Loading...
HomeMy WebLinkAboutCT 02-14-03; BRESSI RANCH PLANNING AREA 8 UNIT 3; DRAINAGE REPORT BRESSI RANCH; 2003-11-01DRAINAGE REPO BRESSI RANCH RESIDENTIAL PLANNING AREAS 6,7,8,9,10, and 12 CARLSBAD, CALIFORNIA NOVEMBER 2003 VOLUME II Prepared For: LENNAR COMMUNITIES c/o LENNAR BRESSI VENTURE, LLC 5780 Fleet Street, Suite 320 Carlsbad, CA 92008 0 "7 Prepared By: PROJECTDESIGN CONSULTANTS PLANNING • FKViRONMENrAi » ENCiNEEitiNG • SUKVEV/GPS 701 B Streel, Suite 800, San Diego, CA 92101 619-235-6471 FAX 619-234-0349 Job No. 2407.30 Gregory M. Shields RCE 42951 Registration Expires 03/31/04 TABLE OF CONTENTS APPENDICES 3.0 Curb Inlet Size Calculations 4.0 Catch Basin Size Calculations 5.0 Comparison of Rational and Pipeflow Node Numbers 6.0 Pipeflow File Name Index 7.0 Pipeflow Computer Output 7.1 100 Series Files 7.2 200 Series Files 7.3 5000 Series Files 7.4 7000 Series Files EXHIBITS A Rational Method Hydrology Boundaries Map, Ultimate Conditions, Sheet 1 &2of 2 B Pipeflow Hydraulic Node Numbers Map, Ultimate Conditions, Sheet 1 &2of 2 1 T:\Waler Resourses\2407.3-Bressi Residential\2°'' Sub PAIO 10-3-03\Reporl\240732ndsub.doc APPENDIX 3.0 CURB INLET AND ALLEY FLOW CALCULATIONS BRESSI RANCH CURB INLETS PROJ. NUM 2244.00 PAGE 1 OF 1 CURB INLETS - ULTIMATE Q100 Street Name Street Station street Side 0 % Street Y CALC'D OPEN. NET OPENING CURB INLET BYPASS (CFS) Slope (Feet) L - (FEET) (FEET) SIZE (FT) 0 (cfs) PA-6 Abbey Drive 1-1-91.50 East 8.87 3.54 0.38 21.18 22.00 23.00 0.00 PA-6 Abbey Drive 4-f80.00 East 2.56 1.20 0.30 7.31 8.00 9.00 0.00 PA-6 Abbey Drive 4+80.00 West 6.19 1.20 0.39 14.47 15.00 16.00 0.00 PA-6 Abbey Drive 9+88.91 North 5.53 5.50 0.30 15.80 16.00 17.00 0.00 PA-7 Dartinqton Drive 7+75.49 East 1.91 2.51 0.25 6.18 7.00 8.00 0.00 PA-7 Dartinqton Drive 7+75.49 West 4.32 2.51 0.32 11.78 12.00 13.00 0.00 PA-7 Alley Y 4+30.50 East 0.58 SUMP 2 CFS/FT 0.29 4.00 5.00 0.00 PA-7 Alley Y 4+30.50 West 0.58 SUMP 2 CFS/FT 0.29 4.00 5.00 0.00 PA-7 Ascott Ave. 2+00.00 North 1.33 1.22 0.25 4.30 5.00 6.00 0.00 PA-7 Ascott Ave. PA-7 Acr-oH A\,a 1 2+00.00 c 1 cn nn South 5.38 1.22 0.38 12.85 13.00 14.00 0.00 T;\Water Resources\2407.3-Bressi Resldenlial\ln-tract Curb inlets\curb-inlets.xls ULTIMATE -Q100- Alley Flow Calculations Lcx:ation Discharge (cfs) Actual Depth (ft) Slope (ft/ft) Top Width (ft) Velocity (ft/s) PA-7, Alley BB, North 0.80 0.11 0.038 5.56 2.68 PA-7, Alley BB, South 0.80 0.11 0.038 5.56 2.68 PA-7, Alley Op, North 0.75 0.13 0.012 6.77 1.69 PA-7, Alley OO, South 0.75 0.13 0.012 6.77 1.69 PA-7, Alley T, East 0.66 0.11 0.020 5.83 2.01 PA-7, Alley T, West 0.67 0.11 0.020 5.87 2.01 PA-7, Alley X at 11 +00, East 0.96 0.11 0.049 5.66 3.10 PA-7, Alley X at 11 +00, West 0.96 0.11 0.049 5.66 3.10 PA-7, Alley X at 3+00, East 0.96 0.15 0.011 7.58 1.73 PA-7, Alley X at 3+00, West 0.96 0.15 0.011 7.58 1.73 PA-7, Alley Y, East 0.94 0.13 0.020 6.70 2.17 PA-7, Alley Y, West 0.91 0.13 0.020 6.61 2.15 PA-8, Alley JJ, North 0.87 0.11 0.037 5.77 2.70 PA-8, Alley JJ, South 0.87 0.11 0.037 5.77 2.70 PA-8, Alley KK, North 0.63 0.11 0.023 5.55 2.11 PA-8, Alley KK, South 0.63 0.11 0.023 5.55 2.11 PA-8, Alley LL, North 0.71 0.10 0.037 5.32 2.59 PA-8, Alley LL, South 0.70 0.10 0.037 5.29 2.58 PA-8, Alley NN, East 0.66 0.09 0.057 4.83 2.93 PA-8, Alley NN, West 0.66 0.09 0.057 4.83 2.93 PA-8, Alley S, North 0.31 0.09 0.015 4.81 1.39 PA-8, Alley S, South 0.31 0.09 0.015 4.81 1.39 PA-8, Alley W, Ease 0.95 0.10 0.066 5.32 3.47 PA-8, Alley W, West 0.95 0.10 0.066 5.32 3.47 PA-8, Alley ZZ, East 0.67 0.09 0.068 4.83 2.97 PA-8, Alley ZZ, West 0.67 0.09 0.068 4.83 2.97 t;\...\alley's\gutter depths-ult.fm2 10/13/03 01 ;51 ;57 PM © Haestad Methods, Inc. Project Engineer; Adolph Lugo Project Design Consultants FlowMaster v6.1 [614o] 37 Broolcside Road Waterbury, GT 06708 USA (203)755-1666 Pagelofi APPENDIX 4.0 CATCH BASIN CALCULATIONS F Type Catch Basin PA-12. CLAYMONT AVENUE, 0+51.72 The maximum allowable flow rate is determined using the orifice flow equation, as follows: where Qma. = CA<2gh, C - Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hydraulics; A = Area of clean opening (3 feet x 0.65 foot = 1.95 ft^ per opening); g - Gravitational acceleration (32.2 ft/sec ); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to top of catch basin box (h=0.92') Qmr^ = (0.62)1.95V(2)(32.2)(0.92) = 9.44 cfs per opening. Required number of openings: Inlet Location Qiooicfs) Sta. 0-F51.72 1.34 Head, h (feet) Single Number Opening Of Openings Capacity (cfs) 0.92 (11 inches 9.44 1 to top of box) Total Flow 1.34 F Type Catch Basin PA-10, FAIRHAVEN DRIVE, 3+15.48 The maximum allowable flow rate is detennined using the orifice flow equation, as follows: Qmax = CA-^2gh, where C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hydraulics; A = Area of clean opening (3 feet x 0.65 foot = 1.95 ft^ per opening); g = Gravitational acceleration (32.2 ft/sec ); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to top of catch basin box (h=0.92') Q^ax = (0.62)1.95V(2)(32.2)(0.92) = 9.44 cfs per opening. Required number of openings: Inlet Location Qjoo (cfs) Sta. 3+15.48 2.44 Head, h (feet) 0.92 (11 inches to top of box) Single Opening Capacity (cfs) 9.44 Number Of Openings Total Flow 2.44 F Type Catch Basin PA-10, WITLEY WAY, 3+78.12 The maximum allowable flow rate is determined using the orifice flow equation, as follows: Qinax = CAilgh, where C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hydrauhcs; A - Area of clean opening (3 feet x 0.65 foot = 1.95 ft^ per opening); g = Gravitational acceleration (32.2 ft/sec^); and h - Distance from bottom of opening to water surface. Therefore, For water ponded to top of catch basin box (h=0.92') Qmcxx = (0.62)1.95V(2)(32.2)(0.92) = 9.44 cfs per opening. Required number of openings: Inlet Location Q]oo (cfs) Sta. 3+78.12 5.76 Head, h (feet) Single Number Opening Of Openings Capacity (cfs) 0.92 (11 inches 9.44 1 to top of box) Total Flow 5.76 F Type Catch Basin PA-12. CLAYMONT AVENUE, 5+64.60 The maximum allowable flow rate is determined using the orifice flow equation, as follows: where Qmax = CA^Ilgh, C = Coefficient of discharge (0.63) from Table 4-6, King's Handbook of Hydrauhcs; A = Area of clean opening (3 feet x 0.65 foot = 1.95 ft^ per opening); g = Gravitational acceleration (32.2 fl/sec ); and h = Distance from bottom of opening to water surface. Therefore, For water ponded to 1 ft. Qmax (0.62)1.95V(2)(32.2)(1.0) = 9.85 cfs per opening. Required number of openings: Inlet Location Qjoo (cfs) Sta. 5+64.60 28.43 Head, h (feet) Single Opening Capacity (cfs) 1.00 (11 inches 9.85 to top of box) Number Of Openings Total Flow 29.6 APPENDIX 5.0 RATIONAL METHOD AND PIPEFLOW NODE NUMBER COMPARISONS NODE NUMBER COMPARISON Type AES Pipeflow AES Ration Method PA Street Name Backbone 100.00 125.00 -Alicante Road Backbone 101.00 117.00 -Alicante Road Backbone 101.30 118.20 -Alicante Road Backbone 102.00 117.30 -Alicante Road Backbone 102.00 117.30 -Alicante Road Backbone 102.50 117.11 -Alicante Road Backbone 105.00 116.00 -Alicante Road Backbone 110.00 115.00 -Alicante Road Backbone 112.00 111.00 -Alicante Road Backbone 120.00 108.00 -Alicante Road In-tract 120.00 300.50 10 Dunham Avenue In-tract 121.00 300.42 10 Dunham Avenue Backbone 122.00 108.00 -Gateway Road Backbone 122.40 108.50 -Gateway Road Backbone 122.90 108.40 -Gateway Road In-tract 124.00 300.65 10 Dunham Avenue Backbone 125.00 107.00 -Gateway Road Backbone 130.00 106.00 -Gateway Road In-tract 130.00 901.10 10 Dunham Avenue In-tract 134.00 300.34 10 Elvaston Lane Backbone 138.00 106.14 -Innovation Way In-tract 138.00 300.24 10 Fairhaven Drive Backbone 139.00 105.50 -Palomar Airport Road Backbone 140.00 105.00 -Gateway Road In-tract 140.00 300.21 10 Fairhaven Drive In-tract 146-00 300.20 10 Westbury Avenue Backbone 160-00 102.00 " Gateway Road Backbone 170.00 101.00 -Gateway Road Backbone 200.00 115.00 6 Town Garden Road Backbone 205.00 210.00 6 Town Garden Road In-tract 206.00 206.40 6 Abbey Drive In-tract 207.00 206.30 6 Abbey Drive Backbone 210.00 206.00 6 Town Garden Road Backbone 210.50 206.00 6 Abbey Drive In-tract 213.00 206.22 6 Abbey Drive Backbone 225.00 205.00 6 Town Garden Road Backbone 230.00 204.00 7 Town Garden Road In-tract 230.10 204.00 7 Darlington Street In-tract 230.20 204.30 7 Darlington Street Backbone 235.10 203.00 7 Alley Y In-tract 235.30 203-00 7 Alley Y Backbone 237.00 202-50 7 Town Garden Road Backbone 238.00 202-59 7 Town Garden Road Backbone 239.20 202.53 7 Town Garden Road Backbone 240.10 202-00 7 Village Green Drive NODE NUMBER COMPARISON Type AES Pipeflow AES Ration Method PA Street Name Backbone 400.00 420.00 -Town Garden Road Backbone 405.00 415.00 -Town Garden Road Backbone 407.00 411.50 -Town Garden Road Backbone 407.40 411.30 -Town Garden Road Backbone 410.10 410.00 -Town Garden Road Backbone 410.30 408.30 -Town Garden Road Backbone 414.00 415.00 -Town Garden Road Backbone 420.00 405.00 -Town Garden Road Backbone 422.30 400.20 -Town Garden Road Backbone 800.00 2020.00 -El Ganino Real Backbone 805.90 810.00 -El Ganino Real Backbone 821.00 809.00 -El Ganino Real Backbone 826.10 1030.00 El Ganino Real Backbone 1006.30 1006.50 -Gateway Road Backbone 1006.90 1006.30 -Gateway Road Backbone 2001.00 2015.00 -Gateway Road Backbone 2005.00 2007.00 -Gateway Road Backbone 2015.00 2006.00 -Gateway Road Backbone 2020.00 2005.00 -Gateway Road Backbone 4001.00 4010.00 -Gardenlane Way Backbone 4002.00 4007.00 -Gardenlane Way Backbone 4002.52 4006.20 -Gardenlane Way Backbone 5002.00 5090.00 12 Greenhaven Drive In-tract 5002.60 5086.50 12 Lismore Lane In-tract 5002.80 5086.40 12 Claymont Avenue In-tract 5002.92 5086.42 12 Ciaymont Avenue Backbone 5007.00 5075.00 9 Greenhaven Drive In-tract 5007.70 5074.20 9 Wentworth Drive In-tract 5007.90 5074.12 9 Wentworth Drive Backbone 5010.00 5060.00 9 Greenhaven Drive Backbone 5010.20 5057.00 9 Altamont Avenue In-tract 5010.41 5056.00 9 Altamont Avenue In-tract 5010.52 5053.10 9 Altamont Avenue In-tract 5010.56 5056.80 8 Altamont Avenue In-tract 5010.80 5055.30 9 Da Vita Terrace in-tract 5011.10 5052-50 9 Da Vita Terrace In-tract 5011.70 5052.00 9 Stratfield Drive In-tract 5012-10 5051.00 9 Stratfield Drive In-tract 5012-90 5037.00 7 Ascott Avenue Backbone 5012-90 5037.00 8 Abbotslord Avenue NODE NUMBER COMPARISON Type AES Pipeflow AES Ration Method PA Streef Name Backbone 5020.00 5025.00 -Gardenlane Way Backbone 5025.10 5028.30 -Gardenlane Way Backbone 5025.50 5023.00 -Gardenlane Way in-tract 5042.00 5007.90 7 Ascott Avenue In-tract 5045.00 5008.00 7 Ascott Avenue In-tract 5048.00 5005.50 7 Ascott Avenue In-tract 5049.00 5004.00 7 Ascott Avenue Iri-tract 6015.00 5036.90 8 Abbotsford Avenue In-tract 6020.00 5036.20 8 Avery Drive In-tract 7009.00 1205.00 12 Stoneacre Avenue In-tract 7014.00 1204.90 12 Stoneacre Avenue In-tract 7019-00 1204.00 12 Maplelawn Drive APPENDIX 6.0 PIPEFLOW FILE NAME INDEX IN-TRACT PIPEFLOW FILE NAMES Fiie Name PA Systen Beginning Node Main or Lateral Street Name 100IT01 10 100 102 M Dunham Avenue Witley Way 100IT02 10 100 130 M Dunham Avenue Elvaston Lane Fairhaven Drive Westbury Avenue 100IT03 10 100 124.1 L Dunham Avenue 100ITD4 10 100 124.5 L Dunham Avenue 100IT05 10 100 121.1 L Dunham Avenue 100IT06 10 100 134.1 L Elvaston Lane 100IT07 10 100 138.1 L Fairhaven Drive 100IT08 10 100 140.1 L Dunham Avenue 100IT09 10 100 128.1 L Witley Way 200IT01 6 200 210.5 M Abbey Drive 200IT02 6 200 206.1 L Abbey Drive 200 ITOS 6 200 217 L Abbey Drive 200IT04 6 200 216 L Abbey Drive 200iTQ5 7 200 230.1 M Darlington Drive 200IT06 7 200 230.5 L Darlington Drive 200IT07 7 200 235.1 M Alley Y 200IT08 7 200 230.2 L Dartington Drive 200IT09 7 200 203.3 L Darlington Drive 5000IT01 7 5000 5032.9 M Ascott Avenue 5000IT02 7 5000 5042.1 L Ascott Avenue 5000IT03 7 5000 5042.3 L Ascott Avenue 5000IT04 7 5000 5045.1 M Ashton Drive 5000IT05 7 5000 5045.5 L Ashton Drive 5000IT06 7 5000 5048.1 L Ascott Avenue 5000IT07 7 5000 5049.1 L Ascott Avenue 5000IT08 8 5000 5012.5 M Abbotsford Avenue 5000IT09 8 5000 6015.1 L Abbotsford Avenue 5000IT10 8 5000 6015.3 L Abbotsford Avenue 5Q00IT11 9 5000 6020.2 L Abbotsford Avenue 5Q00IT12 9-8 5000 5010.32 M Altamont Avenue 5000IT13 9 5000 5010.65 IVI Da Vita Terrace Stratfield Drive 5000IT14 8 5000 5012.3 L Altamont Avenue 5000IT15 9 5000 5012.4 L Altamont Avenue IN-TRACT PIPEFLOW FILE NAMES File Name PA Systen Beginning Node Main or Lateral Street Name 5000IT16 9 5000 5012.44 L Altamont Avenue 5000IT17 9 5000 5012.46 L Da Vita Terrace 5000IT18 9 5000 5012.5 L Stratfield Drive 5000IT19 9 5000 5012.6 L Stratfield Drive 5000IT20 9 5000 5007.6 M Wentworth Drive 5000IT21 12 5000 5002.3 M Lismore lane Claymont Avenue 5000IT22 12 5000 5002.41 L Lismore lane 5000IT23 12 5000 5002.43 L Lismore lane 5000IT24 12 5000 5002.61 L Claymont Avenue 5000IT25 12 5000 5002.81 L Claymont Avenue 5000IT26 9 5000 5012.21 L Stratfield Drive 5000IT27 9 5000 5007.91 L Wentworth Drive 5000IT28 9 5000 5007.93 L Wentwortti Drive 50001T29 9 5000 5007.71 L Wentworth Drive 5000IT30 9 5000 5007.73 L Wentworth Drive 5000IT31 7 5000 5045.3 L Ascott Avenue 5000IT32 9 5000 5010.71 L Da Vita Terrace 7000IT01 12 7000 7003 M Stoneacre Avenue Maplelawn Drive 7000IT02 12 7000 7014.1 L Stoneacre Avenue 7000IT03 12 7000 7014.3 L Stoneacre Avenue 7000IT04 12 7000 7019.1 L Maplelawn Drive 7000IT05 12 7000 7019.3 L Maplelawn Drive 7000IT06 12 7000 7009.1 L Stoneacre Avenue APPENDIX 7.0 PIPEFLOW COMPUTER OUTPUT APPENDIX 7.1 100 SERIES FILES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 AcSvanceca Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis preparec3 by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH IN-TRACT PIPEFLOW ' * SYSTEM 100 - PA 10 - 100 YEAR STORM EVENT ' * DUNHAM AVE - WITLEY WAY ' ************************************************************************** FILE NA14E: 100IT01.DAT TIME/DATE OF STUDY: 13:28 09/25/2003 ********** t******************************************************************* GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" incJicates no<aal point e3ata used.) NODE NUMBER 102.51- } 120.00- } 120.90- } 121.00- } 121.90- } 122.00- } 122.80- } 122.90- } 123.00- } 123.90- } 124.00- } 124.90- } 125.00- } 126.00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 2.29* FRICTION JUNCTION FRICTION JUNCTION FRICTION 6 . 02* FRICTION+BEND 7.09* MANHOLE FRICTION MANHOLE FRICTION JUNCTION FRICTION 1312.90 1312.90 1340.74 1359.18 915.33 957.60 1075.21 6.84* 1048.23 } HYDRAULIC JUMP 1.46 Dc 457.61 2.29*Dc 3.46* 3 .52* 5.64* 1.46 Dc 1.46*Dc 3 .71* 457.61 457.61 438.44 } HYDRAULIC JUMP 1.86 233.70 FRICTION+BEND 1.22 Dc 181.62 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 2.29 1312.90 2.29*Dc 1312.90 2.15 DC 1006.50 2.15 Dc 1006.50 1.46 Dc 457.61 1.22 485.74 0.93 608.05 0.94 598.54 0.95* 591.65 0.97* 580.83 1.46*Dc 457.61 0.67 272.35 0.67* 271.84 0.67* 270.09 } FRICTION 127.00- 1.22 Dc 181.62 } FRICTION+BEND 128.00- 1.22*Dc 181.62 } JUNCTION 128.90- 1.64* 152.26 } FRICTION+BEND } HYDRAULIC JUMP 129.00- 1-08 111.51 } FRICTION 130.00- 1.03*Dc 111.07 ) CATCH BASIN 130.00- 1.58* 91.95 0.80* 1.22*Dc 0.75 0.76* 1.03*Dc 1.03 Dc MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 225.90 181.62 125.99 125.19 111.07 36.45 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102.51 FLOWLINE ELEVATION = 286.63 PIPE FLOW = 49.14 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 2 88.390 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.7 6 FT.) IS LESS THAN CRITICAL DEPTH( 2.29 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 102.51 : HGL = < 288.918>;EGL= < 290.609>;FLOWLINE= < 286.630> ****************************************************************************** FLOW PROCESS FROM NODE 102.51 TO NODE 120.00 IS CODE = 1 UPSTREAM NODE 120.00 ELEVATION = 287.33 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.14 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 116.10 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 2.50 CRITICAL DEPTH(FT) = 2.29 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2 .288 10 433 3 979 1312 90 0.017 2 .297 10 407 3 980 1312 93 0.068 2 .305 10 382 3 980 1313 03 0.152 2 .314 10 357 3 980 1313 19 0.272 2 .322 10 333 3 981 1313 42 0.425 2 .331 10 310 3 982 1313 71 0.614 2 .339 10 287 3 983 1314 07 0.837 2 .348 10 265 3 985 1314 49 1.096 2 .356 10 244 3 986 1314 98 1 .389 2 .364 10 223 3 988 1315 55 1 .719 2 .373 10 203 3 990 1316 18 2 .084 2 .381 10 184 3 993 1316 88 2 .484 2 .390 10 165 3 995 1317 66 2 .921 2 .398 10 147 3 998 1318 51 3 .394 2 .407 10 130 4 001 1319 43 3 .904 2 .415 10 114 4 005 1320 44 4 .450 2.424 10 098 4 008 1321 53 5 .033 2.432 10 083 4 012 1322 71 5 .654 2 .441 10 070 4 016 1323 97 6 .313 2.449 10 057 4 021 1325 33 7 .012 2.458 10 045 4 025 1326 79 7 .750 2.466 10 034 4 031 1328 36 8 .530 2 .475 10 025 4 036 1330 06 9 .356 2 .483 10 017 4 042 1331 90 10 .232 2 .492 10 Oil 4 049 1333 91 11 .178 2 .500 10 008 4 056 1336 17 ===> FLOW IS UNDER PRESStJRE 116 .100 3 .373 10 Oil 4 929 1603 69 NODE 120.00 : HGL = < 289.618>;EGL= < 291.309>;FLOWLINE= < 287.330> ****************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 120.90 IS CODE = 5 UPSTREAM NODE 120.90 ELEVATION = 287.66 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER (CFS) (INCHES) 41.05 30.00 49.14 30.00 0.00 0.00 0.00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 287.66 287.33 0.00 0.00 0.00 0.00 8.09===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 2 .15 2.29 0.00 0. 00 VELOCITY (FT/SEC) 8.363 10.436 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01002 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01249 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01125 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.045 FEET ENTRANCE LOSSES = 0.338 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.509)+( 0.045)+( 0.338) = 0.892 NODE 120.90 : HGL = < 291.115>;EGL= < 292.201>;FLOWLINE= < 287.660> ****************************************************************************** FLOW PROCESS FROM NODE 120.90 TO NODE 121.00 IS CODE = 1 UPSTREAM NODE 121.00 ELEVATION = 287.72 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 41.05 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 12.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 41.05)/( 410.143))**2 = 0.01002 HF=L*SF = ( 12.00)*(0.01002) = 0.120 NODE 121.00 : HGL = < 291.235>;EGL= < 292.321>;FLOWLINE= < 287.720> ^,.,t^,Jt.n.Jtii^,*<.****************************************************************** FLOW PROCESS FROM NODE 121.00 TO NODE 121.90 IS CODE = 5 UPSTREAM NODE 121.90 ELEVATION = 288.72 (FLOW IS LINDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 18.53 18.00 90.00 288.72 1.46 10.486 DOWNSTREAM 41.05 30.00 - 287.72 2.15 8.363 LATERAL #1 13.90 18.00 90.00 288.72 1.38 7.866 LATERAL #2 8.64 18.00 45.00 288.72 1.14 4.889 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03112 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01002 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02 057 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.082 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.660)+( 0.082)+( 0.000) = 3.742 NODE 121.90 : HGL = < 294.356>;EGL= < 296.063>;FLOWLINE= < 288.720> ****************************************************************************** FLOW PROCESS FROM NODE 121.90 TO NODE 122.00 IS CODE = 1 UPSTREAM NODE 122.00 ELEVATION = 289.62 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.53 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 41.24 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 18.53)/( 105.044)1**2 = 0.03112 HF=L*SF = ( 41.24)* (0.03112) = 1.283 NODE 122.00 : HGL = < 295.639>;EGL= < 297.347>;FLOWLINE= < 289.620> ****************************************************************************** FLOW PROCESS FROM NODE 122.00 TO NODE 122.80 IS CODE = 3 UPSTREAM NODE 122.80 ELEVATION = 291.18 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 18.53 CFS PIPE DI.AMETER = 18.00 INCHES CENTRAL ANGLE = 90.000 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 70.69 FEET BEND COEFFICIENT(KB) = 0.25000 FLOW VELOCITY = 10.49 FEET/SEC. VELOCITY HEAD = 1.707 FEET HB=KB*(VELOCITY HEAD) = ( 0.250)*( 1.707) = 0.427 SF=(Q/K)**2 = (( 18.53)/( 105.043))**2 = 0.03112 HF=L*SF = ( 70.69)*(0.03112) = 2.200 TOTAL HEAD LOSSES = HB + HF = ( 0.427)+( 2.200) = 2.627 NODE 122.80 : HGL = < 298.266>;EGL= < 299.973>;FLOWLINE= < 291.180> ****************************************************************************** FLOW PROCESS FROM NODE 122.80 TO NODE 122.90 IS CODE = 2 UPSTREAM NODE 122.90 ELEVATION = 291.51 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 18.53 CFS PIPE DIAMETER = FLOW VELOCITY = 10.49 FEET/SEC. VELOCITY HEAD = HMN = .05*(VELOCITY HEAD) = .05*( 1.707) = 0.085 18.00 INCHES 1.7 07 FEET NODE 122.90 : HGL = < 298.351>;EGL= < 300.059>;FLOWLINE= < 291.510> jti,j.j,************************************************************************** FLOW PROCESS FROM NODE 122.90 TO NODE 123.00 IS CODE = 1 UPSTREAM NODE 123.00 ELEVATION = 306.24 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.53 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 245.72 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.94 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.46 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0 954 15 615 4 .743 591 65 1 844 0 954 15 623 4 .747 591 93 3 768 0 953 15 632 4 .750 592 21 5 780 0 953 15 641 4 .754 592 49 7 888 0 953 15 650 4 .758 592 77 10 100 0 952 15 659 4 .762 593 06 12 428 0 952 15 668 4 .766 593 34 14 884 0 951 15 676 4 .770 593 62 17 483 0 951 15 685 4 .773 593 91 20 242 0 950 15 694 4 .777 594 19 23 182 0 950 15 703 4 .781 594 48 26 328 0 949 15 712 4 .785 594 76 29 710 0 949 15 721 4 .789 595 05 33 366 0 948 15 730 4 .793 595 34 37 345 0 948 15 739 4 .797 595 .62 41 706 0 947 15 748 4 . 801 595 .91 46 533 0 947 15 757 4 .805 596 .20 51 933 0 947 15 766 4 . 808 596 .49 58 061 0 946 15 775 4 . 812 596 .78 65 142 0 946 15 784 4 .816 597 .07 73 525 0 945 15 793 4 . 820 597 .36 83 794 0 945 15 802 4 . 824 597 . 65 97 047 0 944 15 811 4 . 828 597 .94 115 745 0 944 15 820 4 . 832 598 .23 147 794 0 943 15 829 4 .836 598 .52 245 720 0 943 15 829 4 .836 598 .54 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 6.84 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 000 6 . 841 10. 486 8 549 1048 23 185 284 1 .500 10. 486 3 207 459. 24 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 1 .50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 185 .284 1 .500 10. 483 3 207 459. 24 185 .336 1 .498 10. 483 3 206 459. 07 185 .380 1 .497 10. 485 3 204 458. 93 185 . 420 1 .495 10. 486 3 203 458. 79 185 .456 1 .493 10. 488 3 202 458. 67 185 .489 1 .491 10. 490 3 201 458. 56 185 .520 1 .490 10. 493 3 200 458 46 185 .548 1 .488 10 . 496 3 199 458 36 185 . 573 1 .486 10. 499 3 199 458 27 185 .597 1 .484 10 . 502 3 198 458 19 185 . 619 1 .483 10. 505 3 197 458 12 185 . 639 1 .481 10. 508 3 197 458 05 185 . 657 1 .479 10. 512 3 196 457 98 185 .673 1 . 477 10. 516 3 195 457 93 185 .688 1 . 476 10. 520 3 195 457 87 185 .702 1 .474 10 . 524 3 195 457 83 185 .714 1 .472 10. 528 3 194 457 79 185 .724 1 . 470 10. 532 3 194 457 75 185 .733 1 .469 10. 537 3 194 457 72 185 .741 1 .467 10. 541 3 193 457 69 185 .748 1 .465 10. 546 3 193 457 67 185 .753 1 .463 10. 551 3 193 457 65 185 .757 1 .462 10. 556 3 193 457 63 185 .760 1 .460 10. 561 3 193 457 62 185 .762 1 .458 10. 566 3 193 457 62 185 .762 1 .456 10. 571 3 193 457 61 245 .720 1 .456 10. 571 3 193 457 61 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 2.759 FEET, 141.62 FEET UPSTREAM OF NODE 122.90 | UPSTREAM CONJUGATE DEPTH = 0.944 FEET j NODE 123.00 : HGL = < 307.194>;EGL= < 310.983>;FLOWLINE= < 306.240> ****************************************************************************** FLOW PROCESS FROM NODE 123.00 TO NODE 123.90 IS CODE = 2 UPSTREAM NODE 123.90 ELEVATION = 306.57 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 18.53 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 3.707 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* ( 3.707) = 0.185 NODE 123.90 : HGL = < 307.543>;EGL= < 311.168>;FLOWLINE= < 306.570> ******************** ********************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 124.00 123.90 TO NODE ELEVATION = 124 . 00 IS CODE = 1 318.51 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.53 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 206.00 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) = 0.95 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.46 1.46 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 0. 074 0.285 0.622 1.082 1.666 2.379 3.230 4 . 228 5.390 6.731 8.277 10.055 12.102 14.464 17.201 20.395 24.153 28.630 34.050 40.764 49.360 60.938 77.977 108.427 206.000 FLOW DEPTH (FT) 1 .456 1, 1 , 1 1 .436 .416 .396 .376 1.356 1.336 1.316 295 275 255 235 215 195 175 155 135 115 094 074 054 1.034 1. 014 0.994 0.974 0.973 1.: 1.: 1. 1. 1. 1. VELOCITY (FT/SEC) 10.571 10.639 10.719 10.811 10.912 11.024 11.146 11.277 11.418 11.568 11.729 11.899 12.080 12.272 12.475 12.690 12.917 13.156 13.409 13.676 13.959 14.256 14.571 14.904 15.255 15.275 SPECIFIC ENERGY(FT) 3 .193 195 201 212 226 244 266 291 321 355 393 435 482 535 593 657 727 804 981 082 192 313 445 590 598 PRESSURE+ MOMENTtJM (POUNDS) 457.61 457.86 458.57 459.69 461.21 463.10 465.37 468.01 471.02 474 .40 478.17 482.33 486.90 491.88 497.29 503.16 509.49 516.32 523.66 531.54 539.99 549.04 558.74 569.11 580.20 580.83 NODE 124.00 : HGL = < 319.966>;EGL= < 321.703>;FLOWLINE= < 318.510> :***************************************************************************** FLOW PROCESS FROM NODE 124.00 TO NODE 124.90 IS CODE = 5 UPSTREAM NODE 124.90 ELEVATION = 318.84 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 10.09 18.53 4.95 3.49 0.00= DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 18.00 0.00 318.84 1.22 18.00 - 318.51 1.46 18.00 90.00 318.84 0.86 18.00 90.00 318.84 0.71 ==Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 5.710 10.574 2 . 801 1.975 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00923 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02743 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01833 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.073 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.284)+( 0.073)+( 0.000) = 1.357 NODE 124.90 HGL < 322.554>;EGL= < 323.060>;FLOWLINE= < 318.840> ****************************************************************************** FLOW PROCESS FROM NODE 124.90 TO NODE 125.00 IS CODE = 1 UPSTREAM NODE 125.00 ELEVATION = 321.07 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.09 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 40.46 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.67 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.67 1.22 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .670 13 .212 3 .382 271 84 1 .347 0 .670 13 .213 3 .382 271 87 2 .752 0 . 670 13 .215 3 383 271 90 4 .220 0 . 670 13 .216 3 384 271 92 5 .756 0 .670 13 .218 3 384 271 95 7 .367 0 .669 13 220 3 385 271 98 9 062 0 . 669 13 .221 3 385 272 01 10 848 0 .669 13 .223 3 386 272 04 12 737 0 .669 13 225 3 387 272 07 14 741 0 .669 13 226 3 387 272 10 16 874 0 .669 13 228 3 388 272 13 19 156 0 . 669 13 230 3 388 272 16 21 606 0 . 669 13 231 3 389 272 19 24 254 0 .669 13 233 3 390 272 21 27 133 0 . 669 13 234 3 390 272 24 30 286 0 .669 13 236 3 391 272. 27 33 773 0 .669 13 238 3 392 272 . 30 37 672 0 .669 13 239 3 392 272. 33 40 460 0 669 13 240 3 393 272. 35 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3 .71 PRESSURE FLOW PROFILE COMPUTED INFOI-MATION: DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) 0.000 40.460 3.714 5.710 4.220 438.44 1.857 5.710 2.363 233.70 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 32.89 FEET UPSTREAM OF NODE 124.90 DOWNSTREAM DEPTH = 2.204 FEET, UPSTREAM CONJUGATE DEPTH = 0.669 FEET NODE 125.00 HGL < 321.740>;EGL= < 324.452>;FLOWLINE= < 321.070> ****************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 3 UPSTREAM NODE 126.00 ELEVATION = 323.98 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 10.09 CFS CENTRAL ANGLE = 5.000 DEGREES PIPE LENGTH = 52.97 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.67 CRITICAL DEPTH(FT) 1.22 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 . 674 13 .113 3 .345 270. 09 1 .336 0 .673 13 .118 3 .347 270. 17 2 .731 0 .673 13 .122 3 349 270. 26 4 .187 0 . 673 13 .127 3 351 270. 35 5 .713 0 . 673 13 .132 3 352 270. 44 7 .313 0 .673 13 .137 3 354 270. 52 8 .997 0 .672 13 . 142 3 356 270 . 61 10 .773 0 .672 13 . 147 3 358 270 . 70 12 . 651 0 .672 13 .152 3 360 270. 78 14 . 644 0 . 672 13 .157 3 362 270 . 87 16 .767 0 . 672 13 .162 3 363 270. 96 19 .037 0 .672 13 .167 3 365 271. 05 21 . 477 0 .671 13 .172 3 367 271 . 13 24 .114 0 . 671 13 .177 3 369 271 . 22 26 .982 0 .671 13 .182 3 371 271. 31 30 . 125 0 . 671 13 . 187 3 373 271. 40 33 .601 0 . 671 13 .192 3 374 271. 49 37 .489 0 . 670 13 .197 3 376 271. 57 41 . 899 0 . 670 13 .202 3 378 271 . 66 46 . 993 0 .670 13 .207 3 380 271 . 75 52 .970 0 . 670 13 .212 3 382 271. 84 NODE 126.00 HGL < 324.654>;EGL= < 327.325>;FLOWLINE= < 323.980> *********************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 127.00 126.00 TO NODE ELEVATION = 127.00 IS CODE = 1 333.70 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.09 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 176.80 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.67 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.80 1.22 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.933 1. 2 . 4 . 5. 6 . .921 .970 .086 .275 .546 7.906 9.367 10.941 12.642 14.489 16.504 18.714 21.152 23.864 26.906 30 . 359 34.331 38.985 44.571 51.508 60.583 73.563 96.119 176.800 FLOW DEPTH (FT) 0.801 0.796 0.791 0.785 0.780 0.775 0.770 0.764 0.759 0.754 0.748 0.743 0.738 0.732 0.727 0.722 0.716 0 .711 0.706 0.701 0.695 0 . 690 0.685 0.679 0.674 0 . 674 VELOCITY (FT/SEC) 10.501 10.588 10.678 10.768 10.860 10.954 11.050 11.147 11.246 11.347 11.449 11.553 11.660 11.768 11.878 11.991 12.105 12.222 12.341 12.462 12.585 12 .711 12.840 12.970 13 .104 13 .113 SPECIFIC ENERGY(FT) 2 .515 2.538 2.562 2.587 2.613 2.639 2.667 2.695 2.724 2.754 2.785 .817 .850 .884 .919 .956 .993 .032 3 .072 3 .113 3 .156 3 .200 3 .246 3 .293 3 .342 3 .345 PRESSURE+ MOMENTUM(POUNDS) 225.90 227.29 228.72 230.18 231.68 233.21 234.77 236.37 238.01 239.68 241.39 243.14 244.94 246.77 248.64 250.56 252.52 254.53 256.58 258.68 260.83 263.03 265.28 267.58 269.93 270.09 NODE 127.00 HGL < 334.501>;EGL= < 336.215>;FLOWLINE= < 333.700> ****************************************************************************** FLOW PROCESS FROM NODE 127.00 TO NODE 128.00 IS CODE = 3 UPSTREAM NODE 128.00 ELEVATION = 334.73 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 10.09 CFS CENTRAL ANGLE = 1.800 DEGREES PIPE LENGTH = 18.78 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.67 CRITICAL DEPTH(FT) = 1.22 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.22 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 0. 020 0.084 FLOW DEPTH (FT) 1 .224 1.201 1.179 VELOCITY (FT/SEC) 6.535 6 . 648 6 .768 SPECIFIC ENERGY(FT) 1.887 1 . 888 1.891 PRESSURE+ MOMENTUM(POUNDS) 181.62 181.71 181.98 0.195 1 157 6 896 1 896 182.43 0.358 1 135 7 032 1 903 183.08 0.579 1 113 7 176 1 913 183.94 0.865 1 091 7 329 1 925 185.01 1.224 1 068 7 492 1 940 186.31 1.666 1 046 7 665 1 959 187.85 2 .201 1 024 7 848 1 981 189.64 2.845 1 002 8 043 2 007 191.69 3 .613 0 980 8 250 2 037 194.03 4.528 0 957 8 471 2 072 196.67 5.614 0 935 8 706 2 113 199.64 6.906 0 913 8 956 2 159 202.95 8.447 0 891 9 222 2 212 206.63 10.292 0 869 9 507 2 273 210.71 12.521 0 847 9 812 2 342 215.22 15.242 0 824 10 138 2 421 220.20 18.616 0 802 10 487 2 511 225.68 18.780 0 801 10 501 2 515 225.90 128.00 HGL = < 335 954>;EGL= < 336.617>;FLOWLINE= < 334.730 NODE ****************************************************************************** FLOW PROCESS FROM NODE 128.00 TO NODE 128.90 IS CODE = 5 UPSTREAM NODE 128.90 ELEVATION = 335.06 (FLOW tJNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7.05 18.00 0.00 335.06 1.03 3.989 DOWNSTREAM 10.09 18.00 - 334.73 1.22 6.537 LATERAL #1 3.04 18.00 90.00 335.06 0.66 1.912 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00450 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00931 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00691 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.028 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.299)+( 0.028)+( 0.000) = 0.326 NODE 128.90 : HGL = < 336.697>;EGL= < 336.944>;FLOWLINE= < 335.060> ****************************************************************************** FLOW PROCESS FROM NODE 12 8.90 TO NODE 129.00 IS CODE = 3 UPSTREAM NODE 129.00 ELEVATION = 335.58 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 7.05 CFS PIPE DIAMETER = 18.00 INCHES CENTRAL ANGLE = 2.600 DEGREES MANNING'S N = 0.013 00 PIPE LENGTH = 28.97 FEET HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.75 CRITICAL DEPTH(FT) = 1.03 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.76 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.132 2.314 3.550 4.847 6.208 7. 643 9.157 10.760 12.464 14.280 16.225 18.318 20.582 23.047 25.752 28.747 28.970 FLOW DEPTH (FT) 0.761 0.760 0.760 0.760 0.759 0.759 0.758 0.758 0.758 0.757 0.757 0.756 0.756 0.756 0.755 0.755 0.754 0.754 VELOCITY (FT/SEC) 7.832 7.837 7.842 7.847 7.853 7.858 7.863 7 . 869 7.874 7.879 7. 884 7.890 7.895 7.900 7.906 7.911 7.917 7 . 917 SPECIFIC ENERGY(FT) 1 .714 1.715 1.716 1.717 1.717 1.718 1.719 1.720 1.721 1.722 1.723 1.724 .725 .725 .726 .727 .728 .728 1 1. 1 1 1. 1 PRESSURE+ MOMENTUM(POUNDS) 125.19 125 .23 125.28 125.33 125.38 125.43 125.48 125.53 125.58 125.63 125.68 125.73 125.78 125.83 125.89 125.94 125.99 125.99 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.64 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1.637 3 . 989 1 .884 152 .26 10 . 628 1.500 3 . 989 1 .747 137 .21 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 10 . 628 1.500 3 . 988 1 . 747 137 .21 11 .923 1.481 3 . 998 1 .729 135 .26 13 . 125 1.462 4 . 015 1 .713 133 .42 14 .272 1. 443 4 . 038 1 . 697 131 . 67 15 .374 1.424 4 . 065 1 .681 129 .99 16 . 439 1.406 4 . 096 1 .666 128 .38 17 .469 1 .387 4 . 130 1 .652 126 .83 18 .466 1.368 4. 168 1 .638 125 .35 19 .431 1.349 4. 210 1 .624 123 .93 20 .365 1.330 4 . 254 1 .611 122 .57 21 .267 1.311 4 . 302 1 .599 121 .29 22 .137 1.292 4 . 353 1 .587 120 .06 22 .973 1.273 4. 407 1 575 118 .91 23 .775 1.255 4 . 465 1 564 117 .82 24 540 1. 236 4 526 1 554 116 81 25 266 1. 217 4 590 1 544 115 87 25 951 1. 198 4 658 1 535 115 00 26 590 1. 179 4 730 1 527 114 22 27 181 1 . 160 4 806 1 519 113 51 27 718 1 . 141 4 885 1 512 112 88 28 195 1. 122 4 969 1 506 112 35 28 608 1. 103 5 058 1 501 111 90 28 947 1. 085 5 151 1 497 111 54 28 970 1 . 083 5 159 1 497 111 51 END OF HYDRAULIC JIMP ANALYSIS PRESSURE+MOMENTtJM BALANCE OCCURS AT DOWNSTREAM DEPTH = 1.371 FEET, 18.31 FEET UPSTREAM OF NODE 128.90 UPSTREAM CONJUGATE DEPTH = 0.758 FEET NODE 129.00 : HGL = < 336.341>;EGL= < 337.294>;FLOWLINE= < 335.580> ****************************************************************************** FLOW PRCXTESS FROM NODE UPSTREAM NODE 130.00 129.00 TO NODE 130.00 IS CODE = 1 ELEVATION = 338.16 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.05 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 143.61 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.75 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.03 1.03 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.022 0.089 0.207 0.380 0.613 0.914 1. 1. 2 . 2. 3. 4 . .291 .752 .307 .971 ,757 , 686 5.781 7.072 8.596 10.404 12.566 15.176 18.375 22.381 27.560 34.596 45.029 63.797 FLOW DEPTH (FT) 1.028 1 . 017 1.006 0.995 0.984 0.972 0.961 0.950 0.939 0.928 0.917 0.906 0.895 0.884 0 . 873 0 . 862 0.850 0.839 0.828 0. 817 0.806 0.795 0.784 0.773 0.762 VELOCITY (FT/SEC) 5 .460 5 .527 5 .595 5.666 5 .738 5.813 5.891 5.971 6 . 053 6.138 6.226 6 .316 6.410 6.507 6.607 6.710 6.817 6.928 7.042 7 .161 7.283 7.411 7.542 7.679 7.821 SPECIFIC ENERGY(FT) 1.491 1.491 1.492 1.493 1.495 1.498 1.501 1.504 1.508 1.514 1.519 1.526 1.533 1.542 1.551 .561 .573 .585 .599 . 614 1.630 .648 .668 .689 .712 1 1. 1 1 1, PRESSURE+ MOMENTUM(POUNDS) 111.07 111.09 111.15 111.24 111.38 111.56 111.79 112.06 112.37 112.73 113.14 113.60 114.12 114.68 115.31 115.99 116.73 117.53 118.39 119.33 120.33 121.40 122 .55 123 .78 125.08 143.610 0.761 7.832 1.714 125.19 NODE 130.00 : HGL = < 339.188>;EGL= < 339.651>;FLOWLINE= < 338.160> ****************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 8 UPSTREAM NODE 130.00 ELEVATION = 338.16 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 7.05 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.46 FEET/SEC. VELOCITY HEAD = 0.463 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.463) = 0.093 NODE 130.00 : HGL = < 339.744>;EGL= < 339.744>;FLOWLINE= < 338.160> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 130.00 FLOWLINE ELEVATION = 338.16 ASSUMED UPSTREAM CONTROL HGL = 33 9.19 FOR DOWNSTREAM RtJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 AdvancecS Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH IN-TRACT PIPEFLOW * SYSTEM 100 - PA 10 - 100 YEAR STORM EVENT ' * DUNHAM AVE - ELVASTON LN - FAIRHAVEN DR - WESTBURY AVE ' ************************************************************************** FILE NAME: 100IT02.DAT TIME/DATE OF STUDY: 16:27 09/25/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 130.00- } 132.00- } 132.90- } 134.00-} 134.90- } 136.00- } 136.90- } 138.00- } 138.90- } 140.00- } 140.90- } 142.00- } 142.90- } 144.00- 2.65* 4.57* 3 .13* 449.32 661.22 502.53 3.76* 473.10 ) HYDRAULIC JUMP 1.29*Dc 215.02 UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 5.87* 804.14 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JtJNCTION FRICTION MANHOLE FRICTION 2 . 