Loading...
HomeMy WebLinkAboutCT 00-06; BRESSI RANCH MASTER BACKBONE; ADDENDUM DRAINAGE REPORT; 2004-07-01ADDENDUM DRAINAGE REPORT BRESSI RANCH BACKBONE IMPROVEMENTS . TOWN GARDEN ROAD _PyLNNING-AREA: 15 AMENDED JANUARY 2005 JULY 2004 RECEIVED FEB 2^ Z005 ENGINEERING DEPARTMENT Prepared for LENNAR COMMUNITIES c/o LENNAR BRESSI VENTURE, LLC 1525 Faraday Ave, Suite 300 Carlsbad, CA 92008 Prepared By: PROJECTDESIGN CONSULTANTS 701 'B' Street, Suite 800 San Diego, CA 92101 (619) 235-6471 Job No. 2438.00 Gregory M. Shields, PE Registration Expires RCE 42951 03/31/06 Prepared By: TE Checked By: MB TABLE OF CONTENTS Section Page 1.0 INTRODUCTION 1 2.0 CONCLUSION 1 FIGURES 1.0 Vicinity Map 2 APPENDICES 1.0 AES Rational Method Computer Output 2.0 AES Pipeflow Computer Output 3.0 Desilt Basin Calculations EXHIBITS A Drainage Map B Pipe Node Number Map T:\Water Resources\2438-Bressi Multi FamilyXAddendum July 04\Report\Addendum PAI 5 Desilt Basin.doc 1.0 INTRODUCTION This report amends the previously approved Bressi Ranch Mass Grading and Backbone Improvement Drainage Report prepared by Project Design Consultants to include the new storm drain connection within Town Garden Road at 41+22. The connection is to accommodate the addition of a desilting basin for 1.9 acres of mixed use, office and retail. The runoff for this area was previously included in the backbone calculations and therefore there is no change in runoff from this parcel. A 0.94 acre parcel immediately to the east of Finnila Place was included as part of this analysis, along with another storm drain connection within Town Garden Road at 43+85. This connection is to accommodate the addition of another desilting basin for the 0.94 acre parcel east of Finnila Place. The previous backbone design included an estimate of 5 cfs for this area. The actual calculated flow is 4.68 cfs. Therefore there is no increase in flow to the backbone system. 2.0 CONCLUSION There is no increase in flow to the storm drain backbone system and therefore no adverse effect. T:\Water Resources\2438-Bressi Multi Family\Addendum July 04\Report\Addendum PA15 Desilt Basin.doc Lu O o o EL FUERTE STREET •MELROSE DRIVE POINSETTIA LANE Vicinity Map 2 T:\Water Resources\2438-Bressi Multi FamilyVAddendum July 04\Report\Addendum PA15 Desilt Basin.doc APPENDIX 1 AES RATIONAL METHOD COMPUTER OUTPUT T:\Water Resources\2438-Bressi Multi FamilyXAddendum July 04\Report\Appendix.DOC i,i,.t-l,-k***i:-k-k-l,-k-k-t-k-k**-k***-t*i^-k-k-k*-k*-k-k**-k-k-l,*-k************-k RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 **************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - PA-15 MULTI FAMILY SITE * * 100 YEAR STORM EVENT * * BACKBONE SYSTEM 200 - NODES 200 - 202.5 * ************************************************************************** FILE NAME: 2 00AH.DAT TIME/DATE OF STUDY: 09:32 07/21/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA I USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) =18.00 ] SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 j SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED 1 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING " WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) I 1 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0175 2 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0175 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximxim Allowable Street Flow Depth) - (Top-of-Curb) i 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) j *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* 1 **************************************************************************** J FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 7 i >»>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 7.79 RAIN INTENSITY(INCH/HOUR) = 5.54 TOTAL AREA(ACRES) = 0.61 TOTAL RUNOFF(CFS) = 2.52 **************************************************************************** i FLOW PROCESS FROM NODE 230.00 TO NODE 200.20 IS CODE = 62 I i »>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< 1 UPSTREAM ELEVATION(FEET) = 387.10 DOWNSTREAM ELEVATION(FEET) = 376.78 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 ; STREET HALFWIDTH(FEET) = 20.00 I ' DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 j OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 j SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 , STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 -I Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0149 ] **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.40 I STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.19 ] AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.53 : PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.09 STREET FLOW TRAVEL TIME(MIN.) = 1.32 Tc(MIN.) = 9.11 i 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.009 j MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 j SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.7 5 J TOTTU:. AREA (ACRES) = 1-11 PEAK FLOW RATE (CFS) = 4.27 J END OF SUBAREA STREET FLOW HYDRAULICS: ] DEPTH(FEET) = 0.3 3 HALFSTREET FLOOD WIDTH(FEET) = 10.13 ^ FLOW VELOCITY(FEET/SEC.) = 3.74 DEPTH*VELOCITy(FT*FT/SEC.) = 1.23 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 200.20 = 280.00 FEET. i I **************************************************************************** FLOW PROCESS FROM NODE 200.20 TO NODE 202.00 IS CODE = 31 ! • »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< i ELEVATION DATA: UPSTREAM(FEET) = 370.21 DOWNSTREAM(FEET) = 369.99 I FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.0 INCHES i PIPE-FLOW VELOCITY(FEET/SEC.) = 4.83 J ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.27 i PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 9.22 j LONGEST FLOWPATH FROM NODE 0.00 TO NODE 202.00 = 310.00 FEET. **************************************************************************** i i \ FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1 »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« j = = = = = =: = = :z = = = = —= =: = :^=: = = = —:= = = = = =: = = = = = = = = = = = = = = = = = = = =; = = = = = :^ = = = = = = = = = = = = = = = = := = = = = I TOTAL NUMBER OF STREAMS = 3 ' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) =9.22 j RAINFALL INTENSITY(INCH/HR) =4.97 1 TOTAL STREAM AREA(ACRES) =1.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.27 j *-Jt***-***-*-**-Jr-*-**-******-***-*-***-************ ' FLOW PROCESS FROM NODE 201.00 TO NODE 201.10 IS CODE = 21 1 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< 1 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =1= = = = :::^ = = — — SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 , SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 J INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00 UPSTREAM ELEVATION(FEET) = 3 89.20 1 DOWNSTREAM ELEVATION(FEET) = 3 8 8.00 ! ELEVATION DIFFERENCE(FEET) = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 i SUBAREA RUNOFF(CFS) = 0.34 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.34 **************************************************************************** j FLOW PROCESS FROM NODE 201.10 TO NODE 201.20 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< j »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 3 88.00 DOWNSTREAM ELEVATION(FEET) = 376.78 1 STREET LENGTH(FEET) = 3 50.00 CURB HEIGHT(INCHES) = 6.0 i STREET HALFWIDTH(FEET) = 20.00 1 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 I INSIDE STREET CROSSFALL(DECIMAL) = 0.020 j OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 , SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 j STREET PARFMAY CROSSFALL(DECIMAL) = 0.020 ) Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0149 J **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 4.64 J AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.53 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.56 ] STREET FLOW TRAVEL TIME(MIN.) = 2.30 Tc(MIN.) = 13.15 j 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.954 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" : S.C.S. CURVE NUMBER (AMC II) = 88 ; SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 1.00 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 1.35 i I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.08 FLOW VELOCITY(FEET/SEC.) = 2.75 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68 i LONGEST FLOWPATH FROM NODE 2 01.00 TO NODE 201.20 = 470.00 FEET. i **************************************************************************** j FLOW PROCESS FROM NODE 201.20 TO NODE 202.00 IS CODE = 31 j ' >>>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ] ELEVATION DATA: UPSTREAM(FEET) = 371.35 DOWNSTREAM(FEET) = 369.99 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 , ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.8 INCHES ' PIPE-FLOW VELOCITY(FEET/SEC.) = 7.75 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 1 PIPE-FLOW(CFS) = 1-35 1 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 13.19 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.00 = 490.00 FEET. I **************************************************************************** I FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1 I »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« j ============================================================================ ' TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I TIME OF CONCENTRATION(MIN.) = 13.19 i RAINFALL INTENSITY(INCH/HR) = 3.95 TOTAL STREAM AREA(ACRES) = 0.60 I PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.35 1 ' **************************************************************************** FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 7 j »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: j TC(MIN) = 8.06 RAIN INTENSITY(INCH/HOUR) = 5.42 J TOTAL AREA(ACRES) = 1.66 TOTAL RUNOFF(CFS) = 6.44 j **************************************************************************** I FLOW PROCESS FROM NODE 145.00 TO NODE 202.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< 1 »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 379.60 DOWNSTREAM(FEET) = 370.06 ! FLOW LENGTH(FEET) = 115.00 MANNING'S N = 0.013 j ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.10 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.44 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 8.21 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 202.00 = 115.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = . 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« , >>>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.21 RAINFALL INTENSITY(INCH/HR) = 5.36 TOTAL STREAM AREA(ACRES) = • 1.6 6 PEAK FLOW RATE(CFS) AT CONFLUENCE =6.44 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.27 9.22 4.973 1.11 2 1.35 13.19 3.946 0.60 3 5.44 8.21 5.359 1.66 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 11.40 8.21 5.359 2 11.32 9.22 4.973 3 9.48 13.19 3.946 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.40 Tc(MIN.) = 8.21 TOTAL AREA(ACRES) = 3.37 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.00 = 490.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.50 IS CODE =31 ' • >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 3 68.86 DOWNSTREAM(FEET) = 368.39 FLOW LENGTH(FEET) = 93.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.33 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =11.40 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 8.50 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.50 = 583.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.50 TO NODE 202.50 IS CODE = 10 >»»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 «<« **************************************************************************** FLOW PROCESS FROM NODE 250.00 TO NODE 255.00 IS CODE = 21 ] »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< i _ _ ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 ] SOIL CLASSIFICATION IS "D" i S.C.S. CURVE NUMBER (AMC II) = 92 ' INITIAL SUBAREA FLOW-LENGTH(FEET) = 37.00 UPSTREAM ELEVATION(FEET) = 416.40 I DOWNSTREAM ELEVATION(FEET) = 416.00 J ELEVATION DIFFERENCE(FEET) = 0.4 0 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.600 j TIME OF CONCENTRATION ASSUMED AS 6-MIN. I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 ' SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 I **************************************************************************** I FLOW PROCESS FROM NODE 255.00 TO NODE 260.00 IS CODE = 61 ] »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUB71REA<«« i »>>> (STANDARD CURB SECTION USED)<«« I UPSTREAM ELEVATION(FEET) = 416.00 DOWNSTREAM ELEVATION(FEET) = 404.88 1 STREET LENGTH(FEET) = 217.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 16.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00 J INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.02 0 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.02 00 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.66 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.57 STREET FLOW TRAVEL TIME(MIN.) = 0.99 Tc(MIN.) = 6.99 100 YEAR RAINF-ALL INTENSITY (INCH/HOUR) = 5.944 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 1.07 TOTAL AREAIACRES) = 0.24 PEAK FLOW RATE(CFS) = 1.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) = 3.2 8 FLOW VELOCITY(FEET/SEC.) = 3.07 DEPTH*VELOCITY(FT*FT/SEC.) = 0.59 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 260.00 = 254.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLDW)««< ELEVATION DATA: UPSTREAM(FEET) = 399.17 DOWNSTREAM(FEET) = 399.00 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.18 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.3 8 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 7.01 LONGEST FLOWPATH FROM NODE 25 0.00 TO NODE 265.00 = 262.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 265.00 TO NODE 265.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.01 RAINFALL INTENSITY(INCH/HR) = 5.93 TOTAL STREAM AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.3 8 **************************************************************************** FLOW PROCESS FROM NODE 270.00 TO NODE 275.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 37.00 UPSTREAM ELEVATION(FEET) = 416.40 DOWNSTREAM ELEVATION(FEET) = 416.00 ELEVATION DIFFERENCE(FEET) = 0.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.6 00 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 280.00 IS CODE = 61 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >>»> (STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 416.00 DOWNSTREAM ELEVATION(FEET) = 404.88 STREET LENGTH(FEET) = 193.00 CURB HEIGHT(INCHES) = 6.0 i STREET HALFWIDTH(FEET) = 16.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00 j INSIDE STREET CROSSFALL(DECIMAL) = 0.020 j OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 i STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 i Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.02 00 I **TRAVEL TIME COMPUTED USING ESTIMATED FLOW{CFS) = 0.83 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) =0.16 j HALFSTREET FLOOD WIDTH(FEET) = 1.50 j AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.88 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC-) = 0.61 I STREET FLOW TRAVEL TIME(MIN.) = 0.83 Tc(MIN.) = 6.83 I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.034 ' ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" I S.C.S. CURVE NUMBER (AMC II) = 92 j SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 1.03 TOTAL AREA(ACRES) = 0.23 PEAK FLOW RATE(CFS) = 1.34 i END OF SUBAREA STREET FLOW HYDRAULICS: ' DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) = 2.95 FLOW VELOCITY(FEET/SEC.) = 3.27 DEPTH*VELOCITY(FT*FT/SEC.) = 0.61 i LONGEST FLOWPATH FROM NODE 27 0.00 TO NODE 280.00 = 230.00 FEET, j ' **************************************************************************** FLOW PROCESS FROM NODE 280.00 TO NODE 265.00 IS CODE = 31 J • j »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< I ELEVATION DATA: UPSTREAM(FEET) = 399.22 DOWNSTREAM(FEET) = 399.00 FLOW LENGTH(FEET) = 22.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 j DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES i PIPE-FLOW VELOCITY(FEET/SEC.) = 3.94 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 , PIPE-FLOW(CFS) = 1.34 I PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) =6.92 ^ LONGEST FLOWPATH FROM NODE 270.00 TO NODE 265.00 = 252.00 FEET. •**-*-**-*-*-**-Jr*-*-**-*-**-*-********-*-************-** FLOW PROCESS FROM NODE 265.00 TO NODE 265.00 IS CODE = 1 »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ; »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 i CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: j TIME OF CONCENTRATION(MIN.) = 6.92 RAINFALL INTENSITY(INCH/HR) = 5.98 TOTAL STREAM AREA(ACRES) = 0.23 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.34 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.38 7.01 5.930 0.24 2 1.34 6.92 5.981 0.23 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.72 6.92 5.981 2 2.72 7.01 5.930 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.72 Tc(MIN.) = 7.01 TOTAL AREA(ACRES) = 0.47 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 265.00 = 262.00 FEET. FLOW PROCESS FROM NODE 265.00 TO NODE 415.