiTATiOfJ OF iq-YEAa G-iioiin EtlTIIS or mi iricii ^10- ISGPLUVIAIS PRECIPITATION IN red by U.S. DEPARTMENT OF COMMERCE lOSI'IIERIC ADMINISTRATION UROLOGY, NATIONAL WEATIIER SERVICE IB' '15' 30' 15' 117" '>5 30' I 1 /QC; 15' 116' APPIiNinX XT-C TABLE l-i03.2IB D-load requirwncnts: ordinary bedding, dead load factor 1.50 Cover In feet Plpa dianwtsr In InchM—0-k>ad in pounds per foot la IB iei m ao 9S 38 39 42 45 48 51 54 2.0 Dead Load Lim Load 350 1393 309 1323 266 1306 26r 1281 254 1262 243 124i 234 1236 227 1226 255 1219 250 1125 244 1044 238 975 234 914 230 860 226 812 Total 1743 1632 1582, 1549 1516 1481 1471 1454 1474 1375 1389 1213 1148 1090 1039 2.5 Dead Load LiwLoad 426 817 3n 776 349 766 327 751 311 740 298 732 388 725 280 719 315 719 306 723 301 722 295 715 289 670 284 631 280 595 Total 1243 1153 1115^ 1079 1052 1031 1014 1000 1034 1031 1024 1010 960 915 876 3.0 Dead Load UvaLoad 497 515 441 490 410 483 385 474 366 467 352 462 340 457 331 454 373 454 365 456 358 456 349 453 344 453 337 451 333 451 Toul 1013 931 893 859 834 814 788 785 827 822 814 803 797 788 784 4.0 Dead Load Uve Load 629 312 560 296 523 293 493 287 470 2S3 453 280 439 zn 427 275 485 275 475 276 466 276 456 274 448 274 441 273 435 273 ToUl 042 657 818 780 753 733 716 TOS 760 752 742 730 723 714 709 S.0 DaadLoad Liva Load 747 220 666 209 626 206 592 202 566 199 546 197 531 195 518 194 590 193 580 194 569 194 557 193 549 193 539 192 533 192 Total 966 878 832 794 766 744 728 712 784 775 763 751 742 732 726 S.0 Oaadtoad . Uve Load 853 164 765 155 720 153 682 ISO 655 146 633 147 618 145 603 144 690 144 679 145 667 145 654 144 644 144 634 143 627 143 Total 1017 921 874 833 803 780 762 747 835 824 812 798 789 778 771 7.0 Dead Load Live Load 947 127 853 120 805 119 766 117 736 115 714 113 696 112 682 112 785 111 773 112 760 112 746 111 736 111 725 111 717 111 Total 1074 974 924 683 652 828 809 794 897 886 872 856 846 836 829 S.0 Dead Load Live Load 1031 101 832 96 883 95 842 93 812 92 789 91 771 90 756 69 875 89 863 89 849 89 834 89 824 89 812 ee 804 86 Total 1132 1029 978 935 904 680 881 646 964 853 939 923 913 901 893 0.0 1194 1087 1038 983 961 937 918 803 1037 1025 1011 995 985 972 864 10.0 1250 1141 1090 1047 1015 992 973 K58 1T08 1066 1682 1065 1055 1042 1034 11.0 1301 1191 1141 1096 1067 1043 1026 1012 t177 1165 1151 1134 1123 1110 1103 12.0 1347 1236 1187 1145 1115 1092 1075 1062 1242 1231 1217 1200 1180 1177 1170 14.0 1426 1315 1268 1229 1201 1181 1186 1155 1365 1356 1343 1326 1317 1304 1297 16.0 1490 1380 1338 1301 1276 1258 t247 1238 1477 1470 1458 1442 1434 1422 1417 16.0 1541 1433 1396 1363 1341 1327 1316 1312 1578 1574 1564 1549 1543 1532 1528 20.0 1562 1477 1445 1415 1397 1386 1380 1378 1870 1668 1661 1647 1643 1633 1631 24.0 1642 1542 1519 1496 1485 1482 1483 1486 1876 1833 1830 1819 1820 1613 1816 28.0 1679 1585 1570 1554 1550 1553 1560 1571 1955 1967 1969 1963 1969 1966 1973 32.0 1703 1613 1805 15B5 1597 1806 1619 1635 2058 2077 2085 2083 2094 2095 2107 36.0 1718 1632 1629 1624 1631 1646 1664 1666 2141 2166 2180 2183 2198 2204 2220 40.0 1727 1644 1845 1644 1656 1675 1686 1724 2206 2240 2258 2265 2266 2296 2317 Design criteria Ganaral—D-load values given in the tabie indicate greater accuracy than waTanied m field installation, thus, when specifying, pipe should t>e classified in 50-0 increments: lo' example. 800-D. 85C-D Badding—The above table is based or installations with ordinary bedding' and should nol be used for other conditions, except as noted 0-loads given in the tabie are based on a load factor of 1.50. For classes of bedding with load factors other than 1.50. the corrected dead load may be obtained by multiplytng the table s dead load by 1.50 and dividing by Ihe desired dead load lactor Backfill'—Based on Marsfon's curve for saturated topsoil, when Kfi=0.150. the table is consen/ative for sands, gravels and cohesionless materials. The 0-load should be recomputed for clay backfills, when Kj* > 0.150. using the correct coefficient. The table has t>een cornputed using materials with a unit weight of 110 pounds per cubic foot For matehals having a unit weight other than 110 pounds per cubic foot, the correct dead load can be calculated by multiplying the dead load shown in the table by the desired unit weight and dividing by 110. 