Loading...
HomeMy WebLinkAboutCT 02-07; EMERALD POINTE ESTATES; DRAINAGE STUDY; 2005-06-22PLANNING ENGINEERING SURVEYING IRVINE LOSANGELES RIVERSIDE SAN DIEGO HUNSAKER ^ASSOCIATES SAN DIECO, INC. DRAINAGE STUDY for EMERALD POINTE ESTATES City of Carlsbad, California Prepared for: RWR Homes Inc. 2710 Locker Avenue West Suite 350 Carlsbad, CA 92008 w.o. 2339-18 June 22, 2005 RE-CEIVED JUsv 2 3 'im f^NGINHg^lWG Hunsaker & Associates San Diego, Inc. RaVRlond L. Martin, R.C.E DAVE HAMMAR LEX WILLIMAN ALISA VIALPANDO DAN SMITH RAY MARTIN Vlco President 10179 Huennekens St. San Diego, CA 92121 (858) 558-4500 PH (858) 558-1414 FX www.HunsakerSD.com lnfo@HunsakerSD.com AH:kc H:\REPORTS\2339\18\2nd Submittal\A02.<loc W.O. 2339-18 6/23/2005 10:43 AM DRAINAGE STUDY for EMERALD POINTE ESTATES City of Carlsbad, California Prepared for: RWR Homes Inc. 2710 Locker Avenue West Suite 350 Carlsbad, CA 92008 w.o. 2339-18 June 22, 2005 Hunsaker & Associates San Diego, Inc. Raymond L. Martin, R.C.E. Vice President AH:ah H:\REPORTS\2339\im2nd Subinittal\A02.doc W.O. 2339-18 5/21/2005 11:50 AM Drainage Study Emerald Pointe Estates TABLE OF CONTENTS Chapter 1 - Executive Summary 1.1 Introduction 1.2 Vicinity Map 1.3 Existing Condition 1.4 Proposed Project 1.5 Summary of Results 1.6 Conclusion 1.7 References SECTION I Chapter 2 - Methodoiogy & Model Development 2.1 City of Carlsbad Drainage Design Criteria 2.2 Rational Method Hydrologic Analysis 2.3 Storm Drain System Analysis Chapter 3 - Rational Method Hydrologic Analysis (Existing Conditions) 3.1 10-Year Existing Condition AES Model Output 3.2 100-Year Existing Condition AES Model Output III Chapter 4 - Rational Method Hydrologic Analysis (Developed Conditions) 4.1 10-Year Developed Condition AES Model Output 4.2 100-Year Developed Condition AES Model Output IV Chapter 5 - Hydraulic Analysis 5.1 Proposed Svstem Storm Drain Legend Starting Water Surface Elevation Determination Storm Model Input and Output 5.2 Existinq Svstem Storm Drain Legend Starting Water Surface Elevation Determination Storm Model Input and Output AH:ah H:\REPORTS\2339M8\2nd SubmitlalW02.doc W.O. 2339-18 e/21/2005 11:50 AM Drainage Study Emerald Pointe Estates Chapter 6 - Inlet Sizing, Ditch Sizing and Riprap Design VI Chapter 7 - Detention Basin Design Vll 7.1 10-Year, 6-Hour Analysis 7.2 100-Year, 6-Hour Analysis Chapter 8 - Appendices Xlll Appendix 8.1 10-Year, 6-Hour Isopluvial Map 100-Year, 6-Hour Isopluvial Map Soils Map Appendix 8.2 Maximum Overland Flow (Lm) & Initial Time of Concentration (Ti) (Table 3-2 in San Diego County Hydrology Manual) Appendix 8.3 Rational Formula - Overland Time of Flow Nomograph (Figure 3.3 in San Diego County Hydrology Manual) Appendix 8.4 Intensity-Duration Design Chart (Figure 3.1 in San Diego County Hydrology Manual) Appendix 8.5 Runoff Coefficients for Urban Areas (Table 3-1 in San Diego County Hydrology Manual) Appendix 8.6 Gutter and Roadway Discharge-Velocity Chart (Figure 3.6 in San Diego County Hydrology Manual) Appendix 8.7 Excerpts from "Hydrology and Hydraulic Study for Cobblestone Sea Village C.T. 84-32" Appendix 8.8 Excerpts from "Hydroiogy and Hydraulic Study for Mariano" Appendix 8.9 Drawing No. 345-9 "Improvement Plans for Cobblestone Sea Village Unit 1 & 2", Sheet 20 AH:ah H:\REPORTS\2339M8V2nd Submittal\A02.doc W.O. 2339-18 6/21/2005 11:50 AM Drainage Study Emerald Pointe Estates Appendix 8.10 Drawing No. 367-2C "Improvement Plans for Mariano", Sheets 12-14 Appendix 8.11 Drawing No. 345-9A "Grading and Erosion Control Plans for Cobblestone Sea Village Unit 1 & 2", Sheets 7 and 10 Chapter 9 - Hydrology Exhibits IX Exhibit 9.1 Existing Condition Hydrology Map Exhibit 9.2 Developed Condition Hydrology Map AH:ah H:\REPORTS\2339M8\2nd SubmMal\A02.doc W.O. 2339-18 6/21/2005 11:50 AM Drainage Study Emerald Pointe Estates EXECUTIVE SUMMARY Introduction The Emerald Pointe Estates site is located on the northwest corner of the Cobblestone Drive-Sapphire Drive intersection in the City of Carlsbad, California. The site is also bound by the existing Cobblestone Sea Village residential development to the east and Cobblestone Road to the south. The vicinity map below has been included to illustrate the project site's location. Vicinity Map CITY OF SAN MARCOS CITY OF ENCINITAS VICINITY MAP NOT TO SCALE This drainage study will address: • 100-Year Peak Flowrates for Existing and Developed Conditions • Hydraulic Calculations • Curb Inlet Sizing, Ditch Sizing and Riprap Design • Detention Basin Design • Drainage Ditch and Riprap Sizing AH:ah H:\REPORTS\2339M 8\2n<) Sdbmiaal\A02.doc W O. 2339-18 8/21/2005 11:50 AM Drainage Study Emerald Pointe Estates Existing Condition I In its pre-developed condition, the Emerald Pointe Estates site consists of undisturbed terrain covered with natural vegetation with approximately 300-ft of improvements along the western portion of Sapphire Drive. A drainage ditch per Drawing No. 345-9A is supposed to drain peak runoff from the undeveloped area along the edge of Cobblestone Drive and then Cobblestone Road, through an 18" PVC culvert that crosses an access driveway, and finally towards the outfall location of an existing 66" RCP pipe (see Appendix 8.9). However, an on-site visit revealed that the drainage ditch and 18" PVC culvert do not exist; thus, peak discharge from the undeveloped site flows onto Cobblestone Drive where it is picked up by two existing inlets per Drawing No. 345-9 at Nodes 50.2 and 53 (see Exhibit 9.1). The runoff is then directed via storm drain until it eventually outlets into Encinas Creek. Proposed Proiect The 18-acre site will consist of fourteen proposed single-family residential lots, comprising approximately 4.7-acres of the gross acreage, along with an internal storm drainage system and two open space lots. The western portion of Sapphire Road will be realigned and re-graded and complete improvements including sidewalks, curbs and gutters, and underground utilities will be designed in accordance with the new alignment. Also, a detention basin will be built in order to mitigate the increment in peak discharge produced by development ofthe site. Peak discharge from the developed site will be collected by two on-grade Type "B-1" curb inlets and will be directed into a proposed detention basin via a 24" RCP storm drain system. Once the detention basin has attenuated the increment in runoff produced by the development ofthe site, the flows will be directed via a 36" CMP riser and an 18" RCP pipe towards an existing storm drain system per Drawing No. 345-9 along Cobblestone Drive. The discharge then follows into its predetermined path via storm drain until it eventually outlets into Encinas Creek. Summarv of Results Four separate rational method analyses were performed for this project: • 10-Year Existing Condition Study • 10-Year Developed Condition Study • 100-Year Existing Condition Study • 100-Year Developed Condition Study The 10-year storm event studies analyze the detention basin capacity more in depth, while the 100-year storm event studies are used to size curb inlets and storm drains. In the Rational Method analyses, a runoff coefficient of 0.35 was used for undisturbed, natural terrain, while for developed areas, a runoff coefficient of 0.52 was used, which corresponds to medium density residential developments with 4.3 dwelling units per acre (see Appendix 8.5). A runoff coefficient of 0.95 was used for AH;ah H:\REP0RTS\2339M8\2nd Submlnal\A02.doc W.0.2339-18 8/21/2005 11:50AM Drainage Study Emerald Pointe Estates paved streets, corresponding to areas that are 90% impervious. All mnoff coefficients are based on the most current "San Diego County Hydrology Manuar and on soil type "D" since it provides the highest values; hence, producing more conservative results. Existing and developed condition peak flowrates, listed on Table 1 below, are based on the AES-2003 computer program and the City of Carlsbad Engineering Standards (see Chapters 2 and 3). Watershed delineations and node locations are visually depicted on Exhibit 9.1 and Exhibit 9.2, which are located in the back pocket of this report (see Chapter 9). TABLE 1 Existing and Developed Conditions Hydrologic Results at Node 48 Drainage Area A (acres) 100-Year Peak Flow Q (cfs) Time of Concentration Tc (min) Existing Conditions 139.2 181.1 30.3 Developed Conditions 143.0 180.5 30.3 Per Table 1 above, development of the site does not increase runoff at the receiving storm drain system's outfall at Node 48; in fact the peak discharge is decreased by 0.6-cfs. At the detention basin's outfall at Node 50.2 the flows increase slightly from 7.1-cfs in existing conditions to 7.3-cfs during developed conditions and at Node 53 the flows decreased from 5.2-cfs in existing conditions to 4.1-cfs in developed conditions; thus, resulting in no increment due to development ofthe site. Upon finalizing the design of the proposed storm drain systems, a hydraulic analysis ofthe proposed storm drain pipes and the existing storm drain system along Cobblestone Drive was performed using the Storm computer software. Using a known starting downstream water surface elevation at the discharge locations, the program calculated the hydraulic grade line for the RCP storm drain systems (see Chapter 5 for storm drain legends and Storm model inputs and outputs). Two Storm models where created for the proposed system: the first beginning at the most upstream point ofthe storm drain system and ending at the Best Management Practice (BMP) and the second starting at the BMP and ending at the system's outfall in the detention basin. The starting water surface elevation for the model ending at the BMP was determined by calculations performed by CDS Technologies Inc. regarding headiosses within the BMP (see Section 5.1). The starting water surface elevation for the model starting at the BMP and ending at the detention basin (at Node 107) was determined to be 238.3-ft and was obtained from the detention basin's water surface elevation (see Chapter 7). The starting water surface elevation for the existing stoi'm drain system (at Node 48) of 136.30-ft was AH:ad H:\REP0RTS\2339\18\2reJ SublIlitta^A02.doc W.O. 2339-18 6/23/2005 12:04 PM Drainage Study Emerald Pointe Estates determined by using the FlowMaster program to calculate the depth of flow within the outfall pipe ofthe system; thus, detennining the starting water surface elevation at the downstream end. Since the flow within the pipe was supercritical, the normal depth is used as the depth of flow (see Section 5.2). Two on-grade Type "B-1" curb inlets at Nodes 103 and 104 were sized to ensure that they are capable of handling 100-year peak flows. A 1-ft wide by 0.5-ft deep drainage ditch located north of Lots 11,12 and 13 has been sized to convey lOO- year peak flows at a minimum slope of 1 % while containing at least 2-inches of freeboard. At the downstream end of the ditch, where a concentrated flow outfalls to a natural watercourse, an energy dissipator has been designed in accordance with San Diego County Regional Standards in orderto prevent channel erosion (see Chapter 6 for inlet sizing, ditch sizing, and riprap design). A detention basin was designed in order to mitigate the increment in peak discharge produced by development of the site. At Node 107, for the 10-year storm event, before attenuation ofthe peak discharge, the runoff draining into the basin was 6.3- cfs. One 6-in orifice placed at the bottom ofthe basin at an elevation of 232-ft has been recommended in order to mitigate the flow down to 2.0-cfs (see Section 7.1). At the same location, for the 10O-year storm event, before attenuation of the peak discharge, the runoff draining into the basin was 9.7-cfs. The 6-in orifice attenuates the flow down to 2.3-cfs (see Section 7.2) and allows for a freeboard of 1.7-ft in the detention basin. A 36" CMP riser with its top placed at the 10O-year water surface elevation of 238.3-ft has also been recommended in orderto drain the runoff out of the basin in case the 6" orifice clogs; thus, acting as an emergency spillway. Even if the 6" orifice clogs, the detention basin still has a freeboard of 1.1-ft (see Chapter 7 for Basin Design and Calculations). Storm water quality goals and objectives have already been established for the proposed project site. One flow-based treatment control BMP has been sized to treat the first flush while bypassing higher flows to the discharge location. A CDS Model PMSU 20_15 treatment unit (or approved equivalent unit) has been recommended. Post-construction BMP methodology, calculations, and sample device for the proposed storm drain system has been presented in the storm water management plan (SWMP) entitled "Storm Water Management Plan for Emerald Pointe Estates CT 02-07' prepared by Hunsaker & Associates San Diego, Inc. on June 2005. Please refer to the above described report for specific information regarding storm water quality. Conclusion Drainage design, including watershed delineation and storm drain sizing, results in minimal impact to downstream property owners. Construction of the storm drain improvements as shown herein shall safely collect and convey peak discharge through the developments. AH:ad H:\REP0RTS\2339M8\2nd Submlttal\A02.doc W O. 2339-18 6/23/2005 12:04 PM Drainage Study Emerald Pointe Estates References "San Diego County Hydrology Manual". Department of Public Works - Flood Control Section. County of San Diego, California. Revised June 2003. "City of San Diego Regional Standard Drawings". Section D - Drainage Systems. Updated March 2000. "City of Carlsbad Engineering Standards". City of Carlsbad, California. June 2004. "Hydrology and Hydraulic Study for Cobblestone Sea Village C.T. 84-32". Hunsaker & Associates San Diego, Inc. May 29, 1996. "Hydrology and Hydraulic Study for Mariano". Hunsaker & Associates San Diego, Inc. June 23, 1999. Drawing No. 345-9 "Improvement Plans for Cobblestone Sea Village Unit 1 & 2". Hunsaker & Associates San Diego, Inc. May 8,1997. Drawing No. 345-9A "Grading and Erosion Control Pians for Cobblestone Sea Village Unit 1 & 2". Hunsaker & Associates San Diego, Inc. March 27, 1997. Drawing No. 367-2C "Improvement Plans Mariano". Hunsaker & Associates San Diego, Inc. September 17, 1999. "Storm Water Management Plan for Emerald Pointe Estates CT 02-07'. Hunsaker & Associates San Diego, Inc. June 2005. AH:ah H:\REPORTS\2339Via\2nd Submitta^A02.doc W.O. 2339-18 6/21/2005 11:50 AM Drainage Study Emerald Pointe Estates CHAPTER 2 METHODOLOGY & MODEL DEVELOPMENT 2.1 - City of Carlsbad Engineering Standards AH:ah H:\REPORTS\2339\18\2nd Submittal\A02.doc W.O. 2339-18 6/21/2005 11:50AM CHAPTER 5- DRAINAGE AND STORM DRAIN STANDARDS 1. GENERAL A All drainage design and requirements shall be in accordance with the latest City of Carlsbad Standard Urban Stomi Water Mitigation Plan (SUSMP). Jurisdictional Urban RunofF Management Plan (JURMP), Master Drainage and Storm Water Quality Management Plan and the requirements of the City Engineer and be based on full development of upstream tributary basins. B. Public drainage facilities shall be designed to carry the ten-year six-hour stonn underground and the 100-year six-hour storm between the top of curbs. All culverts shall be designed to accommodate a 100-year six-hour storm with a one foot freeboard at entry conditions such as inlets and head walls. C. The use of underground storni drain systems, in addition to standard curb and gutter shall be required: 1) When flooding or street overflow during 100-year six-hour stonn cannot be maintained between the top of curbs. 2) When 100-year six-hour stonn flow from future upstream development (as prciposed in the existing General Plan) will cause damage to structures and improvements. 3) When existing adequate drainage facilities are available for use (adjacent to proposed development). 4) When more than one travel lane of arterial and collector streets would be obstructed by 10-year 6-hour storm water flow. Special consideration will be required for super-elevated streets. D. The use of underground storm drain systems may be required: 1) When the water level in streets at the design storm is within 1" of top of curb. 2) When velocity of water in streets exceeds 11 FPS. 3) When the water travels on suriiace street improvements for more than 1,000". E. The type of drainage facility shall be selected on the basis of physical and cultural adaptability to the proposed land use. Open channels may be considered in lieu of underground systems when the peak flow exceeds the capacity of a 48" diameter RCP. Fencing of open channels may be required as detennined by the City Engineer. F. Permanent drainage facilities and right-of-way, including acciess, shall be provided from development to point of approved disposal. Page 1 of 5 G Storm Drains constructed at a depth of 15* or greater measured from finish grade to the top of pipe or structure shall be considered deep stomi drains and should be avoided if at all possible. When required, special design consideration will be required to the satisfaction of the City Engineer. Factors considered in the desian will include: 1) Oversized specially designed access holes/air shafts 2) Line encasements 3) Oversizing lines 4) Increased easement requirements for maintenance access 5) Water-tight joints 6) Additional thickness of stonn drain The project designer should meet with the planchecker prior to initiation of design to review design parameters. H. Concentrated drainage fi-om lots or areas greater than 0.5 acres shall not be discharged to City streets unless specifically approved by the City Engineer. I. Diversion of drainage fi'om natural or existing basins is discouraged. J. Drainage design shall comply with the City's Jurisdictional Urban Runoff Management Plan (JURMP) and requirements of the National Pollutant Discharge Elimination System (NPDES) pennit. 2. HYDROLOGY A Off site, use a copy of the latest edition City 400-scale topographic mapping. Show existing culverts, cross-gutters and drainage courses based on field review. Indicate the direction of flow; cleariy delineate each drainage basin showing the area and discharge and the point of concentration. B. On site, use the grading plan. If grading is not proposed, then use a 100-scale plan or greater enlargement Show all proposed and existing drainage facilities and drainage courses. Indicate the direction of flow. Cleariy delineate each drainage basin showing the area and discharge and the point of concentration. C. Use the charts in the San Diego County Hydrology Manual for finding the "Tc" and "I". For small areas, a five minutemay be utilized with prior approval ofthe City Engineer. D. Use the existing or ultimate development, whichever gives the highest "C factor. E. Use the rational formula Q = CIA for watersheds less than 0.5 square mile unless an altemate method is approved bythe City Engineer. For watersheds in excess of 0.5 square mile, the method of analysis shall be approved by the City Engineer prior to submitting calculations. Page 2 of 5 HYDRAULICS A Street - provide: 1) Depth of gutter flow calculation. 2) Inlet calculations. 3) Show gutter flow Q, inlet Q, and bypass Q on a plan of the street. B. Stonn Drain Pipes and Open Channels - provide: 1) Hydraulic loss calculations for: entrance, friction, junction, access holes, bends, angles, reduction and enlargement. 2) Analyze existing conditions upstream and downstream fi-om proposed system, to be detennined by the City Engineer on a case-by-case basis. 3) Calculate critical depth and nonnal depth for open channel flow conditions. 4) Design for non-silting velocity of 2 FPS in a two-year frequency storm unless othenwise approved by the City Engineer. 5) All pipes and outlets shall show HGL, velocity and Q value(s) for design storm. 6) Confluence angles shall be maintained between 45° and 90° from the main upstream flow. Flows shall not oppose main line flows. INLETS ' A CuriD inlets at a sump condition should be designated for two CFS per lineal foot of opening when headwater may rise to the top of curb. B. CuriD inlets on a continuous grade should be designed based on the following equation: Q = 0.7 L (a + yf"" Where: y = depth of flow in approach gutterJn feet a = depth of depression of flow line at inlet in feet L = length of clear opening in feet (maximum 30 feet) Q = flow in CFS, use 10O-year design stomn minimum Grated inlets should be avoided. When necessary, the design should be based on the Bureau of Public Roads Nomographs (now known as the Federal Highway Administration). All grated inlets shall be bicycle proof. All catch basins shall have an access hole in the top unless access through the grate section satisfactory to the City Engineer is provided. Page 3 of 5 E. Catch basins/curb inlets shall be located so as to eliminate, whenever possible cross gutters. Catch basins/curb inlets shall not be located within 5' of any curb retum or driveway. ' R Minimum connector pipe for public drainage systems shall be 18". G Flow through inlets may be used when pipe size is 24" or less and open channel flow characteristics exist. 5. STORM DRAINS ^ EnSneer ^'"^^ '^^^ ^'^"^"^ othen/vise approved by the City B. Minimum stonn drain, within public right-of-way, size shall be 18" diameter. C. Provide cleanouts at 300' maximum spacing, at angle points and at breaks in grade greater than 1%. For pipes 48" in diameter and larger, a maximum spacing of 500' may be used. When the stonn drain clean-out Type A dimension of "V" less "Z" is greater than 18", a stonn drain clean-out Type B shall be used. D. The material for storm drains shall be reinforced concrete pipe designed in conformance with San Diego County Flood Control District's design criteria as modified by Carisbad Standard Specifications. Comigated steel pipe shall not be used. Plastic/rubber collars shall be prohibited. E. Horizontal cun/e design shall confonn to manufacturer recommended specifications. Vertical cun/es require prior approval from the City Engineer. R The pipe invert elevations, slope, pipe profile line and hydraulic grade line for design flows shall be delineated on the mylar of the Improvement plans Any utilities crossing the storm drain shall also be delineated. The strength classification of any pipe shalLbe shown on the plans. Minimum D-load for RCP shall be 1350 in all City streets or future rights-of-way Minimum D-load for depths less than 2", if allowed, shall be 2000 or greater. G For all drainage designs not covered In these Standards, the current San Diego County Hydrology and Design and Procedure Manuals shall be used. H. For stomi drain discharging into unprotected or natural channel, proper energy dissipation measures shall be installed to prevent damage to the channel or erasion. In cases of limited access or outiet velocities greater than 18 fps a concrete energy dissipater per SDRS D-41 will be required. Page 4 of 5 1. The use of detention basins to even out stonn peaks and reduce piping is permitted with substantiating engineering calculation and proper maintenance agreements. Detention basins shall be fenced. J. Desiltation measures for silt caused by development shall be provided and cleaned regulariy during the rainy season (October 1 to April 30) and after major rainfall as required by the City Engineer or his designated representative. Adequate storage capacity as detennined by the City Engineer shall be maintained at all times. K. Protection of downstream or adjacent properties from incremental fiows (caused by change from an undeveloped to a developed site) shall be provided. Such fiows shall not be concentrated and directed across unprotected adjacent properties unless an easement and stomn drains or channels to contain fiows are provided. L. Unprotected downstream channels shall have erosion and grade control structures installed to prevent degradation, erosion, alteration or downcutting of the channel banks. M. Storm drain pipes designed for flow meeting or exceeding 20 feet per second will require additional cover over invert reinforcing steel as approved by the City Engineer. Stonn drain pipe under pressure flow for the design storni, i.e., HGL above the soffit of the ppe, shall meet the requirements of ASTM C76, 0361, 0443 for water-tight joints in the sections of pipe calculated to be under pressure and an additional safety length beyond the pressure flow point. Such safety lengtii shall be detennined to the satisfaction of the City Engineer taking into consideration such factors as pipe diameter, Q, and velocity. O. An all weather access road from a paved public right-of-way shall be constructed to all drainage and utility improvements. The following design parameters are required: Maximum grade 14%, 15 MPH speed, gated entry, minimum paved width 12 feet, 38' minimum radius, paving shall be a minimum of 4" AC over 4" Class 11 AB, tumaround required if over 300'. \Notk areas should be provided as approved by tiie pian checker. Access roads should be shown on the tentative project approval to ensure adequate environmental review. P. Engineers are encouraged to gravity drain all lots to the street without use of a yard drain system. On projects with new street improvements proposed, a curb outiet per SDRSD D-27 shall be provided for single-family residential lots to allow yard drains to connect to the streets gutter. N. Page 5 of 5 CITY OF CARLSBAD MODIFICATIONS TO THE SAN DIEGO REGIONALSTANDARD DRAWINGS DWg MODIFICATION G-12 Add: smooth trowel flow line (typical) 7-1/2" thick with a minimum of 6" of aggregate base per City of Carisbad Standard GS-17. G-13 Add: smooth trowel flow line (typical), 7-1/2" thick, with a minimum 6" of aggregate base per City of Carisbad Standard GS-17. G-14 Change: Residential Thickness = 5-1/2" Commercial/Multi-Family Residential Thickness = 7-1/2" G-15 Delete requirement 3 G-24 'Type-A" only (delete 'Type B") G-25 "Type-C" only (delete 'Type D") G-26 Change thickness from 5-1/2" to 7-1/2" and add minimum 4" Class II base under curiD/gutter (to 6" past back of curb). G-33 Delete G-34 "Type-C" only (delete 'Type D") G-35 "Type-F" only (delete 'Type E") M General: Agency shall be ""Oity of Carisbad" M-2 Add: To be used only with specific approval ofthe Oity Engineer. Drainage Study Emerald Pointe Estates CHAPTER 2 METHODOLOGY & MODEL DEVELOPMENT 2.2 - Rational Method Hydrologic Analysis AH:ah H:\REPORTS\2339M8\2nd SubmlnalVA02.doc W.0.2339-18 8/21/2005 11:50 AM Drainage Study Emerald Pointe Estates Rational Method Hvdrologic Analvsis Computer Software Package - AES-2003 Design Storm - 100-Year Return Interval Land Use - Single-Family Residential in Developed Areas Soil Type - Hydrologic soil group D was assumed for all areas since it corresponds to the highest runoff coefficient; thus, producing more conservative results. