Loading...
HomeMy WebLinkAboutCT 02-18; The Bluffs; Drainage Study for The Bluffs CT 02-18; 2005-07-13DRAINAGE STUDY FOR THE BLUFFS C.T. 02-18 Job No. 01-1022 November 23, 2004 Revised: May 13, 2005 Revised: July 13, 2005 Prepared by: O'DAY CONSULTANTS, INC. 2710 Loker Ave West Suite 100 Carlsbad, Califomia 92010 Tel: (760)931-7700 Fax: (760)931-8680 George O'Day RCE 32014 5^ Exp. 12/31/06 TABLE OF CONTENTS SECTION 1 HYDROLOGY FOR ON-SITE SYSTEM INTRODUCTION Purpose of Study Scope STUDY AREA Soils Groups Land Uses HYDROLOGY Rational Method Description CONCLUSION SECTION 2 Vicinity Map Runoff Coefficients, San Diego County Hydrology Manual Isopluvial Maps, San Diego County Hydrology Manual 100-Year, 6-Hour 100-Year, 24-Hour 10-Year, 6-Hour 10-Year, 24-Hour 2-Year, 6-Hour 2-Year, 24-Hour San Diego County Soils Interpretation Study, San Diego County Hydrology Manual Nomograph for Determination of Tc for Natural Watershed - Figure 3-4 San Diego County Hydrology Manual Slnltr^"'^^''''' ~ ^'^"^ ^'^^"^ ^''"''^ Hydrology mnuT ^'"^^ ^""^ Nomograph - Figure 3-3, San Diego County Hydrology Gutter and Roadway Discharge-Velocity Chart - Fig 3-6, San Diego County Hydrolgy Manual Coefficients of Discharge for Submerged Orifices, Handbook of Hydraulics Street Inlet Calculation Fomulas Grate inlet capacity in sump conditions SECTION 3 SECTION 4 Hydrology 100 year Analysis Existing Condition Proposed Condition Hydrograph - Proposed Condition vs. Existing Conditions Hydrology 10 year Analysis Existing Condition Proposed Condition Hydrograph - Proposed Condition vs. Existing Conditions SECTION 5 Hydrology 2 year Analysis Existing Condition Proposed Condition Hydrograph - Proposed Condition vs. Existing Conditions SECTION 6 Hydraulics - 100 Year Storm (Line A thru I) SECTION 7 Calculations for velocity and depth of flow in vegetated swale for the 100 year storm and for a flow based BMP SECTION 8 Dewatering hole calculations SECTION 9 Type "F" Catch Basin calculations SECTION 10 Detail of Type "F" Catch Basin and location of dewatering holes SECTION 11 Inlet Calculations SECTION 12 Exhibit A On-Site Drainage Map - Existing Exhibit B On-Site Drainage Map - Proposed Exhibit C Storm Drain Line - Color Exhibit Exhibit D Swale Profile Exhibit E Cross Section of Swale SECTION 1 INTRODUCTION Purpose of Study This drainage study was prepared to determine the runoff quantities for our site. Scope This study analyzes the 100-year flow, 10-year flow and the 2-year flow for the existing and proposed conditions of our site. Using the Flood Routing Civil Cadd program we were able to determine the basin size necessary to retain the difference between the existing and proposed conditions. We also analyzed the size of the de-watering holes for 3 conditions: 1) For the difference in runoff for the 100 year storm 2) for the difference in runoff for the 10 year storm and 3) for the difference in runoff for the 2 year storm. We also analyzed the capacity of a type-F catch basin, which would be used in a worst case scenario, i.e., for a 100 yeai- storm and all the dewatering holes become plugged. STUDY AREA Soils Groups For on-site, per the San Diego County Soils hiterpretation Study, soil type A was used. Land Use For existing conditions, undeveloped land use (C=0.38) was utilized for The Bluffs site, and High Density Residential (C=0.66) was utilized for the proposed conditions. HYDROLOGY The rational method for storm water runoff was used for this study according to the County of San Diego Hydrology Manual and Design Procedure Manual. Rational Method Description The rational method, as described in the 2003 San Diego County Flood Control/Hydrology Manual, is used to estimate surface runoff flows. The basic equation: Q = CIA C = runoff coefficient (varies with surface) I = intensity (varies with time of concentration) A = area in acres For the 100-year design storm; the corresponding 6-hour rainfall amount is 2.5 inches; for the 10-year design storm, the con-esponding 6-hour rainfall amount is 1.6 inches, and for the 2-yeai- design storm, the corresponding 6-hour rainfall amount is 1.2 inches. A computer program developed by CivilCADD/CIVILDESIGN Engineering Software © 2003, Version 3.2, was used to determine the times of concentration and corresponding intensities and flows for the various hydrological processes performed in this model. This program also determines the street flow and pipeflow characteristics for each segment modeled. Program Process The rational method program is a computer-aided design program where the user develops a node link model of the watershed. The node link model is created by developing independent node link models of each interior watershed and linking these submodels together at confluence points. The program has the capability of performing calculations for 11 different hydrologic and hydraulic processes. These processes aie assigned and printed in the output. They are as follows: 1. Initial sub-area input, top of stream. 2. Street flow through sub-area, includes sub-area runoff. 3. Addition of runoff from sub-area to stream. 4. Street inlet and parallel street and pipeflow and area. 5. Pipeflow travel time (program estimated pipe size). 6. Pipeflow travel time (user-specified pipe size). 7. Improved channel travel - Area add option. 8. Irregular channel travel time - Area add option. 9. User-specified entry of data at a point. 10. Confluence at downstream point in current stream. 11. Confluence of main streams. CONCLUSION We analyzed the on-site & off-site Storm Drain system and based on our results we concluded that: For the 100-year storm: The total Q for our site (existing conditions) = 10.9 cfs (See Exhibit A) The total Q for our site (proposed conditions) =13.49 cfs (See Exhibit B) This is an increase of 2.59 cfs for the proposed site. After calculating the existing and proposed flow rates, we then analyzed how deep the swale would pond with an outflow of 10.9 cfs (existing conditions) & and inflow of 13.49 cfs (proposed conditions). This was done using the Flood Hydrograph Routing Program in CivilCadd. The result was 2.27 ft. and can be found in Section 3. This depth was plotted on the swale profile (Exhibit C) and the cross section of the swale (Exhibit D). Next, we analyzed the sizing of the dewatering holes. We found that for a 100 year storm we would need 2 ea. 10.0" diameter holes, 6 ea. 3" diameter holes, and 8 ea. 4" diameter holes. The locations of these holes can be found in a detail in Section 10. The modified type 'F' catch basin has openings on all four sides and an emergency spillway, which will force the water through the inlet. In addition to the spillway, we added a 8-inch high wall. This wall will increase the head pressure of the openings, which will increase the capacity of the emergency spillway. This wall will also help to keep the water off the road. All the finish floors are designed well above the top of the wall, to prevent flooding in a 100 year storm. For the 10-year storm: The total Q for our site (existing conditions) = 6.98 cfs (See Exhibit A) The total Q for our site (proposed conditions) = 8.55 cfs (See Exhibit B) This is an increase of 1.57 cfs for the proposed site. After calculating the existing and proposed flow rates, we then analyzed how deep the swale would pond with an outflow of 6.98 cfs (existing conditions) & and inflow of 8.55 cfs (proposed conditions). This was done using the Flood Hydrograph Routing Program in CivilCadd. The result was 1.85 ft. and can be found in Section 4. This depth was plotted on the swale profile (Exhibit C) and the cross section of the swale (Exhibit D). Next, we analyzed the sizing of the dewatering holes. We found that for a 10 year storm we would need 2 ea. 10.0" diameter holes, and 6 ea. 3" diameter holes. The locations of these holes can be found in a detail in Section 10. For the 2-year storm: The total Q for our site (existing conditions) = 5.23 cfs (See Exhibit A) The total Q for our site (proposed conditions) = 6.24 cfs (See Exhibit B) This is an increase of 1.01 cfs for the proposed site. After calculating the existing and proposed flow rates, we then analyzed how deep the swale would pond with an outflow of 5.23 cfs (existing conditions) & and inflow of 6.24 cfs (proposed conditions). This was done using the Flood Hydrograph Routing Program in CivilCadd. The result was 1.50 ft. and can be found in Section 5. This depth was plotted on the swale profile (Exhibit C) and the cross section of the swale (Exhibit D). Next, we analyzed the sizing of the dewatering holes. We found that for a 2 year storm we would need 2 ea. 10.0" diameter holes. The locations of these holes can be found in a detail in Section 10. Per the Coastal Commissions recommendations, we adjusted the longitudinal grade of the swale, based on the 85"^ percentile flow base runoff. Adjusting this grade will allow the travel time to be 10 minutes to maximize the contact with the vegetation. SECTION 2 CHY OF OCEANSlOe CITY or VISTA CITY or SAN MARCOS YICmTY MAP NO SCALE NRCS Elements Undisturbed Natural Terrain (Natural) Low Density Residential (LDR) Low Density Residential (LDR) Low Density Residential (LDR) Medium Density Residential (MDR) Medium Density Residential (MDR) Medium Density Residential (MDR) Medium Density Residential (MDR) High Density Residential (HDR) High Density Residential (HDR) Commercial/Industrial (N. Com) Commercial/Industrial (G. Com) Commercial/Industrial (CP. Com) Commercial/Industrial (Limited I.) Commercial/Industrial (General I.) County Elements Permanent Open Space Residential, 1.0 DU/A or less Residential, 2.0 DU/A or less Residential, 2.9 DU/A or less Residential, 4.3 DU/A or less Residential, 7.3 DU/A or less Residential, 10.9 DU/A or less Residential, 14.5 DU/A or less Residential, 24.0 DU/A or less Residential, 43.0 DU/A or less Neighborhood Commercial General Commercial Office Professional/Commercial Limited Industrial General Industrial *The values associated with 0% impervious may be used for direct calculation of the coefficient, Cp for the soil type), or for areas that will remain undisturbed in perpetuity is located m Cleveland National Forest). xpciuuy DU/A = dwelling units per acre NRCS = National Resources Conservation Service 20 25 30 40 45 50 65 80 80 85 90 90 95 A. 0.20 0.27 0.34 0.38 0.41 0.48 0.52 0.55 0.66 0.76 0.76 0.80 0.83 0.83 0.87 _B_ 0.25 0.32 0.38 0.41 0.45 0.51 0.54 0.58 0.67 0.77 0.77 0.80 0.84 0.84 0.87 _C_ 0,30 0.36 0.42 0.45 0.48 0.54 0.57 0.60 0.69 0.78 0.78 0.81 0.84 0.84 0.87 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.85 0.87 runoff coefficient as described in Section 3.1.2 (representing the pervious runoff Justification must be given that the area will remain natural forever (e.g., the area 3-6 •32°30' County of San Diego Hydrology Manual IGIS IMS lUP IS MWUXKO WTHOUT WMMAMTY oe ANV HND, ETHEH exPKS9 Ofl imiEO. InateMCL BUT MT UMTFED10, THE WPt^ WAHUNTIEB OF MCBCHMtTMftJTY AHD mWSS FOR A PjWTlCOUW PURPOSt CspfrigH CMOU. Al Agtw RoMvM. TM pftMiai irar coMaiA Wanuikai MM hM bun tip^^ 32-30' 1 r-iiH:iHiil r32»30'r ! I i 3 Miles 33*31?- i33°00: •32"4S! Coiniv County of San Diego Hydrology Manual Rainfall Isopluvials 10 Year Rainfall Event - 6 Hours Isopluvial (Inches) DPW ^'GIS Saiiv CIS 3 0 3 Miles County of San Diego Hydrology Manual Rainfall Isopluvials 2 Year Rainfall Event - 6 Hours Isopluvial (Inches) GIS THIS U»P IS PRQWeO WtT WUT WAMANTV OF ANV MNO, etmCR B)mi£SS OR lUPLiea INCUJOMS, SUT HOT UMirm TO. THE MPUSD WAimMITWS OF MEACMMTABUTY AMD FITNESS FOft A PARTICULAR PURKtSfc Canrricn SMOS. Ml RWni IUMHM. 3 0 3 Miles AE Feet Tc = • 5000 .4000 -3000 -2000 -1000 "•900 ^ 800 TOO -500\, — 400 -300 '200 • 100 •50 '40 •30 .20 •10 Tc L AE EQUATION V AE / Time of concentration (hours) Watercourse Distance (miles) Change in elevation along effective slope line (See Figure 3-5)(f8et) Tc Hours \ Miles Feet \ N-AT Minutes — 240 •180 • 120 100 —90 — 80 70 - 4000 \ — 3000 OJS-\ \ -2000 1800 h- 1600 1400 1—1200 .1000 1—900 • 800 •700 .600 -500 -400 •300 -200 -60 '50 — 40 30 -20 18 1—16 14 1—12 •10 —9 8 6 AE SOURCE: California Division of Highways (1941) and Kirpich (1940) Tc Nomograph for Determination of Time of Concentration (Tc) or Travel Time (Tt) for Natural Watersfieds FIGURE Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for tiie selected frecjuency. These maps are included in ttie County Hydrology Manual (10,50, and 100 yrmaps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the iocation being analyzed. Intensity-Duration Design Chart - Template FIGURE 3-1 EXAIVIPLE: Given: Watercourse Distance (D) = 70 Feet Slope (s) =1.3% Runoff Coefficient (C) = 0.41 Overland Flow Time (T) = 9.5 Minutes SOURCE; Airport Drainage, Federal Aviation Administration, 1965 T = 1.8(1.1-C)VD" FIGURE Rational Formula - Overland Time of Flow Nomograph —1.5'- -n = .01 4 5 6 7 8 9 10 Discharge (C.F.S.) EXAMPLE: Given: Q = 10 S = 2.5% Chart gives: Depth = 0.4, Velocity = 4.4 f.p.s. SOURCE: San Diego County Department of Special District Services Design Manual FIGURE Gutter and Roadway Discharge - Velocity Chart 4-32 HANDBOOK OP HTDKAUUCS Table 4-6. MisceUaneoM CoeffidentB of Discha^ for Varioas Sharp-edged Submerged Orifices Th«twoora<«B«p«rim«ntedoiibyBni«wwehori«m«. Attothwoiifia- wara Twrtisal. IXmrndmam of orifiM ia.Ieat Anthw ity Haadinfert 0.3 0.6 1.0 9.0 4.0 4.0 10.0 18.0 Orda. d - .06 Orde, d - .10 Sqnara. .05 by .06.. flqnan, .lObjr .10.. BaoUo^. t - 3.0, (t - .05. Cbflle, d - 1.0 Square, l.Objr 1.0.. Bqaan.4.0bT4.0.. H. ftnith H. Smith H.BiiutIi H. Smith H. Smith Kllia EHia Stawart .000 .607 .614 .SOD .600 .609 .605 .621 .807 .600 .607 .604 .506 .689 .608 .603 .606 ,601 .806 ,808 .604 .604 .630 .603 .601 ,630 .608 .608 ,618 .608 Table 4-7. Coeffioienta of Ettscharge for Submerged Vertical Square Orifice with Rounded Comers From ezparime&ta bjr ElUa Dfanaiuiana of orifioe in faet Head in faet Dfanaiuiana of orifioe in faet 8 4 5 6 8 10 13 14 18 Sqnan, 1.0 by 1.0 .953 .948 .946 .945 .944 .043 .943 .044 OBIFICES, GATES, AND TUBES 4r-33 Table 4-8. Coefficients of Discharge for Models A, B, G, D, E, and F, Figs. and 4-10 \ nsQie 1 Depth of openiBg In feet Talnea of C for Tariona depths of water above top of orifiee \ nsQie 1 Depth of openiBg In feet 0.07 O.I 0.3 0.6 0.7 1.0 3.0 3.0 5.0 7.0 10.0 A 1.31 .597 .604 .610 .616 .618 .610 .608 .694 .603 0.06 • * < • .683 .638 .640 .641 .640 .638 .637 .636 .634 0.18 • > • • .691 .688 .684 .683 .678 .674 .672 .670 .668 0.10 .... .711 .700 .695 .692 .688 .682 .677 .675 .672 B 1.31 .643 .050 .654 .656 .649 .636 .620 .615 .611 0.66 • • • • .664 .670 .674 .676 .676 .674 .673 .671 .669 o.ia • > . • .602 .681 .688 .693 .605 .694 .602 .691 .689 0.10 .... .693 .700 .705 .708 .710 .706 .699 .696 .693 C 1.31 .648 .664 .658 .660 .652 .638 .622 .616 .612 0.66 • • • • .667 .673 .676 .678 .670 .677 .674 .672 .670 0.16 • • • e .664 .088 .690 .605 .697 .606 .693 .692 .690 O.IO .... .695 .703 .707 .710 .713 .706 .899 .695 .693 D 0.656 .487 .496 .539 .662 .577 .588 .601 .601 .601 .601 .601 0.164 .405 .560 .019 .630 .631 .630 .635 .624 .619 .613 .606 E 0.666 .487 .496 .530 .554 .578 .580 .695 .599 .602 .602 .601 0.104 .495 .644 .600 .012 .618 .633 .637 .628 .627 .622 .617 F 0.666 .530 .686 .500 .584 .595 .600 .608 .610 .610 .609 .608 0.164 .590 .000 .638 .640 .645 .649 .662 .661 .650 .660 .649 INLET CALCULATION FORMULAS Street Inlet Contmnous Grade Q«O.TL(a+y)^ L= a 0.7(a+y)^'^ where y - depth of flow in approach gutter in feet a s depth of depression of Clow line at inlet in feet ^ L s lengdi of clear opening in feet (max. 30 feet) Q = flow in CFS Street Met Sump Conditioa where L = length of clear opening in feet Q = flow in CFS ) DISCHARGE Q (FT^/S) CHART 11. Grate inlet capacity in sump conditions. 71 SECTION 3 \ .£i(lSlH-^ "'>'^^f V''^; . ^ loo 'Av'iiMtZr '^^ ^ ^ir-«9D-44.s- felt TTN^U: ^i- -2- <7 4- 0 '^^^ I Vv/' c.\A 1-K44(:7,^)' IDAS; • ^ % of S^tC€'^ OS ^ \J-- I.O'^^ loo 2f] 9o\~h. 2'b '^'--i>^ / \ I •> '2. ; 11 > w ^^^^ be -f- t/.D^^-^- or]^ ^lo.p u.' ?^~ blOO.Pr rr y:-. 9>'.o- 'S>^-%- "O-'^o no.o' . _ _ i San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 05/11/05 THE BLUFFS -EXISTING CONDITIONS - AREA 5 100 YEAR STORM J.N. 01-1022 FILE: G:\ACCTS\011022\EyDS5.OUT BY:CSO 5/11/05 ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.500 24 hour precipitation(inches) = 4.600 Adjusted 6 hour precipitation (inches) = 2.500 P6/P24 = 54.3% San Diego hydrology manual 'C' values used Runoff coefficients by rational method +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501.000 to Point/Station 502.000 **** USER DEFINED PLOW INFORMATION AT A POINT **** User specified 'C value of 0.380 given for subarea Rainfall intensity (I) = 4.104 for a 100.0 year storm User specified values are as follows: TC = 10.41 min. Rain intensity = 4.10(In/Hr) Total area = 0.05(Ac.) Total runoff = 0.08(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 503.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 85.200(Ft.) End of street segment elevation = 70.000(Ft.) Length of street segment = 610.430(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) - 0.020 Gutter width = 1.500(Ft.) 4- Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = o 096(CFS) Depth of flow = 0.071(Ft.), Average velocity = 1.596(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 1.60(Ft/s) Travel time = 6.3 7 min. TC = 16.78 min. Adding area flow to street User specified 'C value of 0.380 given for subarea Rainfall intensity = 3.016(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA C = 0 380 Subarea runoff = 0.470(CFS) for 0.410(Ac ) Total runoff = 0.550(CFS) Total area = 0.46(Ac.) Street flow at end of street = 0.550(CFS) Half street flow at end of street = 0.275(CFS) Depth of flow = 0.143(Ft.), Average velocity = 2.138(Ft/s) Flow width (from curb towards crown)= 2.3 95(Ft.) +++ +++++++++++++++++++^^^^^^^^^^^^_^^^^_^^_^_^_^^_^^_^^^_^_^_^_^^_^_^^_^_^^_^^_^^_^_^^_^ Process from Point/Station 503.000 to Point/Station 503 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: ~ In Main Stream number: 1 Stream flow area = 0.460(Ac.) Runoff from this stream = 0.550(CFS) Time of concentration = 16.78 min. Rainfall intensity = 3.016(In/Hr) Program is now starting with Main Stream No. 2 ++++++++ +++++++ + + + + + + + + +++ + +++++++++++++ + + + ^.++.^+_^._^_^^^_^^_^^_^,_^_^_^_^_^_^ Process from Point/Station 301.000 to Point/Station 302 000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea Rainfall intensity (I) = 2.755 for a 100.0 year storm User specified values are as follows: TC = 19.31 min. Rain intensity = 2.76(In/Hr) Total area = 1.31(Ac.) Total runoff = 2.39(CFS) +++++++++++++++++++++++++++++++++++++++++++++++++++++++^++^^^^ Process from Point/Station 503.000 to Point/Station 503 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.310(Ac.) Runoff from this stream = 2.390(CFS) Time of concentration = 19.31 min. Rainfall intensity = 2.755(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 0 , .550 16 , . 78 3 . . 016 2 2 , .390 19 , .31 2. . 755 Qmax(l) = 1, . 000 * 1. . 000 * 0 .550) + 1, . 000 * 0 , . 869 * 2 .390) + = 2 Qmax(2) = 0 . . 913 * 1. .000 * 0, .550) + 1 . . 000 * 1. , 000 * 2 , .390) + = 2 .627 , 892 Total of 2 main streams to confluence: Flow rates before confluence point: 0.550 2.390 Maximum flow rates at confluence using above data: 2.627 2.892 Area of streams before confluence: 0.460 1.310 Results of confluence: Total flow rate = 2.892(CFS) Time of concentration = 19.310 min. Effective stream area after confluence End of computations, total study area = 1.770(Ac.) 1.77 (Ac.) 0<eo San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/30/05 HYDROLOGY STUDY - THE BLUFFS 100 YEAR STORM J.N. 01-1022 FILE: G:\ACCTS\011022\0122DS.OUT 6/30/05 BY:CSO ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 100.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.5 00 24 hour precipitation(inches) = 4.600 Adjusted 6 hour precipitation (inches) = 2.500 P6/P24 = 54.3% San Diego hydrology manual 'C values used Runoff coefficients by rational method +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 29.00 (Ft.) Highest elevation = 77.73(Ft.) Lowest elevation = 77.22(Ft.) Elevation difference = 0.51(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.53 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(1/3)] TC = [1.8* (1.1-0.6600)*( 29.00*.5)/( 1.76"(l/3)]= 3.53 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.087 (CFS) Total initial stream area = 0.020(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 77.220(Ft.) End of street segment elevation = 73.160(Ft.) Length of street segment = 405.410(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 12.000(Ft.) Distance from crown to crossfall grade break = 10.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 5.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.105(CFS) Depth of flow = 0.074(Ft.), Average velocity = 1.061(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500 (Ft.) Flow velocity = 1.06(Ft/s) Travel time = 6.37 min. TC = 11.37 min. Adding area flow to street User specified 'C value of 0.660 given for subarea Rainfall intensity = 3.878(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 1.049(CFS) for 0.410(Ac.) Total runoff = 1.136(CFS) Total area = 0.43(Ac.) Street flow at end of street = 1.136(CFS) Half street flow at end of street = 0.568(CFS) Depth of flow = 0.167(Ft.), Average velocity = 1.556(Ft/s) Flow width (from curb towards crown)= 5.702(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4.+ Process from Point/Station 106.000 to Point/Station 108.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.43 0(Ac.) Runoff from this stream = 1.136(CFS) Time of concentration = 11.3 7 min. Rainfall intensity = 3.878(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++•+++ Process from Point/Station 202.000 to Point/Station 204.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea <r>v^ /"^avl/f rf5PO Rainfall intensity (I) = 2.974 for a 100.0 year storm ^|ViCA/«-aC*-' User specified values are as follows: • i/lJrtC?5Ni TC = 17.15 min. Rain intensity = 2.97(In/Hr) Total area = 0.51 (Ac.) Total runoff = 1.00 (CFS) ^C^J^K^ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4. » Process from Point/Station 204.000 to Point/Station 208.000 (JtS'^* **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 74.27(Ft.) Downstream point elevation = 73.47(Ft.) Channel length thru subarea = 43.00(Ft.) Channel base width = 2.000 (Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 1.020(CFS) Manning's 'N' = 0.250 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 1.020(CFS) Depth of flow = 0.656(Ft.), Average velocity = 0.469(Ft/s) Channel flow top width = 4.624(Ft.) Flow Velocity = 0.47(Ft/s) Travel time = 1.53 min. Time of concentration = 18.68 min. Critical depth = 0.188(Ft.) Adding area flow to channel User specified 'C value of 0.660 given for subarea Rainfall intensity = 2.815(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.037(CFS) for 0.020(Ac.) Total runoff = 1.03 7(CFS) Total area = 0.53(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.53 0(Ac.) Runoff from this stream = 1.037(CFS) Time of concentration = 18.68 min. Rainfall intensity = 2.815(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4.+ Process from Point/Station 302.000 to Point/Station 304.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 35.00(Ft.) Highest elevation = 75.86(Ft.) Lowest elevation = 75.33(Ft.) Elevation difference = 0.53(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.08 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.6600)*( 35.00".5)/( 1.5l"(l/3)]= 4.08 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.261 (CPS) Total initial stream area = 0.060(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 304.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 72.90(Ft.) Downstream point/station elevation = 71.61(Ft.) Pipe length = 127.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.261(CFS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 0.261(CFS) Normal flow depth in pipe = 2.30(In.) Flow top width inside pipe = 7.24(In.) Critical Depth = 2.83(In.) Pipe flow velocity = 3.13(Ft/s) Travel time through pipe = 0.68 min. Time of concentration (TC) = 5.68 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 206.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 5.68 min. Rainfall intensity = 6.069(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.240 (CFS) for 0.060(Ac.) Total runoff = 0.501(CFS) Total area = 0.12(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 208.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 71.63(Ft.) Downstream point/station elevation = 71.11(Ft.) Pipe length = 41.76(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.501(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.501(CFS) Normal flow depth in pipe = 2.65(In.) Flow top width inside pipe = 9.95(In.) Critical Depth = 3.52(In.) Pipe flow velocity = 3.90(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 5.86 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 208.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 5.86 min. Rainfall intensity = 5.949(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.118(CFS) for 0.030(Ac.) Total runoff 0.619(CFS) Total area = 0.15(Ac.) + + + + +++ +++++ + + + + + + ++++ + + + +++ + + + + ++++++++ + 4 ++4^^.^.^.^.^.^^_^^^^^^^^^^^^^^ Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.150(Ac.) Runoff from this stream = 0.619(CFS) Time of concentration = 5.86 min. Rainfall intensity = 5.949(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) = Qmax(2) = 1.037 0 . 619 1.000 0 .473 1. 000 1 . 000 18.68 5 . 86 1.000 * 1.000 * 0.314 * 1.000 * 2 . 815 5 . 949 1.037) + 0.619) + 1.037) + 0.619) + 1.330 0 . 944 Total of 2 streams to confluence: Flow rates before confluence point: 1.037 0.619 Maximum flow rates at confluence using above data: 1.330 0.944 Area of streams before confluence: 0.530 0.150 Results of confluence: Total flow rate = 1.330(CFS) Time of concentration = 18.677 min. Effective stream area after confluence = 0.680(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 210.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 71.11(Ft.) Downstream point/station elevation = 69.97(Ft.) Pipe length = 55.65(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.330(CFS; Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.330(CFS) Normal flow depth in pipe = 3.83(In.) Flow top width inside pipe = 11.19(In.) Critical Depth = 5.85(In.) Pipe flow velocity = 6.16(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 18.83 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 210.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 18.83 min. Rainfall intensity = 2.801(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.037(CFS) for 0.020(Ac.) Total runoff = 1.367(CFS) Total area = 0.70(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 210.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 18.83 min. Rainfall intensity = 2.801(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.037(CFS) for 0.020(Ac.) Total runoff = 1.404(CFS) Total area = 0.72(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 210.000 to Point/Station 210.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 18.83 min. Rainfall intensity = 2.801(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.037(CFS) for 0.020(Ac.) Total runoff = 1.441(CFS) Total area = 0.74(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 210.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.740(Ac.) Runoff from this stream = 1.441(CFS) Time of concentration = 18.83 min. Rainfall intensity = 2.801(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.000 to Point/Station 307.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 124.00(Ft.) Highest elevation = 75.51(Ft.) Lowest elevation = 74.28(Ft.) Elevation difference = 1.23(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.84 min. TC = [1.8*(1.1-C)*distance".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.6600)*(124.00".5)/( 0.99"(l/3)]= 8.84 Rainfall intensity (I) = 4.560 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.3 01 (CFS) Total initial stream area = 0.100(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 307.000 to Point/Station 309.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 71.06(Ft.) Downstream point/station elevation = 70.70(Ft.) Pipe length = 34.81(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.301(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.301(CFS) Normal flow depth in pipe = 2.16(In.) Flow top width inside pipe = 9.21(In.) Critical depth could not be calculated. Pipe flow velocity = 3.14 (Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 9.03 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.000 to Point/Station 210.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 70.70(Ft.) Downstream point/station elevation = 69.97(Ft.) Pipe length = 15.80(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.301(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.301(CFS) Normal flow depth in pipe = 1.50(In.) Flow top width inside pipe = 7.93(In.) Critical depth could not be calculated. Pipe flow velocity = 5.32(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 9.08 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 210.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 9.08 min. Rainfall intensity = 4.484(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.562(CFS) for 0.190(Ac.) Total runoff = 0.863(CFS) Total area = 0.29(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 210.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.2 90(Ac.) Runoff from this stream = 0.863(CFS) Time of concentration = 9.08 min. Rainfall intensity = 4.484(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1.441 18.83 2.801 2 0.863 9.08 4.484 Qmax(1) Qmax(2) = 1.000 * 1.000 * 1.441) + 0.625 * 1.000 * 0.863) + = 1.980 1.000 * 0.482 * 1.441) + 1.000 * 1.000 * 0.863) + = 1.558 Total of 2 streams to confluence: Flow rates before confluence point: 1.441 0.863 Maximum flow rates at confluence using above data: 1.980 1.558 Area of streams before confluence: 0.740 0.290 Results of confluence: Total flow rate = 1.980(CFS) Time of concentration = 18.828 min. Effective stream area after confluence = 1.03 0(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 107.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 69.97(Ft.) Downstream point/station elevation = 67.90(Ft.) Pipe length = 10.76(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.980(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.980(CFS) Normal flow depth in pipe = 2.65(In.) Flow top width inside pipe = 9.96(In.) Critical Depth = 7.21(In.) Pipe flow velocity = 15.34(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 18.84 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 108.000 PIPEFLOW TRAVEL TIME (User specified size) * * * * * * * * Upstream point/station elevation = 67.90 (Ft.) Downstream point/station elevation = 66.15(Ft.) Pipe length = 59.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.980(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.980(CFS) Normal flow depth in pipe = 3.70(In.) Flow top width inside pipe = 14.55(In.) Critical Depth = 6.36(In.) Pipe flow velocity = 7.56(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 18.97 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 108.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 18.97 min. Rainfall intensity = 2.787(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.368(CFS) for 0.200(Ac.) Total runoff = 2.348(CFS) Total area = 1.23(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 108.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.23 0(Ac.) Runoff from this stream = 2.348(CFS) Time of concentration = 18.97 min. Rainfall intensity = 2.787(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1.136 11.37 3.878 2 2.348 18.97 2.787 Qmax(1) Qmax(2) 1.000 * 1.000 * 1.136) + 1.000 * 0.599 * 2.348) + = 2.543 0.719 * 1.000 * 1.136) + 1.000 * 1.000 * 2.348) + = 3.165 Total of 2 main streams to confluence: Flow rates before confluence point: 1.136 2.348 Maximum flow rates at confluence using above data: 2.543 3.165 Area of streams before confluence: 0.430 1.230 Results of confluence: Total flow rate = 3.165(CFS) Time of concentration = 18.969 min. Effective stream area after confluence = 1.660(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + 4444 + 4^^^.^4.^^.^^^^^^^ Process from Point/Station 108.000 to Point/Station 109.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.15(Ft.) Downstream point/station elevation = 65.13(Ft.) Pipe length = 24.62(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.165(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.165(CFS) Normal flow depth in pipe = 4.30(In.) Flow top width inside pipe = 15.35(In.) Critical Depth = 8.11(In.) Pipe flow velocity = 9.76(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 19.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 65.13(Ft.) Downstream point/station elevation = 64.92(Ft.) Pipe length = 13.30(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.165(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.165(CFS) Normal flow depth in pipe = 5.50(In.) Flow top width inside pipe = 16.58(In.) Critical Depth = 8.11(In.) Pipe flow velocity = 6.92(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 19.04 min. +++++++++++++++++++++++++++++++++++++++4444+++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.04 min. Rainfall intensity = 2.780(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.23 9(CFS) for 0.130(Ac.) Total runoff = 3.403(CFS) Total area = 1.79(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.04 min. Rainfall intensity = 2.780(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.459(CFS) for 0.250(Ac.) Total runoff = 3.862(CFS) Total area = 2.04(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.04 min. Rainfall intensity = 2.780(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.312(CFS) for 0.170(Ac.) Total runoff = 4.174(CFS) Total area = 2.21(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++4444+++++++++++++ Process from Point/Station 110.000 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64.92 (Ft.) Downstream point/station elevation = 63.72(Ft.) Pipe length = 25.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 4.174(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.174(CFS) Normal flow depth in pipe = 4.77(In.) Flow top width inside pipe = 15.88(In.) Critical Depth = 9.39(In.) Pipe flow velocity = 11.14(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 19.08 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 112.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.210(Ac.) Runoff from this stream = 4.174(CFS) Time of concentration = 19.08 min. Rainfall intensity = 2.777(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 504.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea Rainfall intensity (I) = 3.011 for a 100.0 year storm User specified values are as follows: TC = 16.83 min. Rain intensity = 3.01(In/Hr) Total area = 0.98(Ac.) Total runoff = 1.95(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 504.000 to Point/Station 506.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 79.80(Ft.) Downstream point elevation = 75.97(Ft.) Channel length thru subarea = 96.00(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 1.960(CFS) Manning's 'N' = 0.250 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 1.960(CFS) Depth of flow = 0.754 (Ft.), Average velocity = 0.740(Ft/s) Channel flow top width = 5.017(Ft.) Flow Velocity = 0.74(Ft/s) Travel time = 2.16 min. Time of concentration = 18.99 min. Critical depth = 0.281 (Ft.) Adding area flow to channel User specified 'C value of 0.660 given for subarea Rainfall intensity = 2.785(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.018(CFS) for 0.010(Ac.) Total runoff = 1.968(CFS) Total area = 0.99(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 506.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 18.99 min. Rainfall intensity = 2.785(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.129(CFS) for 0.070(Ac.) Total runoff = 2.097(CFS) Total area = 1.06(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 507.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 73.97(Ft.) Downstream point/station elevation = 66.92(Ft.) Pipe length = 5.30(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 2.097(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 2.097(CFS) Normal flow depth in pipe = 1.70(In.) Flow top width inside pipe = 8.37(In.) Critical Depth = 7.42(In.) Pipe flow velocity = 30.84(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 18.99 min. + + + + +++++ + +++ + + ++++++ + + + + + + + + + + + + +++ +++++++++++ + +++ + .j..^.^.^.^.^.|..j_^_i__i__i__i__^_i__^_i__^ Process from Point/Station 507.000 to Point/Station 507 000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 18.99 min. Rainfall intensity = 2.785(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.092(CFS) for 0.050(Ac.) Total runoff = 2.189(CFS) Total area = 1.11(Ac.) ++ + +++ + + + +++ + ++++ + +++ + + +++ + + + + + ++++++++++ + +++ +++++ + + + + ++.,. .^.j..^4.^.j.^.|._j_^^^_i_ Process from Point/Station 507.000 to Point/Station 507.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 18.99 min. Rainfall intensity = 2.785(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.037(CFS) for 0.020(Ac.) Total runoff = 2.226(CFS) Total area = 1.13(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 507.000 to Point/Station 508.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.92(Ft.) Downstream point/station elevation = 66.48(Ft.) Pipe length = 78.81(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe .flow = 2.226(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 2.226(CFS) Normal flow depth in pipe = 7.45(In.) Flow top width inside pipe = 11.64(In.) Critical Depth = 7.66(In.) Pipe flow velocity = 4.34(Ft/s) Travel time through pipe = 0.30 min. Time of concentration (TC) = 19.3 0 min. +++++++++++++++ ++++++++++++++++ + + ++++++++++ ++++++++++++++.^+.^.^^.^.^.^.^.^.^ Process from Point/Station 508.000 to Point/Station 508.000 **** SUBAREA FLOW ADDITION User specified 'C value of 0.660 given for subarea Time of concentration = 19.30 min. Rainfall intensity = 2.757(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.182(CFS) for 0.100(Ac.) Total runoff = 2.408(CFS) Total area = 1.23(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 508.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.3 0 min. Rainfall intensity = 2.757(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.200(CFS) for 0.110(Ac.) Total runoff = 2.608(CPS) Total area = 1.34(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 508.000 to Point/Station 510.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.48(Ft.) Downstream point/station elevation = 66.15(Ft.) Pipe length = 55.92(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 2.608(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 2.608(CFS) Normal flow depth in pipe = 8.17(In.) Flow top width inside pipe = 11.19(In.) Critical Depth = 8.31(In.) Pipe flow velocity = 4.58(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 19.50 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 510.000 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.15(Ft.) Downstream point/station elevation = 63.72 (Ft.) Pipe length = 222.12(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 2.608(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 2.608(CFS) Normal flow depth in pipe = 6.64(In.) Flow top width inside pipe = 11.93(In.) Critical Depth = 8.31(In.) Pipe flow velocity = 5.84(Ft/s) Travel time through pipe = 0.63 min. Time of concentration (TC) = 20.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 112.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 20.13 min. Rainfall intensity = 2.682(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.921(CFS) for 0.520(Ac.) Total runoff = 3.528(CPS) Total area = 1.86(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 112.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.860(Ac.) Runoff from this stream = 3.528(CFS) Time of concentration = 20.13 min. Rainfall intensity = 2.682(In/Hr) Summary of stream data: Stream No. Plow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) , 174 . 528 .000 . 000 Qmax(2) = 0. 966 1 . 000 19.08 20 .13 1.000 * 0.948 * 1.000 * 1.000 * 2 . 777 2 .682 4.174) + 3.528) + 4.174) + 3.528) + 7.518 7.560 Total of 2 main streams to confluence: Flow rates before confluence point: 4.174 3.528 Maximum flow rates at confluence using above data: 7.518 7.560 Area of streams before confluence: 2.210 1.860 Results of confluence: Total flow rate = 7.560(CFS) Time of concentration = 20.133 min. Effective stream area after confluence = 4.070(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 114.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 63.72(Ft.) Downstream point/station elevation = 63.50(Ft.) Pipe length = 27.25(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 7.560(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.560(CFS) Normal flow depth in pipe = 10.86(In.) Flow top width inside pipe = 17.61(In.) Critical Depth = 12.78(In.) Pipe flow velocity = 6.78(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 20.20 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 114.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 20.20 min. Rainfall intensity = 2.676(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.230(CFS) for 0.130(Ac.) Total runoff = 7.790(CFS) Total area = 4.20(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 63.50(Ft.) Downstream point/station elevation = 62.95(Ft.) Pipe length = 20.54(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 7.790(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.790(CFS) Normal flow depth in pipe = 7.73(In.) Flow top width inside pipe = 17.82(In.) Critical Depth = 12.98(In.) Pipe flow velocity = 10.74(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 20.23 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 117.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 62.95(Ft.) Downstream point/station elevation = 62.34(Pt.) Pipe length = 49.51(Ft.) Manning's N = 0;Oil No. of pipes = 1 Required pipe flow = 7.790(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.790(CFS) Normal flow depth in pipe = 9.69(In.) Flow top width inside pipe = 17.95(In.) Critical Depth = 12.98(In.) Pipe flow velocity = 8.04(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 20.33 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 117.000 to Point/Station 118.