Loading...
HomeMy WebLinkAboutCT 00-16; Poinsettia Properties; Part 3 Hydrology Study; 2002-02-01APPENDIX 6 Inlet/Catch Basin and Concrete Brow Ditch Hydraulic Analysis REP\2068DR.DOC A-6 WATER'S END CURB INLETS PROJ. NUM 2068.00 PAGE 1 OF 2 CURB INLETS ON GRADE CONDITION Node Number 1215 1260 1570 1815 1840 2515 2535 3220 3235 1060 1070 Street Name SEAWARD AVE (N) SEAWARD AVE (S) SEASIDE CT (S) SALTGRASS AVE (N) SALTGRASS AVE (S) SAND SHELL AVE (N) SAND SHELL (S) SWEETWATER ST (E) SWEETWATER ST (W) Ave. Encinas Ave. Encinas Street Station 5+03 5+03 2+96 3+50 3+45 3+90 3+84 5+31 5+31 27+91 31+40 Q (CFS) 2.1 2.1 2.4 1.3 2.1 2.2 3.3 1.7 1.6 1.4 1.3 % Street Slope 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.10 0.52 0.53 Y (Feet) 0.29 0.29 0.30 0.26 0.29 0.29 0.33 0.26 0.26 0.28 0.28 CALC'D OPEN. L - (FEET) 6.15 6.15 6.86 4.10 6.15 6.44 8.79 5.36 5.04 4.20 3.75 NET OPENING (FEET) 7.00 7.00 7.00 5.00 7.00 7.00 9.00 6.00 6.00 5.00 4.00 CURB INLET SIZE (FT) 8.00 8.00 8.00 6.00 8.00 8.00 10.00 7.00 7.00 6.00 5.00 T:\WATERRES\2068-POINSETTIA\CURB-INLETS\Curb-inlets.xls WATER'S END CURB INLETS PROJ. MUM 2068.00 PAGE 2 OF 2 CURB INLETS ON SUMP CONDITION Node Number 1320 1410 1430 1515 1530 1550 1615 1715 1730 1855 1915 1930 2015 2030 2050 2115 2215 2230 2315 2415 2425 2615 3015 3030 *6010 Street Name SEAWARD AVE (Cul-De-Sac) SHORELINE DR (W) SHORELINE DR (E) SANDSIDE CT (Cul-De-Sac) SANDSIDE CT (N) SANDSIDE CT (S) STRAND ST (Cul-De-Sac) SHORELINE DR (W) SHORELINE DR (E) SALTGRASS AVE (Cul-De-Sac) SHORELINE DR (W) SHORELINE (E) CORAL REEF (Cul-De-Sac) CORAL REEF (N) CORAL REEF (S) BROOKSIDE CT (Cul-De-Sac) SHORELINE DR (W) SHORELINE DR (E) RED CORAL AVE (Cul-De-Sac) SHORELINE DR (E) SHORELINE DR (W) SAND SHELL AVE (Cul-De-Sac) WATERS END DR (E) WATERS END DR (W) *Poinsettia Ln. (NORTH) Street Station 0+75 1+85 1+85 0+75 6+02 6+02 0+75 6+30 6+30 0+75 8+36 8+36 0+75 2+94 3+05 0+74 16+05 16+05 0+75 17+85 17+85 0+79 11+68 11+68 1756+27.91 Q (CFS) 3.1 1.0 2.8 2.0 4.2 4.3 2.0 0.6 2.9 1.5 0.6 0.7 2.1 2.4 1.7 2.1 2.0 3.6 1.7 3.6 0.3 2.7 3.2 2.8 5.5 Q/FOOT (CFS/FT) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CALC'D OPEN L - (FEET) 1.55 0.50 1.40 1.00 2.10 2.15 1.00 0.30 1.45 0.75 0.30 0.35 1.05 1.20 0.85 1.05 1.00 1.80 0.85 1.80 0.15 1.35 1.60 1.40 2.75 NET OPENING (FEET) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 6.00 CURB INLET SIZE (FT) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 7.00 *Curb inlet at node 6010 is currently under construction per City drawing no. 392-1 by Dokken Engineering. Note that this curb inlet has been conservatively overdesigned. T:\WATER RES\2068-POINSETTIA\CURB-INLETS\Curb-inlets.xls n ».OT73 RESIDENTIAL STREET ONE SIDE ONLY 20 :" .T T: .-J:l J::-g ••'•'•: > Nv^-i jff 0.4 5 6 7 8 9 10 DISCHARGE (C.FS.) 30 40 50 EXAMPLE: Given. 0=10 S= 2.5% Chart QfoM: D*pth = 0.4, Velocity = 4.4 f.fxs. SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES APPROVED GUTTER AND ROADWAY DISCHARGE-VELOCITY CHART DESIGN MANUAL OATE APPENDIX X-D PROJECT SUBJECT PROJECTDESIGN CONSULTANTS PLANNING ENGINEERING SURVEYING 701 B Street, Suite 720, San Diego, CA 92101 (619) 235-6471 • Fax (619) 234-0349 P CfiTCA RAGE JOB NO. DRAWN BY OF. DATE DATE (3 7 6001 C L ' 2,0? H "7 ' C,5 PROJECT SUBJECT PROJECTDESIGN CONSULTANTS PLANNING ENGINEERING SURVEYING 701 B Street, Suite 720, San Diego, CA 92101 (619) 235-6471 • Fax (619) 234-0349 CfrTCH if1' FLOVD PAGE JOB NO. DRAWN BY CHECKED BY OF. DA7E VI 3' 0,15 > 0,02=* 'F1 C PROJECT-DESIGN CONSULTANTS PLANNING ENGINEERING SURVEYING 701 B Street, Suite 720, San Diego, CA 92101 (619) 235-6471 • Fax (619) 234-0349 ud Arg0fe OTDH FU)UO PAGE JOB NO. DRAWN BY CHEC/fEDBy OF DATE DATE Fl?PEa2)KlMiAT^ 0 3 \ H Brow Ditch - Northerly Section of Avenida Encinas Worksheet for Triangular Channel Project Description Worksheet Ave Encinas-Embarcadero Li Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coerfic 0.015 Slope 005000 ft/ft Lett Side Slope 1.25 H:V Right Side Slope 1.25 H:V Discharge 0.31 cfs Results Depth 0.36 ft Flow Area 0.2 ft2 Wetted Perimi 1.16 ft Top Width 0.90 ft Critical Depth 0.33 ft Critical Slope 0.008326 ft/ft Velocity 1.90 ft/s Velocity Head 0.06 ft Specific Enerj 0.42 ft Froude Numb' 0.79 Flow Type Subcritical Project Engineer: David Nicolardi t:\...\2068-poinsettia\flowmaster\brow-ditches.fm2 Project Design Consultants FlowMaster v6.0 [614e] 11/09/01 02:19:23 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 1 Cross Section Cross Section for Triangular Channel Project Description Worksheet Flow Element Method Solve For Ave Encinas-Embarcadero Li Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coeffic 0.015 Slope 005000 ft/ft Depth 0.36 ft Lett Side Slope 1.25 H:V Right Side Slope 1.25 H : V Discharge 0.31 cfs \ 0.36 ft V:2.o[\ H:1 NTS t:\... \2068-poinsettia\flowmaster\brow-ditches.fm2 11/09/01 02:19:30 PM © Haestad Methods, Inc. Project Engineer: David Nicolardi Project Design Consultants Flow/Master v6.0 [614e] 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 1 Brow Ditch at int. of Avenida Encinas and Poinsettia Lane Worksheet for Triangular Channel Project Description Worksheet Ave Encinas-Poinsettia Ln • Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coeffic 0.015 Slope 039000 ft/ft Left Side Slope 1.25 H:V Right Side Slope 1.25 H : V Discharge 0.42 cfs Results Depth 0.28 ft Flow Area 0.1 ft2 Wetted Perimi 0.88 ft Top Width 0.69 ft Critical Depth 0.37 ft Critical Slope 0.007996 ft/ft Velocity 4.43 ft/s Velocity Head 0.30 ft Specific Enerj 0.58 ft Froude Numb' 2.10 Flow Type Supercritical Project Engineer: David Nicolardi t:\...\2068-poinsettia\flowmaster\brow-ditches.fm2 Protect Design Consultants FlowMaster v6.0 [614e] 11/09/01 02:19:37 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 1 Cross Section Cross Section for Triangular Channel Project Description Worksheet Flow Element Method Solve For Ave Encinas-Poinsettia Ln - Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coetfic 0.015 Slope 039000 ft/ft Depth 0.28 ft Left Side Slope 1.25 H : V Right Side Slope 1.25 H:V Discharge 0.42 cfs V 0.28 ft /:2.oK NTS Project Engineer: David Nicolardi t:\..A2068-poinsettia\flowmaster\brow-ditches.fm2 Project Design Consultants Flow/Master v6.0 [614e] 11/09/01 02:19:44 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 1 Brow Ditch in Avenida Encinas near Pvt. Street C Worksheet for Triangular Channel Project Description Worksheet Ave Encinas-Pvt Street C • Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coeffic 0.015 Slope 004000 ft/ft Lett Side Slope 1.25 H:V Right Side Slope 1.25 H:V Discharge 0.44 cfs Results Depth 0.43 ft Flow Area 0.2 ft2 Wetted Perimi 1.38 ft Top Width 1.07 ft Critical Depth 0.38 ft Critical Slope 0.007946 ft/ft Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Enerj 0.49 ft Froude Numb' 0.72 Flow Type Subcritical Project Engineer: David Nicolardi t:\...\2068-poinsettia\flowmaster\brow-ditches.fm2 Project Design Consultants FlowMaster v6.0 [614e] 11/09/01 02:19:50 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 1 Cross Section Cross Section for Triangular Channel Project Description Worksheet Flow Element Method Solve For Ave Encinas-Pvt Street C • Triangular Channel Manning's Formula Channel Depth Section Data Mannings Coeffic 0.015 Slope 004000 ft/ft Depth 0.43 ft Left Side Slope 1.25 H:V Right Side Slope 1.25 H:V Discharge 0.44 cfs V 0.43ft /:2.ob\ NTS Project Engineer: David Nicolardi t:\...\2068-poinsettia\flowmaster\brow-ditches.fm2 Project Design Consultants FlowMaster v6.0 [614e] 11/09/01 02:19:58 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 1 APPENDIX 7 Overflow Outlets at Cul-De-Sacs: Brookside Court Coral Reef Avenue Red Coral Avenue Salt Grass Avenue Sandside Court Seaward Avenue REP\2068DR.DOC A-7 Culvert Design Report BROOKSIDE CT: 12-IN DIA. PIPE CULVERT Peak Discharge Method: User-Specified Design Discharge 2.09 cfs Check Discharge 2.09 cfs Grades Model: Inverts Invert Upstream Length Drop 50.96 ft Invert Downstream 13.75 ft Slope 0.14 ft 50.82 ft 0.010182 ft/ft Tailwater Conditions: Constant Tailwater Tailwater Elevation 51.34 ft Name Desc x Trial-1 1-12 inch Circular Discharge HW Elev Velocity 2.09 Cfs 51.89ft 4.68 ft/s PP1. 02. - 0,81 ft Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster vl.O 02/01/02 06:29:26 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 2 Culvert Design Report BROOKSIDE CT: 12-IN DIA. PIPE CULVERT Design:Trial-1 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation Computed Headwater Elevation Headwater Depth/ Height Inlet Control HW Elev Outlet Control HW Elev N/A ft 51.89 ft 0.93 51.89 ft 51.89 ft Storm Event Discharge Tailwater Elevation Control Type Design 2.09 cfs 51.34 ft Entrance Control Grades Upstream Invert Length . 50.96 ft 13.75 ft Downstream Invert Constructed Slope 50.82 ft 0.010182 ft/ft Hydraulic Profile Profile Slope Type Flow Regime Velocity Downstream S2 Steep Supercritical 4.68 ft/s Depth, Downstream Normal Depth Critical Depth Critical Slope 0.55 ft 0.55 ft 0.62 ft 0.006981 ft/ft Section Section Shape Section Material Section Size Number Sections Circular Concrete 12 inch 1 Mannings Coefficient Span Rise 0.013 1.00 ft 1.00 ft Outlet Control Properties Outlet Control HW Elev Ke 51.89 ft 0.20 Upstream Velocity Head Entrance Loss 0.26 ft 0.05 ft Inlet Control Properties Inlet Control HW Elev 51 .89 ft Inlet Type Groove end w/headwall K 0.00780 M 2.00000 C 0.02920 Y 0.74000 Flow Control Area Full HDS 5 Chart HDS 5 Scale Equation Form N/A 0.8 ft2 1 2 1 Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster vl.O 02/01/02 06:29:26 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 2 of 2 Culvert Design Report CORAL REEF AVE: 12-IN DIA. PIPE CULVERT Peak Discharge Method: User-Specified Design Discharge 2.08 cfs Check Discharge 2.08 cfs Grades Model: Inverts Invert Upstream Length Drop 50.06 ft 13.76 ft 0.14 ft Invert Downstream Slope 49.92 ft 0.010174 ft/ft Tailwater Conditions: Constant Tailwater Tailwater Elevation 50.44 ft Name Desc Discharge HW Elev Velocity Trial-1 1-12 inch Circular 2.08 Cfs 50.99 ft 4.68 ft/s .^ =• 52. \ Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster vl.O 02/01/02 06:30:40 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 2 Culvert Design Report CORAL REEF AVE: 12-IN DIA. PIPE CULVERT Design:Trial-1 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation Computed Headwater Elevation Headwater Depth/ Height Inlet Control HW Elev Outlet Control HW Elev N/A ft 50.99 ft 0.93 50,99 ft 50.99 ft Storm Event Discharge Tailwater Elevation Control Type Design 2.08 cfs 50.44 ft Entrance Control Grades Upstream Invert Length 50.06 ft 13.76 ft Downstream Invert Constructed Slope 49.92 ft 0.010174 ft/ft Hydraulic Profile Profile Slope Type Flow Regime Velocity Downstream S2 Steep Supercritical 4.68 ft/s Depth, Downstream Normal Depth Critical Depth Critical Slope 0.55 ft 0.55 ft 0.62 ft 0.006966 ft/ft Section Section Shape Section Material Section Size Number Sections Circular Concrete 12 inch 1 Mannings Coefficient Span Rise 0.013 1.00 ft 1.00 ft Outlet Control Properties Outlet Control HW Elev Ke 50.99 ft 0.20 Upstream Velocity Head Entrance Loss 0.26 ft 0.05 ft Inlet Control Properties Inlet Control HW Elev 50.99 ft Inlet Type Groove end w/headwall K 0.00780 M 2.00000 C 0.02920 Y 0.74000 Flow Control Area Full HDS 5 Chart HDS 5 Scale Equation Form N/A 0.8 ft2 1 2 1 Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster v1.0 02/01/02 06:30:40 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 2 of 2 Culvert Design Report RED CORAL AVE: 12-IN DIA. PIPE CULVERT Peak Discharge Method: User-Specified Design Discharge 1 .67 cfs Check Discharge 1.67 cfs Grades Model: Inverts Invert Upstream Length Drop 45.99 ft Invert Downstream 15.00 ft Slope 0.16 ft 45.83 ft 0.010667 ft/ft Tailwater Conditions: Constant Tailwater Tailwater Elevation 46.29 ft Name Desc x Trial-1 1-12 inch Circular Discharge HW Elev Velocity 1 .67 Cfs 46.81 ft 4.50 ft/S .8 * 1,0 f-t. Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmasteAoverflow.cvm Project Design Consultants CulvertMaster vl.O 02/01/02 06:28:08 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 2 Culvert Design Report RED CORAL AVE: 12-IN DIA. PIPE CULVERT Design:Trial-1 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation Computed Headwater Elevation Headwater Depth/ Height Inlet Control HW Elev Outlet Control HW Elev N/A ft 46.81 ft 0.82 46.79 ft 46.81 ft Storm Event Discharge Tailwater Elevation Control Type Design 1.67 cfs 46.29 ft Entrance Control Grades Upstream Invert Length 45.99 ft 15.00 ft Downstream Invert Constructed Slope 45.83 ft 0.010667 ft/ft Hydraulic Profile Profile Slope Type Flow Regime Velocity Downstream S2 Steep Supercritical 4.50 ft/s Depth, Downstream Normal Depth Critical Depth Critical Slope 0.48 ft 0.47 ft 0.55 ft 0.006432 ft/ft Section Section Shape Section Material Section Size Number Sections Circular Concrete 12 inch 1 Mannings Coefficient Span Rise 0.013 1.00 ft 1.00 ft Outlet Control Properties Outlet Control HW Elev Ke 46.81 ft 0.20 Upstream Velocity Head Entrance Loss 0.22 ft 0.04 ft Inlet Control Properties Inlet Control HW Elev 46.79 ft Inlet Type Groove end w/headwall K 0.00780 M 2.00000 C 0.02920 Y 0.74000 Flow Control Area Full HDS 5 Chart HDS 5 Scale Equation Form N/A 0.8 ft2 1 2 1 t:\...\2068-poinsettia\culvertmaster\overflow.cvm 02/01/02 06:28:08 PM © Haestad Methods, Inc. Project Engineer: David Nicolardi Project Design Consultants CulvertMaster v1.0 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 2 of 2 Culvert Design Report SALT GRASS AVE: 12-IN DIA. PIPE CULVERT Peak Discharge Method: User-Specified Design Discharge 1.47 cfs Check Discharge 1.47 cfs Grades Model: Inverts Invert Upstream Length Drop 49.84 ft 13.63 ft 0.14 ft Invert Downstream Slope 49.70 ft 0.010271 ft/ft Tailwater Conditions: Constant Tailwater Tailwater Elevation 50.13 ft Name Desc Discharge HW Elev Velocity x Trial-1 1 -12 inch Circular 1.47 cfs 50.60ft 4.28 ft/s '. 51.3 + 0,5-51.' Project Engineer: David Nicolardi t:\-..\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster v1.0 02/01/02 06:31:37PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 2 Culvert Design Report SALT GRASS AVE: 12-IN DIA. PIPE CULVERT Design:Trial-1 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation Computed Headwater Elevation Headwater Depth/ Height Inlet Control HW Elev Outlet Control HW Elev N/A ft 50.60 ft 0.76 50.58 ft 50.60 ft Storm Event Discharge Tailwater Elevation Control Type Design 1.47 cfs 50.13 ft Entrance Control Grades Upstream Invert Length 49.84 ft 13.63 ft Downstream Invert Constructed Slope 49.70 ft 0.010271 ft/ft Hydraulic Profile Profile Slope Type Flow Regime Velocity Downstream S2 Steep Supercritical 4.28 ft/s Depth, Downstream Normal Depth Critical Depth Critical Slope 0.45 ft 0.44 ft 0.51 ft 0.006214 ft/ft Section Section Shape Section Material Section Size Number Sections Circular Concrete 12 inch 1 Mannings Coefficient Span Rise 0.013 1.00 ft 1.00 ft Outlet Control Properties Outlet Control HW Elev Ke 50.60 ft 0.20 Upstream Velocity Head Entrance Loss 0.20 ft 0.04 ft Inlet Control Properties Inlet Control HW Elev 50.58 ft Inlet Type Groove end w/headwall K 0.00780 M 2.00000 C 0.02920 Y 0.74000 Flow Control Area Full HDS 5 Chart HDS 5 Scale Equation Form N/A 0.8 ft2 1 2 1 Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster v1.0 02/01/02 06:31:37PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 2 of 2 Culvert Design Report SANDSIDE CT: 12-IN DIA. PIPE CULVERT Peak Discharge Method: User-Specified Design Discharge 1 .97 cfs Check Discharge 1.97 cfs Grades Model: Inverts Invert Upstream Length Drop 49.50 ft 13.64 ft 0.14 ft Invert Downstream Slope 49.36 ft 0.010264 ft/ft Tailwater Conditions: Constant Tailwater Tailwater Elevation 49.87 ft Name Desc Discharge HW Elev Velocity Trial-1 1-12 inch Circular 1 .97 Cfs 50.40 ft 4.62 ft/s Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster vl.O 02/01/02 06:32:33 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 2 Culvert Design Report SANDSIOE CT: 12-IN DIA. PIPE CULVERT Design :Trial-1 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation Computed Headwater Elevation Headwater Depth/ Height Inlet Control HW Elev Outlet Control HW Elev N/A ft 50.40 ft 0.90 50.39 ft 50.40 ft Storm Event Discharge Tailwater Elevation Control Type Design 1.97 cfs 49.87 ft Entrance Control Grades Upstream Invert Length 49.50 ft 13.64 ft Downstream Invert Constructed Slope 49.36 ft 0.010264 ft/ft Hydraulic Profile Profile Slope Type Flow Regime Velocity Downstream S2 Steep Supercritical 4.62 ft/s Depth, Downstream Normal Depth Critical Depth Critical Slope 0.53 ft 0.53 ft 0.60 ft 0.006819 ft/ft Section Section Shape Section Material Section Size Number Sections Circular Concrete 12 inch 1 Mannings Coefficient Span Rise 0.013 1.00 ft 1.00 ft Outlet Control Properties Outlet Control HW Elev Ke 50.40 ft 0.20 Upstream Velocity Head Entrance Loss 0.25 ft 0.05 ft Inlet Control Properties Inlet Control HW Elev 50.39 ft Inlet Type Groove end w/headwall K 0.00780 M 2.00000 C 0.02920 Y 0.74000 Flow Control Area Full HDS 5 Chart HDS 5 Scale Equation Form N/A 0.8 ft2 1 2 1 t:\.. .