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer at or near the surface, and shallow soils over neariy impervious materials. Group D soils have a very slow rate of water transmission. Runoff Coefficient - In accordance with the County of San Diego standards, single-family residential areas with 4.3 DU/ac were designated a runoff coefficient of 0. 52 while natural areas were designated a runoff coefficient of 0.35. A mnoff coefficient of 0.95 was used for paved streets, corresponding to areas that are 90% impervious. Method of Analysis - The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 1.0 square mile, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation: Q = CIA, where: Q = The peak runoff rate in cubic feet per second at the point of analysis. C = A runoff coefficient representing the area - averaged ratio of runoff to rainfall intensity. I = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration. A = The drainage basin area in acres. To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes. The procedure for the subarea summation model is as follows: 1. Subdivide the watershed into an initial subarea (generally 1 lot) and subsequent subareas, which are generally iess than 10 acres in size. Assign upstream and downstream node numbers to each subarea. 2. Estimate an initial Tc by using the appropriate nomograph or overiand flow velocity estimation. 3. Using the initial Tc, determine the corresponding values of I. Then Q = C I A. AH:ah H:\REP0RTS\2339\18\2nd SulimittalW02.doc W.0.2339-18 8/21/2005 11:50AM Drainage Study Emerald Pointe Estates 4. Using Q, estimate the travel time between this node and the next by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration) The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-2003 computer subarea menu is as follows: SUBAREA HYDROLOGIC PROCESS 1. Confluence analysis at node. 2. Initial subarea analysis (including time of concentration calculation). 3. Pipeflow travel time (computer estimated). 4. Pipeflow travel time (user specified). 5. Trapezoidal channel travel time. 6. Street flow analysis through subarea. 7. User - specified information at node. 8. Addition of subarea mnoff to main line. 9. V-gutter flow through area. 10. Copy main stream data to memory bank 11. Confluence main stream data with a memory bank 12. Clear a memory bank At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape. (1) . If the collection streams have the same times of concentration, then the Q values are directly summed, Qp = Qa Qb; Tp = Ta = Tb (2) . If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows: (i). The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities. Qp = Qa -I- Qb (la/lb); Tp = Ta AH:ah H:\REPORTSX2339\18\2nd Subinittal\A02.doc W.O. 2339-18 6/21/2005 11:50 AM Drainage Study Emerald Pointe Estates (ii). In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a ratio ofthe T values. Qp = Qb-^Qa (Tb/Ta); Tp = Tb AH:ah H:\REPORTS\2339\ia\2nd Sul)mi«al\A02.doc W.0.2339-18 6/21/2005 11:50AM Drainage Study Emerald Pointe Estates CHAPTER 2 METHODOLOGY & MODEL DEVELOPMENT 2.3 - Storm Drain System Analysis AH:ali H:\RSPORTS\2339M8Cnd Submatal\A02.doc W.O. 2339-18 6/21/2005 11:50 AM i Drainage Study Emerald Pointe Estates Storm Drain Hvdraulic Analvsis Computer Software Package - Storm Design Storm - 100-Year Return Interval Roughness Coefficient - Manning's "n" value of 0.013 (concrete pipe) Minimum Pipe Diameter -18 inches Minimum Grade of Storm Drains - 0.005 Given the discharge and the physical characteristics of a proposed storm drain system, the "Storm" computer program, from Los Angeles Public Works, generates hydraulic grade line elevations at junctions and inlet locations. Hydraulic grade line elevations are calculated by evaluating friction and minor losses throughout the system. To determine the hydraulic characteristics at a junction, the pressure plus momentum equation is applied at end points of the junction to detemiine the control point and to compute the conjugate depth at the opposite end of the junction. When flow changes from partial flow to full flow or from full flow to partial flow, the program determines the location in the line where the change occurs. The program also determines the precise locations of hydraulic jumps (where flow changes from supercritical to subcritical flow) along with the pressure plus momentum at the jump and flow depth before and after the jump. A typical storm drain analysis procedure is as follows: 1. Establish the main line of the entire storm drain system. Generally, lines carrying the majority of the flow will constitute the main line. 2. Establish the main line of any lateral system by proceeding upstream from the main line junction to the highest upstream inlet. 3. Number the main line segments consecutively in the upstream direction to the most upstream inlet. Then, number each lateral system in the same manner (with values greater than that of the main line). Note: The storm program is number sensitive. Therefore, a chronological number system must be established. 4. For each line, tabulate pertinent data such as the maximum design flow, conduit size and length, flow line elevations, minor loss coefficients for manholes, bends, etc., entrance loss coefficients forthe inlets, and confluence angles at all junctions. AH:ah H:\REPORTS\2339\18\2nd SubminaH402.doc W.0.2339-18 8/21/2005 11:50AM Drainage Study Emerald Pointe Estates Junction loss coefficients, Kj, range from 0 to 1.0 depending on the efficiency of the junction design. Junction losses are calculated by multiplying Kj times the velocity head in the outlet conduit. If the value of Kj is left blank or the pipe flow condition is partially full, the pressure plus momentum equation is used to determine the junction losses. Entrance loss coefficients, Ke, range from 0.04 (bell-mounted entrance) to 0.5 (flush headwall entrance). The entrance loss is computed by multiplying K© times the velocity head in the outlet conduit. Minor loss coefficients. Km, are the summation of losses from bends, manholes, etc. The total minor loss, computed as Km times the velocity head in the conduit, is added to friction losses in the hydraulic analysis for full flow only. V 1 v2 FL 1 FL2 D 1 D2 HG 1 HG2 X X(N) X(J) F(J) D(BJ) D(AJ) SEAL FULL PART HYD JUMP HJ @ UJT HJ @ DJT LINE N0/L2 MAXQ Leaend of Abbreviations Velocity at the downstream end (fps) Velocity at the upstream end (fps) Flowline at the downstream end (ft) Flowline at the upstream end (ft) Depth of flow at the downstream end (ft) Depth of flow at the upstream end (ft) Hydraulic grade line at the downstream end (ft) Hydraulic grade line at the upstream end (ft) Distance from downstream end to point where HGL intersects soffit in seal condition (ft) Distance from downstream end to point where water surface reaches normal depth by either drawdown or backwater (ft) Distance from downstream end to point where hydraulic jump occurs in line (ft) Force at the hydraulic jump Depth of water before the hydraulic jump, upstream end (ft) Depth of water after hydraulic jump, downstream end (ft) Indicated flow changes from partial to full or from full to partial Pipe is running full, flow exceeds the pipe soffit Pipe is partially full, flow is contained within the pipe Indicates that flow changes from supercritical to subcritical through a hydraulic jump Indicates that a hydraulic jump occurs at the upstream junction Indicates that a hydraulic jump occurs at the downstream junction Identification number for each pipe Maximum design flow (cfs) AH;ad H:\REP0RTS\2339M8V2nd Submitla^A02.doc W.0.2339-18 6/23/2005 12:05PM Drainage Study Emerald Pointe Estates Legend of Abbreviations (continued) ADJ Q LENGTH CTL/TW D W S KJ KE KM LC Ll L3 L4 Al A3 A4 J N Q DN DC FLOW TYPE SF-FULL TWCALC TWCK REMARKS Adjusted flow for junction calculations (cfs) Line length (ft) Hydraulic grade line elevation or top of water elevation (ft) Diameter of circular conduit or depth of rectangular conduit (in) Width of rectangular conduit (in) Structure type at the upstream end (1 for inlets, catch basins, headwalls, etc., 2 for box inlet stmcture with trash rack, 3 for manhole, junction stmcture, in line inlet or catch basin, etc.) Junction Loss Coefficient for use with Structure Type 3, ranges from 0 to 1.0 Entrance Loss Coefficient for use with Structure Types 1, 2, or 3 when applicable, ranges from 0.04 to 0.5 Minor Loss Coefficient, summation of the loss coefficients for bends, manholes, etc. Control Line Number, sets the desired water elevation to use Main Line Number, next upstream pipe if any Lateral Line Number (if any), lateral pipe identification number Lateral Line Number (if any), lateral pipe identification number Angle of Ll from the prolongation of L2 (degrees) Angle of L3 from the prolongation of L2 (degrees) Angle of L4 from the prolongation of L2 (degrees) Junction length for Stmcture Type 3 (ft) Manning's Coefficient Conduit flow (cfs) Normal depth of flow(ft) Critical depth (ft) If pipe is mnning partially full (PART), full (FULL), or flow changes from partial to full or vice versa (PART) Friction slope for full flow regardless of actual flow type (ft/ft) Calculated top of water elevation for Structure Types 1 and 2 (ft) Check top of water elevation for Structure Types 1 and 2 (ft) Comments if line has a hydraulic jump (HYD JUMP), if hydraulic jump occurs at the upstream junctions (HJ @ UJT), or if hydraulic jump occurs at the downstream junction (HYD @ DJT) AH:ad H:\REPORTS\2339M8\2nd Sub^litta^A02.d(lC W.O. 2339-13 6/23/2005 12:05 PM Drainage Study Emerald Pointe Estates CHAPTER 3 RATIONAL METHOD HYDROLOGIC ANALYSIS (EXISTING CONDITIONS) 3.1 - 10-Year Existing Condition AES Model Output AH:ah H:\RgPORTS\2339M8\2nd Submiltal\A02.doc W.O. 2339-18 6/21/2005 11:50 AM ********** ****************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COTJNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES - SAN DIEGO 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * EMERALD POINTE ESTATES * * 10-YEAR EXISTING CONDITION HYDROLOGIC ANALYSIS * * W.0.# 2339-18 PREPARED BY: AH * ^^,>.*********************************************************************** FILE NAME: H:\AES2003\23 3 9\18\EX10.DAT TIME/DATE OF STUDY: 08:43 06/23/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2 0 03 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 10.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.800 SPECIFIED MINIMtJM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CtJRB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / 0UT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 18.0 9.0 0.020/0.020/ 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* BEGIN HYDROLOGIC ANALYSIS *,t************************************************************************** FLOW PROCESS FROM NODE 5 0.20 TO NODE 50.20 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT N0DE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 11.86 RAIN INTENSITY(INCH/HOUR) = 2.72 TOTAL AREA(ACRES) = 2.8 0 TOTAL RUNOFF(CFS) = 4.46 + + I Data above obtained from the "Hydrology and Hydraulic Study for Cobble- | I Stone Sea Village CT 84-32" dated May 29, 1996. I I See Appendix 8.7. I + + jt*jm************************************************************************ FLOW PROCESS FROM NODE 50.20 TO NODE 50.20 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.717 *USER SPECIFIED(SUBAREA): RESIDENTIAL (2.9 DU/AC OR LESS) RUNOFF COEFFICIENT = .3500 S.C.S. CtJRVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5698 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 3.01 TOTAL RUNOFF(CFS) = 4.66 TC(MIN.) = 11.86 + + I The Code 8 above pertains to Subarea A. I I See Hydrology Exhibit 9.1. j I + **************************************************************************** FLOW PROCESS FROM NODE 50.20 TO NODE 50.10 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 224.60 DOWNSTREAM(FEET) = 222.60 FLOW LENGTH(FEET) = 16.25 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.75 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.66 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 11.8 8 LONGEST FLOWPATH FROM NODE 0.0 0 TO NODE 50.10 = 16.25 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5 0.10 TO NODE 50.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.88 RAINFALL INTENSITY(INCH/HR) = 2.71 TOTAL STREAM AREA(ACRES) = 3.01 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.66 jm#.,t,e*********************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT N0DE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.64 RAIN INTENSITY(INCH/HOUR) = 2.37 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) = 13.22 + + I Data above obtained from the "Hydrology and Hydraulic Study for Cobble- | I stone Sea Village CT 84-32" dated May 29, 1996. I I See Appendix 8.7. i + + ^t*.it****************************************** ******************************* FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.64 RAINFALL INTENSITY(INCH/HR) = 2.37 TOTAL STREAM AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.22 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 4.66 11.88 2.714 3.01 2 13.22 14.64 2.372 10.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 15.39 11.88 2.714 2 17.29 14.64 2.372 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.29 Tc(MIN.) = 14.64 TOTAL AREA(ACRES) = 13.01 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 50.10 = 16.25 FEET. **************************************************************************** FLOW PROCESS FROM NODE 5 0.10 TO NODE 109.00 IS CODE = 41 >>>>>COMPtJTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 222.00 DOWNSTREAM(FEET) = 208.46 FLOW LENGTH(FEET) = 186.32 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.08 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.29 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) =14.83 LONGEST FLOWPATH FROM NODE 0.0 0 TO NODE 109.00 = 202.57 FEET. **************************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 43.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 208.00 DOWNSTREAM(FEET) = 175.05 FLOW LENGTH(FEET) = 287.01 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.97 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.29 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 15.09 LONGEST FLOWPATH FROM NODE 0.0 0 TO NODE 43.00 = 489.58 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.09 RAINFALL INTENSITY(INCH/HR) = 2.33 TOTAL STREAM AREA(ACRES) = 13.01 PEAK FLOW RATE (CFS) AT CONFLUENCE = 17.29 **************************************************************************** FLOW PROCESS FROM NODE 3 8.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.2 6 RAIN INTENSITY (INCH/HOtJR) = 2.53 TOTAL AREA (ACRES) = 2.20 TOTAL RtJNOFF (CFS) = 3.24 + + I Data above obtained from the "Hydrology and Hydraulic Study for | I Cobblestone Sea Village CT 84-32" dated May 29, 1996. 1 I See Appendix 8.7. I * * * * * *********************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.26 RAINFALL INTENSITY(INCH/HR) = 2.53 TOTAL STREAM AREA(ACRES) = 2.2 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.24 **************************************************************************** FLOW PROCESS FROM NODE 53.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 6.60 RAIN INTENSITY(INCH/HOUR) = 3.96 TOTAL AREA(ACRES) = 0.8 0 TOTAL RUNOFF(CFS) = 2.3 5 + I Data above obtained from the "Hydrology and Hydraulic Study for | I Cobblestone Sea Village CT 84-32" dated May 29, 1996. I I See Appendix 8.7. I + + **************************************************************************** FLOW PROCESS FROM NODE 53.00 TO NODE 53.00 IS CODE = 81 >>>>>ADDITION OF StJBAREA TO MAINLINE PEAK FLOW<<<<< 10 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 3.965 *USER SPECIFIED(SUBAREA): RESIDENTIAL (2.9 DU/AC OR LESS) RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RtJNOFF COEFFICIENT = 0.5504 StJBAREA AREA (ACRES) = 0.76 StJBAREA RtJNOFF (CFS) = 1.05 TOTAL AREA(ACRES) = 1.56 TOTAL RtJNOFF(CFS) = 3.40 TC(MIN.) = 6.60 I Code 8 above pertains to Subarea B. I I See Hydrology Exhibit 9.1. I 1 I + + **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.60 RAINFALL INTENSITY(INCH/HR) = 3.96 TOTAL STREAM AREA(ACRES) =1.56 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 3.40 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 17.29 15.09 2.326 13.01 2 3.24 13.26 2.528 2.20 3 3.40 6.60 3.965 1.56 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 15.16 6.60 3.965 2 21.32 13.26 2.528 3 22.27 15.09 2.326 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 22.27 Tc(MIN.) = 15.09 TOTAL AREA(ACRES) = 16.77 LONGEST FLOWPATH FROM NODE 0.0 0 TO NODE 43.00 = 489.58 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 46.00 IS CODE = 41 >>>>>COMPtJTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 175.00 DOWNSTREAM(FEET) = 174.23 FLOW LENGTH(FEET) = 106.25 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 7.09 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.27 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 15.33 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 46.00 = 595.83 FEET. **************************************************************************** FLOW PROCESS FROM NODE 46.00 TO NODE 47.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 172.67 DOWNSTREAM(FEET) = 158.09 FLOW LENGTH(FEET) = 122.41 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.62 GIVEN PIPE DIAMETER (INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.27 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 15.43 LONGEST FLOWPATH FROM NODE 0.0 0 TO NODE 47.00 = 718.24 FEET. ****** ********************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ,**************************************** ******************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.60 RAIN INTENSITY(INCH/HOUR) = 2.61 TOTAL AREA (ACRES) = 5.4 0 TOTAL RtJNOFF (CFS) = 6.83 I Data above obtained from the "Hydrology and Hydarulic Study for Mariano" | 1 dated June 23, 1999 and the "Hydrolbgy and Hydraulic Study for Cobble- | I stone Sea Village CT 84-32" dated May 29, 1996. See Appendices 8.8 & 8.7 | -I- **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 43.00 IS CODE = 41 >>>>>COMPtJTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 170.76 DOWNSTREAM(FEET) = 169.90 FLOW LENGTH(FEET) = 171.91 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.54 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.83 PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) =13.23 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 43.00 = 890.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.23 RAINFALL INTENSITY(INCH/HR) = 2.53 TOTAL STREAM AREA(ACRES) = 5.4 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.83 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 11.83 RAIN INTENSITY (INCH/HOtJR) = 2.72 TOTAL AREA(ACRES) = 3.12 TOTAL RUNOFF(CFS) = 4.47 -1- + I Data above obtained from the "Hydrology and Hydraulic Study for | I Mariano" dated June 23, 1999. I I See Appendix 8.8. I + •- ******** ******************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPtJTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.83 RAINFALL INTENSITY(INCH/HR) = 2.72 TOTAL STREAM AREA(ACRES) = 3.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.47 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 6.83 13.23 2.532 5.40 2 4.47 11.83 2.721 3.12 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMtJLA USED FOR 2 STREAMS . ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOtJR) 1 10.58 11.83 2.721 2 10.99 13.23 2.532 COMPUTED CONFLtJENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.99 Tc(MIN.) = 13.23 TOTAL AREA(ACRES) = 8.52 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 43.00= 890.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 45.10 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 169.57 DOWNSTREAM(FEET) = 160.10 FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.91 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.99 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 13.25 LONGEST FLOWPATH FROM NODE 0.0 0 TO NODE 45.10 = 916.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.2 5 RAINFALL INTENSITY(INCH/HR) = 2.53 TOTAL STREAM AREA(ACRES) = 8.52 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.99 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 45.10 IS CODE = 7 > >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALtJES ARE AS FOLLOWS: TC(MIN) = 29.78 RAIN INTENSITY(INCH/HOUR) = 1.50 TOTAL AREA(ACRES) = 112.70 TOTAL RUNOFF (CFS) = 96.84 1 Data above obtained from the "Hydrology and Hydarulic Study for | I Mariano" dated June 23, 1999. I I See Appendix 8.8. I **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALtJES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 2 9.78 RAINFALL INTENSITY(INCH/HR) = 1.50 TOTAL STREAM AREA(ACRES) = 112.70 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 96.84 **************************************************************************** FLOW PROCESS FROM NODE 45.00 TO NODE 45.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.35 RAIN INTENSITY (INCH/HOtJR) = 2.40 TOTAL AREA (ACRES) = 1.21 TOTAL RtJNOFF (CFS) = 1.5 9 + 1 I Data above obtained from the "Hydrology and "Hydraulic Study for | I Mariano" dated June 23, 1999. I I See Appendix 8.8. I + + **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 14.3 5 RAINFALL INTENSITY(INCH/HR) = 2.40 TOTAL STREAM AREA(ACRES) = 1.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.5 9 ** CONFLUENCE DATA ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 10 . 99 96.84 1.59 Tc (MIN.) 13 .25 29.78 14.35 INTENSITY (INCH/HOUR) 2 .530 1.500 2 .403 AREA (ACRE) 8 . 52 112.70 1.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RtJNOFF (CFS) 55.54 58.69 104.35 Tc (MIN. ) 13 .25 14.35 29.78 INTENSITY (INCH/HOUR) 2.530 2 .403 1.500 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 104.35 Tc(MIN.) = TOTAL AREA(ACRES) = 122.43 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 29.78 45 .10 916.15 FEET. *************************************** ************************************* FLOW PROCESS FROM NODE 45.10 TO NODE 47.00 IS CODE 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 155.27 DOWNSTREAM(FEET) = 154.59 FLOW LENGTH(FEET) = 218.91 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 36.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.77 GIVEN PIPE DIAMETER (INCH) = 66.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 104.35 PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = 30.25 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 47.00 = 1135.06 FEET. **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 104.35 30.25 1.485 122.43 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 47.00 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RtJNOFF Tc NtJMBER (CFS) (MIN.) 1 22.27 15.43 LONGEST FLOWPATH FROM NODE 1135.06 FEET. INTENSITY AREA (INCH/HOtJR) (ACRE) 2.292 16.77 0.00 TO NODE 47.00 718.24 FEET. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtJR) 1 75.51 15.43 2.292 2 118.78 30.25 1.485 COMPtJTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 118.78 Tc(MIN.) = 30.25 TOTAL AREA(ACRES) = 13 9.20 **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 12 >>>>>CLEAR MEMORY BANK # 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 48.00 IS CODE = 41 >>>>>COMPtJTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 154.26 DOWNSTREAM (FEET) = 135.00 FLOW LENGTH(FEET) = 99.12 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 13.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 35.99 GIVEN PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 118.78 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 3 0.30 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 48.00 = 1234.18 FEET. + 1 I I END HYDROLOGIC ANALYSIS 1 END OF STtJDY StJMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 139.20 118.78 TC(MIN.) = 30.30 II II II II II II II II II II II II II II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II I II II II II II II II II II II II II II II II II II II II II II II II II II ll II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II 1' II 1 END OF RATIONAL METHOD ANALYSIS Drainage Study Emerald Pointe Estates CHAPTER 3 RATIONAL METHOD HYDROLOGIC ANALYSIS (EXISTING CONDITIONS) 3.2 - 100-Year Existing Condition AES Model Output AH:ah H:\REPORTS\233ai8\2nd Submitlal\A02.doc W.O. 2339-18 6/21/2005 11:50AM *********************************** ***************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COtJNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES - SAN DIEGO 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STtJDY ************************** * EMERALD POINTE ESTATES * * 10 0-YEAR EXISTING CONDITION HYDROLOGIC ANALYSIS * * W.0.