Loading...
HomeMy WebLinkAboutCT 00-06; BRESSI RANCH MASTER EL FUERTE STREET; DRAINAGE REPORT; 2003-01-01DRAINAGE REPORT FOR EL FUERTE STREET - BRESSI RANCH CARLSBAD, CALIFORNIA January 2i063 VOLUME I Prepared for LENNAR COMMUNITIES c/o LENNAR BRESSI VENTURE, LLC 5780 Fleet Street, Suite 320 Carlsbad, CA 92008 Prepared By: PROJECTDESIGN CONSULTANTS 701 'B' Street, Suite 800 San Diego, CA 92101 (619) 235-6471 Job No. 2199.00 Aooiph Lugi RCE 50998 Registration Expires 09/30/05 TABLE OF CONTENTS Page Section 1.0 INTRODUCTION 1 2.0 EXISTE^G DRAINAGE 2 2.1 Existing Offsite Drainage 4 2.2 Existing Onsite Drainage 5 3.0 INTERIM AND PROPOSED DRAINAGE IMPROVEMENTS 5 4.0 HYDROLOGY CRITERIA AND METHODOLOGY 6 4.1 Hydrology Criteria 6 4.2 Hydrology Methodology 6 4.2.1 Interim Condifion Hydrology 7 4.2.2 Ultimate Condifion Hydrology 8 4.2.3 El Fuerte Detention Basin Hydrology 9 4.2.4 Water Quality Requirements 11 4.3 Explanafion of AES Modified Rafional Method Software 11 5.0 HYDRAULIC CRITERIA 13 6.0 HYDRAULIC METHODOLOGY 13 6.1 Storm Drainpipe Design Methodology 13 6.2 Feasibility Drainpipe Design Analysis: "B" Street to El Fuerte Basin 14 6.3 Curb Inlet and Catch Basin Analysis 14 6.4 Concrete Ditch and Riprap Analysis 15 6.5 El Fuerte Street Detention Basin Analysis and Design 16 6.5.1 Spillway Design and HEC-RAS Analysis 17 6.6 Explanation of AES Pipeflow Software 18 6.7 Explanafion of FLOWMASTER PE Software 19 6.8 Explanafion of CULVERTMASTER Software 19 6.9 Explanation of PONDPACK Software 19 6.10 Explanation of HEC-RAS Software 20 7.0 HYDRAULIC ANALYSIS RESULTS 20 7.1 Storm Drainpipe Analysis 20 7.2 Feasibility Drainpipe Design Analysis: "B" Street to El Fuerte Basin 21 R:\WP\REPORT\1300\13255DR,DOC j 7.3 Curb Inlet, Pipe Inlet, and Catch Basin Analysis 22 7.4 Concrete Ditch and Riprap Analysis 22 7.5 El Fuerte Basin Analysis and Design 22 7.6 El Fuerte Sfilling Basin Design 23 8.0 CONCLUSION 24 FIGURES Page 1 Vicinity Map 3 TABLES Page 1 Hydrology Criteria 6 2 El Fuerte Basin Design Acreages and Flows 11 3 Hydraulic Criteria 13 4 El Fuerte Basin Analysis Summary 23 APPENDICES 1 Rational Method Isopluvials Map 2 Interim Condition Rational Method Computer Output 3 Ultimate Condition Rational Method Computer Output - El Fuerte Street Future Lateral Systems 4 AES Pipeflow Computer Output and CDS Unit Calculafions 4.1 AES Pipeflow Computer Output 4.2 CDS Unit Calculafions 5 Inlet/Headwall and Catch Basin Calculations 5.1 Inlet/Headwall Calculations 5.2 Catch Basin Calculations 6 Ditch and Riprap Calculations R:\WP«EPORT\1300\13255DR.DOC - 6.1 Ditch Calculations 6.2 Riprap Calculations 7 Detention Calculafions - See Volume II 7.1 PONDPACK Calculafions 7.2 HEC-RAS Calculafions ATTACHMENTS Exhibit A Existing Condition Drainage Map Exhibit B Ultimate Condition Drainage Map, Sheets 1 - 3 Exhibit C Interim Condition Drainage Map Exhibit D AES Pipeflow and Ditch Calculafion Node Number Map Exhibit E Storm Drainpipe Comparative Design Analysis Exhibit F Poinsetfia Lane AES Rational Method Node Number Map R:\WP«IEPORT\I300\13255DR.DOC jjj 1.0 INTRODUCTION This report provides hydrologic and hydraulic analyses for design of the proposed El Fuerte Street storm drain and detenfion facilities (Project). El Fuerte Street, which is located in the City of Carlsbad, will connect Poinsetfia Lane to Palomar Airport Road. This roadway is bound by: 1) Palomar Airport Road to the north, 2) Melrose Drive to the east, 3) El Camino Real and the proposed Bressi Ranch Master Plan community to the west, and 4) Poinsetfia Lane to the south. Refer to Figure 1: Vicinity Map, for the project locafion. From a project phasing perspective, the El Fuerte Sfi-eet project will be constructed before the Bressi Ranch Development Project. As a result, interim and ultimate conditions hydrologic analyses were performed to determine which condition govems the design of the storm drain improvements within El Fuerte Street. The interim condifion analysis was based on the existing conditions topography shown on the Bressi Ranch Development Tentative Map and the El Fuerte Street grading and drainage plans. The Bressi Ranch Tentative Map site layout and El Fuerte Street grading and drainage plans were used for the ultimate conditions hydrology. Runoff from a significant portion of the Bressi Ranch Development (see Tentative Map) will be diverted to the El Fuerte Street storm drain system. As a result, the ultimate conditions hydrology (in most cases) govemed the design of the backbone storm drain system within El Fuerte Street. In a few instances, however, several storm drain laterals were designed using interim conditions hydrology. The El Fuerte Street storm drain improvements connect to the proposed drainage system within Poinsettia Lane that is currently being designed by Kimley-Hom and Associates, Inc. (K-H). Therefore, it is anticipated that the Poinsettia Lane roadway improvements will be constructed prior to El Fuerte Street. Note that PDC is currenfiy coordinating the design of the El Fuerte storm drain improvements with K-H. Existing and proposed detention basins, which are located at the intersection of El Fuerte Street and Poinsettia Lane, address regional flood control. The existing detention basin (Carillo Basin) that is located immediately southeast of the intersecfion was constructed for the Rancho Carillo development project. The proposed detention basin (El Fuerte Basin) will be located in the R:\WP\REPORTM 300\13255DR.DOC southwest quadrant of the intersection, and is shown on the El Fuerte Street grading and drainage plans. The basin will reduce the peak runoff due to the diversion of storm runoff from the Bressi Ranch development to the El Fuerte Street storm drain system. The analysis and design of this detention basin are included herein. Also included in this report are: • Hydrology for interim and ultimate conditions construction phasing; • Storm drain hydraulic capacity (Pipeflow) calculations using the goveming interim or ultimate condition runoff; • Curb inlet design calculations using the ultimate condition runoff, and curb inlet analysis using the interim condition runoff; and • Ditch and catch basin design using the goveming interim or ultimate condition runoff. From a water quality perspective, an overall Storm Water Quality Plan (SWQP) for Bressi Ranch, dated April 2002, was recently approved as a part of the Tentafive Map. A CDS water quality unit, per the SWQP, will be located at the intersecfion of Poinsetfia Lane and El Fuerte Sti-eet. This post-construcfion Best Management Pracfice (BMP) will treat storm runoff from El Fuerte Street and the Bressi Ranch Project. Note that the construcfion phase BMPs are addressed in the Grading and Erosion Control Plans and the SWPPP. 2.0 EXISTING SITE DRAINAGE The following secfions address Project exisfing conditions offsite and onsite drainage pattems and regional detention relative to the Carillo and El Fuerte Basins. These pattems provide the framework for the hydrologic evaluation of the interim and ultimate conditions hydrology, which were used in the: 1) design of the project storm drain system, and 2) development of the detention scheme for the overall Bressi Ranch development. RAWPXREPORTM 300\13255DR.DOC Project site. -MELROSE DRIVE .POINSE.TTIA LANE Figure 1. Vicinity Map R:\WP\REPORTM300\13255DR.DOC 2.1 Existing Offsite Drainage Rick Engineering (Rick) and Howard H. Chang Consultants (Chang) previously prepared regional detention studies for the Rancho Carillo project and the Bressi Ranch-La Costa Greens projects, respectively. The Chang studies, which integrate/adopt the Rick analysis, were used as the basis-of-design for the final design of the El Fuerte Street Basin. The latter reports are fified, "Hydrology and Hydraulics Studies for La Costa Greens in Carlsbad" dated August 1998, and "Hydrology and Hydraulics Studies for Bressi Ranch in Carlsbad" (Chang report), dated March 2001. The Rick and Chang studies show that there are two offsite detention basins that affect the final design of the El Fuerte Basin. The first basin is the Carillo Basin that is located in the southeast quadrant of the El Fuerte Street/and Poinsettia Lane intersection. The second basin is the Alicante Basin, which is a part of the La Costa Greens development (O'Day Consultants/Chang), and will be constructed at the Alicante Road/Poinsettia Lane intersection. Both basins are situated in-line within an unnamed tributary creek (Tributary Creek) to San Marcos Creek. Note that the Alicante Basin plans are currenfiy under review by the City. The Carillo Basin provides detention for the Rancho Carillo Project and a small portion of Bressi Ranch open space area. However, due to a significant amount of diversion from the Bressi Ranch development the El Fuerte Basin will be consfiucted to maintain the Tributary Creek flows that are identified in the Chang report (See Section 4.2.2 and Appendix 7.1). The preliminary analysis and design of the El Fuerte Basin was originally addressed in the second Chang report for Bressi Ranch. However, this ProjectDesign (PDC) report provides the analysis and design associated with final engineering. The Alicante basin, located downstream of the Carillo Basin and El Fuerte Basin also receives storm flow from a northerly tributary that drains the westeriy half of the Bressi Ranch development. Detenfion for this area is currenfiy being evaluated and, if required, will be addressed in the drainage report for the Bressi Ranch Mass Grading Plans. R:\WP\REPORT\l 300\13255DR.DOC 2.2 Existing Onsite Drainage Onsite drainage areas located westeriy of El Fuerte Street, i.e. within Bressi Ranch, consist of agricultural fields, and open space with genfiy rolling hills covered with perennial grasses and chaparral that drain via natural watercourses to an exisfing debris basin. This basin was constructed to capture agricultural related runoff and sediment discharge. Onsite drainage areas east of the project also consist of rolling hills and similar vegetafion, which drain to the debris basin. The El Fuerte Street roadway embankment will be constructed by the filling of the natural canyon that drains to the existing debris basin. Therefore, a series of interim ditches will be used to convey storm mnoff from the westerly basins to the debris basin. Flows from the debris basin will continue to drain to a culvert that crosses Poinsettia Lane prior to discharging to the Tributary Creek. The Tributary Creek conveys the storm runoff to the proposed Alicante Basin. (See Exhibit A). Runoff from the easteriy side of the roadway embankment, however, will be conveyed by the El Fuerte Street storm drain backbone system to the El Fuerte Basin. It is anticipated that Poinsettia Lane, and associated drainage improvements, will have been constructed before El Fuerte Street. Therefore, the Poinsettia Lane culvert addressed above has been treated as existing condition improvements in this report. The Poinsettia Lane culvert improvements were designed by K-H and are shown on City of Carlsbad Drawing Number 397- 2J. 3.0 INTERIM and PROPOSED DRAINAGE IMPROVEMENTS In general, the local El Fuerte Street drainage improvements consist of a backbone storm drainpipe system, curb inlets, catch basins, and concrete ditches. However, from a water quality and flood control perspective, a CDS Unit and the El Fuerte Basin will also be constmcted with this project, respectively. As previously mentioned, interim and ultimate conditions hydrology and hydraulic analyses were performed for the project to determine which condition govems the design of the project drainage improvements. In most cases the ultimate condition govemed, however, in a few RAWPy{EPORT\l 300\13255DR,DOC instances the interim conditions was used in the design. The only difference between El Fuerte Street interim and ultimate condition drainage improvements are as follows: » The intenm conditions drainage ditches, which are located along the westeriy edge of El Fuerte Sfi-eet, are not necessary under ultimate conditions due to the grading associated with Bressi Ranch. • The interim conditions ditches that are located along the eastem side of El Fuerte Street will remain under ultimate condifions, since this area will remain as open space. See Exhibits B and C for the ulfimate and interim condifion drainage maps, respecfively. 4.0 HYDROLOGY CRITERIA 4.1 Hydrology Criteria This section of the report summarizes the drainage criteria that were used in the hydrologic analysis and key elements of the methodology. Table 1 below summarizes the drainage criteria for the project. Table 1: Hydrology Criteria Design Storm: 1 OO-year, 6-hour storm. Land Use: Existing, interim and ultimate open space, roadway, single- and multi-family residential, and industrial. Runoff Coefficients: Based on criteria presented in the "Standards for Design and Constmction of Public Works Improvements in the City of Carlsbad," Drainage - Design Criteria section, dated 4-20-93. Hydrologic Soil Group: Soil Group 'D'. See Appendix 1 for the County Soil Group Map. Intensity and Time of Concentrafion: Based on criteria presented in the County of San Diego Hvdrolosv Manual. See Appendix 1 for the County Isopluvials. R:\WP\REPOR'ni300\13255DR.DOC 4.2 Hydrology Methodology In general, the interim condition runoffs were used in the design of the drainage improvements to account for: 1) the offsite diversion of flow from one major basin to the next, i.e. diversion from the Bressi Ranch development to the El Fuerte Street backbone system, and 2) local upsfi-eam diversion of flow, i.e. within the same El Fuerte Street drainage basin. Specifically, Item 1 accounts for the ulfimate condifion diversion of mnoff from the Bressi Ranch Development to the El Fuerte Street storm drain system, while Item 2 accounts for Bressi Ranch Planning Area 5, and storm drain connection to the El Fuerte Street system. The following sections provide a more detailed description of the: 1) interim and ultimate conditions methodology and improvements, 2) El Fuerte Street detention analysis methodology, 3) water quality analysis methodology, and 4) explanation of the AES Rational Method software used in the hydrologic analyses. 4.2.1 Interim Condition Hydrology There are interim grading and drainage improvements that will be constmcted for this project in preparation for the ultimate development of Bressi Ranch. The following is a description of these improvements: (See Exhibit C) • Interim grading associated with the constmction of El Fuerte Street. • Backbone storm drainpipe system and inlets within El Fuerte Street. • Drainage ditches along the easterly and westerly edges of El Fuerte Street. • Detenfion basin at the southwesteriy comer of El Fuerte Street and Poinsettia Lane. • An inlet and cross culvert at Poinsetfia Lane street stafion 69-f60, per City of Carlsbad Drawing Number 397-2J, which convey runoff from the drainage basins west of El Fuerte Street to the Tributary Creek (See Secfion 2.1). The El Fuerte Street drainage improvements were designed for either the goveming ulfimate or interim condifion runoffs (see Secfion 5.2.1). The following summary R:\WP\REPORT\13(X)\I3255DR.DCX: 7 idenfifies the storm drain facilifies and locations that were designed using interim condifions hydrology. • Storm drainpipe at Street Stafion 22+85.30 • Storm drainpipe at Street Stafion 36+20.26 • Concrete drainage ditches along the westerly side of El Fuerte Street • Concrete drainage ditches along the easterly edge of El Fuerte Street north of Street Station 36+20 The drainage ditches along the westeriy side of El Fuerte Street will be constracted for only the interim condition grading. These ditches drain to the existing debris basin and then to the cross culvert at Poinsettia Lane street station 69+60. The hydrology for the interim conditions is based on proposed grades, storm drainpipe profile, and exisfing topography, shown on the grading and drainage plan drawings. 4.2.2 Ultimate Condition Hydrology The ulfimate condifions hydrology was used in the design of the majority of the El Fuerte Street drainage improvements. The following describes the ulfimate conditions grading and drainage improvements used in the design of El Fuerte Street: (See Exhibit 'B') • The grading along the westeriy side of El Fuerte Street reflects the grading shown on the Bressi Ranch tentative map. This information was used to determine the ultimate conditions storm runoffs used in the design of the improvements. • The backbone storm drainpipe system and inlets within El Fuerte Street. • The concrete drainage ditches along the easteriy edge of El Fuerte Street south of Street Station 36+20. • The El Fuerte Basin. The sump inlets located at El Fuerte Street stations 63+38 and 63+48, and associated storm drainpipe that discharges to the El Fuerte Basin. The hydrology R:\WP\REPOR1M300\132J5DR.DOC for these sump inlets is based on the As-Built Grading and Storm Drain Improvement Plans for Rancho Carillo (City of Carisbad Dwg. No. 331-lA). The ultimate condition Rational Method hydrology for the Bressi Ranch development was based on street grades and the storm drainpipe alignment shown on the Bressi Ranch tentative map (See Exhibit 'B', Sheet 2). These mnoffs were introduced into the El Fuerte backbone system at key locations along El Fuerte Street, which include the intersecfions of future 'B', 'C, 'D', and 'F' Streets. Additionally, note that the ultimate condition Bressi Ranch ranoffs were increased by approximately 10% at these connection points to: 1) provide a conservative storm drainpipe design within El Fuerte Street, due to uncertainty associated with the future Bressi Ranch storm drain layout, and 2) avoid detention within Bressi Ranch, due to an increase in ranoff from Bressi Ranch. The El Fuerte Street backbone system, which ulfimately discharges into the El Fuerte Basin, ends at El Fuerte Street station 56+45 (Node number 1090: see Exhibit B). It is important to note that the K-H plans for Poinsettia Lane (City of Carlsbad Drawing Number 397-2J) will show the remainder of the drainpipe to the El Fuerte Basin and the concrete impact type energy dissipator at 72-inch drainpipe outlet. The K-H storm drain improvements, associated with Poinsettia Lane, were designed for the 50-year storm event. This includes a 36-inch RCP lateral connection to the El Fuerte 72-inch RCP backbone drainpipe system at station 57+05. This system was reanalyzed by PDC for the lOO-year storm event for the: 1) design of the 72-inch RCP that drains into the El Fuerte Basin, and 2) calculation of the ultimate conditions 100-year storm hydrograph used in the design of the El Fuerte basin volume and outlet works. See Exhibit 'F' for the Poinsettia Lane drainage map and Appendix 2 for the hydrology calculations. 4.2.3 El Fuerte Street Detention Basin Hydrology As discussed in Section 2.1 a significant portion of the Bressi Ranch flows will be diverted to the El Fuerte storm drain system. As a result of this diversion, the El Fuerte Basin will be constracted to detain for this diversion prior to discharging to the Tributary R:\WP«EPORT\I300\I3253DR.DOC Creek. The exisfing condifions hydrology used in the final design of the El Fuerte Basin was acquired from the Chang report for Bressi Ranch (see Secfion 2.1). In effect, the ultimate conditions storm runoff from the Bressi Ranch development was detained back to existing condifions in accord with the Chang detenfion studies. The ultimate condifions storm ranoff presented in this report varies from that determined by Chang. In general, the difference is due to 1) the use of different hydrograph methodologies, 2) the use of more detailed plans for the PDC hydrology calculations, 3) diversion of a 29-acre basin that at one point drained to the Carillo Basin, and 4) over- detention for approximately 11 acres of Bressi Ranch, i.e. the southeriy portion of PA-12. Chang used the County of San Diego Soil Conservation Service methodology (HEC-1 program) to generate lOO-year storm event ranoff hydrographs. In contrast, PDC used the AES Rational Method time-of-concentration (Tc) and peak discharge to develop the hydrographs. The latter approach is more appropriate since: 1) the Bressi Ranch drainage basin that drains to the El Fuerte Basin is less than 1 square mile, and 2) PDC has the benefit of the latest site and drainage system layout. The diversion of the 29-acre basin into the Poinsettia Lane storm drain system was designed by K-H due to utility conflicts that prohibit a direct discharge into the Carillo Basin. The reanalysis of the Carillo Basin detention is not provided in this report, since the El Fuerte Basin is designed to accommodate the storage for the entire runoff from the 29-acre basin. Over-detention for the 11-acre area is based on the difference between existing and proposed 1 OO-year storm event ranoffs from this acreage. Table 2 below summarizes the detention basin design acreages and ranoff values. R:\WP\REPORT\1300\13255DR. DOC 10 Table 2: El Fuerte Basin Design Acreages and Flows Chang Report Acreage Chang Report Inflow QIOO (cfs) Chang Report Outflow QIOO (cfs) PDC Acreage PDC Inflow QIOO (cfs) PDC Outflow QIOO (cfs) 262 401 317 293 613 310 Note: See Appendix 7.1 for the Chang Report HEC-1 Output at the El Fuerte Basin. 4.2.4 Water Quality Requirements A CDS water quality unit will be constracted just northerly of the El Fuerte Basin to satisfy State and City NPDES post-constraction water quality requirements. The CDS Unit design and hydraulic headloss calculations were provided by CDS Technologies and are located in Appendix 4.2. Two SWQPs, which have been approved by the City, initially introduced the CDS BMP approach. These documents are titled: • Concept Water Quality Plan for Bressi Ranch TM CT 00-06. • Industrial Concept Water Quality Plan for Bressi Ranch TM CT 00-06. During consti-uction, BMP's such as desilting basins and other erosion control measures will be employed for the project. These BMP measures are included in the SWPPP for the project. See the El Fuerte Street grading and drainage plans for the BMP constraction details. 4.3. Explanation of AES Rational Method Software The Advanced Engineering Software (AES) Rational Method Program was used to perform the hydrologic calculations. This section provides a brief explanation of the computational procedure used in the computer model. The AES Rational Method was used to determine the lOO-year ranoff for the Project. The AES Rational Method Hydrology Program is a computer-aided design program where the user R:\WPMtEPORTM300\l3255DR.DOC 11 develops a node link model of the watershed. The program has the capability of estimating conduit sizes to convey design storm runoff, or the user may input specific conduit sizes and open channels. Soil types used in the model are based on hydrologic soil groups as oufiined in the Conservation Service's Soil Survev for San Diego County. The rainfall intensity distribution and ranoff coefficients ufilized by the program can be user-specified to be based on either the County of San Diego or the City of San Diego Drainage Design Manuals. Developing independent node link models for each interior watershed and linking these sub- models together at confluence points creates the node link model. The program allows up to five streams to confluence at a node. Stream entiies must be made sequenfially until all are entered. The program allows consideration of only one confluence at a time. The program has the capability of performing calculations for 17 hydrologic and hydraulic processes. These processes are assigned code numbers, which appear in the printed output. The code numbers and their meanings are as follows: CODE 0: ENTER Comment CODE 1: CONFLUENCE analysis at node CODE 2: INITIAL subarea analysis CODE 3: PIPE/BOX tiavel time (COMPUTER estimated pipe/box size) CODE 4: PIPE/BOX travel time (USER specified pipe/box size) CODE 5: OPEN CHANNEL travel time CODE 6: STREETFLOW analysis through subarea, includes subarea ranoff CODE 7: USER-SPECIFIED hydrology data at a node CODE 8: ADDITION of subarea runoff to MAIN-Stream CODE 9: V-GUTTER flow through subarea CODE 10: COPY MAIN-stieam data onto memory BANK CODE 11: CONFLUENCE a memory BANK with the Mainstream memory CODE 12: CLEAR a memory BANK R.\WP«EP0R1M 300\13255DR. OOC 12 CODE 13: CLEAR the MAIN-stream CODE 14: COPY a memory BANK onto the Main-stream memory CODE 15: HYDROLOGIC data BANK storage functions CODE 16: USER-SPECIFIED Source Flow at a node 5.0 HYDRAULIC CRITERIA Table 3 below summarizes the hydraulic criteria used in the design of the storm drain improvements. Table 3: Hydraulic Criteria Underground storm drain systems 100-year storm HGL below the inlet opening and below cleanout top-of-rim elevations Inlets City of Carlsbad Capacity formula for inlets on grade, and 2 cfs/ft for inlets in sump; no by-pass for ultimate conditions. By-pass allowed for interim conditions. F-Type Catch Basins 100-year storm HGL below the inlet openings Ditches and Channels 100-year storm HGL contained within the ditch/channel with 0.5- foot freeboard. Detention Basin Detain to existing condition QIOO per March 2001 Chang Report; provide 1 foot freeboard to top of basin during emergency overflow conditions; design overflow spillway for ultimate condition undetained QIOO. 6.0 HYDRAULIC METHODOLOGY The following section discusses the methodology employed in the hydraulic design of the storm drain facilities. Also included is a brief description of the computer software used in the analyses. 6.1 Storm Drainpipe Design Methodology The storm drainpipe was designed based on the goveming interim or ultimate condition ranoff. In most instances, the backbone system analysis showed that the ultimate condition hydrology govemed the design of the system. Therefore, HGLs were calculated for the backbone system R:\WPVREPORTM300\13255DR.DOC 13 using the ultimate condition hydrology within El Fuerte Street. However, two lateral drainpipes, which are identified in Secfion 4.2.1, were designed using interim condifion storm runoffs. From a constraction standpoint, stub-outs are provided along the El Fuerte Street backbone system to accommodate Bressi Ranch. These stub-outs are located at the El Fuerte Street and 'B', 'C, 'D', and 'F' Street intersecfions. The hydraulic analysis of the stub-outs was performed using the ulfimate condifion hydrology. See Appendix 4.1 for the results of the analysis. The 72-inch backbone stonn drainpipe south of 'B' Street was analyzed using two separate AES Pipeflow models, due to the constraction of an in-line CDS Unit. Specifically, separate AES pipeflow models are provided for the 72-inch storm drainpipe both upstream and downstream of the CDS Unit. Hydraulic headloss calculafions through the CDS unit were provided by CDS Technologies and are included in Appendix 4.2. 6.2 Feasibility Drainpipe Design Analysis: "B" Street to El Fuerte Basin A feasibility design analysis was performed for the drainpipe from 'B' Street to the El Fuerte Basin (stafion 50+00 to 59+50). This analysis approach was used to develop a cost effective drainage system design that also meets City hydraulic criteria. In effect, the goal of the analysis was to determine the optimal drainpipe size and vertical profile that allows for minimum pressure. The analysis was further complicated due to the addition of an in-line CDS water quality unit and the relatively flat roadway profile downstream of El Fuerte Street Stafion 50+00. The backwater from the CDS unit could potenfially affect upstream HGLs through the El Fuerte Street backbone system if not accounted for. Relative to the CDS unit, the analysis was also used to site the CDS unit in a location that: 1) minimizes pressure flow and thereby the use watertight joints, and 2) improves constructability by avoiding interference with other roadway utilities. 6.3 Curb Inlet, Pipe Inlet, and Catch Basin Analysis Curb inlets were sized based on ultimate condition ranoff with no by-pass. By-pass was allowed under interim conditions, but all flow was intercepted before Poinsettia Lane. The pipe/headwall inlet calculations were based on procedures described in the Federal Highway Administration's R:\WP\REPORTM 300\13255DR,DOC 14 (FHWA) "Hydraulic Design of Highway Culverts (1985)". The F-Type Catch Basin analysis was based on the orifice flow/weir equafion to determine the required number of openings. The AES Pipeflow software hydraulic model was used to determine the hydraulic grade line for the storm drain system improvements. However, FLOWMASTER and CULVERTMASTER, proprietary software by Haestad Methods, were used in the street flow calculations and pipe inlet calculafions, respectively. Sections 6.6, 6.7, and 6.8 provide a brief description of the analytical procedures used in each model. 6.4 Concrete Ditch and Riprap Analysis The drainage ditches were designed based on the goveming interim or ultimate condition ranoff. The design runoff values were obtained by: 1) directiy applying the Ultimate Conditions AES Rational Method Output ranoff in Appendices 2 and 3, or 2) applying cfs/acre discharge values at key locations along the ditch length based on the Rational Method Output. The riprap design at the ditch and pipe outiets was determined using the San Diego Area Regional Standard Drawings (SDRSD) Drawing Number D-40 and Table 200-1.7 from the Addendum to the SDRSD specifications, which correlates riprap size with velocity. Riprap is also provided along the southeriy slope of the El Fuerte Basin that borders the Tributary Creek. The riprap protects the basin from ranoff discharging from the Carillo Basin and Rancho Carillo outfalls into the Tributary Creek. This riprap was also sized using Table 200-1.7. The velocity used to size the El Fuerte Basin southeriy riprap slope protection was acquired by using a normal depth velocity calculation at a cross-section taken through the Tributary Creek. The runoff used in the normal depth calculation was taken from the Chang Report (See Appendix 7.1) and reflects the Carillo Basin outiet discharge plus storm flows from the existing southeriy portion of El Fuerte Street from Rancho Carillo. Additionally, the proposed riprap will replace existing riprap along the same bank of the Tributary Creek. It is anticipated that scour will not be a significant issue within this portion of the Tributary Creek due to: 1) the Carillo Basin limiting upstream tributary ranoff, 2) the presence of existing riprap along both banks, and 3) the presence of well established vegetation within the creek. See Appendix 6.2 for the normal depth velocity calculation and cross-section location. R:\WP«EPORTM 300U 3255DR.DOC 15 6.5 El Fuerte Street Detention Basin Analysis and Design As discussed in Section 4.2.3 the El Fuerte Basin was designed to detain PDC's ultimate condition lOO-year storm event ranoff back to the Chang report existing conditions storm ranoff. The following criteria were used in the analysis and design: • The El Fuerte Basin design inflow hydrograph was developed from the Rational Method Tc and peak runoff identified at Node 1000. The County hydrograph methodology shown in the draft County Hydrology Manual was used. • The basin was designed with 1) two 72-inch risers with dual 48-inch oufiet pipes, 2) an 18-inch RCP for low flows, and 3) emergency spillway. The spillway was placed at an elevation equal to the lOO-year stage depth. • The spillway was designed for the full lOO-year storm event in the event that the risers are plugged. A one-foot freeboard allowance was added to the spillway flow depth. • The basin storage volume was increased by 10 percent to account for reduction in storage volume due to sediment/vegetation; • Riprap protection will be placed along southeriy bank of basin, at the toe of the spillway, and the outlet pipes. • The riprap stilling basin at the spillway toe was designed to dissipate the lOO-year flow velocities at the toe of the spillway. The stilling basin was modeled using HEC- RAS. From a design perspective, the dual riser outlet pipes will not be constracted through the basin spillway. This implies that the spillway and oufiet pipes will each discharge into separate riprap energy dissipators. Specifically, the spillway discharges into a grouted riprap stilling basin, while the outlet pipes were designed to discharge onto an at-grade riprap pad. The stilling basin design approach was used due to the high spillway velocities that range between 23-31 fps. R:\W1AREP0RT\I 300\1325SDR,IXX: 16 The spillway and stilling basin design and analysis is discussed in the next section. Additionally, see Section 6.9 for the description of the PONDPACK model used in the analysis of the El Fuerte Basin. 6.5.1 Spillway and Stilling Basin Design The emergency spillway weir dimensions were calculated using the standard weir equation: Q= CLH^'^ where: Q= design discharge (cfs) L= weir length (ft) H= head above the weir required to pass the design discharge (ft) The weir coefficient of 3.0 was used to model the basin broad-crested weir. Addifionally, a maximum head (H) of 3.0 feet at the weir was used to pass the lOO-year undetained inflow storm discharge through the basin. This approach assumes that the basin outiet works are completely plugged. A sfilling basin design was used at the base of the spillway to: 1) protect the spillway from scour due to high spillway velocities, and 2) protect the stilling basin and Tributary Creek from scour due to high discharge velocities. From a hydraulic standpoint, the sfilling basin creates a hydraulic jump within the basin that reduces the flow velocities prior to entering the Tributary Creek. The spillway and riprap sfilling basin dimensions, flow depths, and velocities were determined using the Army Corp of Engineers (ACOE) HEC-RAS model. (See Secfion 6.10 for an explanafion of the HEC-RAS Software). The spillway stilling basin riprap was sized using tractive force methodology. The method correlates maximum shear stress with the minimum median rock size required for scour protection. Additionally, the riprap basin will be grouted due to the high flow velocities and turbulence created by the hydraulic jump at the toe of the spillway. R:\WP\REPORT\l 30O\l 3255DR,DOC 17 The outer perimeter of the El Fuerte Basin will also be protected by riprap. This specifically includes riprap at the: 1) the dual 48" RCP outlet pipes, 3) single 18" RCP low flow pipe, and 4) southeriy toe of the basin that lies within the Tributary Creek. The riprap design for the oufiet pipes and basin side-slope was performed using the San Diego permissible velocity chart and SDRSD D-40. See Section 6.4 for a more detailed discussion of the riprap design. 6.6 Explanation of AES Pipeflow Model The AES computational procedure is based on solving Bemoulli's equation for the total energy at each section; and Manning's formula for the friction loss between the sections in each computational reach. Confluences are analyzed using pressure and momentum theory. In addition, the program uses basic mathematical and hydraulic principles to calculate data such as cross sectional area, velocity, wetted perimeter, normal depth, critical depth, and pressure and momentum. Model input basically includes storm drainpipe facility geometry, inverts, lengths, confluence angles, and downstream/upstream boundary conditions, i.e., initial water surface elevations. The program has the capability of performing calculations for 8 hydraulic loss processes. These processes are assigned code numbers, which appear in the printed output. The code numbers and their meanings are as follows: CODE 0: ENTER Comment CODEI: FRICTION Losses CODE 2: MANHOLE Losses CODE 3: PIPE BEND Losses CODE 4: SUDDEN Pipe Enlargement CODE 5: JUNCTION Losses CODE 6: ANGLE-POINT Losses CODE 7: SUDDEN Pipe Reduction CODE 8: CATCH BASIN Entrance Losses CODE 9: TRANSITION Losses R:\WP\REPORT\l 300M 3255DR,DOC 18 6.7 Explanation of FLOWMASTER PE Software The FLOWMASTER model computes flows, water velocities, depths and pressures based on several well-known formulas such as Darcy-Weisbach, Manning's, Kutter's, and Hazen- Williams. For this project, Manning's equation was used in the street flow calculations and concrete brow ditches. 6.8 Explanation of CULVERTMASTER Software The CULVERTMASTER model designs and analyzes culvert hydraulics based on methodologies set forth in Hydraulic Design Series No. 5 (HDS 5), Hydraulic Design of Highway Culverts (1985) as prepared by the Federal Highway Administration. For this project, the HDS 5 methodologies were applied in the design of the headwall inlets. 6.9 Explanation of PONDPACK Model PONDPACK, a software package designed by Haestad Methods, is a storm water-modeling program that analyzes a tremendous range of detention systems. For example, the program analyzes pre- and post-developed watershed conditions and size ponds and has several options for outlet stracture configurafions, in order to accurately model the proposed design. The computer-generated output includes graphical presentafions of the inflow and outflow hydrographs, as well as the input characteristics of the detention basins and outlet stractures in tabular form. Program opfions include: • Create full drainage reports with table of contents and index • Compute pre- and post developed flows using SCS or Rational Method hydrographs • Esfimate storage requirements and size ponds • Model mulfi-stage outlets with tail water considerations • Analyze culverts with inlet/outiet control checking • Solve complex watershed networks with interconnected ponds R:\WP\REPORTM 300\13255DR,DOC 19 • Analyze channel capacity • Check outflow rates against pre-developed conditions • Compute water quality parameters such as minimum drain time and detention time • Model any rainfall duration or time distribution. 6.10 Explanation of HEC-RAS Software The HEC-RAS program calculates water surface profiles for steady or unstready gradually varied flow in natural or man made channels, and can be used to calculate both subcritical and supercrifical flow profiles. The computational procedure solves the energy equation by using the standard step method, with energy loss due to friction (Manning's equation). The program can model the effects of channel improvements and physical obstractions such as bridges, culverts, weirs and levees. Input data such as channel geometry, discharge, roughness coefficient and stage/discharge relationship for the river is entered manually, and can be in either English or metric units. 7.0 HYDRAULIC ANALYSIS RESULTS In general, the storm drain improvements for this project consist of: • A system of underground drainpipes. • Inlets and catch basins. • Concrete ditches and riprap. • El Fuerte detention basin. The following sections address the results of the analyses associated with the above improvements. 7.1 Storm Drainpipe Analysis In general, the drainpipe systems have been designed as open channels for the lOO-year storm event. However, due to junction losses, a few segments of the drainpipes are under pressure adjacent to cleanouts. Watertight joints will be used for the pipe segments under pressure during the lOO-year storm event. See Exhibit D and Appendix 4 for AES node numbers and hydraulic analysis output, respecfively. R:\WP\REP0RT\1300\l 3255DR.DOC 20 7.2 Feasibility Drainpipe Design Analysis: "B" Street to El Fuerte Basin As discussed in Secfion 6.2, a feasibility design analysis was performed for the drainpipe from 'B' Street to the El Fuerte Basin (stafion 50+00 to 59+50). This analysis approach was used to develop a cost effective drainage system design that also meets City hydraulic criteria. In effect, the goal of the analysis was to determine the optimal drainpipe size and vertical profile that allows for minimum pressure. Three drainpipe design options were considered for the project. These options are described below and are presented on Exhibit 'E'. Note that Option 1 was ultimately selected for the project and is described in more detail below: Design Optionsl-3: • Option 1: This option provides a 72" RCP at 2% slope from Station 50+29.64 to 57-fOO, and a 72" RCP at 7% average slope from Station 57+00 to the El Fuerte Basin. • Option 2: This option provides an 84" RCP at 2% slope from Station 50+29.64 to 57+00, and a 72" RCP at 7% average slope from Station 57+00 to the El Fuerte Basin • Option 3: This option provides a 72" RCP at 3.7% slope from Station 50+29.64 to the El Fuerte Basin. For all three options the CDS Unit was placed at Station 59+00, near the El Fuerte Basin, to mitigate for the hydraulic loses through the unit that could affect the upstream drainpipe system. Option 1 (Preferred Option): Option 1 was preferred over Options 2-3 due to the following: • Pressure flow is minimized within the system and is limited to areas upstream of cleanouts and the CDS Unit; • Pressure flow still occurs upstream of the CDS Unit and the cleanout at Station 51+66.80 even when an 84" RCP is used (Option 2 per Exhibit E), or when an increased pipe slope is used (Option 3). Therefore, the benefits of increased pipe size and/or slope for Options R:\WPMIEP0RT\1.300X13255DR,DOC 21 2 and 3 are minimal and do not justify the additional cost associated with increased pipe size, watertight joints, or pipe depth. • The maximum cover over the storm drainpipe was a concem because the pipe will be constructed within the Poinsettia Lane fill embankment. With Option 1, the maximum cover over the storm drain is approximately 20 feet. While this is still a relatively deep storm drain system, a special stractural design for the drainpipe and cleanouts is not required. The latter is not the case for Option 3, since the drainpipe has a maximum cover of 30 feet. 7.3 Curb Inlet, Pipe Inlet, and Catch Basin Analysis The City of San Diego curb inlet design formula was used in the design of the curb inlets. The orifice equation was used in the design of the F-Type catch basins, and CULVERTMASTER was used to design the pipe headwall inlets. The results of the analyses are located in Appendix 5. 7.4 Concrete Ditch and Riprap Analysis The results of the ditch and riprap analyses are included in Appendix 6. The concrete ditch and riprap calculations are identified according to the node numbers shown on Exhibit D. The existing riprap designed by Rick Engineering within the Tributary Creek along the southerly toe of the El Fuerte Basin will be removed and reinstalled due to grading operations associated with the El Fuerte Basin. The design of El Fuerte Basin slope protection riprap is discussed in Section 6.4. 7.5 El Fuerte Basin Analysis and Design Results of the detention basin analysis and design are provided in Appendix 7 and are summarized in Table 4 below. Table 4 shows that the detention basin design meets the design objectives listed in Secfions 4.2.3, 5.1, and 5.2.4. Specifically the PDC ulfimate conditions peak runoff of 613 cfs is detained back to 310 cfs, which is 7 cfs lower than the Chang existing conditions peak runoff. The additional 7 cfs of over detention accounts for the diversion of R:\WP\REPORTM300\13255DR. DOC 22 runoff from the southerly portion of PA-12, as discussed in Section 4.2.3. The design of the El Fuerte Basin outiet riprap erosion protection is provided in Appendix 6.2. Table 4: El Fuerte Basin Analysis Summary PDC Maximum Spillway Bottom/Top Storage Emergency Oufiet Pipe QIOO Water Elevation of Basin Volume at Spillway Weir Configurafion Inflow/ Surface (feet) Elevation Spillway Length (ft) Outlfow Elevation (feet) Elevation (cfs) (feet) (CY) 613/310 153.77 154.0 138.5/158.0 10500 CY 40 Dual 72" slotted riser pipes with dual 48" RCP Outlet Pipes @ 1% minimum slope 7.6 El Fuerte Stilling Basin Design The ACOE HEC-RAS model was used in the design and analysis of the El Fuerte Basin emergency spillway and riprap sfilling basin. The HEC-RAS calculations show that a hydraulic jump, which is created by the basin, decreases the discharge velocity into the Tributary Creek. Additionally, the model approximately locates the jump location and length. A Manning's 'n' value of 0.024 was conservatively used to model the grouted riprap within the basin. Based on the HEC-RAS calculations a jump occurs at the toe of the spillway, which reduces the flow velocities from approximately 30 fps to 8-9 fps at the basin oufiet. The maximum shear stress at the toe of the spillway is approximately 6.4 Ib/sf, which requires an ungrouted median riprap size of 24" (1/2-ton rock). Additionally, the V2 ton riprap within the basin will be grouted to provide an extra measure of protection due to a combination of high design discharge, velocity, and turbulence at the spillway toe. See Appendix 6.2 for the riprap calculation. R :\WP«EPORT\ I -3(X)\13255DR.DOC 23 See Appendix 7.2 for the HEC-RAS computer output and HEC-RAS cross-section location Exhibit map. This Appendix also includes the HEC-RAS cross-section geometries, and HEC- RAS profile that shows the spillway and hydraulic jump locafion and length. 8.0 CONCLUSION This report provides hydrologic and hydraulic analyses for design of the proposed El Fuerte Street project. El Fuerte Street, which is located in the City of Carlsbad, will connect Poinsettia Lane to Palomar Airport Road. This roadway is bound by: 1) Palomar Airport Road to the north, 2) Melrose Drive to the east, 3) El Camino Real and the proposed Bressi Ranch Master Plan community to the west, and 4) Poinsettia Lane to the south. Refer to Figure 1: Vicinity Map, for the project location. From a project phasing perspective, the El Fuerte Street project will be constracted before the Bressi Ranch Development Project. As a result, interim and ultimate conditions hydrologic analyses were performed to determine which condition govems the design of the storm drain improvements within El Fuerte Street. The interim condition analysis was based on the existing conditions topography shown on the Bressi Ranch Development Tentative Map and the El Fuerte Street grading and drainage plans. The Bressi Ranch Tentative Map site layout and El Fuerte Street grading and drainage plans were used for the ulfimate conditions hydrology. Runoff from a significant portion of the Bressi Ranch Development (see Tentative Map) will be diverted to the El Fuerte Street storm drain system. As a result, the ultimate conditions hydrology (in most cases) govemed the design of the backbone storm drain system within El Fuerte Street. Existing and proposed detention basins, which are located at the intersection of El Fuerte Street and Poinsettia Lane, address regional flood control. The existing Carillo Basin that is located immediately southeast of the intersection was constructed for the Rancho Carillo development project. The proposed El Fuerte Basin will be located in the southwest quadrant of the intersection, and is shown on the El Fuerte Street grading and drainage plans. The basin will reduce the peak ranoff due to the diversion of storm ranoff from the Bressi Ranch development to the El Fuerte Street storm drain system. The analysis and design of this detention basin are included herein. Also included in this report are: R:\WP\REP0R1M 300\13255DR.DOC 24 Hydrology for interim and ultimate conditions constraction phasing; Storm drain hydraulic capacity (Pipeflow) calculations using the goveming interim or ultimate condition runoff; • Curb inlet design calculations using the ultimate condition ranoff, and curb inlet analysis using the interim condition runoff; and • Ditch and catch basin design using the goveming interim or ultimate condition runoff. From a water quality perspective, an overall Storm Water Quality Plan (SWQP) for Bressi Ranch, dated April 2002, was recentiy approved as a part of the Tentative Map. A CDS water quality unit, per the SWQP, will be located at the intersection of Poinsettia Lane and El Fuerte Street. This post-constraction Best Management Practice (BMP) will treat storm ranoff from El Fuerte Stieet and the Bressi Ranch Project. Note that the constraction phase BMPs are addressed in the Grading and Erosion Control Plans and the SWPPP. R:\WP«EP0RT\1300\13255DR.DOC 25 APPENDIX 1 RATIONAL METHOD ISOPLUVIAL MAPS 100-YEAR A- 1 APPENDIX 2 INTERIM CONDITION RATIONAL METHOD COMPUTER OUTPUT A- 2 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE ROADWAY * * MAINLINE HYDROLOGY - INTERIM CONDITIONS * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: 1325INT.DAT TIME/DATE OF STUDY: 17:06 09/23/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) =18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED •USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER--GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) — n = = = = = = ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2 .00 0.0312 0.167 0.0150 2 37.0 32.0 0.020/0.020/ — 0.67 2 .00 0.0312 0.167 0.0150 3 32.0 27 .0 0.020/0.020/ 0.67 2.00 0.0312 0.167 0.0150 4 42 . 0 37 . 0 0.020/0.020/ 0.67 2 .00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1001.00 TO NODE 1002.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 447.00 DOWNSTREAM ELEVATION = 445.00 ELEVATION DIFFERENCE = '2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.143 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1002.00 TO NODE 1003.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 4 USED)««< UPSTREAM ELEVATION(FEET) = 445.00 DOWNSTREAM ELEVATION(FEET) = 406.50 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 42.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 37.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.56 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 6.73 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.55 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.62 STREET FLOW TRAVEL TIME(MIN.) = 1.50 Tc(MIN.) = 7.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.679 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 6.47 TOTAL AREA(ACRES) = 1.25 PEAK FLOW RATE(CFS) = 6.79 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 9.38 FLOW VELOCITY(FEET/SEC.) = 6.34 DEPTH*VELOCITY(FT*FT/SEC.) = 2.19 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1003.00 = 600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1003.00 TO NODE 1005.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 396.19 DOWNSTREAM(FEET) = 386.25 FLOW LENGTH(FEET) = 87.15 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES PIPE-FLOW VELCXITY(FEET/SEC.) = 14.60 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =6.79 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 7.60 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1005.00 = 687.15 FEET. *********************************** FLOW PROCESS FROM NODE 1005.00 TO NODE 1005.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) =7.60 RAINFALL INTENSITY(INCH/HR) = 5.63 TOTAL STREAM AREA(ACRES) = 1.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.79 **************************************************************************** FLOW PROCESS FROM NODE 1004.10 TO NODE 1004.20 IS CODE = 21 »»>RATI0NAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 447.00 DOWNSTREAM ELEVATION = 445.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.143 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1004.20 TO NODE 1004.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 4 USED)««< UPSTREAM ELEVATION(FEET) = 445.00 DOWNSTREAM ELEVATION(FEET) = 406.50 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) =42.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) =37.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.56 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 6.73 AVERAGE FLOW VELOCITY{FEET/SEC.) = 5.55 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.62 STREET FLOW TRAVEL TIME(MIN.) = 1.50 Tc(MIN.) = 7.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.679 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 6.47 TOTAL AREA(ACRES) = 1.25 PEAK FLOW RATE(CFS) = 6.79 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 9.38 FLOW VELOCITY(FEET/SEC.) = 6.34 DEPTH*VELOCITY(FT*FT/SEC.) = 2.19 LONGEST FLOWPATH FROM NODE 1004.10 TO NODE 1004.30 = 600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1004.30 TO NODE 1004.30 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.679 GRASS FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 SUBAREA AREA(ACRES) = 1.55 SUBAREA RUNOFF(CFS) = 3.96 TOTAL AREA(ACRES) = 2.80 TOTAL RUNOFF(CFS) = 10.75 TC(MIN) = 7.50 **************************************************************************** FLOW PROCESS FROM NODE 1004.30 TO NODE 1005.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 394.38 DOWNSTREAM(FEET) = 386.25 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 33.56 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.75 PIPE TRA'VEL TIME (MIN. ) = 0.00 Tc(MIN.) = 7.51 LONGEST FLOWPATH FROM NODE 1004.10 TO NODE 1005.00 = 610.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1005.00 TO NODE 1005.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.51 RAINFALL INTENSITY(INCH/HR) = 5.68 TOTAL STREAM AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.75 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.79 7.60 5.630 1.25 2 10.75 7.51 5.676 2.