\2068-poinsettia\culvertmaster\overflow.cvm 02/01/02 06:32:33 PM © Haestad Methods, Inc. Project Engineer: David Nicolardi Project Design Consultants CulvertMaster v1.0 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 2 of 2 Culvert Design Report SEAWARD AVE: 12-IN DIA. PIPE CULVERT Comments: STREET N - 12-DIAMETER PIPE CULVERT Peak Discharge Method: User-Specified Design Discharge 3.10 cfs Check Discharge 3.10 cfs Grades Model: Inverts Invert Upstream Length Drop 49.45 ft Invert Downstream 13.60 ft Slope 0.14 ft 49.31 ft 0.010294 ft/ft Tailwater Conditions: Constant Tailwater Tailwater Elevation 49.99 ft Name Desc x Trial-1 1-12 inch Circular Discharge HW Elev Velocity 3.10 cfs 50.65ft 5.16ft/s - 0,16-ft Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster v1.0 02/01/02 06:33:28 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 2 Culvert Design Report SEAWARD AVE: 12-IN DIA. PIPE CULVERT Design:Trial-1 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation Computed Headwater Elevation Headwater Depth/ Height Inlet Control HW Elev Outlet Control HW Elev N/A ft 50.65 ft 1.20 50.64 ft 50.65 ft Storm Event Discharge Tailwater Elevation Control Type Design 3.10 cfs 49.99 ft Entrance Control Grades Upstream Invert Length 49.45 ft 13.60 ft Downstream Invert Constructed Slope 49.31 ft 0.010294 ft/ft Hydraulic Profile Profile Slope Type Flow Regime Velocity Downstream S2 Steep Supercritical 5.16 ft/s Depth, Downstream Normal Depth Critical Depth Critical Slope 0.71 ft 0.71 ft 0.75 ft 0.008978 ft/ft Section Section Shape Section Material Section Size Number Sections Circular Concrete 12 inch 1 Mannings Coefficient Span Rise 0.013 1.00 ft 1.00 ft Outlet Control Properties Outlet Control HW Elev Ke 50.65 ft 0.20 Upstream Velocity Head Entrance Loss 0.37 ft 0.07 ft Inlet Control Properties Inlet Control HW Elev 50.64 ft Inlet Type Groove end w/headwall K 0.00780 M 2.00000 C 0.02920 Y 0.74000 Flow Control Area Full HDS 5 Chart HDS 5 Scale Equation Form N/A 0.8 ft2 1 2 1 Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overtlow.cvm Project Design Consultants CulvertMaster vt.O 02/01/02 06:33:28 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 2 of 2 Culvert Design Report Dual 12-in culvert NO. 1 (along north PL) Peak Discharge Method: User-Specified Design Discharge 4.83 cfs Check Discharge 4.83 cfs Grades Model: Inverts Invert Upstream Length Drop 50.12 ft Invert Downstream 4.00 ft Slope 0.02 ft 50.10 ft 0.005000 ft/ft Tailwater Conditions: Constant Tailwater Tailwater Elevation 51.01 ft Name Desc Discharge HW Elev Velocity Trial-1 2-12 inch Circular 4.83 cfs 51.21 ft 3.22 ft/s Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster v1.0 02/02/02 03:44:57 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 2 Culvert Design Report Dual 12-in culvert NO. 1 (along north PL) Design:Trial-1 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation Computed Headwater Elevation Headwater Depth/ Height Inlet Control HW Elev Outlet Control HW Elev N/A ft 51.21 ft 1.09 51.15 ft 51.21 ft Storm Event Discharge Tailwater Elevation Control Type Design 4.83 cfs 51.01 ft Outlet Control Grades Upstream Invert Length 50.12 ft 4.00 ft Downstream Invert Constructed Slope 50.10 ft 0.005000 ft/ft Hydraulic Profile Profile Slope Type Flow Regime Velocity Downstream S1 Steep Subcritical 3.22 ft/s Depth, Downstream Normal Depth Critical Depth Critical Slope 0.91 ft 0.64 ft 0.67 ft 0.004449 ft/ft Section Section Shape Section Material Section Size Number Sections Circular PVC 12 inch 2 Mannings Coefficient Span Rise 0.010 1.00 ft 1.00 ft Outlet Control Properties Outlet Control HW Elev Ke 51.21 ft 0.20 Upstream Velocity Head Entrance Loss 0.16 ft 0.03 ft Inlet Control Properties Inlet Control HW Elev 51.15 ft Inlet Type Groove end w/headwall K 0.00780 M 2.00000 C 0.02920 Y 0.74000 Flow Control Area Full HDS 5 Chart HDS 5 Scale Equation Form Unsubmerged 1.6 ft2 1 2 1 Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster vt.O 02/02/02 03:44:57 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 2 of 2 Culvert Designer/Analyzer Report Dual 12-in culvert NO.2(along north PL) Peak Discharge Method: User-Specified Design Discharge 4.83 cfs Check Discharge 4.83 cfs Grades Model: Inverts Invert Upstream Length Drop 49.06 ft 8.00 ft 0.04 ft Invert Downstream Slope 49.02 ft 0.005000 ft/ft Tailwater Conditions: Constant Tailwater Tailwater Elevation 49.66 ft Name Desc Discharge HW Elev Velocity Trial-1 2-12 inch Circular 4.83 cfs 50.09 ft 4.53 ft/s t:\.. .\2068-poinsettia\culvertmaster\overflow.cvm 02/02/02 03:49:43 PM © Haestad Methods, Inc. Project Engineer: David Nicolardi Project Design Consultants CulvertMaster v1.0 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 2 Culvert Designer/Analyzer Report Dual 12-in culvert NO.2(along north PL) Design:Trial-1 Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation Computed Headwater Elevation Headwater Depth/ Height Inlet Control HW Elev Outlet Control HW Elev N/A ft 50.09 ft 1.03 50.09 ft 50.08 ft Storm Event Discharge Tailwater Elevation Control Type Design 4.83 cfs 49.66 ft Inlet Control Grades Upstream Invert Length 49.06 ft 8.00 ft Downstream Invert Constructed Slope 49.02 ft 0.005000 ft/ft Hydraulic Profile Profile Slope Type Flow Regime Velocity Downstream S2 Steep Supercritical 4.53 ft/s Depth, Downstream Normal Depth Critical Depth Critical Slope 0.64 ft 0.64 ft 0.67 ft 0.004449 ft/ft Section Section Shape Section Material Section Size Number Sections Circular PVC 12 inch 2 Mannings Coefficient Span Rise 0.010 1.00 ft 1.00 ft Outlet Control Properties Outlet Control HW Elev Ke 50.08 ft 0.20 Upstream Velocity Head Entrance Loss 0.29 ft 0.06 ft Inlet Control Properties Inlet Control HW Elev 50.09 ft Inlet Type Groove end w/headwall K 0.00780 M 2.00000 C 0.02920 Y 0.74000 Flow Control Area Full HDS 5 Chart HDS 5 Scale Equation Form Unsubmerged 1.6 ft2 1 2 1 Project Engineer: David Nicolardi t:\...\2068-poinsettia\culvertmaster\overflow.cvm Project Design Consultants CulvertMaster vl.O 02/02/02 03:49:43 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 2 of 2 Dn for dual 12-in culverts along northerly PL Worksheet for Circular Channel Project Description Worksheet Dn for dual 12-in along Northe Flow Element Circular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coeffic 0.010 Slope 005000 ft/ft Diameter 12 in Discharge 2.42 cfs Results Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type 0.64 ft 0.5 ft2 1.85 ft 0.96 ft 0.67 ft 63.9 % 0.004449 ft/ft 4.56 ft/S 0.32 ft 0.96 ft 1.08 3.52 cfs 3.27 cfs 0.002719 ft/ft Supercritical t:\...\flowmaster\dn for overflow pipes.fm2 02/02/02 03:51:45 PM © Haestad Methods, Inc. Project Engineer: David Nicolardi Project Design Consultants FlowMaster v6.0 [614e] 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 1 EARTHERN CHANNEL ALONG NORTHERLY PL Worksheet for Triangular Channel Project Description Worksheet Channel between culvert: Flow Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coeffic 0.020 Slope 005000 ft/ft Left Side Slope 2.00 H : V Right Side Slope 2.00 H : V Discharge 4.83 cfs Results Depth 0.91 ft Flow Area 1.7 ft2 Wetted Perimi 4.09 ft Top Width 3.65 ft Critical Depth 0.82 ft Critical Slope 0.009118 ft/ft Velocity 2.89 ft/s Velocity Head 0.13 ft Specific Enerc 1.04 ft Froude Numb 0.75 Flow Type Subcritical Project Engineer: David Nicolardi t:\..Aflowmaster\dn for overflow pipes.fm2 Project Design Consultants FlowMaster v6.0 [614e] 02/02/02 03:31:46 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 1 TABLE 6. RIP RAP DESIGN PROJ. NUM. 2068.00 PAGE 1 OF 1 STREET NAME (Cul-de-sac) BROOKSIDE CT CORAL REEF AVE RED CORAL AVE SALT GRASS AVE SANDSIDE CT SEAWARD AVE NORTH PL(1) RGB at Offstie Detention Basin 100-YEAR FLOW (CFS) 2.1 2.1 1.7 1.47 1.97 3.1 4.8 76.0 EXIT VELOCITY (FPS) 4.7 4.7 4.5 4.3 4.6 5.2 4.5 6.5 NOTE: ALL RIP RAP PER SDRSD D-40 RIP RAP THICKNESS: All 12-inch Culverts ROCK CLASS No. 2 Backing No.2 Backing No.2 Backing No.2 Backing No.2 Backing No.2 Backing No.2 Backing Light RIPRAP THICKNESS (FEET) 1.30 1.30 1.30 1.30 1.30 1.30 1.30 2.60 APRON WIDTH (FEET) 5 5 5 5 5 5 5 16 APRON LENGTH (FEET) 8 8 8 8 8 8 8 10 FILTER CLOTH MIRAFI HP700X MIRAFI HP700X MIRAFI HP700X MIRAFI HP700X MIRAFI HP700X MIRAFI HP700X MIRAFI HP700X MIRAFI HP700X Specific Gravity = 147lb/c.f. (avg. of green book and caltrans specific gravity values) ==> 0.15c.f. (No. 2 Backing) V = 4/3HrA3 0.15c.f. = (4/3)(3.14159)rA3 r = 0.33ft. ==> Dia. = 0.66ft. Min. Thickness = 2Dia. = 2(0.66) = 1 .3 ft. RGB at Offsite Detention Basin Specific Gravity = 147lb/c.f. (avg. of green book and caltrans specific gravity values) ==> 1.2c.f. (Light) V = 4/3IlrA3 1.2c.f. = (4/3)(3.1 41 59)rA3 r = 0.66ft ==> Dia. = 1 .3ft. Min. Thicknes = 2Dia. = 2(1 .3) = 2.6 (1) DUAL 12-INCH CULVERTS NO. 1 AND 2 T:\Water Resources\2068-Poinsettia\Riprap\riprap-design.xls Method A on J y 2 TON 8OOO // 4.52 48 . 4 1 TON 4OOO ft 3 . 59 24 . 2 TON 2000 // 2 . 85 12.1 .1/4 TON 1000 // 2 . 25 6 . O LIGHT 500 // 1 . 79 3 . O 'AC ING 200 // 1 . 32 1 . 2 BACK ING //I 200 // 1 . 32 1 . 2 75 // O . 95 O . 45 //'•* 25 // O . G 6 O . 1 5 hick.(Method A)5 . 38 4 . 27'3 . 37'2 . 68 1 . 98'1 . 42.1 . 43 O . 99'0.75 hick.(Method D S. 34i 3.35'. 73'y, 73'0. 75 D50 4OOO 2000 //1 OOO 500 #200 #75 75 #25 #5 // D50DlA 3 . 59 2 . 85 2 . 25 1 . 79 1 . 32 O . 95 O . 95 O . 66 O . 39 FT 24 . 2 12.1 6 . O 3 . O 1 . 2 O . 45 O . 45 O . 1 5 O . 03 n Value O . O49 O . 047 O . 045 O . O44 O . O4 1 O . O39 Backing NONE Thickness for Method A Placement = 1.5 x (D50 Dia) Thickness for Method B Placement = 1.875 x (D50 Dia) Manning's n value varies with mean stone size (D50) n - 0.0395 x (D50 Dia)1/6 * (Grouted = 0.023 to 0.030) Since Callrans specldcalions have no D)5 or Dfl5 grading conliols, design ol underlying litters should be based on llm D50 ol Hie underlying layer being large enougli lo not pass through Hie voids ol Hie overlying layer. d - diameter ol backing D - Dtameler ol nSP ^~ UMOCHLY IHO./ | d- 0.154 DJ* 0.10 DMAX = WM (BANK & SHORE PROTECTION; SPECIFIC GRAVITY = 2.65 SPHERICAL SHAPES VOLUME = 4/3 R3 DENSITY = S.G. <2g) = 165LB/FT3 = 2.65 .(62. -1) D50 = Wc (BANK & SHORE. PROTECT I Oil) OVCKLV|NO Exit Velocity for RGB at Detention Basin Worksheet for Rectangular Channel Project Description Worksheet Flow Element Method Solve For RGB at Detention f Rectangular Cham Manning's Formulc Channel Depth Input Data Mannings Coeffic 0.015 Slope 004600 ft/ft Bottom Width 10.00 ft Discharge 76.00 cfs Results Depth Flow Area Wetted Perimi Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Enerc Froude Numb' Flow Type 1.17 ft 11.7 ft2 12.34 ft 10.00 ft 1.22 ft 0.004106 ft/ft 6.49 ft/s 0.65 ft 1.83 ft 1.06 Supercritical t:\...\flowmasteArcb at detention basin.fm2 02/06/02 09:47:58 AM © Haestad Methods, Inc. Project Engineer: David Nicolardi Project Design Consultants FlowMaster v6.0 [614e] 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Page 1 of 1 APPENDIX 8 Dry Roadway Width Calculations: Brookside Court Clearwater Street Coral Reef Avenue Red Coral Avenue SaltGrass Avenue Sandside Court Sand Shell Avenue Seaward Avenue Shoreline Drive Strand Street Sweetwater Street Waters End Drive REP\2068DR.DOC A-8 ROADWAY FLOODWIDTH SUMMARY TABLE Label FLOODWIDTH U/S OF NODE 1215 - ON GRADE FLOODWIDTH U/S OF NODE 1260 - ON GRADE FLOODWIDTH U/S OF NODE 1320 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 1320 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 1410 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 1430 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 1430 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 1515 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 1515 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 1530 (EAST) - ON SUMP FLOODWIDTH U/S OF NODE 1550 (EAST) - ON SUMP FLOODWIDTH U/S OF NODE 1570 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 1615 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 1615 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 1715 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 1730 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 1730 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 1815 - ON GRADE FLOODWIDTH U/S OF NODE 1840 - ON GRADE FLOODWIDTH U/S OF NODE 1855 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 1855 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 1915 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 1930 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 2015 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 2015 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 2030 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 2050 (TOTAL Q) - ON SUMP FLOODWtDTH U/S OF NODE 2130 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 2150 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 2215 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 2230 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 2230 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 2315 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 2315 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 2415 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 2415 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 2425 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 2515 - ON GRADE FLOODWIDTH U/S OF NODE 2535 - ON GRADE FLOODWIDTH U/S OF NODE 2615 (NORTH) - ON SUMP FLOODWIDTH U/S OF NODE 2615 (SOUTH) - ON SUMP FLOODWIDTH U/S OF NODE 3015 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 3030 (TOTAL Q) - ON SUMP FLOODWIDTH U/S OF NODE 3220 - ON GRADE FLOODWIDTH U/S OF NODE 3235 - ON GRADE Top Width (ft) 10.00 10.00 11.66 7.19 7.19 9.30 10.04 8.35 8.46 14.04 11.97 11.54 8.46 8.46 6.53 9.84 9.81 8.16 10.00 7.46 7.42 6.90 7.00 8.46 8.75 11.62 10.63 8.57 7.80 10.63 11.50 9.15 7.84 7.80 12.51 7.46 4.28 10.19 11.46 7.64 10.63 13.17 12.34 8.88 8.74 Actual Depth TO 0.30 0.30 0.33 0.24 0.24 0.29 0.30 0.27 0.27 0.38 0.34 0.33 0.27 0.27 0.23 0.30 0.30 0.26 0.30 0.25 0.25 0.24 0.24 0.27 0.27 0.33 0.31 0.27 0.26 0.31 0.33 0.28 0.26 0.26 0.35 0.25 0.18 0.30 0.33 0.25 0.31 0.36 0.35 0.28 0.27 Discharge (cfs) 2.10 2.10 2.43 0.69 0.69 1.25 1.50 0.97 1.00 3.77 2.58 2.37 1.00 1.00 0.56 1.43 1.42 1.30 2.10 0.75 0.74 0.63 0.65 1.00 1.08 2.41 1.74 1.03 0.83 1.96 2.35 1.20 0.84 0.83 2.86 0.75 0.25 2.20 3.30 0.79 1.86 3.23 2.77 1.66 1.60 Flow Area (ft2) 1.1 1.1 1.4 0.6 0.6 0.9 1.1 0.8 0.8 2.1 1.5 1.4 0.8 0.8 0.5 1.0 1.0 0.7 1.1 0.6 0.6 0.6 0.6 0.8 0.8 1.4 1.2 0.8 0.7 1.2 1.4 0.9 0.7 0.7 1.6 0.6 0.3 1.1 1.4 0.7 1.2 1.8 1.6 0.9 0.8 Mannings Coefficient 0.017 0.017 0.015 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.015 0.015 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.015 0.017 0.017 0.017 0.015 0.015 0.017 0.017 0.017 0.015 0.017 0.017 0.017 0.015 0.017 0.015 0.016 0.015 0.017 0.017 Slope (ft/ft) 0.010000 0.010000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.010000 0.010000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.010000 0.010000 0.005000 0.005000 0.005000 0.005000 0.011000 0.011000 t:\..Aflowmaster\depths-floodwidths.fm2 08/16/01 03:18:24 PM © Haestad Methods, Inc. Project Engineer: David Nicolardi Protect Design Consultants Flow/Master v6.0 [614e) 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 APPENDIX 9 Excerpts from "Drainage Study for Poinsettia Properties Area 5" by O'Day Consultants, date 7/21/99 REP\2068DR.DOC A-9 LD-347 HYDRAULIC GRADE LINE PROJECT INLET STATION m )(%0 /OS!k 104-5-) J03D lo is Outlet Utter Surface Elev. m S'/.O0) -3M/ ^f\ 5V-7T SH.^5 fy *. f?i 30 3^> 2'i ZLI /6 1$ _^ * f4) /3.0 /.y 17 <3 Z>o ~t -. 51 Z%.1 7ft"7 IfS,^ 50.°! z/,& ^ \ ffil .00 IZ ,00)0 P02S 001ft c»n »oot o H, m .06 (Z( l£ti *w >z\ v\ -J? -T^i JUNCTION LOSS V0 fRl r7 / ^^ •^^ 3-O-f 2; if /.70 ^^ HO f91 .OS ,03 ,DS /yj ;pz -Oi •t Qi hn; |3.o //•V ^-t 3,0 H •v. fii LlJ> O.S^ 3^1 (Tjtf ^of UftTo?}(i Vc OiVi n? •z- £ } ./I ,zo ,|£ »°H G>3> Hj^ (IV •DV •c>7 /c?S .f^- • J Onjle (14 *)o° ^7X °7d* IP" H i-. Ha m .00 ,oj .ID ,j' tr i Ht l(1fi .IS .11 .70 •01 ,01- ,0| u Ht 1171 £>S °^ (IB Final H (lq ,IZ. ^^/ ("W ,ec, j^ -11 Inlet VUcr Surface Elcv. 34,0f 5*^1* <%ST°\K 4 S5-0(i7 sv'.v<y Rim Elev. S5.91 S5,^ S^^S 55.13 ss,ti -^- V-,2 V02 Vj2 FINAL H-H,*Ht 90°K-0.70 50°K-0.47. 20°K-0.1b Hj-0.)5___ H0-0.25_ — Ha"K— — H -H «H-«H 80°.K-0.bb 40°K«Q.J8 15°K-O.IO ' ' l" ° '* " 70° K-O.bl )0° K-0.28 SEE L0-72(0)b7 to' K- 0.55 25° K. 0.22 K) ,,-,,,, V, -^ ^\ jft * I «- O."i » " r LO-347 HYDRAULIC GRADE LINE PROJECT INLET STATION m IZoo HSO 13/0 1356 Outlet Vfater Surface Elev. m 25,01 55 £> fJl SO SO (41 ffil 002? .owe. A v »\AJC,5 Hf 7) JV l.pt JUNCTION LOSS fft) .oo • IM 06- OS Jo fin mEO m $.£>0 1? 0-rj .18 .07 Orgle OS ,05 JZ. HI .11 -ZM -70 Final H •77 -SI .ss -oZ Inlet U>tcr Surface Elcv. 11.2L SS.0& SS.3S Rim Elev. $3.10 45-5 -H-,-0.35—1_ 29 V|' FINAL H-H,* Ht SEE LO-72(D)b7 90° K-0.70 O.bb K- O.bl 80° K 70° (.0°0.55 50" K-0.07 40° K> 0.38 30° K« 0.28 25° K*C 20° K -O.lb 15° K-0.10 K) • let-e ' - * £ LD-347 HYDRAULIC GRADE LINE PROJECT flj, „• AftC* 5 INLET STATION m IZOO /YS0 1370 \y*& (Tii"s) iSvi 0 536 i1"7, "iO \^.T> I3>so Outlet Uiter Surface Elev. f21 53.1 S2.S7 SV.22 SV.C,1.' 