# 2339-18 PREPARED BY: AH, TF * ************************************************************************** FILE NAME: H:\AES2 003\23 3 9\18\EX100.DAT TIME/DATE OF STtlDY: 08:44 06/23/2005 USER SPECIFIED HYDROLOGY AND HYDRAtJLIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOtJR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDtJRES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CtJRB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 18.0 9.0 0.020/0.020/ --- 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* BEGIN HYDROLOGIC ANALYSIS **************************************************************************** FLOW PROCESS FROM NODE 50.20 TO NODE 50.20 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 11.86 RAIN INTENSITY(INCH/HOUR) = 4.08 TOTAL AREA(ACRES) = 2.80 TOTAL RUNOFF(CFS) = 6.80 + + I Data above obtained from the "Hydrology and Hydraulic Study for Cobble- | I stone Sea Village CT 84-32" dated May 29, 1996. j I See Appendix 8.7. j + + **************************************************************************** FLOW PROCESS FROM NODE 50.20 TO NODE 50.20 IS CODE = 81 >>>>>ADDITION OF StJBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.075 *USER SPECIFIED (StJBAREA) : RESIDENTIAL (2.9 DU/AC OR LESS) RtJNOFF COEFFICIENT = .3500 S.C.S. CtJRVE NtJMBER (AMC II) = 0 AREA-AVERAGE RtJNOFF COEFFICIENT = 0.5788 StJBAREA AREA (ACRES) = 0.21 StJBAREA RtJNOFF (CFS) = 0.3 0 TOTAL AREA (ACRES) = 3.01 TOTAL RtJNOFF (CFS) = 7.10 TC(MIN.) = 11.86 + + I Code 8 above pertains to Subarea A. | I See Hydrology Exhibit 9.1. | + + **************************************************************************** FLOW PROCESS FROM NODE 50.20 TO NODE 50.10 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 224.60 DOWNSTREAM(FEET) = 222.60 FLOW LENGTH(FEET) = 16.25 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.52 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.10 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 11.8 8 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 50.10 = 16.25 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 11.88 RAINFALL INTENSITY(INCH/HR) = 4.07 TOTAL STREAM AREA(ACRES) = 3.01 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 7.10 **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALtJES ARE AS FOLLOWS: TC(MIN) = 14.64 RAIN INTENSITY(INCH/HOUR) = 3.56 TOTAL AREA(ACRES) = 10.00 TOTAL RtJNOFF (CFS) = 20.18 + I Data above obatined from the "Hydrology and Hydraulic Study for Cobble- ] I stone Sea Village CT 84-32" dated May 29, 1996. I I See Appendix 8.7. I + + **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.64 RAINFALL INTENSITY(INCH/HR) = 3.56 TOTAL STREAM AREA(ACRES) = 10.00 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 2 0.18 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 7.10 11.88 4.071 3.01 2 20.18 14.64 3.558 10.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 23.47 11.88 4.071 2 26.38 14.64 3.558 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 26.38 Tc(MIN.) = 14.64 TOTAL AREA(ACRES) = 13.01 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 50.10 = 16.25 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 109.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 222.00 DOWNSTREAM(FEET) = 208.46 FLOW LENGTH(FEET) = 186.32 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.99 GIVEN PIPE DIAMETER (INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.38 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 14.81 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 109.00 = 202.57 FEET. **************************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 43.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 208.00 DOWNSTREAM(FEET) = 175.05 FLOW LENGTH(FEET) = 287.01 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.30 GIVEN PIPE DIAMETER (INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 26.38 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 15.04 LONGEST FLOWPATH FROM NODE 0.0 0 TO NODE 43.00 = 489.58 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.04 RAINFALL INTENSITY(INCH/HR) = 3.50 TOTAL STREAM AREA(ACRES) = 13.01 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.38 **************************************************************************** FLOW PROCESS FROM NODE 3 8.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.26 RAIN INTENSITY (INCH/HOtJR) = 3.79 TOTAL AREA (ACRES) = 2.20 TOTAL RtJNOFF (CFS) = 4.95 + + I Data above obtained from the "Hydrology and Hydraulic Study for \ I Cobblestone Sea Village CT 84-32" dated May 29, 1996. I I See Appendix 8.7. I + + **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.2 6 RAINFALL INTENSITY(INCH/HR) = 3.79 TOTAL STREAM AREA(ACRES) = 2.2 0 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 4.95 **************************************************************************** FLOW PROCESS FROM NODE 53.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALtJES ARE AS FOLLOWS: TC(MIN) = 6.60 RAIN INTENSITY(INCH/HOUR) = 5.95 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 3.58 + + I Data above obtained from the Hydrology and Hydraulic Study for | I Cobblestone Sea Village CT 84-32" dated May 29, 1996. | I See Appendix 8.7. I + + **************************************************************************** FLOW PROCESS FROM NODE 53.00 TO NODE 53.00 IS CODE = 81 >>>>>ADDITION OF StJBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 5.947 *USER SPECIFIED(SUBAREA): RESIDENTIAL (2.9 DU/AC OR LESS) RtJNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RtJNOFF COEFFICIENT = 0.5564 StJBAREA AREA (ACRES) = 0.76 StJBAREA RtJNOFF (CFS) = 1.58 TOTAL AREA (ACRES) = 1.56 TOTAL RtJNOFF (CFS) = 5.16 TC(MIN.) = 6.60 + + I Code 8 above pertains to Subarea B. I I See Hydrology Exhibit 9.1. j I + **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.60 RAINFALL INTENSITY(INCH/HR) = 5.95 TOTAL STREAM AREA(ACRES) = 1.56 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.16 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 26.38 15.04 3.497 13.01 2 4.95 13.26 3.792 2.20 3 5.16 6.60 5.947 1.56 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLtJENCE FORMtJLA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 23.14 6.60 5.947 2 32.57 13.26 3.792 3 33.98 15.04 3.497 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 33.98 Tc(MIN.) = 15.04 TOTAL AREA(ACRES) = 16.77 LONGEST FLOWPATH FROM NODE 0.0 0 TO NODE 43.00 = 489.58 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 46.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 175.00 DOWNSTREAM(FEET) = 174.23 FLOW LENGTH(FEET) = 106.25 MANNING'S N = 0.013 ASStJME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 10.82 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER (INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 33.98 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 15.20 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 46.00 = 595.83 FEET. **************************************************************************** FLOW PROCESS FROM NODE 46.00 TO NODE 47.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 172.67 DOWNSTREAM(FEET) = 158.09 FLOW LENGTH(FEET) = 122.41 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 23.07 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 33.98 PIPE TRAVEL TIME(MIN.) = 0.0 9 Tc(MIN.) =15.2 9 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 47.00 = 718.24 FEET. **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALtJES ARE AS FOLLOWS: TC(MIN) = 12.60 RAIN INTENSITY(INCH/HOUR) = 3.92 TOTAL AREA (ACRES) = 5.40 TOTAL RtJNOFF (CFS) = 10.40 + + I Data above obtained from the "Hydrology and Hydraulic Study for Mariano" | I dated June 23, 1999 and the "Hydrology and Hydraulic Study for Cobble- | I stone Sea Village CT 84-32" dated May 29, 1996. See Appendices 8.8 & 8.7 | + + **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 43.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 170.76 DOWNSTREAM(FEET) = 169.90 FLOW LENGTH(FEET) = 171.91 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 5.89 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.40 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 13.09 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 43.00 = 890.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.0 9 RAINFALL INTENSITY(INCH/HR) = 3.82 TOTAL STREAM AREA(ACRES) = 5.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.4 0 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALtJES ARE AS FOLLOWS: TC(MIN) = 11.83 RAIN INTENSITY(INCH/HOUR) = 4.08 TOTAL AREA (ACRES) = 3.12 TOTAL RtJNOFF (CFS) = 6.83 + + I Data above obtained from the "Hydrology and Hydraulic Study for Mariano" | I dated June 23, 1999. I I See Appendix 8.8. ^1 + + **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLtJENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALtJES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.83 RAINFALL INTENSITY(INCH/HR) = 4.08 TOTAL STREAM AREA(ACRES) = 3.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.83 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 10.40 13.09 3.825 5.40 2 6.83 11.83 4.082 3.12 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMtJLA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOtJR) 1 16.23 11.83 4.082 2 16.80 13.09 3.825 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 16.80 Tc(MIN.) = 13.09 TOTAL AREA(ACRES) = 8.52 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 43.00 = 890.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 45.10 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA< < < < < >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 169.57 DOWNSTREAM(FEET) = 160.10 FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 29.17 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 16.80 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 13.10 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 45.10 = 916.15 FEET. **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.10 RAINFALL INTENSITY(INCH/HR) = 3.82 TOTAL STREAM AREA(ACRES) = 8.52 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.80 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 45.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 2 9.78 RAIN INTENSITY (INCH/HOtJR) = 2.25 TOTAL AREA(ACRES) = 112.70 TOTAL RtJNOFF(CFS) = 147.81 -I--I- I Data above obtained from the "Hydrology and Hydraulic Study for | 1 Mariano" dated June 23, 1999. I I See Appendix 8.8. I + + **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 2 9.78 RAINFALL INTENSITY(INCH/HR) = 2.25 TOTAL STREAM AREA(ACRES) = 112.70 PEAK FLOW RATE(CFS) AT CONFLtJENCE = 147.81 **************************************************************************** FLOW PROCESS FROM NODE 45.00 TO NODE 45.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALtJES ARE AS FOLLOWS: TC(MIN) = 14.35 RAIN INTENSITY (INCH/HOtJR) = 3.60 TOTAL AREA (ACRES) = 1.21 TOTAL RtJNOFF (CFS) = 2.42 + I Data above obtained from the "Hydrology and Hydraulic Study for Mariano" I dated June 23, 1999. See Appendix 8.8. - + - + **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AlsrD COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 14.35 RAINFALL INTENSITY(INCH/HR) = 3.60 TOTAL STREAM AREA(ACRES) = 1.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.42 ** CONFLUENCE DATA ** STREAM NtJMBER 1 2 3 RtJNOFF (CFS) 16 . 80 147.81 2 .42 Tc (MIN.) 13 .10 29.78 14 .35 INTENSITY (INCH/HOUR) 3 . 822 2.250 3 .604 AREA (ACRE) 8.52 112 .70 1.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMtJLA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NtJMBER 1 2 3 RtJNOFF (CFS) 84 . 04 89.49 159.21 Tc (MIN.) 13 .10 14 . 35 29.78 INTENSITY (INCH/HOUR) 3 . 822 3 . 604 2.250 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 159.21 Tc(MIN.) = 29.78 TOTAL AREA(ACRES) = 122.43 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 45.10 916.15 FEET. ********* ******************************************************************* FLOW PROCESS FROM NODE 45.10 TO NODE 47.00 IS CODE 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 155.2 7 DOWNSTREAM(FEET) = 154.59 FLOW LENGTH(FEET) = 218.91 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 48.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.45 GIVEN PIPE DIAMETER (INCH) = 66.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 159.21 PIPE TRAVEL TIME(MIN.) = 0.43 Tc(MIN.) = 30.21 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 47.00 = 1135.06 FEET. **************************************************************************** FLOW PROCESS FROM NODE 4 7.00 TO NODE 47.00 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RtJNOFF Tc NtJMBER (CFS) (MIN.) 1 159.21 30.21 LONGEST FLOWPATH FROM NODE INTENSITY AREA (INCH/HOtJR) (ACRE) 2.230 122.43 0.00 TO NODE 47.00 1135.06 FEET. ** MEMORY BANK # STREAM RtJNOFF Tc NUMBER (CFS) (MIN.) 1 33.98 15.29 LONGEST FLOWPATH FROM NODE 1 CONFLUENCE DATA ** INTENSITY AREA (INCH/HOtJR) (ACRE) 3.459 16.77 0.00 TO -NODE 47.00 718.24 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOtJR) 1 114.56 15.29 3.459 2 181.12 30.21 2.230 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 181.12 Tc(MIN.) = 30.21 TOTAL AREA(ACRES) = 13 9.2 0 **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 12 >>>>>CLEAR MEMORY BANK # 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 48.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 154.26 DOWNSTREAM(FEET) = 135.00 FLOW LENGTH(FEET) = 99.12 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 16.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4 0.70 GIVEN PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 181.12 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 30.25 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 48.00 = 1234.18 FEET. END HYDROLOGIC ANALYSIS END OF STUDY SUMMARY: TOTAL AREA(ACRES) 139 2 0 TC(MIN.) = 30.25 PEAK FLOW RATE(CFS) 181 12 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II li II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II II END OF RATIONAL METHOD ANALYSIS Drainage Study Emerald Pointe Estates CHAPTER 4 RATIONAL METHOD HYDROLOGIC ANALYSIS (DEVELOPED CONDITIONS) 4.1 - 10-Year Developed Condition AES Model Output AH:ah H:\REPORTS\2339M8\2nd SubnimaftA02.doc W.O. 2339-18 6/21/2005 11:50 AM **************************************************************************** RATIONAL METHOD HYDROLOGY COMPtJIER PROGRAM PACKAGE Reference: SAN DIEGO COtJNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES - SAN DIEGO 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STtJDY ************************** * EMERALD POINTE ESTATES * * 10-YEAR DEVELOPED CONDITION HYDROLOGIC ANALYSIS * * W.0.# 2339-18 PREPARED BY: AH, TF * ************************************************************************** FILE NAME: H:\AES2003\2339\18\DEV10.DAT TIME/DATE OF STUDY: 08:44 06/23/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2 003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 10.00 6-HOtJR DtJRATION PRECIPITATION (INCHES) = 1.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDtJRES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 18.0 9.0 0.020/0.020/ 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* BEGIN HYDROLOGIC ANALYSIS **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL StJBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): RESIDENTAIL (4.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5200 S.C.S. CtJRVE NUMBER (AMC II) = 0 INITIAL StJBAREA FLOW-LENGTH (FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 252.00 DOWNSTREAM ELEVATION(FEET) = 251.30 ELEVATION DIFFERENCE(FEET) = 0.70 StJBAREA OVERLAND TIME OF FLOW (MIN.) = 8.735 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMtJM OVERLAND FLOW LENGTH = 70.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.3 09 StJBAREA RtJNOFF (CFS) = 0.60 TOTAL AREA (ACRES) = 0.35 TOTAL RtJNOFF (CFS) = 0.60 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 249.70 DOWNSTREAM ELEVATION(FEET) = 238.50 STREET LENGTH (FEET) = 644.50 CtJRB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NtJMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.52 STREETFLOW MODEL REStJLTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.2 7 HALFSTREET FLOOD WIDTH(FEET) = 7.04 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.48 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.66 STREET FLOW TRAVEL TIME(MIN.) = 4.34 Tc(MIN.) = 13.07 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.552 *USER SPECIFIED(SUBAREA): RESIDENTAIL (4.3 DU/AC OR LESS) RtJNOFF COEFFICIENT = .52 00 S.C.S. CURVE NtJMBER (AMC II) = 0 AREA-AVERAGE RtJNOFF COEFFICIENT = 0.520 SUBAREA AREA (ACRES) = 1.37 StJBAREA RtJNOFF (CFS) = 1.82 TOTAL AREA(ACRES) = 1.72 PEAK FLOW RATE(CFS) = 2.2 8 END OF StJBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.3 0 HALFSTREET FLOOD WIDTH(FEET) = 8.50 FLOW VELOCITY(FEET/SEC.) = 2.71 DEPTH*VELOCITY(FT*FT/SEC.) = 0.80 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 714.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 234.77 DOWNSTREAM(FEET) = 234.44 FLOW LENGTH(FEET) = 36.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.41 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.28 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 13.21 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 751.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLtJENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.21 RAINFALL INTENSITY(INCH/HR) = 2.53 TOTAL STREAM AREA(ACRES) = 1.72 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 2.2 8 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL StJBAREA ANALYSIS<<<<< *USER SPECIFIED (StJBAREA) : RESIDENTAIL (4.3 DU/AC OR LESS) RtJNOFF COEFFICIENT = .5200 S.C.S. CURVE NtJMBER (AMC II) = 0 INITIAL StJBAREA FLOW-LENGTH (FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 251.80 DOWNSTREAM ELEVATION(FEET) = 251.10 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.73 5 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMtJM OVERLAND FLOW LENGTH = 70.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.309 StJBAREA RUNOFF (CFS) = 0.69 TOTAL AREA (ACRES) = 0.40 TOTAL RtJNOFF (CFS) = 0.69 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 104.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 248.90 DOWNSTREAM ELEVATION(FEET) = 238.50 STREET LENGTH(FEET) = 659.40 CtJRB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NtJMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.41 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.91 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.64 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.80 STREET FLOW TRAVEL TIME(MIN.) = 4.16 Tc(MIN.) = 12.89 10 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 2.574 *USER SPECIFIED (StJBAREA) : RESIDENTAIL (4.3 DU/AC OR LESS) RtJNOFF COEFFICIENT = .5200 S.C.S. CtJRVE NtJMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.520 SUBAREA AREA(ACRES) = 2.55 StJBAREA RUNOFF(CFS) = 3.41 TOTAL AREA(ACRES) = 2.95 PEAK FLOW RATE (CFS) = 3.95 END OF StJBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.00 FLOW VELOCITY(FEET/SEC.) = 2.97 DEPTH*VELOCITY(FT*FT/SEC.) = 1.03 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 104.00 = 729.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLtJENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALtJES<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.8 9 RAINFALL INTENSITY(INCH/HR) = 2.57 TOTAL STREAM AREA(ACRES) = 2.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.95 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.28 13.21 2.534 1.72 2 3.95 12.89 2.574 2.95 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOtJR) 1 6.18 12.89 2.574 2 6.17 13.21 2.534 COMPUTED CONFLtJENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.18 Tc(MIN.) = 12.89 TOTAL AREA(ACRES) = 4.67 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 751.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 107.00 IS CODE = 41 >>>>>COMPtJTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 234.11 DOWNSTREAM(FEET) = 232.00 FLOW LENGTH(FEET) = 52.94 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.94 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.18 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 12.98 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00 = 803.94 FEET. **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 10 YEAR RAINFALL INTENSITY (INCH/HOtTR) = 2.563 *USER SPECIFIED (StJBAREA) : URBAN NEWLY GRADED AREAS RtJNOFF COEFFICIENT = .4500 S.C.S. CtJRVE NtJMBER (AMC II) = 0 AREA-AVERAGE RtJNOFF COEFFICIENT = 0.5188 StJBAREA AREA (ACRES) = 0.08 StJBAREA RtJNOFF (CFS) = 0.09 TOTAL AREA(ACRES) = 4.75 TOTAL RUNOFF(CFS) = 6.32 TC(MIN.) = 12.98 + : : :—t I The peak discharge will be held within the detention basin until it is | I attenuated from 6.32-cfs to 1.96-cfs during a period of 12-minutes. | I See Section 7.1 for the 10-Yr storm event detention basin calculations. | + + **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 24.98 RAIN INTENSITY (INCH/HOtJR) = 1.68 TOTAL AREA (ACRES) = 4.75 TOTAL RtJNOFF (CFS) = 1.96 **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 50.20 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 229.31 DOWNSTREAM(FEET) = 224.93 FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.64 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.96 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 25.04 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 50.20 = 839.94 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.20 TO NODE 50.20 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALtJES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 25.04 RAINFALL INTENSITY(INCH/HR) =1.68 TOTAL STREAM AREA(ACRES) = 4.75 PEAK FLOW RATE(CFS) AT CONFLUENCE =1.96 **************************************************************************** FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): RESIDENTAIL (4.3 DU/AC OR LESS) RtJNOFF COEFFICIENT = .5500 S.C.S. CtJRVE NtJMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 253.00 DOWNSTREAM ELEVATION(FEET) = 252.00 ELEVATION DIFFERENCE(FEET) = 1.00 StJBAREA OVERLAND TIME OF FLOW (MIN.) = 8.2 83 WARNING: INITIAL StJBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMtJM OVERLAND FLOW LENGTH = 70.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMtJM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 10 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 3.425 SUBAREA RtJNOFF (CFS) = 0.38 TOTAL AREA(ACRES) = 0.2 0 TOTAL RUNOFF(CFS) = 0.3 8 + + I The data above was obtained from the "Hydrology and Hydraulic Study for | I Cobblestone Sea Village CT 84-32" dated May 29, 1996. | I See Appendix 8.7. I + + **************************************************************************** FLOW PROCESS FROM NODE 52.00 TO NODE 50.20 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 252.00 DOWNSTREAM ELEVATION(FEET) = 233.00 STREET LENGTH (FEET) = 47 0.00 CtJRB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) =18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 •I- SPECIFIED NtJMBER OF HALFSTREETS CARRYING RtJNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPtTTED USING ESTIMATED FLOW(CFS) = 2.32 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) =0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.04 AVERAGE FLOW VELOCITY(FEET/SEC.) =3.78 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.01 STREET FLOW TRAVEL TIME(MIN.) = 2.07 Tc(MIN.) = 10.3 6 10 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 2.965 *USER SPECIFIED(SUBAREA): RESIDENTAIL (4.3 DU/AC OR LESS) RtJNOFF COEFFICIENT = .5500 S.C.S. CtJRVE NtJMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.550 StJBAREA AREA (ACRES) = 2.37 SUBAREA RtJNOFF (CFS) = 3.86 TOTAL AREA(ACRES) = 2.57 PEAK FLOW RATE(CFS) = 4.19 END OF StJBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.25 FLOW VELOCITY(FEET/SEC.) = 4.31 DEPTH*VELOCITY(FT*FT/SEC.) = 1.34 LONGEST FLOWPATH FROM NODE 51.00 TO NODE 50.20 = 570.00 FEET. -f- I For the data above see Appendix 8.7. The drainage area has been de- | I creased since the Cobblestone Study included Sapphire Drive's western | I portion which now drains into the two proposed inlets at Nodes 103 & 104 | + -- + **************************************************************************** FLOW PROCESS FROM NODE 50.20 TO NODE 50.20 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALtJES<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.3 6 RAINFALL INTENSITY(INCH/HR) = 2.96 TOTAL STREAM AREA(ACRES) = 2.57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.19 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 1.96 25.04 1.678 4.75 2 4.19 10.36 2.965 2.57 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.00 10.36 2.965 2 4.33 25.04 1.678 COMPtJTED CONFLtJENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.00 Tc(MIN.) = 10.3 6 TOTAL AREA(ACRES) = 7.32 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 50.20 = 839.94 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.20 TO NODE 50.10 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 224.60 DOWNSTREAM(FEET) = 222.60 FLOW LENGTH(FEET) = 16.25 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 14.04 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.00 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) =10.3 8 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 50.10 = 856.19 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLtJENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.3 8 RAINFALL INTENSITY(INCH/HR) = 2.96 TOTAL STREAM AREA(ACRES) = 7.32 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.00 **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.64 RAIN INTENSITY(INCH/HOUR) = 2.3 7 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) = 13.22 + + I Data above obtained from the "Hydrology and Hydraulic Study for Cobble- | I stone Sea Village CT 84-32" dated May 29, 1996. j I See Appendix 8.7. I + + **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.64 RAINFALL INTENSITY(INCH/HR) = 2.3 7 TOTAL STREAM AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.22 ** CONFLtJENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOtTR) (ACRE) 1 5.00 10.38 2.961 7.32 2 13.22 14.64 2.372 10.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 14.37 10.38 2.961 2 17.23 14.64 2.372 COMPUTED CONFLtJENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.23 Tc(MIN.) = 14.64 TOTAL AREA(ACRES) = 17.32 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 50.10 = 856.19 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 109.00 IS CODE = 41 >>>>>COMPUTE PI PE-FLOW TRAVEL TIME THRU StJBAREA< < < < < >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 222.00 DOWNSTREAM(FEET) = 208.46 FLOW LENGTH(FEET) = 186.32 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.06 GIVEN PIPE DIAMETER (INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.23 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) = 14.83 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 109.00 = 1042.51 FEET. **************************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 43.