Loading...
HomeMy WebLinkAboutCT 00-06; BRESSI RANCH MASTER EL CAMINO REAL; DRAINAGE REPORT; 2003-01-01DRAINAGE REPORT FOR EL CAMINO REAL BRESSI RANCH (CT 00-06) CARLSBAD, CALIFORNIA January 2003 4 Prepared for LENNAR COMMUNITIES c/o LENNAR BRESSI VENTURE, LLC 5780 Fleet Street, Suite 320 Carlsbad, CA 92008 Prepared By: PROJECTDESIGN CONSULTANTS 701 'B' Street, Suite 800 San Diego, CA 92101 (619) 235-6471 Job No. 2301.00 RCE 50998 Registration Expires 09/30/05 TABLE OF CONTENTS Page Section 1.0 INTRODUCTION • 1 2.0 EXISTING DRAINAGE IMPROVEMENTS 3 3.0 PROPOSED DRAENfAGE IMPROVEMENTS 3 4.0 HYDROLOGY CRITERIA AND METHODOLOGY 4 4.1 Hydrology Criteria 4 4.2 Hydrology Methodology 4 4.2.1 Existing Condition Hydrology 5 4.2.2 Interim Condition Hydrology 5 4.2.3 Ultimate Condition Hydrology 5 4.3 Explanation of AES Modified Rational Method Software 6 5.0 HYDRAULIC CRITERIA AND METHODOLOGY 8 5.1 Hydraulic Criteria 8 5.2 Hydraulic Methodology 8 5.2.1 Storm Drainpipe Design Methodology 8 5.2.2 Curb Inlet, Catch Basin, and Concrete Ditch Analysis 9 5.3 Explanation of AES Pipeflow Software 9 6.0 HYDROLOGY AND HYDRAULIC ANALYSIS RESULTS 10 6.1 Hydrology Analysis 10 6.2 Hydraulic Analysis 11 7.0 CONCLUSION H FIGURES Page 1 Vicinity Map 2 R:\WP\REPORTM 300\I3255DR.DOC TABLES Page 1 Hydrology Criteria 4 2 Hydraulic Criteria . 8 3 Hydrology Summary U APPENDICES 1 Rational Method Isopluvials Map 2 Rational Method Computer Output 3 AES Pipeflow Computer Output 4 Inlet, Catch Basin, and Ditch Calculations ATTACHMENTS Exhibit A Ultimate Condition Drainage Map Exhibit B Interim Condition Drainage Map Exhibit C Existing Condition Drainage Map Exhibit D AES Pipeflow and Ditch Calculation Node Number R:\W1'\R£PORTM300\13255DR.DOC 1.0 INTRODUCTION This report provides hydrologic and hydraulic analyses for design of the storm drain facilities associated with the widening of Camino Real. In general, the project consists of the: 1) widening of the northerly bound lane from Palomar Airport Road to approximately 2400 feet southerly of the intersection of El Camino Real and Palomar Airport Road, 2) extension of existing drainpipe, 3) addition of inlets/drainpipe due the superelevation of the roadway, and 4) replacement of an existing ditch and catch basin. Refer to Figure 1: Vicinity Map, for the project location. From a project phasing perspective, the El Camino Real project will be constmcted before the Bressi Ranch Development Project. As a result, existing, interim, and ultimate conditions hydrologic analyses were performed to: 1) design the proposed improvements, and 2) evaluate the project impacts on existing storm drain facilities. The existing condition analysis was based on the: 1) existing conditions topography identified on the Bressi Ranch Development Tentative Map and 2) the 'As-Built' plans for El Camino Real. The interim conditions analysis is also based on items 1 and 2; however, the analysis includes the widening of the roadway. The ultimate conditions analysis is based on the Bressi Ranch Industrial storm drain design for Town Center Drive and Planning Area 3 (City Dwg. No. 400- 8D, Sheet 12). A key concem in the design of the project storm drain improvements is the existing culvert that crosses Camino Real to the resort that is located just southerly of the Camino Real/Palomar Airport road intersection. The goal of the interim and ultimate conditions hydrology was to, at a minimum, maintain the mnoff through this culvert at or below existing conditions. Specifically included in this report are: • Hydrology for existing, interim, and ultimate conditions constmction phasing; • Storm drain hydraulic capacity (Pipeflow) calculations using the interim and ultimate condition mnoff; • Inlet, catch basin, and ditch design calculations using the ultimate condition mnoff R:\WP\REPORTM300\13255DR. DOC PROJECT SITE EL CAMINO REAL yiCMTYMAP A/or TO SCALE Figure 1. Vicinity Map R:\WPMlEl"ORT\1300\13255DR.rXX' /'•-•: 2.0 EXISTING DRAINAGE The following sections address project existing conditions drainage pattems and improvements. These pattems provide the framework for the hydrologic evaluation of the existing, interim and ultimate conditions hydrology, which was used in the evaluation and design of the project storm drain improvements (See Section 3.0). The southbound half of El Camino Real (adjacent to Resort) has been widened to its ultimate width, which includes three lanes, a median, and parkway. There are currentiy two existing storm drain systems within El Camino Real between Stations 298-1-00 to 320-fOO that will be affected by the project: • Svstem 1: Consists of an inlet, storm drianpipe, and cleanouts on the westerly side of the roadway with a 24-inch drainpipe discharging into Bressi Ranch site on the west. • Svstem 2: Consists of a 36-inch drainpipe discharging to a concrete ditch along the westerly side of the roadway. The 36-inch drainpipe receives mnoff from 1) a ditch and 'F' Type Catch Basin along the easteriy side of the roadway which picks up mnoff from the Bressi Ranch site, and 2) two median inlets and 18-inch lateral drainpipes picking up mnoff within the superelevated portion of the roadway. 3.0 PROPOSED DRAINAGE IMPROVEMENTS The proposed drainage improvements consist of: • Svstem I: Consists of an 18-inch RCP, 12" CSP slotted drain, and a curb inlet along the easterly side of the road connecting to the existing 24-inch d^inpipe discharging into Bressi Ranch. The curb inlet will be placed at Station 307-fOO to pick up street runoff prior to superelevation. The slotted drain is required due to the relatively flat curb grade within the superelevation transition. Ultimately the 24-inch drainpipe will be extended northeriy along El Camino Real through the Bressi Ranch development. R:\WI>«EPORTM 300\13255DR.DOC 4.0 • System 2: Consists of a concrete ditch and catch basin behind the proposed easteriy sidewalk discharging to the existing 36-inch drainpipe. Under ultimate conditions System 1 will connect to a proposed storm drainpipe conveying flows from the Bressi Ranch development PA-3 to the existing 36" RCP crossing El Camino Real. The ultimate condition improvements will be reflected on the Bressi Ranch Mass Grading and Storm Drain Improvement Plans, currentiy in plan check at the city. HYDROLOGY CRITERIA AND METHODOLOGY 4.1 Hydrology Criteria This section of the report summarizes the drainage criteria that were used in the hydrologic analysis and key elements of the methodology. Table 1 below summarizes the drainage criteria for the project. Table 1: Hydrology Criteria Design Storm: lOO-year, 6-hour storm. Land Use: Existing, interim and ultimate open space, roadway, and industrial. Runoff Coefficients: Based on criteria presented in the "Standards for Design and Constmction of Public Works Improvements in the City of Carlsbad," Drainage - Design Criteria section, dated 4-20-93. Hydrologic Soil Group: Soil Group 'D'. See Appendix 1 for the County Soil Group Map. Intensity and Time of Concentration: Based on criteria presented in "Standards for Design and Constmction of Public Works Improvements in the City of Carlsbad," Drainage - Design Criteria section, dated 4-20-93 and thp. Cnnntv of San Diego Hvdroloev Manual. See Appendix 1 for the County Isopluvials. Minimum Tc = 6 min. (assumed). R;\WI>\REPORTM30(M3255DR.DOC 4.2 Hydrology Methodology Existing, interim and ultimate condition mnoff was calculated to determine the goveming mnoff for design of the project storm drain facilities, and to provide a baseline of comparison of existing and proposed mnoff lO-year, 6-hour storm flows at the inlets were calculated from the 100-year storm flows using the San Diego County Intesity-Duration-Frequency curves using the lOO-year time of concentration (duration). The 10-year, 6-hour storm flows were used in the hydraulic analysis to determine street flooding limits. 4.2.1 Existing Condition Hydrology An existing condition hydrology analysis was performed to establish baseline mnoff to drainage System 2 in order to determine the impacts of 1) the roadway widening and 2) the Bressi Ranch development. 4.2.2 Interim Condition Hydrology The El Camino Real widening and Bressi Ranch project constmction phasing creates an interim drainage condition that consists of the following: • Proposed widening of the easteriy side of El Camino Real fronting Bressi Ranch including sidewalk and curb and gutter; • Constmction of CSP slotted drain and curb inlet along die easteriy side of El Camino Real connecting to existing storm drain System 1; • Drainage ditch and catch basin along the easteriy edge of El Camino Real connecting to storm drain System 2; The hydrology is based on proposed street grades, storm drainpipe profile, and existing topography. 4.2.3 Ultimate Condition Hydrology The ultimate condition consists of the following: R:\WPy?EPORTM 30(M 3255DR.IXX; • Proposed grading associated with the Bressi Ranch Development Planning Areas 1-3 along the easterly side of El Camino Real; • Backbone storm drainpipe system and inlets within Bressi Ranch; • Extension of System 1 northeriy along El Camino Real connecting to System 2; • Constmction of a storm drainpipe along the easteriy side of El Camino Real connecting to System 2. • Concrete ditch and 'F' Type Catch Basin along the easteriy side of El Camino Real northerly of future Gateway Center Drive. Note that the design and constmction of the extension of System 1 and the drainpipe connecting to System 2 will be addressed in the drainage report for the Bressi Ranch Mass Grading and Drainage plans. The ultimate conditions mnoff to System 2 was based on the latest Bressi Ranch mass grading improvement plans. 4.3 Explanation of AES Rational Method Software The Advanced Engineering Software (AES) Rational Method Program was used to perform the hydrologic calculations. This section provides a brief explanation of the computational procedure used in the computer model. The AES Rational Method was used to determine the lOO-year mnoff for the Project. The AES Rational Method Hydrology Program is a computer-aided design program where the user develops a node link model of the watershed. The program has the capability of estimating conduit sizes to convey design storm mnoff, or the user may input specific conduit sizes and open channels. Soil types used in the model are based on hydrologic soil groups as outlined in the Conservation Service's Soil Survev for San Diego County. The rainfall intensity distribution and mnoff coefficients utilized by the program can be user-specified to be based on either the County of San Diego or the City of San Diego Drainage Design Manuals. R:\WP«EIK)RT\1300\13255DR.DOC Developing independent node link models for each interior watershed and linking these sub- models together at confluence points creates the node link model. The program allows up to five streams to confluence at a node. Stream entries must be made sequentially until all are entered. The program allows consideration of only one confluence at a time. The program has the capabihty of performing calculations for 17 hydrologic and hydraulic processes. These processes are assigned code numbers, which appear in the printed output. The code numbers and their meanings are as follows: CODE 0: ENTER Comment CODE 1: CONFLUENCE analysis at node CODE 2: INITIAL subarea analysis CODE 3: PIPE/BOX travel time (COMPUTER estimated pipe/box size) CODE 4: PIPE/BOX travel time (USER specified pipe/box size) CODE 5: OPEN CHANNEL travel time CODE 6: STREETFLOW analysis through subarea, includes subarea mnoff CODE 7: USER-SPECIFIED hydrology data at a node CODE 8: ADDITION of subarea mnoff to MAIN-Stream CODE 9: V-GUTTER flow through subarea CODE 10: COPY MAIN-stream data onto memory BANK CODE 11: CONFLUENCE a memory BANK with the Mainstream memory CODE 12: CLEAR a memory BANK CODE 13: CLEAR the MAIN-stream CODE 14: COPY a memory BANK onto the Main-stream memory RAWrMtEPORTM 300M 3255DR.DOC CODE 15: HYDROLOGIC data BANK storage functions CODE 16: USER-SPECIFIED Source How at a node 5.0 HYDRAULIC CRITERIA AND METHODOLOGY The following sections discuss the criteria and methodology employed in the hydraulic design of the storm drain facilities. Also included is a brief description of the computer software used in the analyses. 5.1 Hydraulic Criteria Table 2 below summarizes the hydrauhc criteria used in the design of the storm drain improvements. Table 2. Hydraulic Criteria Underground storm drain systems 100-Year storm HGL below the inlet opening and below cleanout top-of-rim elevations Inlets City of Carlsbad Inlet Capacity formulas for inlets on grade, and 2 cfs/ft for inlets in sump. Slotted Inlets Slotted inlet length per Federal Highway Administration HEC-22 equations (FlowMaster) F-Type Catch Basins 100-Year storm HGL below the inlet openings Ditches and Channels 100-Year storm HGL contained within the ditch/channel with 0.5 foot freeboard. Arterial Streets No more than one lane obstmcted by 10-year, 6-hour storm flows 5.2 Hydraulic Methodology 5.2.1 Storm Drainpipe Design Methodology The proposed System 1 storm drainpipe was designed based on the ultimate condition mnoff The existing System 1 was analyzed to determine potential hydraulic impacts associated with the proposed 18-inch RCP connection into the existing 24-inch drainpipe. RAWP\REPORTM 300\13255DR.DOC The existing 36-inch System 2 storm drainpipe was analyzed for existing, interim, and ultimate condition mnoff to determine hydraulic impacts associated with the proposed storm drain facilities along the easteriy side of El Camino Real. The drainpipes were analyzed using the AES Pipeflow Model described in Section 5.3. 5.2.2 Inlet, Catch Basin, and Concrete Ditch Analysis The proposed curb inlet for System 1 was sized assuming sump, conditions. The slotted inlet for System 1 was sized based on ultimate condition mnoff with no by-pass and assuming that the curb inlet is completely clogged. The capacity and bypass flows for the existing street inlets is also provided. The proposed interim condition concrete drainage ditch along the easteriy side of El Camino Real at future Town Garden Road was designed based on the interim condition mnoff The proposed drainage ditch and 'F' Type catch basin along the easterly side of El Camino Real northerly of future Gateway Center Drive was designed based on the ultimate condition mnoff 5.3 Explanation of AES Pipeflow Model The AES computational procedure is based on solving Bemoulli's equation for the total energy at each section; and Manning's formula for the friction loss between the sections in each computational reach. Confluences are analyzed using pressure and momentum theory. In addition, the program uses basic mathematical and hydraulic principles to calculate data such as cross sectional area, velocity, wetted perimeter, normal depth, critical depth, and pressure and momentum. Model input basically includes storm drainpipe facility geometry, inverts, lengths, confluence angles, and downstream/upstream boundary conditions, i.e., initial water surface elevations. The program has the capability of performing calculations for 8 hydraulic loss processes. These processes are assigned code numbers, which appear in the printed output. The code numbers and their meanings are as follows: CODE 0: ENTER Comment CODEI: FRICTION Losses R:\WP1J(EP0R-TM 300\13255DR.DOC CODE 2: MANHOLE Losses CODE 3: PIPE BEND Losses CODE 4: SUDDEN Pipe Enlargement CODES: JUNCTION Losses CODE 6: ANGLE-POINT Losses CODE 7: SUDDEN Pipe Reduction CODE 8: CATCH BASIN Entrance Losses CODE 9: TRANSITION Losses 6.0 HYDROLOGY AND HYDRAULIC ANALYSIS RESULTS The following sections address the hydrologic and hydraulic results of the analyses associated with the above improvements. 