55.DZ c-r. S'S.rl 57-7^ 5^,33 ^ f3) 36 36 30 -D 30 30 Z4 Zf /^ * (4) 3V.7 ?SiO 20,0 0J /7-l /^.s !(-•> '5.1 7Y,fr •- r^5-/,7 6S.S HW MB -/.s 3^^ is.? £S ,^3 \ ffi) ,flo27 ,00|<f .^'V »oeo ,P9t«1 ,9>. 40S2 .?yU ,6Z Hf f7) .11 .0*) ,25 ,JB 0? •>i ,£>» ?, /^Z. JUNCTION LOSS V0 fR) S,?7 M8 y.01 S.iB^ ^^1^6 7.c^ ^ tx> > f9),/l/ •It ,ot, — ,(>S '.1\ 2J> -0) Qi fin zs,o zo,v /& I r7^ /t.s ^,s '-SV l?^1 Vi fn S.V3•jp 2.|f sz^1 •o It >.i.S*u yi 3-3^ tt% y> ^ QiVi (12 if ^) 0.Y7 Wt a^/ •l& •lll 37 -72 1 r (IT .It. W .07 — .04 .IS •13, ,2S Angle (14 to" ?o% 7d° ^tt 7^ £ 1**^» HA (IS ,23 .05 .ol .00 .)2 — ZL • it HI Klfi ,t5 ,26 ./•-/ ^i zs '3D .l/5 X (17) ,4^ S°l °^ (in Final H nq -77 .35 •VZ .39 .31 ,S^ /V? •rio ^2. Inlet Walcr Surface Elev. M20) S3.«7 -S^Z2* SV.C^f SS.DZ* •i^^' "A-J" ^<* Q A ^77«» 38^? 2?,3S Rim Elev. (21) Sd-.SO S^.35 S4.^3 — #.*»> to- -/t- S8,^o >'. :.U ^3y u * ,c Vi2 u « « Vo2 u » V!2 FINAL H-Hi*Ht 90° K- 0.70 50° K- 0.47. 20°K-O.H Hj"0.35__ H0.0.25__ H^- K_ H.H,H.4H 80°K-0.fc6 AO°K«0.38 15°K-0.10 ' ' l ° ' " 70° K-O.bl 50° K-0.28 SEE LD-72(0)67 (,0°K-0.55 25° K* 0.22 Kf ^ ^o /'/ r S.3-.S7 h-1 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 07/21/99 AREA 5 EXISTING CONDITION DRAINAGE STUDY JOB NO. 94-1004 FILENAME: EXIST1.OUT *********Hydrology Study Control Information O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 1.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.500 24 hour precipitation(inches) = 4.000 Adjusted 6 hour precipitation (inches) = 2.500 P6/P24 = 62.5% San Diego hydr9logy manual 'C' values usedRunoff coefficients by rational method Process from Point/Station 100.000 to Point/Station 200.000 **** INITIAL AREA EVALUATION **** /iruser specir iea 1 value or u.BbO given tor sucarea Initial subarea flow distance = 870. 00 (Ft.) Highest elevation = 67. 20 (Ft.) Lowest elevation = 60. 00 (Ft.) Elevation difference = 7. 20 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 14.14 min. TC = fl.8*(l.l-C)*distanceA.5)/(% slope* (1/3)]TC = [1.8M1. 1-0. 8500)* (870.00 .5)/( 0.83 (1/3)]= 14.14 Rainfall intensity (I) = 3.369 for a 1.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 10.596(CFS) Total initial stream area = 3. 700 (Ac.) Process from Point/Station 200.000 to Point/Station 200.000**** CONFLUENCE OF MINOR STREAMS **** Along Main stream numcer : i in normal stream number i Stream flow area = 3. 700 (Ac.)Runoff from this stream = 10.596(CFS) Time of concentration = 14.14 min. Rainfall intensity = 3.369(In/Hr) +++++++++++++++++++++++++++++++++++++ ................................ Process from Point/Station 202.000 to Point/Station 200.000 **** INITIAL AREA EVALUATION **** u sers p e c it le a value or u.950 given ror sutiarea Initial subarea flow distance = 195. 00 (Ft.) Highest elevation = 65. 00 (Ft.) Lowest elevation = 62. 00 (Ft.) Elevation difference = 3. 00 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.27 min. TC = [1.8*(l.l-C)*distanceA.5l7(% slopeA(l/3)] TC = [1. 8* (1.1-0.9500) * (195. 00*.5)/( 1.54^(1/3)]= 3.27 Setting time of concentration to 5 minutes 18 Rainfall intensity (I) = 6.587 for a 1.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 2.753{CFS)Total initial stream area = 0.440(Ac.) Process from Point/Station 200.000 to Point/Station 200.000 **** CONFLUENCE OF MINOR STREAMS **** Along wain stream numoer:i in normal stream number 2 Stream flow area = 0.440(Ac.) Runoff from this stream = 2.753(CFS) Time of concentration = 5.00 min. Rainfall intensity = 6.587(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall IntensityNo. (CFS) (min) (In/Hr) 1 10.596 14.14 3.369 2 2.753 5.00 6.587 Qmax(1) =1.000 * 1.000 * 10.596) + 0.512 * 1.000 * 2.753) + = 12.004 Qmax(2) = 1.000 * 0.354 * 10.596) + 1.000 * 1.000 * 2.753) + = 6.501 Total of 2 streams to confluence: Flow rates before confluence point: 10.596 2.753 Maximum flow rates at confluence using above data:12.004 6.501 Area of streams before confluence:3.700 0.440Results of confluence: Total flow rate = 12.004(CFS) Time of concentration = 14.137 min. Effective stream area after confluence = 4.140(Ac.) Process from Point/Station 200.000 to Point/Station 300.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = bb . yy iFt . ) Downstream point/station elevation = 55. 11 (Ft.) Pipe length = 88. 00 (Ft.) Manning's N = 0.013 N9- of pipes = 1 Required pipe flow = 12. 004 (CFS)Given pipe size = 18. 00 (In.)NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 1.344 (Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 1.149 (Ft.)Minor friction loss = 1.075 (Ft.) K-f actor = 1.50 Pipe flow velocity = 6.79(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 14.35 min. Process from Point/Station 300.000 to Point/Station 400.000 **** SUBAREA FLOW ADDITION ****_ user specir led rC~l value ot 0.450 given tor suoarea Time of cpncentration = 14.35 mm. Rainfall intensity = 3. 336 (In/Hr) for a 1.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.450Subarea runoff = 8. 258 (CFS) for 5. 500 (Ac.)Total runoff = 20. 262 (CFS) Total area = 9. 64 (Ac.) End of computations, total study area = 9.64 (Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manualRational Hydrology Study Date: 07/21/99 AREA 5 DRAINAGE STUDY JOB NO. 94-1004PROPOSED CONDITION PRELIMINARY REPORT Filename: PROP06 ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.500 24 hour precipitation(inches) = 4.000 Adjusted 6 hour precipitation (inches) = 2.500 P6/P24 = 62.5%San Diego hydrology manual 'C' values used Runoff coefficients by rational method Process from Point/Station 1000.000 to Point/Station 1002.000 **** INITIAL AREA EVALUATION **** user specineaTvalue or o./uu given tor suoarea Initial subarea flow distance = 40.00(Ft.) Highest elevation = 61.00(Ft.) Lowest elevation = 60.50(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.23 min. TC = [1.8*(l.l-C)*distanceA.5)7(% slope (1/3)] TC = [1.8*(1.1-9.7000)* ( 40.00 .5)/( 1.25 (1/3)]= 4.23 Rainfall intensity (I) = 7.340 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.700 Subarea runoff = O.OSl(CFS) Total initial stream area = 0.010(Ac.) Process from Point/Station 1002.000 to Point/Station 1004.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = 60 . bo (t-x .) Downstream point elevation = 57.80 (Ft.) Channel length thru subarea = 610.00(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 0.796(CFS)Manning's 'N' = 0.050 Maximum depth of channel = 5.000(Ft.) Flow(q) thru subarea = 0.796(CFS) Depth of flow = 0.470(Ft.), Average velocity = 0.874(Ft/s) Channel flow top width = 2.879(Ft.) Flow Velocity = 0.87(Ft/s) Travel time = 11.63 min. Time of concentration = 15.86 min. Critical depth = 0.230(Ft.) Adding area flow to channel User specified 'C' value of 0.700 given for subarea Rainfall intensity = 3.128(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.700 Subarea runoff = 0.635(CFS) for 0.290(Ac.) 20 Total runoff = 0.686(CFS) Total area = 0.30(Ac.) Process from Point/Station 1004.000 to Point/Station 1010.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = i>fc .^u (Ft.;Downstream point elevation = 53.30(Ft.) Channel length thru subarea = 230.00(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel = 1.830(CFS) Manning's 'N' = 0.018 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 1.830(CFS)Depth of flow = 0.139(Ft.), Average velocity = 1.662(Ft/s) Channel flow top width = 14.874(Ft.) Flow Velocity = 1.66(Ft/s)Travel time = 2.31 min.Time of concentration = 18.17 min. Critical depth = 0.143(Ft.) Adding area flow to channelUser specified 'C' value of 0.850 given for subarea Rainfall intensity = 2.866{In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 2.436(CFS) for 1.000(Ac.)Total runoff = 3.123(CFS) Total area = 1.30(Ac.) Process from Point/Station 1010.000 to Point/Station 1030.000**** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = b3 .49 tt't.) Downstream point/station elevation = 52.09(Ft.) Pipe length = 126.86(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.123(CFS) Given pipe size = 18.00(In.)Calculated individual pipe flow = 3,123(CFS) Normal flow depth in pipe = 6.55(In.) Flow top width inside pipe = 17.32(In.) Critical Depth = 8.06(In.) Pipe flow velocity = 5.37(Ft/s) Travel time through pipe = 0.39 min.Time of concentration (TC) = 18.56 min. Process from Point/Station 1030.000 to Point/Station 1030.000**** CONFLUENCE OF MINOR STREAMS **** Along Main stream number:i in normal stream number lStream flow area = 1.300(Ac.) Runoff from this stream = 3.123(CFS) Time of concentration = 18.56 min.Rainfall intensity = 2.827(In/Hr) +++++++++++++++++++++++++++++++++++++ Process from Point/Station 1040.000 to Point/Station 1042.000**** INITIAL AREA EVALUATION **** user specinea •<_•• value ot 0.770 given ror susarea Initial subarea flow distance = 80.00(Ft.) Highest elevation = 58.80(Ft.) Lowest elevation = 57.65(Ft.) Elevation difference = 1.15(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.71 min. TC = [1.8*(l.l-C)*distanceA.5l7(% slopeA(l/3)] TC = [1.8* (1.1-0.7700)*( 80.00A.5)/( 1.44A(l/3)]= 4.71Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year stormEffective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff = 0.254(CFS)Total initial stream area = 0.050(Ac.) Process from Point/Station 1042.000 to Point/Station 1044.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top ot street segment elevation = 57 . ouu it'c.;End of street segment elevation = 55.400(Ft.) Length of street segment = 150.000(Ft.)Height of curb above gutter flowline = 6.0(In.)Width of half street (curb to crown) = 20.000(Ft.)Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130Manning's N from gutter to grade break = 0.0180Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.298(CFS) Depth of flow = 0.172(Ft.), Average velocity = 1.368(Ft/s)Streetflow hydraulics at midpoint or street travel:Halfstreet flow width = 3.828(Ft.) Flow velocity = 1.37(Ft/s) Travel time = 1.83 min. TC = 6.83 min. Adding area flow to streetUser specified 'C' value of 0.770 given for subareaRainfall intensity = 5.388(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.770 Subarea runoff = 1.452(CFS) for 0.350(Ac.)Total runoff = 1.706(CFS) Total area = 0.40(Ac.)Street flow at end of street = 1.706(CFS) Half street flow at end of street = 1.706(CFS) Depth of flow = 0.278(Ft.), Average velocity = 1.878(Ft/s) Flow width (from curb towards crown)= 9.149(Ft.) Process from Point/Station 1044.000 to Point/Station 1030.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation =b2.10(Ft.; Downstream point/station elevation = 52.09(Ft.) Pipe length = 3.50(Ft.) Manning's N = 0.013No. of pipes = 1 Required pipe flow = 1.706(CFS)Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.706(CFS) Normal flow depth in pipe = 6.81 (In.)Flow top width inside pipe = 17.46(In.)Critical Depth = 5.89(In.) Pipe flow velocity = 2.79(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 6.85 min. Process from Point/Station 1030.000 to Point/Station 1030.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream numner:Iin normal stream numoer 2Stream flow area = 0.400(Ac.) Runoff from this stream = 1.706(CFS) Time of concentration = 6.85 min. Rainfall intensity = 5.377(In/Hr) Process from Point/Station 1050.000 to Point/Station 1052.000 **** INITIAL AREA EVALUATION **** User specitiea 'U' value or 0.830 given ror suoarea—— Initial subarea flow distance = 55.00(Ft.) Highest elevation = 58.90(Ft.)Lowest elevation = 57.10(Ft.) Elevation difference = 1.80(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.43 min. TC = [1.8*(l.l-C)*distanceA.5l7(% slope"(1/3)] TC = [1.8*(1.1-0.8300)*{ 55.00\5)/( 3.27~(l/3)]= 2.43 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.830 Subarea runoff = 0.219(CFS) Total initial stream area = 0.040 (Ac.) Process from Point/Station 1052.000 to Point/Station 1054.000**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** TOP or street segment elevation =57.100(Ft.) End of street segment elevation = 55.400(Ft.) Length of street segment = 150.000(Ft.)Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.)Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0180Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.236(CFS) Depth of flow = 0.158(Ft.), Average velocity = 1.395(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.132(Ft.) Flow vel9city = 1.39(Ft/s) Travel time = 1.79 min. TC = 6.79 min. Adding area flow to street User specified 'C' value of 0.830 given for subarea Rainfall intensity = 5.406(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.830 Subarea runoff = 0.718(CFS) for 0.160(Ac.)Total runoff = 0.937(CFS) Total area = 0.20(Ac.) Street flow at end of street = 0.937(CFS) Half street flow at end of street = 0.937(CFS)Depth of flow = 0.234(Ft.), Average velocity = 1.692(Ft/s) Flow width (from curb towards crown)= 6.944(Ft.) Process from Point/Station 1054.000 to Point/Station 1030.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/scation elevation =b2.22(Ft.)Downstream point/station elevation = 52.09(Ft.) Pipe length = 33.59(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.937(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.937(CFS) Normal flow depth in pipe = 4.60(In.) Flow top width inside pipe = 15.70(In.) Critical Depth = 4.32(In.) Pipe flow velocity = 2.63(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 7.00 min. Process from Point/Station 1030.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 1030.000 Along Main ytream number: i in normal scream numoer Stream flow area = 0.200(Ac.)0.937(CFS) 7.00 min. 5.299(In/Hr) Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 2 3 Qmax(1) Qmax(2) Qmax(3) 3.1231.7060.937 18.56 6.85 7.00 1.000 *0.526 * 0.533 * .000 .000 .000 1.000 *0.985 *1.000 * 1.1.1. 0.1. 0. 0.1.1. 000 000 000 369 000 978 377 000 000 ** * ** * * * * 2.827 5.377 5.299 3.123) +1.706) +0.937) + 3.123) +1.706) + 0.937) + 3.123) +1.706) +0.937) + 4.519 3.773 3.796 Total of 3 streams to confluence: Flow rates before confluence point: 3.123 1.706 0.937 Maximum flow rates at confluence using above data: 4.519 3.773 3.796 Area of streams before confluence: 1.300 0.400 0.200 Results of confluence: Total flow rate = 4.519(CFS) Time of concentration = 18.560 min. Effective stream area after confluence = 1.900(Ac.) Process from Point/Station 1030.000 to Point/Station 1035.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 52 . OB (t'r..) Downstream point/station elevation = 51.93(Ft.) Pipe length = 50.92(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow Nearest computed pipe diameter Calculated individual pipe flow = Normal flow depth in pipe = 12.09(In.) Flow top width inside pipe = 16.90(In.) Critical Depth = 9.79(In.) Pipe flow velocity = 3.58(Ft/s) Travel time through pipe = 0.24 min. Time of concentration (TC) = 18.80 min. 4.519(CFS) 18.00(In.) 4.519(CFS) Process from Point/Station 1035.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 1035.000 Along Main btream numoer: l in normal stream number :T Stream flow area = 1.900(Ac.) Runoff from this stream = 4.519(CFS) Time of concentration = 18.80 min. Rainfall intensity = 2.804(In/Hr) Process from Point/Station 1084.000 to Point/Station 1082.000 **** INITIAL AREA EVALUATION **** user specifiedTT1value oro.Bio given tor suoarea Initial subarea flow distance = 120.00(Ft.) Highest elevation = 58.50(Ft.) Lowest elevation = 56.70(Ft.)Elevation difference = 1.80(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.00 min. TC = [1.8*(l.l-C)*distance .5T/(% slope (1/3)] TC = [1.8*(l.l-0.8100)*(120.00A.5)/( 1.50 (1/3)]= 5.00 Setting time of concentration to 5 minutes Rainfall intensity (I) * 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.810 Subarea runoff = 1.334(CFS) Total initial stream area = 0.250(Ac.) Process from Point/Station 1082.000 to Point/Station 1080.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream pome elevation = 56 . vo (t't.) Downstream point elevation = 55.40(Ft.) Channel length thru subarea = 225.00(Ft.) Channel base width = 2.050(Ft.)Slope or 'Z' of left channel bank = 100.000 Slope or 'Z' of right channel bank = 100.000 Estimated mean flow rate at midpoint of channel = 6.803(CFS) Manning's 'N' = 0.018 Maximum depth of channel = 0.200(Ft.) Flow(q) thru subarea = 6.803(CFS) Depth of flow = 0.206(Ft.), Average velocity = 1.453(Ft/s) !!warning: Water is above left or right bank elevations Channel flow top width = 42.050(Ft.) Flow Velocity = 1.45(Ft/s) Travel time = 2.58 min. Time of concentration = 7.58 min. Critical depth = 0.186(Ft.) ERROR - Channel depth exceeds maximum allowable depth Adding area flow to channel User specified 'C' value of 0.810 given for subarea Rainfall intensity = 5.036(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.810 Subarea runoff = 8.362(CFS) for 2.050(Ac.) Total runoff = 9.696(CFS) Total area = 2.30(Ac.) Process from Point/Station 1080.000 to Point/Station 1035.