Loading...
HomeMy WebLinkAboutCT 00-06; BRESSI RANCH MASTER; ADDENDUM TO DRAINAGE RPT BRESSI RANCH; 2004-10-01ADDENDUM TO DRAINAGE REPORT BRESSI RANCH MASS GRADING CT 00-06 Dwg 400.8A, 400-8C 400.8D CARLSBAD, CALIFORNIA OCTOBER, 2004 Prepared For: LENNAR COMMUNITIES c/o LENNAR BRESSI VENTURE, LLC 1525 Faraday Avenue, Suite 300 Carlsbad, CA 92008 Prepared By: PROJECTDESIGN CONSULTANTS PIANNING • ENVIKONMENTAI • ENGINEERING • SITRVEY/GPS 701 B Street, Suite 800, San Diego, CA 92101 619-235-6471 FAX 619-234-0349 Job No. 2407.30 Gregory M. Shields, PE Registration Expires RCE 42951 03/31/06 Prepared By: RI Checked By: MW TABLE OF CONTENTS Section Page 1.0 INTRODUCTION 1 2.0 CAPACITY CALCULATIONS 3 3.0 RESULTS 3 FIGURES Page I.O Vicinity Map 2 APPENDICES 1.0 AES Rational Method Computer Output 2.0 AES Pipeflow Computer Output 3.0 Capacity calculations A Existing Condition Hydrology Map B Proposed Condition Hydrology Map C Proposed Condition Hydraulic Map D El Fuerte Street Hydraulic Map 1 T:\Water Resources\2407.3-Bressi Residential\Addendum RV Park Oct-04\Report\2407-RV-Addenduiii.doc 1.0 INTRODUCTION This drainage report addendum has been prepared in support of the capacity calculations for the existing 24-inch, 36-inch and 54-inch RCP's in El Fuerte Street adjacent to the RV Parking facility in Planning Area 13 of the Bressi Ranch project. The overall Bressi Ranch Project (Project) is located in the City of Carlsbad (City) and is bounded by Palomar Airport Road to the north. El Fuerte Street to the east, and El Camino Real to the west, and Poinsettia Drive to the south. More specifically the RV Parking Project is located west of El Fuerte Street approximately 3300 feet south of Palomar Airport Road. See vicinity Map, for the project location. This Addendum is to the Drainage Report for Bressi Ranch Mass Grading, Carlsbad, California by ProjectDesign Consultants, Dated February, 2003 and to the Drainage Report for El Fuerte Street - Bressi Ranch Carlsbad, Califomia by ProjectDesign Consultants, Dated April 2002. 1 T:\Water Resources\2407.3-Bressi ResidentiaMddendum RV Park Oct-04\Report\2407-RV-Addendum.doc Lu O o o a. N 1 POINSETTIA LANE Figure 1: Vicinity Map T:\Water Resources\2407.3-Bressi Residential\Addendum RV Park Oct-04\Report\2407-RV-Addendum.doc 2.0 CAPACITY CALCULATIONS A new connection is proposed to the existing 24-inch RCP crossing the entrance of the proposed RV Parking area, see City of San Diego improvement plan drawing number 400-8F, sheet 7 of 22. Capacity calculations were made to the 24-inch RCP and downstream pipes to insure adequate capacity of the El Fuerte Street storm drain System. Previously the drainage from the RV Parking area drained to El Fuerte Street, thence south to a curb inlet approximately 280 feet south of the entrance. The flow was picked up at this inlet and thence into the 54-inch El Fuerte Street storm drain. The existing condition flow from the 6 acres as shown on the Drainage Report for Bressi Ranch Mass Grading to the 24-inch RCP is 12.4 cfs. The existing conditions flow from the RV Parking site is 3.1 cfs and the proposed conditions flow is 5.0 cfs. See Appendix 1 for AES Rational Method computer output for these calculations and Exhibits A and B for hydrology node number maps. The added flow from the RV Parking site is 1.9 cfs. The capacity of the 24-inch RCP is 32.0 cfs, the 36-inch RCP is 203.6 cfs and the 54-inch RCP is 291.7 cfs. See Appendix 2 for Haestad Methods Normal Depth calculations. The flow in the 36- inch RCP is 188.5 cfs and the 54-inch is 270.0 cfs. See City of San Diego improvement drawing 400-8F, sheet 7 of 22 for plan and profile of the El Fuerte Street storm drain improvements. 3.0 RESULTS The modest flow increase of 1.9 cfs from existing to proposed conditions is well within the calculated capacity of the effected storm drain pipes. Also, once the flow reaches the 54-inch RCP approximately 280 downstream of the entrance where the curb inlet would have picked it up the flow is back to its original flow. Therefore there is no adverse impact on the existing storm drain system. 3 T:\Water Resources\2407.3-Bressi ResidentialUddendum RV Park Oct-04\Report\2407-RV-Addendum.doc APPENDIX 1 AES RATIONAL COMPUTER OUTPUT **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.30 - BRESSI RANCH - PA-13 RV PARKING * * EXISTING CONDITIONS - OFFSITE TO 24 INCH RCP * * 1OO-YEAR STORM EVENT * ************************************************************************** FILE NAME: EXOFF01.DAT TIME/DATE OF STUDY: 09:47 06/14/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 105.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GRASS POOR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 89 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 3 50.00 DOWNSTREAM ELEVATION(FEET) = 345.00 ELEVATION DIFFERENCE(FEET) = 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.843 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.026 SUBAREA RUNOFF(CFS) = 0.54 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 0.54 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 345.00 DOWNSTREAM(FEET) = 248.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 795.00 CHANNEL SLOPE = 0.1220 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.543 GRASS POOR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 89 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.59 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.52 AVERAGE FLOW DEPTH(FEET) = 0.15 TRAVEL TIME(MIN.) = 3.76 Tc(MIN.) = 10.60 SUBAREA AREA(ACRES) = 5.80 SUBAREA RUNOFF(CFS) = 11.86 TOTAL AREA(ACRES) = 6.00 PEAK FLOW RATE(CFS) = 12.40 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.20 FLOW VELOCITY(FEET/SEC.) = 4.09 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 110.00 = 895.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 6.00 TC(MIN.) = 10.60 PEAK FLOW RATE(CFS) = 12.40 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.30 -BRESSI RANCH - PA-13 RV PARKING * * EXISTING CONDITIONS - ONSITE RV PARKING * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: EXON01.DAT TIME/DATE OF STUDY: 10:17 06/14/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 205.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GRASS POOR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 89 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION(FEET) = 270.00 DOWNSTREAM ELEVATION(FEET) = 260.00 ELEVATION DIFFERENCE(FEET) = 10.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.048 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.30 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.30 **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 210.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »>»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 260.00 DOWNSTREAM(FEET) = 250.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 350.00 CHANNEL SLOPE = 0.0286 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 2.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.704 GRASS POOR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 89 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.70 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.44 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 4.05 Tc(MIN.) = 10.05 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 2.75 TOTAL AREA(ACRES) = 1.40 PEAK FLOW RATE(CFS) = 3.05 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.15 FLOW VELOCITY(FEET/SEC.) = 1.66 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 210.00 = 400.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.40 TC(MIN.) = 10.05 PEAK FLOW RATE(CFS) = 3.05 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.30 - BRESSI RANCH - PA-13 RV PARKING * * PROPOSED CONDITIONS - ONSITE RV PARKING * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: DEVON01.DAT TIME/DATE OF STUDY: 11:18 06/14/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 15.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0175 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 10.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 300.00 TO NODE 305.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< GRASS POOR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 89 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00 UPSTREAM ELEVATION(FEET) = 270.00 DOWNSTREAM ELEVATION(FEET) = 257.00 ELEVATION DIFFERENCE(FEET) = 13.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.793 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.65 TOTAL AREA(ACRES) = 0.22 TOTAL RUNOFF(CFS) = 0.65 **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 310.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»> (STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 257.00 DOWNSTREAM ELEVATION(FEET) = 250.50 STREET LENGTH(FEET) = 385.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 15.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.34 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.15 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.12 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.57 STREET FLOW TRAVEL TIME(MIN.) = 3.02 Tc(MIN.) = 9.02 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.042 *USER SPECIFIED(SUBAREA): ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 89 SUBAREA AREA(ACRES) = 0.29 SUBAREA RUNOFF(CFS) = 1.39 TOTAL AREA(ACRES) = 0.51 PEAK FLOW RATE(CFS) = 2.04 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.71 FLOW VELOCITY(FEET/SEC.) = 2.32 DEPTH*VELOCITY(FT*FT/SEC.) = 0.70 LONGEST FLOWPATH FROM NODE 3 00.00 TO NODE 310.00 = 505.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.042 GRASS POOR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 89 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 1.07 TOTAL AREA(ACRES) = 0.98 TOTAL RUNOFF(CFS) = 3.10 TC(MIN.) = 9.02 **************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.02 RAINFALL INTENSITY(INCH/HR) = 5.04 TOTAL STREAM AREA(ACRES) = 0.98 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.10 **************************************************************************** FLOW PROCESS FROM NODE 320.00 TO NODE 325.