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 17.48 7.51 5.676 2 17.44 7.60 5.630 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.48 Tc(MIN.) = 7.51 TOTAL AREA(ACRES) = 4.05 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1005.00 = 687.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1005.00 TO NODE 1010.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 389.50 DOWNSTREAM(FEET) = 354.30 FLOW LENGTH(FEET) = 470.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.02 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.48 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 8.00 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1010.00 = 1157.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1010.00 IS CODE = 1 ' »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.00 RAINFALL INTENSITY(INCH/HR) = 5.45 TOTAL STREAM AREA(ACRES) = 4.05 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.48 **************************************************************************** FLOW PROCESS FROM NODE 1008.10 TO NODE 1008.20 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALySIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 405.50 DOWNSTREAM ELEVATION = 402.50 ELEVATION DIFFERENCE = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.872 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 *************************************** FLOW PROCESS FROM NODE 1008.20 TO NODE 1008.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED)««< UPSTREAM ELEVATION(FEET) = 402.50 DOWNSTREAM ELEVATION(FEET) = 3 66.00 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) =8.0 STREET HALFWIDTH(FEET) = 37.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 32.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.87 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) =0.23 HALFSTREET FLOOD WIDTH(FEET) = 3.40 AVERAGE FLOW VELOCITY(FEET/SEC.) = 6.12 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.38 STREET FLOW TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) = 6.95 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.964 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 3.43 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 6.00 FLOW VELOCITY(FEET/SEC.) = 6.24 DEPTH*VELOCITY(FT*FT/SEC.) = 1.74 LONGEST FLOWPATH FROM NODE 1008.10 TO NODE 1008.30 = 450.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1008.30 TO NODE 1010.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 358.00 DOWNSTREAM(FEET) = 355.30 FLOW LENGTH(FEET) = 70.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.16 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.43 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 7.10 LONGEST FLOWPATH FROM NODE 1008.10 TO NODE 1010.00 = 520.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1010.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.10 RAINFALL INTENSITY(INCH/HR) = 5.89 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.43 ****************************************** FLOW PROCESS FROM NODE 1009.10 TO NODE 1009.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< BARREN COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 93 INITIAL SUBAREA FLOW-LENGTH = 50.00 UPSTREAM ELEVATION = 444.00 DOWNSTREAM ELEVATION = 418.00 ELEVATION DIFFERENCE = 2 6.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.217 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.30 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.30 **************************************************************************** FLOW PROCESS FROM NODE 1009.20 TO NODE 1009.30 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»»(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 418.00 DOWNSTREAM ELEVATION(FEET) = 404.00 STREET LENGTH(FEET) = 550.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Wal)c Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.63 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 6.72 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.04 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.86 STREET FLOW TRAVEL TIME(MIN.) = 3.02 Tc(MIN.) = 9.02 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.044 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 6.66 TOTAL AREA(ACRES) = 2.50 PEAK FLOW RATE(CFS) = 6.95 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.53 FLOW VELOCITY(FEET/SEC.) = 3.46 DEPTH*VELOCITY(FT*FT/SEC.) = 1.15 LONGEST FLOWPATH FROM NODE 1009.10 TO NODE 1009.30 = 600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1009.30 TO NODE 1009.40 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»»(STREET TABLE SECTION # 2 USED)««< UPSTREAM ELEVATION(FEET) = 404.00 DOWNSTREAM ELEVATION(FEET) = 366.00 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 37.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 32.00 INSIDE STREET CROSSFALL(DECIMAL) =0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.42 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 10.72 AVERAGE FLOW VELOCITY(FEET/SEC.) = 7.04 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.62 STREET FLOW TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 10.08 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.693 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 4.93 TOTAL AREA(ACRES) = 4.00 PEAK FLOW RATE(CFS) = 11.88 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 11.88 FLOW VELOCITY(FEET/SEC.) = 7.42 DEPTH*VELOCITY(FT*FT/SEC.) = 2.94 LONGEST FLOWPATH FROM NODE 1009.10 TO NODE 1009.40 = 1050.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1009.40 TO NODE 1010.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 356.00 DOWNSTREAM(FEET) = 355.30 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.23 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =11.88 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 10.09 LONGEST FLOWPATH FROM NODE 1009.10 TO NODE 1010.00 = 1060.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1010.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 10.09 RAINFALL INTENSITY(INCH/HR) = 4.69 TOTAL STREAM AREA(ACRES) =4.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.88 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 17.48 8.00 5.450 4.05 2 3.43 7.10 5.886 0.60 3 11.88 10.09 4.689 4.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 29.07 7.10 5.886 2 30.87 8.00 5.450 3 29.65 10.09 4.689 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 30.87 Tc(MIN.) = 8.00 TOTAL AREA(ACRES) =8.65 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1010.00 = 1157.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1015.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 354.00 DOWNSTREAM(FEET) = 340.3 0 FLOW LENGTH(FEET) = 220.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.00 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 30.87 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 8.21 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1015.00 = 1377.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1015.00 TO NODE 1015.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.21 RAINFALL INTENSITY(INCH/HR) = 5.36 TOTAL STREAM AREA(ACRES) = 8.65 PEAK FLOW RATE(CFS) AT CONFLUENCE =30.87 **************************************************************************** FLOW PROCESS FROM NODE 1015.10 TO NODE 1015.20 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GRASS FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 2.36 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 2.36 **************************************************************************** FLOW PROCESS FROM NODE 1015.20 TO NODE 1015.30 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 455.00 DOWNSTREAM(FEET) = 350.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.1312 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) =2.36 FLOW VELOCITY(FEET/SEC) = 10.55 FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 1.26 Tc(MIN.) = 7.26 LONGEST FLOWPATH FROM NODE 1015.10 TO NODE 1015.30 = 800.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1015.30 TO NODE 1015.30 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.798 GRASS FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 84 SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 3.13 TOTAL AREA(ACRES) = 2.00 TOTAL RUNOFF(CFS) = 5.49 TC(MIN) = 7.26 **************************************************************************** FLOW PROCESS FROM NODE 1015.00 TO NODE 1015.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALtJES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 7.26 RAINFALL INTENSITY(INCH/HR) = 5.80 TOTAL STREAM AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.49 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 30.87 8.21 5.357 8.65 2 5.49 7.26 5.798 2.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 34.02 7.26 5.798 2 35.95 8.21 5.357 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 35.95 Tc(MIN.) = 8.21 TOTAL AREA(ACRES) = 10.65 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1015.00 = 1377.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1015.00 TO NODE 1020.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 340.00 DOWNSTREAM(FEET) = 329.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 22.06 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 35.95 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 8.29 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 102 0.00 = 1477.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1020.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.29 RAINFALL INTENSITY(INCH/HR) = 5.33 TOTAL STREAM AREA(ACRES) = 10.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 35.95 **************************************************************************** FLOW PROCESS FROM NODE 7001.00 TO NODE 7002.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.97(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 462.00 DOWNSTREAM ELEVATION = 390.00 ELEVATION DIFFERENCE = 72.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.201 SUBAREA RUNOFF(CFS) = 1-89 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 1.89 **************************************************************************** FLOW PROCESS FROM NODE 7002.00 TO NODE 7005.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 390.00 DOWNSTREAM(FEET) = 342.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.2400 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.045 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.89 FLOW VELOCITY(FEET/SEC) = 4.41 FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 0.76 Tc(MIN.) = 12.73 LONGEST FLOWPATH FROM NODE 7001.00 TO NODE 7005.00 = 700.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7005.00 TO NODE 7005.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.038 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 13.90 SUBAREA RUNOFF(CFS) = 25.26 TOTAL AREA(ACRES) = 14.90 TOTAL RUNOFF(CFS) = 27.15 TC(MIN) = 12.73 **************************************************************************** FLOW PROCESS FROM NODE 7005.00 TO NODE 1020.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW^ TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 335.00 DOWNSTREAM(FEET) = 329.70 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.56 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.15 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 12.83 LONGEST FLOWPATH FROM NODE 7001.00 TO NODE 1020.00 = 800.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1020.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.83 RAINFALL INTENSITY(INCH/HR) = 4.02 TOTAL STREAM AREA(ACRES) = 14.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.15 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 35.95 8.29 5.325 10.65 2 27.15 12.83 4.016 14.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 56.42 8.29 5.325 2 54.26 12.83 4.016 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 56.42 Tc(MIN.) = 8.29 TOTAL AREA(ACRES) =25.55 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1020.00 = 1477.15 FEET. *^t**,t.******************** *************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1030.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 329.00 DOWNSTREAM(FEET) = 294.20 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.04 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 56.42 PIPE TRA'VEL TIME (MIN. ) = 0.36 Tc(MIN.) = 8.64 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1030.00 = 1927.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1030.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) =8.64 RAINFALL INTENSITY(INCH/HR) = 5.18 TOTAL STREAM AREA(ACRES) = 25.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 56.42 **************************************************************************** FLOW PROCESS FROM NODE 1021.10 TO NODE 1021.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 365.50 DOWNSTREAM ELEVATION =359.50 ELEVATION DIFFERENCE = , 6.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.486 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1021.20 TO NODE 1021.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »>» (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 359.50 DOWNSTREAM ELEVATION(FEET) = 316.00 STREET LENGTH(FEET) = 680.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.69 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 4.14 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.69 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.13 STREET FLOW TRAVEL TIME(MIN.) = 2.41 Tc(MIN.) = 8.41 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.273 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) = 2.76 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 3.07 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 6.48 FLOW VELOCITY(FEET/SEC.) = 5.03 DEPTH*VELOCITY(FT*FT/SEC.) = 1.45 LONGEST FLOWPATH FROM NODE 1021.10 TO NODE 1021.30 = 780.00 FEET. ,t^t*,t*,t*******.*************************************************************** FLOW PROCESS FROM NODE 1021.30 TO NODE 1030.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 297.00 DOWNSTREAM(FEET) = 295.20 FLOW LENGTH(FEET) = 70.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.84 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.07 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 8.58 LONGEST FLOWPATH FROM NODE 1021.10 TO NODE 1030.00 = 850.00 FEET. *************.*************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1030.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.58 RAINFALL INTENSITY(INCH/HR) = 5.21 TOTAL STREAM AREA(ACRES) = 0.6 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.07 **************************************************************************** FLOW PROCESS FROM NODE 1022.10 TO NODE 1022.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 365.50 DOWNSTREAM ELEVATION = 359.50 ELEVATION DIFFERENCE = 6.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.486 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF, CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1022.20 TO NODE 1022.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 359.50 DOWNSTREAM ELEVATION(FEET) = 316.00 STREET LENGTH(FEET) = 620.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1-99 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 4.61 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.9 4 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.24 STREET FLOW TRAVEL TIME(MIN.) = 2.09 Tc(MIN.) = 8.09 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.409 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.65 SUBAREA RUNOFF(CFS) = 3.34 TOTAL AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) = 3.65 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 7.01 FLOW VELOCITY(FEET/SEC.) = 5.36 DEPTH*VELOCITY(FT^FT/SEC.) = 1.60 LONGEST FLOWPATH FROM NODE 1022.10 TO NODE 1022.30 = 720.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1022.30 TO NODE 1030.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 296.00 DOWNSTREAM(FEET) = 295.20 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.78 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =3.65 PIPE TRAVEL TIME(MIN.) = 0.02 Tc{MIN.) = 8.11 LONGEST FLOWPATH FROM NODE 1022.10 TO NODE 1030.00 = 730.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1030.00 IS CODE = 1 >>»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.11 RAINFALL INTENSITY(INCH/HR) = 5.40 TOTAL STREAM AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.65 ** CONFLUENCE DATA *• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 56.42 8.64 5.183 25.55 2 3.07 8.58 5.206 0.60 3 3.65 8.11 5.402 0.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. *• PEAK FLOW RATE TABLE •• STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 60.74 8.11 5.402 2 62.76 8.58 5.206 3 62.98 8.64 5.183 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 62.98 Tc(MIN.) = 8.64 TOTAL AREA(ACRES) =26.85 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1030.00 = 1927.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1050.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 294.00 DOWNSTREAM(FEET) = 215.20 FLOW LENGTH(FEET) = 880.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 23.50 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 62.98 PIPE TRAVEL TIME(MIN.) = 0.62 Tc(MIN.) = 9.27 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1050.00 = 2807.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1050.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.27 RAINFALL INTENSITY(INCH/HR) =4.95 TOTAL STREAM AREA(ACRES) = 26.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 62.98 **************************************************************************** FLOW PROCESS FROM NODE 1042.10 TO NODE 1042.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .8000 SOIL CLASSIFICATION IS "A" S.C.S. CUR'VE NUMBER (AMC II) = 74 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 305.00 DOWNSTREAM ELEVATION = 295.00 ELEVATION DIFFERENCE = 10.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.507 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.26 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.26 **************************************************************************** FLOW PROCESS FROM NODE 1042.20 TO NODE 1042.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 295.00 DOWNSTREAM ELEVATION(FEET) = 229.60 STREET LENGTH(FEET) = 760.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.16 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) =4.49 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.51 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1-37 STREET FLOW TRAVEL TIME(MIN.) = 2.30 Tc(MIN.) = 8.30 100 YEAR RAINFALL INTENSITY(INCH/HOUR) =5.321 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.75 SUBAREA RUNOFF(CFS) = 3.7 9 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 4.05 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.30 HALFSTREET FLOOD WIDTH(FEET) = 7.01 FLOW VELOCITY(FEET/SEC.) = 5.95 DEPTH&VELOCITY(FT^FT/SEC.) = 1.78 LONGEST FLOWPATH FROM NODE 1042.10 TO NODE 1042.30 = 860.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1042.30 TO NODE 1050.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 216.00 DOWNSTREAM(FEET) = 214.75 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.64 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS)= 4.05 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 8.30 LONGEST FLOWPATH FROM NODE 1042.10 TO NODE 1050.00 = 865.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1050.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.30 RAINFALL INTENSITY(INCH/HR) =5.32 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.05 •• CONFLUENCE DATA •* STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 62.98 9.27 4.955 26.85 2 4.05 8.30 5.319 0.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. *• PEAK FLOW RATE TABLE *• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 62.72 8.30 5.319 2 66.75 9.27 4.955 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 66.75 Tc(MIN.) = 9.27 TOTAL AREA(ACRES) = 27.65 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1050.00 = 2807.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1050.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ******************** I ••ALL MEMORY BANKS ARE EMPTY - PROCESS IGNORED.•• ******************** **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1050.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 7010.00 TO NODE 7011.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.31(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 350.00 UPSTREAM ELEVATION = 421.00 DOWNSTREAM ELEVATION = 350.00 ELEVATION DIFFERENCE = 71.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.357 SUBAREA RUNOFF(CFS) = 1.96 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 1.96 **************************************************************************** FLOW PROCESS FROM NODE 7011.00 TO NODE 7012.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 350.00 DOWNSTREAM(FEET) = 270.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 250.00 CHANNEL SLOPE = 0.3200 CHANNEL BASE{FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.045 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.96 FLOW VELOCITY(FEET/SEC) = 6.08 FLOW DEPTH(FEET) = 0.26 TRAVEL TIME(MIN.) = 0.69 Tc(MIN.) = 12.00 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 7012.00 = 600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7012.00 TO NODE 7012.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.195 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 10.00 SUBAREA RUNOFF(CFS) = 18.88 TOTAL AREA(ACRES) = 11.00 TOTAL RUNOFF(CFS) = 20.84 TC(MIN) = 12.00 **************************************************************************** FLOW PROCESS FROM NODE 7012.00 TO NODE 7013.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW«<« »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 270.00 DOWNSTREAM(FEET) = 250.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 300.00 CHANNEL SLOPE = 0.0667 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 20.84 FLOW VELOCITY(FEET/SEC) = 6.08 FLOW DEPTH(FEET) = 0.52 TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = 12.82 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 7013.00 = 900.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7013.00 TO NODE 7013.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.019 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 16.50 SUBAREA RUNOFF(CFS) = 29.84 TOTAL AREA(ACRES) = 27.50 TOTAL RUNOFF(CFS) = 50.68 TC(MIN) = 12.82 **************************************************************************** FLOW PROCESS FROM NODE 7013.00 TO NODE 7014.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 250.00 DOWNSTREAM(FEET) = 228.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00 CHANNEL SLOPE = 0.0367 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 50.68 FLOW VELOCITY(FEET/SEC) = 6.43 FLOW DEPTH(FEET) = 0.99 TRAVEL TIME(MIN.) = 1.55 Tc(MIN.) = 14.37 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 7014.00 = 1500.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7014.00 TO NODE 7014.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.733 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 29.00 SUBAREA RUNOFF(CFS) = 48.72 TOTAL AREA(ACRES) = 56.50 TOTAL RUNOFF(CFS) = 99.40 TC(MIN) = 14.37 **************************************************************************** FLOW PROCESS FROM NODE 7014.00 TO NODE 7015.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 228.00 DOWNSTREAM(FEET) = 224.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.0200 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 99.40 FLOW VELOCITY(FEET/SEC) = 13.88 FLOW DEPTH(FEET) = 1.86 TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 14.61 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 7015.00 = 1700.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7015.00 TO NODE 7015.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.694 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 3.66 TOTAL AREA(ACRES) = 58.70 TOTAL RUNOFF(CFS) = 103.05 TC(MIN) =14.61 **************************************************************************** FLOW PROCESS FROM NODE 7015.00 TO NODE 1041.30 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM(FEET) = 224.00 DOWNSTREAM(FEET) = 215.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 26.18 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 103.05 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 14.68 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 1041.30 = 1800.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1041.30 TO NODE 1041.30 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.68 RAINFALL INTENSITY(INCH/HR) = 3.68 TOTAL STREAM AREA(ACRES) = 58.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 103.05 **************************************************************************** FLOW PROCESS FROM NODE 1041.10 TO NODE 1041.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 305.00 DOWNSTREAM ELEVATION = 295.00 ELEVATION DIFFERENCE = 10.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.253 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1041.20 TO NODE 1041.30 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 295.00 DOWNSTREAM ELEVATION(FEET) = 229.60 STREET LENGTH(FEET) = 760.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.21 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 4.61 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.50 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1-38 STREET FLOW TRAVEL TIME(MIN.) = 2.30 Tc(MIN.) = 8.30 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.319 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.75 SUBAREA RUNOFF(CFS) = 3.79 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 4.10 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 7.07 FLOW VELOCITY(FEET/SEC.) = 5.95 DEPTH&VELOCITY(FT^FT/SEC.) = 1.78 LONGEST FLOWPATH FROM NODE 1041.10 TO NODE 1041.30 = 860.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1041.30 TO NODE 1041.30 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.30 RAINFALL INTENSITY(INCH/HR) = 5.32 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.10 •• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NIMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 103.05 14.68 3.683 58.70 2 4.10 8.30 5.319 0.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •* PEAK FLOW RATE TABLE *• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 75.47 8.30 5.319 2 105.89 14.68 3.683 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 105.89 Tc{MIN.) = 14.68 TOTAL AREA(ACRES) = 59.50 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 1041.30 = 1800.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1050.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< •• MAIN STREAM CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 105.89 14.68 3.683 59.50 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 1050.00 = 1800.00 FEET. •* MEMORY BANK # 1 CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 66.75 9.27 4.955 27.65 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1050.00 = 2807.15 FEET. *• PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 145.47 9.27 4.955 2 155.52 14.68 3.683 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 155.52 Tc(MIN.) = 14.68 TOTAL AREA(ACRES) = 87.15 **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1060.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 214.30 DOWNSTREAM(FEET) = 198.00 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.28 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 155.52 PIPE TRAVEL TIME(MIN.) = 0.57 Tc(MIN.) = 15.25 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1060.00 = 3437.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 «<« **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 7050.00 TO NODE 7051.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.10(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 250.00 UPSTREAM ELEVATION = 421.00 DOWNSTREAM ELEVATION = 380.00 ELEVATION DIFFERENCE =41.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.411 SUBAREA RUNOFF(CFS) = 0.40 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 0.40 *******************************************••••••••••*•••*•••••••••••••••••• FLOW PROCESS FROM NODE 7051.00 TO NODE 7055.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 380.00 DOWNSTREAM(FEET) = 210.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1200.00 CHANNEL SLOPE = 0.1417 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.40 FLOW VELOCITY(FEET/SEC) = 3.16 FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 6.33 Tc(MIN.) = 17.43 LONGEST FLOWPATH FROM NODE 7050.00 TO NODE 7055.00 = 1450.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7055.00 TO NODE 7055.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.297 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 17.50 SUBAREA RUNOFF(CFS) = 25.97 TOTAL AREA(ACRES) = 17.70 TOTAL RUNOFF(CFS) = 26.36 TC(MIN) = 17.43 **************************************************************************** FLOW PROCESS FROM NODE 7055.00 TO NODE 1061.30 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 210.00 DOWNSTREAM(FEET) = 200.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.49 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 26.36 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 17.51 LONGEST FLOWPATH FROM NODE 7050.00 TO NODE 1061.30 = 1550.00 FEET. *******************************************************••*••**•••••••*••*••• FLOW PROCESS FROM NODE 1061.30 TO NODE 1061.30 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«:«< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.51 RAINFALL INTENSITY(INCH/HR) = 3.29 TOTAL STREAM AREA(ACRES) = 17.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.36 **************************************************************************** FLOW PROCESS FROM NODE 1061.10 TO NODE 1061.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 229.60 DOWNSTREAM ELEVATION = 226.00 ELEVATION DIFFERENCE = 3.60 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.762 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1061.20 TO NODE 1061.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 226.00 DOWNSTREAM ELEVATION(FEET) = 211.00 STREET LENGTH(FEET) = 530.00 CURB HEIGHT(INCHES) = 8.0 STREET ^^ALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1-41 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 5.08 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.16 PRODUCT OF DEPTH&VELOCITY(FT^FT/SEC.) = 0.82 STREET FLOW TRAVEL TIME(MIN.) = 2.80 Tc(MIN.) = 8.80 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.124 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 2.19 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 2.50 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 7.30 FLOW VELOCITY(FEET/SEC.) = 3.46 -DEPTH&VELOCITY(FT*FT/SEC.) = 1.05 LONGEST FLOWPATH FROM NODE 1061.10 TO NODE 1061.30 = 630.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1061.30 TO NODE 1061.30 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.80 RAINFALL INTENSITY(INCH/HR) = 5.12 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.50 •• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 26.36 17.51 3.287 17.70 2 2.50 8.80 5.124 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. *• PEAK FLOW RATE TABLE *• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 19.41 8.80 5.124 2 27.97 17.51 3.287 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.97 Tc(MIN.) = 17.51 TOTAL AREA(ACRES) = 18.20 LONGEST FLOWPATH FROM NODE 7050.00 TO NODE 1061.30 = 1550.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1061.30 TO NODE 1060.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 2 01.00 DOWNSTREAM(FEET) = 200.00 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.20 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.97 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 17.60 LONGEST FLOWPATH FROM NODE 7050.00 TO NODE 1060.00 = 1605.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< *• MAIN STREAM CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 27.97 17.60 3.276 18.20 LONGEST FLOWPATH FROM NODE 7050.00 TO NODE 1060.00 = 1605.00 FEET. •• MEMORY BANK # 1 CONFLUENCE DATA •* STREAM . RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 155.52 15.25 3.593 87.15 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1060.00 = 3437.15 FEET. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 181.02 15.25 3.593 2 169.76 17.60 3.276 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 181.02 Tc(MIN.) = 15.25 TOTAL AREA(ACRES) = 105.35 **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) =15.25 RAINFALL INTENSITY(INCH/HR) = 3.59 TOTAL STREAM AREA(ACRES) = 105.35 PEAK FLOW RATE(CFS) AT CONFLUENCE = 181.02 **************************************************************************** FLOW PROCESS FROM NODE 1062.10 TO NODE 1062.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 229.60 DOWNSTREAM ELEVATION = 226.00 ELEVATION DIFFERENCE = 3.60 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.762 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) =6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1062.20 TO NODE 1062.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 226.00 DOWNSTREAM ELEVATION(FEET) = 211.00 STREET LENGTH(FEET) = 530.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1-37 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH(FEET) = 2.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.65 PRODUCT OF DEPTH&VELOCITY(FT^FT/SEC.) = 0.72 STREET FLOW TRAVEL TIME(MIN.) = 2.42 Tc(MIN.) = 8.42 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.272 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 0.75 SUBAREA RUNOFF(CFS) = 2.17 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 2.49 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 4.55 FLOW VELOCITY(FEET/SEC.) = 3.14 DEPTH*VELOCITY(FT^FT/SEC.) = 0.78 LONGEST FLOWPATH FROM NODE 1062.10 TO NODE 1062.3 0 = 630.00 FEET. ********************************************************•*•*••••*•••*••••••• FLOW PROCESS FROM NODE 1062.30 TO NODE 1060.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 211.00 DOWNSTREAM(FEET) = 210.00 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.30 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.49 PIPE TRA'VEL TIME (MIN.) = 0.01 Tc(MIN.) = 8.42 LONGEST FLOWPATH FROM NODE 1062.10 TO NODE 1060.00 = 635.00 FEET. **********************************••••••*•••*••*••**••••••••••************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.42 RAINFALL INTENSITY(INCH/HR) = 5.27 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.49 •* CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 181.02 15.25 3.593 105.35 2 2 49 8.42 5.269 0.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. *• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 125.92 8.42 5.269 2 182.71 15.25 3.593 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 182.71 Tc(MIN.) = 15.25 TOTAL AREA(ACRES) = 106.15 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1060.00 = 3437.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1070.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 200.00 DOWNSTREAM(FEET) = 180.70 FLOW LENGTH(FEET) = 770.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 34.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.80 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 182.71 PIPE TRAVEL TIME(MTN.) = 0.68 Tc(MIN.) = 15.94 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1070.00 = 4207.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1070.00 TO NODE 1070.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.94 RAINFALL INTENSITY(INCH/HR) = 3.49 TOTAL STREAM AREA(ACRES) = 106.15_ PEAK FLOW RATE(CFS) AT CONFLUENCE = 182.71 **************************************************************************** FLOW PROCESS FROM NODE 1071.10 TO NODE 1071.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 210.30 DOWNSTREAM ELEVATION = 208.00 ELEVATION DIFFERENCE = 2.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.046 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **********************************************************••••*•••••••*••••• FLOW PROCESS FROM NODE 1071.20 TO NODE 1071.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 208.00 DOWNSTREAM ELEVATION(FEET) = 192.50 STREET LENGTH(FEET) = 650.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.56 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 7.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.23 PRODUCT OF DEPTH&VELOCITY(FT^FT/SEC.) = 1.01 STREET FLOW TRAVEL TIME(MIN.) = 3.35 Tc(MIN.) = 9.35 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.925 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.95 SUBAREA RUNOFF(CFS) = 4.44 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 4.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.37 HALFSTREET FLOOD WIDTH(FEET) = 10.47 FLOW VELOCITY(FEET/SEC.) = 3.70 DEPTH&VELOCITY(FT^FT/SEC.) = 1.36 LONGEST FLOWPATH FROM NODE 1071.10 TO NODE 1071.30 = 750.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1071.30 TO NODE 1070.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 182.00 DOWNSTREAM(FEET) = 180.70 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.50 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.76 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 9.48 LONGEST FLOWPATH FROM NODE 1071.10 TO NODE 1070.00 = 805.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1070.00 TO NODE 1070.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.48 RAINFALL INTENSITY(INCH/HR) = 4.88 TOTAL STREAM AREA(ACRES) =1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.76 **************************************************************************** FLOW PROCESS FROM NODE 1072.10 TO NODE 1072.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 210.30 DOWNSTREAM ELEVATION = 208.00 ELEVATION DIFFERENCE = 2.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.046 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 *********************************************************••*•••••••••••••*•• FLOW PROCESS FROM NODE 1072.20 TO NODE 1072.30 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 208.00 DOWNSTREAM ELEVATION(FEET) = 192.50 STREET LENGTH(FEET) = 650.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.07 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 6.89 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.12 PRODUCT OF DEPTH&VELOCITY(FT^FT/SEC.) = 0.92 STREET FLOW TRAVEL TIME(MIN.) = 3.48 Tc(MIN.) = 9.48 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.884 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.75 SUBAREA RUNOFF(CFS) = 3.48 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 3.79 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 9.41 FLOW VELOCITY(FEET/SEC.) = 3.53 DEPTH&VELOCITY(FT^FT/SEC.) = 1.22 LONGEST FLOWPATH FROM NODE 1072.10 TO NODE 1072.30 = 750.00 FEET. ********* ******************************************************************* FLOW PROCESS FROM NODE 1072.30 TO NODE 1070.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 183.00 DOWNSTREAM(FEET) = 181.00 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.25 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.79 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 9.48 LONGEST FLOWPATH FROM NODE 1072.10 TO NODE 1070.00 = 755.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1070.00 TO NODE 1070.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 9.48 RAINFALL INTENSITY(INCH/HR) = 4.88 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.79 •• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 182.71 15.94 3.493 106.15 2 4.76 9.48 4.884 1.00 3 3.79 9.48 4.882 0.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 139.22 9.48 4.884 2 139.27 9.48 4.882 3 188.83 15.94 3,493 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 188.83 Tc(MIN.) = 15.94 TOTAL AREA(ACRES) = 107.95 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1070.00 = 4207.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1070.00 TO NODE 1080.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 177.40 DOWNSTREAM(FEET) = 175.80 FLOW LENGTH(FEET) = 130.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 41.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.38 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 188.83 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 16.09 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1080.00 = 4337.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1080.00 TO NODE 1090.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 175.30 DOWNSTREAM(FEET) = 165.50 FLOW LENGTH(FEET) = 488.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 72.0 INCH PIPE IS 29.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.71 GIVEN PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 188.83 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 16.55 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1090.00 = 4825.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1090.00 TO NODE 1090.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.55 RAINFALL INTENSITY(INCH/HR) = 3.41 TOTAL STREAM AREA(ACRES) = 107.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 188.83 **************************************************************************** FLOW PROCESS FROM NODE 1091.10 TO NODE 1091.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 192.00 DOWNSTREAM ELEVATION = 191.00 ELEVATION DIFFERENCE =1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.700 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) =. 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1091.20 TO NODE 1091.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 4 USED)««< UPSTREAM ELEVATION(FEET) = 191.00 DOWNSTREAM ELEVATION(FEET) = 185.00 STREET LENGTH(FEET) = 600.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 42.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 37.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1-61 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 7.66 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.08 PRODUCT OF DEPTH&VELOCITY(FT^FT/SEC.) = 0.65 STREET FLOW TRAVEL TIME(MIN.) = 4.82 Tc(MIN.) = 10.82 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.485 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 2.56 TOTAL AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) = 2.87 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.36 HALFSTREET FLOOD WIDTH(FEET) = 10.16 FLOW VELOCITY(FEET/SEC.) = 2.35 DEPTH*VELOCITY(FT•FT/SEC.) = 0.85 LONGEST FLOWPATH FROM NODE 1091.10 TO NODE 1091.30 = 700.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1091.30 TO NODE 1090.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 175.00 DOWNSTREAM(FEET) = 172.60 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.37 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.87 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 10.91 LONGEST FLOWPATH FROM NODE 1091.10 TO NODE 1090.00 = 750.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1090.00 TO NODE 1090.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.91 RAINFALL INTENSITY(INCH/HR) = 4.46 TOTAL STREAM AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.87 **************************************************************************** FLOW PROCESS FROM NODE 1092.10 TO NODE 1092.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 192.00 DOWNSTREAM ELEVATION = 191.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.7 00 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1092.20 TO NODE 1092.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 4 USED)««< UPSTREAM ELEVATION(FEET) = 191.00 DOWNSTREAM ELEVATION(FEET) = 185.00 STREET LENGTH(FEET) = 650.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 42.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 37.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.57 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 7.66 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.03 PRODUCT OF DEPTH&VELOCITY(FT^FT/SEC.) = 0.63 STREET FLOW TRA'VEL TIME (MIN.) = 5.35 Tc(MIN.) = 11.35 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.348 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 2.48 TOTAL AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) = 2.79 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 10.24 FLOW VELOCITY(FEET/SEC.) = 2.25 DEPTH&VELOCITY(FT^FT/SEC.) = 0.82 LONGEST FLOWPATH FROM NODE 1092.10 TO NODE 1092.30 = 750.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1092.30 TO NODE 1090.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 175.00 DOWNSTREAM(FEET) = 172.60 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.72 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.79 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 11.35 LONGEST FLOWPATH FROM NODE 1092.10 TO NODE 1090.00 = 755.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1090.00 TO NODE 1090.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 11.35 RAINFALL INTENSITY(INCH/HR) = 4.35 TOTAL STREAM AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.79 ** CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 188.83 16.55 3.409 107.95 2 2.87 10.91 4.459 0.65 3 2.79 11.35 4.347 0.65 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 149.98 10.91 4.459 2 153.68 11.35 4.347 3 193.21 16.55 3.409 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 193.21 Tc(MIN.) = 16.55 TOTAL AREA(ACRES) = 109.25 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1090.00 = 4825.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1090.00 TO NODE 106.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 165.50 DOWNSTREAM(FEET) = 164.50 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 72.0 INCH PIPE IS 29.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.80 GIVEN PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 193.21 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 16.59 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 106.00 = 4875.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 Si^f^ Y2ACC^ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN. ) = 16.59 PD/f^S^-fTYA RAINFALL INTENSITY (INCH/HR) = 3.40 / ^/r= <?-^<r-r-~ TOTAL STREAM AREA (ACRES) = 109.25 l-^nf^t^ SVSTEM. PEAK FLOW RATE(CFS) AT CONFLUENCE = 193.21 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 7 > »»USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.87 RAIN INTENSITY(INCH/HOUR) = 3.37 TOTAL AREA(ACRES) = 40.81 TOTAL RUNOFF(CFS) = 67.92 FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL I^BER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.87 RAINFALL INTENSITY(INCH/HR) = 3.37 TOTAL STREAM AREA(ACRES) =40.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 67.92 •• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 193.21 16.59 3.403 109.25 2 67.92 16.87 3.367 40.81 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 260.40 16.59 3.403 2 259.07 16.87 3.367 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 260.40 Tc(MIN.) = 16.59 TOTAL AREA(ACRES) = 150.06 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 106.00 = 4875.15 FEET. ************************************* FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 164.50 DOWNSTREAM(FEET) = 163.00 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 72.0 INCH PIPE IS 31.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.59 GIVEN PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 260.40 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 16.63 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 107.00 = 4930.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 999.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 163.00 DOWNSTREAM(FEET) = 140.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 72.0 INCH PIPE IS 22.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 33.59 GIVEN PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 260.40 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 16.76 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 999.00 = 5180.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1000.00 TO NODE 1000.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.76 RAINFALL INTENSITY(INCH/HR) = 3.38 TOTAL STREAM AREA(ACRES) = 150.06 PEAK FLOW RATE(CFS) AT CONFLUENCE = 260.40 **************************************************************************** FLOW PROCESS FROM NODE 9010.00 TO NODE 9010.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.99 RAIN INTENSITY(INCH/HOUR) = 5.05 TOTAL AREA(ACRES) = 1.60 TOTAL RUNOFF(CFS) = 10.95 **************************************************************************** FLOW PROCESS FROM NODE 1000.00 TO NODE 1000.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) =8.99 RAINFALL INTENSITY(INCH/HR) = 5.05 TOTAL STREAM AREA(ACRES) =1.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.95 •* CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 260.40 16.76 3.381 150.06 2 10.95 8.99 5.053 1.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •* PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 185.21 8.99 5.053 2 267.73 16.76 3.381 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 267.73 Tc(MIN.) = 16.76 TOTAL AREA(ACRES) = 151.66 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1000.00 = 5180.15 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 151.66 TC(MIN.) = 16.76 PEAK FLOW RATE(CFS) = 267.73 END OF RATIONAL METHOD ANALYSIS *********************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 W ^F' ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - POINSETTIA LANE HYDROLOGY * * REVISED KIMLEY-HORN STUDY FOR POINSETTIA LANE INCLUDING 29.4 AC NATURAL * * 1OO-YEAR STORM EVENT • ************************************************************************** FILE NAME: 1325P.DAT TIME/DATE OF STUDY: 09:45 07/26/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED •USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL^ HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2 .00 0.0312 0.167 0.0150 2 41.0 36.0 0.020/0.020/ ---0.67 2 .00 0.0312 0.167 0.0175 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 1.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)•(Velocity) Constraint =10.0 (FT*FT/S) •SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.^ **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 41.00 UPSTREAM ELEVATION = 248.00 DOWNSTREAM ELEVATION = 247.20 ELEVATION DIFFERENCE = 0.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.3 84 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.02 TOTAL RUNOFF(CFS) = 0.12 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED)««< UPSTREAM ELEVATION(FEET) = 247.20 DOWNSTREAM ELEVATION(FEET) = 201.50 STREET LENGTH(FEET) = 915.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 41.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 36.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.16 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 8.89 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.24 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.43 STREET FLOW TRAVEL TIME(MIN.) = 3.59 Tc(MIN.) = 9.59 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.846 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.73 SUBAREA RtJNOFF(CFS) = 7.96 TOTAL AREA(ACRES) = 1.75 PEAK FLOW RATE(CFS) = 8.09 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET, FLOOD WIDTH(FEET) =12.09 FLOW VELOCITY(FEET/SEC.) = 4.90 DEPTH*VELOCITY(FT*FT/SEC.) = 1.96 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 956.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.59 RAINFALL INTENSITY(INCH/HR) = 4.85 TOTAL STREAM AREA(ACRES) =1.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.09 **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.00 RAIN INTENSITY(INCH/HOUR) = 3.48 TOTAL AREA(ACRES) = 29.40 TOTAL RUNOFF(CFS) = 42.80 Ff>C 771/1 /W^-€otxO^ **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 102.00 IS CODE = 41 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 184.00 DOWNSTREAM(FEET) = 183.80 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.21 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 42.80 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 16.09 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 102.00 = 40.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« »»>AND COMPtJTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.09 RAINFALL INTENSITY(INCH/HR) = 3.47 TOTAL STREAM AREA(ACRES) = 29.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 42.80 •• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.09 9.59 4.846 1.75 2 42.80 16.09 3.471 29.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FOI^MULA USED FOR 2 STREAMS. *• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) , (INCH/HOUR) 1 38.75 9.59 4.846 2 48.59 16.09 3.471 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 48.59 Tc(MIN.) = 16.09 TOTAL AREA(ACRES) = 31.15 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 956.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM{FEET) = 183.80 DOWNSTREAM(FEET) = 183.30 FLOW LENGTH(FEET) = 7.