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 398.68 DOWNSTREAM(FEET) = 397.68 FLOW LENGTH(FEET) = 103.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.75 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.72 PIPE TRAVEL TIME(MIN.) = 0.3 6 Tc(MIN.) = 7.3 8 LONGEST FLOWPATH FROM NODE 25 0.00 TO NODE 415.00 = 365.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.3 8 RAINFALL INTENSITY(INCH/HR) = 5.74 TOTAL STREAM AREA(ACRES) = 0.47 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.72 **************************************************************************** FLOW PROCESS FROM NODE 400.00 TO NODE 405.00 IS CODE = 21 \ »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< J COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 66.00 UPSTREAM ELEVATION(FEET) = 417.00 DOWNSTREAM ELEVATION(FEET) = 416.00 ELEVATION DIFFERENCE(FEET) = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.183 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) =0.28 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.28 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 410.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 416.00 DOWNSTREAM(FEET) = 407.00 FLOW LENGTH(FEET) = 274.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.75 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.28 ^ PIPE TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 7.22 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 410.00 = 340.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.822 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBTUIEA AREA(ACRES) = 0.89 SUBAREA RUNOFF(CFS) = 4.40 TOTAL AREA(ACRES) = 0.94 TOTAL RUNOFF(CFS) = 4.6 8 TC(MIN.) = 7.22 **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.22 RAINFALL INTENSITY(INCH/HR) = 5.82 TOTAL STREAM AREA(ACRES) = 0.94 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.68 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.72 7.38 5.741 0.47 2 4.68 7.22 5.822 0.94 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.36 7.22 5.822 2 7.33 7.38 5.741 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.36 Tc(MIN.) = 7.22 TOTAL AREA(ACRES) = 1-41 LONGEST FLOWPATH FROM NODE 250-00 TO NODE 415-00 = 365.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 202.53 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 397.68 DOWNSTREAM(FEET) = 387.75 FLOW LENGTH(FEET) = 175.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.85 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.3 6 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 7.46 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 202.53 = 540.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.53 TO NODE 202.53 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.46 RAINFALL INTENSITY(INCH/HR) = 5.70 TOTAL STREAM AREA(ACRES) = 1-41 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7-36 **************************************************************************** FLOW PROCESS FROM NODE 202.51 TO NODE 202.52 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANAL,YSIS««< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00 UPSTREAM ELEVATION(FEET) = 415.00 DOWNSTREAM ELEVATION(FEET) = 413.80 ELEVATION DIFFERENCE(FEET) = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.929 j TIME OF CONCENTRATION ASSUMED AS 6-MIN. < 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1-11 I TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.11 i **************************************************************************** FLOW PROCESS FROM NODE 202.52 TO NODE 202.53 IS CODE = 31 I i »»>COMPUTE PIPE-FLOW TFIAVEL TIME THRU SUBAREA««< , »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ; ELEVATION DATA: UPSTREAM(FEET) = 413.80 DOWNSTREAM(FEET) = 400.00 ' FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 j DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES j PIPE-FLOW VELOCITY(FEET/SEC.) = 5.53 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 I PIPE-FLOW(CFS) = 1.11 PIPE TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) = 7.36 J LONGEST FLOWPATH FROM NODE 202.51 TO NODE 202.53 = 570.00 FEET. > **************************************************************************** I FLOW PROCESS FROM NODE 202.53 TO NODE 202.53 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 1 _ \ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.751 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 j SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 8.31 TOTAL AREA(ACRES) = 1-90 TOTAL RUNOFF(CFS) = 9.43 i TC(MIN.) = 7.3 6 i J **************************************************************************** 1 FLOW PROCESS FROM NODE 202.53 TO NODE 202.53 IS CODE = 1 ^ >»>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« j TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: , TIME OF CONCENTRATION(MIN.) = 7.3 6 j RAINFALL INTENSITY(INCH/HR) = 5.75 TOTAL STREAM AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.43 j ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1 7.36 7-46 5-697 1.41 J 2 9-43 7.35 5.751 1.90 I RAINFALL INTENSITY AJSID TIME OF CONCENTRATION RATIO J CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** I STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 16.72 7.36 5.751 •j 2 16.70 7.46 5.697 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.72 Tc(MIN.) = 7.36 I TOTAL AREA(ACRES) = 3.31 i LONGEST FLOWPATH FROM NODE 202.51 TO NODE 202.53 = 570-00 FEET- **************************************************************************** I FLOW PROCESS FROM NODE 202-53 TO NODE 305-00 IS CODE = 41 >»»COMPUTE PI PE-FLOW TRAVEL TIME THRU SUBAREA««< ] >»»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <«« 1 ELEVATION DATA: UPSTREAM(FEET) = 387.76 DOWNSTREAM(FEET) = 379.04 , FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.7 INCHES • PIPE-FLOW VELOCITY(FEET/SEC-) = 12.36 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 1 PIPE-FLOW(CFS) = 15-72 I PIPE TRAVEL TIME(MIN-) = 0.32 Tc(MIN-) = 7.58 LONGEST FLOWPATH FROM NODE 2 02.51 TO NODE 305.00 = 810.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 1 5 >»>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« ,1 = = = = ============================ ===== = ============= === ===== === ^ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: I TIME OF CONCENTRATION(MIN-) = 7.58 J RAINFALL INTENSITY(INCH/HR) = 5.59 TOTAL STREAM AREA(ACRES) = 3.31 ^ PEAK FLOW RATE(CFS) AT CONFLUENCE = 16-72 I **************************************************************************** FLOW PROCESS FROM NODE 340.00 TO NODE 340.00 IS CODE = 7 j : j »>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< -, USER-SPECIFIED VALUES ARE AS FOLLOWS: I TC(MIN) = 12.47 RAIN INTENSITY(INCH/HOUR) = 4-09 TOTAL AREA(ACRES) = 3.3 0 TOTAL RUNOFF(CFS) = 9.5 8 j **************************************************************************** j FLOW PROCESS FROM NODE 340.00 TO NODE 305.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< i »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<<< ELEVATION DAT.A: UPSTREAM(FEET) = 385.63 DOWNSTREAM(FEET) = 379.04 ] FLOW LENGTH(FEET) = 58.00 MANNING'S N = 0.013 1 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.30 1 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9-68 PIPE TRAVEL TIME(MIN-) = 0.06 Tc(MIN.) = 12.53 LONGEST FLOWPATH FROM NODE 202.51 TO NODE 305-00 = 528-00 FEET. ,,^,************************************************************************** FLOW PROCESS FROM NODE 305-00 TO NODE 305-00 IS CODE = 1 I >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« , »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< I TOTAL NUMBER OF STREAMS = 2 ' CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.53 I RAINFALL INTENSITY(INCH/HR) = 4.08 ] TOTAL STREAM AREA(ACRES) = 3.3 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.68 j ** CONFLUENCE DATA ** •J STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1 16.72 7.68 5.594 3.31 j 2 9.68 12-53 4.080 3.