45* 1 .54* 328.63 228.76 2.15* 195.70 } HYDRAULIC JUMP 0.96*Dc 92.14 1.39* 90.49 } HYDRAULIC JUMP 0.78 Dc 55.02 0.78 Dc 0.78 Dc 55.02 55.02 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 0.99 1.40 Dc 0.99 1.36 0.74 1.29*Dc 0 . 95 1.29 Dc 0.69 0.96*Dc 0.41 0.46* 0.51* 0.51* 376.51 318.42 375.04 318 . 93 306.97 215.02 241.75 215.02 106.03 92 .14 89.36 78.62 70.35 69.94 ) FRICTION+BEND 144.90- 0.78 Dc 55.02 0.52* 68.44 } FRICTION 146.00- 0.78*Dc 55.02 0.78*Dc 55.02 } CATCH BASIN 146.00- 1.15* 29.94 0.78 Dc 19.20 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CtJRRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 130-00 FLOWLINE ELEVATION = 288.72 PIPE FLOW = 14.78 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 294.590 FEET NODE 130.00 : HGL = < 294.590>;EGL= < 295.676>;FLOWLINE= < 288.720> ****************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 132.00 IS CODE = 1 UPSTREAM NODE 132.00 ELEVATION = 296.13 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.78 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 211.76 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 14.78)/( 105.043))**2 = 0.01980 HF=L*SF = ( 211.76)*(0.01980) = 4.192 NODE 132.00 : HGL = < 298.782>;EGL= < 299.869>;FLOWLINE= < 296.130> ****************************************************************************** FLOW PROCESS FROM NODE 132.00 TO NODE 132.90 IS CODE = 5 UPSTREAM NODE 132.90 ELEVATION = 296.46 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 14.78 18.00 90.00 296.46 1.40 8.364 DOWNSTREAM 14.78 18.00 - 296.13 1.40 8.364 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01980 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01980 AVERAGED FRICTION SLOPE IN JUNCTION ASSIMED AS 0.01980 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.079 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.172)+( 0.079)+( 0.000) = 2.252 NODE 132.90 : HGL = < 301.034>;EGL= < 302.120>;FLOWLINE= < 296.460> ****************************************************************************** FLOW PROCESS FROM NODE 132.90 TO NODE 134.00 IS CODE = 1 UPSTREAM NODE 134.00 ELEVATION = 299.78 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.78 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 95.01 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 14.78)/( 105.044))**2 = 0.01980 HF=L*SF = ( 95.01)*(0.01980) = 1.881 NODE 134.00 : HGL = < 302.915>;EGL= < 304.001>;FLOWLINE= < 299.780> .(nt****,t*i********************************************************************* FLOW PROCESS FROM NODE 134.00 TO NODE 134.90 IS CODE = 5 UPSTREAM NODE 134.90 ELEVATION = 300.11 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 11.36 18.00 0.00 300.11 1.29 6.428 DOWNSTREAM 14.78 18.00 - 299.78 1-40 8.364 LATERAL #1 3.42 18.00 90.00 300.11 0.71 1.935 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01170 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01980 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01575 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.063 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.445)+( 0.063)+( 0.000) = 0.508 NODE 134.90 : HGL = < 303.867>;EGL= < 304.509>;FLOWLINE= < 300.110> ****************************************************************************** FLOW PROCESS FROM NODE 134.90 TO NODE 136.00 IS CODE = 1 UPSTREAM NODE 136.00 ELEVATION = 313.06 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.36 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 235.49 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.72 CRITICAL DEPTH(FT) = 1.29 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.287 7.039 2.057 215.02 0.024 1.264 7.148 2.058 215.13 0.097 1.241 7.264 2.061 215.44 0 224 1 218 7 388 2 066 215 97 0 410 1 195 7 521 2 074 216 73 0 660 1 172 7 663 2 085 217 72 0 983 1 150 7 814 2 098 218 96 1 386 1 127 7 975 2 115 220 45 1 879 1 104 8 147 2 135 222 21 2 475 1 081 8 329 2 159 224 26 3 189 1 058 8 523 2 187 226 60 4 039 1 035 8 729 2 219 229 27 5 047 1 012 8 948 2 257 232 27 6 241 0 990 9 182 2 300 235 62 7 656 0 967 9 431 2 349 239 37 9 340 0 944 9 696 2 405 243 52 11 352 0 921 9 980 2 469 248 11 13 776 0 898 10 282 2 541 253 17 16 728 0 875 10 606 2 623 258 75 20 381 0 853 10 952 2 716 264 88 25 000 0 830 11 324 2 822 271 60 31 035 0 807 11 723 2 942 278 98 39 324 0 784 12 152 3 078 287 08 51 758 0 761 12 614 3 233 295 95 74 401 0 738 13 113 3 410 305 68 235 490 0 735 13 179 3 434 306 97 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.76 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3 .757 6 . 428 4 399 473 .10 52 .128 1 .500 6. 428 2 142 224 .22 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRTO^UALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 52 .128 1 . 500 6. 426 2 142 224 .22 52 .303 1 . 491 6 . 431 2 134 223 .38 52 .457 1 .483 6. 440 2 127 222 .63 52 .600 1 .474 6 . 451 2 121 221 .94 52 .732 1 .466 6. 464 2 115 221 .29 52 .856 1 .457 6. 479 2 110 220 .68 52 .973 1 .449 6 . 495 2 104 220 .12 53 .082 1 .440 6 . 513 2 099 219 .58 53 .185 1 .432 6 . 533 2 095 219 08 53 .281 1 .423 6 . 553 2 090 218 .61 53 .372 1 .415 6. 575 2 086 218 18 53 .456 1 .406 6 . 598 2 083 217 77 53 .535 1 .398 6 . 623 2 079 217 39 53 .608 1 .389 6. 648 2 076 217 04 53 .675 1 .381 6. 675 2 073 216 72 53 .737 1 .372 6. 703 2. 070 216 43 53 793 1 .363 6 731 2 068 216 16 53 843 1 .355 6 761 2 065 215 92 53 888 1 .346 6 792 2 063 215 71 53 927 1 .338 6 824 2 062 215 53 53 961 1 .329 6 858 2 060 215 38 53 988 1 .321 6 892 2 059 215 25 54 010 1 .312 6 927 2 058 215 15 54 026 1 .304 6 963 2 057 215 08 54 035 1 .295 7 001 2 057 215 04 54 038 1 .287 7 039 2 057 215 02 235 490 1 .287 7 039 2 057 215 02 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 34.85 FEET UPSTREAM OF NODE 134.90 | I DOWNSTREAM DEPTH = 2.24 8 FEET, UPSTREAM CONJUGATE DEPTH = 0.736 FEET | NODE 136.00 : HGL = < 314.347>;EGL= < 315.117>;FLOWLINE= < 313.060> ****************************************************************************** FLOW PROCESS FROM NODE 136.00 TO NODE 136.90 IS CODE = 5 UPSTREAM NODE 13 6.90 ELEVATION = 313.39 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 11.36 18.00 90.00 313.39 1.29 6.428 DOWNSTREAM 11.36 18.00 - 313.06 1.29 7.041 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01170 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01087 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01128 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.045 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.317)+( 0.045)+( 0.000) = 1.362 NODE 136.90 : HGL = < 315.837>;EGL= < 316.479>;FLOWLINE= < 313.390> ****************************************************************************** FLOW PROCESS FROM NODE 136.90 TO NODE 138.00 IS CODE = 1 UPSTREAM NODE 138.00 ELEVATION = 315.24 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.36 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 80.74 FEET MANNING'S N = 0.013 00 SF=(Q/K)**2 = (( 11.36)/( 105.043))**2 = 0.01170 HF=L*SF = ( 80.74)*(0.01170) = 0.944 NODE 138.00 : HGL = < 316.781>;EGL= < 317.423>;FLOWLINE= < 315.240> ****************************************************************************** FLOW PROCESS FROM NODE 13 8.00 TO NODE 138.90 IS CODE = 5 UPSTREAM NODE 138.90 ELEVATION = 315.57 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 6.13 11.36 5.23 0.00 0. 00= DIAMETER ANGLE FLOWLINE CRITICAL 18.00 0.00 315.57 0.96 18.00 - 315.24 1.29 18.00 90.00 315.57 0.88 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 3 .469 6.428 2.960 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MAILING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00755 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.030 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.455)+( 0.030)+( 0.000) = 0.485 .00341 .01170 0.000 FEET NODE 138.90 : HGL = < 317.721>;EGL= < 317.908>;FLOWLINE= < 315.570> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 14 0.00 13 8.90 TO NODE ELEVATION = 140.00 IS CODE = 1 318.80 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.13 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 170.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.68 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.96 0.96 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 0. 020 0.082 0.190 0.349 0.564 0. 842 1 .189 1. 615 2.129 2.743 3 . 471 4.333 5.349 6.548 7.966 9. 649 11.663 14.098 FLOW DEPTH (FT) 0.957 0.946 0.935 0.924 0.913 0 .901 0 . 890 0 . 879 0.868 0.857 0 . 846 0.835 0.824 0.813 0.802 0.791 0.780 0.769 0.758 VELOCITY (FT/SEC) 5.152 5.222 5 .294 5.368 5.445 5.525 5 . 606 5.691 5.778 5.869 5.962 6.059 6.159 262 370 481 596 715 839 SPECIFIC ENERGY(FT) 1.369 .369 .370 .371 ,373 .376 1.379 1.383 1.387 1.393 1.399 406 414 423 1.433 1.444 1.456 1.470 1.485 PRESSURE+ MOMENTUM(POUNDS) 92.14 92.16 92.22 92.31 92.45 92. 62 92. 84 93.10 93.40 93.75 94.15 94.60 95.10 95. 65 96.26 96.92 97.64 98.43 99.28 17.084 20.828 25.672 32.259 42.036 59.641 170.000 0.747 0.736 0.725 0.714 0.703 0. 692 0. 691 6.967 7 .101 7 .239 7.383 7.533 7 . 688 7 .706 1.502 1. 520 1.540 1.561 1.585 1.611 1.614 100.19 101.18 102.24 103.37 104.59 105.88 106.03 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.15 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 .000 2 .151 3 469 2 .338 195 .70 41 .747 1 .500 3 469 1 .687 123 .91 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 41 .747 1 . 500 3 468 1 .687 123 .91 43 .055 1 . 478 3 . 478 1 666 121 .64 44 .290 1 . 457 3 497 1 647 119 .48 45 .481 1 . 435 3 . 521 1 .627 117 .40 46 .635 1 .413 3 . 550 1 609 115 39 47 .758 1 .391 3 . 584 1 591 113 46 48 . 852 1 .370 3 . 621 1 573 111 60 49 .918 1 .348 3 . 662 1 556 109 80 50 .957 1 . 326 3 . 707 1 540 108 .08 51 . 967 1 .304 3 . 756 1 524 106 43 52 .950 1 . 283 3 . 809 1 508 104 86 53 .902 1 .261 3 . 865 1 493 103 36 54 . 824 1 .239 3 . 925 1 479 101 94 55 .712 1 .217 3 . 989 1 465 100 60 56 .565 1 .196 4 . 057 1 451 99 35 57 .379 1 .174 4 . 130 1 439 98 18 58 .152 1 .152 4 . 207 1 427 97 10 58 . 878 1 .130 4 . 289 1 416 96 .12 59 .554 1 . 109 4 . 376 1 406 95 23 60 . 173 1 .087 4 . 468 1 397 94 45 60 .728 1 . 065 4 . 566 1 389 93 77 61 .211 1 . 044 4 . 670 1 382 93 20 61 .612 1 . 022 4 . 780 1 377 92 75 61 .919 1 . 000 4. 896 1 373 92 42 62 .118 0 .978 5. 020 1 370 92 21 62 .189 0 957 5. 152 1 369 92 14 170 .000 0 .957 5. 152 1 369 92 14 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 1.298 FEET, 52.26 FEET UPSTREAM OF NODE 138.90 UPSTREAM CONJUGATE DEPTH = 0.692 FEET NODE 140.00 HGL < 319.757>;EGL= < 320.169>;FLOWLINE= < 318.800> ****************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 140.90 IS CODE = 5 UPSTREAM NODE 140.90 ELEVATION = 319.13 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 4.14 6.13 1.97 0.00 0.02 = DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 18.00 90.00 319.13 0.78 18.00 - 318.80 0.96 18.00 45.00 319.13 0.53 0.00 0.00 0.00 0.00 :=Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 2 .419 5.154 1.557 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00134 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00629 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00382 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES = 0.082 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.347)+( 0.015)+( 0.082) = 0.445 NODE 140.90 : HGL = < 320.523>;EGL= < 320.614>;FLOWLINE= < 319.130> ****************************************************************************** FLOW PROCESS FROM NODE 140.90 TO NODE 142.00 IS CODE = 1 UPSTREAM NODE 142.00 ELEVATION = 331.31 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.14 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 203.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 0.41 CRITICAL DEPTH(FT) = 0.78 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.46 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 0 . 643 1 .319 2 . 031 2.783 3.579 4.422 5.319 6.275 7 . 298 8.396 9.581 10.863 12.261 FLOW DEPTH (FT) 0.455 0.453 0.451 0.449 0 . 447 0. 446 0.444 0.442 0.440 0.438 0.436 0.434 0. 432 0.430 VELOCITY (FT/SEC) 9 .135 9 .189 9 .244 9.299 9 .355 9.411 9.468 9.526 9.584 9.643 9 .703 9.763 9.824 9 . 885 SPECIFIC ENERGY(FT) 1 .752 1 .765 1.779 1.793 1 . 807 1. 822 1.836 1.852 1.867 1.883 1.899 1.915 1.932 1.948 PRESSURE+ MOMENTUM{POUNDS) 78.62 79.00 79.39 79.77 80.17 80.57 80.97 81.38 81.80 82.22 82.65 83.08 83.52 83.96 13 792 0 428 9 948 1 966 84 41 15 484 0 426 10 Oil 1 983 84 87 17 370 0 424 10 075 2 001 85 33 19 496 0 422 10 139 2 020 85 80 21 927 0 420 10 204 2 038 86 27 24 756 0 418 10 270 2 057 86 75 28 130 0 417 10 337 2 077 87 24 32 294 0 415 10 404 2 097 87 73 37 707 0 413 10 473 2 117 88 23 45 400 0 411 10 542 2 137 88 74 58 685 0 409 10 612 2 158 89 25 203 000 0 408 10 627 2 163 89 36 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.39 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ .OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN" 0 000 1 393 2 418 1 484 90 49 0 .382 1 .369 2 447 1 462 88 11 0 759 1 344 2 478 1 440 85 79 1 132 1 320 2 513 1 418 83 53 1 500 1 295 2 552 1 396 81 33 1 .863 1 270 2 593 1 375 79 20 2 221 1 246 2 638 1 354 77 13 2 572 1 221 2 686 1 333 75 13 2 918 1 197 2 738 1 313 73 21 3 258 1 172 2 793 1 293 71 36 3 590 1 148 2 853 1 274 69 59 3 914 1 123 2 916 1 255 67 90 4 230 1 099 2 984 1 237 66 30 4 536 1 074 3 057 1 219 64 78 4 832 1 049 3 134 1 202 63 35 5 115 1 025 3 217 1 186 62 02 5 386 1 000 3 306 1 170 60 79 5 642 0 976 3 401 1 155 59 66 5 880 0 951 3 502 1 142 58 63 6 100 0 927 3 611 1 129 57 72 6 298 0 902 3 728 1 118 56 93 6 471 0 878 3 854 1 108 56 27 6 615 0 853 3 989 1 100 55 74 6 726 0 828 4 135 1 094 55 34 6 797 0 804 4 292 1 090 55 10 6 823 0 779 4 462 1 089 55 02 203 000 0 779 4 462 1 089 55 02 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 0.18 FEET UPSTREAM OF NODE 14 0.90 | i DOWNSTREAM DEPTH = 1.382 FEET. UPSTREAM CONJUGATE DEPTH = 0.4 08 FEET j NODE 142.00 : HGL = < 331.765>;EGL= < 333.062>;FLOWLINE= < 331.310> ****************************************************************************** FLOW PROCESS FROM NODE 142.00 TO NODE 142.90 IS CODE = 2 UPSTREAM NODE 142.90 ELEVATION = 331.64 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 4.14 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 1.135 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* ( 1.135) = 0. 057 NODE 142.90 : HGL = < 332.145>;EGL= < 333.118>;FLOWLINE= < 331.640> *i*j,************************************************************************** FLOW PROCESS FROM NODE 142.90 TO NODE 144.00 IS CODE = 1 UPSTREAM NODE 144.00 ELEVATION = 333.70 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.14 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 79.18 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.51 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.51 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.78 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN] 0. 000 0 508 7 851 1 466 69 94 0. 881 0 508 7 854 1 466 69 95 1 . 800 0 508 7 856 1 467 69 97 2. 761 0 508 7 859 1 467 69 .99 3. 767 0 508 7 862 1 468 70 00 4. 823 0 508 7 864 1 468 70 02 5. 933 0 507 7 867 1 469 70 .04 7 . 104 0 507 7 869 1 469 70 . 05 8. 343 0 507 7 872 1 470 70 . 07 9. 657 0 507 7 875 1 471 70 . 09 11. 057 0 507 7 877 1 471 70 . 11 12. 555 0 507 7 880 1 472 70 .12 14. 165 0 507 7 883 1 472 70 . 14 15. 904 0 507 7 885 1 473 70 .16 17. 796 0 506 7 888 1 473 70 .17 19 . 870 0 506 7 890 1 474 70 .19 22 . 163 0 506 7 893 1 474 70 .21 24. 728 0 506 7 896 1 475 70 .23 27. 638 0 506 7 898 1 475 70 . 24 30. 999 0 506 7 901 1 476 70 .26 34 . 976 0 506 7 904 1 476 70 .28 39. 846 0 506 7 906 1 477 70 .29 46. 128 0 505 7 909 1 477 70 .31 54. 987 0 505 7 912 1 478 70 . 33 70. 157 0 505 7 914 1 478 70 .35 79. 180 0 505 7 914 1 478 70 .35 144 .00 HGL = < 334 2 08>;EGL= < 335.166>;FLOWLINE= < 333. 700 ****************************************************************************** FLOW PROCESS FROM NODE 144.00 TO NODE 144.90 IS CODE = 3 UPSTREAM NODE 144.90 ELEVATION = 334.50 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 4.14 CFS CENTRAL ANGLE = 39.000 DEGREES PIPE LENGTH = 30.66 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 .50 CRITICAL DEPTH(FT) 0.78 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0. 52 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0. 519 7. 618 1. 421 68. 44 0 .836 0. 519 7 . 630 1. 423 68. 52 1 .709 0 . 518 7. 642 1. 426 68. 59 2 .624 0. 518 7. 654 1. 428 68. 67 3 .585 0. 517 7. 666 1. 430 68. 75 4 .595 0. 516 7 . 678 1. 432 68. 82 5 .659 0. 516 7 . 690 1. 435 68. 90 6 .784 0 . 515 7. 702 1. 437 68. 98 7 .977 0. 515 7. 714 1. 439 69. 05 9 .246 0 . 514 7 . 726 1. 442 69. 13 10 . 601 0. 514 7. 738 1. 444 69. 21 12 .052 0. 513 7. 750 1. 446 69. 29 13 . 616 0. 512 7. 763 1. 449 69. 37 15 .310 0. 512 7 . 775 1. 451 69. 44 17 .156 0. 511 7. 787 1. 453 69. 52 19 .183 0. 511 7. 800 1. 456 69 60 21 .431 0 . 510 7 . 812 1 458 69. 68 23 .950 0. 509 7. 824 1 461 69 76 26 .814 0. 509 7 837 1 463 69 84 30 .129 0 . 508 7 849 1 466 69 93 30 . 660 0. 508 7 851 1 466 69 94 NODE 144.90 : HGL = < 335.019>;EGL= < 335.921>;FLOWLINE= < 334.500> .^^tjt****^********************************************************************** FLOW PROCESS FROM NODE 144.90 TO NODE 146.00 IS CODE = 1 UPSTREAM NODE 146.00 ELEVATION = 335.63 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.14 CFS PIPE PIPE LENGTH = 43.64 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.51 CRITICAL DEPTH(FT) = 0.78 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.78 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.015 0.061 0.143 FLOW DEPTH (FT) 0.779 0.768 0.757 0.746 VELOCITY (FT/SEC) 4 .462 4.543 4.626 4.713 SPECIFIC ENERGY(FT) 1.089 1.089 1.090 1.092 PRESSURE+ MOMENTUM(POUNDS) 55.02 55.03 55.09 55.17 0 262 0 735 4 802 1.094 55 30 0 425 0 725 4 896 1.097 55 47 0 635 0 714 4 992 1.101 55 67 0 899 0 703 5 093 1.106 55 92 1 224 0 692 5 198 1.112 56 21 1 617 0 681 5 307 1.118 56 55 2 087 0 670 5 420 1.126 56 93 2 648 0 659 5 539 1.136 57 36 3 312 0 648 5 662 1.146 57 85 4 099 0 637 5 791 1.158 58 39 5 030 0 626 5 925 1.172 58 98 6 134 0 615 6 066 1.187 59 64 7 449 0 604 6 212 1.204 60 36 9 028 0 593 6 366 1.223 61 14 10 942 0 582 6 527 1.244 61 99 13 299 0 571 6 696 1.268 62 92 16 263 0 560 6 873 1.294 63 92 20 112 0 549 7 058 1.324 65 01 25 365 0 538 7 254 1.356 66 18 33 188 0 528 7 459 1.392 67 45 43 .640 0 519 7 618 1.421 68 44 NODE 146.00 : HGL = < 336.409>;EGL= < 336.719>;FLOWLINE= < 335.630> ,tjnij,************************************************************************* FLOW PROCESS FROM NODE 146.00 TO NODE 146.00 IS CODE = 8 UPSTREAM NODE 146.00 ELEVATION = 335.63 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.14 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.46 FEET/SEC. VELOCITY HEAD = 0.309 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.3 09) = 0.062 NODE 146.00 : HGL = < 336.781>;EGL= < 336.781>;FLOWLINE= < 335.630> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 146.00 FLOWLINE ELEVATION = 335.63 ASSUMED UPSTREAM CONTROL HGL = 336.41 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 100 - PA 10 - 100 YEAR STORM EVENT ' * DUNHAM AVE LATERAL ' ************************************************************************** FILENAME: 100IT03.DAT TIME/DATE OF STUDY: 09:39 02/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RtJN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD (FT) MOMENTUM{POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 124.10- 3.97* 391.07 0.80 86.81 ) FRICTION 124.30- 3.88* 381.65 0.92 Dc 84.26 ) CATCH BASIN 124.30- 4.08* 367.25 0.92 Dc 28.53 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 124.10 FLOWLINE ELEVATION = 320.16 PIPE FLOW = 5.73 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 324.13 0 FEET NODE 124.10 : HGL = < 324.130>;EGL= < 324.293>;FLOWLINE= < 320.160> ****************************************************************************** FLOW PROCESS FROM NODE 124.10 TO NODE 124.30 IS CODE = 1 UPSTREAM NODE 124.30 ELEVATION = 320.27 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.73 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 5.73)/( 105.070))**2 = 0.00297 HF=L*SF = ( 8.25)*(0.00297) = 0.025 NODE 124.30 : HGL = < 324.155>;EGL= < 324.318>;FLOWLINE= < 320.270> ****************************************************************************** FLOW PROCESS FROM NODE 124.30 TO NODE 124.30 IS CODE = 8 UPSTREAM NODE 124.30 ELEVATION = 320.27 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.73 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.24 FEET/SEC. VELOCITY HEAD = 0.163 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.163) = 0.033 NODE 124.30 : HGL = < 324.350>;EGL= < 324.350>;FLOWLINE= < 320.270> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 124.30 FLOWLINE ELEVATION = 320.27 ASSUMED UPSTREAM CONTROL HGL = 321.19 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 100 - PA 10 - 100 YEAR STORM EVENT ' * DUNHAM AVE LATERAL ' ************************************************************************** FILE NAME: 100IT04.DAT TIME/DATE OF STUDY: 09:46 02/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH(FT) MOMENTUM (POUlslDS) 124.50- 3.97* 372.44 0.39 86.41 ) FRICTION 124.70- 2.00* 155.42 0.76 Dc 52.27 } CATCH BASIN 124.70- 2.10* 148.47 0.76 Dc 18.29 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 124.50 FLOWLINE ELEVATION = 320.16 PIPE FLOW = 3.98 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 324.13 0 FEET NODE 124.50 : HGL = < 324.130>;EGL= < 324.209>;FLOWLINE= < 320.160> ****************************************************************************** FLOW PROCESS FROM NODE 124.50 TO NODE 124.70 IS CODE = 1 UPSTREAM NODE 124.70 ELEVATION = 322.16 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.98 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.013 00 SF=(Q/K)**2 = (( 3.98)/( 105.027))**2 = 0.00144 HF=L*SF = ( 22.25)*(0.00144) = 0.032 NODE 124.70 : HGL = < 324.162>;EGL= < 324.241>;FLOWLINE= < 322.160> ****************************************************************************** FLOW PROCESS FROM NODE 124.70 TO NODE 124.70 IS CODE = 8 UPSTREAM NODE 124.70 ELEVATION = 322.16 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.98 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 2.25 FEET/SEC. VELOCITY HEAD = 0.079 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.079) = 0.016 NODE 124.70 : HGL = < 324.256>;EGL= < 324.256>;FLOWLINE= < 322.160> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 124.70 FLOWLINE ELEVATION = 322.16 ASSUMED UPSTREAM CONTROL HGL = 322.92 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 100 - PA 10 - 100 YEAR STORM EVENT * DtJNHAM AVE LATERAL ************************************************************************** FILE NAME: 100IT05.DAT TIME/DATE OF STUDY: 09:55 02/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 121.10- 5.87* 657.00 0.64 240.05 } FRICTION 121.30- 3.72* 419.86 1.17 Dc 159.17 ) CATCH BASIN 121.30- 4.22* 382.89 1.17 Dc 48.88 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JtJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 121.10 FLOWLINE ELEVATION = 288.72 PIPE FLOW = 9.18 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 294.590 FEET NODE 121.10 : HGL = < 294.590>;EGL= < 295.009>;FLOWLINE= < 288.720> ****************************************************************************** FLOW PROCESS FROM NODE 121.10 TO NODE 121.30 IS CODE = 1 UPSTREAM NODE 121.30 ELEVATION = 291.07 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.18 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 26.12 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 9.18)/( 105.042))**2 = 0.00764 HF=L*SF = ( 26.12)*(0.00764) = 0.199 NODE 121.30 : HGL = < 294.789>;EGL= < 295.209>;FLOWLINE= < 291.070> ****************************************************************************** FLOW PROCESS FROM NODE 121.30 TO NODE 121.30 IS CODE = 8 UPSTREAM NODE 121.30 ELEVATION = 291.07 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.18 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.19 FEET/SEC. VELOCITY HEAD = 0.419 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.419) = 0.084 NODE 121.30 : HGL = < 295.292>;EGL= < 295.292>;FLOWLINE= < 291.070> *********************************************** ******************************* UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 121.30 FLOWLINE ELEVATION = 291.07 ASSUMED UPSTREAM CONTROL HGL = 292.24 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 100 - PA 10 - 100 YEAR STROM EVENT ' * ELVASTON L.ANE LATERAL ' ************************************************************************** FILE NAME: 100IT06.DAT TIME/DATE OF STUDY: 10:05 02/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POtJNDS) DEPTH(FT) MOMENTUM(POUNDS) 134.10- 5.45* 534.11 0.51 60.21 } FRICTION 134.30- 5.05* 490.08 0.75 Dc 49.22 } CATCH BASIN 134.30- 5.14* 483.75 0.75 Dc 17.28 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 134.10 FLOWLINE ELEVATION = 300.11 PIPE FLOW = 3.80 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 3 05.560 FEET NODE 134.10 : HGL = < 305.560>;EGL= < 305.632>;FLOWLINE= < 300.110> ****************************************************************************** FLOW PROCESS FROM NODE 134.10 TO NODE 134.30 IS CODE = 1 UPSTREAM NODE 134.30 ELEVATION = 300.52 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 3.80)/( 105.011))**2 = 0.00131 HF=L*SF = ( 8.25)*(0.00131) = 0.011 NODE 134.30 : HGL = < 305.571>;EGL= < 305.643>;FLOWLINE= < 300.520> ****************************************************************************** FLOW PROCESS FROM NODE 134.30 TO NODE 134.30 IS CODE = 8 UPSTREAM NODE 134.30 ELEVATION = 300.52 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.80 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 2.15 FEET/SEC. VELOCITY HEAD = 0.072 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*{ 0.072) = 0.014 NODE 134.30 : HGL = < 305.657>;EGL= < 305.657>;FLOWLINE= < 300.520> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 134.30 FLOWLINE ELEVATION = 300.52 ASSUMED UPSTREAM CONTROL HGL = 301.27 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS <,J,*«J,************************************************************************* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 100 - PA 10 - 100 YEAR STORM EVENT * FAIRHAVEN DR LATERAL j,.jti.t^,*,*,t***************************************************************** FILE NAME: 100IT07.DAT TIME/DATE OF STUDY: 10:13 02/18/2003 j,^,*^,***-*********************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 138.10- 2.45* 228.93 0.73 102.50 } FRICTION 138.30- 2.09* 188.82 0.96 Dc 92.54 ) CATCH BASIN 138.30- 2.31* 172.23 0.96 Dc 31.04 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 138.10 FLOWLINE ELEVATION = 315.57 PIPE FLOW = 6.15 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 318.020 FEET NODE 138.10 : HGL = < 318.020>;EGL= < 318.208>;FLOWLINE= < 315.570> ****************************************************************************** FLOW PROCESS FROM NODE 13 8.10 TO NODE 138.30 IS CODE = 1 UPSTREAM NODE 138.30 ELEVATION = 316.01 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.15 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 SF={Q/K)**2 = ({ 6.15)/( 105.047))**2 = 0.00343 HF=L*SF = ( 22.25)* (0.00343) = 0.076 NODE 138.30 : HGL = < 318.096>;EGL= < 318.284>;FLOWLINE= < 316.010> ****************************************************************************** FLOW PROCESS FROM NODE 138.30 TO NODE 138.30 IS CODE = 8 UPSTREAM NODE 13 8.30 ELEVATION = 316.01 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.15 CFS PIPE DIAMETER = 15 3.00 INCHES FLOW VELOCITY = 3.4 8 FEET/SEC. VELOCITY HEAD = 0 188 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 188 = 0.038 NODE 138.30 : HGL = < 318.322>;EGL= < 318.322>;FLOWLINE= < 316.010> jtjm*************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 138.30 FLOWLINE ELEVATION = 316.01 ASSUMED UPSTREAM CONTROL HGL = 316.97 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * * SYSTEM 100 - PA 10 - 100 YEAR STORM EVENT * * FAIRHAVEN DR AND WESTBURY AVE LATERAL * ************************************************************************** FILE NAME: 100IT08.DAT TIME/DATE OF STUDY: 10:26 02/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RtJN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 140.10- 1.39* 77.48 0.34 40.56 } FRICTION 141.30- 0.59*Dc 27.80 0.59*Dc 27.80 ) CATCH BASIN 141.30- 0.86* 14.86 0.59.Dc 9.97 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 140.10 FLOWLINE ELEVATION = 319.13 PIPE FLOW = 2.44 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 320.520 FEET NODE 140.10 : HGL = < 320.520>;EGL= < 320.552>;FLOWLINE= < 319.130> ****************************************************************************** FLOW PROCESS FROM NODE 140.10 TO NODE 141.30 IS CODE = 1 UPSTREAM NODE 141.30 ELEVATION = 321.69 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.44 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 55.49 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.33 CRITICAL DEPTH(FT) = 0.59 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.3 9 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 0.678 1.352 2.022 2.689 3 .352 4.011 4.664 5.313 5.955 6.591 7.219 7.837 8.446 9 . 042 9.625 10.190 10.736 11.257 11.749 12.206 12.618 12.974 13.259 13 .453 13.526 55.490 FLOW DEPTH (FT) 1.390 1.358 1.326 1.294 1.262 1.230 1.198 1.166 1.134 1.102 1.070 1.039 1. 007 0.975 0.943 0.911 0.879 0. 847 0.815 0.783 0.751 0.719 0. 687 0.655 0. 623 0.591 0.591 VELOCITY (FT/SEC) 1.427 1.450 1.476 1.505 1.537 1.573 1.612 1.654 1.701 1.752 1.808 1.869 1.935 2.007 2.086 2.172 .267 . 372 .487 .615 .756 .914 , 091 ,289 514 769 769 SPECIFIC ENERGY(FT) 1 .422 1.391 1.360 1.329 1.299 1.269 1.239 1.209 1.179 1 .150 1.121 1. 093 1 . 065 1 . 037 1. 010 0.984 0.959 0.934 0.911 0.889 0. 869 0.851 0.835 0. 823 0 . 815 0.812 0. 812 PRESSURE+ MOMENTUM(POUNDS) 77.48 74.21 71.01 67.88 64.83 61.87 59.00 56.23 53.55 50.97 48.50 46.14 43 .90 41.77 39.77 37.89 36.15 34.54 33.09 31.78 30.64 29.67 28.88 28.30 27.93 27.80 27.80 NODE 141.30 : HGL = < 322.281>;EGL= < 322.502>;FLOWLINE= < 321.690> *********************************************,t*,kjt,tj,jtii.t.j.,t.t,t.tj^,tji..tj,j^.jj,ji.^^.^.j.,tjt.,j..jyj. FLOW PROCESS FROM NODE 141.30 TO NODE 141.30 IS CODE = 8 UPSTREAM NODE 141.30 ELEVATION = 321.69 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.44 CFS PIPE DIAMETER = li 3.00 INCHES FLOW VELOCITY = 3.77 FEET/SEC. VELOCITY HEAD = 0 221 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 221) = 0.044 NODE 141.30 : HGL = < 322.546>;EGL= < 322.546>;FLOWLINE= < 321.690> *************************************************iij,,t,tj,jt,t,n.j(^.^jtj,.jtjt,j.,t^.jt.t^,jf.j..itj,j,,t UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 141.30 FLOWLINE ELEVATION = 321.69 ASSUMED UPSTREAM CONTROL HGL = , 322.28 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS *************************************************************************,t**** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 - BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 100 - PA-10 - 100 YEAR STORM EVENT ^ * WITLEY WAY LATERAL ^ ********************************************************************,t.^t^,.jt** FILE NAME: 100IT09.DAT TIME/DATE OF STUDY: 11:02 03/13/2003 *******************************************************************,ti***i,t,t^jtj, GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM{POUNDS) 128.10- 1.71* 119.45 0.60 46.80 } FRICTION 128.20- 1.60* 107.24 0.72 Dc 44.57 } CATCH BASIN 128.20- 1.67* 101.80 0.72 Dc 15.72 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FOFIMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION *******************************************************,^*****i.*,t**.jtjt,t.ymijm,,.,tjti DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 128.10 FLOWLINE ELEVATION = 335.06 PIPE FLOW = 3.52 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 33 6.770 FEET NODE 128.10 : HGL = < 336.770>;EGL= < 336.832>;FLOWLINE= < 335.060> ********************************************************i*t**jt,t^j,.im.,ti,t,t.t,^jt.mm^ FLOW PROCESS FROM NODE 128.10 TO NODE 128.20 IS CODE = 1 UPSTREAM NODE 128.20 ELEVATION = 335.18 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.52 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 3.52)/( 105.141))**2 = 0.00112 HF=L*SF = ( 8.25)*(0.00112) = 0.009 NODE 128.20 : HGL = < 336.779>;EGL= < 336.841>;FLOWLII^= < 335.180> ****************************************************************************** FLOW PROCESS FROM NODE 128.20 TO NODE 128.20 IS CODE = 8 UPSTREAM NODE 128.20 ELEVATION = 335.18 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.52 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.99 FEET/SEC. VELOCITY HEAD = 0.062 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.062) = 0.012 NODE 128.20 : HGL = < 336.853>;EGL= < 336.853>;FLOWLINE= < 335.180> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 128.20 FLOWLINE ELEVATION = 335.18 ASSUMED UPSTREAM CONTROL HGL = 335.90 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS APPENDIX 7.2 200 SERIES FILES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH IN-TRACT PIPEFLOW ' * SYSTEM 200 - PA 6 - 100 YEAR STORM EVENT ' * ABBEY DR ' ************************************************************************** FILE NAME: 200IT01.DAT TIME/DATE OF STtJDY: 07:45 02/14/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) } ) } NODE NUMBER 210.50- ) 210.60- ] 206.00- ] 206.90- ] 207.00- } 207.90- } 208.00- ) 209.00- } 211.00- } 212.00- } 213.00- } 213.90- } 214.00- } 214.00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 1.62 447.82 FRICTION+BEND 1.62 Dc 447.82 FRICTION JUNCTION FRICTION JUNCTION FRICTION 1.62*Dc 447.82 0.91 Dc FRICTION+BEND 0.91 Dc FRICTION MANHOLE FRICTION JUNCTION FRICTION CATCH BASIN 2.13* 345.39 } HYDRAULIC JUMP 1.36*Dc 256.65 2.02* 173.53 } HYDRAULIC JUMP 80.39 0.91 Dc 0.91 Dc 0.91*Dc 1.34 0.91*Dc 1.36* 80.39 80.39 80.39 80.39 101.14 80.39 44.97 DOWNSTREAM RtJN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 0.91* 660.26 0.95* 627.31 1.62*Dc 447.82 0.95 303.05 1.36*Dc 256.65 0.66 91.76 0.66* 91.83 0.65* 93.51 0.48* 127.20 0.51* 119.69 0.91*Dc 80.39 0.50* 121.65 0.91*Dc 80.39 0.91 Dc 27.33 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ***************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 210.50 FLOWLINE ELEVATION = 312.53 PIPE FLOW = 22.80 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 314.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.47 FT.) IS LESS THAN CRITICAL DEPTH( 1.62 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 210.50 : HGL = < 313.442>;EGL= < 316.518>;FLOWLINE= < 312.530> ****************************************************************************** FLOW PROCESS FROM NODE 210.50 TO NODE 210.60 IS CODE = 3 UPSTREAM NODE 210.60 ELEVATION = 313.75 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 22.80 CFS CENTRAL ANGLE = 32.500 DEGREES PIPE LENGTH = 25.47 FEET PIPE DIAMETER = 30.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.86 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.62 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0 .000 0 .955 13 225 3 672 627 31 1 .671 0 .951 13 297 3 698 630 08 3 .428 0 .947 13 369 3 724 632 87 5 .278 0 .943 13 442 3 751 635 71 7 .230 0 .940 13 516 3 778 638 57 9 .294 0 .936 13 591 3 806 641 47 11 .483 0 .932 13 667 3 834 644 41 13 . 808 0 . 928 13 743 3 863 647 39 16 .287 0 .924 13 820 3 892 650 40 18 .937 0 .920 13 898 3 922 653 45 21 .782 0 . 917 13 977 3 952 656 54 24 .848 0 .913 14 056 3 983 659 67 25 .470 0 .912 14 071 3 988 660 26 NODE 210.60 : HGL = < 314.705>;EGL= < 317.422>;FLOWLINE= < 313.750> ****************************************************************************** FLOW PROCESS FROM NODE 210.60 TO NODE 206.00 IS CODE = 1 UPSTREAM NODE 206.00 ELEVATION = 316.34 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH 22.80 CFS 56.40 FEET PIPE DIAMETER = 3 0.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 . 87 CRITICAL DEPTH(FT) 1.62 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1. 62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1. 625 6 750 2 333 447. 82 0 . 028 1 . 594 6 898 2 334 448. 06 0 .115 1 . 564 7 053 2 337 448. 77 0 .269 1 . 534 7 217 2 343 449. 99 0 .497 1 . 504 7 390 2 352 451. 73 0 . 809 1 . 473 7 572 2 364 454 . 04 1 .214 1 . 443 7 765 2 380 456. 