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 62.34(Ft.) Downstream point/station elevation = 62.18(Ft.) Pipe length = 12.90(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 7.790(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 7.790(CPS) Normal flow depth in pipe = 8.38(In.) Plow top width inside pipe = 22.88(In.) Critical Depth = 11.91(In.) Pipe flow velocity = 7.98(Ft/s) Travel time through pipe = 0.03 min. Time of concentrat ion (TC) = 20.36 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.200(Ac.) Runoff from this stream = 7.790(CPS) Time of concentration = 20.36 min. Rainfall intensity = 2.663(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 604.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 30.00(Ft.) Highest elevation = 72.80(Pt.) Lowest elevation = 72.55(Pt.) Elevation difference = 0.25(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.61 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(1/3)] TC = [1.8* (1.1-0.6600)*( 30.00".5)/( 0.83"(l/3)J= 4.61 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6.587 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.087(CPS) Total initial stream area = 0.020(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 604.000 to Point/Station 118.000 **** STREET PLOW TRAVEL TIME + SUBAREA PLOW ADDITION **** Top of street segment elevation = 72.550(Pt.) End of street segment elevation = 69.510(Ft.) Length of street segment = 263.000(Pt.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 12.000(Pt.) Distance from crown to crossfall grade break = 10.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 5.000(Pt.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.099(CFS) Depth of flow = 0.070(Ft.), Average velocity = 1.103(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Pt.) Flow velocity = 1.10(Ft/s) Travel time = 3.97 min. TC = 8.97 min. Adding area flow to street User specified 'C value of 0.660 given for subarea Rainfall intensity = 4.517(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.805(CPS) for 0.270(Ac.) Total runoff = 0.892(CFS) Total area = 0.29(Ac.) Street flow at end of street = 0.892(CFS) Half street flow at end of street = 0.446(CPS) Depth of flow = 0.153(Ft.), Average velocity = 1.558(Ft/s) Flow width (from curb towards crown)= 4.963(Ft.) +++++++++++++++++++++++++++++++++++++44444++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 8.97 min. Rainfall intensity = 4.517(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.119(CPS) for 0.040(Ac.) Total runoff = 1.011(CPS) Total area = 0.33(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 8.97 min. Rainfall intensity = 4.517(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.149(CFS) for 0.050(Ac.) Total runoff = 1.160(CPS) Total area = 0.38(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.380(Ac.) Runoff from this stream = 1.160(CFS) Time of concentration = 8.97 min. Rainfall intensity = 4.517(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 702.000 to Point/Station 704.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 100.00(Ft.) Highest elevation = 76.70(Ft.) Lowest elevation = 75.00(Pt.) Elevation difference = 1.70(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.64 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8* (1.1-0.6600)*(100.00".5)/( 1.70"(l/3)]= 6.64 Rainfall intensity (I) = 5.488 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.109(CFS) Total initial stream area = 0.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 704.000 to Point/Station 706.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 75.000(Ft.) End of street segment elevation = 69.010(Ft.) Length of street segment = 295.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 12.000(Ft.) Distance from crown to crossfall grade break = 10.500(Pt.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [2] side(s) of the street Distance from curb to property line = 5.000(Pt.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500 (Pt.) Gutter hike from flowline = 1.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.128(CPS) Depth of flow = 0.070(Ft.), Average velocity = 1.454(Pt/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500 (Ft.) Flow velocity = 1.45(Pt/s) Travel time = 3.3 9 min. TC = 10.02 min. Adding area flow to street User specified 'C value of 0.660 given for subarea Rainfall intensity = 4.206(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.999(CPS) for 0.360(Ac.) Total runoff = 1.108(CFS) Total area = 0.39(Ac.) Street flow at end of street = 1.108(CFS) Half street flow at end of street = 0.554(CFS) Depth of flow = 0.150(Ft.), Average velocity = 2.034(Ft/s) Flow width (from curb towards crown)= 4.820(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 706.000 to Point/Station 706.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.02 min. Rainfall intensity = 4.206(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 1.416(CFS) for 0.510(Ac.) Total runoff = 2.524(CFS) Total area = 0.90(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 706.000 to Point/Station 708.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.52(Ft.) Downstream point/station elevation = 66.36(Ft.) Pipe length = 25.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 2.524(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 2.524(CFS) Normal flow depth in pipe = 7.75(In.) Plow top width inside pipe = 11.48(In.) Critical Depth = 8.17(In.) Pipe flow velocity = 4.71(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 10.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 708.000 to Point/Station 710.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.36(Ft.) Downstream point/station elevation = 65.96(Pt.) Pipe length = 6.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 2.524(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 2.524(CFS) Normal flow depth in pipe = 3.93(In.) Plow top width inside pipe = 11.26(In.) Critical Depth = 8.17(In.) Pipe flow velocity = 11.27(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 10.12 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 710.000 to Point/Station 710.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.12 min. Rainfall intensity = 4.180(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.248(CFS) for 0.090(Ac.) Total runoff = 2.772(CFS) Total area = 0.99(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 710.000 to Point/Station 710.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.12 min. Rainfall intensity = 4.180(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.560 Subarea runoff = 0.193(CPS) for 0.070(Ac.) Total runoff = 2.965(CPS) Total area = 1.06(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 710.000 to Point/Station 710.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.12 min. Rainfall intensity = 4.180(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.110(CFS) for 0.040(Ac.) Total runoff = 3.076(CFS) Total area = 1.10(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 710.000 to Point/Station 712.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 65.96(Ft.) Downstream point/station elevation = 65.14(Ft.) Pipe length = 41.93(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.076(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 3.076(CFS) Normal flow depth in pipe = 6.16(In.) Flow top width inside pipe = 12.00(In.) Critical Depth = 9.02(In.) Pipe flow velocity = 7.58(Pt/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 10.21 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 712.000 to Point/Station 714.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 65.14(Pt.) Downstream point/station elevation = 64.63(Ft.) Pipe length = 26.83(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.076(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 3.076(CPS) Normal flow depth in pipe = 6.21(In.) Plow top width inside pipe = 11.99(In.) Critical Depth = 9.02(In.) Pipe flow velocity = 7.50(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 10.27 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 714.000 to Point/Station 714.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.27 min. Rainfall intensity = 4.140(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.082(CFS) for 0.030(Ac.) Total runoff = 3.158(CFS) Total area = 1.13(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 714.000 to Point/Station 716.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64.63(Ft.) Downstream point/station elevation = 64.36(Ft.) Pipe length = 14.41(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.158(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 3.158(CFS) Normal flow depth in pipe = 6.34(In.) Flow top width inside pipe = 11.98(In.) Critical Depth = 9.14(In.) Pipe flow velocity = 7.51(Pt/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 10.30 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 716.000 to Point/Station 718.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64.36(Ft.) Downstream point/station elevation = 64.10(Ft.) Pipe length = 17.61(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.158(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 3.158(CPS) Normal flow depth in pipe = 6.82(In.) Flow top width inside pipe = 11.89(In.) Critical Depth = 9.14(In.) Pipe flow velocity = 6.85(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 10.35 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 718.000 to Point/Station 720.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64.10(Ft.) Downstream point/station elevation = 63.70(Pt.) Pipe length = 45.35(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.158(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 3.158(CFS) Normal flow depth in pipe == 8.11 (In.) B'low top width inside pipe = 11.23 (In.) Critical Depth = 9.14(In.) Pipe flow velocity = 5.59 (Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 10.48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 720.000 to Point/Station 720.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.48 min. Rainfall intensity = 4.087(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.135(CFS) for 0.050(Ac.) Total runoff = 3.293(CFS) Total area = 1.18(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 720.000 to Point/Station 720.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.48 min. Rainfall intensity = 4.087(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.270(CFS) for 0.100(Ac.) Total runoff = 3.562(CFS) Total area = 1.28(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 720.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 118.000 Upstream point/station elevation = 63.70(Ft.) Downstream point/station elevation = 62.43(Ft.) Pipe length = 87.30(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.562(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 3.562(CFS) Normal flow depth in pipe = 7.41(In.) Plow top width inside pipe = 11.67(In.) Critical Depth = 9.67(In.) Pipe flow velocity = 7.00(Pt/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 10.69 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.280(Ac.) Runoff from this stream = 3.562(CFS) Time of concentration = 10.69 min. Rainfall intensity = 4.035(In/Hr) Summary of stream data: Stream No. Flow rate (CPS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax(1) = 7 . 790 1.160 3 .562 1. 000 0.589 0.660 Qmax(2) = Qmax(3) = 000 000 000 1. 000 0 . 893 1.000 20 . 36 8 . 97 10 .69 1.000 * 1.000 * 1.000 * 0.441 * 1.000 * 0.839 * 0.525 * 1.000 * 1.000 * 7.790 1.160 3 .562 7.790 1 .160 3 .562 7 .790 1.160 3 .562 2 .663 4 . 517 4.035 + + + = + + + = + + + = 10.825 7.584 8 .688 Total of 3 main streams to confluence: Plow rates before confluence point: 7.790 1.160 3.562 Maximum flow rates at confluence using above data: 10.825 7.584 8.688 Area of streams before confluence: 4.200 0.380 1.280 Results of confluence: Total flow rate = 10.825(CFS) Time of concentration = 20.361 min. Effective stream area after confluence = 5.860(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 62.18(Ft.) Downstream point/station elevation = 61.97(Pt.) Pipe length = 26.25(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 10.825(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 10.825(CFS) Normal flow depth in pipe = 11.32(In.) Flow top width inside pipe = 23.96(In.) Critical Depth = 14.16(In.) Pipe flow velocity = 7.42 (Pt/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 20.42 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 20.42 min. Rainfall intensity = 2.658(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.193(CFS) for 0.110(Ac.) Total runoff = 11.018(CFS) Total area = 5.97(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 122.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 61.97(Pt.) Downstream point/station elevation = 61.80(Ft.) Pipe length = 16.23(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 11.018(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.018(CFS) Normal flow depth in pipe = 10.59(In.) Flow top width inside pipe = 23.83(In.) Critical Depth = 14.27(In.) Pipe flow velocity = 8.24(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 20.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 124.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 61.80(Ft.) Downstream point/station elevation = 61.50(Ft.) Pipe length = 26.08(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 11.018(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.018 (CPS) Normal flow depth in pipe = 10.32(In.) Flow top width inside pipe = 23.76(In.) Critical Depth = 14.27(In.) Pipe flow velocity = 8.53(Pt/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 20.50 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 124.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 20.50 min. Rainfall intensity = 2.651(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.420(CFS) for 0.240(Ac.) Total runoff = 11.437(CPS) Total area = 6.21(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 124.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 20.50 min. Rainfall intensity = 2.651(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.052(CFS) for 0.030(Ac.) Total runoff = 11.490(CPS) Total area = 6.24(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 126.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 61.50(Ft.) Downstream point/station elevation = 60.82(Ft.) Pipe length = 54.85(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.490(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.490(CFS) Normal flow depth in pipe = 11.38(In.) Flow top width inside pipe = 23.97(In.) Critical Depth = 14.61(In.) Pipe flow velocity = 7.83(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 20.62 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 126.000 to Point/Station 128.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.82(Ft.) Downstream point/station elevation = , 60.32(Ft.) Pipe length = 41.91 (Pt.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.490(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.490(CFS) Normal flow depth in pipe = 11.51(In.) Flow top width inside pipe = 23.98(In.) Critical Depth = 14.61(In.) Pipe flow velocity = 7.72 (Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 20.71 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 20.71 min. Rainfall intensity = 2.634(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.313(CPS) for 0.180(Ac.) Total runoff = 11.803(CPS) Total area = 6.42(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.32(Ft.) Downstream point/station elevation = 57.58(Ft.) Pipe length = 87.63(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.803(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.803(CFS) Normal flow depth in pipe = 8.93(In.) Flow top width inside pipe = 23.20(In.) Critical Depth = 14.79(In.) Pipe flow velocity = 11.08(Pt/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 20.84 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 132.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 57.58(Ft.) Downstream point/station elevation = 56.78(Ft.) Pipe length = 22.34(Pt.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.803(CPS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 11.803(CPS) Normal flow depth in pipe = 8.61(In.) Flow top width inside pipe = 23.02(In.) Critical Depth = 14.79(In.) Pipe flow velocity = 11.64(Pt/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 20.88 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 134.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 56.78(Ft.) Downstream point elevation = 46.00(Ft.) Channel length thru subarea = 182.80(Ft.) Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 11.977(CFS) Manning's 'N' =0.03 5 Maximum depth of channel = 1.500(Ft.) Plow(q) thru subarea = 11.977(CFS) Depth of flow = 0.528(Ft.), Average velocity = 5.592(Pt/s) Channel flow top width = 5.112(Ft.) Flow Velocity = 5.59(Pt/s) Travel time = 0.54 min. Time of concentration = 21.42 min. Critical depth = 0.672(Ft.) Adding area flow to channel User specified 'C value of 0.660 given for subarea Rainfall intensity = 2.577(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.323(CFS) for 0.190(Ac.) Total runoff = 12.126(CPS) Total area = 6.61(Ac.) ++++++++++++++44++++++++++ + +++++++ +++++++ +++++++++++++++++++++++ + "'" Process from Point/Station 134.000 to Point/Station 134.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 21.42 min. Rainfall intensity = 2.577(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.867(CPS) for 0.510(Ac.) Total runoff = 12.993(CFS) Total area = 7.12(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 904.000 to Point/Station 134.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 56.70(Ft.) Downstream point elevation = 46.00(Ft.) Channel length thru subarea = 218.19(Ft, Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 2.000 sloDe or 'Z' of right channel bank = 2.000 oc7(rpc;\ biope OJ- 3 midDoint of channel = 13.267 (CFS) Estimated mean flow rate at miapu+nu Manning's 'N' =0.035 Maximum depth of channel = 1.500Ut.) Flow(q) thru subarea = 13.267 (CPS) AC^civtl-i) Depth of flow = 0.588(Ft.), Average velocity = 5.406(Pt/s) Channel flow top width = 5.351(Ft.) Plow Velocity = 5.41(Ft/s) Travel time = 0.67 min. Time of concentration = 22.09 mm. Critical depth = 0.719(Ft.) Adding area flow to channel „„v,^^pa ncor sDecified 'C value of 0.660 given for subarea User speciriea coRdn/Hr) for a 100.0 year storm subarea runoff = 0.500(CFS) for 0.300(Ac.) Stal runoff = 13.494 (CFS) Total area = 7.42 (Ac.) ++++++++++++++++++++++++++++++++;;;^;^ Process from Point/Station " . ^ . > **** **** PIPEFLOW TRAVEL TIME (User specified size) Downstream point/station elevation = 41.19(Ft ) PiDe length = 20.31(Ft.) Manning's N = 0.013 N^of pipes = 1 Required pipe flow = 13.494 (CPS) Given pipe size = 18.00(In.) .OA(rps) calculated individual pipe flow = 13.494(CFb) Normal flow depth in pipe = 6.31(In.) Flow top width inside pipe = 17.18(in.) Critical Depth = 16.41(In.) Pipe flow velocity = 24.41(Pt/s) ^ Travel time through pipe = 0.01 mm. ^ Time of concentration (TC) = 22.11 mm. Process from Pomt/Station xoo.uv **** CONFLUENCE OF MAIN STREAMS **** The following data inside Mam Stream is listed: In Main Stream number: 1 Stream flow area = " ' L wr^,,c^ Runoff from this stream = 13.494(Ctfa) Time of concentration = 22.11 mm. Rainfall intensity = 2.525(In/Hr) Program is now starting with Mam Stream No. 2 Process from Pomt/Station xuuu.uu **** USER DEFINED PLOW INFORMATION AT A POINT Rainfall intensity (I) = 2.755 for a User specified values are as follows: TC = 19.31 min. Rain intensity = Total area = 1.77(Ac.) Total runoff 100.0 year storm 2.76(In/Hr) 2.89(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1000.000 to Point/Station 1000.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.770(Ac.) Runoff from this stream = 2.890(CFS) Time of concentration = 19.31 min. Rainfall intensity = 2.755(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 13 .494 2 . 890 1.000 * 0.916 * , 000 ,000 22 .11 19 .31 1.000 * 1.000 * 0.874 * 1.000 * 2 .525 2 . 755 13.494) + 2.890) + 13.494) + 2.890) + 16.142 14.677 Total of 2 main streams to confluence: Plow rates before confluence point: 13.494 2.890 Maximum flow rates at confluence using above data: 16.142 14.677 Area of streams before confluence: 7.420 1.770 Results of confluence: Total flow rate = 16.142(CFS) Time of concentration = 22.106 min. Effective stream area after confluence 9.190(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 136.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 22.11 min. Rainfall intensity = 2.525(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.167(CFS) for 0.100(Ac.) Total runoff = 16.309(CFS) Total area = 9.29(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 138.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 41.19(Ft.) Downstream point/station elevation = 30.97(Ft.) Pipe length = 40.58(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 16.309(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 16.309(CFS) Normal flow depth in pipe = 6.87(In.) Flow top width inside pipe = 17.49(In.) Critical depth could not be calculated. Pipe flow velocity = 26.30 (Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 22.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 138.000 **** CONFLUENCE OP MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.290(Ac.) Runoff from this stream = 16.309(CPS) Time of concentration = 22.13 min. Rainfall intensity = 2.523(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1002.000 to Point/Station 1002.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea ^f^(AX>5^0 Rainfall intensity (I) = 5.422 for a 100.0 year storm y 1 A. User specified values are as follows: ^D^^fflO*^ TC = 6.76 min. Rain intensity = 5.42(In/Hr) Total area = 0.17(Ac.) Total runoff = 0.35(CPS) g^ClST'60KU>^ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 138.000 **** CONFLUENCE OP MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.170(Ac.) Runoff from this stream = 0.350(CFS) Time of concentration = 6.76 min. Rainfall intensity = 5.422(In/Hr) Summary of stream data: Stream Plow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16.309 22.13 2.523 2 0.350 6.76 5.422 Qmax(1) = 1.000 1.000 * 16.309) + Qmax(2) 0.465 * 1.000 * 0.350) + = 16.472 1.000 * 0.305 * 16.309) + 1.000 * 1.000 * 0.350) + = 5.331 Total of 2 main streams to confluence: Flow rates before confluence point: 16.309 0.350 Maximum flow rates at confluence using above data: 16.472 5.331 Area of streams before confluence: 9.290 0.170 Results of confluence: Total flow rate = 16.472(CFS) Time of concentration = 22.132 min. Effective stream area after confluence = 9.460(Ac.) +++++++++++4+++++++++++++++++++++++++++++++++t+;^^^;^+;!-^^^^-^^-^^!^;";;;-^ Process from Point/Station 138.000 to Pomt/Station 140.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 30.97(Ft.) Downstream point/station elevation = 26.50(Ft.) Pipe length = 58.38 (Ft.)^ ""T^""^'^ All]c^S) No. of pipes = 1 Required pipe flow = 16.472(Ctb) Given pipe size = 18.00(In.) Calculated individual pipe flow = 16.472(CFS) Normal flow depth in pipe = 9.70(In.) Flow top width inside pipe = 17.94(In.) Critical depth could not be calculated. Pipe flow velocity = 16.96(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 22.19 mm. End of computations, total study area = y.^ib ^i^c; " • •• ~ -1 ••• *^ \ i----ir^-cSr 5^2 ^ijD£ci(-6t,/ V-MMO/U,, , , , ,, 1 , w.,, , .1 .' ' ^ > fl>:/.. -'-IH .-^ ¥;t,\-t'^ n^Hfvfi-.j \ (JX) Pf A>a.r ..^j^ - \^^lLzR^£JI]k^ ^'^^^ "Iq^i-rtu.,^:,,,.^^ J/tr- l'^:!^. 6kMy:^^Q 6D,Ni&:i],,,a,,y,, [DO Y... W- Goi- "^-^^'^ ,„.. , ^ ^ ^lA^M.^.. -iM^um^... ,,,,ijl,Li,'lfe ..."Zio-D^. [Im^a.C, M.^^,,-m,,- "~m..-. z„.,„..„ , ^ ^ I IIIIZZ3^^^^^^ Az... .5,,.,. l^li 5r„2.3s: „ .........L^ O-i-i-y .3M£%..^.^~C>,.2JE...^..^ ^•^.H 1:^ -_,.iSac>,.,,.leii&iH::J^ lg?rT £M^, :M1 - \_.6,i^iiiLi2iik4i^aa „ „ ^ „ . ^i-,3.,,«Ml2:iS)£jki^^ . 1/16 /1 _, „ »„_ , ,., ,- , ^ ,. ~.- ...^mu.\1' 3\ wi! -wn _ _ -j: - 44C^" I'l-1'] ) FLOOD HYDROGRAPH ROUTING PROGRAM Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2001 Study date: 05/12/05 6 HOUR 100 YEAR STORM THE BLUFFS 01-1022 FILE:BLUFFS100YR.OUT 05/12/05 BY:CSO O'Day Consultants, Carlsbad, California - S/N 768 HYDROGRAPH INFORMATION ********************** From study/file name: lOOYRHYD rte ********************** Hydrograph Information ************************ From manual input hydrograph **************************^^jjy^j^Qgj^p^ DATA**************************** Number of intervals = m Time interval = i.o (Min.) Maximum/Peak flow rate = 13.480 (CFS) Total volume = 0.55 0 (Ac.Pt) Status of hydrographs being held in storage n V ^^""^^"^ ^ Stream 2 Stream 3 Stream 4 Stream 5 Peak (CPS) 0.000 0.000 0.000 0.000 0.000 Vol (Ac.Ft) 0.000 0.000 0.000 0 000 0 000 *****************************,,,,,,,,,,,^^^^^^^^^^^^J;OOO^^^^j.OOO^^^ + + + + + + + + + 44 + + + + + + + + ^^^.^^^^^^^^^_^^^^^^^_^^^^^_^^^_^^^_^^^ Process from Point/Station i.ooo to Point/Station 2 ooo **** RETARDING BASIN ROUTING **** User entry of depth-outflow-storage date Total number of inflow hydrograph intervals = Hydrograph time unit = 1.000 (Min.) Initial depth in storage basin = 0.00(Pt.) 111 Initial basin depth = 0.00 (Ft.) Initial basin storage = 0.00 (Ac.Pt) Initial basin outflow = 0.00 (CPS) Depth vs. Storage and Depth vs. Discharge data Basin Depth Storage Outflow (S-0*dt/2) (Pt.) (Ac.Pt) (CFS) (Ac.Pt) (S+0*dt/2) (Ac.Pt) 0.000 0.000 0.000 0.000 0.000 0 . 800 1. 000 1.200 1.400 1 .600 1.800 2.000 2 .200 2 .400 0 . 007 0 . 010 0.014 0 . 018 0 . 022 0 . 027 0.032 0.038 0 . 048 10.896 10.897 10.898 10.899 10.900 10.901 10.902 10.903 10.904 -0.001 0 . 002 0 . 006 0 . 010 0 . 014 0 . 019 0 . 024 0 . 030 0 . 040 0 . 015 0 . 018 0 . 022 0 . 026 0.030 0.035 0 . 040 0 . 046 0.056 Hydrograph Detention Basin Routing Graph values: 'I': unit inflow; 'O'=outflow at time shown Time (Hours) 0.017 0.033 0 . 050 0.067 0 . 083 0.100 0 .117 0.133 0 .150 0 . 167 0.183 0.200 0.217 0 .233 0.250 0.267 0.283 0.300 0.317 0.333 0.350 0.367 0.383 0 .400 0 .417 0 .433 0 .450 0 .467 0 .483 0.500 0 . 517 0 . 533 0.550 0 . 567 0 . 583 0 . 600 0 . 617 0.633 0 . 650 0.667 Inflow (CPS) 0 . 00 0 . 18 0.37 0 . 74 1.17 1.67 2.22 2 . 83 3 . 56 4.33 5.31 6.29 7.44 8 . 60 9.62 10 . 60 11.41 12 . 08 12.66 13.03 13 .36 13 .42 13 .48 13 .44 13 .37 13.11 12.74 12.35 11.92 11.48 10 . 99 10.49 9.88 9.27 8 .56 83 17 56 03 60 Outflow (CFS) 0.00 0 . 09 0.28 0.56 0.97 1 1 , 2 3 3 , 4 5 , .44 . 96 .54 .22 . 97 . 85 ,83 6.90 8.06 9.15 10.14 10.90 10.90 10.90 10. 90 10.90 10.90 10.90 10.90 10 . 90 10.90 10 . 90 10 . 90 10.90 10 . 90 10.90 10 . 90 10 . 90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 Storage (Ac.Pt) 0.000 0 . 000 0 . 000 0 . 000 0.001 0 . 001 0.001 0 .002 0 . 002 0.003 0 . 003 0.004 0.004 0.005 0 . 006 0 . 007 0 . 007 0 . 008 0 . 010 0.013 0 . 016 0.020 0 . 023 0.027 0.030 0 . 033 0.036 0.038 0 .040 0 . 041 0.042 0 . 041 0 . 040 0.039 0 . 036 0.032 0 . 027 0 .022 0.016 0 . 009 3.4 6.74 10 . 11 01 01 01 01 01 01 01 01 01 lo Depth 13.48 (Pt.) 0. 00 0 . 01 0 . 02 0 . 04 0 . 07 0 . 11 0 . 14 0 . 19 0.24 0 .29 0 .36 0.43 0.51 0.59 0.67 0 . 74 0 . 81 |o I j 0.89 |0 I 1 1.02 |o I 1 1.15 |o 11 1.31 |o 11 1.48 |o I 1. 65 |o 11 1 . 79 |o 11 1.93 |o 11 2 .05 jo I 1 2.14 |o I 1 2.21 io I 1 2 .24 |o I 1 2 .26 |0I j 2 .27 10 1 2.27 I|0 1 2.25 I |0 1 2 .21 |o 1 2 .13 |o 1 2.01 |o 1 1.82 |o 1 1.60 |o 1 1.28 |o 1 0.90 0.683 5 . 19 6.38 0.004 1 0 . 700 4 . 82 4 . 96 0 . 003 1 0 . 717 4.45 4 . 62 0 . 003 1 0 . 733 4 .15 4.29 0 . 003 1 0 . 750 3 . 84 3.98 0 . 003 1 0 . 767 3 .61 3 . 72 0 . 002 1 0 . 783 3 .40 3 . 50 0.002 1 0 . 800 3 . 18 3.28 0 . 002 1 0 . 817 2 . 97 3 . 07 0 . 002 1 0 . 83 3 2 . 77 2 . 86 0 . 002 0.850 2 . 58 2 . 67 0 . 002 1 0 . 867 2 .40 2.48 0 . 002 1 0 0 . 883 2 .22 2.30 0 . 001 1 0 0 . 900 2 . 04 2 . 12 0 . 001 1 10 0 . 917 1 . 91 1. 97 0 . 001 1 0 0 . 933 1. 79 1 . 85 0.001 1 0 0 . 950 1. 67 1. 73 0 . 001 1 IO 0 . 967 1.54 1.60 0.001 1 0 0.983 1.44 1.49 0 . 001 1 0 1. 000 1.35 1.39 0.001 1 0 1. 017 1 .25 1.30 0 . 001 1 10 1.033 1.16 1.20 0 . 001 1 0 1 . 050 1. 07 1 .11 0 . 001 1 0 1. 067 1 . 00 1.03 0 . 001 1 0 1. 083 0 . 92 0 . 96 0 . 001 1 0 1.10 0 0 . 84 0 . 88 0 . 001 1 10 1 . 117 0 . 77 0.80 0.001 jo 1. 13 3 0 . 71 0 . 74 0 . 000 jo 1 . 150 0.67 0.69 0 . 000 |o 1.167 0.62 0 . 64 0 . 000 jo 1.183 0.57 0.59 0 . 000 jo 1.200 0 . 53 0.55 0 . 000 jo 1.217 0.50 0.51 0 . 000 jo 1 .233 0.46 0.48 0 . 000 jo 1.250 0 .43 0 .44 0 . 000 |o 1.267 0.40 0.41 0 . 000 0 1.283 0.37 0.38 0 . 000 0 1.300 0.35 0.36 0.000 o 1.317 0.32 0.33 0 . 000 0 1.333 0.30 0.31 0.000 0 1.350 0.28 0.29 0 . 000 o 1.367 0 .26 0.27 0 .000 0 1.383 0.24 0.25 0 . 000 0 1.400 0.22 0 .23 0 . 000 0 1.417 0.20 0.21 0 . 000 0 1.433 0.19 0 .19 0.000 0 1.450 0 .18 0 .18 0.000 0 1.467 0 .17 0 .17 0.000 0 1 .483 0 . 15 0 .16 0 . 000 0 1 .500 0 . 14 0 .14 0.000 0 1.517 0 .14 0 .14 0.000 0 1.533 0.13 0.13 0 . 000 0 1.550 0.13 0.13 0.000 0 1.567 0.12 0.12 0.000 0 1. 583 0 .11 0 .11 0 .000 0 1.600 0 .11 0 .11 0.000 0 1 .617 0 .10 0 .10 0 . 000 0 o o IO O 0.47 0.36 0 . 34 0 .31 0.29 0.27 0.26 0 . 24 0.23 0 . 21 0.20 0 . 18 0 .17 0 . 16 0 .14 0 .14 0 . 13 0 . 12 0 .11 0 .10 0 .10 0 .09 0 . 08 0 . 08 0 . 07 0 . 06 0 . 06 0 . 05 0.05 0.05 0 . 04 0.04 0 . 04 0 . 04 0 . 03 0 . 03 0 . 03 0 . 03 0.02 0.02 0.02 0 . 02 0.02 0 . 02 0 . 02 0 . 01 0.01 0 . 01 0 . 01 0 . 01 0.01 0 . 01 0.01 0 . 01 0 . 01 0 . 01 0 . 01 1 633 0 . 10 0 . 10 0 000 o 1 650 0 . 09 0 .09 0 000 0 1 667 0 . 08 0 . 08 0 000 0 1 683 0 08 0 08 0 000 0 1 700 0 07 0 07 0 000 0 1 717 0 07 0 07 0 000 0 1 733 0 06 0 06 0 000 0 1 750 0 05 0 05 0 000 0 1 767 0 04 0 04 0 000 0 1 783 0 03 0 03 0 000 0 1 800 0 03 0 03 0 000 o 1 817 0 02 0 02 0 000 0 1 833 0 01 0 01 0 000 0 1 850 0 00 0 00 0 000 0 1 867 0 00 0 00 0 . 000 0 0 . 01 0 . 01 0 . 01 0 . 01 0 . 01 0 . 01 0.00 0 . 00 0 .00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 ****************************HYDROGRAPH DATA**************************** Number of intervals = 112 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 10.903 (CFS) Total volume = 0.550 (Ac.Pt) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Peak (CPS) 0.000 0.000 0.000 0.000 0.000 Vol (Ac.Pt) 0.000 0.000 0.000 0.000 0.000 ***************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 100-YEAR HYDROGRAPH 01-1022 THE BLUFFS ftp 0.3 0.6 0.7 0.8 0.9 q/gp O.i 0.19 0.31 0.47 0.66 0.82 0.93 0.99 0.99 0.93 0.86 0.78 0.68 0.56 0.46 0.39 0.33 0.28 0.21 2.211 4.422 6.633 8.844 11.055 13.266 15.477 17.688 19.899 22.11 24.321 26.532 28.743 30.954 33.165 36.376 37.687 39.798 42.009 44,22 0.15 0.11 0.08 0.055 0.04 0.029 0.021 0.015 0.005 48.642 53.064 57.486 61.908 66.33 70.752 75.174 79.596 84.018 88.44 101.706 0.4047 1.349 2.5631 4.1819 6.3403 8.9034 11.0618 12.5457 13.3551 13.49 13.3551 12.5457 11.6014 10.5222 9.1732 7.5544 6.2054 5.2611 4.4517 3.7772 2.8329 2.211 6.633 0.4047 1,349 8.844 11.055 13.266 16.477 17.688 19.899 22.11 24.321 26.532 28.743 30.954 33.166 35.376 37.587 39.798 42.009 44.22 48.642 2.0235 1.4839 1.0792 0.74195 0.5396 0.39121 0.28329 0.20235 110.55 0.14839 0.06745 0 53.064 57.486 61.908 66.33 70.752 75.174 79.596 84.018 88.44 101.706 110.55 0 2.5631 4.1819 6.3403 8.9034 11.0618 12.5457 13.3551 13.49 13.3551 12.5457 11.6014 10.5222 9.1732 7.5544 6.2054 5.261 4.4617 3.7772 2.8329 2.0235 1.4839 1.0792 0.74195 0.5396 0.39121 0.28329 0.20235 0.14839 0.06745 q calc) 0.4047 0.4047, 1.349 q2 0.4047 0.404 1.349 2.5631 2.5631 4.1819 4.1819 4.1819 6.3403 6.3403 8.9034 16 11.0618 17 25 56 58 8.9034 11.0618 12.5457 12.5457 13.3551 2.5631 4.1819 6.3403 6.3403 8.9034| 8.9034 4.422 4.422r 4.4221" 6.633 8.8441 11.055 11.055 11.0551 13.266 11.0618 11.0551 13.266 11.0618 12.5457 12.5457 13.3551 13.3551 13.3551 13.3551 13.49 13.49 13.3551 13.3551 12.5457 12.5457 11.6 11.6014 10.5222 10.5222 10.6222 13.49 13.49 13.49 13.3551 13.3551 12.5457 12.5457 11.6014, 11.6014 10.5222 10.5222 13.266^ 15.477 15.4771 17.688 15.4771 17.688 19.899, 28.743 9.1732 9.1732 9.1732 9.1732 7.5544 7.5544 6.2054 6.2054 5.2611 5.2611 5.261 4.4517 4.451 3.7772 3.7772 3.7772 3.7772 2.8329 2.8329 2.8329 2.8329 2.8329 2.0235 2.0235 2.0235 57 , 2.0235 1.4839 1.4839 1.4839 1.4839 1.0792 1.0792 9.1732 7.5544 7.5544 6.2054 6.2054 5.2611 5.2611 4.4517 4.4517 4.4517 3.7772 3.7772 2.8329 2.8329 2.8329 2.8329 2.0235 2.0235 2.0235 2.0235 2.0235 1.4839 1.4839 1.4839 1.4839 1.0792 1.0792 1.0792 1.0792 0.74195 0.74195 30.954 30.954 35.376 39.798 42.009 42.009 28.743 28.743 30.954 33.165 37.587 42.009 44.22 44.22 48.642 48.642 53.064 53.064 57.486 57.486 57.486 57.486 61.908 53.064 53.064 57.486 57.486 57.486 61.908 61.908 61.908 61.908 0.74 1.17' 4.33 5.31 9.62 10.60 13.37 12.35 9.88 9.27 8.56 7.83 717 6.56 6.03 5.60 5.19 4.82 4.45 4.15 3.84 3.61 3.40 3.18 2.97 2.77 2.58 2.40 2.22 2.04 1.91 1.79 1.67 1.54 1.44 1.35 1.25 1.16 1.07 1.00 4 ft--",-'' I ' '-5 1 1 ^ J ft 100-YEAR HYDROGRAPH 01-1022 THE BLUFFS 1.0792 0.74195 0.74195 0.5396 0.5396 100 106 107 0.39121 0.28329 0.28329 0.28329 0.20235 0.20235 0.14839 0.74195 0.5396 0.39121 0.28329 61.908 66.33 66.33 0.28329 0.20235 0.20235 0.14839 0.14839 0.06745 0.14839 0.14839 0.14839 0.14839 0.14839 0.14839 0.06745 0.06745 0.06745 0.06745 108 109 114 lis 117 118 120 124 125 126 0.06745 0.06745 0.06745 0.06745 75.174 79.596 79.596 79.596 84.018 88.44 88.44 88.44 66.33 79.596 79.596 79.596 84.018 101.706 88.44 88.44 88.44 88.44 101.706 101.706 101.706 101.706 101.706 101.706 101.706 101.706 110.55, 110.55 110.55 110.55 110.55 110.55 110.55 110.55 110.55 0.92 0.84 0.77 0.50 0.37 0.35 0.32 0.09 0.05 0.04 0.03 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SECTION 4 B^'yrw-x^. CuJi^r-A-n^rA • \D i^"^ 3-VO(l-t1 X,.7.f4'(i.i.V||.26>r'-^"''^'"' , G^e.iA""'., , • ... (::;...: ^iC^M^ V.'?'Mj • 2' ^ (^.'^-'{-^ „„ ,A'\.: too O J '"Of,, Q^-t\ /4. y -• •^ ^^orie^'^ Xa^44^|l,^OUDf!'5) 7M^.^^M^ , ^ ^ S ^£2^J ^-^.^-.^--^^..^^^-^ _\iQQ..^^-t^lA''~' . ..^ \mA\ . „ i i' fr ^-y • Gr.a.L^^ Zlj'''^.^^^.± ^ ^•••'3'^ ^ 9 u7/58i .^^ I ol a(: ^\5r\A\A CC^AO\\\'^^~K ~ \0^f,/Vi2. :;-.T>i 1 n. O- fi y,l San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 05/12/05 THE BLUFFS -EXISTING CONDITIONS - AREA 5 10 YEAR STORM J.N. 01-1022 PILE: G:\ACCTS\011022\EX10Y5.OUT BY:CSO DATE: 05/12/05 ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 10.0 Map data precipitation entered: 6 hour, precipitation(inches) = 1.600 24 hour precipitation(inches) = 3.000 Adjusted 6 hour precipitation (inches) = 1.600 P6/P24 = 53.3% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501.000 to Point/Station 502.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.3 80 given for subarea Rainfall intensity (I) = 2.627 for a 10.0 year storm User specified values are as follows: TC = 10.41 min. Rain intensity = 2.63(In/Hr) Total area = 0.05(Ac.) Total runoff = 0.05(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 503.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 85.200(Ft.) End of street segment elevation = 70.000(Ft.) Length of street segment = 610.430(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side{s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.060(CPS) Depth of flow = 0.059(Ft.), Average velocity = 1.419(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500 (Pt.) Flow velocity = 1.42(Pt/s) Travel time = 7.17 min. TC = 17.58 min. Adding area flow to street User specified 'C value of 0.380 given for subarea Rainfall intensity = 1.874(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.380 .Subarea runoff = 0.292 (CFS) for 0.410 (Ac.) Total runoff = 0.342(CFS) Total area = 0.46(Ac.) Street flow at end of street = 0.342(CFS) Half street flow at end of street = 0.171(CPS) Depth of flow = 0.114 (Ft.), Average velocity = 2.191(Ft/s) Flow width (from curb towards crown)= 1.500(Ft.) +++++ + + ++++++++++++++++ + + + + + ++++++++ ++++++++++ +++.^^.|..j..^..^.^.^.j^_^^^_i__i__^_^_i__i__^_^_i_ Process from Point/Station 503.000 to Point/Station 503 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.460(Ac.) Runoff from this stream = 0.342(CPS) Time of concentration = 17.58 min. Rainfall intensity = 1.874(In/Hr) Program is now starting with Main Stream No. 2 +++++++++ ++++++++++++++++++ +++++++++++++++++++++++++.^.^.^.^.^.^.^,^_^_i__^^^_^_^_i__^_^ Process from Point/Station 301.000 to Point/Station 302.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea Rainfall intensity (I) = 1.763 for a 10.0 year storm User specified values are as follows: TC = 19.31 min. Rain intensity = 1.76(In/Hr) Total area = 1.31(Ac.) Total runoff = 1.52(CPS) ++++++++++ ++++++++++++++++++ + +++++++++++++ ++++++ ++++++.^.^.^.^.^.^.^_^_^_^_^_i^^_i__^_i_ Process from Point/Station 503.000 to Point/Station 503.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.310(Ac.) Runoff from this stream = 1.520(CFS) Time of concentration = 19.31 min. Rainfall intensity = 1.763(In/Hr) Summary of stream data: stream Flow rate TC Rainfall Intensity No. (CPS) (min) (In/Hr) 1 0 .342 17 , , 58 1. , 874 2 1 .520 19. ,31 1 . , 763 Qmax(1) = 1, .000 * 1 , . 000 * 0, ,342) + 1 .000 * 0 . , 910 * 1, ,520) + = 1 . 726 Qmax(2) = 0 . 941 * 1, ,000 * 0, ,342) + 1 .000 * 1, . 000 * 1, ,520) + = 1. 842 Total of 2 main streams to confluence: Flow rates before confluence point: 0.342 1.520 Maximum flow rates at confluence using above data: 1.726 1.842 Area of streams before confluence: 0.460 1.310 Results of confluence: Total flow rate = 1.842(CFS) Time of concentration = 19.310 min. Effective stream area after confluence = 1.770 (Ac.) End of computations, total study area = 1.77 (Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/30/05 HYDROLOGY STUDY - THE BLUFFS 10 YEAR STORM J.N. 01-1022 FILE: G:\ACCTS\011022\lOYRDS OUT 05/30/05 BY:CSO ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 10.0 Map data precipitation entered: 6 hour, precipitation(inches) = 1.600 24 hour precipitation(inches) = 3.000 Adjusted 6 hour precipitation (inches) = i 600 P6/P24 = 53.3% San Diego hydrology manual 'C values used Runoff coefficients by rational method ++ + + ++++++ + + +++ +^^^^^^^^^^^^^^^^_^^_^_^_^_^_^_^_^^_^^^^^^^^ Process from Pomt/Station 102.000 to Point/Station 104 SoJ **** INITIAL AREA EVALUATION **** 104.000 User ^ specified 'C value of 0.660 given for subarea Initial subarea flow distance = 29.00(Ft.) Highest elevation = 77.73(Ft.) Lowest elevation = 77.22(Ft.) Elevation difference = 0.51(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3 53 min TC = [1.8*(l.l-C)*distance".5)/(% slope"(1/3)] TC =[1.8*(1.1-0.6600)*( 29.00".5)/( 1.76"(l/3)]= 353 Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.216 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0 660 Subarea runoff = 0.056(CFS) Total initial stream area = 0.020(Ac.) Process from Point/Station 104.000 to Point/Station 106 000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** "'"^•°°° Top of street segment elevation = 77.220(Ft.) End of street segment elevation = 73.160(Ft.) Length of street segment = 405.410(Ft.) Height of curb above gutter flowline = 6 0(ln ) Width of half street (curb to crown) = 12 000(Ft ) Distance from crown to crossfall grade break = 10.500(Ft ) Slope from gutter to grade break (v/hz) = 0 020 Slope from grade break to crown (v/hz) = 0 020 Street flow is on [2] side(s) of the street Distance from curb to property line = 5 000(Pt ) Slope from curb to property line (v/hz) = 0 020' Gutter width = 1.500(Pt.) Gutter hike from flowline = 1.000(In ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0 0150 Manning's N from grade break to crown = 0 0150 Estimated mean flow rate at midpoint of street = 0 067(CPS) Depth of flow = 0.063(Ft.), Average velocity = 0.949(Ft/sf Streetflow hydraulics at midpoint of street tLvel • '^^'^^''^^^ Halfstreet flow width = 1.500 (Pt.) Flow velocity = 0.95(Pt/s) Travel time = 7.12 min. TC = 12.12 min Adding area flow to street user specified -c value of 0.660 given for subarea Rainfall intensity = 2.382(In/Hr) for a 10.0 year storm Total runoff = 0.700(CFS) Total area =" 0 43(Ac ) Street flow at end of street = 0.700 (CFS) IJ.^J(AC.) Half street flow at end of street = 0 350(CFS) Depth of flow = 0.145(Ft.), Average velocity = 1.397(Ft/s) Flow width (from curb towards crown) = 4.589 (Ft.) ""^'^^^^ The following data inside Main Stream is listed- — In Main Stream number: 1 Stream flow area = 0.430(Ac.) Runoff from this stream = 0.700(CFS) Time of concentration = 12.12 min. Rainfall intensity = 2.382(In/Hr) Program is now starting with Main Stream No. 2 **** USER DEFINED FLOW INFORMATION AT A POINT **** 204.000 user specified 'C value of 0.660 given for subarea ^r^///H^£Y>> User specified values are as follows: LLA^IA Nii/fTDK TC = 17.15 min. Rain intensity = 1 90 (In/Hr) (MNPMU UcAJ Total area = 0.51(Ac.) Total runoff = 0.64(CFS) pD^' p^ocesr^^;m';:i::;:;\'^'"'^ ^19^ process from Pomt/Station 204.000 to Point/Station 208 000 , **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 74.27 (Ft ) " — Downstream point elevation = 73 47(pt ) Channel length thru subarea = 43.00(Ft ) Channel base width = 2 000(Ft ) Slope or 'Z' of left channel bank = "2 000 Slope or 'Z' of right channel bank = 2 000 Estimated mean flow rate at midpoint of channel = 0 653(CPS) Manning's 'N' = 0.250 iJ.oaJtCi-b) Maximum depth of channel = 1.000(Ft.) Plow(q) thru subarea = 0.653(CFS) Depth of flow = 0.519(Ft.), Average velocity = 0.414(Ft/s) Channel flow top width = 4.076(Ft.) "-^i^lft/s) Flow Velocity = 0.41(Ft/s) Travel time = 1.73 min. Time of concentration = 18.88 min. Critical depth = 0.143(pt.) Adding area flow to channel Ra?;/??''"."^'' ^^'^^ °^ ^^barea Kamtall intensity = 1.789 (In/Hr) for m n Total runoff = n 664 frpq) -p^+.-.i u.oo^iutb) Total area = 0.53(Ac.) **** f.Tl^A" ^^^^^'^^^^^^^''^'^^OT^^l stream n^^^S^ ^ stream flow area = 0.53 0(Ac.) Runoff from this stream = 0.664(CFS) Time of concentration = 18.88 min. Rainfall intensity = 1.789(In/Hr) User^specified 'C value of 0.660 given for sub"^ " Initial subarea flow distance = 35.00(Ft ) Highest elevation = 75.86(Ft.) Lowest elevation = 75.33(Ft.) Elevation difference = 0.53(Ft.) Time of concentration calculated by the urban ^r-'riTn"? ""^."'^thodjApp X-C) = 4.08 min. TC - 1.8*(l.i-c)*distance".5)/(% slope"(1/3)] TC = [1.8*(l.l-0.6600)*( 35.00".5)/( 1.5l"(l/3)]= 4 08 Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.216 for a 10.0 year storm Effective runoff coefficient used for area {Q=KCIA) is c - 0 f.^rs Subarea runoff = 0.167(CFS) is C - 0.660 Total initial stream area = 0.060(Ac.) ++++++++++++++++++ Process from Pomt/Station 304.000 to Point/Station 206 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ^06.000 Upstream point/station elevation = 72.90(Ft.) Downstream point/station elevation = 71.61(Ft ) Pipe length = 127.