'ftanch wMth—D-loads given in the table are based on trench widths (at top of pipe) of pipe 00 plus 16 inches tor pipe diameters 33 inches or less: and pipe OD plus 24 inches for pipe diameters greate.' than 33 inches Pipe- CDs are based on wall thicknesses given in the dimensional data table fo' Wall A pipe through 96-inch diameter and 0" wall thicknesses given m iabie lor large diameter pipe witr^ 102- ana 108-inch diameters Thicker wall designs may require a slightly higher 0-load classification. For earth covers of two to eight feet the tabulated dead load D-loads approach the maximum loads tha' occur at the transition trench width The difference in dead load lor wide' trench widths or the projecting condui; conditions may t)e a small value ana the pipe may safely ivithstand the increase For assurance ii will be CITY OF SAN DIEGO - OESIGN GUIDE SHT. NO. D-LOAD REQUIREMENTS REINFORCED CONCRETE PIPE D-LOAD REQUIREMENTS REINFORCED CONCRETE PIPE D-LOAD REQUIREMENTS REINFORCED CONCRETE PIPE A3 Temporary Desilting Basins WIM£-J^ ^^-^ L / V ^5 > 0,000 2'/ '''/^ac^ i e^os'o^ 4^J.o Sf-zD/j^PAfT TPr - /k-yrz/T , 2^oo ^ TA eJ ^ (J^^)i^o](o,(. Tfl?^_^3ioo)C^i) ^r\AA^tt^f .e.^ . . . -4tt _^.iill!l__^ IQH^C kl jCA^^r:::^--^^---^^^ A ^ - ^..-^.-iii^ IA gyt^^ —— . ^i^...—_JI2J ^^2:^ ' ' ^//^y " y^^^ H ^~^!/^ COr^.&) (j^t^S^ - 7, f i ii .44-— _iii^ : _ ' u i I -w-41- gJ^iz..-^43ggO-i^ MS^-ff'^, \ V !!! iiJ^mAhl^J^t.^ . VwCaf^AoKCD.uY^) 4t).2T?.lg ^ : _ O^^ii^.. ^ ..£).ni6-g. _ Ms/hi 4cc' .6''- <^fZ^ Al hm^,(soonDU3D^ 2.i2>2.Xi.C) /4 /.v^lg>"piA.<?i|>g e^HI6ir o (J) o.za /7z /Z.yp Cc^ \— I f 3 i I 1 III i4 ^M^Ma'^_^MA0j^hL.^ - fc_Asi!L._^ ..IL^....___ _ 3.- '64- dlArH?fBc- "ilLLkb^ 4jL.^^ ^_ ^ ^3moU£^'^m!^ II A^fc-QtOO fag- T^g ^jmJly6^.<5l^ j£---'1^i(tlj2--.^liJ-.aU-J.A^£_ -i!flbi?!!60<ai.Q*l3i5iS&^:> il^Bnnl^-j£4i^^/2igikiL^^ Q - CA< ^k-^ , P..4n i«^ Jl n/ ^ 79/ L,r.^ A /2: ^^^^^ ——^—-——— ———— ks •„ • . a,..QQosv . \i\LL^ i Mt^QgoDl^k -44 i 11 111 Ab ' .hs^^^h _ -^tTxdiC" 4-^ 3 ' A^-it^" -- .ai'.(k3>-.ig.^^ _ .d\ ^!&JO?v (G ^2-1 _ 4L|4^4q)^ •avjl,^ 3 oj;<iE)^SZn J:>«2- 905 m\l>lTO Qfoetid ' ^ I/3 <^fOoo2y _ 1/^ O. 1^ o.Qooav ~ yftao&DtY__^^ Jted^cEfo^4^.^€ ioi'^S A. ^ A1 -^^0C^<JlxklH2^___4^^1 -11- ^^^^— Cnkfim-heAlii) n OD Fall velocity, m/sec 3 4 6 8 10-' 2 3 4 6 B1Q- 1 I I lllll 1 1 Fall velocitv. ft/sec 10' 2 3 4 5 10° Fall velocity, ft/sec I III ml 1 I I 11 iii| llll Illli 1 I I I lllll 1 I H 3 4 6 8 10-5 2 3 4 6 Bio '' 2 3 4 6 8 lo-^ 2 3 4 6 8 IQ 2 2 3 4 6 8,o-' 2 3 .00029 Fall velocity, m/sec Fig. 8.12 Particle settling velocity curves. (7) Estimating Runoff • . . jC5 tenance and repair costs. Such a policy should be based on whether and where such high-risk areas exist. An appropriately longer storm return interval is advised in high-risk areas. 4.1c UseofQp.^, The peak runoff, which is normally used to size drainage systems, is calcuUted when the capacity of a channel or other conveyance structure must fae sufficient to carry all of the flow. In erosion control work. is important not only to size conveyance facilities but also to: • Check for potentially erosive velocities in unlined channels • Select channel linings that will not erode • Design outlet protection In these cases, the rational method is applied by uaing a peak precipitation intensity: Qp«k = C X ip.^ X A Peak precipitation intensity i^^ is determined by estimating the time of con- centration for the drainage area and then finding the maximum rainfall intensity for that time duration and design storm return interval. For example, if the time of cohcentration for a watershed b 1 hr. you should use the peak 1-hr rainfall intensity in your calculations. The procedure for determining this time is explained in Sec. 4.1g. 4.1d Use of Q, An average flow Q rather than peak flow, is used to find the required surface area of sediment basins and traps. The rational formula is still applied, except that an average precipitation intenaity instead of the peak intensity is used- Q.V, = C X i.