92 1 .726 1 . 413 7 968 2 399 460. 43 2 .358 1 . 383 8 182 2 423 464. 59 3 .129 1. 353 8 409 2 451 469. 45 4 .060 1 . 322 8 650 2 485 475. 04 5 .176 1 . 292 8 905 2 524 481. 42 6 . 510 1. 262 9 176 2 570 488. 64 8 .101 1 . 232 9 464 2 623 496. 75 9 .999 1 . 201 9 771 2 685 505. 83 12 . 271 1 . 171 10 098 2 755 515. 95 15 . 002 1 . 141 10 447 2 .836 527. 18 18 .310 1 . 111 10 820 2 929 539. 62 22 .360 1. 080 11 219 3 036 553 . 37 27 .396 1 . 050 11 648 3 158 568. 55 33 . 796 1 . 020 12 108 3 298 585. 29 42 .194 0. 990 12 605 3 458 603 . 75 53 . 780 0. 959 13 141 3 642 624 . 09 56 .400 0 . 955 13 225 3 672 627 . 31 NODE 206.00 : HGL = < 317.965>;EGL= < 318.673>;FLOWLINE= < 316.340> ****************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 206.90 IS CODE = 5 UPSTREAM NODE 206.90 ELEVATION = 316.84 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 14.20 22. 80 8.58 0.00 0.02 = DIAMETER (INCHES) 24 . 00 30.00 18.00 0.00 ANGLE (DEGREES) 0.00 90 . 00 0.00 FLOWLINE ELEVATION 316.84 316.34 317 .34 0.00 CRITICAL DEPTH(FT.) 1.36 1.62 1.13 0.00 ==Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 4.520 6.752 5.986 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00394 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00540 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00467 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.019 FEET ENTRANCE LOSSES = 0.142 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.452)+( 0.019)+( 0.142) = 0.612 ""NODE" 206.90 : HGL = < 318.967>;EGL= < 319.285>;FLOWLINE= < 316.840> ****************************************************************************** FLOW PROCESS FROM NODE 206.90 TO NODE 207.00 IS CODE = 1 UPSTREAM NODE 207.00 ELEVATION = 322.53 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.20 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 284.50 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH (FT) = 0.93 CRITICAL DEPTH|FT)^^= 1^36^ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.3 6 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ COl^ROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1 357 6 .254 1. 965 256. 65 0 031 1 340 6.342 1. 965 256 . 71 0 127 1 323 6.434 1. 967 256. 89 0 294 1 306 6 .530 1 969 257 19 0 541 1 289 6.629 1 972 257 63 0 875 1 273 6 .731 1 976 258 20 1 307 1 256 6.837 1 982 258 90 1 846 1 239 6.947 1 988 259 75 2 508 1 222 7.061 1 996 260 74 3 307 1 205 7 .180 2 006 261 89 4 263 1 188 7.302 2 016 263 20 5 399 1 171 7.430 2 028 264 67 6 742 1 154 7.563 2 042 266 32 8 328 1 137 7.700 2 058 268 14 10 201 1 120 7 . 844 2 076 270 15 12 417 1 103 7.993 2 095 272 35 15 052 1 086 8.148 2 117 274 75 18 207 1 069 8.309 2 142 277 .36 22 024 1 .052 8.477 2 168 280 .20 26 713 1 035 8.652 2 198 283 .27 32 596 1 . 018 8 . 835 2 .231 286 .58 40 218 1 .001 9.025 2 .267 290 .14 50 595 0 .984 9.224 2 .306 293 .97 66 015 0 .967 9.432 2 .349 298 . 08 93 .817 0 .950 9.650 2 .397 302 .49 284 .500 0 .948 9.677 2 .403 303 . 05 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.13 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) 0.000 7 .933 HEAD(FT) 2.127 2 . 000 (FT/SEC) 4 .520 4.520 ENERGY(FT) 2.445 2.317 MOMENTtJM (POUNDS) 345.39 320.42 2.00 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SPECIFIC DISTANCE FROM FLOW DEPTH VELOCITY PRESSURE+ OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 7. 933 2 . 000 4. 519 2.317 320. 42 9. 420 1. 974 4 530 2.293 315. 69 10 806 1. 949 4 550 2.270 311. 24 12 133 1. 923 4 577 2.248 306 98 13 411 1 897 4 608 2.227 302 89 14 647 1 871 4 645 2.207 298 96 15 843 1 846 4 685 2.187 295 19 17 002 1 820 4 729 2.168 291 58 18 125 1 794 4 778 2.149 288 12 19 211 1 769 4 830 2.131 284 81 20 261 1 743 4 886 2.114 281 66 21 273 1 717 4 945 2.097 278 68 22 245 1 692 5 009 2.081 275 85 23 177 1 666 5 077 2.066 273 20 24 065 1 640 5 148 2.052 270 72 24 907 1 614 5 224 2.038 268 42 25 700 1 589 5 .304 2 . 026 266 30 26 439 1 .563 5 .389 2.014 264 37 27 .121 1 .537 5 . 478 2 . 004 262 63 27 .739 1 .512 5 .573 1.994 261 10 28 .288 1 .486 5 .672 1.986 259 .78 28 .760 1 .460 5 .776 1.979 258 .68 29 .148 1 .434 5 .886 1.973 257 . 81 29 .440 1 .409 6 .002 1.969 257 .17 29 .626 1 .383 6 .125 1.966 256 .78 29 .692 1 .357 6 .254 1.965 256 .65 284 .500 1 .357 6 HYDRAUI .254 LIC JUMP 1.965 256 .65 I PRESSURE+MOMENTUM BALANCE OCCURS AT I DOWNSTREAM DEPTH 13.37 FEET UPSTREAM OF NODE 206.90 1.898 FEET. UPSTREAM CONJUGATE DEPTH = 0.948 FEET NODE 207.00 : HGL = < 323.887>;EGL= < 324.495>;FLOWLINE= < 322.530> ****************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 207.90 IS CODE = 5 UPSTREAM NODE 207.90 ELEVATION = 323.03 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 5.53 14.20 6.16 2.50 0.01 = DIAMETER (INCHES) 18.00 24 .00 18.00 18.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 90.00 90.00 323.03 322.53 323.03 323.03 CRITICAL DEPTH(FT.) 0.91 1.36 0.96 0.60 VELOCITY (FT/SEC) 3.129 6.256 3 .535 1.435 ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00277 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00610 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00444 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = 0.122 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.567)+( 0.018)+( 0.122) = 0.707 NODE 207.90 : HGL = < 325.050>;EGL= < 325.202>;FLOWLINE= < 323.030> ****************************************************************************** FLOW PROCESS FROM NODE 207.90 TO NODE 208.00 IS CODE = 1 UPSTREAM NODE 208.00 ELEVATION = 324.88 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.53 CFS PIPE DIAMETER PIPE LENGTH = 108.76 FEET 18.00 INCHES MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH (FT) = 0.66 CRITICAL DEPTH (m^= UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.66 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.91 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0 000 0.662 7 346 1 501 91. 83 1 036 0.662 7 346 1 501 91. 83 2 116 0. 662 7 346 1 501 91. 83 3 243 0.663 7 345 1 501 91. 82 4 423 0.663 7 345 1 501 91. 82 5 661 0. 663 7 344 1 501 91 82 6 962 0.663 7 344 1 501 91 81 8 333 0.663 7 343 1 501 91 81 9 782 0.663 7 343 1 500 91 81 11 318 0.663 7 343 1 500 91 80 12 954 0. 663 7 342 1 500 91 80 14 703 0.663 7 342 1 500 91 80 16 580 0. 663 7 341 1 500 91 80 18 608 0.663 7 341 1 500 91 79 20 812 0.663 7 341 1 500 91 79 23 226 0.663 7 340 1 500 91 79 25 893 0.663 7 340 1 500 91 .78 28 875 0.663 7 339 1 .500 91 .78 32 255 0.663 7 339 1 .500 91 .78 36 157 0. 663 7 .339 1 .500 91 .77 40 770 0. 663 7 338 1 .500 91 .77 46 415 0.663 7 .338 1 .500 91 .77 53 .692 0.663 7 .337 1 .500 91 .77 63 .940 0.663 7 .337 1 .499 91 .76 81 .455 0.663 7 .337 1 .499 91 .76 108 .760 0. 663 7 .337 1 .499 91 .76 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.02 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.020 3 .129 2.172 173.53 36.493 1.500 3.129 1.652 116.24 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 36.493 1.500 3.128 1.652 116.24 38.071 1.476 3.139 1-629 113.74 39.573 1.453 3.158 1.608 111.34 41.029 1.429 3.183 1.586 109.03 42.449 1.405 3.214 1.566 106.79 43 836 1.381 3.248 1.545 104.63 45.192 1.358 3.287 1.525 102.54 46.520 1.334 3.330 1.506 100.52 47.818 1.310 3.376 1.487 98.58 49.088 1.286 3.427 1.469 96.72 50.326 1.263 3.482 1-451 94.94 51.533 1.239 3.541 1.434 93.24 52.706 1.215 3.605 1-417 91.63 53.843 1.191 3.673 1.401 90.11 54.940 1.168 3.745 1.386 88.68 55.994 1.144 3.823 1.371 87.35 56.999 1.120 3.906 1.357 86.11 57.951 1.097 3.994 1.344 84.99 58.842 1.073 4.088 1.332 83.97 59.665 1.049 4.188 1.322 83.06 60.410 1.025 4.295 1.312 82.28 61.065 1.002 4.409 1.304 81.62 61.614 0.978 4.531 1.297 81.10 62.040 0.954 4.661 1.292 80.71 62.319 0.930 4.801 1.289 80.48 62.420 0.907 4.950 1.287 80.39 108.760 0.907 4.950 1.287 80.39 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTtJM BALANCE OCCURS AT 52.61 FEET UPSTREAM OF NODE 207.90 | I DOWNSTREAM DEPTH = 1.217 FEET, UPSTREAM CONJUGATE DEPTH = 0.663 FEET | NODE 208.00 : HGL = < 325.542>;EGL= < 326.381>;FLOWLINE= < 324.880> ****************************************************************************** FLOW PROCESS FROM NODE 208.00 TO NODE 209.00 IS CODE = 3 UPSTREAM NODE 209.00 ELEVATION = 326.08 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 5.53 CFS PIPE DIAMETER = 18.00 INCHES CENTRAL ANGLE = 90.000 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 70.69 FEET NORMAL DEPTH(FT) = 0.66 CRITICAL DEPTH(FT)^= 0.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.65 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0. 648 7. 567 1. 537 93. 51 1 107 0. 648 7. 557 1 . 536 93. 44 2 257 0. 649 7. 547 1. 534 93. 36 3 456 0. 650 7. 538 1 . 532 93. 29 4 707 0. 650 7. 528 1. 531 93 21 6 015 0 651 7 518 1. 529 93 14 7 387 0 651 7 509 1. 528 93 07 8 828 0 652 7 499 1 526 92 99 10 348 0 653 7 490 1 524 92 92 11 955 0 653 7 480 1 523 92 85 13 662 0 654 7 471 1 521 92 77 15 481 0 655 7 461 1 520 92 70 17 429 0 655 7 452 1 518 92 63 19 527 0 656 7 442 1 517 92 56 21 802 0 657 7 433 1 515 92 48 24 .287 0 657 7 423 1 513 92 41 27 .025 0 658 7 .414 1 512 92 34 30 .078 0 658 7 .405 1 510 92 27 33 .529 0 659 7 .395 1 509 92 20 37 .502 0 .660 7 .386 1 507 92 13 42 .187 0 .660 7 .377 1 .506 92 06 47 .905 0 . 661 7 .367 1 .504 91 99 55 .255 0 .662 7 .358 1 .503 91 92 65 .587 0 .662 7 .349 1 .501 91 . 85 70 .690 0 .662 7 .346 1 .501 91 . 83 NODE 209.00 : HGL = < 326.728>;EGL= < 327.617>;FLOWLINE= < 326.080 ****************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 211.00 IS CODE = 1 UPSTREAM NODE 211.00 ELEVATION = 326.97 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.53 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 60.46 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.69 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.4 8 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.91 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0.000 0.481 11.299 2 .465 127.20 2.132 0.490 11.034 2.381 124.61 4 .303 0.498 10.779 2.303 122.15 6 .516 0.506 10.536 2.231 119.81 8 .775 0.515 10.302 2.164 117.58 11.087 0. 523 10. 077 2 101 115 .46 13.455 . 0 532 9 861 2 042 113 .43 15.888 0 540 9 654 1 988 111 .50 18.391 0 548 9 454 1 937 109 .67 20.976 0 557 9 262 1 890 107 .92 23.652 0 565 9 077 1 845 106 .25 26.434 0 573 8 898 1 804 104 .66 29.336 0 582 8 727 1 765 103 .14 32.379 0 590 8 561 1 729 101 .70 35.589 0 599 8 401 1 695 100 .33 38.997 0 607 8 246 1 664 99 .02 42.648 0 615 8 097 1 634 97 .77 46.598 0 624 7 953 1 606 96 .59 50.929 0 .632 7 813 1 .581 95 .46 55.760 0 .641 7 678 1 .557 94 .39 60.460 0 .648 7 .567 1 .537 93 .51 211.00 HGL = < 327 451>;EGL= < 329.435>;FLOWLINE= < 326. 970> NODE **************************************** ************************************** FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 2 UPSTREAM NODE 212.00 ELEVATION = 327.30 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 5.53 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 1.852 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* ( 1.852) = 0.093 NODE 212.00 : HGL = < 327.807>;EGL= < 329.527>;FLOWLINE= < 327.300> ****************************************************************************** FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 1 UPSTREAM NODE 213.00 ELEVATION = 342.12 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.53 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 285.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.49 CRITICAL DEPTH(FT) = 0.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.91 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 0 .907 4 950 1 287 80 39 0 013 0 .890 5 061 1 288 80 44 0 .055 0 . 873 5 177 1 290 80 56 0 .128 0 .857 5 300 1 293 80 78 0 .236 0 .840 5 429 1 298 81 09 0 .384 0 .823 5 565 1 305 81 50 0 . 577 0 .807 5 708 1 313 82 01 0 . 820 0 .790 5 858 1 323 82 64 1 .120 0 .773 6 018 1 336 83 37 1 .486 0 .757 6 186 1 351 84 24 1 .928 0 .740 6 364 1 369 85 23 2.458 0 723 6 552 1 390 86 .36 3 .091 0 707 6 752 1 415 87 .63 3.845 0 690 6 964 1 444 89 .07 4 .745 0 673 7 189 1 477 90 .67 5.822 0 657 7 429 1 514 92 .46 7.115 0 640 7 685 1 558 94 .44 8.681 0 623 7 958 1 607 96 .63 10.598 0 607 8 250 1 664 99 .05 12.979 0 590 8 563 1 729 101 .72 16.003 0 573 8 898 1 804 104 .66 19.969 0 557 9 259 1 889 107 .89 25.435 0 540 9 648 1 986 111 .45 33.663 0 524 10 068 2 099 115 .37 48.694 0 507 10 523 2 227 119 .69 285.000 0 507 10 523 2 227 119 .69 213.00 HGL = < 343 027>;EGL= < 343.407>;FLOWLINE= < 342. 120> NODE ****************************************************************************** FLOW PROCESS FROM NODE 213.00 TO NODE 213.90 IS CODE = 5 UPSTREAM NODE 213.90 ELEVATION = 342.45 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.52 18.00 90.00 342.45 0.91 10.754 DOWNSTREAM 5.53 18.00 - 342.12 0.91 4.951 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.01===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04867 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00600 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02734 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.109 FEET ENTRANCE LOSSES = 0.076 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.151)+( 0.109)+ ( 0.076) = 1.337 NODE 213.90 : HGL = < 342.948>;EGL= < 344.744>;FLOWLINE= < 342.450> ****************************************************************************** FLOW PROCESS FROM NODE 213.90 TO NODE 214.00 IS CODE = 1 UPSTREAM NODE 214.00 ELEVATION = 343.71 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.53 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.37 CRITICAL DEPTH(FT) = 0.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.91 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: , FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ .(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0. 000 0 . 907 4 950 1 .287 80 .39 0. 007 0 . 885 5 093 1 .288 80 .46 0. 029 0 . 864 5 246 1 .292 80 .67 0. 067 0 .842 5 409 1 .297 81 .04 0. 125 0 .821 5 584 1 .306 81 .56 0. 205 0 .800 5 770 1 .317 82 .26 0. 310 0 .778 5 970 1 .332 83 .14 0. 444 0 .757 6 184 1 .351 84 .23 0. 611 0 .736 6 414 1 .375 85 .52 0. 818 0 .714 6 662 1 .404 87 .05 1. 070 0 .693 6 930 1 439 88 83 1. 377 0 .671 7 219 1 .481 90 89 1. 750 0 . 650 7 532 1 531 93 25 2. 201 0 .629 7 873 1 592 95 94 2. 747 0 .607 8 243 1 663 99 00 3 . 412 0 . 586 8 648 1 748 102 46 4 . 226 0 .564 9 092 1 849 106 39 5. 229 0 .543 9 580 1 969 110 83 6 . 481 0 .522 10 119 2 112 115 85 8. 070 0 .500 10 715 2 284 121 54 8. 250 0 .498 10 770 2 301 122 07 14 .00 HGL = < 344 . 617>;EGL= < 344 .997> FLOWLINE= < 343.710 NODE ****************************************************************************** FLOW PROCESS FROM NODE 214.00 TO NODE 214.00 IS CODE = 8 UPSTREAM NODE 214.00 ELEVATION = 343.71 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.53 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.95 FEET/SEC. VELOCITY HEAD = 0.381 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.381) = 0.076 NODE 214.00 : HGL = < 345.073>;EGL= < 345.073>;FLOWLINE= < 343.710> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 214.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 343.71 344.62 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2404.3 BRESSI RANCH IN-TRACT PIPEFLOW ' * SYSTEM 200 - PA 6 - 100 YEAR STORM EVENT ' * ABBEY DR LATERAL ' ************************************************************************** FILE NAME: 2 00IT02.DAT TIME/DATE OF STUDY: 17:18 03/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 206.10- 2.63* 293.59 0.67 212.77 } FRICTION 215.00- 1.15*Dc 151.78 1.15*Dc 151.78 } CATCH BASIN 215.00- 1.84* 120.54 1.15 Dc 47.14 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 206.10 FLOWLINE ELEVATION = 316.34 PIPE FLOW = 8.87 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 318.970 FEET NODE 206.10 : HGL = < 318.970>;EGL= < 319.361>;FLOWLINE= < 316.340> ****************************************************************************** FLOW PROCESS FROM NODE 206.10 TO NODE 215.00 IS CODE = 1 UPSTREAM NODE 215.00 ELEVATION = 318.00 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.87 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2 . 63 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 16.747 PRESSURE HEAD(FT) 2.630 1.500 VELOCITY (FT/SEC) 5.019 5-019 SPECIFIC ENERGY(FT) 3 .021 1. 891 PRESSURE+ MOMENTUM(POUNDS) 293.59 168.98 NORMAL DEPTH(FT) = 0.57 CRITICAL DEPTH(FT) = 1.15 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 16.747 16.935 17.107 17.269 17.423 17.570 17.711 17.845 17.972 18.094 18.210 18.320 18.424 18.522 18.614 18.699 18.778 18.850 18.915 18.972 19.022 19.064 19.097 19.122 19.137 19 .142 22.250 FLOW DEPTH (FT) 1 .500 1 .486 1.472 1.458 1.444 1.430 1.417 1.403 1.389 1.375 .361 .347 .333 .319 1.305 1.291 1.278 1.264 1.250 1.236 1.222 1.208 1.194 .180 .166 1.152 1.152 1 1. VELOCITY (FT/SEC) 5.018 5.025 5.039 5.057 5.079 5 5 5 5 5 5 SPECIFIC ENERGY(FT) 103 130 160 192 226 263 5.302 5.343 5.386 432 479 529 581 636 693 5.752 5.814 5 . 878 5.945 6 . 014 6.086 6 . 086 891 879 867 856 845 835 826 816 808 1 .799 1.791 1.784 1.777 1 .770 1.764 758 753 748 743 739 736 733 731 729 1 .728 1.728 1.728 1 . 1. 1 . 1. 1. 1, 1, 1 1 PRESSURE+ MOMENTUM(POUNDS) 168.98 167.58 166.29 165.08 163 .93 162.83 161.80 160.81 159.87 158.99 158.15 157.36 156.63 155.94 155.30 154.71 154.17 153.68 153 .25 152.87 152.54 152.27 152.06 151.91 151.82 151.78 151.78 NODE 215.00 : HGL = < 319.152>;EGL= < 319.728>;FLOWLINE= < 318.000> c************************** *************** *************************************'' FLOW PROCESS FROM NODE 215.00 TO NODE 215.00 IS CODE = 8 UPSTREAM NODE 215.00 ELEVATION = 318.00 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 8.87 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 6.09 FEET/SEC. VELOCITY HEAD = 0.575 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.575) = 0.115 NODE 215.00 : HGL = < 319.843>;EGL= < 319.843>;FLOWLINE= < 318.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 215.00 FLOWLINE ELEVATION = 318.00 ASSUMED UPSTREAM CONTROL HGL = 319.15 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * * SYSTEM 200 - PA 6 - 100 YEAR STORM EVENT * * ABBEY DR LATERAL ************************************************************************** FILE NAME: 200IT03.DAT TIME/DATE OF STUDY: 09:43 02/14/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 217.00- 2.02* 181.65 0.50 149.43 } FRICTION 219.00- 0.96*Dc 92.74 0.96*Dc 92.74 } CATCH BASIN 219.00- 1.46* 53.00 0.96 Dc 31.10 MAXIMtJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 217.00 FLOWLINE ELEVATION = 323.03 PIPE FLOW = 6.16 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 325.050 FEET NODE 217.00 : HGL = < 325.050>;EGL= < 325.239>;FLOWLINE= < 323.030> ****************************************************************************** FLOW PROCESS FROM NODE 217.00 TO NODE 219.00 IS CODE = 1 UPSTREAM NODE 219.00 ELEVATION = 324.68 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.16 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.013 00 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.02 DISTANCE FRQM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD( FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 . 020 3 . 486 2 . 209 181 . 65 2 645 1. 500 3 . 486 1. 689 124. 31 NORMAL DEPTH(FT) 0 .37 CRITICAL DEPTH(FT) 0.96 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 ============ = = = ==: = = ========= ==== ======= == === ========== ======= ============ ======= GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 2 645 1 . 500 3 . 485 1 689 124. 31 2 750 1 . 478 3 . 495 1 668 122. 05 2 850 1 . 457 3 . 514 1 649 119. 90 2 946 1 . 435 3 . 538 1 630 117. 84 3 039 1. 413 3 . 567 1 611 115. 84 3 130 1 . 392 3 . 601 1 593 113 . 92 3 219 1. 370 3 . 638 1 576 112 . 07 3 305 1. 349 3 . 679 1 559 110. 29 3 389 1. 327 3 . 724 1 542 108. 57 3 470 1. 305 3 . 772 1 526 106 . 94 3 548 1 . 284 3 . 825 1 511 105. 37 3 624 1 . 262 3 . 881 1 496 103 . 88 3 697 1. 240 3 . 941 1 482 102. 47 3 767 1 . 219 4. 005 1 468 101. 14 3 .834 1 . 197 4 . 073 1 455 99. 90 3 .897 1. 175 4 . 145 1 442 98. 74 3 .956 1. 154 4. 222 1 431 97. 67 4 . 012 1. 132 4 . 304 1 420 96. 69 4 062 1. 110 4 . 390 1 410 95 81 4 .108 1. 089 4 . 482 1 401 95 03 4 .149 1. 067 4 . 579 1 393 94 36 4 .184 1 046 4 . 683 1 386 93 79 4 .212 1 024 4 . 792 1 381 93 34 4 .234 1 002 4 . 908 1 377 93 02 4 .247 0 981 5 . 031 1 374 92 81 4 .252 0 959 5. 162 1 373 92 74 8 .250 0 959 5 162 1 .373 92 74 NODE 219.00 : HGL = < 325. 639>;EGL= < 326.053>;FLOWLINE= < 324.680> ****************************************************************************** FLOW PROCESS FROM NODE 219.00 TO NODE 219.00 IS CODE = 8 UPSTREAM NODE 219.00 ELEVATION = 324.68 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.16 CFS PIPE DIAMETER = 11 3.00 INCHES FLOW VELOCITY = 5.16 FEET/SEC. VELOCITY HEAD = 0 414 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 414) = 0.083 NODE 219.00 : HGL = < 326.136>;EGL= < 326.136>;FLOWLINE= < 324.680> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 219.00 FLOWLINE ELEVATION = 324.68 ASSUMED UPSTREAM CONTROL HGL = 325.64 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 200 - PA 6 - 100 YEAR STORM EVENT ' * ABBEY DR LATERAL ************************************************************************** FILE NAME: 200IT04.DAT TIME/DATE OF STUDY: 09:56 02/14/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 216.00- 2.02* 147.23 0.50 31.47 } FRICTION 218.00- 1.77* 120.01 0.61 Dc 29.56 } CATCH BASIN 218.00- 1.81* 117.14 0.61 Dc 10.59 MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 216.00 FLOWLINE ELEVATION = 323.03 PIPE FLOW = 2.56 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 325.050 FEET NODE 216.00 : HGL = < 325.050>;EGL= < 325.083>;FLOWLINE= < 323.030> ****************************************************************************** FLOW PROCESS FROM NODE 216.00 TO NODE 218.00 IS CODE = 1 UPSTREAM NODE 218.00 ELEVATION = 323.29 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.56 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 **************************************************** SF=(Q/K)**2 = (( 2.56)/( 105.048))**2 = 0.00059 HF=L*SF = ( 22.25)*(0.00059) = 0.013 NODE 218.00 : HGL = < 325.063>;EGL= < 325.096>;FLOWLINE= < 323.290> ****************************************************************************** FLOW PROCESS FROM NODE 218.00 TO NODE 218.00 IS CODE = 8 UPSTREAM NODE 218.00 ELEVATION = 323.29 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.56 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.45 FEET/SEC. VELOCITY HEAD = 0.033 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.033) = 0.007 NODE 218.00 : HGL = < 325.102>;EGL= < 325.102>;FLOWLINE= < 323.290> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 218.00 FLOWLINE ELEVATION = 323.29 ASSUMED UPSTREAM CONTROL HGL = 323.90 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * * SYSTEM 200 - PA 7 - 100 YEAR STORM EVENT * DARTINGTON DRIVE LINE ************************************************************************** FILE NAME: 200IT05.DAT TIME/DATE OF STUDY: 15:10 02/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 230.10- 0.93 85.04 0.59* 110.02 } FRICTION 230.20- 0.93*Dc 85.04 0.93*Dc 85.04 } JUNCTION 230.30- 1.37 86.55 0.38* 90.53 } FRICTION 230.40- 0.76*Dc 52.27 0.76*Dc 52.27 ) CATCH BASIN 230.40- 1.12* 28.38 0.76 Dc 18.29 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MAJJUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 230.10 FLOWLINE ELEVATION = 357.87 PIPE FLOW = 5.77 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 358.770 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH{ 0.90 FT.) IS LESS THAN CRITICAL DEPTH( 0.93 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 230.10 : HGL = < 358.459>;EGL= < 359.704>;FLOWLINE= < 357.870> ****************************************************************************** FLOW PROCESS FROM NODE 230.10 TO NODE 230.20 IS CODE = 1 UPSTREAM NODE 230.20 ELEVATION = 360.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.77 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 90.52 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.58 CRITICAL DEPTH(FT) = 0.93 0.93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0. 000 0. 927 5.031 1 320 85 04 0. 017 0. 913 5.123 1 321 85 07 0 . 070 0. 899 5.218 1 322 85 16 0. 164 0 885 5.318 1 324 85 .31 0 302 0 871 5.422 1 327 85 .53 0 489 0 857 5.530 1 332 85 .82 0 732 0 843 5.643 1 337 86 .18 1 037 0 829 5.761 1 344 86 .61 1 413 0 815 5 .884 1 353 87 .12 1 867 0 801 6.013 1 362 87 .71 2 414 0 786 6 .148 1 374 88 .39 3 065 0 772 6.289 1 387 89 .15 3 838 0 758 6.437 1 402 90 .01 4 754 0 744 6.592 1 419 90 .97 5 840 0 730 6.755 1 439 92 .03 7 130 0 716 6 .926 1 461 93 .20 8 671 0 702 7 .105 1 487 94 .49 10 523 0 688 7.294 1 515 95 .90 12 773 0 674 7 .493 1 546 97 .44 15 548 0 660 7 .702 1 582 99 .12 19 047 0 646 7.923 1 .621 100 .94 23 598 0 632 8.157 1 .666 102 .93 29 824 0 618 8.404 1 .715 105 .08 39 117 0 604 8.665 1 .771 107 .41 55 951 0 590 8.943 1 . 832 109 .94 90 520 0 589 8.952 1 . 834 110 .02 230.20 HGL = < 361 597>;EGL= < 361.990>;FLOWLINE= < 360. 670 ****************************************************************************** FLOW PROCESS FROM NODE 230.20 TO NODE 230.30 IS CODE = 5 UPSTREAM NODE 230.30 ELEVATION = 361.00 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTRE.AM LATERAL #1 FLOW (CFS) 3.98 5.77 1.78 DIAMETER (INCHES) 18.00 18.00 18.00 ANGLE (DEGREES) 90.00 90.00 FLOWLINE ELEVATION 361.00 360.67 361.00 CRITICAL DEPTH(FT.) 0.76 0.93 0.50 VELOCITY (FT/SEC) 11.293 5.032 3 .434 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 o.01===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM- MANNING'S N = 0.01300; FRICTION SLOPE = 0.07235 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00611 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03923 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.157 FEET ENTRANCE LOSSES = 0.079 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.135)+( 0.157)+( 0.079) = 1.370 "NODE""23o"3o"rHGL'='< 361.3 80>; EGL= < 363 . 3 61>; FLOWLINE= < 361.000> ****************************************************************************** FLOW PROCESS FROM NODE 230.30 TO NODE 230.40 IS CODE = ^ UPSTREAM NODE 230.40 ELEVATION = 362.65 (FLOW IS SUPERCRITICAL)^^^^ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.98 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300^^^ ""NO^L'DEPTH^FT)^ 0.30 ^^CRITICAL DEPTH (F'T) ^= UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 0.76 = = = === ""GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ""DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0.763 4.403 1-065 52.27 0 005 0-745 4-545 1-066 52.32 0 020 0.726 4.695 1-068 52.47 0 046 0.707 4.856 1-074 52.74 0 086 0.688 5.028 1-081 53.12 0 141 0-670 5.212 1-092 53.64 0 214 0.651 5.410 1-106 54.29 o'307 0.632 5-622 1-123 55.08 0 424 0.614 5.851 1-145 56.04 0 569 0.595 6.098 1-173 57.17 0 746 0.576 6.366 1-206 58.48 o"963 0.557 6.656 1-246 60-01 1 227 0-539 6-971 1-294 61-76 1 547 0.520 7.315 1-351 63-76 1 938 0.501 7-692 1-420 66.05 2 415 0.482 8.105 1-503 68-64 3 002 0-464 8.560 1-602 71.60 3 729 0.445 9-064 1-721 74.95 4'642 0.426 9.623 1-865 78.77 , 5 806 0.408 10.247 2.039 83.11 7 326 0.389 10.946 2.250 88.07 8.250 0.380 11-290 2.361 90.53 ""NODE"""230"40"rHGL"= < 3 63 . 413>; EGL= < 363 . 715> ; FLOWLINE= < 362.650> ****************************************************************************** FLOW PROCESS FROM NODE 23 0.40 TO NODE 230.40 IS CODE = 8 UPSTREAM NODE 230.40 ELEVATION = 362.65 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.98 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.40 FEET/SEC- VELOCITY HEAD = 0-301 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.301) =__0-060 "'NODE"""23O'4O":"HGL"="<""363.775>;EGL= < 3 63.775>;FLOWLINE= < 362.650> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 230.40 FLOWLINE ELEVATION = 362 65 ASSUMED UPSTREAM CONTROL HGL = 3 63.41 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 200 - PA 7 - 100 YEAR STORM EVENT ' * DARTINGTON DR LATERAL ****************************** ******************************************** FILE NAME: 200IT06.DAT TIME/DATE OF STUDY: 15:26 02/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 230.50- 0.52 20.32 0.35* 25.51 ) FRICTION 230.60- 0.52*Dc 20.32 0.52*Dc 20.32 } CATCH BASIN 230.60- 0.75* 10.82 0.52 Dc 7.35 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ********************************* DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 23 0.50 FLOWLINE ELEVATION = 3 61.00 PIPE FLOW = 1.91 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 361.3 80 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.38 FT.) IS LESS THAN CRITICAL DEPTH( 0.52 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ********************************************* NODE 230.50 : HGL = < 361.348>; EGL= < 361.934>;FLOWLINE= < 361.000> ****************************************************************************** FLOW PROCESS FROM NODE 230.50 TO NODE 230.60 IS CODE = 1 UPSTREAM NODE 230.60 ELEVATION = 361.62 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1-91 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 0.33 CRITICAL DEPTH(FT) = NORMAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.52 0.52 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0. 521 3. 504 0. 711 20. 32 0. 009 0. 513 3 . 574 0. 712 20. 33 0. 038 0. 506 3 . 646 0. 712 20 35 0. 089 0 498 3 721 0. 713 20 38 0 164 0 491 3 799 0 715 20 44 0 266 0 483 3 880 0 717 20 50 0 398 0 476 3 964 0 720 20 59 0 563 0 468 4 051 0 723 20 69 0 766 0 461 4 142 0 728 20 81 1 012 0 454 4 236 0 732 20 95 1 307 0 446 4 335 0 738 21 11 1 658 0 439 4 437 0 745 21 28 2 074 0 431 4 545 0 752 21 48 2 567 0 424 4 656 0 761 21 70 3 150 0 416 4 773 0 770 21 95 3 842 0 409 4 895 0 781 22 22 4 667 0 401 5 023 0 793 22 51 5 656 0 394 5 157 0 807 22 83 6 856 0 386 5 297 0 822 23 .18 8 334 0 379 5 .445 0 .840 23 .56 10 .193 0 .372 5 .599 0 .859 23 .97 12 606 0 .364 5 .762 0 .880 24 .42 15 899 0 .357 5 .933 0 .904 24 .90 20 . 803 0 .349 6 .113 0 .930 25 .42 22 .250 0 .348 6 .143 0 .934 25 . 51 NODE 230.60 : HGL = < 362.141>;EGL= < 362.331>;FLOWLINE= < 361.620> ****************************************************************************** FLOW PROCESS FROM NODE 230.60 TO NODE 230.60 IS CODE = " UPSTREAM NODE 23 0.60 ELEVATION = 361.62 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.91 CFS PIPE DIAMETER = 1? 3.00 INCHES FLOW VELOCITY = 3.51 FEET/SEC. VELOCITY HEAD = 0 191 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 191) = 0.038 NODE 230.60 : HGL = < 362.370>;EGL= < 362.370>;FLOWLINE= < 361.620> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 230.60 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 361.62 3 62.14 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TJIACT PIPEFLOW * * SYSTEM 200 - PA 7 - 100 YEAR STORM EVE1>JT * * ALLEY Y * ************************************************************************** FILE N-AME: 200IT07.DAT TIME/DATE OF STUDY: 16:00 02/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 235.10- 1.69* 105.13 0.32 11.60 ) FRICTION 235.30- 0.55* 12.89 0.40 Dc 10.77 } JUNCTION 235.40- 0.40* 5.60 0.24 4.65 ) FRICTION } HYDRAULIC JUMP 235.50- 0.28*Dc 4.48 0.28*Dc 4.48 } CATCH BASIN 235.50- 0.40* 2.36 0.28 Dc 1.65 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 235.10 FLOWLINE ELEVATION = 367.35 PIPE FLOW = 1.16 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 369.040 FEET NODE 235.10 : HGL = < 369.040>;EGL= < 369.047>;FLOWLINE= < 367.350> ****************************************************************************** FLOW PROCESS FROM NODE 235.10 TO NODE 235.30 IS CODE = 1 UPSTREAM NODE 235.30 ELEVATION = 368.46 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.16 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 92.72 FEET l^IANNING' S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESStJRE HEAD (FT) = 1 .69 PRESSURE FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY( FT) MOMENTUM(POUNDS) 0. 000 1. 690 0. 656 1. 697 105. 13 16. 035 1. 500 0. 656 1. 507 84. 18 NORMAL DEPTH(FT) = 0 .32 CRITICAL DEPTH(FT) 0.40 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY( FT) MOMENTUM(POUNDS) 16. 035 1 . 500 0. 656 1 . 507 84. 18 19. 727 1 . 456 0. 662 1 . 463 79. 37 23 . 410 1 . 412 0 . 672 1. 419 74. 62 27. 085 1 . 368 0 . 686 1. 376 69. 97 30. 756 1. 324 0. 702 1. 332 65. 43 34. 421 1 . 280 0 . 722 1 . 289 61. 01 38. 082 1 . 237 0. 744 1 . 245 56. 72 41. 737 1. 193 0. 770 1 . 202 52. 58 45 . 386 1 . 149 0. 799 1. 159 48. 59 49 . 029 1 . 105 0 . 831 1 . 116 44 . 77 52. 664 1 . 061 0 . 868 1 . 073 41. 11 56. 291 1 . 017 0. 909 1. 030 37. 62 59. 906 0. 973 0. 956 0. 987 34. 32 63 . 508 0. 929 1. 008 0. 945 31. 20 67. 093 0. 885 1. 068 0. 903 28. 27 70 657 0. 841 1. 136 0. 862 25. 54 74. 193 0. 798 1. 214 0. 820 23. 01 77. 694 0. 754 1 . 304 0. 780 20. 69 81. 148 0 . 710 1 . 409 0. 741 18. 57 84 . 536 0 . 666 1 . 531 0. 702 16. 68 87 . 834 0. 622 1 . 675 0. 666 15. 02 91 . 000 0 . 578 1. 847 0. 631 13. 60 92 . 720 0. 553 1 . 962 0. 612 12. 89 NODE 23 5 .30 : HGL = < 369. 013>;EGL= < 3 69.072>;FLOWLINE= < 368.460> ****************************************************************************** FLOW PROCESS FROM NODE 23 5.30 TO NODE 235.40 IS CODE = 5 UPSTREAM NODE 235.40 ELEVATION = 368.79 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 0.58 18.00 90.00 368.79 0.28 1.535 1.16 18.00 - 368.46 0.40 1.963 LATERAL #1 LATERAL #2 Q5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 8===Q5 EQUALS BASIN INPUT=== 0.000 0. 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.00126 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00146 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00136 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.005 FEET ENTRANCE LOSSES = 0.012 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.136)+( 0.005)+( 0.012) = 0.154 NODE 235.40 : HGL = < 369.190>;EGL= < 369.226>;FLOWLINE= < 368.790> ****************************************************************************** FLOW PROCESS FROM NODE 235.40 TO NODE 235.50 IS CODE = 1 UPSTREAM NODE 235.50 ELEVATION = 368.91 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.58 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 12.56 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RtJN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.24 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.2 8 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.28 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 0 282 2 515 0 3i 31 4 48 0 . 004 0 281 2 536 0 3i 31 4 48 0 . 017 0 279 2 557 0 3! 31 4 48 0 . 040 0 277 2 578 0 3i 31 4 48 0.072 0 276 2 600 0 3! 31 4 49 0.117 0 274 2 622 0 3! 31 4 49 0.174 0 273 2 644 0 3! 31 4 49 0.245 0 271 2 667 0 3! 31 4 49 0.332 0 269 2 690 0 382 4 50 0.436 0 268 2 713 0 382 4 50 0.561 0 266 2 737 0 383 4 51 0.708 0 265 2 761 0 383 4 .51 0.881 0 263 2 785 0 383 4 52 1. 084 0 261 2 810 0 384 4 53 1.322 0 260 2 835 0 3J 35 4 54 1.603 0 258 2 860 0 3i 35 4 54 1.935 0 256 2 886 0 3i 36 4 55 2.331 0 255 2 913 0 387 4 56 2.807 0 253 2 939 0 3! 38 4 57 3 .388 0 252 2 966 0 3i 38 4 58 4 .113 0 250 2 994 0 3! 39 4 59 5.046 0 248 3 022 0 390 4 61 6.309 0 247 3 051 0 391 4 62 8.173 0 245 3 079 0 393 4 63 11 .513 12.560 0.244 0.244 3 .109 3 .109 0.394 0.394 4 . 65 4.65 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN 0 000 0 400 1 535 0 436 5 60 0 419 0 395 1 560 0 433 5 52 0 834 0 390 1 587 0 429 5 44 1 245 0 386 1 614 0 426 5 36 1 651 0 381 1 642 0 423 5 29 2 052 0 376 1 671 0 420 5 22 2 448 0 371 1 701 0 416 5 15 2 838 0 367 1 732 0 413 5 09 3 222 0 362 1 764 0 410 5 03 3 599 0 357 1 796 0 408 4 97 3 968 0 353 1 830 0 405 4 91 4 329 0 348 1 866 0 402 4 86 4 681 0 343 1 902 0 399 4 81 5 023 0 339 1 939 0 397 4 76 5 354 0 334 1 978 0 395 4 72 5 672 0 329 2 019 0 392 4 68 5 977 0 324 2 060 0 390 4 64 6 266 0 320 2 104 0 389 4 61 6 537 0 315 2 148 0 387 4 58 6 788 0 310 2 195 0 385 4 56 7 016 0 306 2 243 0 384 4 53 7 217 0 301 2 293 0 383 4 52 7 386 0 296 2 346 0 382 4 50 7 518 0 292 2 400 0 381 4 49 7 605 0 287 2 456 0 381 4 48 7 637 0 282 2 515 0 381 4 48 12 560 0 282 2 515 0 381 4 48 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 6.19 FEET UPSTREAM OF NODE 235.40 DOWNSTREAM DEPTH = 0.321 FEET, UPSTREAM CONJUGATE DEPTH = 0.247 FEET NODE 235.50 HGL < 369.192>;EGL= < 369.291>;FLOWLINE= < 368.910> ****************************************************************************** FLOW PROCESS FROM NODE 235.50 TO NODE 235.50 IS CODE = 8 UPSTREAM NODE 235.50 ELEVATION = 368.91 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.58 CFS PIPE DIAMETER = If 3.00 INCHES FLOW VELOCITY = 2.52 FEET/SEC- VELOCITY HEAD = 0 098 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 098 = 0.020 NODE 235.50 : HGL = < 369.310>;EGL= < 369.310>;FLOWLINE= < 368.910> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 235.50 FLOWLINE ELEVATION = 368.91 ASSUMED UPSTREAM CONTROL HGL = 369.19 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 - BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 200 - PA-7 - 100 YEAR STORM EVENT * DARTINGTON DRIVE LATERAL ************************************************************************** FILE NAME: 200IT08.DAT TIME/DATE OF STUDY: 13:38 03/11/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 230.20- 0.93 85.04 } JUNCTION 230.50- } FRICTION DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 0.93* 85.04 230.60- } CATCH BASIN 230.60- 1.36* 0. 