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO j CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** \ STREAM RUNOFF Tc INTENSITY 1 NUMBER (CFS) (MIN.) (INCH/HOUR) ^ 1 23.78 7.68 5.594 2 21.87 12.53 4.080 1 j COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23-78 Tc(MIN-) = 7.6 8 ! TOTAL AREA(ACRES) = 6.51 { LONGEST FLOWPATH FROM NODE 202.51 TO NODE 305.00 = 810.00 FEET. ^,^^,j,^fj,.k**jf****************************************************************** 1 FLOW PROCESS FROM NODE 305.00 TO NODE 202.59 IS CODE = 31 j >>>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« , »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« j ELEVATION DATA: UPSTREAM(FEET) = 37 8.66 DOWNSTREAM(FEET) = 374.81 FLOW LENGTH(FEET) = 205.00 MANNING'S N = 0.013 •j DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.4 INCHES ! PIPE-FLOW VELOCITY(FEET/SEC.) = 10.42 ' ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.78 I PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 8.01 J LONGEST FLOWPATH FROM NODE 202.51 TO NODE 202.59 = 1015.00 FEET. . ****************************************'************************************ ! FLOW PROCESS FROM NODE 202-59 TO NODE 202.59 IS CODE = 1 J ' »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< i TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: I TIME OF CONCENTRATION(MIN.) = 8.01 I RAINFALL INTENSITY(INCH/HR) = 5.45 ' TOTAL STREAM AREA(ACRES) = 6.51 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.78 j i**jmjt********************************************************************** FLOW PROCESS FROM NODE 285.00 TO NODE 290.00 IS CODE = 21 I »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« i ___________________- = = = := = = = = ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 1 SOIL CLASSIFICATION IS "D" j S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 115.00 , UPSTREAM ELEVATION(FEET) = 408.00 j DOWNSTREAM ELEVATION(FEET) = 405.70 - ELEVATION DIFFERENCE(FEET) = 2.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.298 1 TIME OF CONCENTRATION ASSUMED AS 5-MIN- I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5-559 SUBAREA RUNOFF(CFS) = 0-56 TOTAL AREA(ACRES) = 0-09 TOTAL RUNOFF(CFS) = 0-55 I j,^jt,mj,*^n,**jt**************************************************************** FLOW PROCESS FROM NODE 290.00 TO NODE 202.56 IS CODE = 62 1 _ 1 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«<< • ' »»> (STREET TABLE SECTION # 1 USED)<«« ] UPSTREAM ELEVATION(FEET) = 408-00 DOWNSTREAM ELEVATION(FEET) = 381.65 .j STREET LENGTH(FEET) = 709.00 CURB HEIGHT(INCHES) = 5.0 STREET HALFWIDTH(FEET) = 2 0.00 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15-00 ' INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 I Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0149 J **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.13 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.43 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.18 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.87 STREET FLOW TRAVEL TIME(MIN.) = 3.71 Tc(MIN.) = 9.71 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.807 ] ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = -9500 ! SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0-58 SUBAREA RUNOFF(CFS) = 3.11 T0T7VL AREA (ACRES) = 0.77 PEAK FLOW RATE (CFS) = 3-67 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0-32 HALFSTREET FLOOD WIDTH(FEET) = 9.48 FLOW VELOCITY(FEET/SEC.) = 3.60 DEPTH*VELOCITY(FT*FT/SEC.) = 1.14 LONGEST FLOWPATH FROM NODE 285.00 TO NODE 202.56 = 824.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.56 TO NODE 202.59 IS .CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<<< ELEVATION DATA: UPSTREAM(FEET) = 375.55 DOWNSTREAM(FEET) = 375.31 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.06 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.67 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 9.75 LONGEST FLOWPATH FROM NODE 2 85.00 TO NODE 202.59 = 844.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.59 TO NODE 202.59 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.75 RAINFALL INTENSITY(INCH/HR) = 4.80 TOTAL STREAM AREA(ACRES) = 0.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.57 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) ,(MIN.) (INCH/HOUR) (ACRE) 1 23.78 8.01 5.445 6.61 2 3-67 9.75 4.796 0.77 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 27.01 8.01 5.445 2 24.61 9.75 4.796 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.01 Tc(MIN.) = 8.01 TOTAL AREA(ACRES) = 7.3 8 LONGEST FLOWP.ATH FROM NODE 202.51 TO NODE 202.59 = 1015.00 FEET- **************************************************************************** 1 FLOW PROCESS FROM NODE 202.59 TO NODE 202.50 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< ) »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ' ELEVATION DATA: UPSTREAM(FEET) = 374.48 DOWNSTREAM(FEET) = 368.57 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013 ] DEPTH OF FLOW IN 21-0 INCH PIPE IS 17-1 INCHES I PIPE-FLOW VELOCITY(FEET/SEC-) = 12-91 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 , PIPE-FLOW(CFS) = 27.01 I PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN-) = 8.24 ' LONGEST FLOWPATH FROM NODE 202.51 TO NODE 202.50 = 1195.00 FEET. ] **************************************************************************** I FLOW PROCESS FROM NODE 202.50 TO NODE 202.50 IS CODE = 11 ^ »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< J ** MAIN STREAM CONFLUENCE DATA ** I STREAM RUNOFF Tc INTENSITY AREA I NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) ^ 1 27.01 8.24 5.345 7.38 LONGEST FLOWPATH FROM NODE 202.51 TO NODE 202.50 = 1195.00 FEET. i I ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA I NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) i 1 11.40 8.50 5.240 3.37 ' LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.50 = 583.00 FEET. I ** PEAK FLOW RATE TABLE ** } STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 38.18 8.24 5.345 i 2 37.87 8.50 5.240 1 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ] PEAK FLOW RATE(CFS) = 38.18 Tc(MIN-) = 8.24 ! TOTAL AREA(ACRES) = 10.75 , END OF STUDY SUMMARY: j TOTAL AREA(ACRES) = 10.75 TC(MIN.) = 8.24 .1 PEAK FLOW RATE(CFS) = 38.18 END OF RATIONAL METHOD ANALYSIS APPENDIX 2 AES PIPEFLO W COMPUTER OUTPUT T:\'Water Resources\2438-Bressi Multi FamilyXAddendum July 04\Report\Appendix.DOC ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 . ************************** DESCRIPTION OF STUDY ************************** * 2438.00 - BRESSI RANCH PA-15 * * ADDENDUM TO BACKBONE SYSTEM * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: ADDEN-l.DAT TIME/DATE OF STUDY: 07:59 12/06/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) } NODE NUMBER 237.00- } 237.10- J 238.00- } 238.70- } 238.90- 1 238.40- } 238.50- } 239.00- } 239.10- } 239 .40- } 239.50- } 2531.00- } 2532.00- } 2532.10- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 3 .73* } HYDRAULIC JUMP i 720. FRICTION+BEND FRICTION JUNCTION 2.38 1.81*Dc 1.73*Dc 2.48* 462.36 } HYDRAULIC JUMP 1.92 2.20* FRICTION+BEND } HYDRAULIC JUMP 1.73 Dc FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION 985.19 1 632.35 584.56 UMP 524.28 524.28 1.44 Dc 1.44*Dc 355 .95 386.85 386.85 3.07* 315.66 } HYDRAULIC JUMP 1.05*Dc 117.70 1.21* 61.53 FRICTION+BEND } HYDRAULIC JUMP 0.63 Dc 31.96 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 1.13 828.88 825.56 1.13* 1.81*Dc 1.42 1. 44* 1.73*Dc 0.93 0.76* 0.93* 1.44*Dc 0-58 1.05*Dc 0.52 0.53* 632-35 553-75 549.03 524-28 411.81 513.87 500.91 386.85 175.25 117 .70 33.68 33 .45 } FRICTION 2534.00-0 . 63*Dc 31.96 0 -63*Dc 31.96 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 237-00 FLOWLINE ELEVATION = 368.57 PIPE FLOW = 27.01 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 372.300 FEET NODE 237.00 : HGL = < 372.300>;EGL= < 373.448>;FLOWLINE= < 368.570> ****************************************************************************** FLOW PROCESS FROM NODE 237.00 TO NODE 237.10 IS CODE = 3 UPSTREAM NODE 237.10 ELEVATION = 371.00 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 27.01 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 36.150 DEGREES MANNING'S N = 0 01300 PIPE LENGTH = 63.10 FEET HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.13 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.13 1.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS 0 . 000 1 . 133 14 702 4 492 825 56 2 .371 1 .133 14 707 4 494 825 76 4.844 1 .133 14 711 4 495 825 96 7 . 429 1 . 132 14 716 4 497 825 16 0.135 1 . 132 14 720 4 499 826 36 2 .974 1 . 