„ X A Average precipitation intepsity i.^ is determined by taking the total rainfall HilnHi?^?! .?,T ^"'^ 10-y«". 6-hr storm) and dividing that total by the number of hours of duration: total 6-hr rain A 6-hr storm duration is suggested. Sediment basins designed with a 6-hr storm strike a reasonable compromise between being somewhat undersized during storm peaks and being somewhat oversized during the rest of the storm 8.16 Erosion and Sediment Control Handbook TABLE 8.1 Surface Area Requirements of Sediment Trapa and Basins Surface area requirements. Settling velocity, ft* per flVsec (m' per mVsec Particle size, ram ft/sec (m/sec) discharge discharge) 0.5 (coarse sand) 0.19 (0.058) 6.3 (20.7) 0.2 (medium sand) 0.067 (0.020) 17.9 (58.7) 0.1 (fine sand) 0.023 (0.0070) 52.2 (171.0) 0.05 (coarse silt) 0.0062 (0.0019) 193.6 (635.0) 0.02 (medium silt) 0.00096 (0.00029) 1,250.0 (4,101.0) 0.01 (fine silt) 0.00024 (0.000073) 5,000.0 (16,404.0) 0.005 (clay) 0.00006 (0.000018) 20,000.0 (65,617.0) weight composed of particles in the 0.01- to 0.02-mm range. A surface area 4 times larger would be needed to capture 5 percent more of this aoH. A balance between the cost-effectiveness of a certain baain size and the desire to capture fine particles muat be achieved. It is desirable to capture the very small soil particles (clays and fine silts) because they cause turbidity and other water quality problems. However, Table 8.1 shows that a basin would have to be very large to capture particles smaller than 0.02 mm, particularly clay particles 0.005 mm and smaller. Because of the high cost of trapping very amaU particles, the authors recommend 0.02 as the design particle size for sediment basins except in areas with coarse soils, where a larger design particle may be used. The 0.02-mm particle is classified as a medium silt by the AASHTO soil classification system. 8.2d Basin Discharge Rate The peak discharge, calculated by the rational or another approved method, is used to size the basin riser. During any major storm, a sediment basin should fill with water to the top of its riser and then discharge at the rate of inflow to the basin. A sediment basin is not designed with a large water storage volume as is a reservoir. If the inflow exceeds the design peak flow used to size the riser, the overflow should discharge down an emergency spillway. 8.2e Design Runoff Rate In the equation for surface area of a sediment basin, the discharge rate Q is a variable to be chosen by the designer. The above discussion of basin discharge rate shows that the discharge rate is, to a large extent, equal to the inflow. The riser is sized to handle the peak inflow to the basin. The authors suggest deter- mining the surface area by the average runoff of a lO-year, 6-hr storm instead TABLE S.S LS VilUM* (10) LS viluu (sr fellowinf ilop* leaftlu I, ft (m) Slope pidieat 10 20 30 40 60 60 70 80 90 100 ritio 1. % (3.0) (6.1) (9,1) (12.2) (15.2) (18.3) (21.3) (24.4) (27.4) (30.5) 0.5 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0,09 0.09 0.10 100:1 1 0.08 0.09 0.10 0.10 0.11 0,11 0.12 0.12. 0.13 0.12 2 3>0.I0 0.12 0.14 0.16 0.16 0.17 0.U 0.19 0.19 0.30 3 0.14 0.18 OJO 0.21 0.23 0,26 0J6 0.27 OJB 0.29 4 0.16 0.21 0,3i 0.28 o.ao 0J3 OM 0.37 0.38 0.40 20:1 5 0.17 0.34 0.29 0.34 0.38 0.41 0,45 0.46 0.51 0.63 6' 0.21 0.30 0.17 043 0.48 0.53 0.68 aso 0.64 a67 7 0.26 0.37 0.46 0,52 0,58 0.64 0,89 0.74 0.78 0.82 12X:1 8 OM 0.44 OM 0.63 0.70 6.77 0.83 OM 0,94 OM g 0.37 0.62 0JB4 0.74 0.83 OJI 0.98 LOS 1.11 1.17 10:1 10 0.43 0.61 0.76 0J7 0.97 1.06 1.15 1.22 1.30 1.37 11 O.S0 0.71 0.86 LOO 1.12 1.22 W2 1J41 1.60 L68 8:1 1Z.S 0.81 0.86 1.06 1.22 1.36 1.48. 