Loading...
HomeMy WebLinkAboutCT 00-16; Poinsettia Properties; Sewer Report; 2001-02-01SEWER REPORT POINSETTIA PROPERTIES PLANNING AREAS 2, 3 & 4 CARLSBAD, CALIFORNIA CT 00-16 FEBRUARY 2001 2002 Prepared For: JOHN LAING HOMES 895 Dove Street, Suite 110 Newport Beach, CA 92660 _y^\jM PROJECTDESIGN CONSULTANTS PLANNING « ENVIRONMENTAL » ENGINEERING • SrmviriVGPS 701 B Street, Suite 800, San Diego, CA 92101 619-235-6471 FAX 619-234-0349 Job No. 2068.00 Grego^Ek. ShieldsTPE RCE 42951 Registration Expires 07/15/03 Prepared By: TEH Checked By: CT DO- TABLE OF CONTENTS Page I. Introduction 1 II. Design Criteria 3 III. Flow Calculations and Equations 4 IV. Conclusion 5 LIST OF FIGURES Figure Page 1 Location Map 2 LIST OF TABLES Table Page 1 Sewer Flow Calculations 6 2 Sewer Flow Calculations 7 APPENDIX Appendix Page 1 Letter from City of Carlsbad, Public Works Engineering 8 2 Project Map 10 3 Memo from Glen Van Peski 12 ATTACHMENT Exhibit A - Sewer System REPORTV2068SR.DOC I. INTRODUCTION This sewer report has been prepared to document and validate the design for the proposed sewer system associated with Poinsettia Properties Planning Areas 2, 3 and 4. The proposed development is located in the City of Carlsbad, east of the San Diego Northern Railroad, west of Avenida Encinas, south of Embarcadero Way, and north of Poinsettia Lane. It is approximately 0.25 miles west of Interstate 5, and about 14 miles south of State Route 78. Please refer to the vicinity map on Page 2. The project will accept the sewer flow from four different developments north, northwest, west, and southwest (see Appendix 2 - Project Map) of the project. Two of the developments, the north and northwest sites, will discharge their flow via an 8-inch pipeline at the north property line. This incoming flow is calculated based on 400 dwelling units. The connection occurs at the proposed Bay Lane (private), which intersects with Embarcadero Way (see Exhibit A - Sewer System). The proposed development consists of 219 single-family lots, which will ultimately be serviced by 6-inch, 8-inch, and 10-inch gravity sewer mains flowing to the proposed Interceptor Sewer Pump Station at the southwest corner of the site. The pump station will also accept flows from an 8-inch sewer main from the west. The development to the west and southwest will discharge a flow equivalent to 229 dwelling units. The sewer pump station must, therefore, be designed to lift the flow for a total of 849 dwelling units (see Appendix 1 - Letter from City of Carlsbad, Public Works Engineering). The sewer pump station will then deliver the sewer flow to the 21-inch sewer main described below. In addition to the sewer system described above, a 21-inch sewer main will be routed through the project. The sewer will enter the project site from the south (Poinsettia Lane) and run through the proposed Sand Shell Avenue (private). From the cul-de-sac in Street 'D', it will connect to the 27-inch sewer trunk line described above. This 21-inch sewer line will accept the flows from the sewer pump station via a 6-inch force main