Loading...
HomeMy WebLinkAboutCT 03-03; Bressi Ranch Affordable Housing; Addendum #1 Drainage Report for Bressi Ranch PA 15; 2006-01-01ADDENDUM #1 DRAINAGE REPORT FOR BRESSI RANCH - PLANNING AREA 15 AFFORDABLE HOUSING PROJECT JANUARY 2006 JANUARY 2005 JULY2004 ^03^^ Prepared for LENNAR COMIMUNITIES c/o LENNAR BRESSI VENTURE, LLC 1525 Faraday Ave, Suite 300 Carlsbad, CA 92008 Prepared By: PROJECT DESIGN CONSULTANTS 701 'B' Street, Suite 800 San Diego, CA 92101 (619) 235-6471 Job No. 2438.00 Prepared By: TE & TN Checked By: MB lard P. Hall, PE RCE 62034 Registration Expires 09/30/07 TABLE OF CONTENTS Section Page 1.0 INTRODUCTION 1 2.0 CONCLUSION 1 FIGURES 1 Vicinity Map 2 APPENDICES 1 AES Rational Method Computer Output 2 AES Pipeflow Computer Output 3 Desilt Basin Calculations EXHIBITS A Drainage Map B Pipe Node Number Map 11 T:\Water Resources\2438-Bressi Multi FamilyVAddendum July 04\Report\Addendum PA15 Desilt Basin.doc LO INTRODUCTION This report amends the previously approved Bressi Ranch Mass Grading and Backbone Improvement Drainage Report prepared by Project Design Consultants to include a new storm drain connection within Town Garden Road at Station 41+22. The connection will accommodate the addition of a desilting basin for 1.9 acres of mixed use, office and retail. The desilting basin includes an emergency spillway that directs flow into the street. The runoff from this area was previously included in the backbone calculations. Therefore this new connection does not cause a diversion or increase in flow to the downstream storm drain system. This addendum also includes a second new connection at Station 434-85 in Town Garden Road. This connection will accommodate another desilting basin for the 0.96 acre parcel east of Finnila Place. The desilting basin includes an emergency spillway that directs flow into the street. The runoff from this area was previously included in the backbone calculations. The previous backbone design included an estimate of 5 cfs for this area. Due to flow rerouting, and a resulting change in time of concentration, the actual calculated flow is 4.8 cfs. Therefore this new connection does not cause a diversion or increase in flow to the downstream storm drain system. See Appendix 3 for desilting basin calculations. Along with these desilting basins, this addendum includes a new storm drain connection at Station 44+41. The connection will accommodate the 0.79 acre area to the south of the above 0.96 acre area being diverted from the storm drain system that ultimately drained to the detention basin at the southwest comer of El Fuerte Street and Poinsettia Lane within OS-5. The result of this diversion is an additional 3.7 cfs into the OS-1 storm drain line and detention basin at Alicante Road and Town Garden Road (See Appendix 1). Calculations in Appendix 2 show that the additional flows will not put any storm drain pipe under pressure except where water-tight joints have already been required, and the 9.6 acre-ft detention basin has ample volume to accept the additional flow. The emergency spillway from the detention basin is also large enough to accept an additional 3.7 cfs without overtopping. Therefore this new connection does not cause adverse effects to the downstream storm drain system. 2.0 CONCLUSION There is no increase in flow to the storm drain backbone system and therefore no adverse effect. T:\Water Resources\2438-Bressi Multi FamilyXAddendura July 04\ReportVii,ddendum PA15 Desilt Basin.doc •EL FUERTE STREET MELROSE DRIVE POINSETTIA LANE Figure 1: Vicinity Map T:\Water Resources\2438-Bressi Multi FamilyVAddendum July 04\ReportVAddendum PA15 Desilt Basin.doc APPENDIX 1 AES RATIONAL METHOD COMPUTER OUTPUT T:\Water Resources\2438-Bressi MuW FamilyXAddendum July 04\Report\Appendix.DOC ****************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - PA-15 MULTI FAMILY SITE * * 100 YEAR STORM EVENT * * BACKBONE SYSTEM 200 - NODES 200 - 202.5 * ************************************************************************** FILE NAME: 2 00AH.DAT TIME/DATE OF STUDY: 17:32 12/28/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0175 2 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0175 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) •SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<«< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 7.79 RAIN INTENSITY(INCH/HOUR) = 5.54 TOTAL AREA(ACRES) = 0.61 TOTAL RUNOFF(CFS) = 2.52 **************************************************************************** FLOW PROCESS FROM NODE 23 0.00 TO NODE 200.20 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>» (STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 387.10 DOWNSTREAM ELEVATION(FEET) = 376.78 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.02 0 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0149 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.40 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.19 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.53 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.09 STREET FLOW TRAVEL TIME(MIN.) = 1.32 Tc(MIN.) = 9.11 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.009 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.75 TOTAL AREA(ACRES) = 1.11 PEAK FLOW RATE(CFS) = 4.27 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.13 FLOW VELOCITY(FEET/SEC.) = 3.74 DEPTH*VELOCITY(FT*FT/SEC.) = 1.23 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 200.20 = 280.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 200.20 TO NODE 202.00 IS CODE = 31 »>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 370.21 DOWNSTREAM(FEET) = 369.99 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.83 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NtMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.27 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 9.22 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 202.00 = 310.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.22 RAINFALL INTENSITY(INCH/HR) = 4.97 TOTAL STREAM AREA(ACRES) = 1.