Loading...
HomeMy WebLinkAboutCT 01-02; CALAVERA HILLS VILLAGE K; DRAINAGE STUDY CALAVERA HILLS VILL K; 2002-12-23DRAINAGE STUDY FOR CALAVERA HILLS - VILLAGE K C.T. 01-02 Job No. 98-1020 December 23, 2002 RECEIVED JAM 0 a & Prepared by: O'DAY CONSULTANTS, INC. 5900 Pasteur Court Suite 100 Carlsbad, Califomia 92008-7317 Tel: (760)931-7700 Fax: (760) 931-8680 Keith Hansen RCE 60223 Exp. 06/30/04 Date TABLE OF CONTENTS SECTION 1 HYDROLOGY FOR ON-SITE SYSTEM INTRODUCTION Purpose of Study Scope STUDY AREA Soils Groups Land Uses HYDROLOGY Rational Method Description CONCLUSION SECTION 2 SECTION 3 Vicinity Map Runoff Coefficients Isopluvial Maps 100-Year, 6-Hour 100-Year, 24-Hour Intensity-Duration Design Chart - Appendix XI-A San Diego County Soils Interpretation Study Urban Areas Overland Time of Flow Curves - Appendix X-C Nomograph for Determination of Tc for Natural Watersheds - Appendix X-A Inlet Calculation Formulas Hydrology 100 year Analysis Proposed Condition SECTION 4 Hydraulics 100 year Analysis Storm Drain Lines - A, B, and C SECTION 5 SECTION 6 Inlet Calculations Exhibit A On-Site Drainage Map - Proposed Exhibit B Improvement Plans Dwg 403-7 Sheet 11 Sheet 12 Sheet 13 SECTION 1 INTRODUCTION Purpose of Study This drainage study was prepared to determine the runoff quantities for oiu: site. Scope This study analyzes the lOO-year flow for the proposed conditions of our site. STUDY AREA Soils Groups For on-site, per the San Diego Cotmty Soils Interpretation Study, soil type D was used. Land Use For proposed conditions, single family land use was utilized for Calavera Hills-Village K site. HYDROLOGY The rational method for storm water runoff was used for this study according to the County of San Diego Hydrology Manual and Design Procedure Manual. Rational Method Description The rational method, as described in the 1985 San Diego County Flood Control/Hydrology Manual, is used to estimate surface runoff flows. The basic equation: Q = CIA C = runoff coefficient (varies with surface) I = intensity (varies with time of concentration) A = area in acres For the 100-year design storm; the corresponding 6-hour rainfall amount is 2.6 inches. A computer program developed by CivilCADD/CIVILDESIGN Engineering Software ® 1993, Version 3.2, was used to determine the times of concentration and corresponding intensities and flows for the various hydrological processes performed in this model. This program also determines the street flow and pipeflow characteristics for each segment modeled. Program Process The rational method program is a computer-aided design program where the user develops a node link model of the watershed. The node link model is created by developing independent node link models of each interior watershed and linking these submodels together at confluence points. The program has the capability of performing calculations for 11 different hydrologic and hydraulic processes. These processes are assigned and printed in the output. They are as follows: 1. Initial sub-area input, top of stream. 2. Street flow through sub-area, includes sub-area runoff. 3. Addition of runoff from sub-area to stream. 4. Street inlet and parallel street and pipeflow and area. 5. Pipeflow travel time (program estimated pipe size). 6. Pipeflow travel time (user-specified pipe size). 7. Improved chaimel travel - Area add option. 8. Irregular channel travel time - Area add option. 9. User-specified entry of data at a point. 10. Confluence at downstream point in current stream. 11. Confluence of main streams. CONCLUSION We analyzed the on-site Storm Drain system and based on our results we concluded that: For the 1 OO-year storm The total proposed Q for our site (System 100 thru 700) = 17.73 cfs The total proposed Q for our site (System 800 thru 1000) = 9.95 cfs For the System 100 thru 700 - the total proposed Q of 17.73 cfs will drain into the existing 24" RCP per Dwg 390-9. The pipe is adequately sized to handle the flow from Village K and the areas tributary to that inlet at Harwich Drive (Station 20-1-16.00). For System 800 thru 1000 - the total proposed Q of 9.95 cfs will drain into the existing 18" RCP per Dwg. 390-9. The pipe is adequately sized to handle the proposed flow. SECTION 2 CITY OF OCEANSIDE HlGHWAYy^ VyiLUGE SITE NOT TO SCALE OTY OF SAN MARCOS PACinc OCEAN CITY OF ENCINITAS VICINITY MAP NO SCALE RU.NOFF COEFFICIENTS (R.\TIONAL METHOD) L.AND USE Coefficient, Soil Group C a) A B c D Undeveloped .50 .35 .40 .45 i^esidential: .Rural .50 . 55 .40 Single Family , 40 .45 .50 . 55 Multi-Units .45 .50 .60 . 70 Mobile Homes (2) .45 .50 . 55 . 65 Commercial (2) 30% Impervious . 70 . 75 .80 . 35 Industrial (2) 90% Impervious .80 .85 .90 . 9 5 -N'OTES: Cl) Obtain soil group frora maps on file with the Department of Sanitation and Flood Control. (2) Where actual conditions deviate significantly from the tabulated imperviousness values of 30% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consider ccimnercial property on D soil group. Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C = ^ X 0.85 = 0.5.S APPE.\'DIX IX COUffTY OF SAN DIEGO DEPARTMENT OF SANITATION £. FLOOD CONTROL 10O-YEAR P?!EClP!TAT10iJ ^20^ ISOPLUVIALS PRECIPITATiOn \[l OF lOO-YEAR 6-HOUR iE?m!S OF AtJ li.'Cil 33' > I Prepn».-d by U.S. DEPARTMENT OF COMMERCE NATrO.VAL OCEANIC AND AT.vioSPllCKIC AOMI.MISTKATION SPECIAL STUDIES BRANCH. OFFICE OF lljOROLOGY, NATIONAL WEATHER SERVICE 30' -ifit ... 116" COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION S- FLOOD CONTROL 33' 30' 15' ^5' Preptt U.S. DEPARTMEN NATIONAL OCI;ANIC ANO AT SPECIAL STUOIES bKANCII. OFI-ICli OK IT 30' 100-YEAR 24-!10ljR PRECIPITATION •20--/ISOPLUVIALS OF 100 -YEAR 24-HOUR PRECIPITATION IM TEMTHS OF AN INCH d by r OF COMMERCE 'JusniEKIC AU.MINISTRATION OKOLOCY, NATIONAL WCATIIER SERVICE >*5Ho45''iD 5"-IK 30' 117" :in« 116" INTENSITY-DUMTION DESIGN CHART •^'iirlTrrrnniHTTTixrntTTnTnTnTmntJir^; '; ; Y i.i.ia.l.u i.-mni i hn I = 7.44 P, D 0 -.645 I = Intensity (In./Hr.) Pg = 6 Hr, Precipitation (In.) D a Duration (Min.) CTl I 3: o c -J "Xl -I (0 n o 3 3 O ZT n 10 15 20 Minutes Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed in the County Hydrology Manual (10, 50 and 100 yr. maps included in the Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr. precipitation. (Not applicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency yr. 1) Pfi = Jn., P24= 2) Adjusted *Pg= 3) t^ = 4) I = in. %* mm. in/hr. *Not Applicable to Desert Region niiva-f'Jnn Revised 1/85 APPENDIX XI-A U^Sj^/i/ ^^£^S OI/£^L^A/D T/M£ FLOW CU/?\/£S CoeMc/e/f/ 0/ £'v/To/'f. C-.SO 1.66-1- C)A|T: SAN DIEGO COUNTY DEPARTMENT-OF SPECIAL DISTRICT SERVICES DESIGN M>\NUAL APPROVED • 'r' ->>•' ••'^-- ^ C^T^ URBAN AREAS OVERLAND TIME OF FLOW CURVES DATE APPENDIX X-C rr—/aaa - Bao - 700 - £do \ —soao —4aaa —2ooo —zoao £Qa/?r/OA/ '//.SL^\ // ) rc .jas /E ' Time <s/ co/7cen/reL/-/ar7 L ' Leng/A of tva/ersAed e/Zec/Zire s/ooe //ae (See Appe/td/xZ-B) j. ^ T M//es Fee/' //otfJ-sX M//ri//es 4—I— 24a /O- •SOO •40O \ "^400 4— • 300 '200 /OO \ \ 2- \ \ \ \ - -so •40 .30 I—ZO as— NOTE HFOR .NATURAL WATERSHEDS \ ADO TEN MINUTES TO \ I COMPUTED TIME OF CON- \ |CENTRAT!ON. _j — /O — 5 •saoo — 4(^00 U-JOOO \ - 200O — /SOO — /600 • ATOO — /200 - /OOO — 900 — 800 • 700 — 600 -SOO — <too — 30O 200 \ H /ao /20 /oo 30 80 70 ~£0 -SO 40 — JO - 20 /8 • /6 ./4 \—/2 - /O • 9 • a 7 • 6 — 4- — J 7?- SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES APPROVED DESIGN '0.//. /X-. MANUAL NOMOGRAPH FOR DETERMINATfON OF TIME OF CONCENTRATION (Tc) FOR NATURAL WATERSHEDS DATE APPENDIX X-A lV-A-10 Rev. 5/81 INLET CALCULATION FORMULAS Street Inlet Contmuous Gnuie Q » 0.7L (a+y)^ L-^ a .... 0.7(a+y)** where / » depth of flow in approach gutter in feet a = depth of depression of flow line at inlet in feet L = length of clear opening in feet (max. 30 feet) Q a flow in CFS Street Inlet Sump Condition L-_r2 where L - length of clear opening in feet Q = flow in CFS SECTION 3 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 08/28/02 VILLAGE K DRAINAGE STUDY SYSTEM 100 THRU SYSTEM 700 AUGUST 26, 2002 J.N. 98-1020 BY:CSO FILE:VILKDS ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C values used Runoff coefficients by rational method +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 120.00(Ft.) Highest elevation = 427.70(Ft.) Lowest elevation = 426.04(Ft.) Elevation difference = 1.66(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 9.73 min. TC = [1.8*{l.l-C)*distance^.5)/(% slope"(l/3)] TC = [1.8*(l.l-0.5500)*(120.00'^.5)/( 1. 38'^ (1/3) ] = 9.73 Rainfall intensity (I) = 4.458 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.270(CFS) Total initial stream area = 0.110(Ac.) ++++++++++++++++++++++-1-++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 104.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 426.040(Ft.) End of street segment elevation = 391.810(Ft.) Length of street segment = 4 63.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.736(CFS) Depth of flow = 0.191(Ft.), Average velocity = 4.146(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.737(Ft.) Flow velocity = 4.15(Ft/s) Travel time = 1.86 min. TC = 11.59 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.982(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.832(CFS) for 0.380(Ac.) Total runoff = 1.102(CFS) Total area = 0.49(Ac.) Street flow at end of street = 1.102(CFS) Half street flow at end of street = 1.102(CFS) Depth of flow = 0.216(Ft.), Average velocity = 4.221(Ft/s) Flow width (from curb towards crown)= 3.982(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 11.59 min. Rainfall intensity = 3.982{In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 2.256(CFS) for 1.030(Ac.) Total runoff = 3.358(CFS) Total area = 1.52(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 108.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 387.24(Ft.) Downstream point/station elevation = 379.50(Ft.) Pipe length = 18.56(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.358(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.358(CFS) Normal flow depth in pipe = 2.72(In.) Flow top width inside pipe = 12.90(In.) Critical Depth = 8.38(In.) Pipe flow velocity = 19.94(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 11.61 min. + + ++++++++++++++++++++++++ + +++++++++-I-+++++++++++++++H Process from Point/Station 108.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** H-+ 108.000 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.520(Ac.) Runoff from this stream = 3.358(CFS) Time of concentration = 11.61 min. Rainfall intensity = 3.979(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++ Process from Point/Station **** INITIAL AREA EVALUATION 202.000 to Point/Station * * * * 204.000 Decimal Decimal Decimal Decimal [SINGLE Initial fraction soil fraction soil fraction soil fraction soil group group group group A B C D 000 000 000 000 ] 135.00(Ft.) FAMILY area type subarea flow distance Highest elevation = 423.00(Ft.) Lowest elevation = 419.60(Ft.) Elevation difference = 3.40(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.45 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope-^ (1/3) ] TC = [1.8*(l.l-0.5500)*{135.00".5)/( 2 . 52"^ (1/3) ] = 8.45 Rainfall intensity (I) = 4.882 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0. Subarea runoff = 0.322(CFS) Total initial stream area = 0.120(Ac.) 550 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 208.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = End of street segment elevation = 424.720(Ft.) 391.280(Ft.) Length of street segment = 411.700(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side{s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.180(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 2.168(Ft.) Flow velocity = 4.49(Ft/s) 0.671(CFS) 4.490(Ft/s) Travel time = 1.53 min. TC = Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Rainfall intensity = 4 9.98 min. ] for a 100.0 year storm .386(In/Hr) Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.627(CFS) for 0.260(Ac.) Total runoff = 0.949(CFS) Total area = 0.38(Ac.) Street flow at end of street = 0.949(CFS) Half street flow at end of street = 0.949(CFS) Depth of flow = 0.205(Ft.), Average velocity = 4.34 4(Ft/s) Flow width (from curb towards crown)= 3.406(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 9.98 min. Rainfall intensity = 4.386(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.158(CFS) for 0.480(Ac.) Total runoff = 2.107(CFS) Total area = 0.86(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 208.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 108.000 Upstream point/station elevation = 383.79(Ft.) Downstream point/station elevation = 37 9.50(Ft.) Pipe length = 26.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.107(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.107(CFS) Normal flow depth in pipe = 2.73(In.) Flow top width inside pipe = 12.91(In.) Critical Depth = 6.57(In.) Pipe flow velocity = 12.49(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 10.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 108.