1.61 1.72-1.82 1.92 15 0.81 1.14 1.40 1.62 1.81 1.98 3,1* 2.29 2.43 2.66 6:1 16.7 0.BE 1J6 1,67 1.92 2.16 2J< 2.64 • 2.72 2.88 3.04 5:1 20 1.29 1.82 2,23 2.68 3,88 3.U 3.41 3.86 3.87 4.08 4X:1 22 1.S1 2.19 2.61 S.02 3.37 3.69 3.99 4.27 4.63 4.77 4:1 26 1.86 2.63 S.23 3.73 4.18 4.66 4.93 5jn 6.59 6.89 30 . 3.51 3.S6 4J6 6.03 5,62 816 6,86 7.11 7,54 7J6 3:1 33.3 2.98 4.22 6,17 iM 6,67 7J0 7.89 8><a 8.95 9.43 35 3.23 4iT S.60 &46 7.23 7.83 8.5S 8.14 9.70 10.23 2)1:1 40 4,00 S.86 6.93 8.00 8.95 8.80 10.59 1L31 U.00 i2.es 45 4.81 6.80 8.33 8.61 10.76 11.77 12.72 13.80 14.42 16.20 2:1 60 S.B4 7.B7 11.17 12.60 lS.8f 14.91 I5M U,91 17.82 SS 6.48 9,16 11.22 12i6 14.48 15.87 17.14 1832 19.43 20:48 1X:1 57 6.82 >.64 11.80 13.63 16.24 16.89 18.03 19.28 20.46 21.66 SD 7.32 10.36 12.68 14.64 18.37 17.93 19.37 20.71 21.96 23.16 86.7 8.44 11.93 14.81 16.81 18.87 30.n 23.32 28.87 26.31 26.68 70 8.98 12.70 16.56 17.96 30.08 21J9 23.76 26J9 26.93 26.39 75 9.78 18.83 16.94 19.56 21.87 2386 25 J7 27.66 29.34 30.92 1K:1 80 10,S5 14.93 18.28 21.11 23.60 26.86 27.98 29J6 31.66 33.38 B5 11.30 16.98 19.68 22.61 26.37 37.M 29J0 31JI7 33.91 36.74 BO 12.02 17.00 20.82 24,04 28.88 29.44 ilM 34.00 36.06 38.01 SG 13.71 17.97 22.01 28.41 28.41 31.12 33.62 86.94 38.12 40,18 1:1 100 13.36 18J9 23.14 26.72 29J7 32.73 35.34 37.78 40.06 42.24 "CalculitBil fhm / 66.41 X .' 4JtXl |,„,\/_L\ [,> + lOJM) W + Ul,600 /\716^ I. • •U|iila|th.fttmXO.aow) • a|IOIIUtdip«llnitlVHlDlloIWrtMPDMll (IM br ilopM < IK, MiKilaru 1 lo !K, 0.4 hi iloiM i.t ta 4.6K, u4 0.<fbral.qlN> SX) 5.20 LS vtliiM for foUowiaf ilop* lanftlu /, ft (m) ISO 200 250 300 aso 400 450 600 eoo 700 800 900 1000 (46) (61) (76) (91) (107) (122) (137) (162) (183) (213) (244) (274) (306) 0.1O 0.11 0.11 0.12 0.12 013 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.14 0.14 0.15 0.16 0.16 oaB_ai7 0.17 0.18 0.18 0.19 0.19 0.W 0.23 0.25 OM OM 048" IUO 0.38 0.84 0.36 0.37 0.38 0.40 0.32 0.3S 0.38 0.40 0.43-TOT" 5,45 0.46 0.49 0.51 0.54 0.56 0.57 0.47 0.53 0.68 OJil 0,68 0.70 073 0.76 0.82 0.87 0.»3 0.96 1.00 0.68 0.76 0.86 0.83 1,00 1.07 1.13 VL» 1.31 1.42 1.61 1.60 1.69 0.82 0.96 1.06 1.16 1.36 1.34 1.43 1.60 1.66 1.78 1.60 2.02 2.13 1.01 1.17 1.30 1.43 1J4 1.66 1.75 1.84 2.02 i.lB 2.33 3.47 2.81 1.21 1.40 1J7 1.72 1.86 1.96 2.10 2.23 2.43 2.62 2.80 2.97 3.13 1.44 1.86 1.86 2.03 2.18 iM 2.49 2.82 2.67 3.10 3.32 3.52 3.71 tea 1.94 2.16 2.37 2.36 2.74 2.80 3.06 3.36 3.62 . 3J7 4.11 4.33 1.83 2.23 2.S0 2.74 2.96 3,16 3J6 3,63 3.67 4.18 4.47 4.74 4.99 2.36 2.72 3.04 3J3 3.69 3,84 4.08 4.30 4.71 5.08 5.43 5.76 6.08 3.13 3.62 4.06 4.43 4.76 6.12 5.43 6.72 8.27 8.77 7.24 7.68 8.09 3.72 4.30 4.81 6J7 6.68 «.08 6.46 6.80 7.46 8.04 8.60 9.12 9.62 5.00 6.77 8.45 7.06 7.83 8.16 8.66 8.12 8,99 10.79 11.54 12M 12.90 5.84 6.75 7.54 8J6 8.92 9.5^ 10.12 10.67 11.68 12.62 13.49 14.31 15.08 7.21 833 9.31 10.10 11,02 1L7B 1249 13.17 14.43 16.58 16.66 17.67 18.63 9.74 U.2S 12.57 13.77 14,88 15.91 16J7 17.78 19.48 21.04 22.49 23.86 36.1S 11.56 13.34 14.91 16.33 17,64 18.86 20.00 31.09 23.10 24.95 26.67 28,29 29.82 11.51 14.48 1616 17.70 18.13 20.44 21.88 22.86 26.04 27.04 28.91 30.67 32.32 15.50 17.89 20.01 UJI 23.67 35.30 28J4 28.39 30J9 33.48 35,79 37.98 40.01 18.82 2LS0 34JIS 3(J3 2844 30.40 33J4 33J9 37.23 4aS3 42.99 46.80 48,07 21M 26Jl 18.18 30.87 33.34 KM 87.81 39.85 43.66 47.18 50.41 63.47 56.36 35.09 38J7 33.39 36.48 38.32 40J7 43.48 46J0 60.18 S4J0 57.94 81.45 84.78 28.40 3048 34.08 37.33 40.33 43.10 45.72 48.19 62.79 67.03 80.96 64.66 68.15 2BJ6 33.74 38.60 40,10 43.31 46J0 49,11 51.77 56.71 61.26 66.48 69.46 73.31 32.68 37.74 42.19 46.32 49.92 63J7 66.80 69.68 a5J6 70.60 75.47 fOM 84.3S 34.77 40.16 44.69 49.17 63.11 66.78 60.23 63.48 89.54 75.12 60.30 ft.l7 89.76 37.87 43.73 4 869 53.66 S7J6 61.66 65.80 68.16 76.75 81.82 87.46 92.77 97.79 40,88 47.30 62.77 67.81 62.44 66.75 70.60 74.63 43.76 50.66 56.51 81.91 66.87 71.48 76.82 79.92 46.56 53.76 60.10 66.84 71.11 76.02 80.63 UM 49.21 SaJZ 63.63 68.58 76.17 SBM B6J3 89.84 81.76 88.31 94.41 100.13 105.56 87.66 94.57 101.09 107.23 113.03 93.11 100.57 107.51 1U.03 130.30 98.42 106.30 113.64 130.54 127.06 61.74 59.74 66.79 73.17 78.03 