Loading...
HomeMy WebLinkAboutCT 02-14-05; BRESSI RANCH PA 10 UNIT 5; HYDROLOGY STUDY; 2006-11-17HYDROLOGY STUDY FOR BRESSI RANCH LOT 14 ULTIMATE CONDITIONS CT 02-15, C.U.P. 05-28, S.U.P. 05-14 Job No. 061180-01 Revised: November 17, 2006 Prepared: August 15, 2006 Prepared by: O'DAY CONSULTANTS, INC. 2710 Loker Avenue West Suite 100 Carlsbad, Califomia 92010 Tel: (760)931-7700 Fax: (760)931-8680 Andrew J. Van Loy RCE 64573 Exp. 06/30/07 C o LU X o 2! HYDROLOGY STUDY FOR BRESSI RANCH LOT 14 ULTIMATE CONDITIONS CT 02-15, C.U.P. 05-28, S.U.P. 05-14 Job No. 061180-01 Revised: November 17, 2006 Prepared: August 15, 2006 Prepared by: O'DAY CONSULTANTS, INC. 2710 Loker Avenue West Suite 100 Carlsbad, California 92010 Tel: (760)931-7700 Fax: (760) 931-8680 Andrew J. Van Loy RCE 64573 Exp. 06/30/07 ^ Date TABLE OF CONTENTS SECTION 1 INTRODUCTION PROCEDURE SECTION 2 Vicinity Map Intensity-Duration Design Chart Isopluvial Maps 100-Year, 6-Hour 100-Year, 24-Hour San Diego County Soils Interpretation Study Rtmoff Coefficients Nomograph for Determination of Tc for Natural Watersheds Urban Areas Overland Time of Flow Curves Proposed 100-Year "Ultimate Condition" Hydrology Calculations SECTION 3 SECTION 4 Proposed 100-Year "Ultimate Condition" Hydraulic Calculations SECTION 5 EXISTING CONDITIONS HYDROLOGY (From Drainage Report for Bressi Ranch PA's 1-5, Industrial Area Project, CT 02-15, Carlsbad, California, prepared by Project Design Consultants, Sept. 2004) SECTION 6 TEMPORAR Y DESILTATION BASINS POCKET ULTIMATE CONDITIONS BASIN MAP File: l:\061180\Hydrology\Rpt_Thle.doc INTRODUCTION The purpose of this study is to analyze the proposed conditions for the finalized grading of Bressi Ranch Lot 14. The 4.49 acre site is located at the southeast comer of El Camino Real and Palomar Airport Road in the City of Carlsbad. The completed project will grade 3.26 acres of the site into four mass graded building pads, an access road bench leading to the existing Bressi Recycled and Potable Water Pump Stations and 2:1 slopes in between. Proposed drainage facilities to be installed as part of the precise grading and site development phase of the project are designed to meet the requirements stated in the "Standards for Design and Construction of Public Works Improvements in the City of Carlsbad." All calculations shown here are for ultimate development. The storm drain for this project ties into the 42" RCP storm drain running from the southeast to the northwest towards El Camino Real installed as part of the Bressi Ranch Mass Grading project (City of Carlsbad Dwg. No. 400-8D). Hydrologic calculations performed as part of this report for the ultimate condition show the equivalent amount of 1 OO-year developed flow is to be expected at the existing storm drain crossing tmder El Camino Real as was calculated for the Bressi Ranch Mass Grading Project. Applicable excerpts from the report covering that project are included in this report. PROCEDURE The hydrology calculations performed for the Bressi Ranch Mass Grading Project (Dwg. No. 400-8D) followed the 1985 San Diego County Drainage Manual for a 100-year storm. For the purposes of this report, the hydrology study follows the procedure in the June 2003 San Diego County Hydrology Manual for a 1 OO-year storm. For this location, P6= 2.8 and P24= 4.9. Times of concentration were based on the following: For Natural Areas: Tc 60 11.9 L^ +10 minutes H For Urban Areas: Tc = 1.8 (1.1 - OsfPi , with a minimum of 5 minutes is Additional time in pipes or channels was based on the average velocity in those facilities. Intensity was determined by: I = 7.44 P6 Te '•^'^^ I:\061180\Hydrology\Rpt_Precise Grading.doc The rational method was used to determine flows: Q = CIA, where Q = flow in cubic feet per second C = runoff coefficient, based on land use and soil type. For this project, the soil type is 'B' for the northern half, 'C for the wetlands and 'D' for the southerly slopes (see appendix). I = intensity A = area, in acres A Hydraulic Study was then done to confirm pipe sizes and eliminate pressure flow whenever possible. To be conservative, the diversion of "low-flows" into pollution basins at diverter boxes was ignored. The advanced Engineering software (AES) Pipeflow Hydraulics computer program was used to calculate the hydraulics of the storm drain pipe system for the ultimate conditions of the proposed site. The program estimates the gradually varying water surface profile by balancing the energy equation at user-specific locations. The AES pipeflow program analyzes both the supercritical and subcritical flow. From this program the hydraulic grade line, the energy grade line and losses were determined for the ultimate conditions. The head loss computations were based on LACRD, LACFCD, and OCEMA current design manuals. The junction analysis was based on the L.A. Thomas equation. SUMMARY The Hydrologic Analysis performed for the Bressi Ranch Mass Grading Project showed that at Node 2000 (the node immediately upstream from the crossing tmder El Camino Real) the expected 1 OO-year developed flowrate was 62.7 cfs. The revised calculations presented in the report that include the Bressi Ranch Lot 14 Precise Graded site show the proposed flow as 63.6 cfs. The reason for this slight increase is that the calculations performed for the original mass grading included an assumed minimum time of concentration of 6 minutes and the calculations performed as part of the mass grading of Lot 14 assumed a 5 minute minimtim. A one minute increase on all ofthe confluenced subareas of the total 14 included acres causes a much larger increase in flow than only the 0.9 cfs increase presented here. Therefore, the developed Lot 14 project is not expected to exceed normal design flow and thus no detention will be provided. I:\061180\Hydrology\Rpt_Precise Grading.doc SECTION 1 SECTION 2 Directions for Appllcationr: 1^ Fro« precipitation nap's detennTKe 6 hi^. 24 hr. Mounts for the selected frequen The« naps are printed. In the County Hy Manual (10. 50 knd 100 yr. maps Include Design and Procedure Manual). 2) Adjust 6 hr.'precipitation (if necessar that It is within the range of to 6 the 24 hr. precipitation. (Not appUca to Desert) . 3) Plot 6 hr. precipitation bn the rloht s of the chart. 4) Draw a line through 'the point parallel plotted lines. 5) This line Is the Intenslty-duratlon cur the location being analyzed. Application Fom: 0) Selected Frequency 1 yr. 1) ^ .In., Pgi" 2) Adjusted *Pg" 3) t^ • P24 In. min. 4) I In/hr, *Not Applicable to Desert Region This chart replaces, the Iiitenslty- Duratlon-Frequency curves used since 1965. t r COL SAN DIEGQ DEPArtlfNT OF SANITATION 6 FLOOD CONTROL o o c m (X) 100-YEAR bidUk PRECIPITATIOri -2B^ ISOPLUVIALS BF 100-YEAR 6-llOUn PRECiFITATIOtI IM BITHS 0? Atl liiCn U.S. DEPARTMEN NATIONAL OCIiANIC AMO SPECIAI. STUDIES QHANCII, OFFICE OF II COUNTY OF SAN DIEGO OEPARTHENT OF SANITATION ^ FLOOD CONTROL CO •o OD o cz rn 33" 30 • 15' »»5' U.S. DE PAR TMtK T OF COMMERCE AL OCIiANIC AWO AT; SPECIAI. STUUltS USANCll. 0>>|CK OF 11 30' 100-YEAR.2flloi)R PRECIPITATIOM -2fl.^iS0PLUVIALS oV 100 -YEAR 24-HOUR PRECIPITATIOH IH nil TABLE 2 RUNOFF COEFFICIENTS (RATIONAL METHOD) DEVELOPED AREAS (URBAN) Land Use Coefficiertt. C Soil TypeU) Residential: A B C 0 Single Family M .50 .55. Hulti-Units M .50 .60 .70 Hobile homes M .50 .55 .65 Rural (lots greater than 1/2 acre) .30 .35 .ko .'•5 Coinnerci al (2) 80% Impervious .70 .75 .80 .85 Industrial(2) 90% Impervious .80 .85 .90 •95 NOTES: (Oobtain soil type from Appendices IX-Cl thru lH-Ck. I (2)where actual condi tions deviate significantly from the tabulated impervious- ness values of B0% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated impervlousness. However, In no case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil. Actual imperviousness 50% Tabulated imperviousness " 80% Revised C - 50 ^ 0.85 • 0.53 80 FIGURE 14.4 III.199 APPENDIX IX-B — 5'oao — *aaa —2000 EQU/fr/OAJ ^ - 0/ conce/}/ra.//on McfyVe s/ooe ///7a (See Appendix )[• 3) y. L ^ At//as rrr— /ooa 900 - BdO - TOO I - eoo \ • -soo ^\ -400 I 300 -200 JOO JO — s— 4- \ \ \ \ - 'SO •40 ^30 as. i AOO TEN MINUTES TO ( T COMPUTED TIME OF CON- j ICENTRATION. /O FIGURE )4.l3l r-eeJ J/au/'s -60 -SO 40 V-30 •^sooo ~ 4000 —•JO^ ^ ~2aao —/ooo — /£aa — /4O0 '/200 - /ooa — 90Q — 800 • TOO — 600 — SOO — 400 — 300 — 200 — ^4/) /aa - //lO /oo 90 BO 70 — 20 — /o — /o — M — /2 - /G •. 9 — a — 7 — e — S 4- — 3 NOMOGRAPH FOR OETERMINATION OF TIME OF CONCENTRATION (Tc) FOR NATURAL WATERSHEDS U^B/?A/ /?^£/?S Ol/£j?L^AJD r/M£ O/^ /r^^^ CU/?V£S sao S/ojoa • AO y» CaeMc/a/r/ a/ /Pu/ra//. C-.SO /Pcad- (><e.'/<Tn6/ /7at¥unTe '/^ A4//?a/<rs SAN OIEGO CCUNTY | CEPARTMEMT OF SPECIAL DISTHICT SE.^VICcS OesiGiN .MANUAL APPROVED ^- ' • .yr rr^r— - j c^yj iz/'/^? US3AN AREAS OVE.=?LA.NO TIME OF FLOW CUPVtS APOEN'CiX X-C SECTION 3 San Diego County Rational Hydrology Prograra CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 11/15/06 BRESSI RANCH LOT 14 GRADING PLANS HYDROLOGY STUDY - lOO-YEAR ULTIMATE CONDITIONS BY: AJV DATE: 11-15-06 I: \061180\HYDROLOGY\PGA100.OUT ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.800 24 hour precipitation(inches) = 5.000 Adjusted 6 hour precipitation (inches) = 2.800 P6/P24 = 56.0% San Diego hydrology manual 'C values used Runoff coefficients by rational method Process from Point/Station 100.000 to Point/Station **** INITIAL AREA EVALUATION **** 101.000 = 100.00(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Initial subarea flow distance Highest elevation = 333.60(Ft.) Lowest elevation = 316.25(Ft.) Elevation difference = 17.35(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.04 min. TC = [1.8*(l.l-C)*distance'^.5)/(% slope-^ (1/3) ] TC = [1.8Ml.l-0.9500)*(100.00".5)/( 17 . 35^^ (1/3) ] = 1.04 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.350(CFS) Total initial stream area = 0.050(Ac.) Process from Point/Station 101.000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 102.000 2.138(CFS) 1.959(Ft/s) Upstream point elevation = 316.25(Ft.) Downstream point elevation = 315.55(Ft.) Channel length thru subarea = 102.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.015 Maximum depth of channel = 0.750(Ft.) Flow(q) thru subarea = 2.138(CFS) Depth of flow = 0.234(Ft.), Average velocity = Channel flow top width = 9.343(Ft.) Flow Velocity = 1.96(Ft/s) Travel time = 0.87 min. Time of concentration = 5.87 min. Critical depth = 0.234(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 6.654(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 3.224(CFS) for 0.510(Ac.) Total runoff = 3.574(CFS) Total area = 0.56(Ac.) Process from Point/Station 102.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 103.000 Upstream point/station elevation = 310.50(Ft.) Downstream point/station elevation = 306.90(Ft.) Pipe length = 131.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.574(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 3.574(CFS) Normal flow depth in pipe = Flow top width inside pipe = Critical Depth = 9.68(In.) Pipe flow velocity = 7.8 Travel time through pipe = Time of concentration (TC) = 6.74(In.) 11.91(In.) i(Ft/s) 0.28 min. 6.14 min. Process from Point/Station 103.000 to Point/Station **** SUBAREA FLOW ADDITION **** 103.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Time of concentration = 6.14 min. Rainfall intensity = 6.459(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 2.025(CFS) for 0.330(Ac.) Total runoff = 5.599(CFS) Total area = 0.89(Ac.) 5.599(CFS) Process from Point/Station 103.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 306.40(Ft.) Downstream point/station elevation = 305.10(Ft.) Pipe length = 119.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.599(CFS) Normal flow depth in pipe = 9.11(In.) Flow top width inside pipe = 18.00(In.) Critical Depth = 10.95(In.) Pipe flow velocity = 6.24(Ft/s) Travel time through pipe = 0.32 min. Time of concentration (TC) = 6.46 min. 104.000 Process from Point/Station 104.000 to Point/Station **** SUBAREA FLOW ADDITION **** 104.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 6.4 6 min. Rainfall intensity = 6.252(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 1.604(CFS) for 0.270(Ac.) Total runoff = 7.203(CFS) Total area = 1.16(Ac.) Process from Point/Station 104.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 304.90(Ft.) Downstream point/station elevation = 304.00(Ft.) Pipe length = 87.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.203(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.203(CFS) Normal flow depth in pipe = 10. 83 (In.) Flow top width inside pipe = 17.62 (In.) Critical Depth = 12.47(In.) Pipe flow velocity = 6.49(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 6.69 min. 105.000 Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.160(Ac.) Runoff from this stream = 7.203(CFS) Time of concentration = 6.69 min. Rainfall intensity = 6.116(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 200.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation = 331.50(Ft.) Lowest elevation = 316.00(Ft.) Elevation difference = 15.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.08 min. TC = [1. 8* (1.1-C) *distance" . 5) / (% slope(1/3) ] TC = [1. 8* (1. 1-0. 9500) * (100 . OO'-. 5) / ( 15.50-^(1/3)]= 1.08 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff = 0.491(CFS) Total initial stream area = 0.070(Ac.) Process from Point/Station 201.000 to Point/Station 202.