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 108.000 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.8 60(Ac.) Runoff from this stream = 2.107(CFS) Time of concentration = 10.02 min. Rainfall intensity = 4.376(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 3.358 2.107 1.000 * 0.909 * 1.000 * 1.000 * 11. 61 10.02 1.000 * 1.000 * 0.863 * 1.000 * 3. 979 4.376 3.358) + 2.107) + 3.358) + 2.107) + 5.274 5.004 Total of 2 main streams to confluence: Flow rates before confluence point: 3.358 2.107 Maximum flow rates at confluence using above data: 5.274 5.004 Area of strearas before confluence: 1.520 0.860 Results of confluence: Total flow rate = 5.274(CFS) Time of concentration = 11.610 min. Effective stream area after confluence 2.380(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 37 9.50(Ft.) Downstream point/station elevation = 374.70(Ft.) Pipe length = 170.86(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.274(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.274(CFS) Normal flow depth in pipe = 6.76(In.) Flow top width inside pipe = 17.43 (In.) Critical Depth = 10.62(In.) Pipe flow velocity = 8.71(Ft/s) Travel time through pipe = 0.33 min. Time of concentration (TC) = 11.94 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 374.70(Ft.) Downstream point/station elevation = 367.70(Ft.) Pipe length = 161.18(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.274(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.274(CFS) Normal flow depth in pipe = 6.02(In.) Flow top width inside pipe = 16.98(In.) Critical Depth = 10.62(In.) Pipe flow velocity = 10.19(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 12.20 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 112.000 to Point/Station 112.000 * * * * CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.380(Ac.) Runoff from this stream = 5.274(CFS) Time of concentration = 12.20 min. Rainfall intensity = 3.853(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 302.000 to Point/Station 304.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 120.00(Ft.) Highest elevation = 393.60(Ft.) Lowest elevation = 392.31(Ft.) Elevation difference = 1.29(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.59 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope'^ {1/3) ] TC = [1.8*(l.l-0.5500)*(120.00^.5)/{ 1.08^(1/3)]= 10.59 Rainfall intensity (I) = 4.223 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = Subarea runoff = 0.232(CFS) Total initial stream area = 0.100(Ac.) 0.550 ++++++++++++++++++++++++++++H Process from Point/Station **** STREET FLOW TRAVEL TIME 304.000 to Point/Station 306.000 SUBAREA FLOW ADDITION **** 0.0150 0.0150 Top of street segment elevation = 392.240(Ft.) End of street segment elevation = 377.240(Ft.) Length of street segment = 345.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft. Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = 0.511(CFS) Depth of flow = 0.184(Ft.), Average velocity = 3.236(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.354(Ft.) Flow velocity = 3.24(Ft/s) Travel time = 1.78 min. TC = Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type Rainfall intensity = 3.820(In/Hr) Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.504(CFS) for 0.240(Ac.) Total runoff = 0.737(CFS) Total area = Street flow at end of street = 0.737(CFS) Half street flow at end of street = 0.737(CFS) Depth of flow = 0.208(Ft.), Average velocity = 3.192(Ft/s) Flow width (from curb towards crown)= 3.581(Ft.) 12.36 min. ] for a 100.0 year storm 0.34(Ac.) ++++++++++++++++++++++++++++H Process from Point/Station **** SUBAREA FLOW ADDITION H-+++++++++++++ 306.000 to Point/Station 306.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 12.36 min. Rainfall intensity = 3.820(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.156(CFS) for 0.550(Ac.) Total runoff = 1.892(CFS) Total area = 0.89(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 306.000 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 371.72(Ft.) Downstream point/station elevation = 367.70(Ft.) Pipe length = 7.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.892(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.8 92(CFS) Normal flow depth in pipe = 1.93(In.) Flow top width inside pipe = 11.14(In.) Critical Depth = 6.22(In.) Pipe flow velocity = 18.56(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 12.37 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 112.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 112.000 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.890(Ac.) Runoff from this stream = 1.892(CFS) Time of concentration = 12.37 min. Rainfall intensity = 3.819(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 5.274 1.892 1.000 * 1.000 * 0.991 * 1.000 * 12.20 12.37 1.000 * 0.986 * 1.000 * 1.000 * 3.853 3.819 5.274) + 1.8 92) + 5.274) + 1.892) + 7.140 7.119 Total of 2 main streams to confluence; Flow rates before confluence point: 5.274 1.892 Maximum flow rates at confluence using above data: 7.140 7.119 Area of streams before confluence: 2.380 0.890 Results of confluence: Total flow rate = 7.140(CFS) Time of concentration = 12.200 min. Effective stream area after confluence = 3.270(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 112.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 367.70(Ft.) Downstream point/station elevation = 361.14(Ft.) Pipe length = 59.81(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.140(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.140(CFS) Normal flow depth in pipe = 5.53(In.) Flow top width inside pipe = 16.61(In.) Critical Depth = 12.42(In.) Pipe flow velocity = 15.48(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 12.26 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 114.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.270(Ac.) Runoff from this stream = 7.140(CFS) Time of concentration = 12.26 min. Rainfall intensity = 3.840(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 404.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 120.00(Ft.) Highest elevation = 391.00(Ft.) Lowest elevation = 390.00(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.52 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.5500)*(120.00^.5)/( 0.83^(1/3)]= 11.52 Rainfall intensity (I) = 3.998 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.440(CFS) Total initial stream area = 0.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 406.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 391.710(Ft.) End of street segment elevation = 37 6.4 90(Ft.) Length of street segment = 393.600(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.737(CFS) Depth of flow = 0.212(Ft.), Average velocity = 3.026(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.753(Ft.) Flow velocity = 3.03(Ft/s) Travel time = 2.17 min. TC = 13.69 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.577(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.531(CFS) for 0.270(Ac.) Total runoff = 0.971(CFS) Total area = 0.47(Ac.) Street flow at end of street = 0.971(CFS) Half street flow at end of street = 0.971(CFS) Depth of flow = 0.228(Ft.), Average velocity = 3.138(Ft/s) Flow width (from curb towards crown)= 4.549(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 406.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 13.69 min. Rainfall intensity = 3.577(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.550 Subarea runoff = 2.105(CFS) for 1.070(Ac.) Total runoff = 3.076(CFS) Total area = 1.54(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 370.54(Ft.) Downstream point/station elevation = 361.14(Ft.) Pipe length = 26.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.076(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.07 6(CFS) Normal flow depth in pipe = 2.71(In.) Flow top width inside pipe = 12.87(In.) Critical Depth = 8.00(In.) Pipe flow velocity = 18.42(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 13.72 min. Process from Point/Station 114.000 to Point/Station 114.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.540(Ac.) Runoff from this stream = 3.076(CFS) Time of concentration = 13.72 min. Rainfall intensity = 3.573(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 504.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 180.00(Ft.) Highest elevation = 424.90(Ft.) Lowest elevation = 422.42(Ft.) Elevation difference = 2.48(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 11.94 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope^(l/3)] TC = [1.8*(l.l-0.5500)*(180.00'^.5)/( 1.38^(1/3)]= 11.94 Rainfall intensity (I) = 3.908 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.279(CFS) Total initial stream area = 0.130(Ac.) ++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 506.000 to Point/Station 508.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 424.630(Ft.) End of street segment elevation = 402.620(Ft.) Length of street segment = 515.300(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.042(CFS) Depth of flow = 0.186(Ft.), Average velocity = 3.184(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.474(Ft.) Flow velocity = 3.18(Ft/s) Travel time = 2.70 min. TC = 14.63 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.427(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.338(CFS) for 0.710{Ac.) Total runoff = 1.618(CFS) Total area = 0.84(Ac.) Street flow at end of street = 1.618(CFS) Half street flow at end of street = 0.809(CFS) Depth of flow = 0.214(Ft.), Average velocity = 3.196(Ft/s) Flow width (frora curb towards crown)= 3.881(Ft.) Process from Point/Station 508.000 to Point/Station 508.000 * * * * SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 14.63 min. Rainfall intensity = 3.427(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.602(CFS) for 0.850(Ac.) Total runoff = 3.220(CFS) Total area = 1.69(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 508.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 14.63 min. Rainfall intensity = 3.427(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.922(CFS) for 1.020(Ac.) Total runoff = 5.142(CFS) Total area = 2.71(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++4-++++^ Process from Point/Station 509.000 to Point/Station 510.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 430.000(Ft.) End of street segment elevation = 380.100(Ft.) Length of street segment = 700.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.597(CFS) Depth of flow = 0.324(Ft.), Average velocity = 5.731(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.350(Ft.) Flow velocity = 5.73(Ft/s) Travel time = 2.04 min. TC = 16.67 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.151(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.832(CFS) for 0.480(Ac.) Total runoff = 5.974(CFS) Total area = 3.19(Ac.) Street flow at end of street = 5.974(CFS) Half street flow at end of street = 5.974(CFS) Depth of flow = 0.329(Ft.), Average velocity = 5.818(Ft/s) Flow width (from curb towards crown)= 9.614(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 510.000 to Point/Station 510.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 16.67 min. Rainfall intensity = 3.151(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = Subarea runoff = 0.399(CFS) for 0.230(Ac.) Total runoff = 6.372(CFS) Total area = 3.42(Ac.) 0.550 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 510.000 to Point/Station 512.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 372.84(Ft.) Downstream point/station elevation = 365.25(Ft.) Pipe length = 66.19(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.372(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.372(CFS) Normal flow depth in pipe = 5.16(In.) Flow top width inside pipe = 16.28(In.) Critical Depth = 11.71(In.) Pipe flow velocity = 15.23(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 16.74 min. Process from Point/Station 512.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 514.000 Upstream point/station elevation = 365.25(Ft.) Downstream point/station elevation = 364.28(Ft.) Pipe length = 59.76(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.372(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.372(CFS) Normal flow depth in pipe = 7.67(In.) Flow top width inside pipe = 22.38(In.) Critical Depth = 10.73(In.) Pipe flow velocity = 7.37(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 16.88 min. +++++++++++-I-++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 514.000 to Point/Station 514.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 3.420(Ac.) Runoff from this stream = 6.372(CFS) Time of concentration = 16.88 min. Rainfall intensity = 3.126(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 604.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 120.00(Ft.) Highest elevation = 378.50(Ft.) Lowest elevation = 377.74(Ft.) Elevation difference = 0.76(Ft.) Time of concentration calculated by the urban areas overland flow raethod (App X-C) = 12.63 min. TC = [1.8*(l.l-C)*distance-".5)/(% slope'^ (1/3) ] TC = [1.8*(l.l-0.5500)*(120.00^.5)/( 0. 63-" (1/3) ] = 12.63 Rainfall intensity (I) = 3.769 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.249(CFS) Total initial stream area = 0.120(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 604.000 to Point/Station 606.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 377.740(Ft.) End of street segment elevation = 373.100(Ft.) Length of street segment = 307.