connecting to Access Hole 45 on Lot 226. Based on the anticipated flow that will enter the pump station, a maximum discharge of 350 gpm will be delivered through the force main into the 21-inch line at Access Hole 45. REPORT/2068SR.DOC CITY OF OCFANSfDE HIGHWAY-J^/fl pro iec { site CITY OF. YISTA cirr or SAN MARCOS PACIFIC OCFAN Figure 1. Location Map II. DESIGN CRITERIA The design criteria used in this report was established by the Carlsbad Municipal Water District and are listed in "Carlsbad Standard Sewer System Design Criteria and Standard Drawings and Specifications" dated May 11, 1993. The following is a brief summary from the above- mentioned standards for various pipe sizes: 1. Depth of Peak Flow for 10-inch dia. & smaller 2. Depth of Peak Flow for 10-inch dia. & larger 3. Minimum Slope for 10-inch Pipe 4. Desirable Slope for 10-inch Pipe 5. Minimum Slope for 8-inch Pipe 6. Desirable Slope for 8-inch Pipe 7. Ratio of Peak to Average Flow 8. Flow Per Unit 9. Minimum Velocity 10. Manning's n = half diameter, therefore D/d < 0.50 = % diameter, therefore D/d < 0.75 = 0.28% = 0.40% = 0.40% = 0.50% = 2.5:1 = 220 GPD = 2FPS = 0.011 REPORT/2068SR DOC III. FLOW CALCULATIONS AND EQUATIONS Flow Velocities (V) and Normal Depths (dn) are calculated using iterative solutions of the following equations: Typical Cross Section Q - Volumetric Flow = V x A where: A = Cross-Sectional Area of Flow V = Flow Velocity A = (R) x [6/2 - Sin(0/2) x Cos(9/2)] where: 0 = 2xCos~1[(R-<4)/(R)] dn - Normal Depth V= (l.4&6/n)Rh mSl/2 (Manning Equation) where: n = Manning Roughness Coefficient = 0.011 RH = Hydraulic Radius = A/PW Pw = Wetted Perimeter = 6 x R S = Slope of Pipe REPORT/2068SR DOC IV. CONCLUSION It was determined that a 10-inch PVC pipe will be suitable to carry the cumulative sewer flow generated by the offsite developments from the north and northwest of the project and the proposed development. This flow will discharge into the proposed sewer pump station at the southwest corner. All proposed 10-inch sewer pipes meet the criterion of d/D less than 0.50 at a minimum slope of 0.28%, and maintaining a velocity of 2 fps. All other onsite sewer mains, with the exception of the 21-inch by-pass main, will be 6-inch or 8-inch PVC pipes. The d/D criterion for a 21-inch line is 0.75 or less. Table 2 shows that the maximum d/D in the 21-inch sewer line is 0.57. All access holes are per Carlsbad Standard Drawing SI. The 6-inch and 8-inch sewer pipes have been designed to meet the d/D less than 0.50 requirement. Some pipe sections are unable to reach a velocity of 2 fps due to minimal flows, but all sections maintain velocities greater than 1.50 fps. Velocities between 1.50 fps and 2 fps are acceptable per discussions in a plan check meeting held on October 24, 2001. Table 1 on the following page identifies the hydraulic results of the proposed sewer design. A 20-foot vertical curve transition, with a 50% tangent slope in and a 2% tangent slope out, may be used to connect to the deep 10-inch sewer main (see Appendix for memo from Glen Van Peski dated August 31, 