132 14 724 4 501 826 56 5.961 1 .132 14 729 4 502 826 76 9 . Ill 1 . 131 14 733 4 504 826 96 2 . 442 1 . 131 14 738 4 505 827 17 5.977 1 . 131 14 742 4 508 827 37 9 . 743 1 . 130 14 747 4 509 827 57 3.770 1 .130 14 751 4 511 827 77 8 . 098 1 .130 14 756 4 513 827 97 2 .775 1 .130 14 760 4 515 828 17 7 . 862 1 .129 14 765 4 516 828 37 3 .436 1 .129 14 769 4 518 828 58 9.602 1 .129 14 773 4 520 828 78 3 .100 1 .129 14 776 4 521 828 .88 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 3.73 DISTANCE FROM CONTROL(FT) 0 . 000 63 .100 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 3.730 8.598 2.381 8.598 SPECIFIC ENERGY(FT) 4 . 878 3 .529 PRESSURE+ MOMENTUM(POUNDS) 985 .19 720.81 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 37.68 FEET UPSTREAM OF NODE 237.00 DOWNSTREAM DEPTH = 2.925 FEET, UPSTREAM CONJUGATE DEPTH = 1.131 FEET NODE 237.10 : HGL = < 372.133>;EGL= < 375.492>;FLOWLINE= < 371.000> ****************************************************************************** FLOW PROCESS FROM NODE 237.10 TO NODE 238.00 IS CODE = 1 UPSTREAM NODE 238.00 ELEVATION = 374.48 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.01 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 72.58 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.05 CRITICAL DEPTH(FT) = 1.81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 0 .000 1 .808 9 037 3 077 632 35 0 .046 1 .778 9 149 3 079 632 65 0 .185 1 .748 9 272 3 084 533 55 0 .424 1 .718 9 405 3 092 635 05 0 .768 1 . 687 9 548 3 104 637 16 1 .227 1 . 657 9 701 3 120 639 90 1 . 811 1 .627 9 855 3 139 543 29 2 .533 1 .597 10 041 3 163 547 36 3 . 410 1 .567 10 228 3 192 652 12 4 .461 1 .536 10 427 3 226 657 61 5 .709 1 . 506 10 638 3 265 663 87 7 .184 1 - 476 10 864 3 310 570 93 8 .921 1 . 446 11 103 3 361 578 84 10 .966 1 -416 11 358 3 420 587 54 13 .375 1 .385 11 629 3 486 697 39 16 .224 1 .355 11 917 3 562 708 15 19 . 609 1 . 325 12 223 3 646 719 98 23 . 665 1 -295 12 550 3 742 732 96 28 . 579 1 .264 12 898 3 849 747 16 34 .627 1 .23 4 13 268 3 970 762 69 42 .238 1 .204 13 664 4 105 779 54 52 .131 1 .174 14 087 4 257 798 11 65 . 656 1 -144 14 540 4 428 818 25 72 . 580 1 . 133 14 702 4 492 825 56 NODE 238.00 HGL = < 376.288>;EGL= < 377.557>;FLOWLINE= < 374-480> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 238.70 23 8.00 TO NODE ELEVATION = 23 8.7 0 IS CODE = 5 374.81 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 23 .78 27 .01 3 .23 0.00 0.00=^ DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH{FT.) (FT/SEC) 24.00 0.00 374.81 1.73 24.00 - 374.48 1.81 18.00 90.00 375.31 . 0.68 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== 7.569 9.040 1.938 0. 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01105 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01250 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01178 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.047 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.298)+( 0.047)+( 0.000) = 0.345 NODE 238.70 HGL < 377.013>;EGL= < 377.902>;FLOWLINE= < 374.810> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23 8.90 23 8.7 0 TO NODE ELEVATION = 238.90 IS CODE = 3 377.39 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 23.7 8 CFS CENTRAL ANGLE = 19.030 DEGREES PIPE LENGTH = 168.36 FEET PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.42 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.44 1.73 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 1 . 858 3 . 823 5 . 871 8 . 021 10.284 12 . 671 15.195 17.872 20.720 23.763 27 - 025 30.541 34.351 FLOW DEPTH (FT) 1. 441 1.440 1. 439 1.438 1. 437 . 436 , 435 . 434 .433 1.432 1.431 1.430 1.429 1. 427 VELOCITY (FT/SEC) 9.812 9 . 820 9 . 827 9.835 9 . 842 9 . 849 9.857 9.864 9.872 9 . 879 9 . 887 9 .894 9 . 902 9.909 SPECIFIC ENERGY(FT) 2.937 2 2 2 2 2 2 2 2 2 2 938 939 940 942 943 944 945 947 948 949 2 .951 2 . 952 2.953 PRESSURE+ MOMENTUM(POUNDS) 549.03 549.22 549.41 549 .60 549.79 549.98 550.17 550.36 550.55 550.75 550.94 551.14 551.33 551.53 38 506 1 426 9 917 2 955 551 73 43 072 1 425 9 925 2 956 551 93 48 135 1 424 9 932 2 957 552 13 53 813 1 423 9 940 2 959 552 33 60 270 1 422 9 948 2 960 552 53 67 749 1 421 9 955 2 961 552 73 76 621 1 420 9 963 2 963 552 93 87 515 1 419 9 971 2 964 553 14 101 604 1 418 9 978 2 965 553 34 121 527 1 417 9 986 2 967, 553 55 155 749 1 416 9 994 2 968 553 75 168 360 1 416 9 994 2 968 553 75 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2 .20 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 .203 7.569 3 . 092 584. 56 61 . 884 2 . 000 7 .569 2. 890 544. 86 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2. 00 =========== ======== =======-====== =========== ========== ===== ============= ======= GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 61 . 884 2 .000 7.567 2 . 890 544. 86 63 .954 1 .989 7 .572 2 . 880 542 . 97 65 . 660 1 .978 7.582 2 . 871 541. 28 67 . 178 1 .967 7 .594 2 . 863 539. 71 68 .556 1 .957 7 . 608 2 . 856 538. 26 69 . 823 1 .946 7.624 2 . 849 536. 90 70 . 996 1 .935 7 . 642 2 . 842 535. 63 72 . 085 1 .924 7.662 2 . 836 534 43 • 73 . 100 1 .913 7.683 2 . 830 533 31 74 . 047 1 . 902 7 . 706 2 . 825 532 27 74 . 929 1 . 892 7 .730 2 . 820 531 29 75 .752 1 .881 7 .755 2 . 815 530 38 76 . 516 1 . 870 7-782 2 . 811 529 54 77 . 225 1 .859 7 . 810 2 . 807 528 76 77 . 880 1 . 848 7 . 839 2 . 803 528 04 78 .482 1 . 837 7 - 869 2 . 799 527 39 79 . 030 1 . 826 7 - 901 2 . 796 526 80 79 . 525 1 . 816 7 . 933 2 . 794 526 27 79 .967 1 . 805 7.967 2 791 525 81 80 .356 1 .794 8.002 2 789 525 40 80 . 689 1 .783 8 . 038 2 787 525 06 80 .957 1 .772 8 . 076 2 786 524 78 81 . 187 1 .761 8 .114 2 784 524 56 81 .347 1 .751 8.153 2 783 524 41 81 .445 1 . 740 8-194 2 783 524 31 81 . 478 1 .729 8 .236 2 783 524 28 168 .350 1 .729 8.236 2 783 524 28 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 48.37 FEET UPSTREAM OF NODE 238.70 DOWNSTREAM DEPTH = 2.044 FEET, UPSTREAM CONJUGATE DEPTH = 1.417 FEET NODE 238.90 HGL = < 378.831>;EGL= < 380.327>;FLOWLINE= < 377.390> ********** ******************************************************************** FLOW PROCESS FROM NODE 238.90 TO NODE 238.40 IS CODE = 1 UPSTREAM NODE 238.40 ELEVATION = 378.66 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 23.78 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 83.06 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) = 1.42 CRITICAL DEPTH{FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.73 1.73 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.054 0.224 0.487 0.860 1. 1. 2. 3 . 4 . 6 . .354 . 978 , 745 , 671 ,774 , 074 7.599 9.381 11.458 13.884 16.721 20.058 24.010 28.742 34.495 41.640 50.804 63.158 81.338 83.060 FLOW DEPTH (FT) 1.726 1.714 1 .702 .689 . 677 ,664 .652 .640 . 627 1. 1. 1. 1. 1. 1. 1.615 1.602 1.590 1.578 1.565 .553 .540 . 528 .516 .503 .491 . 479 1 .456 1.454 1.441 1 .441 VELOCITY (FT/SEC) 8.246 8.295 8.346 8.399 8.453 8 . 508 8.566 8.624 8.685 8.747 8.811 8 . 876 8.943 , 012 ,083 ,156 ,230 ,306 ,385 ,465 ,547 , 632 9 .719 9 . 808 9 . 812 SPECIFIC ENERGY(FT) 2.783 2.783 2.784 2.785 2 .787 2.789 2.792 2 .795 2.799 2.804 809 814 820 827 835 843 852 861 872 883 2 . 895 2 . 908 2 . 921 2.936 2.937 PRESSURE+ MOMENTUM(POUNDS) 524.28 524.34 524.48 524 .71 525.02 525.41 525.90 526.47 527.13 527.88 528.73 529.67 530.70 531. 83 533.06 534.39 535.82 537.35 539.01 540.76 542.63 544.60 546.70 548.91 549.03 NODE 238.40 : HGL = < 380 . 386>;EGL= < 381.443>;FLOWLINE= < 378.660> ****************************************************************************** FLOW PROCESS FROM NODE 238.40 TO NODE 238.50 IS CODE = 5 UPSTREAM NODE 238.50 ELEVATION = 379.04 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 16.72 24.00 0.00 379.04 1.47 23.78 24.00 - 378.66 1.73 7.06 24.00 90.00 379.04 0.94 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== 5 .322 8.238 2.281 0 . 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00546 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01016 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00781- JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.031 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.485)+( 0.031)+( 0.000) = 0.516 NODE 238.50 HGL < 381.519>;EGL= < 381.959>;FLOWLINE= < 379.040> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 239.00 23 8.50 TO NODE ELEVATION = 239.00 IS CODE = 1 379.88 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.72 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 54.92 FEET MANNING'S N = 0.013 00 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.11 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.7 6 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.47 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0 .000 0 763 15 180 4 .343 513 . 