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated raean flow rate at midpoint of street = 0.529(CFS) Depth of flow = 0.220(Ft.), Average velocity = 1.923(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 4.152(Ft.) Flow velocity = 1.92(Ft/s) Travel time = 2.66 min. TC = 15.29 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.331(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.495(CFS) for 0.270(Ac.) Total runoff = 0.743(CFS) Total area = 0.39(Ac.) Street flow at end of street = 0.743(CFS) Half street flow at end of street = 0.743(CFS) Depth of flow = 0.239(Ft.), Average velocity = 2.029(Ft/s) Flow width (from curb towards crown)= 5.136(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 606.000 to Point/Station 606.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Tirae of concentration = 15.29 min. Rainfall intensity = 3.331(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.631(CFS) for 0.890(Ac.) Total runoff = 2.374(CFS) Total area = 1.28(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 606.000 to Point/Station 514.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 368.61(Ft.) Downstream point/station elevation = 364.21(Ft.) Pipe length = 12.24(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.374(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.374(CFS) Normal flow depth in pipe = 2.39(In.) Flow top width inside pipe = 12.21 (In.) Critical Depth = 6.99(In.) Pipe flow velocity = 17.07(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 15.30 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 514.000 to Point/Station 514.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 3 in normal stream number 2 Stream flow area = 1.280(Ac.) Runoff from this stream = 2.374(CFS) Time of concentration = 15.30 rain. Rainfall intensity = 3.330(In/Hr) Process frora Point/Station 702.000 to Point/Station 704.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 377.90(Ft.) Lowest elevation = 377.67(Ft.) Elevation difference = 0.23(Ft.) Time of concentration calculated by the urban areas overland flow raethod (App X-C) = 16.16 rain. TC = [1.8*(l.l-C)*distance'^.5)/(% slope^(l/3)] TC = [1.8*(l.l-0.5500)*(100.00'^.5)/( 0.23^^(1/3)]= 16.16 Rainfall intensity (I) = 3.215 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.212(CFS) Total initial stream area = 0.120(Ac.) + + + + + + + + + +++ +++ + + + +++ + + + + + + + + + -I- + + + + + + + + + + + + + + + +++ + + + + + + + + + H Process from Point/Station 704.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 706.000 Top of street segment elevation = 377 End of street segment elevation = 373 Length of street segment = 307.000(Ft Height of curb above gutter flowline Width of half street (curb to crown) Distance from crown to crossfall grade break Slope from gutter to grade break (v/hz) = 0 Slope from grade break to crown (v/hz) = 0 670(Ft.) 100(Ft.) ) 6.0(In.) 17.000(Ft.) = 15.500{Ft.) 020 020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.194(Ft.), Average velocity = 0.345(CFS) ,855(Ft/s) streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 2.887(Ft.) Flow velocity = 1.86(Ft/s) Travel tirae = 2.7 6 min. TC = 18.92 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 2.904(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.240(CFS) for 0.150(Ac.) Total runoff = 0.452(CFS) Total area = 0.27(Ac.) Street flow at end of street = 0.452(CFS) Half street flow at end of street = 0.452(CFS) Depth of flow = 0.211(Ft.), Average velocity = 1.876(Ft/s) Flow width (from curb towards crown)= 3.720(Ft.) +++4-+++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 706.000 to Point/Station 706.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 18.92 min. Rainfall intensity = 2.904(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.479(CFS) for 0.300(Ac.) Total runoff = 0.931(CFS) Total area = 0.57(Ac.) Process from Point/Station 706.000 to Point/Station 514.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 366.99(Ft.) Downstream point/station elevation = 364.21(Ft.) Pipe length = 26.26(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.931(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.931(CFS) Normal flow depth in pipe = 2.04(In.) Flow top width inside pipe = 11.42(In.) Critical Depth = 4.30(In.) Pipe flow velocity = 8.41(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 18.97 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 514.000 to Point/Station 514.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 3 in norraal streara nuraber 3 Stream flow area = 0.570(Ac.) Runoff from this stream = 0.931(CFS) Time of concentration = 18.97 min. Rainfall intensity = 2.899(In/Hr) Suraraary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax(1) Qraax(2) 6.372 2.374 0.931 1.000 * 0.939 * 1.000 * ,000 ,000 .000 Qraax (3) = 0.927 0.871 1.000 16.88 15.30 18.97 1.000 * 1.000 * 0.890 * 0.907 * 1.000 * 0.807 * 1.000 * 1.000 * 1.000 * 3.126 3.330 2.899 6.372) + 2.374) + 0.931) + 6.372) + 2.374) + 0.931) + 6.372) + 2.374) + 0.931) + 9.429 8.902 8. 908 Total of 3 streams to confluence: Flow rates before confluence point: 6.372 2.374 0.931 Maximum flow rates at confluence using above data: 9.429 8.902 8.908 Area of strearas before confluence: 3.420 1.280 0.570 Results of confluence: Total flow rate = 9.429(CFS) Tirae of concentration = 16.877 min. Effective streara area after confluence = 5.270(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 514.000 to Point/Station 516.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 364.28(Ft.) Downstream point/station elevation = 362.78(Ft.) Pipe length = 121.04(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.429(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 9.429(CFS) Normal flow depth in pipe = 10.17(In.) Flow top width inside pipe = 23.72(In.) Critical Depth = 13.16(In.) Pipe flow velocity = 7.44(Ft/s) Travel tirae through pipe = 0.27 min. Time of concentration (TC) = 17.15 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 516.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 362.78(Ft.) Downstreara point/station elevation = 361.14(Ft.) Pipe length = 155.26(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.429(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 9.429(CFS) Normal flow depth in pipe = 10.64(In.) Flow top width inside pipe = 23.85(In.) Critical Depth = 13.16(In.) Pipe flow velocity = 7.01(Ft/s) Travel time through pipe = 0.37 rain. Time of concentration (TC) = 17.52 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++H Process from Point/Station 114.000 to Point/Station 114.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream nuraber: 3 Streara flow area = 5.270(Ac.) Runoff from this streara = 9.429(CFS) Time of concentration = 17.52 min. Rainfall intensity = 3.051(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 3 Qmax(1] Qmax(2) = Qmax(3) = ,140 ,076 ,429 , 000 ,000 ,000 930 ,000 ,000 ,795 ,854 ,000 12.26 13.72 17.52 1.000 * 0.894 * 0.700 * 1.000 * 1.000 * 0.783 * 1.000 * 1.000 * 1.000 * 3.840 3.573 3.051 7.140) + 3.076) + 9.429) + 7.140) + 3.076) + 9.429) + 7.140) + 3.076) + 9.429) + 16.492 17.102 17.730 Total of 3 main streams to confluence: Flow rates before confluence point: 7.140 3.076 9.429 Maximum flow rates at confluence using above data: 16.492 17.102 17.730 Area of streams before confluence: 3.270 1.540 5.270 Results of confluence: Total flow rate = 17.730(CFS) Time of concentration = 17.517 rain. Effective stream area after confluence = 10.080(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 361.14(Ft.) Downstream point/station elevation = 359.54(Ft.) Pipe length = 97.96(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.730(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 17.730(CFS) Norraal flow depth in pipe = 13.58(In.) Flow top width inside pipe = 23.79(In.) Critical Depth = 18.21(In.) Pipe flow velocity = 9.67(Ft/s) Travel tirae through pipe = 0.17 min. Time of concentration (TC) = 17.69 min. End of computations, total study area = 10.08 (Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 12/23/02 VILLAGE K HYDROLOGY STUDY SYSTEM 800 THRU SYSTEM 1000 DECEMBER 23, 2002 J.N. 98-1020 BY:CSO FILE:VILKD2 ********* Hy^jj-oiogy Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 Adjusted 6 hour precipitation (inches) = 2.600 P6/P24 = 60.5% San Diego hydrology manual 'C' values used Runoff coefficients by rational method Process from Point/Station 802.000 to Point/Station 804.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 163.00(Ft.) Highest elevation = 427.60(Ft.) Lowest elevation = 425.98(Ft.) Elevation difference = 1.62(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 12.67 min. TC = [1.8*(1.1-C)*distance^.5)/(% slope"(l/3)] TC = [1.8* (1.1-0. 5500) * (163. OO'^. 5) / ( 0.99'^(l/3)]= 12.67 Rainfall intensity (I) = 3.761 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.372(CFS) Total initial stream area = 0.180(Ac.) Process from Point/Station 804.000 to Point/Station 806.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 425.980(Ft.) End of street segment elevation = 422.060(Ft.) Length of street segment = 300.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.211(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.726(Ft.) Flow velocity = 1.76(Ft/s) Travel time = 2.84 min. TC = 15.51 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.301(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C Subarea runoff = 0.835(CFS) for 0.460(Ac.) Total runoff = 1.207(CFS) Total area = 0.64(Ac Street flow at end of street = 1.207(CFS) Half street flow at end of street = 0.604(CFS) Depth of flow = 0.232(Ft.), Average velocity = 1.844(Ft/s) Flow width (from curb towards crown)= 4.743(Ft.) 0.848(CFS) 1.758(Ft/s) 0.550 Process from Point/Station 806.000 to Point/Station **** SUBAREA FLOW ADDITION **** 806.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 15.51 min. Rainfall intensity = 3.301(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.162(CFS) for 0.640(Ac.) Total runoff = 2.369{CFS) Total area = 1.28(Ac.) Process from Point/Station **** SUBAREA FLOW ADDITION **** 806.000 to Point/Station 806.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 15.51 min. Rainfall intensity = 3.301(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.598(CFS) for 0.880(Ac.) Total runoff = 3.967(CFS) Total area = 2.16(Ac.) Process from Point/Station 808.000 to Point/Station 810.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 425.970(Ft.) End of street segment elevation = 419.490(Ft.) Length of street segment = 288.500(Ft.) Height of curb above gutter flowline = 6.0 (In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.141(CFS) Depth of flow = 0.347(Ft.), Average velocity = 3.431(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.510(Ft.) Flow velocity = 3.43(Ft/s) Travel time = 1.40 min. TC = 16.91 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.121(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.326(CFS) for 0.190(Ac.) Total runoff = 4.293(CFS) Total area = 2.35(Ac.) Street flow at end of street = 4.293(CFS) Half street flow at end of street = 4.293(CFS) Depth of flow = 0.350(Ft.), Average velocity = 3.460{Ft/s) Flow width (from curb towards crown)= 10.669(Ft.) Process from Point/Station 810.000 to Point/Station 812.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 414.99(Ft.) Downstream point/station elevation = 412.00(Ft.) Pipe length = 7.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.293(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.293(CFS) Normal flow depth in pipe = 3.08(In.) Flow top width inside pipe = 13.56(In.) Critical Depth = 9.52(In.) Pipe flow velocity = 21.38(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 16.92 min. Process from Point/Station 812.000 to Point/Station 812.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.350(Ac.) Runoff from this stream = 4. 293(CFS) Time of concentration = 16.92 min. Rainfall intensity = 3.121(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 902.000 to Point/Station 904.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 132.00(Ft.) Highest elevation = 427.80(Ft.) Lowest elevation = 425.97(Ft.) Elevation difference = 1.83(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.20 min. TC = [1. 8* (1.1-C) *distance^. 5) / (% slope'^ (1/3) ] TC = [1.8* (1.1-0.5500) * (132.00'".5) / ( 1.39"(l/3)]= 10.20 Rainfall intensity (I) = 4.325 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.238(CFS) Total initial stream area = 0.100(Ac.) Process from Point/Station 904.000 to Point/Station 906.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 425.970(Ft.) End of street segment elevation = 419.490(Ft.) Length of street segment = 288.500(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.476(CFS) Depth of flow = 0.202(Ft.), Average velocity = 2.279(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.260(Ft.) Flow velocity = 2.28(Ft/s) Travel time = 2.11 min. TC = 12.31 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.831(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.421(CFS) for 0.200(Ac.) Total runoff = 0.659(CFS) Total area = 0.30(Ac.) Street flow at end of street = 0.659(CFS) Half street flow at end of street = 0.659(CFS) Depth of flow = 0.221(Ft.), Average velocity = 2.351(Ft/s) Flow width (from curb towards crown)= 4.218(Ft.) Process from Point/Station 906.000 to Point/Station 906.