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.27 **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 201.10 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00 UPSTREAM ELEVATION(FEET) = 3 89.20 DOWNSTREAM ELEVATION(FEET) = 388.00 ELEVATION DIFFERENCE(FEET) = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.34 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.34 **************************************************************************** FLOW PROCESS FROM NODE 201.10 TO NODE 201.20 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>»> (STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 388.00 DOWNSTREAM ELEVATION(FEET) = 376.78 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RtlNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0149 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 4.64 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.53 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.56 STREET FLOW TRAVEL TIME(MIN.) = 2.3 0 Tc(MIN.) = 13.15 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.954 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 1.00 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 1.3 5 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.08 FLOW VELOCITY(FEET/SEC.) = 2.75 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 201.20 = 470.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 201.20 TO NODE 202.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 371.35 DOWNSTREAM(FEET) = 369.99 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.75 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.35 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 13.19 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.00 = 490.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.19 RAINFALL INTENSITY(INCH/HR) = 3.95 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.35 **************************************************************************** FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.06 RAIN INTENSITY(INCH/HOUR) = 5.42 TOTAL AREA(ACRES) = 1.66 TOTAL RUNOFF(CFS) = 6.44 **************************************************************************** FLOW PROCESS FROM NODE 145.00 TO NODE 202.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<<< ELEVATION DATA: UPSTREAM(FEET) = 379.60 DOWNSTREAM(FEET) = 370.06 FLOW LENGTH(FEET) = 115.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER{INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.10 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.44 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 8.21 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 202.00 = 115.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< »>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.21 RAINFALL INTENSITY(INCH/HR) = 5.36 TOTAL STREAM AREA(ACRES) = 1.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.44 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.27 9.22 4.973 1.11 2 1.35 13.19 3.946 0.60 3 6.44 8.21 5.359 1.66 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 11.40 8.21 5.359 2 11.32 9.22 4.973 3 9.48 13.19 3.946 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.40 Tc(MIN.) = 8.21 TOTAL AREA(ACRES) = 3.3 7 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.00 = 490.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.50 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 368.86 DOWNSTREAM(FEET) = 368.39 FLOW LENGTH(FEET) = 93.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.33 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.40 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 8.50 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.50 = 583.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.50 TO NODE 202.50 IS CODE = 10 >MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <«<< **************************************************************************** FLOW PROCESS FROM NODE 250.00 TO NODE 255.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<«< ROAD (HARD SURFACE) COVER RtJNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 37.00 UPSTREAM ELEVATION(FEET) = 416.40 DOWNSTREAM ELEVATION(FEET) = 416.00 ELEVATION DIFFERENCE(FEET) = 0.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.600 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 255.00 TO NODE 260.00 IS CODE = 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< »>>> (STANDARD CURB SECTION USED) <<<<< UPSTREAM ELEVATION(FEET) = 416.00 DOWNSTREAM ELEVATION(FEET) = 404.88 STREET LENGTH(FEET) = 217.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 16.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.66 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.57 STREET FLOW TRAVEL TIME(MIN.) = 0.99 Tc(MIN.) = 6.99 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.944 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 1.07 TOTAL AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) = 1.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.19 HALFSTREET FLOOD WIDTH(PEET) = 3.28 FLOW VELOCITY(FEET/SEC.) = 3.07 DEPTH*VELOCITY(FT*FT/SEC.) = 0.59 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 260.00 = 254.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >»>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 399.17 DOWNSTREAM(FEET) = 399.00 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.18 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.38 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 7.01 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 265.00 = 262.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 265.00 TO NODE 265.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.01 RAINFALL INTENSITY(INCH/HR) = 5.93 TOTAL STREAM AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.38 **************************************************************************** FLOW PROCESS FROM NODE 270.00 TO NODE 275.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 37.00 UPSTREAM ELEVATION(FEET) = 416.40 DOWNSTREAM ELEVATION(FEET) = 416.00 ELEVATION DIFFERENCE(FEET) = 0.