6.1 Hydrology Analysis The results of the hydrologic analysis are summarized in Table 3 for drainage Systems 1 and 2. Flows at the System I outiet will increase for the interim and ultimate conditions due to the addition of the proposed slotted drain that is required due to superelevation transition within the roadway. Flows at the System 2 outiet will increase by 1.4 cfs, or 2 percent, in the interim condition due to the roadway widening. Flows at the System 2 outiet will decrease by 0.2 cfs under the ultimate condition. R;\WP«EPORTM300M3255DR.DOC 10 Table 3. Hydrology Results LOCATION Existing QIOO (cfs) Interim QIOO (cfs) Ultimate QIOO (cfs) System 1 Outlet 5.3 lO.O 10.9 System 2 Outiet 72.2 73.6 72.0 6.2 Hydraulic Analysis Hydraulic analysis of the existing System 1 and System 2 drainpipes was performed to determine the potential hydraulic impact associated witii increased flows in the interim or ultimate condition. Results of the System 1 analysis indicates that in the interim condition, the connection of the proposed inlet and 18-inch CSP slotted drainpipe connection to the existing 24- inch drainpipe will not adversely impact the 24-inch drainpipe and existing inlet on the westeriy side of the roadway. Under Interim condtions, the HGL within the 24-inch drainpipe will remain below the soffit of the pipe. Results of the System I analysis also indicates that in the ultimate condition, a portion of the existing 24-inch drainpipe will experience pressure flow due to proposed downstream HGL constraints, however, the HGL within the 24-inch drainpipe unseals in the reach downstream of the existing westerly cleanout and inlet, so the existing upstream system will be unaffected. Results of the System 2 analysis indicate that the minor interim condition increase in flow will have minimal impact on the existing HGL within the 36-inch drainpipe. Analysis of the existing and proposed inlets, catch basin, and ditches is provided in Appendix 4. 7.0 CONCLUSION This report provides hydrologic and hydraulic analyses for design of the proposed El Camino Real storm drain facilities. El Camino Real will be widened to its ultimate condition from Palomar Airport Road Road to approximately 2400 feet southeriy. Refer to Figure 1: Vicinity R:\WPWEPORTM300M3255DR.DOC 11 Map, for the project location. From a project phasing perspective, the El Camino Real project will be constmcted before the Bressi Ranch Development Project. As a result, existing, interim, and ultimate conditions hydrologic analyses were performed to: 1) design of the storm drain improvements within El Camino Real, and 2) determine the hydraulic impacts associated with the project. The interim condition analysis was based on the existing conditions topography identified on the Bressi Ranch Development Tentative Map and the 'As-Built' plans for El Camino Real. The Bressi Ranch Tentative Map site layout, and also the proposed El Camino widening plans, was used for the interim and ultimate conditions hydrology. A key concem in the analysis was a comparison of existing and proposed mnoff to the existing storm drain facilities located near the intersection of El Camino Real and Palomar Airport Road to determine the hydraulic impacts of the proposed project. The results indicate: 1) an increase in flow within System 1 due to the constmction of a curb inlet and lateral drainpipe connection, 2) a minor increase in flow within System 2 due to the roadway widening for the interim condition, and 3) a minor decrease in flow within System 2 for the ultimate condition. Included in this report are: • Hydrology for existing, interim, and ultimate conditions constmction phasing; • Storm drain hydraulic capacity (Pipeflow) calculations using the interim and ultimate condition mnoff; • Inlet, catch basin, and ditch design calculations using the ultimate condition mnoff. RAWTOEPORTM 30OM3255DR.DOC 12 APPENDIX 1 RATIONAL METHOD ISOPLUVIAL MAPS lOO-YEAR A- 1 1^ 1 APPENDIX 2 RATIONAL METHOD COMPUTER OUTPUT A- 2 EXISTING CONDITION RATIONAL METHOD COMPUTER OUTPUT : SYSTEM 2 A- 3 ************************************************ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 •(619) 235-6471 ************************** DESCRIPTION OF STtJDY ************************** * CAMINO REAL - 'F' TYPE CATCH BASE NODE 2000 EXISTING CONDITION ANALYSIS * * BASELINE CONDITIONS * * lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: BASE.DAT TIME/DATE OF STUDY: 19:26 08/15/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VAHJES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED •USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 45.0 40.0 0.020/0.020/ --- 0.50 1.50 0.0312 0.125 0.0170 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 106.10 TO NODE 106.11 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 45.00 UPSTREAM ELEVATION = 450.00 DOWNSTREAM ELEVATION = 449.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.3 88 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.62 ***************************,********* FLOW PROCESS FROM NODE 106.11 TO NODE 106.12 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 449.00 DOWNSTREAM ELEVATION(FEET) = 436 00 STREET LENGTH(FEET) = 750.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 45.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 40.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0170 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.79 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.78 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.59 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.83 STREET FLOW TRAVEL TIME(MIN.) = 4.82 Tc(MIN.) = 10.82 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.484 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 4.26 TOTAL AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) = 4.88 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) =12.42 FLOW VELOCITY(FEET/SEC.) = 2.94 DEPTH*VELOCITy(FT*FT/SEC.) = 1.10 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 106.12 = 795.00 FEET. *************************************************,HHHH,^j.^,^^^j.^.^^^j,^^j^^^^^^^^ FLOW PROCESS FROM NODE 106.12 TO NODE 106.13 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 436.00 DOWNSTREAM ELEVATION(FEET) = 396.00 STREET LENGTH(FEET) = 850.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) =45.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) =40.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0170 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.70 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) =11.48 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.66 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.66 STREET FLOW TRAVEL TIME(MIN.) = 3.04 Tc(MIN.) = 13.86 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.822 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 3.63 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 8.51 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.67 FLOW VELOCITY(FEET/SEC.) = 4.94 DEPTH*VELOCITY(FT*FT/SEC.) = 1.88 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 106.13 = 1645.00 FEET. *************************,************•******************************«****** FLOW PROCESS FROM NODE 106.13 TO NODE 106.14 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 390.00 DOWNSTREAM(FEET) = 385.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) =8.17 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.51 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 14.37 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 106.14 = 1895.00 FEET. ********************************************jt**************************4t**** FLOW PROCESS FROM NODE 106.14 TO NODE 106.14 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.734 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 3.10 SUBAREA RUNOFF(CFS) = 11.00 TOTAL AREA(ACRES) = 5.20 TOTAL RUNOFF(CFS) = 19.51 TC(MIN) = 14.37 ******************************** ************ ******************************** FLOW PROCESS FROM NODE 106.14 TO NODE 2000.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 380.00 DOWNSTREAM(FEET) = 290.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 2200.00 CHANNEL SLOPE = 0.0409 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 19.51 FLOW VELOCITY(FEET/SEC) = 5.02 FLOW DEPTH(FEET) = 0.58 TRAVEL TIME(MIN.) = 7.3 0 Tc(MIN.) = 21.67 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 2000.00 = 4095.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2000.00 TO NODE 2000.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.865 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 37.60 SUBAREA RUNOFF(CFS) = 48.48 TOTAL AREA(ACRES) = 42.80 TOTAL RUNOFF(CFS) = 67.99 TC(MIN) = 21.67 *********************************************************^j^,^^^^^^^^^^^^.^^,.^^ FLOW PROCESS FROM NODE 2000.00 TO NODE 2010.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 280.58 DOWNSTREAM(FEET) = 279.73 FLOW LENGTH(FEET) = 3 9.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 23.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.08 GIVEN PIPE DIAMETER(INCH) = 36-00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 67.99 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 21.71 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 2010.00 = 4134.00 FEET. ***************************************************************^^.j^jj^^^^j.^^..j^^^ FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 21.71 RAINFALL INTENSITY(INCH/HR) = 2.86 TOTAL STREAM AREA(ACRES) = 42.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 67.99 ******************************************************************,j..i^^^^^.^^^^ FLOW PROCESS FROM NODE 2100.00 TO NODE 2110.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH =100.00 UPSTREAM ELEVATION = 298.00 DOWNSTREAM ELEVATION = 296.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.143 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.00 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) = 1.00 *********************************************************************jj^j^^^^jj. FLOW PROCESS FROM NODE 2110.00 TO NODE 2120.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»»(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 296.00 DOWNSTREAM ELEVATION(FEET) = 291.64 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.22 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.78 AVERAGE FLOW VELOCITY (FEET/.SEC. ) = 2.51 PRODUCT OF DEPTH&VELOCITY(FT* FT/SEC.) = 0.80 STREET FLOW TRAVEL TIME(MIN.) = 1.99 Tc(MIN.) = 7.99 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.453 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 2.43 TOTAL AREA(ACRES) = 0.63 PEAK FLOW RATE(CFS) = 3.43 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 10.82 FLOW VELOCITY(FEET/SEC.) = 2.77 DEPTH*VELOCITY(FT*FT/SEC.) = 0.99 LONGEST FLOWPATH FROM NODE 2100.00 TO NODE 2120.00 = 400.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2120.00 TO NODE 2010.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 288.60 DOWNSTREAM(FEET) = 279.73 FLOW LENGTH(FEET) = 380.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.81 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.43 PIPE TRAVEL TIME(MIN.) = 0.93 Tc(MIN.) = 8.92 LONGEST FLOWPATH FROM NODE 2100.00 TO NODE 2010.00 = 780.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS =3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 8.92 RAINFALL INTENSITY(INCH/HR) = 5.08 TOTAL STREAM AREA(ACRES) = 0.63 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.43 **************************************************************************** FLOW PROCESS FROM NODE 2200.00 TO NODE 2210.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION =292.84 DOWNSTREAM ELEVATION = 288.74 ELEVATION DIFFERENCE = 4.10 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.365 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY N0MCX5RAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.25 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.25 **************************************************************************** FLOW PROCESS FROM NODE 2210.00 TO NODE 2220.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 288.74 DOWNSTREAM ELEVATION(FEET) = 283.65 STREET LENGTH(FEET) = 345.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.71 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) =0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.66 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.64 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.88 STREET FLOW TRAVEL TIME(MIN.) = 2.18 Tc(MIN.) = 8.18 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.370 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.57 SUBAREA RUNOFF(CFS) = 2.91 TOTAL AREA(ACRES) = 0.77 PEAK FLOW RATE(CFS) = 4.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.84 FLOW VELOCITY(FEET/SEC.) = 2.88 DEPTH*VELOCITY(FT*FT/SEC.) = 1.08 LONGEST FLOWPATH FROM NODE 2200.00 TO NODE 2220.00 = 495.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2220.00 TO NODE 2010.00 IS CODE = 41 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 280.48 DOWNSTREAM(FEET) = 279.73 FLOW LENGTH(FEET) = 112.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.53 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =4.15 PIPE TRAVEL TIME (MIN. ) =• 0.41 Tc(MIN.) = 8.59 LONGEST FLOWPATH FROM NODE 2200.00 TO NODE 2010.00 = 607.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.59 RAINFALL INTENSITY(INCH/HR) = 5.20 TOTAL STREAM AREA(ACRES) = - 0.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.15 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NIMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 67.99 21.71 2.861 42.80 2 3.43 8.92 5.079 0.63 3 4.15 8.59 5.202 0.77 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 44.90 8.59 5.202 2 45.79 8.92 5.079 3 72.21 21.71 2.861 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 72.21 Tc(MIN.) = 21.71 TOTAL AREA(ACRES) = 44.20 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 2010.00 = 4134.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2020.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 279.73 DOWNSTREAM(FEET) = 278.67 FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.04 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 72.21 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 21.79 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 2020.00 = 4194.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 44.20 TC(MIN.) = 21.79 PEAK FLOW RATE(CFS) = 72.21 END OF RATIONAL METHOD ANALYSIS INTERIM CONDITION RATIONAL METHOD COMPUTER OUTPUT A- 4 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2000 License ID 1509 Analysis prepared by: ProjectDesign Consualtants 701 B Street Suite 800 San Diego Ca. 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * EL CAMINO REAL 100 YEAR STORM EVENT * * INTERIM CONDITION SYSTEM 1 * * 08-14-02 TJ * ************************************************************************** FILE NAME: C:\AES\ELCMI1.DAT TIME/DATE OF STUDY: 11:11 08/15/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C'-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 53.0 48.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 2 45.0 40.0 0.200/0.200/0.020 0.50 1.50 0.0313 0.125 O.OISO GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1000.00 TO NODE 1010.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 125.00 UPSTREAM ELEVATION = 303.42 DOWNSTREAM ELEVATION = 301.55 ELEVATION DIFFERENCE = 1.87 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.639 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.06 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 1.06 **************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1020.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>> (STREET TABLE SECTION # 1 USED) <«<< UPSTREAM ELEVATION(FEET) = 301.55 DOWNSTREAM ELEVATION(FEET) = 296.69 STREET LENGTH(FEET) = 85 0.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 53.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 48.