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 S.C.S. CURVE NUMBER (AMC II) = 89 INITIAL SUBAREA FLOW-LENGTH(FEET) = 313.00 UPSTREAM ELEVATION(FEET) = 258.20 DOWNSTREAM ELEVATION(FEET) = 252.40 ELEVATION DIFFERENCE(FEET) = 5.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.889 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.93 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) = 1.93 **************************************************************************** FLOW PROCESS FROM NODE 325.00 TO NODE 325.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 GRASS POOR COVER RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 89 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.32 TOTAL AREA(ACRES) = 0.42 TOTAL RUNOFF(CFS) = 2.26 TC(MIN.) = 6.00 **************************************************************************** FLOW PROCESS FROM NODE 325.00 TO NODE 310.00 IS CODE = 62 »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED)««< UPSTREAM ELEVATION(FEET) = 252.40 DOWNSTREAM ELEVATION(FEET) = 250.50 STREET LENGTH(FEET) = 105.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 15.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.26 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.95 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.46 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.75 STREET FLOW TRAVEL TIME(MIN.) = 0.71 Tc(MIN.) = 6.71 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.101 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.42 PEAK FLOW RATE(CFS) = 2.26 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.95 FLOW VELOCITY(FEET/SEC.) = 2.46 DEPTH*VELOCITY(FT*FT/SEC.) = 0.75 LONGEST FLOWPATH FROM NODE 320.00 TO NODE 310.00 = 418.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.71 RAINFALL INTENSITY(INCH/HR) = 6.10 TOTAL STREAM AREA(ACRES) = 0.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.26 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.10 9.02 5.042 0.98 2 2.26 6.71 6.101 0.42 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.82 6.71 6.101 2 4.97 9.02 5.042 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.97 Tc(MIN.) = 9.02 TOTAL AREA(ACRES) = 1.40 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 310.00 = 505.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.40 TC(MIN.) = 9.02 PEAK FLOW RATE(CFS) = 4.97 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2047.00 - BRESSI RANCH - PA-13 RV PARKING * * PROPOSED CONDITIONS - TOTAL FLOW - ONSIT AND OFFSITE * * 100 YEAR STORM EVENT * ************************************************************************** FILE NAME: DEVON02.DAT TIME/DATE OF STUDY: 10:51 09/23/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 9.02 RAIN INTENSITY(INCH/HOUR) = 5.04 TOTAL AREA(ACRES) = 1.40 TOTAL RUNOFF(CFS) = 4.97 242.92 >^^^^'uSiruSERlp^^^^^^^ =========::i=S:f!f^;!;ff_pfpEs^ (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM fFFFTi o 7o "^^"""""""""""===================— FLOW LENGTH(FEET) 3, fn 1 ^^^"^^ DOWNSTREAM(FEET) = DEPTH OF FLOW IN 18.0 INCH Pip™^:^^= PIPE-FLOW VELOCITY (FEET/SE? f f .v'"' ^'^"^^ GIVEN PIPE DIAMETER (INCH) -"lfl nn ^TT^ PIPE-FLOW(CFS) = 4 97" NUMBER OF PIPES = 1 PIPE TRAVEL TIME(MIN ) - n nn ooo.uu - 33.10 FEET. .=;=";:s;ffL;™™«j TOTAL NUMBER OF STREAMS = 2 """"""="============================ RAINFALL INTENSITY(INCH/HR) = 50? TOTAL STREAM AREA(ACRES) = 1 An PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.97 ^__>>>>>USER^SPECIFIED^^^^^^^ TC^Mi'Sf^^'f ^™~ARrirFOLLowsr^^^^^^^^^^===========^ ^OTAL^REA (ACRES) ™^-^(INCH/HOUR) = 4.54 H(ALRES) - 6.00 TOTAL RUNOFF(CFS) = 12.40 ELEVATION DATA: UPSTREAMfFFFT 1 - o^T^^^ = ============= = = = = = ===== ====- FLOW LENGTH (FEET) = 9^ 00 ^^..^ DOWNSTREAM (FEET) = 242 43 DEPTH OF FLOW IN 24 0 rlnt r. ^^^G'S N = 0.013 ^" PIPE-FLOW VELOCITY(FEET^SE? 'I Sl''' '"^""^ P^FL^CFTr^'^^^^^ • -BER OF PIPES = I PIPE TRAVEL TIME (MIN ) = 0 17 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.77 RAINFALL INTENSITY(INCH/HR) = 4.50 TOTAL STREAM AREA(ACRES) = 6.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.40 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.97 9.09 5.019 1.40 2 12.40 10.77 4.496 6.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 16.08 9.09 5.019 2 16.85 10.77 4.496 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 16.85 Tc(MIN.) = 10.77 TOTAL AREA(ACRES) = 7.40 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 335.00 = 93.82 FEET. **************************************************************************** FLOW PROCESS FROM NODE 335.00 TO NODE 340.00 IS CODE = 41 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 242.33 DOWNSTREAM(FEET) = 241.32 FLOW LENGTH(FEET) = 54.18 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 13.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.44 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 16.85 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 10.87 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 340.00 = 148.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 7.40 TC(MIN.) = 10.87 PEAK FLOW RATE(CFS) = 16.85 END OF RATIONAL METHOD ANALYSIS APPENDIX 2 AES PIPEFLOW COMPUTER OUTPUT ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.00 - BRESSI RANCH - PA-13 RV PARKING * * PROPOSED CONDITIONS * * 100 YEAR STORM EVENT * ************************************************************************** FILE NAME: DV-P-Ol.DAT TIME/DATE OF STUDY: 06:56 10/04/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE-h NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 100.90- 1.65 329.17 1.11* 361.24 } FRICTION 105.00- 1.48*Dc 323.49 1.48*Dc 323.49 } JUNCTION 105.90- 1.90* 273.81 0.88 254.57 } FRICTION } HYDRAULIC JUMP 110.00- 1.27*Dc 214.19 1.27*Dc 214.19 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.90 FLOWLINE ELEVATION = 241.32 PIPE FLOW = 16.85 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 242.970 FEET NODE 100.90 : HGL = < 242.427>;EGL= < 243.812>;FLOWLINE= < 241.320> ****************************************************************************** FLOW PROCESS FROM NODE 100.90 TO NODE 105.00 IS CODE = 1 UPSTREAM NODE 105.00 ELEVATION = 242.33 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.85 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH 54.18 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 .05 CRITICAL DEPTH(FT) 1.48 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.48 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE H- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 .000 1. 480 6 760 2 190 323 . 49 0 .035 1. 463 6 842 2 190 323. 55 0 .143 1. 446 6 928 2 191 323 . 74 0 .333 1. 428 7 016 2 193 324. 06 0 . 611 1 . 411 7 108 2 196 324. 51 0 .986 1. 394 7 203 2 201 325. 11 1 .470 1 . 377 7 301 2 206 325. 84 2 . 075 1. 360 7 403 2 212 326. 73 2 . 815 1. 343 7 508 2 219 327. 76 3 .706 1. 326 7 617 2 228 328. 96 4 .771 1. 309 7 730 2 238 330. 32 6 . 034 1. 292 7 848 2 249 331. 84 7 .525 1. 275 7 969 2 262 333 . 54 9 .282 1. 258 8 095 2 276 335. 42 11 .353 1. 241 8 225 2 292 337 . 49 13 .799 1. 224 8 361 2 310 339. 75 16 .703 1. 207 8 501 2 330 342. 21 20 .174 1. 190 8 647 2 352 344. 89 24 .367 1 . 173 8 799 2 376 347. 78 29 . 508 1 . 156 8 956 2 402 350. 90 35 .949 1. 139 9 120 2 431 354. 26 44 .279 1. 122 9 290 2 462 357. 87 54 .180 1. 107 9 444 2 492 361. 24 NODE 105.00 : HGL = < 243.810>;EGL= < 244.520>;FLOWLINE= < 242.330> ****************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.90 IS CODE = 5 UPSTREAM NODE 105.90 ELEVATION = 242.66 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 12.40 24.00 0.00 242.66 1.27 4.018 16.85 24.00 - 242.33 1.48 6.762 4.45 18.00 90.00 242.92 0.81 2.796 0.00 0.00 0.00 0.00 0.00 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4) ) / ( (A1-I-A2 ) *16 .1)-i-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00260 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00689 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00475 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.019 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES JUNCTION LOSSES (DYH-HVI-HV2)-1-(ENTRANCE LOSSES) ( 0.295)-i-( 0.000) = 0.295 NODE 105.90 : HGL = < 244.563>;EGL= < 244.814>;FLOWLINE= < 242.660> ****************************************************************************** FLOW PROCESS FROM NODE 105.90 TO NODE 110.00 IS CODE = 1 UPSTREAM NODE 110.00 ELEVATION = 244.54 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 12.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 93.82 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.86 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.27 1.27 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1 266 5 914 1 .809 214 .19 0 028 1 250 6 003 1 .810 214 .24 0 117 1 234 6 096 1 . 811 214 .40 0 271 1 217 6 191 1 .813 214 .67 0 498 1 201 6 290 1 .816 215 .05 0 806 1 185 6 392 1 .820 215 .55 1 204 1 169 6 498 1 .825 216 .17 1 701 1 153 6 608 1 .832 216 .91 2 312 1 137 6 722 1 . 839 217 .79 3 050 1 121 6 840 1 . 848 218 .79 3 934 1 105 6 963 1 . 858 219 .94 4 984 1 089 7 090 1 . 870 221 .24 6 226 1 073 7 223 1 .883 222 .68 7 694 1 057 7 360 1 . 898 224 .28 9 428 1 041 7 503 1 .915 226 .05 11 480 1 025 7 652 1 .934 227 .98 13 922 1 009 7 807 1 .956 230 .10 16 846 0 992 7 968 1 .979 232 .40 20 386 0 976 8 137 2 .005 234 .90 24 735 0 960 8 312 2 .034 237 .60 30 195 0 944 8 495 2 .065 240 .52 37 271 0 928 8 686 2 .100 243 .66 46 908 0 912 8 885 2 .139 247 .04 61 234 0 896 9 094 2 . 181 250 . 