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.600 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 280.00 IS CODE = 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«<< >>>>>(STANDARD CURB SECTION USED)«<<< UPSTREAM ELEVATION(FEET) = 416.00 DOWNSTREAM ELEVATION(FEET) = 404.88 STREET LENGTH(FEET) = 193.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 16.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.83 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.88 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.61 STREET FLOW TRAVEL TIME(MIN.) = 0.83 Tc(MIN.) = 6.83 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.034 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 1.03 TOTAL AREA(ACRES) = 0.23 PEAK FLOW RATE(CFS) = 1.34 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.19 HALFSTREET FLOOD WIDTH(FEET) = 2.95 FLOW VELOCITY(FEET/SEC.) = 3.27 DEPTH*VELOCITY{FT*FT/SEC.) = 0.61 LONGEST FLOWPATH FROM NODE 270.00 TO NODE 280.00 = 230.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 280.00 TO NODE 265.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 3 99.22 DOWNSTREAM(FEET) = 399.00 FLOW LENGTH(FEET) = 22.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.94 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.34 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 6.92 LONGEST FLOWPATH FROM NODE 270.00 TO NODE 265.00 = 252.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 265.00 TO NODE 265.00 IS CODE = 1 >>»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< »>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.92 RAINFALL INTENSITY(INCH/HR) = 5.98 TOTAL STREAM AREA(ACRES) = 0.23 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.34 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.38 7.01 5.930 0.24 2 1.34 6.92 5.981 0.23 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.72 6.92 5.981 2 2.72 7.01 5.930 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.72 Tc(MIN.) = 7.01 TOTAL AREA(ACRES) = 0.47 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 265.00 = 262.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 265.00 TO NODE 415.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 398.68 DOWNSTREAM(FEET) = 397.68 FLOW LENGTH(FEET) = 103.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.75 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.72 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 7.38 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 415.00 = 365.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = 10 >>»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< **************************************************************************** FLOW PROCESS FROM NODE 400.00 TO NODE 405.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALySIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 66.00 UPSTREAM ELEVATION(FEET) = 417.00 DOWNSTREAM ELEVATION(FEET) = 416.00 ELEVATION DIFFERENCE(FEET) = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.183 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.3 9 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) = 0.39 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 410.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<« ELEVATION DATA: UPSTREAM(FEET) = 416.00 DOWNSTREAM(FEET) = 407.00 FLOW LENGTH(FEET) = 274.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.12 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.39 PIPE TRAVEL TIME(MIN.) = 1.11 Tc(MIN.) = 7.11 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 410.00 = 340.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.880 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.89 SUBAREA RUNOFF(CFS) = 4.45 TOTAL AREA(ACRES) = 0.96 TOTAL RUNOFF(CFS) = 4.84 TC(MIN.) = 7.11 **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 411.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 400.90 DOWNSTREAM(FEET) = 399.90 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.23 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.84 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 7.22 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 411.00 = 390.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.22 RAINFALL INTENSITY(INCH/HR) = 5.82 TOTAL STREAM AREA(ACRES) = 0.96 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.84 **************************************************************************** FLOW PROCESS FROM NODE 416.00 TO NODE 417.00 IS CODE = 21 >>>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 UPSTREAM ELEVATION(FEET) = 412.07 DOWNSTREAM ELEVATION(FEET) = 409.07 ELEVATION DIFFERENCE(FEET) = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.794 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.540 SUBAREA RUNOFF(CFS) = 3.72 TOTAL AREA(ACRES) = 0.79 TOTAL RUNOFF(CFS) = 3.72 **************************************************************************** FLOW PROCESS FROM NODE 417.00 TO NODE 411.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 400.62 DOWNSTREAM(FEET) = 399.90 FLOW LENGTH(FEET) = 54.14 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.80 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.72 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 7.95 LONGEST FLOWPATH FROM NODE 416.00 TO NODE 411.00 = 354.14 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 1 >>>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.95 RAINFALL INTENSITY(INCH/HR) = 5.47 TOTAL STREAM AREA(ACRES) = 0.79 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.72 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.84 7.22 5.819 0.96 2 3.72 7.95 5.470 0.79 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 RUNOFF (CFS) 8 .34 8 .27 Tc (MIN.) 7 .22 7.95 INTENSITY (INCH/HOUR) 5.819 5 .470 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.34 Tc(MIN.) = 7.22 TOTAL AREA(ACRES) = 1.75 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 411.00 390.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 415.00 IS CODE 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 400.62 DOWNSTREAM(FEET) = 397.68 FLOW LENGTH(FEET) = 94.61 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.81 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.34 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 7.38 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 415.00 = 484.