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation =b2.2H (Ft.jDownstream point/station elevation = 51.93(Ft.) Pipe length = 113.76(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.696{CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 9.696(CFS) Normal flow depth in pipe = 15.84(In.) Flow top width inside pipe = 22.74 (In.) Critical Depth = 13.37(In.)Pipe flow velocity = 4.41(Ft/s) Travel time through pipe = 0.43 min. Time of concentration (TC) = 8.01 min. Process from Point/Station 1035.000 to Point/Station 1035.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream numoer:i in normal stream numoer 2 Stream flow area = 2.300(Ac.) Runoff from this stream = 9.696(CFS) Time of concentration = 8.01 min. Rainfall intensity = 4.860(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.519 18.80 2.804 2 9.696 8.01 4.860 Qraax(1) =1.000 * 1.000 * 4.519) + 0.577 * 1.000 * 9.696) + = 10.112 Qmax(2) = 1.000 * 0.426 * 4.519) + 1.000 * 1.000 * 9.696) + = 11.622 Total of 2 streams to confluence: Flow rates before confluence point: 4.519 9.696 Maximum flow rates at confluence using above data: 10.112 11.622 Area of streams before confluence: 1.900 2.300Results of confluence: Total flow rate = 11.622(CFS)Time of concentration = 8.012 min. Effective stream area after confluence = 4.200 (Ac.) Process from Point/Station 1035.000 to Point/Station 1060.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = 51. vz (t't . ) Downstream point/station elevation = 51. 71 (Ft.) Pipe length = 70. 65 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11. 622 (CFS) Nearest computed pipe diameter = 24. 00 (In.) Calculated individual pipe flow = 11. 622 (CFS) Normal flow depth in pipe = 18. 52 (In.) Flow top width inside pipe = 20. 15 (In.) Critical Depth = 14. 68 (In.) Pipe flow velocity = 4.46{Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 8.28 min. Process from Point/Station 1060.000 to Point/Station 1060.000 **** CONFLUENCE OF MINOR STREAMS **** Along wain stream numoer:1 in normal stream number l Stream flow area = 4.200(Ac.)Runoff from this stream = 11.622(CFS) Time of concentration = 8.28 min. Rainfall intensity = 4.759(In/Hr) Process from.Point/Station 1074.000 to Point/Station 1072.000 **** INITIAL AREA EVALUATION **** User specitiea Tri value ot o.v/o given tor suoarea Initial subarea flow distance = 60.00(Ft.)Highest elevation = 57.80(Ft.) Lowest elevation = 56.50 (Ft.) Elevation difference = 1.30(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.56 min. TC = [1.8*(l.l-C)*distance".5T/(% slope~(l/3)] TC = [1.8*(1.1-0.7700)* ( 60.00A.5)/( 2.17A(l/3)]= 3.56 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff = 0.254(CFS) Total initial stream area = 0.050(Ac.) Process from Point/Station 1072.000 to Point/Station 1070.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top ot street segment elevation =b6.500(Ft.) End of street segment elevation = 55.700(Ft.) Length of street segment = 88.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.)Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.285(CFS) Depth of flow = 0.173(Ft.), Average velocity = 1.268(Ft/s) Streetflow hydraulics at midpoint or street travel:Halfstreet flow width = 3.922(Ft.) Flow vel9city = 1.27(Ft/s) Travel time = 1.16 min. TC = 6.16 min. Adding area flow to street User specified 'C' value of 0.770 given for subarea Rainfall intensity = 5.759(In/Hr) for a 100.0 year stormRunoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.770 Subarea runoff = 1.109(CFS) for 0.250(Ac.) Total runoff = 1.362(CFS) Total area = 0.30(Ac.) Street flow at end of street = 1.362(CFS) Half street flow at end of street = 1.362(CFS) Depth 9f flow = 0.267(Ft.), Average velocity = 1.679(Ft/s)Flow width (from curb towards crown)= 8.602(Ft.) Process from Point/Station 1070.000 to Point/Station 1060.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = bi. 72 (t't. ) Downstream point/station elevation = 51.71(Ft.) Pipe length = 3.59(Ft.) Manning's N = 0.013 N9- of pipes = 1 Required pipe flow = 1.362(CFS)Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.362(CFS)Normal flow depth in pipe = 6.04(In.)Flow top width inside pipe = 17.00(In.) Critical Depth = 5.25(In.) Pipe flow velocity = 2.62(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 6.18 min. Process from Point/Station 1060.000 to Point/Station 1060.000**** CONFLUENCE OF MINOR STREAMS **** Along Main stream number:Iin normalstream number2~Stream flow area = 0.300(Ac.) Runoff from this stream = 1.362(CFS) Time of concentration = 6.18 min. Rainfall intensity = 5.746(In/Hr) Process from Point/Station 1094.000 to Point/Station 1092.000**** INITIAL AREA EVALUATION **** user specineaTT" value of o.at>u given tor sucarea' Initial subarea flow distance = 55.00(Ft.) Highest elevation = 57.80(Ft.) Lowest elevation = 56.30 (Ft.) Elevation difference = 1.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) == 2.39 min. TC = [1.8*(l.l-C)*distanceA.5)/(% slopeA(l/3)J TC = [1.8*(1.1-0.8500)*( 55.00A.5)/( 2.73A(l/3)]- 2.39 Setting time of concentration to 5 minutesRainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.224(CFS) Total initial stream area = 0.040(Ac.) Process from Point/Station 1092.000 to Point/Station 1090.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = isfe . JOO.IFC .) End of street segment elevation = 55.700(Ft.)Length of street segment = 60.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.)Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0180 Manning's N from grade breax to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.231(CFS)Depth of flow = 0.160(Ft.), Average velocity = 1.310(Ft/s)Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.238 (Ft.) Flow vel9city = 1.31(Ft/s) Travel time = 0.76 min. TC = 5.76 min. Adding area flow to street User specified 'C' value of 0.850 given for subareaRainfall intensity = 6.010(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method, Q=KCIA, C = 0.850Subarea runoff = 0.307(CFS) for 0.060(Ac.) Total runoff = 0.530(CFS) Total area = 0.10(Ac.) Street flow at end of street = 0.530(CFS)Half street flow at end of street = 0.530(CFS) Depth of flow = 0.204(Ft.), Average velocity = 1.443(Ft/s) Flow width (from curb towards crown)= 5.443(Ft.) Process from Point/Station 1090.000 to Point/Station 1060.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation =bi.81(Ft.) Downstream point/station elevation = 51.71 (Ft.) Pipe length = 33.50(Ft.) Manning's N = 0.013 N9- of pipes = 1 Required pipe flow = 0.530(CFS) Given pipe size = 18. 00 (In.)Calculated individual pipe flow = 0.530(CFS) Normal flow depth in pipe = 3.70(In.) Fl9w top width inside pipe = 14.54(In.) Critical depth could not be calculated. Pipe flow velocity = 2.03(Ft/s) Travel time through pipe = 0.28 min. Time of concentration (TC) = 6.04 min. Process from Point/Station 1100.000 to Point/Station 1100.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream numoer:Iin normal stream numoer 2 Stream flow area = 0.100(Ac.) Runoff from this stream = 0.548(CFS) Time of concentration = 5.51 min. Rainfall intensity = 6.187(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++- Process from Point/Station 1124.000 to Point/Station 1122.000 **** INITIAL AREA EVALUATION **** user speciriea TT" value ot 0.790 given tor suDarea Initial subarea flow distance = 55.00(Ft.) Highest elevation = 57.80(Ft.) Lowest elevation = 56.60(Ft.) Elevation difference = 1.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.19 min.TC = [1.8Ml.l-C)*distanceA.5)7(% slope* (1/3)] TC = [1.8*(1.1-0.7900)*( 55.00 .5)/( 2.18X(l/3)]= 3.19 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.790 Subarea runoff = 0.156(CFS) Total initial stream area = 0.030(Ac.) Process from Point/Station 1122.000 to Point/Station 1120.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top orstreet segment elevation =be.600iFt.) End of street segment elevation = 55.700(Ft.) Length of street segment = 75.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.169(CFS) Depth of flow = 0.124(Ft.), Average velocity = 1.851(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velpcity = 1.85(Ft/s) Travel time = 0.68 min. TC = 5.68 min. Adding area flow to street User specified 'C' value of 0.790 given for subarea Rainfall intensity = 6.070(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.790 Subarea runoff = 0.815(CFS) for 0.170(Ac.) Total runoff = 0.971(CFS) Total area = 0.20(Ac.) Street flow at end of street = 0.97KCFS) Half street flow at end of street = 0.97KCFS) Depth of flow = 0.234(Ft.), Average velocity = 1.744(Ft/s) Flow width (from curb towards crownT= 6.969(Ft.) Process from Point/Station 1120.000 to Point/Station 1100.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 'Process from Point/Station 1114.000 to Point/Station 1112.000 **** INITIAL AREA EVALUATION **** User specified ' LV value or o.Bbu given tor sucarea Initial subarea flow distance = 50.00(Ft.)Highest elevation = 57.80(Ft.) Lowest elevation = 56.20(Ft.) Elevation difference = 1.60(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.16 min.TC = [1.8*(l.l-C)*distance .5)/(% slope*(1/3)] TC = [1.8*(1.1-0.8500)*( 50.00*.5)/( 3.20^(1/3)]= 2.16 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for.a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.168(CFS) Total initial stream area = 0.030(Ac.) Process from Point/Station 1112.000 to Point/Station 1110.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** TOP otstreetsegmentelevation =5b.200(ft.)End of street segment elevation = 55.700(Ft.) Length of street segment = 30.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.)Manning's N in gutter = 0.0130Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.174(CFS)Depth of flow = 0.117(Ft.), Average velocity = 2.107(Ft/s) Streetflow hydraulics at midpoint or street travel: Halfstreet flow width = 1.500(Ft.)Flow velocity = 2.11(Ft/s) Travel time = 0.24 min. TC = 5.24 min. Adding area flow to street User specified 'C' value of 0.850 given for subarea Rainfall intensity = 6.393(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 0.380(CFS) for 0.070(Ac.) Total runoff = 0.548(CFS) Total area = 0.10(Ac.)Street flow at end of street = 0.548(CFS)Half street flow at end of street = 0.548(CFS) Depth of flow = 0.192(Ft.), Average velocity = 1.796(Ft/s) Flow width (from curb towards crown;= 4.838(Ft.) Process from Point/Station 1110.000 to Point/Station 1100.000**** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation =bl.ib(Ft.) Downstream point/station elevation = 51.08(Ft.) Pipe length = 33.50(Ft.) Manning's N = 0.013 N9- of pipes = 1 Required pipe flow = 0.548(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.548(CFS)Normal flow depth in pipe = 3.76(In.) Flow top width inside pipe = 14.64(In.) Critical Depth = 3.29(In.) Pipe flow velocity = 2.05(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 5.51 min. Process from Point/Station 1060.000 to Point/Station 1060.000 **** CONFLUENCE OF MINOR STREAMS **** Along wain stream numcer:i in normal stream numoer J Stream flow area = 0.100(Ac.) Runoff from this stream = 0.530(CFS)Time of concentration = 6.04 mm. Rainfall intensity = 5.832{In/Hr)Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 11.622 8.28 4.759 2 1.362 6.18 5.746 3 0.530 6.04 5.832 Qmax(1) =1.000 * 1.000 * 11.622) +0.828 * 1.000 * 1.362) + 0.816 * 1.000 * 0.530) + = 13.183 Qmax(2) =1.000 * 0.747 * 11.622) + 1.000 * 1.000 * 1.362) + 0.985 * 1.000 * 0.530) + = 10.563 Qmax(3) =1.000 * 0.730 * 11.622) + 1.000 * 0.977 * 1.362) +1.000 * 1.000 * 0.530) + = 10.342 Total of 3 streams to confluence: Flow rates before confluence point: 11.622 1.362 0.530 Maximum flow rates at confluence using above data: 13.183 10.563 10.342 Area of streams before confluence: 4.200 0.300 0.100 Results of confluence: Total flow rate = 13.183(CFS)Time of concentration = 8.275 min. Effective stream area after confluence = 4.600(Ac.) Process from Point/Station 1060.000 to Point/Station 1100.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = bi.voift.) Downstream point/station elevation = 51.08(Ft.) Pipe length = 206.66(Ft.) Manning's N = 0.013No. of pipes = 1 Required pipe flow = 13.183(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 13.183(CFS) Normal flow depth in pipe = 16.52(In.)Flow top width inside pipe = 29.84 (In.) Critical Depth = 14.65(In.) Pipe flow velocity = 4.76(Ft/s)Travel time through pipe = 0.72 min. Time of concentration (TC) = 9.00 min. Process from Point/Station 1100.000 to Point/Station 1100.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number:Iin normal stream number l Stream flow area = 4.600(Ac.) Runoff from this stream = 13.183 (CFS)Time of cpncentration = 9.00 min. Rainfall intensity = 4.509(In/Hr) Upstream point/station elevation =bi.09(Ft.j Downstream point/station elevation = 51.08(Ft.)Pipe length = 3.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.97KCFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.97KCFS) Normal flow depth in pipe = 5.07(In.) Flow top width inside pipe = 16.19(In.) Critical Depth = 4.40(In.) Pipe flow velocity = 2.38(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 5.70 min. Process from Point/Station 1100.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 1100.000 Along Main stream numBer:iin normal stream numoer Stream flow area = 0.200(Ac.) Runoff from this stream = 0.971(CFS) 5.70 min. 6.053(In/Hr) Time of cpncentration Rainfall intensity = Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Qmax(1) Qmax(2) - = Qmax(3) = 13.1830.548 0.971 1.000 * 0.729 * 0.745 * 1.000 * 1.000 * 1.000 * 1.000 * 0.978 * 1.000 * 9.005.51 5.70 1.000 * 1.000 * 1.000 * 0.612 * 1.000 * 0.967 * 0.633 *1.000 * 1.000 * 4.509 6.187 6.053 13.183) + 0.548) .+0.971) + 13.183) + 0.548) + 0.971) + 13.183) +0.548) + 0.971)+ = 14.306 9.558 9.858 Total of 3 streams to confluence:Flow rates before confluence point: 13.183 0.548 0.971Maximum flow rates at confluence using above data: 14.306 .9.558 9.858 Area of streams before confluence: 4.600 0.100 0.200Results of confluence: T9tal flow rate = 14.306(CFS) Time of concentration = 8.999 min. Effective stream area after confluence = 4.9'00{Ac.) Process from Point/Station 1100.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) ****1200.000 upstream point/station elevation = bl.o/iFt.) Downstream point/station elevation = 50.87(Ft.) Pipe length = 66.04(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.306(CFS)Given pipe size = 30.00 (In.) Calculated individual pipe flow = 14.306(CFS)Normal flow depth in pipe = 17.34(In.) Flow top width inside pipe = 29.63(In.) Critical Depth = 15.29(In.) Pipe flow velocity = 4.87(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 9.23 min. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + ++ + + + + + H Process from Point/Station 1200.000 to Point/Station 1200.000 **** CONFLUENCE OF MAIN STREAMS **** The toliowing data inside Main stream is listed: In Main Stream number: 1Stream flow area = 4.900(Ac.) Runoff from this stream = 14.306(CFS) Time of concentration = 9.23 min. Rainfall intensity = 4.437(In/Hr)Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++- Process from Point/Station 1300.000 to Point/Station 1310.000 **** INITIAL AREA EVALUATION **** user specitiea'C'value otu.BbO given ror suoarea Initial subarea flow distance = 870.00(Ft.) Highest elevation = 67.20(Ft.)Lowest elevation = 60.00(Ft.) Elevation difference = 7.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 14.14 min. TC = [1.8*(l.l-C)*distance".5T/(% slope*(1/3)]TC = [1.8*(1.1-0.8500)*(870.00 .5)/( 0.83*(1/3)]= 14.14 Rainfall intensity (I) = 3.369 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 13.746(CFS)Total initial stream area = 4.800(Ac.) Process from Point/Station 1310.000 to Point/Station 1310.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number : 2 in normal stream numJber i Stream flow area = 4. 800 (Ac.) Runoff from this stream = 13.746(CFS) Time of concentration = 14.14 min. Rainfall intensity = 3.369(In/Hr) +++++++++++++++++++++++++++++++++++++ ................................ Process from Point/Station 1312.000 to Point/Station 1310.000 **** INITIAL AREA EVALUATION **** user specitiea c' value ot u . ybo given ror suoarea Initial subarea flow distance = 215. 00 (Ft.)Highest elevation = 65. 00 (Ft.) Lowest elevation = 60. 00 (Ft.) Elevation difference = 5. 00 (Ft.)Time of concentration calculated by the urbanareas overland flow method (App X-C) = 2.99 min. TC = [1.8* (l.l-C)*distance*.5)/(% slope* (1/3)] TC = [1.8* (1.1-0. 9500)*(215. 00*. 5)/( 2.33*(l/3)]= 2.99Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 3.129(CFS) Total initial stream area = 0.500 (Ac.) Process from Point/Station 1310.000 to Point/Station 1310.