67 87 071 0 880 9 312 2 .227 254 .57 93 820 0 880 9 312 2 .227 254 .57 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.90 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-^ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 1 .903 4 017 2 154 273 81 1 244 1 .878 4 047 2 133 269 64 2 460 1 .852 4 082 2 111 265 61 3 649 1 . 827 4 119 2 091 261 70 4 812 1 .801 4 160 2 070 257 92 5 949 1 .776 4 204 2 051 254 26 7 060 1 .750 4 252 2 031 250 74 8 145 1 .725 4 303 2 013 247 34 9 202 1 . 699 4 357 1 994 244 09 10 231 1 .674 4 414 1 977 240 97 11 230 1 .648 4 475 1 960 238 00 12 197 1 .623 4 540 1 943 235 17 13 .131 1 .597 4 608 1 927 232 50 14 .029 1 .572 4 680 1 912 229 98 14 .889 1 .546 4 756 1 898 227 62 15 .707 1 .521 4 836 1 884 225 43 16 .479 1 .495 4 921 1 872 223 41 17 .202 1 .470 5 009 1 860 221 57 17 .871 1 .444 5 103 1 849 219 92 18 .479 1 .419 5 202 1 839 218 46 19 .021 1 .393 5 305 1 831 217 20 19 .489 1 .368 5 415 1 823 216 14 19 .875 1 .342 5 530 1 817 215 31 20 .167 1 .317 5 651 1 813 214 69 20 .353 1 .291 5 779 1 810 214 32 20 .419 1 .266 5 914 1 809 214 19 93 .820 1 .266 5 914 1 809 214 19 END OF HYDRAULIC JUMP ANALYSIS I PRESSUREH-MOMENTUM BALANCE OCCURS AT 5.85 FEET UPSTREAM OF NODE 105.90 | I DOWNSTREAM DEPTH = 1.778 FEET, UPSTREAM CONJUGATE DEPTH = 0.880 FEET | NODE 110.00 : HGL = < 245.806>;EGL= < 246.349>;FLOWLINE= < 244.540> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 110.00 FLOWLINE ELEVATION = 244.54 ASSUMED UPSTREAM CONTROL HGL = 245.81 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2407.00 - BRESSI RANCH - PA-13 RV PARKING * * PROPOSED CONDITIONS * * 100 YEAR STORM EVENT * ************************************************************************** FILE NAME: DV-P-02.DAT TIME/DATE OF STUDY: 07:05 10/04/2004 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 105.80- 1.64* 125.23 0.56 88.78 } FRICTION } HYDRAULIC JUMP 105.70- 0.86*Dc 69.86 0.86*Dc 69.86 } CATCH BASIN 105.70- 1.28* 38.56 0.86 Dc 24.02 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 105.80 FLOWLINE ELEVATION = 242.92 PIPE FLOW = 4.97 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 244.560 FEET NODE 105.80 : HGL = < 244.560>;EGL= < 244.683>;FLOWLINE= < 242.920> ****************************************************************************** FLOW PROCESS FROM NODE 105.80 TO NODE 105.70 IS CODE = 1 UPSTREAM NODE 105.70 ELEVATION = 243.98 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.97 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 33.10 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0 .53 CRITICAL DEPTH(FT) 0.86 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.86 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSUREH- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0. 858 4 758 1 209 69. 86 0 015 0. 844 4 849 1 210 69. 88 0 .064 0. 831 4 944 1 211 69 . 96 0 .148 0. 818 5 044 1 213 70. 09 0 .273 0. 805 5 147 1 216 70. 28 0 .443 0. 791 5 255 1 220 70. 53 0 .662 0. 778 5 367 1 226 70. 85 0 .939 0. 765 5 485 1 232 71. 22 1 .279 0. 752 5 608 1 240 71. 67 1 .691 0. 738 5 737 1 250 72 . 18 2 .186 0. 725 5 871 1 261 72 . 77 2 .777 0. 712 6 012 1 273 73 . 44 3 .479 0. 699 6 160 1 288 74. 19 4 .312 0. 685 6 315 1 305 75. 02 5 .299 0. 672 6 478 1 324 75. 95 6 .472 0. 659 6 649 1 346 76. 97 7 .874 0. 646 6 829 1 370 78. 10 9 .560 0. 632 7 018 1 398 79. 33 11 .610 0. 619 7 218 1 429 80. 67 14 .140 0. 606 7 428 1 463 82. 14 17 .330 0. 593 7 .651 1 502 83 . 74 21 .482 0. 579 7 886 1 546 85. 48 27 .165 0. 566 8 .135 1 595 87 . 37 33 .100 0. 557 8 .318 1 632 88. 78 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.64 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 4.700 PRESSURE HEAD(FT) 1.640 1.500 VELOCITY (FT/SEC) 2 . 812 2.812 SPECIFIC ENERGY(FT) 1.763 1.623 PRESSURE+ MOMENTUM(POUNDS) 125.23 109.79 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 4.700 5.529 6.327 7.106 7.869 FLOW DEPTH (FT) 1.500 1.474 1.449 1.423 1.397 VELOCITY (FT/SEC) 2 . 812 2.822 2.842 2.867 2.898 SPECIFIC ENERGY(FT) 1.623 1.598 1.574 1.551 1.528 PRESSURE+ MOMENTUM(POUNDS) 109.79 107.06 104.44 101.89 99.42 8 618 1 372 2 933 1 505 97 03 9 352 1 346 2 973 1 483 94 71 10 072 1 320 3 016 1 461 92 47 10 778 1 294 3 064 1 440 90 31 11 469 1 269 3 117 1 420 88 24 12 144 1 243 3 173 1 399 86 25 12 802 1 217 3 235 1 380 84 35 13 443 1 192 3 300 1 361 82 55 14 063 1 166 3 371 1 342 80 84 14 661 1 140 3 447 1 325 79 24 15 236 1 115 3 529 1 308 77 74 15 784 1 089 3 616 1 292 76 35 16 302 1 063 3 710 1 277 75 08 16 786 1 037 3 811 1 .263 73 93 17 231 1 012 3 918 1 250 72 90 17 633 0 986 4 034 1 239 72 01 17 985 0 960 4 158 1 229 71 26 18 279 0 935 4 292 1 221 70 66 18 505 0 909 4 436 1 215 70 22 18 652 0 883 4 591 1 .211 69 95 18 705 0 858 4 758 1 209 69 86 33 .100 0 .858 4 758 1 209 69 86 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 12.55 FEET UPSTREAM OF NODE 105.80 | I DOWNSTREAM DEPTH = 1.227 FEET, UPSTREAM CONJUGATE DEPTH = 0.582 FEET j NODE 105.70 : HGL = < 244.837>;EGL= < 245.189>;FLOWLINE= < 243.980> ****************************************************************************** FLOW PROCESS FROM NODE 105.70 TO NODE 105.70 IS CODE = 8 UPSTREAM NODE 105.70 ELEVATION = 243.98 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.97 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.76 FEET/SEC. VELOCITY HEAD = 0.352 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.352) = 0.070 NODE 105.70 : HGL = < 245.260>;EGL= < 245.260>;FLOWLINE= < 243.980> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 105.70 FLOWLINE ELEVATION = 243.98 ASSUMED UPSTREAM CONTROL HGL = 244.84 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1509 Analysis prepared by: PROJECTDESIGN CONSULTANTS 701 'B' STREET, SUITE 800 SAN DIEGO, CA 92101 619-234-0349 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - EL FUERTE STREET * * SYSTEM 1000 - MAINLINE IN EL FUERTE * * 72" RCP - NO CLEANOUT AT STA 58+00, CDS AT STA 59+00 * ************************************************************************** FILE NAME: 1325AFR.DAT TIME/DATE OF STUDY: 12:40 11/21/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) } NODE NUMBER 1001.50- } 1003.00- ] 1003.10- } 1004.00- } 1004.10- } 1004.90- } 1005.00- } 1005.10- } 1006.00- } 1006.10- } 1007.00- } 1007.10- } 1007.90- } 1008.00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 13.87* 43819.23 } HYDRAULIC JUMP 5.83*Dc 29834.44 FRICTION JUNCTION FRICTION JUNCTION FRICTION 8.01* 7.76* 28352.41 27910.65 7.69* 27439.46 } HYDRAULIC JUMP 6.73 25748.89 FRICTION+BEND 5.73*Dc JUNCTION 10.27* FRICTION+BEND JUNCTION FRICTION MANHOLE FRICTION 4.81 Dc 4.81 Dc 4.81 Dc FRICTION+BEND 4.81*Dc 24296.44 21602.22 } HYDRAULIC JUMP 8.40 18306.80 5.18 15457.71 15157.94 15157.94 15157.94 15157.94 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 3.76 39212.06 5.83*Dc 29834.44 4.51 27077.14 4.53 26979.79 4.50 26698.04 4.65* 26114.68 5.73*Dc 24296.44 3.12 17966.29 3.03* 18469.86 3.53* 17571.58 3.80* 16627.37 3.79* 16672.05 4.28* 15566.52 4.81*Dc 15157.94 1008.10 1008.90- 1009.00 1009.10 1010.00 1010.10 1011.00 1011.10 1012.00 1012.10 1012.40 1012.50 1012.60 1012.90 1013.00 1013.10 1013.90 1014.00 1014.10 1015.00 1015.10 1016.00 1016.10 1017.00 1017.10 1018.00 1018.10 1019.00 JUNCTION 6. FRICTION+BEND 6. FRICTION MANHOLE FRICTION MANHOLE FRICTION JUNCTION FRICTION JUNCTION FRICTION 5. 4. 4. 4 . 4. 2. 2 . 5. 3 . FRICTION+BEND 3 . MANHOLE 3 . FRICTION+BEND 2. FRICTION+BEND 2. JUNCTION 3 . FRICTION+BEND 4 . FRICTION 3 . MANHOLE 4 . FRICTION+BEND 2 . JUNCTION 4 . FRICTION+BEND 2 . JUNCTION 8 FRICTION 2 JUNCTION 3 .92 FRICTION+BEND 2.97 Dc MANHOLE 2.97 Dc FRICTION+BEND 2.97*Dc JUNCTION 93* 14204.88 44* 13721.55 } HYDRAULIC JUMP 06 12346.51 97 12258.00 60 11888.05 51 11799.54 35 Dc 11743.09 99 Dc 11484.71 99 Dc 11484.71 35 11439.48 34 10554.45 .02 Dc 10409.99 .24 10507.97 .99 Dc 10401.71 .99 Dc 10401.71 .99 10390.76 .15 10462.02 .95 10373.12 .15 10459.85 .99*Dc 9952.13 .35 9915.50 .99*Dc 9317.10 .56* 8535.42 } HYDRAULIC JUMP 97 Dc 6077.16 6003.89 5594.17 5594.17 5594.17 3 .18 3 .25 3 .44* 3 .43* 3.28* 3 .26* 2.98* 2.44* 2 . 65* 2 .31* 2.34* 2.38* 2 .34* 2 .49* 2.58* 2.41* 2.47* 2.50* 2 .46* 2.99*Dc 2.57* 2.99*Dc 1.97 2 . 05* 1.86* 2.56* 2 .56* 2.97*Dc 13705.16 13478.34 12910.35 12933.72 13377.19 13429.29 14502.06 12872.69 12101.11 12147.01 12040.14 11868.26 12034.52 11417.11 11144.26 11223.39 10978.43 10883.09 11017.10 9952.13 9972.34 9317.11 8031.62 7748.22 7801.18 5904.34 5907 . 83 • 5594.17 2000.00- 6.65* } FRICTION 2002.00- 5.91* } FRICTION+BEND 2005.00- 5.12* 5590.23 5261.21 4912.70 2.15 2 .26 2.93 Dc 4640.02 4459.12 3968.14 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1001.50 FLOWLINE ELEVATION = 149.12 PIPE FLOW = 599.60 CFS PIPE DIAMETER = 72.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 162.990 FEET NODE 1001.50 : HGL = < 162.990>;EGL= < 169.973>;FLOWLINE= < 149.120> ****************************************************************************** FLOW PROCESS FROM NODE 1001.50 TO NODE 1003.00 IS CODE = 1 UPSTREAM NODE 1003.00 ELEVATION = 161.16 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 599.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 190.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 3.17 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 5.83 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 5.83 ICE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ .OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 5 . 832 21 .368 12 .927 29834 .44 0 .334 5 .726 21 .552 12 .943 29863 .15 1 .271 5 .619 21 780 12 .990 29943 .30 2 .766 5 . 513 22 045 13 064 30069 68 4 .811 5 .406 22 346 13 165 30239 82 7 .422 5 .299 22 682 13 293 30452 69 10 .629 5 .193 23 052 13 449 30708 17 14 .481 5 . 086 23 456 13 635 31006 81 19 .040 4 .979 23 896 13 852 31349 67 24 .388 4 . 873 24 373 14 102 31738 28 30 . 626 4 .766 24 887 14 390 32174 59 37 .882 4 .659 25 442 14 717 32660 94 46 .315 4 .553 26 039 15 088 33200 11 56 .127 4 .446 26 682 15 508 33795 26 67 .575 4 .340 27 372 15 981 34450 09 80 .996 4 .233 28 114 16 514 35168 75 96 .836 4 . 