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 8.34 7.38 LONGEST FLOWPATH FROM NODE INTENSITY AREA (INCH/HOUR) (ACRE) 5.737 1.75 400.00 TO NODE 415.00 484.61 FEET. ** MEMORY BANK # STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 2.72 7.38 LONGEST FLOWPATH FROM NODE 2 CONFLUENCE DATA ** INTENSITY AREA (INCH/HOUR) (ACRE) 5.741 0.47 250.00 TO NODE 415.00 365.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 RUNOFF (CFS) 11.05 11.05 Tc (MIN.) 7.38 7.38 INTENSITY (INCH/HOUR) 5.741 5.737 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS; PEAK FLOW RATE(CFS) = 11.05 Tc(MIN.) = TOTAL AREA(ACRES) = 2.22 7.38 **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 202.53 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 397.68 DOWNSTREAM(FEET) = 387.76 FLOW LENGTH(FEET) = 175.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.19 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.05 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 7.61 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.53 = 659.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.53 TO NODE 202.53 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.61 RAINFALL INTENSITY(INCH/HR) = 5.63 TOTAL STREAM AREA(ACRES) = 2.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.05 **************************************************************************** FLOW PROCESS FROM NODE 202.51 TO NODE 202.52 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00 UPSTREAM ELEVATION(FEET) = 415.00 DOWNSTREAM ELEVATION(FEET) = 413.80 ELEVATION DIFFERENCE(FEET) = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.92 9 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RtJNOFF (CFS) = 1.11 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.11 **************************************************************************** FLOW PROCESS FROM NODE 202.52 TO NODE 202.53 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 413.80 DOWNSTREAM(FEET) = 400.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.53 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.11 PIPE TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) = 7.36 LONGEST FLOWPATH FROM NODE 202.51 TO NODE 202.53 = 570.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.53 TO NODE 202.53 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.751 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 8.31 TOTAL AREA(ACRES) = 1.90 TOTAL RUNOFF(CFS) = 9.43 TC(MIN.) = 7.3 6 **************************************************************************** FLOW PROCESS FROM NODE 202.53 TO NODE 202.53 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.36 RAINFALL INTENSITY(INCH/HR) = 5.75 TOTAL STREAM AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.43 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.05 7.61 5.629 2.22 2 9.43 7.36 5.751 1.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.24 7.36 5.751 2 20.27 7.61 5.629 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.27 Tc(MIN.) = 7.61 TOTAL AREA(ACRES) = 4.12 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.53 = 659.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.53 TO NODE 305.00 IS CODE = 41 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 387.76 DOWNSTREAM(FEET) = 379.04 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.99 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20.27 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 7.91 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 305.00 = 899.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3 05.00 TO NODE 305.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.91 RAINFALL INTENSITY(INCH/HR) = 5.49 TOTAL STREAM AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2 0.27 **************************************************************************** FLOW PROCESS FROM NODE 340.00 TO NODE 340.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.47 RAIN INTENSITY(INCH/HOUR) = 4.09 TOTAL AREA(ACRES) = 3.3 0 TOTAL RUNOFF(CFS) = 9.68 **************************************************************************** FLOW PROCESS FROM NODE 340.00 TO NODE 305.00 IS CODE = 31 >»>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 386.63 DOWNSTREAM(FEET) = 379.04 FLOW LENGTH(FEET) = 58.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.30 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.68 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 12.53 LONGEST FLOWPATH FROM NODE 202.51 TO NODE 305.00 = 628.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3 05.00 TO NODE 305.00 IS CODE = 1 >>>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >»>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.53 RAINFALL INTENSITY(INCH/HR) = 4.08 TOTAL STREAM AREA(ACRES) = 3.3 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.68 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 20.27 7.91 5.487 4.12 2 9.68 12.53 4.080 3.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 27.47 7.91 5.487 2 24.76 12.53 4.080 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.47 Tc(MIN.) = 7.91 TOTAL AREA(ACRES) = 7.42 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 305.00 = 899.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 202.59 IS CODE = 31^ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPTTTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 378.66 DOWNSTREAM(FEET) = 374.81 FLOW LENGTH(FEET) = 205.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.64 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.47 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 8.23 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.59 = 1104.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.59 TO NODE 202.59 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.23 RAINFALL INTENSITY(INCH/HR) = 5.35 TOTAL STREAM AREA(ACRES) = 7.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.47 **************************************************************************** FLOW PROCESS FROM NODE 285.00 TO NODE 290.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 115.00 UPSTREAM ELEVATION(FEET) = 408.00 DOWNSTREAM ELEVATION(FEET) = 405.70 ELEVATION DIFFERENCE(FEET) = 2.