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 13.2 INCHES PIPE-FLOW VEL(X:iTY{FEET/SEC.) = 20.67 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 48.59 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 16.10 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 963.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.10 RAINFALL INTENSITY(INCH/HR) =3.47 TOTAL STREAM AREA(ACRES) = 31.15 PEAK FLOW RATE(CFS) AT CONFLUENCE = 48.59 **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 41.00 UPSTREAM ELEVATION = 248.00 DOWNSTREAM ELEVATION = 247.2 0 ELEVATION DIFFERENCE = 0.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.384 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.02 TOTAL RUNOFF(CFS) = 0.12 **************************************************************************** FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 62 »»>COMPUTE STREET FLOW, TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED)««< UPSTREAM ELEVATION(FEET) = 247.20 DOWNSTREAM ELEVATION(FEET) = 201.50 STREET LENGTH(FEET) = 910.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 41.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 36.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.43 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 6.68 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.82 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.11 STREET FLOW TRAVEL TIME(MIN.) = 3.97 Tc(MIN.) = 9.97 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.726 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.01 SUBAREA RUNOFF(CFS) = 4.53 TOTAL AREA(ACRES) = 1.03 PEAK FLOW RATE(CFS) = 4.66 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 9.35 FLOW VELOCITY(FEET/SEC.) = 4.38 DEPTH*VELOCITY(FT*FT/SEC.) = 1.51 LONGEST FLOWPATH FROM NODE 12 0.00 TO NODE 122.00 = 951.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 122.00 TO NODE 103.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 195.00 DOWNSTREAM(FEET) = 183.30 FLOW LENGTH(FEET) = 75.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.95 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES =1 PIPE-FLOW(CFS) =4.66 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 10.06 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 103.00 = 1026.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.06 RAINFALL INTENSITY(INCH/HR) = 4.70 TOTAL STREAM AREA(ACRES) = 1.03 PEAK FLOW RATE(CFS) AT CONFLUENCE =4.66 •• CONFLtTENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 48.59 16.10 3.470 31.15 2 4.66 10.06 4.701 1.03 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •* PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 40.53 10.06 4.701 2 52.03 16.10 3.470 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 52.03 Tc(MIN.) = 16.10 TOTAL AREA(ACRES) = 32.18 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 103.00 = 1026.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 183.30 DOWNSTREAM(FEET) = 177.10 FLOW LENGTH(FEET) = 460.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 22.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.27 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 52.03 PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) = 16.78 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 105.00 = 1486.00 FEET. ***************************************************************** * * ********* FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.78 RAINFALL INTENSITY(INCH/HR) = 3.38 TOTAL STREAM AREA(ACRES) = 32.18 PEAK FLOW RATE(CFS) AT CONFLUENCE = 52.03 ******************************************************* *.* ******************* FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 41.00 UPSTREAM ELEVATION = 202.30 DOWNSTREAM ELEVATION = 201.50 ELEVATION DIFFERENCE = 0.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.384 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.02 TOTAL RUNOFF(CFS) = 0.12 **************************************************************************** FLOW PROCESS FROM NODE 151.00 TO NODE 105.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »»>( STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 201.50 DOWNSTREAM ELEVATION(FEET) = 187.20 STREET LENGTH(FEET) = 460.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 41.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK{FEET) = 36.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.51 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 5.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.89 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.79 STREET FLOW TRAVEL TIME(MIN.) = 2.65 Tc(MIN.) = 8.65 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.180 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.56 SUBAREA RUNOFF(CFS) = 2.76 TOTAL AREA(ACRES) = 0.58 PEAK FLOW RATE(CFS) = 2.88 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 8.36 FLOW VELOCITY(FEET/SEC.) = 3.24 DEPTH*VELOCITY(FT*FT/SEC.) = 1.06 LONGEST FLOWPATH FROM NODE 150.00 TO NODE 105.00 = 501.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.65 RAINFALL INTENSITY(INCH/HR) = 5.18 TOTAL STREAM AREA(ACRES) = 0.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.88 **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.49 RAIN INTENSITY(INCH/HOUR) = 3.56 TOTAL AREA(ACRES) = 7.50 TOTAL RUNOFF(CFS) = 12.82 **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 105.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 180.50 DOWNSTREAM(FEET) = 177.10 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.54 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.82 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 15.51 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 105.00 = 20.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 15.51 RAINFALL INTENSITY(INCH/HR) = 3.56 TOTAL STREAM AREA(ACRES) = 7.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.82 **************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 161.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 41.00 UPSTREAM ELEVATION = 202.30 DOWNSTREAM ELEVATION = 201.50 ELEVATION DIFFERENCE = 0.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.384 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.02 TOTAL RUNOFF(CFS) = 0.12 **************************************************************************** FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 2 USED) ««< UPSTREAM ELEVATION(FEET) = 201.50 DOWNSTREAM ELEVATION(FEET) = 187.20 STREET LENGTH(FEET) = 460.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) =41.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 36.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.44 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) =5.54 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.89 PRODUCT OF DEPTH&VELOCITY(FT^FT/SEC.) = 0.78 STREET FLOW TRAVEL TIME(MIN.) = 2.65 Tc(MIN.) = 8.65 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.180 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.53 SUBAREA RUNOFF(CFS) = 2.61 TOTAL AREA(ACRES) = ,0.55 PEAK FLOW RATE(CFS) = 2.73 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.13 FLOW VELOCITY(FEET/SEC.) = 3.21 DEPTH&VELOCITY(FT*FT/SEC.) = 1.03 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 162.00 = 501.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 162.00 TO NODE 105.00 IS CODE = 41 >>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 178.00 DOWNSTREAM(FEET) = 177.10 FLOW LENGTH(FEET) = 85.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.91 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.73 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 8.94 LONGEST FLOWPATH FROM NODE 160.00 TO NODE 105.00 = 586.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 4 ARE: TIME OF CONCENTRATION(MIN.) = 8.94 RAINFALL INTENSITY(INCH/HR) = 5.07 TOTAL STREAM AREA(ACRES) = 0.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.73 ** CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 52.03 16.78 3.379 32.18 2 2.88 8.65 5.180 0.58 3 12.82 15.51 3.555 7.50 4 2.73 8.94 5.071 0.55 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 4 STREAMS. ** PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 48.30 8.65 5.180 2 49.21 8.94 5.071 3 66.17 15.51 3.555 4 67.92 16.78 3.379 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 67.92 Tc(MIN.) = 16.78 TOTAL AREA(ACRES) = 40.81 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 105.00 = 1486.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 177.10 DOWNSTREAM(FEET) = 171.60 FLOW LENGTH(FEET) = 108.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 17.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.95 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 67.92 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 16.87 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 106.00 = 1594.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 40.81 TC(MIN.) = 16.87 PEAK FLOW RATE(CFS) = 67.92 PRELIMINARY DRAINAGE REPORT BRESSI RANCH PLANNING AREAS 1 THROUGH 14 AND OPEN SPACE 1 - 6 CARLSBAD, CALIFORNIA MARCH 2000 Prepared For: LENNAR COMMUNITIES 5780 Fleet Sfi-eet, Suite 320 Carlsbad, CA 92008 Prepared By: PROJECT DESIGN CONSULTANTS 701 B Street, Suite 800 San Diego, CA 92101 Document No. 1325.50 Mark F. Campbell RCE 48040 PreparedBy: DU Registration Expires 12/31/03 Checked By: MW I" .-^r—-- ff" - : -'irMar-2000 * '^^"TJETAIL^D £)kAlKAGE CALCULATIONS Pfoj.Name: BRESSI ftANCH - SYSTEM "A" Proj. Num: 1325.5 File Name: Frequency 100 yrs. DSND by: DU P6= 2.6 From To Node Node Typeof Travel L (ft) H (ft) Pipe Dia(in) Slope (ft/ft) Velocity (ft/s) Tc (min) Revised Tc Intensity (in/hr) C A (ac) CA Sum Ca Total Q (cfs) SUBBASIN A24 Natural Ovrlnd 850 134 0.158 2.9 12.9 3.72 0.45 7.5 3.4 3.4 Gutter 700 14 0.020 3.5 3.3 16.2 3.21 0.45 7.5 3.4 3.4 10.9 (Avg flow depth = 0.37 ft. Avg Flo w Widt 13.5 ft.) SUBBASIN A25 Natural Ovrlnd 1900 224 0.118 6 16 3.24 0.45 29.4 13.2 13.2 42.8 SUBBASIN A26 Natural Ovrlnd 600 144 0.240 1.9 11.9 3.92 0.45 7 3.2 3.2 12.5 SUBBASIN A27 Natural Ovrlnd 1050 130 0.124 3.7 13.7 3.58 0.45 7.5 3.4 3.4 Gutter noo 70 0.064 5.6 3.3 17 3.11 0.45 7.5 3.4 3.4 10.6 (Avg flow depth = 0.3 ft. Avg Flo w Widt 10 ft.) SUBBASIN A28 Urban Overland 80 40 0.500 2.4 2.4 11 0.55 0.9 0.5 0.5 Gutter 850 37 0.044 4.2 3.4 5.8 6.22 0.55 0.9 0.5 0.5 3.1 (Avg flow depth = 0.26 ft. Avg Flc w Widt 8 ft.) **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE STREET * * lOO-YEAR Q AT POINSETTIA LANE F-TYPE CATCH BASIN (STA 80-1-81.29) * * * ************************************************************************** FILE NAME: C:\aes2001\hydrosft\ratscx\1325-khl.dat" TIME/DATE OF STUDY: 11:20 03/28/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CtJRB GtJTTER--GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === === = = ========= ================= ====== ==== = ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 37.0 32.0 0.020/0.020/ ---0.67 2-00 0.0312 0.167 0.0150 3 32.0 27.0 0.020/0.020/ 0.67 2.00 0.0312 0.167 0.0150 4 42.0 37.0 0.020/0.020/ ---0.67 2 .00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximuin Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 7060.00 TO NODE 7061.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.05(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 300.00 UPSTREAM ELEVATION = 330.00 DOWNSTREAM ELEVATION = 250.00 ELEVATION DIFFERENCE = 80.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.424 SUBAREA RUNOFF(CFS) =0.20 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.20 **************************************************************************** FLOW PROCESS FROM NODE 7061.00 TO NODE 7064.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM (FEET) = 250.00 DOWNSTREAM (FEET) = 220.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE = 0.0857 CHANNEL BASE (FEET) = 1.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 3.00 CHANNEL FLOW THRU SUBAREA (CFS) = 0.20 FLOW VELOCITYIFEET/SEC) = 3.66 FLOW DEPTH (FEET) = 0.05 TRAVEL TIME(MIN.) = 1.59 Tc(MIN.) = 12.64 LONGEST FLOWPATH FROM NODE 7060.00 TO NODE 7064.00 = 650.00 FEET. ************************************************************** FLOW PROCESS FROM NODE 7064.00 TO NODE 7064.00 IS CODE = 81 »»>ADDITION OF StJBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.055 OPEN BRUSH FAIR COVER RtMOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF (CFS) = 3.65 TOTAL AREA(ACRES) = 2.10 TOTAL RUNOFF(CFS) = 3.85 TC(MIN) = 12.64 **************************************************************************** FLOW PROCESS FROM NODE 7064.00 TO NODE 7065.00 IS CODE = 51 >»»COMPtJTE TRAPEZOIDAL CHANNEL FLOW<«« »»>TRAVELTIME THRU StIBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM (FEET) = 220.00 DOWNSTREAM (FEET) = 196.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE = 0.0686 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00 CHANNEL FLOW THRU SUBAREA (CFS) = 3.85 FLOW VELOCITY(FEET/SEC) = 9.48 FLOW DEPTH(FEET) = 0.31 TRAVEL TIME(MIN.) = 0.62 Tc(MIN.) = 13.26 LONGEST FLOWPATH FROM NODE 7060.00 TO NODE 7065.00 = 1000.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7065.00 TO NODE 7065.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.933 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREAIACRES) = 1.90 Sl^AREA RUNOFF (CFS) = 3.36 TOTAL AREA (ACRES) = 4.00 TOTAL RUNOFF (CFS) = 7.21 TC(MIN) = 13.26 **************************************************************************** FLOW PROCESS FROM NODE 7065.00 TO NODE 7070.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 196.00 DOWNSTREAM(FEET) = 190.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 700.00 CHANNEL SLOPE = 0.0086 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 2.00 CHANNEL FLOW THRU SUBAREA (CFS) = 7.21 FLOW VELOCITY(FEET/SEC) = 5.24 FLOW DEPTHIFEET) = 0.78 TRAVEL TIME (MIN. ) = 2.23 Tc(MIN.) = 15.49 LONGEST FLOWPATH FROM NODE 7060.00 TO NODE 7070.00 = 1700.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7070.00 TO NODE 7070.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.558 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA (ACRES) = 3.50 SUBAREA RUNOFFICFS) = 5.60 TOTAL AREA (ACRES) = 7.50 TOTAL RUNOFF (CFS) = 12.82 TC(MIN) = 15.49 END OF STUDY SUMMARY: TOTAL AREA(ACRES) 7 50 TCIMIN.) = 15.49 PEAK FLOW RATE(CFS) 12 82 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 _ , s tr ' c s ifTiz, ************************** DESCRIPTION OF STUDY ************************** * EL FUERTE STREET - INTERIM CONDITIONS • * BORROW SITE HYDROLOGY * * lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: 1325BOR.DAT TIME/DATE OF STUDY: 16:30 07/25/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED •USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL^ HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)•(Velocity) Constraint = 6.0 (FT*FT/S) •SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.^ **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 13.50(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 600.00 UPSTREAM ELEVATION = 456.00 DOWNSTREAM ELEVATION = 428.00 ELEVATION DIFFERENCE = 28.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.887 SUBAREA RUNOFF(CFS) = 7.00 TOTAL AREA(ACRES) = 4.00 TOTAL RUNOFF(CFS) = 7.00 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 428.00 DOWNSTREAM(FEET) = 420.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 100.00 CHANNEL SLOPE = 0.0800 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 7.00 FLOW VELOCITY(FEET/SEC) = 6.61 FLOW DEPTH(FEET) = 0.73 TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 13.75 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 700.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.841 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 6.40 TOTAL AREA(ACRES) = 7.70 TOTAL RUNOFF(CFS) = 13.39 TC(MIN) = 13.75 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 420.00 DOWNSTREAM(FEET) = 398.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.1100 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 13.39 FLOW VELOCITY(FEET/SEC) = 15.22 FLOW DEPTH(FEET) = 0.77 TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 13.97 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 900.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.802 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 3.00 SUBAREA RUNOFF(CFS) = 5.13 TOTAL AREA(ACRES) = 10.70 TOTAL RUNOFF(CFS) = 18.53 TC{MIN) = 13.97 **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 120.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 3 98.00 DOWNSTREAM(FEET) = 388.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.0250 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 18.53 FLOW VELOCITY(FEET/SEC) = 9.51 FLOW DEPTH(FEET) = 1.14 TRAVEL TIME(MIN.) = 0.70 Tc{MIN.) = 14.67 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 120.00 = 1300.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.684 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 4.64 TOTAL AREA(ACRES) = 13.50 TOTAL RUNOFF(CFS) = 23.17 TC(MIN) = 14.67 **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.67 RAINFALL INTENSITY(INCH/HR) = 3.68 TOTAL STREAM AREA(ACRES) = 13.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.17 **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 8 8 INITIAL SUBAREA FLOW-LENGTH = 850.00 UPSTREAM ELEVATION = 416.00 DOWNSTREAM ELEVATION = 388.00 ELEVATION DIFFERENCE = 28.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 19.399 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. *CAUTION: SUBAREA FLOWLENGTH EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.077 SUBAREA RUNOFF(CFS) =9.82 TOTAL AREA(ACRES) = 5.80 TOTAL RUNOFF(CFS) = 9.82 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 120.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 3 88.00 DOWNSTREAM(FEET) = 386.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 2 00.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 9.82 FLOW VELOCITY(FEET/SEC) = 2.76 FLOW DEPTH(FEET) = 0.84 TRAVEL TIME(MIN.) = 1.21 Tc(MIN.) = 20.61 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 120.00 = 1050.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 20.61 RAINFALL INTENSITY(INCH/HR) = 2.96 TOTAL STREAM AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.82 ** CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 23.17 14.67 3.684 13.50 2 9.82 20.61 2.959 5.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 31.05 14.67 3.684 2 28.42 20.61 2.959 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 31.05 Tc(MIN.) = 14.67 TOTAL AREA(ACRES) = 19.3 0 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 120.00 = 1300.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 125.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<«< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 386.00 DOWNSTREAM(FEET) = 360.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 250.00 CHANNEL SLOPE = 0.1040 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 31.05 FLOW VELOCITY(FEET/SEC) = 18.51 FLOW DEPTH(FEET) = 1.06 TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 14.90 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 125.00 = 1550.00 FEET. ************************************* FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.648 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 1.3 0 SUBAREA RUNOFF(CFS) = 2.13 TOTAL AREA(ACRES) = 20.60 TOTAL RUNOFF(CFS) = 33.19 TC(MIN) = 14.90 **************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 150.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 360.00 DOWNSTREAM(FEET) = 359.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 50.00 CHANNEL SLOPE = 0.0200 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 33.19 FLOW VELOCITY(FEET/SEC) = 10.14 FLOW DEPTH(FEET) = 1.48 TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 14.98 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 150.00 = 1600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 12.26(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 400.00 UPSTREAM ELEVATION = 444.00 DOWNSTREAM ELEVATION = 418.00 ELEVATION DIFFERENCE = 26.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.138 SUBAREA RUNOFF(CFS) = 0.93 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 0.93 **************************************************************************** FLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 418.00 DOWNSTREAM(FEET) = 386.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0640 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.93 FLOW VELOCITY(FEET/SEC) = 6.46 FLOW DEPTH(FEET) = 0.31 TRAVEL TIME(MIN.) = 1.29 Tc(MIN.) = 13.55 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 132.00 = 900.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.879 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 2.62 TOTAL AREA(ACRES) = 2.00 TOTAL RUNOFF(CFS) = 3.55 TC(MIN) = 13.55 **************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.55 RAINFALL INTENSITY(INCH/HR) =3.88 TOTAL STREAM AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.55 **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 850.00 UPSTREAM ELEVATION = 416.00 DOWNSTREAM ELEVATION = 388.00 ELEVATION DIFFERENCE = 28.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 19.3 99 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. •CAUTION: SUBAREA FLOWLENGTH EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.077 SUBAREA RUNOFF(CFS) = 7.95 TOTAL AREA(ACRES) = 4.70 TOTAL RUNOFF(CFS) = 7.95 **************************************************************************** FLOW PROCESS FROM NODE 141.00 TO NODE 132.00 IS CODE = 51 »>»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 388.00 DOWNSTREAM(FEET) = 386.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH{FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 7.95 FLOW VELOCITY(FEET/SEC) = 2.61 FLOW DEPTH(FEET) = 0.78 TRAVEL TIME(MIN.) = 1.28 Tc(MIN.) = 20.68 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 132.00 = 1050.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 132.00 IS CODE = 1 >>»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>»>Airo COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 20.68 RAINFALL INTENSITY(INCH/HR) = 2.95 TOTAL STREAM AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.95 ** CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.55 13.55 3.879 2.00 2 7.95 20.68 2.953 4.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. *• PEAK FLOW RATE TABLE *• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.60 13.55 3.879 2 10.66 20.68 2.953 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.66 Tc(MIN.) = 20.68 TOTAL AREA(ACRES) = 6.70 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 132.00 = 1050.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 150.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 3 86.00 DOWNSTREAM(FEET) = 358.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 250.00 CHANNEL SLOPE = 0.1120 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 10.66 FLOW VELOCITY(FEET/SEC) = 14.54 FLOW DEPTH(FEET) = 0.70 TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 20.96 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 150.00 = 1300.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 81 »»>ADDITlbN OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.927 USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 6.85 TOTAL RUNOFF(CFS) = 10.85 TC(MIN) = 20.96 **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 11 »>»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.85 20.96 2.927 6.85 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 150.00 = 1300.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 33.19 14.98 3.635 20.60 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 150.00 = 1600.00 FEET. ** PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 41.92 14.98 3.635 2 37.57 20.96 2.927 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 41.92 Tc(MIN.) = 14.98 TOTAL AREA(ACRES) = 27.45 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 27.45 TC(MIN.) = 14.98 PEAK FLOW RATE(CFS) = 41.92 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92109 619-235-6471 , 3^ ^ffl©T 'C ************************** DESCRIPTION OF STUDY ************************** • BRESSI RANCH - EL FUERTE ROADWAY • • WESTERLY INTERIM CONDITIONS - NATURAL DRAINAGE * • 100-YEAR STORM EVENT • ************************************************************************** FILE NAME: C:\aes2001\hydrosft\ratscx\1325-6i.dat't TIME/DATE OF STUDY: 10:25 07/26/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED •USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)•(Velocity) Constraint = 6.0 (FT^FT/S) •SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 6001.00 TO NODE 6001.50 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.58(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 250.00 UPSTREAM ELEVATION = 454.00 DOWNSTREAM ELEVATION = 438,00 ELEVATION DIFFERENCE = 16.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.292 SUBAREA RUNOFF(CFS) = 0.97 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 0.97 **************************************************************************** FLOW PROCESS FROM NODE 6001.50 TO NODE 6002.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 438.00 DOWNSTREAM(FEET) = 340.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00 CHANNEL SLOPE = 0.1633 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.97 FLOW VELOCITY(FEET/SEC) = 9.23 FLOW DEPTH(FEET) = 0.26 TRAVEL TIME(MIN.) = 1.08 Tc(MIN.) = 12.66 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6002.00 = 850.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6002.00 TO NODE 6002.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.051 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 4.38 TOTAL AREA(ACRES) = 2.90 TOTAL RUNOFF(CFS) = 5.34 TC(MIN) = 12.66 **************************************************************************** FLOW PROCESS FROM NODE 6002.00 TO NODE 6004.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 340.00 DOWNSTREAM(FEET) = 240.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 700.00 CHANNEL SLOPE = 0.1429 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.34 FLOW VELOCITY(FEET/SEC) = 13.38 FLOW DEPTH(FEET) = 0.52 TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) = 13.54 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6004.00 = 1550.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6004.00 TO NODE 6004.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.881 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 6.00 SUBAREA RUNOFF(CFS) = 10.48 TOTAL AREA(ACRES) = 8.90 TOTAL RUNOFF(CFS) = 15.82 TC(MIN) = 13.54 **************************************************************************** FLOW PROCESS FROM NODE 6004.00 TO NODE 6015.00 IS CODE = 51 >>>»COMPUTE TRAPEZOIDAL CHANNEL FLOW<<«< .»»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 240.00 DOWNSTREAM(FEET) = 210.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0600 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 15.82 FLOW VELOCITY(FEET/SEC) = 13.17 FLOW DEPTH(FEET) =, 0.70 TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 14.17 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6015.00 = 2050.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6015.00 TO NODE 6015.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.17 RAINFALL INTENSITY(INCH/HR) = 3.77 TOTAL STREAM AREA(ACRES) = 8.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.82 **************************************************************************** FLOW PROCESS FROM NODE 6010.00 TO NODE 6011.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 12.57(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 400.00 UPSTREAM ELEVATION = 458.60 DOWNSTREAM ELEVATION = 440.00 ELEVATION DIFFERENCE = 18.60 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.071 SUBAREA RUNOFF(CFS) = 1.47 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 1.47 **************************************************************************** FLOW PROCESS FROM NODE 6011.00 TO NODE 6012.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW<<«< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 440.00 DOWNSTREAM(FEET) = 360.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.2000 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.47 FLOW VELOCITY(FEET/SEC) = 4.73 FLOW DEPTH(FEET) = 0.25 TRAVEL TIME(MIN.) = 1.41 Tc{MIN.) = 13.98 LONGEST FLOWPATH FROM NODE 6010.00 TO NODE 6012.00 = 800.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6012.00 TO NODE 6012.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« , 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.802 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 6.00 SUBAREA RUNOFF(CFS) = 10.26 TOTAL AREA(ACRES) = 6.80 TOTAL RUNOFF(CFS) = 11.73 TC(MIN) = 13.98 **************************************************************************** FLOW PROCESS FROM NODE 6012.00 TO NODE 6015.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 360.00 DOWNSTREAM(FEET) = 210.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1200.00 CHANNEL SLOPE = 0.1250 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 11.73 FLOW VELOCITY(FEET/SEC) = 7.33 FLOW DEPTH(FEET) = 0.58 TRAVEL TIME(MIN.) = 2.73 Tc(MIN.) = 16.71 LONGEST FLOWPATH FROM NODE 6010.00 TO NODE 6015.00 = 2000.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6015.00 TO NODE 6015.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY{INCH/HOUR) = 3.388 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 20.00 SUBAREA RUNOFF(CFS) = 30.50 TOTAL AREA(ACRES) = 26.80 TOTAL RUNOFF(CFS) = 42.23 TC(MIN) = 16.71 **************************************************************************** FLOW PROCESS FROM NODE 6015.00 TO NODE 6015.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.71 RAINFALL INTENSITY(INCH/HR) = 3.39 TOTAL STREAM AREA(ACRES) = 26.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 42.23 •• CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 15.82 14.17 3.768 8.90 2 42.23 16.71 3.388 26.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1' 53.79 14.17 3.768 2 56.45 16.71 3.388 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 56.45 Tc(MIN.) = 16.71 TOTAL AREA(ACRES) = 35.70 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6015.00 = 2050.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6015.00 TO NODE 6020.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW<<«< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 240.00 DOWNSTREAM(FEET) = 210.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.1500 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 56.45 FLOW VELOCITY(FEET/SEC) = 24.48 FLOW DEPTH(FEET) = 1.24 TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 16.84 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6020.00 = 2250.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6020.00 TO NODE 6020.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.84 RAINFALL INTENSITY(INCH/HR) = 3.37 TOTAL STREAM AREA(ACRES) =35.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 56.45 **************************************************************************** FLOW PROCESS FROM NODE 6016.00 TO NODE 6017.00 IS CODE = 21 >>»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<«< OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.41(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 32 0.00 UPSTREAM ELEVATION = 445.40 DOWNSTREAM ELEVATION = 400.00 ELEVATION DIFFERENCE = 45.40 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.334 SUBAREA RUNOFF(CFS) = 1.95 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 1.95 **************************************************************************** FLOW PROCESS FROM NODE 6017.00 TO NODE 6020.00 IS CODE = 51 >>>»COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 400.00 DOWNSTREAM{FEET) = 210.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 90 0.00 CHANNEL SLOPE = 0.2111 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.95 FLOW VELOCITY(FEET/SEC) = 5.46 FLOW DEPTH(FEET) = 0.22 TRAVEL TIME(MIN.) = 2.75 Tc(MIN.) = 14.15 LONGEST FLOWPATH FROM NODE 6016.00 TO NODE 6020.00 = 1220.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6020.00 TO NODE 6020.00 IS CODE = 81 >>>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<«< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.771 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 11.80 SUBAREA RUNOFF(CFS) = 20.02 TOTAL AREA(ACRES) = 12.80 TOTAL RUNOFF(CFS) = 21.97 TC(MIN) = 14.15 **************************************************************************** FLOW PROCESS FROM NODE 6020.00 TO NODE 6020.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.15 RAINFALL INTENSITY(INCH/HR) = 3.77 TOTAL STREAM AREA(ACRES) = 12.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.97 ** CONFLUENCE DATA *• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 56.45 16.84 3.371 35.70 2 21.97 14.15 3.771 12.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •* STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 72.43 14.15 3.771 2 76.09 16.84 3.371 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 76.09 Tc(MIN.) = 16.84 TOTAL AREA(ACRES) = 48.50 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6020.00 = 2250.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6020.00 TO NODE 6030.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 210.00 DOWNSTREAM(FEET) = 200.00 CHANNEL LENGTH THRU SUBAREA{FEET) = 300.00 CHANNEL SLOPE = 0.0333 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 7 6.09 FLOW VELOCITY(FEET/SEC) = 14.51 FLOW DEPTH(FEET) = 1.19 TRAVEL TIME(MIN.) = 0.34 Tc{MIN.) = 17.19 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6030.00 = 2550.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 48.50 TC(MIN.) = 17.19 PEAK FLOW RATE(CFS) = 76.09 END OF RATIONAL METHOD ANALYSIS APPENDIX 3 ULTIMATE CONDITION RATIONAL METHOD COMPUTER OUTPUT **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ^>YJHB}T 'B' ************************** DESCRIPTION OF STUDY *****'*^******************* * BRESSI RANCH - EL FUERTE ROADWAY * * MAINLINE HYDROLOGY - ULTIMATE CONDITIONS • * lOO-YEAR STORM EVENT • ************************************************************************** FILE NAME: 1325-1.DAT TIME/DATE OF STUDY: 11:48 11/21/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER--GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === — — — — — ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 37.0 32.0 0.020/0.020/ 0.67 2.00 0.0312 0.167 0.0150 3 32.0 27.0 0.020/0.020/ - — 0.67 2.00 0.0312 0.167 0.0150 4 42.0 37.0 0.020/0.020/ — 0.67 2 .00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximxam Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 10.0 (FT*FT/S) •SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1001.00 TO NODE 1002.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH =100.00 UPSTREAM ELEVATION = 447.00 DOWNSTREAM ELEVATION = 445.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.143 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1002.00 TO NODE 1003.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 4 USED)««< UPSTREAM ELEVATION(FEET) = 445.00 DOWNSTREAM ELEVATION(FEET) = 406.50 STREET LENGTH(FEET) = 500.00 CXJRB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 42.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 37.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.92 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 4.23 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.21 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.26 STREET FLOW TRAVEL TIME(MIN.) = 1.60 Tc(MIN.) = 7.60 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.631 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 3.21 TOTAL AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) = 3.52 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 6.65 FLOW VELOCITY(FEET/SEC.) = 5.58 DEPTH*VELOCITY(FT*FT/SEC.) = 1.62 LONGEST FLOWPATH FROM NODE 1001.00 TO NODE 1003.00 = 600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1003.00 TO NODE 1003.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLXIENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.60 RAINFALL INTENSITY(INCH/HR) = 5.63 TOTAL STREAM AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.52 **************************************************************************** FLOW PROCESS FROM NODE 1003.10 TO NODE 1003.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 200.00 UPSTREAM ELEVATION = 413.00 DOWNSTREAM ELEVATION = 408.00 ELEVATION DIFFERENCE = 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.813 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.25 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.25 ***************************************************************************** FLOW PROCESS FROM NODE 1003.20 TO NODE 1003.30 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« >>»>TRAVELTIME THRU StJBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 408.00 DOWNSTREAM(FEET) = 404.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 10.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.25 FLOW VELOCITY(FEET/SEC) = 2.32 FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 2.87 Tc(MIN.) = 8.87 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1003.30 = 600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1003.30 TO NODE 1003.30 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.096 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 3.60 SUBAREA RUNOFF(CFS) = 17.43 TOTAL AREA(ACRES) = 3.80 TOTAL RUNOFF(CFS) = 18.67 TC(MIN) = 8.87 **************************************************************************** FLOW PROCESS FROM NODE 1003.30 TO NODE 1003.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 396.00 DOWNSTREAM(FEET) = 395.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.72 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.67 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 8.96 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1003.00 = 650.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1003.00 TO NODE 1003.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.96 RAINFALL INTENSITY(INCH/HR) = 5.06 TOTAL STREAM AREA(ACRES) = 3.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.67 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.52 7.60 5.631 0.65 2 18.67 8.96 5.064 3.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.32 7.60 5.631 2 21.84 8.96 5.064 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.84 Tc(MIN.) = 8.96 TOTAL AREA(ACRES) = 4.45 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1003.00 = 650.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1003.00 TO NODE 1005.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 396.19 DOWNSTREAM(FEET) = 386.25 FLOW LENGTH(FEET) = 87.15 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.82 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.84 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 9.03 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1005.00 = 737.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1005.00 TO NODE 1005.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.03 RAINFALL INTENSITY(INCH/HR) = 5.04 TOTAL STREAM AREA(ACRES) = 4.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.84 **************************************************************************** FLOW PROCESS FROM NODE 1004.10 TO NODE 1004.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SLTRFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 447.00 DOWNSTREAM ELEVATION = 445.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.143 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1004.20 TO NODE 1004.30 IS CODE = 62 >>»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »>>> (STREET TABLE SECTION # 4 USED)««< UPSTREAM ELEVATION(FEET) = 445.00 DOWNSTREAM ELEVATION(FEET) = 406.50 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 42.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 37.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECINAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 . **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.92 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 4.23 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.21 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.26 STREET FLOW TRAVEL TIME(MIN.) = 1.60 Tc(MIN.) = 7.60 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.631 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 3.21 TOTAL AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) = 3.52 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 6.65 FLOW VELOCITY(FEET/SEC.) = 5.58 DEPTH*VELOCITY(FT*FT/SEC.) = 1.62 LONGEST FLOWPATH FROM NODE 1004.10 TO NODE 1004.30 = 600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1004.30 TO NODE 1005.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 394.38 DOWNSTREAM(FEET) = 386.25 FLOW LENGTH(FEET) = 50.21 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.68 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =3.52 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 7.66 LONGEST FLOWPATH FROM NODE 1004.10 TO NODE 1005.00 = 650.21 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1005.00 TO NODE 1005.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.66 RAINFALL INTENSITY(INCH/HR) = 5.60 TOTAL STREAM AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.52 **************************************************************************** FLOW PROCESS FROM NODE 1006.50 TO NODE 1005.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<«« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 9.17 RAIN INTENSITY(INCH/HOUR) = 4.99 TOTAL AREA(ACRES) = 1.30 TOTAL RUNOFF(CFS) = 6.00 **************************************************************************** FLOW PROCESS FROM NODE 1005.00 TO NODE 1005.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 9.17 RAINFALL INTENSITY(INCH/HR) = 4.99 TOTAL STREAM AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 21.84 9.03 5.038 4.45 2 3.52 7.66 5.602 0.65 3 6.00 9.17 4.989 1.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 28.51 7.66 5.602 2 30.95 9.03 5.038 3 30.76 9.17 4.989 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 30.95 Tc(MIN.) = 9.03 TOTAL AREAIACRES) = 6.40 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1005.00 = 737.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1005.00 TO NODE 1007.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 385.75 DOWNSTREAM(FEET) = 384.25 FLOW LENGTH(FEET) = 45.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.51 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 30.95 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 9.09 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1007.00 = 782.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1007.00 TO NODE 1007.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.09 RAINFALL INTENSITY(INCH/HR) = 5.02 TOTAL STREAM AREA(ACRES) = 6.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 30.95 **************************************************************************** FLOW PROCESS FROM NODE 2020.00 TO NODE 2020.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.27 RAIN INTENSITY(INCH/HOUR) = 3.93 TOTAL AREA(ACRES) = 25.20 TOTAL RUNOFF(CFS) = 110.00 **************************************************************************** FLOW PROCESS FROM NODE 1007.00 TO NODE 1007.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.27 RAINFALL INTENSITY(INCH/HR) = 3.93 TOTAL STREAM AREA(ACRES) = 25.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 110.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 30.95 9.09 5.018 6.40 2 110.00 13.27 3.931 25.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 117.12 9.09 5.018 2 134.24 13.27 3.931 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 134.24 Tc(MIN.) = 13.27 TOTAL AREA(ACRES) = 31.60 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1007.00 = 782.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1007.00 TO NODE 1010.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 3 83.00 DOWNSTREAM(FEET) = 354.30 FLOW LENGTH(FEET) = 470.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 24.27 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 134.24 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 13.59 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1010.00 = 1252.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1010.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.59 RAINFALL INTENSITY(INCH/HR) = 3.87 TOTAL STREAM AREA(ACRES) = 31.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 134.24 **************************************************************************** FLOW PROCESS FROM NODE 1008.10 TO NODE 1008.20 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 405.50 DOWNSTREAM ELEVATION = 402.50 ELEVATION DIFFERENCE = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.872 *CAUTION: SXIBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1008.20 TO NODE 1008.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« »»> (STREET TABLE SECTION # 2 USED)<«« UPSTREAM ELEVATION(FEET) = 402.50 DOWNSTREAM ELEVATION(FEET) = 366.00 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 37.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 32.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.87 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 3.40 AVERAGE FLOW VELOCITY(FEET/SEC.) = 6.12 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.3 8 STREET FLOW TRAVEL TIME(MIN.) = 0.95 Tc(MIN.) = 6.95 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.964 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CIASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 3.43 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 6.00 FLOW VELOCITY(FEET/SEC.) = 6.24 DEPTH*VELOCITY(FT*FT/SEC.) = 1.74 LONGEST FLOWPATH FROM NODE 1008.10 TO NODE 1008.30 = 450.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1008.30 TO NODE 1010.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 358.00 DOWNSTREAM(FEET) = 355.30 FLOW LENGTH(FEET) = 70.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.16 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =3.43 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 7.10 LONGEST FLOWPATH FROM NODE 1008.10 TO NODE 1010.00 = 520.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1010.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<«< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.10 RAINFALL INTENSITY(INCH/HR) = 5.89 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.43 **************************************************************************** FLOW PROCESS FROM NODE 1009.10 TO NODE 1009.20 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 50.00 UPSTREAM ELEVATION = 405.50 DOWNSTREAM ELEVATION = 402.50 ELEVATION DIFFERENCE = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.051 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1009.20 TO NODE 1009.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»» (STREET TABLE SECTION # 2 USED)««< UPSTREAM ELEVATION(FEET) = 402.50 DOWNSTREAM ELEVATION(FEET) = 366.00 STREET LENGTH(FEET) = 430.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 37.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 32.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.21 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 6.14 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.67 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.59 STREET FLOW TRAVEL TIME(MIN.) = 1.26 Tc(MIN.) = 7.26 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.798 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF(CFS) = 5.78 TOTAL AREA{ACRES) = 1.10 PEAK FLOW RATE(CFS) = 6.10 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 8.73 FLOW VELOCITY(FEET/SEC.) = 6.40 DEPTH*VELOCITY(FT*FT/SEC.) = 2.13 LONGEST FLOWPATH FROM NODE 1009.10 TO NODE 1009.30 = 480.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1009.30 TO NODE 1010.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 356.00 DOWNSTREAM(FEET) = 355.30 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.88 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.10 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.28 LONGEST FLOWPATH FROM NODE 1009.10 TO NODE 1010.00 = 490.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1010.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 7.28 RAINFALL INTENSITY(INCH/HR) = 5.79 TOTAL STREAM AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.10 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 134.24 13.59 3.870 31.60 2 3.43 7.10 5.886 0.60 3 6.10 7.28 5.791 1.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 97.70 7.10 5.886 2 99.19 7.28 5.791 3 140.57 13.59 3.870. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 140.57 Tc(MIN.) = 13.59 TOTAL AREA(ACRES) = 33.30 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1010.00 = 1252.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1015.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 354.00 DOWNSTREAM(FEET) = 340.30 FLOW LENGTH(FEET) = 220.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 24.62 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 140.57 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 13.74 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1015.00 = 1472.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1015.00 TO NODE 1015.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.74 RAINFALL INTENSITY(INCH/HR) = 3.84 TOTAL STREAM AREA(ACRES) = 33.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 140.57 **************************************************************************** FLOW PROCESS FROM NODE 4010.00 TO NODE 4010.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.23 RAIN INTENSITY(INCH/HOUR) = 4.14 TOTAL AREA(ACRES) = 13.30 TOTAL RUNOFF(CFS) = 40.00 **************************************************************************** FLOW PROCESS FROM NODE 1015.00 TO NODE 1015.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.23 RAINFALL INTENSITY(INCH/HR) = 4.14 TOTAL STREAM AREA(ACRES) = 13.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 40.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 140.57 13.74 3.843 33.30 2 40.00 12.23 4.143 13.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 170.39 12.23 4.143 2 177.67 13.74 3.843 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 177.67 Tc(MIN.) = 13.74 TOTAL AREA(ACRES) = 46.60 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1015.00 = 1472.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1015.00 TO NODE 1020.00 IS CODE = 31 »»>COMPUTE PI PE-FLOW TRAVEL TIME THRU SUBAREA««< >>»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 340.00 DOWNSTREAM(FEET) = 329.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 32.51 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 177.67 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 13.79 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1020.00 = 1572.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1020.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.79 RAINFALL INTENSITY(INCH/HR) = 3.83 TOTAL STREAM AREA(ACRES) = 46.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 177.67 **************************************************************************** FLOW PROCESS FROM NODE 7001.00 TO NODE 7005.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.42(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 350.00 UPSTREAM ELEVATION = 400.00 DOWNSTREAM ELEVATION = 342.00 ELEVATION DIFFERENCE = 58.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.331 SUBAREA RUNOFF(CFS) = 1.95 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 1.95 **************************************************************************** FLOW PROCESS FROM NODE 7005.00 TO NODE 7005.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.331 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NtMBER (AMC II) = 83 StJBAREA AREA (ACRES) = 2.70 SUBAREA RtJNOFF (CFS) = 5.26 TOTAL AREA(ACRES) = 3.70 TOTAL RUNOFF(CFS) = 7.21 TC(MIN) = 11.42 **************************************************************************** FLOW PROCESS FROM NODE 7005.00 TO NODE 1020.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 335.00 DOWNSTREAM(FEET) = 329.70 FLOW LENGTH{FEET) = 100.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.26 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.21 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 11.57 LONGEST FLOWPATH FROM NODE 7001.00 TO NODE 1020.00 = 450.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1020.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.57 RAINFALL INTENSITY(INCH/HR) = 4.29 TOTAL STREAM AREA(ACRES) = 3.7 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.21 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 177.67 13.79 3.834 46.60 2 7.21 11.57 4.295 3.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMtJLA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 165.82 11.57 4.295 2 184.11 13.79 3.834 COMPUTED CONFLtJENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW JIATE(CFS) = 184.11 Tc(MIN.) = 13.79 TOTAL AREA(ACRES) = 50.30 . LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1020.00 = 1572.