126 28 912 17 114 35955 96 115 .703 4 . 020 29 770 17 789 36817 11 138 .456 3 .913 30 693 18 550 37758 24 166 .357 3 . 806 31 687 19 407 38786 28 190.000 3.765 32.096 19.770 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS 39212.06 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 13.87 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 13 . 870 21 . 207 20. 853 43819 23 168. 003 6. 000 21. 207 12 . 983 29934 03 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 6 .00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 168 003 6. 000 21. 200 12 . 983 29934 .02 168 127 5. 993 21. 201 12 . 977 29923 .76 168 234 5. 987 21. 204 12 . 972 29914 .79 168 331 5. 980 21. 207 12. 968 29906 . 66 168 419 5. 973 21. 211 12. 963 29899 .22 168 500 5. 966 21. 215 12. 960 29892 .36 168 575 5 . 960 21. 220 12 . 956 29886 .03 168 643 5 . 953 21. 225 12 . 953 29880 .18 168 707 5 . 946 21. 230 12 . 950 29874 .77 168 765 5. 940 21. 236 12. 947 29869 .79 168 819 5. 933 21. 242 12. 944 29865 .19 168 869 5. 926 21. 249 12 . 942 29860 .97 168 914 5. 920 21. 256 12. 940 29857 .10 168 955 5. 913 21. 263 12. 938 29853 .58 168 992 5. 906 21. 270 12 . 936 29850 .39 169 026 5 . 899 21. 278 12 . 934 29847 .52 169 056 5 . 893 21. 286 12 . 933 29844 .95 169 082 5 . 886 21. 294 12 . 931 29842 . 68 169 105 5. 879 21. 302 12 . 930 29840 .71 169 125 5. 873 21. 311 12. 929 29839 .01 169 141 5. 866 21. 320 12. 928 29837 .59 169 155 5. 859 21. 329 12. 928 29836 .45 169 165 5. 853 21. 338 12 927 29835 .56 169 172 5 846 21. 348 12 927 29834 .94 169 177 5 839 21. 358 12 927 29834 .56 169 178 5 832 21. 368 12 927 29834 .44 190 000 5 832 21. 368 12 927 29834 .44 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 8.461 FEET, 115.47 FEET UPSTREAM OF NODE 1001.50 UPSTREAM CONJUGATE DEPTH = 4.3 68 FEET NODE 1003.00 : HGL = < 166.992>;EGL= < 174.087>;FLOWLINE= < 161.160> ****************************************************************************** FLOW PROCESS FROM NODE 1003.00 TO NODE 1003.10 IS CODE = 5 UPSTREAM NODE 1003.10 ELEVATION = 161.49 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 533.60 72.00 0.00 161.49 5.74 18.872 DOWNSTREAM 599.60 72.00 - 161.16 5.83 21.374 LATERAL #1 66.00 36.00 90.00 164.49 2.60 9.337 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01587 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01770 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01679 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.067 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.943)+( 0.000) = 0.943 NODE 1003.10 : HGL = < 169.499>;EGL= < 175.029>;FLOWLINE= < 161.490> ****************************************************************************** FLOW PROCESS FROM NODE 1003.10 TO NODE 1004.00 IS CODE = 1 UPSTREAM NODE 1004.00 ELEVATION = 162.70 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 533.60 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 60.45 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 533.60)/( 4235.095))**2 = 0.01587 HF=L*SF = ( 60.45)*(0.01587) = 0.960 NODE 1004.00 : HGL = < 170.459>;EGL= < 175.989>;FLOWLINE= < 162.700> ****************************************************************************** FLOW PROCESS FROM NODE 1004.00 TO NODE 1004.10 IS CODE = 5 UPSTREAM NODE 1004.10 ELEVATION = 163.03 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 528.80 72.00 0.00 163.03 5.73 18.702 DOWNSTREAM 533.60 72.00 - 162.70 5.74 18.872 LATERAL #1 2.40 18.00 90.00 167.53 0.59 1.358 LATERAL #2 2.40 18.00 90.00 167.53 0.59 1.358 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01559 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01587 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01573 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.063 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.162)+( 0.000) = 0.162 NODE 1004.10 : HGL = < 170.720>;EGL= < 176.151>;FLOWLINE= < 163.030> ****************************************************************************** FLOW PROCESS FROM NODE 1004.10 TO NODE 1004.90 IS CODE = 1 UPSTREAM NODE 1004.90 ELEVATION = 167.32 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 528.80 CFS PIPE DIAMETER = 72.00 INCHES PIPE LENGTH = 213.71 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NOIMAL DEPTH(FT) = 4.37 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.65 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 5.73 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 4 652 22 .473 12 499 26114 68 10 021 4 641 22 .526 12 525 26153 24 20 552 4 630 22 .580 12 552 26192 26 31 638 4 619 22 .635 12 579 26231 75 43 330 4 608 22 . 690 12 607 26271 70 55 688 4 596 22 .745 12 634 26312 12 68 780 4 585 22 .801 12 663 26353 02 82 685 4 574 22 . 857 12 691 26394 39 97 497 4 563 22 .913 12 720 26436 25 113 326 4 552 22 .970 12 750 26478 59 130 302 4 541 23 . 027 12 780 26521 40 148 584 4 529 23 .085 12 810 26564 71 168 366 4 518 23 .144 12 841 26608 51 189 889 4 507 23 .202 12 872 26652 81 213 455 4 496 23 .261 12 903 26697 60 213 710 4 496 23 .262 12 904 26698 04 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 7.69 DISTANCE FROM CONTROL(FT) 0.000 213 .710 PRESSURE HEAD(FT) 7 . 690 6.731 VELOCITY (FT/SEC) 18.702 18.702 SPECIFIC ENERGY(FT) 13 .121 12.163 PRESSURE+ MOMENTUM(POUNDS) 27439 .46 25748.89 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 132.76 FEET UPSTREAM OF NODE 1004.10 | t DOWNSTREAM DEPTH = 7.094 FEET, UPSTREAM CONJUGATE DEPTH = 4.575 FEET j NODE 1004.90 : HGL = < 171.972>;EGL= < 179.819>;FLOWLINE= < 167.320> t***************************************************************************** FLOW PROCESS FROM NODE 1004.90 TO NODE 1005.00 IS CODE = 3 UPSTREAM NODE 1005.00 ELEVATION = 172.74 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 528.80 CFS CENTRAL ANGLE = 22.220 DEGREES PIPE LENGTH = 271.28 FEET PIPE DIAMETER = 72.00 INCHES MANNING'S N = 0.01300 N0RI4AL DEPTH (FT) = 4.38 CRITICAL DEPTH (FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 5.73 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 5.73 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 5 .732 18 .998 11 339 24296 44 0 .451 5 .678 19 .094 11 342 24301 50 1 .774 5 .624 19 .199 11 351 24316 31 3 .943 5 .570 19 .313 11 365 24340 46 6 .959 5 .516 19 .435 11 384 24373 65 10 . 840 5 .462 19 .565 11 409 24415 69 15 . 623 5 .408 19 .703 11 439 24466 46 21 .360 5 .354 19 .849 11 475 24525 88 28 .122 5 .300 20 .003 11 516 24593 93 36 .003 5 .246 20 .164 11 563 24670 62 45 .117 5 .192 20 .333 11 615 24756 00 55 .610 5 .138 20 .510 11 674 24850 15 67 . 664 5 .084 20 .695 11 738 24953 16 81 .509 5 .030 20 . 888 11 809 25065 17 97 .439 4 .976 21 .089 11 886 25186 32 115 .837 4 .922 21 .298 11 969 25316 78 137 .209 4 .868 21 .515 12 060 25456 74 162 .244 4 . 814 21 .742 12 158 25606 41 191 .913 4 .760 21 .977 12 264 25766 03 227 . 638 4 .706 22 .221 12 378 25935 86 271 .280 4 .652 22 .473 12 499 26114 68 NODE 1005.00 : HGL = < 178.472>;EGL= < 184.079>;FLOWLINE= < 172.740> ****************************************************************************** FLOW PROCESS FROM NODE 1005.00 TO NODE 1005.10 IS CODE = 5 UPSTREAM NODE 1005.10 ELEVATION = 173.07 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 (CFS) 358.00 528.80 170.80 0.00 0.00 = ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 72.00 0.00 173.07 5.12 72.00 - 172.74 5.73 48.00 60.00 175.07 3.73 0.00 0.00 0.00 0.00 :==Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 12.662 19.004 13.592 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00714 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01354 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01034 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.041 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.745)+( 0.000) = 1.745 NODE 1005.10 : HGL = < 183.335>;EGL= < 185.825>;FLOWLINE= < 173.070> ****************************************************************************** FLOW PROCESS FROM NODE 1005.10 TO NODE 1006.00 IS CODE = 3 UPSTREAM NODE 1006.00 ELEVATION = 176.15 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 358.00 CFS CENTRAL ANGLE = 11.350 DEGREES PIPE LENGTH = 138.71 FEET PIPE DIAMETER = 72.00 INCHES MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 3.24 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.03 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 5.12 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3 .034 24 952 12 708 18469 86 10 . 987 3 . 042 24 868 12 651 18418 89 22 .384 3 .050 24 785 12 595 18368 34 34 .228 3 .059 24 702 12. 539 18318 20 46 .562 3 .067 24. 620 12. 485 18268. 47 59 .432 3 .075 24 . 538 12. 430 18219 . 15 72 . 895 3 .083 24. 457 12. 377 18170. 23 87 . 014 3 . 091 24. 377 12 . 324 18121. 71 101 . 865 3 .099 24. 297 12. 271 18073 . 58 117 .536 3 .107 24. 217 12 . 219 18025. 85 134 .135 3 .115 24. 138 12. 168 17978. 50 138 .710 3 .117 24. 118 12. 155 17966. 29 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ===========: ====== =========: ====== ====== ===== ========== ====== ============ ======= DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 10.27 DISTANCE FROM CONTROL(FT) 0. 000 138.710 PRESSURE+ MOMENTUM(POUNDS) 21602.22 18306.80 PRESSURE VELOCITY SPECIFIC HEAD(FT) (FT/SEC) ENERGY(FT) 10.265 12.662 12.755 8.397 12.662 10.887 _ END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 132.97 FEET UPSTREAM OF NODE 1005.10 | I DOWNSTREAM DEPTH = 8.475 FEET, UPSTREAM CONJUGATE DEPTH = 3.039 FEET | NODE 1006.00 : HGL = < 179.184>;EGL= < 188.858>;FLOWLINE= < 176.150> ****************************************************************************** FLOW PROCESS FROM NODE 1006.00 TO NODE 1006.10 IS CODE = 5 UPSTREAM NODE 1006.10 ELEVATION = 177.15 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 DIAMETER ANGLE (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) FLOW (CFS) 351.20 358.00 3 .40 3.40 0.00===Q5 EQUALS BASIN INPUT FLOWLINE CRITICAL VELOCITY 60.00 72.00 18.00 18.00 0. 