Loading...
HomeMy WebLinkAboutCT 02-05; LA COSTA OAKS SOUTH NEIGHBORHOOD 3.15; MASS GRADING HYDROLOGY STUDY; 2001-12-24HUNSAKER ^ASSOCIATES SAN DIECO, INC. PLANNING ENGINEERING SURVEYING IRVINE RIVERSIDE SAN DIEGO MASS GRADING HYDROLOGY STUDY for VILLAGES OF LA COSTA Neighborhoods 3.10-3.15 & Avenida Junipero City of Carlsbad, California Prepared for: Real Estate Collateral Management Company c/o Morrow Development 1903 Wright Place Suite 180 Carlsbad, CA 92008 w.o. 2352-10 DAVE HAMMAR LEX WILLIMAN ALISA VIALPANDO DANA SECUI 10179 Huennekens St. San Diego, CA 92121 (858) 558-4500 PH (858)558-1414 FX www.HunsakerSD.com lnfo@HunsakerSD.com December 24, ^ymondX-JVlailiFK R.e.E. Project Manager Hunsaker & Associates San Diego, lnc ESMkd h:\reports\2352\010\a03.doc w.o. 2352-10 12/21/2001 10:21 AM La Costa Oaks Mass Grading Hydrology Study TABLE OF CONTENTS Executive Summary Introduction Summary of Results References Methodology City of Carlsbad Drainage Design Criteria Rational Method Analysis Storm Drain Analysis Rational Method Hydrologic Output (AES Output) SECTION II Storm Drain System Design (StormCAD Output) Storm Drain Design Brow Ditch Design IV Desilt Basin Design Riprap Apron Design VI Reference Data Vll Mass Grading Condition Hydrology Map (Pocket) ESMkd n:\reixirt5\2352V010\a03.doc w.o. 2352-10 12/21/2001 7:52 AM La Costa Oaks Mass Grading Hydrology Study EXECUTIVE SUMMARY Introduction Neighborhoods 3.10 - 3.15 and Avenida Junipero ofthe proposed Villages of La Costa Oaks development are located southeast of the proposed alignment of Rancho Santa Fe Road in the City of Carisbad, California (see Vicinity Map below). This study predicts 100-year peak flows from the site for mass grading conditions. Additionally, this study also sizes the required storm drain systems, desilt basins, and riprap aprons within the site area. • In existing conditions, runoff from the undeveloped site predominantly flows to a tributary of Encinitas Creek at the existing culvert crossing at Camino de los Coches west of the site area. A small portion of the site drains to a finger canyon at southeast side of the site. Mass grading of the site will not significantly alter the drainage areas to these outlet locations. Peak flow increases associated with the development of the site will be mitigated by the proposed detention basin at La Costa Avenue (per "Addendum to Preliminary Hydrology for Villages of La Costa," prepared by Hunsaker & Associates on August 16, 2001). Offsite runoff flows to the site area from undeveloped slopes east of the site, from Rancho Santa Fe Road, and from a portion ofthe La Costa Oaks site west of Rancho Santa Fe Road. Developed condition flows from the offsite Oaks runoff and Rancho Santa Fe Road were detemnined per the "Hydrology Study for Villages of La Costa - Neighborhoods 3.8, 3.9 & Rancho Santa Fe Road," prepared by Hunsaker & Associates on August 22,2001. Peak flows from the undeveloped slopes east ofthe site were determined in the "Preliminary Hydrology Study for Villages of La Costa - The Oaks and the Ridge," prepared by Hunsaker & Associates. CTTY OF SAN UARCOS •AVEmA iHMPERO PROJECT SITE VICINITYMAF N.T.S. ESMkd h:\report$U>352U)10\a03.doc w.o. 2352-10 1201/2001 7:52 AM La Costa Oaks Mass Grading Hydrology Study Summary Of Results Peak flowrates for the site and offsite areas were determined based on modified Rational Method methodology and the 10O-year design frequency. Per the San Diego County rainfall isopluvial map, the 100-year, 6-hour rainfall depth at the La Costa site area is 2.9 inches. Runoff coefficient, initial time of concentration, and rainfall intensity values were determined in accordance with City of Carisbad and County of San Diego design standards. The AES model output is located in Section III ofthis report. Storm drain system design calculations, located in Section IV, are based on the 100-year results in Section III. Line A conveys offsite and site runoff to its outlet location at the proposed channel near the SDG&E easement. This channel flows in a southeriy direction to the aforementioned detention basin. Line B conveys runoff to the aforementioned outlet to the finger canyon at the southeast side of the site. Line C conveys runoff from the southern portion ofthe site area to the proposed detention basin. Storm drain Line D conveys flows from the MAG property under the proposed extension of La Costa Avenue to the open area downstream of the detention basin and upstream of Camino de los Coches. Desilt basins were designed in accordance to the California Regional Water Quality Control Board's Option No. 2 for sediment basin design. The basins were designed so that the volume below the principle riser provides for 3,600 cubic feet of storage for every graded acre draining to the desilt basin. The risers were sized based on the 100-year flow to the basin. Desilt basin calculations are located in Section V of this report. References 1. Preliminary Hydrology for Villages of La Costa - The Ridge & The Oaks , Hunsaker & Associates San Diego, Inc., April 25, 2001. 2. "Addendum to Preliminary Hydrology for Villages of La Costa." Hunsaker & Associates San Diego, Inc. August 16, 2001. 3. "Hydrology Study for Villages of La Costa - Neighborhoods 3.8, 3.9 & Rancho Santa Fe Road." August 22, 2001. ESMkd h:\reports\2352\010Va03.doc w.o. 2352-10 12^21/2001 7:52 AM SECTION II METHODOLOGY La Costa Oaks IVIass Grading Hydrology Study METHODOLOGY RATIONAL METHOD INITIAL SUBAREA CRITERIA Reference "Standards for Design and Constmction of Public Works Improvements in the City of Carisbad"; April 1993 Rational Method Use Allowed For Watersheds with drainage areas less than 0.5 mi^ Runoff Coefficient Soil GrouD Land Use A B C D Single-Family Res. 0.40 0.45 0.50 0.55 Multi-Units 0.45 0.50 0.60 0.70 Mobile Homes 0.45 0.50 0.55 0.65 Rural Lots (>1/2 ac) 0.30 0.35 0.40 0.45 Commercial 0.70 0.75 0.80 0.85 Industrial 0.80 0.85 0.90 0.95 Soil Type Assume Soil Group D unless othenA/ise instructed Rainfall Intensity Use County of San Diego Intensity-Duration Design Chart Nomograph Initial Area Length Added Time Increment Min and Max Tc Natural areas - Use Natural Watershed Nomograph Urban areas - Use Urban Area Overiand Nomograph Natural areas - Determine flow concentration point from contours; maximum flow length = 1,000 feet. Urban areas - Measure flow length across lot and then along gutter for a length of between 75 and 500 feet; choose length so that the initial subarea flow time is greater than 12 minutes (if possible) but not greater than 15 minutes; length should not exceed length to first inlet to storm drain system 10 minutes added to initial subarea flow time determined from natural watershed nomograph The minimum initial subarea flow time is 5 minutes The maximum initial subarea flow time is 15 minutes (urban only) ESMkd h:\reports\23S2U>10^.doc w.o. 2352-10 12/21/2001 7:52 AM La Costa Oaks Mass Grading Hydrology Study Rational Method Hvdrologic Analvsis Computer Software Package - AES-99 Design Storm - 100-year return interval Land Use - Single-family residential onsite; mostly natural areas offsite Soil Type - Hydrologic soil group D was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high pennanent water table, soils with clay pan or clay layer at or near the surface, and shallow soils over neariy impervious materials. Group D soils have a very slow rate of water transmission. Runoff Coefficient - In accordance with the County of San Diego standards, single- family residential areas were designated a runoff coefficient of 0.55 while natural areas were designated a runoff coefficient of 0.45. When a watershed encompasses solely pavement conditions, a runoff coefficient of 0.95 was selected. Rainfall Intensity - Initial time of concentration values were detemiined using the County of San Diego's overiand flow nomograph for urban and natural areas. For natural areas, a maximum 10-minute time increment is added to the initial subbasin. Downstream Tc values are detennined by adding the initial subbasin time of concentration and the downstream routing time. Intensity values were determined from the Intensity-Duration design chart from the County of San Diego's Drainage Design Manual. Precipitation values correspond to the 100-year, 6-hour design storm. Method of Analysis - The Rational Method is the most widely used hydrologic model for estimating peak mnoff rates. Applied to small urban and semi-urban areas with drainage areas less than 0.5 square miles, the Rational Method relates storni rainfall intensity, a mnoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation: Q = CIA, where: Q = The peak mnoff rate in cubic feet per second at the point of analysis. C = A mnoff coefficient representing the area - averaged ratio of mnoff to rainfall intensity. I = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration. A = The drainage basin area in acres. To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes. ESMkd h:\repotts\2352\010\a03.doc w.o. 2352-10 12/21/2001 7:52 AM La Costa Oaks Mass Grading Hydrology Study The procedure for the subarea summation model is as follows: (1) Subdivide the watershed into an initial subarea (generally 1 lot) and subsequent subareas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each subarea. (2) Estimate an initial Tc by using the appropriate nomograph or overiand flow velocity estimation. (3) Using the initial Tc, determine the corresponding values of 1. Then Q = C I A. (4) Using Q, estimate the travel tjme between this node and the next by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration) The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-99 computer subarea menu is as follows: SUBAREA HYDROLOGIC PROCESS 1. Confluence analysis at node. 2. Initial subarea analysis (including time of concentration calculation). 3. Pipeflow travel time (computer estimated). 4. Pipeflow travel time (user specified). 5. Trapezoidal channel travel time. 6. Street flow analysis through subarea. 7. User - specified information at node. 8. Addition of subarea mnoff to main line. 9. V-gutter flow through area. 10. Copy main stream data to memory bank 11. Confluence main stream data with a memory bank 12. Clear a memory bank At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape. (1). If the collection streams have the same times of concentration, then the Q values are directly summed, Qp = Qa + Qb: Tp = Ta = Tb ESMkd h:\repoits\2352\010Va03.dac w.o. 2352-10 12/21/2001 7:52 AM La Costa Oaks Mass Grading Hydrology Study (2). If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows: (i) . The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities. Qp = Qa + Qb (la/lb); Tp = Ta (ii) . In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a ratio of the T values. Qp = Qb+ Qa (Tb/Ta); Tp = Tb Storm Drain Capacitv Analvsis Computer Software - StormCAD Design Storm - 100-year return interval Storm drain systems in this analysis were sized to prevent street flooding and to predict outlet velocities to receiving channels. The StormCAD computer program, developed by Haested Methods, was used to predict hydraulic grade lines, pipe flow travel times and velocities in the storm drain systems. Required input includes the peak flowrate at each inlet, upstream and downstream inverts, pipe lengths, and rim elevations. Flow calculations are valid for both pressure and varied flow situations, including hydraulic jumps, backwater, and drawdown curves. The gravity network solution is solved using a numerical model that utilizes both the direct step and standard step gradually varied flow methods. Junction losses are modeled using the standard method, which calculates stmcture headloss based on the stmcture's exit velocity (velocity at the upstream end ofthe downstream pipe). The exit velocity head is multiplied by a user-entered coefficient to detennine the loss according to the following fonnula... Hs = K*Vo^/2g Where Hs = structure headloss (ft.) K = headloss coefficient Vo = exit pipe velocity (ft/s) G = gravitational acceleration (ft/s^) ESMkd li:\reportsV2352U)iaa03.doc w.o. 2352-10 12/21/2001 7:52 AM La Costa Oaks Mass Grading Hydroiogy Study Typical headloss coefficients used for the standard method range from 0.5 to 1.0 depending on the number of pipes meeting at the junction and the confluence angle. For a tmnkline only with no bend at the junction, a headloss coefficient of 0.5 is selected. For three or more entrance lines confluencing at a junction, a value of 1.0 is selected. A table with standard method headloss coefficients with accompanying diagrams is included in this report. ESMkd h:\rEports\2352\010Va03.doc w.o. 2352-10 12/21/2001 7:52 AM SECTION RATIONAL METHOD HYDROLOGIC OUTPUT (AES) RATIONAL METHOD HYDROLOGY CaUPOTEB. PROGRSM PACICAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANtmL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego, Inc. 10179 Huennekens Street San Diego, California (619) 558-4500 Planning Engineering Surveying ************************** DESCRIPTION OF STtJDY ************************** * VILLAGES OF LA COSTA * * MASS GRADING, 6-HOtm lOO-YEAR DESIGN STORM * * W.O. 2352-1, CARLSBAD, CA * ************************************************************************** FILE NAME; H:\AES99\2352\l\269\REVISEp.DAT TIME/DATE OF STtJDY: 23:56 12/20/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL (3tITERIA USER SPECIFIED STORM EVENT (YEAR) - 100.00 6-HOtJR DURATION PRECIPITATION (INCHES) » 2.900 SPECIFIED MINIMUM PIPE SIZEIINCH) - 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE; ONLY PEAK CONFLUENCE VALUES CONSIDERED I I I RANCHO SANTA FE ROAD TRIBUTARY FLOW I I I ********************************************************** FLOM PROCESS FRCM NODE 1.00 TO NODE 2.00 IS CODE »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SOIL CLASSIFICATION IS "D" CCMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 INITIAL SUBAREA FL(3W-LENGTH = 330.00 UPSTREAM ELEVATION - 530.00 IKIWNSTREAM ELEVATION ' 526.00 ELEVATION DIFFERENCE - 4.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 7.667 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.799 SUBAREA RtJNOFF (CFS) • 2.37 TOTAL AREA(ACRES) - 0.48 TOTAL RUNOFF(CFS) = *************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE - 6 »»X;OMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION - 526.00 DOWNSTREAM ELEVATION - 517 STREET LENGTH(FEET) - 470.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) - 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK - 30.00 INTERIOR STREET CROSSFALL (DECIMAL) - 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF » 1 *• TRAVELTIME COMPUTED USING MEAN FLOW (CFS) - 4.65 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) =• 0.36 HALFSTREET FLOODWIDTH (FEET) - 11.59 AVERAGE FLOW VELOCITYIFEET/SEC.) - 3.18 PRODUCT OF DEPTHSVELOCITY = 1.14 STREETFLOW TRAVELTIME (MIN) - 2.46 TC(MIN) = 10.13 100 YEAR RAINFALL INTENSITY (INCH/HOUR] - 4.846 •USER SPECIFIED(SUBAREA) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREA (ACRES) - 1.67 SUBAREA RUNOFF (CFS) - 4.45 SUMMED AREA(ACRES) - 2.15 TOTAL RUNOFF(CFS) = 6.82 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) - 0.40 HALFSTREET FLOODWIDTH(FEET) = 13.51 FLOW VELOCITY(FEET/SEC.) = 3.51 DEPTH'VELOCITY * 1.39 *************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW)««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES PIPEFLOW VEL(X:iTY(FEET/SEC.) - 8.1 UPSTREAM NODE ELEVATICJN - 512.00 DOWNSTREAM NODE ELEVATION - 510.00 FLOWLENGTH(FEET) - 95.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) - 18.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) - 6.82 TRAVEL TIME(MIN.) = 0.20 TC(MIN.) - 10.32 ********************************************************** FLOW PROCESS FRCM NODE 4.00 TO NODE 4.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) - 10.32 , RAINFALL INTENSITY(INCH/HR) - 4.79 TOTAL STREAM AREA(ACRES) - 2.15 PEAK FLCm RATEICFS) AT CONFLUENCE - 6.82 ***************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE - 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SOIL CLASSIFICATION IS "D" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8500 INITIAL SUBAREA FLOW-LENGTH =• 330.00 UPSTREAM ELEVATION = 530.00 DOWNSTREAM ELEVATION = 526.00 ELEVATION DIFFERENCE - 4.00 URBAN StJBAREA OVERLAND TIME OF FLOW (MINUTES) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 5.799 SUBAREA RUNOFF(CFS) - 2.76 TOTAL AREA (ACRES) - 0.56 TOTAL RUNOFF (CFS) ******************************************************************* FLOW PRtXESS FRCM NODE 11.00 TO NODE 12.00 IS CODE - 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION - 526.00 DOWNSTREAM ELEVATION = 517.00 STREET LENGTH(FEET) - 470.00 CtJRB HEIGHT (INCHES) = 6. STREET HALFWIDTH(FEET) - 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK - 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) - 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW (CFS) - 4.83 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) - 0.36 HALFSTREET FLOODWIDTH(FEET) - 11.59 AVERAGE FLOW VELOCITYIFEET/SEC.) - 3.31 PRODUCT OF DEPTHSVELOCITY = 1.18 STREETFLOW TRAVELTIME (MIN) - 2.37 TC (MIN) - 10.04 100 YEAR RAINFALL INTENSITY (INCH/HOUR) " 4.875 SOIL CLASSIFICATION IS "D" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8500 SUBAREA AREA(J«:RES) - 0.99 SUBAREA RUNOFF(CFS) = 4.10 SUMMED AREA(ACRES) = 1.55 TOTAL RtJNOFF(CFS) = 6.86 END OF SUBAREA STREETFLOW HYDRAtJLICS: DEPTHIFEET) = 0.40 HALFSTREET FLCX3DWIDTH(FEET) - 13.51 FLOW VELOCITY(FEET/SEC.) - 3.53 DEPTH'VELOCITY » 1.40 ******************************************************************** FLOW PROCESS FROM NODE 12.00 TO NODE 4.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.0 INCHES PIPEFLOW VELCXITY(FEET/SEC.) = 17.1 UPSTREAM NODE ELEVATION - 512.00 DOWNSTREAM NODE ELEVATION = 510.00 FLOWLENGTH (FEET) - 12.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAHEA(CFS) = 6.96 TRAVEL TIME (MIN.) = 0.01 TCIMIN.) = 10.05 ********************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE TIME OF CONCENTRATION (MIN.) - 10.05 RAINFALL INTENSITY(INCH/HR) - 4.87 TOTAL STREAM AREA (ACRES) " 1.55 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.86 ** CONFLUENCE DATA •* STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.82 10.32 4.787 2.15 2 6.86 10.05 4.872 1.55 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 13.56 10.05 4.872 2 13.56 10.32 4.787 COMPUTED C0NFLUENC:E ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) • 13.56 Tc(MIN.) - 10.05 TOTAL AREA(ACRES) =• 3.70 ***************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 3 »»X;CMPtJTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 12.3 UPSTREAM NODE ELEVATION " 510.00 DOWNSTREAM NODE ELEVATION - 485.00 FLOWLENGTH (FEET) - 600.00 MANNING'S N " 0.013 ESTIMATED PIPE DIAMETER (INCH) - 18.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SnBAREA(CFS) - 13.56 TRAVEL TIMEIMIN.) = 0.81 TC(MIN.) FLOW PROCESS FRCM NODE 5.00 TO NODE 5.00 IS CODE - »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION (MIN.) =• 10.86 RAINFALL INTENSITY (INCH/HR) - 4.63 TOTAL STREAM AREA(ACRES) - 3.70 PEAK FLOW RATE (CFS) AT CONFLUENCE = 13.56 ****************************************************************** FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *HSER SPECIFIED (SUBAREA) : CCMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 280.00 UPSTREAM ELEVATION - 520.00 DOWNSTREAM ELEVATION =• 508.00 ELEVATION DIFFERENCE - 12.00 URBAN StJBAREA OVERLAND TIME OF FLOW (MINUTES) = 10.199 •CAUTION; SUBAREA SLOPE EXCEEDS COtJNTY NCMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.824 SUBAREA RUNOFF(CFS) - 1.67 TOTAL AREA(ACRES) - 0.63 TOTAL RUNOFF(CFS] - 1.67 *************************************************************************** FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE - 6 »>»CCMPUTE STREETFLOW TRAVELTIME THRU StJBAREA««< UPSTREAM ELEVATION - 508.00 DOWNSTREAM ELEVATION - 492.00 STREET LENGTH(FEET) - 375.00 CURB HEIGHT (INCHES) = 6. STREET HALFWIDTH(FEET) - 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK - 30.00 INTERIOR STREET CROSSFALL (DECIMAL) - 0.020 OUTSIDE STREET CROSSFALL (DECIMAL) = 0.020 SPECIFIED NUHBER OF HALFSTREETS CARRYING RUNOFF = 1 ••TRAVELTIME COMPUTED. USING MEAN FLOW (CFS) - 3.79 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) - 0.30 HALFSTREET FLOODWIDTH (FEET) « 8.71 AVERAGE FLOW VELOCITY (FEET/SEC.) - 4.32 PRODUCT OF DEPTHSVELOCITY - 1.30 STREETFLOW TRAVELTIME (MIN) - 1.45 TC (MIN) - 11.65 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4.429 •USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREA(ACRES) - 1.73 SUBAREA RUNOFF(CFS) - 4.21 SUMMED AREA(ACRES) - 2.36 TOTAL RUNOFF(CFS) - 5.89 END OF StJBAREA STREETFLOW HYDRAULICS; DEPTH(FEET) = 0.34 HALFSTREET FLOODWIDTH(FEET) = 10.63 FLOW VELOCITY (FEET/SEC.) = 4.72 DEPTH&VELOCITY - 1.60 *************************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 22.00 IS CODE - 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) » 4.429 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT " .4500 SUBAREA AREA(ACRES) - 8.50 SUBAREA RUNOFF(CFS) - 16.94 TOTAL AREA(ACRES) = 10.86 TOTAL RUNOFF(CFS) - 22.83 TCIMIN) - 11.65 ***************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 5.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.8 UPSTREAM NODE ELEVATION = 487.00 DOWNSTREAM NODE ELEVATION - 485.00 FLOWLENGTH (FEET) - 95.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) - 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) - 22.83 TRAVEL TIME(MIN.) - 0.15 TC(MIN.) = 11.79 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE »»>DES IGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS - 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION (MIN.) - 11.79 RAINFALL INTENSITY(INCH/HR) - 4.39 TOTAL STREAM AREA(ACRES) = 10.86 PEAK FLOW RATEICFS) AT CONFLUENCE - 22.83 ************************************************************************** FLOW PROCESS FRCM NODE 25.00 TO NODE 26.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SOIL CLASSIFICATION IS "D" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8500 INITIAL SUBAREA FLOW-LENGTH - 250.00 UPSTREAM ELEVATION - 520.00 DOWNSTREAM ELEVATION - 508.00 ELEVATION DIFFERENCE - 12.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) - 4.218 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. IIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) - 6.793 SUBAREA RUNOFF (CFS) - 2.37 TOTAL AREA(ACRES) - 0.41 TOTAL RUNOFF(CFS) - 2.37 ************************************************************************ FLOW PROCESS FROM NODE 26.00 TO HODE 27.00 IS CODE = 6 »»>CCMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION - 508.00 DOWNSTREAM ELEVATION = 492.00 STREET LENGTH(FEET) - 370.00 CtJRB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK - 30.00 INTERIOR STREET CROSSFALL (DECIMAL) " 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) - 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ••TRAVELTIME COMPUTED USING MEAN FLOWICFS) - 4.33 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) =• 0.32 HALFSTREET FLOODWIDTH (FEET) =• 9.67 AVERAGE FLOW VELOCITY(FEET/SEC.) - 4.12 PRODUCT OF DEPTHSVELOCITY - 1.32 STREETFLOW TRAVELTIME (MIN) - 1.50 TC (MIN) « 7.50 100 YEAR RAINFALL INTENSITY (INCH/HOUR) " 5.883 SOIL CLASSIFICATION IS "D" COMMERCIAL DEVELOPMENT RtJNOFF COEFFICIENT - .8500 SUBAREA AREA(ACRES) - 0.78 SUBAREA RUNOFF(CFS) =• 3.90 SUMMED AREA(ACRES) - 1.19 TOTAL RUNOFF(CFS) " 6.27 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) - 0.34 HALFSTREET FLOODWIDTH(FEET) = 10.63 FLOW VELOCITY(FEET/SEC.) - 5.02 DEPTH&VELOCITY - 1.70 ***************************************************************** FLOW PROCESS FRCM NODE 27.00 TO NODE 5.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU. SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 16.7 UPSTREAM NODE ELEVATION » 487.00 DOWNSTREAM NODE ELEVATION - 485.00 FLOWLENGTH (FEET) = 12.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) - 6.27 TRAVEL TIME(MIN.) - 0.01 TC(MIN.) - 7.51 ********************************************************** FLOW PROCESS FRC3M NODE 5.00 TO NODE 5.