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.298 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.56 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) = 0.56 **************************************************************************** FLOW PROCESS FROM NODE 290.00 TO NODE 202.56 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>> (STREET TABLE SECTION # 1 USED) «<<< UPSTREAM ELEVATION(FEET) = 408.00 DOWNSTREAM ELEVATION(FEET) = 381.65 STREET LENGTH(FEET) = 709.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0149 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.13 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.43 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.18 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.87 STREET FLOW TRAVEL TIME(MIN.) = 3.71 Tc(MIN.) = 9.71 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.807 ROM(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF(CFS) = 3.11 TOTAL AREA(ACRES) = 0.77 PEAK FLOW RATE(CFS) = 3.67 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.48 FLOW VELOCITY(FEET/SEC.) = 3.60 DEPTH*VELOCITY(FT*FT/SEC.) = 1.14 LONGEST FLOWPATH FROM NODE 285.00 TO NODE 202.56 = 824.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.56 TO NODE 202.59 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<<< ELEVATION DATA: UPSTREAM(FEET) = 376.55 DOWNSTREAM(FEET) = 375.31 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.06 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.67 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 9.75 LONGEST FLOWPATH FROM NODE 285.00 TO NODE 202.59 = 844.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.59 TO NODE 202.59 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.75 RAINFALL INTENSITY(INCH/HR) = 4.80 TOTAL STREAM AREA(ACRES) = 0.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.67 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NtJMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 27.47 8.23 5.348 7.42 2 3.67 9.75 4.796 0.77 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NtJMBER (CFS) (MIN.) (INCH/HOUR) 1 30.76 8.23 5.348 2 28.31 9.75 4.796 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 30.76 Tc(MIN.) = 8.23 TOTAL AREA(ACRES) = 8.19 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.59 = 1104.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.59 TO NODE 202.50 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 374.48 DOWNSTREAM(FEET) = 368.57 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.72 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 30.76 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 8.45 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.50 = 1284.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.50 TO NODE 202.50 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 30.76 8.45 5.258 8.19 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.50 1284.61 FEET. ** MEMORY BANK # STREAM RUNOFF Tc NtJMBER (CFS) (MIN.) 1 11.40 8.50 LONGEST FLOWPATH FROM NODE 1 CONFLUENCE DATA ** INTENSITY AREA (INCH/HOUR) (ACRE) 5.240 3.37 201.00 TO NODE 202 .50 583.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 RUNOFF (CFS) 42 .12 42.05 Tc (MIN.) 8.45 8.50 INTENSITY (INCH/HOUR) 5 .258 5.240 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 42.12 Tc(MIN.) = TOTAL AREA(ACRES) = 11.56 8.45 END OF STUDY StJMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 11.56 42 .12 TC(MIN.) = 8 .45 END OF RATIONAL METHOD ANALYSIS APPENDIX 2 AES PIPEFLOW COMPUTER OUTPUT T:\Water Resources\2438-Bressi Multi FamilyVAddendum July 04\Report\Appendix.DOC ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITIONS * * SYSTEM 100 - DOWNSTREAM OF CDS UNIT (NODES 100.0 TO 100.2 * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: P100DS.DAT TIME/DATE OF STUDY: 11:40 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 100.00- 5.36 24752.95 } FRICTION 100.05- 5.16 24509.96 } FRICTION 100.10- 4.94 Dc 24285.70 } FRICTION+BEND 100.15- 4.94 Dc 24285.70 } JUNCTION 100.15- 5.26 24341.40 } FRICTION+BEND 100.20- 4.93*Dc 23992.89 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 46251.53 2.36* 2 .34* 2 .44* 3 . 97* 3 .88* 4.93*Dc 46923.07 44542.44 26848.83 26941.64 23992.89 MAXIMUM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = 194.64 PIPE FLOW = 464.00 CFS PIPE DIAMETER = 60.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 200.000 FEET NODE 100.00 : HGL = < 197.003>;EGL= < 237.082>;FLOWLINE= < 194.640> ****************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.05 IS CODE UPSTREAM NODE 100.05 ELEVATION 195.19 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 464.00 CFS PIPE DIAMETER 60.00 INCHES PIPE LENGTH = 11.08 FEET MANNING'S N = 0 01300 NORMAL DEPTH(FT) 3.38 CRITICAL DEPTH(FT) 4 .94 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 2.34 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 .000 11.080 FLOW DEPTH (FT) 2.336 2 .363 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 51.552 43.630 50.789 42.442 PRESStJRE+ MOMENTUM (POtJNDS) 46923.07 46251.53 NODE 100.05 : HGL = < 197.526>;EGL= < 238.820>;FLOWLINE= < 195.190> ****************************************************************************** FLOW PROCESS FROM NODE 100.05 TO NODE 100.10 IS CODE = 1 UPSTREAM NODE 100.10 ELEVATION = 202.14 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 464.00 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 18.80 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 1.85 CRITICAL DEPTH(FT) 4 . 94 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 .44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 .000 3 .943 8.126 12 .570 17.302 18.800 FLOW DEPTH (FT) 2 .436 2 .413 2.389 2.366 2.343 2.336 VELOCITY (FT/SEC) 48.842 49.447 50.068 50.704 51.356 51.552 SPECIFIC ENERGY(FT) 39.501 40.402 41.339 42.311 43 .322 43 .630 PRESSURE+ MOMENTUM (POtJNDS) 44542.44 45073.40 45618.03 46176.77 46750.11 46923.07 NODE 100.10 : HGL = < 204.576>;EGL= < 241.641>;FLOWLINE= < 202.140> ****************************************************************************** FLOW PROCESS FROM NODE 100.10 TO NODE 100.15 IS CODE = 3 UPSTREAM NODE 100.15 ELEVATION = 232.62 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 464.00 CFS CENTRAL ANGLE = 42.000 DEGREES PIPE LENGTH = 80.00 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) = 1.84 CRITICAL DEPTH(FT) 4.94 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: :E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )L (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTtJM (POUNDS) 0 . 