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1030.00 IS CODE = 31 »»>COMPtJTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 329.00 DOWNSTREAM(FEET) = 294.20 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 28.74 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 184.11 PIPE TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 14.05 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1030.00 = 2022.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1030.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.05 RAINFALL INTENSITY(INCH/HR) = 3.79 TOTAL STREAM AREA(ACRES) = 50.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 184.11 **************************************************************************** FLOW PROCESS FROM NODE 1021.10 TO NODE 1021.20 IS CODE = 21 >>»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD (HARD StJRFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION =365.50 DOWNSTREAM ELEVATION = 359.50 ELEVATION DIFFERENCE = 6.00 tJRBAN StJBAREA OVERLAND TIME OF FLOW (MINUTES) = 1.486 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RtJNOFF (CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RtJNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1021.20 TO NODE 1021.30 IS CODE = 62 >>»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »>» (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 359.50 DOWNSTREAM ELEVATION(FEET) = 316.00 STREET LENGTH(FEET) = 680.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) =32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CAJIRYING RtJNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.69 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 4.14 AVERAGE FLOW VELOCITYIFEET/SEC.) = 4.69 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.13 STREET FLOW TRAVEL TIME(MIN.) = 2.41 Tc(MIN.) = 8.41 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 5.273 ROAD(HARD StJRFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.55 SUBAREA RUNOFF(CFS) = 2.76 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 3.07 END OF SUBAREA STREET FLOW HYDRAtlLICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 6.48 FLOW VELOCITY(FEET/SEC.) = 5.03 DEPTH*VELOCITY(FT*FT/SEC.) = 1.45 LONGEST FLOWPATH FROM NODE 1021.10 TO NODE 1021.30 = 780.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1021.30 TO NODE 1030.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 297.00 DOWNSTREAM(FEET) = 295.20 FLOW LENGTH (FEET) = 70.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.84 ESTIMATED PIPE DIAMETER{INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.07 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 8.58 LONGEST FLOWPATH FROM NODE 1021.10 TO NODE 1030.00 = 850.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1030.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.58 RAINFALL INTENSITY(INCH/HR) = 5.21 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.07 **************************************************************************** FLOW PROCESS FROM NODE 1022.10 TO NODE 1022.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD (HARD StJRFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NtJMBER (AMC II) = 92 INITIAL StJBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 365.50 DOWNSTREAM ELEVATION = 359.50 ELEVATION DIFFERENCE = 6.00 tJRBAN StJBAREA OVERLAND TIME OF FLOW (MINUTES) = 1.486 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 6.559 SUBAREA RtJNOFF (CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RtJNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1022.20 TO NODE 1022.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU StJBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 359.50 DOWNSTREAM ELEVATION(FEET) = 316.00 STREET LENGTH(FEET) = 620.00 CtJRB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NtJMBER OF HALFSTREETS CARRYING RtJNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.73 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 4.02 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.91 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17 STREET FLOW TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 8.10 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 5.403 ROAD(HARD StJRFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.55 SUBAREA RtJNOFF(CFS) = 2.82 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 3.13 END OF StJBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 6.42 FLOW VELOCITY(FEET/SEC.) = 5.21 DEPTH*VELOCITY(FT*FT/SEC.) = 1.49 LONGEST FLOWPATH FROM NODE 1022.10 TO NODE 1022.30 = 720.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1022.30 TO NODE 1030.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU StIBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 296.00 DOWNSTREAM(FEET) = 295.20 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.31 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.13 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 8.12 LONGEST FLOWPATH FROM NODE 1022.10 TO NODE 1030.00 = 730.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 103 0.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.12 RAINFALL INTENSITY (INCH/HR) = 5.40 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.13 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA . NtJMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 184.11 14.05 3.788 50.30 2 3.07 8.58 5.206 0.60 3 3.13 8.12 5.396 0.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 135.33 8.12 5.396 2 140.06 8.58 5.206 3 188.54 14.05 3.788 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 188.54 Tc(MIN.) = 14.05 TOTAL AREA(ACRES) = 51.50 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1030.00 = 2022.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1030.00 TO NODE 1035.00 IS CODE = 41 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 293.41 DOWNSTREAM(FEET) = 240.65 FLOW LENGTH(FEET) = 576.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 30.01 (PIPE FLOW VELOCITY CORRESPONDING TO NORMAL-DEPTH FLOW AT DEPTH = 0.82 * DIAMETER) GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 188.54 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 14.37 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1035.00 = 2598.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1035.00 TO NODE 1035.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.37 RAINFALL INTENSITY(INCH/HR) =3.73 TOTAL STREAM AREA(ACRES) = 51.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 188.54 **************************************************************************** FLOW PROCESS FROM NODE 1035.00 TO NODE 1035.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 11.69 RAIN INTENSITY(INCH/HOUR) = 4.27 TOTAL AREA(ACRES) = 6.00 TOTAL RtJNOFF(CFS) = 11.60 **************************************************************************** FLOW PROCESS FROM NODE 1035.00 TO NODE 1035.00 IS CODE = 1 »»>DES IGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.69 RAINFALL INTENSITY(INCH/HR) = 4.27 TOTAL STREAM AREA(ACRES) = 6.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.60 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 188.54 14.37 3.733 51.50 2 11.60 11.69 4.266 6.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtJR) 1 176.61 11.69 4.266 2 198.70 14.37 3.733 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 198.70 Tc(MIN.) = 14.37 TOTAL AREA(ACRES) = 57.50 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1035.00 = 2598.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1035.00 TO NODE 1050.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 240.32 DOWNSTREAM(FEET) = 214.75 FLOW LENGTH(FEET) = 275.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 31.44 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 198.7 0 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 14.52 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1050.00 = 2873.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1050.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.52 RAINFALL INTENSITY(INCH/HR) = 3.71 TOTAL STREAM AREA(ACRES) = 57.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 198.70 **************************************************************************** FLOW PROCESS FROM NODE 1042.10 TO NODE 1042.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .8000 SOIL CLASSIFICATION IS "A" S.C.S. CtJRVE NUMBER (AMC II) = 74 INITIAL StJBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 305.00 DOWNSTREAM ELEVATION = 295.00 ELEVATION DIFFERENCE =10.00 tJRBAN StJBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.507 *CAUTION: StJBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.26 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.26 **************************************************************************** FLOW PROCESS FROM NODE 1042.20 TO NODE 1042.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »>» (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 295.00 DOWNSTREAM ELEVATION(FEET) = 229.60 STREET LENGTH(FEET) = 7 60.00 CtJRB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.19 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 6.07 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.71 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.60 STREET FLOW TRAVEL TIME(MIN.) = 2.22 Tc(MIN.) = 8.22 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.355 ROAD (HARD StJRFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NtJMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.15 SUBAREA RtJNOFF(CFS) = 5.85 TOTAL AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) = 6.11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 8.71 FLOW VELOCITY(FEET/SEC.) = 6.45 DEPTH*VELOCITY(FT*FT/SEC.) = 2.14 LONGEST FLOWPATH FROM NODE 1042.10 TO NODE 1042.30 = 860.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1042.30 TO NODE 1050.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 216.00 DOWNSTREAM(FEET) = 214.75 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER{INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.75 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.11 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 8.22 LONGEST FLOWPATH FROM NODE 1042.10 TO NODE 1050.00 = 865.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1050.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.22 RAINFALL INTENSITY(INCH/HR) = 5.35 TOTAL STREAM AREAIACRES) = 1.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.11 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 198.70 14.52 3.709 57.50 2 6.11 8.22 5.353 1.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtlMBER (CFS) (MIN.) (INCH/HOtJR) 1 143.80 8.22 5.353 2 202.93 14.52 3.709 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 202.93 Tc(MIN.) = 14.52 TOTAL AREA(ACRES) = 58.70 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1050.00 = 2873.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1050.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< ******************** * *ALL MEMORY BANKS ARE EMPTY - PROCESS IGNORED.* * ******************** **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1050.00 IS CODE = 10 »>»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 7010.00 TO NODE 7011.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< OPEN BRUSH FAIR COVER RtJNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.31(MINUTES) INITIAL StJBAREA FLOW-LENGTH = 350.00 UPSTREAM ELEVATION = 421.00 DOWNSTREAM ELEVATION = 350.00 ELEVATION DIFFERENCE = 71.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.3 57 StJBAREA RUNOFF (CFS) = 1.96 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 1.96 **************************************************************************** FLOW PROCESS FROM NODE 7011.00 TO NODE 7012.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 350.00 DOWNSTREAM(FEET) = 270.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 250.00 CHANNEL SLOPE = 0.3200 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.045 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.96 FLOW VELOCITY(FEET/SEC) = 6.08 FLOW DEPTH(FEET) = 0.26 TRAVEL TIME(MIN.) = 0.69 Tc(MIN.) = 12.00 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 7012.00 = 600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7012.00 TO NODE 7012.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.195 OPEN BRUSH FAIR COVER RtJNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 10.00 StJBAREA RUNOFF(CFS) = 18.88 TOTAL AREA(ACRES) = 11.00 TOTAL RtJNOFF(CFS) = 20.84 TC(MIN) = 12.00 **************************************************************************** FLOW PROCESS FROM NODE 7012.00 TO NODE 7013.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 270.00 DOWNSTREAM(FEET) = 250.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 300.00 CHANNEL SLOPE = 0.0667 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 20.84 FLOW VELOCITY(FEET/SEC) = 6.08 FLOW DEPTH(FEET) = 0.52 TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = 12.82 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 7013.00 = 900.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7013.00 TO NODE 7013.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 4.019 OPEN BRUSH FAIR COVER RtJNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 15.00 SUBAREA RUNOFF(CFS) = 27.13 TOTAL AREA(ACRES) = 26.00 TOTAL RtJNOFF(CFS) = 47.97 TC(MIN) = 12.82 **************************************************************************** FLOW PROCESS FROM NODE 7013.00 TO NODE 7014.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 250.00 DOWNSTREAM(FEET) = 228.00 CHANNEL LENGTH THRU StJBAREA(FEET) = 600.00 CHANNEL SLOPE = 0.0367 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 3.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 47.97 FLOW VELOCITY(FEET/SEC) = 6.30 FLOW DEPTH(FEET) = 0.96 TRAVEL TIME(MIN.) = 1.59 Tc(MIN.) = 14.41 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 7014.00 = 1500.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7014.00 TO NODE 7014.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 3.728 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 14.00 StIBAREA RUNOFF(CFS) = 23.49 TOTAL AREA(ACRES) = 40.00 TOTAL RUNOFF(CFS) = 71.45 TCIMIN) = 14.41 **************************************************************************** FLOW PROCESS FROM NODE 7014.00 TO NODE 7015.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 228.00 DOWNSTREAM(FEET) = 224.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.0200 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 71.45 FLOW VELOCITY(FEET/SEC) = 12.76 FLOW DEPTH(FEET) = 1.57 TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 14.67 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 7015.00 = 1700.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7015.00 TO NODE 7015.00 IS CODE = 81 >»»ADDITION OF StJBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.685 OPEN BRUSH FAIR COVER RtJNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NtJMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 2.20 StIBAREA RUNOFF(CFS) = 3.65 TOTAL AREA(ACRES) = 42.20 TOTAL RtJNOFF(CFS) = 75.10 TCIMIN) = 14.67 **************************************************************************** FLOW PROCESS FROM NODE 7015.00 TO NODE 1041.30 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA««< >»>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 224.00 DOWNSTREAM(FEET) = 215.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 24.30 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 75.10 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 14.74 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 1041.30 = 1800.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1041.30 TO NODE 1041.30 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.74 RAINFALL INTENSITY(INCH/HR) = 3.67 TOTAL STREAM AREA(ACRES) = 42.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 75.10 **************************************************************************** FLOW PROCESS FROM NODE 1041.10 TO NODE 1041.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 305.00 DOWNSTREAM ELEVATION = 295.00 ELEVATION DIFFERENCE = 10.00 tJRBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.253 *CAUTION: SUBAREA SLOPE EXCEEDS COtJNTY NOMOGRAPH DEFINITION. EXTJIAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASStJMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 StJBAREA RUNOFF (CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RtJNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1041.20 TO NODE 1041.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU StJBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 295.00 DOWNSTREAM ELEVATION(FEET) = 229.60 STREET LENGTH(FEET) = 760.00 CtJRB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RtJNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section{curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.21 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 4.61 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.50 PRODUCT OF DEPTH&VELOCITY(FT * FT/SEC.) = 1.38 STREET FLOW TRAVEL TIME(MIN.) = 2.30 Tc(MIN.) = 8.30 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.319 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NtJMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.75 SUBAREA RtJNOFF(CFS) = 3.79 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 4.10 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 7.07 FLOW VELOCITY(FEET/SEC.) = 5.95 DEPTH*VELOCITY(FT*FT/SEC.) = 1.78 LONGEST FLOWPATH FROM NODE 1041.10 TO NODE 1041.30 = 860.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1041.30 TO NODE 1041.30 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<«< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALtJES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATIONIMIN.) = 8.30 RAINFALL INTENSITY(INCH/HR) = 5.32 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.10 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 75.10 14.74 3.674 42.20 2 4.10 8.30 5.319 0.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtJR) 1 55.98 8.30 5.319 2 77.93 14.74 3.674 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 77.93 Tc(MIN.) = 14.74 TOTAL AREA(ACRES) = 43.00 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 1041.30 = 1800.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1050.00 IS CODE = 11 »>»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 77.93 14.74 3.674 43.00 LONGEST FLOWPATH FROM NODE 7010.00 TO NODE 1050.00 = 1800.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 202.93 14.52 3.709 58.70 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1050.00 = 2873.15 FEET. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 280.12 14.52 3.709 2 278.93 14.74 3.674 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 280.12 Tc(MIN.) = 14.52 TOTAL AREA(ACRES) = 101.70 **************************************************************************** FLOW PROCESS FROM NODE 1050.00 TO NODE 1060.00 IS CODE = 31 »»>COMPUTE PI PE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 214.30 DOWNSTREAM(FEET) = 198.00 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.88 ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 280.12 PIPE TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 15.04 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1060.00 = 3503.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 7050.00 TO NODE 7051.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< OPEN BRUSH FAIR COVER RtJNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.10(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 250.00 UPSTREAM ELEVATION = 421.00 DOWNSTREAM ELEVATION = 380.00 ELEVATION DIFFERENCE = 41.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.411 SUBAREA RtJNOFF (CFS) = 0.40 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 0.40 **************************************************************************** FLOW PROCESS FROM NODE 7051.00 TO NODE 7055.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU StJBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 380.00 DOWNSTREAM(FEET) = 210.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1200.00 CHANNEL SLOPE = 0.1417 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 3.00 CHANNEL FLOW THRU SUBAREA(CFS) = 0.40 FLOW VELOCITY(FEET/SEC) = 3.16 FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 6.33 Tc(MIN.) = 17.43 LONGEST FLOWPATH FROM NODE 7050.00 TO NODE 7055.00 = 1450.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 7055.00 TO NODE 7055.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 3.297 OPEN BRUSH FAIR COVER RtJNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NtJMBER (AMC II) = 83 StJBAREA AREA (ACRES) = 17.50 SUBAREA RtJNOFF (CFS) = 25.97 TOTAL AREA(ACRES) = 17.70 TOTAL RtJNOFF(CFS) = 26.36 TC(MIN) =17.43 **************************************************************************** FLOW PROCESS FROM NODE 7055.00 TO NODE 1061.30 IS CODE = 31 >»>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 210.00 DOWNSTREAM(FEET) = 200.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.49 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 26.36 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 17.51 LONGEST FLOWPATH FROM NODE 7050.00 TO NODE 1061.30 = 1550.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1061.30 TO NODE 1061.30 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.51 RAINFALL INTENSITY(INCH/HR) = 3.29 TOTAL STREAM AREA(ACRES) = 17.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.36 **************************************************************************** FLOW PROCESS FROM NODE 1061.10 TO NODE 1061.20 IS CODE = 21 >»»RATIONAL METHOD INITIAL StJBAREA ANALYSIS««< ROAD (HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 229.60 DOWNSTREAM ELEVATION = 226.00 ELEVATION DIFFERENCE = 3.60 tJRBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.7 62 *CAUTION: StJBAREA SLOPE EXCEEDS COtJNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1061.20 TO NODE 1061.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 226.00 DOWNSTREAM ELEVATION(FEET) = 211.00 STREET LENGTHIFEET) = 530.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.41 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 5.08 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.16 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.82 STREET FLOW TRAVEL TIME(MIN.) = 2.80 Tc(MIN.) = 8.80 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.124 ROAD (HARD StJRFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NtJMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.45 SUBAREA RtJNOFF(CFS) = 2.19 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 2.50 END OF StJBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 7.30 FLOW VELOCITY(FEET/SEC.) = 3.46 DEPTH*VELOCITY(FT*FT/SEC.) = 1.05 LONGEST FLOWPATH FROM NODE 1061.10 TO NODE 1061.30 = 630.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1061.30 TO NODE 1061.30 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.80 RAINFALL INTENSITY(INCH/HR) = 5.12 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.50 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 26.36 17.51 3.287 17.70 2 2.50 8.80 5.124 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtJR) 1 19.41 8.80 5.124 2 27.97 17.51 3.287 COMPUTED CONFLtJENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.97 Tc(MIN.) = 17.51 TOTAL AREA(ACRES) = 18.20 LONGEST FLOWPATH FROM NODE 7050.00 TO NODE 1061.30 = 1550.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1061.30 TO NODE 1060.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 201.00 DOWNSTREAM(FEET) = 200.00 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.20 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.97 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 17.60 LONGEST FLOWPATH FROM NODE 7050.00 TO NODE 1060.00 = 1605,00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 27.97 17.60 3.276 18.20 LONGEST FLOWPATH FROM NODE 7050.00 TO NODE 1060.00 = 1605.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 280.12 15.04 3.626 101.70 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1060.00 = 3503.15 FEET. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 305.37 15.04 3.626 2 280.88 17.60 3.276 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 305.37 Tc(MIN.) = 15.02 TOTAL AREA(ACRES) = 119.90 **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 6020.00 TO NODE 6020.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 18.72 RAIN INTENSITY(INCH/HOUR) = 3,15 TOTAL AREA(ACRES) = 25.60 TOTAL RUNOFF(CFS) = 48.11 **************************************************************************** FLOW PROCESS FROM NODE 1062.30 TO NODE 1062.30 IS CODE = 1 >»>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.72 RAINFALL INTENSITY(INCH/HR) = 3.15 TOTAL STREAM AREA(ACRES) = 2 5.60 PEAK FLOW RATE(CFS) AT CONFLUENCE =48.11 **************************************************************************** FLOW PROCESS FROM NODE 1062.10 TO NODE 1062.20 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 INITIAL StJBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 229.60 DOWNSTREAM ELEVATION = 226.00 ELEVATION DIFFERENCE = 3.60 tJRBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 1.762 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASStJMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RtJNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1062.20 TO NODE 1062.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 226.00 DOWNSTREAM ELEVATION(FEET) = 211.00 STREET LENGTH(FEET) = 530.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RtJNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.14 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 5.49 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.20 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.86 STREET FLOW TRAVEL TIME(MIN.) = 2.76 Tc(MIN.) = 8.76 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 5.137 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 1.95 SUBAREA RtJNOFF(CFS) = 5.51 TOTAL AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) = 5.82 END OF StJBAREA STREET FLOW HYDRAtJLICS: DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 7.95 FLOW VELOCITY(FEET/SEC.) = 3.54 DEPTH*VELOCITY(FT*FT/SEC.) = 1.12 LONGEST FLOWPATH FROM NODE 1062.10 TO NODE 1062.30 = 630.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1062.30 TO NODE 1062.30 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.76 RAINFALL INTENSITY(INCH/HR) = 5.14 TOTAL STREAM AREA(ACRES) = 2.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.82 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 48.11 18.72 3.148 25.60 2 5.82 8.76 5.137 2.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 35.31 8.76 5.137 2 51.68 18.72 3.148 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 51.68 Tc(MIN.) = 18.72 TOTAL AREA(ACRES) = 27.60 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1062.30 = 3 503.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1062.30 TO NODE 1060.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 211.00 DOWNSTREAM(FEET) = 210.00 FLOW LENGTHIFEET) = 5.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 30.11 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NtJMBER OF PIPES = 1 PIPE-FLOWICFS) = 51.68 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 18.72 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1060.00 = 3508.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1060.00 IS CODE = 11 »>»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLtJENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 51.68 18.72 3.148 27.60 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1060.00 = 3508.15 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 305.37 15.04 3.626 119.90 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1060.00 = 3503.15 FEET. ** PEAK FLOW RATE TABLE ** STREAM RtOTOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 351.17 15.04 3.626 2 316.62 18.72 3.148 COMPUTED CONFLtJENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW JIATE(CFS) = 351.17 Tc(MIN.) = 15.04 TOTAL AREA(ACRES) = 147.50 **************************************************************************** FLOW PROCESS FROM NODE 1060.00 TO NODE 1070.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 200.00 DOWNSTREAM(FEET) = 180.70 FLOW LENGTH(FEET) = 770.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 45.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.98 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 351.17 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 15.62 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 107 0.00 = 43 07.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1070.00 TO NODE 1070.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.62 RAINFALL INTENSITY(INCH/HR) = 3.54 TOTAL STREAM AREAIACRES) = 147.50 PEAK FLOW RATEICFS) AT CONFLUENCE = 351.17 **************************************************************************** FLOW PROCESS FROM NODE 1071.10 TO NODE 1071.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« ROAD (HARD StJRFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 INITIAL StJBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 210.30 DOWNSTREAM ELEVATION = 208.00 ELEVATION DIFFERENCE = 2.30 tJRBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.046 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 StJBAREA RtJNOFF (CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RtJNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1071.20 TO NODE 1071.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »>» (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 208.00 DOWNSTREAM ELEVATION(FEET) = 192.50 STREET LENGTH(FEET) = 650.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NtJMBER OF HALFSTREETS CARRYING RtJNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.56 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 7.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.23 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.01 STREET FLOW TRAVEL TIME(MIN.) = 3.35 Tc(MIN.) = 9.35 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 4.925 ROAD(HARD SURFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NtJMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.95 SUBAREA RUNOFF(CFS) = 4.44 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 4.76 END OF StJBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 10.47 FLOW VELOCITY(FEET/SEC.) = 3.70 DEPTH*VELOCITY(FT*FT/SEC.) = 1.36 LONGEST FLOWPATH FROM NODE 1071.10 TO NODE 1071.30 = 750.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1071.30 TO NODE 1070.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 182.00 DOWNSTREAM(FEET) = 180.70 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.50 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.76 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) =9.48 LONGEST FLOWPATH FROM NODE 1071.10 TO NODE 1070.00 = 805.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1070.00 TO NODE 1070.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.48 RAINFALL INTENSITY(INCH/HR) = 4.88 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.76 **************************************************************************** FLOW PROCESS FROM NODE 1072.10 TO NODE 1072.20 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD StJRFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NtJMBER (AMC II) = 92 INITIAL StJBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 210.30 DOWNSTREAM ELEVATION = 208.00 ELEVATION DIFFERENCE = 2.30 tJRBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.046 TIME OF CONCENTRATION ASStJMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 6.559 StJBAREA RtJNOFF (CFS) =0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1072.20 TO NODE 1072.30 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»» (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 208.00 DOWNSTREAM ELEVATION(FEET) = 192.50 STREET LENGTHIFEET) = 650.00 CtJRB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NtJMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.56 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 7.77 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.23 PRODUCT OF DEPTH&VELOCITY(FT^FT/SEC.) = 1.01 STREET FLOW TRAVEL TIME(MIN.) = 3.3 5 Tc(MIN.) = 9.35 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.925 ROAD(HARD StJRFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.95 SUBAREA RtJNOFF(CFS) = 4.44 TOTAL AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) = 4.76 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.37 HALFSTREET FLOOD WIDTH(FEET) = 10.47 FLOW VELOCITY(FEET/SEC.) = 3.70 DEPTH&VELOCITY(FT^FT/SEC.) = 1.36 LONGEST FLOWPATH FROM NODE 1072.10 TO NODE 1072.30 = 750.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1072.30 TO NODE 1070.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 183.00 DOWNSTREAM(FEET) = 181.00 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.57 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.76 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 9.36 LONGEST FLOWPATH FROM NODE 1072.10 TO NODE 1070.00 = 755.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1070.00 TO NODE 1070.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 9.36 RAINFALL INTENSITY(INCH/HR) = 4.92 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.7 6 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 351.17 15.62 3.538 147.50 2 4.76 9.48 4.884 1.00 3 4.76 9.36 4.924 1.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtJR) 1 261.84 9.36 4.924 2 263.89 9.48 4.884 3 358.04 15.62 3.538 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 358.04 Tc(MIN.) = 15.62 TOTAL AREA(ACRES) = 149.50 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1070.00 = 4307.15 FEET. k******************************************** ***************************** FLOW PROCESS FROM NODE 1070.00 TO NODE 1080.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 177.40 DOWNSTREAM(FEET) = 175.80 FLOW LENGTH(FEET) = 130.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 69.0 INCH PIPE IS 52.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.91 ESTIMATED PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 358.04 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 15.75 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1080.00 = 4437.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1080.00 TO NODE 1080.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NtJMBER OF STREAMS = 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.75 RAINFALL INTENSITY(INCH/HR) = 3.52 TOTAL STREAM AREA(ACRES) = 149.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 358.04 **************************************************************************** FLOW PROCESS FROM NODE 5095.00 TO NODE 5095.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 20.12 RAIN INTENSITY(INCH/HOtJR) = 3.01 TOTAL AREA(ACRES) = 97.80 TOTAL RtJNOFF(CFS) = 200.00 **************************************************************************** FLOW PROCESS FROM NODE 1080.00 TO NODE 1080.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 20.12 RAINFALL INTENSITY(INCH/HR) = 3.01 TOTAL STREAM AREA(ACRES) = 97.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 200.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 358.04 15.75 3.520 149.50 2 200.00 20.12 3.005 97.80 IRAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOtJR) 1 528.81 15.75 3.520 2 505.71 20.12 3.005 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 528.81 Tc(MIN.) = 15.75 TOTAL AREA(ACRES) = 247.30 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1080.00 = 4437.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1080.00 TO NODE 1090.00 IS CODE = 41 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >>»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 175.30 DOWNSTREAM(FEET) = 165.50 FLOW LENGTH(FEET) = 488.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 72.0 INCH PIPE IS 56.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 22.28 GIVEN PIPE DIAMETER(INCH) = 72.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 528.81 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 16.11 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1090.00 = 4925.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1090.00 TO NODE 1090.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALtJES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.11 RAINFALL INTENSITY(INCH/HR) = 3.47 TOTAL STREAM AREA(ACRES) = 247.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 528.81 **************************************************************************** FLOW PROCESS FROM NODE 1091.10 TO NODE 1091.20 IS CODE = 21 >>»>RATIONAL METHOD INITIAL StJBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00. UPSTREAM ELEVATION = 192.00 DOWNSTREAM ELEVATION = 191.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.7 00 TIME OF CONCENTRATION ASStJMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RtJNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1091.20 TO NODE 1091.30 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU StJBAREA<«« »»> (STREET TABLE SECTION # 4 USED)«<« UPSTREAM ELEVATION(FEET) = 191.00 DOWNSTREAM ELEVATION(FEET) = 185.00 STREET LENGTH(FEET) = 600.00 CtJRB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 42.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 37.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NtJMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.61 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 7.66 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.08 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.65 STREET FLOW TRAVEL TIME(MIN.) = 4.82 Tc(MIN.) = 10.82 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.485 ROAD(HARD StJRFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA (ACRES) = 0.60 StJBAREA RtJNOFF (CFS) = 2.56 TOTAL AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) = 2.87 END OF SUBAREA STREET FLOW HYDRAtTLICS: DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 10.16 FLOW VELOCITY(FEET/SEC.) = 2.35 DEPTH*VELOCITY(FT*FT/SEC.) = 0.85 LONGEST FLOWPATH FROM NODE 1091.10 TO NODE 1091.30 = 700.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1091.30 TO NODE 1090.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 175.00 DOWNSTREAM(FEET) = 172.60 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.37 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.87 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 10.91 LONGEST FLOWPATH FROM NODE 1091.10 TO NODE 1090.00 = 750.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1090.00 TO NODE 1090.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.91 RAINFALL INTENSITY(INCH/HR) =4.46 TOTAL STREAM AREA(ACRES) = 0.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.87 **************************************************************************** FLOW PROCESS FROM NODE 1092.10 TO NODE 1092.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD (HARD StJRFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 192.00 DOWNSTREAM ELEVATION =191.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW{MINUTES) = 2.700 TIME OF CONCENTRATION ASStJMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RtJNOFF (CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 1092.20 TO NODE 1092.30 IS CODE = 62 »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« »»> (STREET TABLE SECTION # 4 USED)<«« UPSTREAM ELEVATION(FEET) = 191.00 DOWNSTREAM ELEVATION(FEET) = 185.00 STREET LENGTH(FEET) = 650.00 CtJRB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 42.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 37.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NtJMBER OF HALFSTREETS CARRYING RtJNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.79 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.21 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.08 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.67 STREET FLOW TRAVEL TIME(MIN.) = 5.21 Tc(MIN.) = 11.21 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.382 ROAD(HARD StJRFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.91 TOTAL AREA(ACRES) = 0.75 PEAK FLOW RATE(CFS) = 3.23 END OF StJBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.3 8 HALFSTREET FLOOD WIDTH(FEET) = 10.95 FLOW VELOCITY(FEET/SEC.) = 2.32 DEPTH*VELOCITY(FT*FT/SEC.) = 0.88 LONGEST FLOWPATH FROM NODE 1092.10 TO NODE 1092.30 = 750.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1092.30 TO NODE 1090.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 175.00 DOWNSTREAM(FEET) = 172.60 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.55 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.23 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 11.22 LONGEST FLOWPATH FROM NODE 1092.10 TO NODE 1090.00 = 755.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1090.00 TO NODE 1090.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) =11.22 RAINFALL INTENSITY(INCH/HR) = 4.38 TOTAL STREAM AREA(ACRES) =0.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.23 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 528.81 16.11 3.468 247.30 2 2.87 10.91 4-459 0.65 3 3.23 11.22 4.381 0.75 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 417.35 10.91 4.459 2 424.70 11.22 4.381 3 533.59 16.11 3.468 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 533.59 Tc(MIN.) = 16.11 TOTAL AREAIACRES) = 248.70 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1090.00 = 4925.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1090.00 TO NODE 106.00 IS CODE = 41 >»>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 165.50 DOWNSTREAM(FEET) = 164.50 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 72.0 INCH PIPE IS 56.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 22.25 GIVEN PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 533.59 PIPE ,TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 16.15 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 106.00 = 4975.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.15 RAINFALL INTENSITY(INCH/HR) = 3.46 TOTAL STREAM AREA(ACRES) = 248.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = • 533.59 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 7 >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE<«« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 16.87 RAIN INTENSITY(INCH/HOtTR) = 3.37 TOTAL AREA(ACRES) = 40.81 TOTAL RUNOFFICFS) = 67.92 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«<< >»>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.87 RAINFALL INTENSITY(INCH/HR) = 3.37 TOTAL STREAM AREA(ACRES) = 40.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 67.92 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 533.59 16.15 3.463 248.70 2 67.92 16.87 3.367 40.81 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 599.63 16.15 3.463 2 586.73 16.87 3.367 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 599.63 Tc(MIN.) = 16.15 TOTAL AREA(ACRES) = 289.51 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 106.00 = 4975.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 164.50 DOWNSTREAM(FEET) = 163.00 FLOW LENGTH(FEET) = 55.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 72.0 INCH PIPE IS 54.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.90 GIVEN PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 599.63 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 16.19 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 107.00 = 5030.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 999.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 163.00 DOWNSTREAM(FEET) = 140.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 72.0 INCH PIPE IS 36.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 42.02 GIVEN PIPE DIAMETER(INCH) = 72.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 599.63 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 16.29 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 999.00 = 5280.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 999.00 TO NODE 999.00 IS CODE = 81 »»>ADDITION OF StJBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.444 COMMERCIAL DEVELOPMENT RtJNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NtJMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.90 StJBAREA RUNOFF(CFS) = 5.56 TOTAL AREA(ACRES) = 291.41 TOTAL RtJNOFF(CFS) = 605.19 TC(MIN) = 16.29 **************************************************************************** FLOW PROCESS FROM NODE 1000.00 TO NODE 1000.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<«< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.29 RAINFALL INTENSITY(INCH/HR) = 3.44 TOTAL STREAM AREA(ACRES) = 291.41 PEAK FLOW RATE(CFS) AT CONFLUENCE = 605.19 **************************************************************************** FLOW PROCESS FROM NODE 9010.00 TO NODE 9010.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.99 RAIN INTENSITY (INCH/HOtTR) = 5.05 TOTAL AREA(ACRES) = 1.60 TOTAL RtJNOFF(CFS) = 10.95 **************************************************************************** FLOW PROCESS FROM NODE 9010.00 TO NODE 1000.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATIONIMIN.) = 8.99 RAINFALL INTENSITY(INCH/HR) = 5.05 TOTAL STREAM AREAIACRES) = 1.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.95 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOtTR) (ACRE) 1 605.19 16.29 3.444 291.41 2 10.95 8.99 5.053 1.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 423.48 8.99 5.053 2 612.66 16.29 3.444 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 612.66 Tc(MIN.) = 16.29 TOTAL AREA(ACRES) = 293.01 LONGEST FLOWPATH FROM NODE 1003.10 TO NODE 1000.00 = 5280.15 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 293 612 01 TC(MIN.) 66 = 16.29 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPTION OF STUDY ************************** • BRESSI RANCH - EL FtJERTE STREET * • SYSTEM 3000 * • 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: 1325-3U.DAT TIME/DATE OF STtJDY: 12:37 09/23/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOtJR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED •USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL^ HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)•(Velocity) Constraint =10.0 (FT^FT/S) •SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBtJTARY PIPE.^ **************************************************************************** FLOW PROCESS FROM NODE 1006.00 TO NODE 1006.10 IS CODE = 22 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.62 **************************************************************************** FLOW PROCESS FROM NODE 1006.10 TO NODE 1006.20 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 409.00 DOWNSTREAM ELEVATION(FEET) = 406.00 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RtJNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Baclc-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1-89 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.22 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.98 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.65 STREET FLOW TRAVEL TIME(MIN.) = 2.95 Tc(MIN.) = 8.95 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.069 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 0.70 StJBAREA RtJNOFF (CFS) = 2.48 TOTAL AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) = 3.11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.68 FLOW VELOCITY(FEET/SEC.) = 2.20 DEPTH*VELOCITY(FT^FT/SEC.) = 0.82 LONGEST FLOWPATH FROM NODE 1006.00 TO NODE 1006.20 = 350.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1006.20 TO NODE 1006.50 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.95 RAINFALL INTENSITY(INCH/HR) = 5.07 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.11 **************************************************************************** FLOW PROCESS FROM NODE 1006.30 TO NODE 1006.31 IS CODE = 22 >»»RATIONAL METHOD INITIAL StJBAREA ANALYSIS<«« ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 USER SPECIFIED Tc(MIN.) = 6.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.62 **************************************************************************** FLOW PROCESS FROM NODE 1006.31 TO NODE 1006.33 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU StJBAREA««< »>»(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 409.00 DOWNSTREAM ELEVATION(FEET) = 406.00 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) =0.018 OtJTSIDE STREET CROSSFALL (DECIMAL) = 0.018 SPECIFIED NtJMBER OF HALFSTREETS CARRYING RtJNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.58 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.47 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.90 PRODUCT OF DEPTH&VELOCITY(FT^FT/SEC.) = 0.60 STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 9.07 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.024 ROAD (HARD SURFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.91 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 2.53 END OF StIBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.66 FLOW VELCXITY(FEET/SEC.) = 2.09 DEPTH&VELOCITY(FT^FT/SEC.) = 0.74 LONGEST FLOWPATH FROM NODE 1006.30 TO NODE 1006.33 = 350.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1006.33 TO NODE 1006.50 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPtJTE VARIOUS CONFLtJENCED STREAM VALUES««< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.07 RAINFALL INTENSITY(INCH/HR) = 5.02 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.53 ** CONFLtJENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.11 8.95 5.069 0.80 2 2.53 9.07 5.024 0.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 5.62 8.95 5.069 2 5.61 9.07 5.024 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.62 Tc(MIN.) = 8.95 TOTAL AREA(ACRES) = 1.30 LONGEST FLOWPATH FROM NODE 1006.00 TO NODE 1006.50 = 350.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1006.50 TO NODE 1005.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 392.00 DOWNSTREAM(FEET) = 390.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.37 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.62 PIPE TRAVEL TIME(MIN.) 0.23 Tc(MIN.) = 9 .17 LONGEST FLOWPATH FROM NODE 1006 00 TO NODE 1005.00 = 450.00 FEET. END OF STUDY StJMMARY: TOTAL AREA(ACRES) 1.30 TC(MIN.) = 9.17 PEAK FLOW RATE(CFS) 5.62 _ — END OF RATIONAL METHOD ANALYSIS ysB ^/oTo t***********:« Ir************************************************************ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE ROADWAY * * SYSTEM 2000: PA-5 INDUSTRIAL AREA tJLTIMATE CONDITIONS * * lOO-YEAR STORM ' ************************************************************************** FILE NAME: C:\aes2001\hydrosft\ratscx\1325-2u.dat TIME/DATE OF STUDY: 19:37 03/27/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENTIYEAR) = 100.00 6-HOUR DtJRATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMOM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER--GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 37.0 32.0 0.020/0.020/ ---0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 2001.00 TO NODE 2002.00 IS CODE = 21 >>>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 300.00 UPSTREAM ELEVATION = 445.00 DOWNSTREAM ELEVATION = 440.00 ELEVATION DIFFERENCE = 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 3.944 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.559 SUBAREA RUNOFFICFS) = 3.12 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 3.12 **************************************************************************** FLOW PROCESS FROM NODE 2002.00 TO NODE 2003.00 IS CODE = 51 >»>>COMPUTE TRAPEZOIDAL CHANNEL FLOW«<« »»>TRAVELTIME THRU StJBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 440.00 DOWNSTREAM(FEET) = 430.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 700.00 CHANNEL SLOPE = 0.0143 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH (FEET) = 0.50 CHANNEL FLOW THRU SUBAREA(CFS) = 3.12 FLOW VELOCITY(FEET/SEC) = 4.02 FLOW DEPTH(FEET) = 0.39 TRAVEL TIME (MIN.) = 2.90 Tc(MIN.) = 8.90 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2003.00 = 1000.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2003.00 TO NODE 2005.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStIRE FLOW) ««< ELEVATION DATA: UPSTREAM (FEET) = 430.00 DOWNSTREAM (FEET) = 425.00 FLOW LENGTH (FEET) = 700.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.7 INCHES PIPE-FLOW VELOCITYIFEET/SEC.) = 4.31 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.12 PIPE TRAVEL TIME(MIN.) = 2.70 Tc(MIN.) = 11.61 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2005.00 = 1700.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2005.00 TO NODE 2.005.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOtm) = 4.285 INDUSTRIAL DEVELOPMENT RtlNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREAIACRES) = 10.10 SUBAREA RUNOFFICFS) = 41.11 TOTAL AREA (ACRES) = 10.60 TOTAL RUNOFF (CFS) = 44.23 TC(MIN) = 11.61 **************************************************************************** FLOW PROCESS FROM NODE 2005.00 TO NODE 2006.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStIRE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 425.00 DOWNSTREAM(FEET) = 423.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.30 ESTIMATED PIPE DIAMETER (INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 44.23 PIPE TRAVEL TIMEIMIN.) = 0.36 Tc(MIN.) = 11.97 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2006.00 = 1900.