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 316.00(Ft.) Downstream point elevation = 315.55(Ft.) Channel length thru subarea = 56.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estiraated mean flow rate at midpoint of channel = 0.841(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 0.750(Ft.) Flow(q) thru subarea = 0.841(CFS) Depth of flow = 0.160(Ft.), Average velocity = 1.646(Ft/s) Channel flow top width = 6.393(Ft.) Flow Velocity = 1.65(Ft/s) Travel time = 0.57 min. Time of concentration = 5.57 min. Critical depth = 0.162(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity = 6.883(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C Subarea runoff = 0.654(CFS) for 0.100(Ac.) Total runoff = 1.145(CFS) Total area = 0.17(Ac. 0. 950 Process from Point/Station 202.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 203.000 Upstream point/station elevation = 310.50(Ft.) Downstream point/station elevation = 307.60(Ft.) Pipe length = 96.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.145(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.145(CFS) Normal flow depth in pipe = 3.50(In.) Flow top width inside pipe = 10.90 (In.) Critical Depth = 5.41(In.) Pipe flow velocity = 6.02(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 5.83 min. Process from Point/Station 203.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 203.000 Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.170(Ac.) Runoff from this stream = 1.145(CFS) Time of concentration = 5.83 min. Rainfall intensity = 6.680(In/Hr) Process from Point/Station 300.000 to Point/Station **** INITIAL AREA EVALUATION **** 301.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.500 Initial subarea flow distance = 100.00(Ft.) Highest elevation = 320.80(Ft.) Lowest elevation = 315.60(Ft.) Elevation difference = 5.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.95 min. TC = [1. 8* (1. 1-C) *distance^ . 5) / (% slope'-(1/3) ] TC = [1. 8* (1.1-0 . 5278) * (100. OO'-. 5) / ( 5.20"(l/3)]= 5.95 Rainfall intensity (I) = 6.598 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.528 Subarea runoff = 0.070(CFS) Total initial stream area = 0.020{Ac.) Process from Point/Station 301.000 to Point/Station 302.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 315.60(Ft.) Downstream point elevation = 315.30(Ft.) Channel length thru subarea = 24.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 0.104(CFS) Manning's 'N' = 0.025 Maximum depth of channel = 0.500(Ft.) Flow(q) thru subarea = 0.104(CFS) Depth of flow = 0.199(Ft.), Average velocity = 1.323(Ft/s) Channel flow top width = 0.795(Ft.) Flow Velocity = 1.32(Ft/s) Travel time = 0.30 min. Time of concentration = 6.25 min. Critical depth = 0.176(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.500 Rainfall intensity = 6.390(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.528 Subarea runoff = 0.067(CFS) for 0.020(Ac.) Total runoff = 0.137(CFS) Total area = 0.04(Ac.) Process from Point/Station 302.000 to Point/Station 303.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 313.70(Ft.) Downstream point/station elevation = 310.00(Ft.) Pipe length = 110.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.137(CFS) Given pipe size = 6.00(In.) Calculated individual pipe flow = 0.137(CFS) Normal flow depth in pipe = 1.48(In.) Flow top width inside pipe = 5.17(In.) Critical Depth = 2.21(In.) Pipe flow velocity = 3.65(Ft/s) Travel time through pipe = 0.50 min. Time of concentration (TC) = 6.75 min. Process from Point/Station 303.000 to Point/Station 303.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.500 Time of concentration = 6.75 min. Rainfall intensity = 6.079(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.528 Subarea runoff = 0.064(CFS) for 0.020(Ac.) Total runoff = 0.201(CFS) Total area = 0.06(Ac.) Process from Point/Station 303.000 to Point/Station 203.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 309.80(Ft.) Downstream point/station elevation = 308.10(Ft.) Pipe length = 69.00{Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.201(CFS) Given pipe size = 6.00(In.) Calculated individual pipe flow = 0.201(CFS) Normal flow depth in pipe = 1.95(In.) Flow top width inside pipe = 5.62 (In.) Critical Depth = 2.70(In.) Pipe flow velocity = 3.64(Ft/s) Travel time through pipe = 0.32 min. Time of concentration (TC) = 7.07 min. Process from Point/Station 203.000 to Point/Station 203.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.060(Ac.) Runoff from this stream = 0.201(CFS) Time of concentration = 7.07 min. Rainfall intensity = 5. 902(In/Hr) Process from Point/Station 400.000 to Point/Station 400.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.500 Rainfall intensity (I) = 7.377 for a 100.0 year storm User specified values are as follows: TC = 5.00 min. Rain intensity = 7.38(In/Hr) Total area = 0.01(Ac.) Total runoff = 0.04(CFS) Process from Point/Station 400.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 203.000 Upstream point/station elevation = 309.40(Ft.) Downstream point/station elevation = 308.10(Ft.) Pipe length = 39.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.040(CFS) Given pipe size = 6.00(In.) Calculated individual pipe flow = 0.040(CFS) Normal flow depth in pipe = 0.80(In.) Flow top width inside pipe = 4.08(In.) Critical Depth = 1.17(In.) Pipe flow velocity = 2.51(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 5.26 min. Process from Point/Station 203.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 203.000 Along Main Stream number: 2 in normal stream number 3 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = 0.010(Ac.) 0.040(CFS) 5.26 min. 7.141(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1 145 5 . 83 6 680 2 0 201 7 . 07 5 902 3 0 040 5 . 26 7 141 Qmax(1) = 1 000 * 1. 000 * 1 145) + 1 000 * 0 . 825 * 0 201) + 0 935 * 1. 000 * 0 040) + = 1.348 Qmax(2) = 0 884 * 1. 000 * 1 145) + 1 000 * 1. 000 * 0 201) + 0 826 * 1. 000 * 0 040) + = 1.246 Qmax(3) = 1 000 * 0. 902 * 1 145) + 1 000 * 0. 744 * 0 201) + 1 000 * 1. 000 * 0 040) + = 1.222 Total of 3 streams to confluence: Flow rates before confluence point: 1.145 0.201 0.040 Maximum flow rates at confluence using above data: 1.348 1.246 1.222 Area of streams before confluence: 0.170 0.060 0.010 Results of confluence: Total flow rate = 1.348(CFS) Time of concentration = 5.833 min. Effective stream area after confluence = 0.240(Ac.) Process from Point/Station 203.000 to Point/Station **** SUBAREA FLOW ADDITION **** 203.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.850 Time of concentration = 5.83 min. Rainfall intensity = 6.680(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.897 Subarea runoff = 2.577(CFS) for 0.430(Ac.) Total runoff = 3.925(CFS) Total area = 0.67(Ac.) Process from Point/Station 203.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 204 . 000 Upstream point/station elevation = 307.10(Ft.) Downstream point/station elevation = 305.50(Ft.) Pipe length = 154.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.925(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.925(CFS) Normal flow depth in pipe = 7.54(In.) Flow top width inside pipe = 17.76(In.) Critical Depth = 9.10(In.) Pipe flow velocity = 5.59(Ft/s) Travel time through pipe = 0.4 6 min. Time of concentration (TC) = 6.29 min. Process from Point/Station 204.000 to Point/Station **** SUBAREA FLOW ADDITION **** 204.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Time of concentration = 6.29 min. Rainfall intensity = 6.361(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff = 1.994(CFS) for 0.330(Ac.) Total runoff = 5.919(CFS) Total area = 1.00(Ac.) Process from Point/Station 204.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 305.30(Ft.) Downstream point/station elevation = 304.00(Ft.) Pipe length = 118.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.919(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.919(CFS) Normal flow depth in pipe = 9.39(In.) Flow top width inside pipe = 17.98(In.) Critical Depth = 11.26(In.) Pipe flow velocity = 6.35(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 6.60 min. Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.000(Ac.) Runoff from this stream = 5.919(CFS) Time of concentration = 6.60 min. Rainfall intensity = 6.167 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) Qmax(1) Qmax(2) 7.203 6.69 6.116 5.919 6.60 6.167 1. 000 * 1. 000 * 7.203) + 0.992 * 1.000 * 5.919) + = 13.073 1.000 * 0.987 * 7.203) + 1.000 * 1.000 * 5.919) + = 13.031 Total of 2 main streams to confluence: Flow rates before confluence point: 7.203 5.919 Maximum flow rates at confluence using above data: 13.073 13.031 Area of streams before confluence: 1.160 1.000 Results of confluence: Total flow rate = 13.073(CFS) Time of concentration = 6.686 min. Effective stream area after confluence = 2.160(Ac.) Process from Point/Station 105.000 to Point/Station **** SUBAREA FLOW ADDITION **** 105.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 6.69 min. Rainfall intensity = 6.116(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = Subarea runoff = 2.557(CFS) for 0.440(Ac.) Total runoff = 15.630(CFS) Total area = 2.60(Ac.) 0. 950 Process from Point/Station 105.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 106.000 Upstream point/station elevation = 303.67(Ft.) Downstream point/station elevation = 298.13(Ft.) Pipe length = 46.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.630(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 15.630(CFS) Normal flow depth in pipe = 8.24 (In.) Flow top width inside pipe = 17.94 (In.) Critical Depth = 17.02(In.) Pipe flow velocity = 19.84(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 6.72 min. Process from Point/Station 106.000 to Point/Station **** SUBAREA FLOW ADDITION **** 106.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Time of concentration = 6.72 min. Rainfall intensity = 6.094(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.950 Subarea runoff = 0.058(CFS) for 0.010(Ac.) Total runoff = 15.688(CFS) Total area = 2.61(Ac.) Process from Point/Station 106.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 1245.000 297.80(Ft.) 295.32(Ft.) N = 0.013 15.688(CFS) Upstream point/station elevation = Downstream point/station elevation Pipe length = 10.00(Ft.) Manning's No. of pipes = 1 Required pipe flow = Given pipe size = 18.00(In.) Calculated individual pipe flow = 15.688(CFS) Normal flow depth in pipe = '' Flow top width inside pipe = Critical Depth = 17.03(In.) Pipe flow velocity = 25.£ Travel time through pipe = Time of concentration (TC) = 6.76(In.) 17.43(In.) 3(Ft/s) 0.01 min. 6.73 min. Process from Point/Station 1245.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 1245.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.610(Ac.) Runoff from this stream = 15.688(CFS) Time of concentration = 6.73 min. Rainfall intensity = 6. 090(In/Hr) Process from Point/Station 1245.000 to Point/Station **** USER DEFINED FLOW INFORMATION AT A POINT **** 1245.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Rainfall intensity (I) = 5.176 for a 100.0 year storm User specified values are as follows: TC = 8.66 min. Rain intensity = 5.18(In/Hr) Total area 4.25(Ac.) Total runoff = 21.08(CFS) Process from Point/Station 1245.000 to Point/Station **** CONFLUENCE OF MINOR STRE/UXIS **** 1245.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: 4.250(Ac.) 21.080(CFS) 8.66 min. 5.176(In/Hr) Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 15.688 6.73 6.090 2 21.080 8.66 5.176 Qmax(1) 1.000 * 1.000 * 15.688) + 1.000 * 0.777 * 21.080) + = 32.073 Qmax(2) = 0.850 * 1.000 * 15.688) + 1.000 * 1.000 * 21.080) + = 34.415 Total of 2 streams to confluence: Flow rates before confluence point: 15.688 21.080 Maximum flow rates at confluence using above data: 32.073 34.415 Area of streams before confluence: 2.610 4.250 Results of confluence: Total flow rate = 34.415(CFS) Time of concentration = 8.660 min. Effective stream area after confluence = 6.860(Ac.) Process from Point/Station 1245.000 to Point/Station 1245.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.500 Time of concentration = 8.66 min. Rainfall intensity = 5.176(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.528 Subarea runoff = 0.164(CFS) for 0.060(Ac.) Total runoff = 34.579(CFS) Total area = 6.92(Ac.) Process from Point/Station 1245.000 to Point/Station 1260.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 294.49(Ft.) Downstream point/station elevation = 285.10(Ft.) Pipe length = 58.76(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 34.579(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 34.579(CFS) Normal flow depth in pipe = 10.29(In.) Flow top width inside pipe = 23.75(In.) Critical depth could not be calculated. Pipe flow velocity = 26.86(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) .70 min. Process from Point/Station 1260.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 1260.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.920(Ac.) Runoff from this stream = 34.579(CFS) Time of concentration = 8.70 min. Rainfall intensity = 5.162 (In/Hr) Process from Point/Station 1260.000 to Point/Station **** USER DEFINED FLOW INFORMATION AT A POINT **** 1260.