000 3 .967 27 .766 15 946 26848 .83 1. 249 3 . 882 28 .360 16 378 27294 .98 2 . 648 3 . 797 28 .997 16 861 27782 . 00 4 . 216 3 .711 29 .680 17 398 28312 .29 5 . 971 3 . 626 30 .412 17 997 28888 .58 7 . 938 3 .541 31 . 196 18 662 29513 .97 10 . 145 3 .456 32 . 036 19 403 30191 .96 12 . 624 3 .371 32 .937 20 227 30926 .51 15 . 416 3 .286 33 . 904 21 146 31722 . 08 18 . 567 3 .201 34 . 941 22 171 32583 . 71 22 . 137 3 .116 36 . 056 23 315 33517 . 09 26. 197 3 . 031 37 .256 24 596 34528 .67 30. 836 2 .946 38 . 548 26 033 35625 .77 36 . 165 2 . 860 39 . 941 27 648 36816 .70 42 . 327 2 . 775 41 .448 29 468 38110 .98 49 . 508 2 . 690 43 . 078 31 524 39519 .47 57 . 956 2 .605 44 .848 33 856 41054 .67 68 . 009 2 .520 46 .771 36 509 42731 . 01 80 . 000 2 .436 48 .842 39 501 44542 .44 IOC . 15 HGL = < 236 . 587>;EGL= < 248.566>;FLOWLINE= < 232. 520> NODE ****************************************************************************** FLOW PROCESS FROM NODE 100.15 TO NODE 100.15 IS CODE = 5 UPSTREAM NODE 100.15 ELEVATION = 232.62 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 460.80 60.00 0.00 232.62 4.93 28.169 DOWNSTREAM 464.00 60.00 - 232.62 4.94 27.775 LATERAL #1 3.20 18.00 90.00 234.11 0.68 1.811 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: Dy=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.03431 JUNCTION LENGTH = 1.50 FEET FRICTION LOSSES = 0.051 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY-I-HV1-HV2 )-i-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.258)+( 0.000) = 0.258 03484 03378 0.000 FEET NODE 100.15 HGL < 236.502>;EGL= < 248.824>;FLOWLINE= < 232.620> ****************************************************************************** FLOW PROCESS FROM NODE 100.15 TO NODE 100.20 IS CODE = 3 UPSTREAM NODE 100.20 ELEVATION = 235.55 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 460.80 CFS CENTRAL ANGLE = 1.000 DEGREES PIPE LENGTH = 8.00 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) = 1.85 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.93 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 4 .934 23 . 521 13 .530 23992 . 89 0 . 141 4 .811 23.754 13 .578 24051 . 12 0 . 508 4 .688 24.087 13 .703 24200 . 60 1. 069 4 .564 24.502 13 .893 24425 .38 1. 818 4 .441 24.993 14 . 146 24719 . 95 2 . 762 4 .318 25.556 14 .465 25082 . 89 3 . 917 4 .194 26.193 14 .855 25515 . 17 5 . 306 4 . 071 26.907 15 .320 26019 .43 6. 959 3 . 948 27.702 15 . 872 26599 . 68 8 . 000 3 .882 28.161 16 .204 26941 .64 NODE IOC .20 HGL = < 240 . 484>;EGL= < 249.080>;FLOWLINE= < 235. 550> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.20 FLOWLINE ELEVATION = 235.55 ASStJMED UPSTREAM CONTROL HGL = 240.48 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAtJLICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - MASS GRADING STORM DRAIN * * ALICANTE ROAD - SYSTEM 101 (ALICANTE ROAD STATION 103+00 TO 105+50) * * 100-YEAR ULTIMATE CONDITION STORM EVENT * ************************************************************************** FILE NAME: 101.DAT TIME/DATE OF STUDY: 12:09 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RtJN NODE MODEL PRESStJRE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 2.39* 210.50 101.00 101.10 101.20 101.30 101.40 101.50 101.50 FRICTION 1.55* 118.07 FRICTION+BEND } HYDRAULIC JUMP 0.88 Dc 74.13 FRICTION JUNCTION FRICTION CATCH BASIN 0.88*Dc 74.13 1.23* 65.97 } HYDRAULIC JUMP 0.66*Dc 36.26 0.96* 19 .47 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH (FT) MOMENTUM (POtJNDS) 0.63 85.91 0.63 85.56 0.64* 85.02 0.88*Dc 74.13 0.47 42.55 0.66*Dc 36.26 0.66 Dc 12.89 MAXIMtJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAtJLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MAITOALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 101.00 FLOWLINE ELEVATION = 234.11 PIPE FLOW = 5.20 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 236.500 FEET NODE 101.00 : HGL = < 236.500>;EGL= < 236.634>;FLOWLINE= < 234.110> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 101.10 101.00 TO NODE 101.10 IS CODE = 1 ELEVATION = 235.08 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 5.20 CFS PIPE DIAMETER = 18.00 INCHES 53.81 FEET MANNING'S N = 0.01300 (( 5.20)/( 105.043))**2 = 0.00245 53.81)* (0.00245) = 0.132 NODE 101.10 : HGL = < 236.632>;EGL= < 236.766>;FLOWLINE= < 235.080> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 101.20 101.10 TO NODE 101.20 IS CODE = 3 ELEVATION = 235.63 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 5.20 CFS CENTRAL ANGLE = 45.000 DEGREES PIPE LENGTH = 30.79 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RtJN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.63 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.64 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0 . 88 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0 . 000 0 639 7 243 1.454 85 02 0 . 975 0 639 7 247 1.455 85 05 1 .994 0 638 7 251 1.455 85 08 3 .059 0 638 7 256 1.456 85 11 4 .175 0 638 7 260 1.457 85 14 5 .347 0 638 7 264 1.457 85 17 6 .580 0 637 7 268 1.458 85 20 7 .882 0 637 7 272 1.459 85 23 9 .261 0 637 7 277 1.459 85 26 10 .725 0 637 7 281 1.460 85 29 12 .285 0 636 7 285 1.461 85 32 13 . 955 0 636 7 289 1.462 85 35 15 .752 0 636 7 294 1.462 85 38 17 . 694 0 635 7 298 1.463 85 41 19 . 809 0 635 7 302 1.464 85 44 22 . 129 0 635 7 306 1.464 85 47 24 .696 0 635 7 310 1.465 85 50 27 .570 0 634 7 315 1.466 85 53 30 .790 0 634 7 319 1.466 85 56 HYDRAtlLIC JtJMP: UPSTREAM RtJN ANALYSIS RESULTS DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD (FT) = 1.55 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 3 . 915 PRESSURE HEAD(FT) 1.552 1.500 VELOCITY (FT/SEC) 2 . 943 2 . 943 SPECIFIC ENERGY(FT) 1.686 1. 