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND CCMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS - 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION (MIN.) • 7.51 RAINFALL INTENSITY(INCH/HR) - 5.88 TOTAL STREAM AREA(ACRES) - 1.19 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.27 •• CONFLtJENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 13.56 10.86 4.633 3.70 2 22.83 11.79 4.393 10.86 3 6.27 7.51 5.877 1.19 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 34.02 7.51 5.877 2 40.15 10.86 4.633 3 40.37 11.79 4.393 CCMPHTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) - 40.37 TclMIN.) - 11.79 TOTAL AREA(ACRES) - 15.75 ********************************************************************* FLOW PROCESS FRCM NODE 5.00 TO NODE 6.00 IS CODE = 3 »»>CCMPUTE PIPEFLOW TRAVELTIME THRU StraAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.3 INCHES PIPEFLOW VELOCITY (FEET/SEC.) =• 16.6 UPSTREAM NODE ELEVATION - 485.00 DOWNSTREAM NODE ELEVATION - 457.00 FLOWLENGTH(FEET) - 600.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 40.37 TRAVEL TIME(MIN.) - 0.60 TC(MIN.) = 12.39 **************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE - 1 »»>DES IGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS - 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 12.39 RAINFALL INTENSITY(INCH/HR) = 4.25 TOTAL STREAM AREAIACRES) - 15.75 PEAK FLOW RATE (CFS) AT CONFLUENCE •= ************************************************************* FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE - »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIED (SUBAREA) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT =• .5500 INITIAL StJBAREA FLOW-LENGTH = 260.00 UPSTREAM ELEVATION » 492.00 DOWNSTREAM ELEVATION » 480.00 ELEVATION DIFFERENCE = 12.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) - 9.588 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 5.021 SUBAREA RUNOFF(CFS) - 2.26 TOTAL AREA(ACRES) - 0.82 TOTAL RUNOFF(CFS) =• 2.26 *************************************************************** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE =• 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION - 480.00 DOWNSTREAM ELEVATION - 464 STREET LENGTH(FEET) - 370.00 CURB HEIGHT(INCHES) - 6. STREET HALFWIDTH(FEET) » 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK - 30.00 INTERIOR STREET CROSSFALL (DECIMAL) - 0.020 OUTSIDE STREET CROSSFALL (DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 ••TRAVELTIME CCMPUTED USING MEAN FLOW(CFS) = 3.64 STREETFLOW MODEL RESULTS; STREET FLOWDEPTH(FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) - 8.71 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.IS PRODUCT OF DEPTHSVELOCITY " 1.25 STREETFLOW TRAVELTIME (MIN) = 1.48 TC(MIN) = 11.07 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.575 •USER SPECIFIED(SUBAREA): CCMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) " 1.09 SUBAREA RUNOFF (CFS) - 2.74 SUMMED AREA(ACRES) - 1.91 TOTAL RUNOFP(CFS) = 5.01 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) = 9.67 FLOW VELOCITY(FEET/SEC.) = 4.76 DEPTH&VELOCITY = 1.52 FLOW PROCESS FROM NODE 32.00 TO NODE 6.00 IS CODE =• 3 »»>COMPOTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 7.4 UPSTREAM NODE ELEVATION = 459.00 DOWNSTREAM NODE ELEVATION " 457.00 FLOWLENGTH (FEET) = 95.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) - 18.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) = 5.01 TRAVEL TIME(MIN.) = 0.21 TC(MIN.) = 11.29 ************************************************************ FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE - >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) - 11.29 RAINFALL INTENSITY(INCH/HR) " 4.52 TOTAL STREAM AREA(ACRES) - 1.91 PEAK FLOW RATE (CFS) AT CONFLUENCE - 5.01 ******************************************************************** FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .6500 INITIAL SUBAREA FLOW-LENGTH = 260.00 UPSTREAM ELEVATION " 492.00 DOWNSTREAM ELEVATION - 480.00 ELEVATION DIFFERENCE - 12.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) - •CAUTION; SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NCMOGRAPH USED. 100 YEAR RAINFALL INTENSITYdNCH/HOtJR) - 5.714 StJBAREA RUNOFF(CFS) - 2.30 TOTAL AREA(ACRES) = 0.62 TOTAL RUNOFF(CFS) **************************************************************** FLOW PROCESS FRCM NODE 36.00 TO NODE 37.00 IS CODE - 6 »»>COMPtJTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION - 480.00 DOWNSTREAM ELEVATION = 464 STREET LENGTH(FEET) - 370.00 CURB HEIGHT(INCHES) - 6. STREET HALFWIDTH(FEET) - 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK - 30.00 INTERIOR STREET CROSSFALL(DECIMAL) " 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) » .0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 **TRAVELTIME COMPtJTED USING MEAN FLOW(CFS) » 3.86 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) - 0.30 HALFSTREET FLOODWIDTH(FEET) " 8.71 AVERAGE FLOW VELOCITY(FEET/SEC.) - 4.41 PRODUCT OF DEPTHSVELOCITY = 1.32 STREETFLOW TRAVELTIME (MIN) - 1.40 TC(MIN) - 9.24 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = S.140 •USER SPECIFIED (SUBAREA) : Ct»dMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .6500 SUBAREA AREA (ACRES) = 0.93 SUBAREA RtJNOFF(CFS) - 3.11 SUMMED AREA (ACRES) = 1.55 TOTAL RUNOFF (CFS) = 5.41 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) - 0.34 HALFSTREET FLOODWIDTH (FEET) ' 10.63 FLOW VELOCITY(FEET/SEC.) = 4.34 DEPTH*VELOCITY = 1.47 ***************************************************************** FLOW PROCESS FROM NODE 37.00 TO NODE 6.00 IS CODE - 3 »»>CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« »»>USING CCMPtJTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 16.0 UPSTREAM NODE ELEVATION - 459.00 DOWNSTREAM NODE ELEVATION - 457.00 FLOWLENGTH (FEET) = 12.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) - 18.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) = 5.41 TRAVEL TIME(MIN.) " 0.01 TCIMIN.) - 9.26 **************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATIONIMIN.) - 9.26 RAINFALL INTENSITY(INC:H/HR) » 5.14 TOTAL STREAM AREA (ACRES) » 1.55 PEAK FLOW RATE (CFS) AT CONFLUENCE » 5.41 *• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AJIEA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 40.37 12.39 4.255 15.75 2 5.01 11.29 4.519 1.91 3 5.41 9.26 5.136 1.55 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMtJLA USED FOR 3 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 43.26 9.26 5.136 2 47.77 11.29 4.519 3 49.57 12.39 4.255 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(Crs) = 49.57 Tc(MIN.) = 12.39 TOTAL AREA(ACRES) - 19.21 ***************************************************************** FLOW PROCESS FRCW NODE 6.00 TO NODE 232.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) » 26.9 UPSTREAM NODE ELEVATION - 457.00 DOWNSTREAM NODE ELEVATION = 436.50 FLOWLENGTH (FEET) - 140.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) - 21.00 NUMBER OF PIPES » 1 PIPEFLOW THRU SUBAREA(CFS) - 49.57 TRAVEL TIME(MIN.) ' 0.09 TC(MIN.) = 12.48 ************************************************************************ FLOW PROCESS FRCM NODE 232.00 TO NODE 232.00 IS CODE - 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VJiLUES USED FOR INDEPENDENT STREAM 1 ARE; TIME OF CONCENTRATION (MIN.) = 12.48 RAINFALL INTENSITY (INCH/HR) - 4.24 TOTAL STREAM AREA(ACRES) - 19.21 PEAK FLOW RATE(CFS) AT CONFLUENCE ' 49.57 ***************************************************************** FLOW PROCESS FROM NODE 232.00 TO NODE 232.00 IS CODE » 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 18.05 RAIN INTENSITY (INCH/HOUR] = 3.34 TOTAL AREA(ACRES) - 61.72 TOTAL RUNOFF(CFS) = 49.25 FLOW PROCESS FRQM NODE 232.00 TO NODE 232.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS » 2 CONFLtJENCE VALtJES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATIONIMIN.I " 18.05 RAINFALL INTENSITY (INCH/HR) - 3.34 TOTAL STREAM AREA (ACRES) - 61.72 PEAK FLOW RATE (CFS) AT CONFLUENCE • 49.25 •• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 49.57 12.48 4.236 19.21 2 49.25 18.05 3.338 61.72 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 88.39 12.48 4.236 2 88.32 18.05 3.338 CCMPOTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 88.39 Tc(MIN.) - 12.48 TOTAL AREA(ACRES) = 80.93 I I I STORM DRAIN LINE A I I I ***************************************************************** FLOW PROCESS FRCM NODE 232.00 TO NODE 233.00 IS CODE = 3 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« DEPTH OF FLOW IN 48.0 INCH PIPE IS 35.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) • 8.8 UPSTREAM NODE ELEVATION - 436.50 DOWNSTREAM NODE ELEVATION » 434.00 FLOWLENGTH(FEET) " 487.80 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) = 38.39 TRAVEL TIME(MIN.) = 0.92 TC(MIN.) = 13.40 *************************************************************************** FLOW PROCESS FRtJM NODE 233.00 TO NODE 234.00 IS CODE • 3 »»>CC»1PUTE PIPEFLOW TRAVELTIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 15.1 UPSTREAM NODE ELEVATION - 433.70 DOWNSTREAM NODE ELEVATION =• 422.47 FLOWLENGTH (FEET) - 511.80 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) - 36.00 NUMBER OF PIPES - 1 PIPEFLOW THRU StJBAREA(CFS) = 83.39 TRAVEL TIME(MIN.) ' 0.57 TC(MIN.) - 13.97 ************************************************************* FLOW PROCESS FROM NODE 234.00 TO NODE 234.00 IS CODE - »»>DESIGNATE INDEPENDENT STREAM FOR CONFHJENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 13.97 RAINFALL INTENSITY (INCH/HR) = 3.94 TOTAL STREAM AREA(ACRES) = 80.93 PEAK FLOW RATE (CFS) AT CONFLUENCE - 38.39 **************************************************************************** FLOW PROCESS FROM NODE 260.00 TO NODE 261.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIED(SUBAREA); SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT " .5500 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION - 460.00 DOWNSTREAM ELEVATION - 450.00 ELEVATION DIFFERENCE - 10.00 URBAN StJBAREA OVERLAND TIME OF FLOW(MINUTES) = 17.571 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 3.397 StJBAREA RUNOFFICFS) - 2.24 TOTAL AREA(ACRES) - 1.20 TOTAL RUNOFF(CFS) - 2.24 **************************************************************************** FLOW PROCESS FROM NODE 261.00 TO NODE 235.00 IS CODE - 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 450.00 DOWNSTREAM ELEVATION » 439.20 STREET LENGTH(FEET) = 600.00 CURB HE IGHT (INCHES) = 6. STREET HALFWIDTH(FEET) - 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK - 15.00 INTERIOR STREET CROSSFALL (DECIMAL) =• 0.020 OtJTSIDE STREET CROSSFALL (DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPtJTED USING MEAN FLOW (CFS) » 3.25 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) - 0.33 HALFSTREET FLOODWIDTH (FEET) = 9.96 AVERAGE FLOW VELOCITY (FEET/SEC.) - 2.92 PRODUCT OF DEPTHSVELOCITY - 0.95 STREETFLOW TRAVELTIME (MIN) = 3.42 TC (MIN) - 20.99 100 YEAR RAINFALL IHTENSITY(INCH/HOUR) - 3.029 •USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT .= .5500 StJBAREA AREA (ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 2.00 SUMMED AREA(ACRES) - 2.40 TOTAL RUNOFF(CFS) - 4.24 END OF StJBAREA STREETFLOW HYDRAULICS: DEPTH(rEET) = 0.34 HALFSTREET FLOODWIDTH(FEET) = 10.85 FLOW VELOCITY(FEET/SEC.) " 3.27 DEPTH&VELOCITY = 1.12 **************************************************************************** FLOW PROCESS FRQM NODE 235.00 TO NODE 234.00 IS CODE = 3 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 6.7 UPSTREAM NODE ELEVATION = 426.00 DOWNSTREAM NODE ELEVATION - 425.00 FLOWLENGTH (FEET) = 55.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) = 4.24 TRAVEL TIME(MIN.) = 0.14 TCIMIN.) = 21.13 **************************************************************************** FLOW PROCESS FROM NODE 234.00 TO NODE 234.00 IS CODE - 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TQTAL NUMBER OF STREAMS - 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION (MIN.) - 21.13 RAINFALL INTENSITY(INCH/HR) - 3.02 TOTAL STREAM AREA(ACRES) - 2.40 PEAK FLOW RATE(CFS) AT CONFLUENCE » 4.24 **************************************************************** FLOW PROCESS FRQM NODE 262.00 TO NODE 263.00 IS CODE - 21 »»>RAT10NAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIED (SUBAREA) ; SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT - .5500 INITIAL SUBAREA FLOW-LENGTH - 500.00 UPSTREAM ELEVATION - 460.00 DOWNSTREAM ELEVATION - 450.00 ELEVATION DIFFERENCE = 10.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 17.571 100 YEAR RAINFALL INTENSITY (INCH/HOUR) =• 3.397 SUBAREA RUNOFF (CFS) - 1.12 TQTAL AREAIACRES) = 0.60 TOTAL RUNOFF(CFS) =• 1.12 *************************************************************** FLOW PRCXESS FRQM NODE 263.00 TO NODE 236.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION - 450.00 DOWNSTREAM ELEVATION - 440 STREET LENGTH(FEET) » 490.00 CURB HEIGHT(INCHES) - 6. STREET HALFWIDTH(FEET) = 30.00 DISTANCE FRCM CROWN TO CROSSFALL GRADEBREAK = 15.00 INTERIOR STREET CROSSFALL (DECIMAL) - 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 **TRAVELTIME COMPUTED USING MEAN FLOW (CFS) - 1.54 STREETFLOW MODEL REStJLTS; STREET FLOWDEPTH(FEET) = 0.25 HALFSTREET FLOODWIDTH(FEET) = 6.40 AVERAGE FLOW VELOCITY (FEET/SEC.) - 2.92 PRODUCT QF DEPTHSVELOCITY - 0.74 STREETFLOW TRAVELTIME(MIN) - 2.80 TC(MIN) - 20.37 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.088 •USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT - .5500 StJBAREA AREA (ACRES) - 0.50 SUBAREA RUNOFF(CFS) = 0.85 SUMMED AREAIACRES) = 1.10 TOTAL RUNOFF(CFS) - 1.97 END OF StJBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) - 0.27 HALFSTREET FLOODWIDTH (FEET) = 7.29 FLOW VELOCITY(FEET/SEC.) - 3.03 DEPTH&VELOCITY - 0.33 ***************************************************************** FLOW PROCESS FROM NODE 236.00 TO NODE 234.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ESTIMATED PIPE DIAMETER(INCH) INCREASED TQ 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) " 7.2 UPSTREAM NODE ELEVATION = 425.20 DOWNSTREAM NODE ELEVATION = 425.00 FLOWLENGTH(FEET) = 5.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) =• 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) - 1.97 TRAVEL TIME(MIN.) = 0.01 TCIMIN.) = 20.38 ************************************************************ FLOW PROCESS FRQM NODE 234.00 TO NODE 234.00 IS CODE - »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLtJENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS - 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME QF CONCENTRATIONIMIN.) = 20.38 RAINFALL INTENSITY IINCH/HR) - 3.09 TQTAL STREAM AREA(ACRES) - 1.10 PEAK FLOW RATE (CFS) AT CONFLUENCE - 1.97 •• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 88.39 13.97 3.933 30.93 2 4.24 21.13 3.016 2.40 3 1.97 20.38 3.037 1.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. •• PEAK FLQW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 93.13 13.97 3.938 2 75.39 20.38 3.087 3 73.35 21.13 3.016 COMPUTED CONFLUENCE: ESTIMATES ARE AS FOLLOWS: PEAK FLQW RATEICFS) - 93.18 Tc(MIN.) - 13.97 TOTAL AREA(ACRES) - 84.43 ***************************************************************** FLOW PRCXESS FRQM NODE 234.00 TO NOpE 237.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW)««< DEPTH QF FLOW IN 42.0 INCH PIPE IS 34.3 INCHES PIPEFLOW VELOCITY (FEET/SEC.) =• 11.1 UPSTREAM NODE ELEVATION " 422.14 DOWNSTREAM NODE ELEVATION - 421.66 FLOWLENGTH (FEET) =• 50.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER QF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) = 93.13 TRAVEL TIME(MIN.) = 0.08 TC(MIN.) - 14.05 ***************************************************************** FLOW PROCESS FROM NODE 237.00 TQ NODE 237.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <«« ************************************************************** FLOW PROCESS FROM NODE 165.00 TQ NODE 165.00 IS CODE = »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) - 16.24 RAIN INTENSITY (INCH/HOUR) = 3.57 TOTAL AREA(ACRES) = 53.90 TOTAL RUNQFF(CFS) = 103.80 ****************************************************************** FLOW PROCESS FRCM NODE 165.00 TO NODE 238.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLOW]<«« DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.2 INCHES PIPEFLOW VELOCITY (FEET/SEC.) - 23.3 UPSTREAM NODE ELEVATION " 439.50 IXJWNSTREAM NODE ELEVATION - 430.40 FLOWLENGTH (FEET) = 150.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) - 33.00 NUMBER QF PIPES - PIPEFLOW THRU SUBAREA(CFS) - 103.80 TRAVEL TIME(MIN.) - 0.11 TC(MIN.) = 16.35 **************************************************************** FLQW PROCESS FROM NODE 238.00 TO NODE 233.00 IS CODE - 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) - 16.35 RAINFALL INTENSITY(INCH/HR) - 3.56 TOTAL STREAM AREA (ACRES) - 58.90 PEAK FLQW RATE(CFS) AT CONFLUENCE - 103.80 ********************************************************** FLQW PROCESS FRCM NODE 253.00 TQ NODE 238.00 IS CODE »»>RATIQNAL METHOD INITIJU, SUBAREA ANALYSIS«<« •USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH - 270.00 UPSTREAM ELEVATION » 459.00 DOWNSTREAM ELEVATION = 439.00 ELEVATION DIFFERENCE - 20.00 URBAN SUBAREA OVERLAND TIME OF FLQW (MINUTES) = 8.34 6 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 5.491 SUBAREA RUNOFF (CFS) - 1.00 TOTAL AREA (ACRES) - 0.33 TOTAL RUNOFF (CFS) ********************************************************** FLOW PROCESS FROM NODE 233.00 TO NODE 233.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CQNFHJ]ENCE««< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TQTAL NUMBER QF STREAMS - 2 CONFLUENCE VALUES USED FQR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) - 8.35 RAINFALL INTENSITY(INCH/HR) = 5.49 TQTAL STREAM AREA (ACRES) - 0.33 PEAK FLQW RATE (CFS) AT CONFLUENCE - 1.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 103.80 16.35 3.559 58.90 2 1.00 8.35 5.491 0.33 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 68.27 8.35 5.491 2 104.45 16.35 3.559 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) - 104.45 Tc(MIN.) =• 16.35 TOTAL AREA(ACRES) - 59.23 ***************************************************************** FLOW PROCESS FRQM NODE 238.00 TO NODE 239.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLQW IN 21.0 INCH PIPE IS 12.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 63.6 UPSTREAM NODE ELEVATION = 430.00 DOWNSTREAM NODE ELEVATION » 424.80 FLOWLENGTH (FEET) = 5.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) - 21.00 NUMBER OF PIPES - 1 PIPEFLOW THRU StJBAREA(CFS) - 104.45 TRAVEL TIME(MIN.) - 0.00 TC(MIN.) = 16.35 **************************************************************** FLOW PROCESS FRQM NODE 239.00 TO NODE 239.00 IS CODE - 1 »»>DESIGNATE INDEPENDENT STREAM FOR CQNFLUENCE««< TOTAL NUMBER QF STREAMS = 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE; TIME OF CONCENTRATION (MIN.) = 16.35 RAINFALL INTENSITY(INCH/HR) - 3.56 TQTAL STREAM AREA(ACRES) - 59.23 PEAK FLOW RATE(CFS) AT CONFLUENCE - 104.45 ********************************************************************* FLOW PROCESS FROM NODE 230.00 TO NODE 231.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED (SUBAREA) : INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT - .9000 INITIAL StJBAREA FLOW-LENGTH - 350.00 UPSTREAM ELEVATION = 459.00 DOWNSTREAM ELEVATION - 439.00 ELEVATION DIFFERENCE - 20.00 URBAN SUBAREA OVERLAND TIME OF FLQW (MINUTES) = 3.767 •CAUTION: StJBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NCMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 6.793 SUBAREA RUNQFF(CFS) = 1.53 TOTAL AREA(ACRES) = 0.25 TOTAL RtJNQFF(CFS) = 1.53 ***************************************************************** FLOW PROCESS FROM NODE 231.00 TO NODE 239.00 IS CODE = 3 >»»CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLQW)««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TQ 18.000 DEPTH QF FLQW IN 18.0 INCH PIPE IS 2.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 9.7 UPSTREAM NODE ELEVATION = 430.07 DOWNSTREAM NODE ELEVATION - 424.80 FLOWLENGTH (FEET) - 45.25 MANNING'S N ESTIMATED PIPE DIAMETER(INCH) = 18.00 PIPEFLOW THRU SUBAREA(CFS) - 1.53 TRAVEL TIME(MIN.] - 0.08 TC(MIN.) " 6.08 = 0.013 NUMBER QF PIPES ********************************************************** FLOW PROCESS FRCM HODE 239.00 TO NODE 239.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FQR CONFLnENCE««< »»>AND CCMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS " 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) - 6.08 RAINFALL INTENSITY(INCH/HR) - 6.74 TOTAL STREAM AREA(ACRES) " 0.25 PEAK FLQW RATE (CFS) AT CONFLtJENCE - . 1.53 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR] (ACRE) 1 104.45 16.35 3.559 59.23 2 1.53 6.08 6.737 0.25 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFUffiNCE FORMULA USED FOR 2 STREAMS. ** PEAK FLQW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 56.70 6.08 6.737 2 105.25 16.35 3.559 CCMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATEICFS) - 105.25 TclMIN.) - 16.35 TOTAL AREA(ACRES) » 59.48 ************************ FLOW PROCESS FROM NODE ***************** 239.00 TO NODE r**************** 237.00 IS CODE - »»>CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< DEPTH QF FLOW IN 36.0 INCH PIPE IS 28.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 17.6 UPSTREAM NODE ELEVATION - 424.50 DOWNSTREAM NODE ELEVATION = 421.66 FLOWLENGTH (FEET) - 94.30 MANNING'S ESTIMATED PIPE DIAMETER(INCH) =• 36.00 PIPEFLOW THRU SUBAREA(CFS) - 105.25 TRAVEL TIME(MIN.) - 0.09 TC(MIN.) N = 0.013 NUMBER OF PIPES - 16.44 **************************************************************** FLOW PROCESS FRQM NODE 237.00 TO NODE 237.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< •• MAIN STREAM CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY ABEA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 105.25 16.44 3.546 59.43 •• MEMORY BANK # STREAM RUNOFF NUMBER (CFS) 1 93.13 1 CONFLUENCE DATA Tc (MIN.) 14.05 INTENSITY (INCH/HOUR) 3.925 AREA (ACRE) 84.43 •• PEAK FLQW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 188.28 14.05 3.925 2 189.44 16.44 3.546 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 189.44 Tc(MIN.) = TOTAL AREA(ACRES) = 143.91 FLOW PROCESS FROM NODE »»>CLEAR MEMORY BANK # 1 ««< **************** 237.00 TO NODE ********* 237.00 IS CODE FLOW PROCESS FROM NODE 237.00 TO NODE 240.00 IS CODE = 3 »»>CCMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA««< »»>USING COMPtJTER-ESTIMATED PIPESIZE (NON-PRESSURE FLQW)««< DEPTH OF FLOW IN 51.0 INCH PIPE IS 39.4 INCHES PIPEFLOW VELOCITYIFEET/SEC.) = 16.1 UPSTREAM NODE ELEVATION - 421.33 DOWNSTREAM NODE ELEVATION - 419.72 FLOWLENGTH (FEET) - 102.50 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) - 51.00 NUMBER OF PIPES - PIPEFLOW THRU StJBAREA(CFS) " 139.44 TRAVEL TIME(MIN.] = 0.11 TC(MIN.) = 16.54 ****************************************************************** FLOW PROCESS FROM NODE 240.00 TO NODE 240.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FQR CONFLUENCE««< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 16.54 . RAINFALL INTENSITY(INCH/HR) - 3.53 TOTAL STREAM AREA(ACRES) - 143.91 PEAK FLOW RATE (CFS) AT CONFLUENCE = 139.44 FLOW PRCXESS FROM NODE 241.00 TO NODE 241.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) " 17.32 RAIN INTENSITY IINCH/HOUR) - 3.43 TOTAL AREAIACRES) = 26.30 TOTAL RtJNOFF(CFS) " 4 ***************************************************************** FLOW PROCESS FRCM NODE 241.00 TO NODE 240.00 IS CODE - 3 »»>CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLQW)««< DEPTH QF FLOW IN 13.0 INCH PIPE IS 14.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 26.6 UPSTREAM NODE ELEVATION • 444.00 DOWNSTREAM NODE ELEVATION = 421.70 FLOWLENGTH (FEET) = 130.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) =- 13.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) - 40.60 TRAVEL TIME (MIN.) =• 0.08 TC(MIN.) = 17.40 **************************************************************** FLOW PROCESS FROM NODE 240.00 TO NODE 240.00 IS CODE - 1 »>»DESIGNATE INDEPENDENT STREAM FQR CQNFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE; TIME OF CONCENTRATION (MIN.) - 17.40 RAINFALL INTENSITY(INCH/HR) - 3.42 TQTAL STREAM AREA(ACRES) = 26.30 PEAK FLQW RATE (CFS) AT CONFLUENCE - 40.60 ** CONFLUENCE DATA *• STREAM RtJNOFF Tc INTENSITY JUtEA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 189.44 16.54 3.531 143.91 2 40.60 17.40 3.418 26.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 228.74 16.54 3.531 2 223.97 17.40 3.413 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 223.74 Tc(MIN.) = 16.54 TOTAL AREA(ACRES) = 170.21 ***************************************************************** FLOW PROCESS FROM NODE 240.00 TO NODE 242.00 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 54.0 INCH PIPE IS 38.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 18.8 UPSTREAM NODE ELEVATION - 419.40 DOWNSTREAM NODE ELEVATION - 415.00 FLOWLENGTH (FEET) - 218.