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity (I) = 4.600 for User specified values are as follows: TC = 10.40 min. Rain intensity = a 100.0 year storm 4.60(In/Hr) Total area 6.78(Ac.) Total runoff = 31.76(CFS) Process from Point/Station 1260.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 1260.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 6.780(Ac.) Runoff from this stream = 31.760(CFS) Time of concentration = 10.40 min. Rainfall intensity = 4.600 (In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Qmax(2) 34 . 579 31.760 Qmax(1) = 000 000 0.891 * 1.000 * 8 . 70 10.40 1.000 * 0.836 * 1.000 * 1.000 * 5 . 162 4 . 600 34.579) + 31.760) + 34.579) + 31.760) + 61.136 62.570 Total of 2 streams to confluence: Flow rates before confluence point: 34.579 31.760 Maximum flow rates at confluence using above data: 61.136 62.570 Area of streams before confluence: 6.920 6.780 Results of confluence: Total flow rate = 62.570(CFS) Time of concentration = 10.400 min. Effective stream area after confluence = 13.700(Ac.) Process from Point/Station 1260.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 503.000 Upstream point/station elevation = 284.35(Ft.) Downstream point/station elevation = 284.09(Ft.) Pipe length = 61.71(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 62.570(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 62.570(CFS) Normal flow depth in pipe = 32.95(In.) Flow top width inside pipe = 34.53(In.) Critical Depth = 29.76(In.) Pipe flow velocity = 7.73(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 10.53 min. Process from Point/Station 503.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 503.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 13.700(Ac.) Runoff from this stream = 62.570(CFS) Time of concentration = 10.53 min. Rainfall intensity = 4.562(In/Hr) Process from Point/Station 500.000 to Point/Station **** INITIAL AREA EVALUATION **** 501.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.750 Initial subarea flow distance = 100.00(Ft.) Highest elevation = 315.80(Ft.) Lowest elevation = 312.00(Ft.) Elevation difference = 3.80(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.56 min. TC = [1. 8* (1.1-C) *distance'-. 5) / (% slope" (1/3) ] TC = [1.8*(1.1-0.7917)* (100.00".5)/( 3.80'(l/3)]= 3.56 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.792 Subarea runoff = 0.292(CFS) Total initial stream area = 0.050(Ac.) Process from Point/Station 501.000 to Point/Station **** IMPROVED CHANNEL TRAVEL TIME **** 502.000 0.876(CFS) 2.137(Ft/s) Upstream point elevation = 312.00(Ft.) Downstream point elevation = 299.90(Ft.) Channel length thru subarea = 267.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 50.000 Slope or 'Z' of right channel bank = 33.000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.020 Maximum depth of channel = 0.400(Ft.) Flow(q) thru subarea = 0.876(CFS) Depth of flow = 0.099(Ft.), Average velocity = Channel flow top width = 8.249(Ft.) Flow Velocity = 2.14(Ft/s) Travel time = 2.08 min. Time of concentration = 7.08 min. Critical depth = 0.123(Ft.) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Note: user entry of impervious value, Ap = 0.800 Rainfall intensity = 5.894(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = Subarea runoff = 0.995(CFS) for 0.200(Ac.) Total runoff = 1.287(CFS) Total area = 0.25(Ac.) 0. 000 0.000 ] 0.844 Process from Point/Station 502.000 to Point/Station **** SUBAREA FLOW ADDITION **** 502.000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Note: user entry of impervious value. Time of concentration = 7.08 min. Rainfall intensity = 5.894(In/Hr; Runoff coefficient used for sub-area, Subarea runoff = 0.062(CFS) for Ap 0 . 500 for a 100.0 year storm Rational method,Q=KCIA, C 0.020(Ac.) 0.528 Total runoff 1.350(CFS) Total area = 0.27(Ac.) Process from Point/Station 502.000 to Point/Station 503.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 295.00(Ft.) Downstream point/station elevation = 285.09(Ft.) Pipe length = 28.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.350(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.350(CFS) Normal flow depth in pipe = 1.83(In.) Flow top width inside pipe = 10.88(In.) Critical Depth = 5.22 (In.) Pipe flow velocity = 14.33(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 7.11 min. Process from Point/Station 503.000 to Point/Station 503.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.270(Ac.) Runoff from this stream = 1.350(CFS) Time of concentration = 7.11 min. Rainfall intensity = 5.876(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 62.570 10.53 4.562 2 1.350 7.11 5.876 Qmax(1) = 1.000 * 1.000 * 62.570) + 0.776 * 1.000 * 1.350) + = 63.618 Qmax(2) = 1.000 * 0.675 * 62.570) + 1.000 * 1.000 * 1.350) + = 43.613 Total of 2 streams to confluence: Flow rates before confluence point: 62.570 1.350 Maximum flow rates at confluence using above data: 63.618 43.613 Area of streams before confluence: 13.700 0.270 Results of confluence: Total flow rate = 63.618(CFS) Time of concentration = 10.533 min. Effective stream area after confluence = 13.970(Ac.) Process from Point/Station 503.000 to Point/Station 1265.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 284.09(Ft.) Downstream point/station elevation = 284.06{Ft.) Pipe length = 7.33(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 63.618(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 63.618(CFS) Normal flow depth in pipe = 33.98 (In.) Flow top width inside pipe = 33.01(In.) Critical Depth = 30.02(In.) Pipe flow velocity = 7.63(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 10.55 min. Process from Point/Station 1265.000 to Point/Station 2000.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 283.91(Ft.) Downstream point/station elevation = 283.20(Ft.) Pipe length = 170.88(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 63.618(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 63.618(CFS) Normal flow depth in pipe = 33.75(In.) Flow top width inside pipe = 33.37(In.) Critical Depth = 30.02(In.) Pipe flow velocity = 7.68(Ft/s) Travel time through pipe = 0.37 min. Time of concentration (TC) = 10.92 min. End of computations, total study area = 13.97 {Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 11/21/06 BRESSI RANCH LOT 14 GRADING PLANS HYDROLOGY STUDY - lOO-YEAR ULTIMATE CONDITIONS BY: AJV DATE: 11-21-06 I:\061180\HYDROLOGY\PGB100.OUT ********* Hydrology Study Control Information ******^ O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.800 24 hour precipitation(inches) = 5.000 Adjusted 6 hour precipitation (inches) = 2.800 P6/P24 = 56.0% San Diego hydrology manual 'C values used Runoff coefficients by rational method Process from Point/Station 700.000 to Point/Station 701.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.450 Initial subarea flow distance = 100.00(Ft.) Highest elevation = 315.50(Ft.) Lowest elevation = 314.50(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 10.80 min. TC = [1. 8* (1.1-C) *distance" . 5) / (% slope'-(1/3) ] TC = [1. 8* (1. 1-0 . 5000) * (100 . 00'-. 5) / ( 1.00"(l/3)]= 10.80 Rainfall intensity (I) = 4.489 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.500 Subarea runoff = 0.045(CFS) Total initial stream area = 0.020(Ac.) Process from Point/Station 701.000 to Point/Station 702.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 314.50(Ft.) Downstream point elevation = 313.00(Ft.) Channel length thru subarea = 150.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 5.000 Slope or 'Z' of right channel bank = 50.000 Estimated mean flow rate at midpoint of channel = 0.359(CFS) Manning's 'N' = 0.025 Maximum depth of channel = 0.500(Ft.) Flow(q) thru subarea = 0.359(CFS) Depth of flow = 0.120(Ft.), Average velocity = 0.909(Ft/s) Channel flow top width = 6.592(Ft.) Flow Velocity = 0.91(Ft/s) Travel time = 2.75 min. Time of concentration = 13.55 min. Critical depth = 0.102(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.500 Rainfall intensity = 3.878 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.528 Subarea runoff = 0.573(CFS) for 0.280(Ac.) Total runoff = 0.618(CFS) Total area = 0.30(Ac.) Process from Point/Station 702.000 to Point/Station 703.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 308.93(Ft.) Downstream point/station elevation = 308.45(Ft.) Pipe length = 24.00{Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.618(CFS) Given pipe size = 3.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 14.946(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 11.734(Ft.) Minor friction loss = 3.692(Ft.) K-factor = 1.50 Pipe flow velocity = 12.59(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 13.58 min. End of computations, total study area = 0.30 (Ac.) SECTION 4 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH LOT 14 GRADING AND EROSION CONTROL PLANS * * EXISTING 42" RCP STORM DRAIN LINE (PER 400-8D) HYDRAULIC STUDY * * BY: AJV FILE: I:\061180\HYDROLOGY\PG1265.OUT * ************************************************************************** FILE NAME: C:\PG1265.DAT TIME/DATE OF STUDY: 15:15 11/20/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1265.00- 3.00* 1654.10 2.50 1574.63 } FRICTION 503.10- 3.00* 1652.62 2.50 Dc 1574.63 } JUNCTION 503.00- 3.09* 1656.18 2.48 Dc 1541.22 } FRICTION 1260.10- 3.02* 1632.32 2.48 Dc 1541.22 } JUNCTION 1260.00- 3.97* 1533.60 1.74 Dc 630.31 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1265.00 FLOWLINE ELEVATION = 284.06 PIPE FLOW = 63.60 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 287.060 FEET NODE 1265.00 : HGL = < 287.060>;EGL= < 287.875>;FLOWLINE= < 284.060> FLOW PROCESS FROM NODE 12 65.00 TO NODE 503.10 IS CODE = 1 UPSTREAM NODE 503.10 ELEVATION = 284.09 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 63.60 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 7.33 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.8 3 CRITICAL DEPTH(FT) = 2.50 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.000 7.243 3.815 1654.10 7.330 2.995 7.253 3.812 1652.62 NODE 503.10 : HGL = < 287.085>;EGL= < 287.902>;FLOWLINE= < 284.090> FLOW PROCESS FROM NODE 503.10 TO NODE 503.00 IS CODE = 5 UPSTREAM NODE 503.00 ELEVATION = 284.09 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DI7VMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 62.60 42.00 0.00 284.09 2.48 6.961 DOWNSTREAM 63.60 42.00 - 284.09 2.50 7.255 LATERAL #1 1.00 , 18.00 90.00 285.09 0.37 0.566 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00347 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00373 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00360 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.028)+( 0.004)+( 0.000) = 0.031 NODE 503.00 : HGL = < 287.181>;EGL= < 287.934>;FLOWLINE= < 284.090> *******************************.t,t,ltJrJ,J,j,*j,,t.^,t*jtVt^ + *Vf^tj;^jj. + .j.j^ji.******************** FLOW PROCESS FROM NODE 503.00 TO NODE 1260.10 IS CODE = 1 UPSTREAM NODE 1260.10 ELEVATION = 284.35 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 62.60 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 61.71 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.7 5 CRITICAL DEPTH(FT) = 2.4 8 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS 0 . 000 3 091 6. 959 3 844 1656.18 11.610 3 077 6. 983 3 835 1651.40 23.325 3 064 7 . 008 3 827 1646.70 35.163 3 050 7 . 034 3 818 1642.10 47.148 3 036 7.059 3 810 1637.59 59.304 3 022 7.086 3 802 1633.17 61.710 3 020 7 . 091 3 801 1632.32 NODE 1260.10 HGL = < 287 370>;EGL= < 288.151>, FLOWLINE= < 284.350> ****************************************************************************** FLOW PROCESS FROM NODE 1260.10 TO NODE 1260.00 IS CODE = 5 UPSTREAM NODE 1260.00 ELEVATION = 21 3 4.35 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 31. 80 42 . 00 0 . 00 284.35 1.74 3. 305 DOWNSTREAM 62 . 60 42 . 00 -284.35 2.48 7 .093 LATERAL #1 30 . 80 24 . 00 80.00 285.10 1. 87 9. 804 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0 . 000 Q5 0 . 00= ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00100 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00357 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00228 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.002 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.332)+( 0.002)+( 0.000) = 0.334 NODE 1260.00 HGL = < 1.315>;EGL= < 288.485>;FLOWLINE= < 284.350> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1260.00 FLOWLINE ELEVATION = 284.35 ASSUMED UPSTREAM CONTROL HGL = 286.09 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************+*+Jt********************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH LOT 14 GRADING AND EROSION CONTROL PLANS * * PROPOSED 18" S.D. FROM ACCESS ROAD BENCH TO EX. 42" RCP (PER 400-8D) * * BY: AJV FILE: I:\061180\HYDROLOGY\PG503.OUT * *****************************i,JrJ;^;****jrjt^fjf^^^t.jtVrjry^ji.************************* FILE NAME: C:\PG503.DAT TIME/DATE OF STUDY: 17:09 11/20/2006 ****************** *************** + + + *Jrj,.^^.i..*..^**.^..^..^.i.**************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 503.00- 2.04* 144.40 0.17 36.10 } FRICTION 502.10- 0.44*Dc 13.68 0.44*Dc 13.68 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************Jf** + ***j,j,j^i.^j,j,j,^ji.***************** + ****j^j,*Vr**j,j^j.^Vp DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 503.00 FLOWLINE ELEVATION = 285.09 PIPE FLOW = 1.40 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 287.130 FEET NODE 503.00 : HGL = < 287.130>;EGL= < 287.140>;FLOWLINE= < 285.090> **************************** + **^^^.t + j,j,j,^j,.