634 PRESSURE+ MOMENTUM(POUNDS) 118.07 112.36 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 3 .915 5.453 6.924 8.356 9.755 11.126 12 .469 13.786 15.077 16.341 17 18 19 21 .576 ,782 , 957 . 096 22.199 23.259 24.273 25 .235 26.138 26.974 27.732 28.400 28.963 29.400 29.688 29.793 30.790 FLOW DEPTH (FT) 1.500 1.475 1.450 1.425 1.400 1.376 1.351 1.326 1.301 1.276 1.251 1.226 1.201 1.177 1.152 1. 1. 1. 1. 1, 1, VELOCITY (FT/SEC) 2 .942 2 .952 2.972 2.997 SPECIFIC ENERGY(FT) 1.634 1.611 1.587 1.565 1.543 1. 521 1. 500 .127 .102 .077 . 052 . 027 .002 0.978 0.953 0.928 0.903 0.878 0.878 PRESSURE+ MOMENTtJM (POtJNDS) 112.36 109.72 107.19 104.75 102.37 100.08 97.85 .480 .459 .440 .420 .402 .384 1.366 1.350 1.334 1.319 1.305 1.292 1.280 1.269 1.260 1.252 1.247 1.243 1.242 1.242 95.71 93 .64 91.65 89.75 87 . 86. 84. 83 . 94 22 59 05 81.62 80.30 3 . 028 3.063 3 .102 3 .145 3 .193 3 .245 3 .301 3.361 3 .426 3 .496 3.571 3.651 3 .736 3 . 828 3.926 4.030 4 .142 4.262 4 .391 4.529 4.678 4 . 837 4 . 837 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 20.61 FEET UPSTREAM OF NODE 101.10 DOWNSTREAM DEPTH = 1.187 FEET, UPSTREAM CONJUGATE DEPTH = 0.637 FEET 79. 77 . 77 . 76. 09 99 02 18 75.47 74 . 90 74 .48 74 .22 74.13 74.13 NODE 101.20 : HGL = < 236.269>;EGL= < 237.084>;FLOWLINE= < 235.630> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 101.30 101.20 TO NODE ELEVATION = 101.30 IS CODE = 1 238.80 (FLOW IS SUPERCRITICAL) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 5.20 CFS PIPE PIPE LENGTH = 175.88 FEET DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.63 CRITICAL DEPTH(FT) = 0.88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.88 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .878 4 .837 1 .242 74 .13 0 . 018 0 . 868 4 .904 1 .242 74 . 15 0 . 075 0 . 858 4 .973 1 .242 74 . 19 0 .173 0 .848 5 . 044 1 .244 74 .27 0.319 0 .838 5 . 117 1 .245 74 .37 0 . 515 0 .829 5 . 193 1 .247 74 .51 0.769 0 .819 5 .270 1 .250 74 . 68 1. 086 0 .809 5 .351 1 .254 74 .88 1.475 0 .799 5 .434 1 .258 75 .12 1. 944 0 . 789 5 .519 1 .262 75 .40 2.505 0 . 779 5 .607 1 .268 75 .71 3 .171 0 .769 5 .699 1 .274 76 . 06 3 .958 0 .759 5 .793 1 .281 76 .45 4.886 0 .749 5 .890 1 .288 76 . 89 5 . 981 0 .739 5 .991 1 .297 77 .36 7.275 0 .729 6 .096 1 .307 77 . 88 8 . 812 0 .720 6 .204 1 .318 78 .45 10.650 0 .710 6 .315 1 .329 79 . 06 12.871 0 .700 6 .431 1 .342 79 .73 15.596 0 .690 6 .551 1 .357 80 .44 19.010 0 .680 6 .676 1 .372 81 .21 23 .427 0 .670 6 .805 1 .390 82 . 04 29.432 0 .660 6 .939 1 .408 82 . 92 38.342 0 .650 7 . 078 1 .429 83 .87 54 .380 0 .640 7 .223 1 .451 84 .87 175.880 0 . 639 7 .243 1 .454 85 . 02 NODE 101.30 HGL = < 239. 678>;EGL= < 240.042>;FLOWLINE= < 238. 800> ****************************************************************************** FLOW PROCESS FROM NODE 101.30 TO NODE 101.40 IS CODE = 5 UPSTREAM NODE 101.40 ELEVATION = 239.07 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 3.00 5.20 2.20 0 . 00 DIAMETER (INCHES) 18 . 00 18 . 00 18 . 00 0 . 00 ANGLE (DEGREES) 90.00 90 . 00 0.00 FLOWLINE ELEVATION 239.07 238 .80 239.07 0 . 00 CRITICAL DEPTH(FT.) 0 66 0 88 0 56 0 00 VELOCITY (FT/SEC) 1.929 4.839 1.934 0.000 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTAS)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00334 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.320) +( 0.000) = 0.320 00081 00586 0.000 FEET NODE 101.40 HGL < 240.304>;EGL= < 240.361>;FLOWLINE= < 239.070> I ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 101.50 101.40 TO NODE ELEVATION = 101.50 IS CODE = 1 239.70 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 31.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RtJN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.46 CRITICAL DEPTH(FT) = 0.66 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 0.66 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 .000 0 .658 4 017 0 . 909 36 26 0 . 013 0 .650 4 083 0 . 909 36 26 0 . 054 0 . 642 4 151 0 . 910 36 29 0 . 125 0 . 634 4 221 0 . 911 36 34 0 .230 0 . 626 4 293 0. 912 36 40 0 .372 0 . 618 4 368 0 . 914 36 49 0 .556 0 . 610 4 445 0 . 917 36 59 0 .786 0 . 602 4 525 0. 920 36 72 1 . 068 0 .594 4 608 0 . 924 36 87 1 .409 0 .586 4 693 0 . 928 37 04 1 .817 0 .578 4 781 0 . 933 37 23 2 .301 0 .569 4 873 0. 938 37 45 2 .874 0 .561 4 968 0. 945 37 70 3 .550 0 . 553 5 066 0 . 952 37 97 4 .349 0 .545 5 168 0 . 960 38 27 5 .294 0 .537 5 274 0 . 969 38 59 6 .417 0 .529 5 384 0 . 979 38 95 7 .762 0 .521 5 498 0 . 991 39 33 9 .388 0 .513 5 617 1. 003 39 75 11 .385 0 .505 5 741 1. 017 40 20 13 .890 0 .497 5 869 1. 032 40 69 17 .133 0 .489 6 003 1. 049 41 21 21 .547 0 .481 6 143 1. 067 41 .78 28 .101 0 .472 6 288 1. 087 42 38 31 .250 0 .470 6 328 1. 092 42 55 HYDRAULIC JUMP: UPSTREAM RtJN ANALYSIS REStJLTS DOWNSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.23 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1.084 2.160 3 .228 FLOW DEPTH VELOCITY (FT) 1.233 1.210 1.187 1.164 (FT/SEC) 1.929 1.963 1.999 2.037 SPECIFIC ENERGY(FT) 1.291 1.270 1.250 1.229 PRESStJRE+ MOMENTUM {POtJNDS) 65.97 63.95 61.99 60.08 4 .288 1 . 141 2 078 1 209 58 .23 5 .338 1 . 118 2 122 1 188 56 .43 6 .377 1. 095 2 169 1 169 54 .70 7 .405 1. 072 2 218 1 149 53 .02 8 .421 1. 049 2 271 1 130 51 .41 9 .423 1. 026 2 327 1 111 49 .86 10 .409 1. 003 2 387 1 092 48 .38 11 .378 0 . 980 2 451 1 074 46 .98 12 .327 0 . 957 2 519 1 056 45 .64 13 .254 0 . 934 2 591 1 039 44 .37 14 .156 0 . 911 2 668 1 022 43 .19 15 .030 0 . 888 2 751 1 006 42 .08 15 . 871 0. 865 2 840 0 991 41 .05 16 .674 0 . 842 2 935 0 976 40 .11 17 .434 0 . 819 3 037 0 963 39 .26 18 .142 0 . 796 3 146 0 950 38 .51 18 .790 0 . 773 3 264 0 939 37 .85 19 .366 0 . 750 3 392 0 929 37 .30 19 .855 0 . 727 3 529 0 921 36 .86 20 .240 0 . 704 3 679 0 915 36 . 53 20 .496 0 . 681 3 . 841 0 911 36 .32 20 . 591 0 . 658 4 . 017 0 909 36 .26 31 .250 0 . 658 4 . 