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 208.00 DOWNSTREAM(FEET) = 175.05 FLOW LENGTH(FEET) = 287.01 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.95 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.23 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 15.09 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 43.00 = 1329.52 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLtJENCE<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLtJENCE VALtJES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.09 RAINFALL INTENSITY(INCH/HR) = 2.33 TOTAL STREAM AREA(ACRES) = 17.32 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 17.23 **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALtJES ARE AS FOLLOWS: TC(MIN) = 13.26 RAIN INTENSITY (INCH/HOtJR) = 2.53 TOTAL AREA (ACRES) = 2.2 0 TOTAL RtJNOFF (CFS) = 3.24 + + I Data above obtained from the "Hydrology and Hydraulic Study for Cobble- | I stone Sea Village CT 84-32" dated May 29, 1996. j I See Appendix 8.7. | + + **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.26 RAINFALL INTENSITY(INCH/HR) = 2.53 TOTAL STREAM AREA(ACRES) = 2.2 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.24 **************************************************************************** FLOW PROCESS FROM NODE 53.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 6.60 RAIN INTENSITY(INCH/HOUR) = 3.96 TOTAL AREA(ACRES) = 0.80 TOTAL RtJNOFF(CFS) = 2.35 + + I Data above obtained from the "Hydrology and Hydraulic Study for Cobble- | I stone Sea Village CT 84-32" dated May 29, 1996. j I See Appendix 8.7. | + + **************************************************************************** FLOW PROCESS FROM NODE 53.00 TO NODE 53.00 IS CODE = 81 >>>>>ADDITION OF StJBAREA TO MAINLINE PEAK FLOW<<<<< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.965 *USER SPECIFIED (StJBAREA) : NATtJRAL DESERT LANDSCAPING RtJNOFF COEFFICIENT = .3500 S.C.S. CtJRVE NtJMBER (AMC II) = 0 AREA-AVERAGE RtJNOFF COEFFICIENT = 0.6422 SUBAREA AREA (ACRES) = 0.27 StJBAREA RtJNOFF (CFS) = 0.37 TOTAL AREA(ACRES) = 1.07 TOTAL RtJNOFF(CFS) = 2.72 TC(MIN.) = 6.60 -I--t- I The Code 8 above pertains to Subarea B. | I See Hydrology Exhibit 9.2. | -I-- **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLtJENCE<<<<< >>>>>AND COMPtTTE VARIOUS CONFLUENCED STREAM VALtJES<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.60 RAINFALL INTENSITY(INCH/HR) = 3.96 TOTAL STREAM AREA(ACRES) = 1.07 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 2.72 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 17.23 15.09 2.326 17.32 2 3.24 13.26 2.528 2.20 3 2.72 6.60 3.965 1.07 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLtJENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RXINOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 14.44 6.60 3.965 2 20.83 13.26 2.528 3 21.81 15.09 2.326 COMPtJTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.81 Tc(MIN.) = 15.09 TOTAL AREA(ACRES) = 2 0.59 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 43.00 = 1329.52 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 46.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >5.>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 175.00 DOWNSTREAM(FEET) = 174.23 FLOW LENGTH(FEET) = 106.25 MANNING'S N = 0.013 1 ASStJME FtJLL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 6.94 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER (INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.81 PIPE TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 15.34 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 46.00 = 1435.77 FEET. **************************************************************************** FLOW PROCESS FROM NODE 46.00 TO NODE 47.00 IS CODE = 41 >>>>>COMPtJrE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 172.67 DOWNSTREAM(FEET) = 158.09 FLOW LENGTH(FEET) = 122.41 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 20.50 GIVEN PIPE DIAMETER (INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.81 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 15.44 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 47.00 = 1558.18 FEET. **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.60 RAIN INTENSITY (INCH/HOtJR) = 2.61 TOTAL AREA(ACRES) = 5.40 TOTAL RUNOFF(CFS) = 6.83 + + I Data above obtained from the "Hydrology and Hydraulic Study for Mariano" | I dated June 23, 1999 and the "Hydrology and Hydraulic Study for Cobble- | I stone Sea Village CT 84-32" dated May 29, 1996. See Appendices 8.8 & 8.7 j + + **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 43.00 IS CODE = 41 >>>>>COMPtJrE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 170.76 DOWNSTREAM(FEET) = 169.90 FLOW LENGTH(FEET) = 171.91 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.54 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.83 PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 13.2 3 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 43.00 = 1730.09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLtJENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALtJES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.2 3 RAINFALL INTENSITY(INCH/HR) = 2.53 TOTAL STREAM AREA(ACRES) = 5.40 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 6.83 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALtJES ARE AS FOLLOWS: TC(MIN) = 11.83 RAIN INTENSITY (INCH/HOtJR) = 2.72 TOTAL AREA(ACRES) = 3.12 TOTAL RUNOFF(CFS) = 4.47 + + I Data above obtained from the "Hydrology and Hydraulic Study for Mariano" | I dated June 23, 1999. | I See Appendix 8.8. | + + **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLtJENCED STREAM VALUES<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.83 RAINFALL INTENSITY(INCH/HR) = 2.72 TOTAL STREAM AREA(ACRES) = 3.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.47 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 6.83 13.23 2.532 5.40 2 4.47 11.83 2.721 3.12 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 10.58 11.83 2.721 2 10.99 13.23 2.532 COMPtTTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.99 Tc(MIN.) = 13.2 3 TOTAL AREA(ACRES) = 8.52 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 43.00 = 1730.09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 45.10 IS CODE = 41 >>>>>COMPtJrE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 169.57 DOWNSTREAM(FEET) = 160.10 FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.91 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.99 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 13.2 5 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 45.10 = 1756.09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.25 RAINFALL INTENSITY(INCH/HR) = 2.53 TOTAL STREAM AREA(ACRES) = 8.52 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 10.99 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 45.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 29.78 RAIN INTENSITY(INCH/HOUR) = 1.50 TOTAL AREA (ACRES) = 112.70 TOTAL RtJNOFF (CFS) = 96.48 + + I Data above obtained from the "Hydrology and Hydraulic Study for Mariano" | I dated June 23, 1999. j I' See Appendix 8.8. | + + **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 2 9.78 RAINFALL INTENSITY(INCH/HR) = 1.50 TOTAL STREAM AREA(ACRES) = 112.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 96.48 **************************************************************************** FLOW PROCESS FROM NODE 45.00 TO NODE 45.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALtJES ARE AS FOLLOWS: TC(MIN) = 14.35 RAIN INTENSITY(INCH/HOUR) = 2.40 TOTAL AREA (ACRES) = 1.21 TOTAL RtJNOFF (CFS) = 1.59 + + I Data above obtained from the "Hydrology and Hydraulic Study for Mariano" | I dated June 23, 1999. j I See Appendix 8.8. | + + **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALtJES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 14.35 RAINFALL INTENSITY(INCH/HR) = 2.40 TOTAL STREAM AREA(ACRES) = 1.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.59 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 10.99 13.25 2.530 8.52 2 96.48 29.78 1.500 112.70 3 1.59 14.35 2.403 1.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 55.38 13.25 2.530 2 58.52 14.35 2.403 3 103.99 29.78 1.500 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 103.99 Tc(MIN.) = 29.78 TOTAL AREA(ACRES) = 12 2.43 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 45.10 = 1756.09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 47.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 155.27 DOWNSTREAM(FEET) = 154.59 FLOW LENGTH(FEET) = 218.91 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 36.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.77 GIVEN PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 103.99 PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = 3 0.25 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 47.00 = 1975.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 103.99 30.25 1.485 122.43 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 47.00 = 1975.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 21.81 15.44 2.292 20.59 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 47.00 = 1558.18 FEET. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtJR) 1 74.89 15.44 2.292 2 118.12 30.25 1.485 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 118.12 Tc(MIN.) = 30.25 TOTAL AREA(ACRES) = 143.02 **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 12 >>>>>CLEAR MEMORY BANK # 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 48.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 154.26 DOWNSTREAM(FEET) = 135.00 FLOW LENGTH(FEET) = 99.12 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 12.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 35.93 GIVEN PIPE DIAMETER (INCH) = 66.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 118.12 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 3 0.30 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 48.00 = 2074.12 FEET. END HYDROLOGIC ANALYSIS END OF STtJDY StJMMARY: TOTAL AREA(ACRES) = 143.02 TC(MIN.) = 30.30 PEAK FLOW RATE(CFS) = 118.12 END OF RATIONAL METHOD ANALYSIS Drainage Study Emerald Pointe Estates CHAPTER 4 RATIONAL METHOD HYDROLOGIC ANALYSIS (DEVELOPED CONDITIONS) 4.2 - 100-Year Developed Condition AES Model Output AH:ah H:\REPORTS\2339M8V2nd Submitta^A02.doc W.0.2339-18 a/21/2005 11:50AM **************************************************************************** RATIONAL METHOD HYDROLOGY COMPtlTER PROGRAM PACKAGE Reference: SAN DIEGO COtJNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1239 Analysis prepared by: HUNSAKER & ASSOCIATES - SAN DIEGO 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STtJDY ************************** * EMERALD POINTE ESTATES * * 100-YEAR DEVELOPED CONDITION HYDROLOGIC ANALYSIS * * W.0.# 2339-18 PREPARED BY: AH, TF * ************************************************************************** FILE NAME: H:\AES2 003\233 9\18\DEV100.DAT TIME/DATE OF STtJDY: 08:45 06/23/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOtJR DtJRATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMtJM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDtJRES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 18.0 9.0 0.020/0.020/ 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* BEGIN HYDROLOGIC ANALYSIS **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL StJBAREA ANALYSIS<<<<< *USER SPECIFIED (StJBAREA) : RESIDENTAIL (4.3 DU/AC OR LESS) RtJNOFF COEFFICIENT = .5200 S.C.S. CITRVE NtJMBER (AMC II) = 0 INITIAL StJBAREA FLOW - LENGTH (FEET) = 7 0.00 UPSTREAM ELEVATION(FEET) = 252.00 DOWNSTREAM ELEVATION(FEET) = 251.30 ELEVATION DIFFERENCE(FEET) = 0.70 StJBAREA OVERLAND TIME OF FLOW (MIN.) = 8.735 WARNING: INITIAL StJBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 70.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMtJM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 4.964 StJBAREA RtJNOFF (CFS) = 0.90 TOTAL AREA(ACRES) = 0.35 TOTAL RUNOFF(CFS) = 0.90 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 249.70 DOWNSTREAM ELEVATION(FEET) = 238.50 STREET LENGTH (FEET) = 644.50 CLTRB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NtJMBER OF HALFSTREETS CARRYING RtJNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.3 0 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.3 0 HALFSTREET FLOOD WIDTH(FEET) = 8.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.74 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.81 STREET FLOW TRAVEL TIME(MIN.) = 3.92 Tc(MIN.) = 12.66 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.908 *USER SPECIFIED (StJBAREA) : RESIDENTAIL (4.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RtJNOFF COEFFICIENT = 0.520 SUBAREA AREA (ACRES) = 1.3 7 StJBAREA RtJNOFF (CFS) = 2.7 8 TOTAL AREA(ACRES) = 1.72 PEAK FLOW RATE(CFS) = 3.50 END OF SUBAREA STREET FLOW HYDRAtJLICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.23 FLOW VELOCITY(FEET/SEC.) = 3.00 DEPTH*VELOCITY(FT*FT/SEC.) = 0.99 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 714.50 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 41 >>>>>COMPXJrE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 234.77 DOWNSTREAM(FEET) = 234.44 FLOW LENGTH(FEET) = 36.50 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.96 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.50 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 12.7 8 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 751.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLtJENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLtJENCE VALtJES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.7 8 RAINFALL INTENSITY(INCH/HR) = 3.8 8 TOTAL STREAM AREA(ACRES) = 1.72 PEAK FLOW RATE (CFS) AT CONFLtJENCE = 3.50 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL StJBAREA ANALYSIS<<<<< *USER SPECIFIED (StJBAREA) : RESIDENTAIL (4.3 DU/AC OR LESS) RUNOFF COEFFICIENT = .5200 S.C.S. CtJRVE NtJMBER (AMC II) = 0 INITIAL StJBAREA FLOW-LENGTH (FEET) = 70.00 UPSTREAM ELEVATION(FEET) = 251.80 DOWNSTREAM ELEVATION(FEET) = 251.10 ELEVATION DIFFERENCE(FEET) = 0.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.735 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 7 0.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMtJM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.964 StJBAREA RUNOFF (CFS) = 1.03 TOTAL AREA (ACRES) = 0.40 TOTAL RtJNOFF (CFS) = 1.03 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 104.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 248.90 DOWNSTREAM ELEVATION(FEET) = 238.50 STREET LENGTH (FEET) = 659.40 CtJRB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OtJTSIDE STREET CROSSFALL (DECIMAL) = 0.020 SPECIFIED NtJMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPtlTED USING ESTIMATED FLOW(CFS) = 3.66 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.65 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.92 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.99 STREET FLOW TRAVEL TIME(MIN.) = 3.76 Tc(MIN.) = 12.49 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.941 *USER SPECIFIED (StJBAREA) : RESIDENTAIL (4.3 DU/AC OR LESS) RtJNOFF COEFFICIENT = .5200 S.C.S. CtJRVE NtJMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.520 StJBAREA AREA (ACRES) = 2.55 StJBAREA RtJNOFF (CFS) = 5.23 TOTAL AREA(ACRES) = 2.95 PEAK FLOW RATE(CFS) = 6.05 END OF St3AREA STREET FLOW HYDRAtJLICS: DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 13.11 FLOW VELOCITY(FEET/SEC.) = 3.29 DEPTH*VELOCITY(FT*FT/SEC.) = 1.28 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 104.00 = 729.40 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLtJENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.49 RAINFALL INTENSITY(INCH/HR) = 3.94 TOTAL STREAM AREA(ACRES) = 2.95 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.05 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.50 12.78 3.884 1.72 2 6.05 12.49 3.941 2.95 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtJR) 1 9.46 12.49 3.941 2 9.45 12.78 3.884 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.46 Tc(MIN.) = 12.49 TOTAL AREA(ACRES) = 4.67 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 751.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 107.00 IS CODE = 41 >>>>>COMPtJTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 234.11 DOWNSTREAM(FEET) = 232.00 FLOW LENGTH(FEET) = 52.94 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.12 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.46 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 12.57 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00 = 803.94 FEET. **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 81 >>>>>ADDITION OF StJBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.925 *USER SPECIFIED(SUBAREA): tJRBAN NEWLY GRADED AREAS RtJNOFF COEFFICIENT = .45 00 S.C.S. CtJRVE NUMBER (AMC II) = 0 AREA-AVERAGE RtJNOFF COEFFICIENT = 0.5188 StJBAREA AREA (ACRES) = 0.08 StJBAREA RtJNOFF (CFS) = 0.14 TOTAL AREA(ACRES) = 4.75 TOTAL RUNOFF(CFS) = 9.67 TC(MIN.) = 12.57 + -1- I The peak discharge will be held within the detention basin until it is | I attenuated from 9.67-cfs to 2.33-cfs during a period of 13-minutes. | I See Section 7.2 for 100-Yr storm event detention basin calculations. | + + **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 25.57 RAIN INTENSITY(INCH/HOUR) =2.48 TOTAL AREA(ACRES) = 4.75 TOTAL RtJNOFF (CFS) = 2.33 **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 50.20 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 229.31 DOWNSTREAM(FEET) = 224.93 FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.17 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.33 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 25.62 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 50.20 = 839.94 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.20 TO NODE 50.20 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLtJENCE<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 25.62 RAINFALL INTENSITY(INCH/HR) = 2.48 TOTAL STREAM AREA(ACRES) = 4.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.33 **************************************************************************** FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL StJBAREA ANALYSIS<<<<< *USER SPECIFIED (StJBAREA) : RESIDENTAIL (4.3 DU/AC OR LESS) RtJNOFF COEFFICIENT = .5500 S.C.S. CtJRVE NUMBER (AMC II) = 0 INITIAL StJBAREA FLOW-LENGTH (FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 253.00 DOWNSTREAM ELEVATION(FEET) = 252.00 ELEVATION DIFFERENCE(FEET) = 1.00 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.283 WARNING: INITIAL StIBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 7 0.00 (Reference: Table 3-IB of Hydrology Manual) THE MAXIMtJM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY (INCH/HOtJR) = 5.137 SUBAREA RtJNOFF (CFS) = 0.57 TOTAL AREA(ACRES) = 0.2 0 TOTAL RUNOFF(CFS) = 0.57 + -I- I Data above obtained from the "Hydrology and Hydraulic Study for Cobble- | I stonr Sea Village" dated May 29, 1996. | I See Appendix 8.7. | + + **************************************************************************** FLOW PROCESS FROM NODE 52.00 TO NODE 50.20 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 252.00 DOWNSTREAM ELEVATION(FEET) = 233.00 STREET LENGTH (FEET) = 470.00 CtJRB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.51 STREETFLOW MODEL REStJLTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.3 0 HALFSTREET FLOOD WIDTH(FEET) = 8.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.17 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.24 STREET FLOW TRAVEL TIME(MIN.) = 1.88 Tc(MIN.) = 10.16 100 YEAR RAINFALL INTENSITY(INCH/HOtJR) = 4.502 *USER SPECIFIED (StJBAREA) : RESIDENTAIL (4.3 DU/AC OR LESS) RtJNOFF COEFFICIENT = .5500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.550 StJBAREA AREA (ACRES) = 2.3 7 SUBAREA RtJNOFF (CFS) = 5.87 TOTAL AREA(ACRES) = 2.57 PEAK FLOW RATE(CFS) = 6.3 6 END OF StJBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.35 HALFSTREET FLOOD WIDTH(FEET) = 11.00 FLOW VELOCITY(FEET/SEC.) = 4.79 DEPTH*VELOCITY(FT*FT/SEC.) = 1.66 LONGEST FLOWPATH FROM NODE 51.00 TO NODE 50.20 = 570.00 FEET. + -I- I See Appendix 8.7 for data above. The drainage area has been decreased | I since the Cobblestone Study included Sapphire Drive's western portion | I which now drains into the proposed inlets at Node 103 and Node 104. | + + **************************************************************************** FLOW PROCESS FROM NODE 5 0.20 TO NODE 50.20 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.16 RAINFALL INTENSITY(INCH/HR) = 4.50 TOTAL STREAM AREA(ACRES) = 2.57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.3 6 ** CONFLUENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 2.33 25.62 2.479 4.75 2 6.36 10.16 4.502 2.57 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 7.29 10.16 4.502 2 5.83 25.62 2.479 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.2 9 Tc(MIN.) = 10.16 TOTAL AREA(ACRES) = 7.32 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 50.20 = 839.94 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.20 TO NODE 50.10 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 224.60 DOWNSTREAM(FEET) = 222.60 FLOW LENGTH(FEET) = 16.25 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.62 GIVEN PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.29 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 10.18 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 50.10 = 856.19 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.18 RAINFALL INTENSITY(INCH/HR) = 4.50 TOTAL STREAM AREA(ACRES) = 7.32 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.2 9 **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.64 RAIN INTENSITY(INCH/HOUR) = 3.56 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) = 20.18 + + I Data above obtained from the "Hydrology and Hydraulic Study for Cobble- | I stone Sea Village CT 84-32" dated May 29, 1996. j I See Appendix 8.7. I + -I- **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NtJMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR IITOEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.64 RAINFALL INTENSITY(INCH/HR) = 3.56 TOTAL STREAM AREA(ACRES) = 10.0 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2 0.18 ** CONFLtJENCE DATA ** STREAM RtJNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOtJR) (ACRE) 1 7.29 10.18 4.497 7.32 2 20.18 14.64 3.558 10.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RtJNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtJR) 1 21.32 10.18 4.497 2 25.95 14.64 3.558 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 25.95 Tc(MIN.) = 14.64 TOTAL AREA(ACRES) = 17.32 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 50.10 = 856.19 FEET. **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 109.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StJBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 222.00 DOWNSTREAM(FEET) = 208.46 FLOW LENGTH(FEET) = 186.32 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.91 GIVEN PIPE DIAMETER (INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.95 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 14.81 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 109.00 = 1042.51 FEET. **************************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 43.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 208.00 DOWNSTREAM(FEET) = 175.05 FLOW LENGTH(FEET) = 287.01 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 21.21 GIVEN PIPE DIAMETER (INCH) = 24.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.95 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 15.04 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 43.00 = 1329.52 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NtJMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.04 RAINFALL INTENSITY(INCH/HR) = 3.50 TOTAL STREAM AREA(ACRES) = 17.32 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.95 **************************************************************************** FLOW PROCESS FROM NODE 3 8.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 13.26 RAIN INTENSITY (INCH/HOtTR) = 3.79 TOTAL AREA(ACRES) = 2.20 TOTAL RUNOFF(CFS) = 4.95 + + I Data above obtained from the "Hydrology and Hydraulic Study for Cobble- | I stone Sea Village CT 84-32" dated May 29, 1996. | I See Appendix 8.7. I + + **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.2 6 RAINFALL INTENSITY(INCH/HR) = 3.79 TOTAL STREAM AREA(ACRES) = 2.2 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.95 **************************************************************************** FLOW PROCESS FROM NODE 53.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 6.60 RAIN INTENSITY(INCH/HOUR) = 5.95 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 3.58 + + I Data above obtained from the "Hydrology and Hydraulic Study for Cobble- | I stone Sea Village" dated May 29, 1996. I I See Appendix 8.7. I + + **************************************************************************** FLOW PROCESS FROM NODE 53.00 TO NODE 53.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.947 *USER SPECIFIED(SUBAREA): NATURAL DESERT LANDSCAPING RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6509 SUBAREA AREA(ACRES) = 0.27 SUBAREA RUNOFF(CFS) = 0.56 TOTAL AREA(ACRES) = 1.07 TOTAL RUNOFF(CFS) = 4.14 TC(MIN.) = 6.60 The Code 8 above pertains to Subarea 8 See Hydrology Exhibit 9.2. t*************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 6.60 RAINFALL INTENSITY(INCH/HR) = 5.95 TOTAL STREAM AREA(ACRES) = 1.07 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.14 3 ARE; ** CONFLUENCE DATA ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 25.95 4 .95 4 .14 Tc (MIN.) 15 . 