00 90.00 90.00 177.15 176.15 180.65 180.65 4.81 5.12 0.70 0.70 23.695 24.960 4.182 4.182 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02536 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02750 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02643 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.106 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.541)+( 0.000) = 0.541 NODE 1006.10 HGL < 180.681>;EGL= < 189.399>;FLOWLINE= < 177.150> ****************************************************************************** FLOW PROCESS FROM NODE 1006.10 TO NODE 1007.00 IS CODE = 1 UPSTREAM NODE 1007.00 ELEVATION = 189.52 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 351.20 CFS PIPE DIAMETER 60.00 INCHES PIPE LENGTH = 475.66 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) = 3 .50 CRITICAL DEPTH(FT) 4.8 1 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3 .80 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3 . 802 21 918 11 266 16627 .37 7 .743 3 .789 21 990 11 303 16663 .95 15 .892 3 .777 22 062 11 340 16701 .05 24 .484 3 .765 22 135 11 378 16738 .69 33 .560 3 .753 22 209 11 417 16776 .87 43 .168 3 .741 22 283 11 456 16815 .58 53 .361 3 .728 22 359 11. 496 16854 .85 64 .204 3 .716 22 435 11. 537 16894 .67 75 .771 3 .704 22 511 11. 578 16935 .04 88 .149 3 .692 22 589 11. 620 16975 .98 101 .444 3 .680 22 667 11. 663 17017 .48 115 .783 3 .667 22 746 11. 707 17059 .55 131 .321 3 . 655 22 826 11. 751 17102 .20 148 .249 3 .643 22 907 11. 796 17145 .43 166 .811 3 .631 22 988 11. 842 17189 .25 187 .318 3 .619 23 071 11. 889 17233 .66 210 .182 3 .606 23 . 154 11. 936 17278 .68 235 .959 3 .594 23 . 238 11. 984 17324 .29 265.430 3.582 23.322 12.034 17370.52 299.737 3.570 23.408 12.084 17417.36 340.652 3.558 23.495 12.134 17464.83 391.146 3.545 23.582 12.186 17512.92 456.784 3.533 23.670 12.239 17561.65 475.660 3.531 23.688 12.249 17571.58 NODE 1007.00 : HGL = < 193.322>;EGL= < 200.786>;FLOWLINE= < 189.520> r***************************************************************************** FLOW PROCESS FROM NODE 1007.00 TO NODE 1007.10 IS CODE = 2 UPSTREAM NODE 1007.10 ELEVATION = 189.85 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 351.20 CFS PIPE DIAMETER = 60.00 INCHES AVERAGED VELOCITY HEAD = 7.494 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* ( 7.494) = 0.375 NODE 1007.10 : HGL = < 193.637>;EGL= < 201.161>;FLOWLINE= < 189.850> ****************************************************************************** FLOW PROCESS FROM NODE 1007.10 TO NODE 1007.90 IS CODE = 1 UPSTREAM NODE 1007.90 ELEVATION = 195.64 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 351.20 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 242.39 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 3.61 CRITICAL DEPTH(FT) = 4.81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: CE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 4 .282 19 611 10 258 15566 52 5 .350 4 .256 19 715 10 295 15607 48 11 .123 4 .229 19 822 10 334 15650 43 17 .353 4 .202 19 931 10 374 15695 38 24 .080 4 .176 20 043 10 417 15742 34 31 .350 4 .149 20 158 10 462 15791 35 39 .219 4 .122 20 275 10 509 15842 42 47 .747 4 . 095 20 395 10 559 15895 58 57 .010 4 .069 20 519 10 610 15950 85 67 .095 4 .042 20 645 10 664 16008 26 78 .106 4 .015 20 774 10 721 16067 85 90 .170 3 .989 20 906 10 779 16129 63 103 .442 3 .962 21 041 10 841 16193 65 118 .116 3 .935 21 179 10 905 16259 94 134 .433 3 .909 21 320 10 971 16328 54 152 .708 3 . 882 21 464 11 040 16399 47 173 .353 3 .855 21 612 11 112 16472 79 196 .927 3 .829 21 763 11 187 16548 53 224 .214 3 . 802 21 917 11 265 16626 73 242 .390 3 .787 22 006 11 311 16672 05 NODE 1007.90 HGL < 199.922>;EGL= < 205.898>;FLOWLINE= < 195.640> ****************************************************************************** FLOW PROCESS FROM NODE 1007.90 TO NODE 1008.00 IS CODE = 3 UPSTREAM NODE 1008.00 ELEVATION = 196.67 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 351.20 CFS CENTRAL ANGLE = 3.680 DEGREES PIPE LENGTH = 41.48 FEET PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 3 .56 CRITICAL DEPTH(FT) 4.81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 4. 812 18.103 9 904 15157 .94 0 .384 4 . 762 18.198 9 907 15162 .12 1 .495 4. 711 18.304 9 917 15174 .25 3 .299 4. 661 18.421 9 934 15193 .86 5 .785 4. 611 18.547 9 956 15220 .64 8 .964 4. 561 18.683 9 985 15254 .39 12 .862 4. 511 18.829 10 020 15294 .97 17 .517 4. 461 18.984 10 061 15342 .32 22 .987 4. 411 19.148 10 108 15396 .42 29 .343 4. 361 19.321 10 161 15457 .27 36 .678 4. 311 19.503 10 221 15524 .91 41 .480 4. 282 19.611 10 258 15566 .52 NODE 100 8.00 : HGL = < 201.4 82>;EGL= < 206.574>;FLOWLINE= < 196. 670> ****************************************************************************** FLOW PROCESS FROM NODE 1008.00 TO NODE 1008.10 IS CODE = 5 UPSTREAM NODE 1008.10 ELEVATION = 197.17 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 280.10 54.00 0.00 197.17 351.20 60.00 - 196.67 46.21 30.00 90.00 199.67 24.89 24.00 90.00 199.67 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 4.35 4.81 2 .25 1.76 VELOCITY (FT/SEC) 17.612 18.109 9 .414 7.923 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02029 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01587 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01808 JUNCTION LENGTH = 6.00 FEET FRICTION LOSSES = 0.108 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.343)+( 0.000) = 2.343 NODE 1008.10 : HGL = < 204.101>;EGL= < 208.917>;FLOWLINE= < 197.170> c***************************************************************************** FLOW PROCESS FROM NODE 1008.10 TO NODE 1008.90 IS CODE = 3 UPSTREAM NODE 1008.90 ELEVATION = 199.38 (FLOW IS UNDER PRESSURE) PIPE DIAMETER = 54.00 INCHES MANNING'S N = 0.01300 BEND COEFFICIENT(KB) = 0.06540 VELOCITY HEAD = 4.816 FEET CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 280.10 CFS CENTRAL ANGLE = 6.160 DEGREES PIPE LENGTH = 69.40 FEET FLOW VELOCITY = 17.61 FEET/SEC. HB=KB*(VELOCITY HEAD) = ( 0.065)*( 4.816) = 0.315 SF=(Q/K)**2 = (( 280.10)/( 1966.498))**2 = 0.02029 HF=L*SF = ( 69.40)*(0.02029) = 1.408 TOTAL HEAD LOSSES = HB + HF = ( 0.315)+( 1.408) = 1.723 NODE 1008.90 : HGL = < 205.824>;EGL= < 210.640>;FLOWLINE= < 199.380> ****************************************************************************** FLOW PROCESS FROM NODE 1008.90 TO NODE 1009.00 IS CODE = 1 UPSTREAM NODE 1009.00 ELEVATION = 203.49 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 280.10 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 134.29 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 3.08 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.35 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3 441 21 458 10 595 12910 35 6 .430 3 427 21 548 10 641 12947 69 13 .216 3 412 21 640 10 688 12985 72 20 .389 3 398 21 732 10 736 13024 45 27 .985 3 384 21 826 10 785 13063 88 36 .046 3 370 21 921 10 836 13104 02 44 .620 3 355 22 017 10 887 13144 88 53 .762 3 341 22 114 10 940 13186 46 63 .538 3 327 22 213 10 993 13228 79 74 .025 3 313 22 313 11 048 13271 85 85 .314 3 298 22 414 11 104 13315 67 97 .517 3 284 22 517 11 162 13360 25 110 .770 3 270 22 621 11 220 13405 60 125 .242 3 255 22 726 11 280 13451 74 134 .290 3 247 22 786 11 315 13478 34 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 6.44 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 134.290 VELOCITY (FT/SEC) 17.612 17.612 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 34.54 FEET UPSTREAM OF NODE 1008.90 DOWNSTREAM DEPTH = 6.087 FEET, UPSTREAM CONJUGATE DEPTH = 3.282 FEET PRESSURE HEAD(FT) 6.444 5.058 SPECIFIC ENERGY(FT) 11.260 9.874 PRESSURE+ MOMENTUM(POUNDS) 13721.55 12346.51 NODE 1009.00 HGL < 206.931>;EGL= < 214.085>;FLOWLINE= < 203.490> ****************************************************************************** FLOW PROCESS FROM NODE 1009.00 TO NODE 1009.10 IS CODE = 2 UPSTREAM NODE 1009.10 ELEVATION = 203.82 (FLOW IS SUPERCRITICAL) 54.00 INCHES CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 280.10 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 7.173 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 7.173) = 0.359 NODE 1009.10 : HGL = < 207.252>;EGL= < 214.444>;FLOWLINE= < 203.820> ****************************************************************************** FLOW PROCESS FROM NODE 1009.10 TO NODE 1010.00 IS CODE = 1 UPSTREAM NODE 1010.00 ELEVATION = 208.59 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 280.10 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 216.74 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 3.54 CRITICAL DEPTH(FT) 4.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3 .28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 3 .279 22 556 11 183 13377 . 19 10 .389 3 .289 22 481 11 141 13344. 63 21 .146 3 .299 22 407 11 100 13312. 47 32 .302 3 .310 22 333 11 059 13280. 71 43 . 897 3 .320 22 261 11 019 13249. 34 55 . 971 3 .330 22 189 10 980 13218. 37 68 .575 3 .341 22 117 10 941 13187. 79 81 .766 3 .351 22 047 10 903 13157 . 59 95 . 611 3 .361 21 977 10 866 13127 . 77 110 .189 3 .372 21 907 10 829 13098. 33 125 .596 3 .382 21 839 10 792 13069. 27 141 .946 3 .392 21 771 10 756 13040. 59 159 .378 3 .403 21 703 10 721 13012. 27 178 .066 3 .413 21 636 10 687 12984. 32 198 .230 3 .423 21 570 10 652 12956. 73 216 .740 3 .432 21 515 10 624 12933. 72 NODE 1010.00 : HGL = < 211.869>;EGL= < 219.773>;FLOWLINE= < 208.590> ****************************************************************************** FLOW PROCESS FROM NODE 1010.00 TO NODE 1010.10 IS CODE = 2 UPSTREAM NODE 1010.10 ELEVATION = 208.92 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 280.10 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 7.947 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 7.947) = 0.397 54.00 INCHES NODE 1010.10 : HGL = < 212.182>;EGL= < 220.171>;FLOWLINE= < 208.920> ****************************************************************************** FLOW PROCESS FROM NODE 1010.10 TO NODE 1011.00 IS CODE = 1 UPSTREAM NODE 1011.00 ELEVATION = 213.25 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 280.10 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 196.81 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 3 .54 CRITICAL DEPTH(FT) 4.