Loading...
HomeMy WebLinkAboutCT 03-02; Carlsbad Ranch PA 5; Hydrology and Hydraulic Study Part 2; 2005-08-23STORM DRAIN SYSTEM CALCULATION STORM DRAIN LINES B-1 TO B-15 STORM DRAIN SYSTE LINES B-1 TO B-30 S LEGEND HrDRAEL OW STORM [Z3 - SEWER CALCULATION PIPE NUMBER B-1 STORM DRAIN PIPE DESIGNATION EXIST. 60" RCP r-EXIST. 18 RO B-22 > = ^ KB-1 SCALE I": 150' B-2 \2\ V A /B-102^ -1 1 Hydraflow Summary Report Page 1 Line No. Line ID 1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 B-12 B-13 B-14 B-15 Flow rate (cfs) 150.5 150.5 150.5 7.85 7.85 7,85 7,85 7,85 7.85 7.85 6.40 1.54 142.7 90.62 65,17 Line Line size length (in) (ft) 42 c 42 c 42 c 18 c 18 c 18 c 18 c 18 c 18 c 18 c 12 c 12 c 42 c 36 c 36 c Invert ELDn (ft) 136.8 322.6 322.1 185.4 313.2 313.2 129.7 30,3 69,8 90.8 29.1 8.9 29.3 22.7 10,3 143.47 148,24 157.40 164.87 169.46 176.06 182.66 187.00 188.30 215.55 216.79 216.79 164.87 165.79 165.79 Invert EL Up (ft) 147.92 157.08 164.55 169.13 175.72 182.32 186.81 187.97 215.22 216.46 217.08 216,97 165.46 166.24 166.31 Line slope (%) 3.253 2.740 2.220 2.298 1.999 1.999 3.200 3.201 38.567 1,002 0.998 2,027 2,011 1.981 5.029 HGL down (ft) HGL up (ft) 146.25 151.89 161,05 171,84* 173.01 176.87 183.63 189.88* 191.28 216.82 218.06* 218.06* 171.84* 174.99* 174.99* Minor loss (ft) 151.31 160.47 168.03 172.88* 176.79 183.39 187.88 190.05* 216.29 217.53 219.00* 218.07* 172.43* 175.41* 175.08* 0.58 0.58 3.81 0,14 0.08 0.24 2.00 1.23 0.53 0.53 1.03 0.06 2.56 2.56 1.32 _L Dns line No. End 1 2 3 4 5 6 7 8 9 10 10 3 13 13 Project File: 04119 LINE B-1 TO B-15.stii-D-F File: carlsbad26.IDF Total No. Lines: 15 Run Date: 07-06-2005 Hydr low Storm Sewer Inventory Report Line No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Page 1 Dnstr line No. End 1 2 3 4 5 6 7 8 9 10 10 3 13 13 Alignment Line length (ft) 136.8 322.6 322.1 185.4 313.2 313.2 129.7 30.3 69.8 90.8 29.1 8.9 29.3 22.7 10.3 Defl angle (deg) 0.0 6.0 0.0 0.0 28.0 0.0 13.0 0.0 -60.0 85.0 -90.0 33.0 -90.0 11.0 38.0 June type MH MH MH MH MH MH MH MH MH MH Curb Curb MH MH MH Flow Data Known Q (cfs) 150.49 150.49 150.49 7.85 7.85 7.85 7.85 7.85 7.85 7.85 6.40 1.54 142.67 90.62 65.17 Drng area (ac) Project File: 04119 LINE B-1 TO B-15.stm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Runoff coeff (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Inlet time (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Invert El Dn (ft) 143.47 148.24 157.40 164.87 169,46 176.06 182.66 187.00 188.30 215,55 216.79 216,79 164.87 165.79 165.79 Line slope (%) 3.25 2.74 2.22 2.30 2|.00 2.00 3.20 3|.20 I 38.57 1.00 1.00 2.03 2.01 1.98 5.03 Invert El Up (ft) 147.92 157.08 164.55 169.13 175.72 182.32 186.81 187.97 215.22 216.46 217.08 216.97 165.46 166.24 166.31 Physical Data Line size (in) 42 42 42 2 2 42 36 36 I-D-F File: carlsbad26.IDF Line type Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir N value (n) 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 J-loss coeff (K) 0.15 0.15 1.00 0.45 0.15 0.45 3.80 4.00 1.00 1.00 1.00 1.00 0.75 1.00 1.00 Inlet/ Rim El (ft) Total number of lines: 15 166.00 171.45 178.10 181.83 190.83 194.62 196.81 197.59 226.07 223.90 223.80 223.93 177.60 176.50 176.25 B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 B-12 B-13 B-14 B-15 Line ID Date: 07-06-2005 Hydra >w Storm Sewer Tabulation station To Line End 1 2 3 4 5 6 7 8 9 10 10 3 13 13 Page 1 Len (ft) 136.8 322.6 322.1 185.4 313.2 313.2 129.7 30.3 69.8 90.8 29.1 8.9 29.3 22.7 10.3 Drng Area Incr (ac) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total (ac) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0^00 0.00 0.00 0.00 Rnoff coeff (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0,00 0.00 0.00 0.00 0.00 Area x C Incr Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Project Fiie: 04119 LINE B-1 TO B-15.stm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Tc Inlet (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Syst (min) 4.2 3.9 3.5 2.8 1.8 1.0 0.7 0.6 0.4 0.1 0.0 0.0 0.0 0.0 0.0 Rain (I) (in/hr) Totai flow (cfs) 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 150.5 150.5 150.5 7.85 7.85 7.85 7.85 7.85 7.85 7.85 6.40 1.54 142.7 90.62 65.17 Cap full (cfs) 181.5 166,5 149.9 15,92 14.85 14.85 18.78 18.79 65.22 10.51 3.56 5.07 142.7 93.86 149.6 Vdl + ! 17^07 15.71 15.65 4.44 5.14 6.95 6.17 4.44 5.13 5.38 8.15 1.66 I l4.83 12.82 9.I22 I Pipe Size (in) 42 42 42 18 18 18 18 18 18 18 12 12 42 36 36 Slope (%) 3.25 2.74 2.22 2.30 2.00 2.00 3.20 3.20 38.57 1.00 1.00 2.03 2.01 1.98 5.03 Invert Elev Up (ft) 147,92 157.08 164.55 169.13 175.72 182.32 186.81 187.97 215.22 216.46 217.08 216.97 165.46 166.24 166.31 I-D-F File: carlsbad26.IDF NOTES: Intensity = 19.61 / (Tc -H 0.10) 0.65; Retum period = 100 Yrs. ; Initial tailwater elevation = 146.25 (ft) Dn (ft) 143.47 148.24 157.40 164.87 169.46 176.06 182.66 187.00 188.30 215.55 216.79 216.79 164.87 165.79 165.79 HGL Elev Up (ft) 151.31 160.47 168.03 172.88 176.79 183.39 187.88 190.05 216.29 217.53 219.00 218.07 172.43 175.41 175.09 Dn (ft) 146.25 151.89 161.05 171.84 173.01 176.87 183.63 189.88 191.28 216.82 218.06 218.06 171.84 174.99 174.99 Grnd / Rim Elev Up (ft) 166.00 171.45 178.10 181.83 190.83 194.62 196.81 197.59 226.07 223.90 223.80 223.93 177.60 176.50 176.25 Dn (ft) Total number of lines: 15 165,10 166.00 171.45 178.10 181.83 190.83 194.62 196.81 197.59 226.07 223.90 223.90 178.10 177.60 177.60 Line ID B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 B-12 B-13 B-14 B-15 Run Date: 07-06-2005 Ire Dw Hydraulic Grade Line Computations Size (in) 42 42 42 2 2 42 36 36 (cfs) 150.5 150.5 150.5 7.85 7.85 7.85 7.85 7.85 7.85 7.85 6.40 1.54 142.7 90.62 65.17 Page 1 Invert elev (ft) 143.47 148.24 157.40 164.87 169.46 176.06 182.66 187.00 188.30 215.55 216.79 216.79 164.87 165.79 165.79 Downstream HGL elev (ft) 146.25 151.89 161.05 171.84 173.01 176.87 183.63 189.88 191.28 216.82 218.06 218.06 171.84 174.99 174.99 Depth (ft) 2.78 3.50 3.50 1.50 1.50 0.81 0.97 1.50 1.50 1.27 1.00 1.00 3.50 3.00 3.00 Project Fiie: 04119 LINE B-1 TO B-15.stm Area (sqft) 8.19 9.62 9.62 1.77 1.77 0.97 1.20 1.77 1.77 1.59 0.79 0.79 9.62 7.07 7.07 Vel (ft/s) 18.36 15.65 15.65 4.44 4.44 8.08 6.52 4.44 4.44 4.93 8.15 1.96 14.83 12.82 9.22 Vel head (ft) 5.24 3.81 3.81 0.31 0.31 1.02 0.66 0.31 0.31 0.38 1.03 0.06 3.42 2.56 1.32 EGL elev (ft) 151.49 155,70 164.86 172.15 173.32 177.88 184.29 190.19 191.59 217.20 219.09 218.12 175.26 177.55 176.32 Sf (%) 2.375 2.239 2.239 0.559 0.559 1.739 1.000 0.559 0.559 0,532 3.233 0.187 2.012 1.847 0.955 Len (ft) 137 323 322 185 313 313 130 30.3 69.8 90.8 29.1 8.9 29.3 22.7 10.3 Invert elev (ft) 147.92 157.08 164.55 leb.is I 175.72 182.32 18^.81 I 187.97 215.22 216.46 217.08 216.97 165.46 166.24 166.31 HGL elev (ft) 151.31 160.47 168.03 172,88 176,79 183.39 187.88 190.05 216.29 217.53 219.00 218.07 172.43 175.41 175.09 Upstream -D-F File: carlsbad26.IDF Depth (ft) 3.39*' 3.39*' 3.48 1.50 1.07-' 1.07*' 1.07*' 1.50 1.07*' 1.07*' 1.00 1.00 3.50 3.00 3.00 J^OTES^janwa^^ ^,p,^ 33^^,^^^^ ^ .^.^^^ ^^^^^ ^^^^^^^ Area (sqft) 9.53 9.53 9.61 1.77 1.35 1.35 1.35 1.77 1.35 1.35 0.79 0.79 9.62 7.07 7.07 Vel (ft/s) 15.78 15.78 15.65 4.44 5.83 5.83 5.82 4.44 5.82 5.83 8.15 1.96 14.83 12.82 9.22 Vel head (ft) 3.87 3.87 3.81 0.31 0.53 0.53 0.53 0.31 0.53 0.53 1.03 0.06 3.42 2.56 1.32 EGL elev (ft) 155.19 164.35 171.84 173.18 177.32 183.92 188.41 190.36 216.82 218.06 220.03 218.13 175.85 177.97 176.41 Sf (%) 1.968 1.968 2.096 0.559 0.761 0.761 0.760 0.559 0.760 0.761 3.232 0.187 2.011 1.846 0.955 Total number of lines: 15 Check Ave Sf (%) 2.172 2.104 2.167 0.559 0.660 1.250 0.880 0.559 0.660 0.646 3.232 0.187 2.011 1.847 0.955 Enrgy loss (ft) N/A N/A 6.981 1.037 N/A N/A N/A 0.169 N/A N/A 0.940 0.017 0.590 0.420 0.099 JL coeff (K) 0.15 0.15 1.00 0.45 0.15 0.45 3.80 4.00 1.00 1.00 1.00 1.00 0.75 1.00 1.00 Minor loss (ft) 0.58 0.58 3.81 0.14 0.08 0.24 2.00 1.23 0.53 0.53 1.03 0.06 2.56 2.56 1.32 Run Date: 07-06-2005 Storai Sewer Profile Proj. file: 04119 LINE B-1 B-15.stm Elev. (ft) 230.0 210.0 190.0 170.0 150.0 130.0 400 500 800 1000 1200 1400 1600 Reach(ft) Storr Sewer Profile Elev. (ft) 256.0 239.0 222.0 205.0 188.0 171.0 Line: 7 Size: 18 (in) Proj. file: 04119 LINE B-1 T -15,stm Line: 9 Size: 18 (in) Line: 8 / ~Zr'. Line: 10 Size: 18 (in) Line: 11 Size: 12 (in) 150 200 250 300 350 Reach(ft) Stor'^ Sewer Profile Proj. file: 04119 LINE B-1 3-i5.stm Elev. (ft) 229.0 226.0 223.0 220.0 Line: 12 Size: 12 (in) 217.0 — 214.0 10 40 50 60 Reach (ft) 100 sto ) Sewer Profile Elev. (ft) 191.0 185.0 179.0 173.0 Proj. file: 04119 LINE B-1 . j B-15.stm 50 60 70 Reach (ft) 80 90 100 stor ^ Sewer Profile Proj. file: 04119 LINE B-1 BZ5. stm 177.0 172.0 167.0 162.0 50 60 70 Reach (ft) 100 M STORM DRAIN SYSTEM CALCULATION STORM DRAIN LINES B-16 TO B-30 STORM DRAIN SYSTE LINES B-1 TO B-30 i LEGEND UyDRAELCW STORM 0 - SEWER CALCULATION PIPE NUMBER . _ STORM DRAIN PIPE D I DESIGNATION f—I VZ Q 3-2 W 'EXIST. 60" RCP ^EXIST. 18" RCI W B-1 B-2 B-23 \ /B-10t^ 5-C4Zf I": 150' Hydraflow Summary Report Page 1 Line No. Line ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 B-16 B-17 B-18 B-19 B-20 B-21 B-22 B-23 B-24 B-2 5 B-26 B-27 B-28 B-29 B-30 Flow rate (cfs) 65.17 59.62 59.62 42.08 20.03 20.03 13.34 5.20 5.97 3.07 14.37 8.05 25,85 24,41 1.08 Project File: 04119 LINE B-16 TO B Line size (in) Line length (ft) 30 c 30 c 30 0 30 c 24 c 24 c 18 c 18 c 18 c 18 c 18 c 18 c 24 c 18 c 12 c Invert EL Dn (ft) 140.9 108.0 112.9 154.0 166.9 260.3 116.4 178.7 8.3 64.0 4.6 116,7 76,9 71,5 166,4 Invert EL Up (ft) Line slope (%) 184.00 185.41 186.82 196.78 210.69 212.70 215.63 217.13 185.66 186.69 197.03 197.34 210.69 212.94 215.06 30.,'I-D-F File: Garlsbad26,IDF 185,41 186.49 196.78 j 210.37 I 212.36 215.30 216,79 218,92 186,49 193,09 197,17 204,47 212,61 214,73 218,74 1.001 1.000 8.819 8.823 1.001 0.999 0.996 1.002 10.000 9,994 3.063 6.109 2.497 2.502 2.212 HGL down (ft) HGL up (ft) 186.50' 192.80" 196.12 201.54 213.68* 215.28 217.24* 219.87 192.80* 192.91 201,54* 202.08 213,68* 215.16* 221.25* Minor Dns loss line (ft) No, Total No. Lines: 15 190.06* 195.08* 199.17 212.55 214.99* 217.13 219.12* 220.26 192.83* 193.75 201.62* 205.55 214.69* 219.03* 221.41* 2.74 1.03 2.36 1.14 0.28 0.10 0.75 0.15 0.08 0,25 0,46 0,54 0,47 2.22 0.03 End Run Date: 05-10-2005 NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition. yorr -ow storm Sewer Tabulation station Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 To Line End 1 2 3 4 5 6 7 1 9 3 11 4 13 14 Len (ft) 140.9 108.0 112.9 154.0 166.9 260.3 116.4 178.7 8.3 64.0 4.6 116.7 76.9 71.5 166.4 Drng Area Incr (ac) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total (ac) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rnoff coeff (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Area x C Incr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Project File: 04119 LINE B-16 TO B-30.stm Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Tc Inlet (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Syst (min) Rain (I) (in/hr) 2.9 2.8 2.6 2,3 1,9 1.2 1.0 0.0 0.4 0.0 0.4 0.0 2.1 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total flow (cfs) 65.17 59.62 59.62 42.08 20.03 20.03 13.34 5.20 5.97 3.07 14.37 8.05 25.85 24.41 1.08 Cap full (cfs) 41.03 41.00 121.8 121.8 22.62 22.61 10.48 10.51 33.21 33.20 18.38 25.95 35.74 16.61 5.30 I-D-F File: carlsbad26.IDF Vel (ft/s) 13.28 12.15 12.24 8.93 6.38 6.51 7.55 3.03 3.38 2.88 8.13 5.22 8.23 13.81 1.38 Pipe Size (in) 30 30 30 30 24 24 18 18 18 18 18 18 24 18 12 Slope (%) 1.00 1.00 8.82 8.82 1.00 1.00 1.00 1.00 10.00 9.99 3.06 6.11 2.50 2.50 2.21 Invert Elev Up (ft) 185.41 186.49 196.78 210.37 212.38 215.30 216.79 218.92 186.49 193.09 197.17 204.47 212.61 214.73 218.74 J^^I^!:^::^^::^^^ 100 Vrs.; mitialtanwaterelevation = 186.50 Dn (ft) 184.00 185.41 186.82 196.78 210.69 212.70 215.63 217.13 185.66 186.69 197.03 197.34 210.69 212.94 215.06 Up (ft) HGL Elev Dn 190.06 195.08 199.17 212.55 214.99 217.13 219.12 220.26 192.83 193.76 201.62 205.55 214.69 219.03 221.41 (ft) 186.50 192.80 196.12 201.54 213.68 215.28 217.24 219.87 192.80 192.91 201.54 202.08 213.68 215.16 221.25 Page 1 Total number of lines: 15 Grnd / Rim Elev Up (ft) 199.84 205.68 210.18 219.48 229.44 234,11 231.77 223.02 199.61 197.00 209.49 209.53 224.27 224.27 223.00 Dn (ft) 187.00 199.84 205.68 210.18 219.48 229.44 234.11 231.77 199.84 199.61 210.18 209.49 219.48 224.27 224.27 Line ID B-16 B-17 B-18 B-19 B-20 B-21 B-22 B-23 B-24 B-25 B-26 B-27 B-28 B-29 B-30 Run Date: 05-10-2005 (ft) nyST-low S?ofm" weTln^TntoTJ R^ort' Line No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Alignment Dnstr line No. End 1 2 3 4 5 6 7 1 9 3 11 4 13 14 Line length (ft) 140.9 108.0 112.9 154.0 166.9 260.3 116.4 178.7 8.3 64.0 4.6 116.7 76.9 71.5 166.4 Defl angle (deg) 0.0 0.0 -17.0 0.0 69.0 -29.0 -7.0 -70.0 90.0 -11.0 90.0 31.0 -41.0 30.0 50.0 Juno type MH MH MH MH MH MH MH MH MH MH MH MH MH MH MH Known Q (cfs) 65.17 59.62 59.62 42.08 20.03 20.03 13.34 5.20 5.97 3.07 14.37 8.05 25.85 24.41 1.08 Project File: 04119 LINE B-16 TO B-30.stm Flow Data Drng area (ac) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Runoff coeff (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Inlet time (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Invert El Dn (ft) 184.00 185.41 186.82 196.78 210.69 212.70 215.63 217.13 185.66 186.69 197.03 197.34 210.69 212.94 215.06 Line slope (%) 1.00 1.00 8.82 8.82 1.00 1.00 1.00 1.00 10.00 9.99 3.06 6.11 2.50 2.50 2.21 Invert El Up (ft) 185.41 186.49 196.78 210.37 212,36 215.30 216.79 218.92 186.49 193.09 197.17 204.47 212.61 214.73 218.74 I-D-F File: carlsbad26.IDF Physical Data Line size (in) 30 30 30 30 24 24 18 18 18 18 18 18 24 18 12 Line type Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir N value (n) 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 J-loss coeff (K) 1.00 0.45 1.00 0.85 0.45 0.15 0.85 1.00 0.45 1.00 0.45 1.00 0.45 0.75 1.00 Inlet/ Rim El (ft) Total numberof lines: 15 199.84 205.68 210.18 219.48 229.44 234.11 231.77 223.02 199:61 197.00 209.49 209.53 224.27 224.27 223.00 B-16 B-17 B-18 B-19 B-20 B-21 B-22 B-23 B-24 B-25 B-26 B-27 B-28 B-29 B-30 Page 1 Line ID Date: 05-10-2005 'VW^dTrt^uTS GT?deTine7om7uta"ns' Page 1 Project File: 04119 LINE B-16 TO B-30.stm NOTES: Initial tailwater elevation = IRR c m\ , ~ ' !'