68* 0.79* 71.53 22.92 16.31 0.35 0.52 Dc 0.52 Dc 25.51 20.32 7.35 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 230.20 FLOWLINE ELEVATION = 360.67 PIPE FLOW = 5.77 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 361.600 FEET NODE 230.20 : HGL = < 361.600>;EGL= < 361.990>;FLOWLINE= < 360.670> ****************************************************************************** FLOW PROCESS FROM NODE 230.20 TO NODE 230.50 IS CODE = 5 UPSTREAM NODE 230.50 ELEVATION = 361.00 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER (CFS) (INCHES) 1.91 18.00 5.77 18.00 3.84 18.00 0.00 0.00 ANGLE (DEGREES) 90.00 90.00 0. 00 FLOWLINE ELEVATION 361.00 360.67 361.00 0.00 CRITICAL DEPTH(FT.) 0.52 0.93 0.75 0.00 VELOCITY (FT/SEC) 1.135 5.013 3 .144 0.000 0.02===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00029 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00605 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00317 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ElvITRANCE LOSSES = 0.078 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.297)+( 0.013)+( 0.078) = 0.3 88 NODE 230.50 : HGL = < 362.358>;EGL= < 362.378>;FLOWLINE= < 361.000> ****************************************************************************** FLOW PROCESS FROM NODE 230.50 TO NODE 230.60 IS CODE = 1 UPSTREAM NODE 230.60 ELEVATION = 361.62 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.91 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.33 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SPECIFIC 0.52 DISTANCE FROM FLOW DEPTH VELOCITY PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 1 358 1 135 1 378 71 53 1 187 1 324 1 156 1 345 68 13 2 371 1 291 1 .180 1 313 64 80 3 550 1 257 1 207 1 280 61 56 4 725 1 224 1 237 1 248 58 40 5 895 1 190 1 270 1 215 55 34 7 061 1 157 1 306 1 183 52 37 8 220 1 123 1 345 1 152 49 51 9 374 1 090 1 388 1 120 46 74 10 519 1 056 1 436 1 088 44 09 11 656 1 023 1 487 1 057 41 55 12 784 0 989 1 544 1 026 39 13 13 899 0 956 1 606 0 996 36 83 15 001 0 922 1 675 0 966 34 65 16 087 0 889 1 750 0 937 32 59 17 153 0 855 1 834 0 908 30 68 18 196 0 822 1 926 0 880 28 89 19 210 0 789 2 028 0 852 27 25 20 188 0 755 2 143 0 826 25 76 21 122 0 722 2 271 0 802 24 43 21 999 0 688 2 415 0 779 23 25 22 250 0 678 2 463 0 772 22 92 "'NODE"""23O"60 : HGL = < 362.298>;EGL= < 362.392>;FLOWLINE= < 361.620> ****************************************************************************** FLOW PROCESS FROM NODE 230.60 TO NODE 230.60 IS CODE = 8 UPSTREAM NODE 230.60 ELEVATION = 361.62 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.91 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 2.46 FEET/SEC. VELOCITY HEAD = 0.094 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.094) = 0.019 ""NODE"""230.60 : HGL = < 362.411>;EGL= < 362.411>;FLOWLINE= < 361.620> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 230.60 FLOWLINE ELEVATION = 361.62 ASSUMED UPSTREAM CONTROL HGL = 362.14 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 - BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 200 - PA-7 - 100 YEAR STORM EVENT ' * DARTINGTON DRIVE ' ************************************************************************** FILE NAME: 200IT09.DAT TIME/DATE OF STUDY: 17:28 03/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 230.30- 1.36 89.03 0.40* 99.47 ) FRICTION 230.40- 0.80*Dc 58.15 0.80*Dc 58.15 ) CATCH BASIN 230.40- 1.18* 31.74 0.80 Dc 20.24 MAXIMUM INUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FOJRMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 230.30 FLOWLINE ELEVATION = 361.00 PIPE FLOW = 4.32 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 362.360 FEET NODE 230.30 : HGL = < 361.400>;EGL= < 363.424>;FLOWLINE= < 361.000> ****************************************************************************** FLOW PROCESS FROM NODE 230.30 TO NODE 230.40 IS CODE = 1 UPSTREAM NODE 230.4-0 ELEVATION = 362.65 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.32 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.31 CRITICAL DEPTH(FT) 0.8 0 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0. 80 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .797 4 .528 1 115 58 .15 0 .005 0 . 777 4 .672 1 116 58 .21 0 .021 0 .758 4 825 1 119 58 .38 0 . 048 0 .738 4 .988 1 125 58 .68 0 . 090 0 .719 5 164 1 133 59 .10 0 .148 0 .699 5 .351 1 144 59 .67 0 .224 0 . 679 5 553 1 158 60 .39 0 .322 0 .660 5 769 1 177 61 .27 0 .444 0 . 640 6 003 1 200 62 .33 0 .596 0 .621 6 255 1 228 63 .58 0 .782 0 . 601 6 528 1 263 65 .04 1 .009 0 .581 6 824 1 305 66 .72 1 .285 0 .562 7 146 1 355 68 .66 1 . 621 0 . 542 7 497 1 416 70 .89 2 . 030 0 .523 7 882 1 488 73 .42 2 .530 0 . 503 8 304 1 575 76 .30 3 .145 0 .484 8 769 1. 678 79 .58 3 . 907 0 .464 9 284 1. 803 83 .31 4 . 864 0 .444 9 856 1 . 954 87 .54 6 .085 0 .425 10 494 2. 136 92 .37 7 . 678 0 .405 11 210 2. 358 97 .88 8 .250 0 .400 11 415 2 . 424 99 .47 NODE 230.40 : HGL = < 363.447>;EGL= < 363.765>;FLOWLINE= < 362.650> ****************************************************************************** FLOW PROCESS FROM NODE 230.40 TO NODE 230.40 IS CODE = 8 UPSTREAM NODE 230.40 ELEVATION = 362.65 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.32 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.53 FEET/SEC. VELOCITY HEAD = 0.319 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.319) = 0.064 NODE 230.40 : HGL = < 363.829>;EGL= < 363.829>;FLOWLINE= < 362.650> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 230.40 FLOWLINE ELEVATION = 362.65 ASSUMED UPSTREAM CONTROL HGL = 3 63.45 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 5000 - PA 7 - 100 YEAR STORM EVENT ' * ASCOTT AVE MAIN LINE ' ************************************************************************** FILENAME: 5000IT01.DAT TIME/DATE OF STUDY: 07:21 03/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 5032 .90- } 5040.00- ) 5041.00- } 5042.00- } 5042.90- } 5044.00-) 5045.20- } 5045.10- } 5045.00- UPSTREAM RLFN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 3 .99* FRICTION+BEND } 5045.90- } 5046.00- } 5047.00- } 5048.00- } 5048.90- 4.13* FRICTION 4.39* FRICTION+BEND 4 . 62* JUNCTION 5 . 04* FRICTION+BEND 5 .11* FRICTION JUNCTION FRICTION JUNCTION FRICTION 950.69 978.55 5.13* 5 .46* 5.51* 5.95* 5.08* 1029.79 1074.79 1054.46 1067.28 1071.53 1103.87 1113.02 1075.36 905.19 FRICTION+BEND } HYDRAULIC JUMP 1.30 Dc 229.25 FRICTION JIMCTION 1.30*Dc 1.64* 229.25 162.92 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 1.74 541.33 541.33 1.74 Dc 1.74 Dc 1.74 Dc 1.63 Dc 1.63 Dc 1.63 Dc 1.5 8 Dc 1.58 Dc 0.69 0.69 0.72* 1.30*Dc 0 .76 541.33 541.33 427.80 427.80 427.80 388.87 388.87 358.07 357.67 345.54 229.25 145.55 } FRICTION } HYDRAULIC JUMP 5049.00- 1.07*Dc 124.67 1.07*Dc 124.67 } JUNCTION 5049.90- 1.83* 131.71 0.35 62.92 } FRICTION } HYDRAULIC JUMP 5050.00- 0.71*Dc 43.26 0.71*Dc 43.26 } CATCH BASIN 5050.00- 1-04* 23.34 0-71 Dc 15-28 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS- JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE INUMBER = 5032.90 FLOWLINE ELEVATION = 365.13 PIPE FLOW = 24.31 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 369.120 FEET NODE 5032.90 : HGL = < 369.120>;EGL= < 370.050>;FLOWLINE= < 365.130> ****************************************************************************** FLOW PROCESS FROM NODE 5032.90 TO NODE 5040.00 IS CODE = 3 UPSTREAM NODE 5040.00 ELEVATION = 365.21 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 24.31 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 14.3 00 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 11.21 FEET BEND COEFFICIENT(KB) = 0.09965 FLOW VELOCITY = 7.74 FEET/SEC. VELOCITY HEAD = 0.930 FEET HB=KB*(VELOCITY HEAD) = ( 0.100)*( 0.930) = 0.093 SF=(Q/K)**2 = (( 24.31)/( 226.221))**2 = 0.01155 HF=L*SF = ( 11.21)* (0.01155) = 0.129 TOTAL HEAD LOSSES = HB + HF = ( 0.093)+( 0.129) = 0.222 NODE 5040.00 : HGL = < 369-342>;EGL= < 370.272>;FLOWLINE= < 365.210> ****************************************************************************** FLOW PROCESS FROM NODE 5040.00 TO NODE 5041.00 IS CODE = 1 UPSTREAM NODE 5041.00 ELEVATION = 365.60 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.31 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 56.41 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 24.31)/( 226.225))**2 = 0.01155 HF=L*SF = ( 56.41)* (0.01155) = 0.651 NODE 5041.00 : HGL = < 369.993>;EGL= < 370.923>;FLOWLINE= < 365.600> ****************************************************************************** FLOW PROCESS FROM NODE 5041.00 TO NODE 5042.00 IS CODE = 3 UPSTREAM NODE 5042.00 ELEVATION = 365.86 (FLOW IS UlTOER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 24.31 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 6.750 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 36.35 FEET BEND COEFFICIENT(KB) = 0.06847 FLOW VELOCITY = 7.74 FEET/SEC. VELOCITY HEAD = 0.930 FEET HB=KB*(VELOCITY HEAD) = ( 0.068)*( 0.930) = 0.064 SF=(Q/K)**2 = (( 24.31)/( 226.220))**2 = 0.01155 HF=L*SF = ( 36.35)* (0.01155) = 0.420 TOTAL HEAD LOSSES = HB + HF = ( 0.064)+( 0.420) = 0.483 NODE 5042.00 : HGL = < 370.477>;EGL= < 371.407>;FLOWLINE= < 365.860> ****************************************************************************** FLOW PROCESS FROM NODE 5042.00 TO NODE 5042.90 IS CODE = 5 UPSTREAM NODE 5042.90 ELEVATION = 366.19 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 20.62 24.00 0.00 366.19 1-63 6.564 DOWNSTREAM 24-35 24-00 - 365.86 1-74 7.751 LATERAL #1 2.70 18.00 90.00 366.19 0.62 1.528 LATERAL #2 1-01 18-00 90-00 366.19 0.37 0.572 Q5 0.02===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00831 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01159 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00995 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.040 FEET ENTRANCE LOSSES = 0.187 FEET JtJNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.264)+( 0.040)+( 0.187) = 0.490 NODE 5042.90 : HGL = < 371.231>;EGL= < 371.900>;FLOWLINE= < 366.190> ****************************************************************************** FLOW PROCESS FROM NODE 5042.90 TO NODE 5044.00 IS CODE = 3 UPSTREAM NODE 5044.00 ELEVATION = 366.34 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 2 0.62 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 4.000 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 21.68 FEET BEND COEFFICIENT(KB) = 0.05270 FLOW VELOCITY = 6.56 FEET/SEC. VELOCITY HEAD = 0.669 FEET HB=KB*(VELOCITY HEAD) = ( 0.053)*( 0.669) = 0.035 SF=(Q/K)**2 = (( 20.62)/( 226.213))**2 = 0.00831 HF=L*SF = ( 21.68)*(0.00831) = 0.180 TOTAL HEAD LOSSES = HB + HF = ( 0.035)+( 0.180) = 0.215 NODE 5044.00 : HGL = < 371.446>;EGL= < 372.115>;FLOWLINE= < 366.340> ****************************************************************************** FLOW PROCESS FROM NODE 5044-00 TO NODE 5045-20 IS CODE = 1 UPSTREAM NODE 5045-20 ELEVATION = 366-50 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20-62 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 21.87 FEET MANNING'S N = 0.013 00 SF=(Q/K)**2 = (( 20.62)/( 226.221))**2 = 0.00831 HF=L*SF = ( 21.87)* (0.00831) = 0.182 NODE 5045.20 : HGL = < 371.628>;EGL= < 372.297>;FLOWLINE= < 366.500> ****************************************************************************** FLOW PROCESS FROM NODE 5045.20 TO NODE 5045.10 IS CODE = 5 UPSTREAM NODE 5045.10 ELEVATION = 366.50 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 19.26 24.00 0.00 366.50 1.58 6.131 DOWNSTREAM 20.62 24.00 - 366.50 1.63 6.564 LATERAL #1 1.34 18.00 90.00 366.75 0.43 0.758 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.02===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MAJiJNING' S N = 0.01300; FRICTION SLOPE = 0.00725 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00831 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00778 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.031 FEET ENTRANCE LOSSES = 0.134 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.085)+( 0.031)+( 0.134) = 0.250 NODE 5045.10 : HGL = < 371.964>;EGL= < 372.547>;FLOWLINE= < 366.500> ****************************************************************************** FLOW PROCESS FROM NODE 5045.10 TO NODE 5045.00 IS CODE = 1 UPSTREAM NODE 5045.00 ELEVATION = 367.30 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 19.26 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 116.81 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 19.26)/( 226.223))**2 = 0.00725 HF=L*SF = ( 116.81)*(0.00725) = 0.847 NODE 5045.00 : HGL = < 372.810>;EGL= < 373.394>;FLOWLINE= < 367.300> ****************************************************************************** FLOW PROCESS FROM NODE 5045.00 TO NODE 5045-90 IS CODE = 5 UPSTREAM NODE 5045.90 ELEVATION = 367.63 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 13.05 24.00 0.00 367.63 1.30 4.154 DOWNSTREAM 19.26 24.00 - 367.30 1.58 6.131 LATERAL #1 6.20 18.00 90.00 367.63 0.96 3.508 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.01===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00333 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00725 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00529 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.021 FEET ENTRANCE LOSSES = 0.117 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.316)+( 0.021)+( 0.117) = 0.454 NODE 5045.90 : HGL = < 373.580>;EGL= < 373.848>;FLOWLINE= < 367.630> ,***************************************************************************** FLOW PROCESS FROM NODE 5045.90 TO NODE 5046.00 IS CODE = 1 UPSTREAM NODE 5046.00 ELEVATION = 368.56 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 13.05 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 18.62 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = ( ( 13 . 05)/( 226.244))**2 = 0 00333 HF=L*SF = ( 18 62)*(0.00333) = 0.062 NODE 5046.00 : HGL = < 373.642>;EGL= < 373.910>;FLOWLINE= < 368.560> ****************************************************************************** FLOW PROCESS FROM NODE 5046.00 TO NODE 5047.00 IS CODE = 3 UPSTREAM NODE 5047.00 ELEVATION = 373.31 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 13.05 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 26.800 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 95.08 FEET HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.69 CRITICAL DEPTH(FT) = 1.3 0 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.72 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN] 0 000 0 716 12 919 3 309 345 54 1 437 0 715 12 941 3 317 346 05 2 939 0 714 12 963 3 325 346 55 4 511 0 713 12 985 3 333 347 06 6 160 0 712 13 008 3 341 347 57 7 893 0 711 13 030 3 349 348 08 9 720 0 710 13 052 3 357 348 59 11 650 0 709 13 075 3 366 349 11 13 695 0 708 13 098 3 374 349 62 15 869 0 708 13 120 3 382 350 14 18 188 0 707 13 143 3 391 350 66 20 674 0 706 13 166 3 399 351 19 23 350 0 705 13 189 3 408 351 71 26 247 0 704 13 212 3 416 352 24 29 403 0 703 13 235 3 425 352 76 32 869 0 702 13 258 3 433 353 29 36 708 0 701 13 281 3 442 353 83 41 Oil 0 700 13 305 3 451 354 36 45.899 51.556 58.262 66.489 77.119 92.140 95.080 0. 699 0.699 0.698 0.697 0.696 0.695 0.695 13 .328 13 .351 13 .375 13 .399 13 .422 13.446 13.449 3.459 3 . 468 3 .477 ,486 ,495 .504 .505 354 .90 355.44 355.98 356.52 357.06 357.61 357.67 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.08 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 5 082 4 . 154 5 350 905 . 19 66 .743 2 000 4 . 154 2 268 301. 09 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 2 .00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 66 .743 2 .000 4 . 153 2 268 301 09 67 .310 1 .972 4 . 164 2 241 295 90 67 .848 1 944 4 . 186 2 216 290 97 68 .366 1 .916 4 . 213 2 192 286 25 68 .869 1 .888 4. 247 2 168 281 69 69 .357 1 .860 4 . 285 2 145 277 31 69 . 831 1 .832 4. 327 2 123 273 08 70 .292 1 .804 4. 374 2 101 269 02 70 .740 1 .776 4 . 425 2 080 265 13 71 .174 1 .748 4. 480 2 060 261 40 71 .594 1 .720 4 . 539 2 040 257 84 71 .999 1 .692 4 . 603 2 021 254 46 72 .389 1 . 664 4 . 671 2 003 251 26 72 .763 1 .636 4 . 743 1 985 248 24 73 . 119 1 .608 4 . 820 1 969 245 42 73 . 457 1 . 580 4 . 901 1 953 242 79 73 .775 1 .552 4 . 988 1 938 240 37 74 . 071 1 .524 5. 080 1 925 238 16 74 .343 1 .496 5. 177 1 912 236 17 74 .589 1 .468 5 . 280 1 901 234 41 74 .808 1 .440 5. 389 1 891 232 89 74 .995 1 .412 5. 504 1 882 231 61 75 .148 1 .384 5 626 1 875 230 60 75 .263 1 .356 5 755 1 870 229 86 75 .336 1 .328 5 892 1 867 229 41 75 .361 1 .300 6 037 1 .866 229 .25 95 .080 1 .300 6 037 1 866 229 .25 END OF HYDRAUI JIC JUMP PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 2.267 FEET. 60.96 FEET UPSTREAM OF NODE 5046.00 UPSTREAM CONJUGATE DEPTH = 0.7 02 FEET NODE 5047.00 : HGL = < 374.026>;EGL= < 376.619>;FLOWLINE= < 373.310> *****************************************************************************: FLOW PROCESS FROM NODE 5047.00 TO NODE 5048.00 IS CODE = 1 UPSTREAM NODE 5048.00 ELEVATION = 381.06 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.05 CFS PIPE DIAMETER 24.00 INCHES PIPE LENGTH = 154.80 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0. 69 CRITICAL DEPTH(FT) 1.30 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.30 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .300 6 037 1 866 229. 25 0 .021 1 .275 6 170 1 867 229. 37 0 .085 1 .251 6 .310 1 870 229-74 0 .199 1 .227 6 457 1 875 230. 37 0 .367 1 .203 6 612 1 882 231. 27 0 .597 1 .178 6 776 1 892 232. 46 0 . 896 1 .154 6 948 1 904 233 . 95 1 .274 1 .130 7 131 1 920 235. 76 1 .741 1 .105 7 324 1 939 237. 90 2 .311 1 .081 7 528 1 962 240. 41 2 .998 1 . 057 7 745 1 989 243 . 30 3 . 823 1 .033 7 974 2 021 246. 59 4 . 809 1 .008 8 218 2 058 250. 32 5 .984 0 .984 8 477 2 101 254. 51 7 .388 0 .960 8 754 2 150 259. 20 9 .067 0 .935 9 048 2 207 264 . 42 11 . 086 0 .911 9 362 2 273 270. 23 13 .533 0 . 887 9 698 2 348 276. 66 16 .529 0 . 863 10 059 2 435 283 . 77 20 .255 0 . 838 10 445 2 534 291. 62 24 .991 0 .814 10 861 2 647 300. 28 31 .206 0 .790 11 309 2 777 309. 83 39 .783 0 .766 11 793 2 926 320 . 37 52 .706 0 .741 12 317 3 . 098 331. 98 76 .339 0 .717 12 885 3 . 297 344 . 79 154 800 0 .716 12 919 3 . 309 345. 54 NODE 5048.00 : HGL = < 382.360>;EGL= < 382.926>;FLOWLINE= < 381.060> ****************************************************************************** FLOW PROCESS FROM NODE 5048.00 TO NODE 5048.90 IS CODE = 5 UPSTREAM NODE 5048.90 ELEVATION = 381.56 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 FLOW (CFS) 7.68 13.05 5.36 0.00 DIAMETER (INCHES) 18. 00 24.00 18.00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 90 . 00 0.00 381.56 381.06 381.56 0.00 CRITICAL DEPTH(FT.) 1.07 1.30 0.89 0.00 VELOCITY (FT/SEC) 4 .346 6.039 3.481 0.000 Q5 0.01===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00535 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00582 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00558 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.022 FEET ENTRANCE LOSSES = 0.113 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.433)+( 0.022)+( 0.113) = 0.568 NODE 5048.90 HGL < 383.201>;EGL= < 383.494>;FLOWLINE= < 381.560> ****************************************************************************** FLOW PROCESS FROM NODE 5048.90 TO NODE 5049.00 IS CODE = 1 UPSTREAM NODE 5049.00 ELEVATION = 385.81 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.68 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 196.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.75 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.07 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.07 DISTANCE FROM CONTROL(FT) 0.000 0.022 0.093 0.215 0.395 0.639 0. 953 1.346 1. 828 2 .409 3 .103 3 .928 4 .902 6.051 7.408 9.012 10.917 13.197 15.955 19.339 23.583 29.077 36.553 47.656 67.662 196.000 FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1.074 5.673 1.574 124.67 1.060 5.748 1.574 124.69 1.047 5.827 1.575 124.78 1.034 5.908 1.577 124.91 1.021 5.991 1.579 125.11 1.008 6.078 1.582 125.37 0.995 6.169 1.586 125.69 0.982 6.262 1.591 126.07 0.969 6.359 1.597 126.52 0.956 6.460 1.604 127.04 0.943 6.564 1.612 127.64 0.930 6.672 1.622 128.30 0.917 6.785 1.632 129.05 0.904 6.901 1.644 129.87 0.891 7.023 1.657 130.78 0.878 7.149 1.672 131.77 0.864 7.280 1.688 132.85 0.851 7.416 1.706 134.03 0.838 7.558 1.726 135.31 0.825 7.706 1.748 136.69 0.812 7.860 1.772 138.18 0.799 8.020 1.799 139.78 0.786 8.188 1.828 141.50 0.773 8.362 1.860 143.34 0.760 8.545 1.894 145.31 0.758 8.566 1.899 145.55 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HE.AD(FT) = 1.64 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ COIUROL (FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 . 641 4 .346 1 .934 162 .92 8 .625 1 .500 4 .346 1 -793 147 .38 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1-50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 8 .625 1 .500 4 .345 1 .793 147 .38 9 .582 1 .483 4 .354 1 .777 145 .64 10 .462 1 .466 4 .370 1 .763 144 .01 11 .298 1 449 4 .391 1 748 142 .46 12 .097 1 432 4 .416 1 735 140 98 12 .864 1 415 4 .445 1 722 139 .56 13 .603 1 398 4 477 1 709 138 21 14 .315 1 381 4 513 1 697 136 91 15 .000 1 364 4 .551 1 685 135 68 15 .660 1 346 4 592 1 674 134 50 16 .294 1 329 4 636 1 663 133 39 16 .903 1 312 4 683 1 653 132 33 17 .484 1 295 4 733 1 643 131 34 18 .038 1 278 4 785 1 634 130 41 18 .564 1. 261 4 841 1 625 129 54 19 059 1 . 244 4 900 1-617 128 73 19 523 1. 227 4 961 1 -610 127 99 19 953 1. 210 5 026 1. 603 127 32 20 347 1. 193 5. 095 1-596 126 72 20 702 1. 176 5. 166 1. 591 126. 19 21 015 1. 159 5. 241 1. 586 125. 74 21 283 1. 142 5 . 320 1 . 581 125. 36 21 500 1. 125 5 . 402 1. 578 125. 06 21 664 1. 108 5 . 488 1 . 576 124. 84 21. 766 1. 091 5. 578 1. 574 124 . 71 21. 802 1. 074 5 . 673 1 . 574 124. 67 196. 000 1. 074 5. 673 1. 574 124. 67 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 9.64 FEET UPSTREAM OF NODE 5048.90 | I DOWNSTREAM DEPTH = 1.482 FEET. UPSTREAM CONJUGATE DEPTH = 0.759 FEET | NODE 5049.00 : HGL = < 386.884>;EGL= < 387.384>;FLOWLINE= < 385.810> ****************************************************************************** FLOW PROCESS FROM NODE 5049.00 TO NODE 5049.90 IS CODE = 5 UPSTREAM NODE 5049.90 ELEVATION = 386.01 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 (CFS) (INCHES) (DEGREES) ELEVATION 3.14 18.00 90.00 386.01 7.68 18.00 - 385.81 4.52 18.00 90.00 386.01 0.00 0.00 0.00 386.01 0.02===Q5 EQUALS BASIN INPUT=== DEPTH(FT.) 0.67 1.07 0 . 82 0.00 (FT/SEC) 1.777 5. 675 2.698 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00089 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00720 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00405 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.016 FEET ENTRANCE LOSSES = 0.100 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.386)+( 0.016)+( 0.100) = 0.502 NODE 5049.90 : HGL = < 387.837>;EGL= < 3 87.886>;FLOWLINE= < 386.010> ************************************************** **************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5050.00 5049.90 TO NODE ELEVATION = 5050.00 IS CODE = 1 388.23 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.44 CFS PIPE DIAMETER = PIPE LENGTH = 22.25 FEET MANNING'S 18.00 INCHES N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.33 CRITICAL DEPTH(FT) = 0 .71 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.71 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.007 0.029 0.067 0 .125 0.204 0.308 0.439 0.603 0 . 804 1 1 1 2 2 3 4 4 6 049 345 701 130 646 269 024 949 092 7.529 9 .373 FLOW DEPTH (FT) 0.707 0. 692 0. 677 0. 662 0 . 646 0.631 0 . 616 0.601 0.585 0.570 0.555 0.540 0.524 0.509 0.494 0.479 0 . 463 0 . 448 0.433 0.418 0.402 VELOCITY (FT/SEC) 4.196 4.317 4.444 4 .578 4.721 4.872 5 . 032 5.203 5.386 5 .580 5 .788 6.011 6.250 6.507 6 .784 7.083 7 .406 7.758 8.140 8 .558 9.015 SPECIFIC ENERGY(FT) 0.981 0.982 0.984 0.987 0. 993 1.000 1. 009 021 036 054 075 101 1.131 1.167 209 258 316 383 462 1.555 1.665 PRESSURE+ MOMENTUM(POUNDS) 43 .26 43 .29 43 .40 43 .57 43-81 44.14 44.55 45.05 45.65 46.35 47.16 48.09 49 .15 50.35 51.70 53.22 54 .93 56.84 58.98 61.37 64.05 11.820 15.234 20.436 22.250 0 .387 0.372 0.357 0.354 9.517 10.071 10.685 10.808 1.794 1.948 2.131 2.169 67.05 70.41 74.18 74.95 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.83 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1 827 1 . 947 1 886 131 71 3 .311 1 500 1 . 947 1 559 95 68 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 3 .311 1. 500 1. 946 1 559 95 68 3 .626 1 468 1. 956 1 528 92 26 3 . 935 1 437 1. 975 1 497 88 92 4 .241 1. 405 1. 999 1 467 85 66 4 .543 1 373 2 . 029 1 437 82 47 4 . 842 1 341 2 . 062 1 408 79 37 5 .138 1. 310 2 . 101 1 378 76 36 5 .430 1. 278 2. 144 1 349 73 44 5 .719 1. 246 2 . 191 1 321 70 61 6 .004 1 . 215 2 . 243 1 293 67 89 6 .284 1. 183 2. 301 1 265 65 28 6 .560 1. 151 2 . 363 1 238 62 78 6 . 830 1. 119 2. 431 1 211 60 39 7 . 094 1. 088 2 . 506 1 185 58 13 7 .352 1. 056 2. 586 1 160 55 99 7 . 601 1. 024 2. 675 1 136 54 00 7 .841 0. 993 2. 771 1 112 52 14 8 . 071 0. 961 2 . 876 1 089 50 43 8 .289 0. 929 2 . 991 1 068 48 87 8 .491 0. 898 3 . 117 1 048 47 48 8 . 677 0. 866 3 . 255 1 030 46 27 8 . 842 0. 834 3 . 407 1 014 45 23 8 .982 0 . 802 3 . 574 1 001 44 40 9 . 091 0. 771 3 . 760 0 990 43 78 9 .164 0. 739 3 . 966 0 983 43 40 9 .191 0. 707 4 . 196 0 981 43 26 22 .250 0. 707 4 . 196 0 981 43 26 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 1.255 FEET, 5.64 FEET UPSTREAM OF NODE 5049.90 UPSTREAM CONJUGATE DEPTH = 0.3 68 FEET NODE 5050.00 HGL < 388.937>;EGL= < 389.211>;FLOWLINE= < 388.230> ****************************************************************************** FLOW PROCESS FROM NODE 5050.00 TO NODE 5050.00 IS CODE UPSTREAM NODE 5050.00 ELEVATION = 388.23 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.44 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.20 FEET/SEC. VELOCITY HEAD = 0.274 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.274) = 0.055 NODE 5050.00 : HGL = < 389.266>;EGL= < 389.266>;FLOWLINE= < 388.230> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5050.00 FLOWLINE ELEVATION = 388.23 ASSUMED UPSTREAM CONTROL HGL = 388.94 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ^ * SYSTEM 5000 - PA 7 - 100 YEAR STORM EVENT ^ * ASCOTT AVE LATERAL ^ ************************************************************************** FILE NAME: 5000IT02.DAT TIME/DATE OF STUDY: 10:16 03/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5042.10- 4.54* 431.74 0.61 46.77 ) FRICTION 5042.20- 4.35* 410.29 0.72 Dc 45.06 } CATCH BASIN 5042.20- 4.42* 404.76 0.72 Dc 15.89 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5042.10 FLOWLINE ELEVATION = 366.69 PIPE FLOW = 3.55 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOVJNSTREAM CONTROL HGL = 3 71.23 0 FEET NODE 5042.10 : HGL = < 371.230>;EGL= < 371.293>;FLOWLINE= < 366.690> ****************************************************************************** FLOW PROCESS FROM NODE 5042.10 TO NODE 5042.20 IS CODE = 1 UPSTREAM NODE 5042.20 ELEVATION = 366.91 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.55 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 3.55)/( 105.026))**2 = 0.00114 HF=L*SF = ( 22.25)*(0.00114) = 0.025 NODE 5042.20 : HGL = < 371 -255>;EGL= < 371.318>;FLOWLINE= < 366.910> ****************************************************************************** FLOW PROCESS FROM NODE 5042.20 TO NODE 5042.20 IS CODE = 8 UPSTREAM NODE 5042.20 ELEVATION = 366.91 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.55 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 2.01 FEET/SEC. VELOCITY HEAD = 0.063 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.063) = 0.013 NODE 5042.20 : HGL = < 371.331>;EGL= < 371.331>;FLOWLINE= < 366.910> ****************************************************************************** UPSTREAM PIPE FLOW COIUROL DATA: NODE NUMBER = 5042.20 FLOWLINE ELEVATION = 3 66.91 ASSUMED UPSTREAM CONTROL HGL = 3 67.63 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 5000 -PA 7 - 100 YEAR STORM EVENT ' * ASCOTT AVE LATERAL ' ************************************************************************** FILENAME: 5000IT03.DAT TIME/DATE OF STUDY: 10:30 03/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5042.30- 4.54* 419.86 0.21 23.85 } FRICTION 5042.40- 3.21* 273.35 0.43 Dc 12.81 } CATCH BASIN 5042.40- 3.22* 272.58 0.43 Dc 4.67 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDIU^ULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5042.30 FLOWLINE ELEVATION = 366.69 PIPE FLOW = 1.33 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 371.230 FEET NODE 5042.30 : HGL = < 371.230>;EGL= < 371.239>;FLOWLINE= < 366.690> ****************************************************************************** FLOW PROCESS FROM NODE 5042.30 TO NODE 5042.40 IS CODE = 1 UPSTREAM NODE 5042.40 ELEVATION = 368.02 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.33 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.33)/( 104.250))**2 = 0.00016 HF=L*SF = ( 8.25)* (0.00016) = 0.001 NODE 5042.40 : HGL = < 371.231>;EGL= < 371.240>;FLOWLINE= < 368.020> ****************************************************************************** FLOW PROCESS FROM NODE 5042.40 TO NODE 5042.40 IS CODE = 8 UPSTREAM NODE 5042.40 ELEVATION = 368.02 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.33 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 0.75 FEET/SEC. VELOCITY HEAD = 0-009 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.009) = 0.002 NODE 5042.40 : HGL = < 371.242>;EGL= < 371.242>;FLOWLINE= < 368.020> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5042.40 FLOWLINE ELEVATION = 368.02 ASSUMED UPSTREAM CONTROL HGL = 368.45 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * * SYSTEM 5000 - PA 7 - 100 YEAR STORM EVENT * * ASHTON DR MAIN LINE * ************************************************************************** FILENAME: 5000IT04.DAT TIME/DATE OF STUDY: 13:05 02/19/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOVJNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5045.10- 5.75* 1008.82 1.20 187.65 } FRICTION 5045.20- 5.43* 945.16 1.20 Dc 187.65 } JUNCTION 5045.30- 5.50* 614.68 1.09 158.47 } FRICTION 5045.40- 5.45* 608.87 1.17 Dc 157.49 } CATCH BASIN 5045.40- 5.94* 572.47 1.17 Dc 48.49 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5045.10 FLOWLINE ELEVATION = 367.63 PIPE FLOW = 11.22 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 3 73.3 80 FEET NODE 5045.10 : HGL = < 373.380>;EGL= < 373.578>;FLOWLINE= < 3 67.63 0> ****************************************************************************** FLOW PROCESS FROM NODE 5045.10 TO NODE 5045.20 IS CODE = 1 UPSTREAM NODE 5045.20 ELEVATION = 368.26 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.22 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 124.09 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 11.22)/( 226.226))**2 = 0.00246 HF=L*SF = ( 124.09)*(0.00246) = 0.305 NODE 5045.20 : HGL = < 373.685>;EGL= < 373.883>;FLOWLINE= < 368-260> ***************************************************** * * *********************** FLOW PROCESS FROM NODE 5045.20 TO NODE 5045.30 IS CODE = 5 UPSTREAM NODE 5045.30 ELEVATION = 368.76 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.11 18.00 90.00 368.76 1.17 5.155 DOWNSTREAM 11.22 24.00 - 368.26 1.20 3.571 LATERAL #1 2.10 18.00 90.00 368.76 0.55 1.188 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.01===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGFIATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00752 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00246 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00499 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.040 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.729)+( 0.020)+( 0.040) = 0.788 NODE 5045.30 : HGL = < 374.259>;EGL= < 374.672>;FLOWLINE= < 368.760> ****************************************************************************** FLOW PROCESS FROM NODE 5045.30 TO NODE 5045.40 IS CODE = 1 UPSTREAM NODE 5045.40 ELEVATION = 368.98 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.11 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 9.11)/( 105.041))**2 = 0.00752 HF=L*SF = ( 22.25)* (0.00752) = 0.167 NODE 5045.40 : HGL = < 374.426>;EGL= < 374.839>;FLOWLINE= < 368.980> ****************************************************************************** FLOW PROCESS FROM NODE 5045.40 TO NODE 5045.40 IS CODE = 8 UPSTREAM NODE 5045.40 ELEVATION = 368.98 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.11 CFS PIPE DIAMETER = li 3.00 INCHES FLOW VELOCITY = 5.15 FEET/SEC. VELOCITY HEAD = 0 413 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*{ 0 413 = 0-083 NODE 5045.40 : HGL = < 374 . 922>; EGL= < 374 . 922>; FLOWLINE== < 368.980> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5045.40 FLOWLINE ELEVATION = 368.98 ASSUMED UPSTREAM CONTROL HGL = 3 7 0.15 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 5000 - PA 7 - 100 YEAR STORM EVENT ' * ASHTON DR LATERAL ************************************************************************** FILE NAME: 5000IT05.DAT TIME/DATE OF STUDY: 13:07 02/19/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used-) UPSTREAM RtJN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5045.50- 5.49* 529.26 0.31 46.31 } FRICTION 5045.60- 4.34* 402.95 0.59 Dc 27.94 } CATCH BASIN 5045.60- 4.38* 400.31 0.59 Dc 10.02 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5045.50 FLOWLINE ELEVATION = 368.76 PIPE FLOW = 2.45 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 374.250 FEET NODE 5045.50 : HGL = < 374.250>;EGL= < 374.280>;FLOWLINE= < 368.760> ****************************************************************************** FLOW PROCESS FROM NODE 5045.50 TO NODE 5045.60 IS CODE = 1 UPSTREAM NODE 5045.60 ELEVATION = 369.91 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.45 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.013 00 SF=(Q/K)**2 = (( 2.45)/( 105.065))**2 = 0.00054 HF=L*SF = ( 8.25)*(0.00054) = 0.004 NODE 5045.60 : HGL = < 374.254>;EGL= < 374.284>;FLOWLINE= < 369.910> ****************************************************************************** FLOW PROCESS FROM NODE 5045.60 TO NODE 5045.60 IS CODE = 8 UPSTREAM NODE 5045.60 ELEVATION = 369.91 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.45 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.39 FEET/SEC. VELOCITY HEAD = 0.030 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.030) = 0.006 NODE 5045.60 : HGL = < 374.290>;EGL= < 374.290>;FLOWLINE= < 369.910> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5045.60 FLOWLINE ELEVATION = 369.91 ASSUMED UPSTREAM CONTROL HGL = 370.50 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 5000 - PA 7 - 100 YEAR STORM EVENT ' * ASCOTT AVE LATERAL ' ************************************************************************** FILENAME: 5000IT06.DAT TIME/DATE OF STUDY: 08:00 03/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5048.10- 1.07 123.35 0.74* 146.92 ) FRICTION 5048.20- 1.07*Dc 123.35 1.07*Dc 123.35 } CATCH BASIN 5048.20- 1.67* 100.90 1.07 Dc 39.85 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5048.10 FLOWLINE ELEVATION = 381.56 PIPE FLOW = 7.62 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 382.360 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.80 FT.) IS LESS THAN CRITICAL DEPTH( 1.07 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 5048.10 : HGL = < 382.298>;EGL= < 383.502>;FLOWLINE= < 381.560> ****************************************************************************** FLOW PROCESS FROM NODE 5048.10 TO NODE 5048.20 IS CODE = 1 UPSTREAM NODE 5048.20 ELEVATION = 382.07 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7-62 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MAYING'S N = 0.013 00 NORMAL DEPTH(FT) = 0.55 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.07 1.07 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN 0 000 1 069 5 653 1 566 123 .35 0 015 1 049 5 773 1 567 123 .42 0 062 1 028 5 900 1 569 123 .62 0 144 1 008 6 035 1 574 123 .97 0 266 0 987 6 178 1 580 124 .48 0 432 0 966 6 329 1 589 125 .14 0 649 0 946 6 489 1 600 125 .98 0 923 0 925 6 658 1 614 127 .00 1 261 0 905 6 838 1 631 128 .21 1 673 0 884 7 029 1 652 129 .62 2 172 0 864 7 232 1 676 131 .25 2 770 0 843 7 449 1 705 133 .11 3 485 0 822 7 679 1 739 135 .21 4 340 0 802 7 925 1 778 137 .59 5 360 0 781 8 187 1 823 140 .25 6 582 0 761 8 468 1 875 143 .22 8 053 0 740 8 769 1 935 146 .53 8 250 0 738 8 803 1 942 146 .92 4? 3.20 HGL = < 383 13 9>;EGL= < 383.636> FLOWLINE= < 3 82. 