87 3 -922 0 777 14 813 4 .186 502 .94 7 .912 0 791 14 452 4 .040 492 .55 11 .978 0 805 14 126 3 .905 482 . 69 16 .126 0 819 13 .804 3 .780 473 .31 20 .367 0 833 13 496 3 .663 464 . 40 24 .710 0 847 13 .201 3 . 555 455 .92 29 .167 0 861 12 .917 3 .454 447 .86 33 .754 0 875 12 .645 3 .360 440 .19 38 .485 0 889 12 .384 3 .272 432 .90 43 .382 0 903 12 .133 3 . 191 425 . 96 48 .468 0 917 11 . 892 3 .115 419 .35 53 . 773 0 931 11 .660 3 . 044 413 . 07 54 .920 0 934 11 .613 3 . 030 411 . 81 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS =========== ====== =========: ===== ====== ======= ======== ==== = ============= ======== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.4f PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2 .479 5.322 2 . 919 462.36 48 .703 2.000 5.322 2.440 368.48 =================== =========== ========= ================ =================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 =================== =========== ========= ================ =================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT). MOMENTUM(POUNDS) 48.703 2 . 000 5.320 2.440 368.48 50.631 1.979 5.330 2 . 420 364.67 52.379 1.958 5.348 2.402 361.14 54 .023 1.937 5.371 2 .385 357.79 54.920 1.925 5.386 2 .376 355.95 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 15.77 FEET UPSTREAM OF NODE 238.50 | I DOWNSTREAM DEPTH = 2.324 FEET, UPSTREAM CONJUGATE DEPTH = 0.891 FEET | NODE 239.00 : HGL = < 380.643>;EGL= < 384.223>;FLOWLINE= < 379.880> ****************************************************************************** FLOW PROCESS FROM NODE 239.00 TO NODE 239.10 IS CODE = 5 UPSTREAM NODE 239.10 ELEVATION = 380.38 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 16.72 18.00 0.00 380.38 1.44 14.570 DOWNSTREAM 16.72 24.00 - 379.88 1.47 15.185 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05122 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05729 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05426 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.217 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.164)+( 0.217)+( 0.000) = 0.381 NODE 239.10 : HGL = < 381.308>;EGL= < 384.604>;FLOWLINE= < 380.380> ****************************************************************************** FLOW PROCESS FROM NODE 239.10 TO NODE 239.40 IS CODE = 1 UPSTREAM NODE 239.40 ELEVATION = 388.34 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.72 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 145.22 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.91 CRITICAL DEPTH(FT) = 1.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1 . 436 9 601 2 868 386 85 0 056 1 .415 9 678 2 870 387 05 0 219 1 .393 9 766 2 875 387 63 0 .486 1 .372 9 854 2 884 388 56 0 .858 1 .351 9 972 2 896 389 83 1 .338 1 .330 10 090 2 912, 391 45 1 .932 1 .309 10 217 2 931 393 40 2 . 650 1 .288 10 354 2 953 395 70 3 .502 1 .267 10 501 2 980 398 34 4 .502 1 .245 10 657 3 010 401 33 5 .669 1 .224 10 825 3 045 404 69 7 . 024 1 .203 11 002 3 084 408 43 8 .595 1 .182 11 191 3 128 412 56 10 .416 1 .161 11 391 3 177 417 09 12 .532 1 .140 11 603 3 231 422 04 15 .000 1 .118 11 828 3 292 427 45 17 . 897 1 .097 12 066 3 359 433 31 21 .326 1 . 076 12 318 3 434 439 67 25 .433 1 .055 12 585 3 516 446 55 30 .432 1 .034 12 867 3 606 453 97 36 . 657 1 .013 13 167 3 706 461 98 44 . 664 0 .992 13 484 3 817 470 61 55 .503 0 .970 13 820 3 938 479 90 71 . 527 0 .949 14 177 4 072 489 89 100 .295 0 .928 14 556 4 220 500 .64 145 .220 0 .928 14 566 4 224 500 91 NODE 239.40 HGL < 389.776>;EGL= < 391.208>;FLOWLINE= < 388.340> ****************************************************************************** FLOW PROCESS FROM NODE 239.40 TO NODE 239.50 IS CODE = 5 UPSTREAM NODE 239.50 ELEVATION = 388.67 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES ) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7.36 18.00 0.00 388.67 1. 05 4 .155 DOWNSTREAM 16.72 18.00 388.34 1 .44 9 . 604 LATERAL #1 9.35 18.00 60.00 388.57 1.18 5 . 297 LATERAL #2 0. 00 0.00 0.00 0.00 0 . 00 0. 000 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.00491 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 . 02203 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01347 JUNCTION LENGTH FRICTION LOSSES 4.00 FEET 0.054 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.751)+( 0.054)+( 0.000) = 0.805 NODE 239.50 HGL < 391.744>;EGL= < 392.013>;FLOWLINE= < 388-670> *^,**v,************************************************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 2531.00 239-50 TO NODE ELEVATION = 2531.00 IS CODE = 1 397.35 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.36 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 160.40 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.05 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) ' (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1. 051 5 565 1 532 117 70 0 016 1. 031 5 680 1 533 117 75 0 065 1. 012 5 802 1 535 117 94 0 151 0 992 5 930 1 539 118 25 0 278 0 973 6 066 1 545 118 69 0 452 0 953 6 209 1 552 119 28 0 678 0 934 6 360 1 563 120 02 0 963 0 915 6 520 1 575 120 91 1 315 0 895 6 689 1 590 121 97 1 743 0 876 6 869 1 609 123 21 2 261 0 856 7 058 1 630 124 54 2 881 0 837 7 260 1 656 126 27 3 621 0 817 7 474 1 685 128 11 4 504 0 798 7 701 1 719 130 18 5 556 0 778 7 944 1 759 132 49 6 815 0 759 8 202 1 804 135 07 8 327 0 740 8 478 1 856 137 93 10 158 0 720 8 772 1 916 141 10 12 399 0 701 9 088 1 984 144 60 15 185 0 681 9 426 2 .062 148 .47 18 722 0 552 9 790 2 151 152 .73 23 363 0 542 10 182 2 .253 157 .43 29 763 0 623 10 605 2 -370 162 .60 39 .399 0 603 11 052 2 . 505 168 .30 57 012 0 584 11 558 2 - 660 174 .58 150 .400 0 582 11 611 2 . 577 175 .26 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 3 . 07 DISTANCE FROM CONTROL(FT) 0 .000 31-986 PRESSURE HEAD(FT) 3 - 074 1-500 VELOCITY (FT/SEC) 4-165 4.165 SPECIFIC ENERGY(FT) 3 .343 1.769 PRESSURE+ MOMENTUM(POUNDS) 315.66 142 .11 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 31.986 32.326 32.643 32.947 33.238 33.519 33 .790 34.052 34.305 34.548 34.782 35.006 FLOW DEPTH (FT) 35 .220 35.424 35.617 35 .799 35 . 36. 36 . 36. 36. 36 , 36 . 36, 36 , 36 . 160, 968 125 268 396 509 605 682 740 776 788 400 500 482 464 446 428 410 392 374 356 338 320 302 284 266 248 230 212 194 177 159 141 123 105 087 069 051 051 VELOCITY (FT/SEC) 4.164 4.173 4.190 4.212 4.238 4.258 4.301 4.338 4.378 4.421 4. 4. 4. 4. 4 . 4. 4 . 4. 4. 5. 5. 5. 5 . 5. 5. 5. SPECIFIC ENERGY(FT) 1.769 1.753 1.737 1.722 1.707, 1.693 467 516 568 623 681 743 808 876 948 024 103 187 274 367 463 565 5.565 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 25.91 FEET UPSTREAM OF NODE 239.50 DOWNSTREAM DEPTH = 1.799 FEET, UPSTREAM CONJUGATE DEPTH = 0.582 FEET 680 667 654 642 630 619 609 598 589 1.580 1. 572 1.564 1.557 1.551 1.545 1.541 1.537 1.534 1.532 1.532 1.532 PRESSURE+ MOMENTUM(POUNDS) 142.11 140.26 138.53 136.88 135.30 133 .78 132.33 130.95 129.62 128.36 127.15 126.02 124.94 123.93 122.99 122.12 121.32 120.59 119 . 119 . 118. 118 . 118. 117 . 117 . 117. .94 .36 , 87 .45 .13 .89 .74 .70 117.70 NODE 2531.00 : HGL = < 398.401>;EGL= < 398.882>;FLOWLINE= < 397.350> ****************************************************************************** FLOW PROCESS FROM NODE 2531.00 TO NODE 2532.00 IS CODE = 5 UPSTREAM NODE 2532.00 ELEVATION = 397.68 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 2-72 18-00 60-00 397.68 0.63 7.36 18.00 - 397.35 1.05 4.64 18.00 0.00 397.68 0.83 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 1.787 5 .566 3 . 869 0 . 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00070 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00699 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00384 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.03B)+( 0.015)+( 0.000) = 0.054 NODE 2532.00 : HGL = < 398.886>;EGL= < 398.936>;FLOWLINE= < 397.680> ****************************************************************************** FLOW PROCESS FROM NODE 2532.00 TO NODE 2532.10 IS CODE = 3 UPSTREAM NODE 2532.10 ELEVATION = 398.26 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 2.72 CFS CENTRAL ANGLE = 32.990 DEGREES PIPE LENGTH = 57.58 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.52 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.53 0. 