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 12.31 min. Rainfall intensity = 3.831(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method, Q=KCIA, C = 0.550 Subarea runoff = 1.096(CFS) for 0.520(Ac.) Total runoff = 1.755(CFS) Total area = 0.82(Ac.) Process from Point/Station 906.000 to Point/Station 812.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 412.70(Ft.) Downstream point/station elevation = 412.00(Ft.) Pipe length = 31.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.755(CFS) Given pipe size = 18.00 (In.) Calculated individual pipe flow = 1.755(CFS) Normal flow depth in pipe = 4.06(In.) Flow top width inside pipe = 15.05(In.) Critical Depth = 5.98(In.) Pipe flow velocity = 5.87(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 12.40 min. Process from Point/Station 812.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 812.000 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.820(Ac.) Runoff from this stream = 1.755(CFS) Time of concentration = 12.40 min. Rainfall intensity = 3.813(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) = Qmax(2) = 4 .293 1.755 1.000 * 0.818 * 1.000 * 1.000 * 16. 92 12.40 1. 000 1. 000 0.733 1.000 4.293) 1.755) 3.121 3. 813 4.293) + 1.755) + 5.729 4 . 901 Total of 2 main streams to confluence: Flow rates before confluence point: 4.293 1.755 Maximum flow rates at confluence using above data: 5.729 4.901 Area of streams before confluence: 2.350 0.820 Results of confluence: Total flow rate = 5.729(CFS) Time of concentration = 16.918 min. Effective stream area after confluence 3.170(Ac. Process from Point/Station 812.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 814.000 Upstream point/station elevation = 412.00(Ft.) Downstream point/station elevation = 410.80(Ft.) Pipe length = 9l.l6(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.729(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.729(CFS) Normal flow depth in pipe = 8.74(In.) Flow top width inside pipe = 17.99(In.) Critical Depth = 11.08(In.) Pipe flow velocity = 6.74(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 17.14 min. Process from Point/Station 814.000 to Point/Station 816.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 410.80(Ft.) Downstream point/station elevation = 395.20(Ft.) Pipe length = 225.90(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.729(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.729(CFS) Normal flow depth in pipe = 5.57(In.) Flow top width inside pipe = 16.64(In.) Critical Depth = 11.08(In.) Pipe flow velocity = 12. 33(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 17.45 min. Process from Point/Station 816.000 to Point/Station 818.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 395.20(Ft.) Downstream point/station elevation = 389.20(Ft.) Pipe length = 163.66(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.729(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.729(CFS) Normal flow depth in pipe = 6. 57(In.) Flow top width inside pipe = 17.33(In.) Critical Depth = 11.08(In.) Pipe flow velocity = 9.81(Ft/s) Travel time through pipe = 0.28 min. Time of concentration (TC) = 17.73 min. Process from Point/Station 818.000 to Point/Station 820.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 389.20(Ft.) Downstream point/station elevation = 383.84(Ft.) Pipe length = 85.96(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.729(CFS) Given pipe size = 18.00 (In.) Calculated individual pipe flow = 5.729(CFS) Normal flow depth in pipe = Flow top width inside pipe = Critical Depth = 11.08(In.: Pipe flow velocity = 11.1 Travel time through pipe = Time of concentration (TC) = 5.71(In.) 16.76(In.) i(Ft/s) 0.12 min. 17.85 min. Process from Point/Station 820.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 820.000 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = 3.170(Ac.) 5.729(CFS) 17.85 min. 3.015(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station **** INITIAL AREA EVALUATION 1002 * + * * .000 to Point/Station 1004.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Initial subarea flow distance = 136.00(Ft.) Highest elevation = 425.00(Ft.) Lowest elevation = 424.50(Ft.) Elevation difference = 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 16.12 min. TC = [1. 8* (1.1-C) *distance''. 5) / (% slope'-(1/3) ] TC = [1.8* (1.1-0.5500) * (136.00^^.5) / ( 0.37-^(1/3)]= 16.12 Rainfall intensity (I) = 3.220 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.550 Subarea runoff = 0.248(CFS) Total initial stream area = 0.140(Ac.) Process from Point/Station 1004.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 1006.000 Top of street segment elevation = 424.500(Ft.) End of street segment elevation = 416.330(Ft.) Length of street segment = 177.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) 0.514(CFS) 3.363(Ft/s) Distance from crown to crossfall grade break = 15.500(Ft, Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.181(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.241(Ft.) Flow velocity = 3.36(Ft/s) Travel time = 0.88 min. TC = 16.99 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Rainfall intensity = 3.112 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = Subarea runoff = 0.513(CFS) for 0.300(Ac.) Total runoff = 0.761(CFS) Total area = 0.44(Ac.) Street flow at end of street = 0.761(CFS) Half street flow at end of street = 0.761(CFS) Depth of flow = 0.208(Ft.), Average velocity = 3.290(Ft/s) Flow width (from curb towards crown)= 3.591(Ft.) 0.550 Process from Point/Station 1006.000 to Point/Station **** SUBAREA FLOW ADDITION **** 1006.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 16.99 min. Rainfall intensity = 3.112(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 0.394(CFS) for 0.230(Ac.) Total runoff = 1.155(CFS) Total area = 0.67(Ac.) Process from Point/Station 1006.000 to Point/Station **** SUBAREA FLOW ADDITION **** 1006.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FTJILY area type ] Time of concentration = 16.99 min. Rainfall intensity = 3.112(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = Subarea runoff = 0.394(CFS) for 0.230(Ac.) Total runoff = 1.549(CFS) Total area = 0.90(Ac.) 0. 550 Process from Point/Station 1008.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 820.000 Top of street segment elevation = 419.920(Ft End of street segment elevation = 392.640(Ft Length of street segment = 557.000(Ft.) Height of curb above gutter flowline = 6.0(In. Width of half street (curb to crown) = 17.000(Ft Distance from crown to crossfall grade break Slope from gutter to grade break (v/hz) = 0 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 13.000(Ft ) ) = 15.500(Ft.) 020 (v/hz) 0.020 0.0150 0.0150 2.168(CFS) 3.527(Ft/s) 19.63 min. Slope from curb to property line Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street = Depth of flow = 0.227(Ft.), Average velocity = Streetflow hydraulics at midpoint of street travel Halfstreet flow width = 4.526(Ft.) Flow velocity = 3.53(Ft/s) Travel time = 2.63 min. TC Adding area flow to street Decimal fraction soil group A = 0 Decimal fraction soil group B = 0 Decimal fraction soil group C = 0 Decimal fraction soil group D = 1 [SINGLE FAMILY area type ] Rainfall intensity = 2.836(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C Subarea runoff = 1.123(CFS) for 0.720(Ac.) Total runoff = 2.672(CFS) Total area = 1.62(Ac Street flow at end of street = 2.672(CFS) Half street flow at end of street = 1.336(CFS) Depth of flow = 0.239(Ft.), Average velocity = 3.652(Ft/s) Flow width (from curb towards crown)= 5.131(Ft.) , 000 ,000 .000 ,000 = 0.550 Process from Point/Station 820.000 to Point/Station **** SUBAREA FLOW ADDITION **** 820.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [SINGLE FAMILY area type ] Time of concentration = 19.63 min. Rainfall intensity = 2.836(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.550 Subarea runoff = 1.887(CFS) for 1.210{Ac.) Total runoff = 4.559(CFS) Total area = 2.83(Ac.) Process from Point/Station 820.000 to Point/Station 820.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.830(Ac.) Runoff from this stream = 4.559(CFS) Time of concentration = 19.63 min. Rainfall intensity = 2. 836 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 5.729 17.85 3.015 2 4.559 19.63 2.836 Qmax(1) = 1.000 * 1.000 * 5.729) + 1.000 * 0.909 * 4.559) + = 9.875 0.941 * 1.000 * 5.729) + 1.000 * 1.000 * 4.559) + = 9.948 Total of 2 main streams to confluence: Flow rates before confluence point: 5.729 4.559 Maximum flow rates at confluence using above data: 9.875 9.948 Area of streams before confluence: 3.170 2.830 Qmax(2) = Results of confluence: Total flow rate = 9.948(CFS) Time of concentration = 19.625 min. Effective stream area after confluence = 6.000(Ac.) End of computations, total study area = 6.00 (Ac.) SECTION 4 PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 *********^.,^^^^^^^^^^^^^^^ DESCRIPTION OF STUDY ************************** * VILLAGE K HYDRAULICS ^ * STORM DRAIN - LINE A ^ * J.N. 981020 8/27/02 ^ **************************^*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FILE NAME: VILKSDA.DAT TIME/DATE OF STUDY: 10:44 10/17/2002 *********************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: ^'*^ indicates nodal point data used.) DOWNSTREAM RUN UPSTREAM RUN NODE MODEL PRESSURE PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 2.00* 389.94 } HYDRAULIC JUMP 1.52*Dc 346.84 116.00 114.50- 114.00 112.50- 112.00 110.50 110.00 108.50 108.00- } FRICTION 106.50- ) FRICTION } JUNCTION } FRICTION } JUNCTION } FRICTION } JUNCTION } FRICTION } JUNCTION 2.89* 292.40 } HYDRAULIC JUMP 112.98 1.03 Dc 1.12 0.88 Dc 0.88 Dc 0.88*Dc 1.37 0.70*Dc 82.49 75.52 75.45 75.45 82.02 41.97 FLOW PRESSURE-I- DEPTH(FT) MOMENTUM(POUNDS) 1.34 1.52*Dc 0.47 0.82* 0.51* 0.54* 0.58* 0.88*Dc 0.24* 0.70*Dc 354 .32 346 .84 213 64 121 21 109 46 102 22 95. 38 75. 45 123. 69 41. 97 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. **************.^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 116.00 PIPE FLOW = 17.73 CFS ASSUMED DOWNSTREAM CONTROL HGL FLOWLINE ELEVATION = 359.70 PIPE DIAMETER = 24.00 INCHES 361.700 FEET NODE 116.00 : HGL = < 361.700>;EGL= < 362.195>;FLOWLINE= < 359.700> *******************^*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 116.00 TO NODE 114 50 IS CODE = 1 __"!!!!!?!_!°°L__^^!-^° ELEVATION = 360.64 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.73 CFS PIPE DIAMETER = 24.00 INCHES __!"^_^!!!^"_:__ ^^'^^ ^^^"^ MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ==~!!iL™!!!!L: cR^^^cAL~DEPra(FTr= 1^52 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.52 =========== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ====== DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0.000 1 .517 6.933 0.027 1 .510 6.967 0.111 1 .502 7.002 0.256 1 .495 7.037 0.469 1 .488 7. 073 0.756 1 .480 7.110 1.124 1 .473 7.147 1.582 1 .465 7.185 2.140 1 .458 7.223 2.810 1 .451 7.262 3.607 1 .443 7.301 4.548 1 .436 7.341 5.654 1 429 7.382 6.951 1 421 7.423 8.474 1 414 7.465 10.265 1 407 7.507 12.379 1 399 7.550 14.895 1 392 7.594 17.919 1 384 7.639 21.607 1. 377 7.684 26.205 1. 370 7.729 32.119 1. 362 7.776 40.116 1. 355 7.823 51.915 1. 348 7.871 73.033 1. 340 7.920 93.960 1. 340 7.920 SPECIFIC PRESSURE-f ENERGY(FT) MOMENTUM(POUN 2.264 346.84 2.264 346.85 2.264 346.89 2.264 346.95 2.265 347.03 2.266 347.14 2.267 347.27 2.268 347.43 2.269 347.62 2.270 347.83 2.272 348.06 2.273 348.32 2.275 348.61 2.277 348.93 2.280 349.27 2.282 349.65 2.285 350.05 2.288 350.47 2.291 350.93 2.294 351.42 2.298 351.93 2.302 352.48 2.306 353.06 2.310 353.67 2.315 354.31 2.315 354.32 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0 .000 2.000 5.642 4 .275 1.981 5.651 7 . 982 1.961 5.668 11 .396 1. 942 5.689 14 .596 1. 923 5.715 17 .624 1.903 5.744 20 .506 1.884 5.776 23 .260 1.865 5.812 25 .896 1.845 5.850 28 .424 1.826 5.891 30 .848 1.807 5.935 33 . 172 1.787 5. 982 35 .397 1.768 6.032 37 .523 1.749 6.084 39 . 548 1.730 6.139 41 470 1.710 6.196 43 282 1.691 6.256 44 979 1. 672 6.320 46 552 1.652 6.385 47 990 1.633 6.454 49 279 1.614 6.526 50 403 1.594 6.601 51 339 1.575 6. 679 52 059 1.556 6.760 52. 527 1.536 6.845 52. 696 1.517 6.933 93. 960 1.517 6. 933 SPECIFIC PRESSURE-I- ENERGY(FT) MOMENTUM (POUN 2.4 95 389.94 2.477 386.47 2.460 383.27 2.445 380.24 2.430 377.38 2.416 374.65 2.403 372.05 2.390 369.58 2.377 367.24 2.365 365.02 2.354 362.92 2.344 360.94 2.333 359.08 2.324 357.34 2.315 355.73 2.307 354.24 2.299 352.88 2.292 351.66 2.286 350.56 2.280 349.59 2.275 348.77 2.271 348.09 2.268 347.55 2.266 347.16 2.264 346.92 2.264 346.84 2.264 346.84 I PRESSURE+MOMENTUM BALANCE OCCURS AT 42.25 FEET UPSTREAM OF NODE 116 00 I I ^DOWNSTREAM^DEPTH = 1.702 FEET, UPSTREAM CONJUGATE DEPTH = 1.348 FEET | NODE 114.50 : HGL = < 362 .157>; EGL= < 362 . 904>; FLOWLINE=~<"360y640>' ***********************^*^.,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 114.50 TO NODE 114 00 IS CODE = 5 ^^UPSTREAM NODE 114.00 ELEVATION = 361.14 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER (CFS) (INCHES) UPSTREAM 7.14 18.00 DOWNSTREAM 17.73 24.00 LATERAL #1 2.75 18.00 LATERAL #2 6.60 18.00 Q5 l.24===Q5 EQUALS BASIN INPUT=== ANGLE FLOWLINE (DEGREES) ELEVATION 90.00 361.14 360.64 0.00 361.61 90.00 361.14 CRITICAL DEPTH(FT.) 1.03 1.52 0.63 0.99 VELOCITY (FT/SEC) 4 . 