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2006.00 TO NODE 2006.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.202 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA (ACRES) = 4.50 SUBAREA RUNOFFICFS) = 17.96 TOTAL AREA(ACRES) = 15.10 TOTAL RtlNOFF(CFS) = 62.19 TC(MIN) = 11.97 **************************************************************************** FLOW PROCESS FROM NODE 2006.00 TO NODE 2007.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM (FEET) = 423.00 DOWNSTREAM (FEET) = 415.00 FLOW LENGTH (FEET) = 350.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.92 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 62.19 PIPE TRAVEL TIME (MIN. ) = 0.42 Tc(MIN.) = 12.39 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2007.00 = 2250.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2007.00 TO NODE 2007.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.109 INDUSTRIAL DEVELOPMENT RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 SUBAREA AREA (ACRES) = 3.80 StJBAREA RUNOFF (CFS) = 14.83 TOTAL AREA (ACRES) = 18.90 TOTAL RUNOFF (CFS) = 77.03 TC(MIN) =12.39 **************************************************************************** FLOW PROCESS FROM NODE 2007.00 TO NODE 2010.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 415.00 DOWNSTREAM(FEET) = 411.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 29.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.54 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 77-03 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN-) = 12.72 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2010.00 = 2500.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.040 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREAIACRES) = 1.30 SUBAREA RUNOFFICFS) = 4.99 TOTAL AREA(ACRES) = 20.20 TOTAL RUNOFF(CFS) = 82.02 TC(MIN) = 12.72 **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2011.00 IS CODE = 31 >>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 411.00 DOWNSTREAM(FEET) = 409.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.99 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 82.02 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 12.84 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2011.00 = 2600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2011.00 TO NODE 2011.00 IS CODE = 81 >>>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.016 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 SUBAREA AREA (ACRES) = 3.40 SUBAREA RUNOFFICFS) = 12.97 TOTAL AREAIACRES) = 23.60 TOTAL RUNOFF(CFS) = 94.99 TCIMIN) = 12.84 **************************************************************************** FLOW PROCESS FROM NODE 2011.00 TO NODE 2020.00 IS CODE = 31 >>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPtTTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 409.00 DOWNSTREAM(FEET) = 405.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 31.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.23 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 94.99 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 13.15 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 2020.00 = 2850.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2020.00 TO NODE 2020.00 IS CODE = 81 >»»ADDITION OF SXIBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.953 ROAD (HARD SURFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 6.01 TOTAL AREA(ACRES) = 25.20 TOTAL RtJNOFF(CFS) = 100,.99 TC(MIN) = 13.15 **************************************************************************** FLOW PROCESS FROM NODE 2020.00 TO NODE 1005.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET) = 403.00 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 30.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.75 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 100.99 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN. ) = 13.27 LONGEST FLOWPATH FROM NODE 2001.00 TO NODE 1005.00 = 2950.00 FEET. END OF STUDY StJMMARY: TOTAL AREA(ACRES) PEAK FLOW RATEICFS) 25 100 20 TC(MIN.) 99 = 13.27 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE ROADWAY * * SYSTEM 4000 - PA 15 ULTIMATE CONDITIONS ONSITE FLOWS * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: C:\aes2001\hydrosft\ratscx\132S-4u.dat TIME/DATE OF STUDY: 18:21 03/27/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENTIYEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZEIINCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.85 SAN DIEGO HYDROLOGY MANUAL "C-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 37.0 32.0 0.020/0.020/ --- 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 4001.00 TO NODE 4002.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL StJBAREA ANALYSIS««< MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 413.00 DOWNSTREAM ELEVATION = 412.00 ELEVATION DIFFERENCE =1.00- URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 7.200 100 YEAR RAINFALL INTENSITY (INCH/HOtTR) = 5.831 SUBAREA RUNOFF (CFS) = 0.41 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0-41 **************************************************************************** FLOW PROCESS FROM NODE 4002.00 TO NODE 4003.00 IS CODE = 61 >»>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« »>>>( STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 412.00 DOWNSTREAM ELEVATION(FEET) = 408.00 STREET LENGTH(FEET) = 800.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 *'TRAVEL TIME COMPtJTED USING ESTIMATED FLOW (CFS) = 6.26 •*'STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.99 PRODUCT OF DEPTHS;VELOCITY(FT*FT/SEC. ) = 0.74 STREET FLOW TRAVEL TIME (MIN. ) = 6.71 Tc(MIN.) = 13.91 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.813 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA (ACRES) = 4.20 SUBAREA RUNOFF (CFS) = 11.21 TOTAL AREA(ACRES) = 4.30 PEAK FLOW RATE (CFS) = 11.62 END OF StJBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.44 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 2.54 DEPTH'VELOCITY(FT*FT/SEC.) =• 1.13 LONGEST FLOWPATH FROM NODE 4001.00 TO NODE 4003.00 = 900.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 4003.00 TO NODE 400S.OO IS CODE = 62 >»>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>( STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 408.00 DOWNSTREAM ELEVATION(FEET) = 400.00 STREET LENGTH(FEET) = 200.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = O.OISO Manning's FRICTION FACTOR for Back-of-Wal3c Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 11.97 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = S.41 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.33 STREET FLOW TRAVEL TIME(MIN.) = 0.62 Tc(MIN.) = 14.53 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.708 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA (ACRES) = 0.20 SUBAREA RUNOFF (CFS) = 0.70 TOTAL AREA(ACRES) = 4.SO PEAK FLOW RATE(CFS) = 12.32 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.20 FLOW VELOCITY (FEET/SEC. ) = 5.46 DEPTH'VELOCITY (FT'FT/SEC. ) = 2.37 LONGEST FLOWPATH FROM NODE 4001.00 TO NODE 4005.00 = 1100.00 FEET. ************************************************************************"" FLOW PROCESS FROM NODE 4005.00 TO NODE 4005.00 IS CODE = 81 >»>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.708 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .700.0 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = S.80 SUBAREA RUNOFF(CFS) = 15.0E TOTAL AREA(ACRES) = 10.30 TOTAL RUNOFF(CFS) = 27.38 TC(MIN) = 14.53 **************************************************************************** FLOW PROCESS FROM NODE 4005.00 TO NODE 4010.00 IS CODE = 31 >>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 400.00 DOWNSTREAM(FEET) = 350.00 FLOW LENGTH(FEET) = 800.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.66 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.3 8 PIPE TRAVEL TIME (MIN. ) = 0.80 TclMIN.) = IS.33 LONGEST FLOWPATH FROM NODE 4001.00 TO NODE 4010.00 = 1900.00 FEET. **************************************************************************" FLOW PROCESS FROM NODE 4010.00 TO NODE 4010.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 3.582 ROAD (HARD SURFACE) COVER RUNOFF COEFFICIENT = .9S00 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 StJBAREA AREAIACRES) = 1.70 SUBAREA RUNOFF (CFS) = 5.78 TOTAL AI^(ACRES) = 12.00 TOTAL RtJNOFF(CFS) = 33.16 TC(MIN) = 15.33 ***********************************************************************"*** FLOW PROCESS FROM NODE 4010.00 TO NODE 4010.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 3.582 GRASS GOOD COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 80 SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 2.58 TOTAL AREA(ACRES) = 13.60 TOTAL RUNOFF(CFS) = 35.74 TC(MIN) = 15.33 ***********************************************************************"*** FLOW PROCESS FROM NODE 4010.00 TO NODE 1015.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ELEVATION DATA: UPSTREAM (FEET) = 352.00 DOWNSTREAM (FEET) = 350.24 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.83 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 35.74 PIPE TRAVEL TIMEIMIN.) = 0.15 Tc(MIN.) = 15.48 LONGEST FLOWPATH FROM NODE 4001.00 TO NODE 1015.00 = 2000.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATEICFS) 13 35 60 TC(MIN.) 74 = 15.48 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPTION OF STtJDY ************************** • BRESSI RANCH - EL FUERTE ROADWAY • • SYSTEM 6000: OS-3 AND PA-13 ULTIMATE CONDITIONS HYDROLOGY • • 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: 1325-6U.DAT TIME/DATE OF STtJDY: 11:17 11/21/2002 USER SPECIFIED HYDROLOGY AND HYDRAtJLIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALtJES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: ctms GUTTER--GEOMETRIES: MANNING WIDTH CROSSFALL IN- / Otjr-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== == === ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 37.0 32 .0 0.020/0.020/ ---0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) •SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.^ **************************************************************************** FLOW PROCESS FROM NODE 6001.00 TO NODE 6002.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL StJBAREA ANALYSIS««< OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 83 NATtJRAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 10.88(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 220.00 UPSTREAM ELEVATION = 400.00 DOWNSTREAM ELEVATION = 350.00 ELEVATION DIFFERENCE = 50.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.468 SUBAREA RtJNOFF (CFS) = 0.40 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 0.40 **************************************************************************** FLOW PROCESS FROM NODE 6002.00 TO NODE 6003.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 350.00 DOWNSTREAM(FEET) = 270.00 CHANNEL LENGTH THRU StJBAREA(FEET) = 7 00.00 CHANNEL SLOPE = 0.1143 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.040 MAXIMtJM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU StJBAREA (CFS) = 0.40 FLOW VELOCITY(FEET/SEC) = 2.81 FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 4.15 Tc{MIN.) = 15.03 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6003.00 = 920.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6003.00 TO NODE 6003.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.628 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NtJMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 7.40 SUBAREA RtJNOFF(CFS) = 12.08 TOTAL AREA(ACRES) = 7.60 TOTAL RtJNOFF(CFS) = 12.48 TC(MIN) = 15.03 **************************************************************************** FLOW PROCESS FROM NODE 6003.00 TO NODE 6005.00 IS CODE = 51 »»>COMPtJrE TRAPEZOIDAL CHANNEL FLOW««< »>»TRAVELTIME THRU StJBAREA (EXISTING ELEMENT) «<« ELEVATION DATA: UPSTREAM(FEET) = 270.00 DOWNSTREAM(FEET) = 265.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.0125 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMtJM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU StJBAREA (CFS) = 12.48 FLOW VELOCITY(FEET/SEC) = 6.20 FLOW DEPTH(FEET) = 0.62 TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 16.10 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6005.00 = 1320.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6005.00 TO NODE 6010.00 IS CODE = 51 »>»COMPtJTE TRAPEZOIDAL CHANNEL FLOW««< >»>>TRAVELTIME THRU StJBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 265.00 DOWNSTREAM(FEET) = 260.00 CHANNEL LENGTH THRU StJBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU StJBAREA (CFS) = 12.48 FLOW VELOCITY(FEET/SEC) = 5.86 FLOW DEPTH(FEET) = 0.81 TRAVEL TIME(MIN.) = 1.42 Tc(MIN.) = 17.52 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6010.00 = 1820.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6010.00 TO NODE 6010.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.286 MULTI-UNITS DEVELOPMENT RtJNOFF COEFFICIENT = .7 000 SOIL CLASSIFICATION IS "D" S.C.S." CtJRVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 5.50 StJBAREA RUNOFF(CFS) = 12.65 TOTAL AREA(ACRES) = 13.10 TOTAL RUNOFF(CFS) = 25.13 TC(MIN) = 17.52 **************************************************************************** FLOW PROCESS FROM NODE 6010.00 TO NODE 6010.00 IS CODE = 10 »>»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< **************************************************************************** FLOW PROCESS FROM NODE 6011.00 TO NODE 6012.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL StJBAREA ANALYSIS««< OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 83 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH lO-MINtTTES ADDED = 10 . 95 (MINUTES) INITIAL SUBAREA FLOW-LENGTH =250.00 UPSTREAM ELEVATION = 400.00 DOWNSTREAM ELEVATION = 340.00 ELEVATION DIFFERENCE = 60.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.449 SUBAREA RUNOFF(CFS) = 0.40 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 0.40 **************************************************************************** FLOW PROCESS FROM NODE 6012.00 TO NODE 6013.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 340.00 DOWNSTREAM(FEET) = 270.00 CHANNEL LENGTH THRU StJBAREA(FEET) = 3 00.00 CHANNEL SLOPE = 0.2333 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU StJBAREA(CFS) = 0.40 FLOW VELOCITY(FEET/SEC) = 3.83 FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 1.30 Tc(MIN.) = 12.25 LONGEST FLOWPATH FROM NODE 6011.00 TO NODE 6013.00 = 550.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6013.00 TO NODE 6013.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 4.138 OPEN BRUSH FAIR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 83 SUBAREA AREA(ACRES) = 6.80 StJBAREA RUNOFF (CFS) = 12.66 TOTAL AREA(ACRES) = 7.00 TOTAL RUNOFFICFS) = 13.06 TC(MIN) = 12.25 **************************************************************************** FLOW PROCESS FROM NODE 6013.00 TO NODE 6010.00 IS CODE = 51 »»>COMPUrE TRAPEZOIDAL CHANNEL FLOW««< »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 27 0.00 DOWNSTREAM(FEET) = 260.00 CHANNEL LENGTH THRU StJBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.0250 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU StJBAREA (CFS) = 13.06 FLOW VELOCITY(FEET/SEC) = 8.36 FLOW DEPTH(FEET) = 0.67 TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 13.05 LONGEST FLOWPATH FROM NODE 6011.00 TO NODE 6010.00 = 950.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6010.00 TO NODE 6010.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<«« ** MAIN STREAM CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 13.06 13.05 3.973 7.00 LONGEST FLOWPATH FROM NODE 6011.00 TO NODE 6010.00 = 950.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 25.13 17.52 3.286 13.10 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6010.00 = 1820.00 FEET. *• PEAK FLOW RATE TABLE •• STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 33.85 13.05 3.973 2 35.94 17.52 3.286 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 35.94 Tc(MIN.) = 17.52 TOTAL AREA(ACRES) = 20.10 **************************************************************************** FLOW PROCESS FROM NODE 6010.00 TO NODE 6020.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< >>»>TRAVELTIME THRU StJBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 260.00 DOWNSTREAM(FEET) = 255.00 CHANNEL LENGTH THRU StJBAREA(FEET) = 500.00 CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMtJM DEPTH (FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 35.94 FLOW VELOCITY(FEET/SEC) = 7.68 FLOW DEPTH(FEET) = 1.30 TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 18.61 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6020.00 = 2320.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6020.00 TO NODE 6020.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.161 MtJLTI-tJNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 I SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 90 SUBAREA AREA (ACRES) = 5.50 SUBAREA RtJNOFF (CFS) = 12.17 TOTAL AREA(ACRES) = 25.60 TOTAL RtJNOFF (CFS) = 48.11 TC(MIN) = 18.61 **************************************************************************** FLOW PROCESS FROM NODE 6020.00 TO NODE 6021.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 250.00 DOWNSTREAM(FEET) = 210.00 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 29.70 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 48.11 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 18.72 LONGEST FLOWPATH FROM NODE 6001.00 TO NODE 6021.00 = 2520.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 25 48 60 TC(MIN.) 11 = 18.72 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II I II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPTION OF STtJDY ************************** * BRESSI REANCH - EL FUERTE ROADWAY * * SYSTEM 6004: OS-3 tJLTIMATE CONDITIONS • * 100-YEAR STORM EVENT '* ************************************************************************** FILE NAME: 1325-64.DAT TIME/DATE OF STtJDY: 11:25 11/21/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DtJEiATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALtJES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLtJENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CtJRB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) •PIPE MAY BE SIZED TO HAVE A FLOW CAPACITY LESS THAN UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 6004.10 TO NODE 6004.20 IS CODE = 21 >>»>RATIONAL METHOD INITIAL StJBAREA ANALYSIS«<<< USER-SPECIFIED RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 10.94(MINtJTES) INITIAL StJBAREA FLOW-LENGTH =3 00.00 UPSTREAM ELEVATION = 386.00 DOWNSTREAM ELEVATION = 280.00 ELEVATION DIFFERENCE = 106.00 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 4.452 SUBAREA RtJNOFF (CFS) = 2.00 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 2.00 **************************************************************************** FLOW PROCESS FROM NODE 6004.20 TO NODE 6004.30 IS CODE = 51 »>»COMPtJTE TRAPEZOIDAL CHANNEL FLOW««< »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 2 80.00 DOWNSTREAM(FEET) = 244.36 CHANNEL LENGTH THRU StJBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.0891 CHANNEL BASE(FEET) = 0.20 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.015 MAXIMtJM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU StJBAREA (CFS) =2.00 FLOW VELOCITY(FEET/SEC) = 8.96 FLOW DEPTH(FEET) = 0.33 TRAVEL TIME(MIN.) = 0.74 Tc(MIN.) = 11.69 LONGEST FLOWPATH FROM NODE 6004.10 TO NODE 6004.30 = 700.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 6004.30 TO NODE 6004.30 IS CODE = 81 »>»ADDITION OF StJBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.267 USER-SPECIFIED RtJNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 87 SUBAREA AREA (ACRES) = 5.00 SUBAREA RtJNOFF (CFS) = 9.60 TOTAL AREA(ACRES) = 6.00 TOTAL RUNOFF(CFS) = 11.60 TC(MIN) = 11.69 END OF STtJDY StJMMARY: TOTAL AREA(ACRES) = 6.00 TC(MIN.) = 11.69 PEAK FLOW RATE(CFS) = 11.60 END OF RATIONAL METHOD ANALYSIS **************************************************************************" RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE ROADWAY * ' WESTERLY ULTIMATE CONDI ITONS TM DRAINAGE * ' lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: 1325-5.DAT TIME/DATE OF STtJDY: 15:28 03/18/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT (YEAR) = 100.00 6-HOtJR DtJRATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLtJENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CURB GUTTER--GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OtJT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === = =r = s= = ========= ================= ====== ==== = ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 50.0 35.0 0.020/0.020/0.020 0.67 2.00 0.0312 0.167 0.0150 3 10.0 5.0 0.001/0.001/ ---0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) 'SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.' **************************************************************************** FLOW PROCESS FROM NODE 5001.00 TO NODE 5002.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CtJRVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 401.00 DOWNSTREAM ELEVATION = 400.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 9.900 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.748 StJBAREA RUNOFF (CFS) = 0.26 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.26 ********************************************************************'**""* FLOW PROCESS FROM NODE 5002.00 TO NODE 5005.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»»( STREET TABLE SECTION # 1 USED) ««< UPSTREAM ELEVATION(FEET) = 400.00 DOWNSTREAM ELEVATIONIFEET) = 374.00 STREET LENGTH (FEET) = 1150.00 CtJRB HEIGHT (INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OtJTSIDE STREET CROSSFALL (DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Bac)c-of-Walk Flow Section = 0.0200 * •TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 10.36 STREETFLOW MODEL REStTLTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.84 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.59 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.34 STREET FLOW TRAVEL TIME (MIN. ) = 5.34 Tc(MIN.) = 15.24 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 3.594 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 10.10 StJBAREA RUNOFF(CFS) = 19.97 TOTAL AREA(ACRES) = 10.20 PEAK FLOW RATE(CFS) = 20.23 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.45 HALFSTREET FLOOD WIDTH(FEET) = 15.82 FLOW VELOCITY(FEET/SEC.) = 4.16 DEPTH*VELOCITY(FT*FT/SEC.) = 1.85. LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5005.00 = 1250.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5005.00 TO NODE 5015.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) ««< ELEVATION DATA: UPSTREAM (FEET) = 374.00 DOWNSTREAM (FEET) = 372.00 FLOW LENGTH (FEET) = 200.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.56 ESTIMATED PIPE DIAMETER (INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20.23 PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 15.69 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5015.00 = 1450.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5015.00 TO NODE 5015.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 5010.00 TO NODE 5011.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CtJRVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 390.40 DOWNSTREAM ELEVATION = 389.40 ELEVATION DIFFERENCE = 1.00 URBAN StJBAREA OVERLAND TIME OF FLOW (MINUTES) = 9.900 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 4.748 SUBAREA RtJNOFF (CFS) = 0.26 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.26 ***********************************************************************"*** FLOW PROCESS FROM NODE 5011.00 TO NODE 5015.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 389.40 DOWNSTREAM ELEVATION(FEET) = 370.00 STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.0C INSIDE STREET CROSSFALL (DECIMAL) = 0.001 OtJTSIDE STREET CROSSFALL (DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 "TRAVEL TIME COMPtJTED USING ESTIMATED FLOW (CFS) = 4.63 '"STREET FLOWING FtJLL"* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.96 PRODUCT OF DEPTH&VELOCITY(FT'FT/SEC.) = 0.66 STREET FLOW TRAVEL TIME (MIN.) = 3.94 Tc(MIN.) = 13.84 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.826 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 StJBAREA AREA(ACRES) = 4.10 SUBAREA RtJNOFF (CFS) = 8.63 TOTAL AREA(ACRES) = 4.20 PEAK FLOW RATE(CFS) = 8.89 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 3.83 DEPTH*VELOCITY(FT*FT/SEC.) = 1.00 LONGEST FLOWPATH FROM NODE 5010.00 TO NODE 5015.00 = 800.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5015.00 TO NODE 5015.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLtJENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.89 13.84 3.826 4.20 LONGEST FLOWPATH FROM NODE 5010.00 TO NODE 5015.00 = 800.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 20.23 15.69 3.529 10.20 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5015.00 = 1450.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 27.55 13.84 3.826 2 28.43 15.69 3.529 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATEICFS) = 28.43 Tc(MIN.) = 15.69 TOTAL AREA(ACRES) = 14.40 **************************************************************************** FLOW PROCESS FROM NODE 5015.00 TO NODE 5025.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 372.00 DOWNSTREAM(FEET) = 368.00 FLOW LENGTH (FEET) = 500.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.1 INCHES PIPE-FLOW VELOCITYIFEET/SEC.) = 7.72 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.43 PIPE TRAVEL TIME(MIN.) = 1.08 Tc(MIN.) = 16.76 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5025.00 = 1950.00 FEET. ****************************************************'******'*******"*'***** FLOW PROCESS FROM NODE 5025.00 TO NODE 5025.00 IS CODE = 12 »>»CLEAR MEMORY BANK # 1 ««< ************************************************************************"** FLOW PROCESS FROM NODE 5025.00 TO NODE 5025.00 IS CODE = IC »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< **************************************************************************** FLOW PROCESS FROM NODE 5020.00 TO NODE 5021.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CtJRVE NUMBER (AMC II) = 88 INITIAL StJBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 408.10 DOWNSTREAM ELEVATION = 407.10 ELEVATION DIFFERENCE = 1.00 URBAN StJBAREA OVERLAND TIME OF FLOW (MINUTES) = 9.900 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 4.748 SUBAREA RUNOFF (CFS) = 0.26 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.26 **************************************************************************** FLOW PROCESS FROM NODE 5021.00 TO NODE 5022.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»» (STREET TABLE SECTION # 3 USED)««< UPSTREAM ELEVATION(FEET) = 407.10 DOWNSTREAM ELEVATION(FEET) = 390.00 STREET LENGTH(FEET) = 500.00 CtJRB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) =10.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 5.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.001 OtJTSIDE STREET CROSSFALL (DECIMAL) = 0.001 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 ••TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.44 *''STREET FLOWING FULL'" STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.44 PRODUCT OF DEPTH&VELOCITY(FT'FT/SEC.) = 0.48 STREET FLOW TRAVEL TIME (MIN. ) = 3.42 Tc(MIN.) = 13.32 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.922 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CtJRVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 4.31 TOTAL AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) = 4.58 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET/SEC.) = 3.12 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68 LONGEST FLOWPATH FROM NODE 5020.00 TO NODE 5022.00 = 600.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5022.00 TO NODE 5023.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM IFEET) = 390.00 DOWNSTREAMIFEET) = 374.50 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.86 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.58 PIPE TRAVEL TIME(MIN.) = 0.75 Tc(MIN.) = 14.07 LONGEST FLOWPATH FROM NODE 5020.00 TO NODE 5023.00 = 1000.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5023.00 TO NODE 5023.00 IS CODE = 81 >»>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 3.785 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.70 SUBAREA RtJNOFF(CFS) = 6.11 TOTAL AREAIACRES) = 3.80 TOTAL RUNOFFICFS) = 10.69 TCIMIN) = 14.07 **************************************************************************** FLOW PROCESS FROM NODE 5023.00 TO NODE 5025.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) = 374.50 DOWNSTREAM (FEET) = 368.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.85 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.69 PIPE TRAVEL TIME(MIN.) = 0.56 TclMIN.) = 14.63 LONGEST FLOWPATH FROM NODE 5020.00 TO NODE 5025.00 = 1300.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5025.00 TO NODE 5025.00 IS CODE = 11 >»»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLtJENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER ICFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.69 14.63 3.690 3.80 LONGEST FLOWPATH FROM NODE 5020.00 TO NODE 5025.00 = 1300.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA *' STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 28.43 16.76 3.381 14.40 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5025.00 = 1950.00 FEET. " PEAK FLOW RATE TABLE " STREAM RtJNOFF Tc INTENSITY NUMBER ICFS) (MIN.) (INCH/HOUR) 1 36.73 14.63 3.690 2 38.22 16.76 3.381 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATEICFS) = 38.22 TclMIN.) = 16.76 TOTAL AREAIACRES) = 18.20 **************************************************************************** FLOW PROCESS FROM NODE 5025.00 TO NODE 5030.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »>»USING COMPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 368.00 DOWNSTREAM(FEET) = 356.00 FLOW LENGTH (FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.06 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 38.22 PIPE TRAVEL TIMEIMIN.) = 0.33 TclMIN.) = 17.10 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5030.00 = 2250.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5030.00 TO NODE 5030.00 IS CODE = 81 >>»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.338 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF (CFS) = 2.54 TOTAL AREA(ACRES) = 19.00 TOTAL RUNOFF (CFS) = 40.75 TC(MIN) = 17.10 ************************************************************^**^*^**,^^^^^*^^ FLOW PROCESS FROM NODE 5030.00 TO NODE 5035.00 IS CODE = 31 >»»COMPtJTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: tJPSTREAM(FEET) = 356.00 DOWNSTREAM(FEET) = 349.00 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.47 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 40.75 PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) = 17.50 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5035.00 = 2550.00 FEET. ******************************************************************^^*^,^^^^^^ FLOW PROCESS FROM NODE 5035.00 TO NODE 5035.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.289 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NtJMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 4.10 StJBAREA RUNOFF (CFS) = 7.42 TOTAL AREA(ACRES) = 23.10 TOTAL RUNOFF(CFS) = 48.17 TC(MIN) = 17.50 **************************************************************************** FLOW PROCESS FROM NODE 5035.00 TO NODE 5037.00 IS CODE = 31 »>»COMPtJTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPtJTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM (FEET) = 349.00 DOWNSTREAM (FEET) = 348.00 FLOW LENGTHIFEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.7 INCHES PIPE-FLOW VELOCITYIFEET/SEC.) = 9.36 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOWICFS) = 48.17 PIPE TRAVEL TIMEIMIN.) = 0.18 TclMIN.) = 17.68 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5037.00 = 2650.00 FEET. ****************************************,****,****************************** FLOW PROCESS FROM NODE 5037.00 TO NODE 5037.00 IS CODE = 81 >>»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.267 USER-SPECIFIED RtJNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA (ACRES) = 7.00 SUBAREA RUNOFF (CFS) = 12.58 TOTAL AREA(ACRES) = 30.10 TOTAL RUNOFF(CFS) = 60.75 TC(MIN) = 17.68 ************************************************************************,t*** FLOW PROCESS FROM NODE 5037.00 TO NODE 5040.00 IS CODE = 31 »»>COMPtJTE PIPE-FLOW TRAVEL TIME THRU StJBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 348.00 DOWNSTREAM(FEET) = 342.00 FLOW LENGTHIFEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.4 INCHES PIPE-FLOW VELOCITYIFEET/SEC.) = 17.13 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) =60.75 PIPE TRAVEL TIMEIMIN.) = 0.15 TclMIN.) = 17.82 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5040.00 = 2800.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5040.00 TO NODE 5040.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 tEAR RAINFALL INTENSITY I INCH/HOUR) = 3.250 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 StJBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 5.87 TOTAL AREA(ACRES) = 32.00 TOTAL RUNOFFICFS) = 66.62 TCIMIN) = 17.82 **************************************************************************** FLOW PROCESS FROM NODE 5040.00 TO NODE 5060.00 IS CODE = 31 >»»COMPtJTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 342.00 DOWNSTREAM(FEET) = 318.00 FLOW LENGTH (FEET) = 400.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.02 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 66.62 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 18.15 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5060.00 = 3200.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 18.15 RAINFALL INTENSITY I INCH/HR) = 3.21 TOTAL STREAM AREAIACRES) = 32.00 PEAK FLOW RATEICFS) AT CONFLtJENCE = 66.62 **************************************************************************** FLOW PROCESS FROM NODE 5050.00 TO NODE 5051.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL StJBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 405.30 DOWNSTREAM ELEVATION = 404.30 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 9.900 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.748 SUBAREA RtJNOFF (CFS) = 0.26 TOTAL AREA(ACRES) = 0.10 TOTAL RtJNOFF (CFS) = 0.26 **************************************************************************** FLOW PROCESS FROM NODE 5051.00 TO NODE 5055.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU StJBAREA««< >»»(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 404.30 DOWNSTREAM ELEVATION (FEET) = 366.00 STREET LENGTH(FEET) = 1300.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH (FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALLIDECIMAL) = 0.018 OUTSIDE STREET CROSSFALLIDECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALLIDECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 "TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) = 12.21 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTHIFEET) = 11.99 AVERAGE FLOW VELOCITY(FEET/SEC.) =4.13 PRODUCT OF DEPTH&VELOCITYIFT'FT/SEC.) = 1.56 STREET FLOW TRAVEL TIMEIMIN.) = 5.25 TclMIN.) = 15.IE 100 YEAR RAINFALL INTENSITY IINCH/HOUR) = 3.609 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NtJMBER lAMC II) = 88 StJBAREA AREAIACRES) = 11.90 SUBAREA RtJNOFFICFS) = 23.62 TOTAL AREAIACRES) = 12.00 PEAK FLOW RATE(CFS) = 23.88 END OF StJBAREA STREET FLOW HYDRAtJLICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 15.98 FLOW VELOCITY(FEET/SEC.) = 4.83 DEPTH'VELOCITY(FT*FT/SEC.) = 2.16 LONGEST FLOWPATH FROM NODE 5050.00 TO NODE 5055.00 = 1400.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5055.00 TO NODE 5060.00 IS CODE = 31 >>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>»>USING COMPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM I FEET) = 366.00 DOWNSTREAMIFEET) = 318.00 FLOW LENGTHIFEET) = 700.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.9 INCHES PIPE-FLOW VELOCITYIFEET/SEC.) = 16.32 ESTIMATED PIPE DIAMETER I INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOWICFS) = 23.88 PIPE TRAVEL TIMEIMIN. ) = 0.71 TclMIN.) = 15.86 LONGEST FLOWPATH FROM NODE 5050-00 TO NODE 5060.00 = 2100.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 3.504 USER-SPECIFIED RtJNOFF COEFFICIENT = .5500 S.C.S. CtJRVE NUMBER (AMC II) = 88 SUBAREA AREA (ACRES) = 8.00 SUBAREA RUNOFF (CFS) = 15.42 TOTAL AREA(ACRES) = 20.00 TOTAL RUNOFF(CFS) = 39.30 TC(MIN) = 15.86 **************************************************************************** FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALtJES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 15.86 RAINFALL INTENSITY (INCH/HR) = 3.50 TOTAL STREAM AREA(ACRES) = 20.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 39.30 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 66.62 18.15 3.211 32.00 2 39.30 15.86 3.504 20.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. " PEAK FLOW RATE TABLE " STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtJR) 1 100.36 15.86 3.504 2 102.64 18.15 3.211 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 102.64 Tc(MIN.) = 18.15 TOTAL AREA(ACRES) = 52.00 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5060.00 = 3200.00 FEET. *********************************************************************"""* FLOW PROCESS FROM NODE 5060.00 TO NODE 5060.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.211 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA (ACRES) = 4.90 SUBAREA RtJNOFF (CFS) = 8.65 TOTAL AREA(ACRES) = 56.90 TOTAL RUNOFF(CFS) = 111.29 TC(MIN) = 18.15 ************************************************************"*'**"""**** FLOW PROCESS FROM NODE 5060.00 TO NODE 5070.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) ««< ELEVATION DATA: UPSTREAM (FEET) = 318.00 DOWNSTREAM (FEET) = 280.00 FLOW LENGTH (FEET) = 750.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.77 ESTIMATED PIPE DIAMETER (INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 111.29 PIPE TRAVEL TIME(MIN.) = 0.57 Tc(MIN.) = 18.73 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5070.00 = 3950.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5070.00 TO NODE 5070.00 IS CODE = 81 >>>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.147 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA (ACRES) = 2.40 SUBAREA RUNOFF (CFS) = 4.15 TOTAL AREA(ACRES) = 59.30 TOTAL RUNOFF(CFS) = 115.45 TC(MIN) = 18.73 **************************************************************************** FLOW PROCESS FROM NODE 5070.00 TO NODE 5075.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPtJTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM (FEET) = 280.00 DOWNSTREAM (FEET) = 268.00 FLOW LENGTH (FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 30.12 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 115.45 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 18.78 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5075.00 = 4050.00 FEET. ************************************************************************"" FLOW PROCESS FROM NODE 5075.00 TO NODE 5075.00 IS CODE = 81 >>»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.141 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA (ACRES) = 7.30 SUBAREA RUNOFF (CFS) = 12.61 TOTAL AREA(ACRES) = 66.60 TOTAL RUNOFF(CFS) = 128.06 TC(MIN) = 18.78 ************************************************************************"** FLOW PROCESS FROM NODE 5075.00 TO NODE 5080.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« >>»>USING COMPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM I FEET) = 268.00 DOWNSTREAMIFEET) = 255.00 FLOW LENGTH(FEET) = 150.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 27.32 ESTIMATED PIPE DIAMETER I INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOWICFS) = 128.06 PIPE TRAVEL TIMEIMIN.) = 0.09 TclMIN.) = 18.88 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5080.00 = 4200.00 FEET. *******************************************************************"*"*"* FLOW PROCESS FROM NODE 5080.00 TO NODE 5080.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY I INCH/HOtJR) = 3.132 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 StJBAREA AREA(ACRES) = 2.70 StJBAREA RUNOFF(CFS) = 8.03 TOTAL AREA(ACRES) = 69.30 TOTAL RUNOFF(CFS) = 136.09 TC{MIN) =18.88 **************************************************************************" FLOW PROCESS FROM NODE 5080.00 TO NODE 5085.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW) ««< ELEVATION DATA: UPSTREAM (FEET) = 255.00 DOWNSTREAM (FEET) = 212.00 FLOW LENGTH (FEET) = 550.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 27.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 26.17 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 136.09 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 19.23 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5085.00 = 4750.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5085.00 TO NODE 5085.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.095 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.00 StJBAREA RUNOFFICFS) = 2.94 TOTAL AREAIACRES) = 70.30 TOTAL RUNOFFICFS) = 139.03 TCIMIN) = 19.23 *********************************************************************""'" FLOW PROCESS FROM NODE 5085.00 TO NODE 5090.00 IS CODE = 31 >»»COMPtJTE PIPE-FLOW TRAVEL TIME THRU StJBAREA«<« »»>USING COMPtJTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM (FEET) = 212.00 DOWNSTREAM (FEET) = 200.00 FLOW LENGTH (FEET) = 350.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 39.0 INCH PIPE IS 31.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 19.37 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 139.03 PIPE TRAVEL TIME(MIN.) = 0.30 TC(MIN.) = 19.53 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5090.00 = 5100.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5090.00 TO NODE 5090.00 IS CODE = 81 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 3.064 USER-SPECIFIED RUNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 27.40 SUBAREA RUNOFF(CFS) = 46.17 TOTAL AREAIACRES) = 97.70 TOTAL RUNOFFICFS) = 185.20 TCIMIN) = 19.53 ****************•******************************************""*"""**"** FLOW PROCESS FROM NODE 5090.00 TO NODE 5095.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLOW)«<« ELEVATION DATA: UPSTREAM(FEET) = 200.00 DOWNSTREAM(FEET) = 190.00 FLOW LENGTH (FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 34.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC-) = 21.98 ESTIMATED PIPE DIAMETER (INCH) = 42.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 185.20 PIPE TRAVEL TIME (MIN. ) = 0.19 TclMIN.) = 19.72 LONGEST FLOWPATH FROM NODE 5001.00 TO NODE 5095.00 = 53 50.00 FEET. **************************************************************"**""****** FLOW PROCESS FROM NODE 5095.00 TO NODE 5095.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY I INCH/HOUR) = 3.045 USER-SPECIFIED RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER I AMC II) = 92 SUBAREA AREAIACRES) = 1.40 SUBAREA RUNOFF (CFS) = 4.05 TOTAL AREA(ACRES) = 99.10 TOTAL RtJNOFF(CFS) = 189.25 TC(MIN) = 19.72 END OF STUDY StJMMARY: TOTAL AREA(ACRES) 99.10 TC(MIN.) = 19.72 PEAK FLOW RATE(CFS) 189.25 END OF RATIONAL METHOD ANALYSIS 1)5^ ^^^^ ******************* ************************************************"*""" RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COtJNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** ' BRESSI RANCH - EL FUERTE STREET * * SYSTEM 9000 - SUMP INLETS SOUTH OF POINSETTIA LANE * * 100-YEAR STORM EVENT: BY-PASS Q'S FROM RANCHO CARILLO ADDED * ************************************************************************** FILE NAME: 1325-9U.DAT TIME/DATE OF STtJDY: 15:51 03/28/2002 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOtJR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALtreS USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLtJENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF-CROWN TO STREET-CROSSFALL: CtJRB GUTTER-•GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK-HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) In) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 2 32.0 27.0 0.020/0.020/ ---0.50 1.50 0.0312 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. IDepth)'IVelocity) Constraint =10.0 (FT*FT/S) 'SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **•************************************************************"*********** FLOW PROCESS FROM NODE 9000.00 TO NODE 9001.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NtJMBER (AMC II) = 92 INITIAL StJBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 214.00 DOWNSTREAM ELEVATION = 208.00 ELEVATION DIFFERENCE = 6.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 1.486 'CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.559 SUBAREA RtJNOFF (CFS) =0.62 TOTAL AREA (ACRES) = 0.10 TOTAL RUNOFF (CFS) = 0.62 ****************************************************************""****"" FLOW PROCESS FROM NODE 9001.10 TO NODE 9001.10 IS CODE = 7 >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 5.00 RAIN INTENSITY (INCH/HOUR) = 7.38 TOTAL AREA(ACRES) = 0.00 TOTAL RUNOFFICFS) = 1.40 **************************************************************************** FLOW PROCESS FROM NODE 9001.00 TO NODE 9002.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«<« »»> I STREET TABLE SECTION # 2 USED)««< UPSTREAM ELEVATION (FEET) = 208.00 DOWNSTREAM ELEVATION (FEET) = 178.55 STREET LENGTH(FEET) = 635.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 27.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 "TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.42 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH (FEET) = 8.14 AVERAGE FLOW VELOCITY(FEET/SEC.) =4.38 PRODUCT OF DEPTH&VELOCITY(FT'FT/SEC.) = 1.27 STREET FLOW TRAVEL TIME(MIN.) = 2.42 Tc (MIN. ) = 7.42 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.721 ROAD(HARD SURFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA (ACRES) = 0.60 SUBAREA RUNOFF (CFS) = 3.26 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 4.66 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.39 FLOW VELOCITY(FEET/SEC.) = 4.66 DEPTH'VELOCITY(FT'FT/SEC.) = 1.46 LONGEST FLOWPATH FROM NODE 9000.00 TO NODE 9002.00 = 735.00 FEET. **********************************************************«**"**********•** FLOW PROCESS FROM NODE 9002.00 TO NODE 9003.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< >»» I STREET TABLE SECTION # 2 USED)««< UPSTREAM ELEVATIONIFEET) = 178.55 DOWNSTREAM ELEVATION(FEET) = 176.00 STREET LENGTHIFEET) = 205.00 CURB HEIGHT IINCHES) = 6.0 STREET HALFWIDTHIFEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAKIFEET) = 27.00 INSIDE STREET CROSSFALLIDECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RtJNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.65 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.38 AVERAGE FLOW VELOCITYIFEET/SEC.) = 2.96 PRODUCT OF DEPTH&VELOCITYIFT*FT/SEC.) = 1.17 STREET FLOW TRAVEL TIMEIMIN. ) = 1.15 TclMIN.) = 8.57 100 YEAR RAINFALL INTENSITY I INCH/HOtJR) = 5.211 ROADIHARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CtJRVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.40 StJBAREA RUNOFF(CFS) = 1.98 TOTAL AREAIACRES) = 1.00 PEAK FLOW RATEICFS) = 6.64 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTHIFEET) =0.41 HALFSTREET FLOOD WIDTHIFEET) = 14.28 FLOW VELOCITYIFEET/SEC.) = 3.08 DEPTH'VELOCITYIFT'FT/SEC.) = 1.27 LONGEST FLOWPATH FROM NODE 9000.00 TO NODE 9003.00 = 940.00 FEET. **************************************•*""*************"""*"****""" FLOW PROCESS FROM NODE 9003.00 TO NODE 9004.00 IS CODE = 41 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 166.40 DOWNSTREAM(FEET) = 165.73 FLOW LENGTH (FEET) = 56.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.33 GIVEN PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.64 PIPE TRAVEL TIME(MIN.) = ' 0.15 Tc(MIN.) = 8.72 LONGEST FLOWPATH FROM NODE 9000.00 TO NODE 9004.00 = 996.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 9004.00 TO NODE 9004.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 AI^: TIME OF CONCENTRATION (MIN. ) = 8.72 RAINFALL INTENSITY (INCH/HR) = 5.15 TOTAL STREAM AREA (ACRES) = 1.00 PEAK FLOW RATE (CFS) AT CONFLUENCE =6.64 **************************************************************************** FLOW PROCESS FROM NODE 9005.00 TO NODE 9006.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ROAD (HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS 'D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 196.00 DOWNSTREAM ELEVATION = 190.00 ELEVATION DIFFERENCE = 6.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 1.486 'CAtJTION: StJBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOtTR) = 6.559 SUBAREA RtJNOFF (CFS) = 0.62 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.62 **************************************************************************** FLOW PROCESS FROM NODE 9006.10 TO NODE 9006.10 IS CODE = 7 >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 5.00 RAIN INTENSITY (INCH/HOUR) = 7.38 TOTAL AREA(ACRES) = 0.00 TOTAL RUNOFF(CFS) = 1.50 **************************************************************************** FLOW PROCESS FROM NODE 9006.00 TO NODE 9007.00 IS CODE = 62 >»»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«« >»»( STREET TABLE SECTION # 2 USED) «<« UPSTREAM ELEVATIONIFEET) = 190.00 DOWNSTREAM ELEVATIONIFEET) = 176.00 STREET LENGTHIFEET) = 537.00 CURB HEIGHT IINCHES) = 6.0 STREET HALFWIDTHI FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GFLADEBREAKI FEET) = 27-00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OtJTSIDE STREET CROSSFALL (DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 "TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.52 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.39 AVERAGE FLOW VELOCITYIFEET/SEC.) = 3.52 PRODUCT OF DEPTH&VELOCITY(FT'FT/SEC.) = 1.11 STREET FLOW TRAVEL TIMEIMIN.) = 2.54 TclMIN.) = 7.54 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.659 ROAD (HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AJtEA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 3.23 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 4.73 END OF StJBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.34 HALFSTREET FLOOD WIDTH (FEET) = 10.70 FLOW VELOCITY(FEET/SEC.) = 3.74 DEPTH'VELOCITY(FT'FT/SEC.) = 1.27 LONGEST FLOWPATH FROM NODE 9005.00 TO NODE 9007.00 = 637.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 9007.00 TO NODE 9004.00 IS CODE = 41 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = . 173.66 DOWNSTREAM(FEET) = 172.60 FLOW LENGTH(FEET) = 4.25 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.39 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.73 PIPE TRAVEL TIME(MIN.) = 0.00 Tc(MIN.) = 7.55 LONGEST FLOWPATH FROM NODE 9005.00 TO NODE 9004.00 = 641.25 FEET. **************************************************************************** FLOW PROCESS FROM NODE 9004.00 TO NODE 9004.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 7.55 RAINFALL INTENSITY(INCH/HR) = 5.66 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.73 " CONFLUENCE DATA " STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.64 8.72 5.154 1.00 2 4.73 7.55 5.657 0.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. " PEAK FLOW RATE TABLE " STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 10.78 7.55 5.657. 2 10.95 8.72 5.154 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.95 Tc(MIN.) = 8.72 TOTAL AREA(ACRES) = 1.60 LONGEST FLOWPATH FROM NODE 9000.00 TO NODE 9004.00 = 996.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 9010.00 TO NODE 9010.00 IS CODE = 41 >>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 165.40 DOWNSTREAM(FEET) = 164.12 FLOW LENGTH(FEET) = 106.93 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 6.61 (PIPE FLOW VELOCITY CORRESPONDING TO NORMAL-DEPTH FLOW AT DEPTH = 0.94 * DIAMETER) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOWICFS) = 10.95 PIPE TRAVEL TIMEIMIN.) = 0.27 TclMIN.) = 8.99 LONGEST FLOWPATH FROM NODE 9000.00 TO NODE 9010.00 = 1102.93 FEET. END OF STtJDY SUMMARY: TOTAL AREAIACRES) 1 60 TC(MIN.) = 8.99 PEAK FLOW RATEICFS) 10 95 END OF RATIONAL METHOD ANALYSIS APPENDIX 4 AES PIPEFLOW COMPUTER OUTPUT AND CDS UNIT CALCULATIONS P/1289 IDR. DOC APPENDIX 4.1 AES PIPEFLOW COMPUTER OUTPUT REP/I2249DR.DOC ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUIER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: PROJECT DESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY *************•*•••*•••••** • EL FUERTE STREET * • 72" RCP @ 9.28% DOWNSTREAM OF CDS tJNIT • • lOO-YEAR STORM EVENT • ************************************************************************** FILE NAME: 13CDS72.DAT TIME/DATE OF STUDY: 11:04 01/09/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSimE PRESStJRE-f FLOW PRESSURE-H NtJMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM(POtJNDS) 1000.00- 9.06^ 35332.84 4.29 34809.26 } FRICTION ) HYDRAtJLIC JtJMP 1001.40- 5.83*Dc 29834.44 5.83*Dc 29834.44 MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1000.00 FLOWLINE ELEVATION = 144.64 PIPE FLOW = 599.60 CFS PIPE DIAMETER = 72.