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER I INCH) - 54.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 223.74 TRAVEL TIMEIMIN.) = 0.19 TC(MIN.) - 16.74 ***************************************************************** FLOW PROCESS FROM NODE 242.00 TO NODE 250.00 IS CODE » 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH QF FLOW IN 45.0 INCH PIPE IS 33.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 25.7 UPSTREAM NODE ELEVATION = 414.90 DOWHSTREAM NODE ELEVATION - 366.60 FLOWLENGTH (FEET) - 1016.00 MANNING'S N " 0.013 ESTIMATED PIPE DIAMETER(INCH) - 45.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) » 228.74 TRAVEL TIME(MIN.) = 0.66 TC(MIN.) - 17.40 ***************************************************************** FLQW PROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FQR CONFLUENCE«<« TOTAL NUMBER QF STREAMS - 2 CONFLUENCE VALtJES USED FOR INDEPENDENT STREAM 1 ARE; TIME OF CONCENTRATION(MIN.) - 17.40 RAINFALL INTENSITY (INCH/HR) - 3.42 TOTAL STREAM AREA(ACRES) = 170.21 PEAK FLOW RATE(CFS) AT CONFLtJENCE = 223.74 **************************************************************** FLQW PROCESS FROM NODE 904.00 TO NODE 905.00 IS CODE - 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA); SINGLE FAMILY DEVELOPMENT RtJNOFF COEFFICIENT " .5500 INITIAL SUBAREA FLOW-LENGTH - 350.00 UPSTREAM ELEVATION - 440.00 DOWNSTREAM ELEVATION ' 422.50 ELEVATION DIFFERENCE - 17.50 tJRBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) - 10.832 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION QF NOMOGRAPH USED. 100 YEAR BAINFALL INTENSITY (INCH/HOUR) = 4.641 SUBAREA RUNOFFICFS) - 4.34 TOTAL AREA(ACRES) = 1.70 TQTAL RtJNOFF(CFS) = 4.34 FLOW PROCESS FRCM NODE 905.00 TO NODE 906.00 IS CODE - 3 »»>CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.3 UPSTREAM NODE ELEVATION - 422.50 DOWNSTREAM NODE ELEVATION = 386.70 FLOWLENGTH (FEET) - 300.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) - 18.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) - 4.34 TRAVEL TIME(MIN.) » 0.38 TC(MIN.) - 11.21 FLQW PROCESS FROM NODE 905.00 TO NODE 906.00 IS CODE = 8 »»>ADDITION OF StJBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 4.540 •USER SPECIFIED (StIBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT - .5500 StJBAREA AREA(ACRES) " 9.20 SUBAREA RUNOFF(CFS) = 22.97 TOTAL AREA(ACRES) = 10.90 TOTAL RUNOFF(CFS) • 27.31 TCIMIN) - 11.21 ***************************************************************** FLOW PROCESS FROM NODE 906.00 TQ NODE 907.00 IS CODE = 3 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« DEPTH QF FLOW IN 27.0 INCH PIPE IS 21.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.0 UPSTREAM NODE ELEVATION - 386.70 DOWNSTREAM NODE ELEVATION - 384.00 FLOWLENGTH (FEET) - 300.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) - 27.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 27.31 TRAVEL TIME(MIN.) - 0.63 TC(MIN.) - 11.33 ********************************************************** FLOW PROCESS FRCM NODE 906.00 TO NODE 907.00 IS CODE »»>ADDITIQN QF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.334 •USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREA (ACRES) - 8.70 SUBAREA RUNOFF (CFS) - 20.98 TOTAL AREA(ACRES) - 19.60 TOTAL RUNOFF(CFS) - 48.29 TC(MIN) - 11.83 ***************************************************************** FLOW PROCESS FROM NODE 907.00 TQ NODE 250.00 IS CODE - 3 »»>COMPtn'E PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« DEPTH QF FLOW IN 33.0 INCH PIPE IS 26.2 INCHES PIPEFLOW VELQCITY(FEET/SEC.) = 9.6 UPSTREAM NODE ELEVATION = 368.20 DOWNSTREAM NODE ELEVATION ' 366.60 FLOWLENGTH (FEET) - 162.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) « 33.00 NUMBER QF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) = 48.29 TRAVEL TIME(MIN.) = 0.28 TC(MIN.) - 12.11 ******************************************************************* FLOW PROCESS FROM NODE 250.00 TQ NODE 250.00 IS CODE - 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLnENCE««< »»>AND CCMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME QF CONCENTRATION (MIN.) = 12.11 RAINFALL INTENSITY(INCH/HR) = 4.32 TOTAL STREAM AREA (ACRES) - 19.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 48.29 *• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 228.74 17.40 3.419 170.21 2 43.29 12.11 4.317 19.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 229.41 12.11 4.317 2 266.97 17.40 3.419 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS; PEAK FLOW RATEICFS) = 266.97 Tc(MIN.) = 17.40 TOTAL AREA(ACRES) - 189.81 ***************************************************************** FLQW PROCESS FRCM NODE 250.00 TO NODE 253.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPtJTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH QF FLQW IN 42.0 INCH PIPE IS 31.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 34.3 UPSTREAM NODE ELEVATION - 366.60 DOWNSTREAM NODE ELEVATION - 328.00 FLOWLENGTH (FEET) " 415.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) = 42.00 NUMBER OF PIPES = 1 PIPEFLOW THRU StJBAREA(CFS) - 266.97 TRAVEL TIME(MIN.) = 0.20 TCIMIN.) =• 17.60 FLQW PROCESS FROM NODE 253.00 TO NODE 257.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING CCMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLOW)««< DEPTH QF FLOW IN 60.0 INCH PIPE IS 47.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.0 UPSTREAM NODE ELEVATION = 329.00 DOWNSTREAM NODE ELEVATION = 326.50 FLOWLENGTH (FEET) =• 200.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) = 60.00 NUMBER OF PIPES - 1 PIPEFLQW THRU SUBAREA(CFS) - 266.97 TRAVEL TIMEIMIN.) - 0.21 TCIMIN.) - 17.81 *************************************************************** FLOW PROCESS FRCM NODE 253.00 TO NODE 257.00 IS CODE » 8 »»>ADD1TI0N OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) » 3.368 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREAIACRES) = 3.60 SUBABEA RtJNOFFICFS) = 6.67 TOTAL AREAIACRES) = 193.41 TOTAL RUNOFF(CFS) = 273.64 TCIMIN) - 17.81 FLOW PROCESS FROM NODE 257.00 TO NODE 257.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< FLOW PROCESS FRCM NODE 255.00 TO NODE 255.00 IS CODE - 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<«« USER-SPECIFIED VALUES ARE AS FOLLOWS: TCIMIN) - 17.04 RAIN INTENSITY (INCH/HOUR) = 3.46 TQTAL AREA(ACRES) - 85.80 TQTAL RUNOFF(CFS) = 142.20 **************************************************************************** FLQW PROCESS FRCM NODE 255.00 TO NODE 255.10 IS CODE = 3 »»X:CMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« DEPTH QF FLOW IN 51.0 INCH PIPE IS 36.2 INCHES PIPEFLQW VELOCITY(FEET/SEC.) - 13.2 UPSTREAM NODE ELEVATION - 408.30 DOWNSTREAM NODE ELEVATION - 407.20 FLOWLENGTH (FEET) - 101.60 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) = 51.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 142.20 TRAVEL TIME(MIN.) = 0.13 TC(MIN.) = 17.17 **************************************************************************** FLOW PROCESS FROM NODE 225.10 TO NODE 255.10 IS CODE =• 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< *************************************************************************** FLOW PROCESS FROM NODE 269.00 TO NODE 270.00 IS CODE - 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA) : INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT - .9000 INITIAL SUBAREA FLOW-LENGTH - 500.00 UPSTREAM ELEVATION = 458.00 DOWNSTREAM ELEVATION = 454.00 ELEVATION DIFFERENCE = 4.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) - 8.671 100 YEAR RAINFALL INTENSITY (INCH/HOUR) * 5.357 SUBAREA RUNOFFICFS) =5.30 TOTAL AREA(ACRES) = 1.10 TOTAL RUNOFF(CFS) = 5.30 ******************************************************************* FLQW PROCESS FROM NODE 270.00 TO NODE 243.00 IS CODE = 6 »»>CQMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION » 454.00 DOWNSTREAM ELEVATION " 421.00 STREET LENGTH(FEET) " 750.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH (FEET) =• 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK - 15.00 INTERIOR STREET CROSSFALL (DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL (DECIMAL) =• 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ••TRAVELTIME COMPUTED USING MEAN FLOW(CFS) - 12.46 STREETFLOW MODEL REStlLTS: STREET FLOWDEPTH(FEET) = 0.41 HALFSTREET FLOODWIDTH(FEET) = 14.41 AVERAGE FLQW VELOCITY(FEET/SEC.) - 5.67 PRODUCT QF DEPTHSVELOCITY = 2.35 STREETFLOW TRAVELTIME (MIN) = 2.20 TC (MIN) - 10.87 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4.629 •USER SPECIFIED (SUBAREA) : INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT - .9000 SUBAREA AREA (ACRES) = 3.40 StJBAREA RUNOFF (CFS) - 14.16 SUMMED AREA(ACRES) = 4.50 TOTAL RUNQFF(CFS) = 19.47 END QF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.47 HALFSTREET FLOODWIDTH (FEET) - 17.09 FLOW VELOCITY (FEET/SEC.) - 6.41 DEPTH&VELOCITY - 3.00 ***************************************************************** FLOW PROCESS FROM NODE 243.00 TQ NODE 245.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« DEPTH OF FLQW IN 24.0 INCH PIPE IS 18.7 INCHES PIPEFLQW VELQCITYIFEET/SEC.) - 7.4 UPSTREAM NODE ELEVATION • 411.20 DOWNSTREAM NODE ELEVATION - 410.70 FLOWLENGTH (FEET) = 55.00 MANNING'S N » 0.013 ESTIMATED PIPE DIAMETER (INCH) = 24.00 NUMBER QF PIPES PIPEFLOW THRU SUBAREA(CFS) » 19.47 TRAVEL TIMEIMIN.) - 0.12 TC(MIN.) - 11.00 FLQW PROCESS FRQM NODE 245.00 TQ NODE 245.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CQNFLUENCE««< TQTAL NUMBER OF STREAMS » 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 11.00 RAINFALL INTENSITY (INCH/HR) =• 4.60 TOTAL STREAM AREAIACRES) - 4.50 PEAK FLOW RATEICFS) AT CONFLUENCE - 19.47 ********************************************************** FLOW PROCESS FRCM NODE 266.00 TQ NODE 267.00 IS CODE »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIEDISUBiUlEA) : INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT - .9000 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION =• 433.00 DOWNSTREAM ELEVATION = 433.00 ELEVATION DIFFERENCE - 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW IMINUTES) = 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.620 StJBAREA RUNOFF(CFS) • 2.53 TOTAL AREA (ACRES) - 0.50 TOTAL RtJNOFF (CFS) **************************************************************** FLOW PROCESS FRQM NODE 267.00 TO NODE 263.00 IS CODE = 6 »»>CQMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION =" 433.00 DOWNSTREAM ELEVATION = 432. STREET LENGTH(FEET) - 150.00 CURB HEIGHT(INCHES) - 6. STREET HALFWIDTH(FEET) " 30.00 DISTANCE FROM CROWN TQ CROSSFALL GRADEBREAK - 15.00 INTERIOR STREET CROSSFALL(DECIMAL) - 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 ••TRAVELTIME CCMPUTED USING MEAN FLOW(CFS) = 2.85 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) - 0.36 HALFSTREET FLOODWIDTH(FEET) = 11.74 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.90 PRODUCT OF DEPTHSVELOCITY = 0.69 STREETFLOW TRAVELTIME (MIN) = 1.31 TC(MIN) = 9.36 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.098 •USER SPECIFIEDISUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT - .9000 SUBAREA AREAIACRES) = 0.14 SUBAREA RUNOFF (CFS) = 0.64 SUMMED AREAIACRES) = 0.64 TOTAL RUNQFF(CFS) - 3.17 END OF StJBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.36 HALFSTREET FLOODWIDTH(FEET) - 11.74 FLQW VELOCITY (FEET/SEC.) = 2.12 DEPTH&VELOCITY = 0.77 ************************************************************************ FLOW PROCESS FRQM NODE 268.00 TO NODE 245.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLOW) ««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES PIPEFLQW VELOCITY(FEET/SEC.) = 7.3 UPSTREAM NODE ELEVATION = 419.00 DOWNSTREAM NODE ELEVATION - 410.20 FLOWLENGTH (FEET) = 312.00 MANNIHG'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER QF PIPES = 1 PIPEFLOW THRU SUBAREA (CFS) = 3.17 TRAVEL TIMEIMIN.) = 0.71 TC(MIN.) - 10.08 FLOW PROCESS FROM NODE 245.00 TO NODE 245.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FQR INDEPENDENT STREAM TIME OF CONCENTRATIONIMIN.) - 10.08 . RAINFALL INTENSITYIINCH/HR) = 4.86 TOTAL STREAM AREAIACRES) - 0.64 PEAK FLOW RATEICFS) AT CONFLUENCE - 3.17 ************************************************************************ FLOW PROCESS FROM NODE 106.00 TO NODE 92.00 IS CODE - 21 »»>RATIQNAL METHOD INITIAL StJBAREA ANALYSIS««< •USER SPECIFIED (SUBAREA) ; INDUSTRIAL DEVELOPMENT RtJNOFF COEFFICIENT - .9000 INITIAL SUBAREA FLOW-LENGTH - 500.00 UPSTREAM ELEVATION = 482.00 DOWNSTREAM ELEVATION = 455.00 ELEVATION DIFFERENCE - 27.00 tJRBAN SUBAREA OVERLAND TIME QF FLOW (MINUTES) • 4.589 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME QF CONCENTRATION ASSUMED AS 6-MimjTES 100 YEAR RAINFALL INTENS ITY (INCH/HOUR) = 6.793 SUBAREA RUNQFF(CFS) = 3.42 TOTAL AREAIACRES) - 0.56 TOTAL RUNOFF(CFS) - 3.42 **************************************************************** FLOW PROCESS FRQM NODE 92.00 TO NODE 244.00 IS CODE - 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA«<« UPSTREAM ELEVATION - 455.00 DOWNSTREAM ELEVATION = 421 STREET LENGTH(FEET) - 850.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) - 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK - 15.00 INTERIOR STREET CROSSFALL (DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RtJNOFF = 1 ••TRAVELTIME CCMPUTED USING MEAN FLOW(CFS) = 6.60 STREETFLOW MODEL REStJLTS: STREET FLOWDEPTH (FEET) = 0.34 HALFSTREET FLOODWIDTH (FEET) " 10.85 AVERAGE FLQW VELOCITY(FEET/SEC.) - 5.09 PRODUCT OF DEPTHSVELOCITY - 1.75 STREETFLOW TRAVELTIME (MIN) = 2.78 TC(MIN) = 8.73 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 5.314 •USER SPECIFIED (SUBAREA) : INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT - .9500 SUBAREA AREA(ACRES) - 1.27 SUBAREA RUNOFF(CFS) = 6.41 SUMMED AREA(ACRES) = 1.83 TOTAL RUNOFF(CFS) = 9.33 END OF StJBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET FLOODWIDTH (FEET) = 13.52 FLOW VELQCITY(FEET/SEC.) - 5.05 DEPTH*VELOCITY = 2.00 FLQW PROCESS FRCM NODE 244.00 TO NODE 245.00 IS CODE = 3 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLQW)««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 16.8 UPSTREAM NODE ELEVATION = 411.30 DOWNSTREAM NODE ELEVATION - 410.70 FLOWLENGTH (FEET) - 5.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 9.83 TRAVEL TIME (MIN.) TC(MIN.) FLOW PROCESS FROM NODE ***************** 245.00 TQ NODE F********************* 245.00 IS CODE - 1 »»>DESIGNATE INDEPENDENT STREAM FQR CQNFLUENCE««< »»>AND CCMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TQTAL NUMBER QF STREAMS - 3 CONFLUENCE VALUES USED FQR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) - 8.79 RAINFALL INTENSITY(INCH/HR) = 5.31 TOTAL STREAM AREA(ACRES) - 1.83 PEAK FLOW RATE (CFS) AT CONFLUENCE = 9.33 CONFLUENCE DATA STREAM NUMBER 1 2 3 RtJNOFF (CFS) 19.47 3.17 9.83 Tc (MIN.) 11.00 10.08 8.79 INTENSITY (INCH/HOUR) 4.595 4.862 5.312 AREA (ACRE) 4.50 0.64 1.83 RAINFALL INTENSITY AND TIME QF CONCENTRATION RATIO CONFLUENCE FORMULA USED FQR 3 STREAMS. *• PEAK FLQW RATE TABLE STREAM NUMBER 1 2 3 RUNOFF (CFS) 29.58 30.57 30.97 Tc (MIN.) 8.79 10.08 11.00 INTENSITY (INCH/HOUR) 5.312 4.362 4.595 CCMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS; PEAK FLOW RATE (CFS) = 30.97 Tc(MIN.) = TOTAL AREA (ACRES) " 6.97 ***************************************************************** FLOW PROCESS FRQM NODE 245.00 TO NODE 255.10 IS CODE " 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NQN-PRESStJRE FLQW)«<« DEPTH QF FLOW IN 27.0 INCH PIPE IS 21.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.2 UPSTREAM NODE ELEVATION = 409.80 traWNSTREAM NODE ELEVATION = 408.90 FLOWLENGTH(FEET) - 75.00 MANNING'S N = 0.013 ESTIMATED PIPE DIJUffiTER(INCH) = 27.00 PIPEFLQW THRU SUBAREA(CFS) = 30.97 TRAVEL TIME(MIN.) = 0.14 TC(MIN.) - 11.13 NUMBER QF PIPES = ****************************************************************** FLQW PROCESS FROM NODE 255.10 TO NODE 255.10 IS CODE - 11 »»>CONFLUENCE MEMORY BANK it 2 WITH THE MAIN-STREAM MEMQRY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY ABEA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 30.97 11.13 4.559 6.97 *• MEMORY BANK (t STREAM RtJNOFF NUMBER (CFS) 1 142.20 2 CONFLtJENCE DATA •• Tc (MIN.) 17.17 INTENSITY (INCH/HQtJR) 3.448 (ACRE) 85.80 •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 138.52 11.13 4.559 2 165.62 17.17 3.448 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATEICFS) = 165.62 Tc(MIN.) = TOTAL AREA(ACRES) = 92.77 ************************* FLQW PROCESS FRQM NODE **************** 255.10 TO NODE **************** 255.10 IS CODE ******* »»>CLEAR MEMORY BANK # 2 ««< ************************************************************ FLQW PROCESS FRQM NODE 255.10 TO NODE 256.00 IS CODE = ******** »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« DEPTH OF FLOW IN 51.0 INCH PIPE IS 39.3 INCHES PIPEFLQW VELOCITY(FEET/SEC.) • 14.1 UPSTREAM NODE ELEVATION - 406.90 DOWNSTREAM NODE ELEVATION - 405.00 FLOWLENGTH (FEET) - 157.00 MANNING'S N " 0.013 ESTIMATED PIPE DIAMETER I INCH) = 51.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 165.62 TRAVEL TIME(MIN.) = 0.19 TCIMIN.) - 17.35 ******************************************************************** FLOW PROCESS FRCM NODE 256.00 TO NODE 257.00 IS CODE = 51 »»>CCMPUTE TRAPEZOIDAL CHANNEL FLQW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION - 405.00 DOWNSTREAM NODE ELEVATION - 326.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 1150.00 CHANNEL SLOPE - 0.0633 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR - 2.000 MANNING'S FACTOR = 0.013 MAXIMUM DEPTH(FEET) = 20.00 CHANNEL FLOW THRU SUBAREA(CFS) - 165.62 FLOW VELOCITYIFEET/SEC) - 14.92 FLOW DEPTH(FEET) = 0.36 TRAVEL TIME (MIN.) = 1.29 TC(MIN.) - 18.64 *************************************************************************** FLOW PROCESS FROM NODE 256.00 TO NODE 257.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLQW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) " 3.270 •USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREA (ACRES) - 8.10 SUBAREA RUNOFF (CFS) - 14.57 TOTAL AREA(ACRES) = 100.87 TOTAL RtJNOFF(CFS) = 180.19 TC(MIN) = 18.64 *************************************************************************** FLOW PROCESS FROM NODE 257.00 TO NODE 257.00 IS CODE = 11 »»>CQNFLtJENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMQRY««< ** MAIN STREAM CONFLUENCE DATA •• STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 180.19 13.64 3.270 100.37 •• MEMORY BANK # 1 CONFLtJENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 273.64 17.81 3.368 193.41 •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 448.61 17.81 3.368 2 445.89 18.64 3.270 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 448.61 Tc(MIN.) = 17. TOTAL AREAIACRES) - 294.28 FLOW PROCESS FRCM NODE 257.00 TO NODE 257.00 IS CODE »>»CLEAR MEMORY BANK # 1 <«« FLOW PROCESS FROM NODE 257.00 TO NODE 48.00 IS CODE »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION - 326.50 DOWNSTREAM NODE ELEVATION = 285.00 CHANNEL LENGTH THRU SUBAREAIFEET) - 1100.00 CHANNEL SLOPE - 0.0377 CHANNEL BASE(FEET) - 40.00 "Z" FACTOR " 2.000 MANNING'S FACTOR - 0.013 MAXIMUM DEPTH(FEET) - 25.00 CHANNEL FLOW THRU SUBAREA(CFS) - 448.61 FLQW VELOCITY (FEET/SEC) = 16.43 FLQW DEPTH(FEET) = 0.66 TRAVEL TIME (MIN.) - 1.12 TCIMIN.) = 13.92 ********************************** ********* FLOW PROCESS FROM NODE 257.00 TO NODE 48.00 IS CODE - »»>ADDITIQN OF SUBAREA TQ MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY IINCH/HOUR) - 3.238 •USER SPECIFIEDISUBAREA) : RtJRAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREA (ACRES) - 4.53 SUBAREA RUNQFF(CFS) - 8.07 TQTAL AREA(ACRES) - 298.81 TOTAL RUNOFF(CFS) - 456.67 TC(MIN) - 18.92 ******************************************************************** FLQW PROCESS FROM NODE 48.00 TQ NODE 48.00 IS CODE - 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK » 3 ««< I I I STQRM DRAIN LINE C I I I **************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE - 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIEDISUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED - 11.45 (MINtJTES) INITIAL SUBAREA FLOW-LENGTH = 250.00 UPSTREAM ELEVATION - 500.00 DOWNSTREAM ELEVATION = 480.00 ELEVATION DIFFERENCE » 20.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4.478 SUBAREA RUNQFF(CFS) - 3.45 TOTAL AREA(ACRES) = 1.40 TOTAL RUNOFF(CFS) - 3.45 ***************************************************************** FLOW PROCESS FROM NODE 211.00 TO NODE 52.00 IS CODE = 3 »»>CCMPUTE PIPEFLQW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLQW)««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.1 INCHES PIPEFLQW VELOCITYIFEET/SEC.) - 6.6 UPSTREAM NODE ELEVATION = 480.00 DOWNSTREAM NODE ELEVATION - 467.00 FLOWLENGTH IFEET) = 650.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) - 13.00 NUMBER OF PIPES = 1 PIPEFLQW THRU SUBAREA(CFS) - 3.45 TRAVEL TIME(MIN.) - 1.64 TCIMIN.) - 13.09 **************************************************************** FLOW PROCESS FRQM NODE 211.00 TO NODE 52.00 IS CODE = 3 »»>ADDITIQN OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.106 *USER SPECIFIED(SUBAREA): RURJU. DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA (ACRES) = 5.10 StJBAREA RUNOFF(CFS) =* 11.52 TOTAL AREA (ACRES) = 6.50 TQTAL RUNOFF (CFS) - 14.97 TC(MIN) - 13.09 ******************************************************************** FLOW PROCESS FROM NODE 52.00 TQ NODE 52.00 IS CODE - 1 »»>DES IGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TQTAL NUMBER QF STREAMS - 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME QF CONCENTRATIONIMIN.) - 13.09 RAINFALL INTENSITY (INCH/HR) - 4.11 TOTAL STREAM AREA(ACRES) = 6.50 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 14.97 ****************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECI FIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT » .5500 NATURAL WATERSHED NOMOGRAPH TIME QF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 12.47 (MINUTES) INITIAL SUBAREA FLOW-LENGTH • 360.00 UPSTREAM ELEVATION = 505.00 DOWNSTREAM ELEVATION = 490.00 ELEVATION DIFFERENCE = 15.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4.238 SUBAREA RUNOFF(CFS) - 2.89 TOTAL AREA(ACRES) - 1.24 TOTAL RUNOFF(CFS) ***************************************************************** FLQW PROCESS FRQM NODE 201.00 TO NODE 52.00 IS CODE - 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« »»>USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH QF FLOW IN 18.0 INCH PIPE IS 4.2 INCHES PIPEFLQW VELOCITY(FEET/SEC.) - 9.1 UPSTREAM NODE ELEVATION - 490.00 DOWNSTREAM NODE ELEVATION = 4 67.00 FLOWLENGTH (FEET) - 400.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) " 13.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREAICFS) » 2.89 TRAVEL TIMEIMIN.) • 0.73 TC(MIN.) - 13.20 *************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 52.00 IS CODE - 8 »»>ADDITIQN OF StJBAREA TQ MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 4.086 •USER SPECIFIED (SUBAREA) : RtJRAL DEVELOPMENT RUNOFF COEFFICIENT • .5500 SUBAREA AREA (ACRES) = 2.50 SUBAREA RUNOFF (CFS) - 5.62 TOTAL AREA(ACRES) - 3.74 TQTAL RUNOFF(CFS) - 8.51 TC{MIN) - 13.20 **************************************************************** FLOW PROCESS FROM NODE 52.00 TO NODE 52.00 IS CODE - 1 >»»DESIGNATE INDEPENDENT STRJSAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TQTAL NUMBER QF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENl STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 13.20 RAINFALL INTENSITY(INCH/HR) = 4.09 TOTAL STREAM AREA(ACRES) - 3.74 PEAK FLOW RATE (CFS) AT CONFLUENCE - 8.51 •* CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER ICFS) (MIN.) (INCH/HOUR) (ACRE) 1 14.97 13.09 4.106 6.50 2 8.51 13.20 4.086 3.74 RAINFALL INTENSITY AND TIME QF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtJR) 1 23.43 13.09 4.106 2 23.40 13.20 4.036 CCMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) • 23.43 Tc(MIN.) - 13.09 TOTAL AREA(ACRES) - 10.24 ***************************************************************** FLQW PROCESS FROM NODE 52.00 TO NODE 54.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 15.0 UPSTREAM NODE ELEVATION - 467.00 DOWNSTREAM NODE ELEVATION = 435.00 FLOWLENGTH (FEET) - 650.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER I INCH) - 21.00 NUMBER OF PIPES - 1 PIPEFLQW THRU SUBAREAICFS) - 23.43 TRAVEL TIME(MIN.) = 0.72 TC(MIN.) - 13.81 ********************************************************** FLOW PROCESS FROM NODE 52.00 TO NODE 54.00 IS CODE »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 3.967 •USER SPECIFIED (StIBJiREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) - 5.24 TOTAL AREA(ACRES) = 12.64 TOTAL RUNOFF(CFS) = 28.67 TC(MIN) - 13.31 **************************************************************************** FLQW PROCESS FROM NODE 54.00 TQ NODE 54.