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.98 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 . 982 25 030 12 . 716 14502.06 12 .462 3 . 004 24 820 12 . 576 14403.98 25 .284 3. 026 24 615 12 . 441 14308.33 38 .502 3 . 049 24 414 12. 310 14215.06 52 .151 3. 071 24 217 12. 183 14124.10 66 .275 3 . 093 24 024 12. 061 14035.42 80 .924 3 . 115 23 835 11. 943 13948.97 96 . 155 3 . 138 23 650 11. 828 13864.69 112 .036 3 . 160 23 468 11. 717 13782.54 128 .647 3 . 182 23 290 11. 610 13702.49 146 .082 3 . 204 23 116 11. 507 13624.47 164 .456 3 . 226 22 945 11. 406 13548.47 183 .910 3 . 249 22 777 11. 310 13474.43 196 . 810 3 . 262 22 675 11. 251 13429.29 NODE 1011.00 HGL < 216.232>;EGL= < 225.966>;FLOWLINE= < 213.250> ****************************************************************************** FLOW PROCESS FROM NODE 1011.00 TO NODE 1011.10 IS CODE = 5 UPSTREAM NODE 1011.10 ELEVATION = 214.75 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION DEPTH(FT.) FLOW (CFS) 198.70 280.10 75.40 6. 00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL VELOCITY 36.00 54.00 36.00 18.00 0.00 60.00 90.00 214.75 213 .25 214.75 215.00 2.99 4.35 2 .72 0.95 (FT/SEC) 32.324 25.037 11.183 3.395 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06193 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.248 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 7.444) +( 0.000) = 7.444 NODE 1011.10 : HGL = < 217.186>;EGL= < 233.410>;FLOWLINE= < 214.750> ****************************************************************************** 09029 ,03357 0.000 FEET FLOW PROCESS FROM NODE UPSTREAM NODE 1012.00 1011.10 TO NODE ELEVATION = 1012.00 IS CODE = 1 240.32 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 198.70 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 274.45 FEET MANNING'S N = 0.01300 2.40 CRITICAL DEPTH(FT) NORMAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.99 2.65 CE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2. 647 30. 093 16 717 12101. 11 5 494 2. 637 30 182 16 791 12131. 30 11 269 2 627 30 273 16 866 12162. 12 17 349 2 616 30 365 16 943 12193. 56 23 762 2 606 30 459 17 022 12225. 64 30 540 2 596 30 555 17 102 12258. 35 37 721 2 586 30 652 17 184 12291. 70 45 347 2 576 30 750 17 269 12325. 68 53 469 2 566 30 851 17 355 12360 30 62 .148 2 556 30 953 17 443 12395 57 71 454 2 546 31 056 17 532 12431 48 81 .475 2 536 31 162 17 624 12468 04 92 .316 2 526 31 268 17 718 12505 25 104 .108 2 516 31 377 17 813 12543 12 117 .017 2 506 31 487 17 911 12581 65 131 .257 2 496 31 599 18 Oil 12620 84 147 .107 2 486 31 713 18 .113 12660 70 164 .948 2 476 31 828 18 .217 12701 24 185 .313 2 .466 31 .945 18 .323 12742 45 208 .983 2 .456 32 .064 18 .431 12784 35 237 .169 2 .446 32 .185 18 .541 12826 93 271 .900 2 .436 32 .307 18 .654 12870 22 274 .450 2 .436 32 .314 18 .660 12872 69 NODE 1012.00 : HGL = < 242.967>;EGL= < 257.037>;FLOWLINE= < 240.320> ************************************ ****************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 1012.10 1012.00 TO NODE 1012.10 ELEVATION = 240.65 IS CODE = 5 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 188.50 36.00 0.00 240.65 198.70 36.00 - 240.32 10.20 24.00 45.00 241.32 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 2.99 2.99 1.14 0. 00 VELOCITY (FT/SEC) 32 .211 30.103 3 .688 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.09012 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07964 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.08488 4.00 FEET 0.340 FEET ENTRANCE LOSSES = 0.000 (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 2.038)+( 0.000) = 2.038 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = FEET NODE 1012.10 : HGL = < 242.965>;EGL= < 259.076>;FLOWLINE= < 240.650> ,***************************************************************************** FLOW PROCESS FROM NODE 1012.10 TO NODE 1012.40 IS CODE = 1 UPSTREAM NODE 1012.40 ELEVATION 257.11 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 188.50 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 180.96 FEET MANNING'S N = 0.01300 2 .30 CRITICAL DEPTH(FT) NORMAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.99 2.34 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0. 000 2 338 31. 885 18 134 12040 14 6 020 2 336 31. 903 18 151 12046 12 12 303 2 335 31 921 18 167 12052 12 18 871 2 334 31 938 18 183 12058 .12 25 751 2 .332 31 956 18 200 12064 .14 32 974 2 331 31 974 18 216 12070 .17 40 575 2 .330 31 992 18 232 12076 .22 48 595 2 .329 32 010 18 249 12082 .27 57 081 2 .327 32 028 18 265 12088 .34 66 090 2 .326 32 046 18 282 12094 .42 75 691 2 .325 32 064 18 299 12100 .51 85 964 2 .323 32 082 18 .315 12106 .61 97 009 2 .322 32 100 18 .332 12112 .73 108 .950 2 .321 32 118 18 .349 12118 .86 121 .943 2 .319 32 .136 18 .365 12125 .00 136 .189 2 .318 32 .154 18 .382 12131 .15 151.952 169.591 180.960 2 .317 2 .315 2.315 32.172 32.191 32 .201 18.399 18.416 18.426 12137.31 12143.49 12147.01 NODE 1012.40 : HGL = < 259.448>;EGL= < 275.244>;FLOWLINE= < 257.110> ****************************************************************************** FLOW PROCESS FROM NODE 1012.40 TO NODE 1012.50 IS CODE = 3 UPSTREAM NODE 1012.50 ELEVATION = 267.19 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 188.50 CFS PIPE DIAMETER = 36.00 INCHES CENTRAL ANGLE = 9.830 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 110.68 FEET NORMAL DEPTH(FT) 2 .30 CRITICAL DEPTH(FT) = 2.99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.38 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY( FT) MOMENTUM(POUNDS) 0 .000 2. 377 31. 375 17. 672 11868. 26 5 .843 2. 374 31. 413 17. 706 11880. 81 11 .947 2. 371 31. 450 17 . 739 11893. 41 18 .338 2 . 368 31. 488 17. 773 11906. 08 25 .040 2 . 365 31. 525 17. 807 11918. 80 32 . 084 2. 362 31. 563 17 841 11931. 58 39 .506 2 . 359 31. 602 17 876 11944. 42 47 .346 2 . 356 31. 640 17 911 11957. 31 55 . 653 2. 353 31. 678 17 946 11970. 27 64 .482 2. 350 31. 717 17 981 11983. 28 73 .902 2. 347 31. 756 18 016 11996. 35 83 .994 2 . 345 31. 795 18 051 12009. 48 94 .857 2. 342 31. 834 18 087 12022. 67 106 .615 2. 339 31 873 18 123 12035. 92 110 . 680 2 338 31 885 18 134 12040. 14 NODE 1012.50 : HGL = < 269. 567>;EGL= < 284.862>;FLOWLINE= < 267.190> ****************************************************************************** FLOW PROCESS FROM NODE 1012.50 TO NODE 1012.60 IS CODE = 2 UPSTREAM NODE 1012.60 ELEVATION = 267.52 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 188.50 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 15.53 8 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*(15.538) = 0.777 NODE 1012.60 : HGL = < 269.859>;EGL= < 285.639>;FLOWLINE= < 267.520> ****************************************************************************** FLOW PROCESS FROM NODE 1012.60 TO NODE 1012.90 IS CODE = 3 UPSTREAM NODE 1012.90 ELEVATION = 289.24 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = CENTRAL ANGLE PIPE LENGTH = 188.50 CFS 21.280 DEGREES 238.61 FEET PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2 .30 CRITICAL DEPTH(FT) 2 .99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2. 492 30. 019 16. 494 11417. 11 5 353 2 . 485 30. 101 16. 563 11443. 95 10 969 2 . 477 30. 183 16. 633 11471. 15 16 870 2. 470 30. 267 16. 703 11498. 69 23 083 2. 462 30. 351 16 . 775 11526. 58 29 638 2 . 455 30. 436 16. 848 11554. 82 36 571 2 . 447 30 522 16. 922 11583. 41 43 922 2. 440 30 610 16 998 11612. 36 51 740 2 . 432 30 698 17 074 11641. 67 60 079 2 . 425 30 787 17 152 11671. 33 69 009 2 . 417 30 877 17 230 11701. 36 78 .611 2 . 410 30 968 17 310 11731. 75 88 .984 2 . 402 31 060 17 391 11762. 52 100 .253 2. 395 31 153 17 474 11793 . 65 112 .572 2. 387 31 247 17 557 11825. 15 126 .143 2 379 31 342 17 642 11857. 03 141 .230 2 372 31 438 17 728 11889. 28 158 .191 2 364 31 535 17 816 11921 92 177 .528 2 357 31 633 17 904 11954 94 199 .976 2 349 31 732 17 994 11988 35 226 .675 2 342 31 .832 18 086 12022 14 238 .610 2 339 31 .869 18 119 12034 52 NODE 1012.90 : HGL = < 291. 