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number:2 in normal stream numcer Stream flow area = 0.500(Ac.) Runoff from this stream = 3.129(CFS) Time of concentration = 5.00 min. Rainfall intensity = 6.587(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 13.746 14.14 3.369 2 3.129 5.00 6.587 Qmax(1) =1.000 * 1.000 * 13.746) +0.512 * 1.000 * 3.129) + = 15.347 Qmax(2) = 1.000 * 0.354 * 13.746) + 1.000 * 1.000 * 3.129) + = 7.990 Total of 2 streams to confluence:Flow rates before confluence point: 13.746 3.129 Maximum flow rates at confluence using above data: 15.347 7.990 Area of streams before confluence: 4.800 0.500 Results of confluence: Total flow rate = 15.347(CFS)Time of concentration = 14.137 min. Effective stream area after confluence = 5.300(Ac.) Process from Point/Station 1310.000 to Point/Station 1320.000**** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = bfa.oo tft.) Downstream point/station elevation = 55.31(Ft.)Pipe length = 67.83(Ft.) Manning's N = 0.013No. of pipes = 1 Required pipe flow = 15.347(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 15.347(CFS) Normal flow depth in pipe = 14.41(In.) Flow top width inside pipe = 23.51(In.) Critical Depth = 16.93(In.)Pipe flow velocity = 7.79(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 14.28 min. Process from Point/Station 1320.000 to Point/Station 1320.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number:2 in normal stream number lStream flow area = 5.300(Ac.) Runoff from this stream = 15.347(CFS) Time of concentration = 14.28 min. Rainfall intensity = 3.347{In/Hr) +++++++++++++++++++++++++++++++++++++ Process from Point/Station 1322.000 to Point/Station 1320.000 **** INITIAL AREA EVALUATION **** user specinea'U' value ot o.byo given tor sunarea Initial subarea flow distance = 400.00(Ft.) Highest elevation = 62.10(Ft.)Lowest elevation = 59.20(Ft.) Elevation difference = 2.90(Ft.)Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.42 min. TC = [1.8M1.1-C) *distanceA.5)/{% slope*(l/3)] TC = [1.8*(1.1-0.8900)*(400.00^.5)/( 0.72*(l/3)]= 8.42 Rainfall intensity (I) = 4.708 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.890Subarea runoff = 1.676(CFS) Total initial stream area = 0.400(Ac.) Process from Point/Station 1320.000 to Point/Station 1320.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream numoer:2 in normal stream number 2 Stream flow area = 0.400(Ac.) Runoff from this stream = 1.676(CFS) Time of concentration = 8.42 min. Rainfall intensity = 4.708(In/Hr) Summary of stream data: Stream Flow rate TC .Rainfall Intensity No. (CFS) (min) (In/Hr) 1 15.347 14.28 3.347 2 1.676 8.42 4.708 Qmax(1) =1.000 * 1.000 * 15.347) + 0.711 * 1.000 * 1.676) + = 16.538 Qmax(2) =1.000 * 0.589 * 15.347) + 1.000 * 1.000 * 1.676) + = 10.719 Total of 2 streams to confluence: Flow rates before confluence point: 15.347 1.676 Maximum flow rates at confluence using above data: 16.538 10.719 Area of streams before confluence:5.300 0.400 Results of confluence: Total flow rate = 16.538(CFS) Time of concentration = 14.282 min.Effective stream area after confluence = 5.700(Ac.) Process from Point/Station 1320.000 to Point/Station 1330.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation =bb.27(Ft.)Downstream point/station elevation = 53.70(Ft.) Pipe length = 195.92(Ft.) Manning's N = 0.013 N9- of pipes = 1 Required pipe flow = 16.538(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 16.538(CFS)Normal flow depth in pipe = 14.11(In.) Flow top width inside pipe = 29.95(In.) Critical Depth = 16.48(In.) Pipe flow velocity = 7.28(Ft/s)Travel time through pipe = 0.45 min. Time of concentration (TC) = 14.73 min. Process from Point/Station 1330.000 to Point/Station 1340.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = bJ . t>v Downstream point/station elevation = 52. 13 (Ft.) Pipe length = 192. 57 (Ft.) Manning's N = 0.013Np. of pipes = 1 Required pipe flow = 16. 538 (CFS) Given pipe size = 30. 00 (In.) Calculated individual pipe flow = 16. 538 (CFS) Normal flow depth in pipe = 14. 12 (In.) Flow top width inside pipe = 29. 95 (In.) Critical Depth = 16. 48 (In.) Pipe flow velocity = 7.28(Ft/s) Travel time through pipe = 0.44 min.Time of concentration (TC) = 15.17 min. Process from Point/Station 1340.000 to Point/Station 1340.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number:2 in normal stream numoer i Stream flow area = 5.700(Ac.) Runoff from this stream = 16.538(CFS) Time of concentration = 15.17 min. Rainfall intensity = 3.219(In/Hr) +++++++++++++++++++++++++++++++++++++ Process from Point/Station 1352.000 to Point/Station 1350.000 **** INITIAL AREA EVALUATION **** user specitied 'U'value oru.830 given tor sucarea Initial subarea flow distance = 340.00(Ft.) Highest elevation = 64.30(Ft.) Lowest elevation = 61.63(Ft.) Elevation difference = 2.67(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-c) = 9.71 min. TC = [1.8*(l.l-C)*distanceA.5l/(% slope*(1/3)] TC = [1.8* (1.1-0.8300)*(340.00A.5)/( 0.79 (1/3)]= 9.71 Rainfall intensity (I) = 4.292 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.830 Subarea runoff = 1.78KCFS) Total initial stream area = 0.500(Ac.) Process from Point/Station 1350.000 to Point/Station 1340.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation =54.bo(Ft.; Downstream point/station elevation = 52.13(Ft.)Pipe length = 74.80(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.781(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.781(CFS) Normal flow depth in pipe = 6.02(In.) Flow top width inside pipe = 16.98(In.) Critical Depth = 6.02 (In.) Pipe flow velocity = 3.44(Ft/s) Travel time through pipe = 0.36 min. Time of concentration (TC) = 10.08 min. Process from Point/Station 1340.000 to Point/Station 1340.000**** CONFLUENCE OF MINOR STREAMS **** Along Main stream number:2in normalstream number 2 Stream flow area = 0.500(Ac.) Runoff from this stream = 1.781(CFS) Time of concentration = 10.08 min.Rainfall intensity = 4.192(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16.538 15.17 3.219 2 1.781 10.08 4.192Qmax(1) = 1.000 * 1.000 * 16.538) + 0.768 * 1.000 * 1.781) + = 17.906Qmax(2) = 1.000 * 0.664 * 16.538) + 1.000 * 1.000 * 1.781) + = 12.764 Total of 2 streams to confluence: Flow rates before confluence point: 16.538 1.781 Maximum flow rates at confluence using above data: 17.906 12.764 Area of streams before confluence: 5.700 0.500 Results of confluence: Total flow rate = 17.906(CFS) Time of concentration = 15.172 min. Effective stream area after confluence = 6.200(Ac.) Process from Point/Station 1340.000 to Point/Station 1360.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 52 .1Downstream point/station elevation = 52. 00 (Ft.) Pipe length = 41. 50 (Ft.) Manning's N = 0.013 N9- of pipes = 1 Required pipe flow = 17.906(CFS) Given pipe size = 3 0.00 (In.) Calculated individual pipe flow = 17.906(CFS) Normal flow depth in pipe = 20. 53 (In.) Flow top width inside pipe = 27. 89 (In.) Critical Depth = 17. 18 (In.) Pipe flow velocity = 5.01(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 15.31 min. Process from Point/Station 1360.000 to Point/Station 1360.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream numoer:2in normal stream number i Stream flow area = 6.200(Ac.) Runoff from this stream = 17.906(CFS) Time of concentration = 15.31 min. Rainfall intensity = 3.200(In/Hr) +++++++++++++++++++++++++++++++++++++ Process from Point/Station 1362.000 to Point/Station 1364.000 **** INITIAL AREA EVALUATION **** user specined rU1 value or 0.750 given ror suoarea Initial subarea flow distance = 55.00(Ft.) Highest elevation = 58.80(Ft.) Lowest elevation = 58.30(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.82 min.TC = [1.8*(l.l-C)*distance".5T/(% slope"(1/3)] TC = [1.8*(1.1-0.7500)M 55.00A.5)/( 0.91A(l/3)]= 4.82 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.750 Subarea runoff = 0.395(CFS) Total initial stream area = 0.080(Ac.) Process from Point/Station 1364.000 to Point/Station 1360.000 **** PIPEFLOW TRAVEL TIME (User specified size.) **** upstream point/station elevation = biJ. bo (ft.) Downstream point/station elevation = 52.50(Ft.) Pipe length = 29.84(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.395(CFS)Given pipe size = 18.00 (In.) Calculated individual pipe flow = 0.395(CFS) Normal flow depth in pipe = 2.38(In.) Flow top width inside pipe = 12.20(In.) Critical depth could not be calculated.Pipe flow velocity = 2.85(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TO = 5.17 min. Process from Point/Station 1360.000 to Point/Station 1360.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main ytream numcer: 2 in normal stream number 2 Stream flow area = 0.080(Ac.) Runoff from this stream = 0.395(CFS)Time of concentration = 5.17 min. Rainfall intensity = 6.443(In/Hr)Summary of stream data: Stream Flow rate TC Rainfall IntensityNo. (CFS) (min) (In/Hr) 1 17.906 15.31 3.2002 0.395 5.17 6.443 Qmax(1) =1.000 * 1.000 * 17.906) + 0.497 * 1.000 * 0.395) + = 18.102 Qmax(2) =1.000 * 0.338 * 17.906) +1.000 * 1.000 * 0.395) + = 6.447 Total of 2 streams to confluence: Flow rates before confluence point:17.906 0.395Maximum flow rates at confluence using above data: 18.102 6.447 Area of streams before confluence: 6.200 0.080Results-of confluence: Tptal flow rate = 18.102(CFS) Time of concentration = 15.310 min. Effective stream area after confluence = 6.280(Ac.) Process from Point/Station 1360.000 to Point/Station 1370.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = b2 . uu Downstream point/station elevation = 51. 43 (Ft.) Pipe length = 188. 29 (Ft.) Manning's N = 0.013No. of pipes = 1 Required pipe flow = 18. 102 (CFS) Nearest computed pipe diameter = 30. 00 (In.) Calculated individual pipe flow = 18. 102 (CFS) Normal flow depth in pipe = 20. 34 (In.)Flow top width inside pipe = 2 8. 03 (In.) Critical Depth = 17. 27 (In.) Pipe flow velocity = 5.11(Ft/s) Travel time through pipe = 0.61 min. Time of concentration (TC) = 15.92 min. Process from Point/Station 1370.000 to Point/Station 1370.000**** CONFLUENCE OF MINOR STREAMS **** Along Main stream number:2in normal stream number l Stream flow area = 6.280(Ac.) Runoff from this stream = 18.102(CFS) Time of concentration = 15.92 min. Rainfall intensity = 3.120(In/Hr) +++++++++++++++++++++++++++++++++++++ + + + .(. + + + + + ++ + + + + + + + ++ + + + + + + + + + + + + H Process from Point/Station 1384.000 to Point/Station 1382.000 **** INITIAL AREA EVALUATION user specineaC value or 0.950 given tor suoarea Initial subarea flow distance = 75.00(Ft.) Highest elevation = 62.70(Ft.) Lowest elevation = 60.30(Ft.)Elevation difference = 2.40(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.59 min. TC = [1.8*(l.l-C)*distance .5)/(% slope (1/3)] TC = [1.8*(1.1-0.9500)*( 75.00 .5)/( 3.20"(l/3)]= 1.59 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.50KCFS) Total initial stream area = 0.080(Ac.) Process from Point/Station 1382.000 to Point/Station 1380.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top or street segment elevation = 60..300(Ft.) Ena of street segment elevation = 56.250(Ft.)Length of street segment = 235.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020Slope from grade breaK to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.556(CFS) Depth of flow = 0.192(Ft.), Average velocity = 1.825(Ft/s) Streetflow hydraulics at midpoint or street travel: Halfstreet flow width = 4.829(Ft.) Flow velocity = 1.83(Ft/s) Travel time = 2.15 min. TC =. 7.15 min. Adding area flow to street User specified 'C' value of 0.840 given for subarea Rainfall intensity = 5.232(In/Hr) for a 100.0 year stormRunoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.840 Subarea runoff = 0.967(CFS) for 0.220(Ac.) Total runoff = 1.467(CFS) Total area = 0.30(Ac.) Street flow at end of street = 1.467(CFS) Half street flow at end of street = 1.467(CFS) Depth of flow = 0.250(Ft.), Average velocity = 2.193(Ft/s)Flow width (from curb towards crownT= 7.732(Ft.) Process from Point/Station 1380.000 to Point/Station 1370.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = bi.bJ(Ft.) Downstream point/station elevation = 51.43(Ft.) Pipe length = 33.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.467(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = l.467(CFS) Normal flow depth in pipe = 6.21(In.) Flow top width inside pipe = 17.11 (In.) Critical Depth = 5.44(In.) Pipe flow velocity = 2.72(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 7.35 min. Process from Point/Station 1370.000 to Point/Station 1370.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream numoer:2in normal stream number Stream flow area = 0.300(Ac.) Runoff from this stream = 1.467(CFS) Time of concentration = 7.35 min. Rainfall intensity = 5.137(In/Hr) +++++++++++++++++++++++++++++++++++++ . . Process from Point/Station 1394.000 to Point/Station 1392.000 **** INITIAL AREA EVALUATION **** user specinea TT value or o. 9bO given tor sucarea Initial subarea flow distance = 60.00(Ft.) Highest elevation 62.14(Ft.)Lowest elevation = 60.30(Ft.)Elevation difference = 1.84(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.44 min. TC = [1.8*(l.l-C)*distanceA.5T/(% slope*(l/3)JTC = [1.8*(1.1-0.9500)*( 60.00^.5)/( 3.07 (1/3)]= 1.44 Setting time of concentration to 5 minutesRainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.188(CFS) Total initial stream area = 0.030(Ac.) Process from Point/Station 1392.000 to Point/Station 1390.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top otstreet segment elevation =60.300(Ft.)•End of street segment elevation = 56.250(Ft.) Length of street segment = 225.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street- flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020Gutter width = 1.500(Ft.j Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0180Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.222(CFS) Depth of flow = 0.138(Ft.), Average velocity = 1.877(Ft/s)Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.174(Ft.) Flow velocity = 1.88(Ft/s) Travel time = 2.00 min. TC = 7.00 min.Adding area flow to street User specified 'C' value of 0.750 given for subarea Rainfall intensity = 5.303(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.750 Subarea runoff = 1.472(CFS) for 0.370(Ac.) Total runoff = 1.659(CFS) Total area = 0.40(Ac.)Street flow at end of street = 1.659(CFS) Half street flow at end of street = 1.659(CFS) Depth pf flow = 0.257(Ft.), Average velocity = 2.290(Ft/s) Flow width (from curb towards crown;= 8.082(Ft.) Process from Point/Station 1390.000 to Point/Station 1370.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation =bl.44(Ft.) Downstream point/station elevation = 51.43(Ft.) Pipe length = 3.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.659(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.659(CFS) Normal flow depth in pipe = 6.70(In.) Flow top width inside pipe = 17.40(In.) Critical Depth = 5.81 (In.) Pipe flow velocity = 2.77(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 7.02 mm. Process from Point/Station 1370.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 1370.000 Along Main stream number: 2 in normai stream numoer Stream flow area = 0.400(Ac.) Runoff from this stream = 1.659(CFS)7.02 min. 5.293(In/Hr)Time of concentration =Rainfall intensity = Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) ™* Qmax(1) Qmax(2) Qmax(3) 18.1021.467 1.659 15.92 7.35 7.02 100 11 0 111 .000.607 .590 .000 .000 .971 .000 .000 .000 * * * *** * * * 1.0001.0001.000 0.462 1.000 1.000 0.441 0.955 1.000 * * * it * * * * * 3.120 5.137 5.293 18.102) + 1.467) + 1.659) + 18.102) + 1.467) + 1.659) + 18.102) + 1.467) + 1.659) + 19.972 11.435 11.039 Total of 3 streams to confluence: Flow rates before confluence point:18.102 1.467 1.659 Maximum flow rates at confluence using above data: 19.972 11.435 11.039 Area of streams before confluence: 6.280 0.300 0.400 Results of confluence:Total flow rate = 19.972(CFS) Time of concentration = 15.924 min. Effective stream area after confluence = 6.980(Ac. Process from Point/Station 1370.000 to Point/Station 1450.000**** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = bi. 42 (b't. ) Downstream point/station elevation = 51. 07(Ft.) Pipe length = 118.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.972(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 19.972(CFS) Normal flow depth in pipe = 22.13(In.) Flow top width inside pipe = 26.40(In.) Critical Depth = 18.21(In.) Pipe flow velocity = 5.15(Ft/s) Travel time through pipe = 0.38 min. Time of concentration (TC) = 16.31 min. Process from Point/Station 1450.000 to Point/Station 1450.