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.22 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.3 8 HALFSTREET FLOOD WIDTH(FEET) = 12.45 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.93 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.72 STREET FLOW TRAVEL TIME(MIN.) = 7.35 Tc(MIN.) = 13.35 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.916 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 4.20 TOTAL AREA(ACRES) = 1.3 0 PEAK FLOW RATE(CFS) = 5.26 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.17 FLOW VELOCITY(FEET/SEC.) = 2.18 DEPTH*VELOCITY(FT*FT/SEC.) = 0.93 LONGEST FLOWPATH FROM NODE 1000.00 TO NODE 1020.00 = 975.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1030.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 293.44 DOWNSTREAM(FEET) = 289.40 FLOW LENGTH(FEET) = 101.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) =9.32 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.26 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) =13.53 LONGEST FLOWPATH FROM NODE 1000.00 TO NODE 1030.00 = 1076.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1030.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = - 13.53 RAINFALL INTENSITY(INCH/HR) = 3.88 TOTAL STREAM AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.26 **************************************************************************** FLOW PROCESS FROM NODE 1100.00 TO NODE 1110.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE Nl»1BER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 125.00 UPSTREAM ELEVATION = 303.42 DOWNSTREAM ELEVATION = 302.05 ELEVATION DIFFERENCE = 1.37 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.928 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.87 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.87 **************************************************************************** FLOW PROCESS FROM NODE 1110.00 TO NODE 1120.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 302.05 DOWNSTREAM ELEVATION(FEET) = 298.70 STREET LENGTH(FEET) = 780.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 53.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 48.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.89 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.3 8 HALFSTREET FLOOD WIDTH(FEET) = 12.64 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.69 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.64 STREET FLOW TRAVEL TIME(MIN.) = 7.71 Tc(MIN.) = 13.71 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.848 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 3.91 TOTAL AREA(ACRES) = 1.21 PEAK FLOW RATE(CFS) = 4.78 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.55 FLOW VELOCITY(FEET/SEC.) = 1.89 DEPTH*VELOCITY(FT*FT/SEC.) = 0.83 LONGEST FLOWPATH FROM NODE liOO.OO TO NODE 112 0.00 = 905.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1120.00 TO NODE 1030.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<« ELEVATION DATA: UPSTREAM(FEET) = 290.90 DOWNSTREAM(FEET) = 289.40 FLOW LENGTH(FEET) = 75.04 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.06 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.78 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 13.89 LONGEST FLOWPATH FROM NODE 1100.00 TO NODE 1030.00 = 980.04 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1030.00 IS CODE >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 13.89 RAINFALL INTENSITY(INCH/HR) = 3.82 TOTAL STREAM AREA(ACRES) = 1.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.78 2 ARE: ** CONFLUENCE DATA ** STREAM NUMBER 1 2 RUNOFF (CFS) 5.26 4 .78 Tc (MIN.) 13 .53 13 .89 INTENSITY (INCH/HOUR) 3.883 3 . 817 AREA (ACRE) 1.30 1.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.97 13.53 3.883 9. 96 13.89 3 . 817 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.97 Tc(MIN.) = TOTAL AREA(ACRES) = 2.51 LONGEST FLOWPATH FROM NODE 1000.00 TO NODE 13 .53 1030.00 = 1076.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1040.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET). = 289.40 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 24.50 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.72 ESTIMATED PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW(CFS) = 9.97 PIPE TRAVEL TIME(MIN.) = 0.03 288 .25 NUMBER OF PIPES LONGEST FLOWPATH FROM NODE Tc(MIN.) = 1000.00 TO NODE 13.56 1040.00 1100.50 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 2.51 9.97 TC(MIN.) = 13.56 END OF RATIONAL METHOD ANALYSIS t************************* ************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPTION OF STUDY **************************^ * EL CAMINO REAL 100 YEAR STORM EVENT ^ * INTERIM CONDITION SYSTEM 2 ^ * 08—15—02 TJ ************************************************************************** FILENAME: ELCMI2.DAT TIME/DATE OF STUDY: 19:29 08/15/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) =18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE- ONLY PEAK CONFLUENCE VALUES CONSIDERED . .-.™T„,T,m t.T.r^rv-rr\^.^c unD rnTTDT.pn PTPF.VT.OW AND STREETFLOW MODEL* lEOMETRIES: MANNING LIP HIKE FACTOR (FT) (FT) (n) HALF-CROWN TO STREET-CROSSFALL: CURB GtJTTER WIDTH CROSSFALL IN- / OUT-/PARK-HEIGHT WIDTH NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) 1 53.0 48.0 0.020/0.020/0.020 0.50 1.50 2 45.0 40.0 0.200/0.200/0.020 0.50 1.50 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2 (Depth)*(Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 2000.00 TO NODE 2000.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE .AS FOLLOWS: TC(MIN) = 21.67 RAIN INTENSITY(INCH/HOUR) = 2.86 TOTAL AREA(ACRES) = 42.80 "TOTAL RUNOFF(CFS) = 67.99 **************************************************************************** FLOW PROCESS FROM NODE 2000.00 TO NODE 2010.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<<< ""ELEVATION~DATAT UPSTREAM(FEET) = 280.58 DOWNSTREAM(FEET) = 279.73 FLOW LENGTH(FEET) = 39.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.78 ESTIMATED PIPE DIAMETER(INCH)"= 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 67.99 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 21.72 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 2010.00= 39.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE =^ ^1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 21.72 RAINFALL INTENSITY(INCH/HR) = 2.86 TOTAL STREAM AREA(ACRES) = 42.80 PEAK FLOW RATE(CFS) AT CONFLUENCE =67.99 **************************************************************************** FLOW PROCESS FROM NODE 2100.00 TO NODE 2110.00 IS CODE^= ^21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYS I S««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 130.00 UPSTREAM ELEVATION =298.70 DOWNSTREAM ELEVATION = 297.41 ELEVATION DIFFERENCE =1.29 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3.086 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) =1.00 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF{CFS) = 1.00 **************************************************************************** FLOW PROCESS FROM NODE 2110.00 TO NODE 2120.00 IS CODE =^^61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED)««< ======== "~UPS'TREAM"ELEVATION(F = 297.41 DOWNSTREAM ELEVATION(FEET) = 291.64 STREET LENGTH(FEET) = 580.00 CURB HEIGHT(INCHES) =6.0 STREET HALFWIDTH(FEET) =53.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 48.00 INSIDE STREET CROSSFALL(DECIMAL) =0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) =0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.86 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) =0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.58 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.31 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.78 STREET FLOW TRAVEL TIME(MIN.) = 4.18 Tc(MIN.) =10.18 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.664 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) = 3.68 TOTAL AREA(ACRES) = 0.99 PEAK FLOW RATE(CFS) = 4.67 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.02 FLOW VELOCITY(FEET/SEC.) = 2.58 DEPTH*VELOCITY(FT*FT/SEC.) = 1-00 LONGEST FLOWPATH FROM NODE 2100.00 TO NODE 2120.00 = 710.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2120.00 TO NODE 2010.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOWH<<<< ~"ELEVATI0N~DATA7~UPSTREAM(FEET) = 288.60 DOWNSTREAM(FEET) = 279.73 FLOW LENGTH(FEET) = 380.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.42 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =4.67 PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 11-03 LONGEST FLOWPATH FROM NODE 2100.00 TO NODE 2010.00 = 1090.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS C0DE^=^^^1 •DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.03 RAINFALL INTENSITY(INCH/HR) = 4.43 TOTAL STREAM AREA(ACRES) = 0.99 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.67 **************************************************************************** FLOW PROCESS FROM NODE 2200.00 TO NODE 2210.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = 292.84 DOWNSTREAM ELEVATION =288.74 ELEVATION DIFFERENCE = 4.10 ^,^c URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.365 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITICW. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1-25 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.25 **************************************************************************** FLOW PROCESS FROM NODE 2210.00 TO NODE 2220^00^15 C0DE^=^^61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STANDARD CURB SECTION USED)«<<< ^^_==_==_========= ""uPSTREAM'sLWATIOmFE^^ 288.74 DOWNSTREAM ELEVATION (FEET) = 283.65 STREET LENGTH(FEET) = 345.00 CURB HEIGHT{INCHES) = 6.0 STREET HALFWIDTH(FEET) = 53.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 48.00 INSIDE STREET CROSSFALL(DECIMAL) =0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) =0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.00 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9-92 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.72 PRODUCT OF DEPTH&VELOCITY{FT*FT/SEC.) =0.88 STREET FLOW TRAVEL TIME(MIN.) = 2.11 Tc(MIN.) = 8.11 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.399 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) =92 . «o SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF(CFS = 3.49 TOTAL AREA(ACRES) = 0.88 PEAK FLOW RATE(CFS) = 4.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.08 FLOW VELOCITY(FEET/SEC.) = 3.00 DEPTH*VELOCITY(FT*FT/SEC.) = 1.10 SGEI? SATO FROM NODE 2200 . 00 TO NODE 2220.00 = 495 . 00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2220.00 TO NODE ^OlO^OO^IS C0DE^=^^31 ">>>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSTOE^FLOWH<<<<^ "^ELEVATIOrDATAT'uPSTRE^^ = 280.48 DOWNSTREAM (FEET) = 279.73 FLOW LENGTH(FEET) = 112.00 MANNING'S N= 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) =4.68 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) =4.73 > o c-, PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) = 8.51 LONGEST FLOWPATH FROM NODE 2200.00 TO NODE 2010.00 = 607.00 FEET. *************************************** ************************************* FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 1 »> »> »DESIGNATE INDEPENDENl' STREAM FOR CONFLUENCE««< »AND COMPtlTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) =8.51 RAINFALL INTENSITY(INCH/HR) = 5.23 TOTAL STREAM AREA(ACRES) = 0.88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.73 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 67.99 21.72 2.861 42.80 2 4.67 11-03 4-428 0.99 3 4.73 8.51 5.234 0.88 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 45.85 8.51 5.234 2 52.60 11-03 4-428 3 73.60 21.72 2.861 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 73.60 Tc(MIN.) = 21.72 TOTAT. ARFA(ACRES) = 44.67 SSsfFLOWPATH FROM NODE 2100.00 TO NODE 2010.00 = 1090.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2020.00 IS CODE^=^ 31 "~>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE^FLOWli <<<<.< ""^ELEVATIOrOATArUPSTR^^ = 279.73 DOWNSTREAM (FEET) = 278.67 FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC-) = 13.09 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 73.60 , -,o PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 21./y SNGEST FLOWPATH FROM NODE 2100.00 TO_NODE___2020.00_=__1150.OO^F^ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 44.67 TC(MIN.)= 21.79 PEAK FLOW RATE (CFS) = '^^ ===================== END OF RATIONAL METHOD ANALYSIS DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 n mSO Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.22 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.78 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.51 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.80 STREET FLOW TRAVEL TIME(MIN.) = 1-99 Tc(MIN.) = 7.99 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.453 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF CFS = 2.43 TOTAL AREA(ACRES) = 0.63 PEAK FLOW RATE(CFS) = 3.43 END OF SUBAREA STREET FLOW HYDRAtJLICS: ^ DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 10.82 ?L™SSlTY(FEErr/SEC.) = 2.77 DEPTH*VELOCITy(FT*FT/SEC J = 0_99 LONGEST FLOWPATH FROM NODE 2100.00 TO NODE 2120.00 = 400.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2120.00 TO NODE __2010^00 IS_C0DE^=^^41 '">>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE^ '!^5^?^^!?°_!^:!^f^Tl.!=!=!==-======== === = ^^ELEvlTIOrolTlrUPSTR^^ DOWNSTREAM (FEET) = 279.73 FLOW LENGTH(FEET) = 380.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.81 i GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.43 , , , o oo PIPE TRAVEL TIME(MIN.) = 0.93 Tc(MIN.)= 8 92 ^nnnOFFET LONGEST FLOWPATH FROM NODE 2100.00 TO NODE 2010.00 = 780.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE _2010.00 IS_C0DE^=^^_1 ">>>>>DESIGNATE INDEPENDENT STREAM FO^_CONFLUENCE<<<<<^^^^^^^_^^^^^^^^ TOTAL NUMBER OF STREAMS =3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.92 RAINFALL INTENSITY(INCH/HR) = 5.08 TOTAL STREAM AREA(ACRES) = 0.63 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.43 **************************************************************************** FLOW PROCESS FROM NODE 2200.00 TO NODE 2210.00^IS^CODE^=^^21 ~'>>>»RATIONAL METHOD INITIAL SUBAREA ^^^^IS<<<<< ^^======-= ======== = ""USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = 292.84 DOWNSTREAM ELEVATION = 288.74 ELEVATION DIFFERENCE = 4.10 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.365 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.SS9 SUBAREA RUNOFF(CFS) = 1-25 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1-25 **************************************************************************** FLOW PROCESS FROM NODE 2210.00 TO NODE 2220.00^13 CODE^=^^62 ~">>>>>COMPtJTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)«<<< ^ =======-======= = ""uPSTREl^'^EZ^ATIOmFEE^^ DOWNSTREAM ELEVATION (FEET) = 283.65 STREET LENGTH(FEET) = 345.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 n nmn Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.71 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) =0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.66 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.64 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.88 STREET FLOW TRAVEL TIME(MIN.) = 2.18 Tc(MIN.) = 8.18 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.370 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 _ SUBAREA AREA(ACRES) = 0.57 SUBAREA RUNOFF CFS = 2.91 TOTAL AREA(ACRES) = 0.77 PEAK FLOW RATE{CFS) = 4.15 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.37 HALFSTREET FLOOD WIDTH(FEET) = 11-84 ?LOW VELOCITY(FEET/SEC.) = 2.88 DEPTH*VELOCITY(FT*FT/SEC^) = 1_08 LONGEST FLOWPATH FROM NODE 2200.00 TO NODE 2220.00 = 495.