732>;EGL= < 305.734>;FLOWLINE= < 289.240> ****************************************************************************** FLOW PROCESS FROM NODE 1012.90 TO NODE 1013.00 IS CODE = 3 UPSTREAM NODE 1013.00 ELEVATION = 293.41 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 188.50 CFS CENTRAL ANGLE = 4.900 DEGREES PIPE LENGTH = 45.74 FEET PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2.30 CRITICAL DEPTH(FT) 2.99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.58 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 4.983 10.230 FLOW DEPTH VELOCITY (FT) (FT/SEC) 2.575 29.182 2.564 29.286 2.554 29.392 SPECIFIC ENERGY(FT) 15.807 15.891 15.977 PRESSURE+ MOMENTUM(POUNDS) 11144.26 11177.91 11212.25 15.762 21.607 27 .795 34.361 41.346 45.740 2.543 2.532 2.521 2.510 2.499 2.492 29.500 29.610 29.721 29.835 29.950 30.019 16 .064 16.154 16 .246 16 .340 16 .436 16.494 11247,29 11283.02 11319.45 11356.59 11394.45 11417.11 NODE 1013.00 : HGL = < 295.985>;EGL= < 309.217>;FLOWLINE= < 293.410> r************************ ******************************************************^ FLOW PROCESS FROM NODE 1013.00 TO NODE 1013.10 IS CODE = 5 UPSTREAM NODE 1013.10 ELEVATION = 293.74 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 184.10 36.00 0.00 293.74 188.50 36.00 - 293.41 2.20 18.00 90.00 295.24 2.20 18.00 90.00 295.24 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 2.99 2.99 0.56 0.56 VELOCITY (FT/SEC) 30.297 29.191 2.207 2 .207 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07935 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07416 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.07675 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.307 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.182) +( 0.000) = 1.182 NODE 1013.10 : HGL = < 296.146>;EGL= < 310.399>;FLOWLINE= < 293.740> ****************************************************************************** FLOW PROCESS FROM NODE 1013.10 TO NODE 1013.90 IS CODE = 3 UPSTREAM NODE 1013.90 ELEVATION = 302.84 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 184.10 CFS CENTRAL ANGLE = 11.800 DEGREES PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 PIPE LENGTH = 109.05 FEET NORMAL DEPTH(FT) 2 .35 CRITICAL DEPTH(FT) 2 .99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.47 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 5.731 11.729 18.017 24.624 FLOW DEPTH (FT) 2.473 2.468 2.463 2.458 2.453 VELOCITY (FT/SEC) 29.529 29.584 29.639 29.694 29.750 SPECIFIC ENERGY(FT) 16.021 16.066 16.112 16.158 16.204 PRESSURE+ MOMENTUM(POUNDS) 10978.43 10995.98 11013.68 11031.53 11049.53 31.579 2 .448 29 806 16 251 11067.67 38.919 2 .443 29 863 16 299 11085.97 46.685 2 .438 29 920 16 347 11104.42 54.926 2 .432 29 978 16 396 11123.03 63 .700 2 .427 30 036 16 445 11141.79 73.075 2 .422 30 094 16 494 11160.70 83 .135 2 .417 30 153 16 544 11179.76 93.981 2 .412 30 212 16 .595 11198.98 105.738 2 .407 30 272 16 .646 11218 .36 109.050 2 .406 30 287 16 .659 11223 .39 1013.90 HGL = < 305 313>;EGL= < 318 861>;FLOWLINE= < 302.840> ****************************************************************************** FLOW PROCESS FROM NODE 1013.90 TO NODE 1014.00 IS CODE = 1 UPSTREAM NODE 1014.00 ELEVATION = 305.27 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 184.10 CFS PIPE DIAMETER = PIPE LENGTH = 29.25 FEET MANNING'S 36.00 INCHES N = 0.01300 2.35 CRITICAL DEPTH(FT) = NORMAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.99 2.50 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.501 29.231 15.777 10883.09 5.648 2.495 29.293 15.828 10902.91 11.565 2.489 29.356 15 . 879 10922 . 93 17.773 2 .483 29.419 15.930 10943.16 24.299 2.477 29 .483 15.983 10963.59 29.250 2.473 29.529 16.021 10978.43 NODE 1014.00 HGL = < 307. 771>;EGL= < 321.047>;FLOWLINE= < 305.270> ****************************************************************************** FLOW PROCESS FROM NODE 1014.00 TO NODE 1014.10 IS CODE = 2 UPSTREAM NODE 1014.10 ELEVATION = 305.60 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 184.10 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 13.467 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*(13.467) = 0.673 NODE 1014.10 : HGL = < 308.062>;EGL= < 321.721>;FLOWLINE= < 305.600> ****************************************************************************** FLOW PROCESS FROM NODE 1014.10 TO NODE 1015.00 IS CODE = 3 UPSTREAM NODE 1015.00 ELEVATION = 328.35 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 184.10 CFS CENTRAL ANGLE = 25.300 DEGREES PIPE LENGTH = 284.31 FEET PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 2.40 CRITICAL DEPTH(FT) = NORMAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.99 2.99 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 .990 26 045 13 530 9952 13 1 292 2 .966 26 090 13 542 9957 46 3 892 2 .942 26 154 13 571 9970 05 7 268 2 .919 26 234 13 612 9988 13 11 259 2 .895 26 327 13 664 10010 86 15 805 2 .871 26 431 13 726 10037 75 20 888 2 . 847 26 546 13 797 10068 46 26 516 2 . 824 26 671 13 876 10102 77 32 715 2 .800 26 805 13 964 10140 51 39 526 2 .776 26 949 14 060 10181 54 47 009 2 .752 27 101 14 164 10225 79 55 237 2 .728 27 262 14 276 10273 19 64 307 2 .705 27 431 14 397 10323 68 74 342 2 .681 27 609 14 525 10377 25 85 500 2 .657 27 796 14 661 10433 87 97 988 2 .633 27 990 14 806 10493 55 112 077 2 .610 28 193 14 960 10556 28 128 141 2 .586 28 405 15 122 10622 09 146 701 2 .562 28 625 15 293 10691 00 168 527 2 .538 28 853 15 473 10763 03 194 808 2 .515 29 090 15 663 10838 23 227 546 2 .491 29 .336 15 .863 10916 .64 270 488 2 .467 29 .591 16 .072 10998 .31 284 310 2 .462 29 .649 16 .121 11017 .10 NODE 1015.00 : HGL = < 331.340>;EGL= < 341.880>;FLOWLINE= < 328.350> ****************************************************************************** FLOW PROCESS FROM NODE 1015.00 TO NODE 1015.10 IS CODE = 5 UPSTREAM NODE 1015.10 ELEVATION = 328.68 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 177 .70 184.10 6.40 0.00 0.00 = DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 0.00 36.00 36.00 24.00 0.00 45 . 00 0.00 328.68 328.35 329.68 0.00 CRITICAL DEPTH(FT.) 2.99 2.99 0.90 0.00 VELOCITY (FT/SEC) 27 .569 26.053 2 .355 0.000 ==Q5 EQUALS BASIN INPUT= LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06610 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07255 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06932 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.277 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.172) +( 0.000) = 1.172 NODE 1015.10 : HGL = < 331.250>;EGL= < 343.052>;FLOWLINE= < 328.680> ****************************************************************************** FLOW PROCESS FROM NODE 1015.10 TO NODE 1016.00 IS CODE = 3 UPSTREAM NODE 1016.00 ELEVATION = 335.87 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 177.70 CFS CENTRAL ANGLE = 7.800 DEGREES PIPE LENGTH = 89.07 FEET PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2 .31 CRITICAL DEPTH(FT) 2 .99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 . 989 25 . 142 12. 810 9317. 11 0 898 2. 961 25. 194 12. 824 9323 . 13 2 848 2. 934 25. 271 12 . 856 9337 . 53 5 490 2 . 907 25. 365 12. 904 9358. 25 8 703 2 . 879 25 . 476 12. 964 9384. 36 12 439 2. 852 25 . 600 13 . 035 9415. 30 16 685 2 . 825 25. 737 13 . 117 9450. 72 21 449 2 . 798 25. 886 13 . 209 9490. 36 26 756 2 . 770 26. 047 13 . 312 9534 . 05 32 646 2. 743 26 . 219 13 . 424 9581. 67 39 172 2 . 716 26. 401 13. 546 9633. 14 46 .404 2 . 688 26. 595 13. 678 9688. 40 54 .434 2. 661 26. 799 13 . 820 9747 . 42 63 .377 2. 634 27 014 13 . 973 9810. 21 73 .383 2. 607 27 240 14. 135 9876. 75 84 .645 2 . 579 27 476 14. 309 9947. 09 89 .070 2. 570 27 560 14. 372 9972 . 34 NODE 1016.00 : HGL = < 338. 859>;EGL= < 348.680>;FLOWLINE= < 335.870> ****************************************************************************** FLOW PROCESS FROM NODE 1016.00 TO NODE 1016.10 IS CODE = 5 UPSTREAM NODE 1016.10 ELEVATION = 336.20 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 140.60 177.70 37.10 0.00 DIAMETER (INCHES) 36.00 36.00 24.00 0.00 ANGLE (DEGREES) 0.00 30.00 0.00 FLOWLINE ELEVATION 336.20 335.87 336.70 0.00 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: CRITICAL DEPTH(FT.) 2.97 2.99 1.94 0.00 VELOCITY (FT/SEC) 19.891 25.149 11.809 0.000 DY=(Q2*V2-Q1*V1*C0S(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04443 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06747 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05595 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.224 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.228)+( 0.000) = 2.228 NODE 1016.10 : HGL = < 344.764>;EGL= < 350.908>;FLOWLINE= < 336.200> ****************************************************************************** FLOW PROCESS FROM NODE 1016.10 TO NODE 1017.00 IS CODE = 1 UPSTREAM NODE 1017.00 ELEVATION = 353.51 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 140.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 226.48 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.96 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.97 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 000 2. 046 27. 370 13 . 686 7748 22 4 777 2. 043 27 421 13 . 726 7760 96 9 772 2 . 039 27 472 13 . 766 7773 77 15 005 2 . 036 27 523 13 806 7786 65 20 499 2. 032 27 575 13 847 7799 60 26 278 2. 029 27 626 13 888 7812 .61 32 372 2 026 27 678 13 929 7825 .69 38 815 2 022 27 731 13 970 7838 .83 45 647 2 019 27 783 14 012 7852 .05 52 916 2 015 27 836 14 054 7865 .34 60 677 2 012 27 889 14 097 7878 .69 68 999 2 009 27 942 14 139 7892 .12 77 965 2 005 27 995 14 182 7905 .61 87 678 2 002 28 049 14 226 7919 .18 98 269 1 998 28 103 14 269 7932 . 81 109 .904 1 995 28 157 14 313 7946 .52 122 . 806 1 992 28 211 14 358 7960 .30 137 .272 1 988 28 .266 14 402 7974 .15 153 .722 1 985 28 .321 14 .447 7988 .08 172 .768 1 981 28 .376 14 .492 8002 .07 195 .364 1 .978 28 .432 14 .538 8016 .14 223 .102 1 .975 28 .487 14 .584 8030 .28 226 .480 1 .974 28 .493 14 .588 8031 .62 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 8.56 1 I PRESSURE FLOW PROFILE COMPUTED INFORMATION : DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ • CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1 0 . 000 8.564 19.891 14.708 8535 .42 173 . 909 3 .000 19.891 9 .144 6081 .22 1 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3 .00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 173 . 909 3.000 19.885 9.144 6081 .22 • 173 . 938 2.999 19.885 9.143 6080 .79 • 173. 964 2.998 19.885 9.142 6080 .43 173 . 987 2 .997 19.886 9 .141 6080 .09 m 174 007 2.996 19.887 9.140 6079 .79 • 174 026 2.994 19.887 9.140 6079 .51 174 044 2.993 19.888 9.139 6079 .25 174 060 2 .992 19.889 9.139 6079 .01 1 174 074 2.991 19.890 9 .138 6078 .79 I 174 088 2.990 19.891 9.138 6078 .59 174 100 2.989 19.892 9.137 6078 .40 « 174 112 2.988 19.893 9 .137 6078 .23 I 174 122 2 .987 19.895 9.136 6078 .07 • 174 132 2.986 19.896 9.136 6077 .93 174 140 2.985 19.897 9.136 6077 .80 • 174 148 2 .983 19.898 9.136 6077 .69 1 174 154 2 .982 19.900 9.135 6077 .58 174 160 2.981 19.901 9 .135 6077 .49 — 174 166 2 .980 19.903 9.135 6077 .41 • 174 170 2.979 19.904 9.135 6077 .34 • 174 174 2.978 19.906 9.135 6077 .29 174 177 2 .977 19.908 9.135 6077 .24 • 174 179 2.976 19.909 9.134 6077 .20 181 2.975 19.911 9.134 6077 .18 174 182 2.974 19.913 9.134 6077 .16 174 182 2.972 19.914 9.134 6077 .16 • 226 480 2 .972 19.914 9.134 6077 .16 TJ^TMDATTT Tn TTTM 1 PRESSURE+MOMENTUM BALANCE OCCURS AT 37.06 FEET UPSTREAM OF NODE 1016.10 | m j DOWNSTREAM DEPTH = 7.37 8 FEET, UPSTREAM CONJUGATE DEPTH = 1.979 FEET | NODE 1017.00 : HGL = < 355. 