040 6. 935 1.559 3.735 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 00462 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 00720 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0 00591 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.024 FEET ENTRANCE LOSSES = 0 14 9 FEET JUNCTION LOSSES = (DY-HHV1-HV2)-I-(ENTRANCE LOSSES) JUNCTION LOSSES 1.235)-l-( 0.149) = 1.384 = < 364.035>;EGL= < 364.288>;FLOWLINE= < 361.140> NODE 114.00 HGL **************************** + *i*j,.t*j,.j,^j,^^t^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^ FLOW PROCESS FROM NODE 114.00 TO NODE 112.50 IS CODE = 1 UPSTREAM NODE 112.50 ELEVATION = 367.50 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.14 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 55.81 FEET MANNING'S N = 0. 01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.46 CRITICAL DEPTH(FT) 1.03 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.82 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION : DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-f CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .824 7.175 1 .624 121 .21 0 .218 0 .810 7.337 1 . 646 122 .55 0 .465 0 .795 7.507 1 . 671 124 02 0 .743 0 .780 7.685 1 . 698 125 63 1 .057 0 .765 7.872 1 .728 127 37 1 .410 0 .751 8.069 1 .762 129 27 1 .807 0 .736 8.275 1 .800 131 32 2 .254 0 .721 8.492 1 .842 133 54 2 .759 0 .707 8.721 1 .888 135 95 3 .329 0 .692 8.962 1 . 940 138 54 3 .974 0 .677 9.216 1 . 997 141 34 4 .706 0 .662 9.485 2 .060 144 36 5 .539 0 . 648 9.769 2 .131 147 61 6 .4 93 0 .633 10.070 2 .209 151 11 7 .591 0 .618 10.389 2 .295 154 89 8 .861 0 .604 10.727 2 392 158 95 10 .346 0 .589 11.087 2 499 163 33 12 .097 0 .574 11.470 2 618 168 05 14 . 193 0 .559 11.879 2 752 173 14 16 .743 0 .545 12.315 2 901 178 64 19 923 0 .530 12.781 3 068 184 58 24 022 0 .515 13.281 3 256 190 99 29 587 0 .501 13.818 3 467 197. 94 37 846 0 .486 14.396 3 706 205. 47 52 739 0 .471 15.019 3 976 213. 65 55 810 0 .471 15.018 3 976 213. 64 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.89 DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE-f MOMENTUM(POUNDS) 0.000 12.756 2.895 1.500 4.040 4.040 3.148 1.753 292.40 138.61 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 12.756 12.915 13.065 13.209 13.347 13. 13. 13. 13. 13. 14. 14 . 14. 14, 14, 14. 14, 14, 14, 14 , 14, 14, 14 . 15. 15. 15. 55. FLOW DEPTH (FT) VELOCITY (FT/SEC) 4.039 SPECIFIC ENERGY(FT) 1.753 1.500 1.481 4.049 1.736 1.463 4.066 1.720 1.444 4.088 1.704 1.426 4.115 1.689 1.407 4.146 1.674 1.388 4.180 1.660 1.370 4.218 1.646 1.351 4.258 1.633 1.332 4.302 1.620 1.314 4.350 1.608 1.295 4.400 1.596 1.277 4.454 1.585 1.258 4.511 1.574 1.239 4.571 1.564 1.221 4.634 1.555 1.202 4.702 1.546 1.184 4.773 1.537 1.165 4.847 1.530 1.146 4.926 1.523 1.128 5.008 1.517 1.109 5.095 1.512 1.090 5.187 1.508 1.072 5.283 1.506 1.053 5.384 1.504 1.035 5.490 1.503 1.035 5.490 1.503 gjjQ QP HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 6.70 FEET UPSTREAM OF NODE 114.00 | I DOWNSTREAM DEPTH = 2.162 FEET, UPSTREAM CONJUGATE DEPTH = 0.475 FEET | 480 ,609 ,734 ,855 ,971 .082 .190 ,292 ,390 .482 .569 .650 .725 .794 ,855 , 909 , 955 , 992 ,020 ,037 ,043 ,810 PRESSURE+ MOMENTUM(POUNDS) 138.61 136, 134, 133, 131. 129.93 128.41 126. 125, 124, 122. 121. 120. 119. 118, 117, 116.82 116.05 115, 114, 114 , 113, 113, 113, 113. 112. 112. ,69 ,88 ,16 ,51 95 .56 ,24 ,97 ,77 ,64 .58 ,59 ,67 ,36 .75 .23 .79 .44 ,19 ,03 ,98 ,98 NODE 112.50 : HGL = < 368.324>;EGL= < 369.124>;FLOWLINE= < 367.500> FLOW PROCESS FROM NODE UPSTREAM NODE 112.00 112.50 TO NODE ELEVATION = 112.00 IS CODE = 5 367.90 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY 5.27 7.14 1.86 0.00 0.00= (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.00 0.00 367.90 0.88 10.035 18.00 - 367.50 1.03 7.178 18.00 90.00 367.90 0.51 3.478 0.00 0.00 0.00 0.00 0.000 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1 UPSTREAM: MANNING'S N = 0.01300; DOWNSTREAM: MANNING'S N = 0.01300; +FRICTION LOSSES FRICTION SLOPE = 0, FRICTION SLOPE = 0, ASSUMED AS 0.02756 AVERAGED FRICTION SLOPE IN JUNCTION JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.110 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES JUNCTION LOSSES = ( 0.847)+( 0.000) = 0.847 ENTRANCE LOSSES 04161 01351 0.000 FEET NODE 112.00 : HGL = < 368.407>;EGL= < 369.971>;FLOWLINE= < 367.900> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.50 112.00 TO NODE 110.50 IS CODE = 1 ELEVATION = 374.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.27 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 157.18 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 .51 CRITICAL DEPTH(FT) 0.88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.54 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0. 540 9 215 1. 859 102. 22 0 .858 0. 538 9 247 1. 867 102. 49 1 .757 0. 537 9 278 1. 874 102. 77 2 .702 0. 536 9 310 1. 882 103. 05 3 .695 0. 534 9 342 1. 890 103. 33 4 .743 0. 533 9 374 1. 898 103. 61 5 .850 0. 531 9 407 1. 906 103. 89 7 .023 0. 530 9 440 1. 915 104 . 18 8 .270 0. 529 9 472 1. 923 104 . 47 9 . 600 0. 527 9 506 1. 931 104 . 76 11 .022 0. 526 9 539 1. 940 105. 05 12 .551 0. 525 9 572 1. 948 105. 35 14 .202 0. 523 9 606 1. 957 105. 65 15 . 994 0. 522 9 640 1. 966 105. 95 17 . 952 0. 521 9 674 1. 975 106. 25 20 . 109 0. 519 9 709 1. 984 106. 56 22 .505 0. 518 9 743 1. 993 106. 87 25 . 197 0. 517 9 778 2. 002 107. 18 28 .265 0. 515 9 813 2. 012 107. 49 31 .825 0. 514 9 849 2. 021 107. 81 36 .058 0. 513 9 884 2. 031 108. 13 41 .264 0. 511 9 920 2. 040 108. 45 48 .011 0. 510 9 956 2. 050 108. 77 57 .571 0. 508 9 992 2. 060 109. 10 74 .027 0. 507 10 029 2. 070 109. 43 157 .180 0. 507 10 032 2. 071 109. 46 NODE 110.50 : HGL = < 375.040>;EGL= < 376.359>;FLOWLINE= < 374.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 110.50 TO NODE ELEVATION = 110.00 IS CODE = 5 374.90 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS 5 5 DIAMETER ANGLE (INCHES) FLOWLINE CRITICAL DEPTH(FT.) 27 27 DEGREES) ELEVATION 18.00 0.00 374.90 0.88 18.00 - 374.50 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 8.420 9.218 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02565 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03289 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02927 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.117 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.218)+( 0.000) = 0.218 NODE 110.00 HGL < 375.477>;EGL= < 376.577>;FLOWLINE= < 374.900> ******************************************************************jfjHtVt^Ht.^.yt.^.^.i..i FLOW PROCESS FROM NODE UPSTREAM NODE 108.50 110.00 TO NODE 108.50 IS CODE = 1 ELEVATION = 37 9.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.27 CFS PIPE PIPE LENGTH = 166.86 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.57 CRITICAL DEPTH(FT) = 0.88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.88 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 0 .884 4 861 1. 251 75. 45 0 . 017 0 .871 4 947 1. 252 75. 47 0 . 069 0 .859 5 037 1. 253 75. 55 0 . 161 0 .846 5 129 1. 255 75. 67 0 .297 0 .833 5 226 1. 258 75. 85 0 .481 0 .820 5 327 1. 261 76. 08 0 .719 0 .808 5 431 1. 266 76. 37 1 .018 0 .795 5 540 1. 272 76. 72 1 .385 0 .782 5 654 1. 279 77. 13 1 .830 0 .769 5 772 1. 287 77. 61 2 .363 0 .757 5 895 1. 297 78. 15 2 . 999 0 .744 6 024 1. 308 78. 76 3 .753 0 .731 6 159 1. 321 79. 45 4 . 645 0 .718 6 300 1. 335 80. 21 5 .702 0 .706 6 447 1. 352 81. 06 6 .957 0 .693 6 601 1. 370 81. 99 8.452 0 680 6.762 1 391 83.01 10.248 0 667 6.932 1 414 84 .13 12.427 0 655 7.109 1 440 85.35 15.112 0 642 7.296 1 469 86.67 18.491 0 629 7.4 92 1 501 88.11 22.881 0 616 7.698 1 537 89. 66 28.878 0 604 7.915 1 577 91.35 37.816 0 591 8.144 1 622 93.16 53.983 0 578 8.386 1 671 95.13 166.860 0 577 8.417 1 677 95.38 108.50 HGL = < 380 384>;EGL= < 380.751>;FLOWLINE= < 379.500> ****************************************************Vt.ytVt^H,^t*^tj,.yt.^^t.i.^.^jtjt.i.j^^.^..j.jj.^j^.jt FLOW PROCESS FROM NODE 108.50 TO NODE 108.00 IS CODE = 5 UPSTREAM NODE 108.00 ELEVATION = 379.52 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 3.36 5.27 1.90 0.00 0.01== DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.00 45.00 379.52 0.70 18.832 18.00 - 379.50 0.88 4.863 18.00 45.00 379.92 0.52 3.500 0.00 0.00 0.00 0.00 0.000 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.35399 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00589 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.17 994 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.720 FEET ENTRANCE LOSSES = 0.073 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.438)+( 0.073) = 4.512 NODE 108.00 : HGL = < 379.756>;EGL= < 385.263>;FLOWLINE= < 379.520> ********************************************************************Vt*Vt*Vt*ji..i.*jt FLOW PROCESS FROM NODE 108.00 TO NODE 106.50 IS CODE = 1 UPSTREAM NODE 106.50 ELEVATION = 387.24 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.36 CFS PIPE PIPE LENGTH = 14.56 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.21 CRITICAL DEPTH(FT) = 0.70 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.70 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 FLOW DEPTH VELOCITY (FT) (FT/SEC) 0.699 4.165 SPECIFIC ENERGY(FT) 0. 968 PRESSURE+ MOMENTUM(POUNDS) 41. 97 0.002 0 679 4 320 0. 969 42.02 0.009 0 660 4 486 0. 973 42.18 0.020 0 640 4 666 0. 979 42.46 0.038 0 621 4 860 0. 988 42.87 0.063 0 602 5 069 1. 001 43.42 0. 096 0 582 5 296 1. 018 44.11 0.139 0 563 5 543 1. 040 44 . 97 0.193 0 544 5 812 1. 068 46.01 0.261 0 524 6 106 1. 104 47.24 0.345 0 505 6 428 1. 147 48.69 0. 450 0 485 6 783 1. 200 50.39 0.579 0 466 7 175 1. 266 52.36 0.738 0 447 7 610 1. 347 54.64 0. 936 0 427 8 094 1. 445 57.28 1.182 0 408 8 636 1. 567 60.32 1.490 0 389 9 246 1. 717 63.84 1.881 0 369 9 937 1. 904 67. 92 2.382 0 350 10 725 2. 137 72.65 3.038 0 330 11 628 2. 431 78.17 3. 916 0 311 12 674 2. 807 84.65 5.134 0 292 13 895 3. 291 92.29 6.915 0 272 15 335 3. 926 101.40 9.766 0 253 17 055 4. 773 112.35 14.560 0 236 18 826 5. 743 123.69 106.50 : HGL = < 387. 939>;EGL= < 388.208>;FLOWLINE= < 387.240> *********** + **************************************^^.J^..^.^m.^^..^^^.y^.^J^..yt.J^..y^.^.J^J^J,.^.J^^J^.^..^..y^.^..^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 106.50 FLOWLINE ELEVATION = 387.24 ASSUMED UPSTREAM CONTROL HGL = 387.94 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS **************************************+*.i*jtj,j,j,jtjt^tjtjt.^.j..j..yt.^j^.it.j.^^.^..^^^^^^^^j^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE K HYDRAULICS * * STORM DRAIN - STA 1346.38 * * J.N. 98-1020 8/28/02 * ***************************************i*.*..^J,J^.Jt.^..|m.^.yt.^.j^^.^.j^.^.H.^j^jj..^.^.^^^^^^^^^^^ FILE NAME: 1346SD.DAT TIME/DATE OF STUDY: 10:41 08/28/2002 -''•''•''•''•''•i'*-k-k-k-k-k***-ic-k-k*-k-k-k-k-k**-k-k*-k-k-k-k-k*-i<-k-k-k***i,** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1346.00- 0.67 Dc 37.51 0.28* 84.17 } FRICTION 1346.50- 0.67*Dc 37.51 0.67*Dc 37.51 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. *•|'•|'•^'•^'•''*•k•k•k•k•k•k•****************^c*^,^,***^,**^,^r*****^r****^,**^,^c*** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 134 6.00 FLOWLINE ELEVATION = 366.00 PIPE FLOW = 3.08 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 364.040 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -1.96 FT.) IS LESS THAN CRITICAL DEPTH( 0.67 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 1346.00 : HGL = < 366.275>;EGL= < 369.250>;FLOWLINE= < 366.000> ******************************************i.|t^t^tjm.J,^tJt.^tjt.yt^J,^jtjj,t^.^.^.^..^..^..^..^^j^..^^^^^^^^^ FLOW PROCESS FROM NODE 134 6.00 TO NODE 134 6.50 IS CODE = 1 UPSTREAM NODE 134 6.50 ELEVATION = 370.54 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.08 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.26 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.67 0.67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY( FT) MOMENTUM(POUNI 0. 000 0. 668 4 . 051 0. 922 37. 51 0. 004 0.651 4. 185 0. 923 37. 54 0. 017 0.635 4. 327 0. 926 37. 66 0. 039 0. 619 4. 479 0. 930 37. 85 0 074 0.602 4. 642 0. 937 38. 14 0 121 0.586 4. 816 0. 946 38. 51 0 183 0.569 5. 003 0. 958 38. 99 0 262 0.553 5. 204 0. 974 39. 57 0 362 0.537 5. 419 0. 993 40. 27 0 486 0.520 5 653 1. 017 41. 09 0 638 0.504 5 905 1. 046 42. 05 0 823 0.488 6 178 1. 081 43. 16 1 049 0.471 6 475 1. 123 44. 44 1 323 0.455 6 799 1. 173 45. 90 1 657 0.439 7 153 1. 234 47. 56 2 065 0.422 7 541 1. 306 49. 46 2 567 0. 406 7 969 1. 393 51. 60 3 189 0.390 8 442 1. 497 54. 05 3 .969 0.373 8 967 1 623 56. 82 4 .964 0.357 9 552 1 775 59. 97 6 .262 0.341 10 208 1 960 63. 57 8 .012 0.324 10 948 2 187 67. 69 10 .496 0.308 11 .785 2 466 72. 41 14 .349 0.292 12 .742 2 814 77. 87 21 . 611 0.275 13 .841 3 252 84 19 22 .250 0.275 13 .837 3 250 84 17 NODE 1346.50 : HGL = < 371.208>;EGL= < 371.4 62>;FLOWLINE= < 370.540> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1346.50 FLOWLINE ELEVATION = 370.54 ASSUMED UPSTREAM CONTROL HGL = 371.21 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************^^.