070 ****************************************************************************** FLOW PROCESS FROM NODE 5048.20 TO NODE 5048.20 IS CODE = 8 UPSTREAM NODE 5048.20 ELEVATION = 382.07 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 7.62 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.65 FEET/SEC. VELOCITY HEAD = 0.496 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.496) = 0.099 NODE 5048.20 : HGL = < 383.735>;EGL= < 383.735>;FLOWLINE= < 382.070> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5048.20 FLOWLINE ELEVATION = 382.07 ASSUMED UPSTREAM CONTROL HGL = 3 83.14 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS r***************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * * SYSTEM 5000 - PA 7 - 100 YEAR STORM EVENT * * ASCOTT AVE LATERAL ************************************************************************** FILENAME: 5000IT07.DAT TIME/DATE OF STUDY: 13:35 02/19/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5049.10- 1.83* 146.51 0.44 117.76 ) FRICTION 5049.20- 0.86*Dc 70.41 0.86*Dc 70.41 } CATCH BASIN 5049.20- 1.28* 38.89 0.86 Dc 24.19 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5049.10 FLOWLINE ELEVATION = 386.01 PIPE FLOW = 5.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 3 87.840 FEET NODE 5049.10 : HGL = < 387.840>;EGL= < 387.964>;FLOWLINE= < 386.010> ****************************************************************************** FLOW PROCESS FROM NODE 5049.10 TO NODE 5049.20 IS CODE = 1 UPSTREAM NODE 5049.20 ELEVATION = 387.66 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.013 00 DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD (FT) = 1.83 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.830 2-829 1.954 146.51 1.669 1.500 2-829 1.624 110.12 0.33 CRITICAL DEPTH(FT) NORMAL DEPTH(FT) = ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1-50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.86 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1 669 1. 500 2 . 829 1. 624 110. 12 1 794 1 . 474 2 . 839 1. 600 107. 40 1 914 1 . 449 2 859 1. 576 104. 79 2 032 1 . 423 2 884 1 552 102. 26 2 147 1 398 2 915 1 530 99. 80 2 260 1 372 2 950 1 507 97. 42 2 371 1 346 2 990 1 485 95 11 2 480 1 321 3 033 1 464 92 89 2 586 1 295 3 081 1 443 90 74 2 690 1 270 3 133 1 422 88 68 2 791 1 244 3 190 1 402 86 70 2 890 1 218 3 251 1 383 84 81 2 985 1 193 3 317 1 364 83 02 3 077 1 167 3 388 1 346 81 32 3 166 1 142 3 463 1 328 79 73 3 251 1 116 3 545 1 311 78 24 3 331 1 091 3 632 1 295 76 86 3 .407 1 065 3 725 1 281 75 60 3 .477 1 039 3 826 1 .267 74 45 3 .542 1 014 3 .933 1 .254 73 43 3 .599 0 988 4 048 1 .243 72 .55 3 .649 0 963 4 .172 1 .233 71 . 81 3 . 691 0 .937 4 .305 1 .225 71 .21 3 .722 0 .911 4 .448 1 .219 70 .77 3 .742 0 .886 4 . 602 1 .215 70 .50 3 .749 0 .860 4 .768 1 .213 70 .41 8 .250 0 .860 4 .768 1 .213 70 .41 NODE 5049.20 : HGL = < 388.520>;EGL= < 388.873>;FLOWLINE= < 387.660> ****************************************************************************** FLOW PROCESS FROM NODE 5049.20 TO NODE 5049.20 IS CODE = 8 UPSTREAM NODE 5049.20 ELEVATION = 387.66 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.00 CFS PIPE DIAMETER = 11 3.00 INCHES FLOW VELOCITY = 4.77 FEET/SEC. VELOCITY HEAD = 0 353 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 353 = 0.071 NODE 5049.20 : HGL = < 388.944>;EGL= < 388.944>;FLOWLINE= < 387.660> ****************************************************************************** UPSTREAM PIPE FLOW COKITROL DATA: NODE NUMBER = 5049.20 FLOWLINE ELEVATION = 387.66 ASSUMED UPSTREAM CONTROL HGL = 3 88.52 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 19 82-2 002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 5000 - PA-8 & PA-9 - 100 YEAR STORM EVENT " * ABBOTSFORD AVENUE MAIN LINE ' ************************************************************************** FILENAME: 5000IT08.DAT TIME/DATE OF STUDY: 15:53 10/14/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 5012.50- 5012.60 6013.00 6014.00 6014.90 6015.00 6015.90 6016.00 6017.00 6017.90 6018.00 6019.00 6020.00 6020.10 6021.00 6021.00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 228.32 FRICTION 1.30 1.3 0 Dc FRICTION 1.3 0 Dc FRICTION+BEND 1.3 0 Dc MAITOOLE 1.3 0 Dc FRICTION+BEND 1.3 0 Dc JUNCTION 1.31 FRICTION+BEND 1.16 Dc FRICTION 1.16 Dc JUNCTION 1.28 FRICTION 1.16 Dc FRICTION+BEND 1.16 Dc FRICTION 1.16*Dc JUNCTION 1.88* FRICTION 228.32 228.32 228.32 228.32 228.32 158.38 155.10 155.10 157.34 155.10 155.10 155.10 160.69 } HYDRAULIC JUMP 0.92*Dc 84.26 CATCH BASIN DOWNSTREAM RUN FLOW PRESSURE+ DE PTH(FT) MOMENTUM(POUNDS) 316.44 1.39* 47.40 0.77* 0.71* 0.73* 0.71* 0.74* 1.06* 0.71* 0.72* 0.90* 0.67* 0.68* 0 . 69* 1.16*Dc 0.43 0.92*Dc 0.92 Dc 344.34 333.46 345.29 332.12 241.60 207.89 204.83 168.83 219.98 216.86 212.80 155.10 154.89 84.26 28.53 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA; NODE NUMBER = 5012.5 0 FLOWLINE ELEVATION = 33 8.45 PIPE FLOW = 13.01 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 33 9.410 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.9 6 FT.) IS LESS THAN CRITICAL DEPTH( 1.30 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 5012.50 : HGL = < 339.220>;EGL= < 341.333>;FLOWLINE= < 338.450> ****************************************************************************** FLOW PROCESS FROM NODE 5012.50 TO NODE 5012.60 IS CODE = 1 UPSTREAM NODE 5012.60 ELEVATION = 339.36 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.01 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 35.01 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.83 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.71 1.30 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .714 12 914 3 305 344 34 2 .179 0 .719 12 806 3 267 341 88 4 .428 0 .723 12 699 3 229 339 48 6 .753 0 .728 12 594 3 192 337 11 9 .160 0 .732 12 490 3 156 334 79 11 .659 0 .736 12 388 3 121 332 50 14 .258 0 .741 12 288 3 087 330 26 16 .969 0 .745 12 189 3 054 328 06 19 .805 0 . 750 12 091 3 021 325 90 22 .781 0 .754 11 995 2 990 323 78 25 . 915 0 .759 11 901 2 959 321 69 29 .229 0 .763 11 807 2 929 319 64 32 .750 0 .768 11 715 2 900 317 63 35 . 010 0 .770 11 661 2 883 316 44 NODE 5012.60 HGL < 340.074>;EGL= < 342.665>;FLOWLINE= < 339.360> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 6013.00 5012.60 TO NODE ELEVATION = 6013.00 IS CODE = 1 3 42.3 3 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.01 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 65.52 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.71 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.73 1.30 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS 0 . 000 0.735 12.431 3.136 333 .46 1.453 0.734 12.453 3.143 333.96 2.972 0.733 12.476 3 .151 334 .47 4.563 0.732 12.499 3 .159 334.97 6.232 0.731 12.521 3.167 335.48 7.986 0.730 12.544 3 .175 335.99 9 . 836 0 .729 12.567 3 .183 336.51 11.790 0 728 12 590 3 191 337 .02 13.862 0 727 12 613 3 199 337 . 54 16.064 0 726 12 636 3 207 338 . 06 18.415 0 725 12 659 3 215 338 .58 20.934 0 724 12 683 3 223 339 . 11 23.647 0 723 12 706 3 231 339 .63 26.584 0 722 12 729 3 239 340 .16 29.785 0 721 12 753 3 248 340 .69 33 .300 0 720 12 776 3 256 341 .22 37.196 0 719 12 800 3 265 341 .76 41.562 0 718 12 824 3 273 342 .30 46.524 0 717 12 848 3 282 342 .83 52 .267 0 716 12 871 3 290 343 .38 59.076 0 715 12 895 3 299 343 .92 65.520 0 714 12 914 3 305 344 .34 6013.00 HGL = < 343 065>;EGL= < 345.466>;FLOWLINE= < 342. 330> ****************************************************************************** FLOW PROCESS FROM NODE 6013.00 TO NODE 6014.00 IS CODE = 3 UPSTREAM NODE 6014.00 ELEVATION = 346.29 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 13.01 CFS CENTRAL ANGLE = 15.400 DEGREES PIPE LENGTH = 100.17 FEET PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.74 CRITICAL DEPTH(FT) 1.30 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.71 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .713 12 956 3 321 345 . 29 1 .678 0 .713 12 932 3 312 344. 75 3 .424 0 .714 12 909 3 304 344. 22 5 .243 0 .715 12 885 3 295 343 . 68 7 .142 0 .716 12 862 3 287 343 . 15 9 .130 0 .717 12 838 3 278 342. 62 11 .214 0 .718 12 815 3 270 342 . 10 13 .405 0 .719 12 792 3 262 341. 57 15 .716 0 .720 12 769 3 253 341. 05 18 .162 0 .721 12 746 3 245 340. 53 20 .759 0 .722 12 723 3 237 340 . 01 23 .529 0 .723 12 700 3 229 339. 50 26 . 497 0 .724 12 677 3 221 338 . 98 29 . 695 0 .725 12 654 3 213 338 . 47 33 .163 0 .726 12 632 3 205 337 . 96 36 . 952 0 .727 12 609 3 197 337 . 45 41 .131 0 .728 12 586 3 189 336. 95 45 .792 0 .729 12 564 3 182 • 336. 44 51 .062 0 .730 12 542 3 174 335. 94 57 .132 0 .731 12 519 3 166 335. 44 64 .294 0 .732 12 497 3 158 334. 94 73 .038 0 .733 12 475 3 151 334 . 45 84 .284 0 .734 12 453 3 143 333 . 95 100 .098 0 .735 12 431 3 136 333 . 46 100 .170 0 .735 12 431 3 136 333 . 46 NODE 6014.00 : HGL = < 347.003>;EGL= < 349.611>;FLOWLINE= < 346.290> ***************************************************************************** FLOW PROCESS FROM NODE 6014.00 TO NODE 6014.90 IS CODE = 2 UPSTREAM NODE 6014.90 ELEVATION = 346.62 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 13.01 CFS PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD = 2.493 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 2.493) = 0.125 NODE 6014.90 : HGL = < 347.357>;EGL= < 349.735>;FLOWLINE= < 346.620> ,***************************************************************************** FLOW PROCESS FROM NODE 6014.90 TO NODE 6015.00 IS CODE = 3 UPSTREAM NODE 6015.00 ELEVATION = 351.31 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 13.01 CFS CENTRAL ANGLE = 17.100 DEGREES PIPE LENGTH = 111.18 FEET PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.72 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUlffiD FLOWDEPTH(FT) = 1.06 1.30 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.528 1.114 1.763 2.482 3 .279 4.161 5.141 6 .228 7.438 8.788 10.298 11.993 13.905 16.073 18.547 21.395 24.708 28.613 33.296 39.046 46.350 56.116 70 .389 95.726 111.180 FLOW DEPTH (FT) 1.061 ,047 ,034 ,020 ,007 ,993 0.980 0.966 0.953 0.940 0.926 0.913 0.899 0.886 0.872 0.859 0.845 0 . 832 0.818 0.805 0.791 0.778 0.764 0.751 0.737 0.737 VELOCITY (FT/SEC) 7.685 7 . 809 7.937 8.070 8.207 8.349 8.496 8.649 8.807 8.970 9.140 9.316 9.498 9.688 9.885 10.090 10.303 10.525 10.756 10.997 11.248 11.510 11.784 12.070 12.369 12.371 SPECIFIC ENERGY(FT) 978 995 013 032 054 077 102 129 158 190 224 261 301 344 390 440 494 553 616 684 757 836 922 014 114 115 PRESSURE+ MOMENTUM(POUNDS) 241.60 243 .32 245.17 247.15 249.27 251.53 253.94 256.50 259.23 262 .12 265-19 268-44 271.89 275.53 279.38 283 .45 287.75 292 .30 297.10 302.16 307.51 313 .16 319.13 325.42 332.07 332.12 NODE 6015.00 : HGL = < 352.371>;EGL= < 353.288>;FLOWLINE= < 351.310> ****************************************************************************** FLOW PROCESS FROM NODE 5015.00 TO NODE 6015.90 IS CODE = 5 UPSTREAM NODE 6015.90 ELEVATION = 351.81 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 9.01 13.01 3 .20 0. 80 0.00 = DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.00 0.00 351.81 1.16 24.00 - 351.31 1.30 18.00 90.00 351.81 0.68 18.00 90.00 351.81 0.33 =Q5 EQUALS BASIN INPUT=== 11.037 7.687 4.101 1.129 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.03 638 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01085 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02362 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.094 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.024)+( 0.094)+( 0.000) = 1.118 NODE 6015.90 HGL < 352.515>;EGL= < 354.4 07>;FLOWLINE= < 351.810> ****************************************************************************** FLOW PROCESS FROM NODE 6015.90 TO NODE 6016.00 IS CODE = 3 UPSTREAM NODE 6016.00 ELEVATION = 353.43 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 9.01 CFS CENTRAL ANGLE = 6.700 DEGREES PIPE LENGTH = 43.74 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.70 CRITICAL DEPTH(FT) 1.16 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.72 GFIADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0 .000 0 .715 10 829 2 537 204. 83 1 .295 0 .715 10 840 2 541 204. 99 2 . 647 0 .714 10 850 2 544 205 . 16 4 . 062 0 .714 10 861 2 547 205. 32 5 .545 0 .713 10 872 2 550 205. 48 7 .103 0 .713 10 883 2 553 205. 64 8 .744 0 .712 10 894 2 556 205. 81 10 .476 0 .712 10 905 2 559 205. 97 12 .310 0 .711 10 916 2 563 206 . 13 14 .259 0 .710 10 927 2 566 206. 30 16 .337 0 .710 10 939 2 569 206. 46 18 .562 0 .709 10 950 2 572 206 . 63 20 .955 0 .709 10 961 2 575 206. 79 23 .545 0 .708 10 972 2 579 206 . 96 26 .364 0 .708 10 983 2 582 207 . 13 29 .458 0 .707 10 994 2 585 207 . 29 32 -883 0 .707 11 005 2 588 207. 46 36 .719 0 .706 11 017 2 592 207 . 63 41 .074 0 .705 11 028 2 595 207. 80 43 .740 0 .705 11 034 2 597 207 . 89 NODE 6016.00 : HGL = < 354.145>;EGL= < 355.967>;FLOWLINE= < 353.430> ****************************************************************************** FLOW PROCESS FROM NODE 6016.00 TO NODE 6017.00 IS CODE = 1 UPSTREAM NODE 6017.00 ELEVATION = 361.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.01 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH = 214.40 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0.71 CRITICAL DEPTH(FT) 1.16 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.90 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.703 1.460 2 .276 FLOW DEPTH (FT) 0.901 0.894 0.886 0 . 878 VELOCITY (FT/SEC) 8.123 8.207 8.293 8.381 SPECIFIC ENERGY(FT) 1 .926 1 . 940 1.954 1.969 PRESSURE+ MOMENTUM(POUNDS) 168.83 169.76 170.74 171.75 3 . 158 0 870 8 470 1 985 172.81 4 . 111 0 863 8 562 2 002 173.90 5. 145 0 855 8 657 2 019 175.05 6 . 266 0 847 8 753 2 038 176.23 7 . 487 0 840 8 852 2 057 177 .46 8 . 819 0 832 8 953 2 077 178.74 10. 277 0 824 9 056 2 098 180.07 11. 879 0 816 9 162 2 121 181.44 13 . 647 0 809 9 271 2 144 182.87 15. 608 0 801 9 382 2 169 184.35 17. 796 0 793 9 496 2 194 185.88 20. 255 0 786 9 613 2 221 187.47 23 . 044 0 778 9 733 2 250 189.12 26. 240 0 770 9 856 2 280 190.83 29. 954 0 762 9 982 2 311 192.60 34. 348 0 755 10 112 2 343 194.43 39. 672 0 747 10 245 2 378 196.32 46. 344 0 739 10 381 2 414 198.29 55. 151 0 732 10 521 2 452 200.32 67. 860 0 724 10 665 2 491 202.43 90. 139 0 716 10 813 2 533 204.60 214. 400 0 715 10 829 2 537 204.83 6017 .00 HGL = < 362 001>;EGL= < 363.026>;FLOWLINE= < 361.100 ****************************************************************************** FLOW PROCESS FROM NODE 6017.00 TO NODE 6017.90 IS CODE = 5 UPSTREAM NODE 6017.90 ELEVATION = 361.43 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.01 18.00 45.00 361.43 1.16 11.834 DOWNSTREAM 9.01 18.00 - 361.10 1.16 8.126 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00= ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04391 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01623 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03007 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.120 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.126)+( 0.120)+( 0.000) = 1.246 NODE 6017.90 : HGL = < 362.098>;EGL= < 364.273>;FLOWLINE= < 361.430> ****************************************************************************** FLOW PROCESS FROM NODE 6017.90 TO NODE 6018.00 IS CODE = 1 UPSTRE7VM NODE 6018.00 ELEVATION = 370.01 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.01 CFS PIPE DI-AMETER = 18.00 INCHES PIPE LENGTH = 195.05 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.67 CRITICAL DEPTH(FT) = 1.16 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.677 11.627 2.778 216.86 1.283 0.677 11.635 2.780 216.98 2.623 0.677 11.643 2.783 217.11 4 023 0 676 11 652 2 786 217 24 5 490 0 676 11 660 2 788 217 37 7 030 0 675 11 668 2 791 217 50 8 652 0 675 11 677 2 794 217 62 10 362 0 675 11 685 2 796 217 75 12 172 0 674 11 693 2 799 217 88 14 095 0 674 11 702 2 802 218 01 16 143 0 674 11 710 2 804 218 14 18 335 0 673 11 719 2 807 218 27 20 692 0 673 11 727 2 810 218 40 23 241 0 672 11 736 2 812 218 53 26 014 0 672 11 744 2 815 218 66 29 055 0 672 11 753 2 818 218 79 32 421 0 671 11 761 2 821 218 92 36 187 0 671 11 769 2 823 219 05 40 461 0 671 11 778 2 826 219 18 45 401 0 670 11 787 2 829 219 31 51 249 0 670 11 795 2 832 219 44 58 415 0 670 11 804 2 834 219 58 67 662 0 669 11 812 2 837 219 71 80 712 0 669 11 821 2 840 219 84 103 081 0 668 11 829 2 843 219 97 195 050 0 668 11 830 2 843 219 98 NODE 6018.00 : HGL = < 370.687>;EGL= < 372.788>;FLOWLINE= < 370.010> ****************************************************************************** FLOW PROCESS FROM NODE 6018.00 TO NODE 6019.00 IS CODE = 3 UPSTREAM NODE 6019.00 ELEVATION = 371.14 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 9.01 CFS CENTRAL ANGLE = 4.800 DEGREES PIPE LENGTH = 25.67 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.67 CRITICAL DEPTH(FT) 1.16 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.69 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 . 000 0 .689 11 360 2 695 212 . 80 1 .239 0 .689 11 379 2 700 213 . 08 2 .534 0 .688 11 397 2 706 213 . 36 3 .891 0 .687 11 416 2 712 213 . 65 5 .313 0 . 686 11 435 2 718 213 . 93 6 . 809 0 . 685 11 453 2 723 214 . 21 8 .386 0 .684 11 472 2 729 214 . 50 10 . 052 0 .683 11 491 2 735 214 . 79 11 . 818 0 .683 11 510 2 741 215 . 08 13 .696 0 . 682 11 529 2 747 215 . 37 15 .699 0 .681 11 548 2 753 215. 66 17 . 847 0 .680 11 567 2 759 215 . 95 20 . 159 0 . 679 11 586 2 765 216 . 24 22 .663 0 .678 11 605 2 771 216 . 53 25 .392 0 . 677 11 625 2 777 216 . 83 25 . 670 0 . 677 11 627 2 778 216 . 86 NODE 6019.00 : HGL = < 371.829>;EGL= < 373.835>;FLOWLINE= < 371.140> r***************************************************************************** FLOW PROCESS FROM NODE 6019.00 TO NODE 6020.00 IS CODE = 1 UPSTREAM NODE 6020.00 ELEVATION = 374.59 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.01 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 79 . 21 FEET MANNING'S N = 0 01300 NORMAL DEPTH(FT) 0. 67 CRITICAL DEPTH(FT) 1 . 16 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.16 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .161 6.136 1 746 155 10 0 . 020 1 .142 6.242 1 747 155 17 0 .084 1 .122 6.354 1 749 155 36 0 .195 1 .102 6.472 1 753 155 70 0 .359 1 .083 6.596 1 759 156 18 0 .582 1 .063 6.727 1 766 156 81 0 .870 1 .043 6 . 865 1 776 157 60 1 .232 1 . 024 7.011 1 787 158 55 1 .676 1 .004 7.165 1 802 159 68 2 . 216 0 .984 7.327 1 819 161 00 2 . 864 0 .965 7.499 1 838 162 50 3 .638 0 .945 7 . 680 1 862 164 21 4 .557 0 .925 7 . 872 1 888 166 14 5 .648 0 .906 8.075 1 919 168 30 6 .943 0 .886 8.290 1 954 170 70 8 .485 0 .866 8.518 1 994 173 37 10 .330 0 . 847 8.759 2 039 176 31 12 .553 0 .827 9.016 2 090 179 55 15 .261 0 .807 9.289 2 148 183 . 11 18 .612 0 .788 9.579 2 214 187. 01 22 . 847 0 .768 9.889 2 288 191. 29 28 .375 0 .749 10.220 2 371 195. 97 35 .962 0 .729 10.573 2 466 201. 08 47 .331 0 .709 10.952 2 573 206 . 67 68 .005 0 .690 11.358 2 694 212 . 77 79 .210 0 .689 11.360 2 695 212 . 80 NODE 6020.00 : HGL = < 375.751>;EGL= < 376.336>;FLOWLINE= < 374.590> ****************************************************************************** FLOW PROCESS FROM NODE 6020.00 TO NODE 6020.10 IS CODE = 5 UPSTREAM NODE 6020.10 ELEVATION = 374.92 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 5.73 9 . 01 3 .28 0. 00 0.00 = DIAMETER ANGLE FLOWLINE CRITICAL 18.00 90.00 374.92 0.92 18.00 - 374.59 1.16 18.00 90.00 374.92 0.69 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 3.243 6.138 1.952 0 . 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00298 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00824 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00561 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.022 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.605)+( 0.022)+( 0.000) = 0.628 NODE 6020.10 : HGL = < 376.801>;EGL= < 376.964>;FLOWLINE= < 374.920> ***************************************************************************** FLOW PROCESS FROM NODE 6020.10 TO NODE 6021.00 IS CODE = 1 UPSTREAM NODE 6021.00 ELEVATION = 378.52 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW PIPE LENGTH = 5.73 CFS PIPE DIAMETER = 18.00 INCHES 28.62 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.40 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92 0.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.008 0.033 0.078 0.145 0.237 0.358 0.513 0.705 0.942 1.231 1.581 2. 2 . 3 . 3 . 4 . .004 .516 ,133 ,882 .795 5.917 7.311 9.073 11.348 14.385 18.649 25.190 28.620 FLOW DEPTH (FT) 0.924 0.903 0.882 0.860 0. 839 0.818 0.797 0.776 0.755 0.734 0.713 0.692 0.671 0.650 0.629 0. 608 0.587 0.566 0.545 0.524 0.503 0.482 0.461 0.440 0.434 VELOCITY (FT/SEC) 5 . 018 5.157 5 .305 5.462 SPECIFIC ENERGY(FT) 1.315 1.316 1.319 1.324 .630 . 809 .001 .206 .425 .661 .915 7.188 7.483 7.802 8.149 8.526 8.936 9.386 9.879 10.423 11.023 11-690 12.433 13 .266 13.519 332 343 357 375 397 424 456 495 541 596 661 737 828 935 061 212 391 605 863 3.174 3 .273 PRESSURE+ MOMENTUM(POUNDS) 84.26 84 .33 84.53 84.88 85.39 86.07 86.92 87.96 89.21 90. 68 92.39 94.36 96 . 61 99.17 102.08 105.36 109.06 113.24 117.93 123.23 129.20 135.94 143.57 152.24 154.89 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.88 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1. 881 3 . 243 2 044 160 . 69 3.100 1 . 500 3 . 243 1 663 118 .71 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1 .50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 3 .100 1.500 3 . 242 1 663 118 .71 3 .280 1.477 3 . 252 1 641 116 .28 3 .451 1.454 3 . 271 1 620 113 .97 3.617 1.431 3 . 296 1 600 111 .74 3 .780 1.408 3 . 326 1 580 109 .58 3 .938 1.385 3 . 360 1 560 107 .50 4 . 092 1.362 3 . 399 1 541 105 .48 4 .243 1.339 3 . 441 1 523 103 .54 4 .390 1.316 3 . 487 1 504 101 .68 4.533 1.292 3 . 537 1 487 99 89 4.671 1.269 3 . 591 1 470 98 18 4 . 806 1.246 3 . 650 1 453 96 55 4 935 1 223 3 712 1 437 95 00 5 060 1 200 3 779 1 422 93 54 5 179 1 177 3 850 1 408 92 17 5 292 1 154 3 926 1 394 90 90 5 399 1 131 4 007 1 381 89 72 5 499 1 108 4 093 1 368 88 64 5 592 1 085 4 185 1 357 87 67 5 675 1 062 4 282 1 347 86 80 5 750' 1 039 4 386 1 338 86 06 5 814 1 016 4 497 1 330 85 43 5 867 0 993 4 615 1 324 84 93 5 907 0 970 4 740 1 319 84 56 5 932 0 947 4 874 1 316 84 34 5 941 0 924 5 018 1 315 84 26 28 620 0 924 5 018 1 315 84 26 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 0.45 FEET UPSTREAM OF NODE 6020.10 | I DOWNSTREAM DEPTH = 1.82 5 FEET. UPSTREAM CONJUGATE DEPTH = 0.435 FEET j NODE 6021.00 : HGL = < 379.444>;EGL= < 379 -835>;FLOWLINE= < 378.520> ****************************************************************************** FLOW PROCESS FROM NODE 6021.00 TO NODE 6021.00 IS CODE = 8 UPSTREAM NODE 6021.00 ELEVATION = 378.52 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.73 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.02 FEET/SEC. VELOCITY HEAD = 0.391 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.391) = 0.078 NODE 6021.00 : HGL = < 379.913>;EGL= < 379.913>;FLOWLINE= < 378.520> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6021.00 FLOWLINE ELEVATION = 378.52 ASSUMED UPSTREAM CONTROL HGL = 379.44 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * * SYSTEM 5000 - PA-8 & PA-9 - 100 YEAR STORM EVENT * * ABBOTSFORD AVENUE LATERAL * ************************************************************************** FILE NAME: 5000IT09.DAT TIME/DATE OF STUDY: 14:35 03/05/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POtJNDS) 6015.10- 0.81* 23.26 0.30 10.69 } FRICTION 6015.20- 0.40*Dc 9.62 0.38*Dc 9.61 } CATCH BASIN 6015.00- 0.55* 5.27 0.38 Dc 3.52 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6015.10 FLOWLINE ELEVATION = 351.81 PIPE FLOW = 1.06 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 352.620 FEET NODE 6015.10 : HGL = < 352.620>;EGL= < 352.638>;FLOWLINE= < 351.810> ****************************************************************************** FLOW PROCESS FROM NODE 6015.10 TO NODE 6015.20 IS CODE = 1 UPSTREAM NODE 6015.20 ELEVATION = 352.14 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1-06 CFS PIPE DIAMETER = 18-00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.29 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.81 0.38 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0. 000 0 810 1 089 0 828 23 .26 1. 105 0 793 1 118 0 812 22 .30 2 . 206 0 776 1 149 0 796 21 .37 3 . 302 0 759 1 181 0 781 20 .47 4 . 393 0 742 1 216 0 765 19 .60 5. 479 0 725 1 253 0 749 18 .77 6. 558 0 708 1 292 0 734 17 .96 7 . 629 0 691 1 333 0 718 17 .19 8. 693 0 674 1 377 0 703 16 .45 9. 747 0 657 1 424 0 688 15 .74 10. 791 0 640 1 474 0 673 15 .07 11. 822 0 623 1 528 0 659 14 .43 12. 840 0 606 1 585 0 645 13 .82 13 . 841 0 589 1 647 0 631 13 .25 14 . 823 0 572 1 713 0 617 12 .72 15. 783 0 555 1 785 0 604 12 .22 16 . 717 0 538 1 862 0 591 11 .76 17 . 620 0 520 1 945 0 579 11 .34 18. 485 0 503 2 036 0 568 10 .96 19 . 305 0 486 2 134 0 557 10 .62 20. 069 0 469 2 242 0 547 10 .33 20. 763 0 452 2 359 0 539 10 .08 21. 369 0 435 2 489 0 532 9 .88 21. 862 0 418 2 631 0 526 9 .73 22 . 202 0 401 2 789 0 522 9 .64 22. 250 0 395 2 851 0 521 9 .62 015 .20 HGL = < 352 535>;EGL= < 352.661>;FLOWLINE= < 352. 140 ****************************************************************************** FLOW PROCESS FROM NODE 6015.20 TO NODE 6015.00 IS CODE = 8 UPSTREAM NODE 6015.00 ELEVATION = 352.14 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.06 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 2.85 FEET/SEC. VELOCITY HEAD = 0.126 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.126) = 0.025 NODE 6015.00 : HGL = < 352.687>;EGL= < 352.687>;FLOWLINE= < 352.140> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6015.00 FLOWLINE ELEVATION = 352.14 ASStJMED UPSTREAM CONTROL HGL = 352.52 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 5000 - PA-8 & PA-9 - 100 YEAR STORM EVENT * ABBOTSFORD AVENUE LATERAL ************************************************************************** FILE NAME: 5000IT10.DAT TIME/DATE OF STUDY: 14:48 03/05/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTRE.AM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 6015.30- 0.81 45.27 0.35* 77.98 ) FRICTION 6015.40- 0.71*Dc 44.08 0.71*Dc 44.08 } CATCH BASIN 6015.40- 1.04* 23.79 0.71 Dc 15.55 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGFIATION FORMULATION ****************************************************************************** DOWNSTRE.AM PIPE FLOW CONTROL DATA: NODE NUMBER = 6015.30 FLOWLINE ELEVATION = 351.81 PIPE FLOW = 3.49 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 352.620 FEET NODE 6015.30 : HGL = < 352.160>;EGL= < 354.079>;FLOWLINE= < 351.810> ****************************************************************************** FLOW PROCESS FROM NODE 6015.30 TO NODE 6015.40 IS CODE = 1 UPSTREAM NODE 6015.40 ELEVATION = 353.46 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES{LACFCD): PIPE FLOW = 3.49 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.28 CRITICAL DEPTH(FT) = 0.71 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.71 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0 .713 4 216 0 989 44 .08 0. 004 0 .695 4 353 0 990 44 .12 0. 018 0 . 678 4 500 0 992 44 .25 0. 043 0 . 660 4 656 0 997 44 .48 0. 080 0 .643 4 823 1 004 44 .81 0. 131 0 .625 5 001 1 014 45 .24 0. 199 0 .608 5 193 1 027 45 .79 0. 285 0 .591 5 399 1 043 46 .47 0. 394 0 .573 5 621 1 064 47 .28 0. 528 0 .556 5 860 1 089 48 .24 0. 693 0 .538 6 119 1 120 49 .35 0. 894 0 .521 6 399 1 157 50 .65 1. 139 0 .503 6 704 1 202 52 .13 1. 437 0 .486 7 037 1 255 53 .83 1. 799 0 .468 7 401 1 319 55 .76 2 . 242 0 .451 7 800 1 396 57 .96 2 . 787 0 .434 8 239 1 488 60 .46 3 . 461 0 .416 8 725 1 599 63 .30 4 . 308 0 .399 9 264 1 732 66 .52 5 . 3 87 0 .381 9 865 1 893 70 .19 6 . 794 0 .364 10 538 2 089 74 .37 8 . 250 0 .350 11 111 2 269 77 .98 NODE 6015 .40 : HGL = < 354. 173>;EGL= < 354.449>;FLOWLINE= < 353. 460> ****************************************************************************** FLOW PROCESS FROM NODE 6015.40 TO NODE 6015.40 IS CODE = 8 UPSTREAM NODE 6015.40 ELEVATION = 353.46 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.49 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.22 FEET/SEC. VELOCITY HEAD = 0.276 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.276) = 0.055 NODE 6015.40 HGL < 354.504>;EGL= < 354.504>;FLOWLINE= < 353.460> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 6015.40 FLOWLINE ELEVATION = 353.46 ASSUMED UPSTREAM CONTROL HGL = 354.17 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAtJLICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 5000 - PA-8 & PA-9 - 100 YEAR STORM EVENT * ABBOTSFORD AVENUE LATERAL ' ************************************************************************** FILENAME: 5000IT11.DAT TIME/DATE OF STUDY: 15:01 03/05/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 6020.20- 1.98* 147.86 0.36 69.00 } FRICTION 6020.30- 0.70*Dc 41.64 0.70*Dc 41.64 } CATCH BASIN 6020.00- 1.02* 22.44 0.70 Dc 14.73 MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 6020.20 FLOWLINE ELEVATION = 374.92 PIPE FLOW = 3.3 4 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 376.900 FEET NODE 6020.20 : HGL = < 376.900>;EGL= < 376.955>;FLOWLINE= < 374.920> ****************************************************************************** FLOW PROCESS FROM NODE 6020.20 TO NODE 6020.30 IS CODE = 1 UPSTREAM NODE 6020.30 ELEVATION = 376.24 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.3 4 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESStJRE HEAD (FT) 1 .98 =========== ======== = = = = = == ====== ===== ======== ==== === ======= =========== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .980 1 .890 2 . 035 147 .86 3 .019 1 .500 1 .890 1 .555 94 .94 NORMAL DEPTH(FT) = 0.29 CRITICAL DEPTH(FT) 0.70 ASSUMED DOWNSTREAM PRESSURE HEAD(FT ) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 3 .019 1 .500 1 .889 1 .555 94 .94 3 .218 1 .468 1 .900 1 . 524 91 .46 3 .413 1 .436 1 .918 1 .493 88 .07 3 .606 1 .404 1 .942 1 .462 84 .76 3 .796 1 .371 1 .971 1 .432 81 .53 3 .985 1 .339 2 .005 1 .402 78 .37 4 .172 1 .307 2 .043 1 .372 75 .31 4 .357 1 .275 2 .086 1 .343 72 .34 4 .540 1 .243 2 .133 1 .314 69 .47 4 .720 1 .211 2 .185 1 .285 66 .70 4 . 898 1 .179 2 .242 1 257 64 . 05 5 .072 1 .146 2 304 1 229 61 .50 5 .244 1 .114 2 .372 1 202 59 .08 5 .411 1 .082 2 446 1 175 56 .78 5 .574 1 .050 2 527 1 149 54 .61 5 .733 1 . 018 2 615 1 124 52 .57 5 .885 0 .986 2 712 1 100 50 . 68 6 .031 0 .954 2 817 1 077 48 .94 6 .169 0 .921 2 933 1 055 47 .36 6 .298 0 . 889 3 060 1 035 45 .94 6 .416 0 . 857 3 199 1 016 44 .71 6 .521 0 .825 3 353 1 000 43 .66 6 . 610 0 .793 3 523 0 986 42 . 81 6 .680 0 .761 3 711 0 975 42 18 6 .726 0 .729 3 922 0 968 41 78 6 .743 0 .696 4 157 0 965 41 64 8 .250 0 .696 4 157 0 965 41 64 NODE 6020.30 : HGL = < 376.936>;EGL= < 377.205>;FLOWLINE= < 376.240> ****************************************************************************** FLOW PROCESS FROM NODE 6020.30 TO NODE 6020.00 IS CODE = 8 UPSTREAM NODE 6020.00 ELEVATION = 376.24 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.34 CFS PIPE DIAMETER = IS 3.00 INCHES FLOW VELOCITY = 4.16 FEET/SEC. VELOCITY HEAD = 0 269 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 269) = 0.054 NODE 6020.00 : HGL = < 377.259>;EGL= < 377.259>;FLOWLINE= < 376.240> *************************************************** *************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6020.00 FLOWLINE ELEVATION = 376.24 ASSUMED UPSTREAM CONTROL HGL = 376.94 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 5000 - PA-8 & PA-9 - 100 YEAR STORM EVENT * ALTAMONT AVENUE MAIN LINE ************************************************************************** FILENAME: 5000IT12.DAT TIME/DATE OF STUDY: 14:10 10/02/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used. NODE NUMBER 5010.32- } 5010.41- } 5010.49- ) 5010.51- } 5010.52- } 5010.59- ) 5010.53- } 5010.54- } 5010.55- } 5010.56- } 5010.57- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 5.80* 1886.19 } HYDRAULIC JUMP 2.02 DC 812.79 DOWNSTREAM RUN 2.47 } 5010.5! 5010.5! FRICTION JUNCTION FRICTION 1.87 Dc FRICTION+BEND 1.87*Dc JUNCTION 2.72* FRICTION+BEND 1.50* FRICTION 0.84 Dc FRICTION+BEND 0.84 Dc FRICTION 0.84*Dc JUNCTION 1.11 FRICTION 0. 70*Dc CATCH BASIN 1. 02* 731.44 651.08 651.08 241.84 107.59 } HYDRAULIC JUMP 66 . 01 66 .01 66 . 01 59.07 42 .13 22 .71 FLOW DEPTH(FT) 1.35 1.69* 1.23* 1.36* 1.87*Dc 0.50 0.50 0.50* 0.50* 0 . 84*Dc 0.32* 0.70*Dc 0.70 DC PRESSURE+ MOMENTtJM (POUNDS) 994.00 847.50 805.24 741.88 651.08 92.78 92.69 91. 82 91.47 66 . 01 81.78 42.13 14 . 89 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 \NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5010.32 FLOWLINE ELEVATION = 312-12 PIPE FLOW = 35-32 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 317.920 FEET NODE 5010.32 : HGL = < 317.920>;EGL= < 318.724>;FLOWLINE= < 312.120> *****************************************************************************' FLOW PROCESS FROM NODE 5010.32 TO NODE 5010.41 IS CODE = 1 UPSTREAM NODE 5010.41 ELEVATION = 317.87 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3 5.32 CFS PIPE DIAMETER = PIPE LENGTH = 239.68 FEET MANNING'S 3 0.00 INCHES N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.33 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH{FT) = 1.69 2.02 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1 .693 9 979 3 240 847 50 1 268 1 . 679 10 076 3 256 850 93 2 652 1 .664 10 175 3 273 854 55 4 160 1 .650 10 276 3 290 858 36 5 807 1 .635 10 379 3 309 862 37 7 605 1 .621 10 485 3 329 866 58 9 572 1 .606 10 594 3 350 871 00 11 725 1 .592 10 705 3 373 875 64 14 086 1 .577 10 820 3 396 880 50 16 683 1 .563 10 937 3 421 885 58 19 545 1 .549 11 057 3 448 890 90 22 711 1 .534 11 180 3 476 896 46 26 226 1 .520 11 306 3 506 902 26 30 148 1 .505 11 435 3 537 908 31 34 548 1 .491 11 568 3 570 914 62 39 520 1 .476 11 704 3 605 921 20 45 185 1 .462 11 843 3 641 928 05 51 709 1 .447 11 986 3 680 935 19 59 324 1 .433 12 133 3 720 942 62 68 369 1 .418 12 284 3 763 950 35 79 373 1 .404 12 439 3 808 958 38 93 216 1 .390 12 599 3 856 966 74 111 556 1 .375 12 762 3 906 975 43 138 112 1 .361 12 930 3 958 984 45 184 819 1 .346 13 103 4 014 993 83 239 680 1 .346 13 106 4 015 994 00 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 5. 80 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 5.800 7 .195 6 . 604 1886.19 199.092 2.500 7.195 3 .304 875.37 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2 .50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 199.092 2.500 7.193 3 .304 875 .37 200.129 2.481 7.201 3-286 870.03 201.055 2.461 7.217 3-271 865.17 201.914 2.442 7.236 3.256 860.62 202 721 2 . 423 7 . 259 3 242 856 35 203 483 2 . 403 7 .286 3 228 852 31 204 203 2 . 384 7 .315 3 216 848 49 204 886 2 . 365 7 .347 3 204 844 89 205 534 2 . 346 7 .382 3 192 841 48 206 147 2. 326 7 .419 3 181 838 27 206 727 2. 307 7 .458 3 171 835 25 207 274 2 . 288 7.500 3 162 832 42 207 789 2. 268 7 . 544 3 153 829 78 208 272 2. 249 7.590 3 144 827 33 208 721 2 230 7 . 639 3 136 825 06 209 138 2 210 7.689 3 129 822 97 209 522 2 191 7.742 3 122 821 08 209 871 2 172 7 .797 3 116 819 37 210 184 2 152 7.855 3 111 817 85 210 461 2 133 7 .914 3 106 816 53 210 701 2 114 7 .976 3 102 815 40 210 901 2 095 8.040 3 099 814 47 211 060 2 075 8.106 3 096 813 74 211 177 2 056 8.175 3 094 813 21 211 248 2 037 8.246 3 093 812 89 211 273 2 017 8.319 3 093 812 79 239 680 2 017 8.319 3 .093 812 79 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 187.15 FEET UPSTREAM OF NODE 5010.32 | I DOWNSTREAM DEPTH = 2.698 FEET. UPSTREAM CONJUGATE DEPTH = 1.446 FEET | NODE 5010.41 : HGL = < 319.563>;EGL= < 321.110>;FLOWLINE= < 317.870> ****************************************************************************** FLOW PROCESS FROM NODE 5010.41 TO NODE 5010.49 IS CODE = 5 UPSTREAM NODE 5010.49 ELEVATION = 318.20 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAlffiTER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 30.09 30.00 0.00 318.20 1.87 12.456 DOWNSTREAM 35.32 30.00 - 317.87 2.02 9.983 LATERAL #1 2.52 18.00 90.00 318.20 0.60 1.550 LATERAL #2 2.71 18.00 90.00 318.20 0.62 1.667 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02246 DOWNSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.01156 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0-01701 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.068 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JtJNCTION LOSSES = ( 0.665) + ( 0.068) + ( 0.000) = 0.734 NODE 5010.49 : HGL = < 319.435>;EGL= < 321.844>;FLOWLINE= < 318.200> ****************************************************************************** FLOW PROCESS FROM NODE 5010.49 TO NODE 5010.51 IS CODE = 1 UPSTREAM NODE 5010.51 ELEVATION = 320.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 30.09 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 102.84 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1-21 CRITICAL DEPTH(FT) = 1-87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1-36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ JL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0 . 000 1 . 360 11 . 020 3 . 247 741 . 88 40 1 . 934 1 . 354 11 . 081 3. 262 744 . 88 40 3 . 978 1 . 348 11 . 142 3 . 277 746 . 96 6 . 141 1. 342 11 . 204 3. 293 749 . 56 8. 435 1 336 11 267 3. 309 752 22 10. 