2001). REPORT72068SR.DOC CT 00-16 CARLSBAD DWG NO: 397-7 PDC JOB NUMBER: 2068.00 DESIGN DATE: 11/7/01 TODAY'S DATE: 2/6/02 TABLE 1 - SEWER FLOW CALCULATIONS POINSETTIA PROPERTIES FROM C13 A42 A41 NCOMINC A12 C7 A19 A11 A11 C6 A18 C12 A40 A39 A38 A37 A10 A10 C5 A17 C10 A36 A9 A9 C4 A16 A35 A34 A33 A8 A8 C3 A15 C9 A32 A7 A7 C2 A14 C8 A32 A6 A6 A5 C1 A13 A30 A29 A28 A27 A4 A4 C11 A26 A25 A24 A23 A22 A21 A20 A3 A3 A2 TO A42 A41 A12 A12 A11 A19 A11 A11 A10 A18 A10 A40 A39 A38 A37 AID A10 A9 A17 A9 A36 A9 A9 A8 A16 A8 A34 A33 A8 A8 A7 A15 A7 A32 A7 A7 A6 A14 A6 A32 A6 A6 A5 A4 A13 A4 A29 A28 A27 A4 A4 A3 A26 A25 A24 A23 A22 A21 A20 A3 A3 A2 A1 DWELLING UNITSJ IN-LINE 7 8 0 400 8 7 0 0 0 6 0 8 11 6 9 0 0 2 5 0 5 0 0 2 4 0 12 7 0 0 2 4 0 5 0 0 3 4 0 4 0 0 5 6 3 0 13 10 5 0 0 3 5 7 6 6 5 3 10 1 0 2 0 TOTAL 7 15 15 415 423 7 7 430 430 J 6 6 8 19 25 34 34 470 472 5 5 5 5 482 484 4 4 12 19 19 507 509 4 4 5 5 518 521 4 4 4 4 529 534 540 3 3 13 23 28 28 571 574 5 12 18 24 29 32 42 43 617 619 619 FLOW PER D.U. 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 TOTAL D.U. POP 1540 3300 3300 91300 93060 1540 1540 94600 1320 1320 1760 4180 5500 7480 7480 103840 1100 1100 1100 1100 106480 880 880 2640 4180 4180 111980 880 880 1100 1100 114620 880 880 880 880 117480 118800 660 660 2860 5060 6160 6160 126280 1100 2640 3960 5280 6380 7040 9240 9460 136180 136180 TOTAL POP 1540 3300 6600 97900 190960 1540 1540 94600 1320 1320 1760 5500 10181 17924 25658 103840 1100 1100 1100 1100 106480 880 880 3520 7700 4180 111980 880 880 1100 1100 114620 880 880 880 880 117480 236280 660 660 2860 7920 14080 20240 126280 1100 3740 7700 12980 19360 26400 35640 45100 136180 136180 PEAK/AVE RATIO 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 PEAK FLOW G.P.D. 3,850 8,250 16,500 244,750 477,400 3,850 3,850 236,500 3,300 3,300 4,400 13,750 25,453 44,810 64,145 j 259,600 2,750 2,750 2,750 2,750 266,200 2,200 2,200 8,800 19,250 10,450 279,950 2,200 2,200 2,750 2,750 286,550 2,200 2,200 2,200 2,200 293,700 590,700 1,650 1,650 7,150 19,800 35,200 50,600 315,700 2,750 9,350 19,250 32,450 48,400 66,000 89,100 112,750 340,450 340,450 C.F.S. 0.0060 0.0128 0.0255 0.3787 0.7387 0.0060 0.0060 0.3659 0.0051 0.0051 0.0068 0.0213 0.0394 0.0693 0.0993 0.4017 0.0043 0.0043 0.0043 0.0043 0.4119 0.0034 0.0034 0.0136 0.0298 0.0162 0.4332 0.0034 0.0034 0.0043 0.0043 0.4434 0.0034 0.0034 0.0034 0.0034 0.4545 0.9140 0.0026 0.0026 0.0111 0.0306 0.0545 0.0783 0.4885 0.0043 0.0145 0.0298 0.0502 0.0749 0.1021 0.1379 0.1745 0.5268 0.5268 PIPE DIA (in) 6 8 8 8 10 6 6 10 6 6 8 8 8 8 8 10 6 6 6 6 10 6 6 8 8 8 10 6 6 8 8 10 6 6 6 6 10 10 6 6 8 8 8 8 10 8 8 8 8 8 8 8 8 10 10 ST NAME Seaward Ave Seaward Ave Seaward Ave BayLn Seaward Ave Seaward Ave ~ Seaward Ave Shoreline Dr Sandside Ct Sandside Ct Waters End Dr Waters End Dr Sandside Ct Sandside Ct Sandside Ct Shoreline Dr Strand St Strand St Strand St Strand St Shoreline Dr Saltgrass Ave Saltgrass Ave Clearwater St Sallgrass Ave Saltgrass Ave Shoreline Dr Coral Reef Ave Coral Reef Ave Coral Reef Ave Coral Reef Ave Shoreline Dr Brookside Ct Brookside Ct Brookside Ct