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.167 (CPS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 0.167(CPS) Normal flow depth in pipe = 1.84(In.) Flow top width inside pipe = 6.74(In.) Critical Depth = 2.24(In.) Pipe flow velocity = 2.76(Pt/s) Travel time through pipe = 0.77 min. Time of concentration (TC) = 5.77 min. !!?!^!f„5f°" 206.000 to Point/Station 206.000 * * * * SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea ~ Time of concentration = 5.77 min. Rainfall intensity = 3.845(In/Hr) for a lo.O year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.152(CFS) for 0.060(Ac ) Total runoff = 0.319(CFS) Total area = 0.12(Ac.) + + + + + + + + + + + 4 + + + + + + + .,^^.^^^^^^^^^^^^_^_^_^_^^_^^^^^^^_^^^^_^_^^_^_^_^^^^^_^_^^_^_^^_^^^_^ Process from Pomt/Station 206.000 to Point/Station 208 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 71.63(Ft.) Downstream point/station elevation = 71.11 (Ft ) Pipe length = 41.76(Ft.) Manning's N'= 0.011 No. of pipes = 1 Required pipe flow = 0.319(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.319(CPS) Normal flow depth in pipe = 2.12(In.) Flow top width inside pipe = 9.15(In.) Critical Depth = 2.79(In.) Pipe flow velocity = 3.42(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 5.97 min. AAAA^AJATH 2O8.OOO to Polnt/Statlon 208.000 SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea ~ Time of concentration = 5.97 min. Rainfall intensity = 3.759(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.0 74(CFS) for 0.030(Ac ) Total runoff 0.394(CFS) Total area 0.15(Ac.) Process from Point/Station 208.000 to Point/Station 208 000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.150(Ac.) Runoff from this stream = 0.3 94(CFS) Time of concentration = 5.97 min. Rainfall intensity = 3.759(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) = 0. 664 0 .394 1. 000 0 .476 1. 000 1. 000 18.88 5.97 1.000 * 1.000 * 0.316 * 1.000 * 1. 789 3.759 0.664) + 0.394) + 0.664) + 0.3 94) + 0.851 0.603 Total of 2 streams to confluence: Plow rates before confluence point: 0.664 0.394 Maximum flow rates at confluence using above data: 0.851 0.603 Area of streams before confluence: 0.530 0.150 Results of confluence: Total flow rate = 0.851(CPS) Time of concentration = 18.881 min. Effective stream area after confluence = 0.680(Ac. Process from Point/Station 208.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 210.000 Upstream point/station elevation = 71.li(Ft.) Downstream point/station elevation = 69.97(Ft.) Pipe length = 55.65(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.851(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.851(CFS) Normal flow depth in pipe = 3.05(In.) Flow top width inside pipe = 10.45(In.) Critical Depth = 4.63(In.) Pipe flow velocity = 5.42(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 19.05 min. **** SUBAREA FLOW ADDITION **** ^° Pomt/Station 210.000 Z^^"" specified -C value of 0.660 given fo^"i^Ito?^ " Time of concentration = 19.05 min Rainfall intensity = 1.779(In/Hr) for a lo.O year storm Runoff coefficient used for sub-area. Rational methodyQ^KC^A C - 0 660 Subarea runoff = 0.023(CFS) for 0.020(Ac ) C - 0.660 Total runoff = 0.874(CFS) Total area =' 0 70(Ac ) **** SUBAREA FLOW ADDITION **** umc/btation 210.000 User s^cified 'C value of 0.660 given for subarea " Time of concentration = 19.05 min Rainfall intensity = 1.779 (In/Hr) for a lo 0 vear stnr-m ZiTrl -^-ea. Rational methodySc I? c = 0 660 Subarea runoff = 0.023(CFS) for 0.020(Ac) Total runoff = 0.898(CFS) Total area =' 0.72(Ac.) p^o^e^r^^orp^w;::^"'''''''""'^""""^ t'rocess from Pomt/Station 210.000 to Point/Station Pin nnn **** SUBAREA FLOW ADDITION **** ""^/^tation 210.000 User specitied 'C value of 0.660 given for subarea Time of concentration = 19.05 min Rainfall intensity = 1.779(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational methody^KCIA ? - o 660 Subarea runoff = 0.023(CFS) for 0.020(Ac ) ~ Total runoff = 0.921(CFS) Total area =' 0.74(Ac.) p^ocesr^r^rpoj^w::^"'"''"'"'-^^ process from Pomt/Station 210.000 to Point/Station Pin nnn **** CONFLUENCE OF MINOR STREAMS **** "t/tocation 210.000 Main Stream number: 2 in normal stream number 1 ~ Stream flow area = 0.740(Ac.) Runoff from this stream = 0.921(CFS) Time of concentration = 19.05 min. Rainfall intensity = 1.779(In/Hr) + + 44 + + + + + + + + + + + + + 4 + + + + + + + + + + + + + + + ^.,.^^^^^^^^^_^^^^ Process from Point/Station 305.000 to Point/Station 3oTool **** INITIAL AREA EVALUATION **** nc/btation 307.000 User ^ specitied 'C value of 0.660 given for subarea Initial subarea flow distance = 124.00(Pt.) Highest elevation = 75.51(Ft.) Lowest elevation = 74.28(Ft.) Elevation difference = 1.23(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8 84 min TC = [1.8*(l.l-c)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.6600)*(124.00".5)/( 0.99"(l/3)]= 8 84 Rainfall intensity (I) = 2.918 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0 660 Subarea runoff = 0.193(CPS) Total initial stream area = 0.100(Ac.) + + + +++++++++ + + + + + + ., Process from Point/Station 307.000 to Point/Station 309 00^ **** PIPEFLOW TRAVEL TIME (User specified size) **** 309.000 Upstream point/station elevation = 71.06(Ft ) ~ Downstream point/station elevation = 70 70(Ft ) Pipe length = 34.81(Ft.) Manning's N = 0 Oil No. of pipes = 1 Required pipe flow = 0.193(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.193(CPS) Normal flow depth in pipe = 1.73(In.) Plow top width inside pipe = 8.44(In.) Critical depth could not be calculated. Pipe flow velocity = 2.75(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 9.05 min. + + + + + + + + + + + ++++ +++ + ^^^^^^^^^^^^^^^^_^^_^^^^^_^_^^^_^^^^^^_^^_^ AAAIL P°^nt/Station 309.000 to Point/Station 210 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ^-^0.000 Upstream point/station elevation = 70.70 (Ft ) " ' Downstream point/station elevation = 69.97(Ft ) Pipe length = 15.80(Ft.) Manning's N'= 0.011 No. of pipes = 1 Required pipe flow = 0 193(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.193(CPS) Normal flow depth in pipe = 1.21(In.)" Flow top width inside pipe = 7.23(In.) Critical depth could not be calculated. Pipe flow velocity = 4.65(Ft/s) Travel time through pipe = 0.O6 min. Time of concentration (TC) = 9.11 min. ++++++ ++++++++++++ Process from Pomt/Station 210.000 to Point/Station 210 000 **** SUBAREA FLOW ADDITION **** -iJ-O.OOO User specified 'C value of 0.660 given for subarea Time of concentration = 9.11 min Runoff' intensity = 2.863 (In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.359(CFS) for 0 190(Ac ) Total runoff = 0.552(CFS) Total area = 0.29(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 210.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.290(Ac.) Runoff from this stream = 0.552(CFS) Time of concentration = 9.11 min. Rainfall intensity = 2.863(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 0 . 921 0 .552 1. 000 0 . 621 1. 000 1.000 19 . 05 9 . 11 1.000 * 1.000 * 0.478 * 1.000 * 1. 779 2 . 863 0.921) + 0.552) + 0.921) + 0.552) + 1.264 0 . 992 Total of 2 streams to confluence: Flow rates before confluence point: 0.921 0.552 Maximum flow rates at confluence using above data: 1.264 0.992 Area of streams before confluence: 0.740 0.290 Results of confluence: Total flow rate = 1.264(CFS) Time of concentration = 19.052 min. Effective stream area after confluence = 1.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 107.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 69.97(Ft.) Downstream point/station elevation = 67.90(Ft.) Pipe length = 10.76(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.264(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.264(CFS) Normal flow depth in pipe = 2.13(In.) Flow top width inside pipe = 9.16(In.) Critical Depth = 5.69(In.) Pipe flow velocity = 13.45(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 19.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !**f^^iL°l,^°^^^t/Station 107.000 to Point/Station PIPEFLOW TRAVEL TIME (User specified size) 108.000 Upstream point/station elevation = 67.90 (Ft ) Downstream point/station elevation = 66 15(Ft ) Pipe length = 59.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.264(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.264(CFS) Normal flow depth in pipe = 2.97(ln.)" Flow top width inside pipe = 13.36(In.) Critical Depth = 5.05(In.) Pipe flow velocity = 6.63 (Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 19.21 min. +++++ + +++++ + + + + + +++++ + + ++++++++^.^.^,^_^^_i__i__i^_^_^_^_^_^_^ „ ^ . , +++++ + ++++++ ++++++++++++ Process from Point/Station 108.000 to Point/Station 108 ooo **** SUBAREA PLOW ADDITION **** lUb.UUO User specified 'C value of 0.660 given for subarea Time of concentration = 19.21 min Rnno^f^ intensity = 1.769(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.234(CPS) for 0.200(Ac ) Total runoff = 1.498(CPS) Total area = 1.23(Ac.) ++++ + + +++++ + + + + ++ .,^^^^^^^^^^^_^_^_^^^^^_^^^^^^^^^^^_^^^_^_^^^ ***rr Point/Station 108.000 to Point/Station 108 000 **** CONFLUENCE OF MAIN STREAMS **** J-U«.UUU •^^e following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.23 0(Ac.) Runoff from this stream = 1.498(CFS) Time of concentration = 19.21 min. Rainfall intensity = 1.769(In/Hr) Summary of stream data: Stream Plow rate TC Rainfall Intensity No. (CFS) (min) 1 0.700 12.12 2 1.498 19.21 Qmax(l) = (In/Hr) 2.382 1. 769 1.000 * 1.000 * 0.700) + + = 1.645 1.000 * 0.631 * 1.498) Qmax(2) = 0.743 * 1.000 * 0.700) + 1.000 * 1.000 * 1.498) + Total of 2 main streams to confluence: Flow rates before confluence point: 0.700 1.498 2 . 018 Maximum flow rates at confluence using above data: 1.645 2.018 Area of streams before confluence: 0.430 1.230 Results of confluence: Total flow rate = 2.018(CFS) Time of concentration = 19.214 min. Effective stream area after confluence = 1.660(Ac.) + + + +++ + + ++++++ + +++ + + + + .^.^.^.^.^^^_^^^_^^^_^_^_^_^_^_^^_^_^^_^_^_^^_^_^^^^^_^^_^_^_^_^^^_^_^_^_^_^_^^ Process from Point/Station 108.000 to Point/Station 109 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.15(Pt.) Downstream point/station elevation = 65.13(Ft.) Pipe length = 24.62(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 2.018(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.018(CFS) Normal flow depth in pipe = 3.44(In.) Flow top width inside pipe = 14.15(in.) Critical Depth = 6.43(In.) Pipe flow velocity = 8.56(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 19.26 min. ++ ++++++++ ++++++++++++++.^.^,^.^,^^^^^^_i__j_^^_^^_^_^_^_^_^_^_^_^_^_^^_^^_^_^_^_^_^_^_^^_^^^_^_^_^_^ Process from Point/Station • 109.000 to Point/Station no 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 65.13(Ft.) Downstream point/station elevation = 64.92(Ft.) Pipe length = 13.30(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 2.018(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.018(CFS) Normal flow depth in pipe = 4.37(In.) Flow top width inside pipe = 15.44(In.) Critical Depth = 6.43(In.) Pipe flow velocity = 6.08(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 19.30 min. +++++ +++++++ ++++++ + + +++.^.^.^_^.^.^_^^^^^^_i_^_^_^_i_^_i__^_^_^^_^_^_^_^_^_^_^_^_^_^_^_^_^_^^^_^_^_^^ Process from Point/Station 110.000 to Point/Station no 000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea ~ Time of concentration = 19.30 min. Rainfall intensity = 1.764(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.151(CFS) for 0.130(Ac.) Total runoff = 2.169(CFS) Total area = +++ +++++++ + + + + + +++++++++.j,.^.^.^^^_i_^_^_^_^_^ 1.79(Ac. SUBAREA FLOW ADDITION **** omc/btation 110.000 User specif!^.c value of 0.560 given for subl^^ " " Time of concentration = 19.30 min Rainfall intensity = 1.764(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method^Q^KCir C - 0 660 Subarea runoff = 0.291(CFS) for 0.250(Ac ) C - 0.660 Total runoff = 2.460(CFS) Total area =" 2.04(Ac.) **** SUBAREA FLOW ADDITION **** Pomt/Station 110.000 User specified 'C value of 0.660 given for subarea ' Time of concentration = 19.30 min Rainfall intensity = 1.764(In/Hr) for a 10 0 vear storm Runoff coefficient used for sub-area. Rational methodySc?? c - 0 660 Subarea runoff = 0.198(CPS) for 0.170(Ac ) C - 0.660 Total runoff = 2.658(CFS) Total area =' 2 21(Ac ) + + + + + + + + + + 4 + + + + + + + ^^^^^^^^^^_^^_^^_^^^_^_^^^_^^^_^_^^_^_^ Process from Point/Station no.000 to Point/Station 112 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64.92(Ft.) Downstream point/station elevation = 63 72(Ft ) Pipe length = 25.00(Ft.) Manning's N = 0 oil No. of pipes = 1 Required pipe flow = 2 658(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.658(CPS) Normal flow depth in pipe = 3.80(In.)' Flow top width inside pipe = 14.70(In.) Critical Depth = 7.41(in.) Pipe flow velocity = 9.78(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 19.34 min. + 4 + + + + + + + + + + + + 44 + + + + + + + ^.,^.^^^^^^^^^^^^^^^^^^ Process from Point/Station 112.000 to Point/Station ^2 0^^ **** CONFLUENCE OP MAIN STREAMS **** nc/t^cation 112.000 The following data inside Main Stream is listed- In Main Stream number: 1 Stream flow area = 2.210(Ac.) Runoff from this stream = 2.658(CPS) Time of concentration = 19.34 min. Rainfall intensity = 1.762(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 504.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea Rainfall intensity (I) = 1.927 for a 10.0 year storm User specified values are as follows: TC = 16.83 min. Rain intensity = 1.93(In/Hr) Total area = 0.98(Ac.) Total runoff = 1.25(CPS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 504.000 to Point/Station 506.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 79.80(Ft.) Downstream point elevation = 75.97(Ft.) Channel length thru subarea = 96.00(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 1.256(CFS) Manning's 'N' = 0.250 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 1.256(CPS) Depth of flow = 0.600(Ft.), Average velocity = 0.655(Pt/s) Channel flow top width = 4.398 (Ft.) Flow Velocity = 0.65(Ft/s) Travel time = 2.44 min. Time of concentration = 19.27 min. Critical depth = 0.215(Ft.) Adding area flow to channel User specified 'C value of 0.660 given for subarea Rainfall intensity = 1.766(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.012(CFS) for 0.010(Ac.) Total runoff = 1.262(CFS) Total area = 0.99(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 506.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.27 min. Rainfall intensity = 1.766(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.082(CPS) for 0.070(Ac.) Total runoff = 1.343(CPS) Total area = 1.06(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 506.000 to Point/Station 507.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 73.97(Ft.) Downstream point/station elevation = 66 92(Ft ) Pipe length = 5.30(Pt.) Manning's N = 0 Oil No. of pipes = 1 Required pipe flow = i 343(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.343(CFS) Normal flow depth in pipe = 1.37(In.)' Plow top width inside pipe = 7.64(In ) Critical Depth = 5.88(In.) Pipe flow velocity = 27.00(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 19.28 min. ++++ +++ + + + + +++ + + + + .^.^.^^^^^^^^_^^_^^_^^^_^^_^_^_^^_^^ Process from Point/Station 507.000 to Point/Stltlon 507 **** SUBAREA FLOW ADDITION **** omc/station 507.000 User specified 'C value of 0.660 given for subarea " Time of concentration = 19.28 min Runoff^ intensity = 1.765 (In/Hr) for a 10. 0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA C - 0 660 Subarea runoff = 0.058(CFS) for 0 050(Ac ) Total runoff = 1.401(CFS) Total area =' l.ll(Ac.) ++ +++ +++++ + + +++ ++^.,.,^^^^^^^^^^^_^^^^^^^^_^_^^_^_^_^_^_^^_^ Process from Point/Station 507.000 to Point/Station soj ooo **** SUBAREA PLOW ADDITION **** i^U/.OOO User specified 'C value of 0.660 given for subarea ' Time of concentration = 19.28 min Rainfall intensity = 1.765(In/Hr) for a lO.O year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA C - 0 660 Subarea runoff = 0.023(CFS) for 0.020(Ac ) C - 0.660 Total runoff = 1.425(CFS) Total area = 1.13(Ac.) +++++++ + +++++++++^^^.,^^^^^^^^^^_^_^_^_^_^_^_^^_^^^^^^^_^ llTA'A.JAAlAZt^lL^^^^A^ =0^-°00 to Point/station BOB ooo PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.92 (Pt ) Downstream point/station elevation = 66 48(Ft ) Pipe length = 78.81 (Ft.) Manning's N = 0 Oil No. of pipes = 1 Required pipe flow = i 425(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.425(CPS) Normal flow depth in pipe = 5.67(In.)' Flow top width inside pipe = 11.98(In.) Critical Depth = 6.07 (In.) Pipe flow velocity = 3.91 (Ft/s) Travel time through pipe = 0.34 min. Time of concentration (TC) = 19.61 min. +++++++++ + + + + + + +^^.,^^^^^^^^^^^_^^^^^^^^^_^_^_^^^^_^^^^ Process from Point/Station 508.000 to Point/Station 5^8!^^; **** SUBAREA FLOW ADDITION **** Ramfall intensity = i i^a iTr,t Runoff coefficient used for"^ub 2ef \,f" , ^"^ ='=°"» su|>a„a runoff = 0..°hS%"Tr ''VlZ^T"'' ' Total runoff = ,,,„,e.s, Total ^^f!'' ,.,3,,, , p:::e"r^::r;:i;;;^;:t";: 5"r;;;*;rr";r*" •••• SOBSRKA FLOW ADDITION Pomt/Statlon 508,000 Rainfall intensity = i 74c/Tr./u^^ Runoff coefficient used fo^sub-aref RftLnal ^"^"^ subarea runoff = 0.12 7(CPS)'fHa ona me hod,Q=KCIA, c = 0.660 Total runoff = i.667(CFS) Total arei ^^ I.34(AC.) -** PIPEFLOW TRAVEL TIME (User sp^ciLed siL) **** ''^^'''^^f^^A^^^^^T^^^ ^TliTin—• •— Downstream point/station elevation = 66 15(Ft ) Pipe length = 55.92(Pt.) Manning's N'= 0 oil No^ of pipes = 1 Required pipe flow ^= 1 667"cFS) Given pipe size = 12.00 (In ) •^•&67(CFS) Calculated individual pipe flow = i 667(CPS) Normal flow depth in pipe = 6.ii(in.^ ^ ^' Flow top width inside pipe = 12.00(in ) Critical Depth = 6.58(In ) Pipe flow velocity = 4.15(Ft/s) /^""^ PiP^ = 0-22 min. Time of concentration (TC) = 19.84 min. PIPEFLOW TRAvk TIME^User Spe'i^f ie^sSr ^*^f upstr^e^iTi^i^ETIE^il^ir^X^^ i^TIiTiT) Downstream point/station elevation = 63 72(Ft ) Pipe length = 222.12(Ft.) Manning's N"! 01 NO Of pipes = 1 Required pipe flow = 1 667|cPS) Given pipe size = 12.00(ln) ^•667(CPS) Calculated individual pipe flow = 1 667(CPS) Normal flow depth in pipe = 5 12 (In ) ^^^'^"^^^ Flow top width inside pipe = 11.87(In ) Critical Depth = 6.58(In ) Pipe flow velocity = 5.22(Pt/s) Travel time through pipe = o.71 min Time of concentration (TC) = 20 55 min 112.000 ++++++++++++++++++++.^^.^^.^_^^^^^^^^_^_^_^_^_^_^^^_^^^_^_^^_^^^_^_^_^^^^_^_^_^^_^_^_^_^^_^^^^^ Process from Point/Station 112.000 to Point/Station 112 000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea ' Time of concentration = 20.55 min. Rainfall intensity = 1.694(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.581(CPS) for 0.520(Ac.) Total runoff = 2.248(CPS) Total area = 1 86(Ac ) Process from Point/Station 112.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 112.000 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: 1.860(Ac.) 2.248(CFS) 20.55 min. 1.694(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(l) 2 , 2 . 1. 1. Qmax(2) = 658 248 000 000 0.962 1.000 19.34 20.55 1.000 * 0.941 * 1.000 * 1.000 * 2.658) 2.248) 1. 762 1.694 + + = 2.658) + 2.248) + 4 . 774 4 . 805 Total of 2 main streams to confluence: Flow rates before confluence point: 2.658 2.248 Maximum flow rates at confluence using above data: 4.774 4.805 Area of streams before confluence: 2.210 1.860 Results of confluence: Total flow rate = 4.805(CFS) Time of concentration = 20.547 min. Effective stream area after confluence = 4.070(Ac. +++++++ ++++++++++++ +++.^.^.^.^_^^_^^^^^_^_^_^_^_^_^^^_^^^^^_^_^_^^_^_^^_^_^_^_^_^_^_^_^_^^^_^_^_^_^_^^ Process from Point/Station 112.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 114.000 Upstream point/station elevation = 63.72(Ft.) Downstream point/station elevation = 63 50(Ft ) Pipe length = 27.25(Ft.) Manning's N = 0 Oil No. of pipes = 1 Required pipe flow = 4.805(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.805(CFS) Normal flow depth in pipe = 8.26(In.) Flow top width inside pipe = 17.94(in.) Critical Depth = 10.11(In.) Pipe flow velocity = 6.08(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 20.62 min. + + +++ + + +++++ + + ++++ Process from Pomt/Station 114.000 to Point/Station 114 000 **** SUBAREA FLOW ADDITION **** 114.000 User specified 'C value of 0.660 given for subarea ~ Time of concentration = 20.62 min. Rainfall intensity = 1.690(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 bubarea runoff = 0.145(CFS) for 0.130(Ac ) Total runoff = 4.950(CFS) Total area = 4.20(Ac.) + + + + + + + + + + 4 + + + + + + + ^^.,^.^^^^^^^^^^_^^^^_^_^_^^_^^^^^^^^_^^_^^^^_^^_^^^_^^_^^^^^^^ Process from Point/Station 114.000 to Point/Station lie 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** nb-ouo Upstream point/station elevation = 63.50(Pt.) Downstream point/station elevation = 62.95(Ft ) Pipe length = 20.54(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 4.950(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.950(CPS) Normal flow depth in pipe = 6.05(In.) Plow top width inside pipe = 17.01(In.) Critical Depth = 10.27(In.) Pipe flow velocity = 9.49(Pt/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 20.66 min. ++++++++4444+++ ++ Process from Pomt/Station 116.000 to Point/Station 117 000 **** PIPEFLOW TRAVEL TIME (User specified size) * * * * Upstream point/station elevation = 62.95(Ft.) Downstream point/station elevation = 62.34(Ft ) Pipe length = 49.51(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 4.950(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.950(CFS) Normal flow depth in pipe = 7.45(In.) Plow top width inside pipe = 17.73(in.) Critical Depth = 10.27(In.) Pipe flow velocity = 7.15(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 20.77 min. +++ + +++ + + + + + + + + + + + + + + + + + + +++++ + + + ++++++., + + + + + ^ + ^^^_^^_^^_^^^_^^_^_^^^^^^^^^^ Process from Point/Station 117.000 to Point/Station 118 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 62.34(Ft.) Downstream point/station elevation = 62.18(Ft.) Pipe length = 12.90(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 4.950(CFS) Given pipe size = 24.00 (In.) Calculated individual pipe flow = 4.950(CFS) Normal flow depth in pipe = 6.62(In.) Plow top width inside pipe = 21.45(In.) Critical Depth = 9.39(In.) Pipe flow velocity = 7.02(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 20.80 min. + ++++ + + ++++++ ++++++ + ++.^.^.^.^^^_^^^^^^_^^^_^^_^_^^^_^^_^^_^^_^_^^_^^^_^^^_^_^^^^^^_^_^^_^^ Process from Point/Station 118.000 to Point/Station lis 000 **** CONFLUENCE OP MAIN STREAMS **** '^'^e following data inside Main Stream is listed: ~ In Main Stream number: l Stream flow area = 4.200(Ac.) Runoff from this stream = 4.950(CFS) Time of concentration = 20.80 min. Rainfall intensity = 1.681(In/Hr) Program is now starting with Main Stream No. 2 +++++++ +++++++++++++ +++.^.^.^_^^^^^^^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^^_^_^_^^_^^_^_^_^^_^_^^_^^^ Process from Point/Station 602.000 to Point/Station 604 000 * * * * -T-fcT-F-m-F- , ~ INITIAL AREA EVALUATION **** User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 30.00(Ft.) Highest elevation = 72.80(Ft.) Lowest elevation = 72.55(Pt.) Elevation difference = 0.25(Pt.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4 61 min TC = [1.8*(l.l-C)*distance".5)/(% slope"(1/3)] TC =[1.8*(1.1-0.6600)*( 30.00".5)/( 0.83"(l/3)]= 4.61 Setting time of concentration to 5 minutes Rainfall intensity (I) = 4.216 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.056(CPS) Total initial stream area = 0.020(Ac.) + + + + + +++++++++++++ +++.^_^.^_^_^^^^^_^^_^^_^^_^_^^_^_^_^_^_^_^_^_^^_^^_^_^_^_^_^^_^_^_^_^^^_^_^^_^_^^_^_^ Process from Point/Station 604.000 to Point/Station 118.000 **** STREET FLOW TRAVEL TIME + SUBAREA PLOW ADDITION **** Top of street segment elevation = 72.550(Pt.) End of street segment elevation = 69.510(Pt.) Length of street segment = 263.000 (Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 12.000(Ft.) Distance from crown to crossfall grade break = 10.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 5.000(Pt.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Pt.) Gutter hike from flowline = 1.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.063(CFS) Depth of flow = 0.060(Ft.), Average velocity = 0.987(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500 (Ft.) Flow velocity = 0.99(Pt/s) Travel time = 4.44 min. TC = 9.44 min. Adding area flow to street User specified 'C value of 0.660 given for subarea Rainfall intensity = 2.798(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.499(CFS) for 0.270(Ac.) Total runoff = 0.554(CFS) Total area = 0.29(Ac.) Street flow at end of street = 0.554(CFS) Half street flow at end of street = 0.277(CFS) Depth of flow = 0.133(Ft.), Average velocity = 1.408(Pt/s) Plow width (from curb towards crown)= 3.960(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 9.44 min. Rainfall intensity = 2.798(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.074(CPS) for 0.040(Ac.) Total runoff = 0.628(CFS) Total area = 0.33(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 9.44 min. Rainfall intensity = 2.798(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.092(CPS) for 0.050(Ac.) Total runoff = 0.720(CPS) Total area = 0.38(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OP MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.380(Ac.) Runoff from this stream = 0.720(CPS) Time of concentration = 9.44 min. -Rainfall intensity = 2.798 (In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 702.000 to Point/Station 704.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 100.00(Ft.) Highest elevation = 76.70(Ft.) Lowest elevation = 75.00 (Ft.) Elevation difference = 1.70(Pt.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.64 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.6600)*(100.00".5)/( 1.70"(l/3)]= 6.64 Rainfall intensity (I) = 3.512 for a 10.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.070(CPS) Total initial stream area = 0.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 704.000 to Point/Station 706.000 **** STREET FLOW TRAVEL TIME + SUBAREA PLOW ADDITION **** Top of street segment elevation = 75.000(Ft.) End of street segment elevation = 69.010(Ft.) Length of street segment = 295.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 12.000(Ft.) Distance from crown to crossfall grade break = 10.500(Pt.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 5.000(Pt.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Pt.) Gutter hike from flowline = 1.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.082(CFS) Depth of flow = 0.059(Ft.), Average velocity = 1.301(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Pt.) Flow velocity = 1.30 (Ft/s) Travel time = 3.78 min. TC = 10.42 min. Adding area flow to street User specified 'C value of 0.660 given for subarea Rainfall intensity = 2.625(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA C = 0 660 Subarea runoff = 0.624(CFS) for 0.360(Ac.) Total runoff = 0.693(CFS) Total area = 0.39(Ac.) Street flow at end of street = 0.693(CPS) Half street flow at end of street = 0.347(CFS) Depth of flow = 0.130(Ft.), Average velocity = 1.843(Ft/s) Plow width (from curb towards crown)= 3.848(Ft.) + + + + + + + + + + + + + 4 + + + + + + + + .^.^.^.^_^^^^^^^_^^_^_^_^_^_^_^^_^_^^_^^_^_^_^_^^_^_^^^_^_^_^^_^_^_^_^^^^^_^^ Process from Point/Station 706.000 to Point/Station 706.000 * * * * SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.42 min. Rainfall intensity = 2.625(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.884(CPS) for 0.510(Ac.) Total runoff = 1.577(CFS) Total area = 0.90(Ac.) + ++++++ + ++++ + + + + + +++ + .^.^.^_^.^_^^^^^^_^^^^^^_^_^_^_^_^_^_^_^_^_^_^_^_^_^_^^_^_^_^^^^_^^_^_^_^_^_^_^_^^ Process from Point/Station 706.000 to Point/Station 708 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.52(Ft.) Downstream point/station elevation = 66.36(Ft.) Pipe length = 25.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.577(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.577(CFS) Normal flow depth in pipe = 5.77(In.) Flow top width inside pipe = 11.99(In.) Critical Depth = 6.39(In.) Pipe flow velocity = 4.22 (Pt/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 10.52 min. ++ + ++++ +++ +++ +++ + + + .^.^..,._^.^_^^^_^^^^_^^_^_^^_^_^^_^_^_^_^_^^_^_^_^^^^^_^_^^_^^_^^_^_^^^_^^^_^^_^^ Process from Point/Station 708.000 to Point/Station 710 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.36(Ft.) Downstream point/station elevation = 65.96(Ft.) Pipe length = 6.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.577(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.577(CFS) Normal flow depth in pipe = 3.09(In.) Flow top width inside pipe = 10.49(In ) Critical Depth = 6.39(In.) Pipe flow velocity = 9.86 (Ft/s) Travel time through pipe = o.Ol min. Time of concentration (TC) = 10.53 min. + ++++ + + +++ + + + + + + + + + + + + + +++++++.^.^.j._^^^^^^^_i_^^ „ J- . , + +++++++ + ++++ + + + + + + + + + + +++ + AAAlf. ""^ Pomt/Station 710.000 to Point/Station 710 0^0 **** SUBAREA PLOW ADDITION **** /lU.UUU User specified 'C value of 0.660 given for subarea Time of concentration = 10.53 min. Rainfall intensity = 2.608(In/Hr) for a lo.O year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.155(CPS) for 0.090(Ac ) Total runoff = 1.732(CPS) Total area = 0.99(Ac.) +++++++ + ++++++ + + + ++.,^.,^^^^^^^^^^^^^^^^^_^^^^^^^_^^^^^^_^_^_^^^^_^^^^^^^^^^^^ at ion SUBAREA PLOW ADDITION **** I^AATJA'AH l?AA(tlt'li°'t . ^1°-°°° to Point/station 710.000 User specified 'C value of 0.660 given for subarea ~ Time of concentration = 10.53 min Rnnoff^ intensity = 2.608(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.120(CPS) for 0 070(Ac ) Total runoff = 1.852(CPS) Total area = 1.06(Ac.) +++++++++++++++ ++ .,^^^^^^^^^^^^^^^_^_^_^^^^^^^^^_^^_^^_^_^^_^_^^^_^_^^ /^.TILAZ"^ !°'5^f!!!^°^ ""-ooo to Point/station 710.000 SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea ~ ' Time of concentration = 10.53 min Rnnnff ^ ^TA''^^''^ ^ 2.608 (In/Hr) for a lO.O year storm SnE!rL''°^ ^^"^""^ ""^^^ sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.069(CFS) for 0 040(Ac ) Total runoff = 1.921(CPS) Total area = 1.10(Ac.) ++++++++++++++++++^.^^^^^^^^^^^^^_^^_^^^^^^_^^^^^^^^^^^_^^_^^^^_^^^^^ Process from Pomt/Station 710.000 to Point/Station 712 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** /12.000 Upstream point/station elevation = 65.96(Ft.) Downstream point/station elevation = 65.14(Ft ) Pipe length = 41.93(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.921(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.921(CPS) Normal flow depth in pipe = 4.72(In.) Plow top width inside pipe = 11.72(In.) Critical Depth = 7.10(In.) Pipe flow velocity = 6.71(Pt/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 10.63 min. ++++++ + + + +++++ +++ + + + + + .^.^.^.^.^.^^^^^^^^^^^^^^^_^^_^^_^^^_^^^^_^_^^_^_^_^^_^^_^^_^^^^^^ Process from Point/Station 712.000 to Point/Station 714 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 65.14(Ft.) Downstream point/station elevation = 64.53(Ft.) Pipe length = 26.83(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.921(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.921 (CFS) Normal flow depth in pipe = 4.75(In.) Flow top width inside pipe = 11.74(In.) Critical Depth = 7.10(In.) Pipe flow velocity = 6.64(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 10.70 min. + + + + + ++++++ ++++ + +++++++++++ + + + ++++ + + ++++ ++.^.^.^..^..^.^^^^^^_^_^_^_^_^^_^_^_^_^^_^_^_^_^_^^ Process from Point/Station 714.000 to Point/Station 714 ooo **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.66 0 given for subarea Time of concentration = 10.70 min. Rainfall intensity = 2.580(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.051(CPS) for 0.030(Ac.) Total runoff = 1.972(CFS) Total area = 1.13(Ac.) + + + + + + + + + + + + + + 4 + + + + + + + + + + + + + + + + + + + + + + + + 44 + 4 + + + + + + + + + + .^.^^,^^^^^^_^_^^_^^^_^^ Process from Point/Station 714.000 to Point/Station 716 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64.63(Ft.) Downstream point/station elevation = 64.36 (Ft.) Pipe length = 14.41(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.972(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.972(CFS) Normal flow depth in pipe = 4.84(In.) Plow top width inside pipe = 11.77(In.) Critical Depth = 7.19(In.) Pipe flow velocity = 6.65(Pt/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 10.74 min. ++++ + + ++++ + ++++ + + +++ ++++++++++ + +++ +++++++^.^.^.^..^.^.^,^^_^_^_^_^_j__^_^_i__^_^_^_^_^_^_^^^_^^^ Process from Point/Station 716.000 to Point/Station 718 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 64 36(Ft ) ownstream point/station elevation = 64 lo(Ft ) ipe length = 17.61(Ft.) Manning's J'^o oil No. of pipes = 1 Required pipe flow = i 972(CPS) Given pipe size = 12.00(In ) 1-972(CFS) Calculated individual pipe flow = 1 972(cPS) Normal flow depth in pipe = 5 17(m ^'^^^^^^^^ Flow top width inside pipe = 11.88(In ) Critical Depth = 7.19(in.) Pipe flow velocity = 6.'09(Pt/s) Travel time through pipe = o.05 min Time of concentration (TC) = 10.79 min. Upstream point/station elevation = i4 10 (pt ) ' ' Downstream point/station elevation = 63 70(Ft ) Pipe length = 45.35(Ft.) Manning's N'=O Oil No. of pipes = 1 Required pipe flow = 1 972(CPS) Given pipe size = 12.00(In ) 1-972(CPS) Calculated individual pipe flow = 1 972fcpq) Normal flow depth in pipe = 5 99(In ^'^'^^^^^^ Flow top width inside pipe = 12.00(In.) Critical Depth = 7.19(in.) Pipe flow velocity = 5.03(Ft/s) Travel time through pipe = o.l5 min Time of concentration (TC) = 10.94 min. ^:::::r^;:r;:i;:;=;:;i;r"*^*;^:^;:r;r;:-;;^:-t^ **** SUBAREA FLOW ADDITION **** Pomt/Statlon 720.000 Time of concentration = 10 94 min SioffioSflciiS u%ed forl:^""'"'^' ' Su.ar,. runoff ""o . Osl (SsPf-r' "'^ O^'^^rr " = Total runoff, .,„,,,ep., Total aref!'' ^:::::r^:™;::;t"st«t:r****".*r;™\*r;:i;;;s;:;" **** SUBAREA FLOW ADDITION **** Pomt/Station 720.000 ^jy^ifi^V^^^ Time of concentration = 10.94 min. Rainfall intensity = 2 545fTn/H-J-\ Runoff coefficient u<,erl frCA I ^ ^^^^ ^torm subarea ^^1. f 68 (Ss)-^^r' "l^^oo (Ar ^'^ = "^^^ Total runoff = 2.224(CFS) Total arei!'^ I.28(AC.) ++ +++++++++ +++ + +++++,,,,,^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^ Process from Point/Station 720.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 118 .000 Upstream point/station elevation = 63.70(Ft.) Downstream point/station elevation = 62.43(Ft.) Pipe length = 87.30(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 2.224(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 2.224(CFS) Normal flow depth in pipe = 5.55(In.) Flow top width inside pipe = 11.97(In.) Critical Depth = 7.65(In.) Pipe flow velocity = 6.25(Pt/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 11.17 min. + + + + + + + + + + +++++ + + + + + + + + .^^.^.^.^.^^^^^^_^_j__^^^^_^_^^^_^_^_^^_^_^_^_^^^^^_^_^^_^_^^^_^_^_^_^_^^_^ Process from Point/Station 118.000 to Point/Station 118 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.280(Ac.) Runoff from this stream = 2.224(CFS) Time of concentration = 11.17 min. Rainfall intensity = 2.510(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 4 . 950 20 .80 1.681 2 0 . 720 9 .44 2 . 798 3 2 .224 11 . 17 2.510 Qmax(l) = 1 . 000 * 1 . 000 * 4 .950) + 0 .601 * 1 . 000 * 0 .720) + 0, .670 * 1. .000 * 2 .224) + = Qmax(2) = 1, ,000 * 0 , ,454 * 4 . 950) + 1 . , 000 * 1. .000 * 0 , . 720) + 1. 000 * 0. , 845 * 2 . .224) + = Qmax(3) = 1. 000 * 0. 537 * 4 . ,950) + 0 . 897 * 1. 000 * 0 . ,720) + 1. 000 * 1. 000 * 2 . 224) + = 6.872 4.847 5.52S Total of 3 main streams to confluence: Flow rates before confluence point: 4.950 0.720 2.224 Maximum flow rates at confluence using above data: 6-872 4.847 5.528 Area of streams before confluence: 4.200 0.380 1.280 Results of confluence: Total flow rate = 6.872(CFS) Time of concentration = 20.803 min. Effective stream area after confluence = 5.860(Ac. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4 + + + + + + + + + + + + + + + + + .^.^.^.^.^.^.^,^_^_l^_j_ Process from Point/Station 118.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 62.18(Ft.) Downstream point/station elevation = 61.97(Ft.) Pipe length = 26.25(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 6.872(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.872(CPS) Normal flow depth in pipe = 8.81(In.) Plow top width inside pipe = 23.13(In.) Critical Depth = 11.16(In.) Pipe flow velocity = 6.58(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 20.87 min. ++ +++ +++ ++++++++++++++++ +++ +++++ + ++++ + + + + + + + ++++++ +++++ + + ++++++++.^.^.^.^.^ Process from Point/Station 120.000 to Point/Station 120.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 2 0.87 min. Rainfall intensity = 1.677(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.122(CFS) for 0.110(Ac.) Total runoff = 6.993(CFS) Total area = 5.97(Ac.) "•••*•++++++++++ +++++++++++++++++++++ ++++++ + + ++++++++ + +++++++++++ + +++ +++++ Process from Point/Station 120.000 to Point/Station 122.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 61.97(Ft.) Downstream point/station elevation = 61.80(Ft.) Pipe length = 16.23(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 6.993(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.993(CPS) Normal flow depth in pipe = 8.27(In.) Flow top width inside pipe = 22.81(In.) Critical Depth = 11.27(In.) Pipe flow velocity = 7.28(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 20.91 min. +++++++++++ + + + ++++++++++++ +++++++++++++++++++++ + ++++++++++++.^.^.^.^.^.^.^.^.1..^ Process from Point/Station 122.000 to Point/Station 124.000 PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 61.80(Ft.) Downstream point/station elevation = 61.50(Ft.) Pipe length = 26.08(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 6.993(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.993(CPS) Normal flow depth in pipe = 8.07(In.) Plow top width inside pipe = 22.68(In.) Critical Depth = 11.27(In.) Pipe flow velocity = 7.54(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 20.96 min. + + + ++++ + + +++++ + + + + ++++++++++ + + + +++++ + + + ++++++ ++.^.^.^,^.^.^^.^^^^^_i__^^^^_^_^ + + + + Process from Point/Station 124.000 to Point/Station 124 000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 20.96 min. Rainfall intensity = 1.672(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.265(CFS) for 0.240(Ac.) Total runoff = 7.258(CFS) Total area = 6.21(Ac.) + + +++++ + + +++ ++++ + + + +++++++ +++ ++++++ + ++++ + ++.^,^.^.^,^.^.^^^^_j^_j__i__^_^_i__^_^_^^^_^^_^_^_^_^ Process from Point/Station 124.000 to Point/Station 124 000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 20.96 min. Rainfall intensity = 1.672(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.033(CPS) for 0.030(Ac.) Total runoff = 7.291(CFS) Total area = 6.24(Ac.) ++++++++++++++++++++++++++++ + +++++++++++++++ + .^..^.^.^.^.^.^.^^^_i_^_^_^^_i__i__i^^_^_^^_^_^_^ Process from Point/Station 124.000 to Point/Station 126 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 61.50(Ft.) Downstream point/station elevation = 60.82(Ft.) Pipe length = 54.85(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.291(CPS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 7.291(CPS) Normal flow depth in pipe = 8.84(In.) Flow top width inside pipe = 23.15(In.) Critical Depth = 11.49(In.) Pipe flow velocity = 6.94 (Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 21.10 min. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4 + + + + + + + + + + + + + + + + .^.^.^^..^ Process from Point/Station 126.000 to Point/Station 128.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.82(Ft.) Downstream point/station elevation = 60.32(Pt.) Pipe length = 41.91(Pt.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.2 91 (CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 7.291(CFS) Normal flow depth in pipe = 8.93(In.) Flow top width inside pipe = 23.20(In.) Critical Depth = 11.49(In.) Pipe flow velocity = 6.84(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 21.20 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 21.20 min. Rainfall intensity = 1.660(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.197 (CFS) for 0.180(Ac.) Total runoff = 7.489(CFS) Total area = 6.42(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.32(Ft.) Downstream point/station elevation = 57.38(Pt.) Pipe length = 87.63(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.489(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 7.489(CFS) Normal flow depth in pipe = 6.91(In.) Flow top width inside pipe = 21.73(In.) Critical Depth = 11.67(In.) Pipe flow velocity = 10.01(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 21.34 min. ++ +++ + +++ +++-*•+ +++++++ + + + + + + + +++++ ++++++++++++++++++ + + + ++++++++++++++++ Process from Point/Station 130.000 to Point/Station 132.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 57.58(Ft.) Downstream point/station elevation = 56.78(Ft.) Pipe length = 22.34(Pt.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.489(CPS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 7.489(CFS) Normal flow depth in pipe = 6.80(In.) Flow top width inside pipe = 21.63(In.) Critical Depth = 11.67(In.) Pipe flow velocity = 10.24(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 21.38 min. + + + + + +++ + + + +++++ + + ++++ + + + + + + + + +++ + + + + + + +++.^.^.^.^.^_^^^^^^^^_^_i__^^^^_^_^_^_^_^^^_^^ Process from Point/Station 132.000 to Point/Station 134 000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 56.78(Ft.) Downstream point elevation = 46.00(Ft.) Channel length thru subarea = 182.80(Ft.) Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 7.599(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 1.500(Pt.) Flow(q) thru subarea = 7.599(CPS) Depth of flow = 0.409(Ft.), Average velocity = 4.860(Ft/s) Channel flow top width = 4.638(Ft.) Flow Velocity = 4.86(Pt/s) Travel time = 0.63 min. Time of concentration = 22.01 min. Critical depth = 0.516(Pt.) Adding area flow to channel User specified 'C value of 0.660 given for subarea Rainfall intensity = 1.621 (In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.203(CFS) for 0.190(Ac.) Total runoff = 7.692(CFS) Total area = 6 61(Ac ) ++++++++++++++++4++++++++++4++++++++++++4+++++++++++++++++++++++++++4+ Process from Point/Station 134.000 to Point/Station 134 000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 22.01 min. Rainfall intensity = 1.621(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.546(CFS) for 0.510(Ac.) Total runoff = 8.237(CFS) Total area = 7 12(Ac ) ++ +++++ + ++++ + ++++++++ ++++++ + + +++++ + + ++++++ + + .