^j,j,^^j^j,j^j.^j^^^^^j^^^^^j^ FLOW PROCESS FROM NODE 503.00 TO NODE 502.10 IS CODE = 1 UPSTREAM NODE 502.10 ELEVATION = 295.00 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.40 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 28.00 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.04 ===== ======= ============== ===== ======== ======== ======= =================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 2 . 040 0 792 2 . 050 144.40 1 . 527 1. 500 0 792 1 .510 84 . 85 NORMAL DEPTH(FT) 0.16 CRITICAL DEPTH(FT) 0.44 = = = = = z^ = = = ~ = ======= =============== ====== ======== ======= ======= =================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 1.50 =========== ======= =============== ====== ======== ======== ======== =================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1 . 527 1.500 0. 792 1 510 84 . 85 1 . 646 1.458 0. 798 1 468 80.22 1 .764 1.415 0. 810 1 426 75. 66 1 . 883 1. 373 0. 826 1 384 71.19 2 . 001 1.331 0. 844 1 342 66. 82 2 118 1.289 0. 866 1 300 62.56 2 236 1.246 0 . 892 1. 259 58 .43 2 353 1. 204 0. 920 1. 217 54 .43 2 470 1.162 0. 953 1. 176 50.58 2 586 1.120 0. 989 1. 135 46.87 2 . 702 2.818 2. 932 3. 046 3 . 158 ,269 . 379 486 591 692 3. 788 3.877 3. 958 4 . 025 4 . 073 4 .093 28.000 1. 077 1. 035 0. 993 0. 951 0 . 908 0. 866 0.824 0.781 0. 739 0. 697 0. 655 0. 612 0.570 0 . 528 0.486 0.443 0 .443 . 030 . 076 1.127 1.185 1. 250 1.324 1. 408 1. 504 , 614 .741 .889 . 063 2.270 2.520 2 . 825 3.204 3.204 1, 1, 1. 2 1.094 1. 053 1. 013 0. 972 0. 933 0. 893 0 . 855 0.817 0 . 780 0.744 0. 710 0. 679 0. 650 0. 627 0. 610 0. 603 0. 603 43. 33 39. 95 36. 73 33. 70 30.84 28 .17 25.69 23. 41 21. 34 19.48 17.85 16.45 15.30 14 .44 13. 88 13. 68 13. 68 NODE 502.10 : HGL = < 295.443>;EGL= < 295.603>;FLOWLINE= < 295. 000> *****************j,j,jr*********. UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 502.10 FLOWLINE ELEVATION = 295.00 ASSUMED UPSTREAM CONTROL HGL = 295.44 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS **************************************.Ar*.^*J(.Tt^***^.,t***^.^*^.;t********.^********.^** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH LOT 14 GRADING AND EROSION CONTROL PLANS * * EXISTING 24" RCP STORM DRAIN LINE (PER 421-3) HYDRAULIC STUDY * * BY: AJV FILE: I:\061180\HYDROLOGY\PG1260.OUT * ********************************************^*+*************************** FILE NAME: C:\PG12 60.DAT TIME/DATE OF STUDY: 15:29 11/20/2006 ****************************************.i,j, + + + j,j:^^^,***.^**j,Vf******************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURES- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1260.00- 2.75 1081.53 0.97* 1581.33 } FRICTION 1245.10- 1.92*Dc 928.94 1.92*Dc 928.94 } JUNCTION 1245.00- 3.89* 841.54 1.64 Dc 441.90 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************^r*+Jr*************************J;^J,**^^^^^J,J,J,J,J.J,^J.^J,J, DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1260.00 FLOWLINE ELEVATION = 285.10 PIPE FLOW = 34.60 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 287.850 FEET NODE 1260.00 : HGL = < 286.066>;EGL= < 294.289>;FLOWLINE= < 285.100> FLOW PROCESS FROM NODE 1260.00 TO NODE 1245.10 IS CODE = 1 UPSTREAM NODE 1245.10 ELEVATION = 294.49 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 34.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 58.76 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.86 CRITICAL DEPTH(FT) 1. 92 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1. 92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1 . 917 11 .169 3 855 928 . 94 0 . 040 1 .874 11 . 306 3 861 930 . 01 0 .156 1 .832 11 .472 3 877 933 .08 0 . 347 1 .790 11 . 663 3 903 938 .03 0 . 613 1 . 747 11 880 3 940 944 82 0 . 961 1 .705 12 123 3 988 953 46 1 . 397 1 . 663 12 391 4 048 964 00 1 . 929 1 . 620 12 686 4 121 976 50 2 . 571 1 . 578 13 010 4 208 991 09 3 . 337 1 . 536 13 363 4 310 1007 87 4 . 245 1 .493 13 749 4 430 1027 00 5 . 320 1 .451 14 170 4 571 1048 65 6 .589 1 .409 14 628 4 733 1073 03 8 . 091 1 .366 15 127 4 922 1100 39 9 . 872 1 .324 15 672 5 140 1130 99 11 . 996 1 .282 16 267 5. 393 1165 17 14 . 545 1 .239 16 918 5. 686 1203 29 17 . 634 1 .197 17 630 6. 026 1245. 80 21 . 424 1 . 154 18 413 6. 422 1293. 20 26 . 154 1 112 19. 274 6. 884 1346. 11 32 .198 1 070 20. 224 7 . 425 1405. 23 40 184 1 027 21. 277 8 . 061 1471. 40 51 294 0 985 22. 446 8 . 813 1545. 65 58 760 0 966 23. 004 9. 189 1581. 33 NODE 1245.10 HGL < 296.407>;EGL= < 298.345>;FLOWLINE= < 294.490> ************************j,** + ***^,^,j,i^^t^,*j,j,^^^t^j^j.j^^j,^^^^j;.^.^j^j^^ FLOW PROCESS FROM NODE 1245.10 TO NODE 1245.00 IS CODE = 5 UPSTREAM NODE 1245.00 ELEVATION = 294.82 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 21. 10 34 . 60 13.30 0.20 0 . 00= DIAMETER (INCHES) 24 . 00 24 . 00 18 . 00 6.00 ANGLE (DEGREES) 10.00 75. 00 85. 00 FLOWLINE ELEVATION 294.82 294.49 295.32 296.32 CRITICAL DEPTH(FT.) 1 . 64 1. 92 1. 36 0.22 VELOCITY (FT/SEC) 6.716 11. 173 7 . 526 1. 019 =Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00870 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02036 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.014 53 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.058 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.009)+( 0.058)+( 0.000) = 1.067 NODE 1245.00 : HGL = < 298.712>;EGL= < 299.412>;FLOWLINE= < 294.820> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1245.00 FLOWLINE ELEVATION = 294.82 ASSUMED UPSTREAM CONTROL HGL = 2 96.46 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ******************************:lt*Vt**************************************Jr****** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** OESCRIPTION OF STUDY ************************** * BRESSI RANCH LOT 14 GRADING AND EROSION CONTROL PLANS * * PROPOSED 18"/12" STORM DRAIN FROM DEVELOPED PAD AREAS TO EX. NODE#1245 * * BY: AJV FILE: I:\061180\HYDROLOGY\PG1245.OUT * FILE N/VME: C:\PG1245.DAT TIME/DATE OF STUDY: 15:57 11/20/2006 ***************************iJr**Vr*******************************.*..*. GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) ************* } NODE NUMBER 1245.00- 1 106.10- } 106.00- } 105.10- } 105.00- } 104.10- } 104.00- } 103.10- } 103.00- ) UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 434.61 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 2 . 24 1.4 2 Dc 1. 73 1.42*Dc 3 . 66* 3 . 17* 3.27* 2.31* 349.94 374.61 346.43 377.34 323.17 312.24 206.19 102.10- 2.22* 119.79 } HYDRAULIC JUMP 0.83*Dc 56.71 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 620.44 0 . 69* 0.86* 0. 75* 1. 42*Dc 0. 91 1.04 Dc 0.76 0.91 Dc 0.59 0 . 83*Dc 481.76 547.10 346.43 117.26 114.26 85.49 81.74 65. 50 56.71 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION *********************************^j,^*-ii.**********************j,j,j,j,j,j,j,j,j,j,j,*j,j,^^j,^, DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1245.00 FLOWLINE ELEVATION = 295.32 PIPE FLOW = 15.70 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 297.560 FEET NODE 1245.00 : HGL = < 296.006>;EGL= < 302.171>;FLOWLINE= < 295.320> *********************************J:****^^JfJr.i.Jr.i.*** + *.,tjr.^^.j,j,Jt********************* FLOW PROCESS FROM NODE 124 5.00 TO NODE 106.10 IS CODE = 1 UPSTREAM NODE 106.10 ELEVATION = 297.80 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 10.00 FEET MANNING'S N = 0.00000 NORMAL DEPTH(FT) 0 . 00 CRITICAL DEPTH(FT) 1.42 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.86 =================== ============= ========== ================== =================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0 . 857 15.041 4 . 372 481.76 1. 357 0 . 823 15.815 4 . 709 503.12 2 . 973 0.788 16.677 5 .110 527.28 4 . 906 0.754 17 . 640 5. 589 554 . 63 7 . 232 0 . 720 18.721 6.166 585.70 10.000 0. 686 19.919 6.851 620.44 NODE 106.10 HGL < 298.657>;EGL= < 302.172>;FLOWLINE= < 297.800> ***************************************.*.(;;lr;(,;t**JfJrJ,Vr**************************** FLOW PROCESS FROM NODE 106.10 TO NODE 106.00 IS CODE = 5 UPSTREAM NODE 106.00 ELEVATION = 298.13 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 15.60 18.00 0.00 298.13 1.42 17.508 DOWNSTREAM 15.70 18.00 - 297.80 1.42 15.046 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.10===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.07196 JUNCTION LENGTH = 3.58 FEET FRICTION LOSSES = 0.258 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.511) + ( 0.258)4-( 0.703) = 1.472 08627 05766 0.703 FEET NODE 106.00 : HGL = < 298.885>;EGL= < 303.645>;FLOWLINE= < 298.130> ***************** *********************:tJtJ;Jr^^;***^^jf^f^^j,^ij.jjjj.it.^j.^jfjj^^ji.j.^^^^j, FLOW PROCESS FROM NODE UPSTREAM NODE 105.10 106.00 TO NODE 105.10 IS CODE = 1 ELEVATION = 303.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 46.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0. 69 CRITICAL DEPTH(FT) 1.42 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.42 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURES- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 .000 1 .417 9 . 019 2 . 681 346 .43 0 . 029 1 . 388 9 133 2 . 684 346 74 0 . 113 1 . 359 9 266 2 693 347 64 0 .254 1 . 330 9 416 2 707 349 12 0 .453 1 . 300 9 583 2 727 351 18 0 .715 1 .271 9 767 2 753 353 81 1 . 045 1 . 242 9 969 2 786 357 04 1 .451 1 .213 10 190 2 826 360 88 1 . 941 1 . 183 10 430 2 874 365 38 2 . 526 1 . 154 10 691 2 930 370 56 3 .221 1 . 125 10 973 2 996 376 47 4 . 043 1 . 095 11 279 3 072 383 15 5 . 012 1 .066 11 610 3 160 390 67 6 . 158 1 . 037 11 968 3 262 399 09 7 .513 1 . 008 12 356 3 380 408 48 9 . 125 0 . 978 12 777 3 515 418 93 11 . 053 0 . 949 13 233 3 670 430. 54 13 .380 0 . 920 13. 729 3 848 443. 43 16 .224 0 .890 14 . 269 4 . 054 457 . 71 19 . 756 0 .861 14 . 858 4 . 291 473. 56 24 . 246 0 . 832 15. 501 4 . 565 491. 13 30 144 0 803 16. 206 4 . 883 510. 64 38 301 0 773 16. 979 5. 253 532. 33 46 000 0 755 17 . 502 5. 515 547 . 10 NODE 105.10 HGL < 305.087>;EGL= < 306.351>;FLOWLINE= < 303.670> *****************************i.*JfJ,**J,j,JrJr;j;*.^;**JrVr******************************** FLOW PROCESS FROM NODE 105.10 TO NODE 105.00 IS CODE = 5 UPSTREAM NODE 105.00 ELEVATION = 304.00 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 7 .20 15. 60 5 . 90 0.00 DIAMETER (INCHES) 18.00 18.00 18 . 00 0.00 ANGLE FLOWLINE (DEGREES) ELEVATION 70. 00 80 . 00 0.00 304.00 303.67 304.00 0.00 CRITICAL DEPTH(FT.) 1. 04 1.42 0. 94 0 . 00 VELOCITY (FT/SEC) 4 . 074 9. 022 3. 339 0.000 2.50===Q5 EQUALS BASIN INPUT= JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00470 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01907 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0118 9 JUNCTION LENGTH = 3.00 FEET FRICTION LOSSES = 0.036 FEET ENTRANCE LOSSES = 0.253 FEET JUNCTION LOSSES = (TRANSITION LOSS)-I-( FRICTION LOSS )-t (ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.274)-^( 0.036)-^( 0.253) = 1.563 NODE 105.00 : HGL = < 307.656>;EGL= < 307.914>;FLOWLINE= < 304.000> ********************************:lr*************************************^******* FLOW PROCESS FROM NODE 105.00 TO NODE 104.10 IS CODE = 1 UPSTREAM NODE 104.10 ELEVATION = 304.90 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 7.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 87.00 FEET MANNING S N = 0 .01300 SF=(Q/K)**2 = (( 7.20) /( 105.042))**2 = 0 00470 HF=L*SF = ( 87 00)* (0.00470) = 0.409 NODE 104.10 : HGL = < 308.065>;EGL= < 308.323>;FLOWLINE= < 304.900> FLOW PROCESS FROM NODE 104.10 TO NODE 104.00 IS CODE = 5 UPSTREAM NODE 104.00 ELEVATION = 305.10 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.60 18.00 30.00 305.10 0.91 3.169 DOWNSTREAM 7.20 18.00 - 304.90 1.04 4.074 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 1.60===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00284 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00470 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00377 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.008 FEET ENTRANCE LOSSES = 0.052 FEET JUNCTION LOSSES = (TRANSITION LOSS)-h ( FRICTION LOSS )-I-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.144) + ( 0.008)-^( 0.052) = 0.203 NODE 104.00 : HGL = < 308.370>;EGL= < 308.526>;FLOWLINE= < 305.100> FLOW PROCESS FROM NODE 104.00 TO NODE 103.10 IS CODE = 1 UPSTREAM NODE 103.10 ELEVATION = 306.40 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 119.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 5.60)/( 105.041))**2 = 0.00284 HF=L*SF = { 119.00)*(0.00284) = 0.338 NODE 103.10 : HGL = < 308.708>;EGL= < 308.864>;FLOWLINE= < 306.400> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 103.00 103.10 TO NODE ELEVATION = 103.00 IS CODE 306.90 (F IS UNDER PRESSURE) CRITICAL VELOCITY DEPTH(FT.) (FT/SEC) 0.83 4 . 838 0. 91 3.169 0 . 00 0.000 0.00 0 . 000 0.01138 0.00284 CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 3.80 5. 60 0 . 00 0.00 1.80= DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 12.00 80.00 306.90 18.00 - 306.40 0.00 0.00 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING UPSTREAM: MANNING'S N DOWNSTREAM: MANNING'S N = 0.01300; FULL INTEGRATION FORMULATION = 0.01300; FRICTION SLOPE = FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00711 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 2 . 