84.46 88.61 94.46 103.48 111.77 119.48 126.73 133.59 6.21 Estimating Soil Loss 5.23 TABLE 5.6 C Vaiues for Soil Loss Equation* Soil loss Type of cover C factor reduction, % None 1.0 0 Native vegetation (undisturbed) 0.01 99 Temporary seedings: 90% cover, annual grasses, no mulch 0.1 90 Wood fiber mulch, ton/acre (1.7 t/ha), with seedt 0.5 SO Excelsior mat, jutet 0.3 70 Straw mulcht 1.5 tons/acre (3.4 t/ha), tacked down 0.2 80 4 tons/acre (9.0 t/ha), tacked down 0.05 95 "Adapted from Refi. 11,15, and 20 tFor slopes up to 2:1. if a complete cover of newly seeded annual grasses is well established before the onset of rains. In many areas, seed and wood fiber mulch are applied hydraulically shortly before the rainy season. The early rains cause the seeds to germinate, but a com- plete grass cover is not established until at least 4 weeks later. During the ger- mination and early growth period, the wood fiber mulch provides only marginal protection. A C value of 0.5 is an appropriate average representing little protec- tion initially and more thorough protection when the grass is well established. On bare soils mulch can provide immediate reduction in soil loss, and it per- forms better than temporary seedings in some cases. Straw mulch is more effec- tive than wood fiber mulch; it reduces loss about 80 percent (C value, 0.2) when it is applied at the rate of 3000 lb/acre (3.4 t/ha) and tacked down. Additional reduction is obtained with 8000 lb/acre (90 t/ha) of straw, but this rate may not be cost-effective. Wood fiber mulch alone (without seed) provides very little soil loss reduction; it primarily helps seeds to become established so that the new grass can provide the erosion control. Other products, such as jute, excelsior, and paper matting, provide an intermediate level of protection; the C value equals approximately 0.3. Test results of various mulch treatments are presented in Chap. 6. 5.2f Erosion Control Practice Factor P The erosion control practice factor P is defined as the ratio of soil loss with a given surface condition to soil loss with up-and-down-hill plowing. Practices that reduce the velocity of runoff and the tendency of runoff to flow directly down- slope reduce the P factor. In agricultural uses of the USLE, P is used to describe plowing and tillage practices. In construction site applications, P reflects the roughening of the soil surface by tractor treads or by rough grading, raking, or disking. 5.24 Erosion and Sediment Control Handbook TABLE 5.7 P Factors for Construction Sites (Adapted from Ref. 15) Surface condition P value Compacted and smooth 1.3 Trackwalked along contour* 1.2 Trackwalked up and down slopef 0.9 Punched straw 0.9 Rough, irregular cut 0.9 Loose to 12-in (30-cm) depth 0.8 'Tread marks oriented up and down slope. tTread marks oriented paraUel to contours, aa in Figs. 6.9 and 6.10. P values appropriate for construction sites are listed in Table 5.7. • A surface that is compacted and smoothed by grading equipment is highly sus- ceptible to sheet runoff and is assigned a P value of 1.3. • Trackwalking is given a value of 1.2 if the vehicle traverses along the contour. The P value is relatively high because the depressions left by cross-slope track- ing resemble up-and-down furrows and worsen runoff conditions. • Trackwalking up and down slope reduces P to 0.9. The tread marks act as slope benches; they reduce runoff velocity and trap soil particles (see Fig. 6.10). • Punched straw is assigned a P value of 0.9 because the action of punching the straw into the soil roughens the surface and creates a trackwalking effect. • When the soil surface is disked or otherwise loosened to a depth of 1 ft, a slightly lower P value of 0.8 may be used. This condition is unlikely to occur on a construction site because compaction, not loosening, is required when fill slopes are constructed. Clearly, changing the surface condition does not provide much direct reduc- tion in soil loss; all the P values are>close to 1.0. However, roughening the soil surface is essential before seeding because it greatly increases plant establish- ment (see Chap. 6) and thus also reduces the C factor. Vegetation, mulch, slope length, and gradient have far more significant effects on the erosion process and provide greater opportunities to reduce soil loss. Estimating Soil Loss 6.15 <^ .0* •OA-.. /. y./ -••\ / •• \ / .