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2220.00 TO NODE ^ 2010.00^13 C0DE^=__41 ~'>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE^^EXISTING^ELEMEOTK<<<^ ^^ll^lTloTllThl^vV^^^ = 280.48 DOWNSTREAM (FEET) = 279.73 FLOW LENGTH(FEET) = 112.00 MANNING'S N= 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.S3 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =4.15 PIPE TRAVEL TIME (MIN.) = 0.41 Tc(MIN.) = 8-59 nrrT^F-r LONGEST FLOWPATH FROM NODE 2200.00 TO NODE 2010.00 = 607.00 FE^T. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS^C0DE^=^^^1 '">>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ^^^^_== = TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.59 RAINFALL INTENSITY(INCH/HR) =.5.20 TOTAL STREAM AREA(ACRES) = 0.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.15 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 67.99 21.71 2.861 42.80 2 3.43 8.92 5.079 0.63 3 4.15 8.59 5.202 0.77 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 44.90 8.59 5.202 2 45.79 8.92 5.079 3 72.21 21.71 2.861 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 72.21 Tc(MIN.) = 21.71 TOTAL AREA(ACRE3) = 44.20 LONGEST FLOWPATH FROM NODE 106.10 TO NODE 2010.00 = 4134.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2020. 00 JS CODE = Jl '">>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>U3ING USER-SPECIFIED PIPESIZE f^XIS'TING ELEMENTJ<<<<^ ""EZi^ATIOrDlTr"uPSTO^'(FEE^r= 279.73 DOWNSTREAM (FEET) = 278.67 FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 3 6.0 INCH PIPE IS 26.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.04 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 72.21 , . o-, PTPF TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 21./9 SNGEsfMATH FROM NODE 106.10 ^ JODE__ J020 . 00_=_ J194 . OO^FEET^^^^ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 44.20 TC(MIN.)= 21.79 PEAK FLOW RATE (CFS) = 72.21 ^_ _ = ==__= ==== END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 -(619) 235-6471 ************************** DESCRIPTION OF STUDY ************************** * EL CAMINO REAL - BRESSI RANCH * * SYSTEM 3 - INTERIM CONDITIONS * * lOO-YEAR STORM EVENT ****************** ******************************************************** FILE NAME: 2301-3.DAT TIME/DATE OF STUDY: 14:40 10/08/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 O.OISO GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 500.00 TO NODE 501.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 12.35(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 280.00 UPSTREAM ELEVATION = 320.00 DOWNSTREAM ELEVATION = 312.00 ELEVATION DIFFERENCE = 8.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.117 SUBAREA RUNOFF(CFS) = 0.37 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 0.37 **************************************************************************** FLOW PROCESS FROM NODE 501.00 TO NODE 550.00 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 312.00 DOWNSTREAM ELEVATION(FEET) = 302.30 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 3 0.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) =20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.75 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.09 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.94 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.96 STREET FLOW TRAVEL TIME(MIN.) = 2.83 Tc(MIN.) = 15.18 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.604 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 4.76 TOTAL AREA(ACRES) = 2.60 PEAK FLOW RATE(CFS) = 5.13 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.23 FLOW VELOCITY(FEET/SEC.) = 3.35 DEPTH*VELOCITY(FT*FT/SEC.) = 1.28 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 550.00 = 780.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 2.60 TC(MIN.) = 15.18 PEAK FLOW RATE(CFS) = 5.13 END OF RATIONAL METHOD ANALYSIS ULTIMATE CONDITION RATIONAL METHOD COMPUTER OUTPUT A- 5 ****************************** ********************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 -(619) 235-6471 ************************** DESCRIPTION OF STUDY ************************** * EL CAMINO REAL 100 YEAR STORM EVENT ' * ULTIMATE CONDITION SYSTEM 1 ' * 09-25-02 MM ************** ************************************************************ FILE NAME: ELCMU1.DAT TIME/DATE OF STUDY: 09:28 09/26/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-H0t:rR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMtIM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *U3ER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. . (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 53.0 48.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150 2 45.0 40.0 0.200/0.200/0.020 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) •SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1000.00 TO NODE 1010.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 125.00 UPSTREAM ELEVATION = 303.42 DOWNSTREAM ELEVATION = 301.55 ELEVATION DIFFERENCE = 1.87 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.63 9 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1-06 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 1.06 **************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1020.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>( STREET TABLE SECTION # 1 USED) «<« UPSTREAM ELEVATION(FEET) = 3 01.55 DOWNSTREAM ELEVATION(FEET) = 296.69 STREET LENGTH(FEET) = 850.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH (FEET) = 53.0X1 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 48.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.22 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.45 AVERAGE FLOW VELOCITY(FEET/SEC.) =1.93 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.72 STREET FLOW TRAVEL TIME(MIN.) = 7.35 Tc(MIN.) = 13.35 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.916 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 4.20 TOTAL AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) = 5.26 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.17 FLOW VELOCITY(FEET/SEC.) = 2.18 DEPTH*VELOCITY(FT*FT/SEC.) = 0.93 LONGEST FLOWPATH FROM NODE 1000.00 TO NODE 1020.00 = 975.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1030.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 293.44 DOWNSTREAM(FEET) = 289.40 FLOW LENGTH(FEET) = 101.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.32 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.26 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 13.53 LONGEST FLOWPATH FROM NODE 1000.00 TO NODE 1030.00 = 1076.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1030.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.53 RAINFALL INTENSITY(INCH/HR) = 3.88 TOTAL STREAM AREA(ACRES) = 1.3 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.26 **************************************************************************** FLOW PROCESS FROM NODE 1100.00 TO NODE 1110.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSI3««< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL StIBAREA FLOW-LENGTH = 125.00 UPSTREAM ELEVATION = 303.42 DOWNSTREAM ELEVATION = 302.05 ELEVATION DIFFERENCE = 1.37 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.832 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.032 SUBAREA RUNOFF(CFS) = 1.04 TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) = 1.04 **************************************************************************** FLOW PROCESS FROM NODE 1110.00 TO NODE 1120.00 IS CODE = 62 »»>COMPOTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 302.05 DOWNSTREAM ELEVATION(FEET) = 298.70 STREET LENGTH(FEET) = 780.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 53.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 48.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.50 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) ' = 13.67 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.76 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.70 STREET FLOW TRAVEL TIME(MIN.) = 7.38 Tc(MIN.) = 14.21 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.761 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.7 0 SUBAREA RUNOFF(CFS) = 4.79 TOTAL AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) = 5.84 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.77 FLOW VELOCITY(FEET/SEC.) = 1.99 DEPTH*VELOCITY(FT*FT/SEC.) = 0.92 LONGEST FLOWPATH FROM NODE 1100.00 TO NODE 1120.00 = 905.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1120.00 TO NODE 1030.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 290.90 DOWNSTREAM(FEET) = 289.40 FLOW LENGTH(FEET) = 75.04 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE 13 8.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC. )~ = 7.44 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.84 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 14.38 LONGEST FLOWPATH FROM NODE 1100.00 TO NODE 1030.00 = 980.04 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1030.00 IS CODE = 1 »»>DE3IGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.38 RAINFALL INTENSITY(INCH/HR) = 3.73 TOTAL STREAM AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.84 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.26 13.53 3.883 1.30 2 5.84 14.38 3.732 1.93 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 10.87 13.53 3.883 2 10.90 14.38 3.732 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.90 Tc(MIN.) = 14.38 TOTAL AREA(ACRES) = 3.23 LONGEST FLOWPATH FROM NODE 1000.00 TO NODE 1030.00 = 1076.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1040.00 IS CODE = 31 >>>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 289.40 DOWNSTREAM(FEET) = 288.25 FLOW LENGTH(FEET) = 24.50 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.99 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.90 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 14.41 LONGEST FLOWPATH FROM NODE 1000.00 TO NODE 1040.00 = 1100.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1040.00 TO NODE 806.00 IS CODE = 41 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 288.25 DOWNSTREAM(FEET) = 287.37 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.47 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.90 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 14.87 LONGEST FLOWPATH FROM NODE 1000.00 TO NODE 806.00 = 1250.50 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.23 TC(MIN.) = 14.87 PEAK FLOW RATE(CFS) =10.90 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 -(619) 235-6471 ************************** DESCRIPTION OF STUDY ************************** * EL CAMINO REAL 100 YEAR STORM EVENT * * ULTIMATE CONDITION SYSTEM 2 * * 09-25-02 MM * ************************************************************************** FILE NAME: ELCMU2.DAT TIME/DATE OF STUDY: 09:56 09/26/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 53.0 48.0 0.020/0.020/0.020 0.50 1.50 0.0312 0.125 0.0150 2 45.0 40.0 0.200/0.200/0.020 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* + + QIOO AND TC AT NODE 2000 OBTAINED FROM NODE 810.00 | **************************************************************************** FLOW PROCESS FROM NODE 2000.00 TO NODE 2000.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.50 RAIN INTENSITY(INCH/HOUR) = 3.56 TOTAL AREA(ACRES) = 18.43 TOTAL RUNOFF(CFS) = 64.60 **************************************************************************** FLOW PROCESS FROM NODE 2000.00 TO NODE 2010.00 13 CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 280.58 DOWNSTREAM(FEET) = 279.73 FLOW LENGTH(FEET) = 39.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.71 ESTIMATED PIPE DIAMETER(INCH)- = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 64.60 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 15.55 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 2010.00 = 39.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE. 2010.00 TO NODE 2010.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.55 RAINFALL INTENSITY(INCH/HR) = 3.55 TOTAL STREAM AREA(ACRES) = 18.43 PEAK FLOW RATE(CFS) AT CONFLUENCE = 64.60 **************************************************************************** FLOW PROCESS FROM NODE 2100.00 TO NODE 2110.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH = 140.00 UPSTREAM ELEVATION = 299.20 DOWNSTREAM ELEVATION = 297.41 ELEVATION DIFFERENCE = 1.79 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.849 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.515 SUBAREA RUNOFF(CFS) = 1.20 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) = 1.20 **************************************************************************** FLOW PROCESS FROM NODE 2110.00 TO NODE 2120.00 IS CODE = 61 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »»>(STANDARD CURB SECTION USED)«<« UPSTREAM ELEVATION(FEET) = 297.41 DOWNSTREAM ELEVATION(FEET) = 291.64 STREET LENGTH(FEET) = 580.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 53.00 DISTTOCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 48.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.97 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.77 AVERAGE FLOW VELOCITY(FEET/SEC.) =2.32 ' PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.79 STREET FLOW TRAVEL TIME(MIN.) = 4.16 Tc(MIN.) = 12.01 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.192 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.89 SUBAREA RUNOFF(CFS) = 3.54 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 4.74 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.02 FLOW VELOCITY(FEET/SEC.) = 2.62 DEPTH*VELOCITY(FT*FT/SEC.) = 1.01 LONGEST FLOWPATH FROM NODE 2100.00 TO NODE 2120.00 = 720.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2120.00 TO NODE 2010.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 288.60 DOWNSTREAM(FEET) = 279.73 FLOW LENGTH(FEET) = 380.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.45 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.74 PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 12.86 LONGEST FLOWPATH FROM NODE 2100.00 TO NODE 2010.00 = 1100.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.86 RAINFALL INTENSITY(INCH/HR) = 4.01 TOTAL STREAM AREA(ACRES) = 1.2 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.74 **************************************************************************** FLOW PROCESS FROM NODE 2200.00 TO NODE 2210.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = 292.84 DOWNSTREAM ELEVATION = 288.74 ELEVATION DIFFERENCE = 4.10 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.3 65 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.25 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.25 **************************************************************************** FLOW PROCESS FROM NODE 2210.00 TO NODE 2220.00 IS CODE = 61 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>( STANDARD CURB SECTION USED)««< UPSTREAM ELEVATION(FEET) = 288.74 DOWNSTREAM ELEVATION(FEET) = 283.65 STREET LENGTH(FEET) = 345.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 53.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 48.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.00 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.92 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.72 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.88 STREET FLOW TRAVEL TIME(MIN.) = 2.11 Tc(MIN.) = 8.11 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.399 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF(CFS) = 3.49 TOTAL AREA(ACRES) = 0.88 PEAK FLOW RATE(CFS) = 4.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 12.08 FLOW VELOCITY(FEET/SEC.) = 3.00 DEPTH*VELOCITY{FT*FT/SEC.) = 1.10 LONGEST FLOWPATH FROM NODE 2200.00 TO NODE 2220.00 = 495.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2220.00 TO NODE 2010.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 280.48 DOWNSTREAM(FEET) = 279.73 FLOW LENGTH(FEET) = 112.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.68 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.73 PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) = 8.51 LONGEST FLOWPATH FROM NODE 2200.00 TO NODE 2010.00 = 607.