63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 0.542 1 .109 1.703 2.326 2.981 3 . 672 4.403 5.177 6.001 6.880 7 . 823 8 . 838 9-938 11.135 12.453 13.913 15.549 17.409 19.562 22.116 25 .250 29.302 35 . 029 44.862 57.580 FLOW DEPTH (FT) 0.527 0.526 0.526 0.526 0.526 0.525 0.525 0.525 0.524 0.524 0.524 0.524 0.523 0.523 0.523 0. 522 0 . 522 0.522 0 . 522 0.521 0.521 0.521 0.521 0 . 520 0 . 520 0.520 VELOCITY (FT/SEC) 4.912 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 . 916 919 923 926 930 933 937 940 944 948 951 955 958 962 965 969 972 975 980 983 987 990 994 998 998 SPECIFIC ENERGY(FT) 0.902 0 .902 0.902 0.902 0.903 0.903 0.903 0.903 0 . 904 0.904 0.904 0.904 0 .905 0 . 905 0.905 0.906 0 .906 0 .906 0.906 0 .907 0.907 0 .907 0 . 908 0 . 908 0 . 908 0 . 908 PRESSURE+ MOMENTUM(POUNDS) 33 .45 33 .45 33 .47 33 .48 33 .49 33 .50 33.51 33 .52 33 .53 33 .53 33 .54 33 .55 33 . 56 33 .57 33 .58 33 .59 33 - 60 33 . 61 33 . 62 33 . 63 33 . 64 33 . 65 33 . 66 33 . 67 33 . 58 33 . 68 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.21 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 1 206 1 786 1 256 61 53 2 279 1 183 1 819 1 234 59 52 4 547 1 160 1 855 1 213 57 56 6 804 1 136 1 893 1 192 55 66 9 048 1 113 1 934 1 171 53 82 11 280 1 090 1 977 1 151 52 03 13 497 1 067 2 023 1 130 50 30 15 599 1 044 2 072 1 110. 48 64 17 882 1 020 2 124 1 090 47 03 20 046 0 997 2 180 1 071 45 50 22 188 0 974 2 239 1 052 44 03 24 305 0 951 2 303 -1 033 42 63 26 393 0 927 2 370 1 015 41 30 28 449 0 904 2 443 0 997 40 04 30 466 0 881 2 520 0 980 38 86 32 440 0 858 2 603 0 963 37 76 34 362 0 835 2 692 0 947 36 74 36 222 0 811 2 787 0 932 35 81 38 009 0 788 2 890 0 918 34 96 39 706 0 765 3 001 0 905 34 21 41 295 0 742 3 121 0 893 33 55 42 745 0 718 3 251 0 883 33 00 44 021 0 695 3 392 0 874 32 56 45 066 0 672 3 546 0 867 32 23 45 799 0 649 3 713 0 863 32 03 46 086 0 626 3 896 0 862 31 96 57 580 0 626 3 896 0 862 31 96 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 41.15 FEET UPSTREAM OF NODE 2532.00 | I DOWNSTREAM DEPTH = 0.744 FEET, UPSTREAM CONJUGATE DEPTH = 0.522 FEET j NODE 2532.10 : HGL = < 398.787>;EGL= < 399.162>;FLOWLINE= < 398.260> ****************************************************************************** FLOW PROCESS FROM NODE 2532.10 TO NODE 2534.00 IS CODE = 1 UPSTREAM NODE 2534.00 ELEVATION = 3 9 8.68 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.72 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 42.56 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0.52 CRITICAL DEPTH(FT) 0. 63 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.626 3 . 896 0. 862 31.96 0.011 0.622 3.931 0.862 31.96 0.046 0.617 3 .966 0.862 31. 97 0 .107 0.613 4.001 0 . 862 31. 98 0.195 0 . 609 4.037 0.862 32 - 00 0.315 0.605 4 . 074 0 . 863 32 . 02 0 470 0 601 4 111 0 864 32 04 0 662 0 597 4 149 0 864 32 07 0 897 0 593 4 188 0 865 32 11 1 180 0 589 4 227 0 866 32 15 1 517 0 584 4 267 0 867 32 20 1 916 0 580 4 308 0 869 32 25 2 385 0 576 4 349 0 870 32 31 2 937 0 572 4 392 0 872 32 37 3 586 0 568 4 435 0 873 32 44 4 351 0 564 4 478 0 875. 32 51 5 255 0 560 4 523 0 878 32 59 6 333 0 556 4 568 0 880 32 68 7 631 0 551 4 615 0 882 32 77 9 217 0 547 4 662 0 885 32 87 11 197 0 543 4 710 0 888 32 97 13 748 0 539 4 759 0 891 33 08 17 203 0 535 4 809 0 894 33 20 22 308 0 531 4 860 0 898 33 32 31 461 0 527 4 911 0 901 33 45 42 560 0 527 4 912 0 902 33 45 NODE 2534-00 : HGL = < 399.306>;EGL= < 399.542>;FLOWLJNE= < 398.680> *********************************************************************** * * ***** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2534.00 FLOWLINE ELEVATION = 3 98.68 ASSUMED UPSTREAM CONTROL HGL = 399.31 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ,^iii,,.*^,^,,,**i,n,t************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 ! Suite 800 • 619-235-6471 I ************************** DESCRIPTION OF STUDY ************************** I * 243 8-00 - BRESSI RANCH PA-15 * * ADDENDUM TO BACKBONE SYSTEM - DESILT OUTLET * I * 100-YEAR STORM EVENT * i ************************************************************************** I FILE NAME: ADDEN-2.DAT I TIME/DATE OF STUDY: 07:33 07/22/2004 ' ^.jj,,tj,^,j,^,j,j,^,*j,j,»,t*i********** ****** ******************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM i NODAL POINT STATUS TABLE I (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN ! NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ i NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 239.60- 3.07* 353.34 0.61 266.72 } FRICTION j 240.00- 1.19*Dc 165.22 1.19*Dc 155.22 I } CATCH BASIN 240-00- 1-92* 129-43 1-19 Dc 50.26 I MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 J NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST 1 CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA I DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************** I DOWNSTREAM PIPE FLOW CONTROL DATA: J NODE NUMBER = 239.60 FLOWLINE ELEVATION = 388.67 PIPE FLOW = 9.43 CFS PIPE DIAMETER = 18.00 INCHES j ASSUMED DOWNSTREAM CONTROL HGL = 3 91.740 FEET ^ NODE 239.50 : HGL = < 391.740>;EGL= < 392.182>;FLOWLINE= < 388.670> ****************************************************************************** FLOW PROCESS FROM NODE 239.60 TO NODE 240.00 IS CODE = 1 UPSTREAM NODE 240.00 ELEV.ATION = 393.15 (FLOW SEALS IN REACH) 1 I CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.43 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5 6.00 FEET MANNING'S N = 0.013 00 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 3-07 DISTANCE FROM • PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3 . 070 5 . 336 3 512 353 . 34 21 . 823 1 .500 5 . 335 1 942 180. 22 NORMAL DEPTH(FT) = 0.58 CRITICAL DEPTH(FT) 1.19 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 21 . 823 1 .500 5 . 335 1 942 180. 22 21 .982 1 .487 5. 342 1 931 178. 96 22 .125 1 .475 5 . 354 1 920 177 . 81 22 .260 1 .452 5 . 371 1 911 175. 74 22 .388 1 .450 5 . 390 1 901 175. 72 22 .508 1 .437 5 . 412 1 892 174. 76 22 . 624 1 .425 5 . 437 1 884 173 -85 22 .733 1 . 412 5 . 464 1 876 172. 99 22 . 837 1 -400 5 . 493 1 868 172. 17 22 .936 1 .387 5 . 524 1 851 171. 40 23 . 030 1 .375 5 . 557 1 854 170. 57 23 .118 1 .362 5. 592 1 848 159. 99 23 .202 1 .349 5 . 629 1 842 169. 35 23 .280 1 .337 5 . 658 1 835 168. 76 23 .353 1 .324 5 -709 1 831 168 . 21 23 .421 1 .312 5 -752 1 825 157. 70 23 .483 1 .299 5 -796 1 821 167 . 24 23 .539 1 -287 5. 843 1 817 166 . 83 23 .590 1 .274 5 . 892 1 814 166. 46 23 . 635 1 .262 5 . 942 1 810 165 . 13 23 . 674 1 -249 5 -995 1 807 165 . 85 23 .707 1 .237 5 . 049 1 805 165. 63 23 .732 1 .224 6 . 106 1 803 165. 45 23 .751 1 .212 6 . 165 1 802 165. 32 23 .763 1 . 199 6 . 225 1 801 155 . 24 23 .765 1 .186 5 . 288 1 801 155. 22 56 .000 1 .186 5 . 288 1 801 155. 22 NODE 240.00 : HGL = < 394.335>;EGL= < 394.951>;FLOWLINE= < 393.150> FLOW PROCESS FROM NODE 240.00 TO NODE 240.00 IS CODE = 8 UPSTREAM NODE 240.00 ELEVATION = 393.15 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.43 CFS PIPE DIAMETER = FLOW VELOCITY = 6.29 FEET/SEC. VELOCITY HEAD = CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 18.00 INCHES 0.614 FEET 0.614) = 0.123 NODE 240.00 : HGL = < 395.074>;EGL= < 395.074>;FLOWLINE= < 393.150> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 240.00 FLOWLINE ELEVATION = 393.15 ASSUMED UPSTREAM CONTROL HGL = 394.34 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego Ca. 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH STORM DRAIN ON TOWN GARDEN ROAD STATIONS 4275-4400 * * CONSTRUCTION CHANGE DUE TO STAGING * * PDC JOB #243 8 * ************************************************************************** FILE NAME: ADDEN-3.DAT TIME/DATE OF STUDY: 12:17 01/11/2005 ****** ******************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: " *" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM POUNDS) 2532 .00- } FRICTION 1 -22* 78-. } HYDRAULIC JUMP 94 0. 57 72-69 2533 - 00- } JUNCTION 0 -81*Dc 61. 34 0.81*Dc 61-34 2533 . 10- } FRICTION 0 . 86 61 . 61 0 . 58* 72 . 04 2533 .20-0. 81*Dc 61. 