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number:2 in normal stream numoer Stream flow area = 6.980(Ac.) Runoff from this stream = 19.972(CFS) Time of concentration = 16.31 min. Rainfall intensity = 3.073(In/Hr) +++++++++++++++++++++++++++++++++++++ Process from Point/Station 1430.000 to Point/Station 1440.000 **** INITIAL AREA EVALUATION **** user specinearCT value ot U.BZU given ror sucareli Initial subarea flow distance = 120.00(Ft.) Highest elevation = 59.60(Ft.) Lowest elevation = 57.88(Ft.) Elevation difference = 1.72(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.90 min. TC = [1.8*(l.l-C)*distanceA.5l7{% slope*(1/3)1 TC = [I-8*(1.1-0.8200)*(120.0(T.5)/( 1.43 (1/3)] = 4.90 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.820 Subarea runoff = 1.620(CFS)Total initial stream area = 0.300(Ac.) Process from Point/Station 1440.000 to Point/Station 1420.000 **** IMPROVED CHANNEL TRAVEL TIME **** upstream point elevation = b /. BB (t'r..) Downstream point elevation = 56.00(Ft.) Channel length thru subarea = 305.00(Ft.) Channel base width = 0.100(Ft.) Slope or 'Z' of left channel bank = 100.000Slope or 'Z' of right channel bank = 100.000 Estimated mean flow rate at midpoint of channel = 4.86KCFS) Manning's 'N' = 0.018 Maximum depth of channel = 0.200(Ft.) Flow(q) thru subarea - 4.861(CFS) Depth of flow = 0.189(Ft.), Average velocity = 1.349(Ft/s) Channel flow top width = 37.970(Ft.)Flow Velocity = 1.35{Ft/s) Travel time = 3.77 min. Time of concentration •= 8.77 min. Critical depth = 0.171(Ft.) Adding area flow to channelUser specified 'C' value of 0.820 given for subarea Rainfall intensity = 4.585(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.820 Subarea runoff = 4.51KCFS) for 1.200 (Ac.) Total runoff = 6.132(CFS) Total area = 1.50(Ac.) Process from Point/Station 1420.000 to Point/Station 1470.000**** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = bi.jb(Ft,) Downstream point/station elevation = 51.09(Ft.) Pipe length = 97.78(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.132(CFS) Given pipe size = 24. 00 (In.) Calculated individual pipe flow = 6.132(CFS) Normal flow depth in pipe = 11.96(In.) Flow top width inside pipe = 24.00(In.) Critical Depth = 10.52(In.) Pipe flow velocity = 3.92(Ft/s) Travel time through pipe = 0.42 min. Time of concentration (TO = 9.19 min. Process from Point/Station 1470.000 to Point/Station 1470.000 **** SUBAREA FLOW ADDITION **** user specirieaT? value ot u.bt>u given tor suoarea Time of concentration = 9.19 mm. Rainfall intensity = 4.450(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 0.756(CFS) for 0.200(Ac.) Total runoff = 6.888(CFS) Total area = 1.70(Ac.) Process from Point/Station 1470.000 to Point/Station 1450.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation =bi.OBiFt.) Downstream point/station elevation = 51.07(Ft.) Pipe length = 3.50(Ft.) Manning's N « 0.013 No. of pipes = 1 Required pipe flow = 6.888(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.888(CFS) Normal flow depth in pipe = 12.97(In.) Flow top width inside pipe = 23.92(In.) Critical Depth = 11.16(In.) Pipe flow velocity = 3.97(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 9.20 min. Process from Point/Station 1450.000 to Point/Station 1450.000 **** CONFLUENCE OF MINOR STREAMS **** Along wain stream numoer:2 in normal stream numcer 2 Stream flow area = 1.700(Ac.) Runoff from this stream = 6.888(CFS) Time of concentration = 9.20 min. Rainfall intensity = 4.445(In/Hr) +++++++++++++++++++++++++++++++++++++ Process from Point/Station 1464.000 to Point/Station 1462.000 **** INITIAL AREA EVALUATION **** user specitiea 'C*value or u.sbu given tor sucarea Initial subarea flow distance = 65.00(Ft.) Highest elevation = 57.50(Ft.) Lowest elevation = 55.75(Ft.) Elevation difference = 1.75(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.61 min. TC = [1.8*(l.l-C)*distanceA.5T/(% slope*(1/3)] TC = [1.8*(1.1-0.8500)*( 65.00*.5)/( 2.69*(l/3)]= 2.61 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850Subarea runoff = 0.224(CFS) Total initial stream area = 0.040(Ac.) Process from Point/Station 1462.000 to Point/Station 1460.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top ot street segment elevation = bb.750 iKt.) End of street segment elevation = 55.700(Ft.) Length of street segment = 20.000 (Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street "(curb to crown) = 20.000 (Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.231(CFS)Depth of flow = 0.196(Ft.), Average velocity = 0.705(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.060(Ft.) Flow velocity = 0.70(Ft/s)Travel time = 0.47 min. TC = 5.47 min. Adding area flow to street User specified 'C' value of 0.850 given for subarea Rainfall intensity = 6.214(In/Hr) for a 100.0 year stormRunoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff = 0.317(CFS) for 0.060(Ac.)Total runoff = 0.54KCFS) Total area = 0.10 (Ac.) Street flow at end of street = 0.54KCFS) Half street flow at end of street = 0.54KCFS) Depth 9f flow = 0.247(Ft.), Average velocity = 0.830(Ft/s) Flow width (from curb towards crown)= 7.621(Ft.) Process from Point/Station 1460.000 to Point/Station 1450.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation =bi.iv(Ft.) Downstream point/station elevation = 51.07(Ft.) Pipe length = 33.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.541(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.54KCFS)Normal flow depth in pipe = 3.73(In.) Flow top width inside Pipe = 14.59(In.) Critical Depth = 3.26(In.) Pipe flow velocity = 2.04(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 5.75 min. Process from Point/Station 1450.000 to Point/Station 1450.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream numoer:2 in normal stream numcer 3 Stream flow area = 0.100(Ac.) Runoff from this stream = 0.541(CFS)Time of C9ncentration = 5.75 min. Rainfall intensity = 6.021(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall IntensityNo. (CFS) (min) (In/Hr) 1 19.972 16.31 3.073 2 6.888 9.20 4.445 3 0.541 5.75 6.021Qmax(1) = 1.000 * 1.000 * 19.972) + 0.691 * 1.000 * 6.888) + 0.510 * 1.000 * 0.541) + = 25.010 Qmax(2) = 1.000 * 0.564 * 19.972) + 1.000 * 1.000 * 6.888) + 0.738 * 1.000 * 0.541) + = 18.555 Qmax(3) = 1.000 * 0.352 * 19.972) + 1.000 * 0.625 * 6.888) + 1.000 * 1.000 * 0.541) -i- = 11.882 Total of 3 streams to confluence:Flow rates before confluence point: 19.972 6.888 0.541 Maximum flow rates at confluence using above data: 25.010 18.555 11.882 Area of streams before confluence: 6.980 1.700 0.100 Results of confluence: T9tal flow rate = 25.010(CFS) Time of concentration = 16.306 min.Effective stream area after confluence = 8.780(Ac.) Process from Point/Station 1450.000 to Point/Station 1200.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream pointstation eevation = bi . Ob IFC . Downstream point/station elevation = 50. 87 (Ft.) Pipe length = 63. 48 (Ft.) Manning's N = 0.013 N9. of pipes = 1 Required pipe flow = 25.010(CFS) Given pipe size = 36. 00 (In.) Calculated individual pipe flow = 25.010(CFS) Normal flow depth in pipe = 21. 89 (In.) Flow top width inside pipe = 3 5. 15 (In.) Critical Depth = 19. 38 (In.) Pipe flow velocity = 5.56(Ft/s) Travel time through pipe = 0.19 min. Time of concentration (TC) = 16.50 min. Process from Point/Station 1200.000 to Point/Station 1200.000 **** CONFLUENCE OF MAIN STREAMS **** Tneloiiowing datainsiae Main stream islisted: In Main Stream number: 2 Stream flow area = 8.780(Ac.) Runoff from this stream = 25.010(CFS) Time of concentration = 16.50 min. Rainfall intensity = 3.050(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 14.306 9.23 4.437 2 25.010 16.50 3.050 Qmax(1) = 1.000 * 1.000 * 14.306) + 1.000 * 0.559 * 25.010) + = 28.292 Qmax(2) = 0.687 * 1.000 * 14.306) + 1.000 * 1.000 * 25.010) + = 34.843 Total of 2 main streams to confluence: Flow rates before confluence point: 14.306 25.010 Maximum flow rates at confluence using above data: 28.292 34.843Area of streams before confluence: 4.900 8.780 Results of confluence: Total flow rate = 34.843(CFS) Time of concentration = 16.496 min. Effective stream area after confluence = 13.680(Ac.) Process from Point/Station 1200.000 to Point/Station 1210.000**** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation =bu.86(Ft.; Downstream point/station elevation = 50.70(Ft.) Pipe length = 51.21(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 34.843(CFS) Nearest computed pipe diameter = 36.00(In.) Calculated individual pipe flow = 34.843(CFS) Normal flow depth in pipe = 27.61(In.) Flow top width inside pipe = 30.44(In.) Critical Depth = 23.03(In.)Pipe flow velocity = 5.99(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 16.64 min. End of computations, total study area = 13.68 (Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 03/31/99 ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.500 24 hour precipitation(inches) = 4.000 Adjusted 6 hour precipitation (inches) = 2.500 P6/P24 =62.5% . . San Diego hydr9logy manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-M Process from Point/Station 100.000 to Point/Station 200.000 **** INITIAL AREA EVALUATION **** user specitieavalue or o.ybu given tor suoarea Initial subarea flow distance = 36.00(Ft.) Highest elevation = 64.30(Ft.) Lowest elevation = 63.70(Ft.) Elevation difference = 0.60(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.37 min. TC = [1.8*(l.l-C)*distanceA.5)7(% slopeA(l/3)] TC = [1.8*(1.1-0.9500)*( 36.00*.5)/( 1.67^(1/3)]= 1.37 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.063(CFS) Total initial stream area = 0.010(Ac.) Process from Point/Station 200.000 to Point/Station 300.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** TOP or street segment elevation = bj . YOU ^t't . ) End of street segment elevation = 56. 300 (Ft.) Length of street segment = 610. 000 (Ft.)Height of curb above gutter flowline = 6.0 (In.) Width of half street (curb to crown) = 20. 000 (Ft.) Distance from crown to crossfall grade break = 12. 000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10. 000 (Ft.) Slope from curb to property line (v/hz) = 0.020Gutter width = 1.500 (Ft.) -Gutter hike from flowline = 1.500 (In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.088(CFS) Depth of flow = 9. 096 (Ft.), Average velocity = 1.576(Ft/s) Streetflow hydraulics at midpoint or street travel:Half street flow width = 1.500 (Ft.) Flow velocity = 1.58(Ft/s) Travel time = 6.45 min. TC = 11.45 min. Adding area flow to streetUser specified 'C' value of 0.840 given for subarea Rainfall intensity = 3.860(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.840 Subarea runoff = 2.594(CFS) for 0.800(Ac.) Total runoff = 2.656(CFS) Total area = 0.81(Ac.) Street flow at end of street = 2.656(CFS) Half street flow at end of street = 2.656(CFS) Depth of flow = 0.309(Ft.), Average velocity = 2.181(Ft/s) Flow width (from curb towards crown)= 10.708(Ft.) End of computations, total study area = 0.81 (Ac.) APPENDIX 10 AES Existing Embarcadero Lane Storm Drain Hydraulic Reanalysis Computer Output REP\2068DR.DOC A-10 PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPTION OF STUDY ******************* * POINSETTIA PROPERTIES PA 2, 3, 4 - HYDRAULIC ANALYSIS * EXIST STRM DRN IN EMBARCADERO WAY AND AVENIDA ENCINAS - DEVELOPED * CONDITION FLOWS - FILE: EMB-EX1.DAT FILENAME: C:\2068\EMB-EX1.DAT TIME/DATE OF STUDY: 16:44 09/01/2001 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE NUMBER 1105 1100 1100 1095 1095 1090 140 145 .10- } .10- } .20- } .10- } .20- } .10- } .00- } .00- MODEL PRESSURE PRESSURE* PROCESS HEAD (FT) MOMENTUM ( POUNDS ) FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 2 2 2 2 2 3 3 3 .39* .61* .75* .95* .97* .02* .84* .42* 665 728 730 792 794 809 900 773 .99 .60 .92 .91 .78 .11 .21 .42 FLOW DEPTH (FT) 1 1 1 1 1 1 1 1 .81 .81 .75 .75 .74 .74 .18 .17 DC DC DC DC DC DC } FRICTION+BEND 150 160 170 180 190 200 .00- } .00- } .00- } .00- } .00- } .00- FRICTION JUNCTION FRICTION JUNCTION FRICTION 3 2 2 1 2 2 .31* .63* .60* } HYDRAULIC .37*Dc .50* .12* 739 529 522 JUMP 293 439 364 .14 .42 .23 .25 .37 .93 1 1 1 1 1 1 .18 .22 .18 .37 .21 .41 *Dc DC DOWNSTREAM RUN PRESSURE* MOMENTUM(POUNDS) 593.96 593.96 541.17 541.17 535.34 535.34 303.76 304.10 303.55 299.93 303.09 293.25 293.14 283.76 } CATCH BASIN 200.00- 2.57*307.17 1.41 DC 92.11 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1105.10 FLOWLINE ELEVATION = 51.10 PIPE FLOW = 28.13 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 53.487 FEET NODE 1105.10 : HGL = < 53.487>;EGL= < 54.014>;FLOWLINE= < 51.100> FLOW PROCESS FROM NODE UPSTREAM NODE 1100.10 1105.10 TO NODE ELEVATION = 1100.10 IS CODE = 1 51.42 (FLOW UNSEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 28.13 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 118.00 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 2.50 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.39 1.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0 2 5 7 10 12 15 18 20 23 25 28 30 33 36 38 41 43 46 48 51 53 56 58 .000 .554 .115 .683 .257 .836 .418 .004 .590 .178 .765 .349 .931 .508 .079 .643 .198 .742 .273 .790 .289 .768 .223 .650 FLOW DEPTH (FT) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 .387 .392 .396 .401 .405 .410 .414 .419 .423 .428 .432 .437 .441 .446 .450 .455 .459 .464 .468 .473 .477 .482 .486 .491 VELOCITY (FT/SEC) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 .823 .817 .811 .806 .801 .796 .791 .786 .781 .777 .772 .768 .764 .760 .756 .752 .749 .746 .743 .740 .737 .735 .733 .731 SPECIFIC PRESSURE* ENERGY (FT) MOMENTUM ( POUNDS ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 .914 .917 .921 .924 .928 .932 .935 .939 .942 .946 .950 .954 .957 .961 .965 .969 .973 .977 .981 .985 .989 .993 .997 .001 665 667 668 669 670 671 672 673 674 675 676 678 679 680 681 682 683 685 686 687 688 690 691 692 .99 .05 .12 .19 .27 .36 .46 .56 .68 .80 .93 .08 .23 .39 .56 .74 .93 .13 .34 .57 .81 .06 .33 .62 ===> NODE 61.040 63.373 FLOW IS 118.000 1100.10 2.495 2.500 UNDER PRESSURE 2.609 : HGL = < 54, 5.730 5.729 5.731 . 029>;EGL= < 3 3 3 54.539> .006 .010 .119 ;FLOWLINE= < 693.93 695.27 728.59 51.420> FLOW PROCESS FROM NODE 1100.10 TO NODE 1100.20 IS CODE = 5 UPSTREAM NODE 1100.20 ELEVATION = 51.43 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 26.26 28.13 0.94 0.93 DIAMETER ANGLE (INCHES) (DEGREES) 30.00 30.00 18.00 18.00 0.00===Q5 EQUALS 0.00 - 90.00 90.00 FLOWLINE ELEVATION 51.43 51.42 51.43 51.43 CRITICAL DEPTH (FT. ) 1.75 1.81 0.36 0.36 VELOCITY (FT/ SEC) 5.350 5.731 0.532 0.526 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTA1)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00410 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00470 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00440 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.083)+( 0.000) = 0.083 NODE 1100.20 : HGL = < 54.177>;EGL= < 54.622>;FLOWLINE= < 51.430> FLOW PROCESS FROM NODE UPSTREAM NODE 1095.10 1100.20 TO NODE ELEVATION = 1095.10 IS CODE = 1 52.00 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 26.26 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 188.44 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 26.26)/( 410.172))**2 = 0.00410 HF=L*SF = ( 188.44)*(0.00410) = 0.772 NODE 1095.10 : HGL = < 54.950>;EGL= < 55.394>;FLOWLINE= < 52.000> FLOW PROCESS FROM NODE UPSTREAM NODE 1095.20 1095.10 TO NODE ELEVATION = 1095.20 IS CODE = 5 52.00 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 26.05 26.26 0.21 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 30.00 30.00 18.00 0.00 0.00===Q5 EQUALS 0.00 - 90.00 0.00 FLOWLINE ELEVATION 52.00 52.00 52.50 0.00 CRITICAL DEPTH (FT. ) 1.74 1.75 0.17 0.00 VELOCITY (FT/ SEC) 5.307 5.350 0.119 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTA1)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00403 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00410 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00407 JUNCTION LENGTH = 1.50 FEET FRICTION LOSSES = 0.006 FEET ENTRANCE LOSSES = 0.000 FEET (DY+HV1-HV2J+(ENTRANCE LOSSES) ( 0.013)+( 0.000) = 0.013 JUNCTION LOSSES = JUNCTION LOSSES = NODE 1095.20 : HGL = < 54.970>;EGL= < 55.407>;FLOWLINE= < 52.000> FLOW PROCESS FROM NODE UPSTREAM NODE 1090.10 1095.20 TO NODE •ELEVATION = 1090.10 IS CODE = 1 52.12 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( 26.05 CFS PIPE DIAMETER = 30.00 INCHES 41.35 FEET MANNING'S N = 0.01300 (( 26.05)/( 410.171))**2 = 0.00403 41.35)*(0.00403) = 0.167 NODE 1090.10 : HGL = < 55.137>;EGL= < 55.574>;FLOWLINE= < 52.120> FLOW PROCESS FROM NODE 1090.10 TO NODE UPSTREAM NODE 140.00 ELEVATION = 140.00 IS CODE = 5 52.13 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 16.54 26.05 9.51 0.00 30.00 30.00 30.00 0.00 90.00 61.00 0.00 52.13 52.12 52.13 0.00 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00283 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.011 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.568)+( 0.000) = 0.568 1.37 1.74 1.03 0.00 3.369 5.307 1.937 0.000 00163 00403 0.000 FEET NODE 140.00 HGL = < 55.966>;EGL= < 56.143>;FLOWLINE= < 52.130> FLOW PROCESS FROM NODE UPSTREAM NODE 145.00 140.00 TO NODE ELEVATION = 145.00 IS CODE = 1 52.65 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.54 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 65.23 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 16.54)/( 410.166))**2 = 0.00163 HF=L*SF = ( 65.23) MO. 00163) = 0.106 NODE 145.00 : HGL = < 56.072>;EGL= < 56.249>;FLOWLINE= < 52.650> FLOW PROCESS FROM NODE UPSTREAM NODE 150.00 145.00 TO NODE ELEVATION = 150.00 IS CODE = 3 52.81 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 16.54 CFS CENTRAL ANGLE = 12.400 DEGREES PIPE LENGTH = 19.51 FEET FLOW VELOCITY = 3.37 FEET/SEC. HB=KB*(VELOCITY HEAD) = ( 0.093)*( PIPE DIAMETER = 30.00 INCHES MANNING'S N = 0.01300 BEND COEFFICIENT(KB) = 0.09280 VELOCITY HEAD = 0.176 FEET 0.176) = 0.016 SF=(Q/K)**2 = (( 16.54)/( 410.194))**2 = 0.00163 HF=L*SF = ( 19.51)*(0.00163) = 