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FQR CONFLUENCE««< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALtJES USED FQR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) " 13.31 RAINFALL INTENSITY(INCH/HR) - 3.97 TOTAL STREAM AREA(ACRES) - 12.64 PEAK FLOW RATE (CFS) AT CONFLUENCE - 23.67 **************************************************************************** FLQW PROCESS FROM NODE 300.00 TQ NODE 301.00 IS CODE = 21 >»»RATIQNAL METHOD INITIAL StJBAREA ANALYSIS««< •USER SPECIFIED (StJBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED - 12.79 (MINUTES) INITIAL SUBAREA FLOW-LENGTH - 350.00 UPSTREAM ELEVATION = 485.00 DOWNSTREAM ELEVATION = 475.00 ELEVATION DIFFERENCE =10.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) =4.168 SUBAREA RUNOFF (CFS) - 4.13 TOTAL AREA(ACRES) - 1.80 TQTAL RUNOFFICFS) = 4.13 FLOW PRCXESS FROM NODE 301.00 TO NODE 54.00 IS CODE = 3 »»>CQMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 13.0 INCH PIPE IS 6.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.9 UPSTREAM NODE ELEVATION = 475.00 DOWNSTREAM NODE ELEVATION - 435.00 FLOWLENGTH(FEET) = 1380.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREAICFS) = 4.13 TRAVEL TIMEIMIN.) - 2.90 TC(MIN.) = 15.70 **************************************************************************** FLOW PROCESS FRQM NODE 301.00 TO NODE 54.00 IS CODE = 8 »»>ADDITIQN QF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.653 •USER SPECIFIED(SUBAREA): SUBAREA AREA(ACRES) = 11.10 StJBAREA RUNQFF(CFS) = 22.30 TOTAL AREAIACRES) = 12.90 TOTAL RUNOFFICFS) = 26.43 TCIMIN) = 15.70 **************************************************************************** FLQW PROCESS FRQM NODE 54.00 TO NODE 54.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FQR CONFLUENCE<«« »»>AND CCMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER QF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) - 15.70 RAINFALL INTENSITY (INCH/HR) = 3.65 TOTAL STREAM AREA(ACRES) " 12.90 PEAK FLOW RATE(CFS) AT CONFLUENCE *• 26.43 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 28.67 13.81 3.967 12.64 2 26.43 15.70 3.653 12.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) IMIN.) IINCH/HOUR) 1 53.01 13.81 3.967 2 52.83 15.70 3.653 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATEICFS] = 53.01 TclMIN.) - 13.81 TOTAL AREAIACRES) = 25.54 ***************************************************************** FLQW PROCESS FROM NODE 54.00 TO NODE 56.00 IS CODE = 3 »»X;QMPUTE PIPEFLQW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.8 INCHES PIPEFLQW VELQCITY(FEET/SEC.) - 20.1 UPSTREAM NODE ELEVATION = 435.00 DOWNSTREAM NODE ELEVATION • 355.00 FLOWLENGTH(FEET) = 1200.00 MANNING'S N » 0.013 ESTIMATED PIPE DIAMETER (INCH) " 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 53.01 TRAVEL TIME (MIN.) = 1.00 TC(MIN.) = 14.81 *************************************************************** FLOW PROCESS FROM NODE 54.00 TO NODE 56.00 IS CODE - 8 »»>ADDITIQN OF StIBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.793 •USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT • .5500 SUBAREA AREA (ACRES) = 7.80 SUBAREA RUNQFF(CFS) = 16.27 TQTAL AREA(ACRES) - 33.34 TQTAL RUNOFF(CFS) = 69.28 TC(MIN) = 14.81 ***************************************************************** FLOW PROCESS FROM NODE 56.00 TO NODE 4.00 IS CODE = 3 >»»CCWPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLOW)««< DEPTH OF FLOW IN 39.0 INCH PIPE IS 31.6 INCHES PIPEFLOW VELQCITYIFEET/SEC.) » 9.6 UPSTREAM NODE ELEVATION • 347.00 DOWNSTREAM NODE ELEVATION = 345.00 FLOWLENGTH (FEET) = 250.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) - 39.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) - 69.23 TRAVEL TIME(MIN.) = 0.43 TC(MIN.) = 15.24 ****************************************************************** FLOW PROCESS FROM NODE 56.00 TO NODE 4.00 IS CODE = 3 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.723 *USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RtJNOFF COEFFICIENT - .5500 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) - 7.58 TOTAL AREA(ACRES) = 37.04 TQTAL RUNOFFICFS) - 76.36 TCIMIN) = 15.24 ***************************************************************** FLOW PROCESS FRCM NODE 4.00 TO NODE 59.00 IS CODE = 3 »»>COMPnTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLQW IN 39.0 INCH PIPE IS 29.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.4 UPSTREAM NODE ELEVATION = 329.50 DOWNSTREAM NODE ELEVATION = 328.50 FLOWLENGTH(FEET) = 88.60 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) - 39.00 NUMBER QF PIPES = 1 PIPEFLQW THRU SUBAREAICFS) - 76.86 TRAVEL TIME(MIN.) = 0.13 TC(MIN.) - 15.37 ***************************************************************** FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE - 10 >»»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 «<« ****************************************************************** FLOW PROCESS FROM NODE 550.00 TO NODE 551.00 IS CODE - 21 »»>RATIONAL METHOD INITIAL StIBAREA ANALYSIS««< *USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED - 11. 41 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 200.00 UPSTREAM ELEVATION = 464.00 DOWNSTREAM ELEVATION - 453.00 ELEVATION DIFFERENCE = 11.00 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 4.488 SUBAREA RUNOFF(CFS) = 1.48 TQTAL AREAIACRES) - 0.60 TQTAL RUNOFFICFS) ***************************************************************** FLOW PROCESS FROM NODE 551.00 TO NODE 1.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« »»>USING CCMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLOW) ««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TQ 13.000 DEPTH OF FLOW IN 13.0 INCH PIPE IS 2.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 8.3 UPSTREAM NODE ELEVATION - 453.00 DOWNSTREAM NODE ELEVATION - 415.00 FLOWLENGTH (FEET) - 500.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER QF PIPES = 1 PIPEFLOW THRU StlBAREA(CFS) = 1.48 TRAVEL TIME (MIN.) = 1.01 TC(MIN.) - 12.42 ***************************************************************** FLQW PROCESS FROM NODE 551.00 TQ NODE 1.00 IS CODE - 8 »»>ADDITION OF StJBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4.249 •USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA (ACRES) = 4.40 SUBAREA RUNQFF(CFS) » 10.28 TQTAL AREA(ACRES) = 5.00 TOTAL RUNOFF(CFS) = 11.76 TCIMIN) - 12.42 *************************************************************************** FLOW PROCESS FRQM NODE 1.00 TO NODE 67.00 IS CODE » 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLQW] ««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TQ 18.000 DEPTH QF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES PIPEFLQW VELOCITY (FEET/SEC.) = 15.2 UPSTREAM NODE ELEVATION = 404.40 DOWNSTREAM NODE ELEVATION » 365.00 FLOWLENGTH (FEET) - 494.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER I INCH) = 13.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREAICFS) = 11.76 TRAVEL TIMEIMIN.) = 0.54 TCIMIN.) = 12.96 **************************************************************** FLOW PROCESS FROM NODE 67.00 TQ NODE 67.00 IS CODE = 1 »»>DES IGNATE INDEPENDENT STREAM FQR CONFLUENCE««< TOTAL NUMBER OF STREAMS " 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATIONIMIN.) = 12.96 RAINFALL INTENSITY (INCH/HR) = 4.13 TOTAL STREAM AREAIACRES) - 5.00 PEAK FLOW RATEICFS) AT CONFLtlENCE - 11.76 ****************************************************************** FLOW PRCXESS FROM NODE 500.00 TQ NODE 501.00 IS CODE - 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYS IS««< *USER SPECIFIED (SUBABEA) ; RURAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 NATURAL WATERSHED NCMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED - 12.15 (MINUTES) INITIAL SUBAREA FLOW-LENGTH - 340.00 UPSTREAM ELEVATION = 450.00 DOWNSTREAM ELEVATION - 432.00 ELEVATION DIFFERENCE = 18.00 100 YEAR RAINFMiL INTENSITY IINCH/HOUR) = 4.309 SUBAREA RUNOFFICFS) = 3.32 TOTAL AREA (ACRES) = 1.40 TQTAL RUNOFF (CFS) - 3.32 *************************************************************************** FLQW PROCESS FROM NODE 501.00 TO NODE 2.00 IS CODE " 3 »>»CQMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TQ 18.000 DEPTH QF FLQW IN 18.0 INCH PIPE IS 4.4 INCHES PIPEFLQW VELQCITYIFEET/SEC.) = 9.9 UPSTREAM NODE ELEVATION - 432.00 DOWNSTREAM NODE ELEVATION - 377.00 FLOWLENGTH (FEET) - 850.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = PIPEFLQW THRU SUBAREAICFS) - 3.32 TRAVEL TIMEIMIN.) - 1.43 TCIMIN.) ******************************************************************** FLOW PROCESS FRQM NODE 501.00 TO NODE 2.00 IS CODE = 3 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HQUR) - 4.011 •USER SPECIFIED (StJBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREA (ACRES) - 6.40 SUBAREA RUNOFF (CFS) - 14.12 TOTAL AREA(ACRES) = 7.30 TQTAL RUNOFF(CFS) - 17.44 TCIMIN) - 13.58 ***************************************************************** FLOW PROCESS FROM NODE 2.00 TQ NODE 67.00 IS CODE - 3 »>»CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLQW) ««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLQW IN 13.0 INCH PIPE IS 7.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 24.2 UPSTREAM NODE ELEVATION - 364.70 DOWNSTREAM NODE ELEVATION " 328.60 FLOWLENGTH(FEET) - 170.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES - 1 PIPEFLQW THRU SUBAREA(CFS) = 17.44 TRAVEL TIME(MIN.) - 0.12 TC(MIN.) - 13.70 ***************************************************************** FLOW PROCESS FROM NODE 67.00 TQ NODE 67.00 IS CODE - 1 »»>DESIGNATE INDEPENDENT STREAM FOR CQNFLUENCE«<« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FQR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) - 13.70 RAINFALL INTENSITY (INCH/HR) - 3.99 TOTAL STREAM AREA(ACRES) = 7.80 PEAK FLOW RATE(CFS) AT CONFLtJENCE » 17.44 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.76 12.96 4.134 5.00 2 17.44 13.70 3.989 7.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMtHA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 28.59 12.96 4.134 2 28.79 13.70 3.939 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 28.79 Tc(MIN.) - 13.70 TQTAL AREAIACRES) =• 12.80 ***************************************************************** FLOW PROCESS FROM NODE 67.00 TO NODE 59.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES PIPEFLQW VELOCITY(FEET/SEC.) - 33.1 UPSTREAM NODE ELEVATION = 365.00 DOWNSTREAM NODE ELEVATION = 328.50 FLOWLENGTH (FEET) - 105.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER I INCH) - 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREAICFS) = 28.79 TRAVEL TIMEIMIN.) = 0.05 TC(MIN.) = 13.75 ******************************************************************* FLOW PROCESS FRCM NODE 59.00 TQ NODE 59.00 IS CODE = 11 »»>CQNFLUENCE MEMORY BANK » 1 WITH THE MAIN-STREAM MEMORY««< •* MAIN STREAM CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) IMIN.) IINCH/HOUR) lACRE) 1 28.79 13.75 3.979 12.80 •• MEMORY BANK • 1 CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER ICFS) (MIN.) (INCH/HOUR) (ACRE) 1 76.86 15.37 3.703 37.04 •• PEJUC FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 100.31 13.75 3.979 2 103.64 15.37 3.703 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 103.64 Tc(MIN.) - 15. TQTAL AREA(ACRES) - 49.34 ****************************************************************** FLOW PROCESS FRQM NODE 59.00 TO NODE 59.00 IS CODE - 12 »»>CLEAR MEMORY BANK # 1 ««< ***************************************************************** FLOW PROCESS FROM NODE 59.00 TO NODE 37.00 IS CODE - 3 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) • 20.4 UPSTREAM NODE ELEVATION - 328.30 DOWNSTREAM NODE ELEVATION " 311.40 FLOWLENGTH (FEET) » 378.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) - 33.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 103.64 TRAVEL TIME(MIN.) = 0.31 TC(MIN.) - 15.68 ******************************************************************** FLOW PROCESS FROM NODE 87.00 TO NODE 87.00 IS CODE - 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 ««< ****************************************************************** FLOW PROCESS FROM NODE 700.00 TO NODE 701.00 IS CODE - 21 »»>RATIONAL METHOD INITIAL SUBJiREA ANALYSIS««< •USER SPECIFIED(SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 NATtJRAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED - 12.79 IMINUTES) INITIAL SUBAREA FLOW-LENGTH - 350.00 UPSTREAM ELEVATION - 505.00 DOWNSTREAM ELEVATION = 495.00 ELEVATION DIFFERENCE = 10.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4.163 SUBAREA RUNOFFtCFS) = 2.75 TOTAL AREA(ACRES) - 1.20 TOTAL RUNQFF(CFS) - 2.75 ***************************************************************** FLQW PROCESS FROM NODE 701.00 TQ NODE 5.00 IS CODE - 3 »>»COMPtJTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ESTIMATED PIPE DIAMETER I INCH) INCREASED TO 18.000 DEPTH QF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPEFLOW VELOCITYIFEET/SEC.) = 9.5 UPSTREAM NODE ELEVATION - 495.00 DOWNSTREAM NODE ELEVATION - 448.00 FLOWLENGTH(FEET) - 710.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES - 1 PIPEFLQW THRU SUBAREA(CFS) = 2.75 TRAVEL TIME(MIN.) - 1.25 TC(MIN.) - 14.04 ************************************************************************** FLOW PROCESS FROM NODE 701.00 TO NODE 5.00 IS CODE • 8 »»>ADDITIQN OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEJUl RAINFALL INTENSITY (INCH/HOUR) = 3.925 *USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) - 15.11 TQTAL AREA(ACRES) - 8.20 TOTAL RUNOFF(CFS) - 17.36 TC(MIN) - 14.04 ************* FLQW PROCESS FROM NODE 5.00 TO NODE 78.00 IS CODE = 3 »»>CQMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH QF FLOW IN 18.0 INCH PIPE IS 9.1 INCHES PIPEFLQW VELOCITY(FEET/SEC.) = 19.8 UPSTREAM NODE ELEVATION = 438.30 DOWNSTREAM NODE ELEVATION = 330.70 FLOWLENGTH (FEET) = 884.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1 PIPEFLQW THRU SUBAREA(CFS) = 17.86 TRAVEL TIME(MIN.) - 0.74 TC(MIN.) - 14.79 ***************************************************************** FLQW PROCESS FRCM NODE 78.00 TQ NODE 79.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH QF FLOW IN 19.0 INCH PIPE IS 12.1 INCHES PIPEFLQW VELOCITY(FEET/SEC.) - 14.1 UPSTREAM NODE ELEVATION - 329.72 DOWNSTREAM NODE ELEVATION = 321.50 FLOWLENGTH (FEET) » 162.00 MANNING'S N " 0.013 ESTIMATED PIPE DIAMETER(INCH) » 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU StJBAREA(CFS) - 17.86 TRAVEL TIME (MIN.) - 0.19 TC(MIN.) = 14.98 **************************************************************************** FLOW PROCESS FROM NODE 79.00 TO NODE . 79.00 IS CODE - 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER QF STREAMS = 3 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 14.98 RAINFALL INTENSITY(INCH/HR) = 3.77 TQTAL STREAM AREA(ACRES) = 3.20 PEAK FLQW RATE (CFS) AT CONFLUENCE = 17.36 **************************************************************************** FLQW PROCESS FROM NODE 800.00 TQ NODE 801.00 IS CODE - 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYS IS««< •USER SPECIFIED (StJBAREA) ; RtJRAL DEVELOPMENT RUNOFF COEFFICIENT =• .5500 NATtJRAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED - 11.05 (MINtJTES) INITIAL StJBAREA FLOW-LENGTH » 150.00 UPSTREAM ELEVATION = 390.00 DOWNSTREAM ELEVATION - 330.00 ELEVATION DIFFERENCE = 10.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.532 SUBAREA RtJNOFF(CFS) = 9.53 TQTAL AREA(ACRES) = 3.80 TQTAL RUNQFF(CFS) - 9.53 **************************************************************************** FLOW PROCESS FRQM NODE 301.00 TO NODE 6.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »>»USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLQW) ««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TQ 18.000 DEPTH QF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.1 UPSTREAM NODE ELEVATION = 330.00 DOWNSTREAM NODE ELEVATION = 340.00 FLOWLENGTH (FEET) = 650.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 9.58 TRAVEL TIME (MIN.) = 0.83 TC(MIN.) = 11.88 **************************************************************************** FLQW PROCESS FRCM NODE 801.00 TO NODE 6.00 IS CODE = 3 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4.373 *USER SPECIFIEDISUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 StJBAREA AREAIACRES) = 9.30 SUBAREA RUNOFF(CFS) = 23.57 TQTAL AREA(ACRES) = 13.60 TOTAL RUNOFF(CFS) = 33.15 TC(MIN) - 11.88 FLOW PRtXESS FRCJM NODE 6.00 TQ NODE 74.00 IS CODE »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 20.0 UPSTREAM NODE ELEVATION = 330.36 DOWNSTREAM NODE ELEVATION = 322.56 FLOWLENGTH (FEET) - 92.60 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER QF PIPES = 1 PIPEFLQW THRU SUBAREA(CFS) = 33.15 TRAVEL TIME (MIN.) = 0.08 TC(MIN.) - 11.95 ************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 74.00 IS CODE = 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.355 •USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RtJNOFF COEFFICIENT - .5500 SUBAREA AREA(ACRES) - 0.15 SUBJiRfA RUNOFFICFS) - 0.36 TOTAL AREAIACRES) = 13.75 TOTAL RUNOFFICFS) = 33.51 TCIMIN) = 11.95 ***************************************************************** FLOW PROCESS EROM NODE 74.00 TO NODE 79.00 IS CODE = 3 »»>CQMPtn'E PIPEFLQW TRAVELTIME THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.7 INCHES PIPEFLQW VELOCITY(FEET/SEC.) = 21.7 UPSTREAM NODE ELEVATION = 322.10 DOWNSTREAM NODE ELEVATION = 321.50 FLOWLENGTH (FEET) = 5.25 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) - 33.51 TRAVEL TIME(MIN.) • 0.00 TC(MIN.) = 11.96 ***************************************************************** FLQW PROCESS FROM NODE 79.00 TO NODE 79.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FQR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 11.96 RAINFALL INTENSITY (INCH/HR) = 4.35 TOTAL STREAM AREA(ACRES) - 13.75 PEAK FLOW RATE(CFS) AT CONFLUENCE - 33.51 **************************************************************** FLQW PROCESS FRCM NODE 279.00 TQ NODE 73.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL StJBAREA ANALYSIS««< •USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = 34 0.00 DOWNSTREAM ELEVATION - 332.00 ELEVATION DIFFERENCE - 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 6.940 •CAUTION: SUBAREA SLOPE EXCEEDS CQUNTY NCMOGRAPH DEFINITION. EXTRAPOLATION OF NCMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOtIR) = 6.134 SUBAREA RUNOFF(CFS) =• 0.37 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) - 0.37 ***************************************************************** FLOW PROCESS FROM NODE 73.00 TQ NODE 79.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLQW IN 18.0 INCH PIPE IS 1.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 4.1 UPSTREAM NODE ELEVATION = 322.50 DOWNSTREAM NODE ELEVATION = 321.50 FLOWLENGTH (FEET) = 30.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) = 13.00 NUMBER QF PIPES = PIPEFLOW THRU StJBAREA(CFS) = 0.37 TRAVEL TIME (MIN.) = 0.12 TC(MIN.) = 7.06 ********************************************************** FLQW PROCESS FRQM NODE 79.00 TQ NODE 79.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND CCMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE V3U,UES USED FOR INDEPENDENT STREAM 3 ARE: TIME QF CONCENTRATION (MIN.) - 7.06 RAINFALL INTENSITY (INCH/HR) = 6.12 TOTAL STREAM AREA(ACRES) = 0.11 PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.37 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 17.86 14.98 3.765 8.20 2 33.51 11.96 4.354 13.75 3 0.37 7.06 6.115 0.11 RAINFALL INTENSITY AND TIME QF CONCENTRATION RATIO CONFLtJENCE FORMULA USED FOR 3 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 35.23 7.06 6.115 2 49.22 11.96 4.354 3 47.07 14.98 3.765 CCMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATEICFS) = 49.22 TclMIN.) = 11.96 TQTAL AREA(ACRES) = 22.06 FLQW PROCESS FRCM NODE 79.00 TQ NODE 84.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH QF FLOW IN 27.0 INCH PIPE IS 21.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.7 UPSTREAM NODE ELEVATION = 321.00 DOWNSTREAM NODE ELEVATION " 319.00 FLOWLENGTH (FEET) = 66.00 MJUiNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) = 49.22 TRAVEL TIME(MIN.) = 0.08 TC(MIN.) = 12.03 ******************************************************************** FLOW PROCESS FRCM NODE 84.00 TO NODE 84.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER QF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE; TIME QF CONCENTRATION (MIN.) = 12.03 RAINFALL INTENSITY(INCH/HR) - 4.34 TOTAL STREAM AREA(ACRES) = 22.06 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 49.22 ****************************************************************** FLOW PRCXESS FROM NODE 900.00 TQ NODE 901.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIEDISUBAREA) : RtJRAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED - 11. 62 (MINUTES) INITIAL SUBAREA FLQW-LENGTH - 250.00 UPSTREAM ELEVATION = 465.00 DOWNSTREAM ELEVATION - 450.00 ELEVATION DIFFERENCE - 15.00 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 4.435 SUBAREA RUNQFF(CFS) = 3.17 TQTAL AREA(ACRES) = 1.30 TQTAL RtJNOFF(CFS) = 3.17 ***************************************************************** FLOW PRCXESS FROM NODE 901.00 TQ NODE 82.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLQW)««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TQ 13.000 DEPTH QF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPEFLQW VELOCITY(FEET/SEC.) - 10.7 UPSTREAM NODE ELEVATION = 450.00 DOWNSTREAM NODE ELEVATION = 370.00 FLOWLENGTH(FEET) = 950.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) =• 18.00 NUMBER OF PIPES = 1 PIPEFLQW THRU SUBAREA(CFS) - 3.17 TRAVEL TIME (MIN.) - 1.47 TC(MIN.) **************************************************************** FLQW PROCESS FROM NODE 901.00 TO NODE 32.00 IS CODE = 8 »»>ADDITIQN QF SUBAREA TO MAINLINE PEJUC FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) - 4.107 *USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREA(ACRES) = 8.30 SUBAREA RUNOFF(CFS) - 18.75 TOTAL AREA(ACRES) = 9.60 TOTAL RUNOFF(CFS) - 21.92 TC(MIN) = 13.09 *************************************************************************** FLOW PROCESS FROM NODE 32.00 TO NODE 7.00 IS CODE - 3 »»>CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLQW IN 21.0 INCH PIPE IS 14.5 INCHES PIPEFLOW VELQCITY(FEET/SEC.) - 12.4 . UPSTREAM NODE ELEVATION = 370.00 DOWNSTREAM NODE ELEVATION = 340.00 FLOWLENGTH(FEET) - 950.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER OF PIPES = 1 PIPEFLQW THRU StJBAREA(CFS) = 21.92 TRAVEL TIME(MIN.) - 1.28 TC(MIN.) = 14.37 ************************************************************************* FLQW PROCESS FRCM NODE 82.00 TO NODE 7.00 IS CODE = 8 »»>ADDITION OF SUBAREA TQ MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 3.367 *USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREA (ACRES) - 10.40 SUBAREA RUNOFF (CFS) = 22.12 TQTAL AREA(ACRES) - 20.00 TOTAL RUNOFF(CFS) - 44.04 TC(MIN) - 14.37 ***************************************************************** FLQW PROCESS FROM NODE 7.00 TO NODE 84.00 IS CODE = 3 »»>CCMPUTE PIPEFLQW TRAVELTIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLOW)««< DEPTH QF FLQW IN 24.0 INCH PIPE IS 16.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 19.6 UPSTREAM NODE ELEVATION - 327.20 DOWNSTREAM NODE ELEVATION - 320.20 FLOWLENGTH (FEET) = 104.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER IINCH) = 24.00 NUMBER OF PIPES • 1 PIPEFLOW THRU SUBAREAICFS) - 44.04 TRAVEL TIME (MIN.) - 0.09 TCIMIN.) - 14.46 **************************************************************************** FLOW PROCESS FRCM NODE 84.00 TQ NODE 34.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CQNFLUENCE<«« »»>AND COMPUTE V31RI0US CONFLtJENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATIONIMIN.) = 14.46 RAINFALL INTENSITY (INCH/HR) = 3.85 TOTAL STREAM AREA(ACRES) = 20.00 PEAK FLOW RATE (CFS) AT CONFLUENCE = 44.04 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER ICFS) (MIN.) (INCH/HOUR) (ACRE) 1 49.22 12.03 4.336 22.06 2 44.04 14.46 3.852 20.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLtJENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLQW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 83.34 12.03 4.336 2 37.76 14.46 3.852 CCMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATEICFS) » 88.34 TclMIN.) = 12.03 TQTAL AREAIACRES) = 42.06 ********************************************************** FLQW PROCESS FROM MODE 84.00 TO NODE 85.00 IS CODE >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPtJTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 12.4 UPSTREAM NODE ELEVATION » 318.70 DOWNSTREAM NODE ELEVATION = 315.90 FLOWLENGTH (FEET) - 223.