^^^^^J^^^^^^^^^.J^.^J^.^.^^.J^^^.^.J^.^.^.^.J^..^.^J^.^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE K HYDRAULICS * * STORM DRAIN - STA 1407.00 * * J.N. 98-1020 8/28/02 * *****************************************^^.^^,^^.i.^^^^.^^..^.^J,J^..^..^.^J^..^.^.^.J^.^.^,.^^^^^^J^^^^^ FILE NAME: 1407SD.DAT TIME/DATE OF STUDY: 10:48 08/28/2002 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1407.00- 0.52 Dc 20.05 0.18* 57.87 } FRICTION 1407.50- 0.52*Dc 20.05 0.52*Dc 20.05 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1407.00 FLOWLINE ELEVATION = 367.90 PIPE FLOW = 1.89 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 368.410 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.51 FT.) IS LESS THAN CRITICAL DEPTH( 0.52 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 1407.00 : HGL = < 368.081>;EGL= < 371.883>;FLOWLINE= < 367.900> ******************************************************yf*j,.i.* + .^.yt.yi.jt^t.j.jt^.^.^.^..4..|t.j..^..jtjj.j^ FLOW PROCESS FROM NODE 1407.00 TO NODE 1407.50 IS CODE = 1 UPSTREAM NODE 1407.50 ELEVATION = 371.72 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 1.89 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.13 CRITICAL DEPTH(FT) = 0.52 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.52 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0. 000 0 518 3. 493 0 707 20 05 0 001 0 502 3. 640 0 708 20 08 0 003 0 487 3. 798 0 711 20 .17 0 008 0 472 3. 969 0 717 20 .33 0 015 0 456 4 . 155 0 725 20 .57 0 025 0 441 4. 357 0 .736 20 .88 0 038 0 426 4. 577 0 .751 21 .28 0 055 0 410 4. 817 0 .771 21 .78 0 076 0 .395 5. 081 0 .796 22 .38 0 104 0 .380 5. 372 0 .828 23 .10 0 138 0 .364 5. 694 0 .868 23 .95 0 181 0 .349 6. 051 0 . 918 24 .95 0 235 0 .334 6. 449 0 . 980 26 .12 0 303 0 .318 6. 895 1 .057 27 .49 0 388 0 .303 7. 399 1 .154 29 .08 0 495 0 .288 7. 969 1 .275 30 .93 0 631 0 .272 8 621 1 .427 33 .10 0 807 0 .257 9 371 1 .622 35 .65 1 .037 0 .242 10 241 1 .871 38 .65 1 .344 0 .226 11 259 2 .196 42 .21 1 .765 0 .211 12 465 2 . 625 46 .48 2 .363 0 .196 13 910 3 .202 51 .64 3 .250 0 .181 15 644 3 .983 57 .87 NODE 1407.50 : HGL = < 372.238>;EGL= < 372.427>;FLOWLINE= < 371.720> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1407.50 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 371.72 372.24 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ***************************************Vt*.i.^^tJ,^Jt.yt.^.^..yt.jt^^.i^.^.jj..^.j.^^^j^.^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE K HYDRAULICS * * STORM DRAIN -STA 1740.00 * * J.N. 98-1020 8/28/02 * ***************************************Vr**********************j,*** + *jl.jl.^^t^^ FILE NAME: 1740SD.DAT TIME/DATE OF STUDY: 10:51 08/28/2002 ****************************************JtJ,J,^.Jt.yt.Jt.^^J..^.J^.4..^.^J^.yj.^^.j.jj..j^^^^^^^^^^^j^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1740.00- 0.55 Dc 23.08 0.24* 49.23 } FRICTION 1740.50- 0.55*Dc 23.08 0.55*Dc 23.08 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. •|'->'->'-k•k•k•)^*•k•k•k•^^**•k****i,*^^***^,^,*******^c****^,*^,**^,^,^,^r^c**^,^,*** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1740.00 FLOWLINE ELEVATION = 379.92 PIPE FLOW = 2.11 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 379.760 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -0.16 FT.) IS LESS THAN CRITICAL DEPTH( 0.55 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 1740.00 : HGL = < 380.157>;EGL= < 382.310>;FLOWLINE= < 379.920> •|'•^'•k•^r•k*•k*•k********************^**^,*^,*^,^,^^,^•^,^,^,^,^,^,^,^,.),.^,^,i,.^.^^,.^,^ FLOW PROCESS FROM NODE 1740.00 TO NODE 1740.50 IS CODE = 1 UPSTREAM NODE 1740.50 ELEVATION = 383.79 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.11 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) 0 .22 CRITICAL DEPTH(FT) 0.55 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.55 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM{POUNDS) 0. 000 0. 548 3. 608 0.751 23. 08 0 004 0. 535 3. 728 0.751 23. 10 0 015 0. 522 3. 854 0.753 23. 17 0 036 0. 509 3. 989 0.757 23. 28 0 067 0. 496 4. 132 0.762 23. 45 0 109 0. 483 4 . 286 0.769 23. 67 0 165 0. 470 4. 449 0.778 23. 95 0 236 0. 457 4 . 625 0.790 24. 29 0 326 0. 444 4. 813 0.804 24. 70 0 437 0. 431 5. 015 0.822 25. 18 0 572 0. 419 5 234 0.844 25. 74 0 737 0. 406 5 469 0.870 26. 38 0 937 0. 393 5 724 0.902 27. 12 1 .179 0. 380 6 001 0.939 27. 96 1 .473 0. 367 6 303 0.984 28. 92 1 .831 0. 354 6 632 1.037 30. 00 2 .270 0. 341 6 993 1.101 31. 23 2 .811 0. 328 7 390 1.176 32. 61 3 .487 0 315 7 827 1.267 34. 18 4 .346 0 302 8 312 1.375 35. 95 5 .459 0 289 8 852 1.506 37. 95 6 . 954 0 276 9 .455 1.665 40. 24 9 .062 0 263 10 .133 1.858 42 84 12 .314 0 250 10 .900 2.096 45 81 18 .403 0 237 11 .773 2.390 49 23 22 .250 0 237 11 .773 2.390 49 23 NODE 1740.50 : HGL = < 384.338>;EGL= < 384.541>;FLOWLINE= < 383.790> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1740.50 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 383.79 384.34 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ***********************************************************************+*^t**** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE K HYDRAULICS * * STORM DRAIN - B * * J.N. 98-1020 8/27/02 * ********************************************************************* + jrVrjr.*. FILE NAME: VILKSDB.DAT TIME/DATE OF STUDY: 09:57 08/28/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 116.00- } 114.50- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 2.00* 389.94 } HYDRAULIC JUMP 1.52*Dc 114.00- } 516.50- } 516.00- } 514.50- } 514.00- } 512.50- } 512.00- } 510.50- FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 346.84 2.18* 285.40 ) HYDRAULIC JUMP 1.10*Dc 149.36 1.52* 176.34 } HYDRAULIC JUMP 1.10*Dc 149.36 1.41* 125.02 } HYDRAULIC JUMP 0.89 Dc 0.98 Dc 0.98*Dc 89.76 96.98 96.98 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 354.32 1. 34 1.52*Dc 0. 91 1.10*Dc 0. 91 1.10*Dc 0. 66 0.49* 0.43* 0.98*Dc 346.84 156.75 149.36 157.35 149.36 102.85 140.61 194.52 96. 98 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 116.00 PIPE FLOW = 17.73 CFS ASSUMED DOWNSTREAM CONTROL HGL FLOWLINE ELEVATION = 359.70 PIPE DIAMETER = 24.00 INCHES 361.700 FEET NODE 116.00 : HGL = < 361.700>;EGL= < 362.195>;FLOWLINE= < 359.700> *******************************************************************.*.^*.^*.*..^*.^jk.ji. FLOW PROCESS FROM NODE UPSTREAM NODE 114.50 116.00 TO NODE 114.50 IS CODE = 1 ELEVATION = 360.64 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.73 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 93.96 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.33 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.52 1.52 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .517 6 . 933 2 .264 346. 84 0 .027 1 .510 6 .967 2 .264 346. 85 0 .111 1 .502 7 .002 2 .264 346. 89 0 .256 1 .495 7 .037 2 .264 346. 95 0 .469 1 .488 7 .073 2 .265 347. 03 0 .756 1 .480 7 .110 2 .266 347. 14 1 .124 1 .473 7 .147 2 .267 347. 27 1 .582 1 .465 7 .185 2 .268 347. 43 2 .140 1 . 458 7 .223 2 .269 347. 62 2 .810 1 .451 7 .262 2 .270 347. 83 3 .607 1 .443 7 .301 2 .272 348. 06 4 .548 1 .436 7 .341 2 .273 348. 32 5 .654 1 . 429 7 .382 2 .275 348. 61 6 .951 1 .421 7 .423 2 .277 348. 93 8 .474 1 .414 7 .465 2 .280 349. 27 10 .265 1 . 407 7 .507 2 .282 349. 65 12 .379 1 .399 7 .550 2 .285 350. 05 14 .895 1 .392 7 .594 2 .288 350. 47 17 .919 1 .384 7 . 639 2 .291 350. 93 21 .607 1 .377 7 . 684 2 .294 351. 42 26 .205 1 .370 7 .729 2 .298 351. 93 32 .119 1 .362 7 .776 2 .302 352. 48 40 .116 1 .355 7 .823 2 .306 353. 06 51 .915 1 .348 7 .871 2 .310 353. 67 73 .033 1 .340 7 . 920 2 .315 354 . 31 93 .960 1 .340 7 .920 2 .315 354. 32 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 4 7 . 11. 14 . 17. 20. FLOW DEPTH (FT) .275 .982 .396 .596 .624 ,506 23.260 25.896 28. 30. 33. 35. 37. 424 848 172 397 523 39.548 41.470 43.282 44.979 46.552 47.990 49.279 50.403 51.339 52.059 52.527 52.696 93.960 000 981 961 942 923 903 884 865 845 826 807 787 768 749 730 710 691 672 652 633 614 594 575 556 536 517 517 VELOCITY (FT/SEC) 5.642 5, 5. 5, 5. 5. 5. 5. 5. 5. 5. 5. 6. 6. 6. 6. 6. 6. SPECIFIC ENERGY(FT) 2.495 ,92 ,94 ,08 ,34 , 651 ,668 ,689 ,715 ,744 ,776 ,812 ,850 ,891 ,935 ,982 ,032 ,084 ,139 , 196 ,256 ,320 6.385 6.454 6.526 6.601 6.679 6.760 6.845 6.933 6.933 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 42.25 FEET UPSTREAM OF NODE 116.00 | I DOWNSTREAM DEPTH = 1.702 FEET, UPSTREAM CONJUGATE DEPTH = 1.348 FEET | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2. 2. 2, 2, 2, 2, 2, 2, . 477 ,460 ,445 ,430 ,416 .403 ,390 ,377 ,365 ,354 ,344 ,333 ,324 ,315 ,307 .299 .292 .286 .280 ,275 ,271 ,268 ,266 2.264 2.264 2.264 PRESSURE+ MOMENTUM(POUNDS) 389.94 386.47 383.27 380.24 377.38 374.65 372.05 369.58 367.24 365.02 362. 360. 359. 357. 355.73 354.24 352.88 351.66 350.56 349.59 348.77 348, 347, 347. 346. 346. ,09 ,55 ,16 ,92 ,84 346.84 NODE 114.50 HGL < 362.157>;EGL= < 362.904>;FLOWLINE= < 360.640> *********************************************^^**v^^.^,.y^*^^*^m.J,.^J^..^..^.J^..^^.^..^^.^.^^.^..J^^.^^^.J^^ FLOW PROCESS FROM NODE UPSTREAM NODE 114.00 114.50 TO NODE ELEVATION = 114.00 IS CODE = 5 361.14 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL 9.43 24.00 90.00 361.14 1.10 17.73 24.00 - 360.64 1.52 5.68 18.00 0.00 361.14 0.92 2.62 18.00 90.00 361.14 0.61 0.00===Q5 EQUALS BASIN INPUT=== VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 3.002 6. 935 3.214 1.483 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00174 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00720 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.004 47 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.552)+( 0.000) = 0.552 NODE 114.00 : HGL = < 363.316>;EGL= < 363.456>;FLOWLINE= < 361.140> **************************************j,.j,*^t^^^t^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 114.00 TO NODE 516.50 IS CODE = 1 UPSTREAM NODE 516.50 ELEVATION = 362.61 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.43 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 151.26 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.91 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.10 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1. 10 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .097 5 342 1. 541 149 .36 0 .022 1 .090 5 388 1. 541 149 .37 0 .092 1 .082 5 434 1. 541 149 .40 0 .213 1 .074 5 482 1. 541 149 .46 0 .391 1 .067 5 531 1. 542 149 .54 0 .631 1 .059 5 580 1. 543 149 .64 0 .939 1 .052 5 631 1. 544 149 .77 1 .324 1 .044 5 682 1. 546 149 .92 1 .794 1 .037 5. 735 1. 548 150 .09 2 .361 1 .029 5. 788 1. 549 150 .30 3 .035 1 .021 5. 842 1. 552 150 .52 3 .834 1 . 014 5. 898 1. 554 150 .78 4 .774 1 .006 5. 954 1. 557 151 .06 5 .880 0 .999 6. 012 1. 560 151 .36 7 . 181 0 .991 6. 070 1. 564 151 .70 8 .713 0 . 983 6. 130 1. 567 152 .06 10 .527 0 . 976 6. 191 1. 572 152 45 12 . 690 0 .968 6. 254 1. 576 152 87 15 .294 0 . 961 6. 317 1. 581 153 32 18 . 477 0 . 953 6. 382 1. 586 153 81 22 .453 0 . 946 6. 448 1. 592 154 32 27 .578 0 .938 6. 515 1. 598 154 86 34 .520 0 . 930 6. 584 1. 604 155 44 44 .782 0 . 923 6. 654 1. 611 156 05 63 . 187 0 . 915 6. 726 1. 618 156 70 151 .260 0 .915 6. 732 1. 619 156 75 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.IE DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) 0. 000 22.062 2.176 2.000 002 002 2.316 2.140 285.40 250.89 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 22.062 26.386 30.541 34.599 38.582 42.499 46.359 50.162 53.910 57.603 61.239 64.814 68.325 71.764 75.124 78.396 81.566 84.620 87.537 90.291 92.850 95.170 97.190 98.826 99.956 100.392 151.260 FLOW DEPTH (FT) 2.000 1.964 1.928 1.892 1.856 VELOCITY (FT/SEC) 819 783 747 711 675 639 603 567 531 494 1.458 422 386 350 314 278 242 206 169 133 097 097 001 013 036 065 101 141 187 238 294 355 421 493 571 654 744 3.841 3.945 058 178 308 449 600 764 941 133 342 SPECIFIC ENERGY(FT) 2. 140 105 071 038 005 973 941 910 880 850 821 792 765 738 712 688 664 642 621 602 585 570 558 549 543 541 541 PRESSURE+ MOMENTUM(POUNDS) 250.89 244.05 237.43 231.01 224.77 218.70 212.83 207.14 201.66 196.39 191.33 186.49 181.90 177.54 173.44 169.61 166.06 162.80 159.85 157.22 154.93 153.00 151.45 150.31 149.60 149.36 149.36 ,342 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 90.99 FEET UPSTREAM OF NODE 114.00 | I DOWNSTREAM DEPTH = 1.304 FEET, UPSTREAM CONJUGATE DEPTH = 0.916 FEET | NODE 516.50 HGL = < 363.707>;EGL= < 364.150>;FLOWLINE= < 362.610> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 516.00 516.50 TO NODE ELEVATION = 516.00 IS CODE = 5 362.94 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 9.43 9.43 0.00 0.00 0.00== 24.00 90.00 362.94 1.10 24.00 - 362.61 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 3.680 5.343 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00203 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00511 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00357 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.520)+( 0.000) = 0.520 NODE 516.00 HGL < 364.460>;EGL= < 364.671>;FLOWLINE= < 362.940> ***************************************************.i,ntjm.