!!!!:!:L_^^6^Mft^^ "Critical depth assumed •^icfP ^SwerProfne Proj. file: 04119 LINE B-16 •, 3-30, stm Elev. (ft) 262.0 244.0 226.0 208.0 190.0 172.0 ° 50 100 150 200 350 400 450 500 550 600 Reach (ft) 650 700 tST - SeweTTrofne i ~ ~ ' Proj. file: 04119 LINE B-16 . J-3Q.stm Elev. (ft) 251.0 242.0 233.0 224.0 215.0 206.0 Line: 6 Size: 24 (in) 50 100 150 200 Line: 7 Size: 18 (in) 250 300 350 Reach(ft) "•" Line: 8 Size: 18 (in) 400 450 500 550 600 •t8r ~^ eweTTroffe Proj. file: 04119 LINE B-16 3-3G.stm Elev. (ft) 211.0 205.0 199.0 193.0 187.0 181.0 100 Reach (ft) •^x<5P»- 5§!ve!TroTire Elev. (ft) 223.0 217.0 211.0 205.0 Line: 11 Size: 18 (in) Line: 12 Size: 18 (in) Proj, file: 04119 LINE B-161 .-30,stm 125 ocSP- ^ewerTrofhe ~ • , Proj. file: 04119 LINE B-16-, _ 3-30.stm Elev. (ft) 236.0 230.0 224.0 218.0 212.0 206.0 Line: 13 Size: 24 (in) Line: 14 Size: 18 (in) Line: 15 SizeM2(in)^ 100 150 200 Reach (ft) 250 300 350 N STORM DRAIN SYSTEM CALCULATION STORM DRAIN LINES B-31 TO B-35 STORM DRAIN SYSTEM B LINES B-31 TO B-35 LEGEND HYDRAFLOW STORM m - SEWER CALCULATION PIPE NUMBER p_irp__ STORM DRAIN PIPE ^ DESIGNATION SCALE I":60' Cb ny tow Storm Sewer inventory Report Page 1 Hydraflow Summary Report Page 1 LINE B-31 UNE B-32 LINE B-33 LINE B-34 LINE B-35 Line j No. Line ID Flow Line Line Invert Invert Line HGL Line j No. rate size length EL Dn EL Up slope down (cfs) (in) (ft) (ft) (ft) (%) (ft) HGL up (ft) I Minor Dns loss line (ft) I No, 45,05 30 c 440.8 179.00 182.66 0,830 181.50* 186.82* 1.31 End 34,30 30 c 115.7 182.99 184.67 1.452 188.13* 188.94* 0,76 t 3,50 18 c 51.2 J 185.01 185.52 j 0.996 189.70* 189.76* 0.06 2 32.20 18 c 15.9 185.01 185.33 2.013 189.70* 191.20* 5.16 2 14.62 30 c 72.5 182.99 190.00 9.664 188.13 i 191.28 0.52 1 ProjectFile: 04119-LINE 8^31 TO BjSS.sI-D-F File; carlsbad26,IDF j Total No. Unes: 5 Run Date: 05-06-2005 ^JOTF.'s' I" = rirr-wlor- a = Q lllr,t;,^n I- otorm Sewer Tabulation station End 1 2 2 1 Len (ft) 440.8 115.7 51.2 15.9 72.5 Drng Area Incr (ac) 0.00 0.00 0.00 0.00 0.00 Total (ac) 0.00 0.00 0.00 0.00 0.00 Rnoff coeff (C) 0.00 0.00 0.00 0.00 0.00 Area x C Incr 0.00 0.00 0.00 0.00 0.00 Project File: 04119-LINE B-31 TO B-35.: Total 0.00 0.00 0.00 0.00 0.00 Tc Inlet (min) 0.0 0.0 0.0 0.0 0.0 Syst (min) 0.7 0.4 0.0 0.0 0.0 Rain (I) (in/hr) 0.0 0.0 0.0 0.0 0.0 Total flow (cfs) 45.05 34.30 3.50 32.20 14.62 Cap full (cfs) 37.37 49.42 10.48 14.90 127.5 Vel (ft/s) 9.18 6.99 1,98 18.22 4.39 Pipe Size (in) 30 30 18 18 30 Slope (%) 0.83 1.45 1.00 2.01 9.66 Invert Elev Up (ft) NOTES: Intensity = 19.61 / (Tc -i- 0 im n RI;, D . . ^_JJ^I^^^^'^'^^^T^ 0.65, Return period = 100 Yrs.; In 182.66 184.57 185.52 185.33 190.00 Dn (ft) 179.00 182.99 185.01 185.01 182.99 HGL Elev Up (ft) 186.82 188.94 189.76 191.20 191.28 Dn (ft) 181.50 188.13 189.70 189.70 188.13 Page 1 Grnd / Rim Elev Up (ft) 200.12 194.16 194.26 194.26 199.25 itial tailwater elevation = 181.50 (ft) Dn (ft) 181.50 200.12 194.16 194.16 200.12 Line ID LINE B-31 LINE B-32 t-INE B-33 LINE B-34 LINE B-35 Page 1 Project File: 04119-LINE B-31 TO B-35.stm NOTES: Initial tailwater elevation = 181.5 (ft), ' Normal depth assumed., *- Critical depth assumed ''"^^•.flP ^^erprofile ••••••••••• ••••••••••••••••••"••'•ii " ~ ^ ______ProMle: 04119-LINE B-31 , 8-35.stm Elev. (ft) 218.0 209.0 200.0 191.0 182.0 173.0 50 100 Line: 1 Size: 30 (in) 150 200 Line -Size 300 350 400 450 Reach (ft) 30 (in) 500 550 600 5to -I Sewer Profile Elev. (ft) 202.0 198.0 194.0 190.0 186.0 182.0 I 0 Line: 3 Size: 18 (in) Proj. file: 04119-LINE B-3-, , B-35. stm 10 20 100 ewer Profile Proj. file: 04119-LINE B-3 , . J B-35.stm Elev. (ft) 202.0 198.0 i94.0 n 190.0 186.0 182.0 Line: 4 Size: 18 (in) 0 10 20 30 40 50 60 Reach (ft) 70 80 90 100 rroTue :iev. (ft) 218.0 209.0 200.0 191.0 182.0 173.0 Proj. file: 04119-LINE B-3 j B-35 stm 0 50 Line: 1 Size: 30 (in) 100 150 200 250 300 350 Line: 5 Size: 30 (in) 400 450 Reach (ft) 500 550 STORM DRAIN SYSTEM CALCULATION STORM DRAIN LINE B-36 II Hydraflow Summary Report Page 1 NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs,; * Indicates surcharge condition riyT-^ffow 5toi torm Sewer Tabulation station Line To Line End Len (ft) 76.3 Drng Area Incr (ac) 0.00 Total (ac) 0.00 Rnoff coeff (C) 0.00 Area x 0 0.00 0.00 Page 1 Tc Inlet (min) 0.0 ProjectFile: 04119-LINE B-36.stm Syst (min) 0.0 Rain (I) (in/hr) 0.0 Totai flow (cfs) 52.53 Cap full (cfs) 35.69 Vel (ft/s) 16.72 Pipe Size (in) 24 I-D-F File: carlsbad26.1DF NOTES: Intensify = 19.61 / (Tc + 0.10) - 0.65; Retum period = 100 Yrs. ; Ini: itial tailwater elevation = 177.10 (ft) Slope (%) 2.49 Invert Elev Up (ft) 177.00 Dn (ft) 175.10 HGL Elev Up (ft) 181.22 Dn (ft) 177.10 Grnd / Rim Elev Up (ft) 183.69 Total number of lines: 1 Dn (ft) 179.00 Line ID LINE B-36 Run Date: 05-11-2005 riy >aflow Storm Sewer Inventory Report Line No. Alignment Dnstr line No. length (ft) End 76.3 angle (deg) 0.0 June type MH Page 1 Flow Data Known Q (cfs) 52.53 Drng area (ac) 0.00 ProjectFile: 04119-LINE B-36.stm Runoff coeff (C) 0,00 Inlet time (min) 0.0 Physical Data Invert El Dn (ft) 175.10 Line slope (%) 2.49 Invert El Up (ft) 177.00 Line size (in) 24 I-D-F File: carlsbad26.IDF Line type Cir N value (n) 0.013 J-loss coeff (K) 1.00 Inlet/ Rim El (ft) 183.69 Line ID LINE B-36 Total number of lines: 1 Date: 05-11-2005 'ri:5fr iffow flydrauTic GradeLinT^ Line Size (in) 24 Q (cfs) 52.53 Page 1 Downstream Invert elev (ft) 175.10 HGL elev (ft) 177.10 Depth (ft) 2.00 Area (sqft) 3.14 Vel (ft/s) 16.72 Vel head (ft) 4.35 ProjectFile: 04119-UNE B-36.stm EGL elev (ft) 181.45 Sf (%) 5.396 Len (ft) 76.3 I-D-F File: carlsbad26.1DF NOTES: Initial tailwater elevation = 177.1 (ft), * Normal depth assumed., ** Critical depth Upstream Invert elev (ft) 177.00 HGL elev (ft) 181.22 Depth (ft) 2.00 Area (sqft) 3.14 Vel (ft/s) 16.72 Vel head (ft) 4.35 Total number of lines: 1 assumed. EGL elev (ft) 185.57 Sf (%) 5.394 Check Ave Sf (%) 5.395 Enrgy loss (ft) 4.117 JL coeff (K) 1.00 Run Date: 05-11-2005 Elev. (ft) 192.0 188.0 184.0 180.0 176.0 172.0 Proj. file: 041 INE B-36,stm Line: 1 Size: 24 (in) 0 10 20 30 40 50 60 70 80 Reach(ft) 90 100 STORM DRAIN SYSTEM CALCULATION STORM DRAIN LINES C-l TO C-7 & D-1 STORM DRAIN SYSTEM C & D LEGEND HYDRAFLOW SIORM IZZl - SEWER CALCULATION PIPE NUMBER r> r-n_S^ORM DRAIN PIPE L-OU DESIGNATION EXIST. 24 RCP TO BE REMOVED SCALE 1": 80' EXIST-18" RCP EXIST-30" RCP EXIST-30" RCP EXIST-CURB INLETI Hydraflow Summary Report Page 1 Line No. Line ID 1 LINE B-31 2 LINE B-32 3 LINE B-33 4 LINE B-34 5 LINE B-35 Flow rate (cfs) 45,05 34,30 3,50 32.20 14.62 Line size (in) Line length (ft) Invert EL Dn (ft) Invert EL Up (ft) Line HGL slope down (%) (ft) 30 c 30 c 18 c 18 c 30 c 440.8 115.7 51.2 15.9 72.5 179.00 182.99 185.01 185.01 182.99 182.66 184.67 185.52 185.33 190.00 0.830 1.452 0.996 2.013 9.664 HGL up (ft) Minor Dns loss (ft) 81.50* 88.13* 89.70* 89.70* 88.13 186.82* 188.94* 189.76* 191.20* 191.28 1.31 0.76 0.06 5.16 0.52 line No, End ProjectFile: 04119-LINE B-31 TOB 35,sl-D-F File: carlsbad26,IDF Total No. Lines: 5 Run Date: 05-06-2005 •^rtP^^StcfflTsfg^erTabXtiSr station Line To Line End 1 2 2 1 Len (ft) 440.8 115.7 51.2 15.9 72.5 Drng Area Incr (ac) 0.00 0.00 0.00 0.00 0.00 Total (ac) 0.00 0.00 0.00 0.00 0.00 Rnoff coeff Page 1 Project File: 04119-LINE B-31 TO B-35.stm 1-D-F File: carlsbad26.1DF NOTES. Intensity = 19,61 / (Tc + 0 im ^ n RC^- D^, ~ • MIC + U.1U) 0.65, Return period = 100 Yrs • Initio! . . ^^^^^J^rs^mtal tailwater elevation = 181 50 (ft) •flTJW' jflffiy&trGSde Line Comput Line Size (in) 30 30 18 18 30 (cfs) 45.05 34.30 3.50 32.20 14.62 ations Invert elev (ft) 179.00 182.99 185.01 185.01 182.99 HGL elev (ft) 181.50 188.13 189.70 189.70 188.13 Downstream Depth (ft) 2.50 2.50 1.50 1.50 2.50 Project File: 04119-LINE B-31 TO B-35.stn Area (sqft) 4.91 4.91 1.77 1.77 4.91 Vel (ft/s) 9.18 6.99 1.98 18.22 2.98 Vel head (ft) 1-31 0.76 0.06 5.16 0.14 EGL elev (ft) 182.81 188.89 189.76 194.86 188.27 Sf (%) 1.207 0.700 0.111 9.406 0.127 Len (ft) 1-D-F File: carlsbad26.1DF 441 116 51.2 15.9 72.5 NOTES: Initial tailwater elevation = 181.5 (ft), "Norm Invert elev (ft) 182.66 184.67 185.52 185.33 190,00 HGL elev (ft) 186.82 188.94 189.76 191.20 191.28 Page 1 Upstream Depth (ft) 2.50 2.50 1.50 1.50 1.28* al depth assumed., ** Critical depth assumed. Area (sqft) 4.91 4.91 1.77 1.77 2.52 Vel (ft/s) 9.18 6.99 1.98 18.22 5.79 Vel head (ft) 1.31 0.76 0.06 5.16 0.52 Total number of lines: 5 EGL elev (ft) 188.13 189.70 189.82 196.36 191.80 Sf (%) 1.207 0.700 0.111 9.403 0.472 Check Ave Sf (%) 1.207 0.700 0.111 9.405 0.299 Enrgy loss (ft) 5.320 0.810 0.057 1.495 N/A JL coeff (K) 1.00 1.00 1.00 1.00 1.00 Run Date: 05-06-2005 Minor loss (ft) 1.31 0.76 0.06 5.16 0.52 Sl^RreiTlroflTe Elev. (ft) 218.0 209.0 200.0 191.0 182.0 173.0 50 100 150 Line: 1 Size: 30 (in) 200 250 300 Proj. file: 04119-LINE B-31 . a-35.stm Line: 2 - Size: 30 (in) 350 400 450 500 550 600 Reach (ft) bto -1 Sewer Profile Elev. (ft) 202.0 198.0 194.0 190.0 186.0 182.0 Line: 3 Size: 18 (in) 0 10 20 30 40 50 Reach (ft) Proj. file: 04119-LINE B-S', , B-35.stm 60 70 80 90 100 ^^^n SeweTFroffli Elev. (ft) 202.0 198.0 194.0 190.0 186.0 182.0 Line: 4 Size: 18 (in) 0 10 20 30 40 Proj. file: 04119-LlNE B-3 , . J B-35.stm 50 60 70 Reach(ft) 80 90 100 e Elev. (ft) 218.0 209.0 200.0 191.0 182.0 173.0 0 50 Proj. file: 04119-LINE B-3 J B-35 stm Line: 1 Size: 30 (in) 100 150 200 250 300 350 Line: 5 Size: 30 (in) 400 450 500 550 Reach(ft) Q STORM DRAIN SYSTEM CALCULATION STORM DRAIN LINE B-36 Hydraflow Summary Report Page 1 Line No Line ID Flow rate (cfs) Line size (in) Line length (ft) Invert EL On (ft) Invert EL Up (ft) Line slope (%) HGL down (ft) HGL up (ft) Minor loss (ft) Dns line No, LINE B-36 52.53 24 c 76.3 175.10 177.00 2.490 177.10* 181.22* 4.35 End ProjectFile: 04119-LlNE B-36.stm I-D-F File: carlsbad26.IDF Total No. Lines: 1 Run Date: 05-11-2005 NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition. riyf^altow SforirTSewer Tabulation station Line \ To Line End Len (ft) 76.3 Drng Area Incr I Total (ac) 0.00 (ac) 0.00 Rnoff coeff (C) 0.00 Page 1 Area x 0 0.00 Total 0,00 Tc inlet (min) 0,0 ProjectFile: 04119-LINE B-36.stm Syst (min) 0.0 Rain (1) (in/hr) 0.0 Total flow (cfs) 52.53 Cap full (cfs) 35.69 Vel (ft/s) 16.72 Pipe Size (in) 24 I-D-F File: carlsbad26.1DF NOTES: Intensity = 19.61/(Tc +0.10)-^ 0.65; Retum period = 100 Yrs. Slope (%) 2.49 Invert Elev Up (ft) 177.00 Dn (ft) 175.10 HGL Elev Up (ft) 181.22 Dn (ft) 177.10 Grnd / Rim Elev Up (ft) 183.69 Total number of lines: 1 Dn (ft) 179.00 Line ID LINE B-36 Initial tailwater elevation = 177.10 (ft) Run Date: 05-11-2005 l^^aflowSform^ewer Inventory RepoTt Line No. Alignment Dnstr 1 Lir line No. End length (ft) 76.3 Defl angle (deg) 0.0 ProjectFile: 04119-LINE B-36.stm June type MH Flow Data Known Q (cfs) 52.53 Drng area (ac) 0.00 Runoff coeff (C) 0.00 Inlet time (min) 0.0 Invert El Dn (ft) I 175 ,1 I-D-F File: carlsbad26.IDF Physical Data Line slope (%) 2.49 Invert El Up (ft) 177.00 Line size (in) 24 Line type Cir N value (n) 0.013 Total number of lines: 1 Page 1 J-loss coeff (K) 1.00 Inlet/ Rim El (ft) 183.69 Line ID LINE B-36 Date: 05-11-2005 "IRyf^flow hJyffraiHTcSradeTineComputatronT Line Size (in) 24 (cfs) 52.53 Page 1 Downstream Invert elev (ft) 175,10 HGL elev (ft) 177.10 Depth (ft) 2.00 Area (sqft) 3.14 Vel (ft/s) 16.72 ProjectFile: 04119-LINE B-36.stm Vel head (ft) 4.35 EGL elev (ft) 181.45 Sf (%) 5.396 Len (ft) 76.3 Invert elev (ft) 177.00 I-D-F File: carIsbad26.1DF NOTES: Initial tailwater elevafion = 177.1 (ft), * Normal depth assumed., ** Critical depth assumed. Upstream HGL elev (ft) 181.22 Depth (ft) 2.00 Area (sqft) 3,14 Vel (ft/s) 16,72 Vel head (ft) 4.35 EGL elev (ft) 185.57 Sf (%) 5.394 Totai number of lines: 1 Check Ave Sf (%) 5.395 Enrgy loss (ft) 4.117 JL coeff (K) Minor loss (ft) 1.00 4.35 Run Date; 05-11-2005 Proj. file: 041 INE B-36,stm Elev. (ft) 192.0 188.0 184.0 180.0 176.0 172.0 Line: 1 Size: 24 (in) 0 10 20 30 40 50 60 70 Reach(ft) 80 90 100 STORM DRAIN SYSTEM CALCULATION STORM DRAIN LINES C-l TO C-7 & D-1 I I STORM DRAIN SYSTEM C & D LEGEND HYDRAFLOW SIORM IZZl - SEWER CALCULATION PIPE NUMBER ^ r.^ STORM DRAIN PIPE L-OU DESIGNATION EXIST. 24 RCP TO BE REMOVED 0.^ SCALE I":80' -EXIST-30" RCP EXIST-18" RCP~^.=^::@fEXIST-CURB INLET| EXIST-30" RCP-^/0 Hydraflow Summary Report page 1 Line No, Line ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 EXIST 30 RCP EXIST, 18 RCP EXIST. 18 RCP EXIST. 