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 153.700 FEET NODE 1000.00 : HGL = < 153.7 00>;EGL= < 160.683>;FLOWLINE= < 144.640> ****************************************************************************** FLOW PROCESS FROM NODE 1000.00 TO NODE 1001.40 IS CODE = 1 UPSTREAM NODE 1001.40 ELEVATION = 149.00 (HYDRAULIC JUMP OCCtJRS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 599.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 47.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.87. CRITICAL DEPTH(FT) = 5.83 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 5.83 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-1- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0. 000 5 832 21 368 12 927 29834 44 0. 268 5 714 21 575 12 947 29869 54 1 019 5 596 21 835 13 003 29967 11 2 217 5 478 22 140 13 094 30120 76 3 861 5 359 22 489 13 217 30327 72 5 964 5 241 22 880 13 375 30587 11 8 559 5 123 23 313 13 567 30899 23 11 688 5 004 23 790 13 798 31265 28 15 409 4 886 24 311 14 069 31687 .15 19 796 4 768 24 .879 14 385 32167 .40 24 940 4 649 25 •A?y 14 750 32709 .21 30 956 4 531 15 169 33316 .36-1 37 989 4 413 :Z'J2 15 649 33993 .31 46 .221 4 295 27 .679 16 .198 34745 .24 47 .000 4 285 27 .745 16 .245 34809 .26 ^ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS REStlLTS DOWNSTREAM CONTROL ASStJMED PRESStJRE HEAD (FT) = 9.06 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESStJRE-1- CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 9. 060 21. 207 16. 043 35332. 84 42 078 6. 000 21. 207 12. 983 29934. 03 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 6.00 GRADUALLY VARIED FLOW PROFILE COMPtJIED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE-1- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 42 .078 6. 000 21. 200 12. 983 29934. 02 42 .158 5. 993 21. 201 12. 977 29923. 76 42 .228 5. 987 21. 204 12. 972 29914 79 42 .290 5. 980 21. 207 12. 968 29906 66 42 .348 5. 973 21. 211 12. 963 29899 22 42 .400 5. 966 21. 215 12. 960 29892 36 42 .449 5. 960 21. 220 12 956 29886 03 42 .494 5 . 953 21. 225 12 953 29880 18 42 .535 5. 946 21. 230 12 950 29874 77 42 .573 5. 940 21. 236 12 947 29869 79 42 .608 5 933 21. 242 12 944 29865 19 42 .640 5. 926 21 249 12 942 29860 97 42 .670 5 920 21 256 12 940 29857 10 42 .697 5 913 21 263 12 938 29853 58 42 .721 5 906 21 270 12 936 29850 39 42 .743 5 899 21 278 12 934 29847 52 42 .762 5 893 21 286 12 933 29844 95 42 .780 5 886 21 294 12 931 29842 68 42 .795 5 879 21 302 12 930 29840 71 42 .808 5 873 21 311 12 929 29839 01 42 .818 5 866 21 320 12 928 29837 59 42 .827 5 859 21 329 12 928 29836 45 42 .834 5 853 21 338 12 927 29835 56 42 .839 5 846 21 348 12 927 29834 94 42.842 5.839 21.358 12.927 29834.56 42.842 5.832 21.368 12.927 29834.44 47.000 5.832 21.368 12.927 29834.44 END OF HYDRAtJLIC JUMP ANALYSIS PRESStJRE-t-MOMENTUM BALANCE OCCURS AT 14.73 FEET UPSTREAM OF NODE 1000.00 DOWNSTREAM DEPTH = 7.989 FEET, UPSTREAM CONJUGATE DEPTH = 4.509 FEET NODE 1001.40 : HGL = < (^A. 83^ EGL= < 161.927>; FLOWLINE= < 149.000> Ulr^ ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1001.40 FLOWLINE ELEVATION = 149.00 ASStJMED UPSTREAM CONTROL HGL = 154.83 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAtJLICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: • PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STtJDY ************************** * BRESSI RANCH - EL FUERTE STREET * * SYSTEM 1000 - MAINLINE IN EL FUERTE * * 72" RCP - NO CLEANOUT AT STA 58-1-00, CDS AT STA 59-fOO * ************************************************************************** FILE NAME: 1325AFR.DAT TIME/DATE OF STtJDY: 12:40 11/21/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 1001.50- } 1003.00- } 1003.10- } 1004.00- 1004.10- 1009.10- UPSTREAM RtJN MODEL PRESSURE PRESSURE-i- PROCESS HEAD (FT) MOMENTtJM (POtJNDS) 13.87* 43819.23 } HYDRAULIC JUMP 5.83*Dc 29834.44 FRICTION JUNCTION FRICTION JUNCTION FRICTION 8.01* 7.76* 28352.41 27910.65 1004.90- } 1005.00- } 1005.10- } 1006.00- } 1006.10- } 1007.00- } 1007.10- 7.69* 27439.46 } HYDRAULIC JUMP 6.73 25748.89 FRICTION-t-BEND 5.73*Dc JUNCTION 10.27* FRICTION-HBEND 24296.44 21602.22 } HYDRAULIC JUMP } 1007.90- ) 1008.00- } 1008.10- } 1008.90- } 1009.00- JUNCTION FRICTION MANHOLE FRICTION 8.40 5.18 4.81 Dc 4.81 Dc 4.81 Dc FRICTION+BEND 4.81*Dc JUNCTION 6.93* FRICTION-HBEND 6.44* FRICTION } } MANHOLE FRICTION 1010.00- 5.06 4.97 4.60 18306.80 15457.71 15157.94 15157.94 15157 .94 15157.94 14204.88 13721.55 ) HYDRAULIC JUMP 12346.51 12258.00 11888.05 DOWNSTREAM RtJN FLOW PRESStJRE-l- DEPTH(FT) MOMENTUM(POUNDS) 3.76 39212.06 5.83*Dc 29834.44 4.51 27077.14 4.53 26979.79 4.50 26698.04 4.65* 26114.68 5.73*Dc 24296.44 3.12 17966.29 3.03* 18469.86 3.53* 17571.58 3.80* 16627.37 3.79* 16672.05 4.28* 15566.52 4.81*Dc 15157.94 3.18 13705.16 3.25 13478.34 3.44* 12910.35 3.43* 12933.72 3.28* 13377.19 1010.10 1011.00 1011.10 1012.00 1012.10 1012.40- 1012.50- 1012.60- 1012.90- 1013.00 1013.10 1013.90 1014.00 1014.10 1015.00 1015.10 1016.00 1016.10 1017.00 1017.10 1018.00 1018.10 1019.00 2000.00 2002.00 2005.00 MANHOLE FRICTION JUNCTION FRICTION JUNCTION FRICTION 4. 4. 2. 2 . 5 . FRICTION-I-BEND 3 MANHOLE 3 FRICTION-l-BEND 2 FRICTION-HBEND 2 JUNCTION 3 FRICTION-HBEND 4 FRICTION 3 MANHOLE 4 FRICTION-HBEND 2 JUNCTION 4 FRICTION-HBEND 2 JUNCTION 8 FRICTION 2 JUNCTION 3 FRICTION+BEND 2 MANHOLE 2 FRICTION+BEND 2 JUNCTION 6 FRICTION 5 FRICTION+BEND 5 51 35 Dc 99 Dc 99 Dc 35 34 02 Dc 24 99 Dc 99 Dc 99 15 95 15 99*Dc 35 99*Dc 56* 11799.54 11743 .09 11484.71 11484.71 11439.48 10554.45 10409.99 10507.97 10401.71 10401.71 10390.76 10462.02 10373.12 10459.85 9952.13 9915.50 9317.10 * 8535.42 } HYDRAULIC JUMP .97 DC 6077.16 .92 6003.89 .97 Dc 5594.17 .97 Dc 5594.17 .97*Dc 5594.17 .65* 5590.23 .91* 5261.21 .12* 4912.70 3.26* 2.98* 2.44* 2.65* 2.31* 2 .34* 2.38* 2 .34* 2.49* 2.58* 2.41* 2 .47* 2.50* 2.46* 2.99*Dc 2.57* 2.99*Dc 1.97 2.05* 1.86* 2.56* 2.56* 2.97*Dc 2.15 2.26 2.93 Dc 13429.29 14502.06 12872.69 12101.11 12147.01 12040.14 11868.26 12034.52 11417.11 11144.26 11223.39 10978.43 10883.09 11017.10 9952.13 9972.34 9317.11 8031.62 7748.22 7801.18 5904.34 5907.83 5594.17 4640.02 4459.12 3968.14 MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1001.50 FLOWLINE ELEVATION = 149.12 PIPE FLOW = 599.60 CFS PIPE DIAMETER = 72.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 162.990 FEET NODE 1001.50 : HGL = < 162.990>;EGL= < 169.973>;FLOWLINE= < 149.120> ************* ***************************************************************** FLOW PROCESS FROM NODE 1001.50 TO NODE 1003.00 IS CODE = 1 UPSTREAM NODE 1003.00 ELEVATION = 161.16 (HYDRAULIC JtJMP OCCURS) CALCtJLATE FRICTION LOSSES(LACFCD): PIPE FLOW = 599.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 190.00 FEET MANNING'S N = 0.01300 HYDRAtJLIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 3.17 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASStJMED FLOWDEPTH(FT) = 5.83 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 5.83 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 5 .832 21 .368 12 927 29834 44 0 .334 5 .726 21 .552 12 943 29863 15 1 .271 5 .619 21 .780 12 990 29943 30 2 .766 5 .513 22 .045 13 064 30069 68 4 .811 5 .406 22 .346 13 165 30239 82 7 .422 5 .299 22 .682 13 293 30452 69 10 .629 5 .193 23 .052 13 449 30708 17 14 .481 5 .086 23 .456 13 635 31006 81 19 .040 4 .979 23 .896 13 852 31349 67 24 .388 4 .873 24 .373 14 102 31738 28 30 .626 4 .766 24 .887 14 390 32174 59 37 .882 4 .659 25 .442 14 717 32660. 94 46 .315 4 .553 26 .039 15 088 33200 11 56 67 .127 .575 4 4 .446 .340 2S /57 !372% 15 15 508 981 33795 34450 26 09 80 996 4 .233 (28 \\U 16 514 35168 75 " 96 836 4 .126 -912 17 114 35955 96 115 703 4 .020 29 770 17 789 36817 11 138 456 3 .913 30 693 18 550 37758 24 166 357 3 .806 31 687 19 407 38786 28 190 000 3 .765 32 096 19 770 39212 06 ' / HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESStJRE HEAD(FT) = 13.87 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESStJRE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0.000 13.870 21.207 20.853 43819.23 168.003 6.000 21.207 12.983 29934.03 ASStJMED DOWNSTREAM PRESStJRE HEAD (FT) = 6.00 GIUiDUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 168 .003 6 .000 21 200 12 983 29934 02 168 .127 5 .993 21 201 12 977 29923 76 168 .234 5 .987 21 204 12 972 29914 79 168 .331 5 .980 21 207 12 968 29906 66 168 .419 5 .973 21 211 12 963 29899 22 168 .500 5 .966 21 215 12 960 29892 36 168 .575 5 .960 21 220 12 956 29886 03 168 .643 5 .953 21 225 12 953 29880 18 168 .707 5 .946 21 230 12 950 29874 77 168 .765 5 .940 21 236 12 947 29869 79 168 .819 5 .933 21 242 12 944 29865 19 168. 869 5 926 21 249 12 942 29860 97 168. 914 5 920 21 256 12 940 29857 10 168 955 5 913 21 263 12 938 29853 58 168 992 5 906 21 270 12 936 29850 39 169 026 5 899 21 278 12 934 29847 52 169 056 5 893 21 286 12 933 29844 95 169 082 5 886 21 294 12 931 29842 68 169 105 5 879 21 302 12 930 29840 71 169 125 5 873 21 311 12 929 29839 01 169 141 5 866 21 320 12 928 29837 59 169 155 5 859 21 329 12 928 29836 45 169 165 5 853 21 338 12 927 29835 56 169 172 5 846 21 348 12 .927 29834 94 169 177 5 839 21 .358 12 .927 29834 56 169 178 5 832 21 .368 12 .927 29834 44 190 000 5 832 21 .368 12 .927 29834 44 END OF HYDRAUI ..IC JUMP I PRESSURE+MOMENTUM BALANCE OCCURS AT 115.47 FEET UPSTREAM OF NODE 1001.50 I I DOWNSTREAM DEPTH = 8.461 FEET, UPSTREAM CONJUGATE DEPTH = 4.368 FEET | NODE 1003.00 : HGL = < 166.992>;EGL= < 174.087>;FLOWLINE= < 161.160> t***************************************************************************** FLOW PROCESS FROM NODE 1003.00 TO NODE 1003.10 IS CODE = 5 UPSTREAM NODE 1003.10 ELEVATION = 161.49 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 533.60 599.60 66.00 0.00 DIAMETER (INCHES) 72.00 72 . 00 36.00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 90.00 0.00 161.49 161.16 164.49 0.00 CRITICAL DEPTH(FT.) 5.74 5.83 2.60 0.00 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01587 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01770 AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.01679 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.067 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.943)+( 0.000) = 0.943 NODE 1003.10 : HGL = < 169.499>;EGL= < 175.029>;FLOWLINE= < 161.490> ****************************************************************************** FLOW PROCESS FROM NODE 1003.10 TO NODE 1004.00 IS CODE = 1 UPSTREAM NODE 1004.00 ELEVATION = 162.70 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 533.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 60.45 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 533.60)/( 4235.095))**2 = 0.01587 HF=L*SF = ( 60.45)*(0.01587) = 0.960 NODE 1004.00 HGL < 170.459>;EGL= < 175.989>;FLOWLINE= < 162.700> ***************************************************************************** FLOW PROCESS FROM NODE 1004.00 TO NODE 1004.10 IS CODE = 5 UPSTREAM NODE 1004.10 ELEVATION = 163.03 (FLOW IS UNDER PRESSURE) CALCtJLATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 528.80 72.00 533.60 72.00 2.40 18.00 2.40 18.00 0.00 163.03 162.70 90.00 167.53 90.00 167.53 5.73 5.74 0.59 0.59 18.702 18.872 1.358 1.358 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01559 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01587 AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.01573 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.063 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.162)+( 0.000) = 0.162 NODE 1004.10 HGL < 170.720>;EGL= < 176.151>;FLOWLINE= < 163.030> ****************************************************************************** FLOW PROCESS FROM NODE 1004.10 TO NODE 1004.90 IS CODE = 1 UPSTREAM NODE 1004.90 ELEVATION = 167.32 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 528.80 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 213.71 FEET MANNING'S N = 0.01300 HYDRAtJLIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 4.37 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASStJMED FLOWDEPTH(FT) = 4.65 5.73 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 4 652 22 473 12 499 26114 68 10 021 4 641 22 526 12 525 26153 24 20 552 4 630 22 580 12 552 26192 26 31 638 4 619 22 635 12 579 26231 75 43 330 4 608 22 690 12 607 26271 70 55 688 4 596 22 745 12 634 26312 12 68 780 4 585 22 801 12 663 26353 02 82 685 4 574 22 857 12 691 26394 39 97 497 4 563 22 913 12 720 26436 25 113 326 4 552 22 970 12 750 26478 59 130 302 4 541 23 027 12 780 26521 .40 148 584 4 529 23 085 12 810 26564 .71 168 366 4 518 23 144 12 841 26608 .51 189 889 4 507 23 202 12 872 26652 .81 213 455 4 496 23 261 12 903 26697 .60 213 710 4 496 23 262 12 904 26698 .04 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 7 .69 VELOCITY (FT/SEC) 18.702 18.702 END OF HYDRAULIC JtJMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 132.76 FEET UPSTREAM OF NODE 1004.10 DOWNSTREAM DEPTH = 7.094 FEET, UPSTREAM CONJUGATE DEPTH = 4.575 FEET DISTANCE FROM CONTROL(FT) 0.000 213.710 PRESSURE HEAD(FT) 7 . 690 6.731 SPECIFIC ENERGY(FT) 13.121 12.163 PRESSURE+ MOMENTtJM (POUNDS) 27439.46 25748.89 NODE 1004.90 : HGL = < 171.972>;EGL= < 179.819>;FLOWLINE= < 167.320> ****************************************************************************** FLOW PROCESS FROM NODE 1004.90 TO NODE 1005.00 IS CODE = 3 UPSTREAM NODE 1005.00 ELEVATION = 172.74 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 528.80 CFS CENTRAL ANGLE = 22.220 DEGREES PIPE LENGTH = 271.28 FEET PIPE DIAMETER = 72.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 4.38 CRITICAL DEPTH(FT) = 5.73 UPSTREAM CONTROL ASSUMED FLOWDEPTH{FT) = 5.73 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0. 000 5 732 18 998 11 339 24296.44 0 451 5 678 19 094 11 342 24301.50 1 774 5 624 19 199 11 351 24316.31 3 943 5 570 19 313 11 365 24340.46 6 959 5 516 19 435 11 384 24373.65 10 840 5 462 19 565 11 409 24415.69 15 623 5 408 19 703 11 439 24466.46 21 360 5 354 19 849 11 475 24525.88 28 122 5 300 20 003 11 516 24593.93 36 003 5 246 20 164 11 563 24670.62 45 117 5 192 20 333 11 615 24756.00 55 610 5 138 20 510 11 674 24850.15 67 664 5 084 20 695 11 738 24953.16 81 509 5 030 20 888 11 809 25065.17 97 439 4 976 21 089 11 886 25186.32 115 837 4 922 21 298 11 969 25316.78 137 209 4 868 21 515 12 060 25456.74 162 244 4 814 21 742 12 158 25606.41 191 913 4 760 21 977 12 264 25766.03 227 638 4 706 22 .221 12 .378 25935.86 271 280 4 652 22 .473 12 .499 26114.68 NODE 1005.00 HGL = < 178. 472>;EGL= < 184.079>;FLOWLINE= < 172.740> ****************************************************************************** FLOW PROCESS FROM NODE 1005.00 TO NODE 1005.10 IS CODE = 5 UPSTREAM NODE 1005.10 ELEVATION = 173.07 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 358.00 528.80 170.80 0.00 DIAMETER (INCHES) 72 . 00 72.00 48.00 0.00 ANGLE (DEGREES) 0.00 60.00 0.00 FLOWLINE ELEVATION 173.07 172.74 175.07 0.00 CRITICAL DEPTH(FT.) 5.12 5.73 3.73 0.00 0.00===Q5 EQUALS BASIN INPUT= LACFCD AND OCEMA FLOW JUNCTION FORMtJLAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00714 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01354 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01034 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.041 FEET ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.745)+( 0.000) = 1.745 VELOCITY (FT/SEC) 12.662 19.004 13.592 0 . 000 FEET NODE 1005.10 : HGL = < 183.335>;EGL= < 185.825>;FLOWLINE= < 173.070> ****************************************************************************** FLOW PROCESS FROM NODE 1005.10 TO NODE 1006.00 IS CODE = 3 UPSTREAM NODE 1006.00 ELEVATION = 176.15 (HYDRAULIC JUMP OCCURS) CALCtJLATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 358.00 CFS CENTRAL ANGLE = 11.350 DEGREES PIPE LENGTH = 138.71 FEET PIPE DIAMETER = 72.00 INCHES MANNING'S N = 0.01300 HYDRAtJLIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 3.24 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.03 5.12 GRADUALLY VARIED FLOW PROFILE COMPUTED INFOI?MATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 0 000 3 034 24 952 12 708 18469.86 10 987 3 042 24 868 12 651 18418.89 22 384 3 050 24 785 12 595 18368.34 34 228 3 059 24 702 12 539 18318.20 46 562 3 .067 24 620 12 485 18268.47 59 432 3 .075 24 538 12 430 18219.15 72 .895 3 .083 24 457 12 377 18170.23 87 .014 3 .091 24 377 12 324 18121.71 101 .865 3 .099 24 297 12 271 18073.58 117 .536 3 .107 24 217 12 219 18025.85 134 .135 3 .115 24 138 12 168 17978.50 138 .710 3 .117 24 118 12 155 17966.29 HYDRAtJLIC JUMP: UPSTREAM RtJN ANALYSIS REStJLTS DOWNSTREAM CONTROL ASSUMED PRESStJRE HEAD(FT) = PRESStJRE FLOW PROFILE COMPUTED INFORMATION: 10.27 DISTANCE FROM CONTROL(FT) 0.000 138.710 PRESSURE HEAD(FT) 10.265 8.397 VELOCITY (FT/SEC) 12.662 12.662 SPECIFIC ENERGY(FT) 12.755 10.887 PRESSURE+ MOMENTUM (POtJNDS) 21602.22 18306.80 END OF HYDRAULIC JUMP ANALYSIS PRESStJRE+MOMENTUM BALANCE OCCURS AT 132.97 FEET UPSTREAM OF NODE 1005.10 DOWNSTREAM DEPTH = 8.475 FEET, UPSTREAM CONJUGATE DEPTH = 3.039 FEET NODE 1006.00 HGL < 179.184>;EGL= < 188.858>;FLOWLINE= < 176.150> *****************************************************************************' FLOW PROCESS FROM NODE 1006.00 TO NODE 1006.10 IS CODE = 5 UPSTREAM NODE 1006.10 ELEVATION = 177.15 (FLOW IS SUPERCRITICAL) CALCULATE JtJNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 351.20 358.00 3 .40 3 .40 DIAMETER (INCHES) 60.00 72.00 18.00 18.00 ANGLE FLOWLINE (DEGREES) ELEVATION CRITICAL DEPTH(FT.) 0 00 177 15 4 81 176 15 5 12 90 00 180 65 0 70 90 00 180 65 0 70 VELOCITY (FT/SEC) 23 .695 24.960 4.182 4.182 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02536 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02750 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02 643 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.106 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.541)+( 0.000) = 0.541 NODE 1006.10 HGL < 180.681>;EGL= < 189.399>;FLOWLINE= < 177.150> *****************************************************************************^ FLOW PROCESS FROM NODE UPSTREAM NODE 1007.00 1006.10 TO NODE ELEVATION = 1007.00 IS CODE = 1 189.52 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 351.20 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 475.66 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.50 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASStJMED FLOWDEPTH(FT) = 3.80 4.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUN] 0. 000 3 802 21 918 11 266 16627 37 7 . 743 3 789 21 990 11 303 16663 95 15. 892 3 777 22 062 11 340 16701 05 24 484 3 765 22 135 11 378 16738 69 33 560 3 753 22 209 11 417 16776 87 43 168 3 741 22 283 11 456 16815 58 53 361 3 728 22 359 11 496 16854 .85 64 204 3 716 22 435 11 537 16894 .67 75 771 3 704 22 511 11 578 16935 .04 88 149 3 692 22 589 11 620 16975 .98 101 444 3 680 22 667 11 663 17017 .48 115 783 3 667 22 746 11 707 17059 .55 131 321 3 .655 22 826 11 751 17102 .20 148 249 3 .643 22 907 11 796 17145 .43 166 811 3 .631 22 988 11 842 17189 .25 187 318 3 . 619 23 071 11 889 17233 .66 210 182 3 .606 23 154 11 936 17278 .68 235 959 3 .594 23 .238 11 984 17324 .29 265 430 3 .582 23 .322 12 034 17370 .52 299 737 3 .570 23 .408 12 084 17417 .36 340 652 3 .558 23 .495 12 134 17464 .83 391 146 3 .545 23 .582 12 186 17512 .92 456 784 3 .533 23 .670 12 239 17561 .65 475 660 3 .531 23 .688 12 249 17571 .58 NODE 1007.00 HGL = < 193. 322>;EGL= < 200.786>;FLOWLINE= < 189. 520 ****************************************************************************** FLOW PROCESS FROM NODE 1007.00 TO NODE 1007.10 IS CODE = 2 UPSTREAM NODE 1007.10 ELEVATION = 189.85 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 351.20 CFS PIPE DIAMETER = 60.00 INCHES AVERAGED VELOCITY HEAD = 7.494 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 7.494) = 0.375 NODE 1007.10 : HGL = < 193.637>;EGL= < 201.161>;FLOWLINE= < 189.850> ****************************************************************************** FLOW PROCESS FROM NODE 1007.10 TO NODE 1007.90 IS CODE = 1 UPSTREAM NODE 1007.90 ELEVATION = 195.64 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 351.20 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 242.39 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.61 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.28 4.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: CE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS 0 000 4 282 19 611 10 258 15566 52 5 350 4 256 19 715 10 295 15607 48 11 123 4 229 19 822 10 334 15650 43 17 353 4 202 19 931 10 374 15695 38 24 080 4 176 20 043 10 417 15742 34 31 350 4 149 20 158 10 462 15791 35 39 219 4 122 20 275 10 509 15842 42 47 747 4 095 20 395 10 559 15895 58 57 010 4 069 20 519 10 610 15950 85 67 095 4 .042 20 645 10 664 16008 26 78 106 4 015 20 774 10 721 16067 85 90 170 3 .989 20 906 10 779 16129 63 103 442 3 .962 21 041 10 841 16193 65 118 116 3 .935 21 179 10 905 16259 94 134 433 3 .909 21 320 . 10 971 16328 54 152 708 3 .882 21 464 11 040 16399 47 173 353 3 .855 21 612 11 112 16472 79 196 927 3 .829 21 763 11 187 16548 53 224 214 3 .802 21 917 11 265 16626 73 242 390 3 .787 22 006 11 311 16672 05 NODE 1007.90 : HGL = < 199.922>;EGL= < 205.898>;FLOWLINE= < 195.640> ****************************************************************************** FLOW PROCESS FROM NODE 1007.90 TO NODE 1008.00 IS CODE = 3 UPSTREAM NODE 1008.00 ELEVATION = 196.67 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 351.20 CFS CENTRAL ANGLE = 3.680 DEGREES PIPE LENGTH = 41.48 FEET PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 3 .56 CRITICAL DEPTH(FT) 4.8 1 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 4. 812 18.103 9 904 15157 .94 0 .384 4 . 762 18.198 9 907 15162 .12 1 .495 4. 711 18.304 9 917 15174 .25 3 .299 4. 661 18.421 9 934 15193 .86 5 .785 4. 611 18.547 9 956 15220 .64 8 . 964 4. 561 18.683 9 985 15254 .39 12 .862 4. 511 18.829 10 020 15294 .97 17 .517 4. 461 18.984 10 061 15342 .32 22 .987 4. 411 19.148 10 108 15396 .42 29 .343 4. 361 19.321 10 161 15457 .27 36 .678 4. 311 19.503 10 221 15524 .91 41 .480 4. 282 19.611 10 258 15566 .52 NODE 100 8.00 : HGL = < 201. 482>;EGL= < 206.574>;FLOWLINE= < 196. 670> ****************************************************************************** FLOW PROCESS FROM NODE 1008.00 TO NODE 1008.10 IS CODE = 5 UPSTREAM NODE 1008.10 ELEVATION = 197.17 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETIEK ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 280.10 54.00 0.00 197.17 4.35 17.612 DOWNSTREAM 351.20 60.00 - 196.67 4.81 18.109 LATERAL #1 46.21 30.00 90.00 199.67 2.25 9.414 LATERAL #2 24.89 24.00 90.00 199.67 1.76 7.923 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02029 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01587 AVEI^GED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.01808 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0.108 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JtJNCTION LOSSES = ( 2.343)+( 0.000) = 2.343 NODE 1008.10 : HGL = < 204.101>;EGL= < 208.917>;FLOWLINE= < 197.170> ****************************************************************************** FLOW PROCESS FROM NODE 1008.10 TO NODE 1008.90 IS CODE = 3 UPSTREAM NODE 1008.90 ELEVATION = 199.38 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 280.10 CFS PIPE DIAMETER = 54.00 INCHES CENTRAL ANGLE = 6.160 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 69.40 FEET BEND COEFFICIENT(KB) = 0.06540 FLOW VELOCITY = 17.61 FEET/SEC. VELOCITY HEAD = 4.816 FEET HB=KB*(VELOCITY HEAD) = ( 0.065)*( 4.816) = 0.315 SF=(Q/K)**2 = (( 280.10)/( 1966.498))**2 = 0.02029 HF=L*SF = ( 69.40)*(0.02029) = 1.408 TOTAL HEAD LOSSES = HB + HF = ( 0.315)+( 1.408) = 1.723 NODE 1008.90 : HGL = < 205.824>;EGL= < 210.640>;FLOWLINE= < 199.380> ****************************************************************************** FLOW PROCESS FROM NODE 1008.90 TO NODE 1009.00 IS CODE = 1 UPSTREAM NODE 1009.00 ELEVATION = 203.49 {BYDRAVhXC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = 280.10 CFS 134.29 FEET PIPE DIAMETER = 54.00 INCHES MANNING'S N = 0.01300 HYDRAtJLIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 3 .08 CRITICAL DEPTH(FT) 4.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 6.430 13 .216 20.389 27.985 36.046 FLOW DEPTH (FT) 3.441 3 .427 3 .412 3.398 3 .384 3 .370 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 21.458 10.595 21.548 10.641 21.640 10.688 21.732 10.736 21.826 10.785 21.921 10.836 PRESStJRE+ MOMENTUM (POtJNDS) 12910.35 12947.69 12985.72 13024.45 13063.88 13104.02 44 620 3 355 22 017 10 887 13144 88 53 762 3 341 22 114 10 940 13186 46 63 538 3 327 22 213 10 993 13228 79 74 025 3 313 22 313 11 048 13271 85 85 314 3 298 22 414 11 104 13315 67 97 517 3 284 22 517 11 162 13360 25 110 770 3 270 22 621 11 220 13405 60 125 242 3 255 22 726 11 280 13451 74 134 290 3 .247 22 786 11 315 13478 34 HYDRAtJLIC JUMP: UPSTREAM RUN ANALYSIS REStJLTS DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD(FT) = 6.44 PRESStJRE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 134.290 PRESStJRE HEAD(FT) 6.444 5.058 VELOCITY (FT/SEC) 17.612 17.612 SPECIFIC ENERGY(FT) 11.260 9.874 PRESSURE+ MOMENTUM(POUNDS) 13721.55 12346.51 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 34.54 FEET UPSTREAM OF NODE 1008.90 DOWNSTREAM DEPTH = 6.087 FEET, UPSTREAM CONJUGATE DEPTH = 3.282 FEET NODE 1009.00 : HGL = < 206.931>;EGL= < 214.085>;FLOWLINE= < 203.490> ****************************************************************************** FLOW PROCESS FROM NODE 1009.00 TO NODE 1009.10 IS CODE = 2 UPSTREAM NODE 1009.10 ELEVATION = 203.82 (FLOW IS SUPERCRITICAL) CALCtJLATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 280.10 CFS PIPE DIAMETER = 54.00 INCHES AVERAGED VELOCITY HEAD = 7.173 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 7.173) = 0.359 NODE 1009.10 : HGL = < 207.252>;EGL= < 214.444>;FLOWLINE= < 203.820> ****************************************************************************** FLOW PROCESS FROM NODE 1009.10 TO NODE 1010.00 IS CODE = 1 UPSTREAM NODE 1010.00 ELEVATION = 208.59 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 280.10 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 216.74 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.54 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 3.28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.35 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 3 .279 22 556 11 183 13377 19 10 389 3 .289 22 481 11 141 13344 63 21 146 3 .299 22 407 11 100 13312 47 32 302 3 .310 22 333 11 059 13280 71 43 897 3 .320 22 261 11 019 13249 34 55 971 3 .330 22 189 10 980 13218 37 68 575 3 .341 22 117 10 941 13187 79 81 766 3 .351 22 047 10 903 13157 59 95 611 3 .361 21 977 10 866 13127 77 110 189 3 .372 21 907 10 829 13098 33 125 .596 3 .382 21 839 10 792 13069 27 141 .946 3 .392 21 771 10 756 13040 59 159 .378 3 .403 21 703 10 721 13012 27 178 .066 3 .413 21 636 10 687 12984 32 198.230 216.740 3.423 3.432 21.570 21.515 10.652 10.624 12956.73 12933.72 NODE 1010.00 HGL < 211.869>;EGL= < 219.773>;FLOWLINE= < 208.590> ****************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1010.10 IS CODE = 2 UPSTREAM NODE 1010.10 ELEVATION = 208.92 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 280.10 CFS PIPE DIAMETER = 54.00 INCHES AVERAGED VELOCITY HEAD = 7.947 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 7.947) = 0.397 NODE 1010.10 : HGL = < 212.182>;EGL= < 220.171>;FL0WLINE= < 208.920> ****************************************************************************** FLOW PROCESS FROM NODE 1010.10 TO NODE 1011.00 IS CODE = 1 UPSTREAM NODE 1011.00 ELEVATION = 213.25 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 280.10 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 196.81 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.54 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASStJMED FLOWDEPTH(FT) = 2.98 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.35 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ OL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTtJM (POUN 0 000 2 .982 25 030 12 716 14502 06 12 462 3 .004 24 820 12 576 14403 98 25 284 3 .026 24 615 12 441 14308 33 38 502 3 .049 24 414 12 310 14215 06 52 151 3 .071 24 217 12 183 14124 10 66 275 3 .093 24 024 12 061 14035 42 80 924 3 .115 23 835 11 943 13948 97 96 155 3 .138 23 650 11 828 13864 69 112 036 3 .160 23 468 11 717 13782 54 128 647 3 .182 23 290 11 610 13702 49 146 082 3 .204 23 116. 11 507 13624 47 164 456 3 .226 22 945 11 406 13548 47 183 910 3 .249 22 777 11 310 13474 43 196 810 3 .262 22 675 11 251 13429 29 NODE 1011.00 : HGL = < 216.232>;EGL= < 225.966>;FLOWLINE= < 213.250> ****************************************************************************** FLOW PROCESS FROM NODE 1011.00 TO NODE 1011.10 IS CODE = 5 UPSTREAM NODE 1011.10 ELEVATION = 214.75 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 198 70 36.00 0.00 214.75 2 99 32 324 DOWNSTREAM 280 10 54.00 -213.25 4 35 25 037 LATERAL #1 75 40 36.00 60.00 214.75 2 72 11 183 LATERAL #2 6 00 18.00 90.00 215.00 0 95 3 395 Q5 0 00 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMtTLAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.09029 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03357 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06193 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.248 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 7.444)+( 0.000) = 7.444 NODE 1011.10 : HGL = < 217.186>;EGL= < 233.410>;FLOWLINE= < 214.750> ****************************************************************************** FLOW PROCESS FROM NODE 1011.10 TO NODE 1012.00 IS CODE = 1 UPSTREAM NODE 1012.00 ELEVATION = 240.32 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 198.70 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 274.45 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.40 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.65 2.99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 647 30 093 16 717 12101 11 5 494 2 637 30 182 16 791 12131 30 11 269 2 627 30 273 16 866 12162 12 17 349 2 616 30 365 16 943 12193 56 23 762 2 606 30 459 17 022 12225 64 30 540 2 596 30 555 17 102 12258 35 37 721 2 586 30 652 17 184 12291 70 45 347 2 576 30 750 17 269 12325 68 53 469 2 566 30 851 17 355 12360 30 62 148 2 556 30 953 17 443 12395 57 71 454 2 546 31 056 17 532 12431 48 81 475 2 536 31 162 17 624 12468 04 92 316 2 526 31 268 17 718 12505 25 104 108 2 516 31 377 17 813 12543 12 117 017 2 506 31 487 17 911 12581 65 131 257 2 .496 31 599 18 Oil 12620 84 147 107 2 486 31 713 18 113 12660 70 164 948 2 .476 31 828 18 217 12701 24 185 .313 2 .466 31 945-18 323 12742 45 208 .983 2 .456 32 064 18 431 12784 35 237 .169 2 .446 32 185 18 541 12826 93 271 .900 2 .436 32 307 18 .654 12870 22 274 450 2 .436 32 314 18 .660 12872 69 NODE 1012.00 : HGL = < 242.967>;EGL= < 257.037>;FLOWLINE= < 240.320> ****************************************************************************** FLOW PROCESS FROM NODE 1012.00 TO NODE 1012.10 IS CODE = 5 UPSTREAM NODE 1012.10 ELEVATION = 240.65 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 188.50 198.70 10.20 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 36.00 36.00 24.00 0.00 0.00 45.00 0.00 FLOWLINE CRITICAL VELOCITY ELEVATION DEPTH(FT.) (FT/SEC) 240.65 2.99 32.211 240.32 2.99 30.103 241.32 1.14 3.688 0.00 0.00 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.09012 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07964 AVERAGED FRICTION SLOPE IN JtJNCTION ASSUMED AS 0.08488 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.340 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.038)+( 0.000) = 2.038 NODE 1012.10 : HGL = < 242.965>;EGL= < 259.076>;FLOWLINE= < 240.650> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 1012.40 1012.10 TO NODE ELEVATION = 1012.40 IS CODE = 1 257.11 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 188.50 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 180.96 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.30 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.34 2.99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ICE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ tOL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 2 338 31 885 18 134 12040 .14 6. 020 2 336 31 903 18 151 12046 .12 12. 303 2 335 31 921 18 167 12052 .12 18. 871 2 .334 31 938 18 183 12058 .12 25. 751 2 .332 31 956 18 200 12064 .14 32. 974 2 .331 31 974 18 216 12070 .17 40. 575 2 .330 31 992 18 232 12076 .22 48. 595 2 .329 32 010 18 249 12082 .27 57. 081 2 .327 32 028 18 265 12088 .34 66. 090 2 .326 32 046 18 282 12094 .42 75 691 2 .325 32 064 18 299 12100 .51 85 964 2 .323 32 082 18 315 12106 .61 97 009 2 .322 32 100 18 332 12112 .73 108 9B0 2 .321 32 118 18 349 12118 .86 121 943 2 .319 32 136 18 365 12125 .00 136 189 2 .318 32 154 18 382 12131 .15 151 952 2 .317 32 172 18 399 12137 .31 169 591 2 .315 32 191, 18 416 12143 .49 180 960 2 .315 32 201 18 426 12147 . 01 1012.40 HGL = < 259. 448>;EGL= < 275.244>;FLOWLINE= < 257. 110> ****************************************************************************** FLOW PROCESS FROM NODE 1012.40 TO NODE 1012.50 IS CODE = 3 UPSTREAM NODE 1012.50 ELEVATION = 267.19 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 188.50 CFS CENTRAL ANGLE = 9.830 DEGREES PIPE LENGTH = 110.68 FEET PIPE DIAMETER = 36.00 MANNING'S N = 0.01300 INCHES NORMAL DEPTH(FT) = 2.30 CRITICAL DEPTH(FT) = 2.99 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) 2.38 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 5.843 11.947 FLOW DEPTH (FT) 2.377 2.374 2 .371 VELOCITY (FT/SEC) 31.375 31.413 31.450 SPECIFIC ENERGY(FT) 17 .672 17.706 17.739 PRESSURE+ MOMENTUM(POUNDS) 11868.26 11880.81 11893.41 18 338 2 368 31 488 17 773 11906 08 25 040 2 365 31 525 17 807 11918 80 32 084 2 362 31 563 17 841 11931 58 39 506 2 359 31 602 17 876 11944 42 47 346 2 356 31 640 17 911 11957 31 55 653 2 353 31 678 17 946 11970 27 64 482 2 350 31 717 17 981 11983 28 73 902 2 347 31 756 18 016 11996 35 83 994 2 345 31 795 18 051 12009 48 94 857 2 342 31 834 18 087 12022 67 106 .615 2 339 31 873 18 123 12035 92 110 680 2 .338 31 885 18 134 12040 14 NODE 1012.50 HGL < 269.567>;EGL= < 284.862>;FLOWLINE= < 267.190> ****************************************************************************** FLOW PROCESS FROM NODE 1012.50 TO NODE 1012.60 IS CODE = 2 UPSTREAM NODE 1012.60 ELEVATION = 267.52 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 188.50 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 15.538 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*(15.538) = 0.777 NODE 1012.60 : HGL = < 269.859>;EGL= < 285.639>;FLOWLINE= < 267.520> ****************************************************************************** FLOW PROCESS FROM NODE 1012.60 TO NODE 1012.90 IS CODE = 3 UPSTREAM NODE 1012.90 ELEVATION = 289.24 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 188.50 CFS CENTRAL ANGLE = 21.280 DEGREES PIPE LENGTH = 238.61 FEET PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2 .30 CRITICAL DEPTH(FT) 2.99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 . 492 30 019 16 494 11417. 11 5 .353 2. 485 30 101 16 563 11443. 95 10 .969 2 . 477 30 183 16 633 11471. 15 16 .870 2 470 30 267 16 703 11498. 69 23 .083 2 462 30 351 16 775 11526. 58 29 .638 2 455 30 436 16 848 11554. 82 36 . 571 2 447 30 522 16 922 11583 . 41 43 .922 2 440 30 610 16 998 11612. 36 51 .740 2 432 30 698 17 074 11641. 67 60 .079 2 425 30 787 17 152 11671. 33 69 .009 2 417 30 877 17 230 11701. 36 78 .611 2 410 30 968 17 310 , 11731. 75 88 .984 2 402 31 060 17 391 11762. 52 100 .253 2 395 31 153 17 474 11793 . 65 112 . 572 2 387 31 247 17 557 11825. 15 126 .143 2 379 31 342 17 642 11857. 03 141 .230 2 372 31 438 17 728 11889. 28 158 .191 2 364 31 535 17 816 11921. 92 177 .528 2 357 31 633 17 904 11954. 94 199 .976 2 349 31 732 17 994 11988. 35 226 .675 2 342 31 832 18 086 12022. 14 238 .610 2 339 31 869 18 119 12034. 52 NODE 1012.90 HGL < 291.732>;EGL= < 305.734>;FLOWLINE= < 289.240> ****************************************************************************** FLOW PROCESS FROM NODE 1012.90 TO NODE 1013.00 IS CODE = 3 UPSTREAM NODE 1013.00 ELEVATION = 293.41 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 188.50 CFS CENTRAL ANGLE = 4.900 DEGREES PIPE LENGTH = 45.74 FEET PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.30 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.58 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.99 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2 .575 29 .182 15.807 11144 .26 4.983 2 .564 29 .286 15.891 11177 .91 10.230 2 .554 29 .392 15.977 11212 .25 15.762 2 .543 29 .500 16.064 11247 .29 21.607 2 .532 29 .610 16.154 11283 .02 27.795 2 .521 29 .721 16.246 11319 .45 34.361 2 .510 29 .835 16.340 11356 .59 41.346 2 .499 29 .950 16.436 11394 .45 45.740 2 .492 30 .019 16.494 11417 .11 NODE 1013.00 : HGL = < 295.985>;EGL= < 309.217>;FLOWLINE= < 293. 410> ****************************************************************************** FLOW PROCESS FROM NODE 1013.00 TO NODE 1013.10 IS CODE = 5 UPSTREAM NODE 1013.10 ELEVATION = 293.74 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES ) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 184.10 36.00 0.00 293.74 2.99 30.297 DOWNSTREAM 188.50 36.00 -293.41 2.99 29.191 LATERAL #1 2.20 18.00 90.00 295.24 0.56 2.207 LATERAL #2 2.20 18.00 90.00 295.24 0.56 2.207 Q5 0.00== =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMtJLAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07935 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07416 AVERAGED FRICTION SLOPE IN JtJNCTION ASSUMED AS 0.07675 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.307 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.182)+( 0.000) = 1.182 NODE 1013.10 : HGL = < 296.146>;EGL= < 310.399>;FLOWLINE= < 293.740> ****************************************************************************** FLOW PROCESS FROM NODE 1013.10 TO NODE 1013.90 IS CODE = 3 UPSTREAM NODE 1013.90 ELEVATION = 302.84 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 184.10 CFS CENTRAL ANGLE = 11.800 DEGREES PIPE LENGTH = 109.05 FEET PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.35 CRITICAL DEPTH(FT) = 2.99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.47 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 473 29 529 16 021 10978 43 5 731 2 468 29 584 16 066 10995 98 11 729 2 463 29 639 16 112 11013 68 18 017 2 458 29 694 16 158 11031 53 24 624 2 453 29 750 16 204 11049 53 31 579 2 448 29 806 16 251 11067 67 38 919 2 443 29 863 16 299 11085 97 46 685 2 438 29 920 16 347 11104 42 54 926 2 432 29 978 16 396 11123 03 63 700 2 427 30 036 16 445 11141 79 73 075 2 .422 30 094 16 494 11160 70 83 135 2 .417 30 153 16 544 11179 76 93 981 2 .412 30 212 16 595 11198 98 105 .738 2 .407 30 272 16 .646 11218 36 109 .050 2 .406 30 .287 16 .659 11223 .39 NODE 1013.90 : HGL = < 305.313>;EGL= < 318.861>;FLOWLINE= < 302.840> ****************************************************************************** FLOW PROCESS FROM NODE 1013.90 TO NODE 1014.00 IS CODE = 1 UPSTREAM NODE 1014.00 ELEVATION = 305.27 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 184.10 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 29.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.35 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.50 2.99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.501 29.231 15 .777 10883.09 5.648 2.495 29.293 15.828 10902 .91 11.565 2 .489 29.356 15.879 10922.93 17 .773 2.483 29.419 15.930 10943.16 24.299 2.477 29.483 15.983 10963 .59 29.250 2.473 29.529 16.021 10978.43 NODE 1014.00 HGL = < 307. 771>;EGL= < 321.047>;FLOWLINE= < 305.270> ****************************************************************************** FLOW PROCESS FROM NODE 1014.00 TO NODE 1014.10 IS CODE = 2 UPSTREAM NODE 1014.10 ELEVATION = 305.60 (FLOW IS SUPERCRITICAL) CALCtJLATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 184.10 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 13.467 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*(13.467) = 0.673 NODE 1014.10 : HGL = < 308.062>;EGL= < 321.721>;FLOWLINE= < 305.600> ****************************************************************************** FLOW PROCESS FROM NODE 1014.10 TO NODE 1015.00 IS CODE = 3 UPSTREAM NODE 1015.00 ELEVATION = 328.35 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 184.10 CFS CENTRAL ANGLE = 25.300 DEGREES PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 PIPE LENGTH = 284.31 FEET NORMAL DEPTH(FT) 2.40 CRITICAL DEPTH(FT) = 2.99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStTRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 990 26 045 13 530 9952 13 1 292 2 966 26 090 13 542 9957 46 3 892 2 942 26 154 13 571 9970 05 7 268 2 919 26 234 13 612 9988 13 11 259 2 895 26 327 13 664 10010 86 15 805 2 871 26 431 13 726 10037 75 20 888 2 847 26 546 13 797 10068 46 26 516 2 824 26 671 13 876 10102 77 32 715 2 800 26 805 13 964 10140 51 39 526 2 776 26 949 14 060 10181 54 47 009 2 752 27 101 14 164 10225 79 55 237 2 728 27 262 14 276 10273 19 64 307 2 705 27 431 14 397 10323 68 74 342 2 681 27 609 14 525 10377 25 85 500 2 657 27 796 14 661 10433 87 97 988 2 633 27 990 14 806 10493 55 112 077 2 610 28 193 14 960 10556 28 128 141 2 586 28 405 15 122 10622 09 146 701 2 562 28 625 15 293 10691 00 168 527 2 538 28 853 15 473 10763 03 194 808 2 515 29 090 15 663 10838 23 227 546 2 491 29 336 15 863 10916 64 270 488 2 467 29 591 16 .072 10998 31 284 310 2 .462 29 .649 16 .121 11017 10 NODE 1015.00 : HGL = < 331.340>;EGL= < 341.880>;FLOWLINE= < 328.350> ****************************************************************************** FLOW PROCESS FROM NODE 1015.00 TO NODE 1015.10 IS CODE = 5 UPSTREAM NODE 1015.10 ELEVATION = 328.68 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTtJRE) CALCULATE JtJNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 DIAMETER ANGLE (INCHES) (DEGREES) FLOW (CFS) 177.70 184.10 6.40 0.00 0.00===Q5 EQUALS BASIN INPUT= 36.00 36.00 24.00 0.00 0.00 45.00 0.00 FLOWLINE ELEVATION 328.68 328.35 329.68 0. 00 CRITICAL VELOCITY DEPTH(FT. 2 .99 2.99 0.90 0.00 (FT/SEC) 27.569 26.053 2 .355 0.000 LACFCD AND OCEMA FLOW JtJNCTION FORMtJLAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JtJNCTION ASSUMED AS 0.06932 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.277 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.172)+( 0.000) = 1.172 NODE 1015.10 : HGL = < 331.250>;EGL= < 343.052>;FLOWLINE= < 328.680> 06610 07255 0.000 FEET I-***************************************************************************** FLOW PROCESS FROM NODE 1015.10 TO NODE 1016.00 IS CODE = 3 UPSTREAM NODE 1016.00 ELEVATION = 335.87 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 177.7 0 CFS CENTRAL ANGLE = 7.800 DEGREES PIPE LENGTH = 89.07 FEET PIPE DIAMETER = 3 6.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.31 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.99 2.99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStTRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 989 25 142 12 810 9317 11 0 898 2 961 25 194 12 824 9323 13 2 848 2 934 25 271 12 856 9337 53 5 490 2 907 25 365 12 904 9358 25 8 703 2 879 25 476 12 964 9384 36 12 439 2 852 25 600 13 035 9415 30 16 685 2 825 25 737 13 117 9450 72 21 449 2 798 25 886 13 209 9490 36 26 756 2 770 26 047 13 312 9534 05 32 646 2 743 26 219 13 424 9581 67 39 172 2 716 26 401 13 546 9633 14 46 404 2 688 26 595 13 678 9688 40 54 434 2 661 26 799 13 820 9747 42 63 377 2 634 27 014 13 973 9810 21 73 383 2 607 27 240 14 .135 9876 75 84 645 2 579 27 476 14 .309 9947 09 89 070 2 .570 27 560 14 .372 9972 34 NODE 1016.00 HGL < 338.859>;EGL= < 348.680>;FLOWLINE= < 335.870> ****************************************************************************** FLOW PROCESS FROM NODE 1016.00 TO NODE 1016.10 IS CODE = 5 UPSTREAM NODE 1016.10 ELEVATION = 336.20 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 140.60 177 .70 37.10 0.00 DIAMETER (INCHES) 36.00 36.00 24.00 0.00 ANGLE (DEGREES) 0.00 30.00 0.00 FLOWLINE ELEVATION 336.20 335.87 336.70 0.00 CRITICAL DEPTH(FT.) 2.97 2.99 1.94 0.00 VELOCITY (FT/SEC) 19.891 25.149 11.809 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JtJNCTION ASSUMED AS 0.05595 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.224 FEET ENTRANCE LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 2.228)+( 0.000) = 2.228 04443 06747 0.000 FEET JUNCTION LOSSES = JUNCTION LOSSES = NODE 1016.10 : HGL = < 344.764>;EGL= < 350.908>;FLOWLINE= < 336.200> ***************************************************************************** FLOW PROCESS FROM NODE 1016.10 TO NODE 1017.00 IS CODE = 1 UPSTREAM NODE 1017.00 ELEVATION = 353.51 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 140.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 226.48 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.96 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.05 2.97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: CE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 046 27 370 13 686 7748 22 4 777 2 043 27 421 13 726 7760 96 9 772 2 039 27 472 13 766 7773 77 15 005 2 036 27 523 13 806 7786 65 20 499 2 032 27 575 13 847 7799 60 26 278 2 029 27 626 13 888 7812 61 32 372 2 026 27 678 13 929 7825 69 38 815 2 022 27 731 13 970 7838 83 45 647 2 019 27 783 14 012 7852 05 52 916 2 015 27 836 14 054 7865 34 60 677 2 012 27 889 14 097 7878 69 68 999 2 009 27 942 14 139 7892 12 77 965 2 005 27 995 14 182 7905 61 87 678 2 002 28 049 14 226 7919 18 98 269 1 998 28 103 14 269 7932 81 109 904 1 995 28 157 14 313 7946 52 122 806 1 992 28 .211 14 358 7960 30 137 272 1 988 28 266 14 402 7974 15 153 722 1 985 28 .321 14 .447 7988 08 172 768 1 981 28 .376 14 .492 8002 07 195 364 1 978 28 .432 14 .538 8016 14 223 .102 1 .975 28 .487 14 .584 8030 28 226 480 1 .974 28 .493 14 .588 8031 62 HYDRAtJLIC JUMP: UPSTREAM RtJN ANALYSIS RESULTS EKDWNSTREAM CONTROL ASSUMED PRESStJRE HEAD (FT) = 8.56 PRESStJRE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 0 000 8 .564 19.891 14 708 8535 42 173 909 3 .000 19.891 9 144 6081 22 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 173 909 3 .000 19.885 9 144 6081 22 173 938 2 .999 19.885 9 143 6080 79 173 964 2 .998 19.885 9 142 6080 43 173 987 2 .997 19.886 9 141 6080 09 174 007 2 .996 19.887 9 140 6079 79 174 026 2 .994 19.887 9 140 6079 51 174 044 2 .993 19.888 9 139 6079 25 174 060 2 .992 19.889 9 139 6079 01 174 074 2 .991 19.'890 9 138 6078 79 174 .088 2 .990 19.891 9 138 6078 59 174 .100 2 .989 19.892 9 137 6078 40 174 .112 2 .988 19.893 9 137 6078 23 174 .122 2 .987 19.895 9 136 6078 07 174 .132 2 .986 19.896 9 136 6077 93 174 .140 2 .985 19.897 9 136 6077 80 174 148 2 983 19 898 9 136 6077 69 174 154 2 982 19 900 9 135 6077 58 174 160 2 981 19 901 9 135 6077 49 174 166 2 980 19 903 9 135 6077 41 174 170 2 979 19 904 9 135 6077 34 174 174 2 978 19 906 9 135 6077 29 174 177 2 977 19 908 9 135 6077 24 174 179 2 976 19 909 9 134 6077 20 174 181 2 975 19 911 9 134 6077 18 174 182 2 974 19 913 9 134 6077 16 174 182 2 972 19 914 9 134 6077 16 226 480 2 972 19 914 9 134 6077 16 END OF HYDIIAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 37.06 FEET UPSTREAM OF NODE 1016.10 DOWNSTREAM DEPTH = 7.37 8 FEET, UPSTREAM CONJUGATE DEPTH = 1.979 FEET NODE 1017.00 : HGL = < 355.556>;EGL= < 367.196>;FLOWLINE= < 353.510> ****************************************************************************** FLOW PROCESS FROM NODE 1017.00 TO NODE 1017.10 IS CODE = 5 UPSTREAM NODE 1017.10 ELEVATION = 353.84 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 134.20 140.60 4.10 2.30 DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 36.00 36.00 18.00 18.00 0.00 90.00 90.00 353.84 353.51 355.34 355.34 0.00===Q5 EQUALS BASIN INPUT=== 2.97 2.97 0.78 0.57 29.103 27.379 4.449 3.704 LACFCD AND OCEMA FLOW JtJNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.07442 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.298 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.659)+( 0.000) = 1.659 08090 06794 0.000 FEET NODE 1017.10 : HGL = < 355.703>;EGL= < 368.854>;FLOWLINE= < 353.840> *************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 1018.00 1017.10 TO NODE ELEVATION = ************************ 1018.00 IS CODE = 3 374.39 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 134.20 CFS CENTItAL ANGLE = 18.800 DEGREES PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 PIPE LENGTH = 229.43 FEET NORMAL DEPTH(FT) 1.80 CRITICAL DEPTH(FT) 2.97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.56 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.130 4.455 6.991 9.757 12.775 FLOW DEPTH (FT) 2 .562 2 .531 2 .501 2.470 2.440 2.410 VELOCITY (FT/SEC) 20.869 21.083 21.308 21.544 21.790 22.048 SPECIFIC ENERGY(FT) 9.329 9.438 9.556 9.682 9.817 9.962 PRESSURE+ MOMENTUM (POtJNDS) 5904.34 5948.01 5994.50 6043.87 6096.20 6151.54 16.071 2 379 22 317 10. 117 6210.00 19.676 2 349 22 597 10 283 6271.64 23 .625 2 318 22 890 10 459 6336.58 27.962 2 288 23 195 10 647 6404.92 32.739 2 257 23 513 10 848 6476.78 38.016 2 227 23 845 11 061 6552.28 43 .872 2 196 24 190 11 289 6631.57 50.402 2 166 24 550 11 531 6714.79 57 .726 2 136 24 926 11 789 6802.11 65.999 2 105 25 317 12 064 6893.69 75.427 2 075 25 724 12 356 6989.72 86.287 2 044 26 149 12 668 7090.39 98.970 2 014 26 592 13 001 7195.93 114.048 1 983 27 054 13 355 7306.56 132.408 1 953 27 535 13 733 7422.53 155.537 1 .923 28 038 14 137 7544.09 186.225 1 .892 28 562 14 568 7671.55 229.430 1 .863 29 094 15 014 7801.18 1018.00 HGL = < 376 952>;EGL= < 383.719>;FLOWLINE= < 374.390> ****************************************************************************** FLOW PROCESS FROM NODE 1018.00 TO NODE 1018.10 IS CODE = 2 UPSTREAM NODE 1018.10 ELEVATION = 374.72 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 134.20 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 6.772 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 6.772) = 0.339 NODE 1018.10 : HGL = < 377.279>;EGL= < 384.057>;FLOWLINE= < 374.720> ****************************************************************************** FLOW PROCESS FROM NODE 1018.10 TO NODE 1019.00 IS CODE = 3 UPSTREAM NODE 1019.00 ELEVATION = 382.92 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 134.20 CFS CENTRAL ANGLE = 16.800 DEGREES PIPE LENGTH = 205.10 FEET PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.48 & 3.00 CRITICAL DEPTH(FT) = NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. 