*^fc.j,.i.vt*********vtv,j,jtjt.^j,, FLOW PROCESS FROM NODE 516.00 TO NODE 514.50 IS CODE = 1 UPSTREAM NODE 514.50 ELEVATION = 364.11 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.43 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 117.04 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NOEIMAL DEPTH(FT) = 0.90 CRITICAL DEPTH{FT) = 1.10 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.10 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.023 0.093 0.217 0.397 0. 641 0. 955 1. 347 1.825 2.401 3.088 3. 900 4 . 858 5. 984 7.308 8.869 10.716 12.919 15.572 18 .815 22.867 28.090 35.166 45. 629 64.395 117.040 FLOW DEPTH (FT) ,097 ,089 ,081 ,074 ,066 , 058 ,050 ,042 ,034 ,026 ,019 , Oil ,003 0. 995 0. 987 0. 979 0. 971 0.963 0. 956 0.948 0.940 0.932 0.924 0.916 0.908 0.908 VELOCITY (FT/SEC) 5.342 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. SPECIFIC ENERGY(FT) 1.541 ,389 ,438 ,488 ,538 ,590 , 643 , 696 .751 ,807 ,863 , 921 ,980 ,041 ,102 , 165 ,229 ,295 ,361 ,430 6.499 6.570 6. 643 6.717 6.793 6.797 541 541 542 542 543 545 546 548 550 553 555 558 562 566 570 574 579 584 590 596 603 610 617 625 626 PRESSURE+ MOMENTUM(POUNDS) 149.36 149.37 149.41 149.47 149.55 149.66 149.80 149.96 150.15 150.37 150.62 150 .89 151.19 151.53 151.89 152.28 152.71 153.16 153.65 154.17 154.73 155.32 155.95 156.62 157.32 157.35 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.52 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.519 3.019 4 .500 5.959 7.396 8.810 10.198 11.558 12.889 14.188 15.453 16.680 17.865 19.006 20.097 21.133 22.109 23.018 23.851 24.599 25.251 25.792 26.208 26.476 26.573 117.040 FLOW DEPTH (FT) 520 503 486 469 453 436 419 402 385 368 351 334 ,317 ,300 ,283 ,266 ,249 ,233 ,216 ,199 ,182 ,165 ,148 ,131 ,114 ,097 1.097 VELOCITY (FT/SEC) 3.679 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 722 765 810 857 906 956 008 062 117 175 234 296 360 426 495 566 640 717 796 878 964 053 145 242 342 342 SPECIFIC ENERGY(FT) 1.731 718 707 695 684 673 662 651 641 1.631 622 613 604 596 588 580 573 567 561 556 552 548 545 542 541 541 541 PRESSURE+ MOMENTUM(POUNDS) 176.34 174.43 172.57 170.76 169.02 167.35 165.73 164.18 162.69 161.28 159.93 158.65 157.44 156.31 155.26 154.28 153.39 152.57 151.85 151.21 150.65 150.20 149.84 149.57 149.41 149.36 149.36 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 16.79 FEET UPSTREAM OF NODE 516.00 | I DOWNSTREAM DEPTH = 1.316 FEET, UPSTREAM CONJUGATE DEPTH = 0.908 FEET | NODE 514.50 HGL < 365.207>;EGL= < 365.650>;FLOWLINE= < 364.110> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 514.00 514.50 TO NODE ELEVATION = 514.00 IS CODE = 5 364.44 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 6.37 9.43 2.23 0.82 0.01== 24.00 0.00 364.44 0.89 24.00 - 364.11 1.10 18.00 90.00 364.44 0.56 18.00 90.00 364.44 0.34 =Q5 EQUALS BASIN INPUT=== 2.696 5.343 1.626 0.598 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Q1*V1*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00112 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00511 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00311 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.089 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.221)+( 0.089) = 0.310 NODE 514.00 : HGL = < 365.847>;EGL= < 365.960>;FLOWLINE= < 364.440> FLOW PROCESS FROM NODE 514.00 TO NODE 512.50 IS CODE = 1 UPSTREAM NODE 512.50 ELEVATION = 365.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.37 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 55.76 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.73 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.4 9 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.89 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL{FT) ( FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .486 10 793 2.296 140 61 2 .464 0 .496 10 500 2.209 137 34 4 . 967 0 .505 10 221 2.128 134 26 7 .512 0 .515 9 954 2.054 131 35 10 .103 0 .524 9 700 1.986 128 59 12 .745 0 .534 9 457 1.923 125 99 15 .444 0 .543 9 224 1.865 123 52 18 .205 0 .553 9 002 1.812 121 19 21 . 037 0 .563 8 788 1.763 118 99 23 . 947 0 .572 8 584 1.717 116 90 26 . 947 0 .582 8 388 1.675 114 93 30 .049 0 .591 8 200 1.636 113 06 33 .269 0 .601 8 019 1. 600 111 30 36 . 627 0 . 610 7 845 1.567 109 64 40 . 146 0 . 620 7 678 1.536 108 06 43 .858 0 . 629 7 518 1.508 106 58 47 .805 0 .639 7 363 1.481 105 18 52 .043 0 . 649 7 214 1.457 103 86 55 .760 0 .656 7 097 1. 439 102. 85 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.41 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.893 FLOW DEPTH VELOCITY (FT) (FT/SEC) 1.407 2.696 1.387 2.739 SPECIFIC ENERGY(FT) 1.520 1.503 PRESSURE+ MOMENTUM(POUNDS) 125.02 122.56 3. 771 1. 366 2. 785 1.487 120. 16 5. 632 1. 346 2. 833 1.470 117. 84 7 475 1 325 2. 882 1.454 115. 60 9 299 1 305 2 934 1.438 113 43 11 102 1 284 2 988 1.423 111 34 12 881 1 263 3 045 1.408 109 33 14 636 1 243 3 104 1.393 107 40 16 363 1 222 3 165 1.378 105 55 18 059 1 202 3 230 1.364 103 80 19 721 1 181 3 297 1.350 102 13 21 346 1 161 3 368 1.337 100 55 22 929 1 140 3 442 1.324 99 06 24 464 1 120 3 519 1.312 97 67 25 947 1 099 3 601 1.300 96 38 27 370 1 079 3 686 1.290 95 19 28 725 1 058 3 776 1.279 94 11 30 .002 1 037 3 870 1.270 93 14 31 .189 1 017 3 969 1.262 92 28 32 .272 0 996 4 073 1.254 91 53 33 .231 0 .976 4 .183 1.248 90 91 34 .045 0 .955 4 .299 1.242 90 42 34 .682 0 .935 4 .422 1.238 90 06 35 .105 0 . 914 4 .551 1.236 89 84 35 .261 0 .894 4 .688 1.235 89 76 55 .760 0 .894 4 .688 1.235 89 76 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 14.45 FEET UPSTREAM OF NODE 514.00 | I DOWNSTREAM DEPTH = 1.245 FEET, UPSTREAM CONJUGATE DEPTH = 0.623 FEET | NODE 512.50 : HGL = < 365.486>;EGL= < 367.296>;FLOWLINE= < 365.000> ****************************************************************************** FLOW PROCESS FROM NODE 512.50 TO NODE 512.00 IS CODE = 5 UPSTREAM NODE 512.00 ELEVATION = 365.50 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH{FT.) (FT/SEC) UPSTREAM 6.37 18.00 45.00 365.50 0.98 15.391 DOWNSTREAM 6.37 24.00 - 365.00 0.89 10.797 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.11808 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04731 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.08270 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.331 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = {DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 2.309)+( 0.000) = 2.309 NODE 512.00 : HGL = < 365.927>;EGL= < 369.605>;FLOWLINE= < 365.500> ,^..^.^^.*^,^^*********************************************************************** FLOW PROCESS FROM NODE 512.00 TO NODE 510.50 IS CODE = 1 UPSTREAM NODE 510.50 ELEVATION = 372.84 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.37 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 62.17 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 . 43 CRITICAL DEPTH(FT) 0. 98 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.98 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 0 000 0. 976 5. 232 1 401 96. 98 0 009 0. 954 5. 372 1 402 97. 05 0 037 0. 932 5. 520 1 405 97. 28 0 087 0. 910 5. 678 1 411 97. 67 0 161 0. 888 5. 846 1 419 98. 23 0 264 0. 866 6. 026 1 430 98. 98 0 398 0. 844 6 218 1 445 99. 92 0 569 0. 822 6 423 1 463 101. 08 0 782 0. 800 6 644 1 .486 102. 46 1 043 0. 778 6 880 1 .513 104 . 08 1 362 0. 756 7 134 1 .547 105. 97 1 749 0. 734 7 407 1 .587 108. 15 2 215 0. 712 7 702 1 . 634 110. 64 2 778 0. 690 8 021 1 .690 113. 46 3 .457 0. 668 8 367 1 .756 116. 67 4 .279 0. 646 8 742 1 .834 120. 28 5 .281 0. 624 9 151 1 .926 124. 36 6 .509 0. 602 9 598 2 . 034 128. 95 8 .035 0. 580 10 088 2 . 162 134. 10 9 . 959 0. 558 10 626 2 .313 139. 91 12 .442 0. 536 11 220 2 .493 146. 44 15 .750 0. 514 11 878 2 .707 153. 81 20 .389 0. 492 12 .610 2 .963 162. 14 27 .494 0. 470 13 .428 3 .272 171. 57 40 .714 0 449 14 .348 3 . 647 182. 29 62 . 170 0 427 15 .386 4 . 105 194 . 52 NODE 510.50 : HGL = < 373.816>;EGL= < 37 4.241>;FLOWLINE= < 372.840> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 510.50 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 372.84 373.82 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS **********************************************************^m.^^..^..^.J^..y^JH^.^..^^,^^.^^J^.J^..^..y^..^..^. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE K HYDRAULICS * * STORM DRAIN - STA 1100.00 (WEST) * * J.N. 98-1020 8/28/02 * ***************************************************************^t**.i.^t^tjl..yHt^.jt FILE NAME: 1100B.DAT TIME/DATE OF STUDY: 10:33 08/28/2002 *****************************************************************J^J^.^^^Jm..i^,.^..^^^n^.J^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1110.00- 1.24 62.35 0.22* 69.72 } FRICTION 1110.50- 0.58*Dc 26.78 0.58*Dc 26.78 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1110.00 FLOWLINE ELEVATION = 364.61 PIPE FLOW = 2.37 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 365.850 FEET NODE 1110.00 : HGL = < 364.827>;EGL= < 368.317>;FLOWLINE= < 364.610> ****************************************************************************** FLOW PROCESS FROM NODE 1110.00 TO NODE 1110.50 IS CODE = 1 UPSTREAM NODE 1110.50 ELEVATION = 368.61 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.37 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.24 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.18 CRITICAL DEPTH(FT) = 0.58 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.58 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0. 000 0. 582 3. 736 0. 799 26.78 0. 002 0. 566 3. 878 0. 800 26.81 0. 008 0. 551 4 . 030 0. 803 26.92 0. 018 0. 535 4 . 193 0. 808 27.10 0. 034 0. 519 4. 369 0. 815 27.36 0. 056 0. 503 4 . 559 0. 826 27.70 0 085 0. 487 4 765 0. 840 28.14 0 122 0 471 4 988 0 858 28.68 0 170 0 455 5 230 0 880 29.34 0 230 0 439 5 495 0 908 30.11 0 304 0 423 5 784 0 943 31.03 0 396 0 407 6 102 0 986 32.09 0 509 0 392 6 452 1 038 33.33 0 648 0 376 6 840 1 103 34.75 0 820 0 360 7 270 1 181 36.40 1 .034 0 344 7 .751 1 277 38.29 1 .301 0 328 8 .290 1 396 40.47 1 . 639 0 .312 8 .898 1 542 42.99 2 .070 0 .296 9 .588 1 .725 45.91 2 .633 0 .280 10 .377 1 . 953 49.30 3 .383 0 .264 11 .285 2 .243 53.26 4 .420 0 .249 12 .341 2 .615 57 . 90 5 . 928 0 .233 13 .578 3 .097 63.41 8 .240 0 .217 14 .986 3 .707 69.72 NODE 1110.50 : HGL = < 369.192>;EGL= < 369.409>;FLOWLINE= < 368.610> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1110.50 FLOWLINE ELEVATION = 368.61 ASSUMED UPSTREAM CONTROL HGL = 369.19 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(7 60)931-8 680 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE K HYDRAULICS * * STORM DRAIN - STA 1100.00 (EAST) * * J.N. 98-1020 8/28/02 * ************************************************************************** FILE NAME: 1100A.DAT TIME/DATE OF STUDY: 11:39 10/17/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1100.00- 1.50* 83.65 0.30 8.62 } FRICTION 1100.50- 1.26* 58.46 0.36 Dc 8.15 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1100.00 FLOWLINE ELEVATION = 366.75 PIPE FLOW = 0.93 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 368.250 FEET NODE 1100.00 : HGL = < 368.250>;EGL= < 368.254>;FLOWLINE= < 366.750> ****************************************************************************** FLOW PROCESS FROM NODE 1100.00 TO NODE 1100.50 IS CODE = 1 UPSTREAM NODE 1100.50 ELEVATION = 366.99 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.93 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.26 FEET MANNING'S N = 0.01300 NORMAL DEPTH{FT) = 0.30 CRITICAL DEPTH(FT) = 0.36 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.500 0.527 1.504 83.65 4.253 1.454 0.531 1.459 78.65 8.498 1.409 0.540 1.413 73.72 12.738 1.363 0.552 1.368 68.88 16.974 1.318 0.566 1.322 64.17 21.206 1.272 0.583 1.277 59.58 22.260 1.261 0.587 1.266 58.46 NODE 1100.50 HGL = < 368. 251>;EGL= < 368.256>;FLOWLINE= < 366.990> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1100.50 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 366.99 367.35 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS *****************************************^^^^ + .y^^^^,^^.J^^^^,.*.y^.^.^^**.^.^..y^.J^.^.**.^,.^.^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE K HYDRAULICS * * STORM DRAIN - LINE C * * J.N. 98-1020 8/27/02 * ****************************************************************.j,.j^.^^^^^^^^ FILE NAME: VILKSDC.DAT TIME/DATE OF STUDY: 10:56 08/28/2002 *****************************************************************.j..^.^.^^^^^^^^^j^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 820.00- 1.50 118.71 } FRICTION 818.50- } JUNCTION 818.00- } FRICTION 816.50- } JUNCTION 816.00- } FRICTION 814.50- } JUNCTION 814.00- } FRICTION 812.50- } JUNCTION 812.00- } FRICTION 810.50- 1.50 0.92 Dc 0.93 Dc 0.92 Dc 0.93 Dc 0.92 Dc 0.93 Dc 0.92*Dc 1.22 0.79*Dc 84.26 84.26 84.26 84.26 84.26 84.26 84.26 76.86 57.63 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 134.20 0.49* 0.68* 0.55* 0.47* 0.47* 0. 63* 0.76* 0.92*Dc 0.34* 0.79*Dc 95.30 116.41 138.58 140.09 102.03 88.65 84.26 120.49 57. 