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.51 RAINFALL INTENSITY(INCH/HR) = 5.23 TOTAL STREAM AREA(ACRES) = 0.88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.73 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtTR) (ACRE) 1 64.60 15.55 3.549 18.43 2 4.74 12.86 4.012 1.20 3 4.73 8.51 5.234 0.88 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 52.17 8.51 5.234 2 65.52 12.86 4.012 3 72.00 15.55 3.549 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 72.00 Tc(MIN.) = 15.55 TOTAL AREA(ACRES) = 20.51 LONGEST FLOWPATH FROM NODE 2100.00 TO NODE 2010.00 = 1100.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2020.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 279.73 DOWNSTREAM(FEET) = 278.67 FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 2 6.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.05 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 72.00 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 15.62 LONGEST FLOWPATH FROM NODE 2100.00 TO NODE 2020.00 = 1160.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 20.51 TC(MIN.) = 15.62 PEAK FLOW RATE(CFS) = 72.00 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 •(619) 235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITION * * SYSTEM 800- ALONG EL CAMINO REAL * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: 1325800I.DAT TIME/DATE OF STUDY: 09:46 09/26/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 26.0 21.0 0.020/0.020/ -— 0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 805.11 TO NODE 805.12 IS CODE = 21 >>»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 24.00 UPSTREAM ELEVATION = 313.00 DOWNSTREAM ELEVATION = 312.50 ELEVATION DIFFERENCE = 0.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.03 6 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) =0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 805.12 TO NODE 805.13 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 2 USED)««< UPSTREAM ELEVATION(FEET) = 312.50 DOWNSTREAM ELEVATION(FEET) = 297.50 STREET LENGTH(FEET) = 830.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH (FEET) = 26.0-0 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.24 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.24 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.45 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.61 STREET FLOW TRAVEL TIME(MIN.) = 5.66 Tc(MIN.) = 11.66 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.274 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 1.83 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 2.14 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.2 9 HALFSTREET FLOOD WIDTH(FEET) = 8.15 FLOW VELOCITY(FEET/SEC.) = 2.73 DEPTH*VELOCITY(FT*FT/SEC.) = 0.79 LONGEST FLOWPATH FROM NODE 805.11 TO NODE 805.13 = 854.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 805.13 TO NODE 805.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.66 RAINFALL INTENSITY{INCH/HR) = 4.27 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.14 **************************************************************************** FLOW PROCESS FROM NODE 805.21 TO NODE 805.22 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 24.00 UPSTREAM ELEVATION = 313.00 DOWNSTREAM ELEVATION = 312.50 ELEVATION DIFFERENCE = 0.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.036 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) =6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 805.22 TO NODE 805.23 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>( STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 312.50 DOWNSTREAM ELEVATION(FEET) = 297.50 STREET LENGTH(FEET) = 830.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 26.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.24 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.24 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.45 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.61 STREET FLOW TRAVEL TIME(MIN.) = 5.66 Tc(MIN.) = 11.66 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.274 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 1.83 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 2.14 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.15 FLOW VELOCITY(FEET/SEC.) = 2.73 DEPTH*VELOCITY(FT*FT/SEC.) = 0.79 LONGEST FLOWPATH FROM NODE 805.21 TO NODE 805.23 = 854.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 805.23 TO NODE 805.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS =2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.66 RAINFALL INTENSITY(INCH/HR) = 4.27 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.14 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.14 11.66 4.274 0.50 2 2.14 11.66 4.274 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.28 11.66 4.274 2 4.28 11.66 4.274 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.28 Tc(MIN.) = 11.66 TOTAL AREA(ACRES) = 1.00 LONGEST FLOWPATH FROM NODE ' 805.11 TO NODE 805.00 = 854.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 805.00 TO NODE 806.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 288.40 DOWNSTREAM(FEET) = 288.26 FLOW LENGTH(FEET) = 12.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.62 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.28 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 11.69 LONGEST FLOWPATH FROM NODE 805.11 TO NODE 806.00 = 866.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 806.00 TO NODE 806.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.69 RAINFALL INTENSITY(INCH/HR) = 4.27 TOTAL STREAM AREA(ACRES) =1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.28 **************************************************************************** FLOW PROCESS FROM NODE 1040.00 TO NODE 806.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.87 RAIN INTENSITY(INCH/HOUR) = 3.65 TOTAL AREA(ACRES) = 3.23 TOTAL RUNOFF(CFS) = 10.90 **************************************************************************** FLOW PROCESS FROM NODE 1040.00 TO NODE 806.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.87 RAINFALL INTENSITY(INCH/HR) = 3.65 TOTAL STREAM AREA(ACRES) = 3.23 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.90 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.28 11.69 4.265 1.00 2 10.90 14.87 3.653 3.23 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 13.61 11.69 4.265 2 14.56 14.87 3.653 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.56 Tc(MIN.) = 14.87 TOTAL AREA(ACRES) = 4.23 LONGEST FLOWPATH FROM NODE 805.11 TO NODE 806.00 = 866.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 806.00 TO NODE 809.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)«<« ELEVATION DATA: UPSTREAM(FEET) = 287.37 DOWNSTREAM(FEET) = 287.21 FLOW LENGTH(FEET) = 35.40 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 16.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.35 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =14.56 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 14.98 LONGEST FLOWPATH FROM NODE 805.11 TO NODE 809.00 = 901.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 809.00 TO NODE 809.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.98 RAINFALL INTENSITY(INCH/HR) = 3.64 TOTAL STREAM AREA(ACRES) = 4.23 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.56 **************************************************************************** FLOW PROCESS FROM NODE 808.10 TO NODE 808.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITI/UJ SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 320.00 DOWNSTREAM ELEVATION = 319.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.7 00 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 808.20 TO NODE 808.30 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 319.00 DOWNSTREAM(FEET) = 309.00 FLOW LENGTH(FEET) = 1000.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.50 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.31 PIPE TRAVEL TIME(MIN.) = 6.66 Tc(MIN.) = 12.66 LONGEST FLOWPATH FROM NODE 808.10 TO NODE 808.30 = 1100.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 808.30 TO NODE 808.30 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.053 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II),= 92 SUBAREA AREA(ACRES) = 6.35 SUBAREA RUNOFF(CFS) = 24.45 TOTAL AREA(ACRES) = 6.40 TOTAL RUNOFF(CFS) = 24.76 TC(MIN) = 12.66 **************************************************************************** FLOW PROCESS FROM NODE 808.30 TO NODE 808.40 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 309.00 DOWNSTREAM(FEET) = 300.00 FLOW LENGTH(FEET) = 600.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.26 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 24.76 PIPE TRAVEL TIME(MIN.) = 1.08 Tc(MIN.) = 13.74 LONGEST FLOWPATH FROM NODE 808.10 TO NODE 808.40 = 1700.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 808.40 TO NODE 808.40 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.844 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 6.60 SUBAREA RUNOFF(CFS) = 24.10 TOTAL AREA(ACRES) = 13.00 TOTAL RUNOFF(CFS) = 48.86 TC(MIN) = 13.74 **************************************************************************** FLOW PROCESS FROM NODE 808.40 TO NODE 809.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 288.92 DOWNSTREAM(FEET) = 286.99 FLOW LENGTH(FEET) = 60.41 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.62 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 48.86 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 13.80 LONGEST FLOWPATH FROM NODE 808.10 TO NODE 809.00 = 1760.41 FEET. **************************************************************************** FLOW PROCESS FROM NODE 809.00 TO NODE 809.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.80 RAINFALL INTENSITY(INCH/HR) = 3.83 TOTAL STREAM AREA(ACRES) = 13.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 48.86 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 14.56 14.98 3.635 4.23 2 48.86 13.80 3.832 13.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 62.68 13.80 3.832 2 60.92 14.98 3.635 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 62.68 Tc(MIN.) = 13.80 TOTAL AREA(ACRES) = 17.23 LONGEST FLOWPATH FROM NODE 808.10 TO NODE 809.00 = 1760.41 FEET. **************************************************************************** FLOW PROCESS FROM NODE 809.00 TO NODE 810.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 286.71 DOWNSTREAM(FEET) = 281.91 FLOW LENGTH(FEET) = 840.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 31.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.24 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 62.68 PIPE TRAVEL TIME(MIN.) = 1.70 Tc(MIN.) = 15.50 LONGEST FLOWPATH FROM NODE 808.10 TO NODE 810.00 = 2600.41 FEET. **************************************************************************** FLOW PROCESS FROM NODE 810.00 TO NODE 810.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.555 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = .1.92 TOTAL AREA(ACRES) = 18.43 TOTAL RUNOFF(CFS) =64.60 TC(MIN) =15.50 END OF STUDY SUMMARY: TOTAL AREA(ACRES) 18 43 TC(MIN.) = 15.50 PEAK FLOW RATE(CFS) 64 60 END OF RATIONAL METHOD ANALYSIS EXISTING AND ULTIMATE CONDITION 10-YEAR RUNOFF CALCULATIONS A- 6 PROJECTDESIGN CONSULTANTS PLANNING ENGINEERING SURVEYING 701 B Street, Suite 720, San Diego, CA 92101 (619) 235-6471 • Fax (619) 234-0349 PROJECT ^ Yi4^ffja SUBJECT lYP- /^rJOFY^ YE=^tS r7AJ<^> PAGE JOB NO. OF. DRAWNBY CHECKED BY DATE DATE ^i^r?AY^ 10 - y^/HC ViY,o = 7.- c-Ps> too —i^f^ ^,,t>o ' 4'IS' cfs PROJECTDESIGN CONSULTANTS PLANNING ENGINEERING SURVEYING 701 B Street, Suite 720, San Diego, CA 92101 (619) 235-6471 • Fax (619) 234-0349 PROJECT ^i^^SS/ ^^C^ f^C&H^ir^o f^^fH- SUBJECT 1^- i^^iKf^ f]/Lnh/iY\rr^) PAGE _ JOB NO. OF. DRAWN BY CHECKED BY DATE DATE lAi^Tl/^f^r~^ O^^X^i 77g/s/5 Cc^i^V^iZT' /0O-y^¥H?- Y^Uf^OF^ TV /6'1^A^ /ZorJOi=^ » * • - . . • T W ' Vf=TP)^ sr^^^^ a^/^-c^r-/ Cf\-L-c<>y P'toO — 2« S> YJOP0 /OM? /^,o - Y. Co - 2. iTf ti^fnr- 2£> <^fs IOO /^^ Y.4? O ^ ,-7S' ID A^,a,~ g>6^?c/S Pr^ /' ^ Te^^ f'Z.C't/h/A /QO VBAh^ T~c ~ Sill 1^1^ 4^i^o - ^.7 «^ Y'IO ~ ^.T7/'^ft\. APPENDIX 3 AES PIPEFLOW COMPUTER OUTPUT P/12891DR.DOC SYSTEM 1 EL CAMINO REAL HYDRAULICS EXHIBIT 230 1" » 40' AES PIPE-FLOW NODE NUMBER Y 1 701 B SMO, Sytem, SBDHCD. CA f3lfll «1«-23^MT1 FAX ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * EL CAMINO REAL INTERIM CONDITION QIOO HYDRAULICS * * PIPE RUN 1 (EXISTING 24") NODE 100 TO 310 * * SYSTEM 1 . * ************************************************************************** FILE NAME: ELCMP1.DAT TIME/DATE OF STUDY: 09:10 12/05/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-i- FLOW PRESSURE-i- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 100.00- 1.18 Dc 180.62 0.88* 204.52 } FRICTION 110.00- 1.18*Dc 180.62 1.18*Dc 180.62 } JUNCTION 300.00- 1.49* 125.31 0.47 103.20 } FRICTION } HYDRAULIC JUMP 310.00- 0.81*Dc 70.16 0.81*Dc 70.16 } CATCH BASIN 310.00- 1.17* 37.54 0.81 Dc 25.12 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. **************************************************************** * * ************ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = 288.25 PIPE FLOW = 10.90 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 289.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.75 FT.) IS LESS THAN CRITICAL DEPTH( 1.18 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 100.00 : HGL = < 289 .125>,-EGL= < 2 90 .181>; FLOWLINE= < 288.250> ****************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 110.00 IS CODE = 1 UPSTREAM NODE 110.00 ELEVATION = 288.64 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 12.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.71 CRITICAL DEPTH(FT) = 1.18 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.18 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0 000 1 184 5 629 1 676 180 .62 0 022 1 164 5 741 1. 676 180 .70 0 093 1 145 5 857 1 678 180 .92 0 217 1 126 5 979 1 682 181 .29 0 400 1 107 6 106 1 686 181 .83 0 648 1 088 6 239 1 693 182 .53 0 971 1 069 6 378 1 701 183 .41 1 377 1 050 6 523 1 711 184 .47 1 877 1 031 6 676 1 723 185 .73 2 484 1 012 6 836 1 738 187 .18 3 214 0 993 7 003 1 755 188 .85 4 085 0 973 7 180 1 774 190 .74 5 122 0 954 7 365 1 797 192 .87 6 353 0 935 7 560 1 823 195 .25 7 814 0 916 7 765 1 853 197 .89 9 553 0 897 7 981 1 887 200 .81 11 .633 0 878 8 .209 1 925 204 .03 12 .000 0 .875 8 .244 1 931 204 .52 NODE 110.00 HGL = < 289. 824>;EGL= < 290.316>;FLOWLINE= < 288. 640 ^***************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 300.00 IS CODE = 5 UPSTREAM NODE 300.00 ELEVATION = 289.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 5.26 10.90 5.64 0.00 DIAMETER (INCHES) 24.00 24.00 18.00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 289.00 288.64 80.00 289.50 0.00 0.00 CRITICAL DEPTH(FT.) 0.81 1.18 0.92 0.00 VELOCITY (FT/SEC) 2.099 5.631 4.989 0.000 0.00===Q5 EQUALS BASIN INPUT= LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4) ) / ( (A1+A2 ) *16 .1)-i-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00301 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY-t-HVI-HV2 )-H (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.240)-i-( 0.000) = 0.240 00066 00537 0.000 FEET NODE 300.00 HGL 290.487>;EGL= < 290.556>;FLOWLINE= < 289.000> ********** ******************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 310.00 300.00 TO NODE ELEVATION = 310.00 IS CODE = 1 293.77 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.26 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 111.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0.45 CRITICAL DEPTH(FT) = 0.81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: CE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0 000 0 809 4 417 1. 112 70. 16 0 013 0 794 4 524 1 112 70. 20 0 054 0 780 4 635 1 114 70. 