30 RCP EXIST 30 RCP LINE D-1 LINE C-1 LINE C-2 LINE C-3A LINE C-3B LINE C-4 LINE C-5A LINE C-5B LINE C-5C LINE C-6 LINE C-7 LINE C-8 LINE C-9 Flow rate (cfs) Line size (in) Line length (ft) Invert EL Dn (ft) 35.87 5.45 3.00 27.60 .13.68 6.34 17.16 17.16 17.16 11.06 11.06 11.05 10.77 8.64 8.94 2.99 0,29 2,13 30 c 18 c 18 c 30 c 30 c 12 c 24 c 18 c 18 c 18 c 18 c 18 c 18 c 18 c 18 c 18 c -t2- c 8 c 196.6 5.2 32.0 54.0 268.4 78.0 214.9 28.3 47.6 249.6 242.2 67.3 38.8 120.1 50.1 96.6 25.4 15,9 Invert EL Up (ft) Line slope (%) 147.63 169.78 167.95 164.83 168.51 169.76 175.82 198.80 199.13 199.61 202.42 208.03 211.50 213.50 199.65 200.48 211,50 213,50 164.50 170.28 168.51 168.01 169.76 184,71 193.39 199,08 199.61 202.10 207.69 211.50 213.50 219,69 200,15 202,11 218,00 219.42 8.478 9.542 1.750 HGL down (ft) 149.00 170.21* 168.43 HGL up (ft) Minor Dns loss line (ft) No, 5,883 167.63 0.466 170.64 19.159 8,176 171,49 176,53 0,990 200.30* 1.008 0.997 2,176 5,159 5.157 5,154 0.978 1,687 25.591 37,233 201.28* 203,65* 206,51 209.71 213,52 215.48 203.65* 204.45* 213T52 - 215,48 166.50 172.99* 169.17 169.77 171.03 185.67 194.86 201.06* 202.55* 206.42* 208.93 ( 212.77 214.75 220.81 204.01* 204.53* 21^8T23- 220.06 1.13 0.15 0.24 0.87 I 1 0.47 I 4 5 End 1.04 0.75 0.22 1.10 0.09 0.73 0.75 0,73 0,58 0.44 0.04 -0.07 0,60 13 9 10 11 12 13 9 15 12 Project File: 04119-LINE 01 TO C7 Dl.sl-D-F File: carlsbad26,IDF Total No. Lines: 18 Run Date: 05-06-2005 NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition. H^raflow Sto Line No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 torm Sewer Inventory Report Dnstr line No. End 1 1 1 4 5 4 7 8 9 10 11 12 13 9 15 12 13 Alignment L-ine length (ft) 196.6 5.2 32.0 54.0 268.4 78.0 214.9 28.3 47.6 249.6 242.2 67.3 38.8 120.1 50.1 96.6 25.4 15.9 Defl angle (deg) 0.0 -90.0 90.0 0.0 -90.0 140.0 0.0 -90.0 0.0 8.0 10.0 85.0 8.0 -5.0 -35.0 35.0 -90.0 90.0 June type MH Curb Curb MH MH MH MH MH MH MH MH MH MH MH Curb MH Curb MH Flow Data Known Q (cfs) 35.87 5.45 3.00 27.60 13.68 6.34 17.16 17.16 17.16 11.06 11.06 11.06 10.77 8.64 8.94 2.99 0.29 2.13 Project File: 04119-LINE Cl TO C7 DLstm Drng area (ac) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Runoff coeff (C) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Inlet time (min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Invert El Dn (ft) 147.83 169.78 167.95 164.83 168.51 169.76 175.82 198.80 199.13! 199.6l' 202.42j 208.03j 211.50' 213.50 199.66 200.48 211.50 213.50 Line slope {%) 8.48 9.54 1.75 5.88 0.47 19.16 8.18 0.99 I.Oi 1.00 2.18 5.16 5.16 5.15 0.98 1,69 25.59 37.23 Invert El Up (ft) 164.50 170.28 168.51 168.01 169.76 184.71 193.39 199.08 199.61 202.10 207.69 211.50 213.50 219.69 200.15 202.11 218.00 219.42 Physical Data Line size (in) 30 18 18 30 30 12 24 Line type I-D-F File: carlsbad26.IDF Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir Cir N value (n) 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 J-loss coeff (K) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.15 0.75 0.15 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 Inlet/ Rim El (ft) Total number of lines: 18 176.28 176.50 176.51 182.57 174.00 195.79 206.45 206.53 207.46 213.69 219.84 222.64 224.64 230.71 204.90 205.49 223.26 226.28 Line ID EXIST 30 RCP EXIST. 18 RCP EXIST. 18 RCP EXIST. 30 RCP EXIST 30 RCP LINE D-1 LINE C-1 LINE C-2 1-1 NE C-3A LINE C-3B LINE C-4 LINE C-5A LINE C-5B LINE C-5C LINE C-6 LINE C-7 LINE C-8 LINE C-9 Page 1 Date: 05-06-2005 y^flow Storm Sewer Tabulation Page 1 Projecl File: 04119-LINE Cl TO C7 Dl.stm 1-D-F File: carlsbacl26.1DF L!'^:!!^!!':!!^!!^^ mitiaUallwater elevation =149.00 (ft) Total number of lines: 18 Run Date: 05-06-2005 y "-aflow Hydraulic Grade Line Computa^ns Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Size (in) 30 18 18 30 30 12 24 (cfs) 35.87 5.45 3.00 27.60 13.68 6.34 17.16 17.16 17.16 11.06 11.06 11.06 10.77 8.64 8.94 2.99 0.29 2.13 Downstream Invert elev (ft) 147.83 169.78 167.95 164.83 168.51 169.76 175.82 198.80 199.13 199.61 202.42 208.03 211.50 213.50 199.66 200.48 211.50 213.50 HGL elev (ft) 149.00 170.21 168.43 167.53 170.64 171.49 176.53 200.30 201.28 203.65 206.51 209.71 213.52 215.48 203.65 204.45 213.52 215.48 Depth (ft) 1.17 0.43* 0.48* 2.50 2.13 1.00 0.71* 1.50* 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.00 0.67 Area (sqft) 2.25 0.41 0.49 4.91 4.45 0.79 1.00 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 0.79 0.35 Vel (ft/s) 15.91 13.17 6.19 5.62 3.07 8.07 17.23 9.71 9.71 6.26 6.26 6.26 6.10 4.89 5.06 1.69 0.37 6.12 Vel head (ft) Project File: 04119-LINE Cl TO C7 Dl.stm 3.93 2.70 0.59 0.49 0.15 1.01 4.61 1.47 1.47 0.61 0.61 0.61 0.58 0.37 0.40 0.04 0.00 0.58 EGL elev (ft) 152.93 172.91 169.02 168.12 170.79 172.51 181.14 201.77 202.74 204.26 207.12 210.32 214.10 215.85 204.04 204.49 213.52 216.06 Sf (%) 3.842 8.658 1.684 0.453 0.105 3.170 7.957 2.671. 2.671 1.110 1.110 1.110 1.053 0.677 0.725 0.081 0.007 3.126 Len (ft) 197 5.2 32.0 54.0 268 78.0 215 ' I 28.3 I 47.6 ' I 250 I 242 I 67.3 38.8 120 50.1 96.6 25.4 15.9 Upstrean Invert elev (ft) 164.50 170.28 168.51 168.01 169.76 184.71 193.39 199.08 199.61 202.10 207.69 211.50 213.50 219.69 200.15 202.11 218.00 219.42 '-D-F File; carlsbad2e.lDF HGL elev (ft) 166.50 172.99 169.17 169.77 171.03 185.67 194.86 201.05 202.55 206.42 208.98 212.77 214.75 220.81 204.01 204.53 218.23 220.06 Depth (ft) 2.00" 1.50 0.66 1.76*' 1.27 0.96" 1.47" 1.50 1.50 1.50 1.29 1.27* 1.25* 1.12* 1.50 1.50 0.23* 0.64* Area (sqft) 4.21 1.77 0.76 3.68 2.50 0.78 2.47 1.77 1.77 1.77 1.61 1.59 1.58 1.42 1.77 1.77 0.14 0.34 Vel (ft/s) 8.51 3.09 3.97 7.49 5.48 8.16 6.95 9.71 9.71 6.25 6.85 6.93 6.83 6.09 5.06 1.69 2.15 6.22 Vel head (ft) 1.13 0.15 0.24 0.87 0.47 1.04 0.75 1.47 1.47 0.61 0.73 0.75 0.73 0.58 0.40 0.04 0.07 0.60 EGL elev (ft) 167.63 173.14 169.42 170.64 171.49 186.71 195.61 202.52 204.01 207.03 209.71 213.52 215.48 221.39 204.41 204.57 218.30 220.66 Page 1 Sf (%) 0.799 0.270 0.496 0.640 0.425 2.773 0.730 2.670 2.670 1.109 1.029 1.052 1.019 0.819 0.725 0.081 0.507 2.710 Check Ave Sf (%) ** Cntioa, depth assume^. Total number ol lines: 16 2.320 4.464 1.090 0.547 0.265 2.971 4.343 2.671 2.671 1.110 1.070 1.081 1.036 0.748 0.725 0.081 0.257 2.918 Enrgy loss (ft) N/A 0.234 0.349 N/A 0.710 N/A N/A 0.755 1.271 2.770 2.591 N/A N/A N/A 0.363 0.079 N/A N/A JL coeff (K) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.15 0.75 0.15 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 Minor loss (ft) 1.13 0.15 0.24 0.87 0.47 1.04 0.75 0.22 1.10 0.09 0.73 0.75 0.73 0.58 0.44 0.04 0.07 0.60 Run Date: 05-06-2005 wTm SewerProfiTe Proj. file: 04119-LINE ."OC? Dl.stm Elev. (ft) 208.0 194.0 180.0 166.0 152.0 Line: 1 -Size: 30 (in) Line: 4 Size: 30 (in) 100 150 200 250 300 350 Reach (ft) 400 450 500 550 ewer Profile Elev. (ft) Proj. file: 04119-LINE TO C7 Dl stm 255.0 ,— 234.0 213.0 192.0 171.0 150.0 -Line: Size: 24 (in) -Line: gLine: 9 Size: iSize: 18 (in) Line: 10 Size: 18 (in) 500 Line: 11 Size: 18 (in) 600 700 800 F^bach (ft) 900 rm^wer Profile Proj. file: 04119-LINE ;o C7 Dl.stm Eiev. (ft) 246.0 237.0 228.0 219.0 100 125 150 175 200 225 250 Reach (ft) 5> rm Sewer Profile Elev. (ft) 217.0 213.0 209.0 205.0 201.0 197.0 L 0 Line; 15 Size: 18 (in) 25 50 Proj. file: 04119-LINE ( O C7 Dl.stm Line: 16 Size: 18 (in) "^5 j 100 R^ach (ft) 125 150 CURB INLET CALCULATION 1 2 3 456789 10 Discharge (CF.S.) EXAMPLE: Given: Q = 10 S = 2,5% Chart gives: Depth = 0,4, Velocity = 4.4 f,p,s, SOURCE; San Diego County Department of Special District Services Design Manual 30 40 50 FIGURE Gutter and Roadway Discharge - Velocity Chart CURB INLET CALCULATIONS FORMULAS: ON GRADE: Q=0.7L(a+ IN A SUMP: Q=3.0Ly''' Where: Q = Runoff in cfs L = length of opening in feet a=depth of dep: ression in feet y=depth of flow in feet • . iM_vjwi\i Ljn>vv T ) AT END OF LINE A-3 (H90.69 RIGHT RESORT DRWY^ AT END OF LINE B-11 (25^32.64 LEFT RESORT DRVWY^ AIEND^FUNE_B-12 (25^26.32 RIGHT RESORT DRV^ AT END OF LINE Br33 (5^78.77 RIGHT RESORT DR\;^ AT END OF LINE B-34 (5+78.77 LEFT RF.^OPT DRVWY) AT END OF LINE C-8 ~ EXIST. 15' INLET (HIDDEN VALLEY -LEFT EXIST. 15' INLET (HIDDEN VALLEY -RIGHT) INLET(S) IN A SUMP AT END OF LINE C-6 (37+75.12 RIGHT RESORT DRWY) AT END OF LINE B-28 (15+88.14 RIGHT RESORT DR^ [AIENDOFui;^ B-29 (15+90.16 LEFT RESORT DR\;^ TYPE F INLET CALCULATION I TYPE F INLET CALCULATIONS FORMULA: Use M'cir equation with a coefficient of discharge of 3.0: Q=3.0 L y Where: Q = Runoff m cfs L = length of opening m feet y=depth of flow in feet INLET LOCATION INLET(S) IN A SUMP ^12^2!<OFUNE_B,3^7^^ ^I5^2!<oLL!NEl^iIi^ Q(cfs) 30.05C| 10.283 11.066 T a(ft) 4" for 10"depp. L (ft min) 4.000 4.000 4.000 y(ft) 1.844 Y(ft) Specified 0.902 0.947 2.000 2.000 2.000 (*/Or TO SCXLE-J u BROOKS BOX GRATED INLET CALCULATIONS I I I I BROOKS BOX GRATED INLETS Analyze the capacity of a 3'x3' Brooks Box Determine ttie flow capacity in cubic feet per second for a 36"X36"Brooks Box grated type inlet using the following orifice equation of grated inlets in a sump. There are tiiree proposed 36"X36" Brooks Boxes proposed for the site. (Nodes 214, 216 and 301) Q{cap) = 4.82Ay' \ [I This equation is derived fi-om the standard grated inlet formula from Seelye's Data Book for Civil _ \ Z- Engineers book page 18-27, c=0,6. Also, consider a 2/3 factor to account for clogging of the grates, ^y,'*' Q{cap) = cA^ilgy) Given; 3'x3'box We have: •y A= 9,000 sf Q(cap) = 14,53 cfs 1 V /• - ,, . . y= 0,25 ft .tjr 'J w W^ere A = Area of opening in square feet y = Depth of flow at inlet or head of sump in feet Recall fi-om the hydrology study that the maximuin runoff that goes to a Brooks Box is only 8,64 cfs (Node 301), Node 214 is 6,32 cfs and Node 216 is 8,05 cfs. Therefore the proposed boxes are adequate to handle the QIOO runoff V BROW DITCH & CHANNEL HYDRAULICCALCULATION I Dim ^ \\oi:e CIRCULAR CHANNEL ANALYSIS RATING CU.RVE COMPUTATION May 9, 2005 PROGRAM INPUT DATA DESCRIPTION VALUE Channel Bottorn Slope (ft/ft) O'Ol Manning's Roughness Coefficient (n-value) 0,013 Channel Diameter (ft) Minimum Flow Depth (ft) O'l Maximum Flow Depth (ft) 1-5 Incremental Head (ft) 0-1 COMPUT.ATION RESULTS Flow Flow Flow Froude Velocity Energy Flow Top Dep th Ra te Veloci ty t^iuiTibe r .Head Head Area Width (ft) (cfs) (fps) (ft) (ft) (sq ft) (ft) 0.1 0,13 1.86 1.265 0, 054 0. 154 0,07 1.08 0.2 0.59 2 . 92 1.4 0,133 0,333 0,2 1.5 0.3 1,39 3 . 79 1,476 0, 223 0.523 0, 37 1.8 0.4 2.54 4 .53 1. 525 0.319 0.719 0.56 2. 04 0.5 4.03 5.2 1. 558 0,42 0. 92 0,77 2,24 0, 6 5.84 5.8 1. 58 0.523 1.123 1.01 2.4 0.7 7.96 6.35 1.594 0. 627 1. 327 1.25 2.54 0.8 10. 38 6.86 1. 601 0.731 1.531 1, 51 2. 65 0. 9 13, 06 7.32 1, 603 0,833 1.733 1, 78 2. 75 1. 0 15, 99 7 . 75 1.6 0. 934 1. 934 2.06 2 , 83 -1,1 19,14 8. 15 1.594 1. 0-32-_ -2-. 132 2.35 2.89 1 . 2 22, 48 8. 51 1. 583 1.126 2. 326 2. 64 2, 94 1 , 3 25, 98 8. 85 1. 57 1,216 2.516 2. 94 2 . 97 1. 4 29, 61 9.16 1. 553 1.302 2. 702 3.23 2. 99 1. 5 33. 35 9.44 1.533 1. 383 2, 883 3.53 3.0 ___„__.______ =========== ======== ============ ========= ========== ======== HYDROCALC Hydraulics for Windows, Version 1,1 Copyright (c) 1996 Dodson S Associates, Inc, 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281 ) 440-3787, Fax: (281)4 4 0-4 74 2, Email:softwaregdodson-hydro,com All Rights Reserved, I CIRCUL.a.R CH.ANNEL ANALYSIS RATING CURVE COMPUTATION May 9, 2 005 PROGRAM INPUT DATA DESCRIPTION VALUE Channel Bottom Slope (ft/ft) 0,01 Manning's Roughness Coefficient (n-value) 0,013 Channel Diameter (ft) 3,0 Minimum Flow Depth (ft) 0,1 Maximum Flow Depth (ft) 1.0 I.ncremental Head (ft) , 0,1 COMPUTATION RESULTS Flow Flow Flow Froude Velocity Energy Flow Top Depth Rate Velocity Number Head Head Area Width (ft) (cfs) (fps) (ft) (ft) (sq ft) (ft) 0. 1 0,13 1,86 1,265 0, 054 0.154 0. 07 1. 08 0.2 0,59 2 . 92 1 . 4 0, 133 0, 333 0.2 1. 5 0, .3 1 ,39 3,79 1.476 0 , 223 0. 323 0. 37 1 , 8 0.4 2.54 4 . 53 1, 525 0. 319 0.719 0,56 2.04 0. 5 4 , 03 5.2 1, 558 0,42 0, 92 0 , 77 2,24 0. 6 5.84 5.8 1 , 58 0 , 523 1. 123 1 , 01 2 . 4 0.7 7. 96 6.35 1 ,594 0. 627 1.327 1 .25 2 . 54 0.8 10.38 6.86 1. 601 0. 731 1 .531 1.51 2 . 65 0.9 13.06 7 . 32 1, 603 0.833 1. 733 1.78 2.75 1.0 15. 99 7, 75 1.6 0. 934 1. 934 2.06 2.83 ======= ========== ============= ======== ============ ======== =========== ________ HYDROCALC Hydraulics for Windows, Version 1.1 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone: (281)440-3787, Fax: (281) 440-4742, Email:software@dodson-hydro. com All Rights Reserved, 3.00' CIRCULAR CHANNEL ANALYSIS RA.TING CURVE COMPUTATION May 9, 2005 T(fE P PROGRA^l INPUT DATA DESCRIPTION VALUE Channel Bottom Slope (ft/ft) 0.01 Manning's Roughness Coefficient (n-value) 0,013 Channel Diameter (ft) 3,5 Minimu.m Flow Depth (ft) 0.1 Maximum Flow Depth (ft) 1,7 Incremental Head (ft) 0,1 COMPUTATION RESULTS Flow Flow Flow Froude Velocity Energy Flow Top Depth Rate Velocity Number Head Head Area Width (ft) (cfs) (fps) (ft) (ft) (sq ft) (ft) 0,1 0, 15 1,86 1,268 0, 054 0,154 0, 08 1,17 0.2 0, 64 2 . 93 1,406 0.133 0.333 0,22 1. 62 0 , 3 1, 52 3.8 1.486 0,225 0. 525 0.4 1. 96 0.4 2.78 4 ,56 1, 539 0. 324 0.724 0, 61 2.23 0.5 4.42 5,24 1, 576 0.427 0. 927 0, 84 2,45 0.6 6.44 5.86 1. 602 0,534 1, 134 1.1 2, 64 0.7 8.31 6.43 1, 621 0. 643 1.343 1,37 2,8 0.8 11.53 6.96 1. 63 4 0. 752 1. 552 1. 66 2. 94 0.9 14 , 57 7 .45 1, 641 0. 8 61 1. 761 1, 96 3. 06 1, 0 17, 92 7 . 9 1. 644 0. 97 1. 97 2.27 3.16 1.1 21, 55 8.32 1. 644 1.077 2. 177 2.59 3.25 1.2 25. 44 8.72 ' TTTE 2 2. 382 2. 92 3.32 1.3 29,57 9.09 1. 634 1.284 2, 584 3.25 3.38 1. 4 33 , 9 9,43 1. 625 1.383 2. 783 3 . 59 3.43 1.5 38, 42 9, 75 1. 613 1.479 2. 979 3. 94 3.46 1.6 43.08 10. 05 1.598 1.57 3, 17 4 ,29 3.49 1. 7 47 , 87 10.33 1.582 1. 657 3,357 4 . 