34 0.81*Dc 61.34 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 5 0 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2532.00 FLOWLINE ELEVATION = 397.68 PIPE FLOW = 4.50 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 3 9 8.900 FEET NODE 2532.00 : HGL = < 398.900>;EGL= < 399.033>;FLOWLINE= < 397.680> ****************************************************************************** FLOW PROCESS FROM NODE 2532.00 TO NODE 2533.00 IS CODE = 1 UPSTREAM NODE 2533.00 ELEVATION = 399.57 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 94-60 FEET M/iNNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0-57 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.81 0.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 0 . 008 0-025 0 . 050 0 . 084 0.129 0 .183 0.248 0. 324 0 . 412 0 . 512 0 . 625 0 .752 0 . 894 1 . 051 1.225 1 .416 1. 626 1 . 855 2 .106 2.379 2 . 576 2 . 999 3.350 3 - 731 4 .145 4 . 594 5 . 082 5 . 612 6- 188 6 . 814 7- 497 8- 241 9 - 056 9 -949 10-930 12 - 012 13.210 14.543 16.034 17.715 19.626 21.821 24 .376 27.404 FLOW DEPTH (FT) 0. 812 0.807 0. 802 0.797 0.792 0 .787 0.782 0 . 777 0.772 0.767 0.763 . 0.758 0 . 753 0-748 0 . 743 0-738 0.733 0 . 728 0-723 0 . 718 0 .714 0.709 0.704 0 . 699 0 . 694 0 . 689 0 . 584 0.679 0 . 674 0 . 669 0.664 0 . 660 0 . 655 0.650 0 . 645 0 . 640 0 . 635 0-630 0-625 0 - 620 0-615 0 - 611 0 . 606 0 - 601 0-596 VELOCITY (FT/SEC) 4-610 4-645 4.681 4.717 4-753 4-790 4.828 4.866 905 .945 , 985 , 026 , 058 ,110 5-153 5-197 5-242 5 .287 5-333 ,380 .428 ,476 , 525 , 576 , 627 , 679 ,732 ,786 ,841 , 897 ,954 , 012 , 071 ,132 , 193 , 256 ,320 ,385 ,451 ,519 6-588 6 . 659 6 . 731 6 . 804 6.879 SPECIFIC ENERGY(FT) 1 .142 1.142 1 .142 1 .142 1.143 1 .144 1.144 1.145 1.146 1.147 1 .149 1 .150 1.152 1 .154 1 .156 1 .158 1.160 1 .163 1 .165 1 . 168 1 .171 1. 175 1.178 1 .182 ,186 , 190 195 ,199 1.204 1 .210 1 .215 1 .221 1 . 227 1 .234 1 .241 1 .248 1. 255 1 .264 1 .272 1 .281 1.290 1 .299 1 .309 1 .320 1 .331 PRESSURE+ MOMENTUM(POUNDS) 61 .34 51.34 51 . 36 61.38 51.41 61.44 61 . 49 61 .54 61 . 60 61. 66 61 .74 61. 82 61 . 91 62 . 01 62 .12 62 . 23 62 .36 62 .49 62.63 62 .78 62 .95 63 .12 63 .30 63 .49 63 . 69 53 .90 64 .12 64 .35 64 . 59 64 .85 65 . 11 65.39 65 - 68 65 .98 66 .29 65 . 52 65 . 96 67-31 67-67 68.05 68 .45 68 . 85 69.27 59 . 71 70.16 31.078 35.590 41 .785 50 . 590 66-039 94.600 0 - 591 0 . 586 0 . 581 0-576 0-571 0 . 571 5 .955 7 . 033 7 .113 7 .195 7 .278 7.280 1 .343 1 .355 1.367 1-380 1-394 1 .395 70- 63 71- 12 71 - 62 72 .14 72.67 72 . 69 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1 .22 GRADUALLY VARIED FLOW PROFILE COMPUTED INFOPy^ATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN) 0 000 1 220 2 923 1 353 78 94 0 357 1 212 2 941 1 345 78 32 0 711 1 204 2 950 1 340 77 71 1 063 1 196 2 979 1 333 77 11 1 413 1 188 2 998 1 327 75 52 1 760 1 .179 3 018 1 321 75 94 2 104 1 171 3 039 1 315 75 36 2 446 1 163 3 060 1 309 74 80 2 786 1 -155 3 081 1 303 74 24 3 122 1 -147 3 103 1 297 73 70 3 .456 1 -139 3 125 1 291 73 16 3 .787 1 -131 3 148 1 285 72 63 4 .114 1 -123 3 171 1 279 72 12 4 438 1 -114 3 195 1 273 71 51 4 .760 1 -106 3 220 1 267 , 71 11 5 . 077 1 - 098 3 245 1 262 70 62 5 .391 1 - 090 3 270 1 255 70 15 5 .702 1 - 082 3 296 1 251 69 68 6 009 1 - 074 3 323 1 245 69 22 6 .311 1 - 066 3 350 1 240 68 78 6 . 610 1 - 058 3 378 1 235 68 34 6 .904 1 - 050 3 407 1 230 67 92 7 . 194 1 . 041 3 436 1 225 57 51 7 . 479 1 . 033 3 455 1 220 67 11 7 . 759 1 . 025 3 496 1 215 66 72 8 . 035 1 . 017 3 527 1 210 66 34 8 .305 1 . 009 3 559 1 206 55 97 8 .569 1 - 001 3 591 1 201 65 62 8 . 828 0 -993 3 625 1 197 65 28 9 . 080 0 .985 3 659 1 193 64 95 9 .327 0 . 976 3 693 1 188 64 63 9 .566 0 .968 3 729 1 184 64 -33 9 . 799 0 . 960 3 765 1 181 64 04 10 . 024 0 . 952 3 803 1 .177 63 76 10 .242 0 . 944 3 841 1 173 63 50 10 .451 0 . 935 3 880 1 170 63 25 10 .652 0 .928 3 920 1 166 63 01 10 . 844 0 . 920 3 951 1 .163 52 79 11 . 026 0 - 911 4 003 1 160 52 58 11 .198 0 .903 4 045 1 .158 52 39 11 .360 0 .895 4 .089 1 155 62 21 11 . 511 0 . 887 4 134 1 .153 62 05 11 649 O-f 579 4 180 1 151 61 91 11 775 0 . E ?71 4 228 1 149 61 78 11 887 0 . f ?63 4 276 1 147 61 66 11 985 O-E 555 4 325 1 145 61 56 12 068 0 - E ?47 4 376 1 144 51 48 12 135 0 . J 338 4 428 1 143 51 42 12 184 O-E 330 4 482 1 142 61 37 12 214 O-E 322 4 536 1 142 61 34 12 225 O.E 314 4 593 1 142 61 34 94 -600 0 . E 314 4 593 1 142 61 34 END OF HYDRAUI -JIC JUMP ANALYSIS--' PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 1.132 FEET, 3.75 FEET UPSTREAM OF NODE 2532.00 UPSTREAM CONJUGATE DEPTH = 0.571 FEET NODE 2533-00 : HGL = < 400.382>;EGL= < 400.712>;FLOWLINE= < 399-570> ****************************************************************************** FLOW PROCESS FROM NODE 2533-00 TO NODE 2533-10 IS CODE = 5 UPSTREAM NODE 2533.10 ELEVATION = 399.90 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: ANGLE FLOWLINE PIPE FLOW DITUyiETER (CFS) (INCHES) UPSTREAM 4.50 18.00 DOWNSTREAM 4.50 18.00 LATERAL #1 0.00 0.00 LATERAL #2 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== DEGREES) ELEVATION 60.00 399.90 399.57 0.00 0.00 0.00 0.00 CRITICAL DEPTH(FT.) 0 . 81 0 . 81 0.00 0.00 VELOCITY (FT/SEC) 7 .182 4.594 0. 000 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*V1*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/( (A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01865 DOWNSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.00559 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01212 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.048 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0-566)+( 0-000) = 0.565 NODE 2533-10 : HGL = < 400.477>;EGL= < 401.278>;FLOWLINE= < 399.900> ****************************************************************************** FLOW PROCESS FROM NODE 2533.10 TO NODE 2533.20 IS CODE = 1 UPSTREAM NODE 2533.20 ELEVATION = 400.89 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 49.69 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) = 0.57 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0 . 81 DISTANCE FROM CONTROL(FT) 0. 000 0 . 004 0.016 0. 038 0 .068 0.108 0 . 158 0.219 0.291 0.374 0.470 0.580 0.702 0. 840 0.993 1.152 1.349 1.554 1.779 2 . 025 2 .294 2.587 2 . 906 3 .252 3 . 629 4 . 038 4 . 483 4 . 966 5.491 6.062 6 . 684 7.362 8 .102 8 .912 9 . 800 10.776 11.853 13.046 14.374 15 . 861 17.537 19.442 21.632 24-182 27 .205 30.873 35-480 41 - 559 49.690 FLOW DEPTH (FT) 0 - 814 0.809 0 . 804 0-799 0.794 0.789 0.784 0-779 0 .775 0 . 770 0-765 0-760 0 .755 0.750 0.745 0.740 0.735 0.730 0.725 0 .720 0.715 0.710 0.705 0.700 0.695 0.690 0 . 685 0 . 681 0 . 676 0 . 671 0 . 666 0 . 661 0.656 0 . 651 0 . 646 0 . 641 0. 636 0 . 631 0.626 0 . 621 0 . 616 0 . 611 0 . 506 0 . 601 0 . 597 0.592 0 .587 0 . 582 0 . 577 VELOCITY (FT/SEC) 4 . 593 4 . 527 4 . 663 4 . 699 4.736 4 .773 4 . 811 4.849 4 . 888 4.928 4.968 5 . 009 5.051 5 , . 093 5.136 5.180 5.225 5.270 5.316 5.363 5 . 411 5.460 5.509 5 .560 5 . 611 5.663 5 . 716 5 . 771 5 . 826 5 . 882 5.939 5.998 6 . 057 6 . 118 . 179 .242 .306 .372 .439 .507 . 575 . 547 . 719 . 793 6 . 868 6 . 945 7 . 024 7 .104 7 .180 6 , 6 6 , 6 , 6 6 . 6 6 6 6 . SPECIFIC ENERGY(FT) 1 .142 1-142 1.142 1 .142 1-143 1-143 1.144 1 .145 1.146' 1.147 1.148 1.150 1.151 1.153 1.155 1 .157 1 .159 1.152 1 .164 1.167 1.170 1 .173 1 .177 1 .181 1.185 1.189 1 -193 1.198 1-203 1-208 1-214 1-220 1-226 1.232 1-239 1 .246 1 .254 1 .262 1 .270 1.279 1 .288 1.298 1.308 1 .318 1.330 1.341 1 .353 1 .365 1.378 PRESSURE+ MOMENTUM(POUNDS) 61.34 61 . 34 61 .35 61 .37 61.39 51 . 43 51 . 47 61. 51 61.57 61.63 61 .70 51.78 61.87 61.97 52 . 07 62 .19 62 .31 62 .44 62 . 58 62.73 62.89 63 . 06 63 .24 63 .43 63 . 63 63 . 83 64 . 05 54.29 64 . 53 64.78 65-05 65-32 65- 61 65 . 91 66- 22 66.55 66 . 89 67- 24 67 . 60 67 . 98 68.38 58 .79 69 .21 69 . 65 70.10 70.57 71.06 71 . 56 72 . 04 NODE 2533.20 : HGL = < 401.704>;EGL= < 402.032>;FLOWLINE= < 400.890> ********************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2 533.20 ******************************** FLOWLINE ELEVATION = 400.89 ASSUMED UPSTREAM CONTROL HGL = 401.70 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS APPENDIX 3 DESILT BASIN CALCULATIONS T:\WaterResources\2438-Bressi Multi FamilyXAddendum July 04\Report\Appendix.DOC I ^ PROJECTDESIGN CONSULTANTS f PLANNING ENGINEERING SURVEYING 701 B Street, Suite 720, San Diego, CA 92101 (619) 235-6471 • Fax (619) 234-0349 PAGE OF. JOB NO. DRAWN BY CHECKED BY DATE DATE PROJECT R.!'nck 4 -r^ri ft^ Ic /-jgv/S^^j ^ SUBJECT A'^XMon of <.,if S^sl-i ^^-'^ ^"^^^ "^'^^^ ^-^^-^^^ ^-^^^ • '^'^ 0 I L'l /nre w 1 I I i Ir-j-•f i. o, \o ma. I ^\&_ipy \ /|/ ^ ie Ti t-f^f i i ! : I I 1 -1 I [ 1 \ 0.. ! ! A i ' - ! I lii''' .1 - V i ^ 1^ r |ix^.(c);^]]..,..L,,