04 13 .26 6.60 INTENSITY (INCH/HOtTR) 3 .496 3 .792 5 . 947 AREA (ACRE) 17 .32 2.20 1. 07 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 21. 86 31. 51 32 . 94 Tc (MIN.) 6 . 60 13 .26 15 . 04 INTENSITY (INCH/HOUR) 5 . 947 3 . 792 3 .496 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 32.94 Tc(MIN.) = TOTAL AREA(ACRES) = 2 0.59 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 15 . 04 43.00 = 1329.52 FEET. ******** ******************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 46.00 IS CODE 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StTBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 175.00 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 106.25 MANNING'S N = 0.013 174 .23 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 10.49 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 32.94 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 15.21 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 46.00 = 1435.77 FEET. **************************************************************************** FLOW PROCESS FROM NODE 46.00 TO NODE 47.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 172.67 DOWNSTREAM(FEET) = 158.09 FLOW LENGTH(FEET) = 122.41 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 22.89 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 32.94 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 15.30 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 47.00 = 1558.18 FEET. **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.60 RAIN INTENSITY(INCH/HOUR) = 3.92 TOTAL AREA(ACRES) = 5.4 0 TOTAL RUNOFF(CFS) = 10.40 -I- Data above obtained from the "Hydrology and Hydraulic Study for Mariano" | dated June 23, 1999 and the "Hydrology and Hydraulic Study for Cobble- | stone Sea Village CT 84-32" dated May 29, 1996. See Appendices 8.8 & 8.7 | -I- **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 43.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StTBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 170.76 DOWNSTREAM(FEET) = 169.90 FLOW LENGTH(FEET) = 171.91 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 5.89 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.40 PIPE TRAVEL TIME(MIN.) = 0.4 9 Tc(MIN.) = 13.0 9 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 43.00 = 1730.09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.09 RAINFALL INTENSITY(INCH/HR) = 3.82 TOTAL STREAM AREA(ACRES) = 5.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.40 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 11.83 RAIN INTENSITY(INCH/HOUR) = 4.08 TOTAL AREA(ACRES) = 3.12 TOTAL RUNOFF(CFS) = 6.83 + + I Data above obtained from the "Hydrology and Hydraulic Study for Mariano" | I dated June 23, 1999. I I See Appendix 8.8. I + + **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.83 RAINFALL INTENSITY(INCH/HR) = 4.0 8 TOTAL STREAM AREA(ACRES) = 3.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.83 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.40 13.09 3.825 5.40 2 6.83 11.83 4.082 3.12 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 16.23 11.83 4.082 2 16.80 13.09 3.825 COMPUTED CONFLtTENCE ESTIMATES ARE AS FOLLOWS : PEAK FLOW RATE(CFS) = 16.80 Tc(MIN.) = 13.09 TOTAL AREA(ACRES) = 8.52 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 43.00 = 1730.09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 45.10 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 169.57 DOWNSTREAM(FEET) = 160.10 FLOW LENGTH(FEET) = 26.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 29.17 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 16.80 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 13.10 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 45.10 = 1756.09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.10 RAINFALL INTENSITY(INCH/HR) = 3.82 TOTAL STREAM AREA(ACRES) =8.52 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.80 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 45.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 29.78 RAIN INTENSITY(INCH/HOUR) = 2.25 TOTAL AREA(ACRES) = 112.70 TOTAL RUNOFF(CFS) = 147.81 + + I Data above obtained from the "Hydrology and Hydraulic Study for Mariano" | I dated June 23, 1999. I I See Appendix 8.8. I + + **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 2 9.78 RAINFALL INTENSITY(INCH/HR) = 2.25 TOTAL STREAM AREA(ACRES) = 112.70 PEAK FLOW RATE (CFS) AT CONFLtTENCE = 147.81 **************************************************************************** FLOW PROCESS FROM NODE 45.00 TO NODE 45.10 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.35 RAIN INTENSITY(INCH/HOUR) = 3.60 TOTAL AREA(ACRES) = 1.21 TOTAL RUNOFF(CFS) = 2.42 + -1- I Data above obtained from the "Hydrology and Hydraulic Study for Mariano" | I dated June 23, 1999. | I See Appendix 8.8. | + + **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 14.35 RAINFALL INTENSITY(INCH/HR) = 3.60 TOTAL STREAM AREA(ACRES) = 1.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.42 ** CONFLtTENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOtTR) (ACRE) 1 16.80 13.10 3.822 8.52 2 147.81 29.78 2.250 112.70 3 2.42 14.35 3.604 1.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOtTR) 1 84.04 13.10 3.822 2 89.49 14.35 3.604 3 159.21 29.78 2.250 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 159.21 Tc(MIN.) = 29.78 TOTAL AREA(ACRES) = 122.43 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 45.10 = 1756.09 FEET. **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 47.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU StTBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 155.27 DOWNSTREAM(FEET) = 154.59 FLOW LENGTH(FEET) = 218.91 MANNING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 48.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.45 GIVEN PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 159.21 PIPE TRAVEL TIME(MIN.) = 0.43 Tc(MIN.) = 30.21 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 47.00 = 1975.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOtTR) (ACRE) 1 159.21 30.21 2.230 122.43 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 47.00 = 1975.00 FEET. ** MEMORY BANK.# 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 32.94 15.30 3.458 20.59 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 47.00 = 1558.18 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 113.56 15.30 3.458 2 180.45 30.21 2.230 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 180.45 Tc(MIN.) = 30.21 TOTAL AREA(ACRES) = 143.02 **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 12 >>>>>CLEAR MEMORY BANK # 1 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 48.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 154.26 DOWNSTREAM(FEET) = 135.00 FLOW LENGTH(FEET) = 99.12 MAILING'S N = 0.013 DEPTH OF FLOW IN 66.0 INCH PIPE IS 16.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 40.66 GIVEN PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 180.45 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 0 . 04 101. Tc(MIN.) = 0 0 TO NODE 30 .25 48.00 = 2074.12 FEET. 1 END HYDROLOGIC ANALYSIS END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 143 .02 180 .45 TC(MIN.) = 30 .25 II II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II I II II II II II II II II ll II II II |i II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II 1 II { II II END OF RATIONAL METHOD ANALYSIS Drainage Study Emerald Pointe Estates CHAPTER 5 HYDRAULIC ANALYSIS 5.1 - PROPOSED SYSTEM storm Drain Legend WSE Determination storm Model Input and Output AH:ah H:\REPORTS\2339M8\2nd Subnilttal\A02.doc W.O. 2339-18 6/21/2005 11:50 AM LEGEND PIPE NODE ID CH) EXISTING STORM DRAIN m PROPOSED STORM DRAIN m= SCALE: 1"= 20• PLANNING 10179 Huemekens Street ENQNEEIilNC San Diego, a 92121 SURVEYING PH(858)558-4SOO- FX(858)558-1414 STORM LEGEND MAP FOR EMERALD POINTE ESTATES PROPOSED SYSTEM CITY OF CARLSBAD, CALIFORNIA SHEET R: \0608\IHyd\a608MS-STCRU LEGDC.d<q[ ]jun-23-200S[ 11: 03 LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.1 (INPUT) DATE: 06/23/05 PAGE 1 PROJECT: EMERALD POINTE ESTATES - AFTER CDS UNIT DESIGNER: AH CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D W S • KJ KE KM LC Ll L3 L4 Al A3 A4 J N 2 5 9.5 9.5 40.72 232.00 233.54 0.00 24. 0. 1 0.50 0.20 0.11 1 0 0 0 0. 0. 0. 5.00 0.013 LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 06/23/05 PAGE 1 PROJECT: EMERALD POINTE ESTATES - AFTER CDS UNIT DESIGNER: AH LINE Q D W DN DC FLOW SF-FULL VI V2 FLI FL2 HGI HG2 Dl D2 TW NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC 1 HYDRAULIC GRADE LINE CONTROL - 238.33 5 9.5 24 0 0.63 1.10 FULL 0.00176 3.0 3.0 232.00 233.54 238.33 238.42 6.33 4.88 238.59 TW CK 0.00 REMARKS VI, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ (9 UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ « DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THB LINE EOJ 6/23/2005 10:31 EMERALD POINTE ESTATES 24" STORM DRAIN CARLSBAD, CA JUNE 1, 2005 PROJECT PARAMETERS CDS Model PMSU20 15 Qtreat 0.7 cfs Q system 10.19 cfs Total Flow in Storm Drain Hcds 0.35 fl Required Head Difference to Process 0 treat D/S Pipe Size 2.0 ft D/S Pipe Slope 0.0378 ft/ft U/S Pipe Size 2.0 ft U/S Pipe Slope 0.0356 ft/ft I PMSl (WEI ^SUMMARY PMSU Weir Height 1.00 ft PMSU Weir Lenqth 3.5 ft HYDRAULIC IMPACT OF CDS UNIT AT SYSTEM FLOW SD Station D/S of CDS 30+53.96 1 Pipe Invert El d/s of CDS 233.54 2 Finished Grade El (g CDS 238.89 3 EGL El d/s of CDS 235.15 3 HGL El d/s of CDS 234.70 Critical Depth in d/s Pipe 4 Hcont 0.05 ft Contraction Loss from CDS Manhole to d/s Pipe EGL El d/s of Baffle 235.20 5 HGL El d/s of Baffle 235.04 6 Baffle Loss 0.45 ft Loss Throuqh Baffle Orifice EGL El d/s of Weir 235.65 7 HGL El d/s of Weir 235.64 8 Hweir 0.25 ft Loss From Flow Over Submerged Weir 9 EGL El u/s of Weir 235.96 9 HGL El u/s of Weir 235.89 10 Hexp 0.02 ft Expansion Loss from u/s Pipe to CDS Manhole 11 EGL u/s of CDS Unit 235.98 11 HGL El u/s of CDS Unit 235.82 SD Station U/S of CDS 30+48.97 Increase In HGL 1.12 ft Freeboard U/S of CDS Unit 3.07 ft -.1 • • UPSTREAM CONVEYANCE SYSTEM CHECK AT SYSTEM FLOW Lenqth to U/S Manhole/CB 6.50 ft Rim Elevation at U/S Manhole/CB 238.92 Friction Loss to U/S Manhole/CB 0.01 ft HGL El at U/S Manhole/CB 235.83 Freeboard at U/S Manhole/CB 3.09 ft NO FLOODING OCCURS AT U/S MANHOLE/CB 4 - Loss of Head Due to Contractions For Higher Velocities with H > 1.0 foot: For Lower Velocities with H < 1.0 foot: 6 - Loss of Head Due to Baffle For Baffle/Orifice (pressure): 8 - Loss of Head Due to Weir For Weir (free discharge): For Submerged Weir; Hcont = (1/c-1)^*[v/2g] Hcont = 0.7*(v1 - v2)^ / 2g 0 = 0.582 + 0.0418/(1.1 -r) r = ratio of pipe diameters Hbaffle= [Q/cAorf/2g c = 0.6 Hweir Hweir : [0 / clT •• Hu/s - Hd/s c = 3.08 Hu/s = [Q / Ks * cLf" c = 3.08 Ks = [1 - (Hd/s / Hu/s)' 'l"-''' 10 - Loss of Head Due to Expansion/Enlargement: For All Situations: Hexp = 1.098 [(vl - v2)'V 2g The above equations are used in the calculations to determine the various components of headloss through the CDS unit These equations are based upon King's Handbool( of Hydraulics and tht manufacturer's recommendations. SHEET 1 OF 2 LA COUNTY PUBLIC WORKS PROJECT: EMERALD POINTE ESTATES - BEFORE CDS UNIT DESIGNER: AH STORM DRAIN ANALYSIS (INPUT) REPT: PC/RD4412.1 DATE: 06/23/05 PAGE 1 CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D W S KJ KE KM LC Ll L3 L4 Al A3 A4 8 5 235.82 2 6 9.5 9.5 6.47 233.54 233.77 0.00 24. 0. 3 0.50 0.20 0.05 2 7 3.5 3.5 36.50 234.10 234.43 0.00 24. 0. 1 0.00 0.20 0.05 0. 4.00 0.013 0 0. 0. 0. 4.00 0.013 LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 06/23/05 PAGE 1 HGI HG2 Dl D2 TW TW CALC CALC (FT) (FT) CALC CK REMARKS PROJECT: EMERALD POINTE ESTATES - BEFORE CDS UNIT DESIGNER: AH LINE Q D W DN DC FLOW SF-FULL VI V 2 FL 1 FL 2 NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) 5 HYDRAULIC GRADE LINE CONTROL - 235.82 6 9.5 24 0 0.64 1.10 FULL 0.00176 3.0 3.0 233.54 233.77 235.82 235.84 2.28 2.07 0.00 0.00 7 3.5 24 0 0.54 0.65 SEAL 0.00024 1.1 1.2 234.10 234.43 236.12 236.12 2.02 1.69 236.15 0.00 X • 2.42 X(N) - 0.00 VI, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ <a UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ a DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 6/23/2005 10:32 Drainage Study Emerald Pointe Estates CHAPTER 5 HYDRAULIC ANALYSIS 5.2 - EXISTING SYTEM Storm Drain Legend WSE Determination Storm Model Input and Output AH:all H:\REPORTS\2339t18\2nd Submltlal\A02.doc W.O. 2330-18 8/21/2005 11:50 AM LEGEND PIPE NODE ID EXISTING STORM DRAIN PROPOSED STORM DRAIN PREPARED FOR: HUNSAKER ^ & ASSOCIATES SAN OiECO, INC PLANNING 10179 Huennekens Street ENQNEERINC San Diego, Ca 92121 SURVEYING PH(858)55M500- FXtBSelSSS-MK STORM LEGEND MAP FOR EMERALD POINTE ESTATES EXISTING SYSTEM CITY OF CARLSBAD, CALIFORNIA SHEET 1 OF 1 T o 3: R:\0608\kHyd\0608tHas-STaRy LEGEMl.d«g[ ]jun-2>200S: I1:0J Worksheet for WSE Detennination at Node 48 Flow Element: Friction Method: Solve For; Circular Pipe Manning Formula Normal Depth Roughness Coefficient: Channel Slope: Diameter; Discharge; 0.013 19.43 66 180.45 % in cfs Nonnal Depth; Flow Area: Wetted Perimeter: Top Width; Critical Depth; Percent Full; Critical Slope: Velocity; Velocity Head: Specific Energy; Froude Number; Maximum Discharge: Discharge Full: Slope Full: Flow Type; Downstream Depth: Length: Number Of Steps: 1.30 4.28 5.58 4.67 3.76 23.6 0.00439 42.20 27.68 28.98 7.78 1592.20 1480.15 0.00289 Supercritical 0.00 0.00 0 ft ft' ft ft ft % ft/ft ft/s ft ft ft'/s ft'/s ft/ft Upstream Depth; 0.00 ft Profile Description: N/A Profile Headloss: 0.00 ft Average End Depth Over Rise; 0.00 % Normal Depth Over Rise: 0.00 % Downstream Velocity: 0.00 ft/s LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.1 (INPUT) DATE: 06/23/05 PAGE 1 PROJECT: EMERALD POINTE ESTATES-EXISTING STORM DRAIN SYSTEM DESIGNER: AH CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D W S KJ KE KM LC Ll L3 L4 Al A3 A4 J N 8 1 136.30 2 5 180.5 180.5 99.12 135.00 154.26 0.00 66. 0. 3 0.50 0.00 0.05 1 6 0 0 37. 0. 0. 7.00 0.013 2 6 32.9 32.9 122.41 158.09 172.67 0.00 24. 0. 3 0.15 0.00 0.05 0 7 0 0 0. 0. 0. 4.00 0.013 2 7 32.9 32.9 106.25 174.23 175.00 0.00 24. 0. 3 0.50 0.00 0.05 0 8 55 65 0. 90. 60. 4.00 0.013 2 8 26.0 26.0 287.01 175.05 208.00 0.00 24. 0. 3 0.15 0.00 0.05 0 9 0 0 0. 0. 0. 4.00 0.013 2 9 26.0 26.0 186.32 208.46 222.00 0.00 24. 0. 3 0.50 0.00 O.OS 0 10 75 0 0. 90. 0. 4.00 0.013 2 10 20.2 20.2 161.69 222.20 230.40 0.00 24. 0. 3 0.15 0.00 0.05 0 11 0 0 0. 0. 0. 4.00 0.013 2 11 20.2 20.2 238.26 230.60 242.20 0.00 24. 0. 3 O.SO 0.20 0.30 0 12 0 0 60. 0. 0. 4.00 0.013 2 12 11.7 11.7 87.33 242.85 244.80 0.00 18. 0. 1 0.00 0.20 0.00 0 0 0 0 0. 0. 0. 4.00 0.013 2 55 5.0 S.O 49.54 175.33 177.00 0.00 18. 0. 1 0.00 0.20 0.05 8 0 0 0 0. 0. 0. 4.00 0.013 2 65 4.1 4.1 18.76 175.33 177.00 0.00 18. 0. 1 0.00 0.20 0.05 8 0 0 0 0. 0. 0. 4.00 0.030 2 75 7.3 7.3 16.25 222.60 224.60 0.00 18. 0. 3 0.50 0.20 0.05 10 76 0 0 17. 0. 0. 4.00 0.013 2 76 2.3 2.3 36.00 224.93 229.31 0.00 18. 0. 1 0.00 0.20 0.05 0 0 0 0 0. 0. 0. 3.00 0.013 LA COUNTY PtraLIC WORKS STORM DRAI^f ANALYSIS REPT: PC/RD4412.2 DATE: 06/23/05 PAGE 1 PROJECT: EMERALD POINTE ESTATES-EXISTING STORM DRAIN SYSTEM bsSIGNER: AH LINE Q D W DN DC FLOW SF-FULL VI V 2 FL 1 NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) FL 2 HG 1 HG 2 D 1 D 2 TW TW (FT) CALC CALC (FT) (FT) CALC CK REMARKS 1 HYDRAULIC GRADE LINE CONTROL = 136.30 5 180.5 66 0 1.29 3.75 PART 0.00289 33.5 10.5 135.00 154.26 136.53 158.01 1.53 3.75 0.00 0.00 6 32.9 24 0 0.91 1.90 PART 0.02115 23.2 16.3 158.09 172.67 159.01 173.90 0.92 1.23 0.00 0.00 HJ ® DJT 7 32.9 24 0 2.00 1.90 SEAL 0.02115 10.7 17.2 174.23 175.00 176.13 176.17 1.90 1.17 0.00 0.00 HYD JUMP X - 100.35 X(N) - 0.00 X(J) - 100.35 F(J) = 18.10 D(BJ) = 1.20 D(AJ) = 3.35 8 26.0 24 0 0.80 1.78 PART 0.01321 22.1 19.5 175.05 208.00 175.85 208.88 0.80 0.88 0.00 0.00 X - 0.00 X(N) - 201.99 9 26.0 24 0 0.91 1.78 PART 0.01321 18.6 11.1 208.46 222.00 209.37 223.39 0.91 1.39 0.00 0.00 X = 0.00 X(N) - 33.38 10 20.2 24 0 0.87 1.61 PART 0.00797 15.3 15.5 222.20 230.40 223.07 231.27 0.87 0.87 0.00 0.00 X - 0.00 X(N) = 63.84 11 20.2 24 0 0.89 1.61 PART 0.00797 15.1 7.4 230.60 242.20 231.49 243.81 0.89 1.61 0.00 0.00 X - 0.00 X(N) = 51.78 12 11.7 18 0 0.97 1.30 FULL 0.01241 6.6 6.6 242.85 244.80 245.36 246.44 2.51 1.64 247.26 0.00 7 HYDRAULIC GRADE LINE CONTROL - 176.01 55 5.0 18 0 0.52 0.86 PART 0.00227 6.4 4.8 175.33 177.00 176.01 177.86 0.68 0.86 178.28 0.00 HYDRAULIC GRADE LINE CONTROL = 176.01 65 4.1 18 0 0.56 0.77 PART 0.00811 5.3 4.5 175.33 177.00 176.01 177.77 0.68 0.77 178.14 0.00 X - 0.00 X(N) - 5.2 9 9 HYDRAULIC GRADE LINE CONTROL - 209.13 75 7.3 18 0 0.45 1.05 PART 0.00483 12.5 5.5 222.60 224.60 223.15 225.65 0.55 1.05 0.00 0.00 76 2.3 18 0 0.25 0.57 PART 0.00048 1.3 3.7 224.93 229.31 226.41 229.88 1.48 0.57 230.14 0.00 HYD JUMP X = 0.00 X(N) = 0.00 X(J) - 2.73 F(J) = 0.84 D(BJ) = 0.26 D(AJ) - 1.12 VI, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JtJMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER APTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SlffiCRITICAL THROUGH A HYDRAULIC JUMP HJ a UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JtJNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 6/23/2005 11: 9 Drainage Study Emerald Pointe Estates CHAPTER 6 INLET SIZING, DITCH SIZING, AND RIPRAP DESIGN AH:ah H:\REPORTS\2339Vim2nd Suljmlnal\A02.doc W.O. 2339-18 8/21/2005 11:50 AM LU I- < 12! LU CO LU O QL CQ g O LU LU 3 - ^ - £ o) o- I «^ i3 I O Q. & C ^ >, 0) CD c o to ^ 0) — Q. ro Q (0 <a Zo is O ^ CO CO ^ ^ 0 •Froo — z CD CO CO CO CD z O in CM d CD UJ Q CD I Z o a: CO Q. T3 _o 0 £1 g "S c 3 T3 i_ 0 O W *-CO -rj 0) 3 !2 CO c ra JZ in c ro CL —' c 0) E > o Q. E 10 2 Q. +.» (U (U -.—' (O E o Q. X 0) CO 0) ro (35 •sr O c o ro CT LU 3 CO Q. O) C 'c c ro < i, ro Q. ro ro o (O LU < E o & LL E 2 CO T3 ro 3 ro T3 >. 0 ro o >« H eg CO o o + 'c a. O C 0 >; 3 + cr ro 0 ^ £ o c M i!° o J li ra o 3 JZ D" CO UJ x: E o, .2 S < ffi to _I < 9 CO H UJ E .Q 3 CO T3 C Di CO CD CO CO _1 m o X UJ o o CN <B FLOW DETERMINATION INTO DRAINAGE DITCH EMERALD POINTE ESTATES FLOW INTO OFFSITE NORTHERN DRAINAGE DITCH: STEP 1: Determine Time of Concentration (Tc): Assume worst possible scenario: Time of Concentration, Tc = 5.00 min STEP 2: Determine Intensity for 100-Year Storm Event (lioo): 100-year, 6-Hour Percipitation, Pioo,6 = 2.7 inches Duration, D = Tg Intensity, 1= 7.114 in/hr STEP 3: Determine Runoff for 100-Tear Storm Event (Qioo): Runoff Coefficient, C = 0.55 Drainage Area, A = 0.17 acres Q = CIA Runoff, Qioo = 0.67 cfs 6/23/200511:33 AM 1 of 1 H:\EXCEL\2339\18\2ndSubmittal\QCalc.xls Wori(sheet for Offsite Nortli Ditcli Flow Element: Friction Method; Solve For: Circular Pipe Manning Formula Nonnal Depth Roughness Coefficient; Channel Slope; Diameter; Discharge; Normal Depth: Flow Area: Wetted Perimeter; Top Width; Critical Depth; Percent Full: Critical Slope: Velocity: Velocity Head: Specific Energy: Froude Number: Maximum Discharge; Discharge Full: Slope Full: Flow Type: 0.015 1.00 12 0.67 'a32~ 0.21 1.19 0.93 0.34 31.6 0.00751 3.14 0.15 0.47 1.16 3.32 3.09 0.00047 Supercritical % in cfs ft ft^ ft ft ft % ft/ft ft/s ft ft ftVs ft'/s ft/ft Downstream Depth: 0.00 Length: 0.00 Number Of Steps; 0 ...... GVE Upstream Depth: 0.00 Profile Description: N/A Profile Headloss; 0.00 Average End Depth Over Rise; 0.00 Normal Depth Over Rise; 0.00 Downstream Velocity; 0.00 ft % % ft/s Drainage Ditcli (width^LO', ciepth=0.5') Cross Section for Offsite North Ditch Project Description Flow Element; Friction Method; Solve For: Circular Pipe Manning Fomnula Nonnal Depth Section Data Roughness Coefficient: Channel Slope; Normal Depth: Diameter; Discharge; 0.015 1.00 0.32 12 0.67 % ft in (rfs -1.00 44: 0.50 4^-1- RIPRAP SIZING EMERALD POINTE ESTATES Offsite North Drainaqe Ditch Outfall (North of Lots 11-13) (Refer to Developed Condition Hydrology Map in Section 9.2) Ditch Diameter, D = 1.0 ft Velocity, v= 6.37 fps (From FlowMaster Output) Use D-40: Type 1 Rock Class: No. 3 Backing (Per SDRSD D-40 and 2003 Regional Supplement to "Greenbook 2003" Standard Specifications) Length, L= 10.0 ft Upstreann Width, W= 2.0 ft Downstream Width, W= 3.0 ft Using 3:1 side slopes and placing riprap up to the top of pipe: Total Upstream W = 5.0 ft Total Downstream W= 6.0 ft (Per SDRSD D-40) Thickness, T = 1.2 ft (Per 2003 Regional Supplement to "Greenbook 2003" Standard Specifications and based on three times the DSO) Filter Blanket: Upper Layer: 3/16 " Crushed Rock (or equivalent) Thickness, T = 1.0 ft Lower Layer: Not Required (Per 2003 Regional Supplement to "Greenbook 2003" Standard Specifications 6/23/2005 1 of1 H;\EXCEL\2339\18\2ndSubmittal\RIPRAP-CARLSBAD.xls Worksheet for Velocity Ditch Outfall Flow Element: Friction Method: Solve For; Circular Pipe Manning Formula Normal Depth Roughness Coefficient: Channel Slope: Diameter; Discharge; 0.015 7.32 12 0.67 % in cfs Normal Depth: Flow Area; Wetted Perimeter; Top Width; Critical Depth: Percent Full; Critical Slope: Velocity: Velocity Head: Specific Energy; Froude Number; Maximum Discharge; Discharge Full; Slope Full: Flow Type: Downstream Depth; Length; Number Of Steps; 0.19 0.11 0.91 0.79 0.34 19.2 0.00750 6.37 0.63 0.82 3.07 8.99 8.35 0.00047 Supercritical i-i'^^^:, V?. 0.00 0.00 0 ft ft^ ft ft ft % ft/ft ft/s ft ft ft'/s ft'/s ft/ft ft ft Upstream Depth; 0.00 Profile Description: N/A Profile Headloss: 0.00 Average End Depth Over Rise: 0.00 Normal Depth Over Rise; 0.00 Downstream Velocity; 0.00 Hllliii MK. I^n^^ ft ft % % ft/s I I 2D OR 2 ff (min.) Endwall (^cal) PLAN Concrete Chonni 1/2.D min. SECTION B-B 0 = Pipe Diameter W = Bottom Width of Channd -Rter Blanket Sni, Qass 420-C-2000 Concrete SECTION A-A NOTES 1. 3. 4. 5. Plans shall specify: Rock Class and thickness (T). B; Filter material, number of layers and thickness. Kp rap ^oB be either quany stone or broken concrete (if shown on the plans.) Cobbles are not occeptotile. Rip rap sholl be ploced over filter blanket which may be either granular material or filter fabric. See Regional Supplement /Vmendments for selection of r^ rap and filter bkinket. Rip rop energy dissipators shil be designated as either ^pe 1 or Type 2. Type 1 ^oll be with concrete sill; '^pe 2 shall be without sill. SAN DIEGO REGIONAL STANDARD DRAWING 1 Revision By Approved Date SAN DIEGO REGIONAL STANDARD DRAWING ORIGINAL Kerchevol 12/75 RIP RAP RIP RAP ENERGY DISSIPATOR ENERGY DISSIPATOR RECOMMENOED BY THE SAN DCGO RESONAL STANDARDS COHMTIEE Chairpa^son R.CE. 19246 ORAWING NUMBER D-40 SEE SDD-100 2003 REGIONAL SUPPLEMENT 200-1.6.3 Quality Requirements Page 45 - First paragraph, second sentence change "60 days" to "30 days". 200-1.7 Selection of Riprap and Filter Blanket Material Table 200-1.7 Velocity Meters/Sec (Ft/Sec) (1) Rock Class (2) Rip Rap Thie k- Nes s Filter Blanket Upt)er Laverfs") (3) Velocity Meters/Sec (Ft/Sec) (1) Rock Class (2) Rip Rap Thie k- Nes s Option 1 Sect. 200 (4) Optio n2 Sect.4 00 (4) Option 3 (5) Lower Layer (6) 2(6-7) No. 3 Backing 0.6 5 nun (3/16") C2 D.G. 2.2 (7-8) No. 2 Backing 1.0 6 mm (1/4") B3 D.G. 2.6 (8-9.5) Facing 1-4 9.5 mm (3/8") D.G. 3(9.5-11) Light 2.0 12.5 mm QA") 25mm (3/4"-1-1/2") 3.5(11-13) 220 kg (1/4 Ton) 2,7 19 mm (3/4") 25mm (3/4"-1-1/2") SAND 4 (13-15) 450 kg Ton) 3.4 25mm(l") 25mm (3/4"-1-1/2") SAND 4.5 (15-17) 900 kg (1 Ton) 4.3 37.5 mm (1-1/2") TYPEB SAND 5.5 (17-20) l.STonne (2 Ton) 5.4 50 mm (2") TYPEB SAND See Section 200-1.6. see also Table 200-L6 (A) Practical use ofthis table is limited to situations where "T" is less than inside diameter. (1) Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater. (2) If desired rip rap and filter blanket class is not available, use next larger class. (3) Filter blanket thickness = 0.3 Meter (1 Foot) or "T", whichever is less. (4) Standard Specifications for Public Works Construction. (5) D.G. = Dismtegrated Granite, 1mm to 10mm. P.B. = Processed Miscellaneous Base. .8 Drainage Study Emerald Pointe Estates CHAPTER 7 DETENTION BASIN DESIGN 7.1 - 10-Year, 6-Hour Analysis AH:ah H:\REPORTS\2339\ie\2nd SubmmaM02.doc W.O. 2339-18 6/21/20O5 11:50 AM Emerald Pointe Estates Detention Basin Results 10-YEAR RESULTS 'Summaryof Results for Reservoir Resenfoir-t Project: Emerald Pointe E stat Run Name: Run 1 Reservoir; j Reservoir-1 ^ Start of Run: 01Jan05 0000 Basin Model: Detention Basin End of Run: 01Jan05 0600 Met Model: Metl Execution Time 23Jun05 0953 Control Specs: Controll Volume Units: ?