64 3.5 ======== ============= ========= =========== ========== „========= ======= HYDROCALC Hydraulics for Windows, Version 1.1 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone:(281) 440-3787, Fax: (281) 4 4 0-4 742, Email:software(?dodson-hydro,com All Rights Reserved. 3.50' TRAPEZOIDAL CHANNEL ANALYSIS RATING CURVE COMPUTATION May 9, 2005 PROGRAM INPUT DATA DESCRIPTION VALOE Channel Bottom Slope (ft/ft) 0.01 Manning's Roughness Coefficient (n-value) 0,022 Channel Left Side Slope (horizontal/vertical) 0.5 Channel Right Side Slope (horizontal/vertical) 0,5 Channel Bottom Width (ft) 6,0 Minimum Flow Depth (ft) 0,1 Maximum Flow Depth (ft) 1,8 Incremental Head (ft) 0.1 •JPUTATION RESULTS Flow Flow Flow Froude Velocity Energy Flow Top Depth Rate Velocity Number Head Head Area Width (ft) (cfs) (fps) (ft) (ft) (sq ft) (ft) 0,1" 0,36 1,43 0. 799 0, 032 0 . 132 0. 61 6.1 0.2 2 . 72 2.23 0, 885 0.077 0.277 1,22 6.2 0,3 5.29 2 , 87 0. 934 0.128 0.428 1 . 85 6.3 0,4 8,47 3 . 42 0. 967 0.181 0. 581 2,48 6.4 0,5 12, 19 3 , 9 0, 992 0,237 0,737 3 . 13 6.5 0. 5 16.4 4 , 34 1, Oil 0.293 0.893 3 . 78 6. 6 0 , 7 21. 06 4 .74 1. 02 6 0.349 1.049 4.44 6.7 0.8 26, 14 5.11 1. 037 0. 405 1. 205 5.12 6.3 0.9 31. 63 5.45 1. 047 0. 461 1.361 5.81 6,9 1.0 37. 49 ""5.77 1.055 0.517 1. 517 " 6.5 7.0 1, 1 43,72 6,07 1. 062 0. 572 1. 672 7.21 7,1 1. 2 50.31 6.35 1.068 0. 627 1. 827 7. 92 7.2 1 , 3 57.24 6. 62 1. 073 0. 681 1. 981 8. 65 7.3 1.4 54 .5 6.38 1., 077 0. 735 2. 135 9.38 7 . A 1 . 5 72.09 7 .12 1, 08 0,788 2.288 10, 13 7 . 5 1.6 80,0 7 .35 1, 083 0, 84 2,44 10, 88 7 , 6 1. 7 88.23 7.58 1, 085 0. 892 2.592 11, 65 7 , 7 1 . 8 96.77 7.79 1. 088 0. 943 2, 743 12. 42 7 , 8 ========= =========== ========^^ ========= =========== ========== ========= HYDROCALC Hj'draulics for Windows, Version 1.1 Copyright (c) 1996 Dodson & .Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone:(281)4 40-3787, Fax:(281)440-4742, Email:software@dodson-hydro,com All Rights Reserved, TPJ',PZ7.,Q1DAL CH.ANNEL .AN.ALYSIS RATING CURVE COMPUT.ATION May 2005 PROGRAiM INPUT DATA DESCRIPTION VALUE Channel Bottom Slope (ft/ft) 0.01 Manning's Roughness Coefficient (n-value) 0,022 Channel Left Side Slope (horizontal/vertical) 0,5 Channel Right Side Slope (horizontal/vertical) 0.5 Channel Bottom Width (ft) 5,0 Minimium Flow Depth (ft) 0,1 Maximum Flow Depth (ft) 2,0 Incremental Head (ft) 0,1 COMPUT.ATION RESULTS Flow Flow Flow Froude Velocity Energy Flow Top Deoth Rate Velocity Number Head Head Area Width (ft) (cfs) (fps) (ft) (ft) (sq ft) (ft) 0.1 0, 72 1. 42 0 , 797 0.031 0.131 0.51 5.1 0.2 2.25 2 , 21 0, 88 0, 075 0.276 1.02 5.2 0,3 4 , 39 2 , 84 0 , 927 0, 125 0. 425 1. 55 5.3 0.4 7.02 3 , 37 0. 958 0, 177 0. 577 2.08 5.4 0.5 10, 09 3 .84 0, 98 0. 229 0.729 2. 63 5. 5 0,6 13. 56 4.26 0, 997 0, 232 0, 882 3. 18 5,6 0.7 17.4 4 . 65 1.01 0. 335 1, 035 3.74 5.7 0.8 21.59 5,0 1, 021 0. 388 1. 188 4 . 32 5.8 0,9 26.11 5.32 1.029 0.44 1. 34 4 , 91 5. 9 1.0 30. 94 5. 63 1. 036 0.492 1. 4 92 5.5 6.0 1.1 36,08 5. 91 1. 041 0.543 1. 643 6.11 6.1 1. 2 41.51 6,18 1. 046 0.593 1. 793 6. 72 6.2 1. 3 47.23 6.43 1. 05 0. 643 1. 943 7.35 6,3 1. 4 53.23 6. 67 1 , 053 0.691 2 , 091 7. 98 5.4 1. 5 59.51 6 , 9 1.056 0.74 2 ,24 8. 53 6,5 1. 6 66. 05 7,12 1.058 0.737 2, 387 9. 28 6,6 1. 7 72 , 87 7 .33 1 , 06 0 , 83 4 2,534 9. 95 6, 7 1. 8 79, 95 7 ,53 1, 062 0.881 2. 681 10. 62 6.8 1 . 9 87 ,29 7 . 72 1.063 0. 927 2, 827 11. 3 5.9 2.0 94 , 89 7 . 91 1 ,055 0. 972 2 , 972 12. 0 7.0 ========= ========== =========== ========= =========== ========= ========== ======== HYDROCALC Hydraulics for Windows, Version 1,1 Copyright (c) 1996 Dodson & Associates, Inc., 5629 FM 1960 West,. Suite 314, Houston, TX 77069 Phone: (281) 4 4 0-3787, Fax: (281)i40-4142, Email:software(3dodson-hydro , com All Rights .Reserved.. 5.00' T.RAPEZOIDAL CHANNEL ANALYSIS R.WING CURVE COMPUTATION May 9, ?005 PROGRAM INPUT DATA DESCRIPTION VALUE Channel Bottom Slope (ft/ft) 0.04 Manning's Roughness Coefficient (n-value) 0,022 Channel Left Side Slope (horizontal/vertical) 0,1 Channel Right Side Slope (horizontal/vertical) 0,25 Channel Bottom Width (ft) 4,0 Minimum Flow Depth (ft) 0,1 Maximum Flow Depth (ft) Incremental Head (ft) 0.1 COMPUT.ATION RESULTS Fiow Flow Flow Froude Velocity Energy Flow Top Depth Rate Velocity Number Head Head Area Width (ft) (cfs) (fps) (ft) (ft) (sq ft) (ft) 0, 1 1 .13 2 , 82 1,578 0 . 124 0 . 224 0.4 4 , 04 0.2 3 . 52 4,36 1.725 0,295 0. 495 0,81 4 . 07 0. 3 6,75 5, 55 1 , 799 0.479 0.779 1. 22 4 , 11 0, 4 10. 67 6,56 1, 843 0. 568 1. 068 1, 63 4 . 14 0.5 15 ,17 7,42 1.87 0. 856 1 , 356 2,04 4 . 18 0.6 20.16 8.19 1, 837 1,041 1 . 541 2.46 4 .21 0.7 25.59 8.87 1.896 1, 222 1. 922 2.89 4.25 0.8 31. 42 9.49 1. 901 1.398 2.198 3.31 4.28 -0. 9 " 37T& 10. 05 1.902 1.569 2^ 46 9 --3^-4-4 .32 1.0 44 .11 10 , 57 1. 901 1. 735 2,735 4 . 18 4 . 35 1.1 50. 93 11,04 1.898 1 ,895 2 , 995 4 . 61 4.39 1.2 58.03 ' 11.49 1.894 2 . 05 3.25 5.05 4 . 42 1.3 65,4 11 . 9 1.889 2,201 3.501 5.5 4.46 _______ =========== ======== ============ ======== =========== ======= HYDROCALC Hydraulics for Windows, Version 1.1 Copyright (c) 1996 Dodson £ Associates, Inc, 5629 FM 1960 West, Suite 314, Houston, TX 77069 Phone:(281) 4 40-3737, Fax: (281) 440-4742, Email:software@dodson-hydro,com All Rights Reserved. ^^•i2iliIlSL0PC 4.00' w ROCK RIP RAP SIZING CALCULATIONS 2003 REGIONAL SUPPLEMENT B -/^ I ! t I I I I i I I 200-L6.3 Quality Requirements Page 45 - First paragraph, second sentence change "60 days" to "30 days". 200-1.7 Selection of Riprap and Filter Blanket Material Table 200-1.7 Velocity Meters/Sec (Ft/Sec) (1) Rock Class (2) Rip Rap Thie k- Nes s Filter Blanket Upper Layer(s) (3) Velocity Meters/Sec (Ft/Sec) (1) Rock Class (2) Rip Rap Thie k- Nes s Option 1 Sect, 200 (4) Optio n2 Sect,4 00 (4) Option 3 (5) Lower Layer (6) 2 (6-7) No. 3 Backing 0.6 5 mm (3/16") C2 D.G. 2.2 (7-8) No, 2 Backing 1.0 6 mm (1/4") B3 D.G. 2.6 (8-9.5) Facing 1,4 9,5 mm (3/8") D.G, „ 3 (9.5-11) Light 2.0 12,5 mm ('/j") 25mm (3/4"- 1-1/2") 220 kg (1/4 Ton) 2.7 ' 25mm (3/4"- 1-1/2") SAND 3.5(11-13) 220 kg (1/4 Ton) 2.7 ' 19 mm (3/4") 25mm (3/4"- 1-1/2") SAND 4(13-15) 450 kg CA Ton) 3.4 25mm(l") 25mm (3/4"- 1-1/2") SAND 4.5 (15-17) 900 kg (1 Ton) 4.3 37.5 mm (1-1/2") TYPEB SAND 5,5 (17-20) 1.8Tonne (2 Ton) 5.4 50 mm (2") TYPEB SAND See Section 200-1,6. see also Table 200-1.6 (A) Practical use of this table is limited to situations where "T" is less than inside diameter, (1) Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater. (2) If desired rip rap and filter blanket class is not available, use next larger class, (3) Filter blanket tiiickness = 0,3 Meter (I Foot) or "T", whichever is less, (4) Standard Specifications for Public Works Constmction, (5) D,G, = Disintegrated Granite, 1mm to 10mm, P,B, = Processed Miscellaneous Base, yrh£ZL D/Z^Ai^' This drowing is NOT In contormance with latest UBC ond should be used wilh core and judgment. 2D OR 2 W (min.) 7 U6t A- -^^ivni of OizYuex D = Pipe Diometer W = Bollom Width of Chonnel •#15 (#4) Bors Flow Filter Blanket 3 (min.) 152mm (6")^ Sill, Class 249kg/M^-C-13Mpo (420-C-2000) Concrete SECTION A-A Plans sholl specify: A) Rock Class ond thickness (T). B) Filter moteriol, number of layers ond thickness. Rip rop shall be either quorry stone or broken concrete (if shown on the plons.) Cobbles ore not occeptoble. Rip rop shall be placed over filter blonket which moy be either gronulor material or filter fobric. See Regional Supplement Amendments for selection of rip rap ond filler blonket. Rip rop energy dissipators shll be designated os either Type 1 or Type 2. Type 1 shall be wilh concrete sill; Type 2 sholl be without sill. Revision By Approved Dote SAN DIEGO REGIONAL STANDARD DRAWING RECOMMtNDEO BY THE SAN OIEGO REGIONAL STANDARDS COMMITTEE ^ ''^^^^I^T 3l0tl2003 ORIGItNJAL Kerchevol 12/75 SAN DIEGO REGIONAL STANDARD DRAWING RECOMMtNDEO BY THE SAN OIEGO REGIONAL STANDARDS COMMITTEE ^ ''^^^^I^T 3l0tl2003 Wd Metric T. Stonlon 03/03 RIP RAP ENERGY DISSIPATOR RECOMMtNDEO BY THE SAN OIEGO REGIONAL STANDARDS COMMITTEE ^ ''^^^^I^T 3l0tl2003 RIP RAP ENERGY DISSIPATOR Ctroirperson R,C,E. 19246 Dote RIP RAP ENERGY DISSIPATOR DRAWING n 40 NUMBER ^ RIP RAP ENERGY DISSIPATOR DRAWING n 40 NUMBER ^ I I 2003 REGIONAL SUPPLEMENT ^•Toe^ pyCZ\ 1.^' 200-1.6.3 Quality Requirements Page 45 - First paragraph, second sentence change "60 days" to "30 days". 200-L7 Selection of Riprap and Filter Blanket iMatenal / X - //. -7 ? -|Cp5 Table 200-1,7 Velocity Meters/Sec (Ft/Sec) Rock Class (2) Rip Rap Thie k- Nes s Filter Blanket Upper LaYer(s) (3) Velocity Meters/Sec (Ft/Sec) Rock Class (2) Rip Rap Thie k- Nes s Option 1 Sect, 200 (4) Optio n2 Sect,4 00 (4) Option 3 (5) Lower Layer (6) 2 (6-7) No. 3 Backing 0,6 5 mm (3/16") C2 D,G. 2,2 (7-8) No. 2 Backing 1,0 6 mra (1/4") B3 D.G, 2.6 (8-9.5) Facing 1.4 9,5 mm (3/8") D.G. 3 (9.5-11) Light 2.0 12,5 mm QA") 25mm (3/4"- 1-1/2") 3,5(11-13) 220 kg (1/4 Ton) 2.f-- -l-97mmi:3/4") 25mm (3/4"- 1-1/2") -SAND 4(13-15) 450 kg ('/2 Ton) 3,4 25mm(r') 25mm (3/4"- 1-1/2") | SAND 4,5(15-17) 900 kg (1 Ton) 4,3 37,5 mm (1-1/2") TYPEB SAND 5.5(17-20) 1.8Tonne (2 Ton) 5,4 50 mm (2") TYPEB SAND See Section 200-1,6, see also Table 200-1.6 (A) Practical use of this table is limited to situations where "T" is less than inside diameter (1) Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater, (2) If desired rip rap and filter blanket class is not available, use next larger class, (3) Filter blanket thickness = 0.3 Meter (1 Foot) or "T", whichever is less, (4) Standard Specifications for Public Works Constmction, (5) D,G, = Disintegrated Granite, Imm to 10mm, P,B, = Processed Miscellaneous Base, 2^ ^.-fh/Z-Zi \)rZ.A(zJ This drowing is NOT in conformonce with latest UBC and should be used with care and judgment. PLAN Concrete Channel' 1/2D min. J (min.) SECTION B-B Endwoll (lypicol) U5c: D = 2 To CoMCfL D = Pipe Diometer W = Bottom Width of Channel I 0 I ry?e ^- Filter Blonket -152mm (6")\Sill, Closs 249kg/M^-C-13Mpa (42O-C-2O00) Concrete SECTION A-A NOTES 1. Plons sholl specify: A) Rock Class ond thickness (T), B) Filter material, number of layers ond thickness. 2. Rip rop sholl be either quorry stone or broken concrete (if shown on the plons.) Cobbles ore not occeptoble. 3. Rip rop shall be ploced over filter blonket which may be either gronulor moteriol or filter fabric. 4. See Regional Supplement Amendments for selection of rip rap ond filter blonket, 5. Rip rop energy dissipators shll be designoted as either Type 1 or Type 2, Type 1 shall be with concrete sill; Type 2 sholl be withoul sill. I Revision By Approved Dote SAN DIEGO REGIONAL STANDARD DRAWING RECOMMENDED BY THE SAN DIEGO REGIONAL STANDARDS COWWITTEE M^f^ffClfJO 3lot12003 ORIGINAL Kerchevol 12/75 SAN DIEGO REGIONAL STANDARD DRAWING RECOMMENDED BY THE SAN DIEGO REGIONAL STANDARDS COWWITTEE M^f^ffClfJO 3lot12003 Add Metric T. Stanton 03/03 RIP RAP ENERGY DISSIPATOR RECOMMENDED BY THE SAN DIEGO REGIONAL STANDARDS COWWITTEE M^f^ffClfJO 3lot12003 RIP RAP ENERGY DISSIPATOR Chairperson R.C.E. 19246 Dote RIP RAP ENERGY DISSIPATOR DRAWING n /in NUMBER ^ RIP RAP ENERGY DISSIPATOR DRAWING n /in NUMBER ^ TEMPORARY DESILTING BASINS & RISER CALCULATIONS j ll i WIDTH, LENGTH, RIP-RAP SIZE AND FILTER ROCK SIZE PER PLAN STANDPIPE-18"0 PIPE.MINIMUM WITH NO PERFORATIONS #6 REBAR.SPACED 6"0,C, AROUND RISER CIRCUMFERENCE 4" RED PAINT ^TEEL PLATE STRIPE ALL AROUND RISER PLAN VIEW NTS SLOPE FACES SHALL BE HYDROSEEDED SIMILAR TO SDRS D-70 2:1 OR FLATTER IF SO SPECIFIED ON PLANS TYPICAL THROUGHOUT SEE SECTION 300-6 STD, SPECS, SLOPE PER PLAN, 2% MINIMUM-7 :J ^ BASIN CAPACITY TABLE CUBIC YARDS) DETAIL B NTS l/2"x 2" A I LOCATIONS 1/2"0 MB w/ NUT cSc WASHER NOTES: 1) DESILTATION BASINS BUILT ON LOTS ADJACENT TO DWELLINGS SHALL BE COMPLETELY LINED WITH 3" GUNITE, 2) ALL STEEL PIPE AND HARDWARE TO BE HOT DIP GALVANIZED AFTER FABRICATION, TRACT AREA (ACRES) AVERAGE SLOPES TRACT AREA (ACRES) 2% 5% 8% 10% 12%-15% 10 270 350 370 400 450 500 15 400 420 460 600 675 750 20 540 700 740 800 900 1000 40 1080 1400 1480 1600 1800 2000 80 2160 2800 2960 3200 3600 4000 100 2700 3500 3700 4000 4500 5000 150 4000 4200 4600 6000 6750 7500 200 5400 7000 1 7400 8000 1 9000 10000 IREV. APPROVED DATE CITY OF CARLSBAD /O^'^i^-vi-,. Lz ^-s—c: r\A 1 TEMPORARY DESILTATION BASIN OUTLET AND CAPACITY TABLE CITY ENGINEER DATE 1 TEMPORARY DESILTATION BASIN OUTLET AND CAPACITY TABLE SUPPLEMENTAL HQ Q 1 STANDARD NO, L^O-O 1 TEMPORARY DESILTATION BASIN OUTLET AND CAPACITY TABLE SUPPLEMENTAL HQ Q 1 STANDARD NO, L^O-O 1 Steps taken in designing desilting basins and risers 2. 3. 