874 1 330 11 330 3 325 754 92 13 471 1 324 11 394 3 341 757 67 16 244 1 318 11 459 3 359 760 47 19 214 1 312 11 525 3 376 763 32 22 404 1 306 11 591 3 394 766 22 25 844 1 300 11 658 3 412 769 17 29 567 1 294 11 726 3 431 772 17 33 617 1 288 11 795 3 450 775 22 38 045 1 282 11 .864 3 470 778 33 42 918 1 276 11 .935 3 490 781 50 48 321 1 270 12 .006 3 510 784 72 54 .366 1 .264 12 .078 3 .531 787 99 61 .206 1 .258 12 .151 3 .553 791 32 69 .053 1 .252 12 .225 3 .575 794 71 78 .219 1 .246 12 .300 3 .597 798 .16 89 .189 1 .241 12 .376 3 .620 801 . 66 102 .773 1 .235 12 .452 3 .644 805 .23 102 .840 1 .235 12 .453 3 .644 805 .24 NODE 5010.51 : HGL = < 322.030>;EGL= < 323.917>;FLOWLINE= < 320.670> ****************************************************************************** FLOW PROCESS FROM NODE 5010.51 TO NODE 5010.52 IS CODE = 3 UPSTREAM NODE 5010.52 ELEVATION = 321.59 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 3 0.09 CFS CENTRAL ANGLE = 45.000 DEGREES PIPE DIAMETER = 30.00 INCHES MANNING'S N = 0.01300 PIPE LENGTH = 35.34 FEET N0R14AL DEPTH (FT) 1.18 CRITICAL DEPTH(FT) = 1.87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0. 000 1 870 7. 639 2 776 651. 08 0. 043 1 842 7. 758 2 777 651. 29 0 179 1 815 7 882 2 780 651. 91 0 416 1 787 8 Oil 2 784 652 97 0 766 1 760 8 146 2 791 654 48 1 239 1 .732 8 288 2 800 656 45 1 850 1 .705 8 436 2 811 658 92 2 616 1 .677 8 591 2 824 661 89 3 556 1 . 650 8 753 2 840 665 40 4 694 1 . 622 8 922 2 859 669 45 6 056 1 .595 9 100 2 882 674 09 7 677 1 .567 9 286 2 907 679 33 9 599 1 .540 9 481 2 937 685 21 11 872 1 .512 9 686 2 970 691 76 14 561 1 .485 9 900 3 008 699 01 17 752 1 .457 10 126 3 .051 707 00 21 554 1 .430 10 362 3 .098 715 78 26 118 1 .403 10 611 3 .152 725 38 31 656 1 .375 10 .873 3 .212 735 .85 35 .340 1 .360 11 .020 3 .247 741 . 88 NODE 5010.52 : HGL = < 323.460>;EGL= < 324.366>;FLOWLINE= < 321.590> ****************************************************** ************************ UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 FLOW PROCESS FROM NODE 5010.52 TO NODE 5010.59 IS CODE = 5 UPSTREAM NODE 5010.59 ELEVATION = 322.59 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 4 76 18.00 0.00 322.59 0.84 2.694 30.09 30.00 - 321.59 1.87 7.642 25 35 24.00 80.00 322.59 1-77 8-534 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL lOTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00205 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00652 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00428 JUNCTION LENGTH = 4-00 FEET FRICTION LOSSES = 0.017 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.037)+( 0.017)+( 0.000) = 1.054 ' NODE 5010.59 : HGL = < 325.308>;EGL= < 325.421>;FLOWLINE= < 322.590> ****************************************************************************** FLOW PROCESS FROM NODE 5010.59 TO NODE 5010.53 IS CODE = 3 UPSTREAM NODE 5010.53 ELEVATION = 323.90 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 4.76 CFS PIPE DIAMETER = 18.00 INCHES CENTRAL ANGLE = 45.000 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 35.34 FEET BEND COEFFICIENT(KB) = 0.17678 FLOW VELOCITY = 2.69 FEET/SEC. VELOCITY HEAD = 0.113 FEET HB=KB*(VELOCITY HEAD) = ( 0.177)*( 0.113) = 0.020 SF=(Q/K)**2 = (( 4.76)/( 105.052))**2 = 0.00205 HF=L*SF = ( 35.34)*(0.00205) = 0.073 TOTAL HEAD LOSSES = HB + HF = ( 0.020)+( 0.073) = 0.092 NODE 5010.53 : HGL = < 325.400>;EGL= < 325.513>;FLOWLINE= < 323.900> ****************************************************************************** FLOW PROCESS FROM NODE 5010.53 TO NODE 5010.54 IS CODE = 1 UPSTREAM NODE 5010.54 ELEVATION = 325.62 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.76 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 46.36 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.50 CRITICAL DEPTH(FT) = 0^84 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORmTION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.500 9.229 1-823 91.82 0.917 0.500 9.234 1.825 91.86 1.874 0.500 9.239 1.826 91.90 2.874 0.499 9.244 1.827 91.94 3.922 0.499 9.249 1.828 91.98 5 021 0.499 9.254 1.830 92.02 6 178 0.499 9-259 1-831 92.06 7 399 0.499 9.264 1.832 92.10 8.690 0.498 9.269 1-833 92.14 10.061 0.498 9.274 1-835 92.18 11.521 0.498 9.279 1.836 92.22 13 083 0 498 9 284 1 837 92 26 14 762 0 498 9 289 1 838 92 30 16 577 0 497 9 294 1 840 92 34 18 552 0 497 9 299 1 841 92 38 20 717 0 497 9 304 1 842 92 42 23 112 0 497 9 309 1 843 92 46 25 792 0 497 9 314 1 845 92 50 28 832 0 496 9 319 1 846 92 54 32 .344 0 496 9 324 1 847 92 58 36 .502 0 496 9 329 1 848 92 62 41 .594 0 496 9 334 1 850 92 66 46 .360 0 496 9 .338 1 851 92 69 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.50 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.500 2.694 1.613 107 .59 0.010 1.500 2.694 1.613 107.55 1.50 ASSUMED DOWNSTREAM PRESSURE HE.AD(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0 010 1 500 2 693 1. 613 107 . 55 0 738 1 474 2 703 1. 587 104. 73 1 441 1 447 2 723 1. 562 102. 02 2 129 1 421 2 749 1 538 99. 38 2 804 1 394 2 779 1 514 96 82 3 466 1 368 2 815 1 491 94 34 4 117 1 341 2 854 1 468 91 93 4 756 1 315 2 898 1 445 89 60 5 383 1 288 2 947 1 423 87 36 5 997 1 262 2 999 1 402 85 20 6 598 1 235 3 056 1 380 83 13 7 185 1 209 3 118 1 360 81 15 7 756 1 182 3 185 1 340 79 28 8 309 1 156 3 256 1 321 77 50 8 844 1 129 3 334 1 302 75 82 9 358 1 103 3 416 1 284 74 26 9 848 1 077 3 506 1 267 72 81 10 312 1 050 3 601 1 252 71 48 10 747 1 024 3 704 1 237 70 28 11 147 0 997 3 815 1 223 69 21 11 .508 0 971 3 933 1 211 68 .27 11 825 0 944 4 062 1 201 67 49 12 090 0 918 4 200 1 192 66 .86 12 .294 0 . 891 4 349 1 185 66 .40 12 .427 0 .865 4 510 1 181 66 .11 12 .475 0 .838 4 .685 1 .179 66 .01 46 .360 0.838 4 HYDRAUI .685 -.IC JUMP 1.179 66 .01 PRESSURE+MOMENTUM BALANCE OCCURS AT 3.92 FEET UPSTREAM OF NODE 5010.53 DOWNSTREAM DEPTH = 1.349 FEET. UPSTREAM CONJUGATE DEPTH =0.496 FEET NODE 5010.54 HGL < 326.120>;EGL= < 327.443>;FLOWLINE= < 325.620> ***************************************************************************** FLOW PROCESS FROM NODE 5010.54 TO NODE 5010.55 IS CODE = 3 UPSTREAM NODE 5010.55 ELEVATION = 326.02 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 4.76 CFS CENTRAL ANGLE = 3.000 DEGREES PIPE LENGTH = 10.95 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.50 CRITICAL DEPTH(FT) = 0. 84 0.50 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 0 502 9 184 1 812 91 47 0 920 0 502 9 189 1 814 91 50 1 .880 0 501 9 194 1 815 91 54 2 .883 0 501 9 198 1 816 91 58 3 .934 0 501 9 203 1 817 91 61 5 .036 0 501 9 208 1 818 91 65 6 .196 0 501 9 212 1 819 91 69 7 .420 0 500 9 217 1 820 91 73 8 .715 0 500 9 222 1 822 91 76 10 .089 0 500 9 226 1 823 91 80 10 .950 0 500 9 229 1 823 91 82 NODE 5010.55 HGL < 326.522>;EGL= < 327.832>;FLOWLINE= < 326.020> ****************************************************************************** FLOW PROCESS FROM NODE 5010.55 TO NODE 5010.56 IS CODE = 1 UPSTREAM NODE 5010.56 ELEVATION = 333.46 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.76 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 193.27 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.49 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.84 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0. 84 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0 000 0. 838 4 685 1 179 66. 01 0 014 0. 824 4 782 1 180 66. 04 0 058 0. 811 4 884 1 181 66. 13 0 134 0. 797 4 991 1 184 66 27 0 248 0. 783 5 103 1 187 66 48 0 402 0. 769 5 219 1 192 66 76 0 603 0. 755 5 342 1 198 67 11 0 855 0. 741 5 470 1 206 67 53 1 166 0. 727 5 605 1 215 68 02 1 544 0. 713 5 746 1 226 68 59 1 999 0. 699 5 894 1 239 69 25 2 543 0. 685 6 050 1 254 70 00 3 191 0. 671 6 214 1 271 70 84 3 960 0. 657 6 387 1 291 71 78 4 874 0. 643 6 570 1 314 72 83 5 963 0. 630 6 763 1 340 73 99 7 266 0-616 6 966 1 370 75 26 8 838 0. 602 7 182 1 403 76 67 10 753 0. 588 7 411 1 441 78 21 13 122 0 574 7 653 1 484 79 .90 16 117 0. 560 7 911 1 532 81 75 20 025 0 546 8 185 1 587 83 76 25 387 0 532 8 477 1 649 85 .96 33 .417 0 518 8 789 1 .718 88 .36 48 .010 0 504 9 122 1 .797 90 .98 193 .270 0 502 9 .184 1 . 812 91 .47 NODE 5010.56 : HGL = < 334.298>;EGL= < 334.639>;FLOWLINE= < 333.460> ****************************************************************************** FLOW PROCESS FROM NODE 5010.56 TO NODE 5010.57 IS CODE = 5 UPSTREAM NODE 5010.57 ELEVATION = 333.79 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 3 .37 4.76 1.39 0.00 DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 18.00 90.00 333.79 0.70 18.00 - 333.46 0.84 18.00 90.00 333.79 0.44 0.00 0.00 0.00 0.00 VELOCITY (FT/SEC) 12.175 4.686 3 .199 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.10249 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00568 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05409 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.216 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.557)+( 0.216)+( 0.000) = 1.773 NODE 5010.57 HGL < 334.111>;EGL= < 336.413>;FLOWLINE= < 333.790> ****************************************************************************** FLOW PROCESS FROM NODE 5010.57 TO NODE 5010.58 IS CODE = 1 UPSTREAM NODE 5010.58 ELEVATION = 336.90 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.37 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.30 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.7 0 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.70 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0 000 0 700 4 169 0 970 42 13 0 005 0 684 4 297 0 970 42 16 0 023 0 667 4 433 0 973 42 28 0 054 0 651 4 577 0 977 42 47 0 100 0 635 4 731 0 983 42 74 0 163 0 619 4 895 0 991 43 11 0 247 0 603 5 069 1 002 43 57 0 353 0 587 5 256 1 016 44 14 0 487 0 571 5 457 1 033 44 81 0 651 0 555 5 672 1 055 45 61 0 851 0 539 5 903 1 080 46 53 1 095 0 523 6 152 1 111 47 60 1 389 0 506 6 421 1 147 48 82 1 .745 0 490 6 712 1 190 50 20 2 .176 0 474 7 028 1 242 51 77 2 . 699 0 458 7 372 1 302 53 55 3 .338 0 .442 7 747 1 374 55 55 4 .124 0 .426 8 158 1 460 57 81 5 .102 0 .410 8 610 1 561 60 36 6 .339 0 .394 9 108 1 682 63 23 7 .940 0 .378 9 659 1 827 66 47 10 .079 0 .361 10 272 2 001 70 14 13 .086 0 .345 10 957 2 .211 74 29 17 .705 0 .329 11 .727 2 .466 79 .02 22.250 0.321 12.172 2.623 81.78 NODE 5010.58 : HGL = < 337.600>;EGL= < 337.870>;FLOWLINE= < 336.900> ****************************************************************************** FLOW PROCESS FROM NODE 5010.58 TO NODE 5010.58 IS CODE = 8 UPSTREAM NODE 5010.58 ELEVATION = 336.90 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.37 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.17 FEET/SEC. VELOCITY HEAD = 0.270 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.270) = 0.054 NODE 5010.58 : HGL = < 337.924>;EGL= < 337.924>;FLOWLINE= < 336.900> ********************* ********************************************************* UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5010.58 FLOWLINE ELEVATION = 336.90 ASSUMED UPSTREAM CONTROL HGL = 337.60 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver- 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 5000 - PA-8 & PA-9 - 100 YEAR STORM EVENT * ALTAMONT AVENUE. DA VITA TERRACE. STRATFIELD DRIVE MAIN LINE ************************************************************************** FILENAME: 5000IT13.DAT TIME/DATE OF STUDY: 16:02 10/02/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 5010.65- 5010.66 5010.67 5010.68 5010.69 5010.80 5010.89 5010.90 5011.00 5011.10 5011.19 5011.20 5011.29 5011.30 5011.40 5011.50 5011.60 5011.70 5011.79 UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 3 .45 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 1.43 Dc FRICTION+BEND 1.43 Dc FRICTION JUNCTION FRICTION JUNCTION FRICTION 1.78 Dc 1.79 Dc 1.78 Dc 1.79 Dc 1.78*Dc 3.54* 651.16 } HYDRAULIC JUMP 296.64 1.43*Dc 2.24 1.43 Dc 1.44 Dc 1.43 Dc FRICTION+BEND 1.43 Dc FRICTION 1.43 Dc FRICTION+BEND 1.43 Dc FRICTION 1.43*Dc JUNCTION 2.11* FRICTION DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM{POUNDS) 894.08 0.83* 1087.50 594.08 0.75* 1220.35 594.08 0.72* 1301.56 594.08 1.33* 667.79 594.08 1.36* 657.25 594.08 1.78*Dc 594.08 0.76 465.52 0.76* 463.04 296.64 0.78* 448.67 296.64 1.43*Dc 296.64 397.89 0.51* 780.11 296.64 1.06* 334.71 296.64 1.16* 315.27 296.64 1.16* 314.76 296.64 1.17* 314.10 296.64 1.21* 309.07 296.64 1.29* 301.48 296.64 1.43*Dc 296.64 208.42 0.92 119.87 5011.80- 1.26* 122.95 0.88 122.35 } FRICTION+BEND ) HYDRAULIC JUMP 5011.85- 1.05 DC 117.05 0.79* 130.77 } FRICTION 5011.90- 1.05 Dc 117.05 0.76* 133.52 ) JUNCTION 5011.99- 1.05 Dc 117.05 0.93* 119.58 } FRICTION+BEND 5012.00- 1.05 DC 117.05 0.93* 119.38 ) FRICTION 5012.10- 1.05*Dc 117.05 1.05*Dc 117.05 } JUNCTION 5012.19- 1.64* 128.76 0.46 121.99 } FRICTION ) HYDRAULIC JUMP 5012.20- 0.88*Dc 75-07 0.88*Dc 75.07 } CATCH BASIN 5012.20- 1.32* 41.69 0.88 Dc 25.67 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5010.65 FLOWLINE ELEVATION = 322.09 PIPE FLOW = 25.90 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 325.540 FEET NODE 5010.65 : HGL = < 322.916>;EGL= < 329.856>;FLOWLINE= < 322.090> ****************************************************************************** FLOW PROCESS FROM NODE 5010.65 TO NODE 5010.66 IS CODE = 1 UPSTREAM NODE 5010.66 ELEVATION = 325.78 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 25.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 46.45 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.89 CRITICAL DEPTH(FT) = 1.78 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.75 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS 0 . 000 0 754 23 883 9 617 1220 .35 2. 595 0 759 23 658 9 456 1209 .39 5. 274 0 765 23 436 9 299 1198 .63 8. 047 0 770 23 218 9 146 1188 .07 10. 922 0 775 23 004 8 998 1177 .69 13 . 908 0 781 22 794 8 854 1167 .51 17. 019 0 786 22 587 8 713 1157 .50 20. 267 0 791 22 384 8 576 1147 . 68 23 . 668 0 797 22 184 8 443 1138 .03 27. 241 0 802 21 987 8 314 1128 .55 31. 009 0 807 21 794 8 187 1119 .23 34. 999 0 813 21 604 8 064 1110 . 08 39. 245 0 818 21 417 7 945 1101 . 09 43 . 786 0 823 21 232 7 828 1092 .25 46. 450 0 826 21 133 7 766 1087 .50 OIC .66 HGL = < 326 534>;EGL= < 335.397>;FLOWLINE= < 325. 780> ****************************************************************************** FLOW PROCESS FROM NODE 5010.66 TO NODE 5010.67 IS CODE = 5 UPSTREAM NODE 5010.67 ELEVATION = 326.11 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 25.90 24.00 13.00 326.11 25.90 24.00 - 325.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.78 1.78 0.00 0.00 VELOCITY (FT/SEC) 25.556 23.890 0.000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.17276 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.14347 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.15812 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.632 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.940)+( 0.632)+( 0.000) = 1.572 NODE 5010.67 : HGL = < 326.828>;EGL= < 336.969>;FLOWLINE= < 326.110> ****************************************************************************** FLOW PROCESS FROM NODE 5010.67 TO NODE 5010.68 IS CODE = 1 UPSTREAM NODE 5010.68 ELEVATION = 338.20 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 25.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 44.65 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.64 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: l.li DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0 .000 1 .327 11 703 3 455 667 .79 0 .309 1 .299 11 987 3 532 678 .28 0 .657 1 .272 12 287 3 617 689 .70 1 .047 1 .244 12 606 3 713 702 .12 1 .484 1 .216 12 944 3 820 715 .62 1 .976 1 .189 13 303 3 939 730 .25 2 .528 1 .161 13 685 4 071 746 .12 3 .151 1 .134 14 091 4 219 763 .31 3 .853 1 .106 14 524 4 384 781 .92 4 .648 1 . 079 14 986 4 568 802 .08 5 .550 1 .051 15 479 4 774 823 .90 6 .577 1 .023 16 006 5 004 847 .55 7 .751 0 .996 16 571 5 262 873 .17 9 .102 0 .968 17 177 5 553 900 .97 10 . 665 0 .941 17 829 5 880 931 .14 12 .486 0 . 913 18 531 6 248 963 .92 14 .629 0 . 886 19 288 6 666 999 .59 17 . 177 0 . 858 20 107 7 140 1038 .46 20 .251 0 . 830 20 995 7 679 1080 .88 24 .026 0 . 803 21 961 8 296 1127 .27 28 .778 0 .775 23 013 9 004 1178 .12 34 .966 0 .748 24 163 9 819 1233 .97 43 .460 0 .720 25 424 10 764 1295 .50 44 .650 0 .718 25 548 10 859 1301 .56 NODE 5010.68 HGL = < 339. 527>;EGL= < 341.655>;FLOWLINE= < 338. 200 ****************************************************************************** FLOW PROCESS FROM NODE 5010.68 TO NODE 5010.69 IS CODE = 5 UPSTREAM NODE 5010.69 ELEVATION = 338.53 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 25.90 25 . 90 0.00 0.00 0. 00=^ DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 24.00 13.00 338.53 1.78 11.412 24.00 - 338.20 1.78 11.706 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.000 =Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02032 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02163 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02097 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.084 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.171)+( 0.084)+( 0.000) = 0.255 NODE 5010.69 HGL < 339.887>;EGL= < 341.909>;FLOWLINE= < 338.530> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5010.80 5010.69 TO NODE ELEVATION = 5010.80 IS CODE = 1 341.91 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 25.90 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 160.54 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.34 CRITICAL DEPTH(FT) = 1.7 8 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.78 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .781 8.762 2 .974 594 .08 0 .071 1 .763 8.829 2 975 594 .20 0 .257 1 .746 8.900 2 976 594 .51 0 .565 1 .728 8.973 2 979 595 .02 1 .002 1 .710 9 .050 2 983 595 .71 1 .578 1 .693 9.131 2 988 596 .61 2 .306 1 .675 9 .214 2 994 597 .70 3 .199 1 .657 9.301 3 002 598 .99 4 .274 1 .640 9 .392 3 010 600 .50 5 .552 1 .622 9.486 3 020 602 .21 7 .057 1 . 605 9 .584 3 032 604 . 13 8 . 820 1 .587 9.686 3 045 606 .28 10 .878 1 .569 9 .792 3 059 608 .65 13 .276 1 .552 9 . 901 3 075 611 .25 16 . 075 1 .534 10.015 3 092 614 .09 19 .349 1 .516 10.132 3 111 617 .17 23 .198 1 .499 10.255 3 132 620 .50 27 .759 1 . 481 10.381 3 155 624 . 09 33 .223 1 .463 10.512 3 180 627 .95 39 . 869 1 .446 10.648 3 207 632 .08 48 .132 1 .428 10.789 3 237 636 .50 58 .739 1 .410 10.936 3 268 641 .20 73 .056 1 .393 11.087 3 303 646 .22 94 .152 1 .375 11.244 3 339 651 .55 131 .873 1 .357 11.407 3 379 657 20 160 .540 1 .357 11.408 3 379 657 25 NODE 5010.80 : HGL = < 343.691>;EGL= < 344.884>;FLOWLINE= < 341.910> ****************************************************************************** FLOW PROCESS FROM NODE 5010.80 TO NODE 5010.89 IS CODE = 5 UPSTREAM NODE 5010.89 ELEVATION = 3 42.24 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 15.81 25.90 6.37 3 .73 DIAMETER (INCHES) 24 . 00 24 . 00 18.00 18 . 00 ANGLE (DEGREES) 90.00 15.00 80 . 00 FLOWLINE ELEVATION 342 .24 341 . 91 342.24 342.24 CRITICAL DEPTH(FT.) 1 .43 1.78 0.98 0.74 VELOCITY (FT/SEC) 5.032 8.756 3.605 2 .111 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM- MANNING'S N = 0.01300; FRICTION SLOPE = 0.00488 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01163 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00826 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.033 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.251)+( 0.033)+( 0.000) = 1-284 NODE 5010.89 : HGL = < 345.775>;EGL= < 346.168>;FLOWLINE= < 342-240> ,********************************************************* FLOW PROCESS FROM NODE 5010.89 TO NODE 5010.90 IS CODE = 1 ******************** UPSTREAM NODE 5010.90 ELEVATION 3 44.69 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.81 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 46.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH (FT) = 0.76 CRITICAL DEPTH^FT)^ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.76 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.43 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0 000 0. 761 14 399 3 983 463 04 1 662 0. 761 14 405 3 985 463 18 3 395 0 761 14 410 3 987 463 33 5 206 0 761 14 415 3 989 463 48 7 102 0 760 14 420 3 991 463 62 9 092 0 760 14 426 3 993 463 77 11 184 0 760 14 431 3 996 463 .91 13 391 0 760 14 436 3 998 464 . 06 15 726 0 759 14 441 4 000 464 .21 18 203 0 759 14 447 4 002 464 .35 20 841 0 759 14 452 4 004 464 .50 23 662 0 759 14 457 4 006 464 .65 26 694 0 759 14 462 4 008 464 . 80 29 971 0 758 14 468 4 Oil 464 .94 33 535 0 758 14 473 4 013 465 .09 37 440 0 758 14 478 ' 4 .015 465 .24 41 759 0 758 14 .483 4 .017 465 .39 46 250 0 758 14 .488 4 .019 465 .52 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 3.54 DISTANCE FROM CONTROL(FT) 0.000 PRESSURE HEAD(FT) 3 .535 VELOCITY (FT/SEC) 5.032 SPECIFIC ENERGY(FT) 3.928 PRESSURE+ MOMENTUM (POUNDS) 651.16 31.922 2 . 000 5 . 032 2 .393 350.22 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 31. 922 2. 000 5. 031 2. 393 350. Zl 32. 359 1. 977 5. 041 2. 372 346. 10 32 . 765 1. 955 5. 060 2. 352 342. 25 33 . 152 1. 932 5. 084 2. 334 338 59 33 522 1. 909 5. 114 2 316 335 10 33 879 1. 887 5. 147 2 298 331 76 34 222 1 864 5 184 2 282 328 56 34 552 1 841 5 224 2 265 325 51 34 870 1 819 5 268 2 250 322 60 35 176 1 796 5 316 2 235 319 83 35 468 1 773 5 366 2 221 317 19 35 749 1 751 5 420 2 207 314 71 36 016 1 728 5 478 2 194 312 36 36 269 1 705 5 538 2 182 310 16 36 509 1 683 5 602 2 170 308 11 36 733 1 660 5 670 2 160 306 21 36 942 1 637 5 741 2 149 304 47 37 135 1 615 5 816 2 140 302 89 37 311 1 592 5 894 2 132 301 48 37 468 1 569 5 .976 2 124 300 23 37 .605 1 .547 6 .063 2 .118 299 16 37 .721 1 .524 6 .153 2 .112 298 27 37 . 815 1 .501 6 .248 2 .108 297 .57 37 .885 1 .479 6 .347 2 .105 297 .05 37 .928 1 .456 6 .450 2 .103 296 .74 37 .943 1 .433 6 .559 2 .102 296 .64 46 .250 1.433 6 HYDRAU .559 LIC JUMP 2 ANALYS .102 296 .64 PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 2.5 84 FEET, 19.77 FEET UPSTREAM OF NODE 5010.89 UPSTREAM CONJUGATE DEPTH = 0.759 FEET NODE 5010.90 HGL < 345.451>;EGL= < 348.673>;FLOWLINE= < 344.690> ****************************************************************************** FLOW PROCESS FROM NODE 5010.90 TO NODE 5011.00 IS CODE = 3 UPSTREAM NODE 5011.00 ELEVATION = 348.31 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 15.81 CFS CENTRAL ANGLE = 12.700 DEGREES PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 PIPE LENGTH = 6 8.49 FEET NORMAL DEPTH(FT) 0.76 CRITICAL DEPTH(FT) = 1-43 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.78 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0 000 0 782 13 883 3 777 448 67 1 586 0 781 13 908 3 786 449 35 3 244 0 780 13 932 3 796 450 03 4 980 0 779 13 957 3 806 450 71 6 801 0 778 13 981 3 815 451 39 8 715 0 777 14 006 3 825 452 08 10 733 0 776 14 031 3 835 452 77 12 864 0 775 14 056 3 845 453 46 15 123 0 774 14 081 3 855 454 16 17 524 0 773 14 106 3 865 454 .86 20. 087 0 772 14 131 22 833 0 771 14 156 25 790 0 770 14 182 28 991 0 769 14 207 32 479 0 768 14 233 36 309 0 767 14 258 40 553 0 766 14 284 45 308 0 765 14 310 50 712 0 764 14 336 56 966 0 763 14 362 64 380 0 762 14 .388 68 .490 0 .761 14 .399 3 . 875 3 - 885 3.895 3 . 905 3 . 915 3.926 3.936 3.946 3.957 3 .967 3 .978 3 .983 455.56 456.26 456 .96 457.67 458.38 459.10 459.81 460.53 461.25 461.98 462.71 463.04 NODE 5011.00 : HGL = < 349.092>;EGL= < 352.087>;FLOWLINE= < 348.310> r***************************** ********************** **************************** FLOW PROCESS FROM NODE 5011.00 TO NODE 5011.10 IS CODE = 1 UPSTREAM NODE 5011.10 ELEVATION = 356.81 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.81 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 160.79 FEET MANNING'S N = 0.01300 NORMAL DEPTH (FT) = 0.76 CRITICAL DEPTH^FT)^ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.43 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.43 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0 . 000 1. 431 6. 572 2. 102 296 . 64 0 . 027 1. 404 6. 709 2 103 296. 82 0 103 1 377 6 854 2 107 297. 33 0 233 1 350 7 006 2 113 298. 17 0 424 1 323 7 168 2 121 299. 36 0 683 1 296 7 338 2 133 300. 92 1 018 1 269 7 519 2 147 302 88 1 439 1 242 7 710 2 166 305 25 1 959 1 215 7 913 2 188 308 06 2 592 1 188 8 128 2 214 311 33 3 355 1 161 8 356 2 246 315 10 4 269 1 134 8 599 2 283 319 39 5 359 1 107 8 857 2 326 324 25 6 660 1 080 9 132 2 376 329 71 8 211 1 053 9 425 2 433 335 83 10 066 1 026 9 738 2 499 342 64 12 296 0 999 10 073 2 .576 350 22 14 997 0 972 10 431 2 .663 358 61 18 305 0 945 10 816 2 .763 367 .90 22 .419 0 .918 11 .229 2 . 878 378 .16 27 .648 0 . 891 11 .675 3 . 009 389 .48 34 .513 0 .864 12 .155 3 .160 401 .98 43 .988 0 . 837 12 .675 3 .334 415 .77 58 .269 0 . 810 13 .239 3 .534 431 .00 84 .399 0 .783 13 . 852 3 .765 447 . 82 160 .790 0 .782 13 . 883 3 .777 448 . 67 NODE 5011.10 : HGL = < 358.241>;EGL= < 358.912>;FLOWLINE= < 356.810> ****************************************************************************** FLOW PROCESS FROM NODE 5011.10 TO NODE 5011.19 IS CODE = 5 UPSTREAM NODE 5011.19 ELEVATION = 357.14 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 15.81 15 . 81 0 . 00 0 . 00 0.00 = : 24.00 90.00 357.14 1.43 24.00 - 356.81 1.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== 25 .196 6.561 0 . 000 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.24510 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00656 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.12583 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.503 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 8.090)+( 0.503)+( 0.000) = 8.593 NODE 5011.19 : HGL < 357.648>;EGL= < 367.505>;FLOWLINE= < 357.140> t*************************** **************************************************** FLOW PROCESS FROM NODE 5011.19 TO NODE 5011.20 IS CODE = 1 UPSTREAM NODE 5011.20 ELEVATION = 384.86 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.81 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 94.83 FEET MANNING'S N = 0.01300 NORMAL DEPTH (FT) = 0.49 CRITICAL DEPTH^FT)^ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1-06 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.43 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0. 000 1. 058 9 372 2 . 423 334. 71 0. 197 1. 035 9 633 2. 477 340. 34 0. 419 1. 012 9 910 2. 538 346 . 50 0 671 0 989 10 202 2 606 353 23 0 955 0 966 10 513 2 684 360 57 1 277 0 943 10 843 2 770 368 56 1 640 0 921 11 194 2 867 377 26 2 052 0 898 11 567 2 977 386 72 2 519 0 875 11 965 3 099 397 01 3 051 0 852 12 391 3 237 408 19 3 658 0 829 12 846 3 393 420 35 4 354 0 806 13 334 3 568 433 57 5 153 0 783 13 857 3 767 447 96 6 077 0 760 14 421 3 992 463 64 7 152 0 737 15 029 4 247 480 .73 8 412 0 714 15 685 4 537 499 .38 9 902 0 692 16 .396 4 869 519 .77 11 683 0 669 17 .169 5 249 542 .10 13 843 0 646 18 .010 5 686 566 . 60 16 510 0 623 18 .930 6 .190 593 .55 19 885 0 600 19 .937 6 .776 623 .26 24 .303 0 .577 21 . 044 7 .458 656 .10 30 .397 0 .554 22 .267 8 .258 692 . 52 39 .591 0 .531 23 .622 9 .201 733 .06 56 .458 0 .508 25 .130 10 .321 778 .36 94 .830 0 .508 25 .188 10 .365 780 .11 NODE 5011.20 HGL = < 385. 918>;EGL= < 3 8 7.2 83 >;FLOWLINE= < 384. 860 **************! r**************************************************************** FLOW PROCESS FROM NODE 5011.20 TO NODE 5011.29 IS CODE = 5 UPSTREAM NODE 5011.29 ELEVATION = 385.19 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 (CFS) 15.81 15.81 0.00 0 . 00 (INCHES) 24 . 00 24 . 00 0.00 0.00 DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 12 . 00 385-19 1.43 8.369 _ 384.86 1.43 9.375 0 . 00 0. 00 0.00 0.000 0 . 00 0. 00 0.00 0.000 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01203 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01618 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01410 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.056 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.098) + ( 0.056) +( 0.000) = 0.155 NODE 5011.29 : HGL = < 386.350>;EGL= < 387.437>;FLOWLINE= < 385.190> ****************************************************************************** FLOW PROCESS FROM NODE 5011.29 TO NODE 5011.30 IS CODE = 1 UPSTREAM NODE 5011.30 ELEVATION = 386.51 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.81 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 109.70 FEET MANNING'S N = 0.01300 NORMAL DEPTH (FT) = 1-16 CRITICAL DEPTH^FT)^ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.16 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.43 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0. 000 1. 163 8.336 2 . 243 314. 75 1 577 1. 163 8.338 2 243 314. 78 3 223 1 163 8.339 2 243 314. 80 4 943 1 163 8.340 2 244 314 82 6 743 1 163 8.342 2 244 314 84 8 633 1 163 8.343 2 244 314 86 10 621 1 162 8.344 2 244 314 89 12 717 1 162 8.345 2 244 314 91 14 935 1 162 8.347 2 245 314 93 17 288 1 162 8.348 2 245 314 95 19 795 1 162 8.349 2 245 314 98 22 476 1 162 8.351 2 245 315 00 25 358 1 162 8.352 2 245 315 02 28 472 1 161 8.353 2 246 315 04 31 860 1 161 8.354 2 246 315 06 35 .572 1 161 8.356 2 246 315 09 39 . 679 1 161 8.357 2 246 315 .11 44 272 1 161 8.358 2 .246 315 . 13 49 .482 1 161 8.360 2 .246 315 .15 55 .500 1 160 8.361 2 .247 315 .17 62 .622 1 .160 8.362 2 .247 315 .20 71 .344 1 .160 8.364 2 .247 315 .22 82 .593 1 .160 8.365 2 .247 315 .24 98 .464 1 .160 8.366 2 .247 315 .26 109 .700 1 .160 8.367 2 .247 315 .27 NODE 5011.30 : HGL = < 387.673>;EGL= < 388.753>;FLOWLINE= < 386.510> ********************** ******************************************************** FLOW PROCESS FROM NODE 5011.30 TO NODE 5011.40 IS CODE = 3 UPSTREAM NODE 5011.40 ELEVATION = 386.84 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 15.81 CFS PIPE DIAMETER 24.00 INCHES CENTRAL ANGLE = 7.5 00 DEGREES PIPE LENGTH = 27.38 FEET MTVNNING'S N 0.01300 NORNAL DEPTH(FT) = 1.16 CRITICAL DEPTH(FT) = 1-43 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1-17 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0-000 1 .168 8.298 2 238 314 .10 1. 549 1 .167 8.301 2 238 314 .15 3 . 166 1 .167 8.304 2 238 314 .20 4 . 857 1 .167 8.307 2 239 314 .25 5 . 629 1 .166 8.310 2 239 314 .30 8. 491 1 .166 8.313 2 240 314 .35 10. 450 1 .166 8.316 2 240 314 .41 12. 519 1 .165 8.319 2 241 314 .46 14 . 708 1 .165 8.322 2 241 314 .51 17 . 034 1 .165 8.325 2 241 314 .56 19. 513 1 .164 8.328 2 242 314 . 61 22 . 167 1 .164 8.331 2 242 314 . 66 25 . 021 1 .164 8.334 2 243 314 .72 27 . 380 1 .163 8.336 2 243 314 .76 NODE 5011 .40 HGL = < 388. 008>;EGL= < 389.078>;FLOWLINE= < 386. 840> ****************************************************************************** FLOW PROCESS FROM NODE 5011.40 TO NODE 5011.50 IS CODE = 1 UPSTREAM NODE 5011.50 ELEVATION = 387.62 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.81 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 64.93 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.16 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.21 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.43 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0. 000 1 .206 7 982 2 196 309 .07 1. 325 1 .204 7 996 2 198 309 .29 2 . 718 1 .202 8 Oil 2 200 309 .51 4 . 185 1 .201 8 025 2 201 309 .73 5 . 733 1 . 199 8 040 2 203 309 .95 7 . 359 1 . 197 8 055 2 205 310 .18 9 . 104 1 .195 8 070 2 207 310 .41 10. 947 1 . 193 8 085 2 209 310 . 54 12 . 911 1 .191 8 100 2 211 310 . 88 15 . 010 1 .190 8 115 2 213 311 . 11 17. 263 1 .188 8 130 2 215 311 .35 19. 689 1 .186 8 145 2 217 311 .59 22. 316 1 .184 8 160 2 219 311 .84 25. 176 1 .182 8 175 2 221 312 .08 28. 307 1 .180 8 191 2 223 312 .33 31. 764 1 .179 8 206 2 225 312 .58 35. 614 1 .177 8 221 2 227 312 .83 39 . 950 1 .175 8 237 2 229 313 .09 44 . 902 1 .173 8 253 2 231 313 .35 50. 552 1 .171 8 268 2 233 313 .61 57. 524 1 .169 8 284 2 236 313 .87 64. 930 1 .168 8 298 2 238 314 .10 NODE 5011 .50 HGL = < 388. 826>;EGL= < 389.816>;FLOWLINE= < 387. 520> ****************************************************************************** FLOW PROCESS FROM NODE 5011.50 TO NODE 5011.60 IS CODE = 3 UPSTREAM NODE 5011.60 ELEVATION = 387.95 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 15.81 CFS CENTRAL ANGLE = 7.5 00 DEGREES PIPE LENGTH = 27.38 FEET PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.15 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.43 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 1 288 7 393 2 137 301 48 0 851 1 282 7 427 2 140 301 85 1 769 1 277 7 452 2 142 302 23 2 761 1 272 7 497 2 145 302 62 3 833 1 267 7 532 2 148 303 03 4 994 1 262 7 568 2 152 303 46 5 252 1 257 7 604 2 155 303 90 7 518 1 252 7 641 2 159 304 35 9 105 1 246 7 678 2 152 304 82 10 727 1 241 7 715 2 166 305 31 12 502 1 236 7 753 2 170 305 81 14 451 1 231 7 791 2 174 306 33 16 500 1 225 7 830 2 178 305 87 18 981 1 221 7 869 2 183 307 42 21 535 1 216 7 908 2 187 307 99 24 513 1 210 7 948 2 192 308 57 27 380 1 205 7 982 2 195 309 07 NODE 5011.60 HGL < 389.238>;EGL= < 390.087>;FLOWLINE= < 387.950> ****************************************************************************** FLOW PROCESS FROM NODE 5011.50 TO NODE 5011.70 IS CODE = 1 UPSTREAM NODE 5011.70 ELEVATION = 388.11 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.81 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 15.46 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) = 1.22 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.43 1.43 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 . 000 1 .433 6 559 2 102 296 64 0 .028 1 .425 6 602 2 102 296 65 0 .115 1 .416 6 645 2 102 296 70 0 .267 1 .408 6 689 2 103 295 78 0 .489 1 .399 5 734 2 104 295 89 0 .789 1 .390 5 780 2 105 297 03 1 .174 1 .382 6 827 2 106 297 21 1 . 554 1 .373 5 874 2 107 297 42 2 .239 1 .364 6 923 2 109 297 67 2 .943 1 .356 6 972 2 111 297 95 3 .781 1 .347 7 022 2 113 298 27 4 .771 1 .339 7 073 2 116 298 62 5 .936 1 .330 7 125 2 119 299 01 7 .304 1 .321 7 177 2 122 299 44 8.911 10.803 13.040 15.460 1.313 1 .304 1 .295 1 .288 7 . 231 7 .286 7 . 341 7 . 393 2 .125 2 .129 2.133 2 .137 299.91 300.41 300.95 301.48 NODE 5011.70 : HGL = < 389.543>;EGL= < 390.212>;FLOWLINE= < 388.110> ****************************************************************************** FLOW PROCESS FROM NODE 5011.70 TO NODE 5011.79 IS CODE = 5 UPSTREAM NODE 5011.79 ELEVATION = 388.44 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 7.33 15.81 2.70 5.78 DIAMETER (INCHES) 18.00 24.00 18.00 18.00 ANGLE (DEGREES) 0.00 50.00 90.00 FLOWLINE ELEVATION 388.44 388.11 388.44 388.44 CRITICAL DEPTH(FT.) 1.05 1.43 0.62 0.93 VELOCITY (FT/SEC) 4.148 6.561 1.528 3.271 0.00===Q5 EQUALS BASIN INPUT= JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00487 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00656 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00571 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.023 FEET ENTRANCE LOSSES = 0.000 FEET JtJNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.578) + ( 0.023) + ( 0.000) = 0.601 NODE 5011.79 : HGL = < 390.545>;EGL= < 390.813>;FLOWLINE= < 388.440> ****************************************************************************** FLOW PROCESS FROM NODE 5011.79 TO NODE 5011.80 IS CODE = 1 UPSTREAM NODE 5011.80 ELEVATION = 3 89.93 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.33 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 148.71 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.11 DISTANCE FROM PRESSURE CONTROL(FT) HEAD(FT) 0.000 2.105 117.616 1.500 VELOCITY (FT/SEC) 4 .148 4.148 SPECIFIC ENERGY(FT) 2.373 1.767 PRESSURE+ MOMENTUM(POUNDS) 208.42 141.62 NORMAL DEPTH(FT) = 0.92 CRITICAL DEPTH(FT) 1.05 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 117 516 1 .500 4 147 1 767 141 62 120 738 1 .482 4 156 1 750 139 77 123 552 1 .464 4 173 1 734 138 02 126 202 1 .446 4 195 1 719 136 36 128 731 1 .428 4 221 1 705 134 77 131 .150 1 .410 4 251 1 691 133 25 133 .505 1 .392 4 285 1 677 131 79 135 .773 1 .374 4 322 1 664 130 40 137 .970 1 .356 4 361 1 651 129 06 140 .101 1 .337 4 404 1 639 127 79 142 .158 1 .319 4 451 1 627 126 58 144 .171 1 .301 4 500 1 616 125 .43 146 .110 147.983 148.710 1 .283 1 .265 1.258 4.552 4 . 608 4.631 1. 605 1.595 1 .591 124.35 123 .34 122.95 NODE 5011.80 : HGL = < 391.188>;EGL= < 391.521>;FLOWLINE= < 389.930> ***************************************************************************** FLOW PROCESS FROM NODE 5011.80 TO NODE 5011.85 IS CODE = 3 UPSTREAM NODE 5011.85 ELEVATION 390.28 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 7.33 CFS CENTRAL ANGLE = 45.000 DEGREES PIPE LENGTH = 35.34 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.93 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.79 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.05 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNI 0 000 0. 785 7 828 1. 737 130 77 1 710 0. 791 7 758 1 726 130 10 3 453 0. 796 7 689 1 715 129 46 5 232 0. 802 7 622 1 705 128 .84 7 050 0. 