556>;EGL= < 367.196>;FLOWLINE= < 353. 510> • ****************************************************************************** • FLOW PROCESS FROM NODE 1017 . 00 TO NODE 1017.10 IS CODE = 5 UPSTREAM NODE 1017.10 ELEVATION = 353.84 (FLOW IS SUPERCRITICAL) • CALCULATE JUNCTION LOSSES: • PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) • UPSTREAM 134.20 36. 00 0.00 353.84 2.97 29.103 I DOWNSTREAM 140.60 36. 00 353.51 2.97 27.379 LATERAL #1 4.10 18. 00 90.00 355.34 0.78 4.449 LATERAL #2 2.30 18.00 90.00 355.34 0.57 3.704 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08090 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06794 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.07442 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.298 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.659)+( 0.000) = 1.659 NODE 1017.10 : HGL = < 355.703>;EGL= < 368.854>;FLOWLINE= < 353.840> ****************************************************************************** FLOW PROCESS FROM NODE 1017.10 TO NODE 1018.00 IS CODE = 3 UPSTREAM NODE 1018.00 ELEVATION = 374.39 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 134.20 CFS PIPE DIAMETER = 36.00 INCHES CENTRAL ANGLE = 18.800 DEGREES MANNING'S N = 0.013 00 PIPE LENGTH = 229.43 FEET NORMAL DEPTH(FT) 1 . 80 CRITICAL DEPTH(FT) 2.97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.56 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 . 562 20 869 9. 329 5904. 34 2 130 2 . 531 21 083 9. 438 5948. 01 4 455 2 . 501 21 308 9. 556 5994. 50 6 991 2 . 470 21 544 9 . 682 6043 . 87 9 757 2 . 440 21 790 9. 817 6096. 20 12 775 2. 410 22 048 9. 962 6151. 54 16 071 2 . 379 22 317 10. 117 6210. 00 19 676 2 . 349 22 597 10. 283 6271. 64 23 625 2 . 318 22 890 10. 459 6336. 58 27 962 2. 288 23 195 10. 647 6404. 92 32 739 2 . 257 23 513 10. 848 6476. 78 38 016 2 . 227 23 .845 11. 061 6552 . 28 43 872 2 . 196 24 190 11. 289 6631. 57 50 402 2. 166 24 550 11. 531 6714. 79 57 726 2 . 136 24 .926 11. 789 6802. 11 65 .999 2 . 105 25 .317 12 . 064 6893 . 69 75 .427 2. 075 25 .724 12. 356 6989. 72 86 .287 2 044 26 .149 12. 668 7090. 39 98 . 970 2 014 26 .592 13 001 7195. 93 114 .048 1 983 27 .054 13 355 7306 56 132 .408 1 953 27 .535 13 733 7422 53 155 .537 1 923 28 . 038 14 137 7544 09 186 .225 1 892 28 .562 14 568 7671 55 229 .430 1 863 29 .094 15 014 7801 18 NODE 1018.00 : HGL = < 376.952>;EGL= < 383.719>;FLOWLINE= < 374.390> ****************************************************************************** FLOW PROCESS FROM NODE 1018.00 TO NODE 1018.10 IS CODE = 2 UPSTREAM NODE 1018.10 ELEVATION = 374.72 (FLOW IS SUPERCRITICAL) CALCUIiATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 134.20 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 6.772 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = . 05* ( 6.772) = 0.339 NODE 1018.10 : HGL = < 377.279>;EGL= < 3 84.057>;FLOWLINE= < 374.720> ****************************************************************************** FLOW PROCESS FROM NODE 1018.10 TO NODE 1019.00 IS CODE = 3 UPSTREAM NODE 1019.00 ELEVATION = 382.92 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 134.20 CFS CENTRAL ANGLE = 16.800 DEGREES PIPE LENGTH = 205.10 FEET PIPE DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.48& 3.00 CRITICAL DEPTH(FT) = NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. 2.97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2.97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.864 2.843 5.597 8.987 12.949 17 .462 22.528 28.169 34.420 41.334 48.980 57 .450 66.859 77 .356 89.137 102.462 117.686 135.306 156.055 181.070 205.100 FLOW DEPTH (FT) 2.966 2 2, 2 , 2 , 2 , 2 , 2 . 2 . 2. 2. 2 . 2 . 2 . 2 . 2. 2. 2. 2 . 2 . 2 . 2. 946 927 907 888 868 849 829 809 790 770 751 731 711 692 672 653 633 613 594 574 559 VELOCITY (FT/SEC) 19.018 19.056 19.102 19.155 19.213 19.277 19.346 19.421 19.500 19.583 19.671 19.763 19 . 860 19.961 20.066 20.175 20.288 20.406 20.527 20.653 20.783 20.886 SPECIFIC ENERGY(FT) 8.586 8.589 8.596 8.608 8.623 8.642 8.664 8.689 8.717 8.748 8.782 8.819 8.859 8.902 8. 948 8.997 9.048 9.103 9.161 9.222 9.286 9.337 PRESSURE+ MOMENTUM(POUNDS) 5594.17 5595.43 5598.75 5603.84 5610.52 5618.67 5628.20 5639.05 5651.17 5664.50 5679.04 5694.74 5711.59 5729.59 5748.71 5768.96 5790.34 5812.83 5836.46 5861.21 5887.10 5907.83 NODE 1019.00 HGL < 385.886>;EGL= < 391.506>;FLOWLINE= < 382.920> ****************************************************************************** FLOW PROCESS FROM NODE 1019.00 TO NODE 2000.00 IS CODE = 5 UPSTREAM NODE 2000.00 ELEVATION = 383.25 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 110.00 36.00 30.00 383.25 2.93 15.562 DOWNSTREAM 134.20 36.00 - 382.92 2.97 19.023 LATERAL #1 24.20 24.00 0.00 384.25 1.74 7.703 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02720 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03715 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03217 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.129 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.158)+( 0.000) = 2.158 NODE 2000.00 : HGL = < 389.903>;EGL= < 393.664>;FLOWLINE= < 383.250> ****************************************************************************** FLOW PROCESS FROM NODE 2000.00 TO NODE 2002.00 IS CODE = 1 UPSTREAM NODE 2002.00 ELEVATION = 384.85 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 110.00 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 31.40 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 110.00)/( 666.979))**2 = 0.02720 HF=L*SF = ( 31.40)* (0.02720) = 0.854 NODE 2002.00 : HGL = < 390.757>;EGL= < 394.518>;FLOWLINE= < 384.850> ****************************************************************************** FLOW PROCESS FROM NODE 2002.00 TO NODE 2005.00 IS CODE = 3 UPSTREAM NODE 2005.00 ELEVATION = 387.65 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 110.00 CFS PIPE DIAMETER = 36.00 INCHES CENTRAL ANGLE = 26.330 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 55.20 FEET BEND COEFFICIENT(KB) = 0.13522 FLOW VELOCITY = 15.56 FEET/SEC. VELOCITY HEAD = 3.760 FEET HB=KB*(VELOCITY HEAD) = ( 0.135)*( 3.760) = 0.508 SF=(Q/K)**2 = (( 110.00)/( 666.987))**2 = 0.02720 HF=L*SF = ( 55.20)*(0.02720) = 1.501 TOTAL HEAD LOSSES = HB + HF = ( 0.508)+( 1.501) = 2.010 NODE 2005.00 : HGL = < 392.767>;EGL= < 396.527>;FLOWLINE= < 387.650> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2005.00 FLOWLINE ELEVATION = 387.65 ASSUMED UPSTREAM CONTROL HGL = 390.58 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS APPENDIX 3 CAPACITY CALCULATIONS Normal Depth Capacity of Existing 24 in RCP Worksheet for Circular Channel Project Description Worksheet 24" RCP Flow Element Circular Channt Method Manning's Forrr Solve For Full Flow Capac Input Data Mannings Coeffic 0.013 Channel Slope 020000 ft/ft Diameter 24.0 in Results Depth 2.00 ft Discharge 31.99 cfs Flow Area 3.1 ft^ Wetted Perime 6.28 ft Top Width 0.00 ft Critical Depth 1.89 ft Percent Full 100.0 % Critical Slope 017296 ft/ft Velocity 10.18 ft/s Velocity Head 1.61 ft Specific Energ; 3.61 ft Froude Numbe 0.00 Maximum Disc 34.41 cfs Discharge Full 31.99 cfs Slope Full 020000 ft/ft Flow Type N/A Project Engineer: PDC t:\...\flowmaster\pipe capacity.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 09/23/04 11:52:31 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Pagelofi Normal Depth Capacity of Existing 36 in RCP Worksheet for Circular Channel Project Description Worksheet 36" RCP Flow Element Circular Channt Method Manning's Forrr Solve For Full Flow Capac Input Data Mannings Coeffic 0.013 Channel Slope 093200 ft/ft Diameter 36.0 in Results Depth 3.00 ft Discharge 203.61 cfs Flow Area 7.1 ft2 Wetted Perime 9.42 ft Top Width 0.00 ft Critical Depth 2.99 ft Percent Full 100.0 % Critical Slope 089663 ft/ft Velocity 28.80 ft/s Velocity Head 12.89 ft Specific Energ' 15.89 ft Froude Numbe 0.00 Maximum Disc 219.02 cfs Discharge Full 203.61 cfs Slope Full 093200 fVft Flow Type N/A Project Engineer: PDC 1:\...\flowmaster\pipe capacity.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 09/23/04 11:52:45 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Pagelofi Normal Depth Capacity of Existing 54 in RCP Worksheet for Circular Channel Project Description Worksheet 54" RCP Flow Element Circular Channt Method Manning's Forrr Solve For Full Flow Capac Input Data Mannings Coeffic 0.013 Channel Slope 022000 ft/ft Diameter 54.0 in Results Depth 4.50 ft Discharge 291.66 cfs Flow Area 15.9 ft2 Wetted Perime 14.14 ft Top Width 0.00 ft Critical Depth 4.37 ft Percent Full 100.0 % Critical Slope 019423 ft/ft Velocity 18.34 ft/s Velocity Head 5.23 ft Specific Energ-9.73 ft Froude Numbe 0.00 Maximum Disc 313.74 cfs Discharge Full 291.66 cfs Slope Full 022000 ft/ft Flow Type N/A Project Engineer: PDC t:\...\flowmastel^pipe capacity.fm2 PROJECTDESIGN CONSULTANTS FlowMaster v7.0 [7.0005] 09/23/04 11:52:58 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 USA +1-203-755-1666 Pagelofi EXHIBIT A EXISTING CONDITION HYDROLOGY MAP N r-100' BRESSI RANCH PA-13 RV PARKING EXISTING CX>NDmONS HYDROLOGY MAP EXHIBIT A mamm*mmmmam»iamimam»i 701 BSnct,SiiilcSOO, Sia Djcpi. CA 92101 619-235.M7i FAX 6l9-23*^a^9 EXHIBIT B PROPOSED CONDITION HYDROLOGY MAP N r-noff BRESSI RANCH PA-13 RV PARKING PROPOSED CONDITIONS HYDROLOGY MAP EXHIBIT B ^ Ss ^ 1 TDIBSim 7DIBSlica,SiiiK800, SaiDicio, CA 92101 61^235.M7I FAX (19-234.0349 BRESSI RANCH PA-13 RV PARKING PROPOSED CONDITIONS HYDRAULIC MAP EXHIBIT C 1 701 B sme 701 B Smet, Suite 800, San Diego. CA 92101 «I9-23«471 FAX 619.234-0349 EXHIBIT D EL FUERTE STREET HYDRAULIC MAP