4. QIOO storm hydrologic Rational Method information were gathered at each node where a proposed desilting basin is proposed. Rational method information where converted into a hydrograph using procedure as outline in the 2003 San Diego County Hydrology Manual. County provided software was used in this step (Rathydro by Rick Engineering). Hydrograph was then manually entered into routing software. Software used here is Hydraflow^" version 6.01 by Intelisolve. Hydrograph was then routed to a pond with a riser. Base areas of ponds were initially sized using City of Carlsbad Supplemental Standard Drawing DS-3 as a guide. Ratio and proportion was applied to get target capacity for a basin that has an average slope of 2%). Summary of calculation results Basin QIOO Area C T P6 Target Capacity Design • side depth of Riser Provided basin location cfs acres mins in by ratio & prop. base area slope pond Diameter capacity cy sf Hto V ft cy node 101 2,57 0,58 0.77 6.55 2.60 27.00 400.00 4 to 1 4.00 18.00 210.96 node 236 14,62 3,22 0,77 6.31 2,60 108.00 1,225.00 4 to 1 4.00 36.00 404,30 node 241 52,53 10,30 0,77 5.27 2,60 297.00 3,025.00 4 to 1 4.00 36.00 765,78 node 313 6,34 1.63 0.77 7.08 2,60 54.00 900.00 4 to 1 4.00 24.00 332,44 For details of the calculations please the printouts attached as part of this section. Legend • Runoff ^ Combined H Channel Reach 1^ Diversion JL Pond Route i Project: DETPOND.GPW IDF: carlsbad26.IDF 8 hyd's 07-05-2005 ydrograph Summary Report I Hyd. No. Hydrograph type (origin) Peal< fiow (cfs) Time intervai (min) Time to peal< (min) Volume (cuft) Inflow hyd(s) Maximum elevation (ft) IVlaximum storage (cuft) Hydrograph description Manual Reservoir Manual Reservoir Manual Reservoir Manual Reservoir 14,62 10,29 52,53 30,54 2,57 0,38 6,34 2,94 246 246 245 250 245 252 245 252 23,263 23,257 74,469 74,465 4,271 4,269 11,735 11,730 199,71 8,591 183,89 19,859 189,48 1,899 196.02 6,238 HYD AT NODE 236 AT NODE 236 HYD AT NODE 241 AT NODE 241 HYD AT NODE 101 AT NODE 101 HYD AT NODE 313 AT NODE 313 DETPOND.GPW Return Period: 100 Year Wednesday, Aug 24 2005, 2:54 PM Hydraflow Hydrographs by Intelisolve 1 i WIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 7/5/2005 HYDROGRAPH FILE NAME Textl 1ME OF CONCENTRATION 6 MIN. [o HOUR RAINFALL 2.6 INCHES '^'^IN AREA 3.22 ACRES DFF COEFFICIENT 0.77 .,K DISCHARGE 14.622 CFS •TlfVIE (MIN) = "riME (MIN) = I "IME (M1N) = • "IME (MIN) = •"IME (MIN) = 24 •"IME (MIN)= 30 I "IME (MIN) = 36 LIME (MIN)= 42 • IME (MIN) = 48 PIME(MIN) = i"IME (MIN) = IME (M1N) = IME (MIN) = IME (MIN)= 78 IME (M1N)= 84 I IME (MIN) = IIME (MIN) = IME (MIN) = IME (MIN) = , "'ME (MIN) = LME (MIN) = •ME (MIN) = •ME (MIN) = 132 ~ME(MIN)= 138 kME(MIN) = ME (MIN) = ME (MIN) = ME (MIN) = j'ME(MIN) = yviE (M1N) = •viE^(MiN)^ -tse •/IE (MIN) = 186 IME (MIN) = 192 I VIE (MIN)= 198 •4E (MIN) = 204 •/IE (MIN) = 210 ^E(M1N)= 216 i^E(MlN)= 222 AE (MIN) = 228 ilE (MIN) = 234 4E (MIN) JME (MIN) ME (MIN) 54 60 66 72 90 96 102 108 114 120 126 144 150 156 162 168 174 240 246 252 flE (MIN)= 258 {IE (MIN) *IE (MiN) I IE (MIN) i 264 270 276 (E (MIN) = 282 IE (MIN) • IE (MIN) : IE (MIN) : JE (MIN)= 288 294 300 306 (MIN) = 312 (MIN) = 318 (MIN)= 324 (MIN)= 330 (MIN)= 336 (MIN)= 342 (M1N)= 348 j £ (MIN) = 354 ^ (MIN)= 360 H (MIN)= 366 DISCHARGE (CFS) • DISCHARGE (CFS) •• DISCHARGE (CFS) • 0 0,4 0.4 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 DISCHARGE (CFS) DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.8 - -DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 1 DISCHARGE (CFS) = 1 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1.2 DISCHARGE (CFS) = 1.3 DISCHARGE (CFS) = 1.5 DISCHARGE (CFS) = 1.8 DISCHARGE (CFS) = 2 DISCHARGE (CFS) = 3 DISCHARGE (CFS) = 4.7 DISCHARGE (CFS) = 14.622 DISCHARGE (CFS) = 2.4 DISCHARGE (CFS) = 1.6 DISCHARGE (CFS) = 1.3 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0 MCOE 23^ i i I I i I i i I k k I k I I I I k I k f k Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 1 HYD AT NODE 236 Hydrograph type = Manual Storm frequency = 100 yrs Wednesday, Aug 24 2005, 2:54 PM Peak discharge = 14.62 cfs Time interval = 6 min Q (cfs) 15.00 12.00 9.00 6,00 3,00 0,00 0.0 1.0 Hyd No. 1 2.0 Hydrograph Volume = 23,263 cuft HYD AT NODE 236 Hyd, No. 1 - 100 Yr 3,0 4,0 5,0 6.0 Q (cfs) 15.00 12.00 9,00 6,00 3,00 0,00 7,0 Time (hrs) Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 2 AT NODE 236 Hydrograph type = Reservoir Storm frequency = 100 yrs inflow hyd. No. = 1 Reservoir name = POND AT NODE 236 storage Indication method used. Wednesday, Aug 24 2005, 2:54 PM Peak discharge Time interval Max. Elevation Max. Storage = 10.29 cfs = 6 min = 199.71 ft = 8,591 cuft Hydrograph Volume = 23,257 cuft k k k k AT NODE 236 Hyd. No, 2-100 Yr 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9,0 10.0 11.0 Hyd No, 2 Hyd No. 1 Q (cfs) 15.00 12.00 9.00 6,00 3.00 0.00 12.0 Time (hrs) I i k 1 I I I k k k I I f I k k k •i k k I Pond Report Hydraflow Hydrographs by Intelisolve Wednesday, Aug 24 2005, 2:54 PM Pond No. 1 - POND AT NODE 236 Pond Data Bottom LxW = 35.0 x35,0 ft Side slope = 4,0:1 Bottom elev. = 196.25 ft Depth = 4,00 ft Stage / Storage Table stage (ft) Elevation (ft) Contour area (sqft) Incr. storage (cuft) Totai storage (cuft) 0,00 196,25 1,225 0 0 0,40 196,65 1,459 536 536 0,80 197,05 1,714 635 1,171 1,20 197,45 1,989 743 1,915 1,60 197,85 2,285 860 2,775 2.00 198,25 2,601 987 3,762 2,40 198,65 2,938 1,123 4,885 2.80 199,05 3,295 1,267 6,152 3.20 199,45 3,672 1,422 7,574 3.60 199,85 4,070 1,585 9,159 4,00 200,25 4,489 1,757 10,916 Culvert / Orifice Structures Weir Structures [A] [B] [C] [D] [A] [B] [C] [D] Rise (in) = 30,00 1,00 1,00 1.00 Crest Len (ft) = 9,42 0,00 0,00 0,00 Span (in) = 30,00 1,00 1.00 1.00 Crest Ei. (ft) = 199,25 0,00 0,00 0,00 No. Barrels = 1 5 5 5 Weir Coeff. = 3,33 0,00 0,00 0,00 invert El. (ft) = 190,00 196,25 197,25 198,25 Weir Type = Riser ... ... Length (ft) = 73,54 0,00 0,00 0,00 Multi-Stage = Yes No No No Slope (%) = 9,53 0.00 0,00 0,00 N-Vaiue = ,013 .013 ,013 ,013 Orif. Coeff. = 0,60 0.60 0,60 0,60 Muiti-Stage -= Tl/r Yes-Yes Yes Exfiltration = 0,000 In/hr (Wet-area)^ Tailwater Elev, = 0,00 ft Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control. Weir riser checl<ed for orifice conditions. Stage / Discharge 2.00 1,00 0.00 Stage (ft) 4,00 3,00 0.00 3.00 Total Q 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00 2,00 1,00 0.00 30.00 33.00 Discharge (cfs) I I i .-<AI lUNAL IVIt I liUU MYUKUUKAKH KKUUKAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 7/5/2005 HYDROGRAPH FILE NAME Textl TIME OF CONCENTRATION 5 MIN. 6 HOUR RAINFALL 2.6 INCHES BASIN AREA 10.3 ACRES OFF COEFFICIENT 0.77 DISCHARGE 52.53 CFS ITIME (MIN) = TIME (MIN) = 1 riME (MIN) = • riME (M1N) = • riME (MIN) = ^IME (MIN) = I "IME (MIN) = ||"IME(MIN) = • ,"IME (MIN) = •TIME (MIN) = , "IME (MIN) = ^ "IME (MIN) = • "IME (MiN) = •"IME (MIN) = "^1ME(M1N) = j IME (MIN) = • •1ME(M1N) = • iME (M1N) = ^IME (MIN) = i IME (MIN) = ^1ME(MIN) = • IME (MIN) = •IME (MIN) = "'IME (MIN) = i IME (MIN) = • IME (MIN) = •iME (MIN) = "IME (MIN) = I !ME (MIN) = |b;ME (MIN) = ^•:METMIN) = •ME (MIN) = , IME (MIN) = LME(MIN) = • ME (MIN) = •ME (MIN) = ~ME (MIN) = iME (MIN) = ME (MIN) = ME (MIN) = ME (MIN) = , 'ME (MiN) = L.VIE (MIN) = •VIE (MIN) = •ME (MIN) = HME (MIN) = iVlE (MIN) = vIE (MIN) = >J\E (MIN) = i/IE (MIN) = f-AE (MIN) = ^E (MIN) = WAE (MIN) = VE (MIN) = IME (MIN) = L/IE (MIN) = •lE (MIN) = •ME (MIN) = "TME (MIN) = I IE (MIN) = ipE (MIN) = TBIE (MIN) = THE (MIN) = SE (MIN) = m] = E (MIN) = JME (MIN) = JE (M1N) = (1V1IN) = IE (MIN)= (MIN) = 0 DISCHARGE (CFS) = 0 5 DISCHARGE (CFS) = 1.2 10 DISCHARGE (CFS) = 1.2 15 DISCHARGE (CFS) = 1.3 20 DISCHARGE (CFS) = 1.3 25 DISCHARGE (CFS) = 1.3 30 DISCHARGE (CFS) = 1.3 35 DISCHARGE (CFS) = 1.3 40 DISCHARGE (CFS) = 1.4 45 DISCHARGE (CFS) = 1.4 50 DISCHARGE (CFS) = 1.4 55 DISCHARGE (CFS) = 1.4 60 DISCHARGE (CFS) = 1.4 65 DISCHARGE (CFS) = 1.5 70 DISCHARGE (CFS) = 1.5 75 DISCHARGE (CFS) = 1.5 80 DISCHARGE (CFS) = 1.6 85 DISCHARGE (CFS) = 1.6 90 DISCHARGE (CFS) = 1.6 95 DISCHARGE (CFS) = 1.7 100 DISCHARGE (CFS) = 1.7 105 DISCHARGE (CFS) = 1,7 110 DISCHARGE (CFS) = 1,8 115 DISCHARGE (CFS) = 1.8 120 DISCHARGE (CFS) = 1.9 125 DISCHARGE (CFS) = 1.9 130 DISCHARGE (CFS) = 2 135 DISCHARGE (CFS) = 2 140 DISCHARGE (CFS) = 2.1 145 DISCHARGE (CFS) = 2.2 150 DISCHARGE (CFS) = 2.2 - 155 DISCHARGE (CFS) = 2.3 160 DISCHARGE (CFS) = 2.4 165 DISCHARGE (CFS) = 2.5 170 DISCHARGE (CFS) = 2.6 175 DISCHARGE (CFS) = 2.7 180 DISCHARGE (CFS) = 2.8 185 DISCHARGE (CFS) = 3 190 DISCHARGE (CFS) = 3.2 195 DISCHARGE (CFS) = 3,4 200 DISCHARGE (CFS) = 3.6 205 DISCHARGE (CFS) = 4 210 DISCHARGE (CFS) = 4.2 215 DISCHARGE (CFS) = 4.9 220 DISCHARGE (CFS) = 5.3 225 DISCHARGE (CFS) = 6.4 230 DISCHARGE (CFS) = 7.3 235 DISCHARGE (CFS) = 10.8 240 DISCHARGE (CFS) = 17 245 DISCHARGE (CFS) = 52.53 250 DISCHARGE (CFS) = 8.6 255 DISCHARGE (CFS) = 5.8 260 DISCHARGE (CFS) = 4.5 265 DISCHARGE (CFS) = 3.8 270 DISCHARGE (CFS) = 3.3 275 DISCHARGE (CFS) = 2.9 280 DISCHARGE (CFS) = 2.7 285 DISCHARGE (CFS) = 2.5 290 DISCHARGE (CFS) = 2.3 295 DISCHARGE (CFS) = 2.1 300 DISCHARGE (CFS) = 2 305 DISCHARGE (CFS) = 1.9 310 DISCHARGE (CFS) = 1.8 315 DISCHARGE (CFS) = 1.7 320 DISCHARGE (CFS) = 1.6 325 DISCHARGE (CFS) = 1.6 330 DISCHARGE (CFS) = 1.5 335 DISCHARGE (CFS) = 1.5 340 DISCHARGE (CFS) = 1.4 345 DISCHARGE (CFS) = 1.4 350 DISCHARGE (CFS) = 1.3 355 DISCHARGE (CFS) = 1.3 TIME (MIN) = 360 DISCHARGE (CFS) = 1.3 TIME (MIN) = 365 DISCHARGE (CFS) = 0 Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 3 HYD AT NODE 241 Hydrograph type = Manual Storm frequency = 100 yrs Wednesday, Aug 24 2005, 2:54 PM Peak discharge = 52.53 cfs Time interval = 5 min Hydrograph Volume = 74,469 cuft ll Q (cfs) 60.00 • ~^0.00 - 40.00 - 30,00 - HYD AT NODE 241 Hyd, No. 3- 100 Yr i k I 20,00 10,00 0,00 0,0 0,8 Hyd No. 3 1.7 2,5 T 1 Q (cfs) 60.00 40.00 30,00 20.00 10,00 0.00 3,3 4,2 5,0 5,8 6,7 Time (hrs) k Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 4 AT NODE 241 Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 3 Reservoir name = POND AT NODE 241 Wednesday, Aug 24 2005, 2:54 PM Peak discharge Time interval Max. Elevation Max. Storage = 30.54 cfs = 5 min = 183.89 ft = 19,859 cuft storage Indication method used. Hydrograph Volume = 74,465 cuft i i I I I I Q (cfs) 60,00 - 50.00 - AT NODE 241 Hyd. No. 4- 100 Yr 40.00 30.00 20.00 10,00 0.00 Hyd No, 4 Hyd No. 3 l> 1 " Q (cfs) 60.00 50,00 40.00 30,00 20,00 10.00 0,00 0,0 0,8 1,7 2.5 3,3 4.2 5,0 5.8 6.7 7.5 8.3 Time (hrs) I i i KM I lUNML IVItl nUU liYUKUGKAPM PKUGKAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 7/5/2005 HYDROGRAPH FILE NAME Textl TIME OF CONCENTRATION 7 MIN. 6 HOUR RAINFALL 2.6 INCHES B'^'^IN AREA 0.58 ACRES I DFF COEFFICIENT 0.77 PL^K DISCHARGE 2.57 TIME (M1N)= 0 TIME (MIN) = 7 riME(MlN)= 14 riME(MIN)= 21 •TIME (MIN) TIME (MIN) = i TIME (MIN) = §|riME(MlN) = TIME (MiN) = TIME (MIN) = i''lME(MIN) = "IME (MIN) = "IME (MIN) = "IME (MIN) = TIME (MIN) = I 'IME (MIN) = • •|ME(MIN) = •i1ME(MIN) = ^IME(MIN) = j "IME (MIN) = i IME (MIN) = • IME (MIN) = •lME(MlN) = * "'IME (MIN) = IME (MIN) = IME (MIN) = IME (MIN) = IME (MIN) = I :ME(M1N) = »;ME (MIN)_=_ • ,ME (MiN) = 210 •IME (MIN) = 217 . 'ME (MIN)= 224 LME (M1N)= 231 • ME (M1N)= 238 UME (MIN) = 245 "^IME (MIN) = 252 lME(MIN) = •ME (MIN) = •ME (MIN) = ^ME(M1N) = 1 'ME (MIN) = ^ME (MIN) = •.VIE (MIN) = QME (MIN) = 71ME (MIN) = VIE (MIN) = ri/lE (MIN) = /IE (MIN) = /IE (MIN) = i/E (MIN) = /IE (MIN) = ;IE (MIN) = 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 161 168 175 182 189 196 203 CFS DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0,1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.5 0,6 259 266 273 280 287 294 301 308 315 322 329 336 343 350 357 364 DISCHARGE (CFS) DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = DISCHARGE (CFS) = 2.57 DISCHARGE (CFS) = 0.4 DISCHARGE (CFS) = 0.3 DISCHARGE (CFS) = 0.2 DISCHARGE (CFS) = 0.2 DISCHARGE (CFS) = 0,1 DISCHARGE (CFS) = 0,1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0.1 DISCHARGE (CFS) = 0 k k k k Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 5 HYD AT NODE 101 Hydrograph type = Manual Storm frequency = 100 yrs Wednesday, Aug 24 2005, 2:54 PM Peak discharge = 2.57 cfs Time interval = 7 min Hydrograph Volume = 4,271 cuft Q (cfs) 3.00 HYD AT NODE 101 Hyd, No. 5-100 Yr 2.00 1.00 0,00 -- / \ \ \ Q (cfs) 3,00 2,00 1,00 0,00 0,0 0,6 1.2 Hyd No, 5 1,8 2,3 2.9 3.5 4.1 4.7 5,3 5.8 6.4 Time (hrs) k Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 6 AT NODE 101 Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 5 Reservoir name = POND AT NODE 101 Wednesday, Aug 24 2005, 2:54 PM Peak discharge Time interval Max. Elevation Max. Storage = 0.38 cfs = 7 min = 189.48 ft = 1,899 cuft 10 Storage Indication method used. Hydrograph Volume = 4,269 cuft Q (Cfs) 3,00 AT NODE 101 Hyd. No, 6- 100 Yr k I 1 k k k i Q (Cfs) 3,00 Pond Report 11 Hydraflow Hydrographs by Intelisolve Pond No. 3 - POND AT NODE 101 Pond Data Bottom LxW = 20.0 x 20.0 ft Side slope = 4.0:1 Wednesday, Aug 24 2005, 2:54 PM Bottom elev. = 187.30 ft Depth = 4.00 ft Stage / Storage Table stage (ft) Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft) 0.00 187,30 400 0 0 0,40 187,70 538 187 187 0.80 188,10 697 248 435 1.20 188.50 876 317 752 1.60 188.90 1,076 396 1,148 2.00 189.30 1,296 484 1,632 2.40 189.70 1,537 581 2,213 2.80 190,10 1,798 688 2,901 3.20 190,50 2,079 804 3,705 3,60 190,90 2,381 929 4,633 4,00 191,30 2,704 1,063 5,696 Culvert / Orifice Structures Weir Structures [A] [B] [C] [D] [A] [B] [C] [D] Rise (in) = 18,00 1,00 1.00 1,00 Crest Len (ft) = 4.71 0.00 0,00 0,00 Span (in) = 18,00 1,00 1,00 1,00 Crest El. (ft) = 190.30 0,00 0,00 0,00 No. Barrels = 1 5 5 5 Weir Coeff. = 3.33 0.00 0,00 0,00 Invert El. (ft) = 184,30 187,30 188,30 189.30 Weir Type = Riser ... Length (ft) = 77,37 0,00 0.00 0.00 Multi-stage = Yes No No No Slope (%) = 26,83 0,00 0.00 0.00 N-Value = ,013 ,013 .013 .013 Orif. Coeff. = 0,60 0,60 0,60 0.60 Multi-stage = n/a -Yes "Yes— -^es Exfiltration = 0.000 in/hr (Wet area) Tailwater £lev,-=-0:QO ft Note; Culvert/Orifice outflows have been analyzed under inlet and outlet control. Weir riser checked for orifice conditions. Stage / Discharge Stage (ft) 4.00 Total Q I i .