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA(CFS) = 88.34 TRAVEL TIME(MIN.) - 0.30 TC(MIN.) = 12.33 ********************************************************** FLOW PROCESS FROM NODE 85.00 TO NODE 85.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CQNFHJENCE««< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FQR INDEPENDENT STREAM 1 ARE: TIME QF CONCENTRATIONIMIN.) = 12.33 RAINFALL INTENSITY (INCH/HR) = 4.27 TOTAL STREAM AREA(ACRES) = 42.06 PEJiK FLQW RATE(CFS) AT CONFLUENCE - 88.34 *********************************************************** FLOW PROCESS FRQM NODE 281.00 TO NODE 86.00 IS CODE = »>»RATIONAL METHOD INITIAL StJBAREA ANALYSIS««< *nsER SPECIFIED (StJBAREA) ; SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT - .5500 INITIAL StJBAREA FLOW-LENGTH - 270.00 UPSTREAM ELEVATION = 329.00 DOWNSTREAM ELEVATION = 322.00 ELEVATION DIFFERENCE = 7.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) - 11.342 •CAUTION: StJBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION QF NCMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) » 4.381 SUBAREA RUNOFF (CFS) = 0.48 TOTAL AREAIACRES) = 0.20 TOTAL RUNOFFICFS) = 0 **************************************************************************** FLOW PROCESS FRQM NODE 86.00 TQ NODE 85.00 IS CODE " 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 13.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 3.7 UPSTREAM NODE ELEVATION = 316.00 DOWNSTREAM NODE ELEVATION - 315.90 FLOWLENGTH (FEET) = 5.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER QF PIPES = 1 PIPEFLOW THRU StJBAREA(CFS) = 0.48 TRAVEL TIME(MIN.) = 0.02 TC(MIN.) = 11.86 **************************************************************************** FLOW PROCESS FRCM NODE 85.00 TO NODE 35.00 IS CODE » 1 »»>DESIGNATE INDEPENDENT STREAM FQR CONFHJENCE«<« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALtJES««< TQTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 11.86 RAINFALL INTENSITY (INCH/HR) = 4.33 TOTAL STREAM AREA(ACRES) = 0.20 PEAK FLOW RATEICFS) AT CONFLUENCE - 0.48 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER ICFS) (MIN.) (INCH/HOUR) (ACRE) 1 88.34 12.33 4.268 42.06 2 0.43 11.86 4.376 0.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FQR 2 STREAMS. ** PEAK FLQW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) IMIN.) IINCH/HOUR) 1 86.64 11.86 4.376 2 88.81 12.33 4.263 CCMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS; PEAK FLOW RATEICFS) ' 88.31 Tc(MIN.) - 12.33 TOTAL AREA(ACRES) = 42.26 FLOW PROCESS FROM NODE *************** 85.00 TO NODE ****************** 87.00 IS CODE = »»>COMPUTE PIPEFLQW TRAVELTIME THRU StJBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW)««< DEPTH QF FLOW IN 27.0 INC3J PIPE IS 20.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 28.2 UPSTREAM NODE ELEVATION - 315.60 DOWNSTREAM NODE ELEVATION - 311.40 FLOWLENGTH (FEET) - 37.00 MANNING'S ESTIMATED PIPE DIAMETER (INCH) - 27.00 PIPEFLOW THRU StJBAREA(CFS) = 88.81 TRAVEL TIME(MIN.) - 0.02 TC(MIN.) • = 0.013 NtJMBER OF PIPES ********************************************************************* FLOW PROCESS FRQM NODE 87.00 TO NODE 87.00 IS CODE " 11 »»>CQNFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMQRY««< ** MAIN STREAM CONFLUENCE DATA *• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 88.81 12.35 4.263 42.26 ** MEMORY BANK « STREAM RUNOFF NUMBER (CFS) 1 103.64 2 CONFLUENCE DATA Tc (MIN.) 15.68 INTENSITY (INCH/HOUR) 3.655 AREA (ACRE) 49.84 *• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER ICFS) IMIN.) (INCH/HOUR) 1 177.68 12.35 4.263 2 179.79 15.68 3.655 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS; PEAK FLQW RATE(CFS) - 179.79 Tc(MIN.) - TOTAL AREA(ACRES) - 92.10 ************************ FLOW PROCESS FRCM NODE 87.00 TO NODE »»>CLEAR MEMORY BANK # 2 ««< r***************** 87.00 IS CODE FLQW PROCESS FROM NODE 87.00 TO NODE 87.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER QF STREAMS » 2 CONFLtJENCE VALtJES USED FQR INDEPENDENT STREAM TIME QF CONCENTRATION (MIN.) = 15.68 RAINFALL INTENSITY I INCH/HR) = 3.66 TQTAL STREAM AREAIACRES) = 92.10 PEAK FLOW RATE (CFS) AT CONFLUENCE = 179.79 1 ARE: ***************************************** FLOW PROCESS FROM NODE 280.00 TQ NODE ********************* 88.00 IS CODE - 21 ******** »>»RATIONAL METHOD INITIAL StJBAREA ANALYSIS««< *USER SPECIFIED (StJBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT " .5500 INITIAL StJBAREA FLQW-LENGTH - 240.00 UPSTREAM ELEVATION - 329.00 DOWNSTREAM ELEVATION " 322.00 ELEVATION DIFFERENCE - 7.00 URBAN StJBAREA OVERLAND TIME OF FLOW (MINtJTES) - 10.735 •CAUTION; SUBAREA SLOPE EXCEEDS CQUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NCMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HQUR) = 4.668 SUBAREA RtJNQFFICFS) - 0.56 TOTAL AREAIACRES) - 0.22 TQTAL RUNOFFICFS) = 0.56 ************************ FLQW PROCESS FRCM NODE ***************** 88.00 TO NODE t********************* 87.00 IS CODE = 3 »>»CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE INQN-PRESSURE FLOW)<«« ESTIMATED PIPE DIAMETERIINCH) INCREASED TO 18.000 DEPTH QF FLOW IN 18.0 INCH PIPE IS 2.0 INCHES PIPEFLOW VELQCITYIFEET/SEC.) = 5.1 UPSTREAM NODE ELEVATION = 313.90 DOWNSTREAM NODE ELEVATION = 312.50 FLOWLENGTH (FEET) = 32.50 MANNING'S ESTIMATED PIPE DIAMETER(INCH) - 18.00 - 0.013 NUMBER OF PIPES PIPEFLQW THRU SUBAREA(CFS) - 0.56 TRAVEL TIME(MIN.) = 0.11 TC(MIN.) ********************************************************** FLOW PROCESS FRCM NODE 87.00 TO NODE 87.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NtJMBER OF STREAMS - 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME QF CONCENTRATION (MIN.) = 10.84 RAINFALL INTENSITY (INCH/HR) = 4.64 TOTAL STREAM AREA (ACRES) = 0.22 PEIUC FLQW RATE (CFS) AT CONFLUENCE = 0.56 •• CONFLUENCE DATA •• STREAM RUNOFF To INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 179.79 15.68 3.655 92.10 2 0.56 10.84 4.638 0.22 RAINFALL INTENSITY AND TIME QF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 142.26 10.84 4.638 2 130.24 15.68 3.655 CCMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) - 130.24 Tc(MIN.) - 15.63 TOTAL AREA(ACRES) = 92.32 ***************************************************************** FLOW PROCESS FROM NODE 87.00 TO NODE 89.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 21.3 UPSTREAM NODE ELEVATION = 311.00 DOWNSTREAM NODE ELEVATION - 304.00 FLOWLENGTH (FEET) = 210.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) - 45.00 NUMBER OF PIPES = 1 PIPEFLOW THRU StlBAREA(CFS) » 180.24 TRAVEL TIME(MIN.) = 0.16 TC(MIN.) - 15.85 **************************************************************** FLOW PROCESS FRQM NODE 89.00 TO NODE 89.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER QF STREAMS = 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE; TIME QF CONCENTRATION (MIN.) - 15.85 RAINFALL INTENSITY (INCH/HR) = 3.63 TQTAL STREAM AREA(ACRES) « 92.32 PEAK FLOW RATE (CFS) AT CONFLUENCE = 180.24 *************************************************************** FLOW PROCESS FROM NODE 277.00 TO NODE 49.00 IS CODE = 21 »»>RATIQNAL METHOD INITIAL SUBAREA ANIU,YSIS««< •USER SPECIFIED (SUBAREA) ; SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL StJBAREA FLOW-LENGTH = 250.00 UPSTREAM ELEVATION = 321.90 DOWNSTREAM ELEVATION - 312.30 ELEVATION DIFFERENCE = 9.60 URBAN StJBAREA OVERLAND TIME OF FLOW (MINUTES) = 9.996 •CAUTION: SUBABEA SLOPE EXCEEDS CQUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.837 StJBAREA RUNOFF(CFS) = 0.81 TOTAL AREAIACRES) = 0.30 TOTAL RUNOFFICFS) - 0.81 FLQW PROCESS FROM NODE 49.00 TO NODE 89.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU StJBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.9 INCHES PIPEFLOW VELOCITYIFEET/SEC.) = 3.0 UPSTREAM NODE ELEVATION " 306.30 DOWNSTREAM NODE ELEVATION = 304.00 FLOWLENGTH (FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREAICFS) = 0.81 TRAVEL TIME(MIN.) - 0.04 TCIMIN.) = 10.04 **************************************************************** FLOW PROCESS FRQM NODE 89.00 TO NODE 89.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CQNFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TQTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FQR INDEPENDENT STREAM 2 ARE: TIME QF CONCENTRATIONIMIN.) - 10.04 RAINFALL INTENSITYIINCH/HR) = 4.87 TOTAL STREAM AREAIACRES) » 0.30 PEAK FLOW RATEICFS) AT CONFLUENCE - 0.81 •• CONFLtJENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 180.24 15.35 3.631 92.32 2 0.81 10.04 4.874 0.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 135.07 10.04 4.374 2 180.84 15.85 3.631 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLQW RATE(CFS) - 180.84 Tc(MIN.) = 15.35 TQTAL AREA (ACRES) = 92.62 ***************************************************************** FLOW PROCESS FRQM NODE 89.00 TO NODE 90.00 IS CODE " 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLQW)««< DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 44.7 UPSTREAM NODE ELEVATION = 303.70 DOWNSTREAM NODE ELEVATION - 285.00 FLOWLENGTH (FEET) = 76.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER QF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 180.34 TRAVEL TIME(MIN.) = 0.03 TC(MIN.) = 15.88 FLOW PROCESS FRCM NODE 90.00 TQ NODE 48.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLQW««< »>»TRAVELTIME THRU SUBAREA<«« UPSTREAM NODE ELEVATION = 287.00 DOWNSTREAM NODE ELEVATION = 286.00 CHANNEL LENGTH THRU SUBAREA (FEET) = lOO.OO CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 100.00 "Z" FACTOR - 2.000 MANNING'S FACTOR - 0.013 MAXIMUM DEPTH(FEET) - 20.00 CHANNEL FLQW THRU StJBAREA(CFS) = 130.34 FLOW VELOCITY (FEET/SEC) = 5.43 FLOW DEPTH(FEET) = 0.33 TRAVEL TIME(MIN.) « 0.31 TC(MIN.) = 16.18 **************************************************************************** FLOW PROCESS FRQM NODE 48.00 TQ NODE 48.00 IS CODE = 11 »»>CONFLUENCE MEMORY BANK » 3 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 180.84 16.18 3.532 92.62 *• MEMORY BANK it 3 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 456.67 18.92 3.233 298.81 *• PEAK FLOW RATE TABLE *• STREAM RUNOFF Tc INTENSITY NUMBER ICFS) (MIN.) (INCH/HOUR) 1 593.67 16.18 3.582 2 620.15 18.92 3.238 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATEICFS) - 620.15 TclMIN.) = TOTAL AREA(ACRES) = 391.43 *************************************************************************** FLOW PROCESS FROH NODE 48.00 TQ NODE 43.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 3 ««< *********************************************************************** FLOW PROCESS FROM NODE 48.00 TQ NODE 48.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FQR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.92 RAINFALL INTENSITY (INCH/HR) » 3.24 TOTAL STREAM AREA(ACRES) - 391.43 PEAK FLOW RATE (CFS) AT CONFLUENCE - . 620.15 *********************************************************** FLOW PROCESS FRCM NODE 908.00 TO NODE 909.00 IS CODE »>»RAT10NAL METHOD INITIAL StJBAREA ANALYSIS««< •USER SPECIFIED (SUBAREA) : RURAL DEVELOPHENT RUNOFF COEFFICIENT - .5500 INITIAL SUBAREA FLQW-LENGTH = 550.00 UPSTREAM ELEVATION - 348.00 DOWNSTREAM ELEVATION - 320.00 ELEVATION DIFFERENCE - 28.00 URBAN SUBAREA OVERLAND TIME OF FLQW (MINUTES) = 13.497 •CAUTION: SUBAREA SLOPE EXCEEDS CQUNTY NCMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. •CAUTION: SUBAREA FLOWLENGTH EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION QF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY I INCH/HQUR) " 4.027 SUBAREA RUNOFFICFS) » 15.79 TOTAL AREA(ACRES) = 7.13 TQTAL RUNOFFICFS) = 15.79 ****************************************************************** FLOW PROCESS FROM NODE 909.00 TQ NODE 9.00 IS CODE = 3 »»>CCMPUTE PIPEFLQW TRAVELTIME THRU SUB;iREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLQW)<«« DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.4 INCHES PIPEFLOW VELQCITYIFEET/SEC.) - 9.0 UPSTREAM NODE ELEVATION • 320.00 DOWNSTREAM NODE ELEVATION = 307.50 FLOWLENGTH (FEET) = 750.00 MANNING'S N » 0.013 ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER QF PIPES = 1 PIPEFLQW THRU SUBAREA(CFS) = 15.79 TRAVEL TIME(MIN.) = 1.39 TC(MIN.) = 14.89 *************************************************************************** FLOW PROCESS FRCM NODE 909.00 TO NODE 9.00 IS CODE = 8 »»>ADDITION QF StJBAREA TQ MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENS ITY (INCH/HOUR) = 3.780 •USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREAIACRES) = 6.10 SUBAREA RUNOFF(CFS) = 12.68 TOTAL AREA(ACRES) = 13.23 TQTAL RUNOFF(CFS) = 28.47 TC(MIN) = 14.89 ***************************************************************** FLOW PROCESS FROM NODE 9.00 TO NODE 48.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLQW) ««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 19.3 UPSTREAM NODE ELEVATION - 300.50 DOWNSTREAM NODE ELEVATION = 286.00 FLOWLENGTH (FEET) = 160.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) - 18.00 NUMBER QF PIPES = 1 PIPEFLOW THRU SUBJUtEA(CFS) - 28.47 TRAVEL TIME(MIN.) = 0.14 TC(MIN.) = 15.03 FLOW PROCESS FROM NODE 48.00 TO NODE 43.00 IS CODE »»>DES IGNATE INDEPENDENT STREAM FOR CQNFHJENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VAHJES««< TOTAL NUMBER QF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 15.03 RAINFALL INTENSITY (INCH/HR) = 3.76 TOTAL STREAM AREA(ACRES) » 13.23 PEAK FLOW RATE (CFS) AT CONFLUENCE = 28.47 *• CONFLtJENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (HIN.) (INCH/HOUR) (ACRE) 1 620.15 18.92 3.238 391.43 2 23.47 15.03 3.758 13.23 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FQR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HQUR) 1 562.91 15.03 3.758 2 644.69 13.92 3.233. COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) » 644.69 Tc(MIN.) - 13.92 TOTAL AREA (ACRES) = 404.66 + + I I I STORM DRAIN LINE B I I I ****************************************************************** FLOW PROCESS FRCM NODE 710.00 TO NODE 8.00 IS CODE - 21 »»>RATIQNAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT • .5500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION lAPPENDIX X-A) WITH 10-MINUTES ADDED - 12.39 (MINtTTES) INITIAL StJBAREA FLOW-LENGTH = 430.00 UPSTREAM ELEVATION = 435.00 DOWNSTREAM ELEVATION = 463.00 ELEVATION DIFFERENCE = 17.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.149 StJBAREA RtJNOFF(CFS) - 7.99 TOTAL AREA(ACRES) = 3.50 TQTAL RUNQFF(CFS) = 7.99 ***************************************************************** FLOW PROCESS FROM NODE 3.00 TQ NODE 94.00 IS CODE = 3 »»>CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESStJRE FLOW)«<« ESTIMATED PIPE DIAMETER (INCH) INCREASED TQ 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 16.6 UPSTREAM NODE ELEVATION - 459.00 DOWNSTREAM NODE ELEVATION = 447.40 FLOWLENGTH (FEET) = 35.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 13.00 NUMBER OF PIPES = 1 PIPEFLOW THRU StJBAREA(CFS) - 7.99 TRAVEL TIME(MIN.) - 0.09 TCIMIN.) = 12.97 FLQW PROCESS FROM NODE 94.00 TO NODE 94.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CQNFLUENCE««< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALtJES USED FQR INDEPENDENT STREAM TIME OF CONCENTRATIONIMIN.) = 12.97 RAINFALL INTENSITY (INCH/HR) = 4.13 TOTJIL STREAM AREA (ACRES) = 3.50 PEAK FLOW RATE (CFS) AT CONFLtlENCE = 7.99 ********************************************************************* FLOW PROCESS FRCM NODE 104.00 TQ NODE 94.00 IS CODE - 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIED (SUBAREA) : INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL StJBAREA FLQW-LENGTH = 500.00 UPSTREAM ELEVATION = 479.00 DOWNSTREAM ELEVATION = 455.00 ELEVATION DIFFERENCE = 24.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 13.124 •CAUTION: StJBAREA SLOPE EXCEEDS COtJNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(1NCH/HQUR) - 4.100 SUBAREA RnNOFF(CFS) = 1.26 TOTAL AREA(ACRES) - 0.56 TQTAL RtJNOFF(CFS) - 1.26 **************************************************************************** FLQW PROCESS FROM NODE 94.00 TO NODE 94.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CQNFLtJENCE««< »»>AND CCMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TQTAL NUMBER QF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIHE OF CONCENTRATION (MIN.) - 13.12 RAINFALL INTENSITY (INCH/HR) = 4.10 TOTAL STREAM AREA(ACRES) = 0.56 PEAK FLOW RATEICFS) AT CONFLUENCE = 1.26 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (AC»E) 1 7.99 12.97 4.131 3.50 2 1.26 13.12 4.100 0.56 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLQW RATE TABLE •• STREAM RtJNQFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.24 12.97 4.131 2 9.19 13.12 4.100 CCMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 9.24 Tc(MIN.) = 12.97 TOTAL AREA(ACRES) = 4.06 FLOW PROCESS FROM NODE 94.00 TO NODE 96.00 IS CODE = 3 »»>CCMPUTE PIPEFLOW TRAVELTIME THRU StIBAREA««< »»>US1NG CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<«« DEPTH OF FLOW IN 13.0 INCH PIPE IS 13.0 INCHES PIPEFLQW VELOCITY(FEET/SEC.) = 6.3 UPSTREAM NODE ELEVATION = 447.00 DOWNSTREAM NODE ELEVATION = 444.00 FLOWLENGTH (FEET) " 264.40 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES PIPEFLQW THRU SUBAREA(CFS) - 9.24 TRAVEL TIME (MIN.) = 0.65 TC(HIN.) - 13.62 ************************************************************************* FLQW PROCESS FROH NODE 96.00 TO NODE 97.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« DEPTH QF FLQW IN 13.0 INCH PIPE IS 13.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 6.4 UPSTREAM NODE ELEVATION = 444.00 DOWNSTREAM NODE ELEVATION = 441.10 FLOWLENGTH(FEET) - 293.00 MAHHING'S N = 0.013 ESTIMATED PIPE DIAMETER IINCH) - 18.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREAICFS) = 9.24 TRAVEL TIMEIMIN.) = 0.77 TC(MIN.) = 14.39 ********************************************************** FLQW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CQNFHJENCE««< TOTJiL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE; TIME OF CONCENTRATIONIMIN.) = 14.39 RAINFALL INTENSITY (INCH/HR) = 3.86 TOTAL STREIM AREA (ACRES) = 4.06 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.24 *********************************************************** FLOW PROCESS FRCM NODE 98.00 TO NODE 99.00 IS CODE = »»>RATIQNAL METHOD INITIAL SUBAREA ANALYSIS<«« •USER SPECIFIED (SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLQW-LENGTH = 220.00 UPSTREAM ELEVATION = 458.00 DOWNSTREAM ELEVATION • 455.00 ELEVATION DIFFERENCE - 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINnTES) - 13.242 100 YEAR RAINFALL INTENSITY (INCH/HQUR) = 4.077 StJBAREA RUNOFFtCFS) = 0.99 TOTAL AREA(ACRES) - 0.44 TOTAL RUNQFF(CFS) = 0.99 ***************************************************************** FLQW PROCESS FRCM NODE 99.00 TO NODE 97.00 IS CODE - 3 »»>CQHPUTE PIPEFLQW TRAVELTIHE THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLQW)««< ESTIHATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH QF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES PIPEFLQW VELOCITY(FEET/SEC.) = 5.1 UPSTREAM NODE ELEVATION = 442.30 DOWNSTREAM NODE ELEVATION - 440.80 FLOWLENGTH (FEET) = 55.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER QF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) - 0.99 TRAVEL TIME(MIN.) = 0.18 TC(MIN.) = 13.42 ********************************************************************** FLQW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TQTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATIONtHlN.) = 13.42 RAINFALL INTENSITY (INCH/HR) » 4.04 TOTAL STREAM AREA(ACRES) - 0.44 PEAK FLOW RATE(CFS) AT CONFLUENCE - 0.99 ********************************************************************** FLOW PROCESS FROM NODE 263.00 TO NODE 100.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIED (SUBAREA) ; SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLQW-LENGTH = 220.00 UPSTREAM ELEVATION = 458.00 DOWNSTREAM ELEVATION = 455.00 ELEVATION DIFFERENCE = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) - 13.242 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.077 SUBAREA RUNOFFtCFS) - 1.57 TOTAL AREA (ACRES) = 0.70 TOTAL RUNOFFICFS) = 1.57 ***************************************************************** FLQW PROCESS FROM NODE 100.00 TO NODE 97.00 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 13.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 6.7 UPSTREAM NODE ELEVATION = 441.80 DOWNSTREAM NODE ELEVATION " 441.60 FLOWLENGTH (FEET) - 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIjmETER (INCH) - 18.00 NtJMBER OF PIPES = 1 PIPEFLOW THRO SUBAREA(CFS) - 1.57 TRAVEL TIME(MIN.) - 0.01 TC(MIN.) - 13.25 ************************************************************** FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VTUtlQUS CONFLUENCED STREAM VALUES««< TQTAL NUMBER OF STREAMS - 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION (MIN.) = 13.25 RAINFALL INTENSITY (INCH/HR) = 4.07 TOTAL STREAM AREA(ACRES) • 0.70 PEAK FLOW RATE (CFS) AT CONFLUENCE - 1.57 ** CONFLUENCE DATA *• STREJUl RUNOFF Tc INTENSITY AREA NUMBER ICFS) (MIN.) (INCH/HQUR) (ACRE) 1 9.24 14.39 3.364 4.06 2 0.99 13.42 4.041 0.44 3 1.57 13.25 4.074 0.70 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. •* PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUHBER (CFS) (HIN.) (INCH/HOUR) 1 11.31 13.25 4.074 2 11.33 13.42 4.041 3 11.67 14.39 3.864 COHPUTED CONFLtJENCE ESTIMATES ARE AS FOLLOWS: PEAK FLQW RATE(CFS) = 11.67 Tc(MIN.) - TOTAL AREA(ACRES) = 5.20 ***************************************************************** FLOW PROCESS FROH NODE 97.00 TO NODE 110.00 IS CODE " 3 »»>CQHPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 8.6 UPSTREAM NODE ELEVATION = 440.80 DOWNSTREAM NODE ELEVATION - 436.30 FLOWLENGTH (FEET) - 247.20 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES - 1 PIPEFLOW THRU SUBAREA (CFS) = 11.67 TRAVEL TIME(HIN.) = 0.48 TC(MIN.) - 14.87 *************************************************************************** FLQW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYS IS««< •USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH lO-MINUTES ADDED = 11. 65 (MINUTES) INITIAL SUBAREA FLOW-LENGTH " 360.00 UPSTREAM ELEVATION = 523.00 DOWHSTREAM ELEVATION = 480.00 ELEVATION DIFFERENCE = 43.00 100 YEAR RAINFIUiL INTENSITY IINCH/HOUR) - 4.429 SUBAREA RUNOFFICFS) • 2.51 TOTAL AREA(ACRES) - 1.26 TOTAL RUNOFF(CFS) = 2.51 **************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 52 »»>CCMPUTE NATtJRAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 480.00 DOWNSTREAM NODE ELEVATION = 430.00 CHANNEL LENGTH THRU StJBAREA (FEET) = 670.00 CHANNEL SLOPE = 0.0746 CHANNEL FLOW THRU StJBAREA(CFS) - 2.51 FLQW VELOCITY(FEET/SEC) = 4.93 (PER PLATE D-6.1) TRAVEL TIME(MIN.) - 2.26 TCIMIN.) = 13.91 *************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE • 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITYIINCH/HOUR) = 3.950 •USER SPECIFIED (StJBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT - .4500 SUBAREA AREA (ACRES) = 4.30 SUBAREA RUNOFF (CFS) = 7.64 TOTAL AREAIACRES) = 5.56 TQTAL RUNOFFICFS) = 10.15 TCIMIN) = 13.91 I I I STORM DRAIN LINE D I I *************************************************************************** FLOW PROCESS FRCM NODE 220.00 TQ NODE 221.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA jmALYSIS««< *USER SPECIFIEDISUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURJU, WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 12.21 IMINUTES) INITIAL SUBAREA FLOW-LENGTH = 570.00 UPSTREAM ELEVATION = 423.00 DOWNSTREAM ELEVATION - 349.00 ELEVATION DIFFERENCE = 79.00 100 YEAR RAINFALL INTENSITY (INCH/HQUR) = 4.295 SUBAREA RUNOFF(CFS) = 5.03 TOTAL AREA(ACRES) - 2.60 TOTAL RtJNOFF(CFS) = 5.03 ************************************************************************** FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 53 »>»COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<«« »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 349.00 DOWNSTREAM NODE ELEVATION = 237.00 CHANNEL LENGTH THRU SUBAREA(FEET) - 610.00 CHANNEL SLOPE - 0.1016 CHANNEL FLOW THRU SUBAREA(CFS) " 5.03 SLOPE ADJUSTMISNT CtlRVE USED; EFFECTIVE SLOPE - 0.1012 (PER PLATE D-6.2) FLQW VELOCITY(FEET/SEC) - 3.05 (PER PLATE D-6.3) TRAVEL TIME(M1N.) » 3.33 TC(MIN.) - 15.55 *************************************************************** FLOW PRCXESS FROM NODE 221.00 TQ NODE 222.00 IS CODE =• 8 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLQW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.676 •USER SPECIFIED(SUBAREA) ; RURAL DEVELOPHENT RUNOFF COEFFICIENT = .4500 SUBABEA AREA (ACRES) - 1.20 SUBAREA RUNOFF (CFS) = 1.98 TOTAL AREAIACRES) - 3.80 TOTAL RUNOFFICFS) - 7.01 TCIMIN) = 15.55 ***************************************************************** FLOW PROCESS FRCM NODE 222.00 TO HODE 225.00 IS CODE - 3 »»>COMPtJTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLOW) ««< ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLQW IN 18.0 INCH PIPE IS 3.