^.^.^.^.^^^^^_^_j__^^_i__^^_^_i__^_i__^^_^_^_^^ Process from Point/Station 904.000 to Point/Station 134 ooo **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 56.70(Ft.) Downstream point elevation = 46.00(Pt.) Channel length thru subarea = 218.19(Pt.) Channel base width = 3.000(Pt.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 8.411(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 1.500(Ft.) Flow(q) thru subarea = 8.411 (CFS) Depth of flow = 0.457(Ft.), Average velocity = 4.708(Ft/s) Channel flow top width = 4.826 (Ft.) Plow Velocity = 4.71(Ft/s) Travel time = 0.77 min. Time of concentration = 22.78 min. Critical depth = 0.547(Ft.) Adding area flow to channel User specified 'C value of 0.660 given for subarea Rainfall intensity = 1.585(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.314(CFS) for 0.300(Ac.) Total runoff = 8.551(CFS) Total area = 7.42(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 136.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 46.00 (Ft.) Downstream point/station elevation = 41.19 (Ft.) Pipe length = 20.31(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8,551(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 8.551 (CFS) Normal flow depth in pipe = 4.98(In.) Flow top width inside pipe = 16.11(In.) Critical Depth = 13.58(In.) Pipe flow velocity = 21.47(Pt/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 22.80 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 136.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 7.420(Ac.) Runoff from this stream = 8.551(CFS) Time of concentration = 22.80 min. Rainfall intensity = 1.584(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1000.000 to Point/Station 1000.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea Rainfall intensity (I) = 1.763 for a User specified values are as follows: TC = 19.31 min. Rain intensity = Total area = 1.77(Ac.) Total runoff = 10.0 year storm 1.76(In/Hr) 1.84(CFS) + + + ++++ + + + + + + + + + + + + + +++ + + + + + + + + ++++++ +++++ +++++++ + +++ + -•-++ + + + + + + + + + -'""'""'••'" Process from Point/Station 1000.000 to Point/Station 1000.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: 1.770(Ac.) 1.840(CPS) 19.31 min. 1.763(In/Hr) Stream No. Plow rate (CPS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 8 .551 1 .840 1.000 0 .898 1 . 000 1.000 22 . 80 19 .31 1.000 * 1.000 * 0.847 * 1.000 * 1 .584 1.763 8.551) + 1.840) + 8.551) + 1.840) + 10.204 9.084 Total of 2 main streams to confluence: Flow rates before confluence point: 8.551 1.840 Maximum flow rates at confluence using above data: 10.204 9.084 Area of streams before confluence: 7.420 1.770 Results of confluence: Total flow rate = 10.204(CFS) Time of concentration = 22.796 min. Effective stream area after confluence 9.190(Ac.) +++ + + + + +++++++++++++ ++++++ + +++ + + + + + +++++++ + + + + + ++++ +++ + ++++ +++-'"•*- + "*""*• + •*""'" Process from Point/Station 136.000 to Point/Station 136.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 22.80 min. Rainfall intensity = 1.584(In/Hr) for a 10.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C Subarea runoff = 0.105(CFS) for 0.100(Ac.) Total runoff = 10.309(CFS) Total area = 9.29(Ac. = 0.660 +++++++++++++++++++++++_^.^.^.^^_^_^^^^^^_^_^_^_^_^_^_^_^_^_^_^^_^_^^_^_^_^^_^^^_^^_^_^^_^^^_^^^^^ Process from Point/Station 136.000 to Point/Station 138 000 PIPEFLOW TRAVEL TIME (User specified size) **** * * * * Upstream point/station elevation = 41.19(Ft.) Downstream point/station elevation = 30.97(Ft.) Pipe length = 40.58(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.309(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 10.309(CFS) Normal flow depth in pipe = 5.40(In.) Flow top width inside pipe = 16.49(In.) Critical Depth = 14.82(In.) Pipe flow velocity = 23.14(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 22.82 min. +++ + + + + +++ ++++++++ +++++++++ + +++++ + +++++ + +++++++.^,.^.^.^.^.^,^_^^^^_^_i__^_^_^^_i__^^_^_^^ Process from Point/Station 138.000 to Point/Station 138 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.2 90(Ac.) Runoff from this stream = 10.309(CFS) Time of concentration = 22.82 min. Rainfall intensity = 1.583(In/Hr) Program is now starting with Main Stream No. 2 ++ +++++++++++++++++++ + ++++++ + +++++++++++++++++++.j..^.^.^_^.^..^^_^^_^_i__i__^_i__i__^_^^_^^_^ Process from Point/Station 1002.000 to Point/Station 1002.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea ^ —-Vl^ Rainfall intensity (I) = 3.470 for a 10.0 year storm 5^^"^^ User specified values are as follows: X >» A-TA_ 4 TC = 6.76 min. Rain intensity = 3.47 (In/Hr) piL^SrC Total area = 0.17(Ac.) Total runoff = 0.22(CFS) +++++++++++++++++++++++++++++++++++++++++++++++.^.^.^..^.^,^^^^^_^^_j^^_^_^_i__i__^_^_^_^^-^ Process from Point/Station 138.000 to Point/Station 138 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.170(Ac.) Runoff from this stream = 0.220(CFS) Time of concentration = 6.76 min. Rainfall intensity = 3.470(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.309 22.82 1.583 2 0.220 6.76 3.470 Qmax(1) = 1.000 * 1.000 * 10.309) + 0.456 * 1.000 * 0.220) + = 10.409 Qmax(2) = 1.000 * 0.296 * 10.309) + 1.000 * 1.000 * 0.220) + = 3.273 Total of 2 main streams to confluence: Plow rates before confluence point: 10.309 0.220 Maximum flow rates at confluence using above data: 10.409 3.273 Area of streams before confluence: 9.290 0.170 Results of confluence: Total flow rate = 10.409(CPS) Time of concentration = 22.825 min. Effective stream area after confluence = 9.460(Ac.) +++++++++++++++++++++++++++++++++44+++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 30.97(Ft.) Downstream point/station elevation = 26.50(Pt.) Pipe length = 58.38(Pt.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.409(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 10.409(CPS) Normal flow depth in pipe = 7.44(In.) Plow top width inside pipe = 17.73(In.) Critical Depth = 14.89(In.) Pipe flow velocity = 15.08(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 22.89 min. End of computations, total study area = 9.46 (Ac.) P 6dt^\ ID •Uf^i^: „ .'S>2 !?) ^: > X I 9^ ^ ie/k. rjii_r_^ .^^ ^ , 1 •ID, ^,<.^>l•A . 3i:.y\'/-., •-^-••feimLLDj^ hMk.. (S^ "^^^^ u I"'t .1,, 1 1 -.^.^l Q..inA A S::.A^'^^'^\^C]A A^ A f^'"^'^ ^ 1'""'*^ !'/„. FLOOD HYDROGRAPH ROUTING PROGRAM Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2001 Study date: 05/12/05 6 HOUR 10 YEAR STORM THE BLUFFS 01-1022 PILE:BLUPPS10YR.OUT 05/12/05 BY:CSO O'Day Consultants, Carlsbad, California - S/N "768 ********************* HYDROGRAPH INFORMATION'****************^'^^^^^r Prom study/file name: lOYRHYD rte ********************** Hydrograph Information ************************ Prom manual input hydrograph **************************^,jjYDROGRAPH DATA**************************** Number of intervals = 114 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 8.540 (CPS) Total volume = 0.3 60 (Ac.Pt) Status of hydrographs being held in storage Peak (CPS) ^^""^^n nnn^^""^^" ' ^'^^^"^ ^ ^'^^^^^ * stream 5 Vol (Ac.Pt) 0.000 0.000 0.000 0 000 0 000 **************************,,,,,,,,,,^^^^^^^^^^^^^^^^^o.ooo^^^^^o.ooo^ + + + + + + + + + + + + + + + + .,^^^^^^^^^^^_^^^_^_^^^_^^^^^^_^ Process from Point/Station 1 ooo to Point/staMor o nnn **** RETARDING BASIN ROUTING **** Point/Station 2.000 User entry of depth-outflow-storage data Total number of inflow hydrograph intervals = 114 Hydrograph time unit = 1.000 (Min.) Initial depth in storage basin = 0.00(Ft.) Initial basin depth = 0.00 (Ft.) Initial basin storage = 0.00 (Ac.Ft) Initial basin outflow = 0.00 (CFS) Depth vs. Storage and Depth vs. Discharge data- Basm Depth Storage Outflow (S-0*dt/2) (S+0*dt/2) (Ft.) (Ac.Pt) (CPS) (Ac.Ft) (Ac.Pt) 0.000 0.000 0.000 0.000 o"ooo'"' 0 . 800 1. 1. 1. 1, 1, , 000 ,200 .400 .600 ,800 2 . 000 2 .200 2.400 0 . 007 0 . 010 0. 014 0 . 018 0 . 022 0.027 0.032 0 . 038 0 . 048 . 976 . 977 . 978 . 979 . 980 ,981 , 982 983 984 0.002 0 . 005 0 . 009 0.013 0 . 017 0.022 0 . 027 0 . 033 0 . 043 0.012 0 . 015 0 . 019 0 . 023 0 . 027 0.032 0.037 0 . 043 0.053 Hydrograph Detention Basin Routing Graph values: '1'= unit inflow; 'O'=outflow at time shown Time (Hours) 0.017 0.033 0 . 050 0. 067 0.083 0 .100 0 .117 0.133 0.150 0.167 0 .183 0.200 0 .217 0.233 0.250 0.267 0.283 0.300 0.317 0.333 0.350 0.367 0.383 0 .400 0 .417 0.433 0 .450 0.467 0.483 0 .500 0.517 0.533 0 .550 0.567 0.583 0.600 0.617 0 .633 0 . 650 0.667 Inflow (CPS) 0.00 0 .11 0.23 0.45 0 . 71 1 1 1 2 , 2 . 3 , 3 . 4 . 5. 00 34 70 15 60 18 78 45 16 5.84 6.44 7.03 7 .44 7 . 85 8 .12 8.35 8.48 8.52 8.54 8 . 51 8.47 8.26 8 . 03 78 52 25 95 64 26 89 5.45 5.00 4 .59 4 .22 3 . 87 Outflow (CFS) 0.00 0 . 04 0 .15 0.30 0.53 0 . 79 1.10 1.44 1.84 2.27 2 . 78 3 .35 3.97 4.65 .34 . 99 ,60 . 98 6 . 98 6.98 6.98 6 . 98 6 . 98 6.98 6.98 6 . 98 6 . 98 6.98 6 . 98 6 . 98 .98 ,98 98 98 ,98 , 98 5. 5 . 6. 6 . 6 , 6 , 6. 6. 6. 6 . 6 . 98 6 . 98 6.98 6 . 98 Storage (Ac.Pt) 0.000 0.000 0 . 000 0 . 000 0.001 0 . 001 0 . 001 0.001 0 . 002 0 . 002 0 . 003 0.003 0 . 004 0 .005 0.005 0 . 006 0 . 007 0 . 007 0 . 008 0 . 010 0 . Oil 0 . 013 0 . 015 0.017 0.020 0.022 0.024 0 . 025 0 . 026 0 . 027 0 . 028 0 . 028 0.028 0.027 0.026 0.024 0.022 0 . 019 0 . 015 0.011 2.1 4.27 O 01 01 01 01 O I 01 01 O I o O I 01 6.40 O I O I Depth .54 (Ft.) 0 . 00 0.01 0.02 0 . 03 0 . 06 0 . 09 0.13 0 .17 0.21 0.26 0.32 0.38 0.46 0.53 0.61 0.69 0 . 76 01 1 0 . 82 0 I 1 0 . 88 0 I 1 0.97 o 11 1.06 0 11 1.16 o 11 1.27 o 11 1.37 o 11 1.48 0 11 1.59 o I 1 1.66 0 I 1 1. 73 0 I 1 1. 78 0 I 1 1. 82 01 1 1.84 0 1 1.85 ^ 0 1 1.83 0 1 1.81 0 1 1.76 0 1 1.68 o 1 1.58 o 1 1.43 o 1 1.26 0 1. 05 0 .683 3 . 61 6 . 75 0 . 007 1 0 . 700 3 .35 4 . 09 0 . 004 1 0 . 717 3 . 12 3 .39 0 . 003 1 0 . 733 2 . 89 3 . 08 0 .003 1 0 . 750 2 .69 2 . 84 0 . 003 1 0 . 767 2 .51 2 .65 0 . 003 1 0 . 783 2 .34 2 .47 0 .002 1 0 . 300 2 . 21 2 .31 0 . 002 0 . 817 2 . 08 2 . 18 0 . 002 1 I 0 . 833 1 . 95 2 .04 0 .002 i 0 0 . 850 1 . 82 1 . 91 0 . 002 1 10 0 . 867 1 . 70 1 . 79 0 . 002 i 0 0 . 883 1 . 59 1 . 67 0 . 002 1 10 0 . 900 1 .48 1 .56 0 . 002 1 0 0.917 1 .36 1 .45 0 .001 1 0 0.933 1 .26 1 .34 0 . 001 1 10 0 . 950 1 . 19 1 .25 0 . 001 1 0 0 . 967 1 . 11 1 . 17 0 . 001 i 0 0 . 983 1 . 04 1 .09 0 .001 1 10 1.000 0 . 96 1 . 02 0 .001 1 0 1. 017 0 . 90 0 . 95 0 . 001 1 0 1. 033 0 . 84 0 . 88 0 . 001 1 0 1. 050 0 . 79 0 . 83 0 . 001 1 10 1. 067 0 . 73 0 . 77 0 . 001 i o 1. 083 0 .68 0 .72 0 . 001 1 o 1.100 0 .63 0 .67 0 . 001 1 0 1.117 0 . 58 0 62 0 001 1 0 1 .133 0 . 54 0 57 0 001 1 0 1. 150 0 .49 0 53 0 001 |o 1 . 167 0 45 0 48 0 000 jo 1.183 0 43 0 45 0 000 jo 1.200 0 40 0 42 0 000 jo 1.217 0 37 0 39 0 000 jo 1 .233 0 34 0 36 0 000 |o 1 .250 0 32 0 34 0 000 jo 1.267 0 30 0 31 0 000 jo 1.283 0 28 0 29 0 000 jo 1.300 0 26 0 27 0 . 000 IO 1.317 0 24 0 . 25 0. 000 0 1.333 0 23 0. 24 0 . 000 0 1.350 0 . 21 0 . 22 0 . 000 0 1.367 0 . 20 0 . 21 0 . 000 o 1.383 0. 18 0 . 19 0 . 000 0 1.400 0 . 17 0 . 18 0 . 000 0 1 1.417 0 . 16 0 . 17 0 . 000 o j 1.433 0 . 15 0 . 16 0 . 000 0 j 1.450 0 . 14 0 . 15 0 . 000 o i 1.4-67 0 . 13 0 . 14 0 . 000 o 1 1.483 0 . 12 0 . 13 0 . 000 0 1 1.500 0 . 11 0 . 12 0 . 000 0 j 1 .517 0 . 10 0. 11 0 . 000 0 1 1. 533 0 . 10 0. 10 0 . 000 0 1 1.550 0 . 09 0 . 10 0 . 000 o 1 1. 567 0 . 09 0. 09 0. 000 0 i 1.583 0 . 08 0 . 09 0 . 000 0 1 1. 600 0 . 08 0 . 08 0 . 000 0 j 1.617 0 . 08 0 . 08 0 . 000 0 I 10 10 o o o 10 o 0 . 77 0.47 0.39 0.35 0 . 33 0 .30 0.28 0.26 0.25 0 .23 0 .22 0.21 0 .19 0 . 18 0 .17 0.15 0 . 14 0 .13 0 .13 0 . 12 0 .11 0 .10 0 . 09 0 .09 0 . 08 0 . 08 0 . 07 0 . 07 0 . 06 0 . 06 0.05 0.05 0 . 04 0 . 04 0.04 0 . 04 0.03 0.03 0 . 03 0 . 03 0.03 0 . 02 0 . 02 0.02 0 . 02 0 . 02 0 . 02 0 . 02 0 . 01 0 . 01 0 .01 0 . 01 0.01 0. 01 0 . 01 0.01 0 . 01 1 633 0 07 0 08 0 000 0 1 1 1 1 0 01 1 650 0 07 0 07 0 000 0 j j 1 i 0 01 1 667 0 06 0 07 0 000 0 1 j j i 0 01 1 683 0 06 0 06 0 000 0 j j j j 0 01 1 700 0 06 0 06 0 000 0 1 j j j 0 01 1 717 0 05 0 06 0 000 0 j j j 1 ^ 01 1 73 3 0 05 0 05 0 000 0 1 j j 1 0 01 1 750 0 05 0 05 0 000 0 i j j 1 0 01 1 76 7 0 04 0 05 0 000 0 j 1 j i 0 01 1 783 0 04 0 04 0 000 0 1 i j i 0 00 1 800 0 03 0 04 0 000 0 1 j 1 j 0 00 1 817 0 03 0 03 0 000 0 j j i 1 0 00 1 833 0 02 0 03 0 000 0 1 j i 1 0 00 1 850 0 02 0 02 0 000 o j 1 j 1 0 00 1 867 0 01 0 02 0 000 o j j j i ^ 00 1 883 0 01 0 01 0 000 0 1 j 1 1 0 00 1 900 0 00 0 01 0 .000 0 j j 1 j 0 00 1 917 0 00 0 00 0 000 0 j j 1 i 0 00 ****************************HYDROGRAPH DATA**************************** Number of intervals = 115 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 6.981 (CPS) Total volume = 0.360 (Ac.Ft) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Peak (CFS) 0.000 0.000 0.000 0.000 0.000 Vol (Ac.Pt) 0.000 0.000 0.000 0.000 0.000 *********************************************************************** 10-YEAR HYDROGRAPH 01-1022 THE BLUFFS 22.8 qp= 8.55 q calc) Wp q/qp t q t qi qz ti 12 q 0 0 0 0 2.28 0.2565 0 0 0.2565 0 2.28 0.00 0.1 0.03 2.28 0.2565 4.56 0.S55 1 0 0.2565 0 2.28 0.11 0.2 0.1 4.56 0.855 6.84 1.6245 2 0 0.2565 0 2.28 0.23 0.3 0.19 6.84 1.6245 9.12 2.6505 3 0.2565 0.865 2.28 4.56 0.45 0.4 0.31 9.12 2.6505 11.4 4.0185 4 0.2565 0.855 2.28 4.56 0.71 0.5 0.47 11.4 4.0185 13.68 5.643 5 0.B5S 1.6245 4.56 6.84 1.00 0.6 0.65 13.68 5.643 15.96 7,011 6 0.855 1.6245 4.56 6.84 1.34 0.7 0.82 15.96 7.011 18.24 7.9515 7 1.6245 2.6505 6.84 9.12 1.70 0.8 0.93 18.24 7.9515 20.52 8.4645 8 1.6245 2.6505 6.84 9.12 2.15 0.9 0.99 20.52 8.4645 22.8 8.55 9 1.6245 2.6605 6.84 9.12 2.60 1 1 22.8 8.55 25.08 8.4645 10 2.6505 4.0185 9.12 11.4 3.18 1.1 0.99 25.08 8.4645 27.36 7.9515 11 2.6505 4.0185 9.12 11.4 3.78 1.2 0.93 27.36 7.9515 29.64 7.353 12 4.0185 5.643 11.4 13.68 4.45 1.3 0.86 29.64 7.363 31.92 6.669 13 4.0185 5.643 11.4 13.68 5.16 1.4 0,78 31.92 6.669 34.2 6.814 14 6.643 7.011 13.68 16.96 5.84 1.6 0.68 34.2 5.814 36.48 4.788 15 5.643 7.011 13.68 15.96 6.44 1.6 0.56 36.48 4.788 38.76 3.933 16 7.011 7.9515 15.96 18.24 7.03 1.7 0.46 38.76 3.933 41.04 3.3345 17 7.011 7.9515 15.96 18.24 7.44 1.8 0.39 41.04 3.3345 43.32 2.8215 18 7.011 7.9515 15.96 18.24 7.85 1.9 0.33 43.32 2.8215 45.6 2.394 19 7.9515 8.4645 18.24 20.52 8.12 2 0.28 45.6 2.394 50.16 1.7955 20 7.9515 8.4645 18.24 20.52 8.35 2.2 0.21 50.16 1.7955 54.72 1.2825 21 8.4646 8.55 20.52 22.8 8,48 2.4 0.1S 54,72 1.2825 59.28 0.9405 22 8.4645 8.55 20.52 22.8 8.52 2.6 0.11 59.28 0.9405 63.84 0.684 23 8.56 8.4645 22.8 25.08 8.54 2.8 0.08 63.84 0.684 68.4 0.47025 24 8.55 8.4645 22.8 25.08 8.51 3 0.055 68.4 0.47025 72,96 0.342 25 8.56 8.4645 22.8 25.08 8.47 3.2 0.04 72.96 0.342 77.52 0.24795 26 8.4646 7.9515 25.08 27.36 8.26 3.4 0.029 77.52 0.24795 82.08 0.17955 27 8.4645 7.9515 25.08 27.36 8.03 3.6 0.021 82.08 0.17955 86.64 0.12825 28 7.9616 7.353 27.36 29.64 7.78 3.8 0.015 86.64 0.12825 91.2 0.09405 29 7.9515 7.363 27.36 29.64 7.52 4 0.011 91.2 0.09405 104.88 0.04275 30 7.353 6.669 29.64 31.92 7.25 4.6 0.005 104.88 0.04275 114 0 31 7.363 6.669 29.64 31.92 6.96 5 0 114 0 0 0 32 6.669 5.814 31.92 34.2 6.64 33 6.669 5.814 31.92 34.2 6.26 34 6.669 5.814 31.92 34.2 5.89 35 5.814 4.788 34.2 36.48 5.45 36 5.814 4.788 34.2 36.48 5.00 37 4.788 3.933 36.48 38.76 4.59 38 4.788 3.933 36.48 38.76 4.22 39 3.933 3.3345 38.76 41.04 3.87 40 3.933 3.3345 38.76 41.04 3.61 41 3.933 3.3345 38.76 41.04 3.35 42 3.3345 2.8215 41.04 43.32 3.12 43 3.3345 2.8215 41.04 43.32 2.89 44 2.8216 2.394 43.32 46.6 2.69 45 2.8215 2.394 43.32 45.6 2.51 46 2.394 1.7956 45.6 50.16 2.34 47 2.394 1.7965 45.6 50.16 2.21 48 2.394 1.7966 46.6 50.16 2.08 49 2.394 1.7966 45.6 50.16 1.95 50 2.394 1.7956 45.6 50.16 1.82 61 1.7955 1.2826 50.16 54.72 1.70 52 1.7955 1.2825 50.16 54.72 1.59 63 1.7966 1.2825 50.16 54.72 1.48 54 1.7955 1.2825 50.16 64.72 1.36 55 1.2826 0.9405 54.72 59.28 1.26 56 1.2826 0.9405 54.72 69.28 1.19 57 1.2825 0.9405 54.72 59.28 1.11 58 1.2825 0.9405 54.72 59.28 1.04 59 1.2825 0.9405 54.72 69.28 0.96 60 0.9405 0.684 59.28 63.84 0.90 61 0.9405 0.684 69.28 63.84 0.84 62 0.9405 0.684 69.28 63.84 0.79 63 0.9405 0.684 59.28 63.84 0.73 ti f • 10-YEAR HYDROGRAPH 01-1022 THE BLUFFS 1 1 64 0.684 0,47026 63.84 68.4 0.68 ; ! 65 0.684 0.47025 63.84 68.4 0.63 ( 1 i 66 0.684 0.47025 63.84 68.4 0.68 [ 67 0.684 0,47025 63.84 68.4 0.54 68 0.684 0.47026 63.84 68.4 0.49 69 0.47025 0.342 68.4 72.96 0.45 1 1 70 0.47025 0.342 68.4 72,96 0.43 1 ^ , 71 0.47025 0.342 68.4 72.96 0.40 i 1 72 0.47025 0.342 68.4 72,96 0.37 73 0.342 0.24796 72.96 77.52 0.34 i 74 0.342 0.24796 72.96 77.62 0.32 75 0.342 0.24796 72.96 77.62 0.30 [ i 76 '0.342 0.24795 72.96 77.52 0.28 77 0.342 0.24796 72.96 77.62 0.26 i 1 78 0.24795 0.17955 77.52 82.08 0.24 1 1 79 0.24795 0.17956 77.52 82.08 0.23 : 1 80 0.24795 0.17966 77.52 82.08 0.21 ! ! 81 0.24795 0.17955 77.52 82.08 0.20 1 i 82 0.24795 0.17955 77.52 82.08 0.18 83 0.17955 0.12826 82.08 86.64 0.17 i ' i 84 0.17956 0.12825 82.08 86.64 0.16 85 0.17955 0.12826 82.08 86.64 0.15 [ ; 1 85 0.17956 0.12825 82.08 86.64 0.14 i 87 0.12825 0.09405 86.64 91.2 0.13 i i i 88 0.12826 0.094O5 86.64 91.2 0.12 i : i 1 89 0.12825 0.09406 86.64 91.2 0.11 90 0,12825 0.09405 86.64 91.2 0.10 1 p—- ^ 1 91 0.12826 0.09405 86.64 91.2 0.10 ! 1 1 1 92 0.09405 0.04275 91.2 104.88 0.09 1 ! 1 1 93 0.09405 0.04275 91.2 104.88 0.09 1 ; I ! 94 0.09406 0.04275 91.2 104.88 0.08 ; i 95, 0.09405 0.04275 91.2 104.88 0.08 ] ; i 96 0.09405 0.04275 91.2 104.88 0.08 \ ! i 97 0.09405 0.04275 91.2 104.88 0.07 \ 1 i 98 0.09405 0.04275 91.2 104.88 0.07 99 0.09405 0,04275 91.2 104.88 0.06 ! r 1 j 1 1 100 0.09405 0.04275 91.2 104.88 0.06 ; ; j 101 0.09405 0.04275 91.2 104.88 0.06 I 102 0.09405 0.04275 91,2 104.88 0.05 \ 103 0.09405 0.04276 91.2 104.88 0.05 1 104 0.09405 0.04276 91.2 104.88 0.05 105 0.04276 0 104.88 114 0.04 i i 106 0.04275 0 104.88 114 0.04 i 107 0,04275 0 104.88 114 0.03 108 0.04276 0 104.88 114 0.03 i i ^ i 1 109 0.04275 0 104.88 114 0.02 ! ^ I 110 0.04275 0 104.88 114 0.02 111 0.04276 0 104.88 114 0.01 112 0.04275 0 104.88 114 0.01 ! • : ! 113 0.04275 0 104.88 114 0.00 ; ; ; i 114 0 0 114 0 0.00 : ; i : 115 0 0 114 0 0.00 "T""'" • • • : ; i 116 0; 0 114 0 0.00 ' ' I I 1 117 01 0 114 0 0.00 118 0| 0 114 0 0.00 119 Oi 0 114 0 0.00 120 oi 0 114 0 0.00 121 Oi 0 114 0 0.00 122 Oi 0 114 0 0.00 1 1 1 123 0 0 0 114 ""114 0 0.00 ' I I \ \ ' \ 124 0 0 0 114 ""114 0 0.00 125 oi 0 114 0 0.00 1261 Oj 0 114 0 0.00 ' : [ I \ : \ 1271 0; 0 114 0 0.00 SECTION 5 ^i-^miAii ,Ca-Ji;Ea,(2a' '2... icM^. '^h^M .hAjdl) .|4£),m. ,.,102. AlA. >AiX m ^ £M£A^. i:.,.-iL,45:..rvii^._ Q-CAA _ ^ ^ ^ ^ , c It l.i'^A'^ f^j^i^lMl ,1^ "^'^P.^^:^ „_ V-OL.. .iAoX^ 2£0 -lb (dq?(:$ •2£>\ .,„.„ ^eC ^^>\CaV /jz^iy ^^\D^^5mi'^' A}^3A ]i!S^tkk=l-,^„__. kM& ,, L/>l'-iu Cv^ 0*C-]r-- 'V'-- Lt-i^yfA ^ ^?i^.4 bo^s - , 1. ''i u'V.fj^--- -^(O.A-^ 'AA-A-Ai^ I.Sl) '(3/ pkm. ^i-^ ,,...,.2o,i„ aA. J-^ -^A ^..,,„.. _ 3 CO:i^^)C '2' ^^:>)L2i.t'l.i + 0. 'A±..^.n^..^.A ,S.„33 .{liitMlll fe^ X' ' !' 1. ' : ^ • yA Ws.t^A Bf\(^ ,!4o£)e, ^1 -Ao MODE:. •^r?.o'2- „ ., ..,.,^„-,...,- Z.;^, AM'AB.S=±A 5,f„i,,i,t...] kQ[2± ,2a^-.53.,,,,.lk,^d4id.l^%^^^^ ''. .''"^ --^ ZfjA:j -?AA:A.:Z2J.'A^. .,.LAJA^.i:iA _ ^ ^ s_,ioarii y^zA^lA^ IAIC..^ ^u^^dAO^^iMmA , , iA Hh.. 4^^...a,ni,:k _ - A),A\ VV:. • \ ^ ^.^..^^ Q-A^k _ _ _^ _ ^ _ ^ ^ Vl 1,2: ADMliAiM:^m}.. \ ^ ^ .^„,.-.^.,^„-,.,-^-.,^ .3..A..-....V^\.^ALi'kfiiii.. .. -dv.mMjsi:^^'9^.. D'OA- A-f^ San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 05/12/05 THE BLUFFS -EXISTING CONDITIONS - AREA 5 2 YEAR STORM J.N. 01-1022 FILE: G:\ACCTS\011022\EX2YR5.0UT BY:CSO DATE: 05/12/05 ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 2.0 Map data precipitation entered: 6 hour, precipitation(inches) = 1.200 24 hour precipitation(inches) = 1.800 Adjusted 6 hour precipitation (inches) = l 170 P6/P24 = 66.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method +-^ + ++++++++++++ + + + + + + + + + ++++.^+++++ + ++.^. + + + ^.^. + ++^.^_^^^_^^^_^,^^^^^_^^_^^_^^^^^^ Process from Point/Station 501.000 to Point/Station 502 000 **** USER DEFINED PLOW INFORMATION AT A POINT **** User specified -C value of 0.3 80 given for subarea ' Rainfall intensity (I) = 1.921 for a 2.0 year storm User specified values are as follows: TC = 10.41 min. Rain intensity = 1.92(In/Hr) Total area = 0.05(Ac.) Total runoff = 0.04(CFS) Process from Point/Station 502.000 to Point/Station 503 000 **** STREET PLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 85.200(Ft.) End of street segment elevation = 70.000(Ft.) Length of street segment = 610.430(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v/hz) =0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Pt.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.048(CFS) Depth of flow = 0.055(Ft.), Average velocity = 1.342(Pt/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Pt.) Flow velocity = 1.34(Pt/s) Travel time = 7.58 min. TC = 17.99 min. Adding area flow to street User specified 'C value of 0.380 given for subarea Rainfall intensity = 1.350(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.380 Subarea runoff = 0.210(CFS) for 0.410(Ac.) Total runoff = 0.250(CPS) Total area = 0.46(Ac.) Street flow at end of street = 0.250(CPS) Half street flow at end of street = 0.125(CFS) Depth of flow = 0.101(Ft.), Average velocity = 2.027(Ft/s) Plow width (from curb towards crown)= 1.500(Ft.) -t •^-^-^•f-^-^-^-^-^•f-l--)--l-+-f-H-t-+-f-f Process from Point/Station 503.000 to Point/Station 503.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.460(Ac.) Runoff from this stream = 0.250(CFS) Time of concentration = 17.99 min. Rainfall intensity = 1.350(In/Hr) Program is now starting with Main Stream No. 2 + -^+-^-^-^ + -^-^ + + -f-^-^-^-f-^-^-^^--^-^^--^-^^--^-^-l--^+-f-l--^-(--f-^^.-^--^-(--)-++.f.^+++ Process from Point/Station 301.000 to Point/Station 302.000 **** USER DEFINED PLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea Rainfall intensity (I) = 1.290 for a 2.0 year storm User specified values are as follows: TC = 19.31 min. Rain intensity = 1.29(In/Hr) Total area = 1.31(Ac.) Total runoff = 1.14(CFS) + ++++++++++++++++++ + ++++++-^4•++•+-^-^-^+-f•^+-^-^-^-l--^-^ + -f-^--(--^-^-f-f-^+-f++ Process from Point/Station 503.000 to Point/Station 503.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.310(Ac.) Runoff from this stream = 1.140(CFS) Time of concentration = 19.31 min. Rainfall intensity = 1.290(In/Hr) Summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 0 .250 17 , ,99 1, .350 2 1 .140 19 , ,31 1 , ,290 Qmax(l) = 1 . 000 * 1 , ,000 * 0 . ,250) + 1 . 000 * 0 , , 932 * 1, , 140) + = 1.312 Qmax(2) = 0 , , 955 * 1. , 000 * 0 , ,250) + 1, ,000 * 1. , 000 * 1, , 140) + = 1 .379 Total of 2 main streams to confluence: Plow rates before confluence point: 0.250 1.140 Maximum flow rates at confluence using above data: 1.312 1.379 Area of streams before confluence: 0.460 1.310 Results of confluence: Total flow rate = 1.379(CPS) Time of concentration = 19.310 min. Effective stream area after confluence End of computations, total study area = 1.770(Ac.) 1.77 (Ac.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3.2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/30/05 HYDROLOGY STUDY - THE BLUFFS 2 YEAR STORM J.N. 01-1022 FILE: G:\ACCTS\011022\2YRDS.OUT 06/30/05 BY:CSO ********* Hydrology Study Control Information ********** O'Day Consultants, San Diego, California - S/N 10125 Rational hydrology study storm event year is 2.0 Map data precipitation entered: 6 hour, precipitation(inches) = 1.200 24 hour precipitation(inches) = 1.800 Adjusted 6 hour precipitation (inches) = l 170 P6/P24 = 66.7% San Diego hydrology manual 'C values used Runoff coefficients by rational method Process from Point/Station 102.000 to Point/Station 104 000 **** INITIAL AREA EVALUATION **** User ^ specified 'C value of 0.660 given for subarea Initial subarea flow distance = 29.00(Ft.) Highest elevation = 77.73(Ft.) Lowest elevation = 77.22(Pt.) Elevation difference = 0.51(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.53 min TC = [1.8*(l.i-c)*distance".5)/(% slope"(l/3)] TC = [1.8*(1.1-0.6600)*( 29.00".5)/( 1.76"(l/3)]= 3.53 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.041(CPS) Total initial stream area = 0.020(Ac.) ++ + -^+•f-^+-^--^-f-^.f-^+-^++-^.^ +++++ + + ++++++++^..^..^.^.^^^.^.^^^^^_^._^_^_^_l_ Process from Point/Station 104.000 to Point/Station 106 000 **** STREET FLOW TRAVEL TIME + SUBAREA PLOW ADDITION **** Top of street segment elevation = 77.220(Ft.) End of street segment elevation = 73.160(Ft.) Length of street segment = 405.410(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 12.000(Pt.) Distance from crown to crossfall grade break = 10.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.02 0 Street flow is on [2] side(s) of the street Distance from curb to property line = 5.000(Pt.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Pt.) Gutter hike from flowline = 1.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.049(CPS) Depth of flow = 0.056(Ft.), Average velocity = 0.878(Pt/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Pt.) Flow velocity = 0.88(Pt/s) Travel time = 7.70 min. TC = 12.70 min. Adding area flow to street User specified 'C value of 0.660 given for subarea Rainfall intensity = 1.690(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.457(CPS) for 0.410(Ac.) Total runoff = 0.498(CFS) Total area = 0.43(Ac.) Street flow at end of street = 0.498(CFS) Half street flow at end of street = 0.249(CPS) Depth of flow = 0.131(Ft.), Average velocity = 1.301 (Ft/s) Flow width (from curb towards crown)= 3.891(Ft.) + + + + + -H-f + -f-H.f-h-h + -f + -H + -f + -f-H + -^ + ++ + + + + + + + + + + + + + + + .^.^.^.^.^^.^._^^^^_|._^^ Process from Point/Station 106.000 to Point/Station 108 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: l Stream flow area = 0.430(Ac.) Runoff from this stream = 0.498(CPS) Time of concentration = 12.70 min. Rainfall intensity = 1.690(In/Hr) Program is now starting with Main Stream No. 2 + +++-(--f-^-^-^ + -^.^-f-^+-^ + -f++-^+-^+++ + + +++++++++.^^.,^.^..^.^..^^,,^.^.^^^^^^ Process from Point/Station 202.000 to Point/Station 204.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea !• / /sv^CV^ Rainfall intensity (I) = 1.392 for a 2.0 year storm ^f'^W^Xl^^ User specified values are as follows: TC = 17.15 min. Rain intensity = 1.39 (In/Hr) Hl^lS SGCTlONi Total area = 0.51(Ac.) Total runoff = 0.48 (CPS) + ++++-f-^-^-^ + -^-^-^+.f-^++-l--f-^ + + .^+ + .^+++++ + + + + .^,^..^.+.^..^.^..^.^.^.^.^,,^^ Process from Point/Station 204.000 to Point/Station 208.000 -f+-f-t--f **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 74.27(Ft.) Downstream point elevation = 73.47(Ft.) Channel length thru subarea = 43.00(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 0.489(CFS) Manning's 'N' = 0.250 Maximum depth of channel = 1.000 (Ft.) Plow(q) thru subarea = 0.489(CFS) Depth of flow = 0.445(Ft.), Average velocity = 0.381(Ft/s) Channel flow top width = 3.779(Ft.) Plow Velocity = 0.38(Ft/s) Travel time = 1.88 min. Time of concentration = 19.03 min. Critical depth = 0.118(Ft.) Adding area flow to channel User specified 'C value of 0.660 given for subarea Rainfall intensity = 1.302(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.017(CFS) for 0.020(Ac.) Total runoff = 0.497(CPS) Total area = 0.53(Ac.) ++ + -i--f-i--F-f-f-f+ + + + + + + + + + + Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OP MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.53 0(Ac.) Runoff from this stream = 0.497(CFS) Time of concentration = 19.03 min. Rainfall intensity = 1.302(In/Hr) +++++++++++++++++++++++++++++++ + -^ +++-^++-^-^+-^•^-^•^+-^-^-f .f-f-t-++ Process from Point/Station 302.000 to Point/Station 304.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 35.00(Ft.) Highest elevation = 75.86(Ft.) Lowest elevation = 75.33 (Ft.) Elevation difference = 0.53(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.08 min. TC = [1.8*(l.l-C)*distance".5)/(% slope" (1/3)] TC = [1.8* (1.1-0.6600) * ( 35.00'-.5)/( 1.5l"(l/3)]= 4.08 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.122(CPS) Total initial stream area = 0.060(Ac.) +++ + -^•f-^--^•f + + -f++-^-^-^ + -^ + -f-^-^+-^.^ + -^.+++-^ + .^+++^.++++ + + + ++^..^..^.^..^^ Process from Point/Station 304.000 to Point/Station 206 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 72.90(Pt.) Downstream point/station elevation = 71.61(Ft.) Pipe length = 127.00(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.122(CPS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 0.122 (CPS) Normal flow depth in pipe = 1.58(In.) Flow top width inside pipe = 6.36(In.) Critical Depth = 1.91(In.) Pipe flow velocity = 2.51(Ft/s) Travel time through pipe = 0.84 min. Time of concentration (TC) = 5.84 min. + + + -f-f + -f-f + + -f-)- + -f-F + -H-f + -f-^.f-f-H + + .^ + .<. + .^ + + + + + + + + + + + ^. + .^.^.^.^.^.^^ Process from Point/Station 206.000 to Point/Station 206 000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 5.84 min. Rainfall intensity = 2.788(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.110(CPS) for 0.060(Ac.) Total runoff = 0.232(CPS) Total area = 0.12(Ac.) + + + H--f •+ + -!--H-h-fH- + -t- + + -H-f--f-H-f-I--f + + + .,..^.f + + + + + + + + + + + + + .^..^.,^.^.^.^.^ Process from Point/Station 206.000 to Point/Station 208.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 71.63 (Ft.) Downstream point/station elevation = 71.11(Ft.) Pipe length = 41.76(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.232(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.232(CFS) Normal flow depth in pipe = 1.82(In.) Flow top width inside pipe = 8.60(In.) Critical Depth = 2.37(In.) Pipe flow velocity = 3.11(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 6.07 min. + -^ + -^-^+•f•f•f-f-^-^-^-f-^++-^-^-^-f-^-^.^-^^-++^..^+ ++++ + ++++.J..^.^.^..^+.^^.,,^.^^ Process from Point/Station 208.000 to Point/Station 208.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 6.07 min. Rainfall intensity = 2.721(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, c = 0.660 Subarea runoff = 0.054(CFS) for 0.030(Ac.) Total runoff 0.286(CFS) Total area 0.15(Ac.) Process from Point/Station 208.000 to Point/Station 208.000 **** CONFLUENCE OP MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: 0.150(Ac.) 0.286(CFS) 6.07 min. 2.721(In/Hr) Stream No. Flow rate (CPS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(l) Qmax(2) 0 .497 0 . 286 1.000 0.478 1.000 1 . 000 19.03 6 . 07 1.000 * 1.000 * 0.319 * 1.000 * 0.497) 0.286) 1.302 2 . 721 0.497) + 0.286) + 0.634 0 .445 Total of 2 streams to confluence: Flow rates before confluence point: 0.497 0.286 Maximum flow rates at confluence using above data: 0.634 0.445 Area of streams before confluence: 0.530 0.150 Results of confluence: Total flow rate = 0.634(CFS) Time of concentration = 19.031 min. Effective stream area after confluence = 0.680(Ac.) ++-^^-+-^-^-^-^-+-^--^++-^-^-f-^-^-^^--^^-•f-^-^-^-^+-^-^-^^--^+-^-^-^+^--^-^++++4.+ Process from Point/Station 208.000 to Point/Station 210.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 71.11(Ft.) Downstream point/station elevation = 69.97(Ft.) Pipe length = 55.65(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.634(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.634(CFS) Normal flow depth in pipe = 2.63(In.) Flow top width inside pipe = 9.93(In.) Critical Depth = 3.98(In.) Pipe flow velocity = 4.98(Ft/s) Travel time through pipe = 0.19 min. Time of concentration (TC) = 19.22 min. + -^^--^• + -^-^•^-f-^ + -^-f-(--^ + -^4•-^-^ + -^-f-l--l--f-^-^.f-^-f-^-^ + -f-f-^-t--^-f+.f-^-^-^-)- + + ^.^.+ Process from Point/Station 210.000 to Point/Station 210.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.22 min. Rainfall intensity = 1.294(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.017(CFS) for 0.020(Ac.) Total runoff = 0.651(CFS) Total area = 0.70(Ac.) + + + + ^--)--^-f+•^+-^4•-^-f-^-^--^-^-•f-)-•^-^-f-f-^-^-f + + -^-f-^-^-^-^+-^ + + -l--^-^-^-^-^-^-^.f+ Process from Point/Station 210.000 to Point/Station 210.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.22 min. Rainfall intensity = 1.294(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.017(CPS) for 0.020(Ac.) Total runoff = 0.668(CPS) Total area = 0.72(Ac.) + + + +++++++++ + + +++++ +++++^-++ +++ + -f-^-^-^•4--^-^ + + -^•-^-^-^-^•f+-f+-^-^-^-^-^•f Process from Point/Station 210.000 to Point/Station 210.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.22 min. Rainfall intensity = 1.2 94(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.017(CFS) for 0.020(Ac.) Total runoff = 0.685(CFS) Total area = 0.74(Ac.) + + + -^ + + + + ++++ + + -^++++++-^+-^+^-^-+++-^++-^+-^^--^-^-^-^-^+-^-^-^-^-^-^-^-^-^-^--f+ Process from Point/Station 210.000 to Point/Station 210.000 **** CONFLUENCE OP MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.740(Ac.) Runoff from this stream = 0.685(CFS) Time of concentration = 19.22 min. Rainfall intensity = 1.294(In/Hr) + + + + + + + + +++ + + + + ++-^+ + + + + + ++-^ + -^+-^+-^•^-^-^-l-+-^+-^ + -^-^-^-^-^-^-^•f•f+-^•f-^+ Process from Point/Station 305.000 to Point/Station 307.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 124.00(Ft.) Highest elevation = 75.51 (Ft.) Lowest elevation = 74.28(Ft.) Elevation difference = 1.23 (Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.84 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [l.8*(l.l-0.6600)*(124.00".5)/( 0.99"(l/3)]= 8.84 Rainfall intensity (I) = 2.134 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.141(CPS) Total initial stream area = 0.100(Ac.) ++^--^•f-^-f^-•f-^•^-f-^•f-^-^ + + -^-^-f^.-^-+-^-^-^-^-^-t--f-f-f.f-f-^-f.f.f+-f-^-^-+.f + -^-.^.^+ + ^ Process from Point/Station 307.000 to Point/Station 309.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 71.06(Pt.) Downstream point/station elevation = 70.70(Pt.) Pipe length = 34.81(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.141(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.141(CFS) Normal flow depth in pipe = 1.49(In.) Flow top width inside pipe = 7.92(In.) Critical depth could not be calculated. Pipe flow velocity = 2.51(Ft/s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 9.07 min. 4••f-^-^ + -l- + -f + •f-f-f-f-^-f-^-^-^- + + + + -f^--^-f-)-+-f-f-|--|--^-^+-^-^-^-^+++ + .^-l--^.+-f++ Process from Point/Station 309.000 to Point/Station 210.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 70.70(Ft.) Downstream point/station elevation = 69.97(Ft.) Pipe length = 15.80(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.141(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.141(CPS) Normal flow depth in pipe = 1.04(In.) Flow top width inside pipe = 6.76(In.) Critical depth could not be calculated. Pipe flow velocity = 4.23(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 9.14 min. +++-^-^-^ + -^-^-^-^-f-f-f+-^+ + ++-^•f-f-^-^-^-^+•f-^-^-^-^-f-^-^-^-^-^+-^-^-^+-^-^-f+-^-^ + Process from Point/Station 210.000 to Point/Station 210.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 9.14 min. Rainfall intensity = 2.090(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.262(CFS) for 0.190(Ac.) Total runoff = 0.403(CFS) Total area = 0.29(Ac.) Process from Pomt/Station 210.000 to Point/Station 210 000 **** CONFLUENCE OF MINOR STREAMS **** -:-J-U.uuu Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.2 90(Ac.) Runoff from this stream = 0.403(CFS) Time of concentration = 9.14 min. Rainfall intensity = 2.090(In/Hr) Summary of stream data: Stream Plow rate TC Rainfall Intensity No. (CPS) (min) (in/Hr) 1 2 Qmax(l) Qmax(2] 0 . 685 19 .22 1 .294 0 .403 9 . 14 2 , . 090 1, . 000 * 1. , 000 * 0, .685) + 0 . ,619 * 1. , 000 * 0 , .403) + = 1. .000 * 0 . 475 * 0, ,685) + 1. 000 * 1 . 000 * 0 , ,403) + 0 . 935 0 . 729 Total of 2 Streams to confluence: Plow rates before confluence point: 0.685 0.403 Maximum flow rates at confluence using above data: 0.935 0.729 Area of streams before confluence: 0.740 0.290 Results of confluence: Total flow rate = 0.935(CFS) Time of concentration = 19.217 min. Effective stream area after confluence = 1.030(Ac.) ++++ + + + +++++++++ + + + +++++++++ + +++^ + + ++++++^+++.^ + ^^^^^^_^_^^^^^^_^^^^^^^^^^ Process from Point/Station 210.000 to Point/Station 107 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 69.97(Ft.) Downstream point/station elevation = 67.90(Ft.) Pipe length = 10.76(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.935(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.935(CPS) Normal flow depth in pipe = 1.84(In.) Plow top width inside pipe = 8.64(In.) Critical Depth = 4.87(In.) Pipe flow velocity = 12.30(Pt/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 19.23 min. + + ++-^-^•-^--f+-^-l--^+-^-^-+-^+-l-+ + + +++ + +-^-f-H-+-H-f-1-+-f-I--H--I-+-f-f ++ + + ^. + ^...^ ^ ^ ^ ^ Process from Point/Station 107.000 to Point/Station ,**** PIPEFLOW TRAVEL TIME (User specified size) **** 108.000 Upstream point/station elevation = 67.90(Pt.) Downstream point/station elevation = 66.15(Ft.) Pipe length = 59.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 0.935(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.935(CPS) Normal flow depth in pipe = 2.57(In.) Flow top width inside pipe = Critical Depth = 4.32(In.) Pipe flow velocity = 6 , Travel time through pipe = Time of concentration (TC) 12.58 (In.) .06(Ft/s) 0.16 min. 19.39 rain. ++-f-^-^-++ + -l--)--f-^-f-f.f-f-^-^ + -^-^+^.++4,+++ + + 4, + +++^.,^.^..^,^.^.^.^,.^.^.^.^.^.^^ Process from Point/Station 108.000 to Point/Station 108 000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.39 min. Rainfall intensity = 1.286(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.170(CPS) for 0.200(Ac.) Total runoff = 1.105(CFS) Total area = 1.23(Ac ) -^+•f-^-^-f-^-f-^-l--^ + -f + -^-^+-^+^- + -^+ ++-^.+++ + + + + + ^. + ^.+.^..^^.^..^,^.^.^..^.^.^.J..^.^^ Process from Point/Station 108.000 to Point/Station 108 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.23 0(Ac.) Runoff from this stream = 1.105(CPS) Time of concentration = 19.3 9 min. Rainfall intensity = 1.286(In/Hr) Summary of stream data: Stream No. Plow rate (CPS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(l) Qmax(2) 0.498 1.105 1.000 1.000 0 . 761 1.000 12 . 70 19.39 1.000 * 0.655 * 1.000 * 1.000 * 0.498) 1.105) Total of 2 main streams to confluence: Flow rates before confluence point: 0.498 1.105 1.690 1.286 + + = 0.498) + 1.105) + 1.221 1.483 Maximum flow rates at confluence using above data- 1.221 1.483 Area of streams before confluence: 0.430 1.230 Results of confluence: Total flow rate = 1.483(CFS) Time of concentration = 19.394 min. Effective stream area after confluence = 1.660(Ac.) + + + + + + + + + + + + + + + + + + + + ^ + + + Process from Point/Station 108.OOO to Point/Station ISg^Jo **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.15(Ft ) Downstream point/station elevation = 65 13(Ft ) Pipe length = 24.62(Ft.) Manning's N'= 0 Oil No. of pipes = 1 Required pipe flow = 1.483(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.483(CFS) Normal flow depth in pipe = 2.96(In.)" Plow top width inside pipe = 13.34(In.) Critical Depth = 5.47 (In.) Pipe flow velocity = 7.81(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 19.45 min. Process from Point/Station 109.000 to Point/Station ^lo 0^0 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 65.13(Ft ) Downstream point/station elevation = 64 92(Pt )' Pipe length = 13.30(Pt.) Manning's N = 0 Oil No. of pipes = 1 Required pipe flow = i 483(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.483(CFS) Normal flow depth in pipe = 3.75(In.)' Plow top width inside pipe = 14.62(In.) Critical Depth = 5.47(In.) Pipe flow velocity = 5.56(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 19.49 min. Process from Point/Station 110.000 to Point/Station 11^0^^ **** SUBAREA PLOW ADDITION **** J-iO.OOO User specified 'C value of 0.660 given for subarea Time of concentration = 19.49 min. Rainfall intensity = 1 282 fin/Hr-l f^^-iv = on ^5,,^,-,^r^= „ ^..p . . f , -i-. i m/Hr; tor a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA C - 0 660 Subarea runoff = 0.110(CFS) for 0.130(Ac.) ~ Total runoff = 1.593(CPS) Total area = 1.79(Ac.) + + + + + + + + + + + + + + + + + + + + + + ^ + Process from Point/Station 110.000 to Point/Station no 000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea ~ Time of concentration = 19.49 min. Rainfall intensity = 1.282(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.212(CFS) for 0.250(Ac.) Total runoff = 1.805(CPS) Total area = 2.04(Ac.) + + + + + + + + + + + + + + + + Process from Point/Station 110.000 to Point/Station no 000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.49 min. Rainfall intensity = 1.2 82(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.144(CFS) for 0.170(Ac.) Total runoff = 1.949(CFS) Total area = 2.21(Ac.) Process from Point/Station 110.000 to Point/Station 112 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64.92(Ft.) Downstream point/station elevation = 63.72(Ft.) Pipe length = 25.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.949(CPS] Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.949(CPS) Normal flow depth in pipe = 3.26(In.) Flow top width inside pipe = 13.87(In.) Critical Depth = 6.31(In.) Pipe flow velocity = 8.92 (Pt/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 19.53 min. +-l•-^++•f-^-^•t-f•-^-^-^•f+-f+-^+++-^-f-f-f-f-f+++-^-^+-^ +++.^+++++++ ++++++.^ Process from Point/Station 112.000 to Point/Station 112 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.210(Ac.) Runoff from this stream = 1.949(CFS) Time of concentration = 19.53 min. Rainfall intensity = 1.280(In/Hr) Program is now starting with Main Stream No. 2 -l--f-^-^-^-f•f-^-^-^ + -l- + -^-^-^-^-^-f-^-)--^-f-^.-^-^-^ + -^.f+.^-^-(--^ + -^.^-^-^-f++ + + + 4--f-^-^ Process from Point/Station 502.000 to Point/Station 504.000 **** USER DEFINED PLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea Rainfall intensity (I) = 1.409 for a 2.0 year storm User specified values are as follows: TC = 16.83 min. Rain intensity = 1.41(In/Hr) Total area = 0.98(Ac.) Total runoff = 0.94(CFS) + + + + + + + + + + + + + + + + + + + + + -H + + + + + + + + + + -h-h-)--H-H + -f-f-H-f-f-f + -f-H-f-f + -f-f-f-(- + -f^ Process from Point/Station 504.000 to Point/Station 506.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 79.80 (Ft.) Downstream point elevation = 75.97(Ft.) Channel length thru subarea = 96.00(Pt.