31 0 126 0 766 4 751 1 117 70 50 0 232 0 752 4 873 1 121 70 77 0 377 0 737 5 000 1 126 71 12 0 566 0 723 5 134 1 133 71 56 0 804 0 709 5 275 1 141 72 10 1 098 0 695 5 423 1 152 72 74 1 456 0 680 5 579 1 164 73 47 1 888 0 666 5 743 1 179 74 32 2 405 0 652 5 916 1 196 75 29 3 021 0 638 6 099 1 216 76 37 3 755 0 623 6 293 1 239 77 59 4 628 0 609 6 497 1 265 78 94 5 671 0 595 6 714 1 295 80 45 6 923 0 581 6 944 1 330 82 11 8 434 0 566 7 189 1 369 83 94 10 281 0 552 7 450 1 414 85 96 12 570 0 538 7 728 1 466 88 18 15 470 0 524 8 .025 1 524 90 .61 19 263 0 509 8 .342 1 591 93 28 24 478 0 495 8 683 1 666 96 .20 32 306 0 .481 9 .049 1 753 99 .40 46 566 0 .467 9 .442 1 .852 102 .91 111 000 0 .465 9 .474 1 .860 103 .20 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0 .000 1 487 2 099 1 556 125 31 0 .578 1 460 2 139 1 531 121 52 1 .152 1 433 2 183 1 507 117 83 1 .721 1 406 2 228 1 483 114 26 2 .285 1 379 2 276 1 459 110 79 2 .843 1 352 2 327 1 436 107 44 3 .394 1 325 2 381 1 413 104 21 3 .939 1 297 2 438 1 390 101 09 4 .475 1 270 2 498 1 367 98 09 5 .003 1 243 2 562 1 345 95 22 5 .521 1 216 2 630 1 323 92 48 6 .028 1 189 .2 702 1 302 89 87 6 .524 1 162 2 778 1 282 87 40 7 . 006 1 .134 2 859 1 262 85 06 7 .472 1 .107 2 946 1 242 82 87 7 .922 1 .080 3 .038 1 224 80 83 8 .352 1 .053 3 136 1 206 78 95 8 .760 1 .026 3 241 1 189 77 22 9 .143 0 .999 3 353 1 173 75 66 9 497 0 972 3 473 1 159 74 28 9 817 0 944 3 603 1 146 73 07 10 098 0 917 3 741 1 135 72 06 10 334 0 890 3 891 1 125 71 25 10 516 0 863 4 053 1 118 70 66 10 635 0 836 4 228 1 113 70 29 10 678 0 809 4 417 1 112 70 16 111 000 0 809 4 417 1 112 70 16 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE-I-MOMENTUM BALANCE OCCURS AT 3.57 FEET UPSTREAM OF NODE 3 00.00 | I DOWNSTREAM DEPTH = 1.316 FEET, UPSTREAM CONJUGATE DEPTH = 0.465 FEET | NODE 310.00 : HGL = < 294.579>;EGL= < 294.882>;FLOWLINE= < 293.770> ****************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = 8 UPSTREAM NODE 310.00 ELEVATION = 293.77 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.26 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 4.42 FEET/SEC. VELOCITY HEAD = 0.3 03 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.3 03) = 0.061 NODE 310.00 : HGL = < 294.942>;EGL= < 294.942>;FLOWLINE= < 293.770> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 310.00 FLOWLINE ELEVATION = 293.77 ASSUMED UPSTREAM CONTROL HGL = 294.58 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STtJDY ************************** * EL CAMINO REAL ULTIMATE CONDITION QIOO HYDRAULICS * . * PIPE RUN 1 (EXISTING 24") NODE 100 TO 310 * * SYSTEM 1 , * ************************************************************************** FILE NAME: ELCMP1B.DAT TIME/DATE OF STUDY: 09:10 12/05/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-i- FLOW PRESSURE-i- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 100.00- 6.05* 1063.26 0.88 204.52 } FRICTION 110.00- 5.69* 992.27 1.18 Dc 180.62 } JUNCTION 300.00- 5.59* 916.76 0.47 103.20 } FRICTION } HYDRAULIC JUMP 310.00- 0.81*Dc 70.16 0.81*Dc 70.16 } CATCH BASIN 310.00- 1.17* 37.54 0.81 Dc 25.12 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = 288.25 PIPE FLOW = 10.90 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 294.300 FEET NODE 100.00 : HGL = < 294.300>;EGL= < 294.487>;FLOWLINE= < 288.250> ****************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 110.00 IS CODE = 1 UPSTREAM NODE 110.00 ELEVATION = 288.64 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 12.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 10.90)/( 226.207))**2 = 0.00232 HF=L*SF = ( 12.00)*(0.00232) = 0.028 NODE 110.00 : HGL = < 294.328>;EGL= < 294.515>;FLOWLINE= < 288.640> ******************************-J r********************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 300.00 IS CODE = 5 UPSTREAM NODE 300.00 ELEVATION = 289.00 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.26 24.00 0.00 289.00 0.81 1.675 DOWNSTREAM 10.90 24.00 288.64 1.18 3.470 LATERAL #1 5.64 18.00 80.00 289.50 0.92 3.192 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00= ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4) )/( (A1-I-A2) *16.1)-l-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.0.1300; FRICTION SLOPE = 0.00054 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00232 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00143 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.006 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-t-HVI-HV2 )-(-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.118)-i-( 0.000) = 0.118 NODE 300.00 : HGL = < 294.589>;EGL= < 294.633>;FLOWLINE= < 289.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 310.00 300.00 TO NODE ELEVATION = 310.00 IS CODE = 1 293.77 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.26 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 111.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.45 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.81 0.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I L(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUN 0 000 0 809 4 417 1 112 70 16 0 013 0 794 4 524 1 112 70 20 0 054 0 780 4 635 1 114 70 31 0 126 0 766 4 751 1 117 70 50 0 232 0 752 4 873 1 121 70 77 0 377 0 737 5 000 1 126 71 12 0 566 0 723 5 134 1 133 71 56 0 804 0 709 5 275 1 141 72 10 1 098 0 695 5 423 1 152 72 74 1 456 0 680 5 579 1 164 73 47 1 888 0 666 5 743 1 179 74 32 2 405 0 652 5 916 1 196 75 29 3 021 0 638 6 099 1 216 76 37 3 755 0 623 6 293 1 239 77 59 4 628 0 609 6 497 1 265 78 94 5 671 0 595 6 714 1 295 80 45 6 923 0 581 6 944 1 330 82 11 8 434 0 566 7 189 1 369 83 94 10 281 0 552 7 450 1 414 85 96 12 .570 15.470 19.263 24 .478 32.306 46.566 111.000 0.538 0.524 0.509 0.495 0.481 0.467 0 .465 7 .728 8.025 8.342 8.683 9.049 9.442 9.474 1.466 1.524 1.591 1. 666 1.753 1. 852 1.860 88 .18 90.61 93 .28 96.20 99.40 102.91 103.20 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.59 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC , PRESSURE-f CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 5 589 1. 674 5. 633 916. 76 84 593 2 000 1. 674 2. 044 213. 10 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 2 .00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-t- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 84 593 2 000 1. 674 2 044 213 10 85 703 1 952 1. 684 1 996 203 89 86 800 1 905 1. 703 1 950 194 85 87 890 1 857 1. 729 1 903 185 99 88 972 1 809 1. 759 1 857 177 33 90 048 1 762 1. 794 1 812 168 89 91 .116 1 714 1. 835 1 766 160 68 92 177 1 666 1. 880 1 721 152 72 93 .230 1 619 1. 930 1 677 145 03 94 .273 1 571 1. 986 1 632 137 61 95 .307 1 523 2. 048 1 589 130 48 96 .329 1 476 2. 116 1 545 123 66 97 .338 1 428 2. 191 1 503 117 16 98 .331 1 380 2. 273 1 461 111 00 99 .307 1 333 2. 364 1 420 105 18 100 .261 1 285 2 465 1 380 99 72 101 .189 1 238 2 576 1 341 94 65 102 .088 1 190 2 699 1 303 89 97 102 .949 1 142 2 836 1 267 85 71 103 .765 1 .095 2 988 1 233 81 90 104 .526 1 .047 3 159 1 202 78 54 105 .215 0 .999 3 351 1 174 75 69 105 .815 0 .952 3 567 1 149 73 38 106 .299 0 .904 3 813 1 130 71 64 106 .631 0 .856 4 094 1 .117 70 .55 106 .757 0 .809 4 417 1 112 70 .16 111 .000 0 .809 4 417 1 112 70 .16 -END OF HYDRAULIC JUMP ANALYSIS PRESSURE-t-MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 1.105 FEET, 103.59 FEET UPSTREAM OF NODE 300.00 UPSTREAM CONJUGATE DEPTH = 0.576 FEET NODE 310.00 : HGL = < 294.579>;EGL= < 294.882>;FLOWLINE= < 293.770> ****************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = 8 UPSTREAM NODE 310.00 ELEVATION = 293.77 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.26 CFS PIPE DIAMETER 24.00 INCHES FLOW VELOCITY = 4.42 FEET/SEC. VELOCITY HEAD = 0.303 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.303) = 0.061 NODE 310.00 : HGL = < 294.942>;EGL= < 294.942>;FLOWLINE= < 293.770> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 310.00 FLOWLINE ELEVATION = 293.77 ASSUMED UPSTREAM CONTROL HGL = 294.58 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * EL CAMINO REAL INTERIM CONDITIONS QIOO HYDRAULICS * * PIPE RUN 2 (PROPOSED 18" RCP) NODE 200 TO 215 * * SYSTEM 1 - * ************************************************************************** FILE NAME: ELCMP2.DAT TIME/DATE OF STUDY: 09:10 12/05/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-i- FLOW PRESSURE-i- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 200.00- 0.99 86.87 0.80* 89.34 ) FRICTION 205.00- 0.93 Dc 86.41 0.80* 89.46 } ANGLE-POINT 205.00- 0.93 Dc 86.41 0.80* 89.46 } FRICTION 210.00- 0.93 DC 86.41 0.81* 89.12 } ANGLE-POINT 210.00- 0.93 DC 86.41 0.81* 89.12 } FRICTION - 215.00- 0.93*Dc 86.41 0.93*Dc 86.41 ) CATCH BASIN 215.00- 1.41* 48.78 0.93 Dc 29.18 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 200.00 FLOWLINE ELEVATION = 289.50 PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 290.490 FEET NODE 200.00 : HGL = < 290.301>;EGL= < 290.876>;FLOWLINE= < 289.500> ****************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 205.00 IS CODE = 1 UPSTREAM NODE 205.00 ELEVATION = 290.07 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 57.42 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.80 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.80 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.93 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- )L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 0 798 6 108 1 378 89 46 0 809 0 798 6 107 1 378 89 46 1 652 0 798 6 106 1 378 89 45 2 532 0 798 6 105 1 378 89 45 3 452 0 799 6 104 1 378 89 44 4 416 0 799 6 103 1 377 89 44 5 429 0 799 6 102 1 377 89 43 6 496 0 799 6 101 1 377 89 43 7 623 0 799 6 100 1 377 89 42 8 817 0 799 6 099 1 377 89 42 10 087 0 799 6 098 1 377 89 41 11 443 0 799 6 097 1 377 89 41 12 899 0 799 6 096 1 377 89 40 14 470 0 800 6 095 ,1 377 89 40 16 177 0 800 6 094 1 377 89 39 18 045 0 800 6 093 1 377 89 39 20 108 0 800 6 092 1 377 89 38 22 412 0 800 6 091 1 376 89 38 25 022 0 800 6 090 1 376 89 37 28 033 0 800 6 089 1 376 89 37 31 590 0 800 6 088 1 376 89 36 35 941 0 800 6 087 1 376 89 36 41 544 0 801 6 086 1 376 89 35 49 435 0 801 6 085 1 376 89 35 57 420 0 801 6 084 1 376 89 34 NODE 205.00 : HGL = < 290.868>;EGL= < 291.448>;FLOWLINE= < 290.070> ****************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 6 UPSTREAM NODE 205.00 ELEVATION = 290.07 (FLOW IS SUPERCRITICAL) CALCULATE ANGLE-POINT LOSSES(LACRD) PIPE FLOW = 5.84 CFS PIPE ANGLE-POINT = 10.00 DEGREES PIPE DIAMETER'= 18.00 INCHES ANGLE-POINT COEFFICIENT KA = 0.00000 NODE 205.00 : HGL = < 290.868>;EGL= < 291.448>;FLOWLINE= < 290.070> ****************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 210.00 IS CODE = 1 UPSTREAM NODE 210.00 ELEVATION = 291.04 (FLOW IS SUPERCRITICAL) CALCULiATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 96.52 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) = 0.80 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.93 DISTANCE FROM CONTROL(FT) 0.000 FLOW DEPTH VELOCITY (FT) (FT/SEC) 0.806 6.038 SPECIFIC ENERGY(FT) 1.372 PRESSURE-f MOMENTUM(POUNDS) 89.12 0.758 0 805 6 041 1 372 89 .13 1.551 0 805 6 044 1 373 89 .15 2 .380 0 805 6 047 1 373 89 .16 3 .251 0 804 6 050 1 373 89 .17 4.166 0 804 6 053 1 373 89 .19 5.131 0 804 6 056 1 373 89 .20 6.150 0 803 6 059 1 374 89 .22 7.230 0 803 6 061 1 374 89 .23 8.378 0 803 6 064 1 374 89 .24 9.604 0 802 6 067 1 374 89 .26 10.917 0 802 6 070 1 375 89 .27 12.331 0 802 6 073 1 375 89 .29 13.862 0 802 6 076 1 375 89 .30 15.530 0 801 6 079 1 375 89 .32 17 .362 0 801 6 082 1 376 89 .33 19.391 0 801 6 085 1 376 89 .35 21.666 0 800 6 088 1 376 89 .36 24.251 0 800 6 091 1 376 89 .38 27 .242 0 800 6 093 1 377 89 .39 30.788 0 799 6 096 1 377 89 .40 35.138 0 799 6 099 1 377 89 .42 40.761 0 799 6 102 1 .377 89 .43 48.705 0 798 6 105 1 .378 89 .45 62.342 0 .798 6 108 1 .378 89 .46 96.520 0 .798 6 108 1 .378 89 .46 210.00 HGL = < 291 846>;EGL= < 292.412>;FLOWLINE= < 291. 040> NODE *****************************************************************************•' FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 6 UPSTREAM NODE 210.00 ELEVATION = 291.04 (FLOW IS SUPERCRITICAL) CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 5.84 CFS PIPE ANGLE-POINT = 10.00 DEGREES PIPE DIAMETER = 18.00 INCHES ANGLE-POINT COEFFICIENT KA = 0.00000 NODE 210.00 HGL = < 291.846>;EGL= < 292.412>;FLOWLINE= < 291.040> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 215.00 210.00 TO NODE ELEVATION = 215.00 IS CODE = 1 291.57 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.84 CFS PIPE PIPE LENGTH = 53.27 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.80 CRITICAL DEPTH(FT) = 0.93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN 0 .000 0 .933 5 055 1 330 86 41 0 . 016 0 .927 5 089 1 330 86 41 0 .064 0 .922 5 123 1 330 86 42 0 .149 0 .917 5 158 1 330 86 44 0 .274 0 .912 5 194 1 331 86 47 0 .442 0 .906 5 230 1 331 86 51 0 .658 0 .901 5 267 1 332 86 56 0 .927 0 .896 5 304 1 333 86 62 1 .255 0 .890 5 342 1 334 86 68 1 .650 0 .885 5 380 1 335 86 76 2 .121 0 880 5 419 1 336 86 .84 2.678 0 875 5 459 1 338 86 .94 3 .333 0 869 5 499 1 339 87 .04 4.104 0 864 5 540 1 341 87 .16 5.009 0 859 5 582 1 343 87 .28 6.075 0 853 5 624 1 345 87 .42 7 .336 0 848 5 667 1 347 87 .56 8.838 0 843 5 711 1 349 87 .72 10.645 0 837 5 755 1 352 87 .88 12.854 0 832 5 801 1 355 88 .06 15.610 0 827 5 846 1 358 88 .25 19.161 0 822 5 893 1 361 88 .45 23.969 0 816 5 941 1 365 88 .66 31.071 0 811 5 989 1 368 88 .88 43 .799 0 806 6 038 1 372 89 .11 53 .270 0 806 6 038 1 372 89 .12 215.00 HGL = < 292 5.03>;EGL= < 292.900>;FLOWLINE= < 291. 570 NODE ****************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 8 UPSTREAM NODE 215.00 ELEVATION = 291.57 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = IJ 3.00 INCHES FLOW VELOCITY = 5.06 FEET/SEC. VELOCITY HEAD = 0 397 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 397) = 0.079 NODE 215.00 : HGL = < 292.979>;EGL= < 292.979>;FLOWLINE= < 291.570> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 215.00 FLOWLINE ELEVATION = 291.57 ASSUMED UPSTREAM CONTROL HGL = 292.50 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * EL CAMINO REAL ULTIMATE CONDITIONS QIOO HYDRAULICS * * PIPE RUN 2 (PROPOSED 18" RCP) NODE 200 TO 215 * * SYSTEM 1 , * ************************************************************************** FILE NAME: ELCMP2B.DAT TIME/DATE OF STUDY: 09:11 12/05/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 200.00- 5.08* 514.87 0.80 89.34 } FRICTION 205.00- 4.69* 471.58 0.80 89.46 } ANGLE-POINT 205.00- 4.69* 472.15 0.80 89.46 ) FRICTION 210.00- 4.02* 398.08 0.81 89.12 } ANGLE-POINT 210.00- 4.03* 398.64 0.81 89.12 } FRICTION 215.00- 3.66* 358.36 0.93 Dc 86.41 } CATCH BASIN 215.00- 3.86* 343.39 0.93 Dc 29.18 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: koDE NUMBER = 200.00 FLOWLINE ELEVATION = 289.50 PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 294.580 FEET NODE 200.00 : HGL = < 294.580>;EGL= < 294.750>;FLOWLINE= < 289.500> ****************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 205.00 IS CODE = 1 UPSTREAM NODE 205.00 ELEVATION = 290.07 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 57.42 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 5.84)/( 105.041))**2 = 0.00309 HF=L*SF = ( 57.42)* (0.00309) = 0.177 NODE 205.00 : HGL = < 294.757>;EGL= < 294.927>;FLOWLINE= < 290.070> ****************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 6 UPSTREAM NODE 205.00 ELEVATION = 290.07 (FLOW IS UNDER PRESSURE) CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE ANGLE-POINT = 10.00 DEGREES ANGLE-POINT COEFFICIENT KA = 0.02987 FLOW VELOCITY = 3.30 FEET/SEC. VELOCITY HEAD = 0.170 FEET HAPT=KA*(VELOCITY HEAD) = (0.02987)*( 0.170) = 0.005 NODE 205.00 : HGL = < 294.763>;EGL= < 294.932>;FLOWLINE= < 290.070> ****************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 210.00 IS CODE = 1 UPSTREAM NODE 210.00 ELEVATION = 291.04 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 96.52 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 5.84)/( 105.043))**2 = 0.00309 HF=L*SF = ( 96.52)* (0.00309) = 0.298 NODE 210.00 : HGL = < 295.061>;EGL= < 295.230>;FLOWLINE= < 291.040> ****************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 6 UPSTREAM NODE 210.00 ELEVATION = 291.04 (FLOW IS UNDER PRESSURE) CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE ANGLE-POINT = 10.00 DEGREES ANGLE-POINT COEFFICIENT KA = 0.03005 FLOW VELOCITY = 3.30 FEET/SEC. VELOCITY HEAD = 0.170 FEET HAPT=KA*(VELOCITY HEAD) = (0.03005)*( 0.170) = 0.005 NODE 210.00 : HGL = < 295.066>;EGL= < 295.236>;FLOWLINE= < 291.040> ****************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 215.00 IS CODE = 1 UPSTREAM NODE 215.00 ELEVATION = 291.57 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 53.27 FEET MANNING'S N = 0.013 00 SF=(Q/K)**2 = (( 5.84)/( 105.047))**2 = 0.00309 HF=L*SF = ( 53.27)*(0.00309) = 0.165 NODE 215.00 : HGL.