0.032 TOTAL HEAD LOSSES = HB + HF = ( 0.016)+( 0.032) = 0.048 NODE 150.00 : HGL = < 56.120>;EGL= < 56.297>;FLOWLINE= < 52.810> FLOW PROCESS FROM NODE UPSTREAM NODE 160.00 150.00 TO NODE ELEVATION = 160.00 IS CODE = 1 53.67 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( 16.54 CFS PIPE DIAMETER = 30.00 INCHES 107.83 FEET MANNING'S N = 0.01300 (( 16.54)/( 410.168))**2 = 0.00163 107.83)*(0.00163) = 0.175 NODE 160.00 : HGL = < 56.296>;EGL= < 56.472>;FLOWLINE= < 53.670> FLOW PROCESS FROM NODE UPSTREAM NODE 170.00 160.00 TO NODE ELEVATION = 170.00 IS CODE = 5 53.70 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT-) (FT/SEC) 16.54 16.54 0.00 0.00 30.00 30.00 0.00 0.00 0.00 0.00 0.00 53.70 53.67 0.00 0.00 1.37 1.37 0.00 0.00 3.370 3.369 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2 *V2 -Ql *V1 *COS (DELTA1) -Q3 *V3 *COS (DELTA3 ) - Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00163 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00163 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00163 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.007 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.007)+( 0.000) = 0.007 NODE 170.00 : HGL = < 56.302>;EGL= < 56.479>;FLOWLINE= < 53.700> FLOW PROCESS FROM NODE UPSTREAM NODE 180.00 170.00 TO NODE ELEVATION = 180.00 IS CODE = 1 55.27 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.54 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 195.92 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.18 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.37 1.37 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0 0 0 0 0 0 1 1 2 2 3 4 5 7 8 10 12 15 18 22 27 33 42 54 76 195 .000 .027 .113 .262 .480 .775 .153 .626 .202 .896 .723 .700 .851 .204 .794 .666 .882 .521 .697 .579 .424 .665 .116 .601 .979 .920 FLOW DEPTH (FT) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .374 .366 .359 .351 .343 .335 .327 .319 .311 .303 .295 .287 .279 .271 .264 .256 .248 .240 .232 .224 .216 .208 .200 .192 .184 .184 VELOCITY (FT/ SEC) 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 .980 .023 .067 .111 .156 .202 .248 .295 .343 .391 .441 .491 .541 .593 .646 .699 .753 .808 .864 .921 .979 .037 .097 .158 .220 .226 SPECIFIC PRESSURE* ENERGY (FT) MOMENTUM ( POUNDS ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .930 .930 .930 .931 .932 .932 .933 .935 .936 .938 .940 .942 .944 .947 .950 .953 .956 .960 .964 .968 .973 .978 .983 .988 .994 .995 293 293 293 293 293 293 293 294 294 294 294 295 295 295 296 296 297 297 298 299 299 300 301 302 303 303 .25 .27 .32 .39 .50 .64 .81 .02 .25 .52 .83 .17 .55 .96 .40 .89 .41 .97 .57 .21 .89 .60 .36 .17 .01 .09 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.60 DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE* MOMENTUM(POUNDS) 0.000 16.020 2.602 2.500 3.370 3.370 2.779 2.676 522.23 490.88 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 16 22 29 35 41 47 53 59 65 71 76 82 87 93 98 103 108 113 118 122 126 130 133 136 138 • 138 195 .020 .738 .181 .469 .639 .709 .689 .585 .400 .134 .785 .349 .821 .191 .449 .581 .569 .390 .016 .406 .511 .260 .558 .263 .164 .912 .920 FLOW DEPTH (FT) 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .500 .455 .410 .365 .320 .275 .230 .185 .140 .095 .050 .005 .960 .915 .870 .825 .780 .735 .690 .645 .600 .554 .509 .464 .419 .374 .374 VELOCITY (FT/ SEC) 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 .368 .382 .408 .441 .480 .526 .577 .634 .696 .765 .839 .919 .005 .099 .199 .308 .424 .549 .684 .829 .985 .154 .337 .534 .748 .980 .980 SPECIFIC PRESSURE* ENERGY (FT) MOMENTUM ( POUNDS ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 I 1 1 1 .676 .633 .590 .549 .508 .468 .429 .390 .352 .315 .279 .243 .209 .176 .144 .113 .084 .056 .030 .007 .986 .967 .952 .940 .933 .930 .930 490. 477. 464. 452. 440. 428. 416. 405. 395. 384. 374. 365. 356. 348. 340. 332. 325. 319. 313. 308. 304. 300. 297. 295. 293. 293. 293. 88 56 68 17 01 21 77 71 04 77 92 51 56 09 11 66 75 40 66 54 09 34 33 11 73 25 25 )F HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 127.93 FEET UPSTREAM OF NODE 170.00 DOWNSTREAM DEPTH = 1.582 FEET, UPSTREAM CONJUGATE DEPTH = 1.187 FEET NODE 180.00 : HGL = < 56.644>;EGL= < 57.200>;FLOWLINE= < 55.270> FLOW PROCESS FROM NODE UPSTREAM NODE 190.00 180.00 TO NODE ELEVATION = 190.00 IS CODE = 5 55.31 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 15.30 16.54 0.00 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 24.00 30.00 0.00 0.00 1.24===Q5 EQUALS 90.00 - 0.00 0.00 FLOWLINE ELEVATION 55.31 55.27 0.00 0.00 CRITICAL DEPTH ( FT . ) 1.41 1.37 0.00 0.00 VELOCITY (FT/SEC) 4.870 5.982 0.000 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00457 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00475 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00466 JUNCTION LENGTH = . 4.00 FEET FRICTION LOSSES = 0.019 FEET ENTRANCE LOSSES = 0.111 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.872)+( 0.111) = 0.983 NODE 190.00 : HGL = < 57.815>;EGL= < 58.183>;FLOWLINE= < 55.310> FLOW PROCESS FROM NODE 190.00 TO NODE 200.00 IS CODE = 1 UPSTREAM NODE 200.00 ELEVATION = 56.00 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.30 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 67.83 FEET MANNING'S'N = 0.01300 SF=(Q/K)**2 = (( 15.30)/( 226.224))**2 = 0.00457 HF=L*SF = ( 67.83)*(0.00457) = 0.310 NODE 200.00 : HGL = < 58.125>;EGL= < 58.493>;FLOWLINE= < 56.000> FLOW PROCESS FROM NODE 200.00 TO NODE 200.00 IS CODE = 8 UPSTREAM NODE 200.00 ELEVATION = 56.00 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 15.30 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 4.87 FEET/SEC. VELOCITY HEAD = 0.368 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.368) = 0.074 NODE 200.00 : HGL = < 58.567>;EGL= < 58.567>;FLOWLINE= < 56.000> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 200.00 FLOWLINE ELEVATION = 56.00 ASSUMED UPSTREAM CONTROL HGL = 57.41 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPTION OF STUDY ************************ * POINSETTIA PROPERTIES PA 2, 3 & 4 - HYDRAULIC ANALYSIS * EXIST STRM DRN IN EMBARCADERO LANE-EXIST FLOWS-SEE RUN EMB-EX1.DAT FOR * NEW STARTING WS - FILE: EMB-LANE.DAT FILE NAME: C:\2068\EMB-LANE.DAT TIME/DATE OF STUDY: 17:46 09/01/2001 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 5000.10- 1.27 DC } FRICTION 1.27 DC5000.20- } JUNCTION 5000.00- 1.27*Dc } FRICTION 5010.00- 1.38* } JUNCTION 5020.00- 1.61* } FRICTION 5030.00- 1.40* } JUNCTION 5040.00- 1.51* } FRICTION 5050.00- 1.52* } JUNCTION 5060.00- 2.07* } FRICTION 5070.00- 1.98* } FRICTION+BEND 5080.00- 1.96* } FRICTION 5090.00- 1.93* } CATCH BASIN 5090.00- 2.11* 242.58 242.58 242.58 244.92 247.14 225.04 209.95 211.15 268.01 250.85 246.10 240.60 217.46 DOWNSTREAM RUN FLOW PRESSURE* DEPTH(FT) MOMENTUM(POUNDS) 365.770.71* 0.95* 1.27*Dc 1.27 DC 1.22 DC 1.22 DC 1.22 DC 1.22 DC 1.11 DC 1.11 DC 1.11 DC 1.11 DC 1.11 DC 274.89 242.58 242.58 218.64 218.64 196.08 196.08 154.98 154.98 154.98 154.98 53.53 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5000.10 FLOWLINE ELEVATION = 48.50 PIPE FLOW = 14.30 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 49.100 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.60 FT.) IS LESS THAN CRITICAL DEPTH( 1.27 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 5000.10 : HGL = < 49.211>;EGL= < 51.615>;FLOWLINE= < 48.500> FLOW PROCESS FROM NODE UPSTREAM NODE 5000.20 5000.10 TO NODE ELEVATION = 5000.20 IS CODE = 1 50.51 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.30 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 33.85 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.64 • CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.27 DISTANCE FROM CONTROL (FT) 0 0 1 1 2 3 4 5 6 7 9 10 12 14 16 18 21 24 28 33 33 .000 .591 .237 .942 .712 .555 .480 .495 .611 .844 .207 .722 .410 .303 .437 .859 .634 .846 .616 .119 .850 FLOW DEPTH (FT) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .945 .933 .921 .908 .896 .884 .872 .859 .847 .835 .823 .810 .798 .786 .774 .761 .749 .737 .725 .712 .711 VELOCITY (FT/ SEC) 8 8 8 8 9 9 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 .410 .559 .713 .873 .038 .209 .385 .569 .758 .955 .159 .371 .590 .819 .056 .303 .561 .828 .107 .399 .438 SPECIFIC PRESSURE+ ENERGY (FT) MOMENTUM ( POUNDS ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 .044 .071 .100 .132 .165 .201 .240 .282 .327 .375 .426 .481 .541 .605 .673 .747 .826 .911 .002 .101 .115 274 277 280 283 287 290 294 298 302 306 311 316 321 326 332 338 344 350 357 364 365 .89 .75 .76 .94 .29 .83 .55 .48 .60 .95 .51 .32 .37 .68 .26 .13 .31 .79 .62 .80 .77 NODE 5000.20 : HGL = < 51.455>;EGL= < 52.554>;FLOWLINE= < 50.510> FLOW PROCESS FROM NODE UPSTREAM NODE 5000.00 5000.20 TO NODE ELEVATION = 5000.00 IS CODE = 5 50.84 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 14.30 14.30 0.00 0.00 DIAMETER ANGLE (INCHES) (DEGREES) 30.00 30.00 0.00 0.00 0.00===Q5 EQUALS 7.00 - 0.00 0.00 FLOWLINE ELEVATION 50.84 50.51 0.00 0.00 CRITICAL DEPTH (FT. ) 1.27 1.27 0.00 0.00 VELOCITY (FT/SEC) 5.690 8.412 0.000 0.000 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00456 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01317 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0'. 00887 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.035 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.062)+( 0.000) = 0.062 NODE 5000.00 : HGL = < 52.114>;EGL= < 52.616>;FLOWLINE= < 50.840> ****************************************************************************** FLOW PROCESS FROM NODE 5000.00 TO NODE 5010.00 IS CODE = 1 UPSTREAM NODE 5010.00 ELEVATION = 51.07 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.30 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 66.04 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.38 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.27 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.27 DISTANCE FROM CONTROL (FT) 0 0 0 0 0 0 1 1 2 2 3 4 5 7 8 10 .000 .027 .111 .257 .471 .760 .131 .593 .157 .835 .642 .596 .719 .037 .585 .406 FLOW DEPTH (FT) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .274 .278 .282 .287 .291 .295 .300 .304 .308 .313 .317 .321 .326 .330 .334 .339 VELOCITY (FT/ SEC) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 .688 .664 .639 .615 .591 .568 .544 .521 .498 .475 .452 .430 .408 .385 .364 .342 SPECIFIC PRESSURE* ENERGY (FT) MOMENTUM ( POUNDS ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .776 .776 .776 .777 .777 .777 .777 .778 .778 .778 .779 .779 .780 .781 .781 .782 242 242 242 242 242 242 242 242 242 242 243 243 243 243 243 243 .58 .58 .59 .62 .65 .69 .73 .79 .86 .93 .01 .10 .20 .30 .42 .54 12 15 18 21 26 32 40 52 66 .560 .123 .206 .970 .664 .707 .881 .949 .040 1 1 1 1 1 1 1 1 1 .343 .348 .352 .356 .361 .365 .369 .374 .376 5 5 5 5 5 5 5 5 5 .320 .299 .278 .257 .236 .215 .194 .174 .162 1. 1. 1. 1. 1. 1. 1 1. 1. .783 .784 .785 .786 .786 .787 .789 .790 .790 243 243 243 244 244 244 244 244 244 .67 .81 .96 .11 .27 .44 .62 .80 .92 NODE 5010.00 : HGL = < 52.446>;EGL= < 52.860>;FLOWLINE= < 51.070> FLOW PROCESS FROM NODE 5010.00 TO NODE 5020.00 IS CODE = 5 UPSTREAM NODE 5020.00 ELEVATION = 51.08 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 13.20 14.30 0.73 0.37 DIAMETER ANGLE (INCHES) (DEGREES) 30.00 30.00 18.00 18.00 0.00===Q5 EQUALS 0.00 - 90.00 90.00 FLOWLINE ELEVATION 51.08 51.07 51.08 51.08 CRITICAL DEPTH (FT. ) 1.22 1.27 0.32 0.22 VELOCITY (FT/SEC) 3.957 5.163 0.414 0.210 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00187 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00353 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00270 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 4.00 FEET 0.011 FEET ENTRANCE LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.070)+( 0.000) = 0.070 0.000 FEET NODE 5020.00 : HGL = < 52.688>;EGL= < 52.931>;FLOWLINE= < 51.080> FLOW PROCESS FROM NODE 5020.00 TO NODE 5030.00 IS CODE = 1 UPSTREAM NODE 5030.00 ELEVATION = 51.70 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.20 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 206.66 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.38 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.61 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.22 DISTANCE FROM CONTROL (FT) 0.000 5.325 10.738 FLOW DEPTH (FT) 1.608 1.598 1.589 VELOCITY (FT/ SEC) 3.956 3.982 4.009 SPECIFIC ENERGY (FT) 1.851 1.845 1.839 PRESSURE* MOMENTUM ( POUNDS ) 247.14 245.91 244.69 16 21 27 33 39 45 51 58 65 72 79 87 95 104 113 123 134 147 162 180 204 206 .247 .862 .593 .453 .455 .617 .957 .500 .273 .311 .658 .367 .507 .171 .483 .617 .828 .511 .328 .522 .883 .660 1. 1. 1. 1. 1 1 1 1 1 1. 1. 1. 1. 1. 1, 1. 1. 1. 1 1. 1. 1. .580 .571 .562 .552 .543 .534 .525 .516 .506 .497 .488 .479 .470 .460 .451 .442 .433 .424 .414 .405 .396 .396 4, 4, 4, 4. 4, 4, 4. 4. 4. 4. 4, 4. 4. 4. 4. 4. 4, 4. 4, 4 4, 4, .036 .063 .091 .120 .149 .178 .208 .238 .269 .301 .332 .365 .398 .431 .465 .500 .535 .571 .607 .644 .682 .683 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .833 .827 .822 .816 .811 .805 .800 .795 .790 .785 .780 .775 .770 .766 .761 .757 .752 .748 .744 .740 .737 .736 243 242 241 240 238 237 236 235 234 233 232 232 231 230- 229 228 227 227 226 225 225 225 .51 .34 .20 .08 .99 .93 .88 .87 .88 .91 .97 .06 .17 .31 .48 .67 .90 .15 .43 .74 .07 .04 NODE 5030.00 : HGL = < 53.096>;EGL= < 53.436>;FLOWLINE= < 51.700> ****************************************************************************** FLOW PROCESS FROM NODE 5030.00 TO NODE 5040.00 IS CODE = 5 UPSTREAM NODE 5040.00 ELEVATION = 51.71 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 11.60 13.20 1.18 0.42 DIAMETER (INCHES) 24.00 30.00 18.00 18.00 ANGLE (DEGREES) 0.00 - 90.00 90.00 FLOWLINE ELEVATION 51.71 51.70 51.71 51.71 CRITICAL DEPTH ( FT . ) 1.22 1.22 0.41 0.24 VELOCITY (FT/ SEC) 4.558 4.685 0.675 0.240 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00311 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00288 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00300 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.106)+( 0.000) = 0.106 NODE 5040.00 : HGL = < 53.220>;EGL= < 53.543>;FLOWLINE= < 51.710> ****************************************************************************** FLOW PROCESS FROM NODE 5040.00 TO NODE 5050.00 IS CODE = 1 UPSTREAM NODE 5050.00 ELEVATION = 51.92 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 70.65 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.54 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.51 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.22 DISTANCE FROM CONTROL (FT) 0 5 10 16 22 28 35 42 49 57 66 70 .000 .173 .594 .283 .266 .573 .235 .292 .789 .778 .325 .650 FLOW DEPTH (FT) 1 1 1 1 1 1 1 1 1 1 1 1 .510 .512 .513 .514 .515 .517 .518 .519 .520 .522 .523 .523 VELOCITY (FT/ SEC) 4 4 4 4 4 4 4 4 4 4 4 4 .556 .553 .549 .545 .541 .537 .533 .530 .526 .522 .518 .516 SPECIFIC PRESSURE+ ENERGY (FT) MOMENTUM ( POUNDS ) 1 1 1 1 1 1 1 1 1 1 1 1 .833 .834 .834 .835 .836 .836 .837 .838 .839 .839 .840 .840 209 210 210 210 210 210 210 210 210 210 211 211 .95 .07 .18 .29 .41 .52 .64 .75 .87 .98 .10 .15 NODE 5050.00 HGL = < 53.443>;EGL= < 53.760>;FLOWLINE= < 51.920> FLOW PROCESS FROM NODE UPSTREAM NODE 5060.00 5050.00 TO NODE ELEVATION = 5060.00 IS CODE = 5 51.93 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 9.70 11.60 1.90 0.00 DIAMETER (INCHES) 24.00 24.00 18.00 0.00 ANGLE (DEGREES) 90.00 - 0.00 0.00 FLOWLINE ELEVATION 51.93 51.92 51.93 0.00 CRITICAL DEPTH (FT. ) 1.11 1.22 0.52 0.00 VELOCITY (FT/ SEC) 3.088 4.518 1.075 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTA1)-Q3 *V3 *COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00184 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00305 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00245 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.010 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.389) + ( 0'. 