00 0 .014 FEET FEET 0.031 FEET ENTRANCE LOSSES (TRANSITION LOSS ) S-( FRICTION LOSS )(ENTRANCE LOSSES) ( 0.571)-i-( 0.014)-^( 0.031) = 0.617 NODE 103.00 HGL = < 309.117>;EGL= < 309 . 481>; FLOWLINE= < 306.900> ****************************************************************************** FLOW PROCESS FROM NODE UPSTRE/m NODE 102.10 103.00 TO NODE ELEVATION = 102.10 IS CODE = 1 310.50 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.80 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 131.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.58 CRITICAL DEPTH(FT) = 0.83 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.8 3 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-I- (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0 . 000 0 . 829 5 456 1 292 56 71 0 . 017 0 .819 5 515 1 292 56 72 0.069 0 .810 5 577 1 293 56 76 0. 160 0 . 800 5 642 1 294 56 82 0 .292 0 .790 5 709 1 296 56 90 0.471 0 . 780 5 779 1 299 57 01 0. 699 0 .770 5 852 1 302 57 15 0. 984 0 .760 5 928 1 306 57 32 1.331 0 .751 6 008 1 311 57 51 1.748 0 .741 6 090 1 317 57 73 2.243 0 .731 6 176 1 324 57 98 2 .830 0 . 721 6 265 1 331 58 27 3. 520 0 .711 6 358 1 339 58 58 4 . 332 0 .701 6 455 1 349 58 93 5 . 286 0 . 692 6 556 1 359 59 32 6 411 0 682 6 660 1 371 59 74 7 744 0 672 6 770 1 384 60 19 9 334 0 662 6 883 1 398 60 69 11 252 0 652 7 002 1 414 61 22 13 600 0 642 7 125 1 431 61 80 16 537 0 633 7 254 1 450 62 43 20 331 0 623 7 388 1 471 63 10 25 482 0 613 7 528 1 493 63 81 33 116 0 603 7 673 1 518 64 58 46 845 0 593 7 826 1 545 65 40 131 000 0 592 7 843 1 548 65 50 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 2 . 22 DISTANCE FROM CONTROL(FT) 0.000 75.578 PRESSURE HEAD(FT) 2.217 1. 000 VELOCITY (FT/SEC) 4 . 838 4.838 SPECIFIC ENERGY(FT) 2 . 581 1.363 PRESSURE-I- MOMENTUM (POUNDS) 119.79 60. 13 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 75.578 75.950 76.276 76.577 76.857 77.120 77.367 77.600 77.820 78.027 78 . 222 78 .405 78 . 577 78.738 78.887 79.025 79.151 79.265 79.368 79.458 79.536 79.601 79.652 79.690 79.713 79.721 131.000 FLOW DEPTH VELOCITY (FT) (FT/SEC) 1.000 4.837 0.993 4.841 0.986 4.850 0.980 4.861 0.973 4.874 0.966 4.889 0.959 4.905 0.952 4.923 0.945 4.942 0.939 4.963 0.932 4.985 0.925 5.008 0.918 5.032 0.911 5.058 0.904 5.085 0.898 5.113 0.891 5.142 0.884 5.172 0.877 5.203 0.870 5.236 0.863 5.270 0.857 5.305 0.850 5.341 0.843 5.378 0.836 5.416 0.829 5.456 0.829 5.456 END OF HYDRAULIC JUMP SPECIFIC ENERGY(FT) 1 . 363 1. 357 1. 352 1. 347 1. 342 1. 337 1. 333 329 325 321 318 315 311 309 306 304 1. 301 1.299 1.298 1.296 1.295 294 293 292 292 292 292 PRESSURE-t- MOMENTUM (POUNDS) 60. 13 59.83 59.56 59.31 59.07 58 . 85 58 . 64 58.44 58 . 25 58.08 57 . 92 57 .76 57 . 62 57 . 49 57.36 57.25 57 .15 57.06 56. 98 56. 91 56.85 56.80 56.76 56.73 56.72 56.71 56.71 ANALYSIS- I PRESSURE-I-MOMENTUM BALANCE OCCURS AT 68.8 8 FEET UPSTREAM OF NODE 103.00 | I DOWNSTREAM DEPTH = 1.108 FEET, UPSTREAM CONJUGATE DEPTH = 0.593 FEET | NODE 102.10 : HGL = < 311.329>;EGL= < 311.792>;FLOWLINE= < 310.500> ************************************** + *i.*JrJt.*.********************************* UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102.10 FLOWLINE ELEVATION = 310.50 ASSUMED UPSTREAM CONTROL HGL = 311.33 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS *******************************Jr**** + *.^J,.i,^J; + Jf^.(e^j.jrj,j,j,.^..^.j^j,.i.j,j^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH LOT 14 GRADING AND EROSION CONTROL PLANS * * PROPOSED 18"/12" STORM DRAIN FROM DEVELOPED PAD AREAS TO PROP. NODE#105 * * BY: AJV FILE: I:\061180\HYDROLOGY\PG105.OUT * ************************************JrJr.*.Jr******************************Vr*>tvt FILE NAME: C:\PG105.DAT TIME/DATE OF STUDY: 16:14 11/20/2006 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE-f NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 105.00- 2.38* 217.91 } FRICTION 204.10- } JUNCTION 204 . 00- 1.45* 115.45 } FRICTION 203.10- } JUNCTION 203.00- } FRICTION 202.10- 1.49* 98.39 } HYDRAULIC JUMP 0.76*Dc 50.91 0.95* 25.29 } HYDRAULIC JUMP 0.44*Dc 10.89 DOWNSTREAM RUN FLOW PRESSURES- DEPTH (FT) MOMENTUM(POUNDS) 0.79 91.51 0.94 Dc 0. 63 0.76*Dc 0.29 0.44*Dc 87.58 53. 44 50. 91 13. 80 10.89 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION *******************************^*JtJ,J;^,*J,J,J,iJ.J,^^^J,^J,J^J,^^J^^^^J.^^^^^^J^^^J^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 105.00 FLOWLINE ELEVATION = 304.00 PIPE FLOW = 5.90 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 306.380 FEET NODE 105.00 : HGL = < 306.380>;EGL= < 306.553>;FLOWLINE= < 304.000> ************************** + **j,*j,j,j,j-j,j-ij,j,^^j,j,^^^j^j^j^j.j.j^^j^ FLOW PROCESS FROM NODE UPSTREAM NODE 204.10 105.00 TO NODE ELEVATION = 204.10 IS CODE = 1 305.30 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.90 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 118.00 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.3E PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 111.930 PRESSURE HEAD(FT) 2.380 1.500 VELOCITY (FT/SEC) 3.339 3.339 SPECIFIC ENERGY(FT) 2 . 553 1. 673 PRESSURES- MOMENTUM (POUNDS) 217.91 120.88 NORMAL DEPTH(FT) = ASSUMED DOWNSTREAM 0.78 CRITICAL DEPTH(FT) PRESSURE HEAD(FT) = 1.50 0. 94 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 111.930 114.594 117.094 118.000 FLOW DEPTH (FT) 1. 500 1.478 1. 455 1.447 VELOCITY (FT/SEC) 3.338 3.348 3.367 3.376 SPECIFIC ENERGY(FT) 1. 673 1. 652 1. 631 1. 624 PRESSURE-F MOMENTUM(POUNDS) 120.88 118.52 116.27 115.45 NODE 204.10 : HGL = < 306. 7 4 7>;EGL= < 306.924>;FLOWLINE= < 305.300> **********************************J:*J,****J,*Jr********************************** FLOW PROCESS FROM NODE 204.10 TO NODE 204.00 IS CODE = 5 UPSTREAM NODE 204.00 ELEVATION = 305.50 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) DIAMETER (INCHES) ANGLE (DEGREES) FLOWLINE ELEVATION CRITICAL DEPTH(FT.) VELOCITY (FT/SEC) 3 90 18.00 0.00 305 . 50 0 76 2 209 5 90 18 . 00 -305. 30 0 94 3 377 0 00 0.00 0.00 0. 00 0 00 0 000 0 00 0 . 00 0.00 0. 00 0 00 0 000 2 00= ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING UPSTREAM: MANNING'S N = DOWNSTREAM: MANNING'S N = AVERAGED FRICTION SLOPE IN JUNCTION LENGTH = 2.00 FRICTION LOSSES = 0.004 JUNCTION LOSSES = JUNCTION LOSSES = FULL INTEGRATION FORMULATION = 0.01300; FRICTION SLOPE = 0.01300; FRICTION SLOPE = JUNCTION ASSUMED AS 0.00203 FEET FEET 00129 00276 0.035 FEET ENTRANCE LOSSES = (TRANSITION LOSS ) S-(FRICTION LOSS ) S-(ENTRANCE LOSSES) ( 0.104)s-( 0.004)-F( 0.035) = 0.143 NODE 204.00 HGL < 306.991>;EGL= < 307.067>;FLOWLINE= < 305.500> ************************* + ********* + * + * + ** + FLOW PROCESS FROM NODE 204.00 TO NODE 203.10 IS CODE = 1 UPSTREAM NODE 203.10 ELEVATION 307.10 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.90 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 154.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0. 63 CRITICAL DEPTH(FT) 0.76 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.76 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-F CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .755 4 . 373 1 052 50 . 91 0 .014 0 .750 4 .412 1 053 50 . 91 0 . 057 0 .745 4 .451 1 053 50 . 92 0 . 132 0 . 740 4 .490 1 053 50 . 94 0 . 242 0 . 735 4 . 531 1 054 50 . 97 0 .391 0 .729 4 .572 1 054 51 .00 0 . 583 0 . 724 4 . 614 1 055 51 .04 0 . 822 0 . 719 4 . 656 1 056 51 . 10 1 . 114 0 .714 4 . 700 1 057 51 .16 1 .465 0 .709 4 . 744 1 059 51 .22 1 .884 0 . 704 4 .789 1 060 51 .30 2 . 379 0 . 698 4 . 835 1 062 51 .39 2 . 963 0 . 693 4 . 882 1 064 51 .48 3 . 649 0 . 688 4 . 929 1 . 066 51 .59 4 .456 0 . 683 4 978 1 . 068 51 70 5 .407 0 . 678 5 027 1 . 071 51 82 6 .532 0 . 673 5 078 1. 073 51 96 7 .873 0 . 668 5 129 1. 076 52 10 9 .489 0 . 662 5 182 1. 080 52 25 11 .463 0 . 657 5 235 1 . 083 52 41 13 . 929 0 . 652 5 290 1 . 087 52 59 17 . 107 0 . 647 5 346 1 . 091 52 77 21 .412 0 . 642 5 402 1 . 095 52 97 27 .775 0 . 637 5 460 1 . 100 53 18 39 . 185 0 631 5 519 1 . 105 53 39 154 000 0 630 5 530 1 . 106 53 44 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT 1.49 ============ ======== ===== === ====== ======= ===== ============ ======= ============ ======== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURES- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 000 1 491 2 208 1. 567 98 . 39 3 117 1 461 2 222 1. 538 95. 26 6 164 1 432 2 242 1. 510 92. 21 9 163 1 403 2. 269 1. 483 89. 23 12 124 1 373 2 . 300 1. 455 86. 33 15 050 1 344 2. 335 1. 428 83. 51 17 944 1 314 2 375 1 402 80 78 20 807 1 285 2 419 1 376 78 12 23 639 1 255 2 468 1 350 75 56 26 439 1 226 2 521 1 325 73 09 29 206 1 197 2 579 1 300 70 73 31 937 1 167 2 642 1 276 68 46 34 627 1 138 2 711 1 252 66 30 37 274 1 108 2 785 1 229 64 26 39 871 1 079 2 865 1 207 62 33 42 411 1 050 2 952 1 185 60 53 44 885 1 020 3 046 1 164 58 85 47 281 0 991 3 149 1 145 57 31 49 585 0 961 3 259 1 126 55 91 51 776 0 932 3 380 1 109 54 66 53 828 0 902 3 511 1 094 53 58 55 708 0 873 3 653 1 080 52 66 57 365 0 844 3 809 1 069 51 91 58 727 0 814 3 980 1 060 51 37 59 686 0 785 4 167 1 055 51 02 60 065 0 755 4 373 1 052 50. 91 154 . 000 0 755 4 373 1 052 50. 91 I PRESSURE+MOMENTUM I DOWNSTREAM END OF HYDRAULIC JUMP ANALYSIS BALANCE OCCURS AT 54.15 FEET UPSTREAM OF DEPTH = 0.897 FEET, UPSTREAM CONJUGATE DEPTH NODE 204.00 | = 0.631 FEET I NODE 203 . 10 HGL < 307.855>;EGL= < 308.152>;FLOWLINE= < 307.100> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 203.00 203.10 TO NODE ELEVATION = 203.00 IS CODE = 5 307.60 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 1.10 12.00 90.00 307.60 3.90 18.00 - 307.10 0.20 6.00 70.00 308.10 0.04 6.00 90.00 308.10 2.56===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 0.44 0.76 0.22 0. 10 VELOCITY (FT/SEC) 1.425 4 . 375 2.348 1. 344 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00083 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00538 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00311 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.006 FEET ENTRANCE LOSSES = 0.059 FEET JUNCTION LOSSES = (TRANSITION LOSS )-F (FRICTION LOSS ) S-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.367)-F( 0.006)-F( 0.059) = 0.433 NODE 203.00 : HGL = < 308.554>;EGL= < 308.585>;FLOWLINE= < 307.600> *******************************************************V,.Jt***i*^rVr*J,***J,*JrJ;J,JrJ,V,V^ FLOW PROCESS FROM NODE 203.00 TO NODE 202.10 IS CODE = 1 UPSTREAM NODE 202.10 ELEVATION = 310.50 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.10 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 96.00 FEET MANNING'S N 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.2 9 CRITICAL DEPTH(FT) 0.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.4 4 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: :E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURES- )L{FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN 0 . 000 0 .441 3 .291 0 . 610 10 .89 0 . 007 0 .435 3 . 353 0 . 610 10 .89 0 . 030 0 .429 3 .417 0 . 610 10 . 90 0 .069 0 . 423 3 .484 0 611 10 92 0 . 127 0 .416 3 . 553 0 613 10 95 0 . 206 0 .410 3 625 0 614 10 98 0 . 308 0 .404 3 700 0 617 11 02 0 .435 0 . 398 3 778 0 619 11 07 0 .592 0 . 391 3 859 0 623 11 13 0 . 783 0 . 385 3 943 0 627 11 20 1 .010 0 . 379 4 031 0 631 11 28 1 . 282 0 . 373 4 122 0 637 11 37 1 . 604 0 . 366 4 217 0 643 11 47 1 . 985 0 .360 4 317 0 650 11 58 2 .435 0 . 354 4 420 0 658 11 71 2 . 970 0 . 348 4 529 0 666 11 84 3 . 607 0 .341 4 642 0 676 11 99 4 . 372 0 335 4 761 0 687 12 15 5 299 0 329 4 885 0 700 12 33 6 441 0 323 5 016 0. 714 12 52 7 877 0 317 5. 152 0. 729 12. 73 9 741 0 310 5 . 296 0 . 746 12 . 95 12 284 0 304 5 . 447 0. 765 13. 20 16 073 0 298 5 . 606 0 . 786 13. 46 22 919 0 292 5 . 774 0 . 810 13. 74 96 000 0 290 5. 807 0. 814 13. 80 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURES- (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN 0 . 000 0 . 954 1 424 0 985 25 29 0 . 671 0 . 933 1 442 0 965 24 34 1 . 336 0 . 913 1 462 0 946 23 42 1 . 996 0 .892 1 486 0 927 22 52 2 . 652 0 . 872 1 514 0 907 21 64 3 .302 0 . 851 1 544 0 888 20 78 3 . 946 0 . 831 1 577 0 869 19 95 4 . 585 0 .810 1 613 0 851 19 14 5 .218 0 .790 1 653 0 832 18 37 5 .843 0 .769 1 696 0 814 17 62 6 461 0 749 1 743 0 796 16 90 7 070 0 728 1 795 0 778 16 22 7 670 0 708 1 850 0 761 15 56 8 258 0 687 1 911 0 744 14 94 8 833 0 667 1 977 0 727 14 36 9 393 0 646 2 048 0 711 13 81 9 935 0 626 2 126 0 696 13 31 10 457 0 605 2 212 0 681 12 84 10 955 0 585 2 305 0 667 12 42 11 423 0 564 2 407 0 654 12 04 11 855 0 544 2 520 0 642 11 71 12 244 0 523 2 643 0 632 11 42 12 580 0 503 2 780 0 623 11 20 12 847 0 482 2 932 0 616 11 03 13 028 0 462 3 101 0 611 10 92 13 096 0 441 3 291 0 610 10 89 96 000 0 441 3 291 0. 610 10 89 END OF HYDRAULIC JUMP ANALYSIS I PRESSURES-MOMENTUM BALANCE OCCURS AT 9.42 FEET UPSTREAM OF NODE 203.00 | I DOWNSTREAM DEPTH = 0.645 FEET, UPSTREAM CONJUGATE DEPTH = 0.291 FEET | NODE 202.10 : HGL = < 310.941>;EGL= < 311.110>;FLOWLINE= < 310.500> *****************************************************************Tlr:t*:Jr*******TtTt UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 202.10 FLOWLINE ELEVATION = 310.50 ASSUMED UPSTREAM CONTROL HGL = 310.94 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS **************************************Jr**J^**J,J,*JrJr***************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** OESCRIPTION OF STUDY ************************** * BRESSI RANCH LOT 14 GRADING AND EROSION CONTROL PLANS * * PROPOSED 6" STORM DRAIN FROM EASTERN SIDE OF LOT TO PROP. NODE#203 * * BY: AJV FILE: I:\061180\HYDROLOGY\PG203.OUT * *********************************************************.