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 0.945(CPS) Manning's 'N' =0.250 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.945(CPS) Depth of flow = 0.516(Ft.), Average velocity = 0.604(Ft/s) Channel flow top width = 4.063(Ft.) Plow Velocity = 0.60(Ft/s) Travel time = 2.65 min. Time of concentration = 19.48 min. Critical depth = 0.180(Ft.) Adding area flow to channel User specified 'C value of 0.660 given for subarea Rainfall intensity = 1.282(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.008(CFS) for 0.010(Ac.) Total runoff = 0.948(CPS) Total area = 0.99(Ac.) ++++++++-^++++++++ + -^++++++-^-^ ++-^•f-^-^-^•f-^-^-^-^•f-^-^-l--^-^-^-^-^-^4•+-t--^+ Process from Point/Station 506.000 to Point/Station 506.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.48 min. Rainfall intensity = 1.282(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.059(CFS) for 0.070(Ac.) Total runoff = 1.008(CFS) Total area = 1.06(Ac.) -^-^ + + + + + + -^-^•^--^-^-^-l--^--^+^--f-^-^-^-^++-^-l--^-^•-^-f•^-^-^-)--^++-^-^-l-+++-f-^+ Process from Point/Station 506.000 to Point/Station 507.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 73.97(Ft.) Downstream point/station elevation = 66.92(Pt ) Pipe length = 5.30(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.008 (CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.008(CFS) Normal flow depth in pipe = 1.20(In.) Flow top width inside pipe = 7.19(In.) Critical Depth = 5.05(In.) Pipe flow velocity = 24.77 (Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 19.48 min. l^^T^^AZZ"^ l?^A'{^^^^^°'' 507.000 to Point/Station 507.000 SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea ~ Time of concentration = 19.48 min. Rainfall intensity = 1.282(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA C = 0 660 Subarea runoff = 0.042(CPS) for 0.050(Ac ) Total runoff = 1.050(CFS) Total area = 1.11(Ac.) +++++++ +++++++ +++++++++ + + + + +++++++ +++++++ + + + + + ^^^^^^_^^_^^_^^_^^_^_^_^_^^^_^^_^_^ Process from Point/Station 507.000 to Point/Station 507 000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea ' Time of concentration = 19.48 min. Rainfall intensity = 1.282(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.017(CPS) for 0.020(Ac ) Total runoff = 1.067(CPS) Total area = 1.13(Ac.) Process from Point/Station 507.000 to Point/Station 508 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.92(Ft.) Downstream point/station elevation = 66.48(Ft.) Pipe length = 78.81(Ft.) Manning's N = O.oil No. of pipes = 1 Required pipe flow = 1.067(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.067(CFS) Normal flow depth in pipe = 4.82(In.) Plow top width inside pipe = 11.76(In.) Critical Depth = 5.21(In.) Pipe flow velocity = 3.62(Ft/s) Travel time through pipe = 0.36 min. Time of concentration (TC) = 19.84 min. Process from Point/Station 508.000 to Point/Station 508.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.84 min. Rainfall intensity = 1.267(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.084(CFS) for 0.100(Ac.) Total runoff = 1.151(CFS) Total area = 1.23(Ac.) Process from Point/Station 508.000 to Point/Station 508 000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 19.84 min. Rainfall intensity = 1.267(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.092(CPS) for 0.110(Ac.) Total runoff = 1.243(CPS) Total area = 1.34(Ac.) -^ + + -^^--^--^ + -f + -^-f + -^+-^-^+-^-^++-^++.^.^++ + +++ + + .^.^..^.^.^.^,^..^.^..^.^.^ Process from Point/Station 508.000 to Point/Station 510 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.48(Ft.) Downstream point/station elevation = 66.15(Ft.) Pipe length = 55.92(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.243(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.243(CFS) Normal flow depth in pipe = 5.16(In.) Flow top width inside pipe = 11.88(In.) Critical Depth = 5.64(In.) Pipe flow velocity = 3.85(Pt/s) Travel time through pipe = 0.24 min. Time of concentration (TC) = 20.09 min. + + ^-+-^-^•f•+-^+-f+-^-^-^+-^+-^-^-f-^-^+-^.-^-++++++++++++ +++.^..^.^.^.^^,,^^ Process from Point/Station 510.000 to Point/Station 112 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.15 (Ft.) Downstream point/station elevation = 63.72(Ft.) Pipe length = 222.12(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.243(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.243(CFS) Normal flow depth in pipe = 4.36(In.) Flow top width inside pipe = 11.54(In.) Critical Depth = 5.64(In.) Pipe flow velocity = 4.82(Ft/s) Travel time through pipe = 0.77 min. Time of concentration (TC) = 20.85 min. Process from Point/Station 112.000 to Point/Station 112.000 * * * * SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea ^ Time of concentration = 20.85 min. Rainfall intensity = 1.227(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.421(CFS) for 0.52 0(Ac.) Total runoff = 1.664 (CFS) Total area = 1.86(Ac.) + +++ + + + +++++++ + + + +++ + ++++++++ +++ + + ++++++ + + + + ^.^.^..^.^^^_^^^_^_^_^_^^_^_^^_^^^^ Process from Point/Station 112.000 to Point/Station 112 000 **** CONFLUENCE OP MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.860(Ac.) Runoff from this stream = 1.664(CPS) Time of concentration = 20.85 min. Rainfall intensity = 1.227(In/Hr) Summary of stream data: Stream Plow rate TC Rainfall Intensity No. (CPS) (min) (In/Hr) 1 1.949 19.53 2 1.664 20.85 1 Qmax(l) = 1.280 227 Qmax(2) = 1.000 * 1.000 * 1.949) + 1.000 * 0.937 * 1.664) + = 3.507 0.959 * 1.000 * 1.949) + 1.000 * 1.000 * 1.664) -I- = 3.532 Total of 2 main streams to confluence: Flow rates before confluence point: 1.949 1.664 Maximum flow rates at confluence using above data: 3.507 3.532 Area of streams before confluence: 2.210 1.860 Results of confluence: Total flow rate = 3.532 (CFS) Time of concentration = 20.855 min. Effective stream area after confluence = 4.0 70(Ac. Process from Point/Station 112.000 to Point/Station 114 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 63.72(Ft.) Downstream point/station elevation = 63.50(Ft.) Pipe length = 27.25(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.532(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.532(CPS) Normal flow depth in pipe = 6.96(In.) Plow top width inside pipe = 17.53(In.) Critical Depth = 8.61(In.) Pipe flow velocity = 5.60(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 20.94 min. +•^•^-^-^^--^+-f-^ + + -^-^.f-f-^-^-^-^-^ + 4.-^-^.^.^.^ + + + + ^.++++++++,^+^.^..^.^..^.^.^.^ Process from Point/Station 114.000 to Point/Station 114.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 20.94 min. Rainfall intensity = 1.224(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.105(CFS) for 0.130(Ac.) Total runoff = 3.637(CFS) Total area = 4.20(Ac.) Process from Point/Station 114.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 63.50(Ft.) Downstream point/station elevation = 62.95(Ft.) Pipe length = 20.54(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.637(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.637(CFS) Normal flow depth in pipe = 5.16(In.) Plow top width inside pipe = 16.28(In.) Critical Depth = 8.73(In.) Pipe flow velocity = 8.70(Pt/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 20.98 min. ++++++++++++++++ + + + Process from Point/Station 116.000 to Point/Station 117.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 62.95(Ft.) Downstream point/station elevation = 62.34(Ft.) Pipe length = 49.51(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.637(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.637(CPS) Normal flow depth in pipe = 6.31(In.) Flow top width inside pipe = 17.18(In.) Critical Depth = 8.73(In.) Pipe flow velocity = 6.58 (Pt/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 21.10 min. Process from Point/Station 117.000 to Point/Station 118 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 62.34(Ft.) Downstream point/station elevation = 62.18(Ft.) Pipe length = 12.90(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 3.637(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 3.637(CFS) Normal flow depth in pipe = 5.67(In.) Flow top width inside pipe = 20.38(In.) Critical Depth = 8.01(In.) Pipe flow velocity = 6.43(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 21.13 min. + + + + + + + + -f-f + -h-H-f-f-f-f-f-f + -f-H + -^-HH. + + + + + + + + + + + + + + .^.^.^.^.^.^..^.^.^.^..^..^^ Process from Point/Station 118.000 to Point/Station 118 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.200(Ac.) Runoff from this stream = 3.637(CFS) Time of concentration = 21.13 min. Rainfall intensity = 1.217(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 602.000 to Point/Station 604 000 **** INITIAL AREA EVALUATION **** + User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 30.00(Pt.) Highest elevation = 72.80(Pt.) Lowest elevation = 72.55(Pt.) Elevation difference = 0.25(Pt.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.61 min TC = [1.8*(l.l-c)*distance".5)/(% slope"(1/3)] TC =[1.8*(1.1-0.6600)*( 30.00".5)/( 0.83"(l/3)]= 4.61 Setting time of concentration to 5 minutes Rainfall intensity (I) = 3.083 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.041(CFS) Total initial stream area = 0.02 0(Ac.) ^-+-^+-^-^+-l-•^+-^+-)-+-^-^ + -^-f+-^-)--^--^-^++-^-^--^--|-+ +++-n--^-^-^-^-^-^-^-^-f-(-+-^-^-t.+-^+-l--(.^.+++++++++ ++^..,. Process from Point/Station 604.000 to Point/Station 118.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 72.550(Ft.) End of street segment elevation = 69.510(Ft.) Length of street segment = 263.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 12.000(Ft.) Distance from crown to crossfall grade break = 10.500(Pt.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 5.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.046(CPS) Depth of flow = 0.053(Ft.), Average velocity = 0.913(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity = 0.91(Ft/s) Travel time = 4.80 min. TC = 9.80 min. Adding area flow to street User specified 'C value of 0.660 given for subarea Rainfall intensity = 1.997(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.356(CPS) for 0.270(Ac.) Total runoff = 0.397(CFS) Total area = 0.29(Ac.) Street flow at end of street = 0.397(CFS) Half street flow at end of street = 0.198(CFS) Depth of flow = 0.120(Ft.), Average velocity = 1.320(Ft/s) Flow width (from curb towards crown)= 3.319(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 9.80 min. Rainfall intensity = 1.997(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.053(CFS) for 0.040(Ac.) Total runoff = 0.449(CFS) Total area = 0.33(Ac.) -l--K-H-h-H-H-H-l--f-H-H + -H + -H-f-H-l--H-H-F-h-K-f-H-1--H-H-h-h-F-f + +-)--H + + + + + + + -h-H + + -f-HH- + + Process from Point/Station 118.000 to Point/Station 118.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 9.80 min. Rainfall intensity = 1.997(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.066 (CFS) for 0.050(Ac.) Total runoff = 0.515(CFS) Total area = 0.38(Ac.) -^-l-•f-^-^-^ + -^-^+-f-^.f-^-^ + ^--^-f-^--^-^+.^ + + + -^..^. + + + ++++^..^.J.^..|..^.^.^.^.^.^.,,^ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.380(Ac.) Runoff from this stream = 0.515(CPS) Time of concentration = 9.80 min. Rainfall intensity = 1.997(In/Hr) Program is now starting with Main Stream No. 3 + + + + + + + +++++ +++ + + + + ++++++++++ + + -^+ + + -^^-+-^•^•f + -(--^-^•f-f-f•f++-^-f-f-I-H-+ + Process from Point/Station 702.000 to Point/Station 704.000 **** INITIAL AREA EVALUATION **** User specified 'C value of 0.660 given for subarea Initial subarea flow distance = 100.00(Pt.) Highest elevation = 76.70(Pt.) Lowest elevation = 75.00(Ft.) Elevation difference = 1.70(Pt.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 6.64 min. TC = [1.8*(l.l-C)*distance".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.6600)*(100.00".5)/( 1.70"(l/3)]= 6.64 Rainfall intensity (I) = 2.568 for a 2.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.660 Subarea runoff = 0.051(CFS) Total initial stream area = 0.030(Ac.) -f-K-H-H+4--f-H-f++-^-^-^-^-^-^-f-f-^-^+-f-(-+-^+-^-^++.^++++++++++++++^.+.^+.^.^.^.^ Process from Point/Station 704.000 to Point/Station 706.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 75.000 (Ft.) End of street segment elevation = 69.010(Ft.) Length of street segment = 295.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 12.000(Pt.) Distance from crown to crossfall grade break = 10.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 5.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Pt.) Gutter hike from flowline = 1.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.060(CPS) Depth of flow = 0.053 (Ft.), Average velocity = 1.203 (Pt/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Pt.) Plow velocity = 1.20 (Ft/s) Travel time = 4.09 min. TC = 10.73 min. Adding area flow to street User specified 'C value of 0.660 given for subarea Rainfall intensity = 1.884(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.448(CPS) for 0.360(Ac.) Total runoff = 0.498(CPS) Total area = 0.39(Ac.) Street flow at end of street = 0.498(CPS) Half street flow at end of street = 0.249(CPS) Depth of flow = 0.118(Ft.), Average velocity = 1.732(Pt/s) Plow width (from curb towards crown)= 3.223(Pt.) ++•^-^•f-)--^-f-^-^+-^-^+-^-f-^-l- + -^ + -^.^.^++++++++ + + ^.+^. + .^,^.^.^..^.^.^.^.^.^.^^ Process from Point/Station 706.000 to Point/Station 706 000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.73 min. Rainfall intensity = 1.884(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0 660 Subarea runoff = 0.634(CFS) for 0.510(Ac.) Total runoff = 1.133(CFS) Total area = 0.90(Ac.) ++++•f-^-^-f+-^•f-^-^-^ + -^+-l--l-++-^-^++.^++++++++++++,^..^^..^..^^.^,^.^.^..^ Process from Point/Station 706.000 to Point/Station 708 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.52(Ft.) Downstream point/station elevation = 66.36(Ft.) Pipe length = 25.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.133(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.133(CFS) Normal flow depth in pipe = 4.79(In.) Flow top width inside pipe = 11.75(In.) Critical Depth = 5.37(In.) Pipe flow velocity = 3.87(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 10.84 min. -^-^+++-^ + -^-^+-^-^-^•^-^-f•^-^+-^-^ + -^-^-^ ++-^-^-|--^-^+-^-^-^.^-^-^.t.+++++++ + + Process from Point/Station 708.000 to Point/Station 710 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 66.36(Pt.) Downstream point/station elevation = 65.96(Ft.) Pipe length = 6.00(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.133(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.133(CFS) Normal flow depth in pipe = 2.62(In.) Flow top width inside pipe = 9.91(In.) Critical Depth = 5.37(In.) Pipe flow velocity = 8.96 (Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 10.85 min. ++-^.^.^ + .f-^-^+.^-^ + .^-f-^-^-^.f-^-^-^-^-^+-^-^-f-^--^-f-^-^++-^-^-f+-^-^-^-++-^-^++ + -^ Process from Point/Station 710.000 to Point/Station 710.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.85 min. Rainfall intensity = 1.871(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.111(CFS) for 0.090(Ac.) Total runoff = 1.244(CFS) Total area = 0.99(Ac.) + + + + + .(. .^ + -^-I--^-^-^-^-^-^-^-^--f-^-^-^-^-f-^-^ + -^+-^-^-^ + + -^-•f-f-^-^•^+-^++++-^+ +++ Process from Point/Station 710.000 to Point/Station 710.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.85 min. Rainfall intensity = 1.871(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.086(CFS) for 0.070(Ac.) Total runoff = 1.330(CFS) Total area = 1.06(Ac.) ++ + + + + -^.^ ++.f+-^.f-f+-^-^-^.f-^-^.-^-^-^-^-l-++-^^--l--^-^-^-^-l--^--f-^-^+-^+-^+-^-^+ Process from Point/Station 710.000 to Point/Station 710.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 10.85 min. Rainfall intensity = 1.871(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.049(CFS) for 0.040(Ac.) Total runoff = 1.379(CPS) Total area = 1.10(Ac.) 4.++++ + -^+++.f-^--^+++-)-+-^.++-^-^-^.+-^-^-^-^-l--^-^+-^-^-^+-^-^-^-^- + -^-^-^+-^-^-^^^ Process from Point/Station 710.000 to Point/Station 712.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 65.96(Ft.) Downstream point/station elevation = 65.14(Ft.) Pipe length = 41.93(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.379(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.379(CFS) Normal flow depth in pipe = 3.95(In.) Flow top width inside pipe = 11.28(In.) Critical Depth = 5.96(In.) Pipe flow velocity = 6.12(Pt/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 10.96 min. + -HH--f-H + + -f-f-h + -h-f-l--f.^ + -K-H.f-H-f-f+ + + + + + + + + + + + + + + Process from Point/Station 712.000 to Point/Station 714.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 65.14(Pt.) Downstream point/station elevation = 64.63(Ft.) Pipe length = 26.83 (Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.379(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.379(CPS) Normal flow depth in pipe = 3.98(In.) Flow top width inside pipe = 11.30(In.) Critical Depth = 5.96(In.) Pipe flow velocity = 6.06(Pt/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 11.04 min. ++-i--f+ -f-H + -f-f-t--f-f-f-f-f-f-H-f-f-^-^.f+ + + + + Process from Point/Station 714.000 to Point/Station 714.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 11.04 min. Rainfall intensity = 1.850(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.037(CPS) for 0.030(Ac.) Total runoff = 1.416(CFS) Total area = 1.13(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -H + + 4--f+ -h-H-h + -f-f-H-H-H-f-H-f.f-f + + + + -h Process from Point/Station 714.000 to Point/Station 716.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64.63(Pt.) Downstream point/station elevation = 64.36(Pt.) Pipe length = 14.41 (Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.416(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.416(CFS) Normal flow depth in pipe = 4.05(In.) Flow top width inside pipe = 11.35(In.) Critical Depth = 6.05(In.) Pipe flow velocity = 6.07(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 11.08 min. +++-^-^-^-f-^-f-f+-h+-H-f-F-H+-f-i--H-f-f+-h-h-h-f+-^-f-^+-^-^+-)--^-^++++ + +++++++ Process from Point/Station 716.000 to Point/Station 718.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 64.36(Ft.) Downstream point/station elevation = 64.10 (Ft.) Pipe length = 17.61(Ft.) banning's N = 0^011 NO. of pipes = 1 Required pipe flow = 1.416(CFS) Given pipe size = 12.00{In.) .,,.f:(rv^) Calculated individual pipe flow = 1.416ictbj Normal flow depth in pipe = 4.32(In.) Flow top width inside pipe = 11.52(In.) Critical Depth = 6.05(In.) Pipe flow velocity = 5.57 (Ft/s) ^ Travel time through pipe = 0.05 min.^ Time of concentration (TC) = 11.13 mm. process from Point/Station 718.000 to Point Station PIPEFLOW TRAVEL TIME (User specified Size) * * * * Upstream point/station elevation = 64.10(FtJ Downstream point/station elevation = 63.70(Ft } Pipe length = 45.35(Ft.) ^^^j'^^^^' ^ ^ = PS) NO of pipes = 1 Required pipe flow = 1.416(CPS) Given pipe size = 12.00 (In.) ..^(rvci) Calculated individual pipe flow = 1.416tctb) Normal flow depth in pipe = 4.96(In.) Flow top width inside pipe = 11.82(In.) Critical Depth = 6.05(In.) Pipe flow velocity = 4.62(Ft/s) ^ Travel time through pipe = 0.16 min. Time of concentration (TC) = 11.29 min. Process from Point/Station 720.000 to Point/Station 720.000 **** SUBAREA FLOW ADDITION **** i^r specified 'C value of 0.660 given tor subarea Time of concentration = -^J^^g mm^ ^^^^^ Rainfall intensity = 1.823(In/Hr) tor a / ^ = 0.660 Runoff coefficient used for sub-area. Rational method,Q-KCIA, C subarea runoff = 0.060(CFS) for 0.050(Ac.) Total runoff = 1.476(CFS) Total area = 1.18(Ac.) Proces^ from Point/Station 720.000 to Point/Station 720.000 **** SUBAREA PLOW ADDITION * * * * ^er specified 'C value of 0.660 given tor subarea Time of concentration = /^-^^ ^^^^ 2 0 3torm Rainfall intensity = 1.823 (In/Hr) tor a ^./^ ^^jj, r - 0 660 Runoff coefficient used for sub-area. Rational method,Q=KCIA, C - 0.660 subarea runoff = 0.120(CFS) for 0.100(Ac.) Total runoff = 1.597(CPS) Total area = 1.28(Ac.) Process from Point/Station 720.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 118.000 Upstream point/station elevation = 63.70 (Ft.) Downstream point/station elevation = 62.43(Ft.) Pipe length = 87.30(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 1.597(CPS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.597(CPS) Normal flow depth in pipe = 4.62(In.) Flow top width inside pipe = 11.68(In.) Critical Depth = 6.44(In.) Pipe flow velocity = 5.73(Pt/s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 11.55 min. Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.280(Ac.) Runoff from this stream = 1.597(CFS) Time of concentration = 11.55 min. Rainfall intensity = 1.797(In/Hr) Summary of stream data: Stream No. Flow rate (CPS) TC (min) Rainfall Intensity (In/Hr) 1 3 .637 21 . 13 1 .217 2 0 .515 9 .80 1 . 997 3 1 .597 11 . 55 1. . 797 Qmax(l) = 1, . 000 * 1, .000 * 3 .637) -1- 0 , ,609 * 1, .000 * 0 .515) -H 0 , .677 * 1, , 000 * 1 .597) + = Qmax(2) = 1, , 000 * 0 . ,464 * 3 . .637) + 1, ,000 * 1, , 000 * 0. .515) + 1. ,000 * 0 . , 849 * 1. ,597) + Qmax(3) = 1. 000 * 0 . 546 * 3 , ,637) + 0 . 900 * 1 . 000 * 0 . , 515) + 1. 000 * 1 . 000 * 1. 597) + 5.032 3 .558 4.047 Total of 3 main streams to confluence: Flow rates before confluence point: 3.637 0.515 1.597 Maximum flow rates at confluence using above data: 5.032 3.558 4.047 Area of streams before confluence: 4.200 0.380 1.280 Results of confluence: Total flow rate = 5. 032 (CPS) Time of concentration = 21.134 min. Effective stream area after confluence = 5.860(Ac.) + + + + + + + + + + + + + + + + + Process from Point/Station 118.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 62.18(Pt.) Downstream point/station elevation = 61.97(Ft.) Pipe length = 26.25(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 5.032(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.032(CFS) Normal flow depth in pipe = 7.48(In.) Flow top width inside pipe = 22.23(In.) Critical Depth = 9.47(In.) Pipe flow velocity = 6.03(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 21.21 min. -f-^-•f++•f+-^•f-^-^-l--^-^-^-f-f-^-f-^ + •f+-^•^-^-^-^-f-^-^•^-^-^--^-^-^•f+++++-^-^-^-^ + -^-^ Process from Point/Station 120.000 to Point/Station 120.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 21.21 min. Rainfall intensity = 1.214(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.088(CFS) for 0.110(Ac.) Total runoff = 5.120 (CFS) Total area = 5.97(Ac.) +-^-^-^-(--^-^-^-^-^•f-^-^-^-^-^-^.-^--^-^-^-^-f•^-^-f-^--^-^-^-^-f-^-^+-^-^-^•^-•^+++-^+ Process from Point/Station 120.000 to Point/Station 122.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 61.97(Pt.) Downstream point/station elevation = 61.80(Ft.) Pipe length = 16.23(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 5.120(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.120(CFS) Normal flow depth in pipe = 7.03 (In.) Plow top width inside pipe = 21.85(In.) Critical Depth = 9.56(In.) Pipe flow velocity = 6.67(Pt/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 21.25 min. -^+-^-^-^-^-^-^-^-^•f + -^-^-^•^-^-^-^-l--^-^-^-^-^-^-^-^-^-^-^-^•f+-^++-l--^+++++ + ++++ Process from Point/Station 122.000 to Point/Station 124.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 61.80(Pt.) Downstream point/station elevation = 61.50(Pt.) Pipe length = 26.08(Pt.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow = 5.120(CPS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.120(CFS) Normal flow depth in pipe = 6.87(In.) Plow top width inside pipe = 21.69(In.) Critical Depth = 9.56(In.) Pipe flow velocity = 6.90(Ft/s) ^ Travel time through pipe = 0.06 min.^ Time of concentration (TC) = 21.31 min. Process from Point/Station 124.000 to Point/Station 124.000 **** SUBAREA FLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 21.31 min. Rainfall intensity = 1.210(In/Hr) for a 2° year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.192(CPS) for 0.240(Ac.) Total runoff = 5.312(CPS) Total area = 6.21(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 124.000 to Point/Station 124.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 21.31 min. Rainfall intensity = 1.210(In/Hr) for a ^O^ear storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.024(CPS) for 0.030(Ac.) Total runoff = 5.336(CFS) Total area = 6.24(Ac.) + + + + + + + .^ + + + -^ + -^ + -^ + + + + -f + + + + -f + + + +++ + + + +++ + + + + + + + + + + + + + + + r^'"^"''"''"'^tornnr Process from Point/Station 124.000 to Point/Station 126.000 **** PIPEFLOW TRAVEL TIME (User specified size) * * * * Upstream point/station elevation = 61.50(Ft.) Downstream point/station elevation = 60.82(Ft.) Pipe length = 54.85(Pt.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.336(CPS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.336(CPS) Normal flow depth in pipe = 7.50(In.) Plow top width inside pipe = 22.25(In.) Critical Depth = 9.77(In.) Pipe flow velocity = 6.36(Pt/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 21.45 min. -^-^+.^-^-^-^ + -f-^-^^--^ + -^-^-^-^+-^-^-^--^+-^-^-^-^•^•^^--^+++-^-^-^+ + -^^-++++^-++++++ Process from Point/Station 126.000 to Point/Station 128.000 **** PIPEFLOW TRAVEL-TIME (User specified size) **** Upstream point/station elevation = 60.82(Pt.) Downstream point/station elevation = 60.32(Ft.) Pipe length = 41.91(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.336(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.336(CFS) Normal flow depth in pipe = 7.57(In.) Flow top width inside pipe = 22.30(In.) Critical Depth = 9.77(In.) Pipe flow velocity = 6.27(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 21.57 min. + +++.^^-.^+-^-4.-^+-^-^-^-^-^ + -^-^-^-f-^-^-^^--^-f+ -^-^-f+•^--^+ + +++++-^+ + +++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** SUBAREA PLOW ADDITION **** User specified 'C value of 0.660 given for subarea Time of concentration = 21.57 min. Rainfall intensity = 1.201(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.143(CFS) for 0.180(Ac.) Total runoff = 5.478(CPS) Total area = 6.42(Ac.) ++-^. + + +++.^+-^--^-^+-^++ + -^-)--^-^-^-^-^-^--^-^-^-l--^4•-^+-^++-^+ +++•^-^++-^-^-^-^ Process from Point/Station 128.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.32(Pt.) Downstream point/station elevation = 57.58(Ft.) Pipe length = 87.63(Pt.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.478(CPS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.478(CPS) Normal flow depth in pipe = 6.00(In.) Flow top width inside pipe = 20.78(In.) Critical Depth = 9.90(In.) Pipe flow velocity = 8.92(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 21.73 min. +++++ + + + -^-^-^-H+-^-^-^- + -^ + + -f-^•^-•f+4•-f+ + Process from Point/Station 130.000 to Point/Station 132.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 57.58(Ft.) Downstream point/station elevation = 56.78(Ft.) Pipe length = 22.34(Pt.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.478(CPS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.478(CFS) Normal flow depth in pipe = 5.80(In.) Flow top width inside pipe = 2 0.55(In.) Critical Depth = 9.90(In.) Pipe flow velocity = 9.36(Ft/s) ^ Travel time through pipe = 0.04 min. Time of concentration (TC) = 21.77 min. Process from Point/Station 132.000 to Pomt/Station 134.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 56.78(Pt.) Downstream point elevation = 46.00(Pt.) Channel length thru subarea = 182.80(Ft.) Channel base width = 3.000(Pt.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 C,-Q/PT?Q1 Estimated mean flow rate at midpoint of channel = 5.559(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 1.500(Ft.) Flow(q) thru subarea = 5.559(CFS) ^ Depth of flow = 0.343(Ft.), Average velocity = 4.400(Ft/s) Channel flow top width = 4.371(Pt.) Flow Velocity = 4.40(Pt/s) Travel time = 0.69 min. Time of concentration = 22.46 min. Critical depth = 0.430(Pt.) Adding area flow to channel user specified 'C value of 0.660 given for subarea Rainfall intensity = 1.170 (In/Hr) for a ^^^/^^^.^f"" _ , Runoff coefficient used for sub-area. Rational method,Q=KCIA, C - 0.660 Subarea runoff = 0.147(CPS) for 0.190(Ac.) Total runoff = 5.625(CPS) Total area = 6.61(Ac.) Process from Point/Station 134.000 to Pomt/Station 134.000 **** SUBAREA FLOW ADDITION **** uiier specified 'C value of 0.660 given for subarea Time of concentration = 22.46 min. Rainfall intensity = 1.170 (In/Hr) for a lA'/t^l^l^l _ , Runoff coefficient used for sub-area. Rational method,Q=KCIA, C - 0.660 Subarea runoff = 0.394(CFS) for 0.510(Ac.) Total runoff = 6.019(CPS) Total area = 7.12(Ac.) + .,.,,,.,., + -, + + + + -,. + + + + H. + + + . + + + + + + H- + + + + + + + + + + + + + + + + + + + + + + + + + H- + + ^ Process from Point/Station 904.000 to Pomt/Station 134.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 56.70(Ft.) Downstream point elevation = 46.00(Ft.) Channel length thru subarea = 218.19(Ft.) Channel base width = 3.000(Pt.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 6.145(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 1.500(Ft.) Plow(q) thru subarea = 6.145(CPS) Depth of flow = 0.383(Ft.), Average velocity = 4.267(Ft/s) Channel flow top width = 4.530(Ft.) Flow Velocity = 4.27(Ft/s) Travel time = 0.85 min. Time of concentration = 23.31 min. Critical depth = 0.453 (Ft.) Adding area flow to channel User specified 'C value of 0.660 given for subarea Rainfall intensity = 1.142(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.226(CFS) for 0.300(Ac.) Total runoff = 6.245(CPS) Total area = 7.42(Ac.) Process from Point/Station 134.000 to Point/Station 136.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 46.00(Ft.) Downstream point/station elevation = 41.19(Pt.) Pipe length = 20.31(Pt.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.245(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.245(CFS) Normal flow depth in pipe = 4.25(In.) Flow top width inside pipe = 15.29(In.) Critical Depth = 11.59(In.) Pipe flow velocity = 19.61(Pt/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 23.33 min. .^+++.^+-^-^-^++-^+-f+-^-f+-l--f+4•-^•f-^-^ ++-^++-^++-^+++-^-^++-^+++++++++++ Process from Point/Station 136.000 to Point/Station 136.000 **** CONFLUENCE OP MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 7.420(Ac.) Runoff from this stream = 6.245(CFS) Time of concentration = 23.33 min. Rainfall intensity = 1.141(In/Hr) Program is now starting with Main Stream No. 2 + .^++.^.^.^.^.^-^-^-^-^-f-^-^-^-f-^+++-^+-l--f+-^++-^+-^ ++^-+++++++ + +++++++++++ Process from Point/Station 1000.000 to Point/Station 1000.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C value of 0.660 given for subarea E^^STlN^ ^^^^ , Rainfall intensity (I) = 1.290 for a User specified values are as follows: TC = 19.31 min. Rain intensity = Total area = 1.77(Ac.) Total runoff = 2.0 year storm 1.29(In/Hr) 1.38(CFS) Process from Point/Station 1000.000 to Point/Station 1000.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.770(Ac.) Runoff from this stream = 1.380(CFS) Time of concentration = 19.31 min. Rainfall intensity = 1.290(In/Hr) Summary of stream data: Stream Flow rate TC No. (CFS) (min) 1 6 . ,245 23 . .33 1. 141 2 1. ,380 19 , .31 1. ,290 Qmax(1) = ,245) 1. ,000 * 1 , ,000 * 6 . ,245) -1- 0 . ,885 * 1 .000 * 1, ,380) •+ = Qmax(2) = .245) 1 .000 * 0 .828 * 6 .245) + 1 .000 * 1 .000 * 1 .380) + = Rainfall Intensity In/Hr) 7 .466 6 .549 Total of 2 main streams to confluence: Plow rates before confluence point: 6.245 1.380 Maximum flow rates at confluence using above data: 7.466 6.549 Area of streams before confluence: 7.420 1.770 Results of confluence: Total flow rate = 7.466(CFS) Time of concentration = 23.331 min. Effective stream area after confluence = 9.190(Ac.) + + + + + + + + -f-H + -H-l--f-H-HH--l--H-f-h-H-f-f + -H + -H-H + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ^ Process from Point/Station 136.000 to Point/Station 136.000 **** SUBAREA PLOW ADDITION **** User specified "C value of 0.660 given for subarea Time of concentration = 23.33 min. Rainfall intensity = 1.141(In/Hr) for a 2.0 year storm Runoff coefficient used for sub-area. Rational method,Q=KCIA, C = 0.660 Subarea runoff = 0.075(CPS) for 0.100(Ac.) Total runoff = 7.542(CFS) Total area = 9.29(Ac.) Process from Point/Station 136.000 to Pomt/Station 138.000 PIPEFLOW TRAVEL TIME (User specified size) * * * * Upstream point/station elevation = 41.19(Ft.) Downstream point/station elevation = 30.97(Ft.) Pipe length = 40.58(Ft.)^ ^^r'^^'' V542(CPS] NO. Of pipes = 1 Required pipe flow = 7.542(CFS) Given pipe size = 18.00(In.) o/PFS^ Calculated individual pipe flow = 7.542(Ctb) Normal flow depth in pipe = 4.60(In.) Flow top width inside pipe = 15.70(In.) Critical Depth = 12.75(In.) Pipe flow velocity = 21.16(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 23.36 mm. ++++++++++++++++++++++++++++++++++++ +++ + + +++ + + + + + + +++++ + + +++++ + + + + + + + +•- . -.-^o process from Point/Station 138.000 to Pomt/Station 138.000 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.290(Ac.) Runoff from this stream = 7.542(CFS) Time of concentration = 23.36 min. Rainfall intensity = 1.140(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 1002.000 to Pomt/Station 1002.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** user specified 'C value of 0.660 given for subarea I^U^ f Rainfall intensity (I) = 2.538 for a 2.0 year storm >^ user specified values are as follows: AJPft *r" TC = 6.76 min. Rain intensity = ^ AA ^''''^''''A ,, ,c^a) f^^^ , Total area = 0.17 (Ac.) Total runoff = 0.17 (CPS) ^^<^^^0M + + + + + + -^ + -f-l-(-H-H-)-f + -)-l-)-H- + + + + + + + + + + + + + + + + process from Point/Station 138.000 to Pomt/Station 138.000 **** CONFLUENCE OF MAIN STREAMS * * * * The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.170(Ac.) Runoff from this stream = 0.170(CFS) Time of concentration = 6.76 min. Rainfall intensity = 2.538(In/Hr) Summary of stream data: TC Rainfall Intensity Stream Flow rate No. (CPS) (min) (In/Hr) 1 2 Qmax(1) Qmax(2) = 7 . 542 23 . 36 1. 140 0 . 170 6 . 76 2 . 538 1 . ,000 * 1, , 000 * 7 . ,542) + 0 , .449 * 1, . 000 * 0 . ,170) + 1 .000 * 0 .289 * 7 .542) 1 . 000 * 1 .000 * 0 .170) + — 7 .618 2 .352 Total of 2 main streams to confluence: Flow rates before confluence point: 7.542 0.170 Maximum flow rates at confluence using above data: 7.618 2.352 Area of streams before confluence: 9.290 0.170 Results of confluence: Total flow rate = 7.618(CFS) Time of concentration = 23.363 min. Effective stream area after confluence = 9.460(Ac.) Process from Point/Station 138.000 to Pomt/Station 140.000 PIPEFLOW TRAVEL TIME (User specified size) **** **** Upstream point/station elevation = 30.97(Ft.) Downstream point/station elevation = 26.50(Ft.) Pipe length = 58.38 (Ft.) ^^^^^^^' ^ ^ = FS) No. of pipes = 1 Required pipe flow = 7.618(CPS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.618(CPS) Normal flow depth in pipe = 6.29(In.) Plow top width inside pipe = 17.16(In.) Critical Depth = 12.84(In.) Pipe flow velocity = 13.85(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 23.43 mm. End of computations, total study area = y.4b i^c; '"-'^.'-/-.l fc..^; \C:)CL..,,.....iei^, f5^'5k-M. .:?f>l"'.' A •-•/ ^OZ. illi^i,.....,.. „,£2.-.ciA.„ ^ , ^ y J''^-'~''7- AAAA ^ i'^ I A. f m€>iA- .."^A^-i ''"^ ...^...±1 fe- J0,0 vj^f: 5f?j-/t ( , C">U ;-•> ^^'f^, ,fk^?'.5^.^_^*^,..„ ^^^fA i:--i.44<l.U I(:.i^.„5i2, _ - -„.^ ^ „ Z. L,..ij5l,.,i'5.,[,k;:k: iZ^''-'\A> f\lLtr'\ 2) . nb\ r/r^v FLOOD HYDROGRAPH ROUTING PROGRAM Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2001 Study date: 05/12/05 6 HOUR 2 YEAR STORM THE BLUFFS 01-1022 FILE:BLUPFS2YR.OUT 05/12/05 BY:CSO O'Day Consultants, Carlsbad, California - S/N 768 ********************* HYDROGRAPH INFORMATION ********************** Prom study/file name: 2YRHYD.rte ********************** Hydrograph Information ************************ Prom manual input hydrograph ****************************yYPj^QQj^pjj DATA**************************** Number of intervals = 117 Time interval = i.o (Min.) Maximum/Peak flow rate = 6.23 0 (CFS) Total volume = 0.269 (Ac.Pt) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Peak (CPS) 0.000 0.000 0.000 0.000 0.000 Vol (Ac.Pt) 0.000 0.000 0.000 0.000 0 000 ********************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + + + H--l--^-f-F-H-f-f-H + -H-H + -|--f-f-H-f.f-j- + + + + 4. + + + + + + + + + + + ,,^.^.^.^.j..^.j..^,,^^ Process from Point/Station 1.000 to Point/Station 2 000 **** RETARDING BASIN ROUTING **** User entry of depth-outflow-storage data Total number of inflow hydrograph intervals =117 Hydrograph time unit = 1.000 (Min.) Initial depth in storage basin = 0.00(Ft.) Initial basin depth = 0.00 (Ft.) Initial basin storage = 0.00 (Ac.Pt) Initial basin outflow = 0.00 (CPS) Depth vs. Storage and Depth vs. Discharge data: Basin Depth Storage Outflow (S-0*dt/2) (S+0*dt/2] (Ft.) (Ac.Pt) (CFS) (Ac.Pt) (Ac.Pt) 0.000 0.000 0.000 0.000 0 . 000 0 . 800 1. 000 1.200 1.400 1.600 1.800 2 . 000 2 .200 2 .400 0 . 007 0 . 010 0 . 014 0 . 018 0.022 0 . 027 0.032 0.038 0 . 048 5 5 5 5 5 . 5 , 5 . 5 . 5 . 226 227 228 229 230 231 232 233 234 0 0 . 003 0.006 0 . 010 014 0 . 018 0 . 023 0 . 028 0.034 0 . 044 0 . Oil 0 . 014 0 . 018 0 . 022 0 . 026 0 . 031 0 . 036 0 . 042 0 . 052 Hydrograph Detention Basin Routing Graph values: 'l'= unit inflow; 'O'=outflow at time shown Time (Hours) 0.017 0.033 0.050 0 . 067 0.083 0 .100 0.117 0 . 133 0 . 150 0.167 0 .183 0.200 0.217 0.233 0.250 0.267 0.283 0.300 0.317 0.333 0.350 0.367 0 . 383 0 .400 0.417 0.433 0.450 0.467 0.483 0.500 0.517 0.533 0 . 550 0.567 0.583 0 .600 0 . 617 0.633 0 . 650 0.667 Inflow (CPS) 0 .00 0.08 0 .16 0. 31 0 . 50 0 . 70 0 . 95 1.19 1.51 1. 83 2 .22 65 10 61 12 55 98 5.31 5.61 5.86 6.02 6 .18 6 .20 6.23 6.22 6.20 6.12 5 . 96 80 62 43 22 01 78 4.51 4.24 3.92 3 .60 3.31 3.05 Outflow (CFS) 0.00 0.03 0.09 0 .19 0.34 0 . 52 0 . 73 0 . 96 1.22 1.53 ,87 ,25 ,68 , 14 ,63 11 .55 ,96 ,23 ,23 .23 ,23 1, 2, 2 . 3 , 3 , 4 , 4 . 4 , 5 , 5 , 5 . 5 , 5 .23 5 .23 23 23 23 23 23 23 5 .23 5 .23 5 .23 5 .23 5 .23 5.23 5 .23 5.23 5.23 5 .23 Storage (Ac.Pt) 0.000 0 . 000 0 . 000 0 . 000 0 . 000 0 . 001 0 . 001 0 . 001 0.002 0.002 0 . 002 0 . 003 0 . 004 0.004 0.005 0 . 006 0 . 006 0 . 007 0 . 007 0.008 0.009 0.010 0 . Oil 0 . 013 0 . 014 0 . 015 0 . 017 0 . 018 0.019 0 . 019 0 . 020 0 . 020 0.020 0 . 019 0.019 0 . 017 0.016 0 . 014 0.011 0.008 .0 O O O 01 01 1.6 3 .12 01 01 O I OI O I O I O I o o 4.67 I O I O o Depth .23 (Ft.) 0.00 0 . 00 0 . 01 0 . 03 0 . 05 0 . 08 0.11 0.15 0 . 19 0 .23 0.29 0 .34 0.41 0.48 0 . 56 0.63 i I j 0 . 70 |0 I j 0 . 76 j O I j 0 . 81 1 0 I j 0.86 j 0 I i 0.92 i 0 11 1.00 1 o I j 1. 07 o I 1.14 o 11 1.20 0 11 1.27 o 11 1.34 o I 1 1.39 O I j 1 .44 0 I 1 1. 47 01 j 1 . 49 0 1 1 . 50 « 10 j 1.49 0 j 1.47 0 1 1.43 0 j 1.37 o j 1.29 o j 1.19 0 j 1. 06 0 j 0 . 90 0.683 2 . 81 4.40 0 . 006 1 0 . 700 2 . 62 3 .25 0 . 004 1 0 . 717 2 .43 2.76 0 . 004 1 0 . 733 2.27 2 .48 0 . 003 1 0 . 750 2.11 2 .28 0.003 1 0 . 767 1.97 2 .12 0 . 003 1 0 . 783 1. 84 1. 97 0 . 003 1 0 . 800 1 . 72 1.84 0 . 002 j 0 . 817 1.62 1.73 0.002 1 0 . 833 1 . 53 1 .62 0 . 002 1 0 . 850 1.43 1 .53 0 . 002 1 0.867 1.34 1 .43 0 . 002 1 0 . 883 1.26 1.34 0 . 002 1 0 . 900 1.18 1.26 0 . 002 1 0 . 917 1.10 1.18 0.002 1 0 . 933 1.02 1 .10 0.001 1 0.950 0.94 1 . 02 0 . 001 1 0 . 967 0 . 88 0 . 94 0 . 001 0 . 983 0.83 0 . 88 0.001 1 1. 000 0 . 78 0 . 83 0 . 001 1. 017 0 . 72 0 . 78 0.001 1 0 1.033 0.67 0 . 72 0 . 001 j 0 1. 050 0 .63 0 . 67 0.001 1 0 1.067 0.59 0 . 63 0 . 001 i 0 1 . 083 0 . 55 0.59 0 . 001 1 10 1.100 0 .51 0 . 55 0 . 001 i 0 1 . 117 0.48 0.51 0.001 j 0 1 .133 0 .44 0.48 0.001 1 0 1.150 0.41 0.44 0.001 i 0 1.167 0.38 0.41 0.001 1 10 1.183 0.34 0.38 0.001 jo 1.200 0.32 0.34 0 . 000 jo 1.217 0.30 0.32 0.000 jo 1.233 0.28 0.30 0 . 000 jo 1.250 0.26 0.28 0 . 000 jo 1 .267 0.24 0.26 0 . 000 |o 1.283 0.23 0.24 0.000 jo 1.300 0 .22 0.23 0.000 jo 1.317 0.20 0.22 0.000 jo 1.333 0 .19 0.20 0 .000 lO 1.350 0 .17 0.19 0.000 0 1.367 0 .16 0.17 0 . 000 o 1.383 0 .15 0.16 0.000 0 1.400 0.14 0 .15 0.000 0 1.417 0.13 0.14 0 . 000 o 1.433 0.12 0.13 0 . 000 0 1 .450 0 .11 0 .12 0 . 000 0 1 .467 0.11 0.11 0 . 000 0 1 .483 0 .10 0 .11 0.000 0 1.500 0.09 0 .10 0 . 000 0 1 . 517 0.09 0 . 09 0 .000 0 1 .533 0 . 08 0.09 0 . 000 0 1.550 0 .08 0 .08 0 . 000 o 1. 567 0 . 07 0.08 0.000 o 1.583 0 . 07 0 .07 0.000 0 1.600 0.06 0 .07 0.000 0 1. 617 0.06 0 . 06 0 .000 0 I I I o I o 10 10 o 10 10 o 10 ol 10 o o 10 o 10 o o o 0 .67 0 .50 0 . 42 0.38 0.35 0 . 32 0.30 0.28 0.26 0.25 0.23 0 .22 0 .21 0 . 19 0 . 18 0 .17 0 . 16 0 .14 0 . 14 0 .13 0 .12 0 .11 0 .10 0 .10 0.09 0 . 08 0 . 08 0.07 0 . 07 0 . 06 0 . 06 0 . 05 0 . 05 0.05 0 . 04 0 . 04 0.04 0 . 04 0.03 0.03 0 . 03 0.03 0.02 0.02 0 . 02 0 . 02 0 . 02 0 . 02 0.02 0.02 0 . 01 0.01 0.01 0 . 01 0.01 0 . 01 0.01 1 . 633 0 .06 0 .06 0 .000 0 1 . 650 0 . 06 0 . 06 0 . 000 0 1 .667 0 . 05 0 . 06 0 . 000 0 1 . 683 0 . 05 0 .05 0 . 000 0 1 . 700 0 .05 0 .05 0 . 000 0 1 . 717 0 . 05 0 .05 0 . 000 0 1 .733 0 .04 0 . 05 0 . 000 0 1 750 0 04 0 04 0 000 0 1 767 0 04 0 04 0 000 0 1 783 0 03 0 04 0 000 0 1 800 0 03 0 03 0 000 0 1 817 0 03 0 03 0 000 0 1 833 0 03 0 03 0 000 0 1 850 0 02 0 03 0 000 0 1 867 0 02 0 02 0 000 0 1. 883 0 02 0 02 0 000 0 1. 900 0 . 01 0 . 02 0 . 000 0 1. 917 0 . 01 0 . 01 0 . 000 o 1. 933 0. 01 0 . 01 0 . 000 0 1. 950 0 . 00 0 . 01 0. 000 0 1. 967 0. 00 0. 00 0. 000 0 0 . 01 0 . 01 0 . 01 0.01 0 . 01 0 . 01 0 . 01 0 . 01 0.01 0 . 01 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0.00 0 .00 ****************************jjYDROGRAPH DATA**************************** Number of intervals = 118 Time interval = 1.0 (Min.) Maximum/Peak flow rate = 5.229 (CFS) Total volume = 0.26 9 (Ac.Pt) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Peak (CFS) 0.000 0.000 0.000 0.000 0.000 Vol (Ac.Pt) 0.000 0.000 0.000 0.000 0.000 *************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2-YEAR HYDROGRAPH 01-1022 THE BLUFFS 1/tp 0.5 0.03', 2.333 2.333! 0.1872! 4.666 0.1872 0.624 0.191 4.666j 0.624i 6.999! 1.1856 0.31; 6.9991 1.18561 9.3321 1.9344 9.332i 1.93441 11.665 i 2.9328 0.471 11.6651 2.9328j 13.9981 4TI64 0.66i 13.998 0.82i 16.331 0.93: 18.664 4.11841 16.331! 5.11681 5.1168 18.6641 5.80321 5.8032 20.9971 6.1776! 0.991 20.997! 6.17761 23.33 ''JSi 23.331 0.99! 25.663 6.241 2S.663i 6.17761 0.93! 27.996 0.86 0.78 0.68 0.56 2.2 2.4 0.46 0.39 0.33 30.329 6.1776| 27.996| 5.8032f 5.80321 30.3291 5.36641 5.36641 32.662! 4.8672! 32.662 ! 4.8672 i 34.996 i 4.2432 34.995! 4.2432! 37.3281 3.49441 37.3281 39.661! 3.4944 2.8704! 39.661! 2.87041 41.994! 2.4336 i 41.994 0.28! 44.327 0.21 0.15 2,8! 0.11 46.66 51.326 55.992 60.668 0.08! 65.324 2.43361 44.327 ! 2m92 2.0592 ! 46.66! 1.7472 1.74721 51.326i 1.3104 1,31041 55,992! 0936 0.936 j 60.6581 0.6864 0.6864! 65.3241 0.4992 0.4992 ! 