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.2 UPSTREAM NODE ELEVATION - 236.60 DOWNSTREAM NODE ELEVATION = 235.00 FLOWLENGTH IFEET) - 55.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETERIINCH) = 13.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREAICFS) - 7.01 TRAVEL TIMEIMIN.) = 0.10 TCIHIN.) = 15.65 **************************************************************** FLOW PROCESS FROH NODE 225.00 TO NODE 225.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAH FOR CONFLUENCE««< TQTAL NUHBER QF STREAMS = 2 CONITLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATIONIMIN.) - 15.65 RAINFALL INTENS ITY (INCH/HR) = 3.66 TOTAL STREAM AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) AT CONFLtJENCE = 7.01 FLOW PROCESS FROM NODE 223.00 TO NODE 224.00 IS CODE »»>RATIQNAL METHOD INITIAL SUBAREA ANALYSIS«<« SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT - .4500 NATURAL WATERSHED NOMOGRAPH TIME QF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED - 11.37 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 300.00 UPSTREAM ELEVATION = 420.00 DOWNSTREAM ELEVATION - 380.00 ELEVATION DIFFERENCE " 40.00 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) - 4.498 SUBAREA RUNOFF(CFS) =• 5.51 TOTAL AREAIACRES) = 2.72 TOTAL RUNOFFICFS) = 5.51 ********************************************************************** FLOW PROCESS FROM NODE 224.00 TO NODE 226.00 IS CODE - 52 »»>CCMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 380.00 DOWNSTREAM NODE ELEVATION = 286.00 CHANNEL LENGTH THRU SUBAREAIFEET) = 800.00 CHANNEL SLOPE = 0.1175 CHANNEL FLOW THRU SUBAREA(CFS) = 5.51 NOTE: CHANNEL SLOPE QF .1 WAS ASSUMED IN VELOCITY ESTIMATION FLOW VELOCITY (FEET/SEC) = 6.83 (PER PLATE D-6.1) TRAVEL TIME(MIN.) - 1.95 TCIMIN.) - 13.32 *************************************************************************** FLQW PROCESS FROM NODE 224.00 TO NODE 226.00 IS CODE - 8 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLQW««< 100 YEAR BAINFALL INTENSITYIINCH/HOUR) - 4.060 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT - .4500 SUBAREA AREA (ACRES) = 9.98 SUBAREA RUNOFF (CFS) = 18.24 TOTAL AREAIACRES) =• 12.70 TOTAL RUNOFFICFS) = 23.74 TCIMIN) = 13.32 ****************************************************************** FLOW PROCESS FROM NODE 226.00 TO NODE 225.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPtJTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.9 UPSTREAM NODE ELEVATION = 285.50 DOWNSTREAM NODE ELEVATION = 235.00 • FLOWLENGTH (FEET) = 55.50 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) - 27.00 NUHBER OF PIPES = 1 PIPEFLOW THRU StJBAREA(CFS) - 23.74 TRAVEL TIME (MIN.) = 0.12 TC(MIN.) = 13.44 *********************************************************** FLOW PROCESS FRCM NODE 225.00 TO NODE 225.00 IS CODE »»>DESIGNATE INDEPENDENT STREAM FOR CONFLtJENCE<«« »»>AND CCMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 13.44 RAINFALL INTENSITY (INCH/HR) - 4.04 TQTAL STREAM AREA(ACRES) = 12.70 PEAK FLOW RATE (CFS) AT CONFLUENCE = 23.74 •• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 7.01 15.65 3.661 3.80 2 23.74 13.44 4.038 12.70 RAINFALL INTENSITY AND TIME QF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 30.10 13.44 4.038 2 28.53 15.65 3.661 CCMPUTED CONFLtJENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 30.10 TclMIN.) = TQTAL AREAIACRES) - 16.50 FLOW PROCESS FROM NODE 225.00 TO NODE 228.00 IS CODE = 3 »»>CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (HOH-PRESSURE FLOW) ««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.4 INCHES PIPEFLOW VELOCITYIFEET/SEC.) - 17.2 UPSTREAM NODE ELEVATION = 284.70 DOWNSTREAM NODE ELEVATION = 263.20 FLOWLENGTH (FEET) = 271.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER QF PIPES - 1 PIPEFLOW THRU StJBAREA(CFS) = 30.10 TRAVEL TIME(MIN.) = 0.26 TC(MIN.) = 13.70 ******************************************************************** FLQW PROCESS FROM NODE 223.00 TO NODE 228.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAH FOR CONFLUENCE««< TOTAL NUMBER QF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE; TIME OF CONCENTRATIONIMIN.) = 13.70 RAINFALL INTENSITY I INCH/HR) = 3.99 TQTAL STREAM AREAIACRES) = 16.50 PEAK FLOW RATE (CFS) AT CONFLUENCE - 30.10 ********************************************************** FLQW PROCESS FROM NODE 272.00 TO NODE 273.00 IS CODE »»>RATIQNAL METHOD INITIAL StJBAREA ANALYSIS««< SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT - .9500 INITIAL SUBAREA FLQW-LENGTH = 400.00 UPSTREAM ELEVATION - 312.30 DOWNSTREAM ELEVATION - 293.00 ELEVATION DIFFERENCJE - 19.30 URBAN SUBAREA OVERLAND TIME QF FLOW (MINUTES) = •CAUTION; SUBAREA SLOPE EXCEEDS COtJNTY NOHOGRAPH DEFINITION. EXTRAPOLATION QF NOHOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.793 SUBAREA RUNOFF (CFS) - 4.52 TOTAL AREA(ACRES) - 0.70 TOTAL RUNOFFICFS) ******************************************************************* FLOW PROCESS FRCM NODE 273.00 TO NODE 228.10 IS CODE - 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU StJBAREA««< UPSTREAM ELEVATION = 293.00 DOWNSTREAM ELEVATION = 273.00 STREET LENGTHIFEET) = 350.00 CURB-HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TQ CROSSFALL GRADEBREAK - 18.50 INTERIOR STREET CROSSFALL (DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) =0.020 SPECIFIED NUMBER QF HALFSTREETS CARRYING RUNOFF - 1 ••TRAVELTIME CCMPtTTED USING MEAN FLQW(CFS) = 5.15 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) - 0.32 HALFSTREET FLOODWIDTH(FEET) = 9.88 AVERAGE FLQW VELOCITYIFEET/SEC.) = 4.70 PRODUCT OF DEPTHSVELOCITY = 1.52 STREETFLOW TRAVELTIME IMIN) = 1.24 TC(MIN) = 7.24 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 6.017 SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPHENT RUNOFF COEFFICIENT - .9500 SUBAREA AREA (ACRES) = 0.22 SUBAREA RUNOFF (CFS) = 1.26 SUMHED AREA(ACBES) = 0.92 TQTAL RUNQFF(CFS) = 5.78 END OF StJBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.34 HALFSTREET FLOODWIDTH(FEET) - 10.46 FLOW VELOCITYIFEET/SEC.) = 4.76 DEPTH&VELOCITY = 1.60 ******************************************************************* FLQW PROCESS FROH NODE 228.10 TO NODE 223.00 IS CODE = 3 »»>COHPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING CCMPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETERIINCH) INCREASED TQ 18.000 DEPTH OF FLQW IN 18.0 INCH PIPE IS 8.0 INCHES PIPEFLOW VELQCITYIFEET/SEC.) - 7.6 UPSTREAM NODE ELEVATION - 268.30 DOWNSTREAM NODE ELEVATION = 268.20 FLOWLENGTH (FEET) - 5.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) - 18.00 NUMBER OF PIPES = 1 PIPEFLQW THRU SUBAREAICFS) = 5.73 TRAVEL TIMEIMIN.) = 0.01 TCIMIN.) = 7.25 FLOW PROCESS FROM NODE 228.00 TO NODE 228.00 IS CODE »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS - 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 RBE: TIME OF CONCENTRATIONIMIN.) = 7.25 RAINFALL INTENSITY I INCH/HR) - 6.01 TOTAL STREAM AREA (ACRES) = 0.92 PEAK FLOW RATE(CFS) AT CONFLUENCE - 5.78 *************************************************************************** FLOW PROCESS FROM NODE 271.00 TO NODE 276.00 IS CODE " 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 INITIAL SUBAREA FLQW-LENGTH = 500.00 UPSTREAM ELEVATION - 321.90 DOWNSTREAM ELEVATION - 293.00 ELEVATION DIFFERENCE = 28.90 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) » 3.364 •CAUTION; SUBAREA SLOPE EXCEEDS COtJNTY NOMOGRAPH DEFINITION. EXTRAPOLATION QF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITYIINCH/HOUR) = 6.793 SUBAREA RUNOFF (CFS) = 3.23 TOTAL AREA (ACRES) = 0.50 TOTAL RUNOFF (CFS) *************************************************************************** FLOW PROCESS FROM NODE 276.00 TO NODE 230.00 IS CODE - 6 »»>CCMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION - 293.00 DOWNSTREAM ELEVATION " 231 STREET LENGTH(FEET) - 320.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) - 20.00 DISTANCE FRCM CRQWN TO CROSSFALL GRADEBREAK - 18.50 INTERIOR STREET CROSSFALL (DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ••TRAVELTIHE COHPUTED USING HEAN FLQW (CFS) • 4.36 STREETFLOW HODEL RESULTS; STREET FLOWDEPTH(FEET) = 0.31 HALFSTREET FLOODWIDTH(FEET) = " 9.30 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.44 PRODUCT OF DEPTHSVELOCITY - 1.39 STREETFLOW TRAVELTIME (HIN) - 1.20 TC (MIN) = 7.20 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.038 SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT » .9500 SUBAREA AREA (ACRES) = 0.40 SUBAREA RUNOFF (CFS) - 2.29 SUMMED AREA(ACRES) = 0.90 TOTAL RtJNOFF(CFS) = 5.52 END OF StJBAREA STREETFLOW HYDRAtlLICS: DEPTH(FEET) - 0.34 HALFSTREET FLOODWIDTH (FEET) - 10.46 FLQW VELOCITY (FEET/SEC.) = 4.55 DEPTH&VELOCITY = 1.53 *************************************************************************** FLQW PROCESS FROM NODE 230.00 TO NODE 228.00 IS CODE - 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLQW)««< ESTIMATED PIPE DIAMETERIINCH) INCREASED TO 18.000 DEPTH OF FLOW IN 13.0 INCH PIPE IS 7.7 INCHES PIPEFLQW VELOCITY(FEET/SEC.) = 7.6 UPSTREAM NODE ELEVATION " 268.35 DOWNSTREAM NODE ELEVATION = 268.20 FLOWLENGTH (FEET) = 31.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) = 13.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 5.52 TRAVEL TIME (MIN.) = 0.07 TC(MIN.) ***************************************************************** FLOW PROCESS FROH NODE 228.00 TO NODE 228.00 IS CODE - 1 »»>DES IGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM V31LUES««< TOTAL NUMBER OF STREAMS = 3 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE; TIME OF CONCENTRATION (MIN.) = 7.27 RAINFALL INTENSITY(INCH/HR) = 6.00 TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.52 ** CONFLtJENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 30.10 13.70 3.987 16.50 2 5.78 7.25 6.012 0.92 3 5.52 7.27 6.002 0.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 31.25 7.25 6.012 2 31.28 7.27 6.002 3 37.60 13.70 3.987 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATEICFS) - 37.60 TclMIN.) = 13.70 TOTAL AREA (ACRES) = 18.32 ***************************************************************** FLOW PROCESS FROM NODE 228.00 TO NODE 275.00 IS CODE = 3 »»>CCMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« »>»USING COMPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLOW) ««< DEPTH OF FLQW IN 21.0 INCH PIPE IS 13.9 INCHES PIPEFLOW VELOCITYIFEET/SEC.) = 22.3 UPSTREAM NODE ELEVATION = 267.90 DOWNSTREAM NODE ELEVATION = 265.30 FLOWLENGTH (FEET) - 25.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETERIINCH) - 21.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREAICFS) - 37.60 TRAVEL TIHE(MIN.) - 0.02 TC(MIN.) = 13.72 ********************************************************** FLOW PROCESS FRCM NODE 275.00 TQ NODE 275.00 IS CODE »»>DESIGNATE INDEPENDENT STREAH FOR CQNFLUENCE««< TOTAL NUMBER QF STREAMS = 2 CONFLUENCE VALtlES USED FQR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 13.72 RAINFALL INTENSITY (INCH/HR) = 3.98 TOTAL STREAM AREA (ACRES) - 18.32 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 37.60 ****************************************************************** FLOW PROCESS FROM NODE 274.00 TO NODE 229.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIEDISUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NCMOGRAPH TIME OF CONCENTRATION lAPPENDIX X-A) WITH 10-MINUTES ADDED - 12.26 (MINUTES) INITIAL SUBAREA FLQW-LENGTH = 600.00 UPSTREAM ELEVATION = 360.00 DOWNSTREAM ELEVATION = 273.00 ELEVATION DIFFERENCE = 37.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4.284 SUBAREA RUNOFF(CFS) = 4.43 TQTAL AREAIACRES) = 2.30 TQTAL RUNQFF(CFS) = 4.43 ***************************************************************** FLOW PROCESS FROM NODE 229.00 TQ NODE 275.00 IS CODE " 3 »»>COMPUTE PIPEFLOW TRAVELTIHE THRU SUBAREA««< >»»USING COHPUTER-ESTIMATED PIPESIZE INON-PRESSURE FLQW)««< ESTIMATED PIPE DIAMETERIINCH) INCREASED TO 13.000 DEPTH QF FLOW IN 13.0 INCH PIPE IS 3.4 INCHES PIPEFLQW VELCXITYIFEET/SEC.) - 13.9 UPSTREAM NODE ELEVATION = 272.40 DOWNSTREAM NODE ELEVATION = 266.40 FLOWLENGTH (FEET) = 19.10 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) = 13.00 NUMBER QF PIPES = 1 PIPEFLQW THRU StJBAREA(CFS) = 4.43 TRAVEL TIME(MIN.) = 0.02 TC(MIN.) = 12.28 ****************************************************************** FLOW PROCESS FROM NODE 275.00 TQ NODE 275.00 IS CODE - 1 »»>DES IGNATE INDEPENDENT STREAM FOR CONFHIENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER QF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAH 2 ARE; TIME OF CONCENTRATION (MIN.) - 12.28 RAINFALL INTENSITY (INCH/HR) = 4.28 TOTAL STREAM AREA(ACRES) = 2.30 PEAK FLOW RATE (CFS) AT CONFLUENCE « 4.43 •• CONFLtJENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 37.60 13.72 3.984 18.32 2 4.43 12.23 4.280 2.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE *• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtIR) 1 39.43 12.28 4.280 2 41.72 13.72 3.984 COMPUTED CONFLtJENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 41.72 Tc(MIN.) = 13.72 TOTAL AREAIACRES) = 20.62 ********************************************************** FLQW PROCESS FROM NODE 275.00 TO NODE 231.00 IS CODE »»>CQMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NQN-PRESSURE FLOW)««< DEPTH QF FLOW IN 33.0 INCH PIPE IS 22.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 9.7 UPSTREAM NODE ELEVATION » 264.90 DOWNSTREAH NODE ELEVATION - 264.11 FLOWLENGTH(FEET) - 73.70 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER (INCH) » 33.00 NUMBER QF PIPES = 1 PIPEFLQW THRU SUBAREA(CFS) » 41.72 TRAVEL TIME(MIN.) - 0.13 TC(HIN.) » 13.85 END QF STtJDY SUMMARY: PEAK FLOW RATEtCFS) - 41.72 Tc(MIN.) = 13.85 TOTAL AREA(ACRES) = 20.62 END QF RATIONAL HETHOD AHALYSIS SECTION IV STORM DRAIN SYSTEM DESIGN OUTPUT Scenario: LINE A 231 165 242 P-19 © 247 235 • P-24 P-11 P-13. P-27 233 A.. p-28 234 233.5 P-23 232 Title: Villages of La Costa - 269 Section li:\stormcad\2352\0001\269\revised-linea.stm 12/21/01 08:54:25 AM 236 253 252 ^ ^ Project Engineer: Hunsaker & Associates San Diego, Inc. Hunsaker & Associates San Dlego, Inc StormCAD v3.0 [319] ) Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Scenario: LINE A Pipe Report Label Up. Node Dn. Node Total System Flow (cfs) Section Shape Section Size Mannings n Length (ft) Up. Invert (ft) Dn. Invert (ft) Slope (ft/ft) HGL In (ft) HGL Out (ft) Velocity In (ft/s) Velocity Out (ft/s) Cap (cfs) P-13 232 233 88.39 Circula 48 Inch 0.013 487.84 436.50 434.06 0.005002 441.42 439.57 7.03 7.03 101.58 P-21 165 238 103.80 Circu la 36 inch 0.013 148.43 439.50 430.40 0.061308 442.66 439.06 14.68 14.68 165.14 P-27 233 233.5 88.39 Circula 48 inch 0.013 221.82 433.73 428.74 0.022496 439.19 438.35 7.03 7.03 ai5.43 P-20 238 239 104.45 Circula 36 inch 0.013 5.25 430.07 424.82 1.000000 438.93 438.80 14.78 14.78 366.95 P-26 231 239 1.53 Circula 36 inch 0.013 45.25 430.07 424.82 0.116022 438.80 438.80 0.22 0.22 227.18 P-23 236 234 1.97 Circula 18 inch 0.013 4.75 425.17 424.97 0.042105 436.87 436.87 1.11 1.11 21.55 P-24 235 234 4.24 Circula 18 inch 0.013 54.75 426.07 424.97 0.020091 436.96 436.87 2.40 2.40 14.89 P-28 233.5 234 88.39 Circula 48 inch 0.013 290.02 428.41 422.47 0.020481 437.97 436.87 7.03 7.03 205.56 P-18 241 240.5 40.60 Circula 24 inch 0.013 67.44 443.80 425.15 0.276542 445.75 434.79 13.00 12.92 118.96 P-19 239 237 105.25 Circula 36 inch 0.013 94.84 424.49 421.66 0.029840 438.17 435.81 14.89 14.89 115.21 P-11 234 237 93.18 Circula 48 inch 0.013 48.18 422.14 421.66 0.009963 436.01 435.81 7.42 7.42 143.37 P-25 240.5 240 40.60 Circula 24 inch 0.013 60.15 424.82 421.72 0.051538 433.49 431.55 12.92 12.92 51.35 P-10 237 240 189.44 Circula 48 inch 0.013 102.49 421.33 419.72 0.015709 433.34 431.55 15.08 15.08 180.03 P-9 240 242 228.74 Circula 48 inch 0.013 217.48 419.39 415.02 0.020094 427.95 422.44 18.20 18.20 203.61 P-8 242 246 228.74 Circula 48 inch 0.013 83.98 414.88 403.33 0.137533 418.79 413.35 18.31 18.20 532.68 P-7 246 247 228.74 Circula 48 inch 0.013 250.27 403.00 394.09 0.035602 410.78 404.43 18.20 18.20 271.02 P-6 247 248 228.74 Circula 48 inch 0.013 201.33 393.76 385.25 0.042269 400.31 395.21 18.20 18.20 295.31 P-5 248 249 228.74 Circula 48 inch 0.013 197.53 384.92 376.85 0.040855 392.63 387.62 18.20 18.20 290.32 P-14 907 250 48.29 Circula 36 inch 0.024 162.23 368.22 366.60 0.009986 380.78 377.88 6.83 6.83 36.10 P-4 249 250 228.74 Circula 48 inch 0.013 282.67 376.52 366.60 0.035094 385.05 377.88 18.20 18.20 269.08 P-3 250 251 266.97 Circula 48 inch 0.013 120.27 366.27 365.07 0.009978 376.37 372.21 21.24 21.24 143.47 P-2 251 252 266.97 Circula 48 incl-0.013 122.11 364.74 330.58 0.279748 368.69 339.82 21.30 21.24 759.70 P-1 252 253 266.97 Circula 48 inch 0.013 |l73.00 330.25 328.00 0.013006 337.96 331.95 21.24 21.30 163.81 Title: Villages of La Costa - 269 Section ti:\stormcad\2352\0001\269\revised-linea.stm 12/21/01 08:58:27 AM © Haestad Methods, Inc. Project Engineer: Hunsaker & Associates San Diego, Inc. Hunsaker & Associates San Dlego, Inc StormCAD v3.0 [319] 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Pagelofi Label Total Sump Rim Hydraulic Hydraulic System Elevation Elevation Grade In 3rade Out Flow (ft) (ft) (ft) (ft) (cfs) 232 88.39 436.50 452.96 441.81 441.42 165 103.80 439.50 460.00 443.33 442.66 233 88.39 433.73 448.22 439.57 439.19 238 104.45 430.07 439.06 439.06 438.93 231 1.53 430.07 439.06 438.80 438.80 236 1.97 425.17 438.60 436.87 436.87 235 4.24 426.07 438.60 436.97 436.96 233.5 88.39 428.41 443.66 438.35 437.97 241 40.60 443.80 447.80 446.28 445.75 239 105.25 424.49 438.80 438.80 438.17 234 93.18 422.14 438.98 436.87 436.01 240.5 40.60 424.82 436.73 434.79 433.49 237 189.44 421.33 438.34 435.81 433.34 240 228.74 419.39 436.32 431.55 427.95 242 228.74 414.88 431.64 422.44 418.79 246 228.74 403.00 417.40 413.35 410.78 247 228.74 393.76 405.19 404.43 400.31 248 228.74 384.92 396.46 395.21 392.63 907 48.29 368.22 381.40 380.92 380.78 249 228.74 376.52 388.05 387.62 385.05 250 266.97 366.27 377.88 377.88 376.37 251 266.97 364.74 380.50 372.21 368.69 252 266.97 330.25 339.82 339.82 337.96 253 266.97 328.00 1 332.00 330.17 330.17 Scenario: LINE A Node Report Title: Villages of La Costa - 269 Section h:\stormcad\2352\0001\269\revised-linea.stm 12/21/01 08:58:39 AM © Haestad Methods, Inc. Hunsaker & Associates San Diego, Inc 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0[319] (203) 755-1666 Page 1 of 1 Profile Scenario: LINE A Up Invert 403,00 ri Dn Invert 3 94.09 II Ltnfllh 2 50 2 7 I Sill 4 B incti S:0.03S 602 I'l Latiil: P-9 U p lnvtit:41 9 IS (I On lnvfl(t.41S DI II Le ngth : I 1 7 4B I Size 41 Inch L S.0.0200S4 l/l Labet P-ll Up tnv* 11:421 1 Dn lnv«n:43l ' Lenath: 411 a II \ Size : 41 Inch \S:0 00»eS3 t/l Libel: PID Up Invefi: 42 1.33 It Dn Invert: 4 lfi 7 2 ft Lenfllh: 102.48 I Slle:48 Inch S: p.01 57 08 l/l Inch 0204S1 R/l Label: 23 3 Rim :44S.22 II Sump: 4 33.7 3 I P-2 a invert:4IS.41 lnvert:4I2.47 Libil: P-I 7 U p Inve (I: 433.7 3 il Dn Inved: 421 74 II LinBlh:221.12 I Libet 232 Rm : 45I.9S It Sump:43150 I Lebel: P-t3 U p Invert: 4 3S.5D It On Inve 11:4 34.Dl It Lenglh: 417 44 I Slze:4a Inch S:O.ODSOO: l/l 15-00 Ste lon (ft) Title: Villages of La Costa - 269 Section h:\stormcad\2352\0001\269\revised-linea.stm 12/21/01 08:57.50 AM © Haestad Methods, Inc. Hunsaker & Associates San Dlego, Inc 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Scenario: Culvert - Line A 255 P-4 268 Title: South Oaks Road Culvert-La Costa h;\stormcad\2352\0001\269\culverta.stm 12/21/01 09:01:42 AM © Haestad Methods, Inc. Hunsaker & Associates San Dlego, Inc 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Ihc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Scenario: Culvert - Line A Pipe Report Label Up. Node Dn. Node Total System Flow (cfs) Section Shape Section Size Mannings n Length (ft) Up. Invert (fl) Dn. Invert (ft) Slope (ft/ft) HGL In (ft) HGL Out (ft) Velocity In (ft/s) Velocity Out (ft/s) Cap (cfs) P-4 268 245 3.17 Circula 24 inch 0.013 312.00 419.00 410.15 0.028365 419.62 415.19 3.81 1.01 38.10 P-5 243 245 19.47 Circula 18 inch 0.013 55.25 411.20 410.65 0.009955 417.09 415.19 11.02 11.02 10.48 P-6 244 245 9.83 Circula 18 inch 0.013 5.25 411.29 410.65 0.121905 415.24 415.19 5.56 5.56 36.67 P-1 255 255.1 142.20 Circula 48 inch 0.013 101.57 408.30 407.18 0.011027 413.57 412.58 11.32 11.32 150.83 P-3 245 255.1 30.97 Circula 24 inch 0.013 75.25 409.82 408.85 0.012890 413.99 412.58 9.86 9.86 25.68 P-2 255.1 256 165.62 Circula 48 inch 0.013 157.17 406.85 405.00 0.011771 410.55 408.58 13.64 13.95 155.83 Title: South Oaks Road Culvert-La Costa h:\stormcad\2352\0001\269\culverta.stm 12/21/01 09:01:52 AM © Haestad Methods, Inc. Hunsaker & Associates San Diego, Inc 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 Of 1 Scenario: Culvert - Line A Node Report Label Total Sump Rim Hydraulic Hydraulic System Elevation Elevation Grade In Grade Out Flow (ft) (ft) (ft) (ft) (cfs) 268 3.17 419.00 427.35 419.73 419.62 243 19.47 411.20 420.53 418.04 417.09 244 9.83 411.29 420.53 415.48 415.24 255 142.20 408.30 414.00 414.00 413.57 245 30.97 409.82 420.27 415.19 413.99 255.1 165.62 406.85 420.87 412.58 410.55 256 165.62 405.00 411.00 408.58 408.58 Title: South Oaks Road Culvert-La Costa h:\stormcad\2352\0001\269\culverta.stm 12/21/01 09:01:58 AM © Haestad Methods, Inc. Hunsaker & Associates San Diego, Inc 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Profile Scenario: Culvert - Line A Label Rim \ - -•- ,A 2 56 X 111 .0 0 jt/ )r4 0"5'?00 ft .8 5 ft ,00 ft • ft - - - " LabeTrP-2 Up Invert: 406 Dn Invert: 405 Length: 1 57.1 Size: 48 inch S: 0.011 771 ft .8 5 ft ,00 ft • ft Label:255 RimTr420. ,1 snt— p: 406.85 ft L 8 n 9 th Size: 4f 8: 0.01 1 01.57 ft inch 02 7 ft/ft Label: 255 Rim : 414.0 0 ft Sump:408.3 0 ft 422.00 420.00 418.00 416.00 414.00 Eleva tio n (ft) 412.00 410.00 408.00 406.00 404.00 0 + 00 0+50 1 + 00 1 + 50 Station (ft) 2 + 00 2 + 50 3 + 00 Title: South Oaks Road Culvert-La Costa h:\stormcad\2352\0001\269\culverta.stm 12/21/01 09:02:57 AM © Haestad Methods, Inc. Hunsaker & Associates San Dlego, Inc 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Scenario: LINE B 99 • p-29 96 P-32 €3 P-28 100 P-31 P-30 97 98 \0-110 P-34 Title: Villages of La Costa - 269 Section h:\stonmcaid\2352\0001\269\revised-lineb.stm 12/21/01 09:22:28 AM © Haestad Methods, Inc. Hunsaker & Associates San Diego, Inc 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Scenario: LiNE B Pipe Report Label Up. Node Dn. Node Total System Flow (cfs) Section Shape Section Size Mannings n Length (ft) Up. Invert (ft) Dn. Invert (ft) Slope (ft/tt) HGL In (ft) HGL Out (ft) Velocity In (ft/s) Velocity Out (ft/s) Cap (cfs) P-1 8 94 7.99 Circula 24 inch 0.013 85.83 459.00 447.36 0.135617 460.01 448.38 5.05 4.97 83.31 P-34 94 96 9.24 Circula 24 inch 0.013 264.40 447.03 444.40 0.009947 448.12 445.29 5.30 6.82 22.56 P-32 96 97 9.24 Circula 24 inch 0.013 292.74 444.07 441.14 0.010009 445.16 442.56 5.30 3.89 22.63 P-29 99 97 0.99 Circula 24 inch 0.013 55.25 442.75 441.64 0.020090 443.09 442.56 2.76 0.71 32.06 P-28 100 97 1.57 Circula 24 inch 0.013 5.37 441.79 441.64 0.027933 442.54 442.56 1.45 1.12 37.81 P-31 97 98 11.67 Circula 24 inch 0.013 171.92 440.81 439.09 0.010005 442.04 440.11 5.78 7.26 22.63 P-30 98 O-l 10 11.67 Circula 24 inch 0.013 75.24 437.09 436.34 0.009968 438.32 437.36 5.78 7.22 22.59 Title: Villages of La Costa - 269 Section h:\storm(^d\2352\0001\269\revised-lineb.stm 12/21/01 09:22:37 AM © Haestad Methods, Inc. Hunsaker & Associates San Diego, Inc 37 Brookside Road Waterbury, CT 06708 USA Projec:t Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Scenario: LiNE B Node Report Label Total Sump Rim Hydraulic Hydraulic System Elevation Elevation Grade In Grade Out Flow (ft) (ft) (ft) (ft) (cfs) 8 7.99 459.00 464.00 460.09 460.01 94 9.24 447.03 454.83 448.38 448.12 96 9.24 444.07 457.51 445.37 445.16 99 0.99 442.75 455.71 443.12 443.09 100 1.57 441.79 455.71 442.55 442.54 97 11.67 440.81 455.45 442.56 442.04 98 11.67 437.09 451.23 438.84 438.32 0-110 11.67 436.34 