63 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 820.00 PIPE FLOW = 5.73 CFS ASSUMED DOWNSTREAM CONTROL HGL FLOWLINE ELEVATION = 384.00 PIPE DIAMETER = 18.00 INCHES 385.500 FEET NODE 820.00 : HGL = < 384.487>;EGL= < 386.549>;FLOWLINE= < 384.000> *************************************************^^.^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 820.00 TO NODE 818.50 IS CODE = 1 UPSTREAM NODE 818.50 ELEVATION = 389.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.73 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 81.96 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.48 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.68 0.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL{ FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .683 7.313 1 514 95 30 0 .414 0 .675 7.428 1 532 96 18 0 .865 0 . 667 7.547 1. 552 97. 12 1 .354 0 .659 7. 670 1. 573 98. 10 1 .887 0 .650 7.797 1. 595 99. 13 2 .468 0 .642 7.928 1. 619 100. 21 3 .103 0 .634 8.063 1. 644 101. 35 3 .7 97 0 .626 8.203 1. 671 102. 54 4 .558 0 . 618 8.347 1. 700 103. 79 5 .395 0 . 610 8.496 1. 731 105. 10 6 .319 0 .601 8.650 1. 764 106. 47 7 .340 0 .593 8.810 1. 799 107. 91 8 . 476 0 .585 8. 975 1. 837 109. 42 9 .745 0 .577 9.146 1. 877 110. 99 11 .171 0 .569 9.323 1. 919 112. 64 12 .786 0 .561 9.507 1. 965 114 . 37 14 .629 0 .552 9.697 2. 013 116. 18 16 .757 0 .544 9.895 2. 065 118. 08 19 .247 0 .536 10.100 2. 121 120. 07 22 .213 0 .528 10.313 2. 180 122. 15 25 .832 0 .520 10.534 2. 244 124 . 33 30 .399 0 .512 10.765 2. 312 126. 61 36 .469 0 .503 11.004 2. 385 129. 01 45 .289 0 .495 11.254 2. 463 131. 52 60 .858 0 . 487 11.514 2. 547 134 . 15 81 . 960 0 .487 11.519 2. 549 134 . 20 NODE 818.50 : HGL = < 389.683>;EGL= < 390.514>;FLOWLINE= < 389.000> **********************************************************.j.^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 818.50 TO NODE 818.00 IS CODE = 5 UPSTREAM NODE 818.00 ELEVATION = 389.40 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 (CFS) 5.73 5.73 0.00 0.00 (INCHES) 18.00 18.00 0.00 0.00 (DEGREES) 45.00 0.00 0.00 ELEVATION 389.40 389.00 0.00 0.00 DEPTH(FT.) 0. 92 0. 92 0.00 0.00 (FT/SEC) 9.724 7.315 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1 *VI*COS (DELTAl) -Q3*V3*COS (DELTA3) - Q4 *V4 *COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.0357 9 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01645 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02612 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.104 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.906)+( 0.000) = 0.906 NODE 818.00 : HGL = < 389.951>;EGL= < 391.420>;FLOWLINE= < 389.400> ***********************************************************.^..j.^^^^j^.^^^^^^^^^^^^ FLOW PROCESS FROM NODE 818.00 TO NODE 816.50 IS CODE = 1 UPSTREAM NODE 816.50 ELEVATION = 395.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.73 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 159.66 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.55 CRITICAL DEPTH(FT) = 0. 92 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.47 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 370 784 246 760 332 8. 967 10.672 12.456 14.328 16.300 18.385 20.601 22.968 25.513 28.271 31.287 34.620 38.358 42.624 47.614 FLOW DEPTH (FT) 0.474 0.477 0.481 0.484 0.487 0.490 0.493 0.4 97 0.500 0.503 0.506 0.510 0.513 0.516 0.519 0.522 0.526 0.529 0.532 0.535 0.538 VELOCITY (FT/SEC) 11.948 11.838 11.729 11.622 11.517 11.413 11.311 11.211 11.112 11.015 10.920 10.826 10.733 10.642 10.552 10.464 10.377 10.291 10.207 10.124 10.042 SPECIFIC ENERGY(FT) 2.692 655 618 583 548 514 481 450 419 388 359 331 303 276 249 224 199 174 2.151 2.128 2.105 PRESSURE+ MOMENTUM(POUNDS) 138.58 137.45 136.34 135.25 134.18 133.13 132.10 131.09 130.09 129.12 128.16 127.22 126.30 125.40 124.51 123.64 122.78 121.94 121.11 120.30 119.51 53.652 0.542 9.961 2.083 118.72 61.347 0.545 9.882 2.062 117.96 72.071 0.548 9.803 2.041 117.20 90.217 0.551 9.726 2.021 116.46 159.660 0.551 9.721 2.020 116.41 NODE 816.50 : HGL = < 395.474>;EGL= < 397.692>;FLOWLINE= < 395.000> ****************************************************************************** FLOW PROCESS FROM NODE 816.50 TO NODE 816.00 IS CODE = 5 UPSTREAM NODE 816.00 ELEVATION = 395.40 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.73 18.00 0.00 395.40 0.92 12.099 DOWNSTREAM 5.73 18.00 - 395.00 0.92 11.952 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06559 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06340 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06450 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.258 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = {DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.451)+( 0.000) = 0.451 NODE 816.00 : HGL = < 395.870>;EGL= < 398.143>;FLOWLINE= < 395.400> ****************************************************************************** FLOW PROCESS FROM NODE 816.00 TO NODE 814.50 IS CODE = 1 UPSTREAM NODE 814.50 ELEVATION = 410.60 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.73 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 221.87 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.46 CRITICAL DEPTH(FT) 0.92 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0. 629 8.143 1. 660 102.03 0.490 0. 623 8.258 1. 682 103.01 1.016 0.616 8.375 1.706 104.04 1.582 0.610 8.496 1.731 105.10 2.191 0.603 8.620 1.757 106.20 2.849 0.596 8.747 1.785 107.34 3.560 0.590 8.878 1.815 108.53 4 .331 0 583 9 013 1 .845 109 .76 5.168 0 577 9 151 1 .878 111 .04 6.081 0 570 9 294 1 .912 112 .37 7 .079 0 564 9 441 1 .948 113 .75 8.176 0 557 9 592 1 .986 115 .18 9.385 0 550 9 747 2 .027 116 . 66 10.725 0 544 9 908 2 .069 118 .21 12.221 0 537 10 073 2 .114 119 .81 13.901 0 531 10 243 2 .161 121 .47 15.807 0 524 10 419 2 .211 123 .19 17.993 0 517 10 600 2 .263 124 . 98 20.533 0 511 10 788 2 .319 126 .84 23.540 0 504 10 981 2 .378 128 .77 27.185 0 498 11 181 2 . 440 130 .78 31.758 0 491 11 387 2 .506 132 .86 37.798 0 484 11 600 2 .575 135 .03 46.524 0 478 11 821 2 .649 137 .28 61.836 0 471 12 050 2 .727 139 . 62 221.870 0 470 12 095 2 .743 140 .09 814.50 HGL = < 411 229>;EGL= < 412.260>;FLOWLINE= < 410. 600> NODE ****************************************************************************** FLOW PROCESS FROM NODE 814.50 TO NODE 814.00 IS CODE = 5 UPSTREAM NODE 814.00 ELEVATION = 411.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.73 18.00 0.00 411.00 0.92 6.330 DOWNSTREAM 5.73 18.00 - 410.60 0.92 8.146 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01116 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02202 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01659 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.066 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.127)+( 0.000) = 0.127 NODE 814.00 : HGL = < 411.764>;EGL= < 412.387>;FLOWLINE= < 411.000> ****************************************************************************** FLOW PROCESS FROM NODE 814.00 TO NODE 812.50 IS CODE = 1 UPSTREAM NODE 812.50 ELEVATION = 412.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.73 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 87.16 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.76 CRITICAL DEPTH(FT) = 0.92 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.029 0.096 0.203 0.353 0.553 0.806 1.119 1.498 , 953 .4 92 .128 ,875 ,751 ,780 , 989 8.419 10.121 12.168 14.668 17.788 21.806 27.245 35.281 49.685 87.160 FLOW DEPTH (FT) 0.921 0.915 0.908 0.902 0.895 0.889 0.882 0.876 0.869 0.863 0.856 0.849 0.843 0.836 0.830 0.823 0.817 0.810 0.804 0.7 97 0.791 0.784 0.778 0.771 0.765 0.764 VELOCITY (FT/SEC) 5.033 5 5 5 5 5 5 5 5 5 5 5 5 5 SPECIFIC ENERGY(FT) 1.315 075 119 163 208 254 300 348 397 446 497 549 601 655 710 766 823 881 941 6.001 6.063 6.127 6.192 6.258 6.325 6.328 315 315 316 317 317 319 320 322 323 326 328 330 333 336 340 344 348 352 357 362 368 373 380 386 387 PRESSURE+ MOMENTUM(POUNDS) 84.26 84.27 84.29 84.33 84.38 84 . 45 84.52 84.62 84.72 84 . 84 84 . 98 85.13 85.30 85.48 85. 68 85.89 86.12 86.37 86. 64 86. 92 87.23 87.55 87.89 88 .25 88 . 63 88 . 65 NODE 812.50 HGL < 412.921>;EGL= < 413.315>;FLOWLINE= < 412.000> ****************************************************************************** FLOW PROCESS FROM NODE 812.50 TO NODE 812.00 IS CODE = 5 UPSTREAM NODE 812.00 ELEVATION = 412.40 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL 4.29 18.00 90.00 412.40 0.79 5.73 18.00 - 412.00 0.92 1.44 18.00 90.00 412.40 0.45 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH{FT.) (FT/SEC) 14 .176 5.034 3.231 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY={Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.12908 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00614 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06761 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.270 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.547)+( 0.000) = 2.547 NODE 812.00 HGL < 412.741>;EGL= < 415.862>;FLOWLINE= < 412.400> ************************************************************************* * * * * * FLOW PROCESS FROM NODE UPSTREAM NODE 810.50 812.00 TO NODE 810.50 IS CODE = 1 ELEVATION = 414.99 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.29 CFS PIPE PIPE LENGTH = 3.25 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.22 CRITICAL DEPTH(FT) = 0.79 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.79 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0. 000 0 .794 4 517 1. Ill 57 .63 0. 002 0 .771 4 687 1. 112 57 .70 0. 007 0 .748 4 871 1. 117 57 . 94 0. 017 0 .725 5 070 1. 124 58 .36 0. 032 0 .702 5 285 1. 136 58 .96 0. 052 0 . 679 5 519 1. 152 59 .76 0. 080 0 .656 5 775 1. 174 60 .79 0. 116 0 . 633 6 053 1. 202 62 .07 0. 161 0 . 610 6 358 1. 238 63 .61 0. 219 0 .587 6 694 1. 283 65 .46 0. 291 0 .564 7 064 1. 339 67 . 64 0. 381 0 .541 7 474 1. 409 70 .20 0. 492 0 .518 7 930 1. 495 73 .20 0. 631 0 .495 8 440 1. 601 76 . 68 0. 804 0 . 472 9 012 1. 734 80 .73 1. 021 0 .449 9 658 1. 898 85 .45 1. 296 0 .426 10 392 2. 104 90 .94 1. 648 0 .403 11 233 2. 363 97 .35 2. 105 0 .380 12 202 2. 693 104 .88 2. 711 0 .357 13 328 3. 117 113 .77 3. 250 0 .341 14 171 3. 462 120 .49 10 .50 : HGL = < 415.7f 34>;EGL= < 416.101>;FLOWLINE= < 414. 990 NODE ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 810.50 FLOWLINE ELEVATION = 414.99 ASSUMED UPSTREAM CONTROL HGL = 415.78 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS L(i4^ X ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 5900 Pasteur Court, Suite 100 Carlsbad, CA 92008 (760)931-7700 Fax:(760)931-8680 ************************** DESCRIPTION OF STUDY ************************** * VILLAGE K HYDRAULICS * * STORM DRAIN - STA 2503.00 * * J.N. 98-1020 8/28/02 * ************************************************************************** FILE NAME: 2503SD.DAT TIME/DATE OF STUDY: 11:01 08/28/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2503.00- 0.50 Dc 18.31 0.41* 19.47 } FRICTION 2503.50- 0.50*Dc 18.31 0.50*Dc 18.31 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2503.00 FLOWLINE ELEVATION = 412.40 PIPE FLOW = 1.7 6 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 412.740 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH{ 0.34 FT.) IS LESS THAN CRITICAL DEPTH( 0.50 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 2503.00 : HGL = < 412.809>;EGL= < 413.125>;FLOWLINE= < 412.400> ****************************************************************************** FLOW PROCESS FROM NODE 2503.00 TO NODE 2503.50 IS CODE = 1 UPSTREAM NODE 2503.50 ELEVATION = 412.70 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.76 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH 27.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.41 CRITICAL DEPTH(FT) 0.50 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .499 3.422 0. 681 18.31 0 .009 0 .495 3.457 0. 681 18.31 0 .038 0 .4 92 3.493 0. 681 18.31 0 .088 0 .488 3.530 0. 681 18.32 0 .161 0 .484 3.568 0. 682 18.33 0 .260 0 .480 3.606 0. 682 18.35 0 .387 0 .477 3.646 0. 683 18.37 0 .546 0 .473 3.686 0. 684 18.39 0 .740 0 .469 3.726 0. 685 18.42 0 .973 0 .465 3.768 0. 686 18.45 1 .251 0 .4 62 3.810 0. 687 18.49 1 .580 0 .458 3.853 0. 688 18.53 1 . 968 0 .454 3.898 0. 690 18.57 2 .424 0 .450 3. 943 0. 692 18.62 2 . 960 0 .447 3. 989 0. 694 18.68 3 .592 0 .443 4.036 0. 696 18.73 4 .340 0 .439 4.084 0. 698 18.80 5 .232 0 .435 4.133 0. 701 18.86 6 .305 0 .432 4.183 0. 703 18.94 7 . 618 0 .428 4.234 0. 706 19.01 9 .257 0 .424 4.286 0. 709 19.09 11 .369 0 .420 4.340 0. 713 19.18 14 .231 0 .417 4.394 0. 717 19.27 18 .461 0 .413 4.450 0. 721 19.37 26 . 047 0 .409 4.507 0. 725 19.47 27 .250 0 .409 4.507 0. 725 19.47 NODE 2503.50 : HGL = < 413. 199>;EGL= < 413.381>;FLOWLINE= < 412.700> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2503.50 FLOWLINE ELEVATION = 412.70 ASSUMED UPSTREAM CONTROL HGL = 413.20 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS SECTION 5 ili oneCo^2^^ a27/) li^b-t-^? SITV- (2,+ f^.28 ^AtopE 4i5G') •2. - -i^f-^— Q^-.Pjl.CES__ -.^?.X^^LiA±^X)J± ^ikf— P.li -0-£n^L- ,.2JL—^^-"7^(2 :L .(^_a-l JkiJt^-i^^ 0,m -- '3.^ c^s __^J283 f?-,£)|-lL6t*M^^ ^ f,P^= 0.2/ISL. 9 * 0'-^ &'\ OJiry i/l\cA- Q-onUo^^<X> '-^ ... / .-76. ^ on L Co. S2. -t ^\) intf ^ (p. ?.0(o t 1 i • . - .."v - ^,^-^.7^^ 1 • h • ' T Z Z- —.—. •I I 1 I I r I II I IZ I r: I I 11 I r I i: - 4*^^— -j /> ^ ^-1 in 1^4- L-'^' SECTION 6