69.99 3.2! 0.055j 69.99! 0.3432 ! 74.656 0.04! 74.656 ! 0.2496 ! 79.322 3.4! 0.0291 79.322 ! 0.18096 ! 83.988 36! 3.81 0.021 j 83.988! 0.131041 88.664 0.015! 88.654 ! 0.09361 93.32 0.011 93.32! 0.06864! 107.318" 0.3432 0.2496 0.18096 0.13104 0.0936 0.06864 4.6! 0.005 107.318 0.0312! 116.65i 0.0312 116.65! q calc) 0 0.1872 0.1872 0.624 0.624 1.1856 1.1856 1.1856 32. 0.1872 0.1872 0.1872 0.624 0.624 1.1866 1.1856 1.9344 1.9344 1.9344 1.9344 2.9328 2.9328 4.1184 22 23 24 mi ""271 4,1184 4.1184 5.1168 5.1168 6.8032 5.8032 6.1776 6.1776 1.9344 2.9328 2.9328 4.1184 4.1184 5.1168 5.1168 6.1168 5.8032 5.8032 6.1776 6.1776 6.24 6.1776 6.24 6.24 6.24 6.24 6.1776 6.1776 2.333 2.333 2.333 2.333 2.333 4.666 4.666 6.999 6.999 6.999 9.332 9.332 11.665 11.665 13.998 4.666 4.666 6.999 6.999 9.332 9.332 9.332 11.665 11.665 13.998 13.998 13,998 13.998 16.331 16.331 18.664 18.664 20.997 16.331 16.331 16.331 18.664 18.664 20.997 20.997 20.997 20.997 23.33 6.17761 6.8032 6.17761 5.80321 5.8032 29 30 5.3664 6.80321 6.3664 5,80321 5.3664 5.36641 4.8672 5.36641 4.8672 33! 4.86721 4.2432 4.86721 4.2432 4.2432 4.24321 37! 4.24321 381 3.4944| 3.4944! 3.4944 3.4944 3.4944 2.8704 2.8704 23.33 25.663 25.663 27,996 27.996 27.996 30.329 30.329 32.662 32.662 34.995 34.995 34.995 37.328 48 2.8704! 2T4336 2.8704! 2.4336 37.328 39.661 2.4336! 2.4336! 2.4336 2.05921 2.0592! 39.651 23.33 23.33 23.33 25.663 25.663 27.996 27.996 30.329 30.329 30.329 32.662 32.662 34.995 34.995 37.328 37.328 37,328 39.661 39,661 41.994 41.994 41.994 2.0592 2.0592, 1.7472 1.7472 1.7472 1.7472: 1.7472 1.3104 2.05921 41.994 1.74721 44.327 1.7472! 44.327" 1.3104! 46.66 1.31041 46.66 1.3104! 1.3104! 1.3104! 46.66 46.66 1.3104 1.3104 1.3104 0.936 0.936 0.936 0.936 0.9361 0.936" 0.936 46.66 51.326 51.326 51.326 0.936! 51.326 0.68641 55.992 0.68641 65.992 0.6864! 55.992 60! 0.936 0.68641 55.992 41.994 44.327 44.327 44.327 46.66 46.66 51.326 51.326! 51.3261 51.3261 61.3261 65.992! 65.9921 55.992 55.992 i 60.6581 60.668! 60.658: 61! 0.6864 62! 0.6864 0.68641 55.992 O.4992I 60.658 0.4992 ! 60.658 63! 0.6864! 0.49921 60.658 60.658! 60.6581 65.3241 65.3241 0.00 0.08 0.16 0.31 0.50 0.70 0.95 1.19 1.51 1.83 2.22 2.65 3.10 3.61 4.12 4.55 4.98 5.31 5.61 5.86 6.02 6.18 6.20 6.23 6.22 6.20 6.12 5.96 5.80 5.62 5.43 5.22 5.01 4.78 4.51 4.24 3.92 3.60 3.31 3.05 2.81 2.62 2.43 2.27 2.11 1.97 1.84 1.72 1.62 1.53 1.43 1.34 1.26 1.18 1.10 1.02 0.94 0.88 0.83 0.78 0.72 0.67 0.63 0.59 2-YEAR HYDROGRAPH 01-1022THE BLUFFS ! ! ! ! 54 0.6864 0.4992 60.658 65.324 0.55 66 0.6864 0.4992 60.658 65.324 0.51 \ i 66 0.4992 0.3432 65.324 69.99 0.48 —^ i 67 0.4992 0,3432 65.324 69.99 0.44 t ! 68 0.4992 0.3432 65.324 69.99 0.41 .-, -, - ,-i ! 69 0.4992 0.3432 66.324 69.99 0.38 I 70 0.3432 0.2496 69.99 74.656 0.34 ! 71 0.3432 0.2496 69,99 74.656 0.32 ! i 72 0.3432 0.2496 69.99 74.656 0.30 ! \ 73 0.3432 0.2496 69.99 74.656 0.28 { ! 1 74 0.3432 0.2496 69.99 74.656 0.26 75 0.2496 0.18096 74.656 79.322 0.24 ^ 1 76 0.2496 0.18096 74.666 79.322 0.23 77 0.2496 0.18096 74.666 79.322 0.22 78 0.2496 0.18096 74.556 79.322 0.20 ! ! 79 0.2496 0.18096 74.656 79.322 0.19 1 80 0.18096 0.13104 79.322 83.988 0.17 81 0.18096 0.13104 79.322 83.988 0.16 82 0.18096 0.13104 79.322 83.988 0.15 83 0.18096 0.13104 79.322 83.988 0.14 ' ! 84 0.13104 0.0936 83,988 88.654 0.13 i \ 85 0.13104 0.0936 83.988 88.654 0.12 I i ! 86 0.13104 0.0936 83.988 88,654 0.11 i i ! 87 0.13104 0.0936 83.988 88.654 0.11 i \ i 1 j 88 0.13104 0.0936 83.988 88.664 0.10 89 0.0936 0.06864 88.654 93.32 0.09 i \ 1—: i 1 90 0.0936 0.06864 88.654 93.32 0.09 91 0.0936 0.06864 88.654 93.32 0.08 92 0.0936 0.06864 88.654 93.32 0.08 . i ! i 93 0.0936 0.06864 88.654 93.32 0.07 1 ! ;• i i ( 94 0.06864 0.0312 93.32 107.318 0.07 95 0.06864 0.0312 93.32 107.318 0.06 96 0.06864 0,0312 93,32 107.318 0.06 97 0.06864 0.0312 93.32 107.318 0.06 - - I— 1, , . , i 1 98 0.06864 0.0312 93.32 107.318 0.06 99 0.06864 0.0312 93.32 107.318 0.05 i ; ! 100 0.06864 0.0312 93.32 107.318 0.05 ? \ 101 0.06864 0.0312 93.32 107.318 0.05 i ! , 102 0.06864 0.0312 93.32 107.318 0.06 j i ; 1 103 0.06864 0.0312 93.32 107.318 0.04 104 0.06864 0,0312 93.32 107.318 0.04 \ ! ; 105 0.06864 0.0312 93.32 107.318 0.04 106 0.06864 0.0312 93.32 107.318 0.03 ! 107 0.06864 0.0312 93,32 107.318 0.03 108 0.0312 0 107.318 116.65 0.03 : ! 109 0.0312 0 107.318 116.65 0.03 110 0.0312 0 107.318 116.65 0.02 1 i 111 0.0312 0 107.318 116.65 0.02 ! 1 112 0.0312 0 107.318 116.66 0.02 i 113 0.0312 0 107.318 116.65 0.01 ! ! ! 1 114 0,0312 0 107.318 116.65 0.01 ! 1 ; ; ! 115 0.0312 0 107.318 116.65 0.01 \ i —-j ! i 116 0.0312 0 107.318, 116.65 0.00 117 0 0 116.65 0 0.00 118 0 0 116.65 0 0.00 ! i i ! 119 0' 0 116.65 0 0.00 ; 120 0 0 116.65 0 0.00 1 121 0 0 116.65 0 0.00 ! 122 0 0 116.65 0 0.00 ! ; ! ! : ! 123 0 0 116.65 0 0.00 iii!: I 124 0 0 116.65 o! 0.00 i 125 0 0 116.65 0: 0.00 126 0! o" 116.66 01 0.00 i ! 127 Oi 0 116.65 Oi 0.00 SECTION 6 PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR STORM - HYDRAULICS * THE BLUFFS - STORM DRAIN LINE 'A' * * J.N. 01-1022 06/27/05 BY:CSO ****************************,,,,,,,,,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^* FILE NAME: 0122HGL.DAT TIME/DATE OP STUDY: 15:11 06/27/2005 ***************************,,, GRADUALLY VARIED PLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note:^^^*^^indicates nodal point data used.) DOWNSTREAM RUN FLOW PRESSURE-f UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 2 . 00* 132.00 130.50 130.00 128.50 128.00 126.50 126.00 124.50 124.00 122.50 122.00 120.50 DEPTH(PT) MOMENTUM(POUNDS) } FRICTION } MANHOLE } FRICTION } JUNCTION } FRICTION } MANHOLE } FRICTION } JUNCTION } FRICTION } MANHOLE } FRICTION } JUNCTION 120.00- } FRICTION 118.50- 1.23 Dc 1.23 Dc 1.23*Dc 1.52* } H^ 1.22 Dc 1.22 Dc 1.22*Dc 2 . 05* 1.90* 1. 79* 1 . 73* 1.85* 1. 76* 281. 93 JUMP 0 . 73 277.94 200.57 0 . 77* 265 .59 200.57 0 . 77* 264.75 200.57 1.23*Dc 200.57 209.08 JUMP 0.99 205.47 193.63 0 . 95* 210.11 193.63 1.00* 204.82 193.63 1.22*Dc 193.63 280 . 05 1.05 187.60 252.83 1. 00 191 .29 235.87 1.12 184.37 226.81 1.19 Dc 183.25 241.30 1.11 179.74 227 . 09 1.18 Dc 178.88 ) JUNCTION 118.00- FRICTION 2 .11* 255.64 0 . 90 118.26 117.50- JUNCTION 2 . 06* 245.36 0.99 Dc 116 .46 117.00- ] FRICTION 2.21* 228.05 0.89 133.93 116.50- } JUNCTION 1. 94* 197.31 1.08 Dc 127.09 116.00- } FRICTION 2.36* 243.54 0 . 80 142.56 114.50- } JUNCTION 2 . 02* 207.05 1.08 Dc 127.09 114.00- } FRICTION 2 . 04* 204 .38 1.06 Dc 122.04 112.50- } JUNCTION 2 . 00* 200 . 65 1.07 Dc 122.04 112.00- } FRICTION 2.36* 196.96 0.47 77.53 110.50- } JUNCTION 1.27* 79 . 07 0.78 Dc 55 .54 110.00- } FRICTION 1.29* 71.95 0 .45 48 .36 109.50- } JUNCTION 1.18* 62.83 0 .44 50 . 08 109.00- } 108.50- } FRICTION JUNCTION 1.09* } HYDRAULIC 0.68*Dc 55 .45 JUMP 38.93 0.40 0.68*Dc 55 . 20 38 . 93 108.00- } 107.50- } FRICTION JUNCTION 0 . 97* } HYDRAULIC 0.53 Dc 37.96 JUMP 21.28 0.30 0 .26* 31. 61 38.73 107.00- } FRICTION 0.53 Dc 21.28 0 .24* 43 .25 210.50- } JUNCTION 0.53*Dc 21.28 0.53*Dc 21.28 210.00- } FRICTION 0.61 15.02 0.33* 17 . 07 208.50- } JUNCTION 0.49*Dc 13.91 0.49*Dc 13 . 91 208.00- } 206.50- FRICTION 0.68* } HYDRAULIC 0.29*Dc 11.32 JUMP 3 . 97 0.23 0.29*Dc 4 . 35 3 . 97 MAXIMUI^ NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED"ON"THE'MOST CONSERVATIVE FORMULAE PROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ^v-niui **************************, DOWNSTREAM PIPE PLOW CONTROL DATA: NODE NUMBER = 132.00 FLOWLINE ELEVATION = 56 6 9 PIPE PLOW = 11.80 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 58 690 FEET NODE 132.00 : HGL = < 58.690>;EGL= < 58.909>;FLOWLINE= < 5 6 . 690> *************************^,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PLOW PROCESS FROM NODE 132.00 TO NODE 130 50 IS CODE = 1 ^^UPSTREAM NODE 130.50 ELEVATION = 57.53 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.80 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 21.39 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ^JORMAL^DEPTH(PT) = 0.70 CRITICAL'DEPTH (FTr= i'23 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.77 ===== GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: ====== DISTANCE PROM PLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(PT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0- 000 0.767 10.645 2.527 265 59 1- 250 0.764 10.694 2.541 266 55 2- 563 0.761 10.744 2.555 267 51 3- 944 0.759 10.795 2.569 268 48 5- 402 0.756 10.846 2.584 269 47 6- 941 0.753 10.897 2.598 270 47 8-573 0.751 10.949 2.613 271 48 10.305 0.748 11.002 2.629 272 50 12.150 0.745 11.054 2.644 273 53 ^4-122 0.743 11.108 2.650 274*57 16-235 0.740 11.161 2.676 275 52 1^-514 0.737 11.216 2.692 276 69 20.978 0.735 11.270 2.708 277 77 21.390 0.734 11.279 2.711 277.94 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2700 ============ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(PT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) °-000 2.000 3.755 2.219 281 93 °-^58 1.969 3.767 2.190 275*20 1-560 1.939 3.789 2.152 270 73 2.298 1.908 3.818 2.135 265.46 3-018 1.877 3.852 2.108 250 36 3- 720 1.847 3.892 2.082 255 43 4- 405 1.816 3.936 2.057 250 68 ^•073 1.785 3.985 2.032 246 09 5- 725 1.755 4.038 2.008 241 69 6- 359 1.724 4.096 1.985 237 46 6-976 1.693 4.159 1.962 233 42 7.574 1.563 4.226 1.940 229'57 8.152 1.632 4.298 1.919 225 92 8.708 1.601 4.375 1.899 222 48 9-241 1.571 4.457 1.879 21924 9 . 749 1 540 4 .544 1. 861 10 .230 1 509 4 . 637 1 . 844 10 .680 1 479 4 . 737 1. 827 11 . 098 1 448 4 842 1 . 812 11 478 1 417 4 955 1.799 11 817 1 . 387 5 074 1. 787 12 111 1. 356 5 202 1. 777 12 352 1 . 325 5 337 1 . 758 12 536 1 . 295 5 482 1. 762 12 653 1. 264 5 636 1. 758 12 . 594 1 . 234 5 . 801 1.756 21. 390 1 . 234 5 . 801 1.756 OP HYDRAULIC JUMP 216.23 213.45 210 . 90 208.61 205.57 204.81 203.33 202.15 201.28 200 . 75 200.57 200.57 ...^.,oLj^^...^n^,,xuiv, BALANCE OCCURS AT 0.59 FEET UPSTREAM OF NODE 132 00 I I DOWNSTREAM^DEPTH = 1.977 FEET, UPSTREAM CONJUGATE DEPTH = 0 73 5 FEEJ | NODE 130.50 : HGL = < 58 . 2 97> ; EGL= "7 " "eO " 057> ^PLOWLINE^r "'57 ^53 0 ^ FLOW PROCESS PROM NODE 130.50 TO NODE 130.00 IS CODE = 2 __UPSTREAM_NODE__^130.00___^ ELEVATION = 57.63 (FLOW Is"sUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 11.80 CFS piPE DIAMETER = 24 00 INCHES AVERAGED VELOCITY HEAD = 1.753 FEET INCHES HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 1.753) = 0.O88 130.00 : HGL = < 58.399>;EGL= < 60.145>;FLOWLINE= < "'57"630> *************************^^^^^^^^^^^^^^^ NODE ************************^^^^^^j^^^^^^^^ FLOW PROCESS PROM NODE 130.00 TO NODE 128.50 IS CODE = 1 CALCULATE FRICTION LOSSES(LACFCD)• PIPE PLOW = 11.80 CPS PIPE PIPE LENGTH = 85.67 FEET DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.75 CRITICAL DEPTH(FT) = 1.23 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.23 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: DISTMCE PROM PLOW DEPTH VELOCITY CONTROL(FT) (PT) (FT/SEC) 0 . 000 1 .234 5 . 801 0 . 024 1 .214 5.911 0 .100 1 . 195 6 . 025 0 .233 1 . 175 5 .144 0 .430 1 .156 6 .269 0 .697 1 .137 6.399 1 . 043 1 .117 6.535 1 .478 1 .098 6.678 2 014 1 . 079 6 . 827 2 664 1 059 6 . 983 3 445 1 040 7 .147 4 376 1 021 7.318 SPECIFIC PRESSURE-^ ENERGY(PT) MOMENTUM(POUNDS) 1 . 756 200 .57 1 . 757 200 .64 1 . 759 200 . 87 1 762 201 .26 1 767 201 81 1 773 202 54 1 781 203 45 1 791 204 55 1. 803 205 85 1. 817 207 36 1. 833 209. 08 1. 853 211. 04 5.484 1 . 001 7 .498 1, . 875 213 . 23 6 . 797 0 . 982 7 .687 1. . 900 215 .68 8 .355 0 . 963 7 . 885 1, . 929 218 .40 10.208 0 , , 943 8 . 096 1, . 961 221 .41 12 .423 0 . , 924 8 .316 1, . 998 224 . 71 15 . 087 0 , , 904 8 , .548 2 , . 040 228 .34 18 .328 0 , , 885 8 , . 794 2 , , 087 232 .31 22 . 330 0 , , 866 9 , . 053 2 , . 139 236 . 64 27.379 0, , 846 9, ,327 2 . , 198 241 .36 33 . 956 0 , , 827 9 . ,618 2 , ,264 245 .50 42 . 960 0 . , 808 9 , , 926 2 , ,338 252 , . 09 56.417 0 , , 788 10 . ,253 2 , ,422 258 , , 16 80.822 0 . ,769 10 . ,601 2 . ,515 254 , .75 86 . 670 0 , , 759 10 , ,501 2 , ,515 254 , . 75 128.50 : ; HGL = < 61 . 504>;EGL= < 52 . 026>,-FLOWLINE= < 60.270> NODE **************************************************************************^*** FLOW PROCESS FROM NODE 128.50 TO NODE 128.00 IS CODE = 5 UPSTREAM NODE 128.00 ELEVATION = 60.37 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CPS) (INCHES) (DEGREES) ELEVATION DEPTH(PT.) (FT/SEC) UPSTREAM 11 .49 24 . 00 0.00 60.37 1.22 4.480 DOWNSTREAM 11.80 24 . 00 -50 .27 1.23 5 . 803 LATERAL #1 0.00 0 . 00 0 . 00 0.00 0 . 00 0 . 000 LATERAL #2 0 . 00 0.00 0.00 0 . 00 0 . 00 0 . 000 Q5 0.31 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*C0S(DELTA3)- Q4*V4*C0S (DELTA4) ) / ( (A1-I-A2) *16 .1) -f FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00306 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY-I-HV1-HV2)-t-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.072)-l-( 0.105) = 0.177 NODE 128.00 : HGL = < 61.892>;EGL= < 62.203>;FLOWLINE= < 60.370> ****************************************************************************** 00215 00397 0.105 FEET FLOW PROCESS PROM NODE UPSTREAM NODE 126.50 128.00 TO NODE 126.50 IS CODE = 1 ELEVATION = 60.77 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.49 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 3 9.99 FEET MANNING'S N = 0.013 00 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 1.01 CRITICAL DEPTH(FT) = 1.22 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0 . 95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM CONTROL(FT) 0 . 000 1. 514 3 .282 5 . 009 5 . 800 8 .661 10 .601 12.626 14.747 16.976 19.327 21 . 816 24 .464 27.296 30.346 33.653 37.273 39.990 FLOW DEPTH (FT) 0 . 955 0 . 957 0 . 959 0 . 951 0 . 954 0 . 966 0 . 958 0 . 970 0 . 972 0 . 974 0 . 977 0 . 979 0 . 981 0 . 983 0 . 985 0 . 987 0 . 990 0 . 991 VELOCITY (PT/SEC) 7.759 7 . 736 7 . 713 7 .691 7.569 7.646 7.624 7.602 7.580 7 .55 9 7 .537 ,516 .494 7.473 7 .452 7.431 7.410 7 .395 7 , 7 . SPECIFIC ENERGY(FT) 1. 890 1, 1 , 1 , 1. 1. , 887 , 884 , 880 , 877 , 874 1 . 871 . 858 , 865 , 862 , 859 . 856 , 854 1. 851 1. 848 1.845 1. 843 1. 841 PRESSURE+ MOMENTUM(POUNDS) 210.11 209.80 209 . 50 209.21 208 . 91 208.62 208.33 208 . 05 207.77 207.49 207 .22 206 . 95 206.68 205 .41 206 .15 205.90 205.64 205.47 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.52 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: :E PROM FLOW : DEPTH VELOCITY SPECIFIC PRESSURE-f )L (FT) (FT) (FT/SEC) ENERGY(PT) MOMENTUM(POUN 0 . 000 1 .522 4 .479 1 . 833 209 . 08 1 .013 1 .510 4 .515 1 . 825 207 . 95 2 . 008 1 .497 4 .553 1 . 819 205 .86 2 . 985 1 .485 4 . 592 1 . 813 205 . 81 3 . 946 1 .473 4 . 532 1 .806 204 . 80 4 .886 1 .461 4 . 672 1 .800 203 . 82 5 . 806 1 .448 4 . 714 1 .794 202 . 89 5 .703 1 .436 4 . 757 1 . 788 201 . 99 7 .578 1 .424 4 .800 1 .782 201 .14 8 .428 1 .412 4 . 845 1 . 777 200, .32 9 .252 1 .400 4 . 891 1, . 771 199 .55 10 . 048 1 .387 4 , . 939 1. . 766 198 , . 82 10 . 814 1 .375 4 , . 987 1, . 762 198 , . 14 11 .549 1 .363 5 , , 037 1, , 757 197, ,50 12 . 249 1 .351 5 . , 088 1, , 753 196 , , 90 12 . 913 1 .339 5 . , 140 1. , 749 196 , ,35 13 .537 1 .326 5 , ,193 1, , 745 195 . ,85 14 .118 1 .314 5 . ,248 1. , 742 195 . ,40 14 .552 1 .302 5 . 304 1. 739 194 . , 99 15 .136 1, .290 5 . 362 1 . 737 194 . 64 15 .564 1, .278 5 . 421 1. 734 194 . 34 15 . 930 1, .265 5 . 482 1 . 732 194 . 08 16 .230 1. ,253 5 . 545 1. 731 193 . 89 16 .455 1 , , 241 5 . 609 1. 730 193 . 74 16, .598 1, ,229 5 . 674 1. 729 193 . 66 15, .648 1, ,217 5 . 742 1. 729 193 . 63 39 . 990 193 .63 1.217 5.742 1.729 END OF HYDRAULIC JUMP ANALYSIS PRESSURE4-M0MENTUM BALANCE OCCURS AT 3.12 FEET UPSTREAM OF NODE 128.00 DOWNSTREAM DEPTH = 1.483 FEET, UPSTREAM CONJUGATE DEPTH = 0.989 FEET NODE 126 . 50 HGL = < 61.725>;EGL= 62 . 650>;FLOWLINE= < 50 . 770> ****************************************************************************** PLOW PROCESS FROM NODE 126.50 TO NODE 126.00 IS CODE = 2 UPSTREAM NODE 126.00 ELEVATION = 60.87 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 11.49 CPS PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD = 0.886 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 0.886) = 0.044 NODE 126.00 : HGL = < 61.867>;EGL= < 62.704>;FLOWLINE= < 60.870> ****************************************************************************** FLOW PROCESS FROM NODE 126.00 TO NODE 124.50 IS CODE = 1 UPSTREAM NODE 124.50 ELEVATION = 61.45 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 11.49 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 51.88 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0 . 98 CRITICAL DEPTH(FT) 1.22 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.22 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PLOW DEPTH VELOCITY SPECIFIC PRESSURE-l- CONTROL(FT) (FT) (FT/SEC) ENERGY 1 [FT) MOMENTUM(POUNDS) 0 . 000 1. 217 5 . , 742 1. 729 193 . 63 0 . 026 1 . 207 5 , , 795 1. 729 193 . 65 0 . 108 1. 197 5 . , 852 1. , 729 193 . 70 0 .250 1. 188 5 . , 908 1. , 730 193 . 80 0 .459 1. 178 5 , , 956 1. ,731 193 . 93 0 .741 1. 169 6 , , 025 1, ,733 194. 10 1 .104 1. 159 6 , ,086 1. , 734 194 . 31 1 .557 1. 149 5, .147 1, , 737 194 . 56 2 . Ill 1. 140 6 , ,211 1. ,739 194 . 85 2 .778 1. 130 5 , .275 1, ,742 195 . 19 3 .573 1. 121 6. .341 1, , 745 195 . 56 4 .514 1. 111 6 , ,408 1. , 749 195 . 99 5 .623 1 . 101 6, .477 1, .753 196 . 46 6 . 928 1 . 092 6 , .548 1, . 758 196 . 97 8 .463 1. 082 6 . 620 1, , 763 197 . 53 10 .273 1. 073 6 .694 1, ,769 198 . 14 12 .417 1. 053 5 . 769 1, , 775 198 . 80 14 .973 1 . 054 5 . 846 1, ,782 199. 51 18 .053 1. 044 6 .925 1 , ,789 200. 28 21 . 821 1. 034 7 . 006 1, .797 201 . 09 26 .529 1. 025 7 .089 1. . 806 201. 96 32 .500 1 . 015 7 . 174 1, . 815 202 . 89 40 . 831 1. 006 7 .261 1 . 825 203 . 88 lll^Z.^ 0.997 7.342 1.834 204.82 NODE 124.50 : HGL = < 62.667>;EGL= <' 'l79>;PLOWLiNEr<" "ei'^O^ " " " ************************,,,,,,,^,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 124.50 TO NODE 124.00 IS CODE = 5 ELEVATION = 61.55 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT ) (FT/SFC^ UPSTREAM 11.02 24.00 90.00 61.55 119 3 508 DOWNSTREAM 11.49 24.00 - 61 45 1 22 5'74! LATERAL #1 0.00 0.00 0.00 0.00 0:00 0"000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 o'ooo 0.47===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED- DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S (DELTA4) ) / ( (Al-fA2) *16 .1) FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 00170 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = o" 00393 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0 00281 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.011 FEET ENTRANCE LOSSES = 0 102 FEET JUNCTION LOSSES = (DY-i-HVl-HV2)-f (ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.506)-f( 0.102) = 0.609 NODE 124.00 : HGL = < 63.596>;EGL= < ' 788> ^FLOWMNEI " < " "si' 550 > " " " ***************************,,,,,,,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PLOW PROCESS FROM NODE 124.00 TO NODE 122 50 IS CODE = 1 ELEVATION = 61.75 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.02 CPS PIPE DIAMETER = 24.00 INCHES —!!!! ^^!!!™_^ ^^-^^ ^^^^ MANNING'S N = 0.01100 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = ~~~2~05 ============= PRESSURE FLOW PROFILE COMPUTED INFORMATION: ===== DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) {FT/SEC) ENERGY(PT) MOMENTUM(POUNDS) 0-000 2.046 3.508 2.238 280.05 13-082 2.000 3.508 2.191 270.95 -I^^'^^J^^^™^^'^^ = "--"^ "CRITICAL"DEPTH(PT)"'I I"I9 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 ============= GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ======== DISTANCE PROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (PT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 13.082 2.000 3.507 2.191 270 95 21-584 1.968 3.519 2.160 264 87 29.585 37.317 38 .090 1 . 935 1 . 903 1. 900 3.541 3 .571 3 . 574 2.130 2 .101 2 .098 259.04 253.40 252.83 NODE 122.50 HGL 53.550>;EGL= < 63.848>;FLOWLINE= < 61.750> **********************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 122.50 TO NODE 122.00 IS CODE = 2 ELEVATION = 61.85 (PLOW IS SUBCRITICAL) UPSTREAM NODE 122.00 CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 11.02 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 0.206 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 0.205) = 0.010 24.00 INCHES NODE 122.00 : HGL = < 63.645>;EGL= < 53.858>;FLOWLINE= < 61.850> ************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PLOW PROCESS FROM NODE 122.00 TO NODE 120.50 IS CODE = 1 61.92 (FLOW IS SUBCRITICAL) UPSTREAM NODE 120.50 ELEVATION CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 11.02 CPS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 13.47 FEET MANNING'S N = 0.01100 NORMAL DEPTH(PT) = 1.08 CRITICAL DEPTH(PT) 1.19 = = = =: = =: = — — — = — — — — — — — — --., = = = = = = = = = = = ; ========== ================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(PT ) = 1.79 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM PLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (PT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.795 3 . 707 2.008 235.87 5.365 1.771 3.745 1.988 232.22 10.665 1. 745 3 . 785 1.969 228 . 67 13.470 1. 733 3 . 808 1. 959 226.81 NODE 120.50 : HGL = < 63.653>;EGL= 63.879>;FLOWLINE= < 61.920> **********************************^^,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PLOW PROCESS FROM NODE 120.50 TO NODE 120.00 IS CODE = 5 UPSTREAM NODE 120.00 ELEVATION = 62.02 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 10 . 82 11.02 0 . 00 0.00 0.20== DIAMETER (INCHES) 24 . 00 24.00 0.00 0.00 ANGLE (DEGREES) 45 . 00 0.00 0.00 FLOWLINE ELEVATION 52 . 02 61.92 0.00 0.00 CRITICAL DEPTH(FT.) 1.18 1.19 0.00 0.00 VELOCITY (FT/SEC) 3 . 569 3 . 810 0 . 000 0 . 000 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (Al-hA2) *16 .1) FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00142 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00155 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00149 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.006 FEET ENTRANCE LOSSES = 0.045 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.141)+( 0.045) = 0.186 NODE 120.00 : HGL = < 63.867>;EGL= < 64.065>;FLOWLINE= < 62.020> 1 ******************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PLOW PROCESS PROM NODE UPSTREAM NODE 118.50 120.00 TO NODE ELEVATION = 118.50 IS CODE = 1 62.13 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 10.82 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 23.29 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) 1.10 CRITICAL DEPTH(PT) = 1.18 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1. 85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1. 847 3 . 568 2 . 045 241.30 5 . 915 1 . 820 3 .603 2 . 022 237.01 13.736 1. 794 3 . 642 2 . 000 232.83 20.471 1 . 767 3 .683 1 . 978 228 . 78 23.290 1.755 3 . 702 1.968 227.09 NODE 118.50 : HGL = < 63.885>;EGL= < 64.098>;FLOWLINE= 62.130> *******************************.i FLOW PROCESS FROM NODE 118.50 TO NODE 118.00 IS CODE = 5 UPSTREAM NODE 118.00 ELEVATION = 62.23 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION 7.79 24.00 90.00 62.23 10.82 24.00 - 62.13 2.35 12.00 90.00 63.23 0.00 0.00 0.00 0.00 0.68===Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 0 . 99 1.18 0 . 65 0.00 VELOCITY (FT/SEC) 2.480 3 . 703 3 .198 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*15.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00116 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.005 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY-(-HVl-HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.298)+( 0.043) = 0.340 .00085 .00148 0.043 FEET NODE 118.00 : HGL = < 64.343>;EGL= < 64.439>;FLOWLINE= < 52.230> UPSTRE^SDE^'^lirsO ^EL^^ASor' L^'^f f "^^^ = ' ELEVATION = 52.29 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD)- Pi'pE IESGTH : 8 • 90 FE'ET ''IT''^'' = " °° SF-(o/K)**? II nJA^, MANNING'S N = 0.01100 HF-I*q? r ' 7.79)/( 267.270))**2 = 0.00085 _ HF-L*SP = ( 8.90)*(0.00085) = 0.008 NODE 117.50 : HGL = < :3;i 7 ;EG;: "7 " :4;;: :;LOWL;NE:"r ' "52 "2 90 ^ *]Lor:;-r;;;r;;;r**:- UPSTREAM NODE 117 00 FTPvaTrnM A A ^ ___:_. ELEVATION = 52.39 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: (CPS) rr'^S^f . "^^"-^ ^^^"-^^L VELOCITY UPSTREAM ^^^9 ^^^00^ '''Ifaf '^^^^^^^ DOWNSTREAM 7.79 24:00 - till n'll LATERAL #1 0 00 0 nn n nn ^'^^ 2.480 -.H..,. „:„°° iz It: :-z ::z 25 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED- DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- UPSTPpir*"^"^ '^^''''''^^ ^ / ^ (A1+A2) *16 .1) .FRICTION LOSSES UPSTREAM: MANNING'S N = 0 01100- PRTPTTnivT CT r^DT. o DOWNSTREAM: MANNING'S N = 0 OllSo'- FR^cSoN l^nll ^ n _ JUNCTION LOSSES = ( 0.450)+( 0.000) = 0.460 NODE 117.00 : HGL = <':605: ;EGL: "7 "54 : 906:;;LOWLiNE: "7 " "5^ **FL;r;;;cEss*;R;n<;;r*^ UPS?R^'^ODE''°iirsO ^ELEVASor' ll''^^r^E . 1 _._::_ ELEVATION = 52.85 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD)- P"EL™GTH: ,111 ZL 18.00 INCHES QI7 /r^/•^^*..^ ^''•Ol FEET MANNING'S N = 0.01100 utSif r /-"'^/^ 124.143))**2 = 0.00394 HP-L*SF = ( 45.01)*(0.00394) = 0.I8I NODE 115.50 : HGL = < S^^S^ ;EGL:7 " "67O87;;LOWLINE: 7" " 77 85^ ****************************** PLOW PROCESS PROM NODE 116.50 TO NODE' " 7i7 7 7s 70077 7 *******************************^^^^^^^^^^^^^^^^^ UPSTREAM NODE 116 00 PT WBTTrnvi ___:__ ELEVATION = 63.05 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) 7.79 18.00 7.79 18.00 0.00 0.00 0.00 0.00 (DEGREES) ELEVATION DEPTH(FT.) 90.00 63.05 1.08 52.85 1.08 0.00 0.00 0.00 0.00 0.00 0.00 VELOCITY (PT/SEC) 4 .408 4 .408 0 . 000 0 . 000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*15.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = AVERAGED FRICTION JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = SLOPE IN JUNCTION ASSUMED AS 0.003 94 4.00 FEET 0.016 FEET ENTRANCE LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 0.519)H-( 0.000) = 0.619 00394 00394 0.000 FEET NODE 116.00 : HGL = < 55.405>;EGL= < 65.707>;PLOWLINE= < 63.050> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 114.50 115.00 TO NODE ELEVATION = 114.50 IS CODE = 1 63.45 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.79 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 17.58 FEET MANNING'S N = 0.01100 SP=(Q/K)**2 = (( 7.79)/( 124.144))**2 = 0.00394 HF=L*SF = ( 17.58)*(0.00394) = 0.069 NODE 114.50 : HGL = < 55.474>;EGL= < 65.776>;FLOWLINE= < 63.450> ****************************************************************************** PLOW PROCESS FROM NODE UPSTREAM NODE 114.00 114.50 TO NODE ELEVATION = 114.00 IS CODE = 5 63.55 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 PLOW DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH{FT.: (CFS) 7 .56 7 . 79 0 . 00 0 . 00 0.23===Q5 EQUALS BASIN INPUT=== 18 . 00 18.00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 63 . 55 63 .45 0 . 00 0 . 00 1.07 1.08 0 . 00 0.00 VELOCITY (FT/SEC) 4 .278 4 .408 0 . 000 0 . 000 LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00382 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.015 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.033)+ ( 0.060) = 0.093 00371 00394 0.060 FEET NODE 114.00 : HGL = < 65.585>;EGL= < 65.859>;FLOWLINE= 63 . 550> ************************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PLOW PROCESS FROM NODE 114.00 TO NODE 112.50 IS CODE = 1 112.50 ELEVATION = 63.67 (FLOW IS UNDER PRESSURE) UPSTREAM NODE CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW 7.56 CFS PIPE DI.AMETER -18.00 INCHES PIPE LENGTH = 23.25 FEET MANNING' 'S N = 0.01100 SF=(Q/K)**2 = ( ( 7.56)/ ( 124.145))**2 = 0 , , 00371 HP=L*SP = ( 23. 25)*(0.00371) = 0.086 NODE 112.50 : HGL = < 65.671>;EGL= < 65.955>;PLOWLINE= < 63.670> **********************************************^^^^^^^^^^^^^^^^^^.^^^^^^^^^^^^^^ ELOW PROCESS FROM NODE 112.50 TO NODE 112.00 IS CODE = 5 ELEVATION = 63.77 (FLOW IS UNDER PRESSURE) UPSTREAM NODE 112.00 CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER (CPS) (INCHES) UPSTREAM 4.17 18.00 DOWNSTREAM 7.56 18.00 LATERAL #1 3.34 12.00 LATERAL #2 0.00 0.00 Q5 0.05===Q5 EQUALS BASIN INPUT=== ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 63.77 63.67 90.00 54.27 0.00 0.00 CRITICAL DEPTH(FT.) 0 . 78 1. 07 0 . 78 0.00 VELOCITY (FT/SEC) 2 .360 4 . 278 4 .253 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*15.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 00113 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 00371 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00242 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.010 FEET ENTRANCE LOSSES = 0 057 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.207)+( 0.057) = 0.264 NODE 112.00 : HGL 55.133>;EGL= < 65.220>;PLOWLINE= < 63.770> **********************j t***************************.^^^^^^^^^^,^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 112.00 TO NODE 110.50 IS CODE = 1 UPSTREAM NODE 110.50 ELEVATION = 64.88 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.17 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 29.38 FEET MANNING'S N = 0.01100 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.3 6 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(PT) 0 . 000 23.552 PRESSURE HEAD(FT) 2.363 1. 500 VELOCITY (FT/SEC) 2 .360 2 .360 SPECIFIC ENERGY(FT) 2 .450 1.586 PRESSURE+ MOMENTUM(POUNDS) 196.96 101.77 NORMAL DEPTH(PT) = 0.42 CRITICAL DEPTH(PT) = 0.78 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PLOW 1 DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(PT) (FT) (FT/, SEC) ENERGY(PT) MOMENTUM(POUNDS) 23 .552 1 . 500 2 .359 1, ,585 101 . 77 24 .313 1 .471 2 .370 1, . 559 98 . 70 25 . 055 1 .443 2 .389 1. , 531 95 . 71 25 . 783 1 .414 2 .414 1 , ,504 92 . 81 26 . 501 1 .385 2 .445 1. ,478 89 . 98 27 .208 1 .355 2 .480 1 , ,452 87 .23 27 . 905 1 .328 2 . 520 1. ,426 84 . 56 28 .591 1 .299 2 . 564 1. ,401 81 . 98 29 . 257 1 .270 2 .612 1, , 376 79 .49 29 .380 1 . 265 2 . 621 1 , ,372 79 .07 NODE 110.50 : : HGL = < 66 . 145>;EGL= < 55 .252>;PLOWLINE= < 64 . 880> ****************************************************************************** FLOW PROCESS FROM NODE 110.50 TO NODE 110.00 IS CODE = 5 UPSTREAM NODE 110.00 ELEVATION = 64.98 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(PT.) (PT/SEC) UPSTREAM 3 .17 18.00 0.00 64 . 98 0 .68 1.967 DOWNSTREAM 4.17 18.00 -64.88 0.78 2.622 LATERAL #1 0 .25 12 . 00 90 . 00 65 .48 0.21 0 .410 LATERAL #2 0 . 00 0 . 00 0 . 00 0 .00 0.00 0 .000 Q5 0.75===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00061 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00108 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00084 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.003 FEET ENTRANCE LOSSES = 0.021 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.052) +( 0.021) = 0.073 NODE 110.00 : HGL = < 65.265>;EGL= < 66.325>;PLOWLINE= < 54.980> ****************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 109.50 IS CODE = 1 UPSTREAM NODE 109.50 ELEVATION = 65.08 (PLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.17 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 9.31 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0.51 CRITICAL DEPTH(PT) = 0.68 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1.285 1. 966 1 .345 71. 95 2 .203 1 .251 1.999 1.323 69.72 4 . 391 1 . 237 2 . 033 1.301 67.55 6 .564 1 .212 2 . 071 1. 279 65.44 8 . 721 1.188 2 . Ill 1.257 53.39 9.310 1.181 2 .123 ' 1.251 62 . 83 NODE 109.50 : HGL = < 66.261>;EGL= < 65 .331>;FLOWLINE= < 65.080> ****************************************************************************** FLOW PROCESS PROM NODE 109.50 TO NODE 10 9.00 IS CODE = 5 UPSTREAM NODE 109.00 ELEVATION = 65.18 (PLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3.17 18.00 22 . 50 65 .18 0.68 2.315 DOWNSTREAM 3.17 18.00 -55 . 08 0.58 2.123 LATERAL #1 0.00 0.00 0.00 0 . 00 0.00 0.000 LATERAL #2 0.00 0.00 0 . 00 0 . 00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00078 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.003 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.017)+( 0.000) = 0.017 00085 00070 0.000 FEET NODE 109.00 : HGL = < 65.255>;EGL= < 55.349>;FLOWLINE= < 65.180> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 108.50 109.00 TO NODE ELEVATION = 108.50 IS CODE = 1 66.10 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 3.17 CPS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 21.10 FEET MANNING'S N = 0.01100 0 . 58 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.35 CRITICAL DEPTH(PT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.58 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 0 . 012 0 . 051 0 .119 0.220 0. 359 0 .539 0 . 767 1 . 049 1.394 1. 811 2 .311 2 . 910 3 . 526 4.481 5 . 506 6 . 739 8 .236 10.071 12.356 15.253 19 . 082 21.100 PLOW DEPTH (FT) 0.678 0 . 665 0.552 0.539 0 . 526 0 .613 0 . 600 0.587 0 . 574 0 . 561 0 . 548 0 . 535 0 . 522 0.509 0 .497 0 .484 0 .471 0 .458 0 .445 0.432 0.419 0.406 0 .401 VELOCITY (FT/SEC) 4 . 088 4 , 4 . 4 , 4 , 4 , 4 . 4 . 5 . . 192 ,302 .417 ,538 .556 ,801 ,943 093 5 .252 5 .420 5.599 5 . 788 , 990 ,205 .434 ,679 , 942 .224 ,526 7 . 853 8 .205 8 .347 SPECIFIC ENERGY(PT) 0 . 937 0 . 938 0 . 939 0 . 942 0 . 946 0 . 951 0.958 0 . 967 0 . 977 0 . 990 1 , 1, 1 , 1, 1, 1. ,005 , 022 , 043 , 067 , 095 , 127 1.164 1.206 1.256 1. 312 1. 377 1.452 1.484 PRESSURE+ MOMENTUM(POUNDS) 38 . 93 38 . 95 39.02 39 .14 39.31 39.54 39.83 40 .18 40 .59 41.07 41 . 63 42.26 42 . 98 43 . 78 44 . 68 45 .69 45 . 80 48 . 04 49.41 50 . 92 52 .60 54 .44 55.20 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 1.09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: C FROM FLOW : DEPTH VELOCITY SPECIFIC PRESSURE+ J (FT) (PT) (PT/SEC) ENERGY(FT) MOMENTUM(POUN 0 . 000 1 . 086 2 .314 1 . 169 55 .45 0 .318 1 . 069 2 .352 1 .155 54 .30 0 .632 1 . 053 2 .391 1 .142 53 . 18 0 . 942 1 . 037 2 .432 1 . 129 52 . 10 1 .247 1 . 020 2 .476 1 . 116 51 . 05 1 .548 1 .004 2 .521 1 .103 50 .03 1 . 844 0 . 988 2 .568 1, .090 49 . 06 2 . 134 0 . 971 2 .617 1, .078 48 .11 2 .419 0 . 955 2 , .669 1, . 066 47 .21 2 .697 0 . 939 2 , . 723 1, , 054 46 .35 2 . 968 0 . 922 2 , . 780 1. , 042 45 .52 3 .231 0 . 906 2 , , 840 1, , 031 44 . 74 3 .486 0 .890 2 , , 902 1, , 021 44 , . 00 3 . 732 0 .873 2 , , 957 1. , 010 43 , ,30 3 . 968 0 . 857 3 , ,035 1 . ,000 42 , ,65 4 .193 0 . 841 3 . , 108 0 . 991 42 , ,04 4 .406 0 . 825 3 . , 184 0 . 982 41, ,49 4 .605 0 . 808 3 . ,264 0 . 974 40 . , 98 4 .790 0 . 792 3 . 349 0. 966 40 , ,52 4 . 958 0 . 776 3 . 437 0. 959 40 , , 11 5 . 108 0 . 759 3 . 531 0 . 953 39, , 76 5 , .237 0 . 743 3 . 630 0 . 948 39 . ,47 5 , ,343 0 .727 3 . 735 0. 943 39. 24 5.424 0.710 3.845 0.940 39.07 5.475 0.694 3.963 0.938 38.96 5.493 0.678 4.088 0.937 38.93 21.100 0.678 4.088 0.937 38.93 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 0.08 FEET UPSTREAM OP NODE 109.00 | I DOWNSTREAM DEPTH = 1.082 FEET, UPSTREAM CONJUGATE DEPTH = 0.401 FEET | NODE 108.50 : HGL = < 65.778>;EGL= < 57.037>;FLOWLINE= < 66.100> ****************************************************************************** PLOW PROCESS PROM NODE 108.50 TO NODE 108.00 IS CODE = 5 UPSTREAM NODE 108.00 ELEVATION = 66.20 (PLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (PT/SEC) UPSTREAM 1. 98 18 . 00 0.00 66 .20 0 .53 1. 645 DOWNSTREAM 3 .17 18 . 00 -56 .10 0 . 68 4 . 089 LATERAL #1 0.00 0 . 00 0 . 00 0 . 00 0.00 0 . 000 LATERAL #2 0.00 0 . 00 0 . 00 0 . 00 0.00 0 . 000 Q5 1.19===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*C0S(DELTA4))/((A1+A2)*15.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00046 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00371 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00208 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.008 FEET ENTRANCE LOSSES = 0.052 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.119)+( 0.052) = 0.171 NODE 108.00 : HGL = < 57.166>;EGL= < 67.208>;PLOWLINE= < 65.200> ****************************************************************************** FLOW PROCESS PROM NODE 108.00 TO NODE 107.50 IS CODE = 1 UPSTREAM NODE 107.50 ELEVATION = 67.85 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 1.98 CPS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 55.00 FEET MANNING'S N = 0.01100 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(PT) = 0.31 CRITICAL DEPTH(FT) = 0.53 UPSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 0.25 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM PLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (PT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.258 9.744 1.734 38.73 0.998 0.260 9.638 1.704 38.35 2.028 0.262 9.534 1.675 37.98 3 , , 092 0 , ,264 9 , ,433 1 , ,647 37 . 61 4 , , 194 0 . ,266 9 . ,333 1 , ,620 37 .25 5 . , 337 0 . ,268 9 , ,235 1, ,593 35 . 90 6 . , 526 0 . ,270 9 , ,138 1 , ,568 36 . 56 7 . ,766 0 . ,272 9 . , 044 1 , ,543 35 .22 9 , , 063 0 . ,274 8 . , 951 1, ,519 35 .89 10 , ,424 0 , ,276 8 , , 860 1. ,496 35 . 57 11, , 856 0 . ,278 8, ,770 1 , .473 35 , .26 13 , ,371 0 , ,280 8. ,682 1 , ,451 34 , , 94 14 . , 980 0 . ,282 8 , , 595 1 , ,430 34 . ,64 15 , .598 0 . ,284 8 , ,510 1 , ,409 34 , , 34 18 , .546 0 , ,286 8 , ,425 1 , ,389 34 , , 05 20 , ,546 0, ,288 8 , ,344 1 , ,370 33 , ,76 22 , , 733 0 , , 290 8 , ,263 1, ,351 33 . .48 25 , . 150 0 , ,292 8 , . 184 1 , .332 33 .21 27 , . 858 0, ,294 8 , .106 1 , ,315 32 , . 94 30 .949 0 , ,296 8 , . 029 1, ,297 32 . 67 34 , ,563 0 , ,298 7 , ,953 1 , ,281 32 , ,41 38 , , 933 0 , ,300 7 , , 879 1, .264 32 . ,16 44 .503 0 , ,302 7 , , 805 1, ,248 31. , 91 52 .260 0 , ,304 7 , . 733 1, ,233 31, , 56 55 , .000 0 , ,304 7 . ,719 1, ,230 31 , ,61 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.97 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: : FROM PLOW DEPTH VELOCITY SPECIFIC PRESSURE+ .(FT) (PT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 . 000 0 . 966 1, .645 1, .008 37 , . 96 0 .529 0 . 949 1 .680 0, . 993 36 . 80 1 . 054 0 .931 1 . 717 0, . 977 35 .67 1 . 574 0 . 914 1 . 755 0. . 962 34 , .58 2 . 090 0 . 896 1, .796 0. , 947 33 .52 2 .600 0 . 879 1, . 839 0 . . 932 32 .50 3 .105 0 . 862 1. .884 0 . ,917 31, .52 3 .603 0 .844 1, . 932 0 . ,902 30, .57 4 .093 0 .827 1. .982 0 , ,888 29, ,57 4 .576 0 .809 2 , , 035 0 . , 874 28 . , 80 5 .050 0 . 792 2 , .092 0 , ,860 27 , , 97 5 .515 0 . 774 2 , ,151 0 , , 846 27 , ,18 5 . 958 0 . 757 2 . .214 0 , , 833 26. ,44 6 .409 0 . 740 2 , ,281 0 , , 820 25, ,73 6 .836 0 .722 2 . ,351 0 , , 808 25 . , 08 7 .247 0 .705 2 . .427 0 , , 795 24 , ,46 7 . 641 0 . 687 2 . , 507 0 . , 785 23 , , 90 8 . 014 0 .670 2 , ,592 0 , , 774 23 . ,38 8 .364 0 .552 2 , ,683 0 . , 764 22 , , 91 8 .588 0 .535 2 , ,781 0 . , 755 22 . ,50 8 .981 0 .518 2. ,886 0 . . 747 22 . 14 9 .238 0 .500 2 , ,998 0 . ,740 21 . ,84 9 .454 0 .583 3 . ,119 0 . ,734 21. ,60 9 .620 0 .565 3 , ,249 0. 729 21, ,42 9 .729 0 .548 3 . ,389 0. 726 21, ,31 9 . 768 0 .530 3 . .541 0 . 725 21. ,28 55.000 0.530 3.541 0.725 21.28 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 3.03 FEET UPSTREAM OF NODE 108.00 | I DOWNSTREAM DEPTH = 0.864 FEET, UPSTREAM CONJUGATE DEPTH = 0.3 04 FEET j NODE 107.50 : HGL = < 58.108>;EGL= < 59.584>;FLOWLINE= < 67.850> ****************************************************************************** FLOW PROCESS PROM NODE 107.50 TO NODE 107.00 IS CODE = 5 UPSTREAM NODE 107.00 ELEVATION = 67.95 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(PT.) (FT/SEC) UPSTREAM 1. 98 18 . 00 0 . 00 67 . 95 0.53 10.989 DOWNSTREAM 1.98 18.00 -57.85 0 . 53 9 . 747 LATERAL #1 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 000 LATERAL #2 0 . 00 0.00 0 .00 0.00 0 . 00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*VI*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*15.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.08558 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.06085 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.07322 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.293 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.479)+( 0.000) = 0.479 NODE 107.00 : HGL = < 68.188>;EGL= < 70.063>;PLOWLINE= < 57.950> ****************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 210.50 IS CODE = 1 UPSTREAM NODE 210.50 ELEVATION = 59.71 (PLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.98 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 7.59 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) 0.19 CRITICAL DEPTH(FT) 0 .53 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.53 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (PT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .530 3 .541 0 , , 725 21.28 0.003 0 .517 3 .670 0, ,726 21 .30 0 . 013 0 .503 3 . 808 0 , , 728 21.37 0 . 031 0 .489 3 . 955 0 , , 732 21.50 0 . 058 0.476 4 .113 0 , ,738 21.69 0 .096 0 .462 4 .282 0 , , 747 21. 94 0.146 0.448 4 .465 0, , 758 22.25 0 .210 0 .434 4 .662 0. , 772 22 . 64 0 .291 0 . 421 4 . , 875 0 . , 790 23 . 10 0.392 0 . 407 5 . , 107 0 , , 812 23 .65 0 . 517 0 . .393 5 . , 358 0 , , 839 24 .29 0 .670 0 , , 380 5 , ,632 0 , , 872 25 . 03 0 . 857 0 , ,366 5 . , 933 0 , , 913 25 . 89 1. 085 0 , , 352 6 , ,262 0 . , 951 26 .88 1.366 0 . ,338 6 . ,625 1, ,020 28 .01 1 . 712 0 . , 325 7 . . 025 1. , 092 29 .30 2 .141 0 , ,311 7 , .472 1, ,179 30 . 78 2 . 676 0 , .297 7 . 970 1, .284 32 .47 3 .354 0 .284 8 .528 1 .414 34 .40 4 .227 0 .270 9 . 157 1, .573 36 . 53 5 . 376 0 .256 9 . 872 1 . 770 39 .19 5 . 943 0 .242 10 .688 2 . 017 42 . 15 7 .590 0 .238 10 . 985 2 . 113 43 .25 !10.50 : : HGL = < 70 . , 240>;EGL= < 70 .435>;FLOWLINE= < 69. 710 NODE ****************************************************************************** PLOW PROCESS PROM NODE 210.50 TO NODE 210.00 IS CODE = 5 UPSTREAM NODE 210.00 ELEVATION = 70.00 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CPS) (INCHES) (DEGREES) ELEVATION DEPTH(PT.) (FT/SEC) UPSTREAM 1 .33 12 . 00 0.00 70 . 00 0.49 5 . 875 DOWNSTREAM 1.98 18 . 00 -69 .71 0 . 53 3 . 542 LATERAL #1 0.30 12 .00 90.00 70 .50 0.23 2 .261 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.35===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.01796 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00354 AVERAGED FRICTION SLOPE IN JUNCTION ASSXMED AS 0.01075 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.043 FEET ENTRANCE LOSSES = 0.039 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.392)+( 0.039) = 0.431 NODE 210.00 : HGL = < 70.330>;EGL= < 70.856>;FLOWLINE= < 70.000> ****************************************************************************** FLOW PROCESS PROM NODE 210.00 TO NODE 208.50 IS CODE = 1 UPSTREAM NODE 208.50 ELEVATION = 71.03 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.33 CFS PIPE PIPE LENGTH = 53.25 FEET DIAMETER = 12.00 INCHES MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0.32 CRITICAL DEPTH(FT) = 0 .49 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1 = 0.