= < 295.231>;EGL= < 295.400>;FLOWLINE= < 291.570> ****************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 8 UPSTREAM NODE 215.00 ELEVATION = 291.57 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.84 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.31 FEET/SEC. VELOCITY HEAD = 0.170 FEET CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.170) = 0.034 NODE 215.00 : HGL = < 295.434>;EGL= < 295.434>;FLOWLINE= < 291.570> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 215.00 FLOWLINE ELEVATION = 291.57 ASSUMED UPSTREAM CONTROL HGL = 292.50 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS O I o PALOMAR AIRPORT ROAD 1" = 40* 801 803 EXIST. 36- RCP 1 n O , 1 li 1 -^ 00 j —1 Lu s i TYPE, CR SrSTEW 2 EL CAMA/O REAL HYDRAULICS EXHIBTT I 230 I AES PIPE-FLOW NODE NUMBER ftamciDaatCoimxam ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 7 01 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * EL CAMINO REAL - SYSTEM 2 EXISTING CONDITIONS * * EXISTING 36" RCP * * 100-YEAR STORM EVENT . * ************************************************************************** FILE NAME: SYS2EX-DAT TIME/DATE OF STUDY: 13:11 10/14/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 800.00- 3.00 2090.75 0.47* 14088.93 } FRICTION 801.00- 2.69 DC 2039.57 2.28* 2121.79 } FRICTION 802.00- 2.69 Dc 2039.57 2.31* 2107.93 } JUNCTION 802.90- 2.97 1918.36 2.05* 2028.27 } FRICTION 803.00- 2.63*Dc 1867.30 2.63*Dc 1867.30 } CATCH BASIN 803.00- 4.63* 1379.27 2.63 Dc 503.03 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 800.00 FLOWLINE ELEVATION = 78.67 PIPE FLOW = 72.20 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 81.670 FEET NODE 800.00 : HGL = < 79.144>;EGL= < 236.400>;FLOWLINE= < 78.670> ****************************************************************************** FLOW PROCESS FROM NODE 800.00 TO NODE 801.00 IS CODE = 1 UPSTREAM NODE 801.00 ELEVATION = 278.90 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 72.20 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 23.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.39 CRITICAL DEPTH(FT) = 2.69 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 277 12 538 4 720 2121 79 0 012 2 202 12 981 4. 820 2157 22 0 026 2 127 13 472 4 946 2200 26 0 045 2 051 14 015 5 103 2251 64 0 067 1 976 14 618 5 296 2312 26 0 095 1 901 15 287 5 531 2383 20 0 128 1 825 16 031 5 818 2465 70 0 169 1 750 16 862 6 168 2561 29 0 219 1 675 17 791 6 593 2671 81 0 279 1 599 18 836 7 112 2799 49 0 354 1 524 20 J315 7 748 2947 05 0 445 1 449 21 353 8 533 3117 88 0 560 1 373 22 880 9 507 3316 19 0 703 1 298 24 634 10 726 3547 35 0 884 1 223 26 663 12 269 3818 17 1 117 1 147 29 032 14 244 4137 57 1 420 1 072 31 825 16 809 4517 27 1 823 0 997 35 154 20 199 4973 07 2 370 0 921 39 .175 24 767 5526 69 3 .134 0 .846 44 .107 31 073 6208 69 4 .236 0 .771 50 265 40 027 7063 35 5 .904 0 .695 58 .124 53 188 8157 05 8 .593 0 .620 68 .425 73 .367 9593 36 13 .397 0 .545 82 .382 105 .996 11542 26 23 .300 0 .474 100 .603 157 .730 14088 93 NODE 801.00 : HGL = < 281.177>;EGL= < 283.620>;FLOWLINE= < 278.900> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 802.00 801.00 TO NODE ELEVATION = 802.00 IS CODE = 1 279.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 72.20 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 34.20 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2.22 CRITICAL DEPTH(FT) = 2.69 2.31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0 . 000 2 .312 12 349 4 681 2107.93 3 .037 2 .308 12 370 4 685 2109.41 6 .232 2 .304 12 391 4 689 2110.91 9 .599 2 .300 12 412 4 694 2112.42 13.155 2 .296 12 433 4 698 2113.96 16.916 2 .292 12 454 4 702 2115.51 20.905 2 .289 12 475 4 706 2117.08 25.147 2 .285 12 496 4 711 2118.66 29.669 2 .281 12 517 4 715 2120.27 34.200 2 .277 12 538 4 720 2121.79 NODE 802.00 HGL = < 281. 712>;EGL= < 284.081>;FLOWLINE= < 279.400> Jr* *************************************************************************** FLOW PROCESS FROM NODE 802.00 TO NODE 802.90 IS CODE = 5 UPSTREAM NODE 802.90 ELEVATION = 279.73 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW (CFS) DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT. (FT/SEC) UPSTREAM 68 00 36.00 0. 00 279 .73 2 63 13 183 DOWNSTREAM 72 20 36 . 00 -279 .40 2 69 12 353 LATERAL #1 2 10 18.00 90.00 279 .73 0 55 1 188 LATERAL #2 2 10 18.00 90.00 279 .73 0 55 1 188 Q5 0 00== =Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4) ) / ( (Al-fA2 ) *16 .1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.01572 DOWNSTREAM: MANNING'S N = 0.01300; . FRICTION SLOPE = 0.01326 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01449 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.058 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-f HVI-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.402)-f( 0.000) = 0.402 NODE 802.90 HGL = < 281.784>;EGL= < 284.483>;FLOWLINE= < 279.730> ****************************************************************************** FLOW PROCESS FROM NODE 802.90 TO NODE 803.00 IS CODE = 1 UPSTREAM NODE 803.00 ELEVATION = 281.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 68.00 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 90.00 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 1 .93 CRITICAL DEPTH(FT) 2.63 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 2 . 630 10 .350 4 294 1867 . 30 0 .088 2 . 602 10 .439 4 295 1867. 63 0 .360 2. 574 10 .532 4 297 1868. 62 0 .827 2. 546 10 .630 4 302 1870. 30 1 .503 2. 518 10 .732 4 308 1872. 65 2 .407 2. 490 10 .838 4 315 1875. 70 3 .557 2 . 462 10 .949 4 325 1879 . 46 4 .979 2. 434 11 .065 4 337 1883. 95 6 .702 2 406 11 .185 4 350 1889. 18 8 .759 2 378 11 .311 4 366 1895. 16 11 .194 2 351 11 .441 4 384 1901. 93 14 .057 2 323 11 .576 4 405 1909 . 49 17 .410 2 295 11 .717 4 428 1917 . 88 21 .333 2 267 11 .863 4 454 1927 . 12 25 .924 2 239 12 .015 4 482 1937. 22 31 .311 2 211 12 .173 4 513 1948. 23 37 .664 2 183 12 .337 4 548 1960. 17 45 .212 2 155 12 .507 4 586 1973. 07 54 .276 2 127 12 .684 4 627 1986. 97 65 .329 2 099 12 .868 4 .672 2001. 89 79 .103 2 071 13 .058 4 721 2017 . 89 90 . 000 2 054 13 .179 4 .753 2028. 27 NODE 803.00 : HGL = < 284.040>;EGL= < 285.704>;FLOWLINE= < 281.410> ****************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 803.00 IS CODE = 8 UPSTREAM NODE 803.00 ELEVATION = 281.41 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 68.00 CFS PIPE DIAMETER = 36.00 INCHES FLOW VELOCITY = 10.35 FEET/SEC. VELOCITY HEAD = 1.664 FEET CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 1.664) = 0.333 NODE 803.00 : HGL = < 286.037>;EGL= < 286.037>;FL0WLINE= < 281.410> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 803.00 FLOWLINE ELEVATION = 281.41 ASSUMED UPSTREAM CONTROL HGL = 28.4.04 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 7 01 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * EL CAMINO REAL - SYSTEM 2 INTERIM CONDITIONS * * EXISTING 36" RCP * * 100-YEAR STORM EVENT . * ************************************************************************** FILE NAME: SYS2I.DAT TIME/DATE OF STUDY: 13:08 10/14/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 800.00- 3.00 2146.71 0.48* 14448.46 } FRICTION 801.00- 2.70 Dc 2098.69 2.40* 2145.44 } FRICTION 802.00- 2.70 Dc 2098.69 2.52* 2114.91 } JUNCTION 802.90- 3.11 1976.87 2.05* 2028.27 } FRICTION 803.00- 2.63*Dc 1867.30 2.63*Dc 1867.30 } CATCH BASIN 803.00- 4.63* 1379.27 2.63 Dc 503.03 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 800.00 FLOWLINE ELEVATION = 78.67 PIPE FLOW = 73.60 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 81.670 FEET NODE 800.00 : HGL = < 79.149>;EGL= < 238.301>;FLOWLINE= < 78.670> ****************************************************************************** FLOW PROCESS FROM NODE 800.00 TO NODE 801.00 IS CODE = 1 UPSTREAM NODE 801.00 ELEVATION = 278.90 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 73.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 23.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.40 CRITICAL DEPTH(FT) = 2.70 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 395 12 160 4 693 2145 44 0 009 2 315 12 569 4 770 2174 10 0 021 2 235 13 025 4 872 2210 54 0 036 2 156 13 534 5 002 2255 49 0 055 2 076 14 101 5 165 2309 80 0 079 1 996 14 733 5 368 2374 52 0 108 1 916 15 439 5 619 2450 90 0 144 1 836 16 229 5 928 2540 45 0 188 1 756 17 116 6 308 2644 98 0 .243 1 676 18 115 6 775 2766 74 0 .310 1 596 19 .247 7 352 2908 46 0 .394 1 516 20 533 8 067 3073 53 0 .499 1 436 22 005 8 960 3266 22 0 .630 1 357 23 699 10 083 3491 93 0 .798 1 277 25 .666 11 512 3757 62 1 .014 1 197 27 .968 13 350 4072 34 1 .298 1 117 30 .689 15 751 4448 12 1 .676 1 037 33 .945 18 940 4901 23 2 .193 0 957 37 .892 23 266 5454 16 2 .918 0 877 42 .755 29 .279 6138 76 3 .972 0 797 48 .859 37 .888 7001 58 5 .579 0 717 56 .698 50 .666 8113 06 8 .192 0 637 67 .053 70 .495 9584 .40 12 .910 0 558 81 .220 103 .054 11600 .72 23 .300 0 479 101 .208 159 .631 14448 .46 NODE 801.00 HGL = < 281.295>;EGL= < 283 . 593> ;,FLOWLINE= < 278.900> ****************************************************************************** FLOW PROCESS FROM NODE 801.00 TO NODE 802.00 IS CODE = 1 UPSTREAM NODE 802.00 ELEVATION = 279.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 73.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 34.20 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.25 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.52 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.70 E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f L(FT) ' (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 .520 11 608 4 614 2114 91 1 .732 2 . 509 11 652 4 619 2116 89 3 .629 2 .498 11 696 4 624 2119 00 5 .704 2 .488 11 741 4 630 2121 22 7 .972 2 .477 11 787 4 636 2123 56 10 .452 2 .466 11 833 4 642 2126 02 13 .165 2 .456 11 881 4 649 2128 60 16 .135 2 .445 11 929 4 656 2131 31 19 .391 2 .434 11 977 4 663 2134 15 22 .965 2 .423 12 027 4 671 2137 10 26 . 900 2 .413 12 077 4 679 2140 19 31 .244 2 .402 12 128 4 687 2143 40 34 .200 2 .395 12 16 0 4 693 2145 44 NODE 802.00 HGL = < 281.920>;EGL= < 284.014>;FLOWLINE= < 279.400> ****************************************************************************** FLOW PROCESS FROM NODE 802.00 TO NODE 802.90 IS CODE = 5 UPSTREAM NODE 802.90 ELEVATION = 279.73 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 68.00 36.00 0.00 279.73 DOWNSTREAM 73.60 36.00 - 279.40 LATERAL #1 2.80 18.00 90.00 279.73 LATERAL #2 2.80 18.00 90.00 279.73 Q5 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 2.63 2.70 0.64 0.64 13.183 11.612 1.584 1.584 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-fA2 ) *16 .1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01572 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01168 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01370 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.055 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY-fHVl-HV2 )-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.469)-f( 0.000) = 0.469 NODE 802.90 : HGL = < 281.784>;EGL= < 284.483>;FLOWLINE= < 279.730> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 803.00 802.90 TO NODE ELEVATION = 803.00 IS CODE = 1 281.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 68.00 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 90.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.93 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.63 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 .630 10 350 4 294 1867 3 0 0 .088 2 .602 10 439 4 295 1867 63 0 .360 2 .574 10 532 4 297 1868 62 0 .827 2 .546 10 630 4 302 1870 30 1 .503 2 .518 10 732 4 308 1872 65 2 .407 2 .490 10 838 4 315 1875 70 3 .557 2 .462 10 949 4 325 1879 46 4 .979 2 .434 11 065 4 337 1883 95 6 .702 2 .406 11 185 4 350 1889 18 8 .759 2 .378 11 311 4 366 1895 16 11 .194 2 .351 11 441 4 384 1901 93 14 .057 2 .323 11 576 4 405 1909 49 17 .410 2 .295 11 717 4 428 1917 88 21 .333 2 .267 11 863 4 454 1927 12 25 .924 2 .239 12 015 4 482 1937 22 31 .311 2 .211 12 173 4 513 1948 23 37 .664 2 .183 12 337 4 548 1960 17 45 .212 2 .155 12 507 4 586 1973 07 54 .276 2 .127 12 684 4 627 1986 97 65.329 2.099 12.868 4.672 2001.89 79.103 2.071 13.058 4.721 2017.89 90.000 2.054 13.179 4.753 2028.27 NODE 803.00 : HGL = < 284.040>;EGL= < 285.704>;FLOWLINE= < 281.410> ****************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 803.00 IS CODE = 8 UPSTREAM NODE 803.00 ELEVATION = 281.41 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 68.00 CFS PIPE DIAMETER = 36.00 INCHES FLOW VELOCITY = 10.35 FEET/SEC. VELOCITY HEAD = 1.664 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 1.664) = 0.333 NODE 803.00 : HGL = < 286.037>;EGL= < 286.037>;FLOWLINE= < 281.410> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 803.00 FLOWLINE ELEVATION =. 281.41 ASSUMED UPSTREAM CONTROL HGL = 284.04 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ***********************************************************>^****************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * EL CAMINO REAL - SYSTEM 2 ULTIMATE CONDITIONS * * EXISTING 36" RCP * * 100-YEAR STORM EVENT . * ************************************************************************** FILE NAME: SYS2U.DAT TIME/DATE OF STUDY: 13:03 10/14/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-f FLOW PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 800.00- 3.00 2082.84 0.47* 14045.15 } FRICTION 801.00- 2.68 DC 2031.19 2.39* 2071.86 ) FRICTION 802.00- 2.68*Dc 2031.19 2.68*Dc 2031.20 } JUNCTION 802.90- 3.24* 1910.32 1.98 1898.60 } FRICTION } HYDRAULIC JUMP 803.00- 2.58*Dc 1733.26 2.58*Dc 1733.26 } CATCH BASIN 803.00- 4.44* 1296.56 2.58 Dc 482.26 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 800.00 FLOWLINE ELEVATION = 78.67 PIPE FLOW = 72.00 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 81.670 FEET NODE 800.00 : HGL = < 79.143>;EGL= < 236.293>;FLOWLINE= < 78.670> ****************************************************************************** FLOW PROCESS FROM NODE 800.00 TO NODE 801.00 IS CODE = 1 UPSTREAM NODE 801.00 ELEVATION = 278.90 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 72.00 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 23.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.39 CRITICAL DEPTH(FT) = 2.68 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.39 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 000 2 392 11 913 4 597 2071 86 0 008 2 312 12 315 4 668 2098 35 0 019 2 232 12 764 4 763 2132 37 0 034 2 152 13 264 4 886 2174 60 0 052 2 072 13 822 5 040 2225 89 0 074 1 992 14 443 5 233 2287 25 0 102 1 912 15 138 5 473 2359 88 0 137 1 832 15 915 5 768 2445 24 0 179 1 752 16 788 6 131 2545 09 0 231 1 672 17 772 6 580 2661 60 0 296 1 592 18 ,885 7 134 2797 42 0 .377 1 512 20 152 7 822 2955 82 0 477 1 433 21 602 8 683 3140 94 0 .604 1 353 23 272 9 768 3358 02 0 .767 1 273 25 211 11 148 3613 80 0 .976 1 193 27 482 12 927 3917 08 1 .250 1 113 30 168 15 254 4279 54 1 .617 1 033 33 .383 18 349 4717 01 2 .119 0 .953 37 .285 22 553 5251 38 2 .824 0 .873 42 .096 28 407 5913 75 3 .851 0 .793 48 .142 36 803 6749 59 5 .419 0 .713 55 .917 49 295 7827 86 7 .975 0 .633 66 .204 68 734 9257 74 12 .599 0 .553 80 .310 100 766 11221 56 22 .938 0 .473 100 .569 157 623 14045 .15 23 .300 0 .473 100 .569 157 623 14045 .15 NODE 801.00 HGL < 281.292>;EGL= < 283.497>;FLOWLINE= < 278.900> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 802.00 801.00 TO NODE ELEVATION = 802.00 IS CODE = 1 279.