808 7 556 1 595 128 24 8 911 0 813 7 491 1 585 127 56 10 820 0 819 7 427 1 676 127 .09 12 782 0 824 7 364 1 667 126 .55 14 803 0 830 7 302 1 559 126 .03 16 891 0 835 7 242 1 651 125 .52 19 054 0 841 7 182 1 643 125 .03 21 302 0 847 7 124 1 535 124 .56 23 549 0 853 7 066 1 528 124 .11 26 110 0 858 7 010 1 622 123 .67 28 705 0 864 6 954 1 615 123 .25 31 463 0 869 6 .900 1 509 122 .84 34 413 0 875 6 .845 1 .603 122 .45 35 .340 0 877 6 .831 1 .602 122 .35 HYDRAULIC JtJMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.26 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0 000 1 258 4 631 1 591 122 95 0 851 1 250 4 658 1 587 122 51 1 686 1 241 4 586 1 582 122 09 2 506 1 233 4 715 1 578 121 58 3 308 1 224 4 745 1 574 121 29 4 093 1 216 4 775 1 570 120 92 4 861 1 .208 4 806 1 567 120 56 5 609 1 .199 4 838 1 563 120 22 6 337 1 .191 4 870 1 559 119 89 7 .045 1 .183 4 903 1 556 119 58 7 .731 1 .174 4 938 1 553 119 28 8 .393 1 .166 4 972 1 550 119 01 9 .031 1 .157 5 008 1 547 118 75 9 .643 1 .149 5 .045 1 544 118 50 10 .225 1 .141 5 .082 1 .542 118 .28 10 .780 1 .132 5 .120 1 .540 118 .07 11 301 1 124 5 159 1 538 117 88 11 787 1 116 5 199 1 536 117 71 12 234 1 107 5 240 1 534 117, 56 12 540 1 099 5 282 1 532 117 43 13 000 1 090 5 325 1 531 117 31 13 310 1 082 5 369 1 530 117 22 13 555 1 074 5 414 1 529 117 14 13 757 1 065 5 460 1 528 117 09 13 . 879 1 057 5 506 1 528 117 06 13 .922 1 049 5 554 1 .528 117 05 35 .340 1 .049 5 .554 1 .528 117 05 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 0.95 FEET UPSTREAM OF NODE 5011.80 j I DOWNSTREAM DEPTH = 1.249 FEET, UPSTREAM CONJUGATE DEPTH = 0.875 FEET | NODE 5011.85 : HGL = < 391.065>;EGL= < 3 92.017>;FLOWLINE= < 390.280> ****************************************************************************** FLOW PROCESS FROM NODE 5011.85 TO NODE 5011.90 IS CODE = 1 UPSTREAM NODE 5011.90 ELEVATION = 390.36 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.33 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 7.32 FEET MANNING'S N = 0.01300 0.90 CRITICAL DEPTH(FT) = NORMAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOVTOEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.05 0.75 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.763 8 .109 1.785 133.52 1.731 0.769 8.039 1.773 132.82 3 .500 0.774 7.969 1.761 132.13 5.310 0.779 7 .900 1.749 131.46 7.166 0.785 7 .833 1.738 130.82 7.320 0.785 7 . 828 1.737 130.77 NODE 5011.90 : HGL = < 391.123>;EGL= < 392.145>;FLOWLINE= < 390.360> ************************************************* ***************************** FLOW PROCESS FROM NODE 5011.90 TO NODE 5011.99 IS CODE = 5 UPSTREAM NODE 5011.99 ELEVATION = 390.69 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOVJNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 7.33 18.00 0.00 390.69 7.33 18.00 - 390.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.05 1. 05 0. 00 0. 00 VELOCITY (FT/SEC) 6.393 8.112 0 . 000 0 . 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00987 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01835 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01411 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.055 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.050)+( 0.056)+{ 0.000) = 0.107 NODE 5011.99 : HGL = < 391.617>;EGL= < 392-252>;FLOWLINE= < 390.690> ****************************************************** FLOW PROCESS FROM NODE 5011.99 TO NODE 5012.00 IS CODE ************************ 3 UPSTREAM NODE 5012.00 ELEVATION = 391.02 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 7.33 CFS CENTRAL ANGLE = 31.400 DEGREES PIPE LENGTH = 33.34 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.93 CRITICAL DEPTH(FT) = 1.05 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.756 1.546 2.372 3 .238 4.149 5 .108 6.120 7.193 8.333 9.549 10-851 12- 253 13- 769 15.421 17.233 19.241 21.489 24.043 26.997 30.498 33.340 FLOW DEPTH (FT) 0.932 0.931 0.931 0.931 0.931 0.930 0.930 0.930 0.930 0.930 0.929 0.929 0.929 0.929 0.928 0.928 0.928 0.928 0.928 0.927 0.927 0.927 VELOCITY (FT/SEC) 5.354 5.355 6.358 6.350 6.361 6.353 5.365 6 .367 6 .369 5.370 6.372 6.374 6.376 6.378 6.379 5 .381 5 .383 5 .385 5.387 6.388 5 .390 6.391 SPECIFIC ENERGY(FT) 1.559 559 559 559 559 560 550 560 550 560 560 560 560 561 561 561 561 551 551 561 562 562 PRESSURE+ MOMENTUM(POUNDS) 119.38 119.39 119.40 119.41 119.42 119-43 119-44 119-45 119-46 119.47 119.48 119.49 119.50 119.51 119.52 119.53 119.53 119.54 119.55 119.56 119 . 57 119.58 NODE 5012.00 HGL < 391.952>;EGL= < 392.579>;FLOWLINE= < 391.020> ****************************************************************************** FLOW PROCESS FROM NODE 5012.00 TO NODE 5012.10 IS CODE = 1 UPSTREAM NODE 5012.10 ELEVATION = 393.33 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.33 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 235.01 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.93 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.05 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY( FT) MOMENTUM(POUN 0 000 1 .049 5 554 1. 528 117 05 0 016 1 .044 5 583 1 . 528 117 05 0 065 1 .039 5 611 1. 528 117 06 0 149 1 .034 5 640 1. 528 117 08 0 274 1 .029 5 669 1. 529 117 11 0 442 1 .024 5 699 1 . 529 117 14 0 657 1 .020 5 729 1. 530 117 18 0 925 1 . 015 5 759 1. 530 117 23 1 253 1 .010 5 790 1. 531 117 29 1 646 1 .005 5 821 1. 532 117 35 2 115 1 .000 5 853 1. 533 117 42 2 668 0 .996 5 885 1. 534 117 50 3 . 319 0 991 5 917 1 535 117 .59 4 . 084 0 986 5 950 1 536 117 . 69 4 . 981 0 981 5 984 1 537 117 .79 6 . 038 0 976 6 017 1 539 117 . 90 7 . 286 0 971 6 052 1 540 118 . 03 8.773 0 967 6 086 1 542 118 .16 10.550 0 962 6 122 1 544 118 .30 12.742 0 957 6 157 1 546 118 .45 15.464 0 952 6 193 1 548 118 . 60 18.957 0 947 6 230 1 550 118 .77 23 .705 0 943 6 267 1 553 118 .94 30.702 0 938 6 305 1 555 119 .13 43.232 0 933 6 343 1 558 119 .32 235.010 0 932 6 354 1 559 119 .38 5012.10 HGL = < 394 379>;EGL= < 394. 858>;FLOWLINE= < 393 . 330> NODE ****************************************************************************** FLOW PROCESS FROM NODE 5012.10 TO NODE 5012.19 IS CODE = 5 UPSTREAM NODE 5012.19 ELEVATION = 393.56 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.25 18.00 90.00 393.66 0.88 2.971 DOWNSTREAM 7.33 18.00 - 393.33 1.05 5.556 LATERAL #1 2.06 18.00 90.00 393.66 0.54 1.380 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.02===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGFIATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00250 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00697 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00474 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.019 FEET ENTRANCE LOSSES = 0.096 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.468)+( 0.019)+( 0.096) = 0.583 NODE 5012.19 : HGL = < 395.304>;EGL= < 395.441>;FLOWLINE= < 393.660> ****************************************************************************** FLOW PROCESS FROM NODE 5012.19 TO NODE 5012.20 IS CODE = 1 UPSTREAM NODE 5012.20 ELEVATION = 395.77 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.25 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.41 CRITICAL DEPTH(FT) = 0.88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.8 8 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0.000 0 . 882 4 854 1.249 75 07 0.009 0 .863 4 984 1.249 75 13 0.038 0 .845 5 120 1.252 75 29 0.089 0 .826 5 266 1.256 75 57 0.154 0 .807 5 420 1.263 75 98 0.268 0 .788 5 583 1.272 76 51 0.404 0 .769 5 757 1.284 77 19 0.577 0 .750 5 942 1.298 78 01 0.792 0 .731 6 140 1.317 79 00 1 055 0 712 6 351 1 339 80 15 1 377 0 693 6 577 1 365 81 49 1 764 0 674 6 819 1 396 83 02 2 231 0 555 7 078 1 433 84 77 2 792 0 536 7 358 1 477 86 75 3 466 0 617 7 659 1 528 88 99 4 281 0 598 7 984 1 589 91 50 5 268 0 579 8 336 1 659 94 33 6 476 0 560 8 718 1 741 97 49 7 958 0 541 9 133 1 837 101 02 9 843 0 522 9 587 1 950 104 97 12 250 0 503 10 084 2 083 109 40 15 442 0 484 10 630 2 240 114 35 19 894 0 466 11 231 2 425 119 91 22 250 0 459 11 455 2 498 121 99 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.54 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.644 2.971 1.781 128.75 1. 555 1.500 2 . 971 1.537 112.93 1.50 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 1.555 1.812 2.059 2 .300 2.536 2 .765 2.992 3 .213 3 .429 3.540 3.845 4 . 044 4.237 4.424 4 . 603 4 . 774 4.935 5 . 088 5.229 5.358 5.473 5 5 5 5 5 22 FLOW DEPTH (FT) ,500 ,475 .451 .426 .401 .376 .352 1.327 1.302 1.278 1.253 1.228 1.204 1.179 1.154 1.129 .573 . 655 . 718 .758 .772 .250 ,105 ,080 , 055 ,031 ,005 ,981 ,957 ,932 ,907 ,882 .882 VELOCITY (FT/SEC) 2.970 2.981 3.000 3.025 3.056 3.091 3.130 3 .173 3 .221 3 .272 3 .328 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 4. 4 . 4 . 4 . 4. 4. SPECIFIC ENERGY(FT) 1.637 1.613 1.590 1.568 1.546 1.525 1.504 1.484 1.464 1.444 1.425 1.407 1.389 1.372 1.355 1.339 1.325 1.311 1.298 PRESSURE+ MOMENTUM(POUNDS) 112.93 110.32 107.81 105.38 103.03 100.75 98.55 96 .42 94.38 92 .41 90.53 87 85 83 82 .73 .02 .41 .90 .48 ,286 ,276 ,267 ,259 ,253 .250 ,249 .249 81.17 79.97 78 . 89 77.93 389 453 523 597 677 762 853 950 054 1 166 1 285 1 413 1 549 1 696 1 4.854 1 4.854 1 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 0.73 FEET UPSTREAM OF NODE 5012.19 DOWNSTREAM DEPTH = 1.576 FEET. UPSTREAM CONJUGATE DEPTH = 0.461 FEET 77 . 76. 75 . 75. 75 . 75. 75. 09 39 83 42 16 07 07 NODE 5012.20 : HGL = < 396.652>;EGL= < 3 97.019>;FLOWLINE= < 395.770> ****************************************************************************** FLOW PROCESS FROM NODE 5012.20 TO NODE 5012.20 IS CODE = 8 UPSTREAM NODE 5012.20 ELEVATION = 395.77 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.25 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.86 FEET/SEC. VELOCITY HEAD = 0.366 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.366) = 0.073 NODE 5012.20 : HGL = < 397.092>;EGL= < 397.092>;FLOWLINE= < 395.770> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.20 FLOWLINE ELEVATION = 395.77 ASSUMED UPSTREAM CONTROL HGL = 396.65 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street, Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW " * SYSTEM 5000 - PA-8 & PA-9 - 100 YEAR STORM EVENT " * ALTAMONT AVENUE LATERAL ' ************************************************************************** FILE NAME: 5000IT14.DAT TIME/DATE OF STUDY: 07:58 03/07/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5012.30- 0.51 18.45 0.23* 35.81 } FRICTION 5012.31- 0.50*Dc 18.44 0.50*Dc 18.44 } CATCH BASIN 5012.31- 0.72* 9.80 0.50 Dc 6.68 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.30 FLOWLINE ELEVATION = 333.79 PIPE FLOW = 1.77 CFS PIPE DI.AMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 334.3 00 FEET NODE 5012.30 : HGL = < 334.023>;EGL= < 335.620>;FLOWLINE= < 333.790> ****************************************************************************** FLOW PROCESS FROM NODE 5012.30 TO NODE 5012.31 IS CODE = 1 UPSTREAM NODE 5012.31 ELEVATION = 335.44 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.77 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) C .20 CRITICAL DEPTH(FT) 0.50 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 0 . 000 0. 500 3 427 0 683 18. 44 0 .003 0. 488 3 544 0 684 18. 46 0 .013 0. 476 3 668 0 685 18 . 51 0 .029 0. 464 3 800 0 689 18. 61 0 .055 0. 452 3 941 0 694 18. 75 0 .090 0. 440 4 092 0 700 18. 94 0 .136 0. 428 4 254 0 709 19. 17 0 .196 0. 416 4 427 0 721 19. 46 0 .270 0. 404 4 613 0 735 19. 80 0 .362 0. 392 4 813 0 752 20. 21 0 .475 0. 380 5 030 0 773 20. 68 0 .612 0. 368 5 264 0 798 21. 22 0 .779 0. 356 5 518 0 829 21. 85 0 .982 0. 344 5 794 0 855 22 . 56 1 .229 0. 332 6 096 0 909 23 . 37 1 .530 0. 320 6 426 0 951 24. 29 1 .900 0. 308 6 789 1 024 25. 33 2 .357 0. 295 7 189 1 098 25. 51 2 .929 0. 283 7 631 1 188 27 . 85 3 .658 0. 271 8 123 1 297 29. 37 4 . 606 0. 259 8 673 1 428 31. 10 5 .881 0. 247 9 290 1 588 33 . 07 7 . 686 0 . 235 9 987 1 785 35. 32 8 .250 0. 233 10 138 1 830 35. 81 NODE 5012.31 : HGL = < 335.940>;EGL= < 336.123>;FLOWLINE= < 335.440> ****************************************************************************** FLOW PROCESS FROM NODE 5012.31 TO NODE 5012.31 IS CODE = 8 UPSTREAM NODE 5012.31 ELEVATION = 335.44 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.77 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.43 FEET/SEC. VELOCITY HEAD = 0.182 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.182) = 0.036 NODE 5012.31 : HGL = < 336.159>;EGL= < 335.159>;FLOWLINE= < 335.440> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.31 FLOWLINE ELEVATION = 335.44 ASSUMED UPSTREAM CONTROL HGL = 335.94 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 5000 - PA-9 - 100 YEAR STORM EVENT ' * ALTAMONT AVENUE LATERAL ' ************************************************************************** FILE NAME: 5000IT15.DAT TIME/DATE OF STUDY: 08:41 03/07/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5012.40- 0.74 47.88 0.44* 66.92 } FRICTION 5012.42- 0.74*Dc 47.88 0.74*Dc 47.88 } CATCH BASIN 5012.42- 1.08* 25.92 0.74 Dc 16.83 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.40 FLOWLINE ELEVATION = 319.20 PIPE FLOW = 3.72 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 319.900 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.70 FT.) IS LESS THAN CRITICAL DEPTH( 0.74 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 5012.40 : HGL = < 319.640>;EGL= < 320.790>;FLOWLINE= < 319.200> ****************************************************************************** FLOW PROCESS FROM NODE 5012.40 TO NODE 5012.42 IS CODE = 1 UPSTREAM NODE 5012.42 ELEVATION = 320.31 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.72 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.4 0 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.74 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.74 DISTANCE FROM CONTROL(FT) FLOW DEPTH (FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) 0. 000 0 737 4 305 1 025 47 .88 0. Oil 0 724 4 407 1 025 47 .90 0. 044 0 710 4 514 1 027 47 .98 0. 103 0 697 4 525 1 029 48 .11 0. 191 0 584 4 743 1 033 48 .30 0. 311 0 670 4 867 1 038 48 .54 0. 465 0 657 4 996 1 045 48 . 85 0. 663 0 644 5 133 1 053 49 .23 0. 906 0 630 5 277 1 063 49 .67 1. 201 0 617 5 429 1 075 50 .19 1. 558 0 604 5 589 1 089 50 .78 1. 986 0 590 5 758 1 105 51 .46 2 . 497 0 577 5 937 1 125 52 .22 3 . 105 0 564 6 127 1 147 53 .07 3 . 831 0 550 5 328 1 173 54 . 03 4 . 698 0 537 6 542 1 202 55 .09 5 . 739 0 524 5 769 1 236 56 .27 6. 998 0 510 7 012 1 274 57 .57 8. 539 0 497 7 270 1 318 59 .00 10. 451 0 484 7 547 1 369 60 .58 12 . 876 0 470 7 843 1 426 62 .31 16. 054 0 457 8 161 1 492 54 .22 20. 430 0 444 8 503 1 557 66 .31 22. 250 0 440 8 602 1 590 66 .92 5012 .42 HGL = < 321 047>;EGL= < 321.335>;FLOWLINE= < 320. 310 ****************************************************************************** FLOW PROCESS FROM NODE 5012.42 TO NODE 5012.42 IS CODE = 8 UPSTREAM NODE 5012.42 ELEVATION = 320.31 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.72 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.31 FEET/SEC. VELOCITY HEAD = 0.288 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.288) = 0.058 NODE 5012.42 : HGL = < 321.392>;EGL= < 321.392>;FLOWLINE= < 320.310> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE INUMBER = 5012.42 FLOWLINE ELEVATION = 320.31 ASSUMED UPSTREAM CONTROL HGL = 321.05 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 5000 - PA-9 - 100 YEAR STORM EVENT * ALTAMONT AVENUE LATERAL ************************************************************************** FILE NAME: 5000IT15.DAT TIME/DATE OF STUDY: 08:52 03/07/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTtJM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5012.44- 0.70 42.61 0.34* 75.72 } FRICTION 5012.45- 0.70*Dc 42.61 0.70*Dc 42.51 } CATCH BASIN 5012.45- 1.03* 22.98 0.70 Dc 15.06 MAXIMtJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.44 FLOWLINE ELEVATION = 319.20 PIPE FLOW = 3.40 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 319.900 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.7 0 FT.) IS LESS THAN CRITICAL DEPTH( 0.70 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 5012.44 : HGL = < 319.545>;EGL= < 321.452>;FLOWLINE= < 319.200> ****************************************************************************** FLOW PROCESS FROM NODE 5012.44 TO NODE 5012.45 IS CODE = 1 UPSTREAM NODE 5012.45 ELEVATION = 320.85 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.40 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) = 3.27 CRITICAL DEPTH(FT) 0.70 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.70 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0 . 000 0 .703 4 181 0 974 42. 61 0 .004 0 .686 4 317 0 975 42. 65 0 .018 0 .669 4 463 0 978 42. 78 0 . 042 0 .651 4 618 0 983 43. 00 0 . 079 0 .634 4 784 0 990 43. 32 0 .129 0 .617 4 961 0 999 43 . 74 0 .195 0 .600 5 152 1 012 44. 27 0 .281 0 .583 5 356 1 028 44. 93 0 .388 0 .565 5 577 1 049 45. 71 0 .520 0 .548 5 814 1 073 46. 64 0 .683 0 .531 6 071 1 104 47. 72 0 . 881 0 .514 6 350 1 140 48. 97 1 .123 0 .497 6 653 1 184 50. 40 1 .416 0 .479 6 983 1 237 52. 05 1 .773 0 .462 7 344 1 300 53 . 92 2 .209 0 .445 7 741 1 376 56. 05 2 .746 0 .428 8 177 1 467 58. 46 3 .410 0 .411 8 659 1 576 61. 21 4 .244 0 .393 9 194 1 707 64 . 32 5 .307 0 .376 9 791 1 866 57. 87 6 . 694 0 .359 10 459 2 059 71. 92 8 .250 0 .345 11 079 2 252 75. 72 NODE 5012.45 HGL < 321.553>;EGL= < 321.824>;FLOWLINE= < 320.850> ****************************************************************************** FLOW PROCESS FROM NODE 5012.45 TO NODE 5012.45 IS CODE = 8 UPSTREAM NODE 5012.45 ELEVATION = 320.85 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.40 CFS PIPE DIAMETER = IS 3.00 INCHES FLOW VELOCITY = 4.18 FEET/SEC. VELOCITY HEAD = 0 272 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 272 = 0.054 NODE 5012.45 : HGL = < 321.879>;EGL= < 321.879>;FLOWLINE= < 320.850> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.45 FLOWLINE ELEVATION = 320.85 ASSUMED UPSTREAM CONTROL HGL = 321.55 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 5000 - PA-9 - 100 YEAR STORM EVENT ' * DA VITA TREEACE LATERAL ************************************************************************** FILE NAME: 5000IT17.DAT TIME/DATE OF STtJDY: 13:34 03/20/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5012.46- 3.32* 291.15 0.30 55.89 } FRICTION 5012.47- 1.37* 75.42 0.62 Dc 31.06 } CATCH BASIN 5012.47- 1.41* 71.70 0.52 Dc 11.10 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.46 FLOWLINE ELEVATION = 342.74 PIPE FLOW = 2.6 6 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 3 46.060 FEET NODE 5012.46 : HGL = < 345.050>;EGL= < 345.095>;FLOWLINE= < 342.740> ,***************************************************************************** FLOW PROCESS FROM NODE 5012.46 TO NODE 5012.47 IS CODE = 1 UPSTREAM NODE 5012.47 ELEVATION = 344.70 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 16.35 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD (FT) = 3.3 2 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.320 1.505 3.355 291.15 15.264 1.500 1.505 1.535 90.46 NORMAL DEPTH(FT) = 0.27 CRITICAL DEPTH(FT) = 0.62 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1-50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 15.264 1.500 1.505 1.535 90.46 15.556 1.465 1.514 1.500 86.63 15-845 1.429 1.531 1.465 82.87 16.131 1.394 1.553 1.432 79.19 16.350 1.367 1.573 1.405 76.42 NODE 5012.47 : HGL = < 346. 067>;EGL= < 346.106>;FLOWLINE= < 344.700> ****************************************************************************** FLOW PROCESS FROM NODE 5012. 47 TO NODE 5012.47 IS CODE = 8 UPSTREAM NODE 5012.47 ELEVATION = 344.70 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.66 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.57 FEET/SEC- VELOCITY HEAD = 0.038 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.038) = 0.008 NODE 5012.47 : HGL = < 346.113>;EGL= < 346.113>;FLOWLINE= < 344.700> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.47 FLOWLINE ELEVATION = 344.70 ASSUMED UPSTREAM CONTROL HGL = 345.32 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 5000 - PA-9 - 100 YEAR SRORM EVENT ' * STRATFIELD DIRVE LATERAL ' ************************************************************************** FILE NAME: 5000IT18.DAT TIME/DATE OF STUDY: 16:15 03/27/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5012.50- 2.23* 228.22 0.62 176.25 } FRICTION 5012.51- 1.07*Dc 125.11 1.07*Dc 125.11 } CATCH BASIN 5012.51- 1.68* 102.16 1-07 Dc 40.33 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE.FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.50 FLOWLINE ELEVATION = 388.44 PIPE FLOW = 7.70 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 3 90.67 0 FEET NODE 5012.50 : HGL = < 390.670>;EGL= < 390.965>;FLOWLINE= < 388.440> ****************************************************************************** FLOW PROCESS FROM NODE 5012.50 TO NODE 5012.51 IS CODE = 1 UPSTREAM NODE 5012.51 ELEVATION = 389.99 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.7 0 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.013 00 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 2.23 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 . 230 4 . 357 2 . 525 228 .22 11 .355 1. 500 4. 357 1. 795 147 .72 NORMAL DEPTH(FT) 0 .54 CRITICAL DEPTH(FT) 1.07 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 =========== ======= ========= ==== ======= ====== ========= ====== =========== ======== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 11 .355 1. 500 4. 356 1. 795 147 .72 11 .601 1. 483 4. 365 1. 779 145 .98 11 .829 1. 466 4 . 381 1 . 764 144 .35 12 .046 1-449 4 . 402 1. 750 142 . 81 12 .255 1. 432 4. 428 1. 737 141 .34 12 .455 1. 415 4. 456 1. 724 139 .93 12 .648 1. 398 4. 488 1. 711 138 .58 12 .834 1. 381 4. 523 1. 699 137 .29 13 .013 1. 364 4 . 562 1. 687 136 .06 13 .185 1. 347 4 . 603 1. 676 134 .89 13 .349 1. 330 4 . 647 1. 665 133 .78 13 .507 1 . 313 4 . 693 1. 655 132 .73 13 .657 1. 295 4 . 743 1 646 131 .74 13 .799 1 . 279 4 . 796 1 636 130 . 82 13 .934 1 . 262 4 . 851 1 628 129 .95 14 .060 1. 245 4. 910 1 619 129 .15 14 .178 1. 228 4. 971 1 612 128 .41 14 .286 1 . 211 5. 036 1 605 127 .75 14 .384 1-194 5. 104 1 599 127 .15 14 .472 1. 177 5. 175 1 593 126 .62 14 .549 1 . 160 5. 250 1 588 126 .17 14 .614 1 . 143 5 . 328 1 584 125 .80 14 . 667 1. 126 5 . 410 1 581 125 .50 14 .706 1 . 109 5 . 496 1 578 125 .28 14 .730 1 . 092 5. 586 1 577 125 .15 14 .738 1 . 075 5. 680 1 576 125 . 11 22 .250 1 . 075 5. 680 1 575 125 .11 NODE 5012.51 : HGL = < 391. 065>;EGL= < 391.565>;FLOWLINE= < 389. 990> ****************************************************************************** FLOW PROCESS FROM NODE 5012.51 TO NODE 5012.51 IS CODE = 8 UPSTREAM NODE 5012.51 ELEVATION = 389.99 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 7.70 CFS PIPE DIAMETER = IS 3.00 INCHES FLOW VELOCITY = 5.68 FEET/SEC. VELOCITY HEAD = 0 501 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 501) = 0.100 NODE 5012.51 : HGL = < 391.666>;EGL= < 391.666>;FLOWLINE= < 389.990> ****************************************************************************** UPSTREAM PIPE FLOW COKITROL DATA: NODE NUMBER = 5012.51 FLOWLINE ELEVATION = 3 89.99 ASSUMED UPSTREAM CONTROL HGL = 391.06 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 5000 - PA-9 - 100 YEAR STORM EVENT ' * STRATFIELD DRIVE LATERAL ' ************************************************************************** FILENAME: 5000IT19.DAT TIME/DATE OF STUDY: 16:31 03/27/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5012.60- 2.23* 177.18 0.32 90.65 } FRICTION 5012.62- 0.72*Dc 45.39 0.72*Dc 45.39 ) CATCH BASIN 5012.62- 1.06* 24.53 0.72 Dc 16.00 lylAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.60 FLOWLINE ELEVATION = 388.44 PIPE FLOW = 3.57 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 390.570 FEET NODE 5012.50 : HGL = < 390.670>;EGL= < 390.733>;FLOWLINE= < 388.440> ****************************************************************************** FLOW PROCESS FROM NODE 5012.60 TO NODE 5012.62 IS CODE = 1 UPSTREAM NODE 5012.62 ELEVATION = 391.22 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.57 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 13.95 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.23 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2. 230 2. 020 2 . 293 177. 18 3 685 1. 500 2. 020 1. 563 96. 68 NORMAL DEPTH(FT) 0 .28 CRITICAL DEPTH(FT) 0.72 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 3 685 1 . 500 2 020 1 563 96. 68 3 839 1. 469 2 030 1 533 93 . 32 3 990 1. 438 2 049 1 503 90. 05 4 139 1. 407 2 073 1 473 85. 85 4 .286 1. 375 2 103 1 444 83 . 73 4 432 1. 344 2 137 1 415 80. 70 4 .576 1. 313 2 176 1 387 77. 75 4 .718 1. 282 2 219 1 358 74 . 89 4 . 859 1. 251 2 257 1 331 72 . 12 4 .997 1. 220 2 319 1 303 69. 46 5 .133 1 . 188 2 377 1 276 65. 90 5 .267 1 . 157 2 439 1 250 64. 45 5 .398 1. 125 2 508 1 224 62 . 12 5 .526 1 . 095 2 582 1 199 59 . 91 5 .650 1. 064 2 663 1 174 57. 82 5 .770 1. 033 2 751 1 150 55. 87 5 . 886 1. 002 2 847 1 127 54 05 5 .996 0. 970 2 951 1 106 52 38 6 .100 0. 939 3 .065 1 085 50 85 6 .197 0 . 908 3 190 1 066 49 50 6 .285 0. 877 3 326 1 049 48 32 6 .353 0. 846 3 .476 1 033 47 31 6 .429 0 . 815 3 . 640 1 021 46 50 6 .480 0 783 3 .822 1 010 45 90 6 .514 0 752 4 .024 1 004 45 52 6 .527 0. 721 4 .247 1 001 45 39 13 . 950 0 721 4 .247 1 .001 45 39 NODE 5012.62 : HGL = < 391. 941>;EGL= < 392.221>;FLOWLINE= < 391.220> ****************************************************************************** FLOW PROCESS FROM NODE 5012.62 TO NODE 5012.62 IS CODE = 8 UPSTREAM NODE 5012.62 ELEVATION = 391.22 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.57 CFS PIPE DIAMETER = FLOW VELOCITY = 4.25 FEET/SEC. VELOCITY HEAD = CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 18.00 INCHES 0.2 80 FEET 0.280) = 0.055 NODE 5012.62 : HGL = < 392.277>;EGL= < 392.277>;FLOWLINE= < 391.220> ******************************************** ********************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5012.62 FLOWLINE ELEVATION = 391.22 ASSUMED UPSTREAM CONTROL HGL = 391.94 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 5000 - PA-9 - 100 YEAR STORM EVENT ' * WENTWORTH DRIVE MAIN LINE ' ************************************************************************** FILENAME: 5000IT20.DAT TIME/DATE OF STUDY: 07:34 10/03/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOVJNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 5007.60- 1.88 317.11 0.93* 343.07 } FRICTION 5007.70- 1.40*Dc 279.02 1.40*Dc 279.02 } JUNCTION 5007.79- 1.80 185.46 0.58* 203.55 } FRICTION 5007.80- 1.09*Dc 130.65 1.09*Dc 130.65 } JUNCTION 5007.89- 1.67 170.68 0.56* 212.89 } FRICTION 5007.90- 1.09*Dc 130.65 1.09*Dc 130.55 } JUNCTION 5007.91- 1.77* 139.19 0.86 Dc 69.86 MAXIMtJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5007.60 FLOWLINE ELEVATION = 262.18 PIPE FLOW = 15.11 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 2 64.060 FEET NODE 5007.60 : HGL = < 263.113>;EGL= < 254.828>;FLOWLINE= < 262.180> ****************************************************************************** FLOW PROCESS FROM NODE 5007.60 TO NODE 5007.70 IS CODE = 1 UPSTREAM NODE 5007.70 ELEVATION = 263.77 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION PIPE FLOW PIPE LENGTH = LOSSES(LACFCD): 15.11 CFS PIPE 56.99 FEET DIAMETER = 24.00 INCHES MANNING'S N = 0.013 00 NORMAL DEPTH(FT) = 0.88 CRITICAL DEPTH(FT) = 1.40 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.4 0 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN] 0 000 1 401 6 .426 2 043 279 02 0 029 1 380 6.532 2 043 279 11 0 121 1 359 6.644 2 045 279 38 0 282 1 338 6 .750 2 048 279 86 0 518 1 318 6.881 2 053 280 53 0 840 1 297 7.008 2 060 281 41 1 255 1 276 7.141 2 068 282 51 1 .777 1 255 7 .279 2 078 283 83 2 .418 1 234 7 .424 2 090 285 40 3 .194 1 213 7.575 2 105 287 21 4 .124 1 192 7 .733 2 122 289 28 5 .233 1 172 7 . 899 2 141 291 62 6 .548 1 151 8.073 2 163 294 25 8 .105 1 130 8.255 2 189 297 18 9 .949 1 109 8.447 2 218 300 43 12 .138 1 .088 8.647 2 250 304 01 14 .749 1 .067 8.858 2 286 307 94 17 . 887 1 .046 9.080 2 327 312 24 21 .696 1 .026 9 .313 2 373 316 94 26 .391 1 .005 9 .559 2 425 322 .06 32 .305 0 .984 9.819 2 482 327 .62 39 .994 0 .963 10.092 2 .545 333 .66 50 .504 0 .942 10.381 2 .617 340 .20 56 .990 0 .933 10.505 2 .648 343 .07 NODE 5007.70 : HGL = < 265.171>;EGL= < 265.813>;FLOWLINE= < 263.770> ****************************************************************************** FLOW PROCESS FROM NODE 5007.70 TO NODE 5007.79 IS CODE = 5 UPSTREAM NODE 5007.79 ELEVATION = 254.27 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JtJNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 7.95 18.00 0.00 264.27 15.11 24.00 - 263.77 3.58 18.00 90.00 264.27 3.58 18.00 90.00 264.27 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.09 1.40 0.72 0.72 VELOCITY (FT/SEC) 12.594 6.428 4.117 4.117 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05701 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00635 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03168 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.127 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.374)+( 0.127)+( 0.000) = 1.501 NODE 5007.79 : HGL = < 264.850>;EGL= < 267.313>;FLOWLINE= < 264.270> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5007.80 5007.79 TO NODE ELEVATION = 5007.80 IS CODE = 1 271.51 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.95 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 112.95 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) = 1.09 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1. 09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.015 0.062 0 .145 0.267 0 .434 0.651 0.926 1.266 1 . 680 2 .181 2 .782 3 .501 4.360 5 .387 5 .617 8 .099 9 . 898 12.105 14.855 18 .360 22 . 970 29 .348 38.984 56 .658 112.950 FLOW DEPTH (FT) 1.092 1.071 1.050 1.028 1.007 0.986 0.965 0.943 0.922 0.901 0.879 0.858 0.837 0.816 0.794 0-773 0.752 0.730 0.709 0.688 0.667 0.645 0.624 0.603 0.581 0.580 VELOCITY (FT/SEC) 5.765 5.887 6 . 017 5.154 6.300 6.454 6.618 6 .791 6.975 7.172 7.381 7.604 7.841 8.095 8.366 8.657 8.969 9.304 9.665 10.054 10.475 10.931 11.427 11.967 12.557 12.590 SPECIFIC ENERGY(FT) 609 610 612 617 624 633 1.645 1.660 1.678 700 726 756 792 834 882 1.937 001 075 160 258 371 502 553 2 . 828 3 . 032 3 .043 PRESSURE+ MOMENTUM(POUNDS) 130.65 130.73 130.95 131.33 131.88 132.60 133.50 134.61 135.92 137 .45 139.22 141.24 143.53 146.12 149.01 152.25 155.86 159.87 164.32 169.25 174.71 180.75 187.45 194.87 203 .10 203.56 NODE 5007.80 : HGL = < 272.702>;EGL= < 273.219>;FLOWLINE= < 271.610> ****************************************************************************** FLOW PROCESS FROM NODE 5007.80 TO NODE 5007.89 IS CODE = 5 UPSTREAM NODE 5007.89 ELEVATION = 271.94 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 7.95 7.95 0.00 0.00 DIAMETER ANGLE (INCHES) 18.00 18.00 0.00 0.00 (DEGREES) 90 . 00 0.00 0.00 FLOWLINE ELEVATION 271.94 271.61 0.00 0.00 CRITICAL VELOCITY DEPTH(FT.) 1.09 1.09 0.00 0.00 (FT/SEC) 13.253 5.757 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== JtJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06550 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00739 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03 650 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.146 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.862)+( 0.146)+( 0.000) = 2.008 NODE 5007.89 : HGL = < 272.499>;EGL= < 275.226>;FLOWLINE= < 271.940> ***************************************** ************************************* FLOW PROCESS FROM NODE 5007.89 TO NODE 5007.90 IS CODE = 1 UPSTREAM NODE 5007.90 ELEVATION = 290.13 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.95 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 245.91 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.54 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.09 1 . 09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.014 0.058 0 .134 0.248 0.404 0.607 0.864 1.182 1.571 2 , 2 . 3 FLOW DEPTH (FT) 1. 092 .041 .607 .285 4.096 5.057 5 .233 7.640 9 .352 11.458 14.088 17.447 21.876 28.021 37 .329 54 .450 245.910 070 048 026 004 0.982 0.960 0.938 0. 916 0. 894 0.872 0.850 0. 828 0. 806 0.784 0.762 0.739 0.717 0. 695 0.673 0. 651 0.629 0.607 0.585 0.563 0.559 VELOCITY (FT/SEC) 5 .755 5.892 6.027 6 .170 6.321 6.483 6.654 5.837 7.031 7 .238 7 .459 7.596 7.948 8.219 8.510 8.822 9 .158 9.521 9.913 10.338 10.799 11.301 11.850 12.451 13.111 13 .249 SPECIFIC ENERGY(FT) 1.609 1. 610 1.512 1.618 1.625 1.535 1.648 1.554 1.684 1.708 1.736 1.770 1. 809 1.855 1.909 1.971 2.043 ,126 ,222 ,334 ,463 ,514 .789 ,994 3 .234 3 .286 PRESSURE+ MOMENTUM(POUNDS) 130.65 130.73 130.97 131.38 131.97 132.75 133 .72 134.92 136 .33 137.99 139.91 142.11 144.61 147 .43 150.60 154.15 158.11 162 .53 167.44 172.91 178.98 185.74 193 .25 201.61 210.93 212.89 NODE 5007.90 HGL < 291.222>;EGL= < 291.739>;FLOWLINE= < 290.130> ****************************************************************************** FLOW PROCESS FROM NODE 5007-90 TO NODE 5007.91 IS CODE = 5 UPSTREAM NODE 5007.91 ELEVATION = 290.46 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) DIAMETER ANGLE FLOWLINE CRITICAL 4.97 7.95 2 .95 0.00 0.03== 18.00 90.00 290.46 0.86 18.00 - 290.13 1.09 18.00 90.00 290.46 0.55 0.00 0.00 0.00 0.00 :=Q5 EQUALS BASIN INPUT=== VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 2.812 5 .757 1. 856 0.000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00224 DOWNSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.0073 9 AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.00482 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.019 FEET ENTRANCE LOSSES = 0.103 FEET JtJNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.488)+( 0.019)+( 0.103) = 0.611 NODE 5007.91 : HGL = < 292.227>;EGL= < 292.349>;FLOWLINE= < 290.460> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 5007.91 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 290.46 291.32 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS APPENDIX 7.4 7000 SERIES FILES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** ' 2407.3 BRESSI RANCH - IN-TRACT PIPEFLOW * ^ SYSTEM 7000 - PA-12 - 100 YEAR STORM EVENT * *• STONEACRE AVENUE. MAPLELAV^N DRIVE MAIN LINE ************************************************************************** FILE NAME: 7000IT01.DAT TIME/DATE OF STUDY: 10:36 03/24/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 7000.00- } 7001.00- } 7002.00- } 7003.00- } 7007.00- } 7007 .90- } 7010.00- } 7011.00- } 7009.00- } 7009.90- } 7012.00- } 7012.90- } 7013.00- } 7014 .00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM{POUNDS) 2.50* 552.27 JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 2.40* 533.15 } HYDRAULIC JUMP 423.14 1.62*Dc 2.95 1.62*Dc 2.70 1.62*Dc 2.89' 1.62 Dc FRICTION+BEND 1.62 Dc FRICTION JUNCTION FRICTION MANHOLE FRICTION 1.06*Dc FRICTION+BEND 1.28* 540.03 423.14 592.04 423.14 423.14 423.14 419.12 } HYDRAULIC JUMP 1.06 Dc 137.6S 1.05 Dc 137.68 137.68 145.52 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 438.44 1.38 1.24 1.62*Dc 0.58* 1.62*Dc 0.89* 0.94* 0.99* 1.62*Dc 0.82 0.72* 0.84* 1.06*Dc 1.06 Dc 465.34 423.14 1089.40 423.14 633.94 596.38 565.27 423 .14 151.11 168.98 149.51 137.58 137.68 } JUNCTION 7014.90- 1-13 } FRICTION+BEND 7015.00- 0.90 Dc } FRICTION+BEND 7016.00- 0.90 Dc } FRICTION+BEND 7017.00- 0.90 Dc } FRICTION 7018.00- 0.90 DC } FRICTION+BEND 7019.00- 0.90*Dc } JUNCTION 7019.10- 1.30* 84.82 78.29 78.29 78.29 78.29 78.29 65.23 0.54* 0.54* 0. 55* 0. 60* 0.68* 0.90*Dc 0.50 Dc 107.77 107.52 106.13 97.04 87.35 78.29 18.84 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. ****************************************************************************** DOVVNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7000.00 FLOWLINE ELEVATION = 137.50 PIPE FLOW = 2 0.46 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 140.000 FEET NODE 7000.00 : HGL = < 140.000>;EGL= < 140.659>;FLOWLINE= < 137.500> ****************************************************************************** FLOW PROCESS FROM NODE 7000.00 TO NODE 7001.00 IS CODE = 5 UPSTREAM NODE 7001.00 ELEVATION = 137.83 (FLOW IS UNDER PRESStJRE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOVJNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 20.45 20.45 0.00 0.00 DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 24.00 24 .00 0.00 0.00 33 .00 0.00 0.00 137.83 137.50 0.00 0 . 00 1.62 1.62 0.00 0.00 VELOCITY (FT/SEC) 6.513 6.513 0.000 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00818 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00818 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00818 JUNCTION LENGTH = 2.44 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.232)+( 0.000) = 0.232 NODE 7001.00 : HGL = < 140.232>;EGL= < 140.891>;FLOWLINE= < 137.830> ****************************************************************************** FLOW PROCESS FROM NODE 7001.00 TO NODE 7002.00 IS CODE = 1 UPSTREAM NODE 7002.00 ELEVATION = 138.79 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.46 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 48.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1-16 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.62 DISTANCE FROM CONTROL(FT) 0 . 000 0.041 0.167 0.387 0.709 1.142 1.698 2.391 3 .236 4 .251 5 .451 6.892 8.578 10.560 12.891 15.640 18.896 22.782 27.468 33.204 40.380 48.000 FLOW DEPTH (FT) 1.623 1.604 1.586 1.567 1. 1. 1. 1. 1. 1. 1. ,549 ,531 ,512 ,494 .475 ,457 ,438 1.420 1.402 1.383 1.365 1.345 1.328 1.310 1.291 1.273 1.254 1.239 VELOCITY (FT/SEC) 7 .492 7 .573 7.657 7.744 7.834 7 .929 8.026 8.128 8.233 8.343 8.456 8.574 8.696 8.823 8.955 9.092 9.234 9.382 9.536 9.695 9.861 10.003 SPECIFIC ENERGY(FT) 2.495 495 497 499 503 507 513 2.520 2.529 2.538 2.550 2.562 2.577 2 .593 2.611 2 . 