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM CONTROL(FT) 0 . 000 0 . 012 0 . 048 0 . Ill 0.204 0 .330 0 .493 0.697 0 . 948 1.252 1 .616 2 . 048 2 . 561 3 .167 3 . 884 4 . 733 5 . 744 6 . 956 8.424 10 .230 12 .499 15 .441 19.453 25.420 36.192 53.250 FLOW DEPTH (FT) 0.487 0.481 0 .474 0.468 0.461 0 .455 0 .448 0 .442 0 .435 0 .429 0 .422 0.416 0.409 0 .402 0 . 396 0 .389 0 .383 0 .375 0 . 370 0 .353 0.357 0 .350 0 .344 0 . 337 0.331 0.330 VELOCITY (FT/SEC) 3 .498 3 3 3 3 3 3 3 4 4 4 559 622 688 756 825 899 975 054 135 220 4 .308 4 .400 495 595 699 807 919 037 160 289 424 565 713 869 873 4 . 4 . 4 . 4 . 4 . 5 , 5 , 5 . 5 , 5 . 5 , 5 . 5 , SPECIFIC ENERGY(FT) 0.678 0 .678 0 .678 0 . 679 0 . 680 0 .682 0 . 684 0 . 587 0 .690 0 .694 0 .699 0 .704 710 0.716 0 . 724 0 . 732 0 . 742 0 . 752 0 . 764 0 . 777 0.791 0 . 807 0 . 825 0 . 844 0 . 866 0.866 0 PRESSURE+ MOMENTUM(POUNDS) 13.91 13 . 92 13 . 93 13.95 13 . 98 14.02 14 . 07 14 .12 14 . 19 14 .27 14 .36 14 .45 14 . 57 14 . 70 14.83 14 . 98 15 . 15 15 .33 15 . 52 15 . 73 15 . 96 16.21 15 .47 16.75 17 . 07 17 .07 NODE 208.50 : HGL = < 71.517>;EGL= < 71.708>;FLOWLINE= < 71.030> ****************************************************************************** PLOW PROCESS FROM NODE UPSTREAM NODE 2 08.00 208.50 TO NODE ELEVATION = 208.00 IS CODE = 5 71.19 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW 0 .50 1.33 0.00 0.00 0.83 = DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(PT.) (FT/SEC) 12 . 00 12 . 00 0.00 0.00 0 . 00 0 . 00 0.00 71.19 71.03 0.00 0.00 :==Q5 EQUALS BASIN INPUT=== 0 .29 0.49 0.00 0.00 0 . 885 3 .499 0 . 000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00229 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.132)+( 0.038) = 0.171 00022 00435 0.03 8 FEET NODE 208.00 : HGL = < 71.866>;EGL= < 71.878>;FLOWLINE= < 71.190> ****************************************************************************** FLOW PROCESS FROM NODE 2 08.00 TO NODE 206.50 IS CODE = 1 UPSTREAM NODE 205.50 ELEVATION = 71.63 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.50 CPS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 40.27 FEET MANNING'S N = 0.01100 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.23 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 0.2 9 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.29 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L (FT) (FT) (PT/SEC) ENERGY(FT) MOMENTUM (POUN: 0 , ,000 0 .293 2 .605 0 . .399 3 .97 0 . , 007 0 .291 2 .637 0, .399 3 . . 97 0 , , 028 0 .288 2 .671 0 , .399 3 , . 97 0 , , 065 0 .285 2 . 705 0 . .399 3 , , 98 0 , , 119 0 .283 2 . 740 0 . .399 3 , , 98 0 . ,192 0 .280 2 .776 0 . .400 3 , , 99 0 , ,286 0 .277 2 . 813 0 . ,400 3 , , 99 0 , ,404 0 .275 2 . 850 0 , ,401 4 . . 00 0 , , 548 0 .272 2 .889 0 . ,402 4 , . 01 0 . , 721 0 .270 2 . 928 0 , ,403 4 . 02 0 , , 928 0 .267 2 . 969 0 , ,404 4 . 03 1, , 172 0 .254 3 .010 0 , ,405 4 . 04 1, ,461 0 .252 3 . 053 0 , .406 4 . 05 1, , 800 0 .259 3 .096 0 , .408 4 , . 07 2 , ,200 0 .256 3 .141 0, ,410 4 . 09 2 . , 671 0 .254 3 . 187 0 , ,412 4 . 11 3 , ,229 0 .251 3 .234 0 , ,414 4 , .13 3 , ,895 0 .249 3 .282 0 . .416 4 . 15 4 , .697 0 .246 3 .331 0 . .418 4 .17 5 .679 0 .243 3 .382 0 , .421 4 , .20 6 , . 906 0 .241 3 .434 0 , .424 4 , .22 8 , .489 0 .238 3 .488 0 , .427 4 . .25 10 , .635 0 .235 3 .543 0 , .431 4 , ,28 13 . 810 0 .233 3 .600 0 , .434 4 , , 31 19 . 508 0 .230 3 .658 0 , .438 4 .35 40 .270 0 .230 3 .662 0 , .438 4 .35 HYDRAULIC CTUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 1.371 FLOW DEPTH (FT) 0 . 676 0 .661 VELOCITY (PT/SEC) 0.885 0 . 908 SPECIFIC ENERGY(FT) 0 . 688 0 . 573 PRESSURE+ MOMENTUM(POUNDS) 11 . 32 10 . 81 2 , ,738 0 . ,645 0 , ,933 0. .659 10 .32 4 , , 100 0 . ,630 0 , , 959 0 , .644 9 . 84 5 , ,458 0 . , 515 0 , , 987 0 , .630 9 .37 6 , , 811 0 . ,599 1 , , 017 0 , . 615 8 . 93 8 , , 158 0 . ,584 1. , 049 0 , , 601 8 .50 9 , .498 0 . ,569 1, , 084 0 , , 587 8 . 08 10 , , 830 0 . 553 1. , 121 0 . .573 7 . 68 12 , , 154 0 . ,538 1 , , 150 0 , . 559 7 , .30 13 , ,467 0 . ,523 1 , ,203 0 , ,545 6 , , 94 14 . , 769 0 , , 507 1, ,249 0 , .532 6 , ,60 16 , , 056 0 . ,492 1 , ,299 0 , ,518 6 , ,27 17 , .328 0 . ,477 1 , ,353 0 , ,505 5 , ,96 18, ,580 0 . 462 1 , ,411 0 , ,492 5 , ,67 19 , , 810 0 . 446 1, ,474 0 , ,480 5 , .40 21 , , 012 0 . ,431 1 , ,543 0 , ,468 5 , ,15 22 . , 181 0 . 416 1, , 619 0 , ,456 4 , . 92 23 , ,310 0 . ,400 1. , 702 0 , ,445 4 , , 72 24 , ,389 0 . 385 1 , , 793 0 , ,435 4 , .53 25 , ,404 0 . ,370 1, ,894 0 , ,425 4 . ,37 25 , .338 0 . ,354 2 , , 006 0 . ,417 4 . ,23 27 . 167 0 . ,339 2 . , 131 0 . ,410 4 . , 12 27 , . 852 0 . ,324 2 . ,270 0 . ,404 4 , , 04 28 , . 338 0 . ,308 2 , .427 0 , ,400 3 , , 99 28 , . 531 0 . ,293 2 , ,605 0 , ,399 3 , , 97 40 . .270 0 . ,293 2 , ,605 0, ,399 3 . , 97 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 25.75 FEET UPSTREAM OF NODE 208.00 | I DOWNSTREAM DEPTH = 0.354 FEET, UPSTREAM CONJUGATE DEPTH = 0.233 FEET j NODE 206.50 : HGL = < 71.923>;EGL= < 72.02 9>;FLOWLINE= < 71.630> ****************************************************************************** UPSTREAM PIPE PLOW CONTROL DATA: NODE NUMBER = 206.50 FLOWLINE ELEVATION = 71.63 ASSUMED UPSTREAM CONTROL HGL = 71.92 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (750) 931-8680 Inside Diameter ( 24.00 in.) AA,A,.N,^AA./.,^>..*.A...A.A.^A.A..^,AA Water * ( 9.89 in.) ( 0.825 ft.) Circular Channel Section 7. 790 CPS 6. 378 fps ^ 24 . 000 inches 9. , 895 inches 0 , , 825 feet 0 , ,990 feet Depth/Diameter (D/d) 0 . ,412 0 . . 670 % 1, .222 sq. ft 2 . 789 feet 0 . 705 0 .011 Min. Fric. Slope, 24 inch 0 . 085 o O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Pax: (760) 931-8580 Inside Diameter ( 18.00 in.) A.A.AA.A.^j**A.A.yv.^.*,,**A.A,A.A.^A.A> Water ( 10.40 in.) ( 0.867 ft.) V Circular Channel Section 7 . .790 CFS Velocity 7 , ,361 f ps IgJ Pipe Diameter 18 . , 000 inches 10. ,401 inches Depth of Flow 0 , ,857 feet Critical Depth 1. .077 feet Depth/Diameter (D/d) 0 , .578 0 , . 980 % 1, .058 sq. ft Wetted Perimeter 2 , . 591 feet AR^(2/3) 0 , .582 0 . Oil Min. Fric. Slope, 18 inch Pipe Plowing Full 0 .3 94 "6 wuyy^ \\\ii^^ \u Muue:^ |\'^r-^'-' O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 Inside Diameter ( 18.00 in.) AAAAAAAAAAAAAAAAAAAAA Water ( 8.09 in.) ( 0.674 ft.) * V Circular Channel Section Flowrate 7.790 CFS Velocity 10.118 fps Pipe Diameter 18.000 inches Depth of Flow 8.089 inches Depth of Plow 0.674 feet Critical Depth 1.079 feet Depth/Diameter (D/d) 0.449 Slope of Pipe 2.280 % X-Sectional Area 0.770 sq. ft Wetted Perimeter 2.204 feet AR"(2/3) 0.382 Mannings 'n' 0.011 Min. Fric. Slope, 18 inch Pipe Flowing Pull 0.394 % O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (750) 931-7700 Fax: (750) 931-8680 Inside Diameter ( 18.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water ( 12.88 in.) ( 1.073 ft.) * Circular Channel Section Flowrate 7.560 CFS Velocity 5.587 fps Pipe Diameter 18.000 inches Depth of Plow 12.881 inches Depth of Flow 1.073 feet Critical Depth 1.063 feet Depth/Diameter (D/d) 0.716 Slope of Pipe 0.500 % X-Sectional Area 1.353 sq. ft Wetted Perimeter 3.025 feet AR"(2/3) 0.792 Mannings 'n' 0.011 Min. Fric. Slope, 18 inch Pipe Plowing Full 0.371 % ************************************************^^^^^^^^^^^^^^^^^^,^^^^^^^^^^^^ PIPE-PLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR STORM - HYDRAULICS * * THE BLUFFS - STORM DRAIN LINE 'B' * * J.N. 01-1022 06/27/05 BY:CSO * ************************************************^^^^^^^^^^^^^^^^^^^^^^^^^^ FILE NAME: LINEB.DAT TIME/DATE OF STUDY: 15:47 06/27/2005 **************************************************^*^^^^^^^^^,^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(PT) MOMENTUM(POUNDS) 112.00- 2.36* 107.96 0.56 35.94 } FRICTION } HYDRAULIC JUMP 510.50- 0.82 35.18 0.58* 35.19 } JUNCTION 510.00- 0.59*Dc 33.81 0.69*Dc 33.81 } FRICTION 508.50- 0.75* 34.25 0.69 Dc 33.81 } JUNCTION 508.00- 0.92* 33.57 0.64 Dc 27.39 } FRICTION 507.50- 0.66*Dc 27.42 0.64*Dc 27.39 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. **************************************************^^^^^^^^j^^^^^^^,^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 112.00 FLOWLINE ELEVATION = 63.77 PIPE FLOW = 2.51 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 66.13 0 FEET NODE 112.00 : HGL = < 66.130>;EGL= < 65.301>;FLOWLINE= < S3.770> ********************************************************j^^^^^^^^^^^^^^^^^^^^^^ PLOW PROCESS FROM NODE 112.00 TO NODE 510.50 IS CODE = 1 UPSTREAM NODE 510.50 ELEVATION 66.10 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 2.61 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 220.12 FEET MANNING'S N = 0.01100 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.55 CRITICAL DEPTH(PT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.58 0 . 69 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(PT) 0 . 000 0.695 1.425 2 .197 3 .011 3 . 873 4 . 787 5 . 759 6 . 796 7.905 9 . 097 10.381 11.773 13 .289 14.950 15.786 18.832 21 .138 23.775 26.843 30.501 35.014 40.880 49.215 63 . 602 220.120 FLOW DEPTH (FT) 0 . 584 0 .583 0 . 582 0.581 0 . 580 0 . 579 0 . 578 0 . 577 0 . 576 0 .575 0 . 574 0.573 0 . 572 0 .571 0.570 0.569 0.569 0.568 0.557 0.566 0.565 0.554 0.563 552 561 VELOCITY (FT/SEC) 5.477 5.488 5.499 0 0 0 . 560 ,510 ,521 ,532 ,544 5.555 5.567 .578 , 590 ,501 ,613 , 625 ,636 , 648 ,660 ,672 .584 ,596 ,708 , 720 5.732 5.744 5 . 757 5.759 SPECIFIC ENERGY(FT) 1. 050 1.051 1, 1 , 1. 1. 1. , 052 ,053 , 054 ,055 056 1. 057 5 . 5 , 5 , 5 , 5 . 5 , 5 . 5 , 5 . 5 . 5 , 5 . 5 . 058 059 060 061 062 053 064 065 1. 066 067 069 070 071 072 073 074 076 076 PRESSURE+ MOMENTUM(POUNDS) 35.19 35 .22 35 .24 35 .27 35 .30 35 .33 35 . 36 35.39 35 .42 35.45 35.48 35 .51 35.54 35 .57 35.60 35.63 35 . 66 35 .69 35 . 73 35 . 76 35 . 79 35 . 83 35 . 86 35.89 35 . 93 35.94 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.35 PRESSURE PLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(PT) 0 .000 201.597 PRESSURE HEAD(PT) 2 . 360 1. 000 VELOCITY (FT/SEC) 3.323 3.323 SPECIFIC ENERGY(FT) 2 .531 1.171 PRESSURE+ MOMENTUM(POUNDS) 107.96 41.31 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 201 .697 203.357 204 . 878 206 . 322 207.706 209.039 210 . 328 211.574 212.781 213.950 215.081 216 .174 217 .227 218 .240 219.210 220 .120 FLOW DEPTH (FT) 1. 000 VELOCITY (PT/SEC) 3 .322 SPECIFIC ENERGY(PT) 1.171 0 . 988 0 . 975 963 951 938 926 0 . 914 0 . 902 0 . 889 0 . 877 865 0 . 852 0 . 840 0.828 0 . 816 0 330 344 362 384 409 437 467 500 536 574 615 659 705 754 804 160 149 139 129 119 110 101 092 083 075 068 060 053 047 040 PRESSURE+ MOMENTUM(POUNDS) 41.31 40.75 40 . 22 39 . 71 39.23 38 . 77 38 . 32 37 . 89 37.49 37 . 10 36.73 35.38 35 . 05 35 . 74 35.45 35 .18 EjjD OP HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 220.08 FEET UPSTREAM OP NODE 112.00 DOWNSTREAM DEPTH = 0.816 FEET, UPSTREAM CONJUGATE DEPTH = 0.584 FEET NODE 510.50 HGL 66.684>;EGL= < 67.150>;PLOWLINE= < 66.100> *********************************************************,j,*^,^.,^,^,^jj,^^,^^,^^^.^,^^,^^^ FLOW PROCESS FROM NODE 510.50 TO NODE 510.00 IS CODE = 5 UPSTREAM NODE 510.00 ELEVATION = 66.20 (PLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CPS) (INCHES) (DEGREES) ELEVATION CRITICAL DEPTH(FT.) VELOCITY (PT/SEC) UPSTREAM 2 , . 61 12.00 0.00 66.20 0 , ,69 4 , ,499 DOWNSTREAM 2 , ,61 12 . 00 66.10 0 . ,69 3 , ,805 LATERAL #1 0 , ,00 0 . 00 0.00 0.00 0 . , 00 0 , , 000 LATERAL #2 0 , , 00 0 . 00 0.00 0.00 0 , ,00 0 , , 000 Q5 0 . ,00== =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00476 4.00 FEET 0.019 FEET ENTRANCE LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.066)+( 0.000) = 0.056 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 00564 00388 0.000 FEET NODE 510.00 : HGL = < 66.892>;EGL= < 67.207>;FLOWLINE= < 66.200> ***************************************** ***************^,^i,^,^,i,i,.|,^,^,^,^,^,^,^,.,,.^.l,.^.„.j,.,, FLOW PROCESS PROM NODE 510.00 TO NODE 508.50 IS CODE = 1 UPSTREAM NODE 508.50 ELEVATION = 66.43 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.61 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 51.92 FEET MANNING'S N = 0.01100 NORMAL DEPTH(PT) = 0.76 CRITICAL DEPTH(FT) = 0.69 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.69 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM CONTROL(PT) 0 .000 0 . 020 0 . 081 0 .189 0 .347 0 .560 0 . 834 1 .176 1. 594 2 .097 2 .697 3 .407 4.244 5 .228 5 .386 7 . 752 9.358 11.296 13 . 620 16 .461 20 . 012 24 .592 30 . 799 39 . 983 51. 920 FLOW DEPTH (FT) 0 . 692 0 .595 0 .698 0 . 701 0 . 704 0 . 707 0 . 710 0 . 712 0 . 715 0 . 718 0 . 721 0 . 724 0 . 727 0 . 730 0.732 0 . 735 0 . 738 0 . 741 0 . 744 0.747 0.750 0.753 0.755 0 . 758 0 . 750 VELOCITY (PT/SEC) 4.497 4 .477 4 .457 4 .437 4.417 4 .398 4 .378 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 359 341 322 304 285 258 250 232 215 198 181 164 148 131 115 099 083 072 SPECIFIC ENERGY(PT) 1 . 1. 1. 1. 1. 1. 1 , 1, 1. 1 , 1, 1, 1, 1 1 1 1 1 1 1 1 1 1 1 1 007 007 007 007 007 007 007 008 008 008 009 009 010 010 Oil Oil 012 013 013 014 015 016 015 017 018 PRESSURE+ MOMENTUM(POUNDS) 33 . 81 33 . 81 33 . 81 33 . 81 33 . 82 33 . 83 33 . 84 33 . 85 33 . 86 33 . 87 33 .89 33 . 90 33 . 92 33 . 94 33 . 95 33 . 99 34 . 01 34 . 04 34 . 06 34.09 34 .12 34.15 34 .19 34 .22 34 .25 NODE 508.50 : HGL = < 67.190>;EGL= < 67.448>;PLOWLINE= < 66.430> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 5 08.00 508.50 TO NODE ELEVATION = 508.00 IS CODE = 5 66.53 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 PLOW DIAMETER ANGLE FLOWLINE CRITICAL 12 . 00 12 . 00 0 . 00 0 .00 0.00 2.23 2 .61 0 . 00 0.00 0.38===Q5 EQUALS BASIN INPUT== 0 . 00 0 . 00 66.53 66.43 0.00 0 . 00 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00345 0.64 0.59 0.00 0 . 00 ,00243 ,00448 VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (PT/SEC) 2 . 940 4 . 073 0.000 0 . 000 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 4.00 FEET 0.014 FEET ENTRANCE LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.089)+( 0.052) = 0.141 0.052 FEET NODE 508.00 : HGL = < 57.455>;EGL= < 67.589>;PLOWLINE= < 66.530> ****************************************************************************** PLOW PROCESS PROM NODE 508.00 TO NODE 507.50 IS CODE = 1 UPSTREAM NODE 507.50 ELEVATION = 66.92 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.23 CPS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 75.81 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0.64 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.64 DISTANCE FROM CONTROL(FT) 0 . 000 3 .445 6.838 10.187 13 .498 15.776 20.024 23.248 26.449 29 . 631 32.797 35 . 949 39.088 42.219 45.342 48 .461 51.578 54.696 57.820 60.955 64.108 67.293 70.532 73.875 76.810 FLOW DEPTH (FT) 0 . 925 0 . 913 0.902 0 . 891 0 . 880 0 . 868 0 . 857 0.846 0 . 834 0 . 823 0 . 812 0 . 800 0 . 789 0 . 778 0 . 766 0.755 0.744 0 . 733 0 . 721 0 . 710 0.699 0 .687 0 .575 0.665 0 . 556 VELOCITY (FT/SEC) 2 . 939 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 SPECIFIC ENERGY(FT) 1 .059 963 989 017 047 078 112 147 184 224 265 308 354 401 451 503 558 616 676 739 804 873 946 021 085 050 041 032 024 015 007 000 0.992 0 . 984 0 . 977 0 . 970 0 . 964 0.958 0 . 952 0 . 946 0 . 941 0 . 936 0 . 931 0 . 927 0 . 924 0 . 920 0 . 918 0.916 0 . 915 PRESSURE+ MOMENTUM(POUNDS) 33 .57 33 .14 32 . 73 32 .33 31. 93 31. 56 31.19 30.84 30.51 30.19 29.88 29.59 29.31 29 . 05 28 . 81 28 . 58 28.38 28 .18 28.01 27 . 86 27 . 73 27 . 62 27 . 53 27 .46 27 .42 NODE 507.50 : HGL = < 67.575>;EGL= < 67.835>;FLOWLINE= < 66.920> ****************************************************************************** UPSTREAM PIPE PLOW CONTROL DATA: NODE NUMBER = 507.50 FLOWLINE ELEVATION = 66.92 ASSUMED UPSTREAM CONTROL HGL = 67.56 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED PLOW ANALYSIS ************************* ********************************J^.J^^^^^^^^^^^^^^^^^^^^ PIPE-PLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OP STUDY ************************** * 100 YEAR STORM - HYDRAULICS , * THE BLUFFS - STORM DRAIN LINE 'C ^ * J.N. 01-1022 05/16/05 BY:CSO . ************************** ***************************************^^^^^^^^^ FILE NAME: LINEC.DAT TIME/DATE OP STUDY: 10:21 05/15/2005 ***********************************************^^^,.>,^^,^^^^^^^.^^.„.,^^^^^.,^^^^^^^_^^ GRADUALLY VARIED PLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 118.00- 720.50 720 . 00 718.50 718.00 716.50 716.00 714.50 714 . 00 712 .50- 712.00 710 .50 710.00 708 .50 UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS] 85 .67 FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 1.61* 1.29* 1.41* 1.35* 1.29* 1.21* 1.15* 1. 04* 1 . 04* DOWNSTREAM RUN FLOW PRESSURE+ DE PTH(FT) MOMENTUM(POUNDS) 53 .65 59 . 77 69.25 66.54 63 .58 59.51 55.55 51.10 49 . 69 } HYDRAULIC JUMP 0.75 Dc 42.33 0.75 DC 0. 75*Dc 1. 15* 0 . 81* 42 .33 42.33 47.55 33 .73 0.68 0.81 DC 0.74 Dc 0.64 0.62 0 . 63 0.62 0.70 0.53 0 .55* 0 . 54* 0.75*Dc 0.45 0 . 57 51.73 43 . 90 45.83 46.31 45 . 96 46 . 50 44.27 49 .10 48.27 48.63 42.33 39.71 33 .62 } JUNCTION 708.00- 0.58*Dc 32.25 0.68*Dc 32.25 } FRICTION 706.50- 0.70*Dc 32.30 0.68*Dc 32.25 MAXIMUM NUMBER OP ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. **********************************************************************^,^,,^^^^,^j^, DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 118.00 FLOWLINE ELEVATION = 62.73 PIPE PLOW = 3.56 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 64.340 FEET NODE 118.00 : HGL = < 64.340>;EGL= < 64.65 9>;PLOWLINE= < 62.730> ****************************************************************************** PLOW PROCESS FROM NODE 118.00 TO NODE 720.50 IS CODE = 1 UPSTREAM NODE 720.50 ELEVATION = 63.65 (PLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 3.55 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 83.31 FEET MANNING' S N = 0.01100 SF=(Q/K)**2 = (( 3.55)/( 42.106))**2 = 0 .00715 HP=L*SP = ( 83. ,31)*(0.00715) 0.596 NODE 720.50 : HGL = < 64.936>;EGL= < 65.255>;FLOWLINE= < 63.650> ****************************************************************************** FLOW PROCESS FROM NODE 720.50 TO NODE 720.00 IS CODE = 5 UPSTREAM NODE 720.00 ELEVATION = 63.75 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CPS) (INCHES) (DEGREES) ELEVATION DEPTH(PT.) (FT/SEC) UPSTREAM 3 , .16 12 . 00 0 . 00 63 . 75 0 . ,76 4 , .023 DOWNSTREAM 3 , .56 12 . 00 -63 . 65 0 , , 81 4 , ,533 LATERAL #1 0 . ,00 0 . 00 0.00 0 . 00 0 , ,00 0 , , 000 LATERAL #2 0 . ,00 0.00 0.00 0 . 00 0 , ,00 0 . , 000 Q5 0 . ,40 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00563 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00715 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00539 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.025 FEET ENTRANCE LOSSES = 0.054 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.093)+( 0.064) = 0.157 NODE 720.00,: HGL = < 65.160>;EGL= < 65.412>;PLOWLINE= < 63.750> ****************************************************************************** FLOW PROCESS FROM NODE 72 0.00 TO NODE 718.50 IS CODE = 1 UPSTREAM NODE 718.50 ELEVATION = 64.05 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD) PIPE PLOW 3.16 CPS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 43.46 FEET MANNING' 'S N = 0.01100 SF=(Q/K)**2 = (( 3.16)/( 42 .106))**2 = 0 , . 00563 HF=L*SF = ( 43. .46)* (0 . 00563) 0.245 NODE 718.50 : HGL = < 65.405>;EGL= < 65.556>;PLOWLINE= < 64.050> ****************************************************************************** FLOW PROCESS FROM NODE 718.50 TO NODE 718.00 IS CODE = 5 UPSTREAM NODE 718.00 ELEVATION = 64.15 (PLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CPS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3 .16 12 . 00 15 . 00 64 .15 0 . 76 4 . 023 DOWNSTREAM 3 .16 12 . 00 -64.05 0 . 75 4 . 023 LATERAL #1 0 .00 0 . 00 0.00 0.00 0 . 00 0 . 000 LATERAL #2 0 . 00 0 . 00 0 . 00 0 . 00 0.00 0 . 000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00563 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00563 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00563 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.023 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.040)+( 0.000) = 0.040 NODE 718.00 : HGL = < 55.445>;EGL= < 65.596>;FLOWLINE= < 64.150> ****************************************************************************** FLOW PROCESS FROM NODE 718.00 TO NODE 716.50 IS CODE = 1 UPSTREAM NODE 715.50 ELEVATION = 64.31 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 3.16 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 13.64 FEET MANNING' 'S N = 0.01100 SP=(Q/K)**2 = (( 3.16)/( 42 .105))**2 = 0 , ,00563 HF=L*SF = ( 13. ,64)*(0.00563) 0.077 NODE 716.50 : HGL = < 65.522>;EGL= < 65.773>;FLOWLINE= < 54.310> ****************************************************************************** FLOW PROCESS FROM NODE 716.50 TO NODE 716.00 IS CODE = 5 UPSTREAM NODE 716.00 ELEVATION = 64.41 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CPS) (INCHES) (DEGREES) ELEVATION DEPTH(PT.) (FT/SEC) UPSTREAM 3.16 12.00 15.00 64.41 0.76 4.023 DOWNSTREAM 3.16 12.00 - 64.31 0.76 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 4 . 023 0 . 000 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*15.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00563 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00563 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00563 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.023 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.040)+( 0.000) = 0.040 NODE 716.00 HGL = < 65.561>;EGL= < 65.813>;PLOWLINE= 64.410> ****************************************************************************** FLOW PROCESS PROM NODE UPSTREAM NODE 714.50 716.00 TO NODE ELEVATION = 714.50 IS CODE = 1 64.58 (PLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 3.16 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 10.43 FEET MANNING' S N = 0.01100 SF=(Q/K)**2 = (( 3.16)/( 42.106))**2 = 0 , ,00563 HF=L*SF = ( 10. .43)*(0.00563) 0.059 NODE 714.50 HGL 65.620>;EGL= < 65.871>;PLOWLINE= < 64.580> ****************************************************************************** PLOW PROCESS FROM NODE 714.50 TO NODE 714.00 IS CODE = 5 UPSTREAM NODE 714.00 ELEVATION = 64.58 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CPS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (PT/SEC) UPSTREAM 3 , ,08 12 . 00 0.00 64 .68 0. ,75 3 , , 922 DOWNSTREAM 3 , .15 12.00 -54 .58 0. , 75 4 , , 023 LATERAL #1 0 . ,00 0.00 0.00 0 .00 0 , ,00 0 , , 000 LATERAL #2 0 . ,00 0 . 00 0 . 00 0 .00 0 , , 00 0 , , 000 Q5 0 . ,08 = ==Q5 EQUALS BASIN INPUT= = : LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS{DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00549 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.022 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.034)+( 0.050) = 0.084 0.00535 0 . 00563 0.050 FEET NODE 714.00 : HGL = < 65.715>;EGL= < 65.955>;FLOWLINE= < 64.680> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 712.50 714.00 TO NODE 712.50 IS CODE = 1 ELEVATION = 65.09 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 3.08 CPS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 22.86 FEET MANNING'S N = 0.01100 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.53 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.55 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: 0 . 75 DISTANCE PROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/i SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .546 7 . 012 1 .310 48 .27 0 . 975 0 .546 7 .025 1 .312 48 .33 1 . 995 0 .545 7 . 037 1, .314 48 .38 3 . 056 0 . 544 7 .050 1 .316 48 .43 4 .192 0 . 543 7 . 062 1, .318 48 .49 5 .377 0 . 543 7 . 075 1, .320 48 , .54 5 . 628 0 . 542 7 . 087 1. . 322 48 , .59 7 . 953 0 . 541 7 . 100 1, ,324 48 , .65 9 . 359 0 . 540 7 . 113 1, ,326 48 , , 70 10 . 856 0 .539 7 . 125 1 , ,328 48 , , 76 12 .457 0 .539 7 .138 1, ,330 48 , ,81 14 . 176 0 . 538 7 . 151 1, ,332 48 , , 87 16 . 029 0 .537 7 . 154 1. ,335 48 , , 93 18 . 040 0 .536 7 . 177 1, ,337 48 , ,98 20 .234 0 .536 7 .190 1. ,339 49. , 04 22 .647 0 .535 7 .203 1. ,341 49. ,10 22 . 860 0 .535 7 .204 1. ,341 49 . ,10 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1. 04 DISTANCE FROM CONTROL(FT) 0.000 2 . 885 PRESSURE HEAD(PT) 1. 035 1.000 VELOCITY (PT/SEC) 3 . 922 3 . 922 SPECIFIC ENERGY(FT) 1.275 1.239 PRESSURE+ MOMENTUM(POUNDS) 49.69 47 . 91 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1 . 00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 2.885 1.000 3.920 1.239 47.91 3 . 597 0 . 990 3 . 927 1.230 47 .46 4 .243 0.980 3.939 1.221 47 . 05 4 . 851 0 . 970 3.954 1.213 46 .66 5 .427 0 . 960 3 . 973 1 .206 46.29 5 , . 977 0 , . 950 3 . 994 1, . 198 45 . 94 6 , . 503 0 , , 941 4 . 018 1, . 191 45 . 50 7 , , 006 0 , , 931 4 . 043 1. . 185 45 .28 7 , ,488 0 , , 921 4 , , 071 1, . 178 44 . 98 7 , , 949 0 , , 911 4 , 101 1, , 172 44 . 69 8 , ,390 0 , , 901 4 , ,133 1 , , 166 44 .42 8 . 810 0 , .891 4 , .167 1. , 161 44 . 16 9 . ,209 0 , , 881 4 , ,203 1, , 155 43 .92 9 , . 588 0 . , 871 4 , ,240 1, , 150 43 , . 70 9, , 944 0 , , 861 4 , ,280 1, ,146 43 , .49 10 , ,279 0 . , 851 4 , ,322 1. , 141 43 , ,29 10, ,590 0 . , 841 4 , ,366 1, , 137 43 . , 12 10 , ,876 0 . , 831 4 , ,412 1, ,134 42 . , 95 11, , 137 0 . , 822 4 . ,460 1 , ,131 42 . , 81 11. ,370 0 . , 812 4 , , 510 1 , , 128 42 , , 69 11. ,574 0 . , 802 4 , ,562 1, , 125 42 . ,58 11. , 748 0, , 792 4 , ,517 1, , 123 42 . ,49 11, , 888 0 . , 782 4 , ,674 1. . 121 42 . .42 11, , 992 0 , , 772 4 . , 733 1. ,120 42 . ,37 12 , , 057 0 , , 762 4 , , 795 1. ,119 42 . 34 12 , , 079 0 , , 752 4 . , 859 1. , 119 42 . ,33 22 , , 860 0 . , 752 4 . , 859 1. , 119 42 . ,33 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 1.00 FEET UPSTREAM OF DOWNSTREAM DEPTH = 1.024 FEET, UPSTREAM CONJUGATE DEPTH NODE 714.00 = 0.535 FEET NODE 712.50 : HGL = < 65.635>;EGL= < 66.400>;PLOWLINE= < 65.090> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 712.00 712.50 TO NODE ELEVATION = 712.00 IS CODE = 5 55.19 (PLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CPS) 3.08 3 .08 0.00 0.00 0.00 = DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(PT.) (FT/SEC) 12.00 0.00 65.19 0.75 7.098 12.00 - 65.09 0.75 7.014 0.00 0.00 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.000 ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01618 4.00 FEET 0.055 FEET ENTRANCE LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.113)+( 0.000) = 0.113 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 01643 01593 0.000 FEET NODE 712.00 : HGL = < 65.731>;EGL= < 55.514>;FLOWLINE= < 65.190> ****************************************************************************** PLOW PROCESS FROM NODE UPSTREAM NODE 710.50 712.00 TO NODE ELEVATION = 710.50 IS CODE = 1 65.91 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.08 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 38.46 FEET MANNING'S N = 0.01100 NORMAL DEPTH(PT) = 0.52 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 0.75 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: 0 . 75 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L (FT) (FT) (PT/SEC) ENERGY(PT) MOMENTUM(POUNl 0 . 000 0 . 752 4 . 859 1 . 119 42 . ,33 0 . 020 0 . 743 4 . 922 1. 119 42 . ,34 0 . 080 0 . 734 4 . 987 1. 120 42 . ,37 0. 187 0 . 724 5 . 054 1 . 121 42 . 41 0 . 342 0 . 715 5 . , 124 1. 123 42 . ,48 0 . ,553 0 . , 706 5 . , 197 1 . , 125 42 , ,57 0 . , 825 0 . ,696 5 , ,273 1. , 128 42 . ,68 1, , 164 0 , ,687 5 , ,351 1. .132 42 . . 82 1 , ,579 0 , ,678 5 . ,433 1, , 136 42 , . 97 2 , , 080 0 , ,669 5 , ,517 1, , 142 43 . 15 2 , , 679 0 , , 659 5 , ,505 1, , 148 43 .36 3 . ,389 0 , ,650 5 , ,597 1, , 154 43 .59 4 , ,228 0 , ,641 5 , . 792 1. , 162 43 , . 84 5 , ,217 0 , .632 5 . 890 1, , 171 44 , . 13 6 , ,384 0 . .622 5 . 993 1, .180 44, .44 7 , , 763 0, .613 6 .100 1, .191 44 .79 9. .401 0 .504 6 .212 1 .203 45 . 16 11 .361 0 .594 6 .328 1 .217 45 .57 13 . 731 0 .585 5 .449 1 .231 46 . 01 16 . 639 0 . 576 6 . 575 1 .248 46 .49 20 .285 0 .567 6 . 706 1 .265 47 .01 25 . 004 0 .557 5 . 843 1 .285 47 .57 31 .426 0 .548 6 . 985 1 .306 48 .16 38 .460 0 .541 7 . 096 1 .324 48 .63 NODE 710.50 HGL 66.662>;EGL= < 67.02 9>;FLOWLINE= < 65.910> ****************************************************************************** FLOW PROCESS FROM NODE 710.50 TO NODE 710.00 IS CODE = 5 UPSTREAM NODE 710.00 ELEVATION = 66.01 (FLOW UNSEALS IN REACH) ANGLE FLOWLINE (DEGREES) ELEVATION CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER (CFS) (INCHES) UPSTREAM 2.52 12.00 DOWNSTREAM 3.08 12.00 LATERAL #1 0.00 0.00 LATERAL #2 0.00 0.00 Q5 0.55===Q5 EQUALS BASIN INPUT=== 45 . 00 0.00 0 .00 55.01 55.91 0.00 0 . 00 CRITICAL DEPTH(FT.) 0 . 58 0 . 75 0.00 0 .00 VELOCITY (PT/SEC) 3 .209 4.861 0.000 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00358 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.0063 9 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00499 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.073 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.218)+( 0.073) = 0.291 NODE 710.00 : HGL = < 67.160>;EGL= < 67.320>;PLOWLINE= < 66.010> ****************************************************************************** FLOW PROCESS PROM NODE 710.00 TO NODE 708.50 IS CODE = 1 UPSTREAM NODE 708.50 ELEVATION = 66.31 (PLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.52 CFS PIPE DIMETER = 12.00 INCHES PIPE LENGTH = 3.38 FEET MANNING'S N = 0.01100 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1 .15 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 1 .766 PRESSURE HEAD(FT) 1.150 1. 000 VELOCITY (PT/SEC) 3 .209 3 .209 SPECIFIC ENERGY(FT) 1.310 1.160 PRESSURE+ MOMENTUM(POUNDS) 47.55 40 .17 NORMAL DEPTH(FT) 0.30 CRITICAL DEPTH(FT) = 0.58 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ , (PT) (FT) (PT/SEC) ENERGY 1 (FT) MOMENTUM(POUNl 1 , ,765 1. , 000 3 .208 1. ,160 40. , 17 1, , 907 0 . , 987 3 .215 1, , 148 39. ,59 2 . ,040 0 . , 974 3 .230 1, , 135 39 , ,03 2 , , 168 0 , . 962 3 .249 1. , 126 38 , , 50 2. .291 0, . 949 3 .271 1. .115 37 , ,99 2 . ,410 0 , . 935 3 .296 1, , 105 37 , ,51 2 , ,525 0 . . 923 3 .325 1 , .095 37, . 04 2 , .636 0 . . 910 3 .356 1, . 085 36 , ,59 2 , .744 0 , , 898 3 .390 1, . 076 36 , . 16 2 . 848 0 , , 885 3 .427 1, .067 35 , . 75 2 . 949 0 , . 872 3 .466 1 .059 35 , .35 3 .045 0 , . 859 3 .509 1 . 050 34 . 98 3 . 137 0 , . 846 3 . 553 1 . 043 34 . 63 3 .225 0 , . 834 3 . 601 1 .035 34 .30 3 .308 0 , . 821 3 . 552 1 .028 34 . 00 3 , .380 0 , . 809 3 .700 1 .022 33 .73 NODE 708.50 : HGL = < 67.119>;EGL= < 67.332>;PLOWLINE= < 66.310> ****************************************************************************** PLOW PROCESS FROM NODE 708.50 TO NODE 708.00 IS CODE = 5 UPSTREAM NODE 708.00 ELEVATION = 66.41 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(PT.) (PT/SEC) UPSTREAM 2 .52 12 .00 0 . 00 66.41 0.68 4 .423 DOWNSTREAM 2 . 52 12 .00 -65 .31 0 . 68 3 . 701 LATERAL #1 0 . 00 0.00 0 . 00 0.00 0 . 00 0 . 000 LATERAL #2 0 . 00 0 . 00 0.00 0.00 0.00 0 . 000 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00458 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.063)+( 0.000) = 0.063 00550 00357 0.000 FEET NODE 708.00 : HGL 67.091>;EGL= < 67.395>;FLOWLINE= < 66.410> ****************************************************************************** PLOW PROCESS PROM NODE 708.00 TO NODE 706.50 IS CODE = 1 UPSTREAM NODE 706.50 ELEVATION = 66.52 (PLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.52 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 21.83 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0.70 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.68 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: 0.68 FROM FLOW : DEPTH VELOCITY SPECIFIC PRESSURE+ .{ FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN: 0 . 000 0 .681 4 . .421 0 , . 985 32 .25 0 . 018 0 . 682 4 , .415 0 . , 985 32 .25 0 .048 0 .683 4 . ,408 0 , . 985 32 , .25 0 .090 0 .684 4 , ,402 0 , . 985 32 .25 0 . 147 0 .685 4 , ,395 0 , . 985 32 .25 0 .218 0 .686 4 , ,389 0 . , 985 32 .25 0 .307 0 . 687 4 , ,382 0 , . 985 32 .25 0 .414 0 .687 4 , ,376 0 . . 985 32 .25 0 . 543 0 . 688 4 , ,370 0 . , 985 32 .26 0 .595 0 .689 4 , ,363 0, , 985 32 .26 0 . 873 0 .690 4 , , 357 0 , , 985 32 , .25 1 .081 0 .691 4 , ,351 0 , ,985 32 , ,26 1 .325 0 .692 4 . ,344 0 , , 985 32 , ,26 1 .508 0 .693 4 , ,338 0 , , 985 32 , ,27 1 .939 0 .694 4 , ,332 0, ,985 32 , ,27 2 .325 0 .695 4 , ,326 0 , ,985 32 , .27 2 . 781 0 .696 4 , ,320 0 . , 986 32 , .27 3 .320 0 .697 4 , ,313 0 . , 986 32 , .28 3 . 955 0 .697 4. ,307 0 . ,986 32 , .28 4 753 0.698 4.301 0.986 32.28 5.730 0.699 4.295 0.986 32.29 6 985 0.700 4.289 0.986 32.29 8 678 0.701 4.283 0.986 32.29 11 172 0.702 4.277 0.986 32.30 15 627 0.703 4.271 0.985 32.30 21.830 0.703 4.271 0.986 32.30 706.50 : HGL = < 67.223>;EGL= < 67.506>;FLOWLINE= < 66.520> NODE ****************************************** ************************************ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 706.50 FLOWLINE ELEVATION = 66.52 ASSUMED UPSTREAM CONTROL HGL = 67.20 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 Inside Diameter ( 12.00 in.) AAAAAAAAAAAAAAAAAAAAA k Water ( 8.05 in.) ( 0.572 ft.) V Circular Channel Section Flowrate 3.550 CFS Velocity 6.348 fps Pipe Diameter 12.000 inches Depth of Flow 8.059 inches Depth of Flow 0.672 feet Critical Depth 0.807 feet Depth/Diameter (D/d) 0.672 Slope of Pipe 1.140 % X-Sectional Area 0.551 sq. ft. Wetted Perimeter 1.921 feet AR"(2/3) 0.247 Mannings 'n' 0.011 Min. Fric. Slope, 12 inch Pipe Flowing Pull 0.715 % O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (750) 931-7700 Fax: (760) 931-8680 Inside Diameter ( 12.00 in.) A A A A A A AAAAAAAAAAAAAAA Water * ( 8.12 in.) ( 0.577 ft.) * * I * _ ^— Circular Channel Section Flowrate 3.150 CFS velocity 5.589 fps Pipe Diameter 12-000 inches Depth of Plow 8.124 inches Depth of Plow 0.677 feet critical Depth 0.752 feet Depth/Diameter (D/d) 0.677 Slope of Pipe 0.880 % X-Sectional Area 0.566 sq. ft. Wetted Perimeter 1.933 feet AR"(2/3) 0.250 Mannings 'n' 0.011 Min. Fric. Slope, 12 inch Pipe Flowing Full 0.564 % O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Pax: (750) 931-8680 Inside Diameter ( 12.00 in.) * *_ AAAAAAAAAAAAAAAAAAAAA t Water ' * ( 6.83 in.) ( 0.569 ft.) V Circular Channel Section Flowrate 3.160 CFS velocity 6.843 fps Pipe Diameter 12.000 inches Depth of Flow 6.830 inches Depth of Plow 0.569 feet Critical Depth 0.764 feet Depth/Diameter (D/d) 0.569 Slope of Pipe 1.470 % X-Sectional Area 0.462 sq. ft. Wetted Perimeter 1.710 feet AR"(2/3) 0.193 Mannings 'n' 0.011 Min. Fric. Slope, 12 inch Pipe Flowing Full 0.563 % UooC iiip.o -XD »ioo£ 714. O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (750) 931-8680 Inside Diameter ( 12.00 in.) * * AAAAAAAAAAAAAAAAAAAAA Water ( 5.34 in.) ( 0.528 ft.) V Circular Channel Section 3 . , 160 CPS Velocity 7 , ,500 fps 12 , , 000 inches 5 , ,340 inches 0, ,528 feet Critical Depth 0 , , 763 feet Depth/Diameter (D/d) 0 , ,528 Slope of Pipe 1. ,870 % X-Sectional Area 0 . ,421 sq. ft Wetted Perimeter 1. ,628 feet AR^(2/3) 0 , , 171 0 , . Oil Min. Fric. Slope, 12 inch Pipe Flowing Full 0, ,563 g, "S ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 .";r;;;r™;r:*;™:cr'^^"™» - .......................... * THE BLUFFS - STORM DRAIN LINE 'D' * J.N. 01-1022 05/15/05 BY:CSO *************************...,,,,,^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^* PILE NAME: LINED.DAT TIME/DATE OF STUDY: 10:35 05/16/2005 NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used ) NODE MODEL PRESIURE""^ ''™RESSURE+ DOWNSTREAM RUN NUMBER PROCESS HEAD (FT) MOMFNTTTM ronTmnci PRESSURE+ 710.00- 1 15* ^°'^™TUM( POUNDS) DEPTH (FT) MOMENTUM (POUNDS) } FRICTION • ^^-^^ °-13 4.17 710.10- 0 65* } JUNCTION • °-27 DC 3.33 710.15- 0 51* } FRICTION • } HYDRAULIC JUMP" °' ^ . 01 -__-7!7 °7^*°- 1-65 0.21*DC MAXIMUM NUMBER OF ENERGY7A7NCE7USED7N7ACH7ROP7E7~7^ **************************^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA- NODE NUMBER = 710 nn ' •r.-r PIPE FLOW = 0 44 CFS ^^OWLINE ELEVATION = 66.01 __^SSUMED_DOWNSTREAM CONTROL HGL = "'.LTFES " " NODE 710.00 : HG777"77777777"77777LOW7NE77 .^?-..77777_.._---~ -{LTS\ILS\N REACH) CALCULATE FRICTION LOSSES(LACFCD)• PIPE FLOW = 0.44 CPS PIPE DIAMETER = 12.00 INCHES **************************^^^^^^^^^^^^^^ 66 . 010> PIPE LENGTH = 24.97 FEET MANNING'S N = 0.01100 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(PT) = 1.15 PRESSURE PLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(PT) MOMENTUM(POUNDS) 0 . 000 1.150 0.550 1.155 32 .33 7.532 1.000 0.550 1 . 005 24 . 98 NORMAL DEPTH(FT) = 0 .18 CRITICAL DEPTH(FT) 0.27 ASSUMED DOWNSTREAM PRESSURE HEAD(PT) = 1 . 00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTAlvTCE FROM PLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(PT) (PT) (PT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 7 .532 1 .000 0 .560 1 .005 24 . 98 8 . 985 0 . 971 0 .565 0 .976 23 . 57 10 .433 0 . 942 0 .573 0 . 947 22 . 18 11 . 879 0 . 913 0 . 585 0 . 918 20 . 81 13 .323 0 .884 0 .599 0 .889 19 .47 14 . 764 0 . 855 0 .615 0 . 861 18 . 18 16 .202 0 . 825 0 , . 634 0 , , 832 16 . 92 17 .638 0 . 797 0 , , 655 0 , , 804 15 , .70 19 . 071 0 . 758 0 , , 680 0 , , 775 14 , , 53 20 .500 0 . 739 0. , 707 0 , ,747 13 , ,40 21 . 925 0 . 710 0. 738 0 . 718 12. ,32 23 .345 0 .681 0. 772 0. 690 11. 30 24 . 759 0 . 552 0 . 811 0. 662 10. 32 24 , . 970 0 .547 0 . 818 0. 658 10 . 18 NODE 710.10 HGL 67.157>;EGL= < 67.168>;FLOWLINE= 56.510> ***********************************************^^^^^^^^^^^^^^.„.,,^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 710.10 TO NODE 710.15 IS CODE = 5 UPSTREAM NODE 710.15 ELEVATION = 65.67 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER (CFS) (INCHES) UPSTREAM 0.25 12.00 DOWNSTREAM 0.44 12.00 LATERAL #1 0.00 0.00 LATERAL #2 0.00 0.00 Q5 0.19===Q5 EQUALS BASIN INPUT=== ANGLE (DEGREES) 45.00 0 . 00 0 .00 FLOWLINE ELEVATION 66.67 66.51 0.00 0 . 00 CRITICAL DEPTH(PT.) 0.21 0.27 0.00 0.00 VELOCITY (PT/SEC) 0.625 0 . 818 0.000 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 *V2-Ql*VI*COS(DELTAl)-Q3 *V3 *COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*15.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00016 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.001 FEET ENTRANCE LOSSES 00013 00019 0.002 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.014)+( 0.002) = 0.016 NODE 710.15 : HGL = < 67.177>;EGL= < 67.183>;PLOWLINE= < 66.670> ***********************************************^.^^^j^^^^^^^^^^^^^^^^^^^^^^^^^^^ PLOW PROCESS PROM NODE 710.15 TO NODE 710.20 IS CODE = 1 UPSTREAM NODE 710.20 ELEVATION = 67.07 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 0.25 CPS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 20.16 FEET MANNING'S N = 0.01100 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(PT) = 0.14 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 0.21 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0 .21 DISTANCE FROM CONTROL(PT) 0 . 000 0 . 004 0 . 018 0 . 041 0 . 076 0 .122 0 .182 0.258 0.351 0 .462 0.595 0. 755 0 . 944 1.166 1.428 1. 739 2.108 2 . 549 3 .084 3 . 740 4.553 5.628 7 . 078 9 .231 13.109 20.160 PLOW DEPTH (PT) 0.205 0 .203 0.200 0 .198 0.195 0 .192 0 .190 0 .187 0 .184 0 .182 0 .179 0 .177 0 .174 0 .171 0 .159 0.166 0.164 0 .161 0.158 0 .156 0 .153 0.150 0.148 0.145 0 .143 0 .143 VELOCITY (FT/SEC) 2 .151 2 , 2 . 2 . 2 , 2 . 2 . 191 232 274 318 364 410 2 .459 2 . 509 551 615 671 729 789 852 2 . 917 2 . 985 3 .055 3 .128 3 .205 3 .284 368 454 545 640 2 , 2 , 2 . 2 . 2 . 2 . 3 .643 SPECIFIC ENERGY(FT) 0 . 277 0.277 0 .278 0.278 0.278 0 .279 0.280 0.281 0.282 0.284 0 .286 0.288 0.290 0.292 0.295 0 .298 0.302 0 .306 0.310 0.315 0.321 0 . 327 0 .333 0 .341 0.348 0.349 PRESSURE+ MOMENTUM(POUNDS) 1. 65 1.65 1.65 1 . 65 1 . 66 1.66 1 .67 1.67 1. 68 1. 59 1 . 70 1. 71 1.73 1. 74 76 77 79 81 84 1.86 1. 89 1. 91 1. 94 1. 98 2 . 01 2 . 01 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.51 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 . 000 0 . 507 0 .625 0 .513 5 .58 0 .593 0 .495 0 . 644 0 .502 5 .40 1 . 185 0 , .483 0 . 665 0 .490 5 . 12 1 . 775 0 . .471 0 . 687 0 .478 4 . 85 2 .364 0 , .459 0 . 711 0 .467 4 .59 2 . 950 0 . ,447 0 . 736 0 .455 4 .34 3 .533 0 . ,435 0 . 763 0 .444 4 . 11 4 . 114 0 , .423 0 . 791 0 .433 3 .88 4 .691 0 , ,411 0 . 822 0 .421 3 .66 5 .264 0 , ,399 0 . 856 0 .410 3 .45 5 .833 0 . ,387 0 , .892 0 .399 3 , .25 6. .397 0, ,374 0 , ,931 0 .388 3 , ,06 6 , , 954 0. 362 0, , 973 0 , .377 2 , ,89 7 , , 504 0 . 350 1. , 019 0 , .356 2 . , 72 8. ,046 0 . 338 1. ,069 0 , ,355 2 . ,56 8 . ,577 0 . 326 1. ,124 0 . , 345 2 , ,42 9, , 096 0 . 314 1, , 183 0 , ,336 2 . 28 9 , ,600 0 . 302 1. ,249 0 , ,326 2. 16 10 , , 085 0 . 290 1. ,322 0 , ,317 2 . , 05 10 . ,549 0 . 278 1. 403 0. .308 1. 95 10 . 982 0 . 266 1. 493 0 . ,300 1. 86 11. 379 0 . 254 1. 594 0 . ,293 1. 79 11. 729 0 . 242 1. 708 0 . ,287 1 . 73 12 . 015 0 . 230 1. 835 0. 282 1. 69 12 . 214 0 . 217 1. 983 0 . 279 1. 56 12 . 292 0 . 205 2 . 151 0 . 277 1 . 65 20 . 160 0 . 205 1 OF 2 .151 HYDRAULIC JUMP 0 .277 ANALYSIS 1. 65 i PRESSURE+MOMENTUM BALANCE OCCURS AT 10.40 FEET UPSTREAM OF NODE 710.15 | I DOWNSTREAM DEPTH = 0.282 FEET, UPSTREAM CONJUGATE DEPTH = 0.145 FEET | NODE 710.20 : HGL = < 67.275>;EGL= < 57.347>;PLOWLINE= < 67.070> ***********************************************^^^.^,^^^^^^^^^,^^^^,^^^^^^^^^^^^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 710.20 FLOWLINE ELEVATION = 67.07 ASSUMED UPSTREAM CONTROL HGL = 67.28 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS (Reference: LACFCD LACRD AAA.]A PROGRAM PACKAGE (c) copyright 1982-2^2 Jdv^^°™.«™-lCS CRITERION) ver. 8.0 Release Da?e oi/1l/2X"T'"^ ^ ^-^^ 'jj-/ux/^002 License ID 1423 Analysis prepared by: O'Day Consultants, inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 * THE ££^*^°^^*-*H^;^ULi*^^^^^ °^ * — ******************* * J N 0? 1022 '"T7^'^ ***********f7***°'/20/05 BY:CSO **"*"***"*•"*""*—"..................• FILE NAME: LINEE.DAT _J™E/DATE OF STUDY: 09:15 05/20/2005 (Note- "*"°Sdic°f ^ '^^""^ ^^^^^ HPSTRES^™^^ -ed. ) ™L .!!°^!7 ^^^^SSU^E PRESSURE+ ^OWNSTREAM RUN AD(PT) MOMENTUM (POUNDS) DEPTOTP-T. PRESSURE+ 0.23 Dc 2.08 °^^™(PT) MOMENTUM(POUNDS) ^•^'^* 2.37 DC 2 Ofi ^.08 0.15* ^ 2.59 Dc 2 OR 0.18* 2 23 2 08 . _ .