Brookside Ct Shoreline Dr Shoreline Dr Red Coral Ave Red Coral Ave Sweetwater St Sweetwater St Red Coral Ave Red Coral Ave Shoreline Dr Waters End Dr Waters End Dr Waters End Dr Waters End Dr Waters End Dr Waters End Dr/Sand Shell Ave Sand Shell Ave Sand Shell Ave Sand Shell Ave Sand Shell Ave "FROM" INV. STA. 8+46.66 7+48.24 4+89.66 4+49.90 1+00 2+11.51 1+00 1+00 2+04.95 5+57.13 3+60 7+65.99 5+00 2+70.00 3+17.21 1+00 2+08.81 3+85.02 2+71.08 5+33.99 1+00 2+10.82 1+90 5+33.05 2+60.82 7+51.03 1+00 2+1 1 .42 4+40 2+78.40 9+64.16 1+00 2+06.75 3+89.44 2+74.17 11+71.30 14+16.25 1+00 2+09.92 1+50 4+80 4+33.41 2+65.42 16+98.33 7+14.95 8+33.81 10+50 12+80.23 15+00 16+43.56 5+55.93 2+56.50 2+29.85 0+99.98 INV. EL. 50.38 46.96 39.25 34.79 34.01 42.60 38.14 33.26 40.75 36.55 54.92 48.98 43.78 39.50 37.15 32.57 40.00 36.18 46.70 42.70 31.87 40.30 35.87 47.80 40.94 35.76 31.18 40.84 35.84 46.97 40.22 30.50 44.43 40.26 47.80 40.01 29.83 29.06 39.47 34.00 48.83 42.23 36.41 34.52 27.57 54.79 50.04 45.71 41.11 38.32 36.59 35.95 33.04 26.91 26.47 "TO" INV. STA. 7+48.24 4+89.66 4+49.90 2+58.32 2+40.43 2+11.51 2+40.43 3+17.21 2+04.95 2+31.41 3+60 1+00 5+00 2+70.00 2+31.41 5+33.99 2+08.81 2+35.02 2+71.08 2+35.02 7+51.03 2+10.82 2+35.82 5+32.99 2+60.82 2+35.82 9+64.16 2+11.42 2+43.24 2+78.40 2+43.24 11+71.30 2+04.20 2+39.44 2+74.17 2+39.44 14+16.25 16+98.33 2+09.92 2+37.15 4+80 8+21.55 2+65.42 2+37.15 19+09.90 8+33.81 10+50 12+80.23 15+00 16+43.56 5+55.93 2+56.50 2+29.85 0+99.98 INV. EL. 47.06 39.35 34.11 34.11 33.36 38.24 33.36 32.67 36.65 32.67 49.08 43.88 39.60 37.25 32.67 31.97 36.28 31.97 42.80 31.97 31.28 35.97 31.29 41.04 35.86 31.29 30.60 35.94 29.94 40.32 29.94 29.93 40.36 L 29.94 40.11 29.94 29.16 27.67 34.10 27.68 42.33 36.51 34.62 27.68 27.01 50.14 45.81 41.21 38.42 36.69 36.05 33.14 27.02 26.57 26.30 DIST BTWN CL OF AH (ft) 258.58 39.76 209.47 111.51 28.92 217.21 104.95 26.46 197.13 260.00 265.99 230.00 38.59 216.78 108.81 26.21 113.94 36.06 217.04 110.82 25.00 342.99 272.23 25.00 213.13 111.42 31.82 161.60 35.16 207.14 104.20 35.24 115.27 34.73 244.95 282.08 109.92 27.23 330.00 341.55 167.99 28.27 211.57 118.86 216.19 230.23 219.77 143.56 60.79 299.43 26.65 129.87 44.31 HORIZ PIPE LENGTH (ft) 110.77 253.58 34.76 169.06 204.47 109.01 23.92 212.21 102.45 21.46 194.63 255.00 260.99 225.00 33.59 211.78 106.31 21.21 1 1 1 .44 31.06 212.04 108.32 20.00 337.99 267.23 20.00 208.13 108.92 26.82 159.10 30.16 202.14 101.70 30.24 112.77 29.73 239.95 277.08 107.42 22.23 325.00 336.55 162.99 23.27 206.57 116.36 211.19 225.23 214.77 138.56 55.79 294.43 21.65 124.87 39.31 DESIGN SLOPE (% 3.00 3.00 14.79 0.40 0.32 4.00 19.98 0.28 4.00 18.08 3.00 2.00 1.60 1.00 13.33 0.28 3.50 50.00 * 3.50 50.00 * 0.28 4.00 43.80 ** 2.00 1.90 42.70 *** 0.28 4.50 33.89 * 4.18 50.00 * 0.28 4.00 50.00 * 6.82 50.00 * 0.28 0.50 5.00 50.00 * 2.00 1.70 1.10 50.00 * 0.27 4.00 2.00 2.00 1.25 1.18 0.97 0.95 50.00 * 0.28 0.43 dnW 0.0272 0.0348 0.0325 0.301 1 0.4188 0.0248 0.0143 0.2942 0.0236 0.0133 0.0265 0.0483 0.0673 0.1001 0.0641 0.3092 0.0233 0.0120 0.0233 0.0124 0.3131 0.0207 0,0112 0.0392 