• Inches T Acre-Feet j— Computed Results • •— — Peak Infiow: 6.3200 (cfs) Date/Time of Peak Inflow: 01 Jan 05 0415 Peak Outflow: 1.9603 [cfs) Total Inflow: [in) Totai Outflow: (in) Print Date/Time of Peak Outflow: 01 Jan 05 0427 Peak Storage: 0.11266 (ac-ft) Peak Elevation: 236.57 (ft) Close Rfiservoir-lj Q.tZ ? J J2.0JEB- OJO»- OJD 6- 2400 HEC 0100 D20D Print Close STAGE-STORAGE TABLE EMERALD POINTE ESTATES Elevation (ft) Elevation Difference (ft) Total Elevation Difference (ft) Area (acres) Total Volume (acre-ft.) 232 0.0121 0.00 233 0.0172 0.01 1.00 1.00 234 0.0229 0.03 1.00 2.00 235 0.0292 0.06 1.00 3.00 236 0.0361 0.09 1.00 4.00 237 0.0435 0.13 1.00 5.00 238 0.0515 0.18 1.00 6.00 239 0.0601 0.24 1.00 7.00 240 0.0693 0.30 1.00 8.00 Vbasin= 0.30 acre-ft 6/21/2005 1 ofl H:\EXCEL\2393\3\STAGE-STORAGE.xls ORIFICE CALCULATIONS EMERALD POINTE ESTATES - DETENTION BASIN DISCHARGE RATING CURVE Riser Perforations Calculations Based on Orifice Equation Bottom Elevation of Hole #1 = Hole#1 Diameter = Number of Orifices = Area = Orifice Centroid Elevation = ORIFICE EQUATION Q= CA(2gh) where: 1/2 232.00 6.0 1.0 0.196 232.25 feet inches = sq.ft. feet 0.50 feet C = Orifice Coefficient = 0.60 (per Brater & King "Handbook of Hydraulics") A = Cross Sectional Area of the Orifice g = Gravitational Constant = 32.2 ft/s^ h = Effective Head on the Orifice Measured from the Centroid of the Opening Headwater Hole #1 Elevation Riser-Orifice (feet) (cfs) 232 0.00 233 0.82 234 1.25 235 1.57 236 1.83 237 2.06 238 2.27 239 2.46 240 2.63 6/21/2005 1 of 1 H;\EXCEL\2339\18\2nd Submittal\Orifice-Basln.xls Rational Method Hydrograph Calculations for Emerald Pointe Estates, Carlsbad, CA #= 24 Qioo"" 6.32 cfs Tc= 15 min 0= 0.52 Pl00,6~ 1.8 in A= 4.75 acres (7.44*P6'D\645) (rD/60) (V1-V0) (A V/A T) (Q=ciA) (Re-ordered) D 1 VOL AVOL 1 (INCR) Q VOL ORDINATE # (MIN) (IN/HR) (IN) (IN) (IN/HR) (CFS) (CF) SUM= 0 0 0.00 0.00 0.58 2.33 6.32 5688 0.00 1 15 2.33 0.58 0.16 0.65 1.61 1448 0.27 2 30 1.49 0.75 0.12 0.46 1.14 1028 0.27 3 45 1.15 0.86 0.09 0.37 0.92 824 0.29 4 60 0.95 0.95 0.08 0.31 0.78 700 0.30 5 75 0.83 1.03 0.07 0.28 0.68 615 0.32 6 90 0.74 1.10 0.06 0.25 0.61 552 0.34 7 105 0.67 1.16 0.06 0.23 0.56 503 0.36 8 120 0.61 1.22 0.05 0.21 0.52 464 0.38 9 135 0.57 1.27 0.05 0.19 0.48 432 0.42 10 150 0.53 1.32 0.05 0.18 0.45 405 0.45 11 165 0.50 1.37 0.04 0.17 0.42 381 0.52 12 180 0.47 1.41 0.04 0.16 0.40 361 0.56 13 195 0.45 1.45 0.04 0.15 0.38 344 0.68 14 210 0.43 1.49 0.04 0.15 0.36 328 0.78 15 225 0.41 1.53 0.04 0.14 0.35 315 1.14 16 240 0.39 1.56 0.03 0.14 0.34 302 1.61 17 255 0.38 1.60 0.03 0.13 0.32 291 6.32 18 270 0.36 1.63 0.03 0.13 0.31 281 0.92 19 285 0.35 1.66 0.03 0.12 0.30 271 0.61 20 300 0.34 1.69 0.03 0.12 0.29 263 0.48 21 315 0.33 1.72 0.03 0.11 0.28 255 0.40 22 330 0.32 1.75 0.03 0.11 0.27 247 0.35 23 345 0.31 1.78 0.03 0.11 0.27 241 0.31 24 360 0.30 1.80 0.00 0.00 0.00 0 0.28 SUM= 16537 0.38 cubic feet acre-feet Check: V = C*A*P6 V = 0.37 acre-feet OK 6/23/2005 1 of 1 H:\EXCEL\2339\18\2nd Submittal\RM-Hydrograph 10-Yr.xls RATING TABLE FOR FLOW OVER RISER - DETENTION BASIN EMERALD POINTE ESTATES RISER DATA: 36" Diameter CMP Riser WEIR EQUATION: Q = CLH' where: C = Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H>= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) ORIFICE EQUATION: 1/2 Q = CA(2gH) where: C = Orifice Coefficient = 0.60 A = Cross Sectional Area of Orifice (ft^) g = Gravitational Constant (32.2 ft/s^) H = Water Height over Centroid of Orifice (ft) Water Riser Riser Weir Weir Orifice Orifice Weir Orifice Weir Orifice Height Diam Circumf Coeff. Length Coeff. Area Flow Flow Flow* Flow* (feet) (feet) (feet) C (feet) C (sq. ft.) (cfs) (cfs) (cfs) (cfs) 0.2 3 9.42 2.80 9.42 0.6 7.07 2.36 15.22 2.01 12.94 0.4 3 9.42 2.92 9.42 0.6 7.07 6.96 21.53 5.92 18.30 0.5 3 9.42 3.00 9.42 20.46 0.6 3 9.42 3.08 9.42 0.6 7.07 13.49 26.36 11.47 22.41 0.8 3 9.42 3.20 9.42 0.6 7.07 21.58 30.44 18.34 25.88 1.0 3 9.42 3.32 9.42 0.6 7.07 31.29 34.04 26.60 28.93 1.2 3 9.42 3.32 9.42 0.6 7.07 41.13 37.28 34.96 31.69 1.4 3 9.42 3.32 9.42 0.6 7.07 51.83 40.27 44.06 34.23 1.5 3 9.42 3.32 9.42 0.6 7.07 57.48 41.68 48.86 35.43 1.6 3 9.42 3.32 9.42 0.6 7.07 63.33 43.05 53.83 36.59 1.8 3 9.42 3.32 9.42 0.6 7.07 75.56 45.66 64.23 38.81 2.0 3 9.42 3.32 9.42 0.6 7.07 88.50 48.13 75.23 40.91 2.2 3 9.42 3.32 9.42 0.6 7.07 102.10 50.48 86.79 42.91 2.4 3 9.42 3.32 9.42 0.6 7.07 116.34 52.73 98.89 44.82 2.5 3 9.42 3.32 9.42 0.6 7.07 123.69 53.81 105.13 45.74 3.0 3 9.42 3.32 9.42 0.6 7.07 162.59 58.95 138.20 50.11 * Assume 15% clogging 6/22/2005 1 ofl H:\EXCEL\2339\18\2nd Submittal\Overflow I^iser-Basin-Circular.xls HMS Siunmary of Results for Reservoir-1 Project : Emerald Pointe Estat Run Name : Run 1 Start of Run : OlJanOS OOOO Basin Model : Detention Basin End of Run : OlJemOS 0600 Het. Model : Met 1 Execution Time : 23Jun05 0953 Control Specs : Control 1 Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 31 Dec 04 2400 0. ooooo 232. 00 0. OOOO 0. OOOO 01 Jan 05 OOOl 0. 00001 232. 00 0. 0180 0. 0010 01 Jan 05 0002 0 00005 232. 00 0 0360 0. 0037 01 Jan 05 0003 0 00010 232. 01 0 0540 0. 0082 01 Jan 05 0004 0 00017 232. 02 0 0720 0 0140 01 Jan 05 0005 0 00026 232. 03 0 0900 0 0212 01 Jan 05 0006 0 00036 232. 04 0 1080 0 0295 01 Jan 05 0007 0 00047 232 05 0 1260 0 0389 01 Jan 05 0008 0 00060 232 06 0 1440 0 0491 01 Jan 05 0009 0 00073 232 07 0 1620 0 0602 01 Jan 05 0010 0 00088 232 09 0 1800 0 0721 01 Jan 05 0011 0 00103 232 10 0 1980 0 0846 01 Jan 05 0012 0 00119 232 12 0 2160 0 0977 01 Jan 05 0013 0 00136 232 14 0 2340 0 1113 01 Jan 05 0014 0 00153 232 15 0 2520 0 1254 01 Jan 05 0015 0 00171 232 17 0 2700 0 1399 01 Jan 05 0016 0 00188 232 19 0 2700 0 1538 01 Jan 05 0017 0 00203 232 20 0 2700 0 1662 01 Jan 05 0018 0 00216 232 22 0 2700 0 1773 01 Jan 05 0019 0 00228 232 23 0 2700 0 1872 01 Jan 05 0020 0 00239 232 24 0 2700 0 1961 01 Jam 05 0021 0 00249 232 25 0 2700 0 2040 01 Jan 05 0022 0 00257 232 26 0 2700 0 2110 01 Jan 05 0023 0 00265 232 27 0 2700 0 2173 01 Jan 05 0024 0 00272 232 27 0 2700 0 2230 01 Jan 05 0025 0 00278 232 28 0 2700 0 2280 01 Jan 05 0026 0 00284 232 28 0 2700 0 .2325 01 Jan 05 0027 0 00288 232 29 0 2700 0 .2365 01 Jan 05 0028 0 00293 232 29 0 2700 0 2401 01 Jan 05 0029 0 00297 232 30 0 2700 0 .2433 01 Jan 05 0030 0 00300 232 30 0 2700 0 .2461 01 Jan 05 0031 0 00303 232 30 0 2713 0 .2488 01 Jan 05 0032 0 00306 232 31 0 2727 0 .2512 01 Jan 05 0033 0 00309 232 31 0 2740 0 .2536 01 Jan 05 0034 0 .00312 232 31 0 .2753 0 .2559 01 Jan 05 0035 0 00315 232 31 0 .2767 0 .2580 01 Jeui OS 0036 0 .00317 232 32 0 .2780 0 .2601 01 Jan 05 0037 0 .00320 232 32 0 .2793 0 .2621 01 Jan 05 0038 0 00322 232 .32 0 .2807 0 .2640 01 Jan 05 0039 0 00324 232 .32 0 .2820 0 .2658 01 Jan 05 0040 0 00326 232 .33 0 .2833 0 .2676 Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 05 0041 0. 00329 232. 33 0. 2847 0. 2694 01 Jam 05 0042 0. 00331 232. 33 0. 2860 0. 2711 01 Jan 05 0043 0. 00333 232. 33 0. 2873 0. 2728 01 Jan 05 0044 0. 00335 232. 33 0. 2887 0. 2744 01 Jan 05 0045 0. 00337 232. 34 0. 2900 0. 2760 01 Jan 05 0046 0. 00338 232. 34 0. 2907 0. 2775 01 Jan 05 0047 0. 00340 232. 34 0. 2913 0. 2790 01 Jsm 05 0048 0 00342 232. 34 0 2920 0 2803 01 Jan 05 0049 0 00343 232. 34 0 2927 0 2816 01 Jan 05 0050 0 00345 232. 34 0 2933 0 2823 01 Jan 05 0051 0 00346 232. 35 0 2940 0 2840 01 Jan 05 0052 0 00348 232 35 0 2947 0 2851 01 Jan 05 0053 0 00349 232 35 0 2953 0 2861 01 Jan 05 0054 0 00350 232 35 0 2960 0 2872 01 Jan 05 0055 0 00351 232 35 0 2967 0 2881 01 Jan 05 0056 0 00353 232 35 0 2973 0 2891 01 Jan 05 0057 0 00354 232 35 0 2980 0 2900 01 Jan 05 0058 0 00355 232 35 0 2987 0 2909 01 Jan 05 0059 0 00356 232 36 0 2993 0 2918 01 Jan 05 0100 0 00357 232 36 0 3000 0 2926 01 Jan 05 0101 0 00358 232 36 0 3013 0 2935 01 Jan 05 0102 0 00359 232 36 0 3027 0 2944 01 Jan 05 0103 0 00360 232 36 0 3040 0 2953 01 JcUl 05 0104 0 00361 232 36 0 3053 0 2963 01 Jan 05 0105 0 00363 232 36 0 3067 0 2974 01 Jan 05 0106 0 .00364 232 36 0 3080 0 2984 01 Jan 05 0107 0 .00365 232 37 0 3093 0 2995 01 Jan 05 0108 0 .00367 232 37 0 3107 0 3006 01 Jan 05 0109 0 .00368 232 37 0 .3120 0 3018 01 Jan 05 0110 0 .00369 232 37 0 .3133 0 .3030 01 Jan 05 0111 0 .00371 232 .37 0 .3147 0 .3041 01 Jan 05 0112 0 .00372 232 .37 0 .3160 0 .3053 01 Jan 05 0113 0 .00374 232 .37 0 .3173 0 .3065 01 Jan 05 0114 0 .00375 232 .38 0 .3187 0 .3078 01 Jan 05 0115 0 .00377 232 .38 0 .3200 0 .3090 01 Jan 05 0116 0 .00378 232 .38 0 .3213 0 .3103 01 Jan 05 0117 0 .00380 232 .38 0 .3227 0 .3115 01 Jan 05 0118 0 .00381 232 .38 0 .3240 0 .3128 01 Jan 05 0119 0 .00383 232 .38 0 .3253 0 .3140 01 Jan 05 0120 0 .00385 232 .38 0 .3267 0 .3153 01 Jan 05 0121 0 .00386 232 .39 0 .3280 0 .3166 01 Jan 05 0122 0 .00388 232 .39 0 .3293 0 .3179 01 Jan 05 0123 0 .00389 232 .39 0 .3307 0 .3192 01 Jan 05 0124 0 .00391 232 .39 0 .3320 0 .3205 01 Jan 05 0125 0 .00392 232 .39 0 .3333 0 .3218 01 Jan 05 0126 0 .00394 232 .39 0 .3347 0 .3231 01 Jan 05 0127 0 .00396 232 .40 0 .3360 0 .3244 01 Jan 05 0128 0 .00397 232 .40 0 .3373 0 .3257 01 Jan 05 0129 0 .00399 232 .40 0 .3387 0 .3270 01 Jan 05 0130 0 .00400 232 .40 0 .3400 0 .3283 01 Jan 05 0131 0 .00402 232 .40 0 .3413 0 .3297 Page: 2 Data Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 05 0132 0.00404 232.40 0.3427 0.3310 01 Jan 05 0133 0.00405 232.41 0.3440 0.3323 01 Jan 05 0134 0.00407 232.41 0.3453 0.3336 01 Jan 05 0135 0.00408 232.41 0.3467 0.3349 01 Jan 05 0136 0.00410 232.41 0.3480 0.3363 01 Jan 05 0137 0.00412 232.41 0.3493 0.3376 01 Jan 05 0138 0.00413 232.41 0.3507 0.3389 01 Jan 05 0139 0.00415 232.41 0.3520 0.3402 01 Jan 05 0140 0.00417 232.42 0.3533 0.3416 01 Jan 05 0141 0.00418 232.42 0.3547 0.3429 01 Jan 05 0142 0.00420 232.42 0.3560 0.3442 01 Jan 05 0143 0.00421 232.42 0.3573 0.3456 01 Jan 05 0144 0.00423 232.42 0.3587 0.3469 01 Jan 05 0145 0.00425 232.42 0.3600 0.3482 01 Jan 05 0146 0.00426 232.43 0.3613 0.3496 01 Jan 05 0147 0.00428 232.43 0.3627 0.3509 01 Jan 05 0148 0.00430 232.43 0.3640 0.3522 01 Jan 05 0149 0.00431 232.43 0.3653 0.3535 01 Jan 05 0150 0.00433 232.43 0.3667 0.3549 01 Jan 05 0151 0.00434 232.43 0.3680 0.3562 01 Jan 05 0152 0.00436 232.44 0.3693 0.3575 01 Jan 05 0153 0.00438 232.44 0.3707 0.3589 01 Jan 05 0154 0.00439 232.44 0.3720 0.3602 01 Jan 05 0155 0.00441 232.44 0.3733 0.3615 01 Jan 05 0156 0.00443 232.44 0.3747 0.3629 01 Jan 05 0157 0.00444 232.44 0.3760 0.3642 01 Jan 05 0158 0.00446 232.45 0.3773 0.3655 01 Jan 05 0159 0.00447 232.45 0.3787 0.3669 01 Jan 05 0200 0.00449 232.45 0.3800 0.3682 01 Jan 05 0201 0.00451 232.45 0.3827 0.3696 01 Jan 05 0202 0.00453 232.45 0.3853 0.3711 01 Jan 05 0203 0.00455 232.45 0.3880 0.3728 01 Jan 05 0204 0.00457 232.46 0.3907 0.3746 01 Jan 05 0205 0.00459 232.46 0.3933 0.3764 01 Jan 05 0206 0.00461 232.46 0.3960 0.3784 01 Jan 05 0207 0.00464 232.46 0.3987 0.3804 01 Jan 05 0208 0.00466 232.47 0.4013 0.3825 01 Jan 05 0209 0.00469 232.47 0.4040 0.3847 01 Jan 05 0210 0.00472 232.47 0.4067 0.3869 01 Jan 05 0211 0.00475 232.47 0.4093 0.3891 01 Jan 05 0212 0.00477 232.48 0.4120 0.3914 01 Jan 05 0213 0.00480 232.48 0.4147 0.3938 01 Jan 05 0214 0.00483 232.48 0.4173 0.3961 01 Jan 05 0215 0.00486 232.49 0.4200 0.3986 01 Jan 05 0216 0.00489 232.49 0.4220 0.4010 01 Jan 05 0217 0.00492 232.49 0.4240 0.4033 01 Jan 05 0218 0.00495 232.49 0.4260 0.4056 01 Jan 05 0219 0.00497 232.50 0.4280 0.4079 01 Jan 05 0220 0.00500 232.50 0.4300 0.4102 01 Jan 05 0221 0.00503 232.50 0.4320 0.4124 01 Jan 05 0222 0.00506 232.51 0.4340 0.4146 Page: 3 Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 05 0223 0.00508 232.51 0.4360 0.4168 01 Jan 05 0224 0.00511 232.51 0.4380 0.4189 01 Jan 05 0225 0.00514 232.51 0.4400 0.4211 01 Jan 05 0226 0.00516 232.52 0.4420 0.4232 01 Jan 05 0227 0.00519 232.52 0.4440 0.4253 01 Jan 05 0228 0.00521 232.52 0.4460 0.4274 01 Jan 05 0229 0.00524 232.52 0.4480 0.4295 01 Jan 05 0230 0.00526 232.53 0.4500 0.4316 01 Jan 05 0231 0.00529 232.53 0.4547 0.4338 01 Jan 05 0232 0.00532 232.53 0.4593 0.4363 01 Jan 05 0233 0.00535 232.54 0.4640 0.4390 01 Jan 05 0234 0.00539 232.54 0.4687 0.4419 01 Jan 05 0235 0.00543 232.54 0.4733 0.4450 01 Jan 05 0236 0.00547 232.55 0.4780 0.4483 01 Jan 05 0237 0.00551 232.55 0.4827 0.4517 01 Jan 05 0238 0.00555 232.56 0.4873 0.4553 01 Jan 05 0239 0.00560 232.56 0.4920 0.4590 01 Jan 05 0240 0.00564 232.56 0.4967 0.4627 01 Jan 05 0241 0.00569 232.57 0.5013 0.4666 01 Jan 05 0242 0.00574 232.57 0.5060 0.4706 01 Jan 05 0243 0.00579 232.58 0.5107 0.4746 01 Jan 05 0244 0.00584 232.58 0.5153 0.4787 01 Jan 05 0245 0.00589 232.59 0.5200 0.4829 01 Jan 05 0246 0.00594 232.59 0.5227 0.4870 01 Jan 05 0247 0.00599 232.60 0.5253 0.4910 01 Jan 05 0248 0.00603 232.60 0.5280 0.4948 01 Jan 05 0249 0.00608 232.61 0.5307 0.4985 01 Jan 05 0250 0.00612 232.61 0.5333 0.5021 01 Jan 05 0251 0.00617 232.62 0.5360 0.5055 01 Jan 05 0252 0.00621 232.62 0.5387 0.5089 01 Jan 05 0253 0.00625 232.62 0.5413 0.5123 01 Jan 05 0254 0.00629 232.63 0.5440 0.5155 01 Jan 05 0255 0.00633 232.63 0.5467 0.5187 01 Jan 05 0256 0.00636 232.64 0.5493 0.5218 01 Jan 05 0257 0.00640 232.64 0.5520 0.5249 01 Jan 05 0258 0.00644 232.64 0.5547 0.5280 01 Jan 05 0259 0.00648 232.65 0.5573 0.5310 01 Jan 05 0300 0.00651 232.65 0.5600 0.5339 01 Jan 05 0301 0.00655 232.66 0.5680 0.5371 01 Jan 05 0302 0.00660 232.66 0.5760 0.5409 01 Jan 05 0303 0.00665 232.66 0.5840 0.5450 01 Jan 05 0304 0.00670 232.67 0.5920 0.5496 01 Jan 05 0305 0.00676 232.68 0.6000 0.5546 01 Jan 05 0306 0.00683 232.68 0.6080 0.5599 01 Jan 05 0307 0.00690 232.69 0.6160 0.5654 01 Jan 05 0308 0.00697 232.70 0.6240 0.5713 01 Jan 05 0309 0.00704 232.70 0.6320 0.5773 01 Jan 05 0310 0.00712 232.71 0.6400 0.5836 01 Jan 05 0311 0.00720 232.72 0.6430 0.5901 01 Jan 05 0312 0.00728 232.73 0.6560 0.5967 01 Jan 05 0313 0.00736 232.74 0.6640 0.6035 Page: Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 05 0314 0.00744 232.74 0.6720 0.6104 01 Jan 05 0315 0.00753 232.75 0.6800 0.6174 01 Jan 05 0316 0.00761 232.76 0.6867 0.6244 01 Jan 05 0317 0.00770 232.77 0.6933 0.6314 01 Jan 05 0318 0.00779 232.78 0.7000 0.6384 01 Jan 05 0319 0.00787 232.79 0.7067 0.6454 01 Jan 05 0320 0.00795 232.80 0.7133 0.6523 01 Jan 05 0321 0.00304 232.30 0.7200 0.6591 01 Jan 05 0322 0.00812 232.81 0.7267 0.6660 01 Jan 05 0323 0.00821 232.82 0.7333 0.6729 01 Jan 05 0324 0.00829 232.83 0.7400 0.6797 01 Jan 05 0325 0.00837 232.84 0.7467 0.6865 01 Jan 05 0326 0.00845 232.85 0.7533 0.6933 01 Jan 05 0327 0.00354 232.35 0.7600 0.7000 01 Jan 05 0328 0.00862 232.86 0.7667 0.7063 01 Jan 05 0329 0.00370 232.87 0.7733 0.7136 01 Jan 05 0330 0.00378 232.83 0.7300 0.7203 01 Jan 05 0331 0.00888 232.89 0.3040 0.7230 01 Jan 05 0332 0.00899 232.90 0.8280 0.7374 01 Jan 05 0333 0.00913 232.91 0.8520 0.7484 01 Jan 05 0334 0.00928 232.93 0.8760 0.7607 01 Jan 05 0335 0.00944 232.94 0.9000 0.7743 01 Jan 05 0336 0.00962 232.96 0.9240 0.7390 01 Jan 05 0337 0.00981 232.98 0.9480 0.8048 01 Jan 05 0338 0.01002 233.00 0.9720 0.8204 01 Jan 05 0339 0.01024 233.01 0.9960 0.8251 01 Jan 05 0340 0.01049 233.02 1.0200 0.8305 01 Jan 05 0341 0.01076 233.04 1.0440 0.3364 01 Jan 05 0342 0.01106 233.05 1.0680 0.8423 01 Jan 05 0343 0.01138 233.07 1.0920 0.3497 01 Jan 05 0344 0.01173 233.09 1.1160 0.8571 01 Jan 05 0345 0.01209 233.10 1.1400 0.8650 01 Jan 05 0346 0.01249 233.12 1.1713 0.8735 01 Jan 05 0347 0.01291 233.15 1.2027 0.8827 01 Jan 05 0348 0.01337 233.17 1.2340 0.8924 01 Jan 05 0349 0.01385 233.19 1.2653 0.9029 01 Jan 05 0350 0.01437 233.22 1.2967 0.9139 01 Jan 05 0351 0.01491 233.25 1.3280 0.9255 01 Jan 05 0352 0.01548 233.27 1.3593 0.9377 01 Jan 05 0353 0.01607 233.30 1.3907 0.9505 01 Jan 05 0354 0.01669 233 .33 1.4220 0.9638 01 Jan 05 0355 0.01733 233.37 1.4533 0.9776 01 Jan 05 0356 0.01800 233.40 1.4847 0.9920 01 Jan 05 0357 0.01869 233.43 1.5160 1.0063 01 Jan 05 0358 0.01940 233.47 1.5473 1.0221 01 Jan 05 0359 0.02013 233.51 1.5787 1.0379 01 Jan 05 0400 0.02089 233.54 1.6100 1.0541 01 Jan 05 0401 0.02186 233.59 1.9240 1.0749 01 Jan 05 0402 0.02322 233.66 2.2380 1.1043 01 Jan 05 0403 0.02493 233.75 2.5520 1.1420 01 Jan 05 0404 0.02710 233.86 2.8660 1.1377 Page: Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ao-ft) (ft) 01 Jan 05 0405 0.02959 233.98 3.1800 1.2413 01 Jan 05 0406 0.03246 234.08 3.4940 1.2762 01 Jan 05 0407 0.03570 234.19 3.8080 1.3108 01 Jan 05 0408 0.03933 234.31 4.1220 1.3495 01 Jan 05 0409 0.04334 234.44 4.4360 1.3923 01 Jan 05 0410 0.04771 234.59 4.7500 1.4390 01 Jan 05 0411 0.05246 234.75 5.0640 1.4895 01 Jan 05 0412 0.05756 234.92 5.3780 1.5440 01 Jan 05 0413 0.06302 235.10 5.6920 1.5962 01 Jan 05 0414 0.06884 235.29 6.0060 1.6466 01 Jan 05 0415 0.07503 235.50 6.3200 1.7002 01 Jan 05 0416 0.08111 235.70 5.9600 1.7529 01 Jan 05 0417 0.08662 235.39 5.6000 1.8007 01 Jan 05 0418 0.09158 236.04 5.2400 1.8391 01 Jan 05 0419 0.09600 236.15 4.3800 1.8645 01 Jan 05 0420 0.09939 236.25 4.5200 1.8869 01 Jan 05 0421 0.10325 236.33 4.1600 1.9062 01 Jan 05 0422 0.10610 236.40 3.3000 1.9226 01 Jan 05 0423 0.10343 236.46 3.4400 1.9360 01 Jan 05 0424 0.11024 236.51 3.0300 1.9464 01 Jan 05 0425 0.11155 236.54 2.7200 1.9539 01 Jan 05 0426 0.11236 236.56 2.3600 1.9536 01 Jan 05 0427 0.11266 236.57 2.0000 1.9603 01 Jan 05 0428 0.11247 236.56 1.6400 1.9592 01 Jan 05 0429 0.11178 236.54 1.2800 1.9553 01 Jan 05 0430 0.11061 236.52 0.9200 1.9435 01 Jan 05 0431 0.10918 236.48 0.8993 1.9403 01 Jan 05 0432 0.10774 236.44 0.8737 1.9320 01 Jan 05 0433 0.10628 236.41 0.8580 1.9236 01 Jan 05 0434 0.10481 236.37 0.8373 1.9151 01 Jan 05 0435 0.10331 236.33 0.8167 1.9066 01 Jan 05 0436 0.10180 236.30 0.7960 1.8979 01 Jan 05 0437 0.10028 236.26 0.7753 1.8891 01 Jan 05 0438 0.09374 236.22 0.7547 1.8802 01 Jan 05 0439 0.09718 236.18 0.7340 1.8713 01 Jan 05 0440 0.09560 236.14 0.7133 1.8622 01 Jan 05 0441 0.09401 236.10 0.6927 1.8531 01 Jan 05 0442 0.09241 236.06 0.6720 1.8438 01 Jan 05 0443 0.09078 236.02 0.6513 1.8345 01 Jan 05 0444 0.08915 235.97 0.6307 1.8226 01 Jan 05 0445 0.08750 235.92 0.6100 1.8034 01 Jan 05 0446 0.08586 235.86 0.6013 1.7941 01 Jan 05 0447 0.08422 235.81 0.5927 1.7799 01 Jan 05 0448 0.08259 235.75 0.5840 1.7657 01 Jan 05 0449 0.03096 235.70 0.5753 1.7517 01 Jan 05 0450 0.07934 235.64 0.5667 1.7377 01 Jan 05 0451 0.07774 235.59 0.5530 1.7237 01 Jan 0 5 0452 0.07613 235.54 0.5493 1.7098 01 Jan 05 0453 0.07454 235.48 0.5407 1.6960 01 Jan 05 0454 0.07295 235.43 0.5320 1.6822 01 Jan 05 0455 0.07137 235.38 0.5233 1.6685 Page: Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 05 0456 0.06980 235.33 0.5147 1.6549 01 Jan 05 0457 0.06323 235.27 0.5060 1.6413 01 Jan 05 0458 0.06667 235.22 0.4973 1.6278 01 Jan 05 0459 0.06511 235.17 0.4887 1.6143 01 Jan 05 0500 0.06357 235.12 0.4800 1.6009 01 Jan 05 0501 0.06203 235.07 0.4747 1.5876 01 Jan 05 0502 0.06050 235.02 0.4693 1.5743 01 Jan 05 0503 0.05399 234.97 0.4640 1.5592 01 Jan 05 0504 0.05743 234.92 0.4587 1.5432 01 Jan 05 0505 0.05600 234.87 0.4533 1.5273 01 Jan 05 0506 0.05453 234.82 0.4480 1.5116 01 Jan 05 0507 0.05307 234.77 0.4427 1.4961 01 Jan 05 0508 0.05162 234.72 0.4373 1.4307 01 Jan 05 0509 0.05019 234.67 0.4320 1.4654 01 Jan 05 0510 0.04378 234.63 0.4267 1.4503 01 Jan 05 0511 0.04737 234.53 0.4213 1.4353 01 Jan 05 0512 0.04598 234.53 0.4160 1.4205 01 Jan 05 0513 0.04461 234.49 0.4107 1.4058 01 Jan 05 0514 0.04324 234.44 0.4053 1.3913 01 Jan 05 0515 0.04139 234.40 0.4000 1.3768 01 Jan 05 0516 0.04055 234.35 0.3967 1.3626 01 Jan 05 0517 0.03923 234.31 0.3933 1.3484 01 Jan 05 0518 0.03792 234.26 0.3900 1.3345 01 Jan 05 0519 0.03663 234.22 0.3867 1.3207 01 Jan 05 0520 0.03535 234.13 0.3833 1.3070 01 Jan 05 0521 0.03403 234.14 0.3800 1.2935 01 Jan 05 0522 0.03283 234.09 0.3767 1.2802 01 Jan 05 0523 0.03159 234.05 0.3733 1.2670 01 Jan 05 0524 0.03037 234.01 0.3700 1.2539 01 Jan 05 0525 0.02916 233.96 0.3667 1.2320 01 Jan 05 0526 0.02799 233.90 0.3633 1.2067 01 Jan 05 0527 0.02684 233.84 0.3600 1.1821 01 Jan 05 0528 0.02572 233.79 0.3567 1.1580 01 Jan 05 0529 0.02463 233.73 0.3533 1.1346 01 Jan 05 0530 0.02357 233.68 0.3500 1.1118 01 Jan 05 0531 0.02253 233.63 0.3473 1.0895 01 Jan 05 0532 0.02153 233.58 0.3447 1.0673 01 Jan 05 0533 0.02054 233.53 0.3420 1.0466 01 Jan 05 0534 0.01958 233.48 0.3393 1.0260 01 Jan 05 0535 0.01365 233.43 0.3367 1.0060 01 Jan 05 0536 0.01774 233.39 0.3340 0.9364 01 Jan 05 0537 0.01685 233.34 0.3313 0.9673 01 Jan 05 0533 0.01599 233.30 0.3287 0.9437 01 Jan 05 0539 0.01514 233.26 0.3260 0.9306 01 Jan 05 0540 0.01432 233.22 0.3233 0.9129 01 Jan 05 0541 0.01352 233.18 0.3207 0.8957 01 Jan 05 0542 0.01274 233.14 0.3130 0.3733 01 Jan 05 0543 0.01197 233.10 0.3153 0.3624 01 Jan 05 0544 0.01123 233.06 0.3127 0.8464 01 Jan 05 0545 0.01050 233.03 0.3100 0.3308 01 Jan 05 0546 0.00980 232.93 Page: 7 0.3030 0.8038 Date Time Reservoir Storage (ac-ft) Reservoir Elevation (ft) Inflow (cfs) Outflow (cfs) 01 Jan 05 0547 0. 00916 232. 92 0 3060 0. 7507 01 Jan 05 0543 0. 00857 232. 86 0 3040 0 7031 01 Jan 05 0549 0 00805 232. 81 0 3020 0 6603 01 Jan 05 0550 0 00753 232 76 0 3000 0 6219 01 Jan 05 0551 0 00716 232 72 0 2930 0 5874 01 Jan 05 0552 0 00678 232 68 0 2960 0 5563 01 Jan 05 0553 0 00644 232 64 0 .2940 0 5234 01 Jan 05 0554 0 00614 232 61 0 .2920 0 5032 01 Jan 05 0555 0 .00586 232 59 0 .2900 0 4305 01 Jan 05 0556 0 .00561 232 56 0 .2880 0 4601 01 Jan 05 0557 0 .00533 232 .54 0 .2860 0 .4416 01 Jan 05 0553 0 .00518 232 .52 0 .2840 0 .4248 01 Jan 05 0559 0 .00500 232 .50 0 .2820 0 .4097 01 Jan 05 0600 0 .00483 232 .48 0 .2800 0 .3959 Page: 8 Drainage Study Emerald Pointe Estates CHAPTER 7 DETENTION BASIN DESIGN 7.2 - 100-Year, 6-Hour Analysis AH:ah H:\REPORTS\2339M8\2nd Submittal\A02.doc W.0.2339-18 a/21/2005 11:50AM EmeraIci Pointe Estates Detention Basin Results 100-YEAR RESULTS ' Summary of Results for Reservoir Reservoir-1 m3 Project: Emerald Pointe Estat Run Name: Runi Reservoir: Reservoir-1 j;J Start ot Run: OUanOSOOOO End of Run: 01 Jan05 0600 Execution Time23Jun05 0955 B asin M ode!: D etention B asin Met. Model: Metl Controt Specs; Controll Volume Units: <^ Inches C Acre-Feet - Computed Results Peak Inflow: 9.6700 (cfs) Peak Outflow: 2.3324 (cfs) Total Inflow: (in) Total Outflow: (in) Print Date-'Time of Peak Inflow: 01 Jan 05 0415 Date/Time of Peak Outflow: 01 Jan 05 0428 Peak Storage: 0.19971 (ac-ft) Peak Elevation: 238.33 (ft) Close STAGE-STORAGE TABLE EMERALD POINTE ESTATES Elevation (ft) Elevation Difference (ft) Total Elevation Difference (ft) Area (acres) Total Volume (acre-ft.) 232 0.0121 0.00 233 0.0172 0.01 1.00 1.00 234 0.0229 0.03 1.00 2.00 235 0.0292 0.06 1.00 3.00 236 0.0361 0.09 1.00 4.00 237 0.0435 0.13 1.00 5.00 238 0.0515 0.18 1.00 6.00 239 0.0601 0.24 1.00 7.00 240 0.0693 0.30 1.00 8.00 .-. Vbasin = 0.30 acre-ft 6/21/2005 1 ofl H:\EXCEL\2393\3\STAGE-STORAGE.xls ORIFICE CALCULATIONS EMERALD POINTE ESTATES - DETENTION BASIN DISCHARGE RATING CURVE Riser Perforations Calculations Based on Orifice Equation Bottom Elevation of Hole #1 Hole #1 Diameter = Number of Orifices = Area = Orifice Centroid Elevation = ORIFICE EQUATION 232.00 feet 6.0 Inches = 1.0 0.196 sq.ft. 232.25 feet 0.50 feet Q= CA(2gh) where: 1/2 C = Orifice Coefficient = 0.60 (per Brater & King "Handbook of Hydraulics") A = Cross Sectional Area of the Orifice g = Gravitational Constant = 32.2 ft/s^ h = Effective Head on the Orifice Measured from the Centroid of the Opening Headwater Hole #1 Elevation Riser-Orifice (feet) (cfs) 232 0.00 233 0.82 234 1.25 235 1.57 236 1.83 237 2.06 238 2.27 239 2.46 240 2.63 6/21/2005 1 ofl H:\EXCEL\2339\18\2nd Submittal\Orifice-Basin.xls Rational Method Hydrograph Calculations for Emerald Pointe Estates, Carlsbad, CA #= 24 Qioo~ Tc= Pl00,6~ 9.67 15 2.7 cfs min in 0= A= 0.52 4.75 acres C7.44*P6*D'^-.645j (l*D/60) (V1-V0) (A V/A T) (Q=ciA) (Re-ordered) # D (MIN) 1 (IN/HR) VOL (IN) AVOL (IN) \ (INCR) (IN/HR) Q (CFS) VOL (CF) ORDINATE SUM= 0 0 0.00 0.00 0.88 3.50 9.67 8703 0.00 1 15 3.50 0.88 0.24 0.98 2.41 2172 0.40 2 30 2.24 1.12 0.17 0.69 1.71 1542 0.41 3 45 1.72 1.29 0.14 0.56 1.37 1236 0.44 4 60 1.43 1.43 0.12 0.47 1.17 1050 0.45 5 75 1.24 1.55 0.10 0.41 1.02 922 0.48 6 90 1.10 1.65 0.09 0.37 0.92 827 0.50 7 105 1.00 1.75 0.08 0.34 0.84 754 0.55 8 120 0.92 1.83 0.08 0.31 0.77 696 0.57 9 135 0.85 1.91 0.07 0.29 0.72 647 0.64 10 150 0.79 1.98 0.07 0.27 0.67 607 0.67 11 165 0.75 2.05 0.06 0.26 0.64 572 0.77 12 180 0.71 2.12 0.06 0.24 0.60 542 0.84 13 195 0.67 2.18 0.06 0.23 0.57 516 1.02 14 210 0.64 2.23 0.06 0.22 0.55 493 1.17 15 225 0.61 2.29 0.05 0.21 0.52 472 1.71 16 240 0.59 2.34 0.05 0.20 0.50 453 2.41 17 255 0.56 2.39 0.05 0.20 0.48 436 9.67 18 270 0.54 2.44 0.05 0.19 0.47 421 1.37 19 285 0.52 2.49 0.05 0.18 0.45 407 0.92 20 300 0.51 2.54 0.04 0.18 0.44 394 0.72 21 315 0.49 2.58 0.04 0.17 0.42 382 0.60 22 330 0.48 2.62 0.04 0.17 0.41 371 0.52 23 345 0.46 2.67 0.04 0.16 0.40 361 0.47 24 360 0.45 2.71 0.00 0.00 0.00 0 0.42 SUM= 24976 0.57 cubic feet acre-feet Check: V = C*A*P6 V = 0.56 acre-feet OK 6/23/2005 1 ofl H:\EXCEL\2339\18\2nd Submittal\RM-Hydrograph 100-Yr.xls RATING TABLE FOR FLOW OVER RISER - DETENTION BASIN EMERALD POINTE ESTATES RISER DATA: 36" Diameter CMP Riser WEIR EQUATION: Q = CLH where: 3/2 C = Weir Coefficient = 3.0 when H = 0.5 feet - 3.3 when H >= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) ORIFICE EQUATION: Q = CA(2gH)" where: C = Orifice Coefficient = 0.60 A = Cross Sectional Area of Orifice [f?) g = Gravitational Constant (32.2 ft/s^) H = Water Height over Centroid of Orifice (ft) Water Riser Riser Weir Weir Orifice Orifice Weir Orifice Weir Orifice Height Diam Circumf Coeff. Length Coeff. Area Flow Flow Flow* Flow* (feet) (feet) (feet) C (feet) C (sq. ft.) (cfs) (cfs) (cfs) (cfs) 0.2 3 9.42 2.80 9.42 0.6 7.07 2.36 15.22 2.01 12.94 0.4 3 9.42 2.92 9.42 0.6 7.07 6.96 21.53 5.92 18.30 0.5 3 9.42 3.00 9.42 0.6 7.07 10.00 24.07 8.50 20.46 0.6 3 9.42 3.08 9.42 0.6 7.07 13.49 26.36 11.47 22.41 0.8 3 9.42 3.20 9.42 0.6 7.07 21.58 30.44 18.34 25.88 1.0 3 9.42 3.32 9.42 0.6 7.07 31.29 34.04 26.60 28.93 1.2 3 9.42 3.32 9.42 0.6 7.07 41.13 37.28 34.96 31.69 1.4 3 9.42 3.32 9.42 0.6 7.07 51.83 40.27 44.06 34.23 1.5 3 9.42 3.32 9.42 0.6 7.07 57.48 41.68 48.86 35.43 1.6 3 9.42 3.32 9.42 0.6 7.07 63.33 43.05 53.83 36.59 1.8 3 9.42 3.32 9.42 0.6 7.07 75.56 45.66 64.23 38.81 2.0 3 9.42 3.32 9.42 0.6 7.07 88.50 48.13 75.23 40.91 2.2 3 9.42 3.32 9.42 0.6 7.07 102.10 50.48 86.79 42.91 2.4 3 9.42 3.32 9.42 0.6 7.07 116.34 52.73 98.89 44.82 2.5 3 9.42 3.32 9.42 0.6 7.07 123.69 53.81 105.13 45.74 3.0 3 9.42 3.32 9.42 0.6 7.07 162.59 58.95 138.20 50.11 ' Assume 15% clogging 6/22/2005 1 of 1 H:\EXCEL\2339\13\2nd Submittal\Overflow Rlser-Basin-Circular.xls HHS Summary of Results for Reservoir-1 Project : Emerald Pointe Estat Run Name : Run 1 Start of Run : OlJanOS OOOO Basin Model : Detention Basin End of Run : OlJanOS 0500 Met. Model : Met 1 Execution Time : 23Jun05 0955 Control Specs : Control 1 Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 31 Dec 04 2400 0.00000 232.00 0.0000 0.0000 01 Jan 05 OOOl 0.00002 232.00 0.0267 0.0014 01 Jan 05 0002 0.00007 232.01 0.0533 0.0055 01 Jan 05 0003 0.00015 232.01 0.0800 0.0121 01 Jan 05 0004 0.00025 232.03 0.1057 0.0208 01 Jan 05 0005 0.00038 232.04 0.1333 0.0314 01 Jan 0 5 0005 0.00053 232.05 0.1600 0.0437 01 Jan 05 0007 0.00070 232.07 0.1867 0.0576 01 Jan 05 0008 0.00089 232.09 0.2133 0.0728 01 Jan 05 0009 0.00109 232.11 0.2400 0.0892 01 Jan 05 0010 0.00130 232.13 0.2667 0.1053 01 Jan 05 0011 0.00153 232.15 0.2933 0.1253 01 Jan 05 0012 0.00176 232.18 0.3200 0.1447 01 Jan 05 0013 0.00201 232.20 0.3467 0.1549 01 Jan 05 0014 0.00226 232.23 0 .3733 0.1357 01 Jan 05 0015 0.00253 232.25 0.4000 0.2072 01 Jan 05 0016 0.00278 232.28 0.4007 0.2279 01 Jan 0 5 0017 0.00300 232.30 0.4013 0.2454 01 Jan 05 0018 0.00321 232.32 0.4020 0.2530 01 Jan 05 0019 0.00339 232.34 0.4027 0.2779 01 Jan 05 0020 0.00355 232.36 