-^Al lUINML IVIC:l nuU MYUKUUKAKM PKUGKAA/I COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 7/5/2005 ^YDROGRAPH FILE NAME Textl TIME OF CONCENTRATION 7 MIN. 6 HOUR RAINFALL 2.6 INCHES P'^SINAREA 1.63 ACRES OFF COEFFICIENT 0.77 ^AK DISCHARGE 6.339 CFS n"IME(MlN)= 0 DISCHARGE (CFS) = 0 , TIME (MIN) = 7 DISCHARGE (CFS) = 0.2 1 "IME (MIN) = 14 DISCHARGE (CFS) = 0.2 • "IME (MIN) = 21 DISCHARGE (CFS) = 0.2 if, /IE (MIN) = 28 DISCHARGE (CFS) = 0.2 riME(MIN)= 35 DISCHARGE (CFS) = 0.2 1 "IME (MIN) = 42 DISCHARGE (CFS) = 0.2 I;iME(MlN)= 49 DISCHARGE (CFS) = 0.2 , IME (MIN) = 56 DISCHARGE (CFS) = 0.2 TIME (MIN) = 63 DISCHARGE (CFS) = 0,2 f "IME (MIN) = 70 DISCHARGE (CFS) = 0.2 i IME (MIN) = 77 DISCHARGE (CFS) = 0.2 • IME (MIN) = 84 DISCHARGE (CFS) = 0.3 ^IME(MIN)= 91 DISCHARGE (CFS) = 0.3 TIME (MIN) = 98 DISCHARGE (CFS) = 0.3 IME (MIN) = 105 DISCHARGE (CFS) = 0.3 IME (MIN) = 112 DISCHARGE (CFS) = 0.3 IME (MIN) = 119 DISCHARGE (CFS) = 0.3 IME (MIN) = 126 DISCHARGE (CFS) = 0.3 ME (MIN) = 133 DISCHARGE (CFS) = 0.3 ME (MIN) = 140 DISCHARGE (CFS) = 0.3 ,;ME(MIN)= 147 DISCHARGE (CFS) = 0.4 I I ME (MIN) = 154 DISCHARGE (CFS) = 0.4 pME (MIN) = 161 DISCHARGE (CFS) = 0.4 1 ME (MIN) = 168 DISCHARGE (CFS) = 0,4 • ME (MIN) = 175 DISCHARGE (CFS) = 0.4 •ME (MIN) = 182 DISCHARGE (CFS) = 0.5 T(ME(MIN)= 189 DISCHARGE (CFS) = 0.5 iME (MIN) = 196 DISCHARGE (CFS) = 0.5 ME (MIN) = 203 DISCHARGE (CFS) = 0.6 m(Mm)=~m DISCHARGE (CFS)= 0.7 ME (MIN) = 217 DISCHARGE (CFS) = 0.8 jME (MIN) = 224 DISCHARGE (CFS) = 0.9 ME (MIN) = 231 DISCHARGE (CFS) = 1.4 ME (MIN) = 238 DISCHARGE (CFS) = 2.5 ME (MIN) = 245 DISCHARGE (CFS) = 6.339 ME (MIN) = 252 DISCHARGE (CFS) = 1.1 f \/!E(MlN)= 259 DISCHARGE (CFS) = 0.7 •VIE (MIN) = 266 DISCHARGE (CFS) = 0.6 ME (MIN) = 273 DISCHARGE (CFS) = 0.5 m^t\E (MIN) = 280 DISCHARGE (CFS) = 0.4 I 'ME (MIN) = 287 DISCHARGE (CFS) = 0.4 LyiE (MIN) = 294 DISCHARGE (CFS) = 0.3 MAE (MIN) = 301 DISCHARGE (CFS) = 0.3 •^E (MIN) = 308 DISCHARGE (CFS) = 0.3 -IME (MIN) = 315 DISCHARGE (CFS) = 0.3 ! /IE (MIN) = 322 DISCHARGE (CFS) = 0.3 •/IE (MIN) = 329 DISCHARGE (CFS) = 0.2 MAE (MIN) = 336 DISCHARGE (CFS) = 0.2 ^E (MIN) = 343 DISCHARGE (CFS) = 0.2 t1E(MlN)= 350 DISCHARGE (CFS) = 0.2 IE (MIN) = 357 DISCHARGE (CFS) = 0.2 IE (MIN) = 364 DISCHARGE (CFS) = 0 k f I k k 1t> (^roP-oeHf^^H (00O£ 3fS k Hydrograph Plot Hydraflow Hydrographs by Intelisolve Hyd. No. 7 HYD AT NODE 313 Hydrograph type = Manual Storm frequency = 100 yrs Q (Cfs) 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0,00 12 Wednesday, Aug 24 2005, 2:54 PM Peak discharge = 6.34 cfs Time interval = 7 min Hydrograph Volume = 11,735 cuft HYD AT NODE 313 Hyd, No, 7- 100 Yr 0.0 0,6 1,2 1.8 2,3 2,9 3.5 4.1 Hyd No, 7 \ / 1 \ Q (cfs) 7.00 6,00 5.00 4,00 3.00 2.00 1.00 0.00 4,7 5.3 5.8 6,4 Time (hrs) Hydrograph Plot 13 Hydraflow Hydrographs by Intelisolve Hyd. No. 8 AT NODE 313 Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 7 Reservoir name = POND AT NODE 313 Wednesday, Aug 24 2005, 2:54 PM Peak discharge Time interval Max. Elevation Max. Storage = 2.94 cfs - 7 min = 196.02 ft = 6,238 cuft storage Indication method used. Hydrograph Volume = 11,730 cuft Q (Cfs) 7.00 6.00 - 5.00 4.00 3.00 AT NODE 313 Hyd. No, 8- 100 Yr Q (Cfs) 7.00 6.00_ 5,00 4,00 3,00 Hyd No, 8 Hyd No. 7 k i i t i k k k I k t I k I Pond Report 14 Hydraflow Hydrographs by Intelisolve Pond No. 4 - POND AT NODE 313 Pond Data Bottom LxW = 30.0x30.0 ft Side slope = 4,0:1 Stage / Storage Table Wednesday, Aug 24 2005, 2:54 PM Bottom elev, = 192.79 ft Depth = 4,00 ft stage (ft) Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage 0,00 192.79 900 0 0 0,40 193.19 1,102 400 400 0,80 193.59 1,325 486 886 1.20 193,99 1,568 581 1,467 1,60 194,39 1,832 686 2,153 2.00 194,79 2,116 799 2,952 2.40 195,19 2,421 922 3,874 2.80 195,59 2,746 1,054 4,928 3.20 195,99 3,091 1,196 6,124 3.60 196,39 3,457 1,346 7,470 4.00 196,79 3,844 1,506 8,976 Culvert / Orifice Structures Weir Structures [A] [B] [C] [D] [A] [B [C] [D] Rise (in) Span (in) No. Barrels Invert El. (ft) Length (ft) Slope (%) N-Value Orif. Coeff. Multi-stage 12,00 12,00 1 184,71 117,67 12,71 ,013 0.60 n/a 1,00 1,00 5 192,79 0,00 0,00 ,013 0.60 Yes 1,00 1,00 5 193.79 0.00 0.00 ,013 0,60 Yes 1,00 1,00 5 194,79 0.00 0.00 .013 0.60 Yes Crest Len (ft) Crest Ei. (ft) Weir Coeff. Weir Type Multi-stage 6.28 195.79 3.33 Riser Yes 0.00 0.00 0.00 No 0.00 0.00 0.00 No 0.00 0.00 0.00 No Exfiltration = 0.000 in/hr (Wet area) Tailwater Elev. = 0.00 ft Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control. Weir riser checl<ed for orifice conditions. Stage / Discharge Stage (ft) 4.00 3.00 2.00 1.00 0.00 11.00 12.00 13.00 Discharge (cfs) REGIONAL QUALITY CONTROL BOARD REQUIREMENTS + Calculate O's to treat using the State Water Resource Control Board Requirements Per the California Regional Water Quality Control Board, San Diego Region, order no. 2001-01 pages 18 & 19, in order to get the required flow to be treated, we can either use : i. The maximum flow rate of runoff produced from a rainfall intensity of 0.2 inch of rainfall per hour; or ii. The maximum flow rate of runoff produced by the 85th percentile hourly rainfall intensity, as determined from the local historical rainfall record, multiplied by a factor of two; or iii. The maximum flow rate of runoff, as determined from the local historical rainfall record, that achieves approximately the same reduction in pollutant loads and flows as achieved by mitigation ofthe 85th percentile hourly rainfall intensity multiplied by a factor of two. For this project we are going to use the maximum flow rate of runoff produced from a rainfall intensity of 0.2 inch of rainfall per hour. Please see the Post-development Hydrology Basin Map to see locations ofthe nodes. C values where derived using the formula Q=CIA. Values of Q, I and A are from the confluence results of the node junction. SYSTEM NODE (A)AREA Tc C / Q=CIA (Acres) (Mins) (In/Hr) cfs LINE A-1 102 3.29 7.13 0.78 0.20 0,51 UNE B-7 226 2.06 4.90 0.78 0.20 0.32 LINE C-2 304 5.88 7.62 0.80 0.20 0.94 SYSTEM Required CDS Treated Remarlis SYSTEM Q MODEL flow LINE A-1 0.51 PMSU20_15 0.70 Exceeds requirement LINE B-7 0.32 PMSU20 15 0.70 Exceeds requirement LINE C-2 0.94 PMSU20 20 1.10 Exceeds requirement CDS OFFERS BOTH OFFLINE AND INLINE TREATMENT CONFIGURATIONS TO MEET THE HYDRAULIC & WATER QUALITY NEEDS OF LARGE & SMALL PROJECTS CDS Technologies is an innovative best manage practice (BMP) that is well suited to treat a large range of storm water Tlows and conditions to include discharges from . combined sewer overflows (CSOs)., CDS Technologies offers a solid separation unit to , treat storm water runoff, the runoff from vehicle parking and other areas subject to the buildup of oil, grease, sediment, trash and debris as well as CSOs. CDS units are also well-suited to treat the effluent from wash racks or as a pretreatment for oil/water sepa- rators or pump stations. HOW CDS SYSTEM WORKS CDS technology uses the available energy of the storm flow to create a balanced hydraulic system to cause a natural separation of solids from fluids. In addition to its intemal swirl concentrating process, the continuous circulating flow over the perforated separation screen keeps it from blocking. Pollutants are captured inside the separation ,chamber while the water passes through the separation screen. CDS provides a unique, rion-blocking screening systerp with no moving parts. Inline Small CDS Systems '•' Inline PMSIJ niodels-arevervicost effective Offline Small & LargeXDS Byftlms Offline PSW models'allow-.for highflow bypass Balanced Hydraulics: Strong rotational velocities ensure that ttie screen is continually washed. I •ml' 'i'^-l" I When CDS Technologies intro(iuced continuous deflective separation BMPs to the United States in 1996, it revolu- tionized the treatment of storm water and combined sewer overflows. Since this time, CDS has continued to evolve its methods of water treatment with products distinguished not only by engineering innovation, but by an untarnished record of dependability. How is this possible? It begins with a conscientious commitment to customer service. CDS engineers partner with customers to ensure optimized designs and equipment performance for both offiinsUnit / 01 urban sewer and storm drainage systems. From the begin- ning, we evaluate the very specific nature of inline Unit / 02 your project plan so that we can design and specify equip- ment accordingly; our goal is to provide treatment systems that are the right fit and that will provide value over time. Drdpinietunit / 04 With more professional water quality engineers on staff than any other treatment provider, our ability to respond and resolve planning design and construction issues is unparalleled. Our engineers can also help guide you through Phase I and Phase II NPDES permitted projects. The following descriptions of CDS Technologies'storm water treatment BIVIPs will provide you with a basic understanding of our equipment and what you can expect from an operational perspective. When you have questions, know that professional engineering support is available to you. We look forward to the prospect of working with you now and over the long term. Media Filtration Systefn—/ 03 OFFLINE UNIT Untreated storm water is a recogntzBd concern, both locally and nationally. As the sources of storm water pollution grow, so do the ways and requirmenls for t resting and managing storm water. Storm water ranoff contains sediments, carcinogenic metals, pathogens, herbicides, pesticides, nutrients, debris, oils, trash - everything washed off of urbanized watersheds. Process Offline Units from CDS Technologies are designed to treat storm water flow ranges fronn 1 to 300 cubic feet per second (cfs) and higher. Treatment flow is diverted from a storm channel or pipeline into the Offline Unit. 1. Storm water enters the Offline Unit's diversion chamber. 2. A diversion weir guides the flow into the unifs separation chamber where a vortex is formed. 3. The vortex separates most suspended solids in the separation chamber. 4. Suspended solids settle into a sump where they remain until they are removed. 5. Floatable and neutrally buoyant debris are retained in the separation chamber. 6. The stationary separation screen of the separa- tion chamber doesn't become bloclted because of the washing vortex, so liquid moves through the stationary screen cylinder, 7. Cleaned storm water moves out of the separation chamber and passes beneath an oil baffle. 8. Treated flow exits the unit into the diversion chamber downstream from the diversion weir, re-entering the storm water drain system. With patented continuous deflective separation (CDS) lechnalogy. the Offline Unit uses the hydraulic energy of water to concentrate, screen and trap many of these stormwater pollutants. The Offline Unit removes 8D% of total suspended solids aSS) as well as 1P0% of floata- hies and neufrally buoyant material, plus oil and grease. Advantages The Offline Units are self-operating. Since they have no moving parts and are entirely gravity driv- en, maintenance is low. The screens and hard- ware are stainless steel, and resist corrosion. These units have large sump storage capacities ranging from 424-1,396 gallons, depending upon the model used. The diversion weir is designed to bypass exces- sive flows without affecting the operation of the unit or storm drain system. Bypass flows don't wash out any of the captured pollutants. The unit's oil retention baffle effectively controls oil and grease. When sorbents are added, the per- manent capture efficiency increases to 80-90 percent. Capable of treating peak storm flows up to 300-cfs, the Offline Unit removes 100 percent of floatables. This type of storm water treatment can be placed offline anywhere on the network with minimum retrcfitting costs. Since the units are compact and easy to place in confined areas, space requiranents are minimal. Precast and Cast-in-place Offline Units To meet different site lequirements, the units are available in a variety of models, and configured either precast or cast-in-place. Fifteen precast mod- els are readily available to treat flows from as little as 0.7-cfs up to flows of 64-cfs. Cast-in-place rein- forced concrete units, using conventional construc- tion techniques, can be built to treat flows up to 300-cfs. CDS units can also be placed in parallel or series to treat larger flows. Maintenance Depending on the site's pollutant loading charac- teristics, seasonal sump cleanout and annual inspection of the screen surface are the only requirements necessary to promote successful and efficient operation of the CDS Offline Unit. Since the units have large sump capacities, the sump can be cleaned out with a standard vactor truck, sump basket or clamshell one to four times per year. The CDS screen and sump can be visually mspected for any remaining debris. There is no need for manned entry into the unit, which pre- vents any direct contact with captured pollutants. INLINE UNIT Polluted storm water runoff comes under control with the CDS Inline Unit. Placed on the main storm drain within one manhole, its unique configuralion meets multiple enginesring obiectives by combining both treatment and bypa$s capabilities in one structure. By utilizing CDS' patented non-blocking screening technology, the Inline Unit ensures removal of both fine and suspended solids along with oil, grease, trash and debris. Process Developed to complement CDS' offline storm water treatment systems, the Inline Unit also uses continuous deflective separation (CDS) technology. 1. A channeling weir collects the flow for entrance into the separation chamber. 2. Storm water enters the diversion chamber. 