2.97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.97 GFIADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.864 2 .843 5.597 8.987 12.949 17 .462 22.528 28.169 34.420 41.334 48.980 57.450 66.859 77.356 89.137 102.462 FLOW DEPTH (FT) 2.966 946 927 907 888 868 849 829 809 790 770 751 731 711 692 672 653 VELOCITY (FT/SEC) 19.018 19.056 19.102 19.155 19.213 19.277 19.346 19.421 19.500 19.583 19.671 19.763 19.860 19.961 20.066 20.175 20.288 SPECIFIC ENERGY(FT) 8.586 8.589 8.596 8.608 8.623 8.642 8.664 8.689 8.717 8.748 8.782 8.819 8.859 8.902 8.948 8.997 9.048 PRESSURE+ MOMENTtJM (POUNDS) 5594.17 5595.43 5598.75 5603.84 5610.52 5618.67 5628.20 5639.05 5651.17 5664.50 5679.04 5694.74 5711.59 5729.59 5748.71 5768.96 5790.34 117.686 2 633 20.406 9.103 5812.83 135.306 2 613 20.527 9.161 5836.46 156.055 2 594 20.653 9.222 5861.21 181.070 2 574 20.783 9 .286 5887.10 205.100 2 559 20.886 9.337 5907.83 1019.00 HGL = < 385 886>;EGL= < 391.506>;FLOWLINE= < 382.920> t***************************************************************************** FLOW PROCESS FROM NODE 1019.00 TO NODE 2000.00 IS CODE = 5 UPSTREAM NODE 2000.00 ELEVATION = 383.25 (FLOW IS AT CRITICAL DEPTH) CALCtJLATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 110.00 36.00 30.00 383.25 2.93 15.562 DOWNSTREAM 134.20 36.00 -382.92 2 .97 19.023 LATERAL #1 24.20 24.00 0.00 384.25 1.74 7.703 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JtJNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02720 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03715 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03217 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.129 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.158)+{ 0.000) = 2.158 NODE 2000.00 : HGL = < 389.903>;EGL= < 393.664>;FLOWLINE= < 383.250> ****************************************************************************** FLOW PROCESS FROM NODE 2000.00 TO NODE 2 002.00 IS CODE = 1 UPSTREAM NODE 2002.00 ELEVATION = 3 84.85 (FLOW IS tJNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 110.00 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 31.40 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 110.00)/( 666.979))**2 = 0.02720 HF=L*SF = ( 31.40)*(0.02720) = 0.854 NODE 2002.00 : HGL = < 390.757>;EGL= < 394.518>;FLOWLINE= < 384.850> ****************************************************************************** FLOW PROCESS FROM NODE 2002.00 TO NODE 2005.00 IS CODE = 3 UPSTREAM NODE 2005.00 ELEVATION = 387.65 (FLOW IS UNDER PRESStJRE) CALCtJLATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 110.00 CFS PIPE DIAMETER = 36.00 INCHES CENTRAL ANGLE = 26.330 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 55.20 FEET BEND COEFFICIENT(KB) = 0.13522 FLOW VELOCITY = 15.56 FEET/SEC. VELOCITY HEAD = 3.760 FEET HB=KB*(VELOCITY HEAD) = { 0.135)*( 3.760) = 0.508 SF=(Q/K)**2 = (( 110.00)/( 666.987))**2 = 0.02720 HF=L*SF = ( 55.20)* (0.02720) = 1.501 TOTAL HEAD LOSSES = HB + HF = ( 0.508)+( 1.501) = 2.010 NODE 2005.00 : HGL = < 392.767>;EGL= < 396.527>;FLOWLINE= < 387.650> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 2005.00 FLOWLINE ELEVATION = 387.65 ASStJMED UPSTREAM CONTROL HGL = 390.58 FOR DOWNSTREAM RtJN ANALYSIS CDS UNIT HYDRAUUC CALCULATIONS BRESSI RANCH EL FUERTE STREET STORM DRAIN AT POINSETTIA LANE JOB NO. 2199.00 PROJECT PARAMETERS CDS Model PSW 70_70 Q treat 26 cfs Q system 599.7 cfs Total Flow in Storm Drain Hods 1.95 ft Required Head Difference to Process Qtreat D/S Pipe Size 6 ft D/S Pipe Slope 0.0765 ft/ft U/S Pipe Size 6 ft U/S Pipe Slope 0.0664 ft/ft WEIR HEIGHT CALCULATION SUMMARY WEIR HEIGHT = Y d/s (@ Q treat) + H eds Y d/s Case 1 1.68 ft Critical Dejjth in CDS Outlet Y d/s Case 2A 1.53 ft Critical Depth in d/s Pipe + Hcont (supercritical flows) Y d/s Case 2B ft Normal Depth in d/s Pipe + Hcont (subcritical flows) Y d/s Case 3 ft Y d/s from Receiving Water Level Controlling Y d/s 1.68 ft Calculated Weir Height 3.63 ft Controlling Y d/s + H cds Use Weir Heiqht 3'-8" HYDRAULIC IMPACT OF CDS WEIR BOX AT SYSTEM FLOW Pipe Invert El d/s of CDS 149 HGL El d/s of CDS 154.83 Critical Depth in downstream pipe Weir Box Height 12 ft Weir Box Width 12 ft Hcont 1.75 ft Contraction Loss from Weir Box to d/s Pipe Hweir 2.92 ft Head Loss Created by Flow Through Orifice Over Weir Hexp 3.49 ft Expansion Loss from u/s Pipe to Weir Box Hfriction HGL El u/s of CDS 162.99 HGL d/s + Head Losses Increase in HGL 8.16 ft ****************************************************************************** PIPE-FLOW HYDRAULICS COMPtlTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONStJLTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92019 619-235-6471 ************************** DESCRIPTION OF STtJDY ************************** * BRESSI RANCH - EL FUERTE STREET * * LATERAL 2, SHEET 10 * * lOO-YEAR ULTIMATE Q ************************ ************************************************** FILE NAME: L046.DAT TIME/DATE OF STtJDY: 15:48 08/10/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RtJN NODE MODEL PRESStJRE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1004.50- 3.19^ 280.29 0.38 59.68 } FRICTION 1004.60- 2.38* 191.30 0.68 Dc 39.40 } CATCH BASIN 1004.60- 2.44* 186.81 0.68 Dc 13.97 MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAtJLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CtJRRENT LACRD, LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1004.50 FLOWLINE ELEVATION = 167.53 PIPE FLOW = 3.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 170.720 FEET NODE 1004.50 : HGL = < 170.720>;EGL= < 170.771>;FLOWLINE= < 167.530> ****************************************************************************** FLOW PROCESS FROM NODE 1004.50 TO NODE 1004.60 IS CODE = 1 UPSTREAM NODE 1004.60 ELEVATION = 168.34 (FLOW IS tJNDER PRESSURE) CALCtJLATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING'S N = 0.01300 SF=(Q/K)*^2 = (( 3.20)/( 104.954))^^2 = 0.00093 HF=L^SF = ( 3 .25)*(0.00093) = 0.003 NODE 1004.60 : HGL = < 170.723>;EGL= < 170.774>;FLOWLINE= < 168.340> ****************************************************************************** FLOW PROCESS FROM NODE 1004.60 TO NODE 1004.60 IS CODE = 8 UPSTREAM NODE 1004.60 ELEVATION = 168.34 (FLOW IS tJNDER PRESSURE) CALCtJLATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.20 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.81 FEET/SEC. VELOCITY HEAD = 0.051 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.051) = 0.010 NODE 1004.60 : HGL = < 170.784>;EGL= < 170.784>;FLOWLINE= < 168.340> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1004.60 FLOWLINE ELEVATION = 168.34 ASStJMED UPSTREAM CONTROL HGL = 169.02 FOR DOWNSTREAM RtJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAtJLICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONStJLTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92019 619-235-6471 ************************** DESCRIPTION OF STtJDY ************************** • BRESSI RANCH - EL FtJERTE STREET * • LATERAL 3, SHEET 10 • 100-YEAR ULTIMATE Q * ************************************************************************** FILE NAME:- L043.DAT TIME/DATE OF STtJDY: 15:49 08/10/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RtJN NODE MODEL PRESSURE PRESStJRE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTtJM (POUNDS) DEPTH(FT) MOMENTtJM (POtJNDS) 1004.20- 3.19* 278.28 0.32 61.50 } FRICTION } HYDRAtJLIC JtJMP 1004.30- 0.65*Dc 34.71 0.65*Dc 34.71 } CATCH BASIN 1004.30- 0.94* 18.62 0.65 Dc 12.36 MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1004.20 FLOWLINE ELEVATION = 167.53 PIPE FLOW = 2.90 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 170.720 FEET NODE 1004.20 : HGL = < 170.720>;EGL= < 170.762>;FLOWLINE= < 167.530> ****************************************************************************** FLOW PROCESS FROM NODE 1004.20 TO NODE 1004.30 IS CODE = 1 UPSTREAM NODE 1004.30 ELEVATION = 173.29 (HYDRAtJLIC JtJMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.90 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 63.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS REStJLTS NORMAL DEPTH(FT) = 0.31 CRITICAL DEPTH(FT) = 0.65 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.65 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0. 647 3 . 975 0 . 892 34. 71 0. 007 0. 633 4. 088 0. 893 34. 73 0. 028 0. 620 4 207 0 . 895 34. 81 0 . 065 0. 606 4 334 0. 898 34. 94 0. 120 0. 592 4 467 0. 903 35. 13 0 . 196 0. 579 4 609 0 909 35. 39 0. 295 0. 565 4 759 0 917 35 70 0 420 0. 552 4 918 0 927 36 09 0 577 0 538 5 088 0 940 36 55 0 769 0 524 5 268 0 956 37 09 1 002 0 511 5 461 0 974 37 71 1 283 0 497 5 667 0 996 38 43 1 621 0 484 5 887 1 022 39 24 2 027 .0 470 6 124 1 053 40 16 2 516 0 456 6 378 1 088 41 20 3 104 0 443 6 652 1 130 42 36 3 817 0 429 6 .947 1 .179 43 66 4 687 0 415 7 .267 1 .236 45 11 5 .761 0 402 7 .614 1 .303 46 73 7 .108 0 388 7 .992 1 .381 48 .53 8 .833 0 375 8 .404 1 .472 50 .55 11 .117 0 .361 8 .855 1 .579 52 .80 14 .295 0 .347 9 .350 1 .706 55 .31 19 .126 0 .334 9 .896 1 .855 58 .13 28 .041 0 .320 10 .500 2 . 033 61 .28 63 .250 0 .319 10 .543 2 .046 61 .50 HYDRAtJLIC JUMP: UPSTREAM RtJN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.19 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0 .000 3.190 1.641 3 .232 278.28 18.714 1.500 1.641 1.542 91.93 1.50 ASSUMED DOWNSTREAM PRESStJRE HEAD (FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 18.714 19.087 19.454 19.819 20.180 20.538 20 .893 21.246 21.594 21.940 22 .281 FLOW DEPTH (FT) 1.500 1.466 1.432 1.398 1.364 1.329 1.295 1.261 1.227 1.193 1.159 VELOCITY (FT/SEC) 1.641 1.650 1.668 1.691 1.718 1.751 1.787 1, 1. 1. 1. SPECIFIC ENERGY(FT) 1.542 1.508 1.475 .828 .874 .924 ,979 442 409 377 345 313 282 250 220 PRESSURE+ MOMENTUM(POUNDS) 91.93 88.22 84.60 81.05 77.59 74.21 70.92 67 .74 64.66 61.69 58.83 22 617 1 125 2 040 1 189 56 10 22 948 1 091 2 107 1 159 53 50 23 273 1 056 2 180 1 130 51 03 23 591 1 022 2 260 1 102 48 70 23 900 0 988 2 348 1 074 46 51 24 200 0 954 2 445 1 047 44 48 24 489 0 920 2 552 1 021 42 61 24 764 0 886 2 669 0 996 40 90 25 022 0 852 2 800 0 973 39 37 25 261 0 818 2 944 0 952 38 04 25 475 0 783 3 105 0 933 36 90 25 659 0 749 3 285 0 917 35 98 25 806 0 715 3 487 0 904 35 29 25 904 0 681 3 716 0 896 34 86 25 941 0 647 3 975 0 892 34 71 63 250 0 647 3 975 0 892 34 71 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM .BALANCE OCCURS AT 21.98 FEET UPSTREAM OF NODE 1004.20 I DOWNSTREAM DEPTH = 1.189 FEET, UPSTREAM CONJUGATE DEPTH = 0.320 FEET NODE 1004.30 : HGL = < 173.937>;EGL= < 174.182>;FLOWLINE= < 173.290> ******************************************* FLOW PROCESS FROM NODE 1004.30 TO NODE 1004.30 IS CODE = 8 UPSTREAM NODE 1004.30 ELEVATION = 173.29 (FLOW IS AT CRITICTUIJ DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.90 CFS PIPE DIAMETER = IJ 3.00 INCHES FLOW VELOCITY = 3.98 FEET/SEC. VELOCITY HEAD = 0 245 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 245) = 0.049 NODE 1004.30 : HGL = < 174.231>;EGL= < 174.231>;FLOWLINE= < 173.290> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1004.30 FLOWLINE ELEVATION = 173.29 ASSUMED UPSTREAM CONTROL HGL = 173.94 FOR DOWNSTREAM RtJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPtlTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FtJERTE STREET * * LATERAL 2, SHEET 9 * * 100-YEAR tJLTIMATE Q * ************************************************************************** FILE NAME: L066.DAT TIME/DATE OF STUDY: 14:45 09/23/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RtJN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD (FT) MOMENTtJM (POtJNDS) DEPTH (FT) MOMENTtJM (POUNDS) 1006.50- 0.84 DC 66.74 0.49* 95.38 } FRICTION 1006.60- 0.84*Dc 66.74 0.84*Dc 66.74 } CATCH BASIN 1006.60- 1.25* 36.72 0.84 Dc 23.02 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAtJLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CtJRRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1006.50 FLOWLINE ELEVATION = 180.65 PIPE FLOW = 4.80 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 180.7 00 FEET *NOTE: ASStJMED DOWNSTREAM CONTROL DEPTH ( 0.05 FT.) IS LESS THAN CRITICAL DEPTH( 0.84 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RtJN ANALYSIS NODE 1006.50 : HGL = < 181.140>;EGL= < 182.563>;FLOWLINE= < 180.650> ****************************************************************************** FLOW PROCESS FROM NODE 1006.50 TO NODE 1006.60 IS CODE = 1 UPSTREAM NODE 1006.60 ELEVATION = 181.46 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.31 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.84 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.84 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0 000 0. 842 4 699 1. 185 66. 74 0 004 0. 821 4 850 1. 186 66. 81 0 019 0. 799 5 012 1. 190 67. 02 0 044 0 778 5 186 1. 196 67 37 0 082 0 756 5 373 1 205 67 89 0 135 0 735 5 573 1 218 68 59 0 204 0 714 5 789 1 234 69 47 0 294 0 692 6 022 1 256 70 55 0 406 0 671 6 274 1 282 71 85 0 546 0 649 6 547 1 315 73 39 0 717 0 628 6 843 1 356 75 19 0 928 0 606 7 167 1 404 77 28 1 .184 0 585 7 520 1 464 79 69 1 .498 0 564 7 .906 1 535 82 46 1 .881 0 542 8 .332 1 621 85 63 2 .351 0 .521 8 .802 1 .724 89 .25 2 .932 0 .499 9 .322 1 .850 93 .38 3 .250 0 .490 9 .568 1 .913 95 .38 NODE 1006.60 : HGL = < 182.302>;EGL= < 182.645>;FLOWLINE= < 181.460> ****************************************************************************** FLOW PROCESS FROM NODE 1006.60 TO NODE 1006.60 IS CODE = 8 UPSTREAM NODE 1006.60 ELEVATION = 181.46 (FLOW IS AT CRITICAL DEPTH) CALCtJLATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.80 CFS PIPE DIAMETER = li 3.00 INCHES FLOW VELOCITY = 4.70 FEET/SEC. VELOCITY HEAD = 0 343 FEET CATCH BASIN ENERGY LOSS = .2^(VELOCITY HEAD) = .2*{ 0 343 = 0.069 NODE 1006.60 : HGL = < 182.714>;EGL= < 182.714>;FLOWLINE= < 181.460> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1006.60 FLOWLINE ELEVATION = 181.46 ASSUMED UPSTREAM CONTROL HGL = 182.30 FOR DOWNSTREAM RtJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAtJLICS COMPtJIER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONStJLTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STtJDY ************************** * BRESSI RANCH - EL FUERTE STREET * * LATERAL 3, SHEET 9 * * 100-YEAR tJLTIMATE Q ************************************************************************** FILE NAME: L063.DAT TIME/DATE OF STtJDY: 14:46 09/23/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESStJRE PRESSURE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD (FT) MOMENTtJM (POUNDS) DEPTH (FT) MOMENTtJM (POtJNDS) 1006.20- 0.84 DC 66.74 0.63* 74.79 } FRICTION 1006.30- 0.84^Dc 66.74 0.84^Dc 66.74 } CATCH BASIN 1006.30- 1.25^ 36.72 0.84 Dc 23.02 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAtJLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CtJRRENT LACRD, LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1006.20 FLOWLINE ELEVATION = 180.65 PIPE FLOW = 4.80 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 180.700 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.05 FT.) IS LESS THAN CRITICAL DEPTH( 0.84 FT.) ===> CRITICAL DEPTH IS ASStJMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RtJN ANALYSIS NODE 1006.20 : HGL = < 181.282>;EGL= < 181.996>;FLOWLINE= < 180.650> ****************************************************************************** FLOW PROCESS FROM NODE 1006.20 TO NODE 1006.30 IS CODE = 1 UPSTREAM NODE 1006.30 ELEVATION = 181.66 (FLOW IS SUPERCRITICAL) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 4.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 63.25 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) = 0.62 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 0.84 0.84 GRADUALLY VARIED FLOW PROFILE COMPtJIED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0. 000 0 842 4 699 1. 185 66 .74 0 . 017 0 833 4 759 1. 185 66 .75 0. 072 0 825 4 821 1 186 66 .78 0 . 166 0 816 4 886 1 187 66 .84 0. 305 0 807 4 951 1 188 66 .92 0. 493 0 798 5 019 1 190 67 .03 0 . 736 0 790 5 089 1 192 67 .16 1. 039 0 781 5 160 1 195 67 .31 1. 410 0 772 5 234 1 198 67 .50 1. 857 0 763 5 310 1 201 67 .70 2 . 392 0 755 5 388 1 206 67 .94 3 026 0 746 5 468 1 211 68 .21 3 775 0 737 5 551 1 216 68 .51 4 657 0 728 5 637 1 222 68 .83 5 697 0 720 5 725 1 229 69 .19 6 926 0 711 5 815 1 236 69 .58 8 383 0 702 5 909 1 245 70 .01 10 125 0 694 6 006 1 254 70 .47 12 227 0 685 6 105 1 264 70 .96 14 804 0 676 6 208 1 275 71 .50 18 031 0 .667 6 315 1 287 72 .07 22 200 0 .659 6 425 1 300 72 .68 27 863 0 .650 6 .539 1 314 73 .34 36 257 0 .641 6 .656 1 330 74 .04 51 351 0 .632 6 778 1 346 74 .78 63 250 0 .632 6 .779 1 346 74 .79 NODE 1006.30 HGL = < 182 . 502>;EGL= < 182.845>;FLOWLINE= < 181. 660 ****************************************************************************** FLOW PROCESS FROM NODE 1006.30 TO NODE 1006.30 IS CODE = 8 UPSTREAM NODE 1006.30 ELEVATION = 181.66 (FLOW IS AT CRITICAL DEPTH) CALCtJLATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.80 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.70 FEET/SEC. VELOCITY HEAD = 0.343 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*{ 0.343) = 0.069 NODE 1006.30 : HGL = < 182.914>;EGL= < 182.914>;FLOWLINE= < 181.660> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1006.30 FLOWLINE ELEVATION = 181.66 ASSUMED UPSTREAM CONTROL HGL = 182.50 FOR DOWNSTREAM RtJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAtJLICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAtJLICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONStJLTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92019 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FtJERTE STREET * * LATERAL 5, SHEET 9 * * lOO-YEAR tJLTIMATE Q ************************************************************************** FILE NAME: L5000.DAT TIME/DATE OF STtJDY: 15:51 08/10/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RtJN DOWNSTREAM RUN NODE MODEL PRESStJRE PRESSURE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTtJM (POUNDS) 5000.00- 8.59* 11335.98 2.93 8663.78 } FRICTION 5001.00- 7.13* 10194.60 3.85 Dc 7695.82 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5000.00 FLOWLINE ELEVATION = 174.74 PIPE FLOW = 200.00 CFS PIPE DIAMETER = 48.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 183.330 FEET NODE 5000.00 : HGL = < 183.330>;EGL= < 187.263>;FLOWLINE= < 174.740> ****************************************************************************** FLOW PROCESS FROM NODE 5000.00 TO NODE 5001.00 IS CODE = 1 UPSTREAM NODE 5001.00 ELEVATION = 176.46 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 200.00 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 13.64 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 200.00)/( 1436.450))**2 = 0.01939 HF=L*SF = ( 13.64)*(0.01939) = 0.264 NODE 5001.00 : HGL = < 183.594>;EGL= < 187.528>;FLOWLINE= < 176.460> ******************************************************************************* UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 5001.00 FLOWLINE ELEVATION = 17 6.46 ASStJMED UPSTREAM CONTROL HGL = 180.31 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONStJLTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** • BRESSI RANCH - EL FUERTE STREET • • LATERAL 4, SHEET 8 * • 100-YEAR tJLTIMATE Q * ************************************************************************** FILE NAME: L087.DAT TIME/DATE OF STtJDY: 12:44 11/21/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESStJRE+ FLOW PRESStJRE+ NUMBER PROCESS HEAD(FT) MOMENTtJM (POUNDS) DEPTH(FT) MOMENTUM(POUNDS 1008 .60-5.54 2369.26 0.92* 3202.62 } FRICTION 1008.70-5.52 2362.96 0.90^ 3292 .36 ) JtJNCTION 1008.71-5.71 2280.04 0.79^ 3411.16 } FRICTION 1008.72-2.27^Dc 1271.19 2.27^Dc 1271.19 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1008.60 FLOWLINE ELEVATION = 199.17 PIPE FLOW = 51.70 CFS PIPE DIAMETER = 30.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 204.710 FEET NODE 1008.60 : HGL = < 200.089>;EGL= < 215.571>;FLOWLINE= < 199.170> ****************************************************************************** FLOW PROCESS FROM NODE 1008.60 TO NODE 1008.70 IS CODE = 1 UPSTREAM NODE 1008.70 ELEVATION = 199.27 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 51.70 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 5.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.84 CRITICAL DEPTH(FT) = 2.32 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 0.90 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 0.000 0.900 32 .481 17.292 3292.36 5.000 0.919 31.566 16.401 3202.62 NODE 1008.70 : HGL = < 200.170>;EGL= < 216.562>;FLOWLINE= < 199.270> ****************************************************************************** FLOW PROCESS FROM NODE 1008.70 TO NODE 1008.71 IS CODE = 5 UPSTREAM NODE 1008.71 ELEVATION = 199.60 (FLOW IS SUPERCRITICAL) CALCtJLATE JtJNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 48.10 30.00 0.00 199.60 2.27 36.307 DOWNSTREAM 51.70 30.00 - 199.27 2.32 32.491 LATERAL #1 3.60 18.00 90.00 200.20 0.72 4.260 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 o.OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JtJNCTION FORMtJLAE USED: DY=(Q2 *V2-Ql•Vl•COS(DELTAl)-Q3•V3•COS(DELTA3)- Q4*V4^COS(DELTA4))/((A1+A2)^16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.29725 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.20661 AVERAGED FRICTION SLOPE IN JtJNCTION ASStJMED AS 0.25193 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 1.008 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.294)+( 0.000) = 4.294 NODE 1008.71 : HGL = < 200.387>;EGL= < 220.856>;FLOWLINE= < 199.600> ****************************************************************************** FLOW PROCESS FROM NODE 1008.71 TO NODE 1008.72 IS CODE = 1 UPSTREAM NODE 1008.72 ELEVATION = 246.93 (FLOW IS SUPERCRITICAL) CALCtJLATE FRICTION LOSSES(LACFCD): PIPE FLOW = 48.10 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 116.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.73 CRITICAL DEPTH(FT) = ___2^27 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 2.27 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM {POUN 0.000 2 .274 10.256 3.908 1271.19 0.014 2 .212 10 .466 3.914 1272.82 0.058 2 .150 10.707 3 .931 1277.70 0.133 2.088 10.979 3.961 1285.92 0.243 2 .026 11.283 4.004 1297.61 0.392 1.964 11.622 4.063 1312.99 0.586 1.902 11.998 4.139 1332 .30 0.831 1.840 12.415 4.235 1355.87 1. 136 1. 778 12 . 875 4. 354 1384. 08 1. 511 1 716 13 384 4. 500 1417 38 1. 970 1 654 13 947 4 677 1456 30 2 . 530 1 593 14 572 4 892 1501 48 3 211 1 531 15 265 5 151 1553 69 4 042 1 469 16 038 5 465 1613 82 5 060 1 407 16 900 5 845 1682 98 6 312 1 345 17 868 6 305 1762 48 7 866 1 283 18 957 6 866 1853 93 9 813 1 221 20 189 7 554 1959 33 12 289 1 159 21 591 8 402 2081 14 15 .496 1 097 23 196 9 457 2222 47 19 .752 1 .035 25 .046 10 .782 2387 27 25 .605 0 .973 27 .196 12 .466 2580 .65 34 .094 0 .911 29 .719 14 . 634 2809 .28 47 .576 0 .849 32 .708 17 .472 3082 .08 73 .658 0 .787 36 .296 21 .256 3411 .16 116 .000 0 .787 36 .296 21 .256 3411 .16 NODE 1008.72 : HGL = < 249.204>;EGL= < 250.838>;FLOWLINE= < 246.930> ***************** ************************************************************* UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1008.72 FLOWLINE ELEVATION = 246.93 ASSUMED UPSTREAM CONTROL HGL = 249.2 0 FOR DOWNSTREAM RtJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAtJLICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAtJLICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONStJLTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STtJDY ************************** • BRESSI RANCH - EL FUERTE STREET • • LATERALS 5 AND 6, SHEET 8 • • 100-YEAR tJLTIMATE Q * ************************************************************************** FILE NAME: L085.DAT TIME/DATE OF STtJDY: 15:12 09/23/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RtJN DOWNSTREAM RtJN NODE MODEL PRESSURE PRESStJRE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD(FT) MOMENTtJM (POUNDS) DEPTH(FT) MOMENTUM (POtJNDS 1008.20-5 04* 1275.59 1. 65 679.05 } FRICTION 1008.30-5 32* 1331.44 1. 36 753.44 } JtJNCTION 1008.40-5 97* 1404.02 0. 88 1046.25 } FRICTION } HYDRAtJLIC JtJMP 1008.50-1 80* DC 611.17 1. 80*Dc 611.17 } CATCH BASIN 1008.50-3 27* 444.06 1. 80 Dc 156.74 MAXIMtJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1008.20 FLOWLINE ELEVATION = 199.67 PIPE FLOW = 28.00 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 204.710 FEET NODE 1008.20 : HGL = < 204.710>;EGL= < 205.943>;FLOWLINE= < 199.670> ****************************************************************************** FLOW PROCESS FROM NODE 1008.20 TO NODE 1008.30 IS CODE = 1 UPSTREAM NODE 1008.30 ELEVATION = 200.22 (FLOW IS UNDER PRESStJRE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 28.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 54.50 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = {{ 28.00)/( 226.224))**2 = 0.01532 HF=L*SF = ( 54.50)*(0.01532) = 0.835 NODE 1008.30 : HGL = < 205.545>;EGL= < 206.778>;FLOWLINE= < 200.220> ****************************************************************************** FLOW PROCESS FROM NODE 1008.30 TO NODE 1008.40 IS CODE = 5 UPSTREAM NODE 1008.40 ELEVATION = 200.55 (FLOW IS UNDER PRESSURE) CALCtJLATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 26.40 28.00 1.60 0.00 DIAMETER (INCHES) 24.00 24.00 18.00 0.00 ANGLE (DEGREES) 45.00 90.00 0.00 FLOWLINE ELEVATION 200.55 200.22 201.05 0.00 CRITICAL DEPTH(FT.) 1.80 1.83 0.48 0.00 VELOCITY (FT/SEC) 8.403 8.913 0 .905 0.000 0.00===Q5 EQUALS BASIN INPtJr= 01362 01532 0.000 FEET LACFCD AND OCEMA FLOW JtJNCTION FORMtJLAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.01447 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.058 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.837)+( 0.000) = 0.837 NODE 1008.40 : HGL = < 206.519>;EGL= < 207.616>;FLOWLINE= < 200.550> ****************************************************************************** FLOW PROCESS FROM NODE 1008.40 TO NODE 1008.50 IS CODE = 1 UPSTREAM NODE 1008.50 ELEVATION = 210.55 (HYDRAULIC JUMP OCCtJRS) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 26.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 100.00 FEET MANNING'S N = 0.01300 HYDRAtJLIC JtJMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.84 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.80 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.80 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJN 0 .000 1 795 8 880 3 020 611 17 0 .028 1 757 9 026 3 023 611 62 0 .116 1 719 9 188 3 030 613 00 0 .266 1 681 9 365 3 043 615 32 0 .484 1 642 9 560 3 062 618 62 0 .777 1 604 9 771 3 088 622 92 1 .154 1 566 10 000 3 120 628 29 1 .625 1 528 10 248 3 160 634 77 2 .202 1 490 10 516 3 208 642 45 2 .901 1 452 10 806 3 .266 651 39 3 .741 1 413 11 119 3 335 661 68 4 .744 1 375 11 458 3 .415 673 44 5 .940 1 337 11 824 3 .509 686 78 7 365 1 299 12 220 3 619 701 82 9 066 1 261 12 649 3 747 718 73 11 104 1 223 13 115 3 895 737 67 13 558 1 184 13 621 4 067 758 85 16 542 1 146 14 171 4 267 782 50 20 210 1 108 14 771 4 498 808 88 24 793 1 070 15 428 4 768 838 31 30 653 1 032 16 147 5 083 871 14 38 393 0 994 16 938 5 451 907 82 49 153 0 955 17 810 5 884 948 83 65 496 0 917 18 775 6 395 994 78 95 655 0 879 19 .848 7 000 1046 39 100 000 0 879 19 .845 6 998 1046 25 HYDRAtJLIC JtJMP: UPSTREAM RtJN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESStJRE HEAD(FT) = 5.97 PRESSURE FLOW PROFILE COMPtTIED INFORMATION: DISTANCE FROM PRESStJRE VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0 .000 5. 969 8.403 7 . 066 1404. 02 45 .947 2 . 000 8.403 3 . 097 625. 95 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 45 .947 2 . 000 8.401 3 . 097 625. 95 46 .031 1. 992 8 .405 3 . 089 624. 54 46 .104 1. 984 8.411 3 . 083 623. 28 46 .172 1. 975 8.420 3. 077 622. 13 46 .234 1. 967 8.431 3 . 072 621. 07 46 .292 1. 959 8.443 3. 066 620. 07 46 .346 1. 951 8 .456 3 . 062 619. 15 46 .396 1. 943 8.470 3 . 057 618. 29 46 .443 1. 934 8.485 3 . 053 617. 48 46 .487 1. 926 8.502 3 . 049 616. 74 46 .528 1. 918 8.519 3 . 046 616. 04 46 .566 1. 910 8.538 3 . 042 615. 40 46 .601 1. 902 8.557 3 . 039 614 80 46 .633 1. 893 8.577 3 . 036 614 25 46 .662 1. 885 8.598 3 . 034 613 75 46 .689 1. 877 8.620 3 . 031 613 30 46 .714 1. 869 8.642 3 . 029 612 89 46 .735 , 1. 861 8.666 3 . 027 612 53 46 .754 1. 852 8.690 3 . 026 612 21 46 .771 1. 844 8.715 3 . 024 611 93 46 .785 1. 836 8.740 3 . 023 611 70 46 .797 1. 828 8.767 3. 022 611 50 46 .806 1. 820 8.794 3 . 021 611 36 46 .812 1. 811 8.822 3 . 021 611. 25 46 .816 1. 803 8.850 3 . 020 611. 19 46 .817 1. 795 8.880 3 . 020 611. 17 100 .000 1. 795 8.880 3 . 020 611. 17 END OF HYDRAtJLIC JtJMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 3.982 FEET, 23.00 FEET UPSTREAM OF NODE 1008.40 UPSTREAM CONJUGATE DEPTH = 0.903 FEET NODE 1008.50 : HGL = < 212.345>;EGL= < 213.570>;FLOWLINE= < 210.550> ****************************************************************************** FLOW PROCESS FROM NODE 1008.50 TO NODE 1008.50 IS CODE = 8 UPSTREAM NODE 1008.50 ELEVATION = 210.55 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 26.40 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 8.88 FEET/SEC. VELOCITY HEAD = 1.225 FEET CATCH BASIN ENERGY LOSS = .2^(VELOCITY HEAD) = .2*{ 1.225) = 0.245 NODE 1008.50 : HGL = < 213.815>;EGL= < 213.815>;FLOWLINE= < 210.550> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1008.50 FLOWLINE ELEVATION = 210.55 ASStJMED UPSTREAM CONTROL HGL = 212.35 FOR DOWNSTREAM RtJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS. ****************************************************************************** PIPE-FLOW HYDRAtJLICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAtJLICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * EL FUERTE STREET - ULTIMATE CONDITIONS * * LATERAL 7, SHEET 8 * * 100-YEAR STORM EVENT ************************************************************************** FILE NAME: L085A.DAT TIME/DATE OF STtJDY: 15:24 09/23/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESStJRE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD (FT) MOMENTtJM(POtJNDS) DEPTH (FT) MOMENTtJM (POtJNDS) 1008.31- 5.47* 527.33 0.35 41.59 } FRICTION 1008.32- 4.77* 450.57 0.60 Dc 28.68 } CATCH BASIN 1008.32- 4.81* 447.83 0.60 Dc 10.28 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAtJLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1008.31 FLOWLINE ELEVATION = 201.05 PIPE FLOW = 2.50 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 206.520 FEET NODE 1008.31 : HGL = < 206.520>;EGL= < 206.551>;FLOWLINE= < 201.050> ****************************************************************************** FLOW PROCESS FROM NODE 1008.31 TO NODE 1008.32 IS CODE = 1 UPSTREAM NODE 1008.32 ELEVATION = 201.75 (FLOW IS UNDER PRESStJRE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 6.96 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.50)/( 105.117))**2 = 0.00057 HF=L*SF = ( 6.96)*(0.00057) = 0.004 NODE 1008.32 : HGL = < 206.524>;EGL= < 206.555>;FLOWLINE= < 201.750> ****************************************************************************** FLOW PROCESS FROM NODE 1008.32 TO NODE 1008.32 IS CODE = 8 UPSTREAM NODE 1008.32 ELEVATION = 201.75 (FLOW IS tJNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.50 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.41 FEET/SEC. VELOCITY HEAD = 0.031 FEET CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.031) = 0.006 NODE 1008.32 : HGL = < 206.561>;EGL= < 206.561>;FL0WLINE= < 201.750> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1008.32 FLOWLINE ELEVATION = 2 01.75 ASSUMED UPSTREAM CONTROL HGL = 202.35 FOR DOWNSTREAM RtJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAtJLICS COMPtJTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONStJLTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STtJDY ************************** • EL FUERTE STREET - tJLTIMATE CONDITIONS * • LATERAL 8, SHEET 8 * • lOO-YEAR STORM EVENT ************************************************************************** FILE NAME: L087A.DAT TIME/DATE OF STtJDY: 15:22 09/23/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RtJN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTtJM (POUNDS) DEPTH (FT) MOMENTUM(POtJNDS) 1008.81- 0.93 DC 85.62 0.60* 109.66 } FRICTION 1008.82- 0.93*Dc 85.62 0.93^Dc 85.62 } CATCH BASIN ^ 1008.82- 1.40* 48.28 0.93 Dc 28.94 MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAtJLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1008.81 FLOWLINE ELEVATION = 200.20 PIPE FLOW = 5.80 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 200.400 FEET *NOTE: ASStJMED DOWNSTREAM CONTROL DEPTH ( 0.20 FT.) IS LESS THAN CRITICAL DEPTH( 0.93 FT.) ===> CRITICAL DEPTH IS ASStJMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RtJN ANALYSIS NODE 1008.81 : HGL = < 200.797>;EGL= < 202.013>;FLOWLINE= < 200.200> ****************************************************************************** FLOW PROCESS FROM NODE 1008.81 TO NODE 1008.82 IS CODE = 1 UPSTREAM NODE 1008.82 ELEVATION = 200.80 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.94 FEET MANNING'S N = 0.01300 NORMAL DEPTH (FT) = 0.42 CRITICAL DEPTH^FT)^^= UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.93 GRADUALLY VARIED FLOW PROFILE COMPLTTED INFORMATION: 0.93 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0. 000 0 . 929 5. 041 1. 324 85 . 62 0. 009 0. 909 5 . 174 1. 325 85. 69 0. 039 0. 889 5. 316 1. 328 85. 88 20 0. 091 0 869 5 465 1. 333 86 88 20 0 168 0 848 5 625 1 340 86 67 0 274 0 828 5 794 1 350 87 30 0 413 0 808 5 975 1 363 88 08 0 590 0 788 6 168 1 379 89 04 0 810 0 767 6 374 1 399 90 19 1 081 0 747 6 594 1 423 91 53 1 409 0 727 6 830 1 452 93 09 1 807 0 707 7 083 1 486 94 88 .93 2 286 0 686 7 .355 1 527 96 88 .93 2 862 0 .666 7 .649 1 .575 99 .25 3 .556 0 .646 7 .965 1 . 632 101 .87 4 .394 0 .626 8 .308 1 .698 104 .82 5 .412 0 .605 8 .680 1 .776 108 .14 5 .940 0 .597 8 .847 1 .813 109 .66 NODE 100 3.82 HGL = < 201. 729>;EGL= < 202.124>;FLOWLINE= < 200. BOO ****************************************************************************** FLOW PROCESS FROM NODE 1008.82 TO NODE 1008.82 IS CODE = 8 UPSTREAM NODE 1008.82 ELEVATION = 200.80 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.80 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.04 FEET/SEC. VELOCITY HEAD = 0.395 FEET CATCH BASIN ENERGY LOSS = .2^(VELOCITY HEAD) = .2*( 0.395) = 0.079 NODE 1008.82 : HGL = < 202.203>;EGL= < 202.203>;FLOWLINE= < 200.800> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1008.82 FLOWLINE ELEVATION = 200.80 ASSUMED UPSTREAM CONTROL HGL = 201.73 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAtJLICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONStJLTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92019 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE * * LATERAL 3, SHEET 7 * * 100-YEAR ULTIMATE Q ************************************************************************** FILE NAME: L119.DAT TIME/DATE OF STtJDY: 19:59 07/29/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RtJN NODE MODEL PRESSURE PRESStJRE+ FLOW PRESStJRE+ NUMBER PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1011.80- 0.95 DC 91.55 0.54* 134.21 } FRICTION 1011.90- 0.95*Dc 91.55 0.95*Dc 91.55 } CATCH BASIN ^„ 1011.90- 1.45* 52.19 0.95 Dc 30.74 MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS * * * * DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1011.80 FLOWLINE ELEVATION = 216.25 PIPE FLOW = 6.10 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 217.050 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.80 FT.) IS LESS THAN CRITICAL DEPTH( 0.95 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RtJN ANALYSIS NODE 1011.80 : HGL = < 216.789>;EGL= < 218.560>;FLOWLINE= < 216.250> ****************************************************************************** FLOW PROCESS FROM NODE 1011.80 TO NODE 1011.90 IS CODE = 1 UPSTREAM NODE 1011.90 ELEVATION = 217.31 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4.25 FEET MANNING'S N = 0.01300 ************************************************************************** NORMAL DEPTH(FT) = 0.35 CRITICAL DEPTH(FT)^= UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 0.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.95 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNI 0 . 000 0 . 954 5. 142 1. 365 91 55 0. 005 0. 930 5. 300 1. 366 91 64 0. 021 0. 905 5. 469 1. 370 91 92 0 051 0. 881 5 651 1 377 92 .40 0 094 0 857 5 846 1 388 93 .09 0 155 0 832 6 056 1 402 94 .02 0 235 0 808 6 283 1 421 95 .21 0 338 0 784 6 529 1 446 96 .66 0 467 0 759 6 794 1 477 98 .41 0 627 0 735 7 082 1 514 100 .48 0 824 0 711 7 396 1 560 102 .91 1 066 0 686 7 738 1 617 105 .72 1 .361 0 662 8 112 1 684 108 .98 1 .720 0 638 8 .522 1 766 112 .71 2 .160 0 613 8 .974 1 .864 116 .99 2 .700 0 .589 9 .473 1 .983 121 .89 3 .367 0 .565 10 .026 2 .126 127 .48 4 .198 0 .540 10 .643 2 .300 133 .87 4 .250 0 .539 10 .675 2 .310 134 .21 NODE 1011.90 HGL = < 218. 264>;EGL= < 218.675>;FLOWLINE= < 217. 310 ****************************************************************************** FLOW PROCESS FROM NODE 1011.90 TO NODE 1011.90 IS CODE = 8 UPSTREAM NODE 1011.90 ELEVATION = 217.31 (FLOW IS AT CRITICAL DEPTH) CALCtJLATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.10 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.14 FEET/SEC. VELOCITY HEAD = 0.411 FEET CATCH BASIN ENERGY LOSS = .2^(VELOCITY HEAD) = .2^( 0.411) = 0.082 NODE 1011.90 : HGL = < 218.757>;EGL= < 218.757>;FLOWLINE= < 217.310> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1011.90 FLOWLINE ELEVATION = 217.31 ASSUMED UPSTREAM CONTROL HGL = 218.26 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPLTTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAtJLICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92019 619-235-6471 ************************** DESCRIPTION OF STtJDY ************************** * BRESSI RANCH - EL FUERTE * LATERALS 4 AND 5, SHEET 7: HEADWALL INLET * * lOO-YEAR INTERIM Q ************************************************************************** FILE NAME: L115B.DAT TIME/DATE OF STUDY': 16:53 08/05/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RtJN DOWNSTREAM RtJN PRESSURE+ lOMENTtJM (POtJNDS) 3723 .73 3723 .73 4495.21 3448.84 617.55 MAXIMtJM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CtJRRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1011.20 FLOWLINE ELEVATION = 214.75 PIPE FLOW = 105.90 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 217.050 FEET *NOTE: ASStJMED DOWNSTREAM CONTROL DEPTH ( 2.30 FT.) IS LESS THAN CRITICAL DEPTH( 2.92 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE MODEL PRESStJRE PRESStJRE+ FLOW NtJMBER PROCESS HEAD(FT) MOMENTtJM (POtJNDS) DEPTH(FT) 1011.20-2.92*Dc 3723.73 2.92^Dc } FRICTION 1011.30-3 .73* 4059.43 2.92 Dc } JUNCTION 1011.40-5.66* 4639.26 1.88 } FRICTION } HYDRAULIC JUMP 1011.50-2.90*Dc 3448.84 2.90^Dc } CATCH BASIN 1011.50-6.79* 2333.78 2.90 Dc NODE 1011.20 : HGL = < 217.666>;EGL= < 221.207>;FLOWLINE= < 214.750> ****************************************************************************** FLOW PROCESS FROM NODE 1011.20 TO NODE 1011.30 IS CODE = 1 UPSTREAM NODE 1011.30 ELEVATION = 215.44 (FLOW UNSEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 105.90 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 57.73 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH (FT) = 3.00 CRITICAL DEPTH^FT)^^= DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.92 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POLTNI 0. 000 2 . 916 15. 096 6. 457 3723.73 0. 003 2 . 919 15. 089 6. 457 3723.74 0. 014 2 . 923 15. 082 6. 457 3723 .79 0. 031 2 . 926 15. 076 6. 457 3723.87 0. 055 2 . 929 15. 069 6. 458 3723.98 0. 086 2. 933 15. 062 6 458 3724.12 0. 125 2 936 15. 056 6 458 3724.30 0. 171 2 939 15. 050 6 459 3724.51 0 224 2 943 15 044 6 459 3724.76 0 284 2 946 15 038 6 460 3725.04 0 352 2 950 15 032 6 461 3725.37 0 428 2 953 15 027 6 462 3725.73 0 512 2 956 15 022 6 462 3726.13 0 603 2 960 15 017 6 463 3726.57 0 703 2 963 15 012 6 465 3727.05 0 811 2 966 15 007 6 .466 3727.58 0 928 2 .970 15 003 6 .467 3728.16 1 054 2 .973 14 999 6 .468 3728.78 1 189 2 .976 14 .995 6 .470 3729.46 1 .333 2 .980 14 .991 6 .472 3730.20 1 .488 2 .983 14 .988 6 .473 3730.99 1 .653 2 .987 14 .985 6 .475 3731.85 1 .830 2 .990 14 .982 6 .478 3732.78 2 .020 2 .993 14 .980 6 .480 3733.80 2 .226 2 .997 14 .978 6 .482 3734.93 2 .455 3 .000 14 .977 6 .485 3736.21 ===> FLOW IS UNDER PRESSURE 4059.43 57 .730 3 .733 14 .982 7 .218 4059.43 NODE 1011.30 : HGL = < 219.173>;EGL= < 222.658>;FLOWLINE= < 215.440> ****************************************************************************** FLOW PROCESS FROM NODE 1011.30 TO NODE 1011.40 IS CODE = 5 UPSTREAM NODE 1011.40 ELEVATION = 215.77 (FLOW IS tJNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 101.10 105.90 0.00 0.00 4.80 = DIAMETER (INCHES) 36.00 36.00 0.00 0.00 ANGLE (DEGREES) 30.00 0.00 0.00 FLOWLINE ELEVATION 215.77 215.44 0.00 0.00 CRITICAL DEPTH(FT.) 2.90 2.92 0.00 0.00 VELOCITY (FT/SEC) 14.303 14.982 0.000 0.000 =Q5 EQUALS BASIN INPtjr= LACFCD AND OCEMA FLOW JUNCTION FORMtJLAE USED: DY=(Q2 *V2-Ql*VI* COS(DELTAl)-Q3 *V3 * COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02297 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02521 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02409 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.096 FEET ENTRANCE LOSSES = 0.697 FEET JtJNCTION LOSSES = (DY+HVl-HV2 ) +(ENTRANCE LOSSES) JtJNCTION LOSSES = ( 1.256) + ( 0.697) = 1.953 NODE 1011.40 HGL < 221.435>;EGL= < 224.611>;FLOWLINE= < 215.770> ****************************************************************************** FLOW PROCESS FROM NODE 1011.40 TO NODE 1011.50 IS CODE = 1 UPSTREAM NODE 1011.50 ELEVATION = 219.83 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 101.10 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 30.00 FEET MANNING'S N = 0.01300 HYDRAtJLIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.34 CRITICAL DEPTH(FT) = 2.90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.90 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTtJM (POtJNDS) 0 .000 2 .900 14 447 6 143 3448 84 0 .083 2 .837 14 606 6 152 3453 02 0 .321 2 .775 14 802 6 180 3464 77 0 .705 2 .713 15 032 6 224 3483 47 1 .236 2 .650 15 294 6 285 3508 86 1 .922 2 .588 15 588 6 363 3540 92 2 .774 2 .526 15 913 6 460 3579 76 3 .810 2 .463 16 272 6 577 3625 58 5 .050 2 .401 16 664 6 716 3678 70 6 .521 2 .339 17 094 6 879 3739 52 8 .257 2 .277 17 562 7 068 3808 52 10 .300 2 .214 18 071 7 288 3886 28 12 .703 2 .152 18 625 7 542 3973 47 15 .532 2 .090 19 228 7 834 4070 88 18 .874 2 .027 19 884 8 171 4179 41 22 .840 1 .965 20 599 8 558 4300 11 27 .582 1 .903 21 379 9 004 4434 19 30 .000 1 .876 21 730 9 213 4495 21 HYDRAULIC JtJMP: UPSTREAM RtJN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESStJRE HEAD(FT) 5.66 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 5.665 14.303 8.841 4639.26 23 .718 3 . 000 14 .303 6.177 3463.82 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3 .00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 23 . 718 3 . 000 14. 298 6. 177 3463. 82 23 . 749 2 . 996 14. 299 . 6. 173 3462. 28 23. 776 2. 992 14. 302 6. 170 3460. 93 23 . 801 2 . 988 14. 304 6. 167 3459. 72 23 . 823 2. 984 14. 308 6. 165 3458. 60 23. 844 2 . 980 14 312 6. 162 3457 57 23 862 2 976 14 316 6. 160 3456 62 23 880 2 972 14 320 6 158 3455 74 23 896 2 968 14 325 6 156 3454 93 23 911 2 964 14 330 6 155 3454 18 23 925 2 960 14 336 6 153 3453 48 23 937 2 956 14 342 6 152 3452 85 23 949 2 952 14 348 6 150 3452 27 23 960 2 948 14 354 6 149 3451 74 23 969 2 944 14 360 6 148 3451 .25 23 978 2 940 14 .367 6 147 3450 .82 23 .985 2 .936 14 .374 6 146 3450 .43 23 .992 2 .932 14 .381 6 .145 3450 .09 23 .998 2 .928 14 .389 6 .145 3449 .79 24 .003 2 .924 14 .397 6 .144 3449 .54 24 .007 2 .920 14 .404 6 .144 3449 .32 24 .011 2 .916 14 .412 6 .143 3449 .15 24 .014 2 .912 14 .421 6 .143 3449 .01 24 .015 2 .908 14 .429 6 .143 3448 .92 24 .017 2 .904 14 .438 6 .143 3448 .86 24 .017 2 .900 14 .447 6 .143 3448 .84 30 .000 2 .900 14 .447 6 .143 3448 .84 END OF HYDRAU LIC JtJMP ANALYSIS PRESStJRE+MOMENTtJM BALANCE OCCtJRS AT 6.42 FEET UPSTREAM OF NODE 1011.40 DOWNSTREAM DEPTH = 4.943 FEET, UPSTREAM CONJUGATE DEPTH = 1.955 FEET NODE 1011.50 : HGL = < 222.730>;EGL= < 225.973>;FLOWLINE= < 219.830> *************************************************************••••••••••••••••• FLOW PROCESS FROM NODE 1011.50 TO NODE 1011.50 IS CODE = 8 UPSTREAM NODE 1011.50 ELEVATION = 219.83 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 101.10 CFS PIPE DIAMETER = 36.00 INCHES FLOW VELOCITY = 14.45 FEET/SEC. VELOCITY HEAD = 3.243 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2^( 3.243) = 0.649 NODE 1011.50 : HGL = < 226.621>;EGL= < 226.621>;FLOWLINE= < 219.830> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1011.50 FLOWLINE ELEVATION = 219.83 ASStJMED UPSTREAM CONTROL HGL = 222.73 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAtJLICS COMPLTTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAtJLICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONStJLTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE ROADWAY * * LATERAL AT ST. STA 33+50 (NO. 8 ON SHEET 7 OF GRADING PLAN) • * lOO-YEAR STORM EVENT ************************************************************************** FILE NAME: 1325-NL.DAT TIME/DATE OF STtJDY: 12:49 11/21/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTtJM (POtJNDS) DEPTH (FT) MOMENTtJM (POUNDS) 1012.10- 1.65 224.76 0.85^ 233.86 } FRICTION 1012.20- 1.22^Dc 196.08 1.22^Dc 196.08 ) CATCH BASIN 1012.20- 1.84^ 110.05 1.22 Dc 66.50 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1012.10 FLOWLINE ELEVATION = 241.32 PIPE FLOW = 11.60 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 242.970 FEET NODE 1012.10 : HGL = < 242.168>;EGL= < 243.468>;FLOWLINE= < 241.320> ****************************************************************************** FLOW PROCESS FROM NODE 1012.10 TO NODE 1012.20 IS CODE = 1 UPSTREAM NODE 1012.20 ELEVATION = 244.36 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 152.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH (FT) = 0.83 CRITICAL DEPTH (F'r)^^= 1^22 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.22 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 . 000 1. 223 5 .763 1. 739 196. 08 0. 027 1. 207 5.851 1. 739 196. 13 0. 112 1. 191 5.943 1. 740 196. 28 0 260 1. 176 6.038 1. 742 196. 53 0 479 1. 160 6.136 1 745 196. 88 0 775 1. 145 6.238 1 749 197 35 1 158 1. 129 6.343 1 754 197 92 1 637 1 113 6.452 1 760 198 61 2 225 1 098 6 .566 1 768 199 43 2 935 1 082 6.683 1 776 200 37 3 786 1 067 6.805 1 786 201 44 4 796 1 051 6.932 1 798 202 64 5 993 1 036 7.063 1 811 203 99 7 406 1 020 7 .200 1 825 205 48 9 .076 1 004 7.342 1 .842 207 12 11 .053 0 989 7.490 1 .860 208 93 13 .405 0 .973 7 .644 1 .881 210 .90 16 .222 0 .958 7.804 1 .904 213 .04 19 .633 0 .942 7 .971 1 .929 215 .37 23 .824 0 .926 8.145 1 .957 217 .88 29 .086 0 .911 8.327 1 .988 220 .60 35 .905 0 .895 8.517 2 .022 223 .53 45 .194 0 .880 8.715 2 .060 226 .68 59 .003 0 .864 8.923 2 .101 230 .06 83 .909 0 . 848 9.140 2 .146 233 .69 152 .000 0 .848 9.150 2 .148 233 .86 NODE 1012.20 : HGL = < 245.583>;EGL= < 246.099>;FLOWLINE= < 244.360> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 1012.20 1012.20 TO NODE ELEVATION = 1012.20 IS CODE = 8 244.36 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 11.60 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 5.76 FEET/SEC. VELOCITY HEAD = 0.516 FEET CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 0.516) = 0.103 NODE 1012.20 : HGL = < 246.202>;EGL= < 246.202>;FLOWLINE= < 244.360> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1012.20 FLOWLINE ELEVATION = 244.36 ASSUMED UPSTREAM CONTROL HGL = 245.58 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPLTTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAtJLICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92019 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE STREET * * LATERAL 4, SHEET 6 • * 1OO-YEAR ULTIMATE Q • ************************************************************************** FILE NAME: L136.DAT TIME/DATE OF STtJDY: 15:52 08/10/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RtJN DOWNSTREAM RtJN NODE MODEL PRESStJRE PRESSURE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTtJM(POUNDS) 1013.50- 0.90 43.69 0.34^ 65.08 } FRICTION 1013.60- 0.67^Dc 37.82 0.67^Dc 37.82 } CATCH BASIN 1013.60- 0.98^ 20.33 0.67 Dc 13.43 MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1013.50 FLOWLINE ELEVATION = 295.24 PIPE FLOW = 3.10 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 296.140 FEET NODE 1013.50 : HGL = < 295.578>;EGL= < 297.259>;FLOWLINE= < 295.240> ****************************************************************************** FLOW PROCESS FROM NODE 1013.50 TO NODE 1013.60 IS CODE = 1 UPSTREAM NODE 1013.60 ELEVATION = 296.55 (FLOW IS SUPERCRITICAL) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 3.10 CFS PIPE PIPE LENGTH = 5.25 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.25 CRITICAL DEPTH(FT) = 0.67 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNI 0. 000 0 . 670 4. 059 0. 926 37 82 0. 003 0. 653 4. 197 0. 927 37 86 0. 015 0 . 636 4. 345 0. 929 37 98 0 034 0. 619 4 503 0 934 38 19 0 064 0 602 4 672 0 941 38 .50 0 105 0 585 4 853 0 951 38 .90 0 160 0 568 5 048 0 964 39 .41 0 230 0 552 5 258 0 981 40 .04 0 317 0 535 5 485 1 002 40 .79 0 426 0 518 5 730 1 028 41 .68 0 561 0 501 5 996 1 060 42 .73 0 .725 0 484 6 286 1 098 43 .93 0 .926 0 467 6 602 1 144 45 .32 1 .170 0 450 6 .948 1 .200 46 .92 1 .469 0 433 7 .327 1 .267 48 .74 1 .836 0 .416 7 .745 1 .348 50 .82 2 .289 0 .399 8 .208 1 .446 53 .19 2 .852 0 .383 8 .722 1 .565 55 .89 3 .562 0 .366 9 .296 1 .708 58 .98 4 .472 0 .349 9 .940 1 .884 62 .51 5 .250 0 .338 10 .403 2 .019 65 .08 NODE 1013.60 HGL = < 297 . 220>;EGL= < 297.476>;FLOWLINE= < 296. 550 ****************************************************************************** FLOW PROCESS FROM NODE 1013.60 TO NODE 1013.60 IS CODE = 8 UPSTREAM NODE 1013.60 ELEVATION = 296.55 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.10 CFS PIPE DIAMETER = 1{ 3.00 INCHES FLOW VELOCITY = 4.06 FEET/SEC. VELOCITY HEAD = 0 256 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 256) = 0.051 NODE 1013.60 : HGL = < 297.527>;EGL= < 297.527>;FLOWLINE= < 296.550> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1013.60 FLOWLINE ELEVATION = 296.55 ASStJMED UPSTREAM CONTROL HGL = 2 97.22 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92019 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE STREET * * LATREAL 5, SHEET 6 * * 100-YEAR ULTIMATE Q ************************************************************************** FILE NAME: L133.DAT TIME/DATE OF STUDY: 20:08 07/29/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESStJRE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD (FT) MOMENTtJM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 1013.20- 0.89* 43.23 0.56 39.67 } FRICTION ) HYDRAULIC JUMP 1013.30- 0.67*Dc 37.82 0.67*Dc 37.82 } CATCH BASIN 1013.30- 0.98* 20.33 0.67 Dc 13.43 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. .....^*** ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1013.20 FLOWLINE ELEVATION = 295.24 PIPE FLOW = 3.10 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM-CONTROL HGL = 296.130 FEET NODE 1013.20 : HGL = < 296.130>;EGL= < 2 96.255>;FLOWLINE= < 295.240> ********** ******************************************************************** FLOW PROCESS FROM NODE 1013.20 TO NODE 1013.30 IS CODE = 1 UPSTREAM NODE 1013.30 ELEVATION = 295.82 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 57.30 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) = 0.67 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUND 0. 000 0 . 670 4. 059 0. 926 37 . 82 0 . 012 0. 665 4. 095 0. 926 37. 82 0. 050 0 . 661 4. 132 0. 926 37. 83 0. 116 0 . 656 4. 169 0. 926 37. 85 0. 213 0. 652 4. 208 0. 927 37. 87 0 . 343 0. 647 4. 246 0. 927 37. 89 0. 512 0 . 643 4 286 0. 928 37 92 0 721 0 . 638 4 326 0. 929 37 96 0 977 0. 634 4 367 0 930 38 01 1 285 0 629 4 409 0 931 38 06 1 653 0 625 4 451 0 932 38 12 2 087 0 620 4 495 0 934 38 18 2 599 0 615 4 539 0 935 38 25 3 201 0 611 4 583 0 937 38 33 3 908 0 606 4 629 0 939 38 .41 4 742 0 602 4 .676 0 942 38 .50 5 .728 0 597 4 .723 0 944 38 .60 6 .904 0 593 4 .771 0 .947 38 .71 8 .320 0 588 4 .821 0 .949 38 .82 10 .050 0 .584 4 .871 0 .952 38 .94 12 .210 0 .579 4 .922 0 .956 39 .07 14 .994 0 .575 4 .974 0 .959 39 .21 18 .765 0 .570 5 .028 0 .963 39 .35 24 .338 0 .566 5 .082 0 .967 39 .51 34 .330 0 .561 5 .138 0 .971 39 . 67 57 .300 0 .561 5 .140 0 .971 39 . 67 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS 0.89 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNI 0 000 0 . 890 2 837 1. 015 43 . 23 0. 714 0. 881 2 871 1. 009 42 84 1 419 0. 872 2 906 1 004 42 46 2 114 0 864 2 942 0 998 42 10 2 799 0 855 2 979 0 993 41 74 3 473 0 846 3 017 0 987 41 40 4 135 0 837 3 056 0 982 41 08 4 785 0 828 3 096 0 977 40 76 5 421 0 820 3 137 0 972 40 46 6 042 0 811 3 180 0 968 40 18 6 647 0 802 3 223 0 963 39 91 7 236 0 793 3 268 0 959 39 65 7 806 0 784 3 314 0 955 39 41 8 355 0 776 3 362 0 951 39 19 8 .883 0 767 3 .411 0 947 38 .98 9 .386 0 758 3 .461 0 .944 38 .79 9 .863 0 .749 3 .513 0 .941 38 . 61 10 .310 0 .740 3 .566 0 .938 38 .45 10 .726 0 .731 3 .621 0 .935 38 .31 11 .105 0 .723 3 .678 0 .933 38 .18 11.444 0.714 3.737 0.931 38.07 11.738 0.705 3.797 0.929 37.98 11.982 0.696 3.859 0.928 37.91 12.167 0.687 3.924 0.927 37.86 12.286 0.679 3.990 0.926 37.83 12.329 0.670 4.059 0.926 37.82 57.300 0.670 4.059 0.926 37.82 END OF HYDRAtJLIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 7.19 FEET UPSTREAM OF NODE 1013.20 DOWNSTREAM DEPTH = 0.794 FEET, UPSTREAM CONJUGATE DEPTH = 0.561 FEET NODE 1013.30 : HGL = < 296.490>;EGL= < 296.746>;FLOWLINE= < 295.820> ****************************************************************************** FLOW PROCESS FROM NODE 1013.30 TO NODE 1013.30 IS CODE = 8 UPSTREAM NODE 1013.30 ELEVATION = 295.82 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.10 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.06 FEET/SEC. VELOCITY HEAD = 0.256 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.256) = 0.051 NODE 1013.30 : HGL = < 296.797>;EGL= < 296.797>;FLOWLINE= < 295.820> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1013.30 FLOWLINE ELEVATION = 295.82 ASSUMED UPSTREAM CONTROL HGL = 296.49 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET. SUITE 800 SAN DIEGO. CA 92019 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** • BRESSI RANCH - EL FUERTE STREET * • LATERAL 3. SHEET 5 * • 100 YEAR tJLTIMATE Q ******************************** ****************************************** FILE NAME: L176.DAT TIME/DATE OF STtJDY: 20:05 07/29/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1017.50- 0.95 Dc 91.55 0.55* 130.59 } FRICTION 1017.60- 0.95^Dc 91.55 0.95^Dc 91.55 } CATCH BASIN 1017.60- 1.45^ 52.19 0.95 Dc 30.74 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1017.50 FLOWLINE ELEVATION = 355.34 PIPE FLOW = 6.10 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 355.710 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.37 FT.) IS LESS THAN CRITICAL DEPTH( 0.95 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 1017.50 : HGL = < 355.892>;EGL= < 357.550>;FLOWLINE= < 355.340> ****************************************************************************** FLOW PROCESS FROM NODE 1017.50 TO NODE 1017.60 IS CODE = 1 UPSTREAM NODE 1017.60 ELEVATION = 356.32 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.37 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.95 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0. 