000) = 0.389 NODE 5060.00 : HGL = < 54.001>;EGL= < 54.149>;FLOWLINE= < 51.930> ****************************************************************************** FLOW PROCESS FROM NODE 5060.00 TO NODE 5070.00 IS CODE = 1 UPSTREAM NODE 5070.00 ELEVATION = 52.15 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 72.81 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.07 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE* CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.071 3.088 2.219 268.01 60.102 2.000 3.088 2.148 254.07 NORMAL DEPTH(FT) = 1.33 CRITICAL DEPTH(FT) = 1.11 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE* CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 60.102 2.000 3.087 2.148 254.07 72.810 1.983 3.091 2.132 250.85 NODE 5070.00 : HGL = < 54.133>;EGL= < 54.282>;FLOWLINE= < 52.150> FLOW PROCESS FROM NODE 5070.00 TO NODE 5080.00 IS CODE = 3 UPSTREAM NODE 5080.00 ELEVATION = 52.21 (FLOW IS SUBCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 27.100 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 21.37 FEET NORMAL DEPTH(FT) = 1.36 CRITICAL DEPTH(FT) = 1.11 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.98 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE* CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.983 3.091 2.132 250.85 20.775 1.958 3.102 2.108 246.23 21.370 1.958 3.103 2.107 246.10 NODE 5080.00 : HGL = < 54.168>;EGL= < 54.317>;FLOWLINE= < 52.210> FLOW PROCESS FROM NODE 5080.00 TO NODE 5090.00 IS CODE = 1 UPSTREAM NODE 5090.00 ELEVATION = 52.27 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 19.58 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.32 CRITICAL DEPTH(FT) = 1.11 GRADUALLY VARIED DISTANCE FROM CONTROL (FT) 0.000 16.555 19.580 NODE 5090.00 : FLOW PROFILE .FLOW DEPTH (FT) 1.958 1.932 1.927 HGL = < 54. COMPUTED VELOCITY (FT/SEC) 3.103 3.119 3.123 197>;EGL= INFORMATION: SPECIFIC ENERGY (FT) 2.107 2.083 2.079 PRESSURE + MOMENTUM ( POUNDS ) 246.10 241.46 240.60 < 54.349>;FLOWLINE= < 52.270> FLOW PROCESS FROM NODE 5090.00 TO NODE 5090.00 IS CODE = 8 UPSTREAM NODE 5090.00 ELEVATION = 52.27 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.70 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 3.12 FEET/SEC. VELOCITY HEAD = 0.152 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.152) = 0.030 NODE 5090.00 : HGL = < 54.379>;EGL= < 54.379>;FLOWLINE= < 52.270> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5090.00 FLOWLINE ELEVATION = 52.27 ASSUMED UPSTREAM CONTROL HGL = 53.38 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2000 License ID 1509 Analysis prepared by: Project Design Consultants 701 B Street, Suite 800 San Diego, CA 92101 (619) 235-6471 ************************** DESCRIPTION OF STUDY **************** * POINSETTIA PROPERTIES PA 2, 3, & 4 HYDRAULIC ANALYSIS * EXIST STRM DRN IN EMBARCADERO LN (SECTION N/0 STREET B)SEE RUN * EMB-LANE.DAT FOR NEW STARTING WS - FILE: EM-LN2.DAT FILE NAME: C:\2068\EM-LN2.DAT TIME/DATE OF STUDY: 17:57 09/01/2001 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 5200 5210 5220 5230 .00- } .00- } .00- } .00- MODEL PROCESS FRICTION JUNCTION FRICTION UPSTREAM RUN PRESSURE PRESSURE+ HEAD ( FT ) MOMENTUM ( POUNDS ) 2 2 2 1 .07 .01 .12 .32 * 167. * 161. 161. * 75. 87 64 13 13 DOWNSTREAM RUN FLOW PRESSURE* DEPTH (FT) MOMENTUM (POUNDS) 0. 0. 0. 0. 81 DC 81 DC 54 55 61. 61. 40. 40. 34 34 34 22 } FRICTION+BEND 5240 5250 .00- } .00- FRICTION 0 0 .79 .67 * 39. } HYDRAULIC JUMP *Dc 37. 61 82 0. 0. 58 67*Dc 39. 37. 00 82 } CATCH BASIN 5250 .00- MAXIMUM NUMBER OF 0.98 ENERGY * 20. BALANCES USED IN 33 EACH 0. PROFILE 67 DC = 25 13.43 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5200.00 FLOWLINE ELEVATION = 51.93 PIPE FLOW = 4.50 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 54.001 FEET NODE 5200.00 : HGL = < 54.001>;EGL= < 54.102>;FLOWLINE= < 51.930> FLOW PROCESS FROM NODE UPSTREAM NODE 5210.00 5200.00 TO NODE ELEVATION = 5210.00 IS CODE = 1 52.08 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( 4.50 CFS PIPE DIAMETER = 18.00 INCHES 50.92 FEET MANNING'S N = 0.01300 ( 4.50)/( 105.044))**2 = 0.00184 50.92)*(0.00184) = 0.093 NODE 5210.00 : HGL 54.094>;EGL= < 54.195>;FLOWLINE= < 52.080> FLOW PROCESS FROM NODE 5210.00 TO NODE 5220.00 IS CODE = 5 UPSTREAM NODE 5220.00 ELEVATION = 52.09 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL f2 Q5 FLOW (CFS) 3.10 4.50 0.91 0.49 DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.00 18.00 18.00 18.00 0.00 90.00 90.00 52.09 52.08 52.09 52.09 0.67 0.81 0.36 0.26 1.754 2.546 0.515 0.277 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*V1*COS(DELTA1)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00087 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00184 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00135 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.005 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.058)+( 0.000) = 0.058 NODE 5220.00 : HGL = < 54.206>;EGL= < 54.253>;FLOWLINE= < 52.090> FLOW PROCESS FROM NODE 5220.00 TO NODE 5230.00 IS CODE = 1 UPSTREAM NODE 5230.00 ELEVATION = 52.94 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 77.30 FEET MANNING'S N = 0.01300 = = = = = = = = =:=: = = = = = = =: = = = = = = = = = = = = = = =: = = = = = =:=: = =: = = = = = =: = = = = =:=;=: = = = = = = = = = = = = = = = =: = = = = = : DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.12 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE* CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.116 1.754 2.163 161.13 60.806 1.500 1.754 1.548 93.24 NORMAL DEPTH(FT) = 0.54 CRITICAL DEPTH(FT) = 0.67 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 60.806 64.015 67.164 70.278 73.364 76.425 77.300 FLOW DEPTH (FT) 1.500 1.467 1.434 1.400 1.367 1.334 1.324 VELOCITY (FT/ SEC) 1.754 1.763 1.781 1.805 1.834 1.866 1.877 SPECIFIC ENERGY (FT) 1.548 1.515 1.483 1.451 1.419 1.388 1.379 PRESSURE* MOMENTUM ( POUNDS ) 93.24 89.65 86.13 82.69 79.33 76.06 75.13 NODE 5230.00 : HGL = < 54.264>;EGL= < 54.319>;FLOWLINE= < 52.940> FLOW PROCESS FROM NODE 5230.00 TO NODE UPSTREAM NODE 5240.00 ELEVATION = 5240.00 IS CODE = 3 53.42 (FLOW IS SUBCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 3.10 CFS CENTRAL ANGLE = 56.000 DEGREES PIPE LENGTH = 43.95 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.55 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.32 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.67 DISTANCE FROM CONTROL (FT) . 0 2 4 7 9 11 14 16 18 21 23 25 27 29 32 34 36 38 39 41 43 43 .000 .410 .805 .187 .553 .904 .238 .554 .850 .124 .375 .598 .791 .948 .065 .135 .150 .100 .972 .749 .410 .950 FLOW DEPTH (FT) 1 1 1 1 1 1 1 1 1 I 1 1 1 0 0 0 0 0 0 0 0 0 .324 .298 .272 .246 .220 .193 .167 .141 .115 .089 .063 .036 .010 .984 .958 .932 .905 .879 .853 .827 .801 .791 VELOCITY (FT/SEC) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 .877 .907 .940 .975 .014 .055 .100 .148 .200 .256 .315 .379 .448 .522 .601 .687 .779 .879 .986 .103 .229 .277 SPECIFIC PRESSURE* ENERGY (FT) MOMENTUM ( POUNDS ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 .379 .355 .330 .306 .283 .259 .236 .213 .190 .168 .146 .124 .103 .083 .063 .044 .025 .008 .992 .977 .963 .958 75. 72. 70. 67. 65. 63. 61. 59. 57. 55. 53. 51. 49. 48. 46. 45. 43. 42. 41. 40. 39. 39. 13 63 20 83 52 28 11 02 00 06 20 43 74 15 65 25 95 76 68 71 87 61 NODE 5240.00 : HGL = < 54.211>;EGL= < 54.378>;FLOWLINE= < 53.420> FLOW PROCESS FROM NODE 5240.00 TO NODE 5250.00 IS CODE = 1 UPSTREAM NODE 5250.00 ELEVATION = 53.49 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.61 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.53 CRITICAL DEPTH(FT) = 0.67 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0 0 0 0 0 0 0 0 1 1 1 2 2 3 4 5 5 .000 .013 .055 .127 .232 .375 .559 .788 .069 .407 .810 .288 .851 .514 .294 .214 .610 FLOW DEPTH (FT) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .670 .664 .658 .653 .647 .641 .635 .630 .624 .618 .612 .607 .601 .595 .589 .584 .582 VELOCITY (FT/ SEC) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 .059 .105 .152 .200 .249 .299 .351 .403 .457 .512 .568 .626 .685 .746 .808 .871 .895 SPECIFIC PRESSURE* ENERGY (FT) MOMENTUM ( POUNDS ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 926 926 926 927 927 928 929 931 933 934 937 939 942 945 949 952 954 37 37 37 37 37 37 37 38 38 38 38 38 38 38 38 38 39 .82 .83 .84 .86 .89 .94 .99 .05 .12 .21 .30 .41 .52 .65 .79 .94 .00 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.79 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =: = = = = = = = =: = = = = = =: = =: = = = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) 0 0 0 0 0 1 1 1 1 1 2 2 .000 .237 .469 .696 .918 .133 .343 .546 .743 .933 .116 .291 FLOW DEPTH (FT) 0, 0, 0 0. 0. 0, 0. 0, 0, 0. 0. 0. .791 .787 .782 .777 .772 .767 .762 .757 .752 .748 .743 .738 VELOCITY (FT/ SEC) 3 3 3 3 3 3 3 3 3 3 3 3 .277 .303 .328 .355 .381 .409 .436 .464 .493 .522 .551 .581 SPECIFIC PRESSURE* ENERGY (FT) MOMENTUM ( POUNDS ) 0 0 0 0 0 0. 0. 0. 0, 0, 0, 0. .958 .956 .954 .952 .950 .948 .946 .944 .942 .940 .939 .937 39 39 39 39 39 38 38 38 38 38 38 38 .61 .47 .35 .22 .10 .99 .88 .78 .68 .58 .49 .41 2.458 0.733 3.611 0.936 38.33 2.616 0.728 3.642 0.934 38.26 2.766 0.723 3.674 0.933 38.19 2.906 0.718 3.706 0.932 38.13 3.037 0.714 3.738 0.931 38.07 3.157 0.709 3.772 0.930 38.02 3.266 0.704 3.805 0.929 37.97 3.363 0.699 3.840 0.928 37.93 3.448 0.694 3.875 0.927 37.90 3.519 0.689 3.910 0.927 37.87 3.577 0.684 3.946 0.926 37.85 3.619 0.680 3.983 0.926 37.83 3.645 0.675 4.021 0.926 37.82 3.654 0.670 4.059 0.926 37.82 5.610 0.670 4.059 0.926 37.82 , END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 1.63 FEET UPSTREAM OF NODE 5240.00 DOWNSTREAM DEPTH = 0.755 FEET, UPSTREAM CONJUGATE DEPTH = 0.592 FEET NODE 5250.00 : HGL = < 54.160>;EGL= < 54.416>;FLOWLINE= < 53.490> FLOW PROCESS FROM NODE 5250.00 TO NODE 5250.00 IS CODE = 8 UPSTREAM NODE 5250.00 ELEVATION = 53.49 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.10 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.06 FEET/SEC. VELOCITY HEAD = 0.256 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.256) = 0.051 NODE 5250.00 : HGL = < 54.467>;EGL= < 54.467>;FLOWLINE= < 53.490> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5250.00 FLOWLINE ELEVATION = 53.49 ASSUMED UPSTREAM CONTROL HGL = 54.16 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS APPENDIX 11 NPDES Treatment Requirement Calculations REP\2068DR.DOC A-ll NPDES TREATMENT REQUIREMENT CALCULATIONS FOR ON-SITE AND OFF-SITE DRAINAGE BASINS FROM NODE 1000 1010 1005 1025 1030 1040 1050 1055 1071 1072 1075 1080 1090 1110.1 1110.1 1110 TO NODE 1005 1015 1020 1030 1035 1045 1055 1060 1072 1070 1080 1085 1110 1110.1 1110 2600 C 0.70 0.80 0.70 0.80 0.50 0.70 0.80 0.80 0.80 0.80 0.40 0.40 0.85 0.85 0.45 0.55 AREA (ACRES) 0.51 0.71 0.50 0.15 0.62 0.37 0.11 0.39 0.09 0.24 0.08 0.31 13.18 0.81 3.09 36.66 CA 0.36 0.57 0.35 0.12 0.31 0.26 0.09 0.31 0.07 0.19 0.03 0.12 11.20 0.69 1.39 20.16 SUMMATION OF AREAS = 57.82 SUMMATION OF CA = 36.23 | WEIGHTED C = 0.63| NOTE: SEE EXHIBITS A AND B FOR NODE NUMBERS FLOW REQUIRED TO BE TREATED PER THE NPDES MUNICIPAL PERMIT: Q = CIA WHERE: C = WEIGHTED RUNOFF COEFFICIENT FOR ON-SITE AND OFF-SITE DRAINAGE BASINS. NOTE THAT THE MUNICIPAL PERMIT REQUIRES THAT ONLY PROJECT RUNOFF BE TREATED. AS PART OF THE CONDITIONS OF APPROVAL, BOTH ON-SITE AND OFF-SITE RUNOFFS WILL BE TREATED BY THE CDS UNIT. I = 0.2 INCHES/HOUR A = PROJECT DRAINAGE AREA (ON-SITE AND OFF-SITE) Q = (0.63)(0.2)(57.82) = 7.3 CFS CDS UNIT MODEL PSW 50-42 TREATMENT CAPACITY = 9.0 CFS 9.0 CFS > 7.3 CFS ===> OK T:\WATERRES\2068-POINSETTIA\C-VALUE\C-VALUE.xls CDS Unit Manufacturer's Hydraulic Calculations REP\2068DR.DOC A-1 1 ^•UUiniHi"" BGDS T€CHNOLOGI6S October 30, 2001 HYDRAULIC CALCULATIONS CONTINUOUS DEFLECTIVE SEPARATOR (CDS) STORM WATER POLLUTION CONTROL UNIT BY CDS TECHNOLOGIES, INC. PROJECT: WATERS END - CARLSBAD, CA ENGINEER: Submitted by: PROJECT DESIGN CONSULTANTS SAN DIEGO, CA Mark Cuneo, P.E. CDS Technologies, Inc. 3950 Long Beach Blvd. Suite 100 Long Beach, CA 90807 CDS Technologies, Inc. • http://www.cd5tech.com/ * cds@cdstech.com 3950 Long Beach Blvd. • Suite TOO • Long Beach, CA 90807-5411 • Phone (562) 424-6334 • Fax (562) 424-8336 CDS PROJECT NAME: CftALS.&A£> - PROJECT NO:<W/LA-0|-)S'S DATE: I Q /7^ /O| BY; ^ £4A«JCO SHEET I OF Co T€CHNOUX3I€S C| tt/C. A. SSL * . £fi S fnpOCL, . ^9> u) SO > ^ 1. > "7 QCSi ^^ OF I » OO A 4") /I TCOHNOLOGieS PROJECT NAME: PROJECT NO: BY: DATE:: LQ/2,q SHEET ___2-__OF CDS A- to 0.^0 CDS T€CHNOLOGI€S PROJECT NAME: PROJECT NO: _ BY: M . DATE:. SHEET f -Xs!- CDS T6CHNOLOGI6S PROJECT NAME PROJECT NO: _ BY: *" DATE: 2 & \2 SHEET OF A OF o~- C L = CDS PROJECT NAME PROJECT NO: _ BY: M. DATE: t<V 3-9 /Of T6CHNOUOGI6S SHEET QF / 0uo 5, <> ( fj p s> - 4^4 St^GC Pi 0.14^ .DJ 34; 07-4— 4^8-' CDS PROJECT NAME: PROJECT NO: _ BY "*^ DATE:M /O) SHEET OF T€CHNOLOGI€S , 4*2- ~ ^. O CF i~nr I PC X S '-O " Submerged Weir Upstream Head Calculations for a Sharp Crested Weir ks = submergence discharge correction factor For sharp crested weirs: Starosolszki Pg 344 or Villmont Equation Assume hu/i ft nd/»ft /illn h 1 \ IWhu/s = 0 ks = 1 •rant Eq ks = 1 .00 Select ks from above j/s/hu/, ks Q cfs 0.53 , 9.83IJ 109.3341 hu/s ^^^M, f 1 ~~* 0.1 0.2 0.3 0.99 0.98 0.96 0.99 0.96 0.93 L C H ft ft 3.08 2.6417 C = 3.08 2.54 <D hd/s 0.4 0.91 0.89 CDS weirs Side weirs 0.5 0.93 0.85 0.6 0.87 0.79 0.7 0.8 0.71 0.8 0.7 0.62 0.9 0.54 0.48 1 0.2 0.00 vrt M£T rot -a NOTI SD *TA X«XX CMT-JM-n-ACt-mvDBfflN CHAntx.irv > m SMUCEU.•n ouuvorr. rt» DETAILS«a SMI MOD KEIIMM. —STAtOAMI BUVIMG D-74*MO »-7U, «PAM • W,tcsur - *, MAX nu.OVER TIP - •• CMT-M-TUOC OMOETC OOVMJ.1 TO KM. WLTT*HD OUTLET PPCS OECKITE t> ttft aunxT PIFC PLAN VIEW iv» w coven PKEUT CCNCIIETErtvw_« cat IMT OMU OBSumo atu.ua BONO it t* | B DOMOJ X 10* UWOWTO r oar xft HOa M CM MET/OUTLET NOTES: \ %? ""' tvt m COVEDAND mAIC Vn» a 47 ji \. tutt, r— £3S3*w5 L --\ w\ If V... \\ VN^ M ->^ -&k ^\\ •«s_11 1# ' "^"^t--^' / / 1 L MPE mvEmEL MJ* ona AMI -am 111 1 oawu x 10- HTO r DEEP Xf>CO* IUT/DUTUT aJONO 1 HOLE) M **cm / »• • MET / OUTLET SEPARATUMOWOER ; SUMP s~~ - m orv 47j g,, IT COVI1» ft L acATC SKDTH SVALC ixuucH mvamoN MX. B-TU rn namcocKr DETAU. L-^r-J ELEVATION VIEW i ABHTnUL M MMa rex EACH FACD- cf mvotoaivan KB DIVERSION WEIR DETAIL (NO SCALE) OP nvDtsiw SECTION A-A (NO SCALE) MULLEJ AMI HMO WTOMCT OLTTLET / CAST WTOor wen KB 01 TOTAU OKHNCI ro»jMLtT/nmrrUtltNII INTO INLET/OUTLET OPENING DETAIL (NO SCALE) Manufacturer's Reinforcing Steel Drawings REP\2068DR.DOC A-1 1 T€CHNOIOGI€S November 14, 2001 REINFORCING STEEL DRAWINGS CONTINUOUS DEFLECTIVE SEPARATOR (CDS) STORM WATER POLLUTION CONTROL UNIT BY CDS TECHNOLOGIES, INC. PROJECT: WATERS END - CARLSBAD, CA ENGINEER: PROJECT DESIGN CONSULTANTS SAN DIEGO, Submitted by: Mark Cuneo, P.E. CDS Technologies, Inc. 3950 Long Beach Blvd. Suite 100 Long Beach, CA 90807 CDS Technologies, Inc. • http;//www.cdste<h.com/ • cds@cdstech.com 3950 Long Beach Blvd. • Suite TOO • Long Beach, CA 90807-5411 • Phone (562) 424-6334 • Fax (562) 424-8336 P50 Riser, Not Shown Wt=1,250#/Ft. P50 Inlet/Outlet, See Sheet 6 Wt=5,360# P50 Chamber Top, See Sheet 5 Assembled Wt 20,000# P50 Separation Chamber, See Sheets 3 and 4 Screen, Not Shown P50 Sump, See Sheet 2 Wt=4,260# DETAIL ASSEMBLY SGDS'TECHNOLOGIES PATENTED CDS PSW50_42 REINFORCING DETAILS DATE 1/19/99 DRAWN W. SHADEL APPROV. SCALE N.T.S SHEET DETAIL PLAN I • y- 1 /O"1/2 -6" wt — i u ffi A ' \ \.. ••^ONI WW AS1 OR HO 18' ' 3-D VIEW NOT TO SCALE ONE SINGLE WRAP WWF 8X3 - W2.5/3.0 ASTM A 185 OR #3 BARS @ 8"O.C. HORZ. AND #3 BARS « 18" O.C. VERT. r- 3" CLR EACH WAY SECTION I™ CDS ^gj TECHNOLOGIES PATENTED CDS PSW50_42 SUMP REINFORCING DATE 1/19/99 DRAWN W. SHADEL APPROV. SCALE SHEET 48 J4~\ BARS © 6" ^96 -#3 @ 10.5" ALL AROUND I V 00 4'-0" r 6-#3 @ 10.5" ALL AROUND 5'-0" 4>> BARS, TYP. , #3 0 8» I 5'-[o" 4'40" I 12" 48 NOT TO SCALE i-6-i-#4 BARS O 6"yge -#3 0 10.5" ALL AROUND/ SECTION 1/2" = 1'-0" GRADE 60 6" O.C. CDS PSW50_42 SEPARATION CHAMBER REINFORCING SECTIONS DATE 01/9/01 DRAWN DQP APPROV. SCALE AS SHOWN SHEET 1 THICK TYP. GROUP 5: 3-#5 O 1-1/2" CLR TO BOTTOM OF FORM SPACED @ 3" 2-#4 HOOPS AROUND OPENING GROUP 3: 3-#5 REBARS CD _L h-1B"—I GROUP 1: 3-#5 ON BOHOM STEEL AROUND OPENING CONFIGURATION GROUP 2: 5-#5 1-1/2" CLR FROM BOTTOM SPACED @3" GROUP 4 : 4-#5 LAID ON TOP OF LOWER #5 BARS PLAN VIEW SCALE: 1/2"=1'-0" 2-#3 O 2" IN. FROM EDGE FOR CRACK CONTROL NO. OF BARS LENGTHS CO I 6" #3 TOP & BOTTOM #4 AROUND OPENING I SEE ABOVE DETAIL A-A I SCALE: 1"=1'-0" 7 co B-B 1-1/2" CLR TYP SCALE: 1/2"=1'-0" GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 3 5 3 4 3 3 2' 3" 5' 6" 61 0" 6' 6" 7' 0" T 5' 6r 4" 51 ID- S' 3" 6' 11" 6' 6" 5' 11" 5' 8" 5' 7" 5' 0" 4' 4" 5' 0" 4' 6" 3' 9" REBAR SCHEDULE NOTE: ALL REBARS ARE #5 UNLESS OTHERWISE NOTED BpHraU""" 0>S ' TECHNOLOGIES PATENTED CDS PSW50_42 REINFORCING SEPARATION CHAMBER TOP DATE 1/19/99 DRAWN W. SHADEL APPROV. SCALE AS SHOWN SHEET DRILL AND BOND *4 DDVELS 12 REQUIRED (INSTALLED IN FIELD) REINFORCE INLET/OUTLET WITH #4 BARS 8 12' DN CENTER, EACH WAY, DR #3 BARS 6' D.C. EACH WAY, REINFORCED FDR RISERS 2 WRAPS OF WWF 8X3 - 3.00x2.50 or tt3 Bars 6 5' D.C. Horz, and #3 bars 8 18' D.C. Vert. Per ASTM A 185 (NDT SHOWN) DETAIL £4 1/2' TALL JOINT PLAN 5' 1 XJ iD • • • 4' m» .1U • < DUTLE1 / 1ri • • • • IN "AKE • • • l\ 1 1 1 1 In\ »p SECTION TDNGUE PLACE IN FIELD 12-#4 DOWELS EMBEDDED 4' INTO INLET/OUTLET, PROJECTING OUT 6' I™ LCDSTECHNOLOGIES PATENTED CDS PSW50_42 INTAKE REINFORCING DATE 1/19/99 DRAWN V. SHADEL APPRDV. SCALE SHEET 6 15 1617 18 19 1) FOR REBAR LENGTHS SEE REBAR LEGEND ON SHEET 8 2) FOR SECTION A-A SEE DETAIL ON SHEET 8 A \ *'\I ! ! RISER REINFORCEMENT | i | EXTENDED INTO INLET- / /' / OUTLET AS SHOWN / / / / PATENTED CDS PSW50 REINFORCING DIAGRAM IN/OUTLET STRUCTURE 4/30/01 ccs 7 Rebar Legend Note: All Steel Shown Are # 3 @ 6" O.C. (Maximum) 24" 26" 18"1-4) 18" 5) 6) 7) 8) 12" 9) 12" 24" 18" 18" 10) 18" 11) 18" 12) 18" 13) 18" 14) 18" 15) 16-19) 24" Total 3 18" Reinforcement SECTION A - A «SHRUH»" BEDS TECHNOLOGIES PATENTED CDS PSW50 REINFORCING DIAGRAM IN/OUTLET STRUCTURE DATE 4/30/01 DRAWN CCS APPROV. SCALE NTS SHEET 8 APPENDIX 12 H&A Basin Hydrographs REPV2068DR.DOC