448.60 437.36 437.36 Title: Villages of La Costa - 269 Section h:\stormcad\2352\0001\269\revised-llneb.stm 12/21/01 09:22:47 AM © Haestad Methods, inc. Hunsaker & Associates San Diego, inc 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0[319] (203) 755-1666 Page 1 of 1 Profile Scenario: LINE B Label: 0 Rim: 44t Sump: 4 Label: 97 Rim: 455.45 ft Sump: 44 0.81 fl Lab?l; P-32 -Up lpvei1r4 44-07-tt- Dn Invert: 441 .14 ft Lenglh: 292.74 It 24 inch 01 0009 (Wt Label: P-34 Up Invert: 4 Dn Invert: 4 Length: 26' -Stze-r24-' --' lire IT S: 0.00994 47.03 ft 44.40 ft 40 It m Label: 8 Rim: 4 64.00 ft Stfmpr4fr9-*e-ft- Label: H-1 Up invert: 459.00 Dn Invett: 447.36 Length: 85.83 ft Size: 24 inch S: 0.13561 7 ft/tt 465.00 460.00 455.00 Elevation (ft) 450.00 445.00 440.00 435.00 too Label: P-30 Up Invert: 437.09 ft Dn Invert: 436.34 ft Length: 75.24 ft Size: 24 inch S: 0.00 9 96 8 ft/ft 2+00 Label: P-31 Up Invert: 440.81 ft Dn Invert: 439.09 ft Length: 171.92 ll Size: 24 Inch S: 0.010005 ft/rt 3+00 4 + 00 5+00 6+00 7+00 8+00 9 + 00 Station (ft) Title: Villages of La Costa - 269 Section h:\stormcad\2352\0001\269\revised-iineb.stm 12/21/01 09:24:20 AM © Haestad Methods, Inc. Hunsaker & Associates San Diego, inc 37 Brookside Road Waterbury, CT 06708 USA Projec^t Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Scenario: LINE C 7 I I P-38 85 P-5 861 O-l P-2 49' Title: Villages of La Costa - 269 Section h:\stormcad\2352\0001\269\revlsed-llnec.stm 12/21/01 09:16:18 AM P-4 P-1 189 p-32 Hunsaker & Associates San Diego, Inc P-24 P-33 P-34 Project Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0[319] ) Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Scenario: LINE C Pipe Report Label Up. Node Dn. Node Total System Flow (cfs) Section Shape Section Size Mannings n Length (ft) Up. Invert (ft) Dn. Invert (ft) Slope (ft/ft) HGL In (ft) HGL Out (ft) Velocity In (ft/s) Velocity Out (ft/s) Cap (cfs) P-36 1 63 11.76 Circula 18 inch 0.013 43.92 404.35 403.91 0.010018 405.82 405.29 6.69 6.92 10.51 P-26 5 75 17.86 Circula 18 inch 0.024 80.16 438.80 436.99 0.022580 446.82 438.92 10.11 10.11 8.55 P-37 63 64 11.76 Circula 18 inch 0.013 83.84 403.58 376.67 0.320969 404.88 378.12 7.21 6.72 59.51 P-15 75 76 17.86 Circula 18 inch 0.013 220.01 436.66 369.59 0.304850 438.11 371.54 10.21 10.11 57.99 P-27 64 65 11.76 Circula 18 inch 0.013 27.26 376.34 376.07 0.009905 377.76 377.37 6.78 7.21 10.45 P-14 76 77 17.86 Circula 18 inch 0.013 107.20 369.28 364.67 0.043004 370.73 366.60 10.21 10.11 21.78 P-25 65 66 11.76 Circula 24 inch 0.013 193.99 375.34 366.88 0.043610 376.57 367.56 5.80 12.48 47.24 P-40 77 77.5 17.86 Circula 18 inch 0.013 163.38 364.34 356.28 0.049333 365.79 358.21 10.21 10.11 23.33 P-24 66 67 11.76 Circula 24 inch 0.013 145.30 366.55 365.09 0.010048 367.78 367.45 5.80 3.74 22.68 P-28 2 67 17.44 Circula 18 inch 0.013 167.92 366.76 365.09 0.009945 372.08 367.45 9.87 9.87 10.47 P-41 77.5 78 17.86 Circula 18 inch 0.013 312.87 355.95 330.70 0,080704 357.40 331.54 10.21 17.64 29.84 P-39 6 74 33.15 Circula 24 inch 0.024 92.60 330.36 322.56 0.084233 333.47 326.70 10.55 10.55 35.56 P-23 67 68 28.79 Circula 24 inch 0.013 81.91 364.76 329.23 0.433769 366.60 333.89 9.51 9.16 148.99 P-8 73 79 0.37 Circula 18 inch 0.013 28.22 322.56 321.50 0.037562 326.23 326.23 0.21 0.21 20.36 P-12 78 79 17.86 Circula 24 inch 0.013 161.87 329.72 321.50 0.050781 331.24 326.23 6.96 5.69 50.98 P-31 74 79 33.51 Circula 24 inch 0.013 5.25 322.10 321.50 0.114286 326.34 326.23 10.67 10.67 76.47 P-20 68 59 28.79 Circula 24 inch 0.013 23.25 328.90 328.58 0.013763 333.24 332.86 9.16 9.16 26.54 P-34 4 59 76.86 Circula 30 inch 0.013 88.60 329.47 328.58 0.010045 335.97 332.86 15.66 15.66 41.11 P-38 7 84 44.04 Circula 24 inch 0.013 104.14 327.18 320.19 0.067121 329.29 325.34 14.02 14.02 58.61 P-7 79 84 49.22 Circula 36 inch 0.013 65.76 321.00 318.99 0.030566 325.70 325.34 6.96 6.96 116.60 P-33 59 59.1 103.64 Circula 36 inch 0.013 136.12 328.25 322.11 0.045107 331.16 326.54 14.79 14.66 141.65 P-5 86 85 0.48 Circula 18 inch 0.013 5.30 316.03 315.93 0.018868 319.97 319.97 0.27 0.27 14.43 P-6 84 85 88.34 Circula 36 inch 0.013 222.95 318.66 315.93 0.012245 323.89 319.97 12.50 12.50 73.80 P-3 88 87 0.56 Circula 18 inch 0.013 32.45 313.93 312.54 0.042835 317.14 317.14 0.32 0.32 21.74 P-35 59.1 87 103.64 Circula 36 inch 0.013 242.55 321.93 311.35 0.043620 324.84 317.14 14.79 14.66 139.29 P-4 85 87 88.81 Circula 36 inch 0.013 36.57 315.60 311.35 0.116215 318.44 317.14 12.83 12.56 227.37 P-1 87 89 180.24 Circula 48 inch 0.013 209.96 311.02 304.00 0.033435 314.80 309.80 14.67 14.34 262.64 P-32 49 89 0.81 Circula 18 inch 0.013 18.53 306.33 304.00 0.125742 309.80 309.80 0.46 0.46 37.25 P-2 89 O-l 180.84 Circula 48 inch 0.013 76.00 303.67 285.00 0.245658 307.45 299.60 14.71 14.39 M1.91 Title: Villages of La Costa - 269 Section h:\stormcad\2352\0001\269\revised-linec.stm 12/21/01 09:16:29 AM © Haestad Methods, Inc. Hunsaker & Associates San Diego, inc 37 Brookside Road Wateriaury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 =• -1 S3 » 15 £ it _i O '' 23 I ^ KJ « ^ ° rr Cfl CJ M p M S 0) to I < N3 n 01 < (O 11 3 O (D 3 O Ul r^C30.^0005C/1030a0DCJl"Nl-*J.^0>">I"^">10)O)-.IIO0>-.iO>-40>-.IO>Cn-»- VcDCD^cncoooj^cncDco oo*.cncj-vi o -.j ui a> <ji u> li cn Label 11.76 17.86 11.76 17.86 11.76 17.86 11.76 17.86 11.76 17.44 17.86 33.15 28.79 0.37 17.86 33.51 28.79 76.86 44.04 49.22 103.64 0.48 88.34 0.56 103.64 88.81 180.24 0.81 180.84 180.84 Total System Flow (cfs) 404.35 438.80 403.58 436.66 376.34 369.28 375.34 364.34 366.55 366.76 355.95 330.36 364.76 322.56 329.72 322.10 328.90 329.47 327.18 321.00 328.25 316.03 318.66 313.93 321.g3 315.60 311.02 306.33 303.67 285.00 Sump Elevation (ft) 411.70 447.30 416.70 452.70 384.61 377.30 384.35 374.99 373.05 375.70 361.70 339.00 374.40 330.20 340.04 329.g3 337.25 342.00 337.00 329.67 337.53 321.51 328.50 321.54 331.22 321.35 321.50 311.60 312.26 290.00 Rim Elevation (ft) 405.95 447.14 405.29 438.92 378.12 371.54 376.83 366.60 368.04 372.38 358.21 333.82 367.45 326.23 331.77 326.70 333.89 336.73 329.90 326.23 332.86 319.97 325.34 317.14 326.54 319.97 317.14 309.80 309.80 299.60 Hydraulic Grade In (ft) 405.82 446.82 404.88 438.11 377.76 370.73 376.57 365.79 367.78 372.08 357.40 333.47 366.60 326.23 331.24 326.34 333.24 335.97 329.29 325.70 331.16 319.97 323.89 317.14 324.84 318.44 314.80 309.80 307.45 299.60 Hydraulic Grade Out (ft) o a in s o 03 3 2 " cx go ?,> 73 III 0 f) 01 o o. 2. 5 w U CA IB g I O n-° 0) -.1 o CD c CO > Z O a (D (D •o O a. V) o (D 3 z m o O) m (O I c 3 01 > IB in 2 ? n Crt > " - < 9. (QUO ^^•^ <5 o Profile Scenario: LINE C Ubef:0-1 Rim: 290.00 ft Sump: 2S5.00 Labsl: 69 Rim: 31 2.26 ft Suntp: 3 01.67 (1 Label P-2 Up Invert: 303.67 t •n Invert; 28 5.00 t Lenglh: 76.00 n Size: 48 Inch S:0.245SSa li/n Labi Up Dn ll Len] rt: 304.00 I 2099Sn Inlh 43S nm Labet 59.1 Rim: 331.22 fl Sump: 321.93 lt_ Labi 1: .Rim Su n P-3 5 vert: 32 1.03 I vert: 31 1.35 I th: 242 55 11 36 Inch 143620 fl/lt Dn Invittl 32 Lengtii 136.1 Rim: 374.40 It Sump: 3 64.76 11 Sim Jil-SajL Label: P-20 Up Invert: 328.90 I On rfive'rfr3?8:58"r" Length: 23.2 5 It Slie: 24 Inch S:0.013763 It/It Label: P-24 JJp Inv«It: 386.55 I Dn ill veil: 36 5.09 t Lenglh: 14530 II Size: 24 Inch 8:0.010046 It/ft et P-25 rt: 37 5.34 t Invert: 366.88 t glh: 19319 n Label: 63 i:-4.t 6.70 it Sump:403.18 n Dn Invert: 403.91 I Lenglh: 43.92 ft Size: 18 lnd< S:0.010018n/ft Lebel: P-3 7 Up Invert: 403.56 I Dn Invert: 376.67 I Length: 83.8 4 ft Slzer464neh- S:0.320969 ft/ft -S4^nd 043610 11/11 Labet P.27 Up Invert: 376 3 Dn Invert: 376.0 Lenglh: 27.26 II Size: 18 tndt S:0.009 905 fl/ft Label: 1 Rim: 411.70 ft mp: 4 04.35 ft 1 280.00 14^00 Title: Villages of La Costa - 269 Section h:\stormcad\2352\0001\269\revised-linec.stm 12/21/01 09:20:31 AM © Haestad Methods, Inc. Hunsaker & Associates San Diego, inc 37 Brookside Road Waterbury, CT 06708 USA Projec^t Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Scenario: LINE D 226 • P-1 229 P-6 228.1 • 228 230 • P-9 B P-2 222 225 P-3 0-231 Title: Villages of La Costa - 269 Section h:\stormcad\2352\0001\269\revlsed-lined .stm 12/21/01 04:23:50 PM © Haestad Methods, inc. Hunsaker & Associates San Diego, inc 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StomiCAD v3.0[319] (203) 755-1666 Page 1 of 1 Scenario: LINE D Pipe Report Label Up. Node Dn. Node Total System Flow (cfs) Section Shape Section Size Mannings n Length (ft) Up. Invert (ft) Dn. Invert (ft) Slope (ft/ft) HGL In (ft) HGL Out (ft) Velocity In (ft/s) Velocity Out (ft/s) Cap (cfs) P-7 222 225 7.01 Circula 18 inch 0.013 54.46 286.63 284.98 0.030297 287.g2 287.73 4.34 3.97 18.28 P-1 226 225 23.74 Circula 24 inch 0.013 55.56 285.53 284.98 0.00989g 288.34 287.73 7.56 7.56 22.51 P-3 230 228 5.52 Circula 24 inch 0.013 31.25 268.85 268.22 0.020160 271.66 271.64 1.76 1.76 32.12 P-9 228.1 228 5.78 Circula 24 inch 0.013 5.00 268.32 268.22 0.020000 271.65 271.64 1.84 1.84 31.99 P-2 225 228 30.10 Circula 24 inch 0.013 270.95 284.65 268.22 0.060638 286.51 271.64 g.87 9.58 55.70 P-5 228 275 37.60 Circula 24 inch 0.013 24.26 267.89 265.26 0.10840g 26g.83 267.46 12.08 11.97 74.48 P-6 229 275 4.43 Circula 42 inch 0.013 19.14 272.35 266.64 0.298328 272.g8 267.46 3.75 2.58 549.49 P-8 275 0-231 41.72 Circula 48 inch 0.013 73.72 264.93 264.11 0.011123 266.86 265.62 6.g5 9.63 151.49 Title: Villages of La Costa - 269 Section h:\stormcad\2352\0001\269\revised-llned.stm 12/21/01 04:23:58 PM © Haestad Methods, Inc. Hunsaker & Associates San Diego, inc 37 Brookside Road Watertjury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Scenario: LINE D Node Report Label Total Sump Rim Hydraulic Hydraulic System Elevation Elevation Grade In Grade Out Flow (ft) (ft) (ft) (ft) (cfs) 222 7.01 286.63 294.71 288.06 287.92 226 23.74 285.53 294.80 288.78 288.34 230 5.52 267.25 278.50 271.68 271.66 228.1 5.78 268.30 278.50 271.67 271.65 225 30.10 284.65 293.83 287.73 286.51 228 37.60 267.89 278.49 271.64 269.83 229 4.43 272.35 275.79 273.09 272.98 275 41.72 264.93 275.79 267.46 266.86 0-231 41.72 264.11 268.87 265.62 265.62 Title: Villages of La Costa - 269 Section h:\stormcad\2352\0001\269\revised-lined.stm 12/21/01 04:24:04 PM © Haestad Methods, Inc. Hunsaker & Associates San Dlego, Inc 37 Brookside Road Waterbury, CT 06708 USA Projec^t Engineer: Hunsaker & Associates San Diego, Inc. StomnCAD V3.0 [319] (203) 755-1666 Page 1 of 1 Profile Scenario: LINE D Label: 225 Label: 226 Rim: 294.80 ft Sunfip: 285.53 ft 295.00 Label: O-Rim: 268 Sump: 290.00 285.00 280.00 Elevation (ft) 275.00 270.00 265.00 260.00 0+00 0-+50 1+00 1+50 2+00 2+50 Station (ft) 3+00 3+50 4+00 4+50 Title: Villages of La Costa - 269 Section h :\stomicad\2352\0001\269\revised-lined .stm 12/21/01 04:24:46 PM © Haestad Methods, Inc. Hunsaker & Associates San Diego, Inc 37 Brookside Road WatertJury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, Inc. StonnCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Scenario: Base 0-48 P -1 9 ^ ^ • ^ ^ _ . Proiecxt Engineer: Hunsaker & Associates San Diego, Inc. Title: Villages of La Costa „ . . o r,- i qtnrmPAn u3 n r3i 91 ti-\stortncad\2352\0001\269\culvert9 48.stm Hunsaker & Associates San Diego, lnc StonnCAD v3.0 [319] llTsoroi 09 36:55 AM " © Haestad Methods, Inc. 37 Brookside Road Watertjury, CT 06708 USA (203)755-1666 Pagelofi Scenario: Base Pipe Report Label Up. Node Dn. Node Total System Flow (cfs) Section Shape Section Size Mannings n Length (ft) Up. Invert (ft) Dn. Invert (ft) Slope (ft/ft) HGL In (ft) HGL Out (ft) Velocity In (ft/s) Velocity Out (ft/s) Cap (cfs) P-1 9 0-48 28.47 Circula 24 inch 0.024 157.38 2g4.20 285.14 0.057568 296.04 286.73 9.42 10.66 29.40 Title: Villages of La Costa h:\stormcad\2352\0001\269\culvert9_48.stm 11/30/01 09:37:03 AM © Haestad Methods, Inc. Hunsaker & Associates San Diego, inc 37 Brookside Road WatertJury, CT 06708 USA Project Engineer: Hunsaker & Associates San Diego, inc. StonnCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Scenario: Base Node Report Label Total System Flow (cfs) Sump Elevation (ft) Rim Elevation (ft) Hydraulic Grade In (ft) Hydraulic Grade Out (ft) 9 0-48 28.47 28.47 294.20 285.14 299.80 287.14 296.73 286.73 296.04 286.73 Title: Villages of La Costa h:\stomicad\2352\0001\269\culvert9_48.stm 11/30/01 09:37:10 AM © Haestad Methods, inc. Hunsaker & Associates San Diego, inc 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Hunsaker & Associates San Dfego, Inc. StormCAD v3.0 [319] (203) 755-1666 Page 1 of 1 Labe Rim : Sump Profile Scenario: Base Label: 9 Rim : 2 99.8 0 ft Sum^l294^t 3 0 0.00 298.00 296.00 294.00 292.00 Elevation (ft) 290.00 288.00 2 86.0 0 284.00 0+00 0+20 0+40 0+60 0+80 1+00 1+20 1+40 1+60 Title: Villages of La Costa h:\stonncad\2352\0001\269\culvert9_48.stm 11/30/01 09:37:28 AM Station (ft) Project Engineer: Hunsaker & Associates San Dlego, Inc. Hunsaker & Associates San Diego, Inc StormCAD v3.0 [319] © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Pagelofi Solve For: Headwater Elevation Culvert Calculator Report Detention Basin Culvert Culvert Summary Allowable HW Elevation 307.67 ft Computed Headwater Elevation 29g.67 ft Inlet Control HW Elev 299.67 ft Outlet Control HW Elev 2g4.74 ft Headwater Depth/ Height Discharge Tailwater Elevation Control Type 4.4g 4g5.26 cfs 267.00 ft Inlet Control Grades Upstream Invert Length 281.6g ft 212.81 ft Downstream Invert Constructed Slope 265.00 ft 0.078427 ft/ft Hydraulic Proflle Profile Slope Type Flow Regime Velocity Downstream S2 Steep Supercritical 30.61 ft/s Depth, Downstream Normal Depth Critical Depth Critical Slope 2.46 ft 2.27 ft 3.93 ft 0.026813 ft/ft Section Section Shape Section Material Section Size Number Sections Circular Concrete 48 inch 2 Mannings Coefflcient Span Rise 0.013 4.00 ft 4.00 ft Outlet Control Properties Outlet Control HW Elev Ke 294.74 ft Upstream Velocity Head 0.50 Entrance Loss 6.08 ft 3.04 ft Inlet Control Properties Inlet Control HW Elev 29g.67 ft Flow Control N/A Inlet Type Square edge w/headwall Area Full 25.1 ft' K o.oogao HDS 5 Chart 1 M 2.00000 HDS 5 Scale 1 C 0.03g80 Equation Form 1 Y 0.67000 Project Title: La Costa h:\culvert\2352\0001 \detbasln.cvm 12/21/01 04:48:44 PM © Haestad Methods, Inc. Project Engineer: Hunsaker & Associates Hunsaker & Associates, SD CulvertMaster vl .0 37 Brookside Road Watertsury, CT 06708 USA (203) 755-1666 Page 1 of 1 VILLAGES OF LA COSTA -- INLET SIZING Type of Inlet Inlet at Node Street Slope % Q(cfs) a(ft.) y(ft) Required Lengtii of Opening (ft.) Use Lengtfl^ (ft.) FLOW-BY 235 1.80% 4.05 0.33 0.34 10.5 ^ 12 FLOW-BY 236 1.80% 1.98 0.33 0.29 5.8 1 7 FLOW-BY 238 6.93% 0.98 0.33 0.18 3.8 ^ 5 FLOW-BY 244 3.20% 7.46 0.33 0.38 17.7 ^ 19 FLOW-BY 245 3.23% 2.12 0.33 0.27 6.5 1 8 FLOW-BY 91 3.86% 0.81 0.33 0.19 3.1 1 5 FLOW-BY 92 3.67% . 1.00 0.33 0.21 3.6 ^ 5 FLOW-BY 94 5.00% 0.79 0.33 0.18 3.1 ^ 5 FLOW-BY 99 1.00% 1.30 0.33 0.26 4.1 1 6 FLOW-BY ICQ 0.53% 1.53 0.33 0.29 4.5 ^ 6 FLOW-BY 73 5.30% 0.37 0.33 0.15 1.6 ^ 5 FLOW-BY 74 5.30% 0.51 0.33 0.16 2.1 1 5 FLOW-BY 86 3.33% 0.51 0.33 0.18 2.0 1 5 FLOW-BY 88 2.92% 0.56 0.33 0.18 2.2 1 5 FLOW-BY 49 3.84% 0.81 0.33 0.19 3.1 ^ 5 FLOW-BY 229 13.93% 4.42 0.33 0.25 14.3 ^ 16 FLOW-BY 230 3.75% 2.05 0.33 0.25 6.6 ^ 8 FLOW-BY 268 2.10% 3.17 0.33 0.30 9.1 ^ 11 1 FROM EQUATION Q=0.7L(0.33+DEPTH)'^3/2 (verified witii CVDS 30) 2 FROM CITY OF SAN DIEGO CHART 1-103.6C 3 Length stiown on plans (Lengtii of Opening + 1 foot) 12/20/2001 H:\EXCEL\2352\001\SOUTH\INLET SIZES.XLS VILLAGES OF LA COSTA Brow Ditcfi Sizes Upstream Downstream Lengtti 100-Year Brow Ditch Node Node (ft) Flow (cfs) Diameter 905 906 300 27.3 36" 211 52 650 15.0 30" 201 52 400 8.5 30" 52 54 650 28.7 36" 301 54 1380 26.4 36" 54 56 1200 69.3 48" 551 1 500 11.8 30" 501 2 850 17.4 36" 701 5 710 17.9 36" 801 6 650 33.2 42" 901 82 950 21.9 36" 82 7 950 44.0 42" 909 9 750 28.5 36" 710 8 430 8.0 30" 102 103 670 10.2 30" 221 222 610 7.0 30" 224 226 800 23.7 36" 274 229 360 4.4 24" Note: Calculated based on 6" freeboard and a 3% slope which is the minimum slope used for the above brow ditches. 18" Capacity @ slope=3% Cross Section for Circular Channel Project Description Worksheet 18" Diameter Flow Element Circular Chann Method Manning's Fon Solve For Discharge Section Data Mannings Coeffic ).013 Slope 3.00 % Depth 3.0 in Diameter 18 in Discharge 1.10 cfs V:lB H:1 NTS Project Engineer: H&A Employee h:\flow-m\2352\1\south oaks brow ditches.fm2 Hunsaker & Associates San Diego FlowMaster v6.0 [614b] 11/30/01 01:28:40 PM © Haestad Methods, Inc. 37 Brookside Road WatertJury, CT 06708 USA (203)755-1666 Pagelofi 24" Capacity @ slope=3% Cross Section for Circular Channel Project Description Worksheet 24" Diameter Flow Element Circular Chann Method Manning's Fon Solve For Discharge Section Data Mannings Coeffic D.013 Slope 3.00 % Depth 6.0 in Diameter 24 in Discharge 5.37 cfs V:lB H:1 NTS h:\flow-m\2352\1\south oaks brow ditches.fm2 11/30/01 01:29:00 PM © Haestad Methods, Inc. Hunsaker & Associates San Diego 37 Brookside Road WatertDury, CT 06708 USA Project Engineer: H&A Employee FlowMaster v6.0 [614b] (203) 755-1666 Page 1 of 1 30" Capacity @ slope=3% Cross Section for Circular Channel Project Description Worksheet Flow Element Method Solve For 30" Diameter Circular Chann Manning's Fon Discharge Section Data Mannings Coeffic 3.013 Slope 3.00 % Depth 9.0 in Diameter 30 in Discharge 13.91 cfs V:lB H:1 NTS Project Engineer: H&A Employee h:\flow-m\2352\1\south oaks brow ditches.fm2 Hunsaker & Associates San Diego FlowMaster v6.0 [614b] 11/30/01 01:29:17 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1666 Pagelofi 36" Capacity @ slope=3% Cross Section for Circular Channel Project Description Worksheet Flow Element Method Solve For 36" Diameter Circular Chann Manning's Forr Discharge Section Data Mannings Coeffic D.013 Slope 3.00 % Depth 12.0 in Diameter 36 in Discharge 27.69 cfs V:lB H:1 NTS h:\flow-m\2352\1\south oaks brow ditches.fm2 11/30/01 01:29:31 PM © Haestad Methods, Inc. Hunsaker & Associates San Diego 37 Brookside Road WatertJury, CT 06708 USA Project Engineer: H&A Employee FlowMaster v6.0 [614bl (203) 755-1666 Page 1 of 1 42" Capacity @ slope=3% Cross Section for Circular Channel Project Description Worksheet 42" Diameter Flow Element Circular Chann Method Manning's Fon Solve For Discharge Section Data Mannings Coeffic D.013 Slope 3.00 % Depth 15.0 in Diameter 42 In Discharge 17.59 cfs V:lB H:1 NTS h:\flow-m\2352\1\south oaks brow ditches.fm2 11/30/01 01:29:46 PM © Haestad Methods, Inc. Hunsaker & Associates San Diego 37 Brookside Road WatertJury, CT 06708 USA Project Engineer: H&A Employee FlowMaster v6.0 [614b] (203) 755-1666 Page 1 of 1 48" Capacity @ slope=3% Cross Section for Circular Channel Project Description Worksheet Flow Element Method Solve For 48" Diameter Circular Chann Manning's Forr Discharge Section Data Mannings Coeffic3.013 Slope 3.00 % Depth 18.0 in Diameter 48 in Discharge TA.A3 cfs V:l[\ H:1 NTS h:\flow-m\2352\1\south oaks brow ditches.fm2 11/30/01 01:30:01 PM © Haestad Methods, Inc. Project Engineer: H&A Employee Hunsaker & Associates San Diego FlowMaster v6.0 [614b] 37 Brookside Road Watert)ury, CT 06708 USA (203) 755-1666 Page 1 of 1 SECTION V DESILT BASIN DESIGN VILLAGES OF LA COSTA DESILTING BASIN RISER SIZES Weir Formula for Orifices & Short Tubes (free & submerged) Q = Ca(2gii)°^(0.85), wliere 0.85 is a retduction factor for trasfi racl< Q = 0.6a(64.32h)°^(0.85); C = 0.6 from Table 4-10, Kings Handbool< Q = 4.1a(h)° ^ where a = area of orifice opening, h = head (ft) above top of riser then h = (Q/4.1a)^ (Equation 1) Weir Formula for riser acting as straight weir Q = CLH^ ^; C = 3.3 from Equation 5-40, Kings Handbool< then h = (Q/3.3L) 2/3 (Equation 2) @ Node 1 Qioo ~ Riser d = 11.8 cfs 30 in., so a L = 4.91 sq. ft.; h = 0.34 ft. (Equation 1) 7.85 ft.; h= 0.5915 ft. (Equation 2) therefore: h = 0.59 ft. @ Node Qioo ~ Riser d = 17.4 cfs 36 In., so a L = 7.07 sq.ft.; h 9.42 ft.; h 0.36 ft. (Equation 1) 0.679 ft. (Equation 2) therefore: h = 0.68 ft. @ Node Qioo ~ Riser d = 76.9 cfs 84 in., so a L = 38.5 sq.ft.; h= 0.24 ft. (Equation 1) 22 ft.; h= 1.0394 ft. (Equation 2) therefore: h = 1.04 ft. @. Node Qioo ~ Riser d = 17.9 cfs 36 in., so a L = 7.07 sq. ft.; h 9.42 ft.; h 0.38 ft. (Equation 1) 0.6919 ft. (Equation 2) therefore: h = 0.69 ft. @ Node Qioo ~ Riser d = 33.2 cfs 48 in., so a L = H:/Excel/2352/001/269/South/Riser inlets.xls 12.6 sq. ft.; h = 0.41 ft. (Equation 1) 12.6 ft.; h= 0.8613 ft. (Equation 2) therefore: h = 0.86 ft. 11/30/2001 VILLAGES OF LA COSTA DESILTING BASIN RISER SIZES @ Node Qioo ~ Riser d = 44.0 cfs 60 in., so a L = 19.6 sq.ft.; h= 0.30 ft. (Equation 1) 15.7 ft.; h= 0.8969 ft. (Equation 2) therefore: h = 0.90 ft. @ Node 8 : Qioo ~ Riser d = 8.0 cfs 30 in., so a L = 4.91 sq. ft.; h = 0.16 ft. (Equation 1) 7.85 ft.; h = 0.4563 ft. (Equation 2) therefore: h = 0.46 ft. @ Node Qioo ~ Riser d = 28.5 cfs 48 in., so a L = 12.6 sq.ft.; h= 0.31 ft. (Equation 1) 12.6 ft.; h= 0.7782 ft. (Equation 2) therefore: h = 0.78 ft. @ Node 907 Qioo ~ Riser d = 48.3 cfs 66 in., so a L = 23.8 sq.ft.; h= 0.25 ft. (Equation 1) 17.3 ft.; h= 0.8953 ft. (Equation 2) therefore: h = 0.90 ft. @ Node 165 : Qioo ~ Riser d = 103.8 cfs 84 in., so a = L 38.5 sq.ft.; h= 0.43 ft. (Equation 1) 22 ft.; h = 1.2695 ft. (Equation 2) therefore: h = 1.27 ft. H :/Excel/2352/001 /269/South/Riser in lets.xis 11/30/2001 PROJECT NAME WORK ORDER SEDIMENT BASIN Villages of La Costa 2352-0001 Basin No. 1 Per Option 2, Part 8 of Section A of the State Water Resources Control Board Order No. 99-08-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured fmm the bottom ofthe basin to the principle outlet, shall have at least capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length ofthe basin shall be more than twice the width ofthe basin. The length is detennined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. GRADED AREA TO BASIN > 5 acres 100-YEAR PEAK FLOW TO BASIN > 11.8 cfs REQUIRED STORAGE CAPACITY 18000 ft^ BELOW PRINCIPLE OUTLET ELEV. 667 CY 0.41 acre-ft. (from Neighborhood 7 Hydro Study) (from Neighborhood 7 Hydro Study) BOTTOM OF BASIN ELEVATION RISER/PRINCIPLE SPILLWAY EL. DEPTH BELOW PRINCIPLE OUTLET [DESIGN BASIN BOTTOM WIDTH j- DESIGN BASIN BOTTOM LENGTH DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. |100-YEAR HW OVER RISER 100-YEAR WSE OVER RISER FREEBOARD ABOVE 100-YEAR WSE 407.7 feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 411.7 feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 1 4.0 feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 42 feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 85 feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 18600 ft^ (Assume 2:1 Basin Side Slopes) 689 CY 0.43 acre-ft. (from riser inlet spreadsheet) 0.59 feet feet (from riser inlet spreadsheet) 412.29 feet feet (from riser inlet spreadsheet) 1 « [n. (from riser inlet spreadsheet) TOP OF BASIN ELEVATION ] 414.7 "jfeet (from Grading Plans) * Emergency spillway crest elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 100-year mnoff assuming 100% clogging of principle spillway. FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the SPILLWAY OPENING = Then the Crest Elevation Must Be = If the CREST ELEVATION = Then the Spillway Opening Must Be = n/a n/a n/a n/a feet feet feet feet PROJECT NAME WORK ORDER SEDIMENT BASIN Villages of La (Posta 2352-0001 Basin No. 2 Per Option 2, Part 8 of Section A of the State Water Resources Control Board Order No. 99-08-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured from the bottom ofthe basin to the principle outlet, shall have at least capacity equivalent to 3,600 cubic feetof storage per acre draining into the sediment basin. The length ofthe basin shall be more than twice the width ofthe basin. The length is detennined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. GRADED AREA TO BASIN 100-YEAR PEAK FLOW TO BASIN 7.8 17.4 REQUIRED STORAGE CAPACITY BELOW PRINCIPLE OUTLET ELEV. 28080 1040 0.64 BOTTOM OF BASIN ELEVATION RISER/PRINCIPLE SPILLWAY EL. 370 374.0 acres cfs ft^ CY acre-ft. feet feet (from Neighborhood 7 Hydro Study) (from Neighborhood 7 Hydro Study) DEPTH BELOW PRINCIPLE OUTLET {DESIGN BASIN BOTTOM WIDTH j - DESIGN BASIN BOTTOM LENGTH DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. 