3. The natural vortex in the separation chamber separates suspended and fine sediments to the center of the chamber for eventual settling in the sump. 4. Because of the washing vortex, the patented separation screen will not become blocked and screened liquid passes through. 5. After flowing beneath the oil baffle, screened flow discharges from the unit. Advantages One structure meets multiple engineering objectives. The sump is an important design feature of all CDS units. Sumps prevent scour because deposited material is not stored within the treatment flow path. Handles treatment flows greater than 20-cfs. Capable of bypassing flows in excess of 50-cfs. Offering a remarkably small footprint, the Inline Unit can be incorporated into new development projects or retro- fitted into existing storm water collection systems. The unit is totally underground, has no moving parts and requires no supporting infrastructure. CDS can customize design for larger treatment and bypass flow events. The Inline Unit removes 80% of total suspending solids (TSS) as well as 100% of floatables and neutrally buoyant material, plus oil and grease. Due to its non-blocking screen and non- mechanical function, the Inline Unit is a low maintenance treatment option. Maintenance As a general rule, CDS recommends removing solids with a standard vactor truck once a year. Depending on each site's pollutant loading charac- teristics, more cleanouts may be necessary Seasonal sump cleanout and annual inspection of the screen surface are typically the only require- ments necessary to promote successful and effi- cient operation of the CDS Inline Unit. Once the access hatch into the CDS unit is opened, the maintenance crew will remove the contents of the sump and separation chamber using a vactor truck as the best cleaning method. The CDS screen and sump can then be visually inspected for any remaining debris. At this point the procedure is complete. There is no need for manned entry into the unit, which prevents any direct contact with captured materials. CASE 1° STUDY MliQu's tar^ris^ COS imittrustscl trsat TS-c^'s o! Caiifoniia highway runo'l ll; .CaJitornia, : sxcccted w no ft from a '-Ix-mlle st^ch of lntprr,.atc 210 -r, e/ght •p^e 'rrcvay bounding north em Los Angp.lp^ wa^ T nu ' w ^rr/ 'or fi3 Ca ' C-cart^ - t a* Tran^oTta'oi (Calfrans/. Tne sunKeir concreis roadwav runs thnxighaa area of many-homes and soar.e was'tight for installation of storm watpr unit'^ Titi<; .d^d- not' favor installing runoff catch units that hold large volumes of water-in which pollutants separate over time.. By contrast, the CDS technology was chosen for Its ability to quicklvand effectively sepamte pol- lutants and. debns from storm v/ater njnrft Five separate CDS'units were installed for this cmject, including tha nation's largest Offline Unit 'built to filter a water quality runoff event ot 1 75-c's CDS' screening technalagv prevent'^ p California's 1-210 trom entering the Paahc Ocean. MEDIA FILTRATION SYSTEM 'if- For hundreds of years, filtering water through media has been widely recognized as one of the most effec- tive methods for treatment of public water supply and industrial sites. For storm water applications, media filtration products are simple direct filtering systems, whereby the water needs enough energy to push through the porous media. The basics of water treat- Process The CDS Media Filtration System provides more fine media filtration per plan view square foot area than any storm water filter product available today. The System is composed of rechargeable media- filled cartridges to target and remove specific pol- lutants, such as heavy metals, oils, greases and fine gradations of suspended solids. The CDS media filtration cartridge is designed to accept var- ious types of media that can be easily replaced or exchanged at any time. The single float control assembly that activates fil- tration of all cartridges is a proven technology con- structed of high quality stainless steel, and is the only moving part in the treatment system. The assembly is isolated from the treatment area to protect the mechanism from any potential obstruc- tions including fouling pollutants. A series of media-filled cartridges and a sedi- mentation bay below the cartridges is used to capture and settle out larger particles. Higher quality water reaches the cartridges for filtration, because a large portion of pollutants are pre-settled and held below the cartridges. Sediment bay stores pollutants up to IS inches thick. ment using media filtration require that pollutants or solids precipitate, adsorb or absorb themselves to the media, and CDS has designed its system to do just that. When regulations call for higher removal of a finer gradation of fine and suspended particles, the CDS Media Filtration System can he relied on to meet the challenge. Single float valve ensures that treatment flow matches inflow, which provides the lowest possi- ble hydraulic loading rate on each cartridge and translates to higher removal efficiencies than siphon-activated systems. Cartridges designed to variably handle 7.5 - 18 gallons per minute. System treats flow rates ranging from less than 1 cubic foot per second (cfs) to flows in excess of 10-cfs. Configurations Its The Media Filtration System can be configured inside either precast or cast-in-place concrete vaults or simple precast manhole structures. .. scalability ranges from small developments using round or square catch basins, manholes and pre- cast vaults, to larger developments requiring cast- in-place concrete structures. When combined with a standard CDS unit upfront for pretreatment, the two systems serve as a teatment train to more thoroughly and efficiently remove a wide range of pollutants from the water column. UNIQUE DESIGN FEATURES Zi''•''..' The hydraulic operation activates jP car- tridges simultaneously, ensuring even, hydraulic loading through the entire bed of filter cartridges for more efficient pollutant •'removal. j;; /jf!<?:ij!9at tontroj a^ is visible from the surface, rattier than concealed wit.nin the cartridge, allowmg operators to assess, functionality and make adjustments for ii Rrppersoperation. The 5ysten),,::!s:designed .with storage -for the accumulation of solids below the cartridges to prevent build-up of material on the car- tridges themselves. This pre-sedimentation increases the runtime and life cycle of the ^ filter cartridges. The system is flexibly designedlo drain to ; levels below the cartridges" following storm events or completely dram the entire vault. ^ ensures tfiat the cartridges are not siib- merged during Um flow events or due to nuisance flows. These conditions lead to ; biological growths that have plagued other systems. Completely draining the vault eli.minates vector concerns. MEDIA FILTRATION SYSTEM •Is.. tli .p. t$i- IVIaintenance Maintenance of the CDS Media Filtration System can be performed by any qualified personnel and does not require specialized or proprietary equip- ment or media. Since maintenance intervals of any storm water BMP are highly site-specific, CDS rec- ommends the cleaning and inspection schedule below to ensure successful operation of the Media Filtration System. Detailed Operations and Maintenance Guidelines are available from CDS Technologies Inc. ANNUAL MAINTENANCE: Inspect system prior to rainy season. Observe floatable accumulation; check inlet and outlet pipes for obstructions. If possible, observe system during a storm event to determine whether or not water is in bypass due to clogging of the media. Measure depth of material in the sediment bay below the cartridges. In the dry season, recharge or replace media and cartridges as necessary, and remove float- able trash and debris. TWO-THREE YEAR MAINTENANCE: Replace filter cartridges and clean sediment stor- age area below cartridges. CDS' cartridges vjere designed to accept vanous types of Tiedia to target and remove , site-specific pollutants. Media can be easily replaced or exchanged at any time. MEDIA SELECTION: iPeriite • • Zeolite • Granular Activated Carbon . Ionic Exchange Media •;Peat JARGET AND REMOVE: Suspended Solids Heavy Metals Nutrients Oil and Grease CASE ll STUDY CDS prov;ties :r5,at;..'o •fmm '//ater traalifienJ. :^o!«ti.ifi fcr bielro-AtSsnla The Lindbergh City Center mass transit station redevelopment, near the heart of Atianta. was aesigned to serve more than 20,000 commiute^s each day The conwlex has 4.g million square feet of development, including 2.2 million square feet cf-office space, 250.000 square feet of retaH, a-d ready 600 resioential units. Engineers noted party on that the property contributed -a significant amoijct uf untreated runof; to the Atianta storm water collection system, and after researching sev- eral options, they recommended using cos'-ef'ec- tive CDS units. Nine precast-Inhile Uttits'were .n^tai.ed at tns ne,v Linabergh City-Center site to cean runoff from the development Now, 95 per- cent of d'l the storm water flow is filtered before continuing downstream •' ^ PfB-a^r Cts Inline Units are compact and easily installed below ground, so space lequiimients are modas' DROP INLET UNIT Although catch basins are readily used across fhe U.S., few are ideally designed for sediment and pollutant capture like the Drop Inlet Unit from CDS, The Drop Inlet Unit, or Precast Manhole Insert Unit, removes suspended solids, sediments, trash, debris, oil and grease along with floatable materials from storm water flows. The Drop Inlet Unit provides the Process Using patented continuous deflective separation (CDS) technology, the Drop Inlet Unit effectively and efficiently separates solids from liquids. 1. Storm water flow enters the inlet grate or curb inlet and is channeled into the separation chamber. 2. It passes over a specially perforated separation screen in a hydraulically balanced condition, creating vortex solid separation. 3. Solids are then captured and retained within the central chamber. The fluid dynamics along the surface of the screen and the deflective characteristics of the screen prevent blocking. 4. Fluid passes through the screen and beneath an oil baffle before it exits via the storm drain outlet pipe. 5. Suspended solids, sediments and other solid pollutants, including oil and grease, trash and debris, are retained in a centrally located solids catchment chamber. The heavier solids settle into the sump. lowest cost per cfs processed when compared to other structural Best Management Practices. Its patented non-blocking screen and non-mechanical function make it a low maintenance storm water treatment solution for very small developments. Advantages The Drop Inlet Unit is an effective fine solid separator, and no other BMP comes close to its assured removal of gross solids and neutrally buoyant material. Installed underground, the Drop Inlet Unit is ideal for new construction sites as well as urban retrofit situations where space is limited and the drainage area is small. This unit, like all CDS units, is entirely gravity driven with no moving parts or power require- ments. Its non-blocking screen overcomes the clogging and reduced efficiency experienced by direct filtration systems. Independent tests show that in addition to 80% suspended solids removal, the units trap virtu- ally 100% of gross particulate material half the aperture size of the screen and more than 90°/o of the particulates one-third the aperture size. A conventional oil baffle in the unit effectively controls oil and grease in the storm water flow. With the addition of sorbents, the permanent capture efficiency is increased to 80-90%. Tfie Drop Inlet Unit can be strategically located in small areas to serve as both a drain inlet and a curb inlet. (NOTE: All CDS Units can be configured with grated or curb inlets.) Specifications Footprint diameter: 4.8 ft. Variable Sump Capacity: 0.5 to 1.5 cubic yards Treatment Capacity Range: 0.7-2.8 cubic feet per second Maintenance With its corrosion-resistant stainless steel screens and inert fiberglass inlet, the Drop Inlet Unit requires very little maintenance. As a general rule, CDS recommends removing solids with a standard vactor truck one to four times a year, depending on each site's pollutant loading characteristics. i CASE STUDY I mem Filtration ^ptsro earns Wasfiirigti late Departiiieiil of [CIJIOCJV illP approval mi • si- ne first CDS Media FUtration Svstem was installed and tested at a concrete facilitv in Portlana, Oregon. Renewal of National Pollution Discharge Elimination System (NPDES) Phase I permits and Phase II regulations in effect and under development have exacerbated the need for storm v/ater treatment equipment v/ith higher pollutant removal capabilities. To provide engi- neers, municipalities and contractors with a solu- tion to meet these NPDES requiravents, CDS developed its Media Filtration System. Composed of rechargeable media-filled car- tridges configured inside either precast or cast- in-place concrete vaults, the system exceeds the rigorous testing requirements of Washington State's Technology Assessment Protocol - Ecology (TAPE). In early July 2004, the CDS Media Filtration System received approval under the Conditional Use Designation as a BMP from Washington State Departrent of Ecology (WSDOE). Jurisdictions outside' the Pacific Northwest and across the nation look to WSDOE to set the standard for emeigng storm water treatment technologies. CDS IS-currently testing additional media options to earn an enhanced designation for removing phosphonB, nitrogen and heavy metals. 