0.4033 0.2912 01 Jan 05 0021 0.00370 232.37 0.4040 0.3033 01 Jan 05 0022 0.00383 232.38 0.4047 0.3141 01 Jan 05 0023 0.00395 232.39 0.4053 0.3238 01 Jan 0 5 0024 0.00406 232.41 0.4060 0.3325 01 Jan 05 0025 0.00415 232.42 0.4067 0.3404 01 Jan 05 0026 0.00424 232.42 0.4073 0.3475 01 Jan 05 0027 0.00432 232.43 0.4080 0.3540 01 Jan 05 0028 0.00439 232.44 0.4087 0.3593 01 Jan 05 0029 0.00445 232.45 0.4093 0.3650 01 Jan 05 0030 0.00451 232.45 0.4100 0.3698 01 Jan 0 5 0031 0.00456 232.45 0.4120 0.3742 01 Jan 0 5 0032 0.00461 232.46 0.4140 0.3784 01 Jan 05 0033 0.00466 232.47 0.4160 0.3823 01 Jan 05 0034 0.00471 232.47 0.4180 0.3860 01 Jan 05 0035 0.00475 232.48 0.4200 0.3895 01 Jan 05 0036 0.00479 232.48 0.4220 0.3929 01 Jan 05 0037 0.00483 232.43 0.4240 0 .3961 01 Jan 0 5 0038 0.00487 232.49 0.4260 0.3992 01 Jan 0 5 0039 0.00490 232.49 0.4280 0.4022 01 Jan 0 5 0040 0.00494 232.49 0.4300 0.4050 Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 05 0041 0.00497 232.50 0.4320 0.4078 01 Jan 05 0042 0.00501 232.50 0 .4340 0 .4105 01 Jan 05 0043 0.00504 232.50 0.4350 0.4131 01 Jan 05 0044 0.00507 232.51 0.4380 0.4157 01 Jan 05 0045 0.00510 232.51 0.4400 0.4182 01 Jan 05 0045 0.00513 232.51 0.4407 0.4205 01 Jan 05 0047 0.00516 232.52 0.4413 0.4227 01 Jan 05 0048 0.00518 232.52 0.4420 0.4248 01 Jan 05 0049 0.00520 232.52 0.4427 0.4266 01 Jan 0 5 0050 0.00522 232.52 0.4433 0.4284 01 Jan 05 0051 0.00524 232.52 0.4440 0.4300 01 Jan 0 5 0052 0.00526 232.53 0.4447 0.4315 01 Jan 05 0053 0.00523 232.53 0.4453 0.4330 01 Jan 05 0054 0.00530 232.53 0.4450 0.4343 01 Jan 05 0055 0.00531 232.53 0.4467 0.4356 01 Jan 05 0055 0.00533 232.53 0.4473 0.4368 01 Jan 05 0057 0.00534 232.53 0.4480 0.4380 01 Jan 05 0058 0.00535 232.54 0.4437 0.4391 01 Jan 05 0059 0.00537 232.54 0.4493 0.4402 01 Jan 0 5 0100 0.00533 232.54 0.4500 0.4412 01 Jan 05 0101 0.00539 232.54 0.4520 0.4422 01 Jan 05 0102 0.00541 232.54 0.4540 0.4434 01 Jan 05 0103 0.00542 232.54 0.4560 0.4446 01 Jan 05 0104 0.00544 232.54 0.4580 0.4459 01 Jan 05 0105 0.00546 232.55 0.4600 0.4473 01 Jan 0 5 0106 0.00547 232.55 0.4620 0.4488 01 Jan 05 0107 0.00549 232.55 0.4640 0.4503 01 Jan 0 5 0108 0.00551 232.55 0.4560 0.4519 01 Jan 05 0109 0.00553 232.55 0.4680 0.4535 01 Jan 05 0110 0.00555 232.56 0.4700 0.4552 01 Jan 0 5 0111 0.00557 232.56 0.4720 0.4569 01 Jan 0 5 0112 0.00559 232.55 0.4740 0.4536 01 Jan 0 5 0113 0.00561 232.56 0.4760 0.4603 01 Jan 0 5 0114 0.00564 232.56 0.4780 0.4621 01 Jan 05 0115 0.00566 232.57 0.4800 0.4639 01 Jan 05 0116 0.00568 232.57 0.4813 0.4557 01 Jan 05 0117 0.00570 232.57 0.4827 0.4675 01 Jan 05 0118 0.00572 232.57 0.4840 0.4692 01 Jan 05 0119 0.00574 232.57 0.4853 0.4703 01 Jan 0 5 0120 0.00575 232.58 0.4867 0.4724 01 Jan 05 0121 0.00578 232.58 0.4880 0.4740 01 Jan 05 0122 0.00530 232.58 0.4893 0.4756 01 Jan 05 0123 0.00582 232.53 0.4907 0.4771 01 Jan 05 0124 0.00584 232.58 0.4920 0.4787 01 Jan 05 0125 0.00585 232.59 0.4933 0.4801 01 Jan 05 0126 0.00537 232.59 0.4947 0.4816 01 Jan 05 0127 0.00589 232.59 0.4960 0.4831 01 Jan 0 5 0123 0.00591 232.59 0.4973 0.4845 01 Jan 05 0129 0.00593 232.59 0.4987 0.4860 01 Jan 05 0130 0.00594 232.59 0.5000 0.4874 01 Jan 0 5 0131 0.00595 232.60 0.5033 0.4889 Page: Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 05 0132 0.00598 232.60 0.5067 0.4907 01 Jan 05 0133 0.00501 232.60 0.5100 0.4925 01 Jan 05 0134 0.00603 232.60 0.5133 0.4945 01 Jan 05 0135 0.00606 232.61 0.5167 0.4968 01 Jan 05 0136 0.00609 232.51 0.5200 0.4991 01 Jan 05 0137 0.00512 232.61 0.5233 0.5015 01 Jan 05 0138 0.00615 232.61 0.5267 0.5040 01 Jan 05 0139 0.00618 232.62 0.5300 0.5066 01 Jan 05 0140 0.00621 232.62 0.5333 0.5093 01 Jan 05 0141 0.00624 232.62 0.5367 0.5120 01 Jan 0 5 0142 0.00628 232.63 0.5400 0.5148 01 Jan 05 0143 0.00631 232.63 0.5433 0.5177 01 Jan 05 0144 0.00635 232.63 0.5467 0.5205 01 Jan 05 0145 0.00639 232.64 0.5500 0.5236 01 Jan 05 0146 0.00642 232.54 0.5513 0.5255 01 Jan 05 0147 0.00645 232.65 0.5527 0.5292 01 Jan 0 5 0148 0.00649 232.65 0.5540 0.5318 01 Jan 05 0149 0.00652 232.55 0.5553 0.5342 01 Jan 05 0150 0.00554 232.65 0.5567 0.5366 01 Jan 05 0151 0.00657 232.66 0.5580 0.5338 01 Jan 05 0152 0.00660 232.56 0.5593 0.5409 01 Jan 05 0153 0.00662 232.66 0.5607 0.5430 01 Jan 05 0154 0.00665 232.65 0.5620 0.5449 01 Jan 05 0155 0.00667 232.57 0.5633 0.5468 01 Jan 05 0156 0.00669 232.67 0.5647 0.5487 01 Jan 05 0157 0.00571 232.67 0.5560 0.5504 01 Jan 05 0153 0.00673 232.67 0.5673 0.5522 01 Jan 05 0159 0.00675 232.68 0.5687 0.5539 01 Jan 05 0200 0.00677 232.68 0.5700 0.5555 01 Jan 05 0201 0.00680 232.53 0.5747 0.5573 01 Jan 05 0202 0.00532 232.68 0.5793 0.5594 01 Jan 05 0203 0.00685 232.69 0.5840 0.5613 01 Jan 05 0204 0.00688 232.69 0.5887 0.5644 01 Jan 05 0205 0.00692 232.69 0.5933 0.5673 01 Jan 05 0206 0.00695 232.70 0.5930 0.5703 01 Jan 05 0207 0.00599 232.70 0.6027 0.5735 01 Jan 0 5 0208 0.00704 232.70 0.6073 0.5759 01 Jan 05 0209 0.00708 232.71 0.6120 0.5804 01 Jan 0 5 0210 0.00712 232.71 0.5167 0.5840 01 Jan 05 0211 0.00717 232.72 0.6213 0.5878 01 Jan 05 0212 0.00721 232.72 0.6260 0.5915 01 Jan 05 0213 0.00726 232.73 0.6307 0.5955 01 Jan 05 0214 0.00731 232.73 0.6353 0.5995 01 Jan 05 0215 0.00736 232.74 0.6400 0.6036 01 Jan 0 5 0216 0.00741 232.74 0.6420 0.6076 01 Jan 05 0217 0.00746 232.75 0.6440 0.5114 01 Jan 05 0218 0.00750 232.75 0.6460 0.6150 01 Jan 0 5 0219 0.00754 232.75 0.6430 0.6184 01 Jan 05 0220 0.00758 232.76 0.5500 0.5217 01 Jan 0 5 0221 0.00762 232.76 0.6520 0.5248 01 Jan 0 5 0222 0.00756 232.77 Page: 3 0.5540 0.5278 Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ao-ft) (ft) 01 Jan 0 5 0223 0.00769 232.77 0.6560 0.6307 01 Jan 05 0224 0.00773 232.77 0.5580 0.6335 01 Jan 05 0225 0.00776 232.78 0.6600 0.6363 01 Jan 05 0226 0.00779 232.78 0.5620 0.6389 01 Jan 05 0227 0.00782 232.78 0.5640 0.6415 01 Jan 0 5 0228 0.00785 232.79 0.6560 0.5440 01 Jan 05 0229 0.00783 232.79 0.6680 0.6465 01 Jan 05 0230 0.00791 232.79 0.6700 0.6489 01 Jan 05 0231 0.00794 232.79 0.6767 0.6515 01 Jan 05 0232 0.00798 232.30 0.6333 0.6545 01 Jan 0 5 0233 0.00802 232.80 0.6900 0.6580 01 Jan 05 0234 0.00807 232.81 0.6967 0.6617 01 Jan 05 0235 0.00312 232.81 0.7033 0.6558 01 Jan 05 0235 0.00817 232.82 0.7100 0.6702 01 Jan 05 0237 0.00823 232.82 0.7167 0.6748 01 Jan 05 0238 0.00829 232.83 0.7233 0.5795 01 Jan 0 5 0239 0.00835 232.83 0.7300 0.6847 01 Jan 05 0240 0.00841 232.84 0.7357 0.6899 01 Jan 05 0241 0.00848 232.85 0.7433 0.6952 01 Jan 05 0242 0.00855 232.85 0.7500 0.7007 01 Jan 05 0243 0.00861 232.85 0.7567 0 .7064 01 Jan 05 0244 0.00868 232.87 0.7633 0.7121 01 Jan 05 0245 0.00876 232.88 0.7700 0.7179 01 Jan 05 0246 0.00383 232.88 0.7747 0.7237 01 Jan 05 0247 0.00890 232.89 0.7793 0.7294 01 Jan 05 0248 0.00896 232.90 0.7840 0.7350 01 Jan 05 0249 0.00903 232.90 0.7887 0.7405 01 Jan 05 0250 0.00910 232.91 0.7933 0.7459 01 Jan 0 5 0251 0.00916 232.92 0.7980 0.7512 01 Jan 05 0252 0.00923 232.92 0.8027 0.7565 01 Jan 05 0253 0.00929 232.93 0.8073 0.7617 01 Jan 05 0254 0 .00935 232.94 0.8120 0.7658 01 Jan 05 0255 0.00941 232.94 0.8167 0.7719 01 Jan 0 5 0256 0.00947 232.95 0.8213 0.7769 01 Jan 05 0257 0.00954 232.95 0.8260 0.7819 01 Jan 05 0258 0.00960 232.96 0.8307 0.7859 01 Jan 05 0259 0.00966 232.97 0.8353 0.7918 01 Jan 05 0300 0.00972 232.97 0.8400 0.7957 01 Jan 05 0301 0.00978 232.98 0.8520 0.8020 01 Jan 05 0302 0.00985 232.99 0.8640 0.8080 01 Jan 05 0303 0.00993 232.99 0.8760 0.8146 01 Jan 05 0304 0.01002 233.00 0.8380 0.8205 01 Jan 0 5 0305 0.01012 233.01 0.9000 0.8225 01 Jan 0 5 0305 0.01024 233.01 0.9120 0.8251 01 Jan 05 0307 0.01036 233.02 0.9240 0.8278 01 Jan 0 5 0308 0.01050 233.03 0.9360 0.3303 01 Jan 05 0309 0.01065 233.03 0.9480 0.8340 01 Jan 05 0310 0.01081 233.04 0.9600 0.8375 01 Jan 05 0311 0.01099 233.05 0.9720 0.8413 01 Jan 0 5 0312 0.01117 233.06 0.9840 0.8453 01 Jan 0 5 0313 0.01137 233.07 Page: 4 0.9960 0.8495 Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 05 0314 0.01153 233.08 1.0080 0.8539 01 Jan 05 0315 0.01130 233.09 1.0200 0.8585 01 Jan 05 0315 0.01202 233.10 1.0300 0.8635 01 Jan 05 0317 0.01225 233.11 1.0400 0.8535 01 Jan 05 0318 0.01249 233.12 1.0500 0.3735 01 Jan 05 0319 0.01274 233.14 1.0500 0.8789 01 Jan 05 0320 0.01299 233.15 1.0700 0.3843 01 Jan 05 0321 0.01325 233.16 1.0800 0.8899 01 Jan 05 0322 0.01352 233.18 1.0900 0.3955 01 Jan 05 0323 0.01379 233.19 1.1000 0.9014 01 Jan 05 0324 0.01406 233.20 1.1100 0.9074 01 Jan 0 5 0325 0.01434 233.22 1.1200 0.9134 01 Jan 05 0326 0.01463 233.23 1.1300 0.9196 01 Jan 05 0327 0.01492 233.25 1.1400 0.9259 01 Jan 05 0328 0.01522 233.26 1.1500 0.9323 01 Jan 05 0329 0.01552 233.28 1.1500 0.9388 01 Jan 0 5 0330 0.01583 233.29 1.1700 0.9454 01 Jan 05 0331 0.01615 233.31 1.2060 0.9525 01 Jan 0 5 0332 0.01653 233.33 1.2420 0.9604 01 Jan 05 0333 0.01594 233.35 1.2780 0.9691 01 Jan 05 0334 0.01733 233.37 1.3140 0.9787 01 Jan 05 0335 0.01785 233.39 1.3500 0.9390 01 Jan 05 0336 0.01837 233.42 1.3850 1.0000 01 Jan 05 0337 0.01892 233.45 1.4220 1.0113 01 Jan 05 0338 0.01950 233.43 1.4580 1.0243 01 Jan 05 0339 0.02012 233.51 1.4940 1.0375 01 Jan 05 0340 0.02075 233.54 1.5300 1.0513 01 Jan 05 0341 0.02143 233.57 1.5660 1.0653 01 Jan 05 0342 0.02214 233.61 1.6020 1.0810 01 Jan 0 5 0343 0.02287 233.64 1.6380 1.0967 01 Jan 05 0344 0.02363 233.68 1.6740 1.1130 01 Jan 05 0345 0.02441 233.72 1.7100 1.1299 01 Jan OS 0346 0.02523 233.76 1.7567 1.1475 01 Jan OS 0347 0.02609 233.80 1.8033 1.1560 01 Jan 05 0348 0.02699 233.85 1.8500 1.1853 01 Jan 05 0349 0.02792 233.90 1.8967 1.2053 01 Jan 0 5 0350 0.02889 ( 233.94 1.9433 1.2262 01 Jan 05 0351 0.02990 233.99 1.9900 1.2478 01 Jan 0 5 0352 0.03094 234.03 2.0367 1.2601 01 Jan 05 0353 0.03204 234.07 2.0833 1.2717 01 Jan 05 0354 0.03318 234.11 2.1300 1.2839 01 Jan 05 0355 0.03437 234.15 2.1767 1.2965 01 Jan 05 0356 0.03560 234.19 2.2233 1.3098 01 Jan 05 0357 0.03638 234.23 2.2700 1.3234 01 Jan 0 5 0353 0.03821 234.27 2.3167 1.3375 01 Jan 05 0359 0.03958 234.32 2.3633 1.3522 01 Jan 05 0400 0.04100 234.37 2.4100 1.3673 01 Jan 05 0401 0.04275 234.43 2.8940 1.3860 01 Jan 05 0402 0.04515 234.50 3.3780 1.411S 01 Jan 05 0403 0.04816 234.51 3.8620 1.4438 01 Jan 0 5 0404 0.05180 234.73 4.3460 1.4826 Page: Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (£t) 01 Jan 0 5 0405 0.05605 234.87 4.8300 1.5279 01 Jan 05 0406 0.06090 235.03 5.3140 1.5778 01 Jan 05 0407 0.06634 235.21 5.7980 1.6250 01 Jan 05 0408 0.07239 235.41 6.2320 1.6774 01 Jan 05 0409 0.07902 235.63 6.7560 1.7349 01 Jan 05 0410 0.08624 235.87 7.2500 1.7975 01 Jan 05 0411 0.09405 236.10 7.7340 1.8533 01 Jan 05 0412 0.10245 236.31 8.2180 1.9016 01 Jan 05 0413 0.11145 236.54 8.7020 1.9533 01 Jan 05 0414 0.12104 235.78 9.1360 2.0085 01 Jan 05 0415 0.13122 237.02 9.6700 2.0651 01 Jan OS 0416 0.14128 237.23 9.1167 2.1074 01 Jan 05 0417 0.15053 237.41 8.5633 2.1462 01 Jan 05 0418 0.15897 237.58 3.0100 2.1817 01 Jan 05 0419 0.16659 237.73 7.4567 2.2137 01 Jan 05 0420 0.17341 237.87 6.9033 2.2423 01 Jan 0 5 0421 0.17943 237.99 6.3500 2.2676 01 Jan 05 0422 0.18466 238.08 5.7967 2.2848 01 Jan 05 0423 0.18911 238.15 5.2433 2.2988 01 Jan 05 0424 0.19278 238.21 4.5900 2.3105 01 Jan 05 0425 0.19567 233.26 4.1367 2.3196 01 Jan 05 0426 0.19778 238.30 3.5333 2.3253 01 Jan 05 0427 0.19913 238.32 3.0300 2.3305 01 Jan 0 5 0428 0.19971 238.33 2.4757 2.3324 01 Jan 0 5 0429 0.19953 233.33 1.9233 2.3318 01 Jan 05 0430 0.19859 238.31 1.3700 2.3289 01 Jan 05 0431 0.19725 238.29 1.3400 2.3245 01 Jan 05 0432 0.19588 238.25 1.3100 2.3203 01 Jan 05 0433 0.19447 238.24 1.2800 2.3158 01 Jan 05 0434 0.19302 233.22 1.2500 2.3112 01 Jan 05 0435 0.19154 238.19 1.2200 2.3065 01 Jan 0 5 0435 0.19003 238.17 1.1900 2.3018 01 Jan 0 5 0437 0.18848 238.14 1.1600 2.2969 01 Jan 05 0438 0.18690 238.11 1.1300 2.2918 01 Jan 05 0439 0.18528 238.09 1.1000 2.2867 01 Jan 05 0440 0.18363 238.05 1.0700 2.2815 01 Jan 0 5 0441 0.18194 238.03 1.0400 2.2762 01 Jan 05 0442 0.13022 238.00 1.0100 2.2707 01 Jan 0 5 0443 0.17847 237.97 0.9800 2.2636 01 Jan 05 0444 0.17669 237.93 0.9500 2.2551 01 Jan 05 0445 0.17487 237.90 0.9200 2.2485 01 Jan 05 0445 0.17304 237.85 0.9067 2.2408 01 Jan 05 0447 0.17120 237.82 0.8933 2.2330 01 Jan 05 0448 0.15935 237.79 0.8800 2.2253 01 Jan 05 0449 0.15749 237.75 0.8567 2.2175 01 Jan 0 5 0450 0.16563 237.71 0.8533 2.2096 01 Jan 05 0451 0.16376 237.68 0.8400 2.2018 01 Jan 05 0452 0.16188 237.64 0.8267 2.1939 01 Jan 05 0453 0.15999 237.60 0.8133 2.1850 01 Jan 05 0454 0.15809 237.55 0.8000 2.1780 01 Jan 0 5 0455 0.15619 237.52 0.7857 2.1700 Page: 6 Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 05 0456 0.15428 237.49 0.7733 2.1620 01 Jan 05 0457 0.15237 237.45 0.7600 2.1539 01 Jan 05 0458 0.15044 237.41 0 .7467 2.1459 01 Jan 05 0459 0.14851 237.37 0.7333 2.1378 01 Jan 05 0500 0.14657 237.33 0.7200 2.1296 01 Jan 05 0501 0.14463 237.29 0.7120 2.1215 01 Jan 05 0502 0.14269 237.25 0.7040 2.1133 01 Jan 05 0503 0.14075 237.22 0.6960 2.1052 01 Jan 05 0504 0.13881 237.18 0.6380 2.0970 01 Jan 05 0505 0.13687 237.14 0.5800 2.0839 01 Jan 05 0506 0.13493 237.10 0.6720 2.0807 01 Jan 05 0507 0.13299 237.06 0.6640 2 . 0726 01 Jan 05 0508 0.13105 237.02 0.5560 2.0644 01 Jan 0 5 0509 0.12911 235.93 0.6480 2.0549 01 Jan 0 5 0510 0.12717 236.93 0.6400 2.0438 01 Jan 05 0511 0.12524 236.88 0.5320 2.0325 01 Jan 05 0512 0.12332 235.83 0.6240 2.0216 01 Jan 05 0513 0.12139 236.78 0.6160 2.0105 01 Jan 05 0514 0.11947 235.74 0.6080 1.9995 01 Jan 05 0515 0.11756 236.69 0.6000 1.9885 01 Jan 05 0516 0.11565 236.64 0.5947 1.9775 01 Jan 05 0517 0.11375 235.59 0.5893 1.9665 01 Jan 05 0518 0.11136 235.55 0.5840 1.9557 01 Jan 05 0519 0.10997 236.50 0.5787 1.9448 01 Jan 05 0520 0.10809 236.45 0.5733 1.9340 01 Jan 05 0521 0.10522 236.41 0.5680 1.9233 01 Jan 05 0522 0.10436 236.35 0.5527 1.9126 01 Jan 05 0523 0.10250 235.31 0.5573 1.9019 01 Jan 05 0524 0.10056 236.27 0.5520 1.8913 01 Jan 05 0525 0.09831 236.22 0.5467 1.8807 01 Jan 05 0526 0.09598 236.17 0.5413 1.8701 01 Jan 0 5 0527 0.09515 235.13 0.5360 1.8595 01 Jan 0 5 0528 0.09333 236.08 0.5307 1.8492 01 Jan 05 0529 0.09152 236.04 0.5253 1.8387 01 Jan 05 0530 0.08972 235.99 0.5200 1.827S 01 Jan OS 0531 0.08792 235.93 0.5167 1.8120 01 Jan 05 0532 0.08615 235.87 0.5133 1.7966 01 Jan 05 0533 0.08439 235.81 0.5100 1.7814 01 Jan 05 0534 0.08265 235.75 0.S057 1.7563 01 Jan OS 0535 0.08092 235.70 0.5033 1.7513 01 Jan 05 0535 0.07921 235.54 0.5000 1.7365 01 Jan 05 0537 0.07751 235.58 0.4967 1.7218 01 Jan 05 0538 0.07583 235.53 0 .4933 1.7072 01 Jan 05 0539 0.07417 235.47 0.4900 1.6928 01 Jan 05 0540 0.07252 235.42 0.4867 1.6785 01 Jan 0 5 0541 0.07088 235.36 0.4333 1.6643 01 Jan 05 0542 0.06927 235.31 0.4800 1.6503 01 Jan 05 0543 0.06756 235.26 0.4767 1.5364 01 Jan 0 5 0544 0.05607 235.20 0.4733 1.6226 01 Jan 0 5 0545 0.06449 235.15 0.4700 1.6090 01 Jan 05 0546 0.06293 235.10 0.4667 1.5954 Page: 7 Date Time Reservoir Reservoir Inflow Outflow Storage Elevation (cfs) (cfs) (ac-ft) (ft) 01 Jan 05 0547 0 06138 235 05 0 4633 1 5820 01 Jan 05 0548 0 05985 235 00 0 4600 1 5534 01 Jan 05 0549 0 05833 234 94 0 4567 1 5522 01 Jan 05 0550 0 05683 234 39 0 4533 1 5362 01 Jan 05 0551 0 05535 234 84 0 4500 1 5204 01 Jan 05 0552 0 05383 234 SO 0 4457 1 5048 01 Jan 05 0553 0 05243 234 75 0 4433 1 4893 01 Jan 05 0554 0 05100 234 70 0 4400 1 4740 01 Jan 05 0555 0 04959 234 65 0 4367 1 4589 01 Jan 05 0556 0 04319 234 61 0 4333 1 4440 01 Jan 05 0557 0 04680 234 55 0 4300 1 4292 01 Jan 05 0558 0 04543 234 51 0 4267 1 4146 01 Jan 05 0559 0 .04408 234 .47 0 4233 1 4002 01 Jan 05 0600 0 .04274 234 .42 0 .4200 1 3859 Page: 8 I I I I I Drainage Study Emerald Pointe Estates CHAPTER 8 APPENDICES Appendix 8,1 10-Year, 6-Hour Isopluvial Plan 100-Year, 6-Hour Isopluvial Plan Soils Map AH:ah H:\REPORTS\2339\18\2nd SubmittalW02 doc W.0.2339-18 6/21/2005 11:50AM County of San Diego Hydrology Manual Rainfall Isopluvials 100 Year Rainfall Event - 6 Hours Isopluvial (inches) 1 ll") ?RoT&c-T SITE. DPW ^-GIS IHS MkP IS PROVtDED Wl Of) MPUCO. MaUOtNG. B Of UCHCKAHIAUUTY MO niHE&t rod A PAfincULM PUHPOSt County of San Diego Hydrology Manual Rainfall Isopluvials 10 Year Rainfall Event - 6 Hours Isopluvial (inches) fRc>a-E.cT SITE.' MT= BS'-ol-" iT ^GIS SallGIS V.-^ Kiivt .Sail DiLgij C^'^UXA: THIS MAC IS CHOVIDED WIIHOUf KVARRANIY 0^ ANY NNO EJIICR tKf^U CM M>UiD. inauDMa. BJI NOI UMIIEO tO. Ttit luntED WAHdANnEl Of U£HCItAMtA«UrY A*(0 niNESS f Ofl APAKTICULAR niRPOSt CopirtgM SviCC. Al Alonu (UHmd. Ms^^MnS ^ SAMOAG JtosMn^ wnUM pMMifln el SAHDAC 3 0 3 Miles LEGEND 1 ASSUMED SUBDIVISION BOUNDARY APPROXIMATE EXISTING TOPOGRAPHY (feet) TOPOGRAPHY (feet) APPROXIMATE LOCATION OF T-11 EXPLORATORY TRENCH ^^^^^ I II / / / 4 I / / A SCALE: 1' = -/OC n 'hn / \ Geologic Legend Geologic Contact Eocene-flge SantlBgo FomiaSon Eocene-age Del Mar and Friars ForrrraSon undiffererrtiated J n .0' T-3 97-7189-p2 ,0 )LAtmEL REFERENCE: Thfe Plot Plan waa pr^parea from an exrellng CAD drauifng ffl^ F^^^^^^ ,rte Ffeld recomaraftance perFonne«^ «=L NOTE: This Plot Plan is not to be used for purposes. Locations and dimensions are °PP™^' mata. Actual property dimensions and 1°=°*^°"^ PLOT PLAN and GEOLOGIC MA^_ Proposed Emerald Pointe Estates APN-212-040-50 Carfsbad, CA. Figure No. I Job No. 97-7189 Geotechnical Expioratioiv Inc. April 2002 Drainage Study Emerald Pointe Estates CHAPTER 8 APPENDICES Appendix 8.2 Maximum Overland Flow (Lm) & Initial Time of Concentration (Ti) AH:ah H:\REPORTS\2339\18\2nd SubmitlaHA02.doc W.0.2339-18 6/21/2005 11:50AM San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 12 of 26 Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. Table 3-2 provides linoits of the length (Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial Ti values based on average C values for the Land Use Element are also included. These values can be used in planning and design appUcations as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) Element* DU/ Acre .5% 1% 2% 3% 5% 10% Element* DU/ Acre LM Ti LM Ti LM Ti LM Ti LM Ti LM Ti Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 E 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 "90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N. Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G. Com , 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General I. 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 *See Table 3-1 for more detailed description V. 3-12 Drainage Study Emerald Pointe Estates CHAPTER 8 APPENDICES Appendix 8,3 Rational Formula - Overland Time of Flow Nomograph AH:an H:\REPORTS\2339M8Cnd SubmitlalW02.iloc W.O. 2339-18 6/22/2005 4:30 PM 100 ID Ul u. z LU o o UJ i cc Hi I EXAMPLE: Giveri: Watercourse Distance (D) = 70 Feet Slope (s)=1.3% Runoff Coefficient (C) = 0.41 Overland Flow Time (T) = 9.5 Minutes SOURCE: Airport Drainage, Federal Aviation Administration, 1965 T = 1.8 (1.1-C) VD" FIGURE Ratronal Formula - Overland Time of Flow Nomograph Drainage Study Emerald Pointe Estates CHAPTER 8 APPENDICES Appendix 8.4 Intensity-Duration Design Cliart AH:ali H:\REPORTS\2339\18\2nd SubnimalW02.doc W.O. 2339-18 6/22/2005 4:30 PM 7 8 9 10 20 30 Minutes 40 50 1 Duration DirectioBS for Applfcation: (1) From precipitation maps determine 6 fir and 24 hr amounts forthe selected frequency. These maps are Included in the County Hydrology Manual (10,50, and 100 yr maps Included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that It is within the range of 45% to 65% of the 24 hr preci' not applicaple to Desert). (3) Plot 6 hr precipitation on the right side ofthe chart (4) Draw a line through the point parallel to the plotted lines. (5) This line Is the Intensity-duration curve for the location being analyzed. .year *P 24 in. Application Form: (a) Selected frequency (b) P6= in..P24 = (c) Adjusted Pe<2) = (d) tjj = min. (e) |a in7hr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. 1 1 , PS 1 1.5 2 r2.5 3-3.5 4 j'4.5 5 5.5 6 oiiroSorT i 1 1 1 rTF"" 1 1 1 5 2.63 3.95 6.27 6.59 7.90 9.22 ia54 11.86 13.17 14.49 15.81 7 2.12 3.18 4.24 S.SO 6.36 7.42 8.48 9.54 ia60 11.66 12.72 10 15 1.6B 2.S3 3.37 4.2J 5.05 S.S0 6.74 7.58 8.42 9.27 10.11 10 15 1.30 1.93 2.59 3.24 3.89 4.54 5.19 5.84 6.49 7.13 7.78 20 1.03 1.62 2.1S 2.69 3.23 3.77 4.31 4.85 5.39 5.93 6.46 25 0.S3 140 1.B7 2.33 2.B0 3.27 3.73 4.20 4.67 5.13 5.(90 30 0JB3 1.24 1.66 2.07 2.49 2.90 3.32 3.73 4.15 4.56 4.98 40 a69 1.03 1.38 1.7? ZJ07 2.41 2.76 3.10 3.45 3,79 4-13 SO 0.60 0.90 1.19 1.49 1.79 2.09 2.39 2.69 2.98' 3.28 3.58 60 0.53 0.80 1.0S 143 t.S9 1.88 2.12 2.39 2.6S 2.92 3.18 90 a41 0.61 0.82 1.02 1.23 1,43 1.63 1.84 2.04 Z2S 2.45 120 OM 031 0.68 0.85 142 1.10 1.36 1.S3 1.70 1.87 2.04 150 0.29 0.44 0.S9 0.73 0.88 1.08 LIS 1.32 1.47 1.62 1.76 180 0.26 0.39 0.52 0.6S 0.78 aoi 1.04 1.18 1.31 1.44 1.67 240 300 0.22 0.10 0.33 0.28 do 0.54 0-47 0.65 ale 0.76 0.66 a97 0.75 0.98 0.85 1.08 0.94 US T03 1.30 TiF 360 0.17 0J25 0.33 0.42 aso 0.58 0.67 0.7B 0.84 a92 1.00 FIGURE Intensity-Duration Design Ciiart - Template Drainage Study Emerald Pointe Estates CHAPTER 8 APPENDICES Appendix 8.5 Runoff Coefficients for Urban Areas AH:ah H:\REPORTS\2338M8V2nd SullinittanA02.doc W.O, 2339-18 8/22/2005 4:30 PM San Diego County Hydrology Manual Date: June 2003 Section: Page: 6of2o Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff CoefFicient "C" . Soil Type NRCS Elements County Elements % IMPER A B C D Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 0.30 |0.35 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 0.36 0.41 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 0.54 0.57 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 0.60 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Res. al(HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 • 0.79 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 0.79 Conunercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (Limited L) Limited Industrial 90 0.83 0.84 0.84 0.85 ConunerciaL'Industrial (General L) General Industrial 95 0.87 0.87 0.87 0.87 •The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A = dweUing imits per acre NRCS = National Resources Conservation Service 3-6 Drainage Study Emerald Pointe Estates CHAPTER 8 APPENDICES Appendix 8.6 Gutter and Roadway Discharge-Velocity Chart AH:ah H:\REPORTS\2339V18\2nd SubmittaJVA02.doc W.0.2339-18 8/22/2005 4:30 PM -1.5'- 5 6 7 8 9 10 Discharge (C.F.S.) EXAMPLE: . Given: Q a 10 S ° 2.5% Chart gives: Depth = 0.4, Velocity ° 4.4 f.p.s. SOURCE: San Diego County Department of Special District Services Design Manual 30 40 50 FIGURE Gutter and Roadway Discharge - Velocity Chart Drainage Study Emerald Pointe Estates CHAPTER 8 APPENDICES Appendix 8,7 Excerpts from "Hydrology and Hydraulic Study for Cobblestone Sea Village CT. 84-32" AH:ah H:\REPORTS\2339\18\2nd Subniittal\A02.doc W.0.2339-18 6/22/2005 4:30 PM p Hunsaker & Associates San Diego, Inc. Planning • Engineering • Surveying HYDROLOGY AND HYDRAUUC STUDY COBBLESTONE SEA VILLAGE C.T. 84-32 Prepared for: Pac West Group, Inc. w.o. 1758-2 May 29, 1996 Michael Rollett, R.C.E. Project Manager GVP:kk mswordVdocument in hydrology revised 5-28-96.otid wo 1758-2 5/29/96 10179 Huennekens Street • SanDiego, CA92121 • (619) 558-4500 • FAX: (619) 558-1414 Offices: San Diego • Irvine • Riverside • Las Vegas David Hammar • Jack Hill • Lex Williman NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.50 16.19 3.581 4.80 2 11.66 13.66 3.996 5.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.18 13.66 3.996 2 19.95 16.19 3.581 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.18 Tc(MIN.) = 13.66 TOTAL AREA(ACRES) = 10.00 ************************************************* FLOW PROCESS FROM NODE 47.00 TO NODE 50.10 IS CODE = 4 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.4 UPSTREAM NODE ELEVATION = 256.00 DOWNSTREAM NODE ELEVATION = 187.00 FLOWLENGTH(FEET) = 960.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 20.18 TRAVEL TIME(MIN.) = .98 TC(MIN.) = 14.64 **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO NODE 50.10 IS CODE = 1 >»>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.64 RAINFALL INTENSITY(INCH/HR) = 3.82 TOTAL STREAM AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.18 **************************************************************************** FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 253.00 DOWNSTREAM ELEVATION = 252.0 0 ELEVATION DIFFERENCE = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.918 SUBAREA RUNOFF(CFS) = .54 TOTAL AREA(ACRES) = .20 TOTAL RUNOFF(CFS) = .54 **************************************************************************** FLOW PROCESS FROM NODE 52.00 TO "NODE 50.20 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 252.00 STREET LENGTH(FEET) = 470.00 STREET HALFWIDTH(FEET) = 18.00 DOWNSTREAM ELEVATION = CURB HEIGHT(INCHES) = 6 233.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .087 16.50 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .31 HALFSTREET FLOODWIDTH(FEET) = 8.98 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.01 PRODUCT OF DEPTH&VELOCITY = 1.22 STREETFLOW TRAVELTIME(MIN) = 1.96 TC(MIN) = 11.86 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.378 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = SUMMED AREA(ACRES) = 2.80 TOTAL RUNOFF(CFS) = END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOODWIDTH(FEET) = 11.55 FLOW VELOCITY(FEET/SEC.) = 4.68 DEPTH*VELOCITY = 3 . 70 6.26 6.80 1.67 **************************************************************************** FLOW PROCESS FROM NODE 50.20 TO NODE 50.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 11.86 RAINFALL INTENSITY(INCH/HR) = 4.3 8 TOTAL STREAM AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.80 2 ARE; ** CONFLUENCE DATA ** STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 20.18 14.64 2 6.80 11.86 INTENSITY (INCH/HOUR) 3 .821 4.378 AREA (ACRE) 10 . 00 2 .80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 24.41 11.86 2 26.11 14.64 INTENSITY (INCH/HOUR) 4 .378 3 . 821 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS PEAK FLOW RATE(CFS) = 26.11 Tc(MIN.) = TOTAL AREA(ACRES) = 12.80 14 .64 **************************************************************************** FLOW PROCESS FROM NODE 50.10 TO "NODE 43.00 IS CODE = 4 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 24.0 INCH PIPE IS 10.