4.0 ]feet 54 109 29016 1075 0.67 100-YEAR HW OVER RISER 100-YEAR WSE OVER RISER 0.68 374.68 feet feet ft^ CY acre-ft. feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) (Assume 2:1 Basin Side Slopes) (from riser inlet spreadsheet) FREEBOARD ABOVE 100-YEAR WSE 2.3 {TOP OF BASIN ELEVATION [ 377.0 feet (from Grading Plans) * Emergency spillway crest elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 10O-year mnoff assuming 100% clogging of principle spillway. FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the SPILLWAY OPENING = > Then the Crest Elevation Must Be = n/a n/a If the CREST ELEVATION = Then the Spillway Opening Must Be = n/a n/a feet feet feet feet PROJECT NAME WORK ORDER SEDIMENT BASIN Villages of La Cosia 2352-0001 Basin No. Per Option 2, Part 8 of Section A of the State Water Resources Ccntrol Board Order No. 99-08-DWQ, sediment basins shall, at a mirimum, be designed as follows: Sediment basins, as measured from the bottom zfthe basin to ths principle outlet, shall have at least capacity equi'/alent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length ofthe basin shall be mom than twice fie width ofthe basJn. The length is determined by measuring the distance between the inlet and the outiet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. GRADED AREA TO BASIN 100-YEAR PEAK FLOW TO BASIN REQUIRED STORAGE CAPACITY BELOW PRINCIPLE OUTLET ELEV. BOTTOM OF BASIN ELEVATION RISER/PRINCIPLE SPILLWAY EL. DEPTH BELOW PRINCIPLE OUTLET DESIGN BASIN BOTTOM WIDTH DESIGN BASIN BOTTOM LENGTH DESIGN STORAGE CAPACITY BELOVV PRINCIPLE OUTET ELEV. 100-YEAR HW OVER RISER 100-YEAR WSE OVER RISER FREEBOARD ABOVE 100-YEAR WSE TOP OF BASIN ELEVATION 37.04 76.9 133344 4939 3.06 338 342.0 4.0 125 251 137788 5103 3.16 1.04 343.04 2.0 345.0 acres cfs ft^ CY acre-ft feet feet feet feet feet ft^ CY acre-ft. feet feet ft feet (from Neighborhood 7 Hydra Study) (from Neighborhood 7 Hydro Study) (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * V/idth) (Assume 2:1 Basin Side Slopes) (from riser inlet spreadsheet) (from Grading Plans) * Emergency spillway crest elevation shall be se: at or above IOC-Year WSE. Tne emergency spillway shall be sized to convey the 100-year r..noff assuming 1C0% clogging of principle spillway. FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the SPILLWAY OPENING = Then the Crest Elevation Must Be = If the CREST ELEVATION = Then the Spillway Opening Must Be • n/a n/a n/a n/a feet feet feet feet PROJECT NAME WORK ORDER SEDIMENT BASIN Villages of La Costa 2352-0001 Basin No. 5 Per Option 2, Part 8 of Section A ofthe State Water Resources Control Board Order No. 99-08-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured from the bottom ofthe basin to f'/e principle outlet, shall have at least capacity equivalent to 3,600 cubic feet of storage per acre diaining into the sediment basin. The length ofthe basin shall be more than twice the width ofthe basin. The length is determined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. GRADED AREA TO BASIN 100-YEAR PEAK FLOW TO BASIN 8.2 17.9 REQUIRED STORAGE CAPACITY BELOW PRINCIPLE OUTLET ELEV. 29520 1093 0.68 acres (from Neighborhood 7 Hydro Study) cfs (from Neighborhood 7 Hydro Study) ft^ CY acre-ft. BOTTOM OF BASIN ELEVATION RISER/PRINCIPLE SPILLWAY EL. —> —> 441.3 445.3 feet feet DEPTH BELOW PRINCIPLE OUTLET 4.0 ]feet DESIGN BASIN BOTTOM WIDTH DESIGN BASIN BOTTOM LENGTH DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. 55 111 29988 1111 0.69 100-YEAR HW OVER RISER 100-YEAR WSE OVER RISER ] 0.69 445.99 feet feet ft^ CY acre-ft. feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) (Assume 2:1 Basin Side Slopes) (from riser inlet spreadsheet) FREEBOARD ABOVE 100-YEAR WSE 2.3 jTOP OF BASIN ELEVATION j-[ 448.3 ]feet (from Grading Plans) * Emergency spillway crest elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 10O-year mnoff assuming 100% clogging of principle spillway. FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the SPILLWAY OPENING = Then the Crest Elevation Must Be = If the CREST ELEVATION = Then the Spillway Opening Must Be = n/a n/a n/a n/a feet feet feet feet PROJECT NAME WORK ORDER SEDIMENT BASIN Villages of La Costa 2352-0001 Basin No. 6 Per Option 2, Part 8 of Section A ofthe State Water Resources Control Board Order No. 99-08-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured from the bottom of the basin to the principle outlet, shall have at least capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length ofthe basin shall be more than twice the width ofthe basin. The length is detennined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. GRADED AREA TO BASIN 100-YEAR PEAK FLOW TO BASIN 13.6 33.2 REQUIRED STORAGE CAPACITY BELOW PRINCIPLE OUTLET ELEV. 48960 1813 1.12 acres (from Neighborhood 7 Hydro Study) cfs (from Neighborhood 7 Hydro Study) ft^ CY acre-ft. BOTTOM OF BASIN ELEVATION RISER/PRINCIPLE SPILLWAY EL 333 337.0 feet feet DEPTH BELOW PRINCIPLE OUTLET 4.0 ]feet DESIGN BASIN BOTTOM WIDTH DESIGN BASIN BOTTOM LENGTH DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. 73 147 50220 1860 1.15 100-YEAR HW OVER RISER 100-YEAR WSE OVER RISER 0.86 337.86 feet feet ft^ CY acre-ft. feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) (Assume 2:1 Basin Side Slopes) (from riser inlet spreadsheet) FREEBOARD ABOVE 100-YEAR WSE 2.1 [TOP OF BASIN ELEVATION j- ]«. C 340.0 feet (from Grading Plans) * Emergency spillway crest elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 100-year mnoff assuming 100% clogging of principle spillway. FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the SPILLWAY OPENING = Then the Crest Elevation Must Be = n/a n/a If the CREST ELEVATION = Then the Spillway Opening Must Be = n/a n/a feet feet feet feet PROJECT NAME WORK ORDER SEDIMENT BASIN Villages of La Costa 2352-0001 Basin No. 7 Per Option 2, Part 8 of Section A ofthe State Water Resources Control Board Order No. 99-08-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured from the bottom of the basin to the principle outlet, shall have at least capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length of the basin shall be more than twice the width of the basin. The length is determined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. GRADED AREA TO BASIN 100-YEAR PEAK FLOW TO BASIN 20 44.0 REQUIRED STORAGE CAPACITY BELOW PRINCIPLE OUTLET ELEV. 72000 2667 1.65 BOTTOM OF BASIN ELEVATION RISER/PRINCIPLE SPILLWAY EL. 333 337.0 acres cfs ft' CY acre-ft. feet feet (from Neighborhood 7 Hydro Study) (from Neighborhood 7 Hydro Study) DEPTH BELOW PRINCIPLE OUTLET 4.0 ]feet DESIGN BASIN BOTTOM WIDTH DESIGN BASIN BOTTOM LENGTH DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. |100-YEAR HW OVER RISER 100-YEAR WSE OVER RISER 89 ^79 72556 2687 1.67 0.9 337.9 FREEBOARD ABOVE 100-YEAR WSE 2.1 [TOP OF BASIN ELEVATION ]-340.0 feet feet ft^ CY acre-ft. feet feet ft. feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) (Assume 2:1 Basin Side Slopes) (from riser inlet spreadsheet) (from Grading Plans) * Emergency spillway crest elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 100-year mnoff assuming 100% clogging of principle spillway. FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the SPILLWAY OPENING = Then the Crest Elevation Must Be = If the CREST ELEVATION = — Then the Spillway Opening Must Be = n/a n/a n/a n/a feet feet feet feet PROJECT NAME WORK ORDER SEDIMENT BASIN Villages of La Costa 2352-0001 Basin No. 8 Per Option 2, Part 8 of Section A ofthe State Water Resources Control Board Order No. 99-08-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured fmm the bottom ofthe basin to the principle outlet, shall have at least capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length ofthe basin shall be more than twice the width ofthe basin. The length is detennined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. GRADED AREA TO BASIN 100-YEAR PEAK FLOW TO BASIN 3.5 8.0 REQUIRED STORAGE CAPACITY BELOW PRINCIPLE OUTLET ELEV. 12600 467 0.29 BOTTOM OF BASIN ELEVATION RISER/PRINCIPLE SPILLWAY EL. 461.0 465.0 acres cfs ft' CY acre-ft. feet feet (from Neighborhood 7 Hydro Study) (from Neighborhood 7 Hydro Study) DEPTH BELOW PRINCIPLE OUTLET [DESIGN BASIN BOTTOM WIDTH DESIGN BASIN BOTTOM LENGTH 4.0 ]feet 34 69 DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. [100-YEAR HW OVER RISER [- 100-YEAR WSE OVER RISER 12936 479 0.30 0.46 465.46 feet feet ft' CY acre-ft. feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) (Assume 2:1 Basin Side Slopes) (from riser inlet spreadsheet) FREEBOARD ABOVE 100-YEAR WSE 2.5 lft. [TOP OF BASIN ELEVATION [ > [ 468.0 feet (from Grading Plans) * Emergency spillway crest elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 10O-year runoff assuming 100% clogging of principle spillway. FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the SPILLWAY OPENING = Then the Crest Elevation Must Be = n/a n/a If the CREST ELEVATION = Then the Spillway Opening Must Be •• n/a n/a feet feet feet feet PROJECT NAME WORK ORDER SEDIMENT BASIN Villages of La Costa 2352-0001 Basin No. 9 Per Option 2, Part 8 of Section A of the State Water Resources Control Board Order No. 99-08-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured from the bottom ofthe basin to the principle outlet, shall have at least capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length ofthe basin shall be more than twice the width ofthe basin. The length is detemiined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. GRADED AREA TO BASIN > 13.2 acres 100-YEAR PEAK FLOW TO BASIN > 28.5 cfs REQUIRED STORAGE CAPACITY 47520 ft' BELOW PRINCIPLE OUTLET ELEV. 1760 CY 1.09 acre-ft (from Neighborhood 7 Hydro Study) (from Neighborhood 7 Hydro Study) BOTTOM OF BASIN ELEVATION RISER/PRINCIPLE SPILLWAY EL. DEPTH BELOW PRINCIPLE OUTLET [DESIGN BASIN BOTTOM WIDTH |- DESIGN BASIN BOTTOM LENGTH DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. 300.5 feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 304.5 feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 1 4.0 feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 71 feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 143 feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 47716 ft' (Assume 2:1 Basin Side Slopes) 1767 CY 1.10 acre-ft. [100-YEAR HW OVER RISER 100-YEAR WSE OVER RISER 0.78 305.28 feet feet (from riser inlet spreadsheet) FREEBOARD ABOVE 100-YEAR WSE 2.2 [TOP OF BASIN ELEVATION [-307.5 ]feet (from Grading Plans) * Emergency spillway crest elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 100-year mnoff assuming 100%, clogging of principle spillway. FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the SPILLWAY OPENING = Then the Crest Elevation Must Be = If the CREST ELEVATION = Then the Spillway Opening Must Be = n/a n/a n/a n/a feet feet feet feet PROJECT NAME WORK ORDER SEDIMENT BASIN Villages of La Costa 2352-0001 Basin No. 10, Node 907 Per Option 2, Part 8 of Section A of the State Water Resources Control Board Order No. 99-08-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured from the bottom ofthe basin to the principle outlet, shall have at least capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length ofthe basin shall be more than twice the width ofthe basin. The length is detennined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. GRADED AREA TO BASIN > ^9.5 acres 100-YEAR PEAK FLOW TO BASIN > 48.3 cfs REQUIRED STORAGE CAPACITY 70200 ft' BELOW PRINCIPLE OUTLET ELEV. 2600 CY 1.61 acre-ft. (from Neighborhood 7 Hydro Study) (from Neighborhood 7 Hydro Study) BOTTOM OF BASIN ELEVATION RISER/PRINCIPLE SPILLWAY EL. DEPTH BELOW PRINCIPLE OUTLET [DESIGN BASIN BOTTOM WIDTH j- DESIGN BASIN BOTTOM LENGTH DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. 377.4 feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 381.4 feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 1 4.0 feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 66 feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 230 feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 70448 ft' (Assume 2:1 Basin Side Slopes) 2609 CY 1.62 acre-ft. [100-YEAR HW OVER RISER 100-YEAR WSE OVER RISER 0.9 382.3 feet feet (from riser inlet spreadsheet) FREEBOARD ABOVE 100-YEAR WSE 2.1 TOP OF BASIN ELEVATION ]ft. [ 384.4 feet (from Grading Plans) * Emergency spillway crest elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 100-year mnoff assuming 100%, clogging of principle spillway FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the SPILLWAY OPENING = Then the Crest Elevation Must Be = n/a n/a If the CREST ELEVATION = Then the Spillway Opening Must Be = n/a n/a feet feet feet feet PROJECT NAME WORK ORDER SEDIMENT BASIN Villages of La Costa 2352-0001 Basin No. 11, Node 165 Per Option 2, Part 8 of Section A ofthe State Water Resources Control Board Order No. 99-08-DWQ, sediment basins shall, at a minimum, be designed as follows: Sediment basins, as measured fmm the bottom ofthe basin to the principle outlet, shall have at least capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length ofthe basin shall be more than twice the width ofthe basin. The length is detemiined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. GRADED AREA TO BASIN .-> 12 acres 100-YEAR PEAK FLOW TO BASIN > 103.8 cfs REQUIRED STORAGE CAPACITY 43200 ft' BELOW PRINCIPLE OUTLET ELEV. 1600 CY 0.99 acre-ft. (from Neighborhood 7 Hydro Study) (from Neighborhood 7 Hydro Study) BOTTOM OF BASIN ELEVATION RISER/PRINCIPLE SPILLWAY EL. DEPTH BELOW PRINCIPLE OUTLET [DESIGN BASIN BOTTOM WIDTH DESIGN BASIN BOTTOM LENGTH DESIGN STORAGE CAPACITY BELOW PRINCIPLE OUTET ELEV. [100-YEAR HW OVER RISER 100-YEAR WSE OVER RISER FREEBOARD ABOVE 100-YEAR WSE 453 feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 457.0 feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 1 4.0 feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 68 feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 137 feet feet feet (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) (from Grading Plans) (from Grading Plans) (3 <= Depth <= 5 feet) (Length > 2 * Width) 44080 ft' (Assume 2:1 Basin Side Slopes) 1633 CY 1.01 acre-ft. feet feet (from riser inlet spreadsheet) 1.27 feet feet (from riser inlet spreadsheet) 458.27 feet feet (from riser inlet spreadsheet) 1 " l« (from riser inlet spreadsheet) [TOP OF BASIN ELEVATION [ 460.0 "Jfeet (from Grading Plans) * Emergency spillway cmst elevation shall be set at or above 100-Year WSE. The emergency spillway shall be sized to convey the 100-year mnoff assuming 100%> clogging of principle spillway FOR BROAD-CRESTED EMERGENCY SPILLWAY WEIRS: If the SPILLWAY OPENING = Then the Crest Elevation Must Be = n/a n/a If the CREST ELEVATION = Then the Spillway Opening Must Be = n/a n/a feet feet feet feet LA COSTA OAKS SOUTH NEIGHBORHOOD 3.10 - 3.15 - MASS GRADING BUOYANCY CHECK FOR DESILTING BASIN RISER INLET BASIN NO. (SHEETNO.) 10 GIVEN: Di = 36 " CIVIP RISER INLET D2 = 24 " OUTLET PIPE hi = 7.5 ' fronn top of riser to concrete fillet h2 = 1.0 ' (portion of outlet pipe in anchor) hg = 3.0 ' (portion of riser pipe in anchor) THEN: Vgir = n*iD^f/4*h, + n*{D2f/4*h2 Vair= 53 + 3.1 = 56 ft^ FIND: Volume of concrete needed, V^in. Vmin. = Vair * (62.4lbs/ft^)/(145lbs/ft^) = 0.43 * Vair = 24 ft^ COIVIPARE TO ACTUAL VOLUME OF CONCRETE ANCHOR: V,o,, = (Di+2)'*(h3+1) - 7i*(Di)'/4*h3 - iu*(D2)2/4*h2 Vconc. = 100 - 21 - 3.1 = THEREFORE: OK (FS = 3.1 ) 76 ft' 24 ft-^ 4 ••• -m 0. 4 • - 'I jr 11/2R/20Q1 LA COSTA OAKS SOUTH NEIGHBORHOOD 3.10 - 3.15 - MASS GRADING BUOYANCY CHECK FOR DESILTING BASIN RISER INLET BASIN NO. (SHEETNO.) 12 GIVEN: Di = •2 = hi = h2 = h3 = 66 " CMP RISER INLET 36 " OUTLET PIPE 13.2 ' from top of riser to concrete fillet 1.0 ' (portion of outlet pipe in anchor) 4.0 ' (portion of riser pipe in anchor) THEN: Va, = n*{D,flA*h, + 7r*(D2)'/4*h2 Vair= 313 + 7.1 = 320 ft^ FIND: Volume of concrete needed, V^in. Vniin. = Vair * (62.4lbs/fr^)/(145lbs/ft^) = 0.43 * Vair = 138 ft^ COMPARE TO ACTUAL VOLUME OF CONCRETE ANCHOR: Veonc. = (Di+2)^*(h3+1) " 7l*(Di)^/4*h3 - 7r*(D2)'/4*h2 95 - 7.1 = Vrnnr,. - 281 THEREFORE: OK 179 ff" > 138 ff (FS= 1.3) ,>/,y "y.'y.'yy .'yyy yy yyy 0^ yj.>,'.>yyJ ••' ^y y 11/28/2001 LA COSTA OAKS SOUTH NEIGHBORHOOD 3.10 - 3.15 - MASS GRADING BUOYANCY CHECK FOR DESILTING BASIN RISER INLET BASIN NO. (SHEETNO.) 16 GIVEN: THEN: Di = 36 " CMP RISER INLET D2 = 30 " OUTLET PIPE hi = 12.5 ' from top of riser to concrete fillet h2 = 1.0' (portion of outlet pipe in anchor) ha = 3.5 ' (portion of riser pipe in anchor) Vair= 7l*(Di)^/4*hi + n*{D2fl4*h2 Vair = 89 + 4.9 = 93 ft^ FIND: Volume of concrete needed, V^, Vmin. = Vair * (62.4ibs/ft2)/(145lbs/ft') = 0.43 * Vair = COMPARE TO ACTUAL VOLUME OF CONCRETE ANCHOR: Veonc. = (Di+2)2*(h3+1) - 7t*(Di)'/4*h3 - n*{D2f 14*^2 Vconc. = 113 - 25 - 4.9 = THEREFORE: OK (FS = 2.1 ) 40 ft^ 83 ft > 40 ft 4 . .. -a 5 • • i y'/yy.yyyyy^y yyy yyy 0. yyy>.'.'^y :.<i 4 • -' ' • - d 4 -v i.--'-. -•; ii/?a/?nni LA COSTA OAKS SOUTH NEIGHBORHOOD 3.10 - 3.15 - MASS GRADING BUOYANCY CHECK FOR DESILTING BASIN RISER INLET BASIN NO. (SHEETNO.) 17 GIVEN: THEN: Di = 36 " CMP RISER INLET D2 = 30 " OUTLET PIPE hi = 9.8 ' from top of riser to concrete fillet h2 = 1.0 ' (portion of outlet pipe in anchor) hg = 3.5 ' (portion of riser pipe in anchor) Vair= 7t*(Di)^/4*hi + n*{D2f 14*^2 Vair = 69 + 4.9 = 74 ft'' FIND: Volume of concrete needed, V^m. Vmin. = Vair * (62.4lbs/ft^)/(145lbs/ft^) = 0.43 * Vair = 32 ft^ COMPARE TO ACTUAL VOLUME OF CONCRETE ANCHOR: Veonc. = (Di+2)2*(h3+1) - 7t*(Di)'/4*h3 - K*iD2f/4*h2 Vconc. = 113 - 25 - 4.9 = THEREFORE: OK (FS = 2.6 ) 83 ft > 32 ft-" y'/yyy^y'yyyyy yyyy- .1 ,'J-'y'y •.' yy / J ' ' I ii/?ft/?nni LA COSTA OAKS SOUTH NEIGHBORHOOD 3.10 - 3.15 - MASS GRADING BUOYANCY CHECK FOR DESILTING BASIN RISER INLET BASIN NO. (SHEETNO.) 18-PROFILE 11 GIVEN: Di = 36 " CMP RISER INLET D2= 18 "OUTLET PIPE hi = 8.9 ' from top of riser to concrete fillet h2 = 1.0' (portion of outlet pipe in anchor) hg = 2.5 ' (portion of riser pipe in anchor) THEN: Vair= 7i*(Di)'/4*hi + Tt*(D2)'/4*h2 Vair= 63+ 1.8 = 65 ft'' FIND: Volume of concrete needed, Vn Vmin. = Vair * (62.4lbs/ft')/(145lbs/ft^) 0.43 * Vair = 28 ft^ COMPARE TO ACTUAL VOLUME OF CONCRETE ANCHOR: Veonc. = (Di+2)'*(h3+1) - 7r*(Di)'/4*h3 - U*{D2f 14*^2 Vconc. = 88 - 18 - 1.8 = THEREFORE: OK (FS = 2.4 ) 68 ft > 28 ft " a .' 4 .V'A,--': " 11/28/2001 LA COSTA OAKS SOUTH NEIGHBORHOOD 3.10 - 3.15 - MASS GRADING BUOYANCY CHECK FOR DESILTING BASIN RISER INLET BASIN NO. (SHEETNO.) 18-PROFILE 10 GIVEN: THEN: Di = 30 " CMP RISER INLET D2= 18 "OUTLET PIPE hi = 7.3 ' from top of riser to concrete fillet h2 = 1.0' (portion of outlet pipe in anchor) hs = 2.5 ' (portion of riser pipe in anchor) Vair = 7i*(Di)^/4*hi + n*{D2f 14*^2 Vair = 36 + 1.8 = 38 ft^ FIND: Volume of concrete needed, Vmin. Vmin. = Vair * (62.4lbs/fl^')/(145lbs/ft^) = 0.43* Vair = 16 ft^ COMPARE TO ACTUAL VOLUME OF CONCRETE ANCHOR: Vconc. = (Di+2)'*(h3+1) - 7I*(Di)'/4*h3 - Tl*{D2f/4*h2 Vconc. = 71 - 12 - 1.8 = THEREFORE: OK (FS = 3.5 ) 57 ft > 16 ff 11/28/2001 LA COSTA OAKS SOUTH NEIGHBORHOOD 3.10 - 3.15 - MASS GRADING BUOYANCY CHECK FOR DESILTING BASIN RISER INLET BASIN NO. (SHEETNO.) 19 GIVEN: THEN: Di = 36 " CMP RISER INLET D2 = 24 " OUTLET PIPE hi = 7.6 ' from top of riser to concrete fillet h2 = 1.0' (portion of outlet pipe in anchor) hg = 3.0 ' (portion of riser pipe in anchor) Vair= 7l*(Di)^/4*hi + 7:*(D2f/4*h2 Vair= 54 + 3.1 = 57 ft^ FIND: Volume of concrete needed, V^, Vmin. = Vair * (62.4lbs/ft'')/(145lbs/ft'') = 0.43 * Va COMPARE TO ACTUAL VOLUME OF CONCRETE ANCHOR: V,cnc. = (Di+2)2*(h3+1) - 7i*(Di)'/4*h3 - 7i*(D2)'/4*h2 Vconc. = 100 - 21 - 3.1 = THEREFORE: OK (FS = 3.1 ) 25 ft' 76 ft' 25 ft' .J^^yyyyyyyy yyy yyy /.ly ^'.iJy'y -y ^y y J'' ~ 11/28/2001 LA COSTA OAKS SOUTH NEIGHBORHOOD 3.10 - 3.15 - MASS GRADING BUOYANCY CHECK FOR DESILTING BASIN RISER INLET BASIN NO. (SHEETNO.) 21 GIVEN: Di = 36 " CMP RISER INLET D2= 18 "OUTLET PIPE hi = 5.5 ' from top of riser to concrete fillet h2 = 1.0' (portion of outlet pipe in anchor) ha = 2.5 ' (portion of riser pipe in anchor) THEN: Vair = Ti*iD,fl4*h, + 7i*(D2)'/4*h2 Vair= 39 + 1.8 = 41 ft^ FIND: Volume of concrete needed, Vmin. Vmin. = Vair * (62.4lbs/ft?^)/(145lbs/fl?') = 0.43* Vair = 17 ft^ COMPARE TO ACTUAL VOLUME OF CONCRETE ANCHOR: Vconc. = (Di+2)'*(h3+1) - 7t*(Di)'/4*h3 - 7l*(D2)'/4*h2 Vconc. = 88 - 18 - 1.8 = THEREFORE: OK (FS = 3.9) 68 ft' > 17 ft' yy,yy'^.'.^y'yy.'yyy yyy^y • 0^ /^ ,'yy.yy ..y ^y y j / J i -" buoyancy 11/28/2001 LA COSTA OAKS SOUTH NEIGHBORHOOD 3.10 - 3.15 - MASS GRADING BUOYANCY CHECK FOR DESILTING BASIN RISER INLET BASIN NO. (SHEET NO.) 24 GIVEN: THEN: Di = 60 " CMP RISER INLET D2 = 36 " OUTLET PIPE hi = 9.0 ' from top of riser to concrete fillet h2 = 1.0 ' (portion of outlet pipe in anchor) ha = 4.0 ' (portion of riser pipe in anchor) Vair = 7t*(Di)^/4*hi + n*{D2f/4*h2 Vair= 177 + 7.1 = 184 ft^ FIND: Volume of concrete needed, V™ Vmin. = Vair * (62.4Ibs/ft")/(145lbs/ft^) = 0.43 * Vair = 79 ft COMPARE TO ACTUAL VOLUME OF CONCRETE ANCHOR: Vconc. = (Di+2)2*(ha+1) - 7i*(Di)'/4*ha - n*{D2f/4*h2 Vconc. = 245 - 79 - 7.1 = THEREFORE: OK (FS = 2.0 ) 0. 159 ft^ > 79 ft^ y//y ''y'.' y-'yy •'y y y'^y 0. 4 • - 4 .V • i: <: •• : buoyancy 11/28/2001 SECTION VI RIPRAP APRON DESIGN VILLAGES OF LA COSTA RIPRAP SIZING NODE 110: Diam = 24 in Velocity = 8.3 fps Area = 8*(L) x 6'(W) Use No. 2 backing NODE 231: Diam = 48 in Velocity = 15 fps Area= 16'(L)x 12'(W) Use 1 ton rock NODE 253: Diam = 48 in Velocity = 19 fps Area= 16'(L)x 12'(W) Use 2 ton rock NODE 255: Diam = 48 in Velocity = 14 fps Area = 16'(L)x12'(W) Use 1/2 ton rock NODES 9 to 48: Diam = 24 in Velocity Area = 8'(L) x 6'(W) Use 1/4 ton rock 10.6 fps DETENTION BASIN OUTFALL: Diam = 2-48 in Velocity = 30.6 fps Due to high velocity, use D-41 (per San Diego Regional Std. Dwg) H:/Excel/2352/001/269/South/RiprapSizing.xls 12/21/2001 RIPRAP BASIN DESIGN PROJECT: VILLAGES OF LA COSTA - THE OAKS OUTLET: NODE 253 CALC BY: TRW Ref: U.S. Department of Transportation, Federal Highway Administration, Hydraulic Design of Energy Dissipators for Culverts & Channels, Hydraulic Engineering Circular No. 14, 1975 Given: Q = 268 cfs depth of flow at pipe/box outlet, yo = 4.0 ft Width of box at outlet, Wo = N/A velocity of flow at pipe/box outlet, Vo = 21.30 fps D50(min) from Figure ll-C-1 = 2.63 ft try Dso = 1-46 ft So: cross-sectional area of ftow, A = 12.58 ft equivalent depth, ye = (a/2)^'^ = 2.51 ft Froude Number, Fr = 2.37 From Figure Xl-2: Ford5o/ye= 0.58 Then: Therefore: hs/Ye — 1.56 hs = 3.9 ft hs/dso = 2.7 OK = 10x hs 39.0 ft = 3xWo N/A ft USELs -39.0 ft = 15xhs — 58.5 ft = 4xWo N/A ft USE LB -58.5 ft ft, (Wso) — 270 ibs Minimum Layer Thickness, T* = 3.3 feet Other basin dimensions are in accordance with details shown on Figure XI-1. * minimum layer thickness is 1.5 times DlOO(avg). STONE WEIGHT, IN POUNDS 5 20 60 200 600 1000 2000 4000 O CJ UJ Ul a. 1- UJ UJ LL z >' a o _l UJ > X UJ IT 24 . • 1 IF 1 I 1 1 1 1 1 1 1 1 1 1 22 '•— >0 8 • 6 — 4 . ? ) '• 1 FO 16. R STONE 5 LBS. PEf WEIGHI^ ^ CU. FT. G / 1 EQUIVALENT SPHERICAL DIAMETER OF STONE, IN FEET FIGURE n-C-1. RIPRAP SIZE FOR USE DOWNSTREAM OF ENERGY DISSIPATORS FROM REFERENCE E-C-l ^'^''"^^ II-9 REFERENCE DATA NOTE: Some reference data that has typically been included in support of hydrologic calculations done by hand are incorporated into the Rational Method Hydrology Computer Program Package (by AES). These include: • Intensity-Duration Design Chart • Nomograph for Determination of Time of Concentration (Tc) for Natural Watersheds • Urban Areas Overland Time of Flow Curves • Runoff Coefficients (Rational Method) Since these references are incorporated into the AES software, they are not needed to support this study and are therefore not included in this report. Soils maps are also not included, as Hydrologic Soil Group "D" was used for this study. H:\REPORTS\Reference\REFERENCEDATA.doc couirry OF SAN OIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL lOO^YEAR B-mm PSJECIPITATiOrJ ^20^ ISOPLUVIALS PnEClPITATIOri ifi OF 100-YEAR 6-HQUR iE?miS GF AN liiCIl 33- P'»p" U.S. DEPARTMEN NATIONAL OCEANIC AHO AT.' fPECIAL ITUOIES PRA.SCII. Of FICE OF II Headloss Coefficients for Manholes and Junctions These arc typical headloss coeffidents used in the standard method for estimatii^. headloss through manholes and junctions. Type of Manhole am I Icadloss Coefficient Trunkline only wiilt uu btaid r at the Junction ^ 0.5 Trunkline only with 45 degree bend at junction A. 0.6 Trunkline only with 90 degree bend at junction .y ^. ! I* 'tli 0.8 Trunkline "with one lateral Small 0.6 Large 0.7 Two roughly cquivalait alliance lines wilh angle of < 90 degrees between lines Two roughly equivalent entrance lines with angle of > 90 degrees between lines \ \ rrr O.B 0.9 Three or more entrance lines Uj 1.0