1 Stormwater Concentric (PSWC), Precast CDS Technologic can custorDize units to meet specific design flowi and sump ^^^^^ Sump Capacities and Depth Below Pipe Invert can vary due to specific sitef;^^ I'A-'M' http://www.cdstech.com/dnlds/docs/CDS_POL_REMOVAL_PHT_INLINE.jpg 5/11/2005 PORTIONS OF THE "HYDROLOGY STUDY FOR LEGO DRIVE STORM DRAIN AND TEMPORARY CHANNEL" DONE BY NOLTE & ASSOCIATES, INC. DATED SEPTEMBER 12,1996 :!5?34 -.:y-:%:rmM^^m mm TABLE OF CONTENTS SECTION I PAGE 1,0 2,0 3.0 4,0 5,0 Introduction ^ 1.1 Purpose of Study ^ 1.2 Scope 1 Study Area ^ 2.1 Soil Groups 2 2.2 Land Uses 2 Hydrology i • ^ Hydraulics ^ Conclusions ; 2 5.1 Line A 2 5.2 Existing 60" ^ 3 SECTION n Interim Condition Hydrology Calculations Ultimate Condition Hydrology Calculations SECTION m Precipitation Maps - 10,50,100-year 6 hour Isopluvials Precipitation Maps - 10,50,100-year 24 hour Isopluvials Soil Map Runoff Coefficients SECTION rv Lego Drive (line A) Storm Drain HGL Calculations sta^ 4+07.50 to 39+53.50 Lego Drive (line A) Storm Drain HGL Calculations sta,: 1+82.60 to 4+07,50 Ex, 60" Culvert Under Palomar Airport Rd, HGL Calculations Temporary Channel Hydraulics Temporary 18" RCP Hydraulics . Line A Interim Q Hydraulics @ outfell Line Al (36" @ 14+00) Hydraulics ^ LineA2(30"@ 22+50) Hydraulics i Line A3 (30" @ 28+50) HydrauHcs Line A4 (48" @ 33+50) Hydraulics Line A5 (24" @ 4+10) Hydmiics SECTION V Map Pockets Line A Interim Hydrology Map (1 "=200') Line A Ultimate Hydrology Map (1 "=200') HYDROLOGY STUDY FOR LEGO DRIVE STORM DRAIN AND TEMPORARY CHANNEL Prepared By: Nolte and Associates, Inc. 5469 Keamy Villa Road, Suite 305 SanDiego, CA 92123 Project Number: SD0301 September 12, 1996 HYDROLOGY STUDY FOR LEGO DRIVE STORM DRAIN AND TEMPORARY CHANNEL 1.0 INTRODUCTION 1.1 Purpose of Study This Hydrology Study is the basis for the ultimate design of the main storm drain in Lego Drive and the stub outs for future storm drains from the resort site and Legoland, The study is also the basis of design for the temporary earthen channel connecting the interim termination of this storm drain to the existing natural channel located within Legoland, This storm drain, stubouts, and temporary channel are shown on the Hydrology Maps in the map pocket of Section V, ^ 1.2 Scope This study analyzes the 100 year flow for both the interim and ultimate drainage conditions for the proposed storm drain m Lego Drive, The ultimate flow will be used to determine the required size of pipe in Lego Drive and the appropriate stubouts for future development ofthe resort site and Legoland, The interim flow will be used to design the temporary earthen channel and to determine the adequacy of the existing 60" culvert under Palomar Airport Road at approximate station 43+00, ; 2.0 STUDY AREA The existing 60" culvert at sta, 43+00 Palomar Airport Road currently drains approximately 123 acres undeveloped and cultivated land. The development of Carlsbad Ranch will occur in phases and will ultimately drain to directly to the existing 60" culvert or into a desiltiag/detention basin located along Palomar Airport Road as shown on CT, 94-09, This basin wiH drain to the series of existing 18", 24", 60", and 72" culverts under Palomar Airport Road from sta. 43+00 (60" locadon) to sta. 56+44 (72" location). Because the plans have not yet been prepared for the ukimate development of the majority of this basin, certain storm drain alignments were assumed to construct a reasonable hydrology model to ascertain the ultimate flows for the proposed storm drain system. In the initial phase (currently being graded), only lots 5 & 6 of Map 13078 (G.I.A.), a portion of lot 9 of Map 13215, and portions of Armada and Lego Drives will be developed within this basin. The remaining areas wiH be undisturbed or used as a spoil site, as shown on the Interim Hydrology Map in Section V. The interim hydrology calculations reflect this scenario. The stormwater from this basin will be conveyed through the site by a 66" and 72" RCP system to a temporary termination point (sta. 13+00), and then by a graded earthen channel to the natural channel that flows to the existing 60" culvert passing under Palomar Airport Road. Digital topography for the hydrology maps was provided by San-Lo Aerial, flown in 1989. 1 n:\sd0186\0O\wp51\hydro.doc 2.1 Soil Groups The County/USGS Soil Map in Section IE indicates that this basin consist of approximately 70 % type A soils, 20% type C soils, and 10% type D so'ils. For purposes of this study, type B soils was used 'as a conservative average soil type for generating the mnoff coeflBcient for the various types of development. 2.2 Land Uses The proposed development of this basin is based on CT. 94-09 and consist pnmarily of commercial type development (ofiice space, resort, theme park) and a golf course. 3.0 HYDROLOGY To develop flows for mnoff from design stonns, the Rational Method was used according to the County of San Diego Hydrology Manual and Design and Procedure Manual. The AES San Diego County Rational Method Computer Program was used to model flie basins and the resultant calculations are provided in Sectioii U. 4,0 HYDRAULICS Hydraulic calculations were prepared using the AES Pipe-How Hydraulics computer program. Pipe-Eow calculates the hydraulic grade line for pressure flow and the flow depth for nonnal and gradually varied flow conditions. Pipe-Eow wiD calculate the losses occurring in fl:e pipe due to friction, angle, junction confluence, manhole, catch basin entrance, and sudden contraction or expansion losses. Pipe-Eow calculations are included in Section IV. 5.0 CONCLUSIONS 5.1 Line "A" The 100 year storm is in a gradually varied flow state for the majority ofthe system . The reaches of pressure flow are caused by the losses occurring at flie various junctions and the mild design slope ofthe pipe. At the junctibns, the hydraulic grade line jumps up to account for the junction losses and then continues upstream at the friction slope (which is slightiy less than the design slope) until flie pipe seals (hydraulic grade line does below the pipe sofBt), In these reaches, water tight joints per the City of Carlsbad standards have been specified on the pipe profile. n:\sdO 186\(X)\wp5 l\hydio,doc 5.2 Ex. 60" Under PaJomar Airport Road For the hydraulic calculations of this existing 60" culvert, the interim 100 year flow was calculated by combining the flows from the O'Day Engineenng study (for improvement plans 333-2J) v/ifli flows conveyed through Legoland, The existing flow lines of this culvert were field surveyed and are shown on a xerox portion of City drawing 333-2J, sheet 4, The resulting ponded water surface is at 79,3, well below the top of flie exisitng berm at 83±. n :\£dO 186\0O\wp51 Vhydro. doc I I I I I I I I I I I I RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY, FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright: 1982 -94 Advanced Engineering Software (aes.) Ver. 1.5A Release Dat:e: 3/16/94 License ID 1415 Analysis prepared by: Nolte and Associates, Inc. 5469 Kearny Villa Road, Suite 305 San Diego, CA 92123 DESCRIPTION OF STUDY ************************** CARLSBAD RANCH/LEGOLAND * ULTIMATE CONDITION 100 YR ANALYSIS * PROPOSED 66" RCP AND EX. 60 " RCP @ 43+00 PALOMAR AIRPORT RD * **********-****************************** FILE NAME: ULTLINEA.DAT TIME/DATE OF STUDY: 17:41 9/ 4/1996 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: I _ 19 8 5 SAN DIEGO r4AI'IUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.60 0 SPECIFIED MINIMUM PIPE SIZE(INCH) =' 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED IJFLOW PROCESS FROM NODE 4.00 TO NODE 4.10 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< iJsOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .7500 • INITIAL SUBAREA FLOW-LENGTH = 500.00 , UPSTREAM ELEVATION = 245.00 DOWNSTREAM ELEVATION = 202.00 ELEVATION DIFFERENCE = 43.00 IURBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.8 76 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY ^TOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. I IOO YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.578 SUBAREA RUNOFF(CFS) = 2 0.92 TOTAL AREA(ACRES) = 5.00 TOTAL RUNOFF(CFS) = 20.92 I t FLOW PROCESS FROM NODE 4.10 TO NODE 4.20 IS CODE = 4 >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< I I I I I I I I I I I I I I I I >>>>>USING USER-SPECIFIED PIPESIZE<<<<< PIPEFLOW VELOCITY(FEET/SEC.) = 11.8 UPSTREAM NODE ELEVATION = 186.00 DOWNSTREAM NODE ELEVATION = 17 8.00 FLOWLENGTH(FEET) = 3 8 0.00 MANNING'S N = .013 GIVEN FIPE DIAMETER(INCH) = 18.00 , NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 20.92 TRAVEL TIME(MIN.) = .54 TC(MIN.) = 7.41 FLOW PROCESS FROM NODE 4.2 0 TO NODE 4.2 0 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 10 0 YEAR RAINFALL INTENSITY(INCH/HOUR) =5.314 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .7500 SUBAREA AREA(ACRES) = 7.3 0 SUBAREA RUNOFF(CFS) = 2 9.10 TOTAL AREA(ACRES) = 12.3 0 TOTAL RUNOFF(CFS) = 50.01 TC(MIN) = 7.41 + ****************** FLOW PROCESS FROM NODE 4.20 TO NODE 5.00 IS CODE = 4 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU! SUBAREA<<<<< »>>>USING USER-SPECIFIED PIPESIZE<<<<< PIPEFLOW VELOCITY(FEET/SEC.) = 10.2 UPSTREAM NODE ELEVATION = 178.00 DOWNSTREAM NODE ELEVATION = 172.00 FLOWLENGTH(FEET) = 750.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 3 0.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 50.01 TRAVEL TIME(MIN.) = 1.23 TC(MIN.) = 8.64 *************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.814 SOIL CLASSIFICATION IS "B" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .7500 SUBAREA AREA(ACRES) = 28.50 SUBAREA RUNOFF(CFS) = 102.91 TOTAL AREA(ACRES) = 4 0.80 TOTAL RUNOFF(CFS) = 152.92 TC(MIN) = 8.64 t *************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 6.10 IS CODE = 4 :>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE<<<<< fDEPTH OF FLOW IN 42.0 INCH PIPE IS 28.1 INCHES - PIPEFLOW VELOCITY(FEET/SEC.) = 22.3 I I I I I I I li- ll I II 11 tl II II II II II UPSTREAM NODE ELEVATION = 172.00 DOWNSTREAM NODE ELEVATION = 142.30 FLOWLENGTH (FEET) = 800.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 42.00 ' NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 152.92 TRAVEL TIME (MIN.) = .60 TC(MIN.) = 9.24 ******************************************* ***************** FLOW PROCESS FROM NODE 6.10 TO NODE 6.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 9.24 RAINFALL INTENSITY(INCH/HR) =4.61 TOTAL STREAM AREA (ACRES) =40.80 PEAK FLOW RATE (CFS) AT CONFLUENCE = 152.92 *************************************************************************** FLOW PROCESS FROM NODE 6.0 0 TO'NODE 6.0 0 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 11.0 0 RAIN INTENSITY(INCH/HOUR) = 4.12 TOTAL AREA (ACRES) = 59.90 TOTAL I^UNOFF{ CFS) = 118.00 ^***************.* ************************************************* ********** FLOW PROCESS FROM NODE 6.00 TO NODE 6.10 IS CODE = 4 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 66.0 INCH PIPE IS 33.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.7 UPSTREAM NODE ELEVATION = 144.50 DOWNSTREAM NODE ELEVATION = 141.80 FLOWLENGTH(FEET) = 580.00 MANNING'S N = .013 GIVEN PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 118.00 TRAVEL TIME(MIN.) = 1.00 TC(MIN.) = 12.00 *************************************************************************** FLOW PROCESS FROM NODE 6.10 TO NODE 6.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>MD COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 'IME OF CONCENTRATION(MIN.) = 12.00 .<AINFALL INTENS ITY (INCH/HR) = 3.9 0 TOTAL STREAM AREA (ACRES) = 5 9.90 PEAK FLOW RATE (CFS) AT CONFLUENCE = 118.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.)- (INCH/HOUR) (ACRE) 1 152.92 9.24 4.611 40.80 2 118.00 12.00 3.8 9'6 59.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I ** PEAK FLOW RATE TABLE ** STREAM RUNOFF " Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 252.61 9.24 4.611 2 247.19 12.00 3.896 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 252.61 Tc(MIN.) = 9.24 TOTAL AREA (ACRES) = 10 0.70 **************************************************************,^.*,l.*,^.,^.^^,^. FLOW PROCESS FROM NODE 6.10 TO NODE 7.20 IS CODE = 4 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 66.0 II^CH PIPE IS 48.6 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 13.5 UPSTREAM NODE ELEVATION = 141.80 •DOWNSTREAM NODE ELEVATION = 13 7.90 FLOWLENGTH (FEET) = 550.00 MANNING^S N = .013 GIVEN PIPE DIAMETER(INCH) = 66.00 INUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 252.61 TRAVEL TIME(MIN.) = .68 TC(MIN.)= 9.92 ************************************** ***********^,^.^,^^,^,^^,^.,^.^,^.,^,^^^,^^^^^^^^^^^^ FLOW PROCESS FROM NODE 7.2 0 TO NODE 7.2 0 IS CODE = 1 ^DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < < < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: ' TIME OF CONCENTRATION(MIN. ) = 9.92 RAINFALL INTENSITY(INCH/HR) =4.40 TOTAL STREAM AREA(ACRES) = 10 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 252.61 ************************************.*.**.*,********,^,^,;^^,^.,^.,^,^.,^.,^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 7.00 TO NODE 7.10 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "B" DMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .7500 INITIAL SUBAREA FLOW-LENGTH = 500,00 UPSTREAM ELEVATION = 183.00 DOWNSTREAM ELEVATION = 168.00 ELEVATION DIFFERENCE = 15.00