^.*.Jr*JrVt + ********** FILE NAME: C:\PG203.DAT TIME/DATE OF STUDY: 17:04 11/20/2006 ************************************************.*.Jr***J,*i..i.V,*i.**.i.*.jrjr************ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE-F FLOW PRESSURES- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 203.00- 0.45* 2.88 0.16 1.62 } FRICTION 303.10- 0.22*Dc 1.41 0.22*Dc 1.41 } JUNCTION 303.00- 0.24 1.01 0.12* 1.11 } FRICTION 302.10- 0.19*Dc 0.89 0.19*Dc 0.89 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 203.00 FLOWLINE ELEVATION = 308.10 PIPE FLOW = 0.20 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 308.550 FEET NODE 203.00 : HGL = < 308.550>;EGL= < 308.568>;FLOWLINE= < 308.100> *********************************JrJ, + **jt*^j,.tiVr*****************i*i-*i + i********* FLOW PROCESS FROM NODE 203.00 TO NODE 303.10 IS CODE = 1 UPSTREAM NODE 303.10 ELEVATION - 309.80 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = 0.20 CFS PIPE OIAMETER = 6.00 INCHES 69.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.16 CRITICAL DEPTH(FT) 0.22 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.45 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-F CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0 . 000 0 .450 1 .074 0 .468 2 .88 0 . 361 0 .441 1 . 091 0 .459 2 .78 0 . 720 0 .432 1 . 109 0 .451 2 . 69 1 . 076 0 .423 1 . 129 0 443 2 .59 1 . 429 0 .414 1 . 151 0 434 2 . 50 1 .780 0 .405 1 . 174 0 426 2 .41 2 . 127 0 . 396 1 200 0 418 2 . 33 2 .472 0 .387 1 227 0 410 2 .25 2 .812 0 .378 1 257 0 402 2 17 3 .149 0 .369 1 289 0 394 2 09 3 .482 0 .360 1 323 0 387 2 02 3 .810 0 . 351 1 360 0 379 1 95 4 . 132 0 .341 1 399 0 372 1 88 4 .448 0 . 332 1 442 0 365 1 82 4 . 757 0 . 323 1 488 0 358 1 76 5 . 058 0 . 314 1 538 0 351 1 70 5 . 349 0 . 305 1 592 0 345 1 65 5 . 629 0 .296 1 650 0 339 1 61 5 .895 0 .287 1 713 0. 333 1 56 6 146 0 . 278 1 781 0. 327 1 53 6 378 0 .269 1 856 0. 323 1 49 6 586 0 .260 1 937 0. 318 1 46 6 766 0 251 2. 026 0. 315 1 44 6 910 0 242 2 123 0 . 312 1 43 7 007 0 233 2 . 230 0. 310 1. 41 7 044 0 224 2 . 348 0. 310 1. 41 69 000 0 224 2 . 348 0 . 310 1. 41 NODE 303.10 : HGL = < 310.024>;EGL= < 310.110>;FLOWLINE= < 309.800 FLOW PROCESS FROM NODE 303.10 TO NODE 303.00 IS CODE = 5 UPSTREAM NODE 303.00 ELEVATION = 310.00 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 90.00 FLOW (CFS) 0 . 14 0.20 0.00 0 . 00 0.06===Q5 EQUALS BASIN INPUT== 6. 00 6.00 0 . 00 0. 00 0. 00 0.00 310.00 309.80 0.00 0 . 00 CRITICAL DEPTH(FT.) 0.19 0 . 22 0.00 0.00 VELOCITY (FT/SEC) 3. 649 2.348 0.000 0. 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03324 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00745 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02034 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.017 FEET JUNCTION LOSSES = (TRANSITION LOSS )-F ( FRICTION LOSS ) S-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.185)-F( 0.020)S-( 0.017) = 0.222 NODE 303.00 HGL < 310. 125>;EGL= < 310.332>;FLOWLINE= < 310.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 302.10 303.00 TO NODE ELEVATION = 302.10 IS CODE = 1 313.70 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.14 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 110.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.12 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.19 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.19 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-F CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0. 000 0 . 186 2 104 0 255 0 .89 0. 002 0 . 184 2 143 0 255 0 .89 0 . 010 0 . 181 2 182 0 255 0 .89 0. 023 0 . 179 2 223 0 255 0 .89 0. 043 0 . 176 2 265 0 256 0 . 90 0. 070 0 . 174 2 309 0 257 0 . 90 0. 104 0 . 171 2 354 0 257 0 . 90 0. 147 0 . 169 2 401 0 258 0 . 91 0. 200 0 . 166 2 450 0 260 0 . 91 0. 264 0 .164 2 500 0 261 0 . 92 0. 341 0 . 161 2 553 0 263 0 . 92 0. 432 0 . 159 2 607 0 265 0 . 93 0. 539 0 . 156 2 664 0 267 0 . 93 0. 667 0 . 154 2 723 0 269 0 . 94 0. 818 0 . 152 2 784 0 272 0 . 95 0. 996 0 . 149 2 848 0 275 0 . 96 1. 208 0 . 147 2 915 0 279 0 . 97 1. 463 0 . 144 2 984 0 283 0 . 98 1. 771 0 . 142 3 056 0 287 1 .00 2 . 149 0 . 139 3 132 0 292 1 . 01 2 . 625 0 . 137 3 211 0 297 1 . 02 3. 241 • 0 . 134 3 293 0 303 1 . 04 4 . 080 0 . 132 3 379 0 309 1 .06 5. 328 0 . 129 3 470 0 317 1 .08 7 . 579 0 . 127 3 565 0 324 1 . 10 110. 000 0 . 125 3 648 0 332 1 .11 NODE 302 . 10 HGL = < 313. 88 6>;EGL= < 313.955>;FLOWLINE= < 313. 700> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 302 . 10 FLOWLINE ELEVATION = 313.70 ASSUMED UPSTREAM CONTROL HGL = 313.89 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS SECTION 5 ************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 *,************************* DESCRIPTION OF STUDY ************************** * 2268-BRESSI RANCH INDUSTRIAL * * DEVELOPED CONDITIOMS * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: SY120090.DAT TIME/DATE OF STUDY: 08:25 05/27/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA 0 USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) =2.800 PECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 PECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED •USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 26.0 21.0 0.020/0.020/0.020 0.50 1.50 0.0131 0.125 0.0175 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint =10.0 (FT*FT/S) •SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1200.00 TO NODE 1205.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 331.00 DOWNSTREAM ELEVATION(FEET) = 330.00 LEVATION DIFFERENCE(FEET) = 1.00 RBAN SUBAREA OVERLAND TIME OF FLOW (MIN.) = 3.600 - TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.59 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.59 k*************************************************************************** IFLOW PROCESS FROM NODE 1205.00 TO NODE 1210.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM{FEET) = 330.00 DOWNSTREAM(FEET) = 314.00 FLOW LENGTH (FEET) = 550.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.43 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.59 PIPE TRAVEL TIME(MIN.) = 2.07 Tc(MIN.) = 8.07 LONGEST FLOWPATH FROM NODE 1200.00 TO NODE 1210.00 = 650.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1210.00 TO NODE 1210.00 IS CODE = 81 »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.418 •USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.86 SUBAREA RUNOFF(CFS) = 9.07 TOTAL AREA(ACRES) = 1.96 TOTAL RUNOFF(CFS) = 9.66 TC(MIN.) = 8.07 *************************************************************************** FFLOW PROCESS FROM NODE 1210.00 TO NODE 1220.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTI-EAM(FEET) = 305.60 DOWNSTREAM(FEET) = 301.40 FLOW LENGTH(FEET) = 142.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.78 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.66 PIPE TRAVEL TIME (MIN.) = 0.24 Tc (MIN. ) = 8.31 LONGEST FLOWPATH FROM NODE 1200.00 TO NODE 1220.00 = 792.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1220.00 TO NODE 1220.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED POR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.31 RAINFALL INTENSITY (INCH/HR) =5.32 TOTAL STREAM AREA (ACRES) = 1.96 PEAK FLOW RATE (CFS) AT CONFLUENCE = 9.66 **************************************************************************** .FLOW PROCESS FROM NODE 1225.00 TO NODE 1226.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIED(SUBAREA): u: INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 NITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 PSTREAM ELEVATION(FEET) = 320.00 DOWNSTREAM ELEVATION(FEET) =318.00 ELEVATION DIFFERENCE(FEET) = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN.) = 2.857 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF (CFS) =1.06 TOTAL AREA (ACRES) = 0.18 TOTAL RUNOFF (CFS) = 1.06 **************************************************************************** FLOW PROCESS FROM NODE 1226.00 TO NODE 1230.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 318.00 DOWNSTREAM(FEET) = 311.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.21 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.06 PIPE TRAVEL TIME(MIN.) = 1.78 Tc(MIN.) = 7.78 LONGEST FLOWPATH FROM NODiE 1225.00 TO NODE 1230.00 = 550.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1230.00 TO NODE 1230.00 IS CODE = 81 »»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) =5.545 •USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA (ACRES) = 1.40 SUBAREA RUNOFF (CFS) = 6.99 TOTAL AREA(ACRES) = 1.58 TOTAL RUNOFF(CFS) = 8.05 TC{MIN.) = 7.78 **************************************************************************** FLOW PROCESS FROM NODE 1230.00 TO NODE 1220.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««<. »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<« ELEVATION DATA: UPSTREAM(FEET) = 304.50 DOWNSTREAM(FEET) = 301.40 FLOW LENGTH(FEET) = 238.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.82 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.05 PIPE TRAVEL TIME (MIN. ) = 0.58 Tc(MIN.) = 8.36 LONGEST FLOWPATH FROM NODE 1225.00 TO NODE 1220.00 = 788.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1220.00 TO NODE 1220.00 IS CODE = 1 m »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< OTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.36 RAINFALL INTENSITY(INCH/HR) = 5.29 TOTAL STREAM AREA (ACRES) = 1.58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.05 I************************************************************************** FLOW PROCESS FROM NODE 1235.00 TO MODE 1240.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00 UPSTREAM ELEVATION(FEET) = 324.00 DOWNSTREAM ELEVATION(FEET) = 315.50 ELEVATION DIFFERENCE(FEET) = 8.50 URBAN SUBAREA OVERLAND TIME OF FLOW (MIN.) = 5.248 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 4.19 TOTAL AREA(ACRES) = 0.71 TOTAL RUNOFF (CFS) = 4.19 **************************************************************************** FLOW PROCESS FROM NODE 1240.00 TO NODE 1220.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 301.60 DOWNSTREAM(FEET) = 301.40 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES IPE-FLOW VELOCITY(FEET/SEC.) = 7.39 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.19 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) =6.02 LONGEST FLOWPATH FROM NODE 1235.00 TO NODE 1220.00 = 378.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1220.00 TO NODE 1220.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.02 RAINFALL INTENSITY(INCH/HR) = 5.55 TOTAL STREAM AREA (ACRES) = 0.71 PEAK FLOW RATE(CPS) AT CONFLUENCE = 4.19 •• CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.66 8.31 5.315 1.96 2 8.05 8.36 5.293 1.58 3 4.19 6.02 6.546 0.71 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. i** PEAK FLOW RATE TABLE *• 'STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 18.55 6.02 6.546 2 21.08 8.31 5.316 P El 21.06 8.36 5.293 ^COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: i ^REAK FLOW RATE (CFS) = 21.08 Tc(MIN.) = 8.31 TOTAL AREA (ACRES) = 4.25 LONGEST FLOWPATH FROM NODE 1200.00 TO NODE 1220.00 = 792.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1220.00 TO NODE 1245.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 301.40 DOWNSTREAM(FEET) = 288.20 FLOW LENGTH(FEET) = 294.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.84 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.08 PIPE TRAVEL TIME (MIN. ) = 0.35 Tc(MIN.) = 8.66 LONGEST FLOWPATH FROM NODE 1200.00 TO NODE 1245.00 = 1086.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1245.00 TO NODE 1245.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: ^/AJFC>.'2-^/^/r^0^ lA-JC^ TIME OF CONCENTRATION (MIN.) =8.66 ^ ^ ^/)/U cO<r-^-/£- /Z-i^^ INFALL INTENSITY (INCH/HR) =5.17 OTAL STREAM AREA (ACRES) = 4.25 /C<2J.^ l-OT /V ^'Z"'^' EAK FLOW RATE(CFS) AT CONFLUENCE = 21.08 Co x)j?? /?C'y^'-<r, **************************************************************************** FLOW PROCESS FROM NODE 1250.00 TO NODE 1251.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< •USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = lOO.OO UPSTREAM ELEVATION(PEET) = 315.00 DOWNSTREAM ELEVATION(FEET) =313.00 ELEVATION DIFFERENCE(FEET) = 2.00 URBAN SUBAREA OVERIAND TIME OF FLOW(MIN.) = 2.857 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 1.18 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.18 **************************************************************************** FLOW PROCESS FROM NODE 1251.00 TO NODE 1255.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 313.00 DOWNSTREAM(FEET) = 306.00 J-LOW LENGTH(FEET) = 650.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO IS.OOO DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.81 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.18 PIPE TRAVEL TIME(MIN.) = 2.84 Tc(MIN.) = 8.84 LONGEST FLOWPATH FROM NODE 1250.00 TO NODE 1255.00 = 750.00 FEET. I************************************************************************** FLOW PROCESS FROM NODE 1255.00 TO NODE 1255.00 IS CODE = 81 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.107 •USER SPECIFIED(SUBAREA): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 2.41 SUBAREA RUNOFF(CFS) = 11.08 TOTAL AREA(ACRES) = 2.61 TOTAL RUNOFF(CFS) = 12.26 TC(MIN.) = 8.84 **************************************************************************** FLOW PROCESS FROM NODE 1255.00 TO NODE 1245.