631 653 677 704 733 765 794 PRESSURE+ MOMENTUM(POUNDS) 423.14 423.22 423.46 423.87 424.45 425.20 426.13 427.25 428.55 430.06 431.76 433.68 435.81 438.17 440.75 443.58 446.66 450.00 453.61 457.50 461.68 465.34 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.40 DISTANCE FROM CONTROL(FT) 0.000 34.049 PRESSURE HEAD(FT) 2.402 2.000 VELOCITY (FT/SEC) 6.513 6.513 SPECIFIC ENERGY(FT) 3.061 2.659 PRESSURE+ MOMENTUM(POUNDS) 533.15 454.26 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2 . 00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 34.049 35.173 FLOW DEPTH (FT) 2.000 1.985 VELOCITY (FT/SEC) 6.511 6.518 SPECIFIC ENERGY(FT) 2.659 2.645 PRESSURE+ MOMENTUM(POUNDS) 454.26 451.58 36. 166 1. 970 6 531 2 . 633 449.16 37. 084 1 955 6 548 2 621 446.89 37 942 1 940 6 559 2 610 444.76 38 750 1 925 6 592 2 600 442.75 39 513 1 909 5 617 2 590 440.85 40 235 1 894 6 645 2 580 439.06 40 918 1 879 6 676 2 572 437.36 41 554 1 864 6 708 2 563 435.77 42 176 1 849 6 743 2 555 434.27 42 752 1 834 6 779 2 548 432.86 43 295 1 819 6 817 2 541 431.55 43 803 1 804 6 858 2 534 430.34 44 277 1 789 6 900 2 528 429.21 44 717 1 774 6 944 2 523 428.18 45 .121 1 758 6 990 2 518 427.24 45 490 1 743 7 038 2 513 426.40 45 822 1 728 7 .088 2 509 425.55 45 .115 1 .713 7 140 2 505 424.99 46 .359 1 698 7 .194 2 502 424.43 46 .582 1 683 7 .249 2 499 423.97 46 .751 1 668 7 .307 2 .497 423.61 46 .876 1 .653 7 .367 2 496 423.35 46 .952 1 .538 7 .428 2 495 423.20 45 .979 1 . 623 7 .492 2 .495 423.14 48 .000 1 .623 7 .492 2 .495 423.14 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 44.21 FEET UPSTREAM OF DOWNSTREAM DEPTH = 1.791 FEET, UPSTREAM CONJUGATE DEPTH NODE 7001.00 = 1.465 FEET NODE 7002.00 : HGL = < 140.413>;EGL= < 141.285>;FLOWLINE= < 138.790> ****************************************************************************** FLOW PROCESS FROM NODE 7002.00 TO NODE 7003.00 IS CODE = 5 UPSTREAM NODE 7003.00 ELEVATION = 139.12 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 20.45 20.46 0.00 0.00 DIAMETER (INCHES) 24.00 24 . 00 0. 00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 90.00 139.12 0.00 0.00 138.79 0.00 0. 00 CRITICAL DEPTH(FT.) 1.62 1.62 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/( (A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.12756 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.510 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 9.896)+( 0.000) = 9.896 VELOCITY (FT/SEC) 27.194 7 .494 0.000 0 . 000 24678 00833 0.000 FEET NODE 7003.00 : HGL = < 139.698>;EGL= < 151.181>;FLOWLINE= < 139.120> ********** ******************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 7007.00 7003 .00 TO NODE ELEVATION = 7007.00 IS CODE = 1 160.15 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.46 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 62.88 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.53 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.62 1.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0 .008 0.034 0.080 0.149 0 .245 0.370 0.531 0 .733 0.984 1, 1, 2 , 2 , 3 , 4. 5 , 5 , .293 .671 .135 .703 .400 .259 .327 .555 8.358 10.571 13 .490 17.495 23.289 32.459 50.127 62.880 FLOW DEPTH (FT) 1.623 1.579 1.536 1.492 1.449 1.405 1.361 1. 1. 1. 1. 1. 1. 1. 1, .318 ,274 ,231 ,187 .144 .100 .057 .013 0 . 970 0.926 0.883 0.839 0.795 0.752 0.709 0.665 0.622 0.578 0.578 VELOCITY (FT/SEC) 7.492 7.688 7.903 8.137 8.394 8.674 8.980 9.315 9.681 10.083 10.524 11.011 11.548 12.142 12.803 13.541 14.368 15 .299 16.353 17.553 18.931 20.522 22.378 24.563 27.165 27.186 SPECIFIC ENERGY(FT) 2.495 2 .497 2 .506 2.521 2.543 2.574 2.614 2.666 2 .731 2.811 2 . 908 3.028 3 .172 3 .348 3 .560 3.819 4.134 4.519 ,994 .583 ,320 ,253 8.446 9.996 12.044 12.061 PRESSURE+ MOMENTUM(POUNDS) 423.14 423.59 424.98 427.36 430.81 435.41 441.26 448.46 457 .14 467.45 479.57 493.70 510.06 528.96 550.72 575.76 604.56 637 .73 676.03 720.37 771.95 832 .26 903.27 987.56 1088.60 1089 .40 NODE 7007.00 : HGL = < 161.773>;EGL= < 162.545>;FLOWLINE= < 160.150> ****************************************************************************** FLOW PROCESS FROM NODE 7007.00 TO NODE 7007.90 IS CODE = 5 UPSTREAM NODE 7007.90 ELEVATION = 15 0.48 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 20.46 24.00 80.00 160.48 1.62 15.198 20.46 24.00 - 160.15 1.62 7.494 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 0. 00 0.000 LACFCD AND OCEMA FLOW JUNCTION FORJIULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4) )/( (A1+A2)* 16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04954 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00833 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02894 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.116 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.309)+( 0.000) = 2.309 NODE 7007.90 : HGL = < 161.367>;EGL= < 164.954>;FLOWLINE= < 160.480> ****************************************************************************** FLOW PROCESS FROM NODE 7007.90 TO NODE 7010.00 IS CODE = 1 UPSTREAM NODE 7010.00 ELEVATION = 163.69 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.46 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 50.37 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.87 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.94 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.62 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0 938 14 135 4 042 596 .38 1. 698 0 935 14 188 4 063 598 .25 3 . 479 0 933 14 242 4 084 600 .13 5. 350 0 930 14 296 4 105 502 .03 7. 319 0 927 14 350 4 127 503 .95 9. 395 0 924 14 405 4 149 605 .89 11. 592 0 922 14 460 4 171 607 . 84 13 . 920 0 919 14 516 4 193 509 .81 16. 396 0 916 14 572 4 216 511 .79 19. 036 0 914 14 629 4 239 613 .80 21. 863 0 911 14 686 4 252 515 .82 24 . 901 0 908 14 743 4 285 617 . 86 28. 184 0 905 14 801 4 309 619 .92 31. 750 0 903 14 859 4 333 621 .99 35. 648 0 900 14 918 4 358 524 .09 39. 941 0 897 14 977 4 383 626 .20 44. 714 0 895 15 037 4 408 628 .33 50. 080 0 892 15 097 4 433 630 .48 56. 197 0 889 15 157 4 459 632 .66 60. 370 0 887 15 193 4 474 633 .94 NODE 701C .00 HGL = < 164 628>;EGL= < 167.732>;FLOWLINE= < 163. 690> ****************************************************************************** FLOW PROCESS FROM NODE 7010.00 TO NODE 7011.00 IS CODE = 3 UPSTREAM NODE 7011.00 ELEVATION = 164.81 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 20.46 CFS CENTRAL ANGLE = 26.900 DEGREES PIPE LENGTH = 21.08 FEET PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 0.87 CRITICAL DEPTH(FT) NORMAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.62 0.99 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0. 000 0 .986 13 264 3 719 565 27 1. 537 0 .981 13 344 3 748 568 99 3 . 156 0 .976 13 425 3 777 571 76 4. 864 0 .972 13 506 3 805 574 57 6. 669 0 .967 13 589 3 836 577 42 8. 582 0 .963 13 673 3 867 580 31 10. 613 0 .958 13 758 3 899 583 24 12 . 775 0 .953 13 844 3 931 586 22 15. 083 0 .949 13 931 3 964 589 25 17. 555 0 .944 14 019 3 998 592 32 20. 213 0 .939 14 108 4 032 595 43 21. 080 0 .938 14 135 4 .042 596 38 NODE 7 011 .00 HGL = < 165. 796>;EGL= < 168.529>;FLOWLINE= < 164. 310> ,***************************************************************************** FLOW PROCESS FROM NODE 7011.00 TO NODE 7009.00 IS CODE = 1 UPSTREAM NODE 7009.00 ELEVATION = 167.05 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.46 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 41.97 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.87 CRITICAL DEPTH(FT) = 1.62 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 . 000 1 .623 7 .492 2 495 423 14 0 .028 1 .592 7.526 2 496 423 36 0 .117 1 .562 7.768 2 500 424 01 0 .272 1 .532 7.920 2 507 425 13 0 . 501 1 .502 8.082 2 517 425 72 0 . 811 1 .472 8.253 2 530 428 82 1 .212 1 .442 8.436 2 547 431 45 1 .717 1 .412 8.630 2 559 434 63 2 .338 1 .381 8.836 2 595 438 41 3 . 092 1 .351 9 . 055 2 625 442 81 3 .999 1 .321 9 .289 2 662 447 87 5.083 1 291 9 537 2 704 453.64 6 .375 1 261 9 802 2 754 460.17 7.911 1 231 10 084 2 811 467.50 9.740 1 201 10 386 2 877 475.69 11.924 1 171 10 708 2 952 484.81 14.544 1 140 11 052 3 038 494.94 17.711 1 110 11 421 3 137 506.15 21.584 1 080 11 817 3 250 518.55 26.391 1 050 12 243 3 .379 532.22 32.493 1 020 12 .701 3 .526 547.30 40.491 0 990 13 .195 3 .695 563.91 41.970 0 986 13 .264 3 .719 566.27 7009.00 HGL = < 168 673>;EGL= < 169.545>;FLOWLINE= < 167.050> ****************************************************************************** FLOW PROCESS FROM NODE 7009.00 TO NODE 7009.90 IS CODE = 5 UPSTREAM NODE 7009.90 ELEVATION = 167.38 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 8.86 20 .46 11.58 0.00 DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 24.00 63.00 167.38 1.06 24.00 - 167.05 1.62 18.00 83-00 167-38 1.30 0.00 0.00 0.00 0.00 VELOCITY (FT/SEC) 2 . 820 7.494 6.553 0.000 0.02===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/({A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.00153 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00833 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00493 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.174 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.675) +( 0.174) = 0.850 NODE 7009.90 : HGL = < 170.271>;EGL= < 170.394>;FLOWLINE= < 167.380> ****************************************************************************** FLOW PROCESS FROM NODE 7009.90 TO NODE 7012.00 IS CODE = 1 UPSTREAM NODE 7012.00 ELEVATION = 169.74 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.86 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 196.64 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.83 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.72 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1. 05 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0 . 717 8. 741 1. 905 168 98 1 . 877 0. 722 8. 670 1. 890 168 03 3 . 806 0. 725 8 599 1. 875 167 10 5. 793 0. 730 8 530 1. 861 166 19 7 . 841 0 735 8 461 1 847 165 30 9 959 0 739 8 394 1 834 164 42 12 151 0 744 8 327 1 821 163 57 14 428 0 748 8 262 1 809 162 74 16 799 0 752 8 197 1 795 161 92 19 274 0 757 8 134 1 785 161 12 21 868 0 761 8 071 1 773 160 34 24 598 0 765 8 009 1 762 159 58 27 483 0 770 7 948 1 751 158 84 30 548 0 774 7 888 1 741 158 11 33 826 0 778 7 829 1 731 157 40 37 357 0 783 7 771 1 721 156 70 41 193 0 787 7 713 1 712 156 03 45 409 0 792 7 .656 1 702 155 36 50 .106 0 .796 7 .600 1 693 154 .72 55 .431 0 .800 7 .545 1 685 154 .09 61 .618 0 .805 7 .490 1 .676 153 47 69 .051 0 . 809 7 .437 1 .668 152 . 87 78 .457 0 . 813 7 .384 1 .660 152 .28 91 .465 0 .818 7 .331 1 .653 151 .71 113 .304 0 . 822 7 .280 1 .645 151 .15 195 .640 0 . 822 7 .276 1 .645 151 .11 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.89 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 2 . 891 2 . 820 3. 014 419 . 12 85 .114 2 . 000 2 . 820 2 . 124 244 . 46 =========== ========== ====== ===== ====== ==== =========== .===== ============= ======= ASSUMED DOWNSTREAM PRESSURE HEAD (FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 85 .114 2 . 000 2 . 819 2 124 244. 46 88 .565 1. 962 2 . 832 2 087 237 . 33 91 .903 1. 925 2 . 854 2 052 230 42 95 .173 1. 887 2. 884 2 017 223 59 98 .390 1 . 850 2 . 919 1 982 217 15 101 .560 1 . 812 2 . 960 1 948 210 79 104 .685 1 -775 3 . 005 1 915 204 62 107 .767 1 -737 3 . 056 1 882 198 65 110 .806 1-700 3 . 112 1 850 192 89 113 .801 1 662 3 . 174 1 819 187 34 115 .749 1 625 3 . 240 1 788 182 02 119 546 1 587 3 313 1 758 175 93 122 489 1 550 3 391 1 728 172 09 125 272 1 512 3 476 1 700 167 50 127 988 1 475 3 567 1 672 163 18 130 527 1 437 3 665 1 646 159 14 133 179 1 400 3 772 1 621 155 38 135 630 1 362 3 887 1 597 151 94 137 964 1 325 4 Oil 1 575 148 82 140 159 1 287 4 145 1 554 145 03 142 187 1 250 4 290 1 535 143 51 144 .013 1 212 4 447 1 519 141 55 145 590 1 175 4 618 1 506 139 91 146 854 1 137 4 804 1 495 138 70 147 714 1 099 5 006 1 489 137 94 148 040 1 052 5 227 1 486 137 58 196 640 1 062 5 227 1 486 137 58 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 134.57 FEET UPSTREAM OF DOWNSTREAM DEPTH = 1.37 8 FEET, UPSTREAM CONJUGATE DEPTH NODE 7009.90 = 0.805 FEET NODE 7012.00 : HGL = < 170.457>;EGL= < 171.545>;FLOWLINE= < 169.740> ****************************************************************************** FLOW PROCESS FROM NODE 7012.00 TO NODE 7012.90 IS CODE = 2 UPSTREAM NODE 7012.90 ELEVATION = 170.07 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 8.86 CFS PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD = 0.9 88 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* ( 0.988) = 0.049 NODE 7012.90 : HGL = < 170.906>;EGL= < 171.694>;FLOWLINE= < 170.070> ****************************************************************************** FLOW PROCESS FROM NODE 7012.90 TO NODE 7013.00 IS CODE = 1 UPSTREAM NODE 7013.00 ELEVATION = 172.02 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.86 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 152.89 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.83 CRITICAL DEPTH(FT) = 1 .06 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.06 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUN 0 .000 1.062 5 227 1 486 137 68 0 .024 1.053 5 285 1 487 137 70 0 .097 1.043 5 345 1 487 137 75 0 .225 1.034 5 406 1 488 137 83 0 .413 1.024 5 469 1 489 137 96 0 .566 1.015 5 533 1 491 138 12 0 .993 1.006 5 599 1 493 138 31 1 .401 0.996 5 667 1 495 138 55 1. 901 0 987 5 735 1 498 138.82 2. 502 0 977 5 806 1 501 139.13 3 . 220 0 958 5 879 1 505 139.49 4 . 070 0 959 5 953 1 509 139.88 5. 073 0 949 6 029 1 514 140.32 6. 253 0 940 6 107 1 519 140.81 7. 643 0 930 6 187 1 525 141.34 9. 282 0 921 6 269 1 532 141.91 11. 225 0 912 6 353 1 539 142.54 13 . 543 0 902 6 440 1 546 143 .21 16. 339 0 893 6 528 1 555 143.93 19. 750 0 883 6 620 1 564 144.71 24 . 038 0 874 5 713 1 574 145.54 29 . 559 0 865 6 809 1 585 146.42 37. 048 0 855 6 908 1 597 147.36 48. 133 0 846 7 010 1 509 148.36 68. 037 0 836 7 114 1 523 149.42 162 . 890 0 836 7 123 1 624 149.51 7013 . 00 HGL = < 173 082>;EGL= < 173.506>;FLOWLINE= < 172.020 ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 7014.00 7013.00 TO NODE ELEVATION = 7014.00 IS CODE = 3 172.49 (FLOW IS SUBCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 8.86 CFS CENTRAL ANGLE = 7.580 DEGREES PIPE LENGTH = 172.49 FEET PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.29 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.06 1.06 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 0.069 0.283 0.657 1.205 1.945 2 . 897 4 . 086 5.539 7.288 9.373 11.841 14.750 18.171 22.195 26.938 32.553 39.248 47.312 FLOW DEPTH (FT) 1.062 1.071 1.080 1. 090 1.099 1.108 1.117 1.127 1.136 1.145 1.154 1.163 1.173 .182 , 191 ,200 ,210 ,219 .228 VELOCITY (FT/SEC) 5.227 5 .171 5.116 5 . 062 5 . 009 4.958 4.907 858 810 763 716 571 4.627 4.583 541 499 458 418 4.378 SPECIFIC ENERGY(FT) 1.486 1.487 1.487 1.488 1.489 1.490 1.491 1.493 1.495 1.497 1.500 1.502 1.505 1.508 1.511 1.515 1.518 1.522 1.526 PRESSURE+ MOMENTUM(POUNDS) 137.68 137.70 137 .74 137.82 137.93 138.07 138.24 138.44 138.65 138.92 139.20 139.51 139.84 140.20 140.59 141.00 141.44 141.90 142.38 57.173 69.490 85.369 106.885 138.699 112.ASO 1.237 1.246 1.256 1.265 1.274 1.280 4.340 4 .302 4 .265 4 .229 4 .193 4 .173 1.530 1.534 1.538 1.543 1.547 1.550 142.89 143.42 143.98 144.56 145.16 145.52 NODE 7014.00 : HGL = < 173.770>;EGL= < 174.040>;FLOWLINE= < 172.490> ****************************************************************************** FLOW PROCESS FROM NODE 7014.00 TO NODE 7014.90 IS CODE = 5 UPSTREAM NODE 7014.90 ELEVATION = 172.99 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 5.42 8.86 1.24 2 .18 DIAMETER (INCHES) 18.00 24.00 18.00 18.00 ANGLE (DEGREES) 0.00 90.00 60.00 FLOWLINE ELEVATION 172.99 172.49 172.99 172.99 CRITICAL DEPTH(FT.) 0.90 1.06 0.42 0.56 VELOCITY (FT/SEC) 9 .502 4.174 1.659 2.917 0.02===Q5 EQUALS BASIN INPUT= LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01892 4.00 FEET 0.076 FEET ENTRANCE LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.836)+( 0.054) = 0.890 JUNCTION FRICTION JUNCTION JUNCTION LENGTH = LOSSES = LOSSES = LOSSES = 03503 00281 0.054 FEET NODE 7014.90 : HGL = < 173.528>;EGL= < 174.930>;FLOWLINE= < 172.990> ****************************************************************************** FLOW PROCESS FROM NODE 7014.90 TO NODE 7015.00 IS CODE = 3 UPSTREAM NODE 7015.00 ELEVATION = 173.17 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 5.42 CFS CENTRAL ANGLE = 0.980 DEGREES PIPE LENGTH = 5.03 FEET PIPE DIAMETER = 18.00 MANNING'S N = 0.01300 INCHES NORMAL DEPTH(FT) = 0.54 CRITICAL DEPTH(FT) = 0.90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.54 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0 .999 2.042 3.131 FLOW DEPTH (FT) 0.539 0.539 0.539 0.539 VELOCITY (FT/SEC) 9 .482 9 .486 9.489 9.493 SPECIFIC ENERGY(FT) 1.935 1.937 1.938 1.939 PRESSURE+ MOMEICTUM (POUNDS) 107.62 107.65 107.68 107.71 4 .272 5.030 0.538 0.538 9 .497 9.499 1. 940 1.940 107.75 107.77 NODE 7015.00 : HGL = < 173.709>;EGL= < 175.106>;FLOWLINE= < 173.170> ****************************************************************************** FLOW PROCESS FROM NODE 7015.00 TO NODE 7016.00 IS CODE = 3 UPSTREAM NODE 7016.00 ELEVATION = 175.54 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 5.42 CFS CENTRAL ANGLE = 86.270 DEGREES PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 PIPE LENGTH = 67.75 FEET NORMAL DEPTH(FT) 0.54 CRITICAL DEPTH(FT) = 0.90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.55 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.988 2.020 3 .099 4 .229 5.415 5.564 7 .982 9.377 10.858 12 .437 14 .126 15.943 17.908 20.046 22.390 24.985 27.889 31.185 34.994 39.504 45.030 52.163 62 .230 67.750 FLOW DEPTH (FT) 0.546 0.545 0.546 0.545 0.545 0.545 0.544 0.544 0.544 0.543 0.543 0.543 0.542 0.542 0.542 0.542 0.541 0.541 0 . 541 0 . 540 0.540 0.540 0.539 0.539 0. 539 VELOCITY (FT/SEC) 9 .317 9 .324 9 .331 9.338 9 .345 9 9 9 9 9 9 352 359 366 373 380 387 9.394 9.401 9 .408 9 .416 9 .423 9 .430 9.437 9.444 451 458 466 473 480 482 SPECIFIC ENERGY(FT) ,895 ,897 ,898 ,900 ,902 ,904 ,905 ,907 ,909 ,911 ,912 ,914 ,916 ,918 ,919 ,921 ,923 925 , 926 928 930 ,932 934 936 936 PRESSURE+ MOMENTtJM (POUNDS) 106.13 105.20 106.25 106.32 106.38 106.45 106.51 106.57 105.63 106.70 106.76 106.82 106.89 106.95 107.02 107.08 107.14 107.21 107.27 107.34 107.40 107.47 107.53 107.59 107.62 NODE 7016.00 : HGL = < 176.086>;EGL= < 177.435>;FLOWLINE= < 175.540> ****************************************************************************** FLOW PROCESS FROM NODE 7016.00 TO NODE 7017.00 IS CODE = 3 UPSTREAM NODE 7017.00 ELEVATION = 177.19 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 5.42 CFS CENTRAL ANGLE = 13.080 DEGREES PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 PIPE LENGTH = 47.25 FEET NORMAL DEPTH(FT) = 0.54 CRITICAL DEPTH(FT) = 0.90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.60 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 0. 811 1.665 2. 3 . 4 . 5. 6. ,566 ,517 525 ,595 ,733 7.948 9.249 10.546 12.154 13.789 15.572 17.527 19.689 22.100 24.820 27.932 31.557 35.883 41.224 47.250 FLOW DEPTH (FT) 0.597 0.595 0.592 0. 590 0.588 0.585 0.583 0.581 0.578 0.576 0.574 0.571 0.569 0.567 0.564 0.562 0.550 0. 557 0. 555 0.553 0.550 0.548 0.546 VELOCITY (FT/SEC) 8.264 8.308 8.351 8.396 8.440 8.485 8.531 8.576 8. 623 8.670 8.717 8.765 8.813 8.862 8.911 8.961 Oil 062 113 165 218 271 317 SPECIFIC ENERGY(FT) .658 .557 .575 .685 .694 .704 .714 .724 .734 .744 .754 .765 . 776 .787 .798 , 810 . 821 . 833 .845 . 858 , 871 . 884 .895 PRESSURE+ MOMENTUM(POUNDS) 97.04 97.40 97 .76 98.13 98.50 98.88 99 .27 99 . 56 100.05 100.46 100.86 101.28 101.69 102.12 102.55 102.98 103.42 103.87 104 .32 104.78 105.25 105.72 106.13 NODE 7017.00 : HGL = < 177.787>;EGL= < 178.848>;FLOWLINE= < 177.190> ****************************************************************************** FLOW PROCESS FROM NODE 7017.00 TO NODE 7018.00 IS CODE = 1 UPSTREAM NODE 7018.00 ELEVATION = 177.70 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 5.42 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH = 14.52 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0 . 54 CRITICAL DEPTH(FT) 0.90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.560 1.161 1.808 2.503 FLOW DEPTH (FT) 0. 677 0. 671 0.565 0. 660 0.654 VELOCITY (FT/SEC) 7 . 005 7.080 7.158 7.236 7.317 SPECIFIC ENERGY(FT) 1.439 1.450 1.461 1 . 474 1.486 PRESSURE+ MOMENTUM(POUNDS) 87.35 87.88 88.42 88.99 89.58 3 253 0 549 7 399 1 500 90 19 4 062 0 643 7 484 1 513 90 82 4 939 0 638 7 570 1 528 91 48 5 890 0 632 7 657 1 543 92 16 5 924 0 627 7 747 1 559 92 86 8 054 0 621 7 839 1 576 93 58 9 293 0 615 7 933 1 593 94 33 10 656 0 610 8 029 1 612 95 10 12 165 0 504 8 127 1 631 95 91 13 844 0 599 8 228 1 651 96 73 14 520 0 597 8 264 1 658 97 04 NODE 7018.00 : HGL = < 178.377>;EGL= < 179.139>;FLOWLINE= < 177.700> ****************************************************************************** FLOW PROCESS FROM NODE 7018.00 TO NODE 7019.00 IS CODE = 3 UPSTREAM NODE 7019.00 ELEVATION = 177.95 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 5.42 CFS CENTRAL ANGLE = 2.100 DEGREES PIPE LENGTH = 7.07 FEET PIPE DIAMETER = 18.00 INCHES MAIJNING'S N = 0.01300 NORMAL DEPTH(FT) — 0.54 CRITICAL DEPTH(FT) 0.90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.90 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .897 4 .912 1 272 78. 29 0 . 016 0 .883 5 .009 1 273 78. 32 0 .054 0 .858 5 .109 1 274 78. 42 0 .150 0 .854 5 .215 1 276 78. 58 0 .277 0 .840 5 .324 1 280 78. 81 0 .449 0 .825 5 .439 1 285 79. 11 0 .673 0 .811 5 .559 1 291 79. 48 0 .954 0 .796 5 .685 1 299 79. 94 1 .300 0 .782 5 .817 1 308 80. 47 1 .721 0 .768 5 .955 1 319 81. 10 2 .225 0 .753 6 .100 1 331 81. 81 2 .829 0 .739 6 .252 1 346 82. 62 3 .547 0 .724 6 .412 1 363 83 . 53 4 .398 0 .710 6 .580 1 383 84. 55 5 .409 0 . 696 6 .757 1 405 85 . 58 6 .612 0 .581 6 .943 1 430 86 . 92 7 .070 0 .677 7 .005 1 439 87. 35 NODE 7019.00 : HGL = < 178.847>;EGL= < 179.222>;FLOWLINE= < 177.950> ****************************************************************************** FLOW PROCESS FROM NODE 7019.00 TO NODE 7019.10 IS CODE = 5 UPSTREAM NODE 7019.10 ELEVATION = 178.28 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY [INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 (CFS) 1.80 18.00 90.00 178.28 0.50 5.42 18.00 - 177.95 0.90 3.60 18.00 90.00 178.28 0.72 0.00 0.00 0.00 0.00 0.00 0.02===Q5 EQUALS BASIN INPUT=== 1.107 4 .914 3.113 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00027 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00595 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00311 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.075 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.302)+( 0.075) = 0.377 NODE 7019.10 : HGL = < 179.580>;EGL= < 179.599>;FLOWLINE= < 178.280> ************************** **************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7019.10 FL0V7LINE ELEVATION = 178.28 ASSUMED UPSTREAM CONTROL HGL = 178.7 8 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 - BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 7000 - PA-12 - 100 YEAR STORM EVENT ' * STONEACRE AVENUE LATERAL ' ************************************************************************** FILENAME: 7000IT02.DAT TIME/DATE OF STUDY: 15:22 03/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 7014.10- 1.53* 103.89 0.37 38.62 } FRICTION 7014.20- 1.20* 59.53 0.60 Dc 28.68 } CATCH BASIN 7014.20- 1.25* 54.32 0.60 Dc 10.28 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7014.10 FLOWLINE ELEVATION = 172.99 PIPE FLOW = 2.50 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM COIUROL HGL = 174.620 FEET NODE 7014.10 : HGL = < 174.620>;EGL= < 174.651>;FLOWLINE= < 172.990> ****************************************************************************** FLOW PROCESS FROM NODE 7014.10 TO NODE 7014.20 IS CODE = 1 UPSTREAM NODE 7014.20 ELEVATION = 173.41 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 2.10 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD (FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1.63 DISTANCE FROM CONTROL(FT) 0. 000 0. 652 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 1.530 1.415 1.500 1.415 SPECIFIC ENERGY(FT) 1.561 1.531 PRESSURE+ MOMENTUM{POUNDS) 103.89 89.56 NORMAL DEPTH(FT) = 0.24 CRITICAL DEPTH(FT) ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.60 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTtJM (POUN 0 652 1 500 1 414 1 531 89 56 0 831 1 464 1 423 1 495 85 53 1 008 1 428 1 440 1 460 81 78 1 183 1 392 1 461 1 425 78 01 1 358 1 356 1 487 1 390 74 32 1 532 1 320 1 518 1 356 70 73 1 704 1 284 1 552 1 321 67 23 1 876 1 248 1 591 1 287 63 84 2 045 1 212 1 634 1 253 60 56 2 100 1 200 1 649 1 242 59 53 NODE 7014.20 : HGL = < 174.610>;EGL= < 174.652>;FLOWLINE= < 173.410> ****************************************************************************** FLOW PROCESS FROM NODE 7014.20 TO NODE 7014.20 IS CODE = 8 UPSTREAM NODE 7014.20 ELEVATION = 173.41 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.50 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.65 FEET/SEC. VELOCITY HEAD = 0.042 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.042) = 0.008 NODE 7014.20 : HGL = < 174.661>;EGL= < 174.661>;FLOWLINE= < 173.410> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7014.20 FLOWLINE ELEVATION = 173.41 ASSUMED UPSTREAM CONTROL HGL = 174.01 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 - BRESSI RANCH - IN-TRACT PIPEFLOW * SYSTEM 7000 - PA-12 - 100 YEAR STORM EVENT * STONEACER AVEIslUE LATERAL ************************************************************************** FILE NAME: 7000IT03.DAT TIME/DATE OF STUDY: 15:30 03/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 7014.30- 1-63* 119-14 0.58 71.04 } FRICTION 7014.40- 0.81*Dc 61.16 0.81*Dc 61.16 } CATCH BASIN 7014.40- 1.21* 33.47 0-81 Dc 21.22 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************' DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7014.30 FLOWLINE ELEVATION = 172.99 PIPE FLOW = 4.49 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 174.620 FEET :************************** NODE 7014.30 : HGL = < 174.620>;EGL= < 174.720>;FLOWLINE= < 172.990> ****************************************************************************** FLOW PROCESS FROM NODE 7014.30 TO NODE 7014.40 IS CODE = 1 UPSTREAM NODE 7014.40 ELEVATION = 173.65 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.49 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 31.62 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1.53 DISTANCE FROM PRESSURE CONTROL(FT) HEAD(FT) 0.000 1.530 6.825 1-500 VELOCITY (FT/SEC) 2 .541 2 .541 SPECIFIC ENERGY(FT) 1.730 1.600 PRESSURE+ MOMENTUM (POUNDS) 119.14 104.81 NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) 0.81 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 5-825 8-217 9.552 10.881 12.176 13.450 14.705 15.940 17.154 18.347 19.518 20.665 21.786 22.878 23.938 24.961 25.944 26.881 27.754 28.586 29.335 30.000 30.563 31.004 31.296 31.404 31.620 FLOW DEPTH (FT) 500 473 445 418 390 ,363 ,335 ,308 .280 .253 1.225 198 170 143 115 088 1.060 1. 033 1.005 0.978 0.950 0.923 0. 896 0 . 868 0.841 0.813 0.813 VELOCITY (FT/SEC) 2.540 2.551 2 .570 2 .596 2.626 2.662 2 .702 2 .746 2 .794 2 .847 2.905 2 .967 3 .034 3 .107 3 .186 270 361 459 565 3.579 3.802 3 .935 4 . 079 235 404 589 589 SPECIFIC ENERGY(FT) 1.500 1.574 1.548 1.522 1.497 1.473 1.449 1.425 1.401 1.379 1.356 1.335 1.313 1.293 1.273 1.254 1.236 1.219 .203 ,188 ,175 .164 ,154 .147 1.142 1.140 1.140 PRESSURE+ MOMENTUM(POUNDS) 104.81 101.88 99.04 96.29 93.60 91.00 88.48 86.03 83 .68 81.41 79.23 77.16 75.18 73 .30 71.54 69.89 58.35 66.96 65.68 64.55 63.56 62.73 62.06 61.57 61.26 61.15 61.15 NODE 7014.40 : HGL = < 174.463>;EGL= < 174.790>;FLOWLINE= < 173.550> ****************************************************************************** FLOW PROCESS FROM NODE 7014.40 TO NODE 7014.40 IS CODE = 8 UPSTREAM NODE 7014.40 ELEVATION = 173.65 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.49 CFS PIPE DIAMETER = IS 3.00 INCHES FLOW VELOCITY = 4.59 FEET/SEC. VELOCITY HEAD = 0 327 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 327 = 0.065 NODE 7014.40 : HGL = < 174.856>;EGL= < 174.856>;FLOWLINE= < 173.650> ***************** ************************************************************* UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7014.40 FLOWLINE ELEVATION = 173.65 ASSUMED UPSTREAM CONTROL HGL = 174.45 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego, CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 - BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 7000 - PA-12 - 100 YEAR STORM EVENT ' * MAPLELAWN DRIVE LATERAL ' ************************************************************************** FILE NAME: 7 000IT04.DAT TIME/DATE OF STUDY: 16:03 03/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 7019.10- 1.30* 65.22 0.39 20.88 } FRICTION 7019.20- 0.96* 36.57 0.50 Dc 18.84 } CATCH BASIN 7019.20- 1.00* 32.90 0.50 Dc 6.82 MAXIMUM NUJIBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7019.10 FLOWLINE ELEVATION = 178.28 PIPE FLOW = 1.80 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 179.580 FEET NODE 7019.10 : HGL = < 179.580>;EGL= < 179.599>;FLOWLINE= < 178.280> ****************************************************************************** FLOW PROCESS FROM NODE 7019.10 TO NODE 7019.20 IS CODE = 1 UPSTREAM NODE 7019.20 ELEVATION = 178.61 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) = 0.3 8 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.3 0 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.50 DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1.300 1 106 1 319 65 22 1.268 1 129 1 288 62 10 1.236 1 155 1 257 59 06 1.205 1 183 1 225 56 10 1.173 1 214 1 196 53 23 1.141 1 248 1 165 50 45 1.109 1 284 1 135 47 75 1.077 1 325 1 105 45 15 1. 046 1 368 1 075 42 65 1.014 1 416 1 045 40 25 0.982 1 468 1 015 37 96 0.962 1 .503 0 997 36 57 DISTANCE FROM CONTROL(FT) 0.000 2.129 4.253 6.371 8.483 10.587 12.684 14.772 15.851 18.918 20.972 22 .250 NODE 7019.20 : HGL = < 179.572>;EGL= < 179.507>;FLOWLINE= < 178.610> ****************************************************************************** FLOW PROCESS FROM NODE 7019.20 TO NODE 7019.20 IS CODE = 8 UPSTREAM NODE 7019.20 ELEVATION = 178.61 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.80 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 1.50 FEET/SEC. VELOCITY HEAD = 0.035 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.035) = 0.007 NODE 7019.20 : HGL = < 179.614>;EGL= < 179.614>;FLOWLINE= < 178.610> ************************************************* ***************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7019.20 FLOWLINE ELEVATION = 178.61 ASSUMED UPSTREAM CONTROL HGL = 179.11 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 - BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYSTEM 7 000 - PA-12 - 100 YEAR STORM EVENT ' * MAPLELAWN DRIVE LATERAL ************************************************************************** FILE NAME: 7000IT05.DAT TIME/DATE OF STUDY: 16:07 03/12/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RtJN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 7019.30- 1.30 78.74 0.38* 83.45 } FRICTION 7019.40- 0.75*Dc 49.55 0.75*Dc 49.55 } CATCH BASIN 7019.40- 1.10* 26.86 0.75 Dc 17.39 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ******************************* DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7019.30 FLOWLINE ELEVATION = 178.28 PIPE FLOW = 3.82 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 179.580 FEET *********************************************** NODE 7019.30 : HGL = < 178.661>;EGL= < 180.475>;FLOWLINE= < 178.280> ****************************************************************************** FLOW PROCESS FROM NODE 7019.30 TO NODE 7019.40 IS CODE = 1 UPSTREAM NODE 7019.40 ELEVATION = 179.76 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.82 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 8.25 FEET MANNING'S N = 0.01300 CRITICAL DEPTH(FT) NORMAL DEPTH(FT) = 0.3 0 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.75 0.75 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUtSlDS) 0. 000 0. 747 4. 343 1. 040 49. 55 0. 005 0. 729 4 . 481 1. 041 49. 60 0 021 0. 711 4. 627 1. 044 49. 74 0 049 0. 693 4. 783 1. 049 49 99 0 091 0 675 4 950 1 056 50 34 0 149 0 657 5 129 1 066 50 81 0 225 0 639 5 320 1 079 51 40 0 323 0 621 5 525 1 095 52 13 0 445 0 603 5 745 1 116 53 00 0 595 0 585 5 983 1 141 54 03 0 782 0 567 6 240 1 172 55 23 1 008 0 549 6 518 1 209 56 62 1 283 0 531 6 820 1 254 58 21 1 615 0 513 7 148 1 307 60 03 2 .021 0 495 7 507 1 371 62 09 2 .515 0 .477 7 .899 1 447 64 44 3 .121 0 .459 8 .330 1 .537 67 .11 3 .871 0 .441 8 . 806 1 . 646 70 .13 4 .810 0 .423 9 .332 1 .776 73 .55 6 .004 0 .405 9 .917 1 .933 77 .44 7 .557 0 .387 10 .570 2 .123 81 .85 8 .250 0 .381 10 .804 2 .195 83 .45 NODE 7019.40 : HGL = < 180.507>;EGL= < 180.800>;FLOWLINE= < 179.760> c************************** ********************* *******************************' FLOW PROCESS FROM NODE 7019.40 TO NODE 7019.40 IS CODE = 8 UPSTREAM NODE 7019.40 ELEVATION = 179.76 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.82 CFS PIPE DIAMETER = IS 3.00 INCHES FLOW VELOCITY = 4.34 FEET/SEC. VELOCITY HEAD = 0 293 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0 293 = 0.059 NODE 7019.40 : HGL = < 180.859>;EGL= < 180.859>;FLOWLINE= < 179.760> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7019.40 FLOWLINE ELEVATION = 179.76 ASSUMED UPSTREAM CONTROL HGL = 180.51 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD. AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street. Suite 800 San Diego. CA 92101 ************************** DESCRIPTION OF STUDY ************************** * 2407.3 - BRESSI RANCH - IN-TRACT PIPEFLOW ' * SYATEM 7000 - PA-12 - 100 YEAR STORM EVENT * STONEACRE VElSfUE LATERAL ************************************************************************** FILENAME: 7000IT06.DAT TIME/DATE OF STUDY: 13:29 03/18/2003 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 7009.10- 2.34* 255.34 0.71 207.21 } FRICTION 7009.20- 1.16*Dc 155.29 1.16*Dc 156.29 ) CATCH BASIN 7009.20- 1.87* 123.55 1-16 Dc 48.21 MAXIMUM INUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD. AND OCEMA DESIGN MANUALS. JtJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7009.10 FLOWLINE ELEVATION = 167.88 PIPE FLOW = 9.06 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 17 0.22 0 FEET NODE 7009.10 : HGL = < 170.220>;EGL= < 170.628>;FLOWLINE= < 167.880> ****************************************************************************** FLOW PROCESS FROM NODE 7009.10 TO NODE 7009.20 IS CODE = 1 UPSTREAM NODE 7009.20 ELEVATION = 169.04 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.06 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 14.60 FEET MANNING'S N = 0.013 00 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2.34 DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 . 340 5 . 127 2. 748 265 34 11 665 1. 500 5 . 127 1. 908 172 72 NORMAL DEPTH(FT) 0 .57 CRITICAL DEPTH(FT) 1.16 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 11 655 1. 500 5 . 125 1 908 172 72 11 .835 1. 487 5. 133 1 896 171 37 11 .990 1. 473 5. 146 1 885 170 13 12 .136 1. 450 5 . 154 1 874 168 96 12 .274 1. 446 5 . 184 1 864 167 86 12 .406 1. 433 5. 208 1 854 166 .81 12 .532 1 . 419 5 . 234 1 845 165 .82 12 .652 1. 406 5 . 253 1 836 164 .87 12 .766 1. 393 5 . 294 1 828 163 .98 12 .875 1 . 379 5. 327 1 820 163 .14 12 .978 1. 366 5 . 363 1 813 152 .34 13 . 076 1 . 352 5 400 1 805 161 .59 13 .169 1. 339 5. 440 1 799 160 . 88 13 .256 1. 325 5 482 1 792 160 .23 13 .337 1. 312 5 . 526 1 786 159 . 62 13 .413 1 299 5 572 1 781 159 .06 13 .482 1 285 5 620 1 .776 158 .55 13 .546 1 272 5 670 1 .771 158 .09 13 .603 1 258 5 723 1 .767 157 .68 13 .654 1 245 5 777 1 .763 157 .32 13 .698 1 231 5 834 1 .760 157 .01 13 .734 1 218 5 893 1 .758 156 .75 13 .764 1 205 5 955 1 .755 156 .56 13 . 785 1 191 6 019 1 .754 156 .41 13 .798 1 178 6 085 1 .753 156 .32 13 . 803 1 164 6 154 1 .753 155 .29 14 .600 1 154 6 154 1 . 753 155 .29 NODE 7009.20 : HGL = < 170. 204>;EGL= < 170.793>;FLOWLINE= < 159. 040> ****************************************************************************** FLOW PROCESS FROM NODE 7009.20 TO NODE 7 009.20 IS CODE = 8 UPSTREAM NODE 7009.20 ELEVATION = 169.04 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.06 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 6.16 FEET/SEC. VELOCITY HEAD = 0.588 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.588) = 0.118 NODE 7009.20 : HGL = < 170.910>;EGL= < 170.910>;FLOWLINE= < 169.040> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7009.20 FLOWLINE ELEVATION = 169.04 ASSUMED UPSTREAM CONTROL HGL = 170.20 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS EXHIBIT A RATIONAL METHOD HYDROLOGY BOUNDARIES MAP ULTIMATE CONDITIONS EXHIBIT B PIPEFLOW HYDRAULIC NODE NUMBERS MAP ULTIMATE CONDITIONS