0.0568 0.0201 0.3220 0.0185 0.0108 0.0203 0.0122 0.3261 0.0210 0.0112 0.0180 0.0108 0.3305 0.4164 0.0169 0.0096 0.0357 0.0599 0.0870 0.0418 0.3473 0.0203 0.0405 0.0566 0.0811 0.0997 0.1216 0.1413 0.0608 0.3585 0.3190 dp/D 0.05 0.05 0.05 0.45 0.50 0.05 0.03 0.35 0.05 0.03^ 0.04 0.07 0.10 0.15 0.10 0.37 0.05 0.02 0.05 0.02 0.38 0.04 0.02 0.06 0.09 0.03 0.39 0.04 0.02 0.03 0.02 0.39 0.50 0.02 0.50 0.02 0.40 0.50 0.03 0.02 0.05 0.09 0.13 0.06 0.42 0.03 0.06 0.08 0.12 0.15 0.18 0.21 0.09 0.43 0.38 INLINE CFS 0.0060 0.0128 0.0255 0.3787 0.7387 0.0060 0.0060 0.3659 0.0051 0.0051 0.0068 0.0213 0.0394 0.0693 0.0993 0.4017 0.0043 0.0043 0.0043 0.0043 0.4119 0.0034 0.0034 0.0136 0.0298 0.0162 0.4332 0.0034 0.0034 0.0043 0.0043 0.4434 0.0034 0.0034 0.0034 0.0034 0.4545 0.9140 0.0026 0.0026 0.0111 0.0306 0.0545 0.0783 0.4885 0.0043 0.0145 0.0298 0.0502 0.0749 0.1021 0.1379 0.1745 0.5268 0.5268 Q (cfs) 0.0066 0.0130 0.0250 0.3787 0.7387 0.0062 0.0043 0.3663 0.0056 0.0035 0.0073 0.0213 0.0385 0.0695 0.1002 0.4018 0.0051 0.0046 0.0051 0.0050 0.4115 0.0043 0.0038 0.0137 0.0293 0.0152 0.4333 0.004 0.003 0.0049 0.0056 0.4435 0.0044 0.0040 0.0041 0.0037 0.4546 0.9143 0.0031 0.0029 0.0112 0.0311 0.0545 0.0787 0.4886 0.0047 0.0147 0.0299 0.0502 0.0749 0.1021 0.1374 0.1737 0.5268 0.5278 n 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.01 1 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 e (rad) 0.47 0.46 0.45 1.47 1.58 0.45 0.34 1.27 0.44 0.33 0.40 0.55 0.65 0.80 0.63 1.31 0.44 0.31 0.44 0.32 1.32 0.41 0.30 0.49 0.59 0.35 1.34 0.39 0.30 0.35 0.27 1.35 0.41 0.30 0.38 0.29 1.36 1.57 0.37 0.28 0.47 0.61 0.74 0.51 1.40 0.35 0.50 0.59 0.71 0.79 0.88 0.96 0.61 1.43 1.33 P(ft) 0.24 0.31 0.30 0.98 1.31 0.22 0.17 1.06 0.22 0.16 0.27 0.36 0.43 0.53 0.42 1.09 0.22 0.16 0.22 0.16 1.10 0.21 0.15 0.33 0.39 0.23 1.12 0.19 0.15 0.23 0.18 1.13 0.21 0.15 0.19 0.15 1.14 1.31 0.18 0.14 0.31 0.41 0.49 0.34 1.17 0.23 0.33 0.39 0.48 0.53 0.59 0.64 0.41 1.19 1.11 A(ft21 0.00 0.01 0.01 0.15 0.27 0.00 0.00 0.17 0.00 0.00 0.00 0.01 0.02 0.03 0.02 0.18 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.01 0.01 0.00 0.19 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.20 0.27 0.00 0.00 0.01 0.02 0.03 0.01 0.22 0.00 0.01 0.01 0.02 0.03 0.04 0.05 0.02 0.22 0.19 VELOCITY (f.D.S.) 1.59 1.87 3.98 2.47 2.69 1.72 2.69 2.13 1.67 2.44 1.57 1.89 2.09 2.12 5.85 2.18 1.55 3.79 1.5S 3.87 2.20 1.54 3.40 1.65 2.04 4.93 2.23 1.51 2.91 1.55 3.83 2.24 1.55 3.62 1.83 3.53 2.26 • 3.36 1.50 3.27 1.55 2.00 2.03 8.61 2.27 1.52 1.69 2.09 2.08 2.29 2.35 2.54 10.95 2.35 2.75 * = 50% TANGENT WITH A 20 FT VERTICAL CURVE TRANSITIONING INTO ACCESSHOLE ** = 43.80% TANGENT WITH A 20 FT VERTICAL CURVE TRANSITIONING INTO ACCESSHOLE *** = 42.70% TANGENT WITH A 20 FT VERTICAL CURVE TRANSITIONING INTO ACCESSHOLE 2068 - Sewer Flow Calculations - 020102.xls 121001 TABLE 2 - SEWER FLOW CALCULATIONS POINSETTIA PROPERTIES FROM SOUTH A46 A45 A44 TO A46 A45 A44 A43 PEAK FLOW G.P.M. 2,431 2,431 2,431 2,781 C.F.S. 5.4153 5.4153 5.4153 6.1951 PIPE DIA (in) 21 21 21 21 ST NAME Sand Shell Ave Sand Shell Avej DIST BTWN CL