000 0 . 954 5. 142 1 365 91 55 0. 006 0. 931 5. 293 1 366 91 63 0 026 0 908 5 454 1 370 91 88 0 062 0 884 5 627 1 376 92 .32 0 116 0 861 5 812 1 386 92 .96 0 190 0 838 6 010 1 399 93 .81 0 287 0 814 6 223 1 416 94 .88 0 412 0 791 6 453 1 438 96 .19 0 568 0 768 6 701 1 465 97 .77 0 762 0 744 6 968 1 499 99 .64 0 999 0 721 7 258 1 540 101 .82 1 288 0 698 7 573 1 589 104 .35 1 639 0 674 7 915 1 .648 107 .25 2 .065 0 651 8 289 1 .719 110 .57 2 .584 0 628 8 .698 1 .803 114 .36 3 .218 0 .605 9 .147 1 .904 118 .67 3 .996 0 .581 9 .641 2 .025 123 .57 4 .959 0 .558 10 .187 2 .170 129 .14 5 .250 0 .552 10 .328 2 .210 130 .59 NODE 1017.60 HGL = < 357 . 274>;EGL= < 3 5 7.6 8 5 >;FLOWLINE= < 356. 320 ************************************************************************* FLOW PROCESS FROM NODE 1017.60 TO NODE 1017.60 IS CODE = 8 UPSTREAM NODE 1017.60 ELEVATION = 356.32 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.10 CFS PIPE DIAMETER = 1? 3.00 INCHES FLOW VELOCITY = 5.14 FEET/SEC. VELOCITY HEAD = 0 411 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 411) = 0.082 NODE 1017.60 : HGL = < 357.767>;EGL= < 357.767>;FLOWLINE= < 356.320> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1017.60 FLOWLINE ELEVATION = 356.32 ASSUMED UPSTREAM CONTROL HGL = 357.27 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92019 619-235-6471 ************************** DESCRIPTION OF STtJDY ************************** * BRESSI RANCH - EL FUERTE STREET * * LATERAL 4, SHEET 5 * * lOO-YEAR ULTIMATE Q * ************************************************************************** FILE NAME: L173.DAT TIME/DATE OF STtJDY: 20:06 07/29/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE -PRESSURE+ FLOW PRESStJRE+ NUMBER PROCESS HEAD (FT) MOMENTUM (POtJNDS) DEPTH (FT) MOMENTtJM (POtJNDS) 1017.20- 0.70 DC 42.61 0.59^ 44.56 } FRICTION 1017.30- 0.70^Dc 42.61 0.70^Dc 42.61 } CATCH BASIN 1017.30- 1.03^ 22.98 0.70 Dc 15.06 MAXIMtJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1017.20 FLOWLINE ELEVATION = 355.01 PIPE FLOW = 3.40 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 355.710 FEET *NOTE: ASStJMED DOWNSTREAM CONTROL DEPTH ( 0.7 0 FT.) IS LESS THAN CRITICAL DEPTH( 0.7 0 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 1017.20 : HGL = < 355.602>;EGL= < 356.029>;FLOWLINE= < 355.010> ****************************************************************************** FLOW PROCESS FROM NODE 1017.20 TO NODE 1017.30 IS CODE = 1 UPSTREAM NODE 1017.30 ELEVATION = 355.66 (FLOW IS SUPERCRITICAL) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 3.40 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 65.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.59 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.7 0 GRADUALLY VARIED FLOW PROFILE COMPtJTED INFORMATION: 0.70 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0. 000 0 . 703 4. 181 0. 974 42 61 0. 013 0 . 698 4. 216 0. 975 42 62 0 052 0. 694 4. 253 0. 975 42 62 0 120 0 689 4. 290 0. 975 42 64 0 221 0 684 4 328 0. 975 42 66 0 356 0 680 4 366 0. 976 42 69 0 531 0 675 4 405 0 977 42 72 0 748 0 671 4 444 0 978 42 .76 1 014 0 666 4 485 0 979 42 .81 1 333 0 661 4 526 0 980 42 .86 1 714 0 657 4 568 0 981 42 .92 2 165 0 652 4 610 0 982 42 .99 2 695 0 648 4 654 0 984 43 .06 3 319 0 643 4 698 0 986 43 .14 4 .053 0 638 4 743 0 988 43 .23 4 .917 0 .634 4 .788 0 990 43 .33 5 .939 0 .629 4 .835 0 992 43 .43 7 .158 0 .624 4 .882 0 995 43 .54 8 .625 0 .620 4 .931 0 .998 43 .66 10 .418 0 .615 4 .980 1 .001 43 .79 12 .657 0 .611 5 .030 1 . 004 43 .92 15 .542 0 .606 5 .081 1 .007 44 .07 19 .449 0 .601 5 .133 1 .011 44 .22 25 .224 0 .597 5 .186 1 .015 44 .38 35 .576 0 .592 5 .240 1 .019 44 .55 65 .250 0 .592 5 .243 1 .019 44 .56 NODE 1017.30 HGL = < 356. 363>;EGL= < 356.634>;FLOWLINE= < 355. 660 ************************************************************************* FLOW PROCESS FROM NODE 1017.30 TO NODE 1017.30 IS CODE = 8 UPSTREAM NODE 1017.30 ELEVATION = 355.66 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.40 CFS PIPE DIAMETER = If 3.00 INCHES FLOW VELOCITY = 4.18 FEET/SEC. VELOCITY HEAD = 0 272 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 272) = 0.054 NODE 1017.30 : HGL = < 356.689>;EGL= < 356.689>;FLOWLINE= < 355.660> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1017.30 FLOWLINE ELEVATION = 355.66 ASStJMED UPSTREAM CONTROL HGL = 356.36 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPtJTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE STREET * * LATERAL 6, SHEET 5 * * 100-YEAR tJLTIMATE Q * ************************************************************************** FILE NAME: L400.DAT TIME/DATE OF STUDY: 15:52 09/23/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ ' FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTtJM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 4000.00- 8.06^ 2717.59 1.86 995.73 ) FRICTION 4001.00- 7.93* 2676.36 2.13 Dc 969.63 MAXIMtJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4000.00 FLOWLINE ELEVATION = 336.70 PIPE FLOW = 40.00 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 344.760 FEET NODE 4000.00 : HGL = < 344.760>;EGL= < 345.791>;FLOWLINE= < 336.700> ****************************************************************************** FLOW PROCESS FROM NODE 4000.00 TO NODE 4001.00 IS CODE = 1 UPSTREAM NODE 4001.00 ELEVATION = 337.08 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 40.00 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 25.80 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 40.00)/( 410.173))**2 = 0.00951 HF=L*SF = ( 25.80)*(0.00951) = 0.245 NODE 4001.00 : HGL = < 345.005>;EGL= < 346.036>;FLOWLINE= < 337.080> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 4001.00 FLOWLINE ELEVATION = 337.08 ASStJMED UPSTREAM CONTROL HGL = 339.21 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS *****************************************************************************' PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET. SUITE 800 SAN DIEGO, CA 92019 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE STREET * LATERALS 8 AND 9. SHEET 5 * * lOO-YEAR INTERIM Q * ************************************************************************** FILE NAME: L154.DAT TIME/DATE OF STtJDY: 20:18 07/29/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL i>OINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN * NODE NUMBER 1015.10- MODEL PROCESS PRESSURE HEAD(FT) 1.81*Dc PRESSURE+ MOMENTUM(POUNDS) 639.03 FLOW DEPTH(FT) 1.81* DC PRESSURE+ MOMENTUM(POUNDS) 639.03 ) 1015 .20- FRICTION 2.22* 695 00 1. 49 675.71 } 1015.30- JUNCTION 1.89* 640 96 1. 81 DC 639.03 } 1015.40- FRICTION 2.24* 699 76 1. 81 Dc 639.03 ) 1015.40- CATCH BASIN 3.64* 517 21 1. 81 Dc 159.94 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAtJLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1015.10 FLOWLINE ELEVATION = 329.68 PIPE FLOW = 27.20 CFS PIPE DIAMETER = 24.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 330.980 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.3 0 FT.) IS LESS THAN CRITICAL DEPTH( 1.81 FT.) ===> CRITICAL DEPTH IS ASStJMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 1015.10 : HGL = < 331.492>;EGL= < 332.77 5>;FLOWLINE= < 329.680> ****************************************************************************** FLOW PROCESS FROM NODE 1015.10 TO NODE 1015.20 IS CODE = 1 UPSTREAM NODE 1015.20 ELEVATION = 330.41 (FLOW UNSEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 72.86 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 2.00 CRITICAL DEPTH(FT) 1.81 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0 . 000 1. 812 9.086 3 . 095 639. 03 0. 038 1. 820 9.060 3 . 095 639. 05 0. 154 1. 827 9.034 3 . 095 639. 10 0. 350 1. 835 9.009 3 096 639. 20 0. 626 1. 842 8.985 3 097 639. 33 0. 984 1 850 8.961 3 098 639 50 1 424 1 857 8.938 3 099 • 639 71 1 948 1 865 8.916 3 100 639 95 2 555 1 872 8.894 3 101 640 24 3 246 1 880 8.873 3 103 640 57 4 019 1 887 8.853 3 105 640 93 4 874 1 895 8.833 3 107 641 34 5 809 1 902 8.814 3 110 641 79 6 823 1 910 8.796 3 112 642 28 7 913 1 917 8.779 3 115 642 82 9 076 1 925 8.762 3 118 643 40 10 309 1 932 8.747 3 121 644 03 11 610 1 940 8.732 3 .125 644 70 12 973 1 947 8.718 3 .128 645 .43 14 395 1 955 8.705 3 .132 646 .21 15 872 1 962 8.693 3 .137 647 .05 17 397 1 .970 8.682 3 .141 647 .95 18 967 1 .977 8.673 3 .146 648 .92 20 575 1 .985 8.665 3 .152 649 .97 22 .218 1 .992 8.659 3 .157 651 .11 23 .890 2 .000 8.655 3 .164 652 .40 ===> FLOW IS UNDER PRESSURE 72 .860 2 .217 8.658 3 .381 695 .00 NODE 1015.20 : HGL = < 332. 627>;EGL= < 333.791>;FLOWLINE= < 330. 410 ****************************************************************************** FLOW PROCESS FROM NODE 1015.20 TO NODE 1015.30 IS CODE = 5 UPSTREAM NODE 1015.30 ELEVATION = 330.74 (FLOW SEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 27.20 24.00 0.00 330.74 27.20 24.00 - 330.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.81 1.81 0.00 0.00 VELOCITY (FT/SEC) 8.854 8.658 0.000 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*Vl*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4^COS(DELTA4))/((A1+A2)•le.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01250 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01446 AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.01348 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.054 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0 . 054) + ( 0 . 000) = 0.054 NODE 1015.30 : HGL = < 332.628>;EGL= < 333.845>;FLOWLINE= < 330.740> ****************************************************************************** FLOW PROCESS FROM NODE 1015.30 TO NODE 1015.40 IS CODE = 1 UPSTREAM NODE 1015.40 ELEVATION = 331.50 (FLOW UNSEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 75.41 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 2.00 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.81 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0. 000 1. 888 8.852 3. 105 640. 96 0. 516 1. 892 8.840 3. 106 641. 20 1. 062 1. 897 8.828 3. 108 641. 45 1. 637 1 901 8.817 3 109 641. 72 2 241 1 906 8.806 3 111 642. 01 2. 873 1 910 8.795 3 112 642. 31 3 533 1 915 8.785 3 114 642. 62 4 220 1 919 8.775 3 116 642. 95 4 933 1 924 8.765 3 117 643 30 5 672 1 928 8.755 3 119 643 67 6 436 1 933 8.746 3 121 644 05 7 224 1 937 8.737 3 123 644 45 8 036 1 942 8.729 3 125 644 87 8 870 1 946 8.720 3 128 645 30 9 725 1 951 8.712 3 130 645 76 10 601 1 955 8.705 3 132 646 23 11 496 1 960 8.697 3 135 646 72 12 409 1 964 8.691 3 .138 647 .24 13 339 1 969 8.684 3 .140 647 .78 14 286 1 973 8.678 3 .143 648 .34 15 247 1 978 8.673 3 .146 648 .93 16 222 1 .982 8.668 3 . 149 649 .55 17 209 1 .987 8.663 3 .153 650 .19 18 207 1 .991 8.660 3 .156 650 .88 19 .215 1 .996 8.657 3 .160 651 .61 20 .234 2 .000 8.655 3 .164 652 .40 ===> FLOW IS UNDER PRESSURE 75 .410 2 .242 8.658 3 .406 699 .76 NODE 1015.40 : HGL = < 333.742>;EGL= < 334.906>;FLOWLINE= < 331.500> ****************************************************************************** FLOW PROCESS FROM NODE 1015.40 TO NODE 1015.40 IS CODE = 8 UPSTREAM NODE 1015.40 ELEVATION = 331.50 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 27.20 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 8.66 FEET/SEC. VELOCITY HEAD = 1.164 FEET CATCH BASIN ENERGY LOSS = .2^(VELOCITY HEAD) = .2*( 1.164) = 0.233 NODE 1015.40 : HGL = < 335.138>;EGL= < 335.138>;FLOWLINE= < 331.500> *************************** *************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1015.40 FLOWLINE ELEVATION = 331.50 ASSUMED UPSTREAM CONTROL HGL = 333.31 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY **************••••*••••••• • EL FUERTE STREET * • SEGMENTS 1 AND 3, SHEET 4 * • lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: L2 0.DAT TIME/DATE OF STUDY: 16:10 09/23/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT ) MOMENTUM(POUNDS 1019.10-5.65^ 1504.36 1.43 867.94 } FRICTION 780.42 1019.50-5.00^ 1376.84 1.88 Dc 780.42 } JUNCTION 873 .03 1019.60-6.07^ 1108.24 0.89 873 .03 } FRICTION } HYDRAtJLIC JtJMP 1019 .70-1.48* Dc 603.00 1.48 *Dc 603.00 } CATCH BASIN 80.15 1019.70-4.33* 394.88 1.48 Dc 80.15 MAXIMtJM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1019.10 FLOWLINE ELEVATION = 384.25 PIPE FLOW = 31.00 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 389.900 FEET NODE 1019.10 : HGL = < 389.900>;EGL= < 391.412>;FLOWLINE= < 384.250> ****************************************************************************** FLOW PROCESS FROM NODE 1019.10 TO NODE 1019.50 IS CODE = 1 UPSTREAM NODE 1019.50 ELEVATION = 385.75 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 31.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 45.24 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 31.00)/( 226.223))**2 = 0.01878 HF=L*SF = ( 45.24)*(0.01878) = 0.850 NODE 1019.50 : HGL = < 390.750>;EGL= < 392.261>;FLOWLINE= < 385.750> ****************************************************************************** FLOW PROCESS FROM NODE 1019.50 TO NODE 1019.60 IS CODE = 5 UPSTREAM NODE 1019.60 ELEVATION = 386.25 (FLOW IS UNDER PRESSURE) CALCtJLATE JtJNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 21.80 31.00 3.30 5.90 DIAMETER (INCHES) 18.00 24.00 18.00 18.00 ANGLE (DEGREES) 45.00 80.00 90.00 FLOWLINE ELEVATION 386.25 385.75 386.25 386.25 CRITICAL DEPTH(FT.) 1.48 1.88 0.69 0.94 VELOCITY (FT/SEC) 12 .336 9.868 1.867 3 .339 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)^16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.03092 4.00 FEET 0.124 FEET ENTRANCE LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 2.426)+( 0.000) = 2.426 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = .04307 .01878 0.000 FEET NODE 1019.60 : HGL = < 392.324>;EGL= < 394.687>;FLOWLINE= < 386.250> ****************************************************************************** FLOW PROCESS FROM NODE 1019.60 TO NODE 1019.70 IS CODE = 1 UPSTREAM NODE 1019.70 ELEVATION = 396.19 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 21.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 87.15 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.85 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.48 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.48 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 1 477 12 373 3 855 603 00 0 080 1 452 12 453 3 861 603 67 0 291 1 427 12 560 3 878 605 43 0 617 1 .402 12 687 3 903 608 12 1 050 1 377 12 834 3 936 611 66 1 .590 1 .351 12 999 3 977 616 01 2 .241 1 .326 13 183 4 026 621 14 3 .011 1 .301 13 383 4 084 627 05 3 .909 1 .276 13 602 4 151 633 76 4 .948 1 .251 13 .838 4 227 641 27 6 .147 1 .226 14 .094 4 312 649 62 7 .526 1 .201 14 .368 4 409 658 83 9 .112 1 .176 14 .663 4 517 668 94 10. 939 1. 151 14 979 4 637 680 00 13 052 1 126 15 318 4 772 692 07 15 507 1 101 15 681 4 921 705 19 18 380 1 076 16 069 5 088 719 44 21 775 1 051 16 484 5 273 734 89 25 837 1 026 16 929 5 478 751 64 30 780 1 000 17 405 5 707 769 77 36 936 0 975 17 915 5 962 789 40 44 .864 0 950 18 462 6 246 810 66 55 .612 0 925 19 050 6 564 833 67 71 .537 0 900 19 .681 6 .919 858 .59 87 .150 0 887 20 .045 7 .130 873 .03 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS REStJLTS DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD(FT) = 6.07 PRESSURE FLOW PROFILE COMPtJTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) • MOMENTtJM (POUNDS) 0.000 6.074 12 .336 8.437 1108.24 64.436 1.500 12.336 3.863 603.86 1.50 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNI 64 436 1. 500 12. 332 3 863 603 . 86 64 447 1. 499 12 333 3 862 603. 77 64 457 1 498 12 333 3 862 603 69 64 466 1 497 12 334 3 861 603 62 64 474 1 496 12 335 3 860 603 56 64 481 1 495 12 336 3 860 603 50 64 488 1 494 12 337 3 859 603 45 64 494 1 494 12 338 3 859 603 40 64 500 1 493 12 340 3 858 603 35 64 505 1 492 12 341 3 858 603 31 64 510 1 491 12 343 3 858 603 27 64 514 1 490 12 344 3 857 603 23 64 519 1 489 12 346 3 857 603 20 64 522 1 488 12 348 3 857 603 17 64 526 1 487 12 349 3 857 603 14 64 529 1 486 12 351 3 856 603 .12 64 531 1 485 12 353 3 856 603 .09 64 534 1 484 12 355 3 856 603 .07 64 536 1 483 12 .357 3 856 603 .06 64 537 1 482 12 .359 3 .856 603 .04 64 .539 1 481 12 .361 3 .856 603 .03 64 .540 1 481 12 .363 3 .855 603 .02 64 .541 1 .480 12 .366 3 .855 603 .01 64 .542 1 .479 12 .368 3 .855 603 . 01 64 .542 1 .478 12 .370 3 .855 603 . 01 64 .542 1 .477 12 .373 3 .855 603 .00 87 .150 1 .477 12 .373 3 .855 603 .00 END OF HYDRAU] L,IC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 36.41 FEET UPSTREAM OF NODE 1019.60 DOWNSTREAM DEPTH = 3.489 FEET, UPSTREAM CONJUGATE DEPTH = 0.937 FEET NODE 1019.70 : HGL = < 397.667>;EGL= < 400.045>;FLOWLINE= < .396.190> ****************************************************************************** FLOW PROCESS FROM NODE 1019.70 TO NODE 1019.70 IS CODE = 8 UPSTREAM NODE 1019.70 ELEVATION = 396.19 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 21.80 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 12.38 FEET/SEC. VELOCITY HEAD = 2.379 FEET CATCH BASIN ENERGY LOSS = .2*(VEL0CITY HEAD) = .2*( 2.379) = 0.476 NODE 1019.70 : HGL = < 400.521>;EGL= < 400.521>;FLOWLINE= < 396.190> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1019.70 FLOWLINE ELEVATION = 396.19 ASStJMED UPSTREAM CONTROL HGL = 397.67 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET. SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * EL FUERTE STREET - tJLTIMATE CONDITIONS * * LATERAL 2, SHEET 4 * * lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: L21.DAT TIME/DATE OF STUDY: 16:15 09/23/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESStJRE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1020.00- 6.05* 597.86 0.31 92.95 } FRICTION } HYDRAULIC JUMP 1020.50- 0.71*Dc 44.24 0.71*Dc 44.24 } CATCH BASIN 1020.50- 1.05* 23.89 0.71 Dc 15.61 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtJLAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1020.00 FLOWLINE ELEVATION = 386.25 PIPE FLOW = 3.50 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 392.300 FEET NODE 1020.00 : HGL = < 392.300>;EGL= < 392.361>;FLOWLINE= < 386.250> ****************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1020.50 IS CODE = 1 UPSTREAM NODE 1020.50 ELEVATION = 394.38 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 50.21 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.29 CRITICAL DEPTH(FT) = 0.71 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.71 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY • SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0. 000 0 . 714 4. 220 0 . 990 44. 24 0. 005 0. 697 4. 353 0. 991 44. 28 0. 021 0. 680 4. 494 0. 994 44. 40 0. 050 0 663 4 644 0. 998 44 62 0 093 0 646 4 804 1 005 44 92 0 152 0 629 4 975 1 014 45 33 0 229 0 612 5 158 1 026 45 84 0 329 0 596 5 354 1 041 46 47 0 453 0 579 5 564 1 060 47 22 0 606 0 562 5 790 1 083 48 11 0 794 0 545 6 034 1 111 49 14 1 023 0 528 6 298 1 144 50 33 1 300 0 511 6 583 1 185 51 69 1 636 0 494 6 893 1 233 53 25 2 043 0 477 7 230 1 290 55 02 2 539 0 461 7 .599 1 358 57 02 3 .146 0 444 8 .002 1 .439 59 29 3 .896 0 .427 8 .446 1 .535 61 .85 4 .831 0 .410 8 .936 1 .651 64 .75 6 .019 0 .393 9 .479 1 .789 68 .03 7 .560 0 .376 10 .082 1 .956 71 .75 9 .627 0 .359 10 .757 2 .157 75 .97 12 .544 0 .342 11 .516 2 .403 80 .79 17 .043 0 .326 12 .374 2 .705 86 .30 25 .470 0 .309 13 .350 3 . 078 92 .63 50 .210 0 .308 13 .399 3 . 097 92 .95 HYDRAtJLIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 6.05 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 6.050 1.981 6.111 597.86 28.294 1.500 1.981 1.561 96.14 ASStJMED DOWNSTREAM PRESSURE HEAD (FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 28 294 1 500 1 980 1 561 96 14 28 486 1 469 1 990 1 530 92 74 28 674 1 437 2 009 1 500 89 44 28 860 1 406 2 033 1 470 86 20 29 044 1 374 2 063 1 440 83 05 29 225 1 343 2 097 1 411 79 98 29 405 1 311 2 136 1 382 76 99 29 583 1 280 2 179 1 354 74 10 29 758 1 248 2 226 1 325 71 31 29 931 1 217 2 278 1 298 68 61 30 .101 1 185 2 336 1 270 66 02 30. 268 1 154 2 398 1 243 63. 55 30 432 1 123 2 467 1 217 61 19 30 592 1 091 2 541 1 191 58 95 30 747 1 060 2 622 1 166 56 83 30 898 1 028 2 710 1 142 54 86 31 043 0 997 2 806 1 119 53 02 31 181 . 0 965 2 911 1 097 51 32 31 312 0 934 3 025 1 076 49 79 31 434 0 902 3 150 1 057 48 41 31 545 0 871 3 288 1 039 47 21 31 .643 0 839 3 439 1 023 46 19 31 .727 0 808 3 605 1 010 45 37 31 .792 0 777 3 .789 1 .000 44 76 31 .835 0 .745 3 .993 0 .993 44 37 31 .851 0 .714 4 .220 0 .990 44 .24 50 .210 0 .714 4 .220 0 .990 44 .24 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCtJRS AT 28.66 FEET UPSTREAM OF NODE 1020.00 DOWNSTREAM DEPTH = 1.439 FEET. UPSTREAM CONJUGATE DEPTH = 0.317 FEET NODE 1020.50 : HGL = < 395.094>;EGL= < 395.370>;FLOWLINE= < 394.380> ****************************************************************************** FLOW PROCESS FROM NODE 1020.50 TO NODE 1020.50 IS CODE = 8 UPSTREAM NODE 1020.50 ELEVATION = 394.38 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.50 CFS PIPE DIAMETER = If 3.00 INCHES FLOW VELOCITY = 4.22 FEET/SEC. VELOCITY HEAD = 0 277 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2^( 0 277) = 0.055 NODE 1020.50 : HGL = < 395.426>;EGL= < 395.426>;FLOWLINE= < 394.380> **************************** **************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1020.50 FLOWLINE ELEVATION = 394.38 ASSUMED UPSTREAM CONTROL HGL = 395.09 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAtJLICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET. SUITE 800 SAN DIEGO. CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * EL FUERTE STREET - tJLTIMATE CONDITIONS * * LINE 3000. LATERAL 7 ON SHEET 4 * * lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: L3000.DAT TIME/DATE OF STtJDY: 16:18 09/23/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESStJRE PRESStJRE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1020.00- 6.07^ 626.12 0.50 141.25 } FRICTION 1020.10- 3.37* 328.89 0.95 Dc 89.56 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1020.00 FLOWLINE ELEVATION = 386.25 PIPE FLOW = 6.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 392.320 FEET NODE 1020.00 : HGL = < 392.320>;EGL= < 392.499>;FLOWLINE= < 386.250> ****************************************************************************** FLOW PROCESS FROM NODE 1020.00 TO NODE 1020.10 IS CODE = 1 UPSTREAM NODE 1020.10 ELEVATION = 389.08 (FLOW IS UNDER PRESSURE) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 6.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 41.24 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6.00)/( 105.043))**2 = 0.00326 HF=L*SF = ( 41.24)* (0.00326) = 0.135 NODE 1020.10 : HGL = < 392.455>;EGL= < 392.634>;FLOWLINE= < 389.080> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 1020.10 FLOWLINE ELEVATION = 389.08 ASSUMED UPSTREAM CONTROL HGL = 390.03 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: PROJECT DESIGN CONStJLTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ********************•••••• • BRESSI RANCH - EL FUERTE STREET * • LINE 9000. SUMP INLET SYSTEM SOUTH OF POINSETTIA LANE • • lOO-YEAR tJLTIMATE Q ************************************************************************** FILE NAME: L900A.DAT TIME/DATE OF STUDY: 13:51 01/09/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTtJM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 9001.00- 14.20^ } FRICTION ) HYDRAUL 9005.00- 1.27 Dc } MANHOLE 9005.10- 1.27 Dc } FRICTION 9010.00- 1.27^Dc } JtJNCTION 9010.10- 2.37^ } FRICTION 9020.00- 1.92* } CATCH BASIN 9020.00- 2.18* MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. ^....^***** ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 9001.00 FLOWLINE ELEVATION = 139.50 PIPE FLOW = 11.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 153.700 FEET 1615 82 0. 51 450 40 JUMP 205 30 0 95^ 229 23 205 30 1 18^ 206 95 205 30 1 27 •Dc 205 30 226 34 0 82 106 .88 176 .85 0 99 Dc 101 .68 157 .74 0 .99 DC 33 .75 NODE 9001.00 : HGL = < 153.700>;EGL= < 154.302>;FLOWLINE= < 139.500> ******************************** ************************************•*•********'' FLOW PROCESS FROM NODE 9001.00 TO NODE 9005.00 IS CODE = 1 UPSTREAM NODE 9005.00 ELEVATION = 163.79 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 119.88 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.49 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.95 GRADUALLY VARIED FLOW PROFILE COMPtJTED INFORMATION: 1.27 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNI 0. 000 0. 950 9. 324 2. 300 229. 23 0. 246 0. 931 9. 539 2 . 345 232. 48 0. 521 0. 913 9. 765 2. 395 236. 00 0. 829 0. 895 10. 004 2. 450 239. 82 1 174 0 876 10. 256 2. 511 243 . 95 1 559 0 858 10 522 2 578 248 42 1 991 0 840 10 803 2 653 253 23 2 475 0 821 11 101 2 736 258 43 3 019 0 803 11 416 2 828 264 04 3 632 0 785 11 750 2 930 270 08 4 325 0 767 12 105 3 043 276 59 5 110 0 748 12 482 3 169 283 60 6 004 0 730 12 883 3 309 291 17 7 026 0 712 13 310 3 464 299 33 8 203 0 693 13 767 3 638 308 13 9 567 0 675 14 254 3 832 317 64 11 162 0 657 14 777 4 050 327 91 13 .049 0 639 15 337 4 .293 339 .02 15 .311 0 .620 15 .939 4 .568 351 .06 18 .071 0 .602 16 .588 4 .877 364 .11 21 .523 0 .584 17 .287 5 .227 378 .29 25 .989 0 .565 18 .044 5 .624 393 .72 32 .074 0 .547 18 .865 6 .077 410 .53 41 .143 0 .529 19 .757 6 .594 428 .91 57 .571 0 .510 20 .729 7 .187 449 .03 119 .880 0 .509 20 .796 7 .229 450 .40 HYDRAtJLIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 14.20 DISTANCE FROM CONTROL(FT) 0.000 66.265 PRESStJRE HEAD(FT) 14.200 1.500 VELOCITY (FT/SEC) 6.225 6.225 SPECIFIC ENERGY(FT) 14.802 2.102 PRESSURE+ MOMENTtJM (POUNDS) 1615.82 215.39 ASStJMED DOWNSTREAM PRESSURE HEAD (FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 66.265 66.309 66.347 FLOW DEPTH (FT) 1.500 1.491 1.482 VELOCITY (FT/SEC) 6.223 6.228 6 .237 SPECIFIC ENERGY(FT) 2.102 2.093 2.086 PRESSURE+ MOMENTUM(POUNDS) 215.39 214.49 213 .67 66.383 1. 472 6. 249 2 . 079 212 . 92 66.416 1. 463 6. 263 2. 073 212. 21 66.447 1. 454 6. 280 2. 067 211. 55 66.477 1. 445 6. 297 2 . 061 210. 93 66.505 1. 436 6. 317 2. 056 210. 34 66.531 1. 426 6 338 2. 051 209. 79 66.556 1 417 6 360 2 046 209 28 66.579 1 408 6 384 2 041 208 80 66.600 1 399 6 410 2 037 208 35 66.621 1 390 6 436 2 033 207 93 66.640 1 380 6 464 2 030 207 54 66.657 1 371 6 493 2 026 207 19 66.673 1 362 6 523 2 023 206 86 66.687 1 353 6 555 2 020 206 57 66.700 1 .344 6 .587 2 018 206 31 66.712 1 .334 6 .621 2 .016 206 .07 66.722 1 .325 6 .656 2 .014 205 .87 66.731 1 .316 6 .693 2 .012 205 .70 66.738 1 .307 6 .730 2 .011 205 .56 66.744 1 .298 6 .769 2 .009 205 .44 66.748 1 .288 6 .809 2 .009 205 .37 66.750 1 .279 6 .850 2 .008 205 .32 66.751 1 .270 6 .892 2 .008 205 .30 119.880 1 .270 6 .892 2 .008 205 .30 END OF HYDRAtJLIC JUMP ANALYSIS PRESStJRE+MOMENTUM BALANCE OCCURS AT 55.20 FEET UPSTREAM OF NODE 9001.00 DOWNSTREAM DEPTH = 3.620 FEET. UPSTREAM CONJUGATE DEPTH = 0.510 FEET NODE 9005.00 : HGL = < 164.740>;EGL= < 166.090>;FLOWLINE= < 163.790> ****************************************************************************** FLOW PROCESS FROM NODE 9005.00 TO NODE 9005.10 IS CODE = 2 UPSTREAM NODE 9005.10 ELEVATION = 164.12 (FLOW IS SUPERCRITICAL) CALCtJLATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 11.00 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 1.099 FEET HMN = .05^(AVERAGED VELOCITY HEAD) = .05• ( 1.099) = 0.055 NODE 9005.10 : HGL = < 165.299>;EGL= < 166.145>;FLOWLINE= < 164.120> ********* ****************************************••••••••••••••••••••••••••••• FLOW PROCESS FROM NODE 9005.10 TO NODE 9010.00 IS CODE = 1 UPSTREAM NODE 9010.00 ELEVATION = 165.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 106.93 FEET MANNING'S N = 0.01300 NORMAL DEPTH (FT) = 1.18 CRITICAL DEPTH (FT)^^= 1^27 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.27 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1.270 6.892 2.008 205.30 0 018 1.266 6.910 2.008 205.30 0 073 1.262 6.928 2.008 205.31 0 167 1.259 6.946 2.008 205.33 0. 306 1. 255 6. 964 2 . 008 205.35 0. 491 1. 251 6 983 2 . 009 205.37 0. 729 1. 247 7 002 2 . 009 205.40 1. 023 1. 243 7 021 2 . 009 205.44 1 380 1 240 7 040 2 010 205.48 1 808 1 236 7 060 2 010 205.53 2 315 1 232 7 079 2 Oil 205.58 2 911 1 228 7 099 2 Oil 205.64 3 609 1 225 7 120 2 012 205.70 4 426 1 221 7 140 2 013 205.77 5 381 1 217 7 161 2 014 205.85 6 501 1 213 7 181 2 015 205.93 7 819 1 209 7 .202 2 015 206.02 9 .381 1 206 7 .224 2 016 206.11 11 .254 1 .202 7 .245 2 .017 206.21 13 .531 1 .198 7 .267 2 .019 206.32 16 .361 1 .194 7 .289 2 .020 206.43 19 .990 1 .190 7 .311 2 .021 206.55 24 .883 1 .187 7 .334 2 .022 206.67 32 .080 1 .183 7 .356 2 .024 206.80 44 .923 1 .179 7 .379 2 .025 206.94 106 .930 1 .179 7 .381 2 .025 206.95 NODE 9010.00 HGL = < 166 670>;EGL= < 167.408>;FLOWLINE= < 165.400 ****************************•************************••••••••••••••••••••••••• FLOW PROCESS FROM NODE 9010.00 TO NODE 9010.10 IS CODE = 5 UPSTREAM NODE 9010.10 ELEVATION = 165.73 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 6.60 11.00 4.40 0.00 DIAMETER (INCHES) 18.00 18.00 18.00 0.00 ANGLE (DEGREES) 90.00 90.00 0.00 FLOWLINE ELEVATION 165.73 165.40 165.73 0.00 CRITICAL DEPTH(FT.) 0.99 1.27 0.80 0.00 VELOCITY (FT/SEC) 3.735 6.894 2.490 0.000 0.00===Q5 EQUALS BASIN INPUT= LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2•V2-Ql•VI*COS(DELTAl)-Q3•VS *COS(DELTA3)- Q4*V4^COS(DELTA4))/((A1+A2)^16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.00395 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01039 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00717 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.029 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.908)+( 0.000) = 0.908 NODE 9010.10 : HGL = < 168.099>;EGL= < 168.316>;FLOWLINE= < 165.730> ****************************************************************************** FLOW PROCESS FROM NODE 9010.10 TO NODE 9020.00 IS CODE = 1 UPSTREAM NODE 9020.00 ELEVATION = 166.40 (FLOW IS UNDER PRESSURE) CALCULATE PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( FRICTION LOSSES(LACFCD): 6.60 CFS PIPE DIAMETER 56.02 FEET MANNING' (( 6.60)/( 105.045))**2 = 56.02)*(0.00395) = 0.221 = 18.00 INCHES S N = 0.01300 0.00395 NODE 9020.00 : HGL = < 168.321>;EGL= < 168.537>;FLOWLINE= < 166.400> ****************************************************************************** FLOW PROCESS FROM NODE 9020.00 TO NODE 9020.00 IS CODE = 8 UPSTREAM NODE 9020.00 ELEVATION = 166.40 (FLOW IS UNDER PRESSURE)^^^^ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.60 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.73 FEET/SEC. VELOCITY HEAD = 0.217 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2* { ° " ^^"^) ^=^^0^043 ~~NODE'"9020.00 : HGL = < 168.580>;EGL= < 168.580>;FLOWLINE= < 166.400> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 9020.00 FLOWLINE ELEVATION = 166.40 ASSUMED UPSTREAM CONTROL HGL = 167.39 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONStJLTANTS 701 'B' STREET. SUITE 800 SAN DIEGO. CA 92019 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** • BRESSI RANCH - EL FUERTE STREET • • SYSTEM 9000, SUMP INLET AT STA 63+38.72 • • 100-YEAR ULTIMATE Q • ************************************************************************** FILE NAME: L900B.DAT TIME/DATE OF STUDY: 20:16 07/29/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "•" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 9030.00- 2.37^ 202.86 0.44 104.49 } FRICTION 9031.00- 0.90^ 65.58 0.83 Dc 64.92 } CATCH BASIN 9031.00- 1.24^ 39.22 0.83 Dc 22.44 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 9030.00 FLOWLINE ELEVATION = 165.73 PIPE FLOW = 4.70 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 168.100 FEET NODE 9030.00 : HGL = < 168.100>;EGL= < 168.210>;FLOWLINE= < 165.730> ****************************************************************************** FLOW PROCESS FROM NODE 9030.00 TO NODE 9031.00 IS CODE = 1 UPSTREAM NODE 9031.00 ELEVATION = 167.04 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.25 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.37 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 3 .515 PRESStJRE VELOCITY HEAD(FT) (FT/SEC) 2.370 2.660 1.500 2.660 SPECIFIC ENERGY (FT) 2.480 1.610 PRESSURE+ MOMENTUM{POUNDS) 202.86 106.93 NORMAL DEPTH(FT) = 0.30 CRITICAL DEPTH(FT) = 0.83 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNI 3. 515 1. 500 2. 659 1. 610 106 93 3. 619 1. 473 2 . 670 1. 584 104 09 3. 720 1. 447 2. 689 1. 559 101 34 3. 819 1 420 2 715 1. 534 98 68 3. 917 1 393 2 745 1. 510 96 09 4 012 1 367 2 781 1. 487 93 58 4 106 1 340 2 820 1 463 91 15 4 198 1 313 2 864 1 441 88 80 4 288 1 286 2 913 1 418 86 .53 4 376 1 260 2 965 1 396 84 35 4 463 1 233 3 023 1 375 82 .25 4 547 1 206 3 085 1 354 80 .26 4 629 1 180 3 151 1 334 78 .35 4 708 1 153 3 223 1 314 76 .55 4 784 1 126 3 301 1 296 74 .86 4 857 1 .100 3 .384 1 278 73 .28 4 926 1 .073 3 .474 1 260 71 .81 4 .992 1 . 046 3 .570 1 .244 70 .47 5 .053 1 .020 3 .673 1 .229 69 .25 5 .109 0 .993 3 .785 1 .215 68 .16 5 .159 0 .966 3 .904 1 .203 67 .22 5 .203 0 .940 4 .034 1 .192 66 .42 5 .239 0 .913 4 .173 1 .183 65 .79 5 .250 0 .902 4 .230 1 .181 65 .58 NODE 9031.00 HGL = < 167 . 942>;EGL= < 16 8.2 21>;FLOWLINE= < 167. 040 ****************************************************************************** FLOW PROCESS FROM NODE 9031.00 TO NODE 9031.00 IS CODE = 8 UPSTREAM NODE 9031.00 ELEVATION = 167.04 (FLOW IS SUBCRITICAL) CALCtJLATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW = 4.70 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.23 FEET/SEC. VELOCITY HEAD = 0.278 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.278) = 0.056 NODE 9031.00 : HGL = < 168.276>;EGL= < 168.276>;FLOWLINE= < 167.040> r*************************** ***************************************************' UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 9031.00 FLOWLINE ELEVATION = 167.04 ASSUMED UPSTREAM CONTROL HGL = 167.87 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS APPENDIX 4.2 CDS UNIT CALCULATIONS REP/l 2249DR.DOC Location AREA (Ac) Planning Areas C Qm (cfs) Vm (ft^) Vm (cy) CDS Device No. Open 140.0 OS-4 0.45 6.3 0 0 Roadway 15.0 0.95 2.9 32670 1210 Industrial 25.5 PA-5 0.95 4.8 55539 2057 Residential 112.5 PAs7-9, 12, 13 0.55 12.4 245025 9075 Notes: 1. Qm = 0.2*C*A 2. Vm = 0.6 in X A 3. Conservatively use 1/2 Qm for Open Space Area to account for potential debris. 4. Capacity of PSW 70_70 is 26-34 cfs APPENDIX 5 INLET & CATCH BASIN CALCULATIONS EL FUERTE STREET CURB INLETS PROJ. NUM 1325.00 PAGE 1 OF 1 CURB INLETS ON GRADE - ULTIMATE QIOO Street Station Street Side a % Street Y CALC'D OPEN. NET OPENING CURB INLET BYPASS Street Station Street Side (CFS) Slope (Feet) L - (FEET) (FEET) SIZE (FT) Q (cfs) 14-1-53.11 East 3.5 8.16 0.25 11.32 12.00 13.00 0.00 14-1-53.11 West 3.5 8.16 0.25 11.32 12.00 13.00 0.00 19-1-73.64 East 3.4 8.67 0.25 11.00 11.00 12.00 0.00 19-f 73.64 West 6.1 8.67 0.28 18.29 19.00 20.00 0.00 27-H49.61 East 3.1 9.08 0.24 10.29 11.00 12.00 0.00 27-1-50.40 West 3.1 9.08 0.24 10.29 11.00 12.00 0.00 36-f08.52 East 4.1 6.28 0.28 12.29 13.00 14.00 0.00 36-f28.45 West 6.1 5.48 0.31 16.90 17.00 18.00 0.00 42-1-60.45 East 2.5 2.69 0.28 7.50 8.00 9.00 0.00 42-f60.45 West 5.8 2.69 0.34 15.11 16.00 17.00 0.00 50-1-29.64 East 4.8 1.20 0.36 11.96 12.00 13.00 0.00 50-f29.64 West 4.8 1.20 0.36 11.96 12.00 13.00 0.00 56-1-45.07 East 2.9^ 1.20 0.31 8.09 9.00 12.00 0.00 56-1-45.07 West 3.2 1.20 0.32 8.72 9.00 12.00 0.00 71-1-75 East 4.3 6.00 0.27 Existing 10' 9.00 10.00 1.40 68-f73 West 4.5 6.00 0.28 Existinq 10' 9.00 10.00 1.50 CURB INLETS IN SUMP - ULTIMATE QIOO Street Station Street Side Q Q/FOOT CALC'D OPEN NET OPENING CURB INLET Street Station Street Side (CFS) (CFS/FT) L-(FEET) (FEET) SIZE (FT) 63-1-48.00 East 6.6 2 3.30 9.00 10.00 63-1-38.72 West 4.7 2 2.35 9.00 10.00 t:\WATER RES\1325-BRESSI\CURB-INLETS\Curb-inlets.xls ULTIMATEQ100 - Street Flow Calculations Label Disctiarge (cfs) Actual Deptti (ft) Slope (ft/ft) Top Wicith (ft) Velocity (ft/s) sta 14+53:11 - east 3.50 0.25 0.081600 8.12 4.87 sta 14+53.11 - west 3.50 0.25 0.081600 8.12 4.87 sta 19+73.64 - east 3.40 0.25 0.086700 7.92 4.96 sta 19+73.64 - west 6.10 0.28 0.085700 9.61 6.22 sta 27+49.61 - east 3.10 0.24 0.090800 7.53 4.94 sta 27+50.40 - west 3.10 0.24 0.090800 7.53 4.94 sta 36+08.52 - east 4.10 0.28 0.062800 9.12 4.57 sta 36+28.45 - west 6.10 0.31 0.054800 10.51 5.22 sta 42+60.45 - east 2.50 0.28 0.026900 8.85 2.95 sta 42+60.45 - west 5.80 0.34 0.026900 11.99 3.87 sta 50+29.64 - east 3.80 0.34 0.012000 11.89 2.58 sta 50+29.64 - west 4.80 0.36 0.012000 13.12 2.69 sta 56+45.07 - east 2.90 0.31 0.012000 10.59 2.45 sta 56+45.07 - west 3.20 0.32 0.012000 11.05 2.49 t:\.. .\f lowmastertgutter depths-ult.tm2 07/30/02 09:16:41 AM © Haestad Methods, Project Design Consultants 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Adolph Lugo FlowMaster v6.1 [614o] (203) 755-1666 Page 1 of 1 El Fuerte - Rancho Carillo - Rick Engineering Plans STA 68+73.00 EAST Worksheet for Gutter Section Project Description Worksheet El Fuerte STA 68+73.00, 10' 1 Type Gutter Section Solve For Spread Input Data Slope 060000 ft/ft Discharge 4.50 cts Gutter Width 2.00 ft Gutter Cross Sl0[ 083000 ft/ft Road Cross Slop 020000 ft/tt Mannings Coeffic 0.015 Results Spread 7.50 ft Flow Area 0.7 ft^ Depth 0.28 tt Gutter Depress 1.5 in Velocity 6.54 ft/s Project Engineer. Adolph Lugo c:\haestad\fmw\1325-rick.fm2 Project Design Consultants on.^™^'%^!;Vf!,M' 03/28/02 03:09:04 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 ot 1 El Fuerte - Rancho Carillo - Rick Engineering Plans STA 71+75.00 EAST Worksheet for Gutter Section Project Description Worksheet El Fuerte STA 71+75.00, 10' 1 Type Gutter Section Solve For Spread Input Data Slope 060000 ft/ft Discharge 4.30 cfs Gutter Width 2.00 ft Gutter Cross Sl0| 083000 ft/ft Road Cross Slop 020000 ft/tt Mannings Coeffic 0.015 Results Spread 7.32 ft Flow Area 0.7 ft^ Depth 0.27 ft Gutter Depress 1.5 in Velocity 6.49 ft/s Project Engineer. Adolph Lugo c:\haestad\fmw\1325-rick.fm2 Project Design Consultants FlowMaster v6.1 [614o] 03/28/02 03:08:30 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 CURB INLETS ON GRADE - INTERIM Q100 Streel Station Street Side Q BYPASS 0 TOTAL 0 % Street Y NET OPENING CURB INLET CALC'D CAPACITY BYPASS BYPASS TO Street Side (CFS) (CFS) (CFS) Slope (Feet) (FEET) SIZE (FT) (CFS) Q (cfs) 14+53.11 East 6.8 0.0 6.8 8.16 0.29 12.00 13.00 4.10 2.70 19+73.64 EAST 14+53.11 West 6.8 0.0 6.8 8.16 0.29 12.00 13.00 4.10 2.70 19+73.64 WEST 19+73.64 East 3.4 2.7 6,1 8.67 0.28 11.00 12.00 3.67 2.43 27+49.61 EAST 19+73.64 West 11.9 2.7 14.6 8.67 0.37 19.00 20.00 7.79 6.81 27+50.40 WEST 27+49.61 East 3.1 2.4 5.5 9.08 0.28 11.00 12.00 3.67 1.86 36+08.52 EAST 27+50.40 West 3.7 6.8 10.5 9.08 0.33 11.00 12.00 4.13 6.38 36+28.45 WEST 36+08.52 East 4.1 1.9 6.0 6.28 0.30 13.00 14.00 4.55 1.41 42+60.45 EAST 36+28.45 West 4.1 6.4 10.5 5.48 0.37 17.00 18.00 6.97 3.51 42+60.45 WEST 42+60.45 East 2.5 1.4 3.9 2.69 0.30 8.00 9.00 2.80 1.11 50+29.64 EAST 42+60.45 West 2.5 3.5 6.0 2.69 0.34 16.00 17.00 6.14 0.00 50+29.64 East 4.8 1.1 5.9 1.20 0.39 12.00 13.00 5.13 0.78 56+45.07 EAST 50+29.64 West 3.8 0.0 3.8 1.20 0.36 12.00 13.00 4.81 0.00 56+45.07 East 2.9 0.8 3.7 1.20 0.34 11.00 12.00 4.22 0.00 56+45.07 West 2.8 0.0 2.8 1.20 0.31 11.00 12.00 3.94 0.00 INTERIM Q100 - Street Flow Calculations Label sta 14+53.11 - sta 14+53.11 - sta 19+73.64 - sta 19+73.64- sta 27+49.61 - sta 27+50.40 • sta 36+08.52 - sta 36+28.45 - sta 42+60.45 • sta 42+60.45 • sta 50+29.64 • sta 50+29.64 • sta 56+45.07 • sta 56-H45.07 • east west east west east west east west east west east west east west Discharge (cfs) 6.80 6.80 6.10 14.60 5.50 10.50 6.00 10.50 3.90 6.00 5.90 3.80 3.70 2.80 Actual Depth (ft) 0.29 0.29 0.28 0.37 0.28 0.33 0.30 0.37 0.30 0.34 0.39 0.34 0.34 0.31 Slope (ft/ft) 0.081600 0.081600 0.086700 0.086700 0.090800 0.090800 0.062800 0.054800 0.026900 0.026900 0.012000 0.012000 0.012000 0.012000 Top Width (ft) 10.17 10.17 9.61 13.86 9.59 11.97 10.13 13.25 10.10 12.16 14.30 11.89 11.76 10.42 Velocity (ft/s) 6.23 6.23 6.22 7.40 5.63 7.06 5.51 5.79 3.60 3.90 2.81 2.58 2.56 2.43 t:\.. .\f lowmaster\gutter depths-int.f m2 07/30/02 09:31:24 AM © Haestad Methods, Inc. Project Design Consultants 37 Brookside Road Waterbury, CT 06708 USA Project Engineen Adolph Lugo FlowMaster v6.1 [6140] (203) 755-1666 Page 1 of 1 F Type Catch Basin The maximum allowable flow rate is determined using the orifice flow equation, as follows: Qmo. = CA<lgh, where C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hvdraulics; A = Area of clean opening (3 feet x 0.65 foot = 1.95 ft^ per opening); g = Gravitational acceleration (32.2 ft/sec^); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to top of catch basin box (h=0.92') Qnmx = (0.62)1.95V(2)(32.2)(0.92) = 9.3 cfs per opening. Required number of openings: Inlet Location Qioo (cfs) Sta. 42-1-60.65 Sta. 36+20.26 26.4 101.1 Head, h (feet) Single Opening Capacity (cfs) 0.92 (11 inches 9.3 to top of box) . 12.0 19.4 Number Of Openings Comments Use Concrete Bowl at Inlet Use Headwall instead of Type 'F' Catch Basin PLAN: a HEADWALL INLETS Culvert Calculator Report STA 36+20.26 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 225.00 ft Headwater Depth/Height 1.77 Computed Headwater Elev; 225.13 ft Discharge 75.10 cfs Inlet Control HW Elev. 225.13 ft Tailwater Elevation 218.00 ft Outlet Control HW Elev. 224.87 ft Control Type Inlet Control Grades Upstream Invert 219.83 ft Downstream Invert 215.77 ft Length 28.50 ft Constructed Slope 0.142456 ft/ft Hydraulic Profile Profile 82 Depth, Downstream 1.56 ft Slope Type Flow Regime Velocity Downstream Steep Supercritical 20.18 ft/s Normal Depth Critical Depth Critical Slope 1.12 ft 2.72 ft 0.011099 ftm Section Section Shape Circular Mannings Coefficient 0.013 Section Material Concrete Span 3.00 ft Section Size 36 inch Rise 3.00 ft Number Sections 1 Outlet Control Properties Outlet Control HW Elev. 224.87 ft Ke 0.20 Upstream Velocity Head 1.93 ft Entrance Loss 0.39 ft Inlet Control Properties Inlet Control HW Elev. 225.13 ft Flow Control Submerged Inlet Type Groove end w/headwall Area Full 7.1 ft= K 0.00180 HDS 5 Chart 1 M 2.00000 HDS 5 Scale 2 C 0.02920 Equation Form 1 Y 0.74000 Project Engineer; Adolph Lugo t:\...\el fuerte roadway drainage\inlets.cvm Project Design Consultants CulvertMaster v2 0 [2.005] 08/10/02 04:30:24 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 ot 1 Culvert Calculator Report STA 22+85.30 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 335.00 ft Headwater Depth/Height 1.92 Computed Headwater Elev; 335.34 ft Discharge 27.20 cfs Inlet Control HW Elev. 335.16 ft Tailwater Elevation 333.00 ft Outlet Control HW Elev. 335.34 ft Control Type Outlet Control Grades Upstream Invert Length 331.50 ft 65.00 ft Downstream Invert Constructed Slope Hydraulic Profile 330.74 ft 0.011692 ft/ft Profile Slope Type Flow Regime Velocity Downstream PressureProfile N/A N/A 8.66 ft/s Depth, Downstream Nomial Depth Critical Depth Critical Slope Section Section Shape Section Material Section Size Number Sections Circular Concrete 24 inch 1 Mannings Coefficient Span Rise Outlet Control Properties 2.26 ft N/A ft 1.81 ft 0.012661 ft/ft 0.013 2.00 ft 2.00 ft Outlet Control HW Elev. 335.34 ft Ke 0.20 Upstream Velocity Head 1.16 ft Entrance Loss 0.23 ft Inlet Control Properties Inlet Control HW Elev. 335.16 ft Flow Control Submerged Inlet Type Groove end w/headwall Area Full 3.1 ft= K 0.00180 HDS 5 Chart 1 M 2.00000 HDS 5 Scale 2 C 0.02920 Equation Form 1 Y 0.74000 untitled.cvm 04702/02 09:56:07 AM Project Design Consultants © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Adolph Lugo CulvertMaster v2.0 [2.005] 1-1-203-755-1666 Page 1 of 1 22+32.1jrigsAsn.: 'WINS TiEAlmALL T0W535 p\ r—1 *• — —*»oi 14" RCP-^72.86 LF 0 100% i PBOP^LB AT STA. scA^::\'rj40' STOi RMDRAIN 22im30 ^XY~•i^ggrg'f- RCP '^75.41 LF] 1.00% APPENDIX 6 DITCH AND RIPRAP CALCULATIONS REP/12249DR.DOC APPENDIX 6.1 DITCH CALCULATIONS REP/l 2249DR.IX)C Ail Report Label Worksheet Discharge Slope Depth Water Label Type (cfs) (ft/ft) (ft) Surface Type (cfs) Elevation (ft) DITCH NO. 01 -D-75A (MODIFIED) 30" TOP WIDTH, 12" DEPTH Irregular 2.00 0.100000 0.31 DITCH NO. 02 -D-75A (MODIFIED) 30" TOP WIDTH, 12" DEPTH Irregular 5.30 0.200000 0.41 DITCH NO. 03 -D-75A (MODIFIED) 36" TOP WIDTH, 18" DEPTH Irregular 15.80 0.040000 0.91 DITCH NO. 04 -D-70 TRAP CHANNEL Trapezoidal 56.50 0.040000 1.28 DITCH NO. 04 -D-75 TYPE 'D', W=60", D=20" Circular 56.50 0.040000 1.19 DITCH NO. 05 -D-70 TRAP CHANNEL Trapezoidal 76.00 0.040000 1.46 DITCH NO. 05 D-75 TYPE 'D', W=72", D=24" Circular 76.00 0.040000 1.30 0.45 DITCH NO. 07 D-75A (MODIFIED) 30" TOP WIDTH, 12" DEPTH Irregular 4.00 0.080000 0.45 DITCH NO. 08 • D-75 TYPE 'D', W=54", D=18" Circular 25.20 0.030000 0.89 0.38 DITCH NO. 09 - D-75A (MODIFIED) 30" TOP WIDTH, 12" DEPTH Irregular 2.00 0.040000 0.38 DITCH NO. 10 - D-75A (MODIFIED) 30" TOP WIDTH, 12" DEPTH Irregular 2.60 0.050000 0.41 DITCH NO. 11 - D-75 TYPE 'D', W=60", D=20" Circular 30.00 0.010000 1.23 DITCH NO. 12 - D-70 TRAP CHANNEL Trapezoidal 99.40 0.010000 1.56 DITCH NO. 12 - D-75 TYPE 'D', W=96", D=30" Circular 99.40 0.010000 1.92 0.48 DITCH NO. 13 - D-75A (MODIFIED) 30" TOP WIDTH, 12" DEPTH Irregular 3.66 0.050000 0.48 DITCH NO. 14 - D-75A (MODIFIED) 30" TOP WIDTH, 12" DEPTH Irregular 5.30 0.070000 0.53 DITCH NO. 15 - D-75A (MODIFIED) 30" TOP WIDTH, 12" DEPTH Irregular 2.20 0.070000 0.35 DITCH NO. 16 - D-75A (MODIFIED) 36" TOP WIDTH, 15" DEPTH Irregular 3.90 0.010000 0.67 DITCH NO. 17 - D-75A (MODIFIED) 42" TOP WIDTH. 18" DEPTH Irregular 7.20 0.006000 0.92 DITCH NO. 18 - D-75A (MODIFIED) 42" TOP WIDTH, 18" DEPTH Irregular 12.80 0.007600 1.10 DITCH NO. 19 - D-75A (MODIFIED) 36" TOP WIDTH, 15" DEPTH Irregular 13.40 0.060000 0.78 DITCH NO. 20 - D-75 TYPE 'D', W=54", D=18" Circular 18.50 0.010000 1.00 DITCH NO. 21 - D-75 TYPE 'D', W=54", D=18" Circular 31.00 0.100000 0.73 0.54 DITCH NO. 22 - D-75A (MODIFIED) 30" TOP WIDTH, 12" DEPTH Irregular 3.60 0.030000 0.54 DITCH NO. 23 - D-75A (MODIFIED) 36" TOP WIDTH, 15" DEPTH Irregular 10.70 0.100000 0.63 (in) Bottom Width (ft) 60 72 54 60 96 1.00 1.00 Velocity (ft/s) 54 54 4.00 9.52 15.82 11.15 15.11 15.69 16.27 16.77 10.47 11.33 6.78 7.87 7.98 10.08 10.75 8.58 10.68 8.55 4.68 4.41 5.66 12.47 7.02 18.41 7.06 14.28 t:\ ..\ditches\2199d75a.fm2 07/30/02 03:13:00 PM © Haestad Methods, Inc. Project Design Consultants 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Project Engineer: Adolph Lugo FlowMaster v6.1 [614o] Page 1 of 1 APPENDIX 6.2 RIPRAP CALCULATIONS REP/l 2249DR.DOC 9 Project Design Consvltants PLANNING ENGINESRim SURVEYIJK 701 "B" Stnet, Suite 720, San Diego. Ca. 92101 619-235-6471 FAX 234'0349 PAGE . JOB NO. OF PROJECT SUBJECT DRAWN BY CHECKED BY DATE DATE (^cYYlB/y 'p') PiTCY^ ourY^r^ f^of<A p^i2-/<AiSZiB(^ A^COYUT^ O0?YZ^ W - ZD = Z ^ -TV L ^ 4D P, Y^ fJos ^ /h ) 7- 4.3 ' PROJECT SUBJECT PAGE OF Project Design Cortsnltants PLANNING EmiNEERING SURVEYING 701 "B" Street. Suite 720. San Diego. Ca. 92101 619'235'6471 FAX 234-0349 "^'^ JOB NO. f^i j^,js>^r^ ^7-:g^^r- ^ CHECKED BY DATE f H^l?^i.O&^ /^Y>P£ ^O/oy /0" Y^'f'^ OOJT.^T — i/S^ Tl^yh^T'^^B ^SfY-^f?^ '^rtz^SS^ C^i^c 71? 5/2^ Y^/Y^-Y^/^ Si/JC^ a , XA^/K^ nP^ $ 1^ /9T^D /Y-f6^ \Y lA^tC O (x^/</^ ^ iZOCJC S l-Sr^ 7Z>0 '/C/fY2-Y^ /^cypnePry rz> /0" F//^^ ^/r'^rv/ Y,Z. ^ ' Y.Z {^){Y^h) {S^ ' C'^/y.e/ osB^ c/sa-^ Y^" ^CJ^)> F^f^t?-^o^ Y^> 51^ ^ 4,5' ^ 4D - y 1/^0 YO' Mif^' PROJECT SUBJECT Project Design ConsvltarUs PLANNING ENGINEERING SURVEYING 701 "ET" Street. Suite 720, San Diego, Ca. 92101 619*235-6471 FAX 234-0349 0^ SYie^^ PAGE JOB NO. - DRAm BY CHEaED BY OF DATE DATE /B" p/P^ pz^<^> 'AS-Y^uYy^ 7A s - GZ. 4 Y.z. (^^'4)(^.^^zO C^' f^^) 5-& - Y^ ^ 4D ^ ' us^ /<=» 9 PAGE OF PROJECT SUBJECT Project Design Consvltants ^ Z/99.oo PLANNim ENGINEERING SURVEYim 701 "ff- Street, Suite 720, San Diego, Ca. 92101 no Ami av DATF 619-235-6471 FAX 234-0349 DRAWNBY DAIt .^/^ p>i/0?e^n^ cTTTe/g/g^ CHECKED BY DATE ( bo - C'^^^Y^ Y^ooc^Yk) nuTJ^fS^ ,,.^/^^> rv O^B^^O S/<y- . ^ / . _ ^ ^ p^r^ Pr^P^ to. I AX ^OO/^ ^ Pu>voP^ (Z.1 ') (iL4-')) ' (^.0 fit/TL^^ ^/f>ppP PPS/f^ P^ •f7?SL^ •XC>0''/.7 rt L^^^ , LiYhPT P/P/2P^ fr^-z') P^i 1^7-^^ P^PhSi^<L ^ U<.^ ^4-"' Y'/T." P'&' {(,"r7A7C*0 PAGE OF. PROJECTDESIGN CONSULTANTS P./<?9,OC) PLANNING ENGINEERING SURVEYING JOBNO. LL-1 701 B Street, Suite 720, San Diego, CA 92101 (619) 235-6471 • Fax (619) 234-0349 PROJECT ^Y^fV^^^r^ <ZT^^^^ SUBJECT P-fF'/^P^ DRAWNBY DATE CHECKED BY DATE P^7'0rJr?o^ ^g^/A/ YPl/7-V-£^ /Z^PY^A^ SPZnf^C ^FlLOi^4r^ riYic/CK/^^^ ^ ^-4 PupU 4-0" l2-<^ '^z^ PYYtJ ptFM^ , ^'4' Y^^4*^ O = Y(p' El Fuerte Basin - Outflow from Rancho Carillo Basin Worksheet for Trapezoidal Channel Project Description Worksheet Trap Channel - Existing Channel Flows Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient Slope Left Side Slope Right Side Slope Bottom Width Discharge Results 0.045 (^^i^r. r?^sp P^ZAJS^ YTl^^^'^ 0.005000 ft/ft 2.00 H : V 2.00 H : V 20.00 ft 500.00 cfs CYYY^G- 4J/c.-Ps Depth 3.84 ft Flow Area 106.3 ft^ Wetted Perimeter 37.17 ft Top Width 35.36 ft Critical Depth 2.46 tt Critical Slope 0.024412 ft/ft Velocity 4.70 ft/s J Velocity Head 0.34 ft Specific Energy 4.18 ft Froude Number 0.48 Flow Type Subcritical Table Zooy.-7 AYO.3 ^^cYi:>n^ Pi/e -Y-o Cc>n pY^ct^ce.. i>P /V<7wS and Y-f ^re^td^ co/\s^^'y-<K/e. use '/4 A^/-y?. c:\haestad\fmw\1325.fm2 07/24/02 10:47:55 AM © Haestad Methods. Inc. Project Engineer: Adolph Lugo Project Design Consultants FlowMaster v6.1 [614ol 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Pagelofi Detention Basin Low Flow Outlet - Pipe Capacity Calc Worksheet for Circular Channel Project Description Worksheet Detention Basin Low Flow Pipe -18" RCP Flow Element Circular Channel Method Manning's Fonnula Solve For Full Flow Capacity Input Data Mannings Coefficient 0.013 Slope 0.010000 ft/ft Diameter 18 in Results Depth 1.50 ft Discharge 10.50 cfs Flow Area 1.8 ft^ Wetted Perimeter 4.71 ft Top Width 0.00 ft Critical Depth 1.25 ft Percent Full 100.0 % Critical Slope 0.009774 ft/ft Velocity 5.94 ft/s Velocity Head 0.55 ft Specific Energy 2.05 ft Froude Number 0.00 Maximum Discharge 11.30 cfs Discharge Full 10.50 cfs Slope Full 0.010000 ft/ft Flow Type N/A c:\haestad\fmw\2199pipe.fm2 07/31/02 08:34:29 AM © Haestad Methods, Inc. Project Design Consultants 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Adolph Lugo FlowMaster v6.1 [6140] (203) 755-1666 Page 1 ot 1 48" RCP Detention Basin Outlet Pipe - Velocity Calc Worksheet for Circular Channel Project Description Worksheet Circular Channel -1 Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Results Mannings Coefficient 0.013 Slope 0.011000 ft/ft Diameter 48 in Discharge 155.00 cfs Depth 3.39 ft Flow Area 11.4 Wetted Perimeter 9.37 ft Top Width 2.87 ft Critical Depth 3.63 ft Percent Full 84.8 % Critical Slope 0.010182 ft/ft Velocity 13.64 ft/s Velocity Head 2.89 ft Specific Energy 6.28 ft Froude Number 1.21 Maximum Discharge 162.05 cfs Discharge Full 150.65 cfs Slope Full 0.011645 ft/ft Flow Type Supercritical c:\haestad\fmw\2199detbasin.fm2 08/10/02 04:48:37 PM © Haestad Methods, Inc. Project Engineer Adolph Lugo Project Design Consultants FlowMaster v6.1 [614o] 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 200-1.7 ^rlrrriT-" "j"^"" ^^^^^ ^'^nhet VcL m Rock Oaa (S Riptop i;n_nl—Iml i i(.p«-1-yerM VcL m Rock Oaa (S Tbidc- DOK T- Optl Soc 200 (4) 0PU2 Stc.*O0 W Opl-3 (S Uyof 6-7 No. 5 Badc- .e 3/l«-C2 D.O. — 7-( No. 2 Bf ij> IM-B3 D.G. — M.5 Fat-1.4 — D.O. — 9.S-11 Lillli 2.0 VS' — »4- r.B. — lt/» IM TON 2.7 V4-— SM' i-i/r P.B. SAND lJ-15 M TON 3.4 r — 3/4" rJt. SAND 15-17 1 TON 4J i-i/y — TYPE B SAND 17-» 2 TON 5.4 r r TYPE B SAND Practical use of this table is limited to situations ghere "T" is less than inside diameter. (1) Average velocity in pipe or bottoo velocity in energy dissipater, whichever is greater. (2) If desired riprap and filter blanket class is not available, use next larger class. (3) Filter blanket thickness = 1 Foot or "T". uhichever is less. j4) standard Specifications for Public Works Construction. (5) O.G. = Disintegrated Granite, 1 MM to 10 MM. P.B. = Processed Miscellaneous Base. Tvpe B = Type B bedding material, (mimnun TSX crushed particles, lOOX passing sieve. 10X passing 1" sieve). (6) Sand TSX retained on #200 sieve. SECTION 201 - COttCRETE, HORTAR MID RELATED MATERIALS 201-1 PORTLAND CEMENT CONCRETE 201-1.1.2 fffly"^* Specified BY C1855 Modify Table 201-1.1.2(A) as follows: (1) Revise: Concrete Pavement (not integral with curb) To Read: (U)ncrete Pavement (r>ot integral with curb). Cross Gutter and Alley Aprons) (2) Revise: Curb, Integral Curb and Pavement, Gutter, Walk, Alley Aprons .(.PL 94} 520-A-2500 520-C-2500 560-C-3250 520-C-2500 520-C-2500P Curt*^ Gutter (separate or contined) 520-C-2500^ (3) Change concrete class for "Sidehill Surface Drainage Facilities" from "500-C-2500" to "520-C-250e". (4) Change concrete class for "Pipe Bedding and Encasement, Anchors and Thrust Blocks. Uall Support for Pipe" from -450-C-2000'" to «480-C-2000»». 12 11