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 20.3 UPSTREAM NODE ELEVATION = 233.00 DOWNSTREAM NODE ELEVATION = 186.00 FLOWLENGTH(FEET) = 440.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 26.11 TRAVEL TIME(MIN.) = .36 TC(MIN.) = 15.00 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.00 RAINFALL INTENSITY(INCH/HR) = 3.76 TOTAL STREAM AREA(ACRES) = 12.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.11 **************************************************************************** FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 120.00 UPSTREAM ELEVATION = 256.00 DOWNSTREAM ELEVATION = 255.00 ELEVATION DIFFERENCE = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.459 SUBAREA RUNOFF(CFS) = .25 TOTAL AREA(ACRES) = .10 TOTAL RUNOFF(CFS) = .25 **************************************************************************** FLOW PROCESS FROM NODE 42.0 0 TO NODE 3 8.00 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 255.00 DOWNSTREAM ELEVATION = 186.00 STREET LENGTH(FEET) = 600.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) =32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 3 0.50 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .087 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.61 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .24 HALFSTREET FLOODWIDTH(FEET) = 5.79 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.76 PRODUCT OF DEPTH&VELOCITY = 1.39 STREETFLOW TRAVELTIME(MIN) = 1.74 TC(MIN) = 13.26 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.073 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 4.70 SUMMED AREA(ACRES) = 2.20 TOTAL RUNOFF(CFS) = 4.95 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .28 HALFSTREET FLOODWIDTH(FEET) = 7.70 FLOW VELOCITY(FEET/SEC.) = 6.97 DEPTH*VELOCITY = 1.95 **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.26 RAINFALL INTENSITY(INCH/HR) = 4.07 TOTAL STREAM AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.95 **************************************************************************** FLOW PROCESS FROM NODE 50.30 TO NODE 53.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "D" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 INITIAL SUBAREA FLOW-LENGTH = 420.00 UPSTREAM ELEVATION = 233.00 DOWNSTREAM ELEVATION = 186.00 ELEVATION DIFFERENCE = 47.00 •CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.3 90 SUBAREA RUNOFF(CFS) = 3.58 TOTAL AREA(ACRES) = .80 TOTAL RUNOFF(CFS) = 3.58 **************************************************************************** FLOW PROCESS FROM NODE 53.00 TO NODE 43.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE TIME OF CONCENTRATION(MIN.) = 6.60 RAINFALL INTENSITY(INCH/HR) = 6.39 TOTAL STREAM AREA(ACRES) = .80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.58 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 26.11 15.00 3.762 12.80 2 4.95 13.26 4.073 12.80 3 3.58 6.60 6.390 .80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) r 1 22.11 6.60 6.390 2 31.35 13.26 4.073 3 32.79 15.00 3.762 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 32.79 Tc(MIN.) = 15.00 TOTAL AREA (ACRES) = 15.80 ^^^.^.j^.jt.jt^.jt^.^.jt.^vt.jtA«********************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.10 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.3 UPSTREAM NODE ELEVATION = 186.00 DOWNSTREAM NODE ELEVATION = 184.00 FLOWLENGTH(FEET) = 100.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 32.79 TRAVEL TIME(MIN.) = .15 TC(MIN.) = 15.15 ^^.;t^***jt******************************************************************** FLOW PROCESS FROM NODE 43.10 TO NODE 43.10 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ^^**jt*.jt********************************************************************* FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 201.30 DOWNSTREAM ELEVATION = 200.00 ELEVATION DIFFERENCE = 1.30 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.641 SUBAREA RUNOFF(CFS) = .73 TOTAL AREA (ACRES) = .10 TOTAL RUNOFF (CFS) = .73 **************************************************************************** FLOW PROCESS FROM NODE 3 5.00 TO NODE 37.00 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 200.00 DOWNSTREAM ELEVATION = 187.00 STREET LENGTH(FEET) = 930.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 3 0.50 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .087 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING "MEAN FLOW(CFS) = 2.74 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .32 HALFSTREET FLOODWIDTH(FEET) = 9.60 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.63 PRODUCT OF DEPTH&VELOCITY = .84 STREETFLOW TRAVELTIME(MIN) = 5.89 TC(MIN) = 10.89 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.625 SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SUBAREA AREA(ACRES) = .90 SUBAREA RUNOFF(CFS) = 3.95 SUMMED AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 4.68 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .38 HALFSTREET FLOODWIDTH(FEET) = 12.46 FLOW VELOCITY(FEET/SEC.) = 2.80 DEPTH*VELOCITY = 1.05 **************************************************************************** FLOW PROCESS FROM NODE 3 7.00 TO NODE 37.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.89 RAINFALL INTENSITY(INCH/HR) = 4.63 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.68 **************************************************************************** FLOW PROCESS FROM NODE 53.40 TO NODE 53.50 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 201.30 DOWNSTREAM ELEVATION = 200.00 ELEVATION DIFFERENCE = 1.3 0 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.203 SUBAREA RUNOFF(CFS) = .29 TOTAL AREA(ACRES) = .10 TOTAL RUNOFF(CFS) = .29 **************************************************************************** FLOW PROCESS FROM NODE 53.50 TO NODE 53.20 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 200.00 DOWNSTREAM ELEVATION = 184.00 STREET LENGTH(FEET) = 1000.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 3 0.50 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .087 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.46 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .26 HALFSTREET FLOODWIDTH(FEET) = 6.74 AVERAGE FLOW VELOCITY (FEET/S-EC. ) = 2.55 PRODUCT OF DEPTH&VELOCITY = .67 STREETFLOW TRAVELTIME(MIN) = 6.52 TC(MIN) = 15.59 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.669 SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 2.44 SXJMMED AREA (ACRES) = .80 TOTAL RUNOFF (CFS) = 2.73 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .32 HALFSTREET FLOODWIDTH(FEET) = 9.60 FLOW VELOCITY(FEET/SEC.) = 2.62 DEPTH*VELOCITY = .83 **************************************************************************** FLOW PROCESS FROM NODE 53.20 TO NODE 37.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.59 RAINFALL INTENSITY(INCH/HR) = 3.67 TOTAL STREAM AREA(ACRES) = .80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.73 **************************************************************************** FLOW PROCESS FROM NODE 64.00 TO NODE 64.10 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION WITH 10-MINUTES ADDED = 11.89(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 260.00 DOWNSTREAM ELEVATION = 18 0.00 ELEVATION DIFFERENCE = 80.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.369 SUBAREA RUNOFF(CFS) = 5.51 TOTAL AREA(ACRES) = 2.8 0 TOTAL RUNOFF(CFS) = 5.51 **************************************************************************** FLOW PROCESS FROM NODE 64.10 TO NODE 40.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 180.00 DOWNSTREAM NODE ELEVATION = 178.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = .0100 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00 CHANNEL FLOW THRU SUBAREA(CFS) = 5.51 FLOW VELOCITY(FEET/SEC) = 4.74 FLOW DEPTH(FEET) = .55 TRAVEL TIME(MIN.) = .70 TC(MIN.) = 12.60 **************************************************************************** FLOW PROCESS FROM NODE 3 9.00 TO NODE 40.00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 10 0 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.210 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) = 5.40 TOTAL RUNOFF(CFS) = TC(MIN) = 12.60 4 . 93 10 .43 **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 37.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 12.60 RAINFALL INTENSITY(INCH/HR) = 4.21 TOTAL STREAM AREA(ACRES) = 5.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.43 3 ARE; ** CONFLUENCE DATA ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 4 . 68 2 . 73 10 .43 Tc (MIN. ) 10 . 89 15.59 12 . 60 INTENSITY (INCH/HOUR) 4 . 625 3 .669 4 .210 AREA (ACRE) 1.00 . 80 5.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 RUNOFF (CFS) 16 . 34 17. 07 15.53 Tc (MIN. ) 10 . 89 12 . 60 15.59 INTENSITY (INCH/HOUR) 4 . 625 4 .210 3 .669 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.07 Tc(MIN.) = TOTAL AREA(ACRES) = 7.20 12 . 60 **************************************************************************** FLOW PROCESS FROM NODE 37.10 TO NODE 43.10 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM NUMBER 1 RUNOFF (CFS) 17.07 Tc (MIN, ) 12 . 60 INTENSITY (INCH/HOUR) 4 .210 ** MEMORY BANK # STREAM RUNOFF NUMBER (CFS) 1 32.79 1 CONFLUENCE DATA ** Tc (MIN. ) 15.15 ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 RUNOFF (CFS) 46.18 47 . 94 Tc (MIN. ) 12 . 60 15.15 INTENSITY (INCH/HOUR) 3 .738 INTENSITY (INCH/HOUR) 4.210 3 .738 AREA (ACRE) 7.20 AREA (ACRE) 15 . 80 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 47.94 Tc(MIN.) = 15.15 TOTAL AREA(ACRES) = 23.00 **************************************************************************** FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 344.00 DOWNSTREAM ELEVATION = 343.00 ELEVATION DIFFERENCE = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.918 SUBAREA RUNOFF(CFS) = .54 TOTAL AREA(ACRES) = .20 TOTAL RUNOFF(CFS) = .54 **************************************************************************** FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 343.00 DOWNSTREAM ELEVATION = 308.00 STREET LENGTH(FEET) = 800.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .087 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.62 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .34 HALFSTREET FLOODWIDTH(FEET) = 10.52 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.59 PRODUCT OF DEPTH&VELOCITY = 1.54 STREETFLOW TRAVELTIME(MIN) = 2.91 TC(MIN) = 12.81 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.166 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA (ACRES) = 4.40 SUBAREA RUNOFF (CFS) = 10.08 SUMMED AREA(ACRES) = 4.60 TOTAL RUNOFF(CFS) = 10.62 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .40 HALFSTREET FLOODWIDTH(FEET) = 13.62 FLOW VELOCITY(FEET/SEC.) = 5.3 9 DEPTH*VELOCITY = 2.15 **************************************************************************** FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 4 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12.2 UPSTREAM NODE ELEVATION = 3 08.00 DOWNSTREAM NODE ELEVATION = 3 04.00 FLOWLENGTH(FEET) = 80.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA (CFS) = 10'. 62 TRAVEL TIME(MIN.) = .11 TC(MIN.) = 12.92 INSERT DRAWINGS HERE Drainage Study Emerald Pointe Estates CHAPTER 8 APPENDICES Appendix 8.8 Excerpts from "Hydrology and Hydraulic Study for Mariano'' AHah H:«EP0RTSU339M8Bn<l Sut)iiiitlal\A02.cloc W.0.2339-18 6/22/2005 4:30 PM HUNSAKER ^ASSOCIATES SAN DIECO, INC. PLANNING ENGINEERING SURVEYING IRVINE LAS VEGAS RIVERSIDE SAN DIEGO HYDROLOGY AND HYDRAULIC STUDY for MARIANO City of Carlsbad Prepared for: Standard Pacific 9335 Chesapeake Drive San Diego. CA 92123-1010 w.o. 2240-3 April 29, 1996 Revised May 7, 1996 Reviseci September 30, 1998 Revised December 15,1998 Revised March 9,1999 Revised March 30,1999 Revised May 11,'1999 Revised June 7,1999 Revised June 23,1999 DAVE HAMMAR lACK HILL LEX WILLIMAN 10179 Huennekens Sl. Suite 200 San Diego, CA 92121 (619)558-4300 PH (619)558-1414 FX www.hunsaker.com lnfo@HunsakerSD.com Hunsaker & Associates San Diego, Inc. Raymond L. Martin, R.C.E. Project Manager RM:kd msword\k:\2240\1999\a39.doc wo 2240-3 6/29/99 FLOW PROCESS FROM NODE 43.00 TO NODE 44.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION WITH 10-MINUTES ADDED = 17.12(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 800.00 UPSTREAM ELEVATION = ' 187.00 DOWNSTREAM ELEVATION = 17 6.50 ELEVATION DIFFERENCE = 10.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.097 SUBAREA RUNOFF(CFS) = 8.36 TOTAL AREA(ACRES) = 6.00 TOTAL RUNOFF(CFS) = 8.36 ****************************************************************** FLOW PROCESS FROM NODE 4 4.00 TO NODE 42.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.1 UPSTREAM NODE ELEVATION = 176.50 DOWNSTREAM NODE ELEVATION = 165.40 FLOWLENGTH(FEET) = 163.40 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 8.36 TRAVEL TIME(MIN.) = .21 TC(MIN.) = 17.33 **************************************************************************** FLOW PROCESS FROM NODE 42.00 TO NODE 42.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS =2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.33 RAINFALL INTENSITY(INCH/HR) = 3.07 TOTAL STREAM AREA(ACRES) = 6.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.36 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR). (ACRE) 1 141.71 28.24 2.243 106.70 2 8.36 17.33 3.073 6.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 111.79 17.33 3.073 2 147.81 28.24 2.243 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 147.81 Tc(MIN.) = 28.24 TOTAL AREA(ACRES) = 112.70 ********************************************************jt^^j,^.j^^j^j^^.^j^^.^.^j^^.^j^jj FLOW PROCESS FROM NODE 42.00 TO NODE 45.10 IS CODE = 3 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 75.0 INCH PIPE IS 59.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.6 UPSTREAM NODE ELEVATION = 161.10 DOWNSTREAM NODE ELEVATION = 160.50 FLOWLENGTH(FEET) = 521.40 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 75.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 147.81 TRAVEL TIME(MIN.) = 1.54 TC(MIN.) = 29.78 *****************************************************************.^.y^i.^^.J^J,J^J,J^.J, FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 29.78 RAINFALL INTENSITY(INCH/HR) = 2.17 TOTAL STREAM AREA(ACRES) = 112.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 147.81 ********************************************************************y,^t*.^y,jtj,* FLOW PROCESS FROM NODE 42.30 TO NODE 4'2.40 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 100.00 UPSTREAM ELEVATION = 18 9.00 DOWNSTREAM ELEVATION = 188.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.900 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.409 SUBAREA RUNOFF(CFS) = .78 TOTAL AREA(ACRES) = .32 TOTAL RUNOFF(CFS) = .78 ***************************************************************.jtJt.JtJ,^.J,.JtJ,J,J,.( FLOW PROCESS FROM NODE 42.40 TO NODE 43.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 188.00 DOWNSTREAM ELEVATION = 168.00 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 18.50 INTERIOR STREET CROSSFALL(DECIMAL) = .020 ' OUTSIDE STREET CROSSFALL(DECIMAL) = .083 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.80 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = ,30 HALFSTREET FLOODWIDTH(FEET) = 8.73 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.32 PRODUCT OF DEPTH&VELOCITY = 1.30 STREETFLOW TRAVELTIME(MIN) = 1.93 TC(MIN) = 11.83 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.931 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.80 SUBAREA RUNOFF(CFS) = 6.05 SUMMED AREA(ACRES) = 3.12 TOTAL RUNOFF(CFS) = 6.83 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .36 HALFSTREET FLOODWIDTH(FEET) = 11.62 FLOW VELOCITY(FEET/SEC.) = 4.65 DEPTH*VELOCITY = 1.67 **************************************************************************** FLOW PROCESS FROM NODE 45.10 TO NODE 45.10 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) =11.83 RAINFALL INTENSITY(INCH/HR) = 3.93 TOTAL STREAM AREA(ACRES) = 3.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = .&.83 **************************************************************************** FLOW PROCESS FROM NODE 55.10 TO NODE 55.20 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<.« SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = 192.50 DOWNSTREAM ELEVATION = 191.00 ELEVATION DIFFERENCE = 1.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 12.125 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.869 SUBAREA RUNOFF(CFS) = 1.09 TOTAL AREA(ACRES) = .51 TOTAL RUNOFF(CFS) = 1.09 ***************************************************j,.^^.^j,^^j^.^jj.^j^.j^.^.^.i^j^^^^^j^^^^ FLOW PROCESS FROM NODE 55.20 TO NODE 45.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 191.00 DOWNSTREAM ELEVATION = 168.00 STREET LENGTH(FEET) = 510.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 18.50 INTERIOR STREET CROSSFALL(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = .083 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.76 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .24 HALFSTREET FLOODWIDTH(FEET) = 5.84 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.83 PRODUCT OF DEPTH&VELOCITY = .93 STREETFLOW TRAVELTIME(MIN) = 2.22 TC(MIN) = 14.35 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.471 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = .70 SUBAREA RUNOFF(CFS) = 1.34 SUMMED AREA(ACRES) = 1.21 TOTAL RUNOFF{CFS) = 2.42 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .27 HALFSTREET FLOODWIDTH(FEET) = 6.99 FLOW VELOCITY(FEET/SEC.) = 3.99 DEPTH*VELOCITY = 1.06 ******************************************************^t,^Jt.it.^.yt.^^^.^.^.j^.yt.^.;,.jt.j^y,.^.^j^j^ FLOW PROCESS FROM NODE 45.10 TO NODE 45^10 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 14.35 RAINFALL INTENSITY(INCH/HR) = 3.47 TOTAL STREAM AREA(ACRES) =1.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.42 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 147.81 29.78 2.167 112.70 2 6.83 11.83 3.931 112.70 3 2.42 14.35 3.471 1.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 90.46 11.83 3.931 2 100.74 14.35 3.471 3 153.09 29.78 2.167 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 153.09 Tc(MIN.) = 29.7i TOTAL AREA(ACRES) = 117.03 **************************************************************************** FLOW PROCESS FROM NODE 45.00 TO NODE 47.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< DEPTH OF FLOW IN 45.0 INCH PIPE IS 35.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.4 UPSTREAM NODE ELEVATION = 160.50 DOWNSTREAM NODE ELEVATION = 157.80 FLOWLENGTH(FEET) = 140.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 153.09 TRAVEL TIME(MIN.) = .14 TC(MIN.) = 29.92 **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 29.92 RAINFALL INTENSITY{INCH/HR) = 2.16 TOTAL STREAM AREA(ACRES) = 117.03 PEAK FLOW RATE (CFS) AT CONFLUENCE = 153.. 09 **************************************************************************** FLOW PROCESS FROM NODE 4 6.00 TO NODE 4 6.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 15.20 RAIN INTENSITY(INCH/HOUR) = 3.34 TOTAL AREA(ACRES) = 23.00 TOTAL RUNOFF(CFS) = 47.90 ***************************************************^r*^J^JJ^J^^.^.J,J^..^.J..J^JJJJ.JJ.^JJ.^^.J^^.^J^. FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.20 RAINFALL INTENSITY(INCH/HR) = 3.34 TOTAL STREAM AREA(ACRES) = 23.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 47.90 ' ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 153.09 29.92 2.160 117.03 2 47.90 15.20 3.344 23.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 146.81 15.20 3.344 2 184.04 29.92 2.160 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 184.04 Tc(MIN.) = 29.92 TOTAL AREA(ACRES) = 140.03 *****************************************************************jt^t.yt^t.^.iti..4..(tj,.^. FLOW PROCESS FROM NODE 47.00 TO NODE 48.00 IS CODE = 3 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 43.6 UPSTREAM NODE ELEVATION = 158.10 DOWNSTREAM NODE ELEVATION = 135.00 FLOWLENGTH(FEET) = 99.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 .NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 184.04 TRAVEL TIME(MIN.) = .04 TC(MIN.) = 29.96 **************************************************************************** FLOW PROCESS FROM NODE 4 8.00 TO NODE 56.00 IS CODE = 52 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 135.00 DOWNSTREAM NODE ELEVATION = 125.00 INSERT DRAWINGS HERE Drainage Study Emerald Pointe Estates CHAPTER 8 APPENDICES Appendix 8.9 Drawing No. 345-9 "Improvement Plans for Cobblestone Sea Village Unit 1 & 2", Sheet 20 AH:ah H:\REP0RTS\2339M8\2nd SulxnittaAA02.doc W.0.2339-18 a/22/2005 4:30 PM mm '4 :Mmi f-WSTMl Z9.i3<.-^ £-t"'v.c.i'.<»fo.-se% /3^-73.0/ CME 'A' rV/ofi Ci.BAMOIJT fEK KBa. &70. D-f Bes/M p/tiv.arE sro/?M DffpM <-ST.SW 9^aSZ|A- CQSamurPSF ps0. Y STO J^MZt^Am DATS T'54' 6 OELTA/BEAPING RAOIUS LEN./DIST. Y N B4'0a'05-E 31.38' N Be'OSVOS'E 34.30 N se'oi'os'E IIO.'Z'S N 03"57'BBnW 21 .07 13!'K.O. p. M 33'52-59"W 33.54- N S8'02'05-E"~ t*"jt.c.p: N S6»02'0S"E 53.07 33'07-47" 340.00 137.25 Y N 57'05'42"W 16.25 la'K.a.p. 82-32-se-115.00' t N 64'14'00"W lid.'n: S7'03'32" 90.00 105.34' 4-N 4B'4r45-E 87.33 X PFriVATE STORM DFtalN. \ 87. ^TA. io^C3.7f 4 ry/>e. 'a-l' cone i/jCBT Pex Kms. S70. o-z, C = 7' Cl #/7 ^ TNE CONCRETE COVER ONTHE INSIDE OF ALi- REINFORCED CONCRETE PIPE MUST SB IMCREASEO TO PROVIDE A MINIMUM OP I'/2" OVER THE REIMFORCINS WHEN THE CCSIgO VELOCITIES EXCEED ZO FEET PER SECOI^JD THE COMCRETE DESIGN STRENGTH IM THESE REACHES SHAU. BE fa SOOO PSI KJR VELOCITIES EXCEED IMG 20 FEET FER SECOKID AMP fc'dCXXi PSI FOR VELOCITIES EXCEED IWG 30 FEET PER SHCOMD ENGINEER OF WQBK IKMAOL U- KOLLETT K.<X iZltA OATS IMUNtCR OF WORK xei/fse ^-raAM DX/^AJ REVISION DESCRIPTION irrtAL 'AS - ©aiL-T' exp. <p-3o- o + SHEET ZC CITY OF CARLSBAD [MBINtERINO DEPtKTMINT SHKTS 32 PLANS FOR TKE IMPROVEMENT OF CARLSBAD TRACT 84-32 UNIT 182 TfWW'"'^'' EN8INCER OWN.BY.— I aumma NO. 3*5-3 mmm TTTO ^^1-89 09t00 AH A Drainage Study Emeraid Pointe Estates CHAPTER 8 APPENDICES Appendix 8.10 Drawing No. 367-2C "Improvement Plans for Mariano'', Sheets 12-14 AH:ah H:\REPORTS\2339Mm2nd Sulxnittal\A02.doc W.0.2339-18 6/22/2005 4:30 PM IKMCON PRECAST ACCESS HOt£ SHtn OR EOlHi.' (6' mmuu) piKMoe MMWio wm J -0 DWMETER ACCESS OPOmO.^ SEE SDRSO 0-9 fDR RETNTORONG AND OETAILi •^^'SE SDRSO 11:^0 tD-UFOR ADDmONAL DETAItS * NOTES has becN ddeVeci HUNSAKER & ASSOCIATES SAN OIECO, INC PIANNING • ENaNHRINC • SUHVEYINC NOTE: »»" RCP OESISmTSD AS HtWNS MUTER TTiWr JOIWTS SHAU ac REwrwes) CONCRETE PIPC JCETINO THE REDOWEMEWS OE ASTM C7« AAID AST« CSSS. PIPE IHSTAUATION SH«4*ffi|T , TWE STA/HDWO SP£aFKaTJO/»S FOR PUBUC HORHS. COWSTTWCTm. SECTION 3M-.rj IWTH fJElO JOmHO PEP SECmH 306-1 J.*. « ADOmON. ALL BOERNAL JOHtS SHAU SC SEUES USINC UAP-MAC OPOUT OAPCPS OP AN EOUVMtEW PROOUCT AS APPROV BT IHC cmr ENONEER RCC MO 4*670 CXP. 6/X/OO f FUTURE SEWER EASEMENT nmiifr mi OVI PLACE unniinFD TYPF CIFANOUT CENTERUNE DATA grORM DRAIN DATA /2-S-O/ /iLM REVISION DESCRIPTION OIHER APPROVAL SHEET 12 ENGINEER OF WORK 9ML AS BUILT" '^*8i70 ap t^-30-04- CITY OF CARLSBAD EMaNEERINC DCPARTUENT SHEETS 15 MPmvaeHT PIANS TO* MARIANO STORM DRAIN EXP. i?./M./ni om at: CHKD fff: ffvwp flri PROJECT NO. CT 97-14 DRAWING NO. 367-2C CWHD 97-527 12+00 13+00 14+00 15+00 16+00 17+00 18+00 19+00 20+00 21+00 HUNSAKER & ASSOCIATES SAN DIECO, INC. PLANNING " ENQNEHMNC • SURVEYING 1017) HuMwtare st . SiiMXn • SMI OtIO, CAfflZI " «* SWj 35MS0O . FX *!# SSa-V.M STORM DRAIN DATA o BEARINe/OCLTA RADHJS tENBTH RCUARKS • USE MATER UGHT JOINIS SEE NOTE SHEET 12 / N 2J-«'00> fJCW 68' RCP 1000-0' • USE MATER UGHT JOINIS SEE NOTE SHEET 12 2 OTJJSO" 589.00 JS.55' 68' RCP 20OO-D' • USE MATER UGHT JOINIS SEE NOTE SHEET 12 J «,iiroo'oo> 3ia.93' «5" RCP «l»-0' • USE MATER UGHT JOINIS SEE NOTE SHEET 12 4 0F4S'W 811.00 «. tJ-«»" RCP 2000-D' • USE MATER UGHT JOINIS SEE NOTE SHEET 12 5 or2a'2i' tl2.ll r«7j-66' RCP 2000-0" • USE MATER UGHT JOINIS SEE NOTE SHEET 12 S N lTS7'SfW 28.33' 66' RCP 2000-0- • USE MATER UGHT JOINIS SEE NOTE SHEET 12 7 05ri2'4O' 1000.00 9095' 88' RCP 2000-0- • USE MATER UGHT JOINIS SEE NOTE SHEET 12 S N 12-SO'JfW 80.62' 88' RCP 2000-0- • USE MATER UGHT JOINIS SEE NOTE SHEET 12 9 N ITSS'SSyf 85.02' 66' RCP 2000-0- 10 N I5"J4'S5T 51.78' 88' RCP 20OO-O-0 BCMNO/OELTA RADIUS 1 LENCTN REUtmS 11 N »s-TSBor 26.00' 18' RCP 1330-0 1 N 2S45'00' W 1 138.84' IZ N eeris'oo'c 4.00' 18' RCP 2000-0-2 0T4S'O0' 600.00 39.27' IJ t* N TOVO'OO^ 22'2J-2e-TBinJO 89.18' 78.18' 18' RCP 1350-0 18' RCP 1350-0 3 4 N 2croo'oo' » 1 31895' 148.81' ENGINEER OF mm- a-S-ol RLM Us -AS-BUILT REVISION DESCRIPTION OTHER Appmm. CITY APPROVAL ENGINEER OF WORK RAYHONO L UARUN RCE NO 48670 CXP. 6/30/00 "AS BUILT" SHEET IJ CITY OF CARLSBAD SHEETS 15 lUPROVCMCHr PLANS FOR: MARIANO STORM DRAIN EXP. H/M/ni DATE CHKD Br RVWO BV-. PROJECT NO. CT 97-14 DRAWING NO. 367-2C CMWD 97-527 12+00 !^rORU LINE "B" STORM DRAIN DATA o BCARING/DCLTA RADIUS . LCNCm RCUARKS 1 N 83'58'33' W 15.16' 18' RCP 1350-0— 2 N 27'40'09' C 27.50' 18' RCP 1350-0— 3 N 0735'Oi'E 11J5' 18' RCP 1330-0— 4 N 07'33'09t 85.80' 18' RCP 1350-0- 5 N Tirso'oeif 4324' 18' RCP 1350-D- 6 36r24'2S' 90.00 57. IS' 18' RCP 1350-0— 7 N aZ32'39~W 99.12' 66' RCP 2000-0 a 9oroo'oo' 22.00 34.58' 24' RCP 1300-0- 9 S 78'41'00'W 35.65' 24' RCP 1350-0 10 S 78'41'OOy/ 42.85' 24' RCP 1350-0 11 12 14-31'37' S 64'09'23-t/l 91.00' 23.07 5J6' 24' RCP 1330-0 24' RCP IJ50-0 PROFILE SCALES HORIZ. : 1"=4V,' HUNSAKER & ASSOCIATES SAN DIECO, INC. PIANNING • ENGINEERINC • SURVEYING ion HMnMkm St • Sun NO . Sw D<.|4 CA ttDI • nt (t191 ISMSOO . FX (619) IS»WV Has, b>eeM e=i«lc4oi STORt^ LINE •* A-7' ra. r,m,-. K:\cm2\Msmi4 CMWD 97-527 Drainage Study Emeraid Pointe Estates CHAPTER 8 APPENDICES Appendix 8.11 Drawing No. 345-9A "Grading and Erosion Control Plans for Cobblestone Sea Village Unit 1 & 2", Sheets 7 and 10 AH:ah H:\REPORTS\2339M8\2nd Submittal\A02.(loc W.0.2339-18 6/22/2005 4:30 PM SBOC/AT£S im. 345-9A CMWD e2-302 CITV AmiOVM. 6RA0IN6 PLANS FOR: CARLSBAD TRACT 84-32 COBBLESTONE SEA VILLAGE UNIT I a 2 OWH.iY.___, I PROJECT NO. CT- 84-32 ORMRWi NO. 3-4S-9A CMWC7 S2-302