-.-V \ ,n (Example 5-4) X >i H" 1 % -fc t - Pirctnl sond Fig. 5.6 Triangular nomograph for estimating K value. (6) See Table 5.3 for adjust- ments to K value under certain conditions. EXAMPLE 5.4 Given: A soil with the following particle size distribution. Component Size, mm Fraction, % Sand 2.0-0.1 30 Very fine sand 0.1-0.05 10 Silt 0.05-0.002 • 20 Clay Less than 0.002 40 Find: Texture and K value. SoluHon- Entering Fig. 5.1 with 40 percent total sand and 20 percent ailt. the texture is found to be on the border between clay and clay loam. Entering Fig. 5.6 with the same percents (see bold lines), the K value is found to be 0.19. Table 5.3 describes adjustments to the K factor. Adjustment 1 is a correction for very 5.12 Erosion and Sediment Control Handbook m si 9 700 600 500 Z 400 200 .0 * / <»• / A: / 0.5 1.0 1.5 2.0 2.5 3.0 3.5 p = 2-vear, 6-hr rain, in 4.0 4.5 25 50 -t-75 100 D = 2-vear, 6-hr rain, mm Fig. 5.5 Relations between average annual erosion index and 2-year, 6-hr rainfall in California. (14) r~l Type lA 1^ Type I @Type II The differences in peak intensity are reflected in the coefficients of the equa- tions for the rainfall factor. Figure 5.5 is a graphical representation of the equa- tions. The equations, also shown on the curves for each individual storm type, are: Fie. 6.3 Distribution of storm types in the western United States. (4) Type H storms Tccurm Arizona, Colorado, Idaho Montana Nevada. New Mexico. Utah, and Wyommg also. R = 27p" K = le.ssp*^' R = 10.2p" type II type I <• type IA where p is the 2-year. 6-hr rainfall in inches. (If p is in millimeters, the equations become: R = 0.0219p". type II; R = 0.0134p^ ^ type I; « = 0.00828p^'. type lA.) The R value is rounded to the Nearest whole number. When the rainfall time distribution curves (Fig. 5.4) and the corresponding R value equations are com- pared, it is evident that the stronger the peak intensity of the typical storm, the higher the rainfall erosion index. Pollutant Basins 7 ' if /Wvd./ /fjg, ^iC_g. /I^/J'Z ' /j^^gg^fa^ ££<j/3frf.i^^/^ Ci{Aj/£AJO.S8-- ^ a^lASJ2^ ?. M£'t<t ->?.(/71#^ cy^ r I 4^ i^fl 77!0<iae^ „ ---^.iM&i^^i)^^ —^ t ^.Uli^'^ - 0.14- hglc i3iTtii..„W-.|2-'^ D:: 212- ^.M-l-^e^^^^^^^^ I i -.H4-. i I •fH H -It- i i 41 ftr ^ ii^ag. ^I _ _ ;^D'0«&7 fr-'*" ______ , ^ 4-'.^? .^cCfskuC, 1)^ Z-K. -'ZiDnz) \' 4-4- M do-^ o^«L 1.^9 VI. <Wrtv<»feu^ lioU (J* I ^ iK-btV*^ FACTSHEET FOR WATER QUALITY ORDER 99-08-DWQ STATE WATER RESOURCES CONTROL BOARD (SWRCB) 901 P STREET, SACRAMENTO, CALIFORNIA 95814 NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) GENERAL PERMIT FOR STORM WATER DISCHARGES ASSOCIATED WITH CONSTRUCTION ACTIVITY (GENERAL PERMIT) BACKGROUND In 1972, the Federal Water Pollution Control Act (also referred to as the Clean Water Act [CWA]) was amended to provide that the discharge of pollutants to waters of the United State^ from any point source is unlawful unless the discharge is in compliance with an NPDES permit. The 1987 amendments to the CWA added Section 402(p) which establishes a framework for regulating municipal and industrial storm wato; discharges under the NPDES Program. On November 16, 1990, the U.S. Environmental Protection Agency (USEPA) published final regulations that establish storm water permit application requirements for specified categories of industries. The regulations provide that discharges of storm water to waters of the United States from construction projects that encompass five (5) or more acres of soil disturbance are effectively prohibited unless the discharge is in compliance with an NPDES Permit. While federal regulations allow two permitting options for storm water discharges (individual permits and General Permits), the SWRCB has elected to adopt only one statewide General Permit at this time that will apply to all storm water discharges associated v\dth construction activity, except from those on Tribal Lands, in the Lake Tahoe Hydrologic Unit, and those performed by the California Depeirtment of Transportation (Caltrans). Construction on Tribal Lands is regulated by an USEPA permit, the Lahontan Regional Water Control Board adopted a separate NPDES permit for the Lake Tahoe Hydrologic Unit, and the SWRCB adopted a separate NPDES permit for Caltrans projects. This General Permit requires all dischargers where construction activity disturbs five acres or more to: 1. Develop and implement a Storm Water Pollution Prevention Plan (SWPPP) which specifies Best Management Practices (BMPs) that will prevent all construction pollutants from contacting storm water and with the intent of keeping all products of erosion from moving off site into receiving waters. 2. Eliminate or reduce nonstorm water discharges to storm sewer systems and other waters of the nation. 3. Perfonn inspections of all BMPs. Option 2: Sediment basin(s), as measured from the bottom of the basin to the principal outlet, shall have at least a capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length of the basin shall be more than twice the width of the basin. The length is detennined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. OR Option 3: Sediment basin(s) shall be designed using the standard equation: As=l.2Q/Vs Where: As is the minimum surface area for trapping soil particles of a certain size; Vs is the settling velocity of the design particle size chosen; and Q=C x I x A where Q is the discharge rate measured in cubic feet per second; C is the runoff coefficient; I is the precipitation intensity for the 10-year, 6-hour rain event and A is the area draining into the sediment basin in acres. The design particle size shall be the smallest soil grain size determined by wet sieve analysis, or the i5ne silt sized (0.01mm) particle, and the Vs used shall be 100 percent of the calculated settling velocity. The length is determined by measuring the distance between the inlet and the outlet; the length shall be more than twice the dimension as the width; the depth shall not be less thsui three feet nor greater than five feet for safety reasons and for maximum efficiency (two feet of stcHuge, two feet of capacity). The basin(s) shall be located on the site where it can be maintained on a year-round basis and shall be maintained on a schedule to retain the two feet of capacity; OR Option 4: The use of an equivalent surface area design or equation, provided that the design efficiency is as protective or more protective of water quality than Options. A sediment basin shall have a means for dewatenng within 7-calendar days following a storm event. Sediment basins may be fenced if safety (worker or public) is a concem. The outflow from a sediment basin that discharges into a natural drainage shall be provided ^yith outlet protection to prevent erosion and scour of the embankment and channel. 15 100 I > I CN C ra I > I COUNTY OF SAN DIEGO 60 DEPARTMENT OF SANITATION AND 55 FLOOD CONTROL 1.0 1.5 2.0 Precipitatiorf inches ^01 Page 18 of 52 «mSdpenn99-01\Permit\SDMuniPennK 3.doc February 21,2001 xii. Be correctly designed so as to remove poHutants to the maximum extent practicable; xiii. Be implemented close to pollutant sources, when feasible, and prior to discharging into receiving waters supporting beneficial uses; and xiv. Ensure that post-development runoff does not contain poilutant loads which cause or contribute to an exceedance of water quality objectives or which have not been reduced to the maximum extent practfcable. (c) Numeric Sizing Criteria - The SUSMP shall require structural treatment BMPs to be implemented for all priority development projects. All stmctural treatment BMPs shall be located so as to infiltrate, filter, or treat the requiri^ mnoff volume or fkiw prior to its • discharqeJaa^^^^gag w«***'*X>ny yippnrting nfrndfrialiisps Stmctural treatment SMPS may be sharedbymulljple new development projects as long as construction of any shared stmctural treatment BMPs is completed prior to the use of any new development project from which the stmctural treatment BMP will recewe mnoff. In addition to meeting the BMP requirements listed in item F.1.b.