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 300.90 DOWNSTREAM (FEET) = 288.20 FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 27.96 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.26 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 8.86 LONGEST FLOWPATH FROM NODE 1250.00 TO NODE 1245.00 = 779.00 FEET. ************************************************************************* FLOW PROCESS FROM NODE 1245.00 TO NODE 1245.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.86 RAINFALL INTENSITY(INCH/HR) = 5.10 S:;/'76 TOTAL STREAM AREA(ACRES) = 2.61 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.26 ** CONFLUENCE DATA •* STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 21.08 8.66 5.175 4.25 2 12.26 8.86 5.100 2.61 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 33.16 8.66 5.175 2 33.03 8.86 5.100 m OMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: EAK FLOW RATE(CFS) = 33.16 Tc(MIN.) = 8.66 TOT.AL AREA (ACRES) = 6.86 LONGEST FLOWPATH FROM NODE 1200.00 TO NODE 1245.00 = 1086.00 FEET. **********************************************************^^**jf^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 1245.00 TO NODE 1260.00 IS CODE = 31 ( ^^»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 288.20 DOWNSTREAM(FEET) = 285.10 FLOW LENGTH (FEET) = 62.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.11 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 33.16 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 8.73 LONGEST FLOWPATH FROM NODE 1200.00 TO NODE 1260.00 = 1148.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 6.86 TC(MIN.) = 8.73 PEAK FLOW RATE(CFS) =33.16 END OF RATIONAL METHOD ANALYSIS 7 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) Ver. l.SA Release Date: 01/01/2003 License ID 1509 Analysis prepared by: ProjectDesign Consultants San Diego, CA 92101 Suite 800 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2268-BRESSI RANCH INDUSTRIAL * * DEVELOPED CONDITIONS * * lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: SY1800.DAT TIME/DATE OF STUDY: 09:36 05/27/200.4 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA ^^S USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 PECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 'SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.85 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED •USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- " CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH ' LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Mfiucimum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)•(Velocity) Constraint = 6.0 (FT*FT/S) •SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1410.00 TO NODE 1410.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.92 RAIN INTENSITY(INCH/HOUR) = 5.08 TOTAL AREA(ACRES) = 1.60 TOTAL RUNOFF(CFS) = 8.10 **************************************************************************** FLOW PROCESS FROM NODE 1410.00 TQ NODE 1510.00 IS CODE = 31 '>»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEv^ATION DATA: UPSTREAM (FEET) = 287.40 DOWNSTREAM (FEET) = 287.00 FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.0 INCHES IPE-FLOW VELOCITY(FEET/SEC.) = 5.16 STIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.10 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 9.13 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 1510.00 = 65.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1510.00 TO NODE 1510.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.13 RAINFALL INTENSITY(INCH/HR) =5.00 TOTAL STREAM AREA(ACRES) = 1.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.10 **************************************************************************** FLOW PROCESS FROM NODE 1510.00 TO NODE 1510.00 IS CODE = 7 >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.74 RAIN INTENSITY (INCH/HOUR) = 5.15 TOTAL AREA(ACRES) = 3.25 TOTAL RUNOFF(CFS) = 15.41 **************************************************************************** FLOW PROCESS FROM NODE 1510.00 TO NODE 1510.00 IS CODE = 1 ( ^^»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENIJENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.74 RAINFALL INTENSITY(INCH/HR) = 5.15 TOTAL STREAM AREA(ACRES) = 3.25 PEAK FLOW RATE(CFS) AT CONFLUENCE =15.41 ** CONFLUENCE DATA •* STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.10 9.13 5.003 1.60 2 15.41 8.74 5.146 3.25 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 23.29 8.74 5.146 2 23.08 9.13 5.003 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23.29 Tc(MIN.) = 8.74 TOTAL AREA(ACRES) = 4.85 0N3EST FLOWP.ATH FROM NODE 0.00 TO NODE 1510.00 = 65.00 FEET. FLOW PROCESS FROM NODE 1510.00 TO NODE 1310.00 IS CODE = 31 »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<«« »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<« ^Li EVATION DATA: UPSTREAM(FEET) = 287.00 DOWNSTREAM(FEET) = 285.00 LOW LENGTH (FEET) = 424.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.99 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.29 PIPE TRAVEL TIME (MIN. ) = 1.18 Tc(MIN.) = 9.92 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 1310.00 = 489.00 FEET. ******************************************************************^**^^^^^^^ FLOW PROCESS FROM NODE 1310.00 TO NODE 1310.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.92 RAINFALL INTENSITY (INCH/HR) = 4.74 TOTAL STREAM AREA(ACRES) = 4.85 PEAK FLOW RATE (CFS) AT CONFLUENCE = 23.29 **********************************************************************^^^^^^^ FLOW PROCESS FROM NODE 1310.00 TO NODE 1310,00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE«<« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.48 RAIN INTENSITY (INCH/HOUR) = 5.25 iTAL AREA(ACRES) = 1.93 TOTAL RUNOFF(CFS) = 9.38 m .*********************************************************^**^^^^^^^jj^^^^^^ FLOW PROCESS PROM NODE 1310.00 TO NODE 1310.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED POR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.48 RAINFALL INTENSITY (INCH/HR) = 5.25 TOTAL STREAM AREA(ACRES) = 1.93 PEAK FLOW RATE(CFS) AT CONFLUEITCE = 9.38 •• CONFLUENCE DATA *• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 23.29 9.92 4.742 4.85 2 9.38 8.48 5.247 1.93 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE *• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 30.42 8.48 5.247 2 31.76 9.92 4.742 IMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 31.76 Tc{MIN.) = 9.92 TOTAL AP.EA(ACRES) = 6.78 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 1310.00 = 489.00 FEET. /C **************************************************************************** pOW PROCESS FROM NODE 1310.00 TO NODE 1260.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 285.00 DOWNSTREAM(FEET) = 284.00 FLOW LENGTH (FEET) = 194.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.6 INCHES PIPE-FLOW VELOCITY (FEET/SEC .) = 6.68 ESTIMATED PIPE DIAMETER (INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 31.76 PIPE TRAVEL TIME (MIN.) = 0.48 Tc(MIN.) = 10.40 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 1260.00 = 683.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 1260.00 TO NODE 1260.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 . . . ^ „ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: -e> / ^ f^/Z'^'^t''^ TIME OF CONCENTRATION (MIN.) = 10.40 /A,' j-i-o O.^t-C^l^^ /Zo^' RAINFALL INTENSITY (INCH/HR) =4.60 _ ^ ^ TOTAL STREAM AREA (ACRES) = 6.78 ^7 ^r7^-5^7S^ PEAK FLOW RATE (CFS) AT CONFLUENCE = 31.76 t^d^J'/-T/C^^S" r **************************************************************************** FLOW PROCESS FROM NODE 1260.00 TO NODE 1260.00 IS CODE = 7 • »»USER SPECIFIED HYDROLOGY INPORMATION AT NODE«<« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.73 RAIN INTENSITY (INCH/HOUR) = 5.15 TOTAL AREA (ACRES) = 6.86 TOTAL RUNOFF (CFS) = 33.16 **************************************************************************** FLOW PROCESS FROM NODE 1260.00 TO NODE 1260.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«.«< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««<, TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OP CONCENTRATION (MIN. ) =8.73 RAINFALL INTENSITY(INCH/HR) = 5.15 TOTAL STREAM AREA (ACRES) = 6.86 PEAK FLOW RATE (CFS) AT CONFLUENCE = 33.16 •• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 31.76 10.40 4.598 6.78 2 33.16 8.73 5.150 6.86 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE •* TREAM RUNOFF Tc INTENSITY ^^TRE ^^K^JUMB ER (CFS) (MIN.) (INCH/HOUR) 1 61.52 8.73 5.150 2 61.37 10.40 4.598 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: J>EAK FLOW RATE (CFS) = 61.52 Tc{MIN.) = 8.73 fcOTAL AREA (ACRES) =13.64 'ONGEST FLOWPATH FROM NODE 0.00 TO NODE 1260.00 = 683.00 FEET. <*************************************************************************** FLOW PROCESS FROM NODE 1260.00 TO NODE 2000.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 285.10 DOWNSTREAM(FEET) = 280.58 FLOW LENGTH (FEET) = 168.60 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.4 INCHES g^^/^J/^ Ai^& /=<xa^ PIPE-FLOW VELOCITY (FEET/SEC. ) = 14.38 pc,'u7/^e-i'CF'S^ O/^ ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES =1 PIPE-FLOW (CFS) = 61.52 CC-t / <^ //^^/2^c:<P^ PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 8.93 ^-TIA.^^ . LONGEST FLOWPATH FROM NODE 0.00 TO NODE 2000.00 = 851.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2000.00 TO NODE 2010.00 IS CODE = 31 >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ELEVATION DATA: UPSTREAM(FEET) = 280.58 DOWNSTREAM(FEET) = 279.73 FLOW LENGTH(FEET) = 83.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 29.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.04 STIMATED PIPE DIAMETER (INCH) = 36.00 NUMBER OF PIPES = 1 IPE-FLOW(CFS) = 61.52 IPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 9.06 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 2010.00 = 934.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.06 RAINFALL INTENSITY (INCH/HR) =5.03 TOTAL STREAM AREA(ACRES) =13.64 PEAK FLOW RATE(CPS) AT CONFLUENCE = 61.52 **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.86 RAIN INTENSITY(INCH/HOUR) = 4.01 TOTAL AREA(ACRES) = 1.20 TOTAL RUNOFF(CFS) = 4.74 **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 1 ^»>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE V.ALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.86 RAINFALL INTENSITY(INCH/HR) = 4.01 TOTAL STREAM AREA (ACRES) = 1.20 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.74 / ^^^B************************************************************************* ^^LOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 7 »>»USER SPECIFIED HYDROLOGY INFORMATION AT NODE««< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.51 RAIN INTENSITY(INCH/HOUR) = 5.24 TOTAL AREA (ACRES) = 0.88 TOTAL RUNOFF (CFS) = 4.73 **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2010.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.51 RAINFALL INTENSITY (INCH/HR) =5.24 TOTAL STREAM AREA (ACRES) = 0.88 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.73' •• CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 61.52 9.06 5.027 13.64 2 4.74 12.86 4.011 1.20 3 4.73 8.51 5.235 0.88 INFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED POR 3 STREAMS. ** PEAK FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS). (MIN.) (INCH/HOUR) 1 67.44 8.51 5.235 2 69.85 9.06 5.027 3 57.46 12.86 4.011 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 69.85 Tc(MIN.) = 9.06 TOTAL AREA(ACRES) = 15.72 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 2010.00 = 934.60 FEET. **************************************************************************** FLOW PROCESS FROM NODE 2010.00 TO NODE 2020.00 IS CODE = 31 »>»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ELEVATION DATA: UPSTREAM(FEET) = 279.73 DOWNSTREAMIFEET) = 278.67 FLOW LENGTH (FEET) = 60.