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 72.00 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 34.20 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.21 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.68 2.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 .681 10 796 4 493 2031 20 0 .112 2 . 663 10 854 4 493 2031 39 0 .418 2 . 644 10 913 4 494 2031 92 0 .927 2 . 625 10 975 4 496 2032 78 1 . 654 2 .606 11 039 4 499 2033 97 2 .613 2 .587 11 104 4 503 2035 49 3 .823 2 .568 11 172 4 508 2037 35 5 .308 2 .549 11 242 4 513 2039 56 7 .093 2 .531 11 314 4 520 2042 10 9 .211 2 .512 11 388 4 527 2044 99 11 .702 2 .493 11 465 4 535 2048 23 14 .612 2 .474 11 543 4 544 2051 83 18.000 21.940 26 .525 31.873 34.200 2 .455 2 . 436 2.417 2 .399 2.392 11.624 11.707 11.792 11.880 11.913 4.555 4.556 4.578 4.591 4.597 2055.79 2060.11 2064.81 2069.88 2071.86 NODE 802.00 HGL = < 282.081>;EGL= < 283.893>;FLOWLINE= < 279.400> ****************************************************************************** FLOW PROCESS FROM NODE 802.00 TO NODE 802.90 IS CODE = 5 UPSTREAM NODE 802.90 ELEVATION = 279.73 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 64.60 72.00 3.70 3.70 0.00 = DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 36.00 0.00 279.73 36.00 - 279.40 18.00 50.00 279.73 18.00 90.00 279.73 =Q5 EQUALS BASIN INPUT=== 2.58 2.68 0.73 0.73 (FT/SEC) 9.139 10.794 2 .094 2 .094 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4) ) / ( (Al-fA2) *16.1) -fFRICTION LOSSES UPSTREAM: MANNING'S N = DOWNSTREAM: MANNING'S N = AVERAGED FRICTION SLOPE IN JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = FRICTION SLOPE = FRICTION SLOPE = ASSUMED AS 0.00985 0.01300; 0.01300; JUNCTION 4.00 FEET 0.039 FEET (DY-I-HVI-HV2 )-f (ENTRANCE LOSSES) ( 0.372)-f( 0.000) = 0.372 .00938 ,01031 ENTRANCE LOSSES = 0.000 FEET NODE 802.90 : HGL = < 282.967>;EGL= < 284.264>;FLOWLINE= < 279.730> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 803.00 802.90 TO NODE ELEVATION = 803.00 IS CODE = 1 281.41 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 64.60 CFS PIPE DIAMETER = PIPE LENGTH = 90.00 FEET MANNING'S 36.00 INCHES N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.87 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.58 2.5£ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 2 .579 9 990 4 129 1733 26 0 .082 2 . 550 10 084 4 130 1733 58 0 .334 2 .522 10 182 4 133 1734 56 0 .770 2 .493 10 285 4 137 1736 20 1 .403 2 .465 10 393 4 143 1738 53 2 .251 2 .436 10 505 4 151 1741 54 3 .335 2 .408 10 621 4 160 1745 27 4 .678 2 .379 10 743 4 172 1749 72 6 .309 2 .350 10 870 4 186 1754 92 8 .262 2 .322 11 001 4 202 1760 88 10 .579 2 .293 11 138 4 221 1767 64 13 .310 2 .265 11 280 4 242 1775 20 16 516 2 236 11 428 4 256 1783 60 20 273 2 208 11 582 4 292 1792 87 24 680 2 179 11 742 4 321 1803 03 29 861 2 151 11 908 4 354 1814 12 35 981 2 122 12 081 4 390 1825 16 43 265 2 094 12 261 4 429 1839 19 52 028 2 065 12 447 4 472 1853 26 62 731 2 036 12 641 4 519 1868 39 76 090 2 008 12 843 4 571 1884 63 90 000 1 985 13 012 4 616 1898 60 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 3 .24 DISTANCE FROM CONTROL(FT) 0.000 25.539 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 3.237 9.139 3.000 9.139 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = SPECIFIC ENERGY (FT) 4.534 4.297 3.00 PRESSURE-f MOMENTUM(POUNDS) 1910.32 1805.71 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 25 539 3 000 9 135 4 297 1805 71 27 102 2 983 9 143 4 282 1799 10 28 453 2 966 9 155 4 268 1793 17 29 682 2 949 9 170 4 256 1787 69 30 815 2 933 9 188 4 244 1782 59 31 870 2 916 9 209 4 233 1777 81 32 854 2 899 9 232 4 223 1773 32 33 775 2 882 9 257 4 214 1769 12 34 638 2 .865 9 284 4 205 1765 18 35 446 2 848 9 313 4 196 1761 49 36 202 2 .832 9 344 4 188 1758 05 36 908 2 .815 9 376 4 181 1754 84 37 565 2 .798 9 410 4 174 1751 86 38 175 2 .781 9 446 4 167 1749 11 38 .738 2 .764 9 483 4 161 1746 58 39 255 2 .747 9 521 4 156 1744 28 39 .726 2 .730 9 561 4 151 1742 19 40 .150 2 .714 9 503 4 146 1740 32 40 .528 2 . 697 9 546 4 143 1738 .58 40 .859 2 .680 9 691 4 139 1737 .24 41 .142 2 . 663 9 737 4 136 1735 .03 41 .376 2 . 546 9 785 4 134 1735 . 04 41 .551 2 . 629 9 834 4 132 1734 .26 41 695 2 . 612 9 884 4 130 1733 .70 41 .777 2 .596 9 936 4 .13 0 1733 .37 41 804 2 . 579 9 990 4 129 1733, .26 90 .000 2 .579 9 990 4 129 1733 .26 END OF HYDRAULIC JUMP ANALYSIS PRESSURE-fMOMENTUM DOWNSTREAM BALANCE OCCURS AT DEPTH = 3.202 FEET, 3.79 FEET UPSTREAM OF NODE 802.90 UPSTREAM CONJUGATE DEPTH = 1.991 FEET NODE 803.00 : HGL = < 283.989>;EGL= < 285.539>;FLOWLINE= < 281.410> ****************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 803.00 IS CODE = 8 UPSTREAM NODE 803.00 ELEVATION = 281.41 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 64.60 CFS PIPE DIAMETER = 36.00 INCHES FLOW VELOCITY = 9.99 FEET/SEC. VELOCITY HEAD = 1.551 FEET CATCH BASIN ENERGY LOSS = .2*(yEL0CITY HEAD) = .2*( 1.551) = 0.310 NODE 803.00 : HGL = < 285.850>;EGL= < 285.850>;FL0WLINE= < 281.410> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 803.00 FLOWLINE ELEVATION = 281.41 ASSUMED UPSTREAM CONTROL HGL = 2 83.99 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS APPENDIX 4 INLET, CATCH BASIN, AND DITCH CALCULATIONS APPENDIX 4.1.1 PROPOSED INLET CALCULATIONS EL CAMINO REAL PROPOSED CURB INLET AND 12" CSP SLOTTED INLET PROJ. NUM 2301 CURB INLET AT STATION 307+00 STATION NODE NUMBER Street Side QIOO % Street Depth, Y Req'd Length Provided length Bypass STATION NODE NUMBER Street Side (CFS) Slope (Feet) L - (FEET) L - (Feet) Q (cfs) 307-fOO 1120 EAST 5.84 Sump -2.92 4 0 Note; This Inlet is sized assuming sump conditions (2 cfs/if) 12" CSP SLOTTED DRAIN INLET ALONG CURB - STARTING STATION 307+00 STATION NODE NUMBER Street Side QWO % Street Depth, Y Req'd Length Provided length Bypass Spread STATION NODE NUMBER Street Side (CFS) Slope (Feet) L-(FEET) L - (Feet) Q (cfs) (feet) 307-fOO 1120 EAST 5.84 0.75 0.33 29.70 200 0 16.50 Note: This caiculations for the 12" CSP slotted drain conservatively assumes that the curb inlet at Station 307-fOO Is non functional. ULTIMATE QIO (6-hr) FLOODED WIDTH STATION NODE NUMBER Street Side QIO (CFS) % Street Slope Y (Feet) FLOODED WIDTH (Feet) Outside Lane Width (feet) 307-fOO 1120 EAST 3.60 0.75 0.29 13.53 20 Note: Outside lane width includes 8' Bike Lane -f 12' Lane width T:\Engr\2301\DRAINAGBCurb-inlets-ELCAMINO.xls 12/5/02 200 L.F. of 12" CSP Slotted Drain @ 0.5% - Begin Station 307+00 Worksheet for Slot Inlet On Grade Project Description Worksheet Slot Inlet -1 Type Slot Inlet On Grade Solve For Efficiency Input Data Discharge 5.84 cfs Slope 0.007500 ft/ft Gutter Width 1.50 ff Gutter Cross Slope 0.083000 ft/ft Road Cross Slope 0.014000 ft/ft Mannings Coefficient 0.013 Slot Length 200.00 ft Local Depression 0.0 in Local Depression Width 0.00 ft Results Efficiency 1.00 Intercepted Flow 5.84 Cfs Bypass Flow 0.00 cfs Spread 16.49 ft Depth 0.33 ft Flow Area 2.0 ft^ Gutter Depression 1.2 in Total Depression 1.2 in Velocity 2.95 tt/s Equivalent Cross Slope 0.034250 ft/ft Length Factor 6.72 Total Interception Length 29.74 ft t:\...\dralnage\flowmaster\gutter clepths-ult.1m2 Project Design Consultants 12/05/02 07:56:59 AM © Haestad Methods, inc. 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Adolph Lugo FlowMaster v6.1 [614o] (203) 755-1666 Page 1 of 1 200 L.F. of 12" CSP Slotted Drain @ 0.5% - Begin Station 307+00 - QIO Worlcsheet for Slot Inlet On Grade Project Description Worksheet Slot Inlet - QIO Type Slot Inlet On Grade Solve For Efficiency Input Data Discharge 3.60 cfs Slope 0.007500 ft/ft Gutter Width 1.50 ft Gutter Cross Slope 0.083000 ft/ft Road Cross Slope 0.014000 ft/ft Mannings Coefficient 0.013 Slot Length 200.00 ft Local Depression 0.0 in Local Depression Width 0.00 ft Results Efficiency 1.00 Intercepted Flow 3.60 cfs Bypass Flow 0.00 cfs Spread 13.53 ft Depth 0.29 ft Flow Area 1.4 fp Gutter Depression 1.2 in Total Depression 1.2 in Velocity 2.65 ft/s Equivalent Cross Slope 0.039027 ft/ft Length Factor 8.91 Total Interception Length 22.45 ft Project Engineer: Adolph Lugo t:\...\drainage\tlowmaster\gutterdepths-ult.fm2 Project Design Consultants FlowMaster v6.1 [614o] 12/05/02 07:57:28 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Pagelofi 307+00 ELCAMINO 308+00 309+00 JIO+00 302 300 298 296 294 292 WTUmGRADING om. No. 400-8/ 300 t 298 296 1-^4= 294 292 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 APPENDIX 4.1.2 EXISTING STREET INLET CALCULATIONS EL CAMINO REAL EXISTING CURB INLETS PROJ. NUM 2301 CURB INLETS ON GRADE - Q10 (6-hr) Inlet Capacity STATION NODE NUMBER Street Side Ultimate 010 (cfs) % Street Slope Y (Feet) Inlet Opening L-(FEED Inlet Capacity (cfs) BYPASS QIO. (GFS) Inlet Design Q (cfs) Existing 010 (cfs) 309+00 1020 WEST 3.20 0.75 0.32 7.00 2.57 0.63 Unknown 3.20 315-fOO 2120 EAST 3.16 1.50 0.29 7.00 2.39 0.77 1.93 2.16 320-fOO 2220 EAST 2.98 1.72 0.24 8.00 2.41 0.57 2.20 2.60 CURB INLETS ON GRADE - ULTIMATE Q10 (6-hr) FLOODED WIDTH STATION NODE NUMBER Street Side Q10 (CFS) % Street Slope Y (Feet) FLOODED WIDTH (Feet) Lane Width (feet) 309-fOO 1020 WEST 3.2 0.75 0.32 14.81 20 315-fOO 2120 EAST 3.16 1.5 0.29 11.28 12 320-fOO 2220 EAST 2.98 1.72 0.24 10.40 12 Note: 1. For Existing Inlet at Node Number 1020 (St Sta 309-fOO) the outside lane width includes 8' Bike Lane + 12' Lane width T:\Engr\2301\DRAINAGE\Curb-inlets-ELOAMINO.xls 10/9/02 El Camino Real - Sta 309+00 West (QIO) Worksheet for Irregular Channel Project Description Worksheet Flow Element Method Solve For El Camino Real - Sta 309+00 West (QIO) Irregular Channel Manning's Formula Channel Depth Input Data Slope 0.007500 ft/ft Discharge 3.20 cfs Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.016 Water Surface Elevation 99.39 ft Elevation Range 99.07 to 99.82 Flow Area 1.7 ft2 Wetted Perimeter 15.05 ft Top Width 14.81 ft Actual Depth 0.32 ft Critical Elevation 99.39 ft Critical Slope 0.007633 ft/ft Velocity 1.90 ft/s Velocity Head 0.06 ft Specific Energy 99.44 ft Froude Number 0.99 Flow Type Subcritical Roughness Segments Start End Mannings Station Station Coefficient 0+00 0+12 0.015 0+12 0+54 0.018 Natural Channel Points Station Elevation (ft) (ft) 0+00 99.77 0+10 99.57 0+10 99.07 0+12 99.19 0+54 99.82 t:\...\drainage\flowmaster\gutter depths-ult.fm2 Project Design Consultants 10/07/02 05:31:48 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Adolph Lugo FlowMaster v6.1 [614o] (203) 755-1666 Page 1 of 1 El Camino Real - Sta 315+00 (QIO) Worksheet for Irregular Channel ^/S77A/g- /HL^I^^ Project Description Worksheet Flow Element Method Solve For El Camino Real - Sta 315+00 (QIO) Irregular Channel Manning's Formula Channel Depth Input Data Slope 0.015000 ft/ft Discharge 3.16 cfs Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.016 Water Surface Elevation 291.79 ft Elevation Range 291.50 to 293.10 Flow Area 1.2 ft2 Wetted Perimeter 11.58 ft Top Width 11.28 ft Actual Depth 0.29 ft Critical Elevation 291.82 ft Critical Slope 0.007868 ft/ft Velocity 2.55 ft/s Velocity Head 0.10 ft Specific Energy 291.89 ft Froude Number 1.35 Flow Type Supercritical Roughness Segments Start End Mannings Station Station Coefficient -0+01 0+00 0.015 0+00 0+54 0.018 Natural Channel Points Station (ft) Elevation (ft) -0+01 292.00 -0+01 291.50 0+00 291.60 0+53 292.60 0+54 293.10 t:\...\drainage\flowmaster\gutter depths-ult.fm2 Project Design Consultants 10/07/02 04:14:27 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Adolph Lugo FlowMaster v6.1 [614o] (203)755-1666 Pagelofi El Camino Real - Sta 319+50 (QIO) Worksheet for Irregular Channel Project Description Worksheet Flow Element Method Solve For El Camino Real - Sta 319+50 (QIO) Irregular Channel Manning's Formula Channel Depth Input Data Slope 0.017200 ft/ft Discharge 2.98 cfs Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results Mannings Coefficient 0.016 Water Surface Elevation 284.54 ft Elevation Range 284.30 to 286.60 Flow Area 1.1 ft^ Wetted Perimeter 10.43 ft Top Width 10.19 ft Actual Depth 0.24 ft Critical Elevation 284.58 ft Critical Slope 0.007935 ft/ft Velocity 2.69 ft/s Velocity Head 0.11 ft Specific Energy 284.66 ft Froude Number 1.44 Flow Type Supercritical Roughness Segments Start End Mannings Station Station Coefficient -0+01 0+00 0.015 0+00 0+83 0.018 Natural Channel Points Station (ft) Elevation (ft) -0+01 285.10 -0+01 284.30 0+00 284.35 0+83 286.10 0+83 286.60 Project Engineer: Adolph Lugo t:\...\drainage\flowmasteAgutterdepths-ult.fm2 Project Design Consultants FlowMaster v6.1 [614o] 10/07/02 04:16:51 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Pagelofi J/5 f 00 296 294 292 290 63' 37.46' 15.54' ^Xm.MEDIAN --^--EXlSnEQP- PA¥.- 4 SAYI WT. PRokosko SIDEWAL 1... R/W 10' ;r4 I ••-1 - I W 15 20 25 30 35 40 45 50 55 60 296 mmE GRADING PER wm Np. 400-8A I 294 292 290 65 70 75 I 292 290 288 286 284 { 282 292 290 GRADING PER 400-8A 288 286 284 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 P5 100 105 110 I 252 EXISVNG STRIPING EXIi •'EXIST APPENDIX 4.2 'F' TYPE CATCH BASIN CALCULATIONS Type Catch Basin The maximum allowable flow rate is determined using the orifice flow equation, as follows: where Q^=CA<2gh, C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hvdraulics; A = Area of clean opening (3 feet x 0.65 foot = 1.95 ft^ per opening); g = Gravitational acceleration (32.2 ft/sec^); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to top of catch basin box (h=0.92') Qmax = (0.62)1.95V(2)(32.2)(0.92) = 9.3 cfs per opening > 2 cfs (ok). Required number of openings: 1 APPENDIX 4.3 DITCH CALCULATIONS System 2 - Type 'B' Ditch along El Camino (Ultimate QIOO) Worksheet for Circular Channel Project Description Worksheet Flow Element Method Solve For System 2 - Type 'B' Brow Ditch (Ultimate QIOO) Circular Channel Manning's Formula Channel Depth Input Data Mannings Coefficient 0.015 Slope 0.005000 ft/ft Diameter 24 in Discharge 2.00 cfs Results Depth 0.51 ft Flow Area 0.6 ft^ Wetted Perimeter 2.12 ft Top Width 1.75 ft Critical Depth 0.49 ft Percent Full 25.7 % Critical Slope 0.005976 ft/ft Velocity 3.14 ft/s Velocity Head 0.15 ft Specific Energy 0.67 ft Froude Number 0.92 Maximum Discharge 14.91 cfs Discharge Full 13.86 cfs Slope Full 0.000104 ft/ft Flow Type Subcritical t:\.. .\drainage\flowmasterXgutter depths-ult.fm2 10/09/02 06:00:08 PM © Haestad Methods, Inc. Project Engineer: Adolph Lugo Project Design Consuttants FlowMaster v6.1 [614o] 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Pagelofi Future Town Garden Road - Interim Cone. Brow Ditch Worksheet for Circular Channel Project Description Worksheet Future Town Garden Rd - Brow Ditch (Interim QIOO) Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.015 Slope 0.005000 ft/ft Diameter 30 in Discharge 5.10 cfs Results Depth 0.76 tt Flow Area 1.3 iP Wetted Perimeter 2.93 ft Top Width 2.30 ft Critical Depth 0.74 ft Percent Full 30.6 % Critical Slope 0.005511 ft/ft Velocity 4.01 ft/s -4— Velocity Head 0.25 ft Specific Energy 1.01 ft Froude Number 0.95 Maximum Discharge 27.04 cfs Discharge Full 25.13 cfs Slope Full 0.000206 ft/ft Flow Type Subcritical '^TT? $Y'^'^ Ff?^ fuBLAc. i^c^^s, t:c,^^ST. 7^- 0>(^ ' t:\...\drainage\flowmaster\gutter depths-ult.fm2 Project Design Consultants 10/09/02 05:58:41 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA Project Engineer; Adolph Lugo FlowMaster v6.1 [614o] (203) 755-1666 Page 1 of 1