^.UB 0.23*Dc .._oa_ PIPE FLOW = o'30 CF^ FLOWLINE ELEVATION = 7050 ASSUMED DOWNSTREAM CONTROL HGL ''^n °^™ER = 12.00 INCHES *NOTE: ASSUMED DOWNSTRE^^ CONTROL DEP^H^ — > CRITXST'' ^^^""^^ DEPTHrO 2VFT , '^"^ ~ ^C^^iifr^Z^^^^^ - —EL^-^ONTROL DEPTH PLOW -o;-r:;;r;;;r*7:7:7;r;;;r**;77r7*;;;r77*---*-*-^ NUMBER 210.00- PROCESS 309 } 50- FRICTION 309. } 00- MANHOLE 307. } 50- FRICTION UPSTREAM NODE 309.50 ELEVATION = 70.65 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 0.30 CPS PIPE PIPE LENGTH = 12.84 FEET DIAMETER = 12.00 INCHES MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0.17 CRITICAL DEPTH(FT) = 0 .23 UPSTREAM CONTROL ASSUMED FLOWDEPTH(PT) 0.15 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 0.406 0 . 824 1, 1. 2 , 2 . 3 . ,253 ,695 . 153 ,626 , 117 3 . 627 4 .159 4 . 717 5.303 5 . 921 5 .578 7.279 8.033 8.851 9.750 10 . 749 11.880 12 . 840 PLOW DEPTH (FT) 0 .147 0 .148 0 .149 0 .151 0 .152 0 .153 0 .154 0 .155 0 .156 0 .157 0.158 0 .159 0 . 160 0 .161 0.162 0 .153 0.164 0 .155 0.166 0 .158 0 .158 VELOCITY (FT/SEC) 4 .168 ,125 , 082 040 999 959 3 . 919 . 880 . 841 . 804 . 767 . 730 ,694 ,659 , 624 ,590 3 .556 3 .523 3 .491 3.459 3 .436 SPECIFIC ENERGY(FT) 0.417 0.413 0.408 0 .404 0 .400 0.396 0.392 0 .389 0.385 0.382 0.378 0 .375 0 .372 0 . 369 0 .355 0.354 0.361 0.358 0.355 0 .353 0 .352 PRESSURE+ MOMENTUM(POUNDS) 2 . 69 2 2 2 2 2 2 2 2 2 2 2 , 2 , 2 , 2 . 2 . 2 . 2 . 2 . 2 . 2 . 67 55 63 61 59 58 56 54 53 51 49 48 46 45 43 42 41 39 38 37 NODE 309.50 : HGL = < 70.797>;EGL= < 71.057>;FLOWLINE= < 70.550> ********************************************************i,4^irir****************** FLOW PROCESS FROM NODE UPSTREAM NODE 3 09.00 309.50 TO NODE 309.00 IS CODE = 2 ELEVATION = 70.75 (PLOW IS SUPERCRITICAL) 12.00 INCHES CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 0.30 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 0.207 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 0.207) = 0.010 NODE 309.00 : HGL = < 70.933>;EGL= < 71.077>;PLOWLINE= < 70.750> *********************************************************^,i,^,i,^,^,^,^.i,^,.,,^^^,.,,^,^,^,.,,^,.,,.,, FLOW PROCESS PROM NODE UPSTREAM NODE 307.50 309.00 TO NODE ELEVATION = 307.50 IS CODE = 1 71.06 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.30 CPS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 31.32 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0.18 CRITICAL DEPTH(PT) = 0.23 UPSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 0.23 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ [j (FT) (FT) (FT/SEC) ENERGY(PT) MOMENTUM(POUNl 0 . 000 0 . 225 2 . 260 0. 305 2 . 08 0 . 005 0. 224 2 . 285 0 . 305 2 . 08 0 . 020 0 . 222 2 . 312 0 . 305 2 . 08 0 . 046 0 . 220 2 . 338 0 . 305 2 . 08 0 . 084 0 . 218 2 . 355 0 . 305 2 . 08 0 . 136 0 . 217 2 . ,393 0 . 306 2 . 08 0 . 203 0. ,215 2 . ,421 0 . 306 2 . 09 0 . .285 0 , ,213 2 . ,450 0 . ,306 2 . 09 0 . , 388 0 , , 211 2 . ,479 0 , ,307 2 . , 09 0 , , 510 0 , .210 2 , ,509 0 . ,307 2 . 10 0 , ,656 0 , ,208 2 , .540 0 , ,308 2 , , 10 0 . , 829 0 , ,206 2 .571 0 , ,309 2 , ,11 1 , ,032 0 , ,204 2 .603 0 , ,310 2 . , 11 1, ,271 0 , .202 2 .636 0 , .310 2 , , 12 1, .552 0 .201 2 .669 0. .311 2 , . 13 1 . 883 0 . 199 2 .703 0 .312 2 .13 2 .275 0 . 197 2 . 738 0 .314 2 . 14 2 . 743 0 .195 2 . 774 0 .315 2 . 15 3 .305 0 . 194 2 . 810 0 .316 2 . 16 3 .993 0 . 192 2 . 848 0 .318 2 . 17 4 . 852 0 . 190 2 .886 0 .319 2 .18 5 .960 0 . 188 2 .925 0 . 321 2 .19 7 .459 0 .186 2 . 965 0 .323 2 .20 9 .676 0 . 185 3 . 006 0 .325 2 .22 13 . 651 0 . 183 3 . 048 0 .327 2 .23 31 .320 0 . 183 3 .051 0 .327 2 .23 NODE 307.50 : HGL = < 71.285>;EGL= < 71.355>;PLOWLINE= < 71.050> ****************************************************************************** UPSTREAM PIPE PLOW CONTROL DATA: NODE NUMBER = 307.50 FLOWLINE ELEVATION = 71.06 ASSUMED UPSTREAM CONTROL HGL = 71.29 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ctce. u±/Ui/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 *********************^^^^^ npqrPTD^^Tr.,^T ^r. * 100 YEAR STORM - HYDRAULICS ************************** * THE BLUFFS - STORM DRAIN LINE 'P- * J.N. 01-1022 5/19/05 BY-CSO PILE NAME: LINEF DAT TIME/DATE OF STUDY: 09:46 05/19/2005 NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used ) UPSTREAM RUN ^ usea.J NODE MODEL PRESSURE PRESSURE+ ^OWNSTREAM RUN AD (FT) MOMENTUM (POUNDS) DEPSTFT) MOML^^^T^" 0.18* 0 57 ^^'^^l^^ET) MOMENTUM (POUNDS) } HYDRAULIC JUMP' 0.11 Dc o.40 0.39 o.l2*Dc 0.20 0.08 DC 0.16 0.11* n on 0.20 0.08 Dc 0 15 __MAXIMtM_N™BER_OF_ENERGYBA7NCE7u7D7N'777R77E7"^ DESIGN MANUALS CURRENT LACRD,LACFCD, AND OCEMA NUMBER PROCESS 309 .00- } FRICTION 311 50- } JUNCTION 311 00- } FRICTION 313 . 50- MANUALS. '***********************, *********************************, DOWNSTREAM PIPE FLOW CONTROL DATA^'"'"******************************* NODE NUMBER = 309 00 \. PIPE FLOW = o'08 CPS FLOWLINE ELEVATION = 70.75 ASSUMED DOWNSTREAM CONTROL HGL = 70.^1^ ^ ""•"^ ''''^"^^ NODE 309.00 : HGL = < "777777 An /0.930>,EGL= < 70.941>;FLOWLINE= < 70 750> **************************.,,,,,,,,^^^^^^^^_ 0 TO NODE 70.81 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD)'• FLOW = 0.08 CFS PIPE DIAMETER = 12.00 INCHES PLOW PROCESS FROM NODE 309 00*TrNOn7*7\*7****************************** UPSTRP^NODE 311.50 ELEJASON 7'7f° = 1 PIPE LENGTH = 9.73 FEET MANNING'S N = 0.01100 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ^NORMAL DEPTH (FT) = 0.11 CR77A7DEPTH777""'" UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.12 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0 . 12 DISTANCE FROM CONTROL(FT) 0 . 000 0 . 001 0.005 0. Oil 0 . 019 0.031 0.046 0 . 055 0 . 088 0 .116 0 .149 0.187 0 .233 0 .287 0.350 0.424 0.511 0.615 0 . 741 0. 894 1. 084 1.329 1 .661 2 .150 3 . 025 9.730 FLOW DEPTH (FT) 0 . 115 VELOCITY (FT/SEC) 1. 592 0 .115 0 .115 0 . 114 0 .114 0.114 0 . 113 0.113 0 .113 0 .112 0.112 0 .112 0.111 0 . Ill 0 . Ill 0.110 0.110 0.110 0 .109 0 .109 0.109 0.109 0.108 0 .108 0 .108 0 .108 1, 1, 1 , 1, 1. ,598 ,604 , 611 ,617 ,524 1.530 1.637 1.644 1.551 1.657 1.664 1.671 1.678 1.685 1.692 1.699 1.706 ,713 .721 , 728 , 735 1. 743 1.750 1. 757 1.758 1, 1. 1. 1. SPECIFIC ENERGY(FT) 0 .154 0 . 154 0 .154 0 .155 0 .155 0.155 0.155 0 .155 0.155 0.155 0 .155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0 .155 0.155 0.155 0.155 0.156 0.156 PRESSURE+ MOMENTUM(POUNDS) 0.39 0.39 0.39 0 .39 0.39 0.39 0.39 0 .39 0 . 39 0.39 0.39 0 .39 0 .39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.40 0.40 0.40 0.40 0.40 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.18 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNl 0 . 000 0 . 180 0 . 832 0 . 191 0 .57 0.3 94 0 . 177 0 .849 0 . 189 0.55 0.786 0 .175 0 . 868 0 . 187 0 . 54 1.177 0 . 172 0, . 887 0 .184 0.53 1.565 0 . 170 0, , 905 0, . 182 0 . 52 1.951 0 .167 0. ,927 0 . , 180 0 . 51 2 . 335 0 . 164 0 . , 948 0, , 178 0.50 2 . 716 0 .162 0. 970 0 . , 175 0.49 3 . 094 0 .159 0 . 993 0 . 175 0.48 3 .469 0 .157 1. 017 0 . 173 0.47 3 . 841 0 . . 154 1 .042 0 , , 171 0 .46 4 .208 0 , . 151 1 . 068 0 , . 169 0 .45 4 .571 0 , , 149 1 . 095 0 , . 157 0 .45 4 . 928 0 . , 146 1 . 123 0 , , 166 0 .44 5 .280 0, , 144 1, .152 0 , , 164 0 .43 5 .625 0 , , 141 1, .183 0 , ,163 0 .42 5 . 961 0 , ,138 1, .216 0 , ,161 0 .42 5 .289 0 . ,136 1, ,250 0. , 160 0 .41 6 .605 0 . , 133 1. ,285 0, , 159 0 , .41 5 . 908 0 . , 131 1, ,323 0 , , 158 0 . ,40 7 , .195 0 . . 128 1 , , 362 0 , , 157 0 . ,40 7 , .460 0, , 126 1 , ,403 0, , 156 0. ,40 7 . ,698 0 . ,123 1, ,446 0 , ,155 0 . ,40 7 , , 898 0 . , 120 1 , ,492 0. . 155 0 . ,39 8 . , 043 0 . , 118 1, ,541 0 . , 155 0 . ,39 8. , 104 0 . , 115 1. , 592 0, .154 0 . ,39 9 . , 730 0 . ,115 1 , ,592 0. , 154 0 . ,39 END OP HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 7.73 FEET UPSTREAM OP NODE 309.00 | I DOWNSTREAM DEPTH = 0.123 FEET, UPSTREAM CONJUGATE DEPTH = 0.108 FEET | NODE 311.50 : HGL = < 70.925>;EGL= < 70.964>;FLOWLINE= < 70.810> ****************************************************************************^.j. PLOW PROCESS PROM NODE UPSTREAM NODE 311.00 311.50 TO NODE ELEVATION = 311.00 IS CODE = 5 70.91 (FLOW IS SUBCRITICAL) FLOWLINE ELEVATION CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES UPSTREAM 0.04 12.00 0.00 70.91 DOWNSTREAM 0.08 12.00 - 70.81 LATERAL #1 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.04===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = AVERAGED FRICTION JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = CRITICAL DEPTH(FT.) 0.08 0.12 0.00 0 . 00 VELOCITY (FT/SEC) 0.810 1 .592 0.000 0 . 000 0.00120 0.00459 SLOPE IN JUNCTION ASSUMED AS 0.00290 4.00 FEET 0.012 FEET ENTRANCE LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 0.062)+( 0.008) = 0.070 0.008 FEET NODE 311.00 : HGL = < 71.024>;EGL= < 71.034>;FLOWLINE= < 70.910> ****************************************************************************** PLOW PROCESS FROM NODE UPSTREAM NODE 313.50 311.00 TO NODE ELEVATION = 313.50 IS CODE = 1 70.92 (PLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 0.04 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 7.88 FEET MANNING'S N = 0.01100 NORMAL DEPTH(FT) = 0.11 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 0.11 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: 0 . 08 DISTANCE PROM FLOW : DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNl 0 . 000 0 . 114 0 , ,809 0 , , 124 0 .20 0 . 559 0 . 114 0 . , 810 0 , . 124 0 .20 1 . 344 0 . 114 0 , . 811 0 , , 124 0 .20 2 . 058 0 . 114 0 . . 811 0 , , 124 0 .20 2 . 804 0 .114 0 , , 812 0 , , 124 0 .20 3 . 585 0 . 114 0 , ,812 0. , 124 0 .20 4 . 404 0 . 113 0 , . 813 0 , . 124 0 .20 5 . 266 0 .113 0 . . 814 0 , ,124 0 .20 6 . 176 0 . 113 0 , , 814 0 , , 124 0 .20 7 . 138 0 . 113 0 , , 815 0. , 124 0 .20 7 . 880 0 . 113 0 , ,815 0 . , 124 0 .20 NODE 313 .50 : : HGL = < 71. 033>;EGL= < 71.044>;FLOWLINE= < 70 .: 920 ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 313.50 FLOWLINE ELEVATION = 70.92 ASSUMED UPSTREAM CONTROL HGL = 71.00 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ***************************************^^^^^^^^^^^^^^,^^^^^^^^^^^^^^^^^^^^^^^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ******************** ****** DESCRIPTION OP STUDY ************************** * 100 YEAR STORM - HYDRAULICS , * THE BLUFFS - STORM DRAIN LINE 'G' , * J.N. 01-1022 05/19/05 BY:CSO **********************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^ PILE NAME: LINEG.DAT TIME/DATE OF STUDY: 10:41 05/19/2005 **********************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 0.79* 16.58 } HYDRAULIC JUMP 0.37*Dc 6.89 110.00 111.00 111. 10 111.20 111.30 111.31 111.32 111 .40 } FRICTION } JUNCTION } FRICTION } JUNCTION } FRICTION } JUNCTION } FRICTION DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS J 14 . 11 0.46* 5.39 } HYDRAULIC JUMP 0.28*Dc 3.57 0.31 0.28 Dc 0.31 0 .28*Dc 3 .64 3 .57 3 .64 3 .57 0.16 0.37*Dc 0.23 0.28*Dc 0 .24* 0.25* 0 .22* 0.28*Dc 6.89 3 .80 3.57 3 . 72 3 .63 3 . 90 3.57 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE PROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ************************************************^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 110.00 FLOWLINE ELEVATION = 65 48 PIPE FLOW = 0.77 CPS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 66.270 FEET NODE 110.00 : HGL = < 66.270>;EGL= < 66.291>;FLOWLINE= < 65.480> ****************************************************************************** FLOW PROCESS PROM NODE 110.00 TO NODE 111.00 IS CODE = 1 UPSTREAM NODE 111.00 ELEVATION = 68.14 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.77 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 26.61 FEET MANNING'S N = 0.01100 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.16 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 0.37 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: 0.37 DISTANCE PROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) C FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .367 2 . 951 0 .502 6 .89 0 .004 0 .358 3 . 042 0 . 502 6 .89 0 . 016 0 .350 3 . 139 0 . 503 5 . 91 0 . 037 0 . 342 3 .241 0 .505 6 . 94 0 . 068 0 . 334 3 .350 0 .508 6 . 98 0 . 112 0 . 326 3 .465 0 . 512 7 .04 0 .169 0 .318 3 .588 0 . 518 7 . 11 0 .241 0 .310 3 . 719 0 .524 7 .20 0 .332 0 .301 3 .858 0 .533 7 .31 0 , .443 0 .293 4 . 008 0 .543 7 .43 0 .579 0 .285 4 . 158 0 , .555 7 .57 0, . 743 0 .277 4 .339 0 , .570 7, . 74 0 , . 941 0 .269 4 .524 0 , .587 7 . 93 1, . 180 0 .261 4 , . 723 0 , .607 8 . 14 1, .469 0 .253 4 . . 939 0, .632 8, .38 1. , 818 0 .245 5 , . 172 0 , .650 8 , . 65 2 , ,243 0 .236 5 , .425 0. .594 8, . 95 2 , , 753 0 .228 5 . . 701 0 , .733 9, .30 3 , ,409 0 .220 5 , ,003 0 , .780 9, ,68 4 , ,223 0 .212 6 . ,334 0 . , 835 10 . , 11 5 . ,270 0 .204 6 , ,597 0 , , 901 10 , ,59 6. , 565 0 . 196 7 , , 099 0 , , 979 11. , 14 8 . ,515 0 .188 7. ,545 1. ,072 11. , 75 11. ,597 0 . 179 8 , , 041 1. ,184 12 , ,44 17 . 131 0 .171 8 . ,595 1. ,320 13 . ,22 26 . 610 0 .163 9 , ,221 1. ,484 14 , , 11 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 0.79 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM CONTROL(FT) 0.000 0.161 FLOW DEPTH (FT) 0.790 0.773 VELOCITY (FT/SEC) 1.157 1.182 SPECIFIC ENERGY(PT) 0 . 811 0.795 PRESSURE+ MOMENTUM(POUNDS) 16.58 15.92 0 , , 321 0 . 756 1, ,208 0 . , 779 15 , ,28 0 , ,480 0. 739 1. ,237 0 . , 763 14 , , 66 0 , ,639 0 . 722 1, ,257 0 . . 747 14 , , 05 0 . ,796 0 . 705 1. .300 0 . . 732 13 , ,47 0 , , 952 0 . 588 1 , ,335 0 , , 716 12 , , 90 1, .106 0 . 671 1 , ,373 0 , , 701 12 , ,36 1, ,259 0 . 654 1 , ,413 0 , ,685 11. ,83 1, ,410 0 . 538 1, ,457 0 . ,671 11 , , 33 1, . 559 0 . 521 1, , 503 0 , , 656 10 , , 85 1, , 705 0 . 604 1. ,553 0 , ,641 10 , ,39 1, .850 0. 587 1. ,607 0 . ,527 9 , ,96 1, , 991 0 . 570 1, ,555 0, , 613 9 , , 55 2 , , 128 0 . 553 1 , , 728 0 , ,599 9 . , 16 2 , .262 0 . 536 1, , 796 0 , ,586 8 , . 80 2 .391 0 . 519 1 , , 870 0 , .573 8 . ,47 2 . 514 0. 502 1, .950 0, .561 8 , ,16 2 .531 0 . 485 2 , .037 0 .550 7 . , 88 2 . 740 0 . 468 2 , .133 0 , . 539 7 , , 54 2 . 840 0 . 451 2 .238 0 . 529 7 .42 2 .929 0 , ,434 2 , .353 0 . 520 7 .24 3 .005 0 . ,417 2 .480 0 . 513 7 , . 09 3 .065 0. ,400 2 .620 0 .507 6 .98 3 . 104 0 . ,383 2 . 777 0 . 503 6 . 91 3 .119 0 , ,367 2 .951 0 .502 6 . 89 26 .510 0 , ,357 2 . 951 0 .502 5 . 89 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 0.64 FEET UPSTREAM OP NODE 110.00 | I DOWNSTREAM DEPTH = 0.722 FEET, UPSTREAM CONJUGATE DEPTH = 0.164 FEET | NODE 111.00 : HGL = < 68.507>;EGL= < 58.642>;FLOWLINE= < 58.140> ****************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 111.10 IS CODE = 5 UPSTREAM NODE 111.10 ELEVATION = 68.24 (PLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CPS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0. ,46 12.00 0.00 68 .24 0. ,28 1, .312 DOWNSTREAM 0. . 77 12 . 00 -68 . 14 0. ,37 2 . . 952 LATERAL #1 0 , .31 12 . 00 90.00 68 .24 0 , .23 1. ,208 LATERAL #2 0 , ,00 0.00 0.00 0 . 00 0 , . 00 0 . .000 Q5 0 . ,00 = ==Q5 EQUALS BASIN INPUT= = : LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00065 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0.00407 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00235 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.083)+( 0.000) = 0.083 NODE 111.10 : HGL = < 68.698>;EGL= < 68.725>;PLOWLINE= < 68.240> r***************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 111.20 111.10 TO NODE ELEVATION = ************************************ 111.20 IS CODE = 1 6 8.65 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 0.46 CFS PIPE DIAMETER = PIPE LENGTH = 46.20 FEET MANNING'S 12.00 INCHES N = 0.01100 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.23 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SPECIFIC 0.28 DISTANCE PROM FLOW DEPTH VELOCITY PRESSURE+ J (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNE 0 . 000 0 . 280 2 . 550 0 . 381 3 . 57 0 . 009 0 . 278 2 . 577 0 . 381 3 . 57 0 . 031 0 . 276 2 . 504 0 . 382 3 . 57 0 . 067 0 . 274 2 . 632 0 . 382 3 . 58 0 . 119 0 . 272 2 . 560 0 . 382 3 . 58 0 . 188 0 . 270 2 . 688 0 . 382 3 . 58 0 . 276 0 . 258 2 . 717 0 . 383 3 . 59 0 . 384 0 . 256 2 . 747 0 . 383 3 . 59 0 . 517 0 . 264 2 . , 777 0 . 384 3 . 60 0 . , 575 0 . ,262 2 . , 808 0 . ,384 3 . ,50 0 . , 864 0. ,260 2 , , 840 0. ,385 3 , ,61 1. ,086 0, ,258 2 , , 872 0 , ,386 3 . ,62 1. .348 0 , ,255 2 , , 905 0 . ,387 3 , ,63 1 .655 0 , .253 2 .938 0 , .388 3 , .64 2 . 015 0 .251 2 . 972 0 .389 3 .55 2 .439 0 .249 3 . 007 0 .390 3 .56 2 . 940 0 .247 3 . 043 0 .391 3 .67 3 .537 0 .245 3 .079 0 .392 3 . 58 4 .255 0 .243 3 .115 0 .3 94 3 .70 5 .132 0 .241 3 . 154 0 .396 3 . 71 6 .227 0 .239 3 . 193 0 .397 3 . 73 7 .635 0 .237 3 .233 0 .399 3 . 74 9 .544 0 .235 3 .273 0 .401 3 .76 12 .352 0 .233 3 .314 0 .403 3 . 78 17 .413 0 .231 3 .357 0 .406 3 . 80 46 .200 0 .230 3 .361 0 .406 3 . 80 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: 0.46 DISTANCE PROM CONTROL(FT) 0.000 0 . 709 1.413 2 .112 PLOW DEPTH (FT) 0 .458 0 .451 0 .444 0 .437 VELOCITY (FT/SEC) 1.311 1.338 1 .356 1.395 SPECIFIC ENERGY(FT) 0.485 0.479 0 .473 0.467 PRESSURE+ MOMENTUM(POUNDS) 5.39 5.26 5 .14 5.02 . 805 ,491 .170 . 842 5 . 504 6.158 6 . 800 7 .431 8 . 048 8 .651 237 804 350 871 364 ,823 ,244 . 618 . 938 .190 .359 9, 9, 10 10 11 11 12 12 12 13 13 13 .421 46 .200 0 .430 0 .423 0.415 0.408 0 .401 0 .394 .387 .380 .373 .366 .359 .352 0 .345 0 .337 .330 .323 .316 .309 0 .302 0 .295 0.288 0 .281 0 .281 0 0 0 , 0 0 0 0 0 0 0 , 1. 1. 1, 1 1 1 1 1 1 1 1 1 426 457 491 525 561 ,599 ,638 .679 .722 .768 . 815 .865 1.918 1.973 2.031 092 157 226 298 375 457 2 .544 2 .544 2 . 2 . 2 . 2 , 2 2 0 .461 0 .456 0 .450 0 .444 0 .439 0 .434 0 .429 0 .424 0.419 0 .414 0 .410 0 .405 0 .402 0 .398 0 .395 0 .391 0.389 0 .385 0 .384 0.383 0 .382 0 .381 0 .381 4 . 90 4 .79 4.68 4.58 4.48 4 . 4 . 4 . 4 , 4 , 3 3 3 3 3 3 3 3 3 38 29 20 12 05 ,98 , 91 , 85 .79 .74 .70 .66 .63 .61 3.59 3 .58 3 .57 3 . 57 END OF HYDRAULIC JUMP ANALYSIS ^^^u ^ UPSTREAM OF PRESSURE+MOMENTUM BALANCE OCCURS AT IJ^ CONJUGATE DEPTH DOWNSTREAM DEPTH = 0.338 FEbi, Ufbxr^::^^ NODE 111.20 : HGL = < '7740>;EGL= < 59 . 041> ; PLOWLINE= NODE 111.10 = 0.230 FEET : 68.660> c************************ FLOW PROCESS FROM NODE 111.30 ELEVATION **************************** 111.20 TO NODE 111.30 IS CODE ************************* 5 6767 (PLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 PLOW (CFS) 0 .46 0 .46 0.00 0 .00 0.00 = DIAMETER (INCHES) 12.00 12 . 00 0.00 0.00 ANGLE (DEGREES) 0 . 00 .00 . 00 FLOWLINE ELEVATION 68.68 68 . 56 0.00 0 . 00 CRITICAL DEPTH(FT.) 0 .28 0.28 0.00 0.00 VELOCITY (FT/SEC) 3 .183 2 . 545 0.000 0 . 000 ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: (02*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- ^S*V4*Ss (DELTA4) ) / ( (-^) ;iZ'cSlT l 0.00754 UPSTREAM: MANNING' S N = 0 . 01100 ; ^J^^™ l^^pE = Q . 00402 JONCTIOH LENGTH - 4^00 FEET BSTRMCE LOSSES = 0.000 FEET SSfs : ,Sv:SJ^L.,—E LOSSES, JUNCTION LOSSES = ( 0.035) + ( 0.000) =___0-035 NODE 111.3 0 : HGL 68.920>;EGL= < 69 .077>;FLOWLINE= 68.680> FLOW PROCESS FROM NODE 111-30 ^O NODE 111 31 ^^I^^^^^^^CAW UPSTREAM NODE 111.31 ELEVATION = 68.71 (PLOW IS 12.00 INCHES CALCULATE FRICTION LOSSES(LACFCD): CALUUl,Aifi rt^ n 46 CFS PIPE DIAMETER ^pfp^E LENGTH : " " _.SN = 0.01X00 2.94 FEET NORMAL DEPTH (FT) = 0.22 ====== = = = = = 7PSTREAM"'CONTROL ASSUMED FLOWDEPTH (FT) = 0^25 CRITICAL DEPTH(FT) = 0.28 7^DUALL7VARIED PLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(PT) 0.000 0 .146 0 .306 0 .482 0 .674 0.884 1.114 1.366 1.644 1.949 2 .286 2 .659 2 . 940 FLOW DEPTH (PT) 0.255 0 .254 0.252 0.251 0 .250 0.248 0 .247 0 .246 0 .244 0 .243 0 .242 0 .240 0.240 VELOCITY (PT/SEC) 2.915 2 . 937 2 . 958 2 . 980 3 . 002 3 .024 3 .047 3 .070 3 .093 3 .117 3 .141 3 .165 3 .182 NODE 111.31 HGL 68.955>;EGL= < SPECIFIC ENERGY(FT) 0.387 0 .387 0 .388 0 .389 0 .390 0 .390 0 .391 0 .392 0.393 0 .394 0.395 0.396 0 .397 69.097>;FLOWLINE= < PRESSURE+ MOMENTUM(POUNDS) 3 .63 3 .63 3 .64 65 66 56 57 68 59 70 , 71 3 . 71 3 .72 t*************' c************************** FLOW PROCESS PROM NODE 111-31 TO NODE UPSTREAM NODE 111-32 ELEVATION = 68.73 68 .710> r*********** **************************' 111.32 IS CODE = 5 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CPS) 0 .45 0.45 0.00 0 .00 DIAMETER (INCHES) 12 .00 12 .00 0 .00 0 . 00 ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 68.73 58.71 0.00 0.00 0.00 0.00 CRITICAL DEPTH(PT.) 0.28 0 .28 0 . 00 0.00 VELOCITY (PT/SEC) 3.556 2 . 916 0 . 000 0 .000 0.00===Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: (02*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- 'S*V4*Ss(DELTA4))/((Al+A2)*16.1)+FRICTI0N LOSS^^ UPSTREAM: MANNING'S N = O.OllOO; FRICTION SLOPE = .01031 nr,r.TMc;TT?PAM. MANNING'S N = 0.01100; FKiCiluw auvjri:. A?™^RIC?S SLOPE IN JUNCTION ASSUMED AS 0.00810 SNSSES: 0^32 FEET ENTRANCE LOSSES = 0.000 FEET ^SlON LOSSES = (DY+HV1-HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.051)+( 0.000) = 0.051 NODE 111.32 : HGL = < 68.951>;EGL= 69.148>;FLOWLINE= < 68.730> ............................................•;•"•;-—*:•*;*"""""*"* FLOW PHOCESS F.OM NODE "^^"^^ II* Is'sUPEHCPITIC^) UPSTREAM NODE 111.40 ELbVAixui^ ^ "7A7i7;E7RICTI0N ^°SS^ES (LACFCD): _ _ ^^^^^^ PIPEFLOW = 7-!' pEET MANNING'S N = 0.01100 PIPE LENGTH = 20.40 FEE! NORMAL DEPTH(FT) = 0 .22 CRITICAL DEPTH(FT) = 0.28 7PSTREAM CONTROL ASSUMED FLOWDEPTH^FT)^ !__===!=!!=== 7^DUILL7VIRIE7FLOW7ROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 0 .006 0 . 025 0.061 0.113 0 .182 0.271 0 .383 0 . 519 0 .683 0 . 879 1.111 1.384 1.705 2 .084 2 .530 3 .058 3 .688 4 .447 5.375 6 .537 8.035 10.064 13.066 18.454 20.400 FLOW DEPTH (FT) 0 .281 0 .278 0 .276 0 .273 0 .271 0.268 0 .256 0 .264 0 .261 0.259 0.256 0 .254 0 .251 0 .249 0 .246 0 .244 0 .241 0 .239 0 .236 0 .234 0.231 0 .229 0 .226 0 .224 0 .222 0.222 VELOCITY (FT/SEC) 2 .544 2.576 2 .608 2 .641 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 3 , 3 3 3 3 3 3 3 3 575 709 745 781 818 856 895 935 , 975 .017 . 050 .104 .149 .195 .242 .291 .341 .392 3 .445 3 .499 3 .555 3 .555 SPECIFIC ENERGY(FT) 0 .381 0 .381 0 . 382 0 .382 0 .382 0.383 0 .383 0 .384 0 .384 0 .385 0.386 0 .387 0 .389 0.390 0 .392 0.393 0.395 0.397 0 .400 0 .402 0 .405 0 .408 0.411 0 .414 0 .418 0 .418 PRESSURE+ MOMENTUM(POUNDS) 3 . 57 3 . 57 3 . 57 3 . 58 3.58 3.58 59 60 60 61 62 63 3 .65 3 .66 3 .67 3 .69 3 . 71 3 .73 3 .75 3 . 77 3 .79 3 .82 3.84 3 .87 3 . 90 3 . 90 NODE 111.40 HGL 69.231>;EGL= < 59.331>;PLOWLINE= < 68.950> ************** ************* .************************************** TTPC;TRFAM PIPE PLOW CONTROL DATA: UPSTREAM FiFii FLOWLINE ELEVATION = 68.95 NODE NUMBER = 111.40 ^QOI Trrn? DOWNSTREAM RUN ANALYSIS ASSUMED UPSTREAM CONTROL HGL = 6 9.23 FOR DOWNSTRhAfi *********** 'END OF GRADUALLY VARIED FLOW ANALYSIS (Reference: LACFCD Tflrpn ArZ PROGRAM PACKAGE (C) Copyright'?982 2^2 A,.^ced'Z CRITERION) ver. 8.0 Release DaJe oVoi/soor^"^ '^^^^ >-'x/ui/^U02 License ID 1423 Analysis prepared by: O'Day Consultants, inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 *******************^^^^^^^ DPSPRTD^TO.. * 100 YEAR STORM - HYDRAULICS ^"^^ ************************** PILE NAME: LINEH.DAT TIME/DATE OP STUDY: 10:47 05/19/2005 NODAL POINT STATUS TABLE NODE MODEL PRESSURE PRPQerTD^ DOWNSTREAM RUN ^BER PROCESS HEAD (FT) MOMES (POI;NDS) OEPSTFT, """^^^^^^ 0.46* DEPTH(FT) MOMENTUM(POUNDS) } FRICTION 0.23 Dc , ^ ^"•50- 0.44* } JUNCTION 0.23 Dc 2 17 111.60- 042* } FRICTION ^-^^ 0.19 5 ^"-^0- 0 33* ^•'^^ 0.23 Dc 2 17 >«x:™ ,^,,^ 3^^^^-^^^---^ : **************^^^ OCEMA *******************, DESIGN MANUALS. <-URRENT LACRD, LACFCD, AND DOWNSTREAM PIPE FLOW CONTROL DATA-^*********************************** NODE NUMBER = m QO PIPE FLOW = 0*31 CPS FLOWLINE ELEVATION = 68 24 ASSUMED DOWNSTREAM CONTROL HGL DIAMETER = 12.00 INCHES tii^h = 68.700 FEET NODE 111.00 : HG777"78777EG; A < 68.712>;FLOWLINE= < 68.240> FLOW PROCBSS**FRorNODr*\\\**o\**TrN7r**T*^ UPSTREAM NODE 111.50 ELEJA™ "'"'^ = 1 ^^^VATION = 68.25 (FLOW IS SUBCRITICAL) 0-31 CPS PIPE DIAMETER = 12.00 INCHES _PIPE LENGTH = 6.44 FEET MANNING'S N = 0.01100 =!!!!:!7!™!!7= ^-^^ cR7i7777H777 77 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = ----—-==================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION^ ============= ™oL (Pr ™ DEPTH"7ELOCI7Y SPE77C 7ESS7E;"""" n nL ^ (FT/SEC) ENERGY (PT) MOMENTUM (POUNDS) 0-000 0.460 0.879 0.472 4.80 2-842 0.451 0.900 0.464 4 62 777' A'AA °-^23 0.456 4:45 0.454 4.41 6.440 0.441 0.929 NODE 111.50 : HGL = < 68.701>;EGL= < 68 . 714>; FL0WLINE7<" 68.250> **!*7************************************************************************ FLOW PROCESS FROM NODE 111.50 TO NODE 111 60 IS CODE - 5 __UPSTREAM^NODE_^^111.60___^ ELEVATION = 68.28 (PLOW Is7uBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY UPSTREAM n7-, ^'f™^^' (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) LATERAL #1 0.00 o'.To 0.00 7M " I'lH LATERAL #2 0.00 0.00 0.00 0.00 0 00 o'oOO 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PLOW JUNCTION FORMULAE USED- DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 00040 DOWNSTREAM: MANNING'S N = 0.01100; FRICTION SLOPE = 0 00034 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0 00037 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.001 FEET ENTRANCE LOSSES = 0 000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.002)+( 0.000) = 0.002 NODE 111.60 : HGL = < 68 . 701>;EG77" '77777LOWLINE77 "7777" ' " *7T7n;77***************************************************************** PLOW PROCESS PROM NODE 111.50 TO NODE 111.70 IS CODE = 1 -_!!^™_^°°7.777° ELEVATION = 58.36 (FLOW Is7uBCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): nil T3.„ ^ ""^^ ™ DIAMETER = 12.00 INCHES -.7 _ ^ ^-^^ ^^^^ MANNING'S N = 0.01100 ==!'?!^7°!!™'''^^ = CR7I77DEPTH7T)7 723 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT7= -----======================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ========== DISTAircE FROM PLOW DEPTH VELOCITY SPECIFIC PRESSURE+ .(FT) (FT) {FT/i SEC) ENERGY(FT) MOMENTUM(POUN 0 , , 000 0 , ,421 0 . 986 0 , .436 4 . 06 0 , , 700 0 , ,414 1 . 010 0 , .430 3 . 92 1, ,396 0 , ,405 1 . 035 0 , .423 3 . 79 2 , .088 0 , .398 1 .062 0 , .415 3 .67 2 , . 776 0. ,391 1 . 090 0 , .409 3 . 55 3 , .459 0 . ,383 1 . 120 0 , ,402 3 .43 4 . , 136 0 , ,375 1 . 151 0 . ,395 3 , , 32 4 , , 807 0 , , 368 1 . 183 0 , ,389 3 , ,21 5 . ,472 0 . , 360 1 .218 0 . ,383 3 , , 11 6 , , 129 0 , ,352 1 .254 0 , ,377 3 , , 01 6 , , 777 0, ,345 1 .292 0 . ,371 2 , , 92 7 , ,415 0 , ,337 1 .333 0 . , 364 2 , , 83 7 , , 760 0 , , 333 1 .356 0 . , 361 2 . , 78 NODE 111. 70 HGL 68.593>;EGL= < 68.721>;PLOWLINE= < 68.360> ****************************************************************************** UPSTREAM PIPE PLOW CONTROL DATA: NODE NUMBER = 111.70 FLOWLINE ELEVATION = 68.36 ASSUMED UPSTREAM CONTROL HGL = 68.59 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED PLOW ANALYSIS * ******-****************************************.,,,,,,, PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 *************************^ DESCRIPTION OF STUDY ************************** * 100 YEAR STORM - HYDRAULICS * THE BLUFFS - STORM DRAIN LINE 'I' * J.N. 01-1022 6/28/05 **********************************************.,,,,,,,,,,,,,,^^^^^^^^^^^^z FILE NAME: LINEI.DAT TIME/DATE OP STUDY: 10:11 06/28/2005 7******-^********,,,,,,,,,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) Moni. M^^.x UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURP+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(PT) MOMENTUM(PO^^DS) ; ^•°°* 655.85 0.78 588 56 } FRICTION } HYDRAULIC JUMP b«B.66 "^•^7 l-« DC 377.61 0.72* 642 22 } JUNCTION b^^.^^ "^•°7 1-^5 402.48 0.52* 753 50 } FRICTION /bJ.bO "^•^7 371.76 1.03* 436 24 } JUNCTION 'i-io.z^ "^•°7 2-^^ 374.59 0.65* 493 35 } FRICTION 493.35 ._7?!77 7!^*°° ^^^-^^ 1.37*DC 276.96 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROF77775 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTA7ON7BASED7N7HE7OST ^ONSERVATIVE^FORMULAE FROM THE CURRENT LACRD, LACFCD, AND OCES **77************************************************************************* DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NJMBER = 140.00 FLOWLINE ELEVATION = 26 50 PIPE FLOW = 16.47 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 3 0.500 FEET NODE 140.00 : HGL = < 3 0 . 500>; EGL= 7 "77777FLOW7NE77 "7777" " **!;*7*********************************************************************** FLOW PROCESS PROM NODE 140.00 TO NODE 138.50 IS CODE = 1 UPSTREAM NODE 138 . 50 ELEVATION = 30.81 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 16.47 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 54.38 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.80 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.72 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.43 DISTANCE PROM CONTROL(PT) 0 . 000 1. 960 3 . 991 6 . 098 8 .288 10 . 571 12.955 15.451 18.073 20.836 23.757 26.860 30.171 33.723 37.559 41 .733 46.317 51.407 54 .380 FLOW DEPTH (FT) 0 . 721 0 . 724 0.727 0 . 730 0 . 733 0.736 0 . 740 0 . 743 0 . 745 0 . 749 0 . 752 0 . 755 0 . 759 0 . 762 0 . 765 0 . 768 0 . 771 0 . 775 0 . 776 VELOCITY (FT/SEC) 19.615 19.505 19.395 19 .287 19.180 19.074 18.969 18.856 18.754 18.552 18.552 18.463 18.365 18.268 18.172 18.077 17.983 17.890 17.842 SPECIFIC ENERGY(FT) 6 . 699 6 .635 6.572 5 .510 6 .449 5.389 6.331 6 .273 6.216 5.161 105 052 999 947 896 845 796 747 722 PRESSURE+ MOMENTUM(POUNDS) 642.22 638 . 85 635.53 632.24 629.00 625.79 622.62 619.48 516 .39 613.33 610.30 607 .31 604 . 36 601 .44 598 .55 595.70 592.88 590.09 588.66 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.00 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(PT) MOMENTUM(POUNDS) 0.000 4 .000 9.320 5.349 655 . 85 45.726 1.500 9.320 2 . 849 380.17 ASSUMED DOWNSTREAM PRESSURE HEAD(PT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE PROM CONTROL(FT) 45 . 726 45.769 45.807 45.840 FLOW DEPTH VELOCITY (FT) 1.500 1.497 1.495 1.492 (FT/SEC) 9.317 9.318 9.321 9.324 SPECIFIC ENERGY(PT) 2.849 2 .846 2 . 844 2 . 843 PRESSURE+ MOMENTUM(POUNDS) 380.17 379.91 379.68 379.48 45.871 45.899 45.925 949 45 45 45 45 46 46 46 46 46 . 971 , 992 ,011 , 028 , 044 , 059 072 084 46 . 094 45.104 46.112 119 45 45 46 46 45 ,125 130 134 136 46.138 46.138 54.380 1.489 9 . 327 2 . 841 379 .29 1.486 9 .331 2 . 839 379 . 11 1.484 9 .335 2 . 838 378 . 95 1 .481 9 .340 2 . 836 378 . 80 1 .478 9 .345 2 .835 378 .66 1.475 9 .350 2 . 834 378 .53 1.473 9 .355 2 .833 378 .41 1 .470 9 .362 2 .832 378 .30 1.467 9 . 358 2 .831 378 .20 1.465 9 .374 2 . 830 378 , , 11 1.462 9 .381 2 . 829 378 , , 03 1 .459 9 , .388 2 , , 829 377 , , 95 1 .457 9, ,395 2 . , 828 377 , 89 1.454 9, ,403 2 , , 827 377 . 83 1.451 9 . ,410 2 . , 827 377 . 77 1 .448 9 . 418 2 . 827 377 . 73 1.446 9 . 426 2 . 826 377 . 69 1.443 9 . 435 2 . 826 377 . 66 1 .440 9 . 443 2 . 826 377. 64 1.437 9 . 452 2 . 826 377 . 62 1 .435 9 . 461 2 . 826 377 . 61 1.432 9 . 470 2 . 826 377 . 61 1.432 9 . 470 2 . 826 377 . 61 END OP HYDRAULIC JUMP LNCE OCCURS AT 10 .22 FEET UPSTREAM OF NODE 140.00 1 [ = 3.441 FEET, UPSTREAM CONJUGATE DEPTH = 0.770 FEET j NODE 138 .50 HGL = < 31.531>;EGL= < 37.509>;PLOWLINE= < 30.810> *************************************************, PLOW PROCESS PROM NODE 138.50 TO NODE 138.00 IS CODE = 5 UPSTREAM NODE 138.00 ELEVATION = 31.14 (PLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CPS) 16.31 15 .47 0 . 00 0.00 0.16== DIAMETER (INCHES) 18 . 00 18 . 00 0 . 00 0.00 ANGLE (DEGREES) 0.00 0 . 00 0 . 00 FLOWLINE ELEVATION 31.14 30 . 81 0 . 00 0.00 =Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.43 1.43 0 . 00 0.00 VELOCITY (PT/SEC) 23.481 19.621 0 . 000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*15.1)+PRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0 14875^ JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.595 FEET ENTRANCE LOSSES = 1 196 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.521)+( 1.195) = 2 817 0 .18471 0 .11280 NODE 138 . 00 HGL = < 31.763>;EGL= 40.325>;FLOWLINE= < 31.140> **************************************************^^^^^,^^^^^^^^,^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 138.00 TO NODE 136.50 IS CODE = 1 UPSTREAM NODE 136.50 ELEVATION = 41.02 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE PLOW = 16.31 CFS PIPE PIPE LENGTH = 3 5.25 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.56 CRITICAL DEPTH(FT) = 1.43 UPSTREAM CONTROL ASSUMED FLOWDEPTH(PT) 1. 03 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 0.354 0 . 744 1.174 1. 2 . 2 . 3 , 4 , , 649 , 172 , 752 ,395 . 110 4 . 907 5 . 799 6 . 802 7 . 932 9.215 10 .680 12.365 14.320 16.617 19.350 22.564 26.781 32.073 35.250 FLOW DEPTH (FT) 1. 027 1 . 008 0 . 989 0 . 970 0 . 952 0.933 0 . 914 0.895 0 . 876 0 . 857 0 . 839 0 . 820 0 . 801 0 . 782 0 . 753 0.745 0 . 726 0.707 0.688 0.669 0 .651 0 . 632 0.623 VELOCITY (FT/SEC) 12.548 12.912 13.190 13.483 13.792 14.118 14.461 14.824 15 .208 15.614 16.044 16.499 16.983 17.496 18.042 18.624 19.244 19.905 20.614 21.373 22.188 23.064 23.474 SPECIFIC ENERGY(FT) 3 .512 3 . 598 3 .692 3 . 795 3 . 907 4 . 029 4.163 4 .310 4 .470 4 . 646 4 . 838 5 . 050 5 .282 5 . 539 5.821 6.134 6.480 6 . 864 7.291 7 . 767 8.300 8.897 9.185 PRESSURE+ MOMENTUM(POUNDS) 436 .24 443.09 450.42 458.25 466 .61 475.53 485.05 495.23 506.09 517.68 530.06 543.29 557.42 572 .55 588.73 606.07 624.67 644.53 665.08 689.17 714.05 740.90 753.50 NODE 136.50 : HGL = < 42.047>;EGL= < 44.532>;FLOWLINE= < 41.020> ******************************** PLOW PROCESS FROM NODE UPSTREAM NODE 135.00 *******************************************.^^^ 135.50 TO NODE ELEVATION = 135.00 IS CODE = 5 41.35 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER (CFS) (INCHES) UPSTREAM 13.49 18.00 DOWNSTREAM 16.31 18.00 LATERAL #1 0.00 0.00 LATERAL #2 0.00 0.00 Q5 2.82===Q5 EQUALS BASIN INPUT=== ANGLE FLOWLINE (DEGREES) ELEVATION 0.00 41.35 41.02 0.00 0.00 0.00 0.00 CRITICAL DEPTH(FT.) 1.37 1.43 0 . 00 0.00 VELOCITY (FT/SEC) 18.395 12.552 0 . 000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*15.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.10898 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03550 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.07274 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.291 FEET ENTRANCE LOSSES = 0.497 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.224)+( 0.497) = 2.721 NODE 136.00 : HGL = < 42.000>;EGL= < 47.254>;FLOWLINE= < 41.350> *************************** ****************************ific********************* FLOW PROCESS PROM NODE UPSTREAM NODE 134.50 136.00 TO NODE 134.50 IS CODE = 1 ELEVATION = 46.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.49 CPS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 15.89 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.51 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(PT) = 1.37 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: 1.37 DISTANCE FROM CONTROL(PT) 0 . 000 0 . Oil 0 . 046 0 .105 0.190 0.306 0.455 0 . 644 0. 1. 1 . 1. 2 3 . 3 . 4 . 5 . 7. FLOW DEPTH (PT) 1 .357 1.332 , 876 , 160 , 504 920 .421 .027 . 761 . 653 . 746 098 8 . 793 10.953 13.774 16.890 ,298 ,263 ,229 , 194 ,160 . 126 ,091 ,057 , 022 0 . 988 0 . 953 0 . 919 0 . 884 0 . 850 0.816 0 . 781 0.747 0 . 712 0 .578 0.550 VELOCITY (FT/SEC) 7 . 981 8 .130 8 .300 8 .491 8 . 703 8.938 9 .197 9.481 9.794 10.137 10 .514 10.927 11.383 11.885 12.440 13.054 13.737 14.499 15.351 16.310 17 . 394 18 .389 SPECIFIC ENERGY(FT) 2 . 356 2 . 2 , 2 . 2 , 2 , 2. 2 . 2 . 2 . 2 . 2 . 2 . 3 , 3 , 3 , 3 , 4 . 4 , 4 . 5 . ,359 ,358 ,383 ,406 .436 .474 ,522 ,581 ,553 , 740 843 967 . 114 .289 .498 . 748 , 047 ,408 , 845 ,379 5 . 904 PRESSURE+ MOMENTUM(POUNDS) 276.96 277.25 278.18 279.71 281.89 284.74 288.31 292.65 297.81 303.88 310.92 319.04 328.35 338 . 98 351.11 364.90 380.59 398 .45 418 . 80 442.04 468 .56 493.36 NODE 134.50 HGL 47.357>;EGL= < 48.356>;FLOWLINE= < 46.000> ****************************************************************************.j^* UPSTREAM PIPE PLOW CONTROL DATA: NODE NUMBER = 134.50 FLOWLINE ELEVATION = 46.00 ASSUMED UPSTREAM CONTROL HGL = 47.37 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS SECTION 7 '% \X/ba^ Sk^^ lAUey /Vf'^^^K^ Pii«>—^ T^^^'^- '[[ O.Z '^/k^ Wiiu- erf- 0^ S^ILV^ CUIAA, III];. SiAkt4s;^ ^ -^Icu^ boS^ ^^^^ " ,' i O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Pax: (760) 931-8580 ****** ****** * * * * * * * * * * * * * * * * * * *** I <; ( 7.44') >| *** ***^^^^^^^^ Water Depth ( i.ii<)^^^^^^^^*** *** *** * * * * * * * * * * * * *** |< { 3.00') >| *** ************************ ******************** Trapezoidal Channel Flowrate 13.490 CPS Velocity 2.328 fps Depth of Flow 1.110 feet Critical Depth 0.723 feet Freeboard 0.000 feet Total Depth 1.110 feet Width at Water Surface .... 7.440 feet Top Width 7.440 feet Slope of Channel 0.500 % Left Side Slope 2.000 : 1 Right Side Slope 2.000 : 1 Base Width 3.000 feet X-Sectional Area 5.794 sq. ft. Wetted Perimeter 7.954 feet AR*(2/3) 4.687 Mannings 'n' 0.040 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Pax: (760) 931-8580 ****** * * * * * * * * * * * * *** * * * * * * *** ( 5.08' ) Water Depth ( 0.77' ****** * * * * * * * * * *** AAAAAAAAj *** * * * * * * *** t**|< ( 3.00') >|*** ************************ ******************** Trapezoidal Channel Flowrate 1.070 CFS Velocity 0.306 fps Depth of Flow 0.770 feet Critical Depth 0.152 feet Freeboard 0.000 feet Total Depth 0.770 feet Width at Water Surface .... 6.081 feet Top Width 6.081 feet Slope of Channel 0.600 % Left Side Slope 2.000 : 1 Right Side Slope 2.000 : 1 Base Width 3.000 feet X-Sectional Area 3.497 sq. ft, Wetted Perimeter 6.444 feet AR"(2/3) 2.325 Mannings 'n' 0.250 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ****** ****** * * * * * * * * * * * * * * * *** *** |< ( 6. 05') >| *** ***^^'""""^^ Water Depth ( 0.75')^^^^'^^""*** * * * * * * * * * * * * * * * * * * ***!< ( 3.00') >|*** ************************ ******************** Trapezoidal Channel Flowrate 13.490 CPS Velocity 3.893 fps Depth of Flow 0.755 feet Critical Depth 0.723 feet Freeboard 0.000 feet Total Depth 0.765 feet Width at Water Surface .... 6.059 feet Top Width 6.059 feet Slope of Channel 2.500 % Left Side Slope 2.000 : 1 Right Side Slope 2.000 : 1 Base Width 3.000 feet X-Sectional Area 3.464 sq. ft. Wetted Perimeter 6.420 feet AR"(2/3) 2.296 Mannings 'n' 0.040 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ****** * * * * * * * ** *** |< ( 5.09') >i *** AAAAAAAA ****** * * * * * * *** ^,(^,^AAAAAAAA ^. g Depth ( 0.52') * * * * * * * * * * * * * *** |< ( 3.00') >|*** ************************ ******************** Trapezoidal Channel Flowrate 1-070 CPS velocity 0.507 fps Depth of Flow 0.522 feet Critical Depth 0.149 feet Freeboard 0.000 feet Total Depth 0.522 feet Width at Water Surface 5.089 feet Top Width 5.089 feet Slope of Channel 2.500 % Left Side Slope 2.000 : 1 Right Side Slope 2.000 : 1 Base Width 3.000 feet X-Sectional Area 2.112 sq. ft. Wetted Perimeter 5.336 feet AR"(2/3) 1-139 Mannings 'n' 0.250 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Pax: (760) 931-8580 ****** ****** *** *** * * * * * * *** *** *** |< ( 6.40') >| *** ***^^^^^^^^ Water Depth ( o . 85 ') ^^'^^'^•^^^*** * * * * * * * * * * * * * * * * * * ***!< ( 3.00') >|*** ************************ ******************** Trapezoidal Channel Flowrate 13.490 CPS Velocity 3.377 fps Depth of Plow 0.850 feet Critical Depth 0.725 feet Freeboard 0.000 feet Total Depth 0.850 feet Width at Water Surface .... 6.400 feet Top Width 6.400 feet Slope of Channel 1.680 % Left Side Slope 2.000 : 1 Right Side Slope 2.000 : 1 Base Width 3.000 feet X-Sectional Area 3.995 sq. ft. Wetted Perimeter 6.802 feet AR''(2/3) 2.802 Mannings 'n' 0.040 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (750) 931-7700 Fax: (760) 931-8680 ****** *** * * * *** * * * * * *' * * * * * * * * * AAAAAAAA ( 5.33') Water Depth ( 0.58') ****** *** * * * * * * >| *** AAAAAAAAj ( 3.00' * * * * * * * * * * * * > I *** ************************ ******************** Trapezoidal Channel Flowrate 1.070 CPS Velocity 0.440 fps Depth of Plow 0.582 feet Critical Depth 0.151 feet Freeboard 0.000 feet Total Depth 0.582 feet Width at Water Surface .... 5.327 feet Top Width 5.327 feet Slope of Channel 1.580 % Left Side Slope 2.000 : 1 Right Side Slope 2.000 : 1 Base Width 3.000 feet X-Sectional Area 2.423 sq. ft. Wetted Perimeter 5.602 feet AR'^(2/3) 1.385 Mannings 'n' 0.250 SECTION 8 1,1 To d-Ua.lV^ -VUci, c\'.Hoe\/ic^ S^^CLI^L UJ.'U ^^^^^ ^^..v. uw - ^'"^^ |:| P^^>D up 4o /i^^.U (Sa kt^U-mAA^^^.y^i^ ; IJ^d/v^^n^h. -lev ai<:>>} • ' 1 ,7.^ - ^,f2^' c 765'4f '^y^^ A" (.6-^3-?+^ cXidmtk^ Upks. ^ &^^^.vv^ Qv^M-Uw.'' ^-^^-Oh^ fl- OcU a^-b 14?'^ - oAi. cb v^o^c^cb 01^ SECTION 9 (3) \00^\axr UV\{nL\r Cakw Basv\ rs opm aiA all ?>^<^*. SECTION 10 PLAN VIEi/lf MANHOLE COVER 49.00 TOP FL OF BOX- S'^r DIA DEWATERING HOLES **MODinED TYPE CATCH BASIN PER SDRSD D-7 OPEN ALL 4 SIDES 6'-3''DIA DEWATERING HOLES 2'-W' DIA DEWATERING HOLES * V 0100 J' n o 1£1 46.00 FL OF SWALE 0.75' •46.00 FL SECTION A-A SECTION A-A *THESE WATER SURFACE ELEVATIONS ARE FOR THE RETAINED DIFFERENCE FOR THE BEFORE & AFTER CONDIWNS **EMERGENCY SPILLWAY OPENING SIZED TO HANDLE THE EXCESS Q100 AFTER DEVELOPMENT 0' 3' SCALE: r = 3' 6' G:\011022\0122zz05.dwq Jul 15, 2005 11:50am SECTION 11 .4-0^ '.. =y.r.J. (jAf.t, kA^Y i„. \L{QA. t^(^\ C(/ V n J^-'\ CMLU UZU> UJ- V ^ {.^J^AV\ Ux,y\ 0. ' i.a,iiv: i^^^Vi ,_eLd^.rf ^^'^ ^^^-C ^ibu J . —A ' . 1, . V,.'. • V ^ (2 'O rr u,-A{ '"^H •7. / a o \£5!> Z.'A^sy^^^-ty?-^iLA uuMjt^^-^> ) \Ax'^ \\xLiX' •A' ^ (?- ' ^A 4 4 J-o..^.:^;^. 6? GL-^OAyA ...OAIMAJ^ \ 3,/ ,1- 0.1 tn -fl Or]LoAA-^oA.O UJJ^ 6^^^'- ^^^^^^ ,'i5mri ') F^, ZcAi-'A* ' 2r:r 7-LlA(^ ^' 7r0rh >0-H^chOk- ;/r ;'>lc'^S 6'':AZA^ ^ D CA A^ r iij > .llLtPfi , id 0\AAD-^C0(2„ DS>. (::r %^i^-:J.^'jJ layf. • ^^ih .i^MAA...... : - • 5i '0' '£...,,,^^£5. ,. - ~- - o^P r:y :! ..^.^^ - ^ ^ ^ ^—^ f ci^:^-- - - ffi- : %,A0 ck.>Q,.^§:.,a:s> ..^.^.^ : ^C^"' CAA^^' ^-A -Z^..^^.^.^^ ^^^^.^.^^^^^^^^^^^^^^^^^^^^^^ Q - ci . I'i Crf-<^ Q-:2.AJC \\^J.h M i^. \€^^ 0 \z:x--r hUr^ 6MX 0^ i.U Z^\MD^A. U>(i A^-vCf^ ^ €ACZ ,P CH "2- t z 03 O^'"- a o,^j^ - 0>'-^A •4-^)'K 'AAAJ^^.. ..£>.,„i2^t.^:4i2: Z, ^^\^ C^^i--t.H J^'C^,ii kAm..AAdd.J U 6? , o..3.k. ^ i.,' f 1 A z^ A OA z A / I , 1 nr. J A, 7.0 Cr^, .... . . A%A^( Pz n.z.._ in -...^v-^"^'''^-'^ - _ Z_Z\Z i'(- ^4...^-.BA.— ni/n c0ZU:yZ^:Zy -• -''''-^"' o' > /-^.'._ „ ^ • i 4*0^ A^Min!2:.. 1 4,2-1 V W ' (h'Ytit 'Aid U(^'AAZ S^0r4 - SECTION 12