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.99 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 69.85 PIPE TRAVEL TIMEIMIN.) = 0.08 Tc(MIN.) = 9.14 ONGEST FLOWPATH FROM NODE 0.00 TO NODE 2020.00 = 994.60 FEET. • END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 15.72 TC(MIN.) = 9.14 PEAK FLOW RATEICFS) = 69.85 OF RATIONAL METHOD ANALYSIS SECTION 6 TEMPORARY DESILTING BASIN CALCULATIONS For BRESSI RANCH LOT 14 GRADING & EROSION CONTROL PLANS C.U.P. 05-28, S.U.P. 05-14 DWG. No. 444-9A Revised: November 16, 2006 Prepared: August 14, 2006 J.N. 061180-01 Prepared for: VPI BRESSI STORAGE, LLC 8910 University Center Lane, Suite 630 SanDiego, CA 92122 Prepared by: O'DAY CONSULTANTS 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92010 DESILTING BASIN CALCULATIONS SECTION DESCRIPTION 1 Surface Area Calculations Explanation 2 Soil Loss Calculations Explanation 3 Dewatering Calculation Explanation 4 Basin Sizing, Soil Loss, & Outlet Works Calculation Spreadsheets 5 Exhibits SECTION 1 SURFACE AREA CALCULATIONS According to the Fact Sheet for Water Quality Order 99-08-DWQ issued by the State Water Resources Control Board (SWRCB), sediment basins shall, at a minimum, be designed and maintained as follows: Option 1: Pursuant to local ordinance for sediment basin design and maintenance, provided that the design efficiency is as protective or more protective of water quality than Option 3. OR Option 2: Sediment basin(s), as measured from the bottom of the basin to the principal outlet, shall have at least a capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length of the basin shall be more than twice the width of the basin. The length is determined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. OR Option 3: Sediment basin(s) shall be designed using the standard equation: As=1.2Q/Vs Where: As is the minimum surface area for trapping soil particles of a certain size; Vs is the settling velocity of the design particle size chosen; and Q=CxlxA where Q is the discharge rate measured in cubic feet per second; C is the runoff coefficient; 1 is the precipitation intensity for the 10-year, 6-hour rain event and A is the area draining into the sediment basin in acres. The design particle size shall be the smallest soil grain size determined by wet sieve analysis, or the fine silt sized (0.01 mm) particle, and the Vs used shall be 100 percent of the calculated settling velocity. The length is determined by measuring the distance between the inlet and the outlet; the length shall be more than twice the dimension as the width; the depth shall not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency (two feet of storage, two feet of capacity). The basin(s) shall be located on the site where it can be maintained on a year- round basis and shall be maintained on a schedule to retain the two feet of capacity; OR Option 4: The use ofan equivalent surface area design or equation, provided that the design efficiency is as protective or more protective of water quality than Option 3. Sediment basins for Bressi Ranch Lot 14 were designed to satisfy the requirements of Option 3. using the following parameters: Appendix 11-A-4 ofthe San Diego County Hydrology Manual gives the precipitation for a 10-year, 6-hour storm as 1.9 inches for this project. (See Exhibit "A") 1 = 1.8 inches/6 hours I = 0.30 inches/hour Appendix IX ofthe San Diego County Hydrology Manual gives the runoff coefficients for this project as C=0.35 to C=0.45. (See Exhibit "B") Table 8.1 ofthe Erosion and Sediment Control Handbook (See Exhibit "C") gives the settling velocity for a 0.01mm sized particle as Vs = 0.00024 feet/second. The San Diego County Soils Interpretation Study gives the soil classification for this project as "D". (See Exhibit "D") FOR BASIN CALCULATION SUMMARY SPREADSHEET SEE SECTION 4. SECTION 2 SURFACE AREA CALCULATIONS CHAPTER 5 OF THE EROSION AND SEDIMENT CONTROL HANDBOOK DISCUSSES CALCULATING SOIL LOSS WITH THE UNIVERSAL SOIL LOSS EQUATION: a.a« Th* BqoatioB Th* IMwd Im or tht uaivMMl MB IM IK A- RXKXLSXCXP whei* A - MA loM. tona/CMw) (yMT) it - ninfiU arodM indM, ia 100 R - toni/acM X in/hr K - MBtMdlbUl^rMto.toiWaeraiMruBitof R Lft • ik^tliuftk Mil ilmiBiM firtnr. iHminilnnlTT- C - vt0Mlk P- wMiMeoirtNi] RAINFALL INDEX "R" THE RAINFALL EROSION INDEX "R" IS BASED ON THE GEOGRAPHICAL LOCATION OF THE PROJECT AND THE 2-YEAR, 6-HOUR RAINFALL: 1 8.U 700 BOO SOO 5 400 3on 200 i j , J ! ^'» •Vy • / i V i 0.5 1.0 V5 2.0 2.5 3.0 3.5 p - 2-yeaf. 6-hr ram, m 4.0 4.5 -s— 25 50 Fig. 5.3 Dittributioo of tUttnt type* in the wMtora Unitad SUtw.(4) IVp* II itom* occiar Is AriMaa. COIQTMIO) IdaiM, MoaUiu, Ntvada. N*w MMUM, Utak, wi Wyomint 75 100 o " 2 veaf. 5 hj rdin, mm t'ig. h.^ Helatiim.s helween nvfract annual (TfiiiKin index and 2-year. 8-hr rainfall in California lUl ThAdlOarMUM fal pMk intemity an Kfleetiid in tha coefBcUntc of the equft^ tioH for tiM raiirfiill CKtor. Figutt M ii a gra|Mcal lapntHitation of the equa- tiont. The equationt, alao thown on the curvet foe each individtial stonn type, art: il-27j>^ typan A - l&SSo^ typat THE 2-YEAR, 6-HOUR RAINFALL, "P", FOR THIS EQUATION CAN BE DETERMINED FROM THE "2 YEAR RAINFALL EVENT - 6 HOURS" ISOPLUVIAL MAP FOUND IN APPENDIX B OF THE SAN DIEGO COUNTY HYDROLOGY MANUAL DATED JUNE 2003 (SEE EXHIBIT "A-l" OF THIS REPORT). P= 1.4", therefore, R= 16.55*1.4^2.2 R= 34.7 SOIL FACTOR "K" FROM THE SOILS REPORT, THE SITE CONSISTS OF 50% SAND AND 50% CLAY AND SILT. ASSUMING HALF OF THE 50% IS CLAY, AND THE OTHER HALF IS SILT, K = 0.24 (SEE TABLE BELOW). PBRCtNT ' gg CLAY PBRCBNT SILT SLOPE LENGTH AND STEEPNESS FACTOR "LS" SLOPE LENGTH AND STEEPNESS FACTOR "LS" IS CALCULATED USING TABLE 5.5 OF THE EROSION AND SEDIMENT CONTROL HANDBOOK. (SEE EXHIBIT "E"). FOR BASIN CALCULATION SUMMARY SEE SECTION 4 VEGETATION COVER FACTOR "C" THE COVER FACTOR TABLE LISTED BELOW IS USED FOR AREA UNDER CONSTRUCTION OR CULTIVATION. TO BE CONSERVATIVE THE HIGHEST VALUE IS ASSUMED. C = 1.0 TABU M C Viimm Im fca hum Sofl baa Ndoalltaw X MOM NIMMM «rtatia« (oadtatiBbed) l» ftM • M M» a Woa4 m*. anaiMl gnaaai, BO aHileb Ibiv araldi. S toa/wra (1.7 tAw). witk aMdt •at. Mat <U U OS W M 7* aioM/ i/aam (3.4 t/ha). ladM4 4awa •cn (a.0 t/W. taakmd iomrn u «« •0 •A*»M ftMB lUbu tL Uk te EROSION CONTROL PRACTICE FACTOR "P" THE "P" VALUES LISTED BELOW ARE GIVEN FOR AREAS UNDER CONSTRUCTION OR CULTIVATION. TO BE CONSERVATIVE, THE HIGHEST VALUE WAS ASSUMED. P = 1.3 TABU 6.7 P Fartow far C<—tnicthw SBaa t» liapN* fto» Bat iW Bwtoca eow««tt— ryin» Caa^MeM4 and UBoath ^* TrMkwalhad akwc ooatmir* ^ TnckvatkMl up and down ikipat PMocbadttraw ~* RalU(l^ iiiHtttar cut ^ Looaa to (30-«BI) depth " •Tnal wwta oriaaud up utd don alopa. tTM4 wwte oriMUd paralM to OMUMM*, M l» rifi-U SECTION 5.31, PAGES 5.27 TO 5.28 LISTS A STEP-BY-STEP PROCEDURE FOR USING THE UNIVERSAL SOIL LOSS EQUATION (SEE EXHIBIT "F") FOR SOIL LOSS CALCULATION SUMMARY SPREADSHEET SEE SECTION 4 SECTION 3 J De c Stoorgy^ ^l) .^-^A^gji^^ ^^t>a^ An- A •— — fr" ^ -M- SECTION 4 in A - Lot 14 Desiltation Basin Calculations ^avg — C X igyg X A Standpioe Calculations Q = CxlxA c = 0.45 Tc = 5 min. (see Desilting Basin Tributary Area Exhibit) 'avg ~ Pe/e hr. 1 = 7.64 in./hr P6 = 1.9 in. (per 10 yr.-6 hr. Isopluvial) Q = 9.0 cfs 'avg ~ 0.32 in./hr h = 1 ft. Pad A = 2.56 ac. Slope A = 0.06 ac. Case 1 Case 2 Total A = 2.61 ac. Q = CPh^ Q = CA(2gh)^'^ Qavg ~ 0.371952 fcfs C = 3.0 C = 0.67 P = 2.99157 ft A= 1.67 ft^ As = 1.2Q/V, d = 0.95 ft d= 1.46 ft Vs = 0.00024 ft/sec 18" pipe min. As = 1860 sf actual As = 8769 sf I Loss Calculations A = RxKxLSxCxP Bas/A7 Dewaterina Calculations Ao = As(2H) 1/2 \2.2 3600(T)Cd(g) 1/2 R =16.55(p)'= p= 1.4 in. (per 2yr.-6 hr. Isopluvial) R = 34.70 K = C = P = 0.24 (CIE2, CmE2, & CnG2 soils - per Table 5-2) 1.0 (Bare areas - per Table 5-5) 1.0 (Packed & Smooth - per Table 5-6) H = T = Cd = 9 = 2 40 0.6 32.2 ft hr ft/sec Ao = 0.035772 ft^ = 5.15 in^ Area Use % Area Length** Slope/ Grade LS*** Slope 2.4% 10 2:1 5.64 Pad 97.6% 500 1 0.17 See Desilting Basin Tributary Area Exhibit " = Per Figure 5-5 Avg. LS = 0.30 A = 2.50 tn/yr/ac OSS = 6.5 tn/yr 119 cf SECTION 5 County of San Diego Hydrology Manum Raiirfall Isopluvials 2 Year Rainfall Event-6 Hourt Iwipfejviel (kidwe) DPW ^ -^GK SMGIS E as; rta- i i-4-r I ( * p. [ ! ! ; • !T' : i 1 r r i . . 1 .! i 1 .; i . . i 1 MSS 1 PQM -r lis . \ f.r s'' 11 • i r rh TV 4 ; ! i if '-' Tffsr, tt 4>.j T»:' •i-n- 1 B>c///S/r~ County of San Diego Hydrology Manual Rainfcdl Isopluvials 10 Yer HainliUI Event - 6 Hourt laoiiftivlil (inctws) /. J/AJ. DPW ^gs S^GIS Have .San I)it(i> Oi^nd! ' fc"""" ;».^»niww 3 0 3 P><H I'J? '7 UNO USE RUNOFF COEFFICIENTS (R.'VTIONAL METHOD) Coefficient. C Soil Group (I) Undeveloped A .30 B .35 C .40 D .45 Residential: .Rural . 30 .33 .40 . •*3 Single Faaily .40 .45 .50 . 33 Multi-Units .45 .SO .60 . 70 Mobile Homes (2) .45 .SO .55 .65 Conunercial (2) 30% Impervious .70 .75 .80 .33 Industrial (2) 90% Impervious .80 .85 .90 .93 .VOTES: CD Obtain soil group from naps on file with the Departinent of Sanitat-on and Flood Control. (2) Where actual conditions deviate significantly frora the tabulated imperviousness values of 30% or 90%, the values given for coefficien* C, raay be revised by inultiplying 80% or 90* by the ratio of actual imperviousness to the tabulated imperviousness. Hovfever, in no casa shall the final coefficient be less than 0.50. For example: ConsiJsr conunercial property on D soil group. Actual imperviousness = 50% Tabulated imperviousness = 30% Revised C = |J. X 0.35 = 0.5.5 as ai ai (HMMIHI) a05 (etMiMsiUI 0.0^ (mMUuMiat) aoi (flMiitt) a00S(eby) a» (ao5Q act? (aoao) aon (aooTO) aooea (aooie) aooos»(aooo39) aooo84 (aoooo7a) O.00OM (aOOOOM) jight compoMd of partielM in tlu 0.01- to COS-mm rang*. A surfaM area 4 tinua larger would ba naadad to captun 6 percent more of tUa ioiL A balance between tiia coat-affacUvaBMa of a certain baain site and the de«ba to capture fine pertielee muat be acUeved. It ia deairable to capture the vary amaU aoO partidaa (daya and fine afita) becauae thay cenae turbidity and othw water quaUty prablema. However, TaUe & 1 Amn tiwt a beaia wouU have to be very large to capture pertidaa amaUar than 0.0a nua. particularly cler particUa aOOS nun and amaller. BeeauM of the high coat of trapping veiy amall partidea. the aulhora reoommand 0.03 aa the design particle size for aediment baafaia except in areaa with coane soib, where a larger dasign particle may ba used. Tha 0.02-nuB particle ia classified as a medium silt by the AASHTO soQ claasificatioa I syatem. I a2d Basin Discharge Rate The peak discharge. calcuUted by the rational or another approved method is used to size the baain riser. During any major storm, a sediment besfai shoukl fill with water to tha top of ita riser and then diacharge at the rate of uiflow to the bsain. A sediment bashi is not designed with a large water storage vohmie aa is a reaervoir. If the inflow exceeds the design pealc flow used to size the riaer, the I overflow should diacharge down an emergency spillway. l3.2^^esisni Runoff Rate Hi ^Wquation for surface area of a sediment basin, the diacharge rate Q is s -uie to be chosen by the designer. The above discussion of basin diacharge shows that the diacharge rate is, to a large extent, equal to the inflow The I nser IB sized to handle the pealc inflow to the basui. The authors au^gest deter- I aiming lhe surtace area by tha average runoff nf a /O-year. S-hr storm instead of the peak flow. A aubataz and baain effidency is not a Conaidev a baain design* off rats. Tha avaiags rsbifsl atorm (Sac i.lf). On-s aits \ idesl aettling cmiditioiia thi aoil (Le., 63 percent of ths partides). . If ths aurfaos area of tfa would be rou^ily 3 times Reclamation (10). 25 parcel period (Fig. 4.2). Sines ths limetera) per hour,, ths pei percent of the 6-hr totaL Si discharge rate (A > 1.2<3/1 times ths averaae rats (S09 flow would bs about 3 timsa aized for the peak flow woul partidee with approximate cle. Since ths 0.02-inm part with a settling veiodty of tured. Theae axa approzinu Suppose a basin on a aiti rate. For ths porpoas of ill of tho San Frandaoo Bay i tides, by weight, greater tl 0.02 mm). A baain with a Is ture the 0.01- to 0.02-nun | 67 percent of the eroded m cent (5/62) by tripling the effective to aize a baain bjj basin efficiency will not be 8.2f Settling Depth If a basin is too shallow, w settled particles and decre grit-settling chambers at a trolled to prevent particle grit chamber (2) is: V = ••« .a» (a« 0^ oS» oZ» „^ ^ J".. iS. 0.5 1 2- 3 4 6 7 8 y 10 II 12.5 IS 16.7 iu iS iS! an oog S i£ 0" iif !^ ^ "6 an 028 aa til i2iS^"^"^«^<^<«iotia 0.43 0.61 a75 0.87 0.50 0.71 QM LOO 0.61 0.86 L06 1.22 061 LW 1.40 Leg <»-86 1.36 1.67 0.97 L06 Lifi L28 LSO 1^ 1.12 La2 LM L4I LSO LS8 IJ6 1.40 L61 LTJ LB La2 1.81 Las U4 2J» 2.48 i5g 205 2J6 2.54 2.72 248 &M 6.^2 8.64 ILBO 13.68 l&SA lam lan. JLL 7.32 laaS liS8 S il^ J!^ »J» 8--** "j»3 liw IJS il'S 8.98 12.70 IK« ,Tff i?*' *^ 26J1 8&68 is s s^ SS £s 2f »^ 2La7 2a»6 2&«7 17« 2024 8098 £S r E ^ ^ ^ 22 MO + 00661 ;*p»hj|Aatox( tti<araiapai>«S) 1000 (S06> - - ^^^^iSa" -X L42 LSI - - - L^ S ^ ^ ^ ^ S S iSS;SiSi2i2iS;2 ^ MS 2L72 104 MJ S iaJ S 5f! *^ ^" 4.47 ^UiiMTjat^tTi*^*^ 4.71 s.og K^Q : * MB 6.45 Oflo 7.46 8.04 aao 177 &46 7ita 7«i n ~~ • "* JS iS is S1^ ^ ULT. iL^: 074 1L28 ULW 33? uS 22 ss Jf^I "^»»4u«,^aSSiia[i? 2 22 ss 1.60 2.0S 2.47 2.97 3.S2 4.11 4.74 5.76 7.68 9.12 L6d 2.18 3.13 3.71 4.8S 6itS &09 9.62 13.24 14.31 17.67 13.90 16.08 UL63 2Sul6 29.82 1X62 14.46 Ifclg n.W 18LU 1044 JLM «u«« o^Z ~ M««L8D24«iMgSSS2SJS:S ^ ^ S7JJ6 40m !^f!i^gjU9>4,8Mg 4097 SSSS SS fif ghH ^2 S «« XUl ni. „_ M.IS "sJsssHiE JS ss r s 40B8 eiM m» B-l. wt/V 97.79 Smnph SoU Loaa CmleiJathns3t9^hi3rSt»pProee«bur9 1. Determine ths Jl factor. 3. Baaed on aoil sampis psrtids sizs analysis, dstsrmfaie ths K vahie firom the nomograph (Fig. B.6). Repeat if you havs nuirs thoa ons soil sample. 3. Divide tho lite into seetioos of unifom abps gradient and langth. Assign on LS valus to each asctim (Table 6.5). 4. Chooss ths C valus(s) to rsprssent a seaaonsl average of the eflisct of mulch and vegetation (Table S.6). 5. Sst ths P faetor baaad on tha final grodfafig praetics applied to the alopea (TabU S.7). 0. Multiply ths five fsetofstogsthsr to obtsin per acre soiilosa. 7. MulUply sdl loea per acre by the acreage ts flnd the total vohime of sediment. If the sdl loss prwliotion ahowa exceaaivs vidums lost from ths site, conaider (a) working only a portion of ths aits st ons tims, (fr) altering the alope length and gradient, or (e) increaahig mulch application rate or seeding.