OF AH (ft) 128.57 339.59 151.23 64.51 HORIZ PIPE LENGTH (ft) 126.07 334.59 146.23 59.51 DESIGN SLOPE (%' 0.29 0.29 0.29 dnW 0.9130 0.9130 0.9915 cyo 0,52 0.52 0.57 INLINE CFS 5.4153 5.4153 6.1951 Q (cfs) 5.4153 5.4153 6.1951 n 0.011 0.011 0.011 6 (rad) 1.61 1.61 1.70 p(m 2.82 2.82 2.98 A m-h 1.27 1.27 1.41 VELOCITY (f.D.S.) 4.27 4.27 4.41 2068 - Sewer Flow Calculations - 020102.xls 21 "SEWER APPENDIX 1 LETTER FROM CITY OF CARLSBAD PUBLIC WORKS ENGINEERING REPORT72068SR.DOC July26: 2001 Gregory M. Shields, P.E. Project Design Consultants 701 B Street Suite 800 San Dieco.CA 92101 Re:Sliorcs PA 2-Lift Station Dear Greg: Per vour rcquesl 1 am sending you information regarding the proposed lift station for Poinsettia Shores PA 7 Enclosed there is a site plan for Knots Lane Lift Station. This is a desirable footprint and was used to help determine the Site Development Plan for PA 2 done b\ Himsakei and Associates Also there are copies of the improvement plans that show (he two sewers that uerc constructed to or near the property line of PA 2 As we discussed in our meeting last ueek. flows Irom the nonh and \vest will be diverted to this lift station The additional flows include the 400 EDUs from Embarcadeio Lane to the north of PA 2 and 229 EDUs from (he west. Total EDUs including the 220 EDUs from PA 2 equals 849 In this case an EDU is equivalent to 220-galions'day average flow Use a peaking factor of 2 5 to determine peak flow Also as ue have discussed, design issues related to the lift station and the sewer trunk relocation should be directed to the Design Division of Public Works Engineering to nr\ attention Sincerelv. Mark Biskup Project Engineer Public Woiks Engineerin Ei:c!c>-.od KiiOli L.I SMr I'bi; !>.•.•; APPENDIX 2 PROJECT MAP REPORT72068SR.DOC 10 PROPOSED LIFT STATlO LIFT STATION r APPENDIX 3 MEMO FROM GLEN VAN PESKI REPORT72068SR.DOC 12 August 31,2001 TO: TIM EISENHAUER, PROJECT DESIGN CONSULTANTS FROM: Consultant Project Engineer, Glen Van Peski COPY: Skip Hammann, Principal Civil Engineer, Land Development Barbara Kennedy, Project Planner RE: POINSETTIA PROPERTIES P.A. 2, 3, & 4 Per our meeting this week, I have the following information: Sewer Per our discussion, avoid the maintenance issues posed by drop manholes by sloping the normal depth sewer lines down to the invert of the deep manholes. Use a maximum sewer grade of 50% (2:1), with a minimum 20-foot vertical curve at the manhole. Use a 2% tangent grade entering the deep manhole. Substantial conformance In checking with the project planner, she said that all retaining walls should remain below the height requiring a permit (30"). Also, she mentioned that it was planned that there would be steps up to some of the houses, so be sure and take that into account in your grading design. Water meters I am still checking on being able to cluster the water meters for the courtyards. I believe we have done that before in the City, I just haven't located the project yet. The individual services would have to be designed to stay within the common area lots and not go across individual lots.