(2)(b) above, all structural treatment BMPs for a single priority devetopment project shall collectively be sized to comply with the foltowing numeric sizing criteria: Volume Volume-based BMPs shall be designed to mitigate (Infiltrate, filter, or treat) either: i. The volume of runoff produced from a 24-hour 85* percentile storm event, as detemiined from the local historical rainfall record (0.6 inch approximate average for the San Dlego (bounty area);^ or ii. The volume of mnoff produced by the 85 percentile 24-hour rainfall event, detemiined as the maximized capture storm water volume for the area, from the fonnula recommended In Urban Runoff Qualitv Manaqement. WEF Manual of Practice No. 23/ASCE Manual of Practice No. 87. (1998): or The volume of annual runoff based on unit basin storage volume, to achieve 90% or more volume treatment by the method recommended in Califomia Stomiwater Best Manaaement Practices Handbook - Industrial/Commercial. (1993): or ( The volume of mnoff, as determined from the local historical rainfall record, that achieves approximately the same reduction in pollutant loads and flows as achieved by mitigation of the 85"' percentile 24-hour mnoff event;* OR III. IV. 3 This volume Is not a single volume to be applied to all of San Dlego County. The size of the M percentile stomi event is different for various parts ofthe County. The Copemiittees are encouraged to calculate the 85 percentile stomn event for each of their jurisdictions using local rain data pertinent to their particular jurisdiction fth^ 0.6 inch standard is a rough average for the Countv and should only be used where appropriate rain data Is nol available). In addiUon, isiapluvial maps coraaineo in me Oounty of San Dieqo Hydrology Manual may be used to extrapolate rainfall data to areas where insufficient data exists in order to detemiine the volum^of the local SS"^ percentile storm event in such areas. Where the Copemiittees will use isopluvial maps to detemiine the BS" percentile stomi event in areas lacking rain data, the Copermittees shall describe their method for using isopluvial maps in the model and local SUSMPs. 4 Under this volume cnteria, hourly rainfall data may be used to calculate the 85" percentile stomi event, where each stonn event is Identified by its separation from other stonn events by at least six hours of no rain. Where the Copennittees may use hourly rainfall data to calculate the 85*' percentile stomfi event, the Copemiittees shall describe their method for using houriy rainfall data to calculate the 85*" percentile storm event in the model and local SUSMPs. RUNOFF CURVE NUMBERS FOR HYDROLOGIC SOIL-COVER COMPLEXES (CN) TABLE I-A-1 AMC 2 la » 0.2S Cover Hyd ro1og i c Soil Groups , . ,, Treatment Land use Practice3 Hydrologic CondIt ion^ A B C 0 Water Surfaces (during floods) 97 98 99 99 Urban Commercial-industrial 89 90 91 92 High density residential 75 82 88 90 Medium density residential 73 80 86 Low density residential 70 78 84 87 Barren 78 86 91 93 Fallow Straight row 76 85 90 92 Vineyards (see accompanying land-use description) d isked 76 85 90 92 annual grass or legume cover Poor Fair 65 50 78 69 85 79 89 8k Good 38 61 7k 80 Roads^ (hard surface) 7k 8k 90 92 (dirt) 72 82 87 89 Row crops Straight row Poor 72 81 88 91 Good 67 78 85 89 Contoured Poor 70 79 8k 88 Good 65 75 82 86 Narrowleaf chaparral Poor 71 82 88 91 Fair 55 72 81 86 I-A-5 > I vn CN c -I ra I > I NJ COUNTY OF SAN DIEGO 60 DEPARTMENT OF SANITATION ANO 55 FLOOD CONTROL 15 2.0 25 Precipitotio^^ inches COUNTY OF SAN DIEGO, DEPARTMENT OF SANITATION AND FLOOD CONTROL I •iVHU IS-l-U LO -I n I > I