017 0 909 36 .26 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 15.99 FEET UPSTREAM OF NODE 101.40 | I DOWNSTREAM DEPTH = 0.862 FEET, UPSTREAM CONJUGATE DEPTH = 0.493 FEET j NODE 101.50 : HGL = < 240.358>;EGL= < 240.609>;FLOWLINE= < 239.700> ****************************************************************************** FLOW PROCESS FROM NODE 101.50 TO NODE 101.50 IS CODE = 8 UPSTREAM NODE 101.50 ELEVATION = 239.70 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.00 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.02 FEET/SEC. VELOCITY HEAD = 0.251 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.251) = 0.050 NODE 101.50 : HGL = < 240.659>;EGL= < 240.659>;FLOWLINE= < 239.700> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 101.50 FLOWLINE ELEVATION = 239.70 ASSUMED UPSTREAM CONTROL HGL = 240.36 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITIONS * * SYSTEM 100 - ALICANTE/GATEWAY CENTER DRIVE * * 100-YEAR STORM EVENT: UPSTREAM OF CDS UNIT * ************************************************************************** FILE NAME: P100US.DAT TIME/DATE OF STUDY: 12:30 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NtJMBER 100.30- 102.00 102 .00 102.90 103 . 00 105.00 105.90 106.00 106.10 106.20 110.00 110.90 112.00 112.90- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 14.12* 35193.80 FRICTION JtJNCTION 12 .26* 32920.19 15.79* 33006.42 FRICTION+BEND } HYDRAULIC JtJMP 11.35 FRICTION 4.90 Dc FRICTION+BEND 4.90 Dc JUNCTION 5.05 FRICTION+BEND 4.89 Dc FRICTION 4.89 Dc FRICTION+BEND 4.89*Dc FRICTION 5.81* JtJNCTION 11.51* FRICTION 7 . 87* JtJNCTION 7.76* 27571.98 19749.61 19749.61 19460.79 19351.73 19351.73 19351.73 20386.61 19831.35 15364.26 15022.05 DOWNSTREAM RtJN FLOW PRESSURE+ DEPTH (FT) MOMENTtJM (POtJNDS) 33188.94 3-. 11 3.20 2 .61 2 .69* 3 .12* 3.31* 3 .23* 3.28* 3 .70* 4.89*Dc 4.89 Dc 3 .10 3 . 98 3 .98 32207.43 32420.12 31294.79 26565.14 25088.12 25059.53 24715.83 22174.51 19351.73 19351.75 14568.52 12180.01 11930.99 113.00 114.00 114.90 120.00 120.90 124.00 124.10 124.10 125.00 125.90 126.00 126.90 130.00 130.90 139.00 139.90 140.00 140.90 150.00 150.90 160.00 160.90 170.00 170.90 175.00 175.90 176.00 7.21* 9.59* 11.17 7 . 89 3.48 Dc 4 .13 3.48*Dc FRICTION 8.01* FRICTION+BEND 8.37* MANHOLE FRICTION JUNCTION FRICTION FRICTION JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION JUNCTION FRICTION JUNCTION FRICTION JtJNCTION FRICTION 15316. 15760. 14344. 17253. 16226. 14256. 11618. 11662. 11279. 9.16* 10780. } HYDRAULIC JtJMP 7370 , 7370 , 7370 , 7191, 6118. 4714 } HYDRAULIC JtJMP 2222 2285 2285 2285 2285 2165 2047 3399 3452 4764 4821 3.44 Dc 3.44 Dc 3.44 Dc 5.26 3.41*Dc 7.36* } 2.82 Dc 2.75 Dc 2.75 Dc 2.75 Dc 2.75 Dc 3 .15 2.69*Dc 5.95* 6 . 07* 9.04* 9.17* 72 13 85 18 27 66 25 85 25 14 45 45 45 73 01 62 25 77 77 77 77 31 96 03 50 78 39 EACH 3 .75 3.61 4.65 Dc 4.65 Dc 2 .18* 2 .25* 3 .13* 2 . 95* 3.48*Dc 2.27 2.48* 2 .46* 3 . 09* 2.38* 3.41*Dc 1.51 1.76* 1.83* 2 .34* 2 .60* 1. 68* 1.48* 2.69*Dc 2.69 Dc 2.69 Dc 2.69 Dc 2.69 Dc 25 12313.30 12607.80 11483.22 11483.22 16531.93 15997.04 12047.45 12115.27 11279.25 9619.63 8857.37 8917.78 7591.86 7470.09 6118.02 3406.93 2898.12 2833.98 2377.64 2297.94 3066.72 3056.51 2047.96 2047.96 2047.96 2047.96 2047.96 MAXIMUM NUMBER OF ENERGY BALANCES USED IN PROFILE NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CtJRRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.30 FLOWLINE ELEVATION = 235.88 PIPE FLOW = 460.80 CFS PIPE DIAMETER = 60.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 250.000 FEET NODE 100.30 HGL < 250.000>;EGL= < 258.552>;FLOWLINE= < 235.880> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 102.00 100.30 TO NODE ELEVATION = 102.00 IS CODE = 1 238.44 (FLOW IS tJNDER PRESSURE) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 460.80 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 22.50 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 460.80)/( 2604.418))**2 = 0.03130 HF=L*SF = ( 22.50)*(0.03130) = 0.704 NODE 102.00 HGL = < 250.704>;EGL= < 259.257>;FLOWLINE= 238 .440> ****************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 5 UPSTREAM NODE 102.00 ELEVATION = 238.44 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW (CFS) DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) VELOCITY (FT/SEC) UPSTREAM 411. 70 60 . 00 0 . 00 238 .44 4 90 20 968 DOWNSTREAM 460 . 80 60 . 00 -238 .44 4 93 23 468 LATERAL #1 49. 10 30.00 90 . 00 239 .42 2 29 10 003 LATERAL #2 0 . 00 0 . 00 0 . 00 0 . 00 0 00 0 000 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02814 JUNCTION LENGTH = 2.50 FEET FRICTION LOSSES = 0.070 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.796)+( 0.000) = 1.796 02499 03130 0.000 FEET NODE 102.00 HGL < 254.226>;EGL= < 261.052>;FLOWLINE= < 238.440> ****************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.90 IS CODE = 3 UPSTREAM NODE 102.90 ELEVATION = 245.48 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 411.70 CFS CENTRAL ANGLE = 30.500 DEGREES PIPE LENGTH = 64.47 FEET PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.44 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 2.69 4.90 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2 .689 38 .246 25 417 31294.79 6.739 2 .679 38 .426 25 621 31431.73 13.811 2 .669 38 .608 25 829 31570.11 21.245 2 .659 38.792 26 040 31709.95 29.074 2 .648 38.977 26 254 31851.25 37.339 2 .638 39.165 26 471 31994.04 46.084 2 .628 39 .354 26 691 32138.34 55.361 2 .618 39.545 26 915 32284.17 64.470 2 .609 39.723 27 125 32420.12 HYDRAtJLIC JUMP: UPSTREAM RtJN ANALYSIS REStJLTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 15 . 79 DISTANCE FROM CONTROL(FT) 0 . 000 64.470 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 15.786 20.968 11.350 20.968 SPECIFIC ENERGY(FT) 22.612 18.177 PRESStJRE+ MOMENTUM(POUNDS) 33006 .42 27571.98 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 8.45 FEET UPSTREAM OF NODE 102.00 | I DOWNSTREAM DEPTH =15.204 FEET, UPSTREAM CONJUGATE DEPTH = 2.617 FEET j NODE 102.90 : HGL = < 248.169>;EGL= < 270.897>;FLOWLINE= < 245.480> ****************************************************************************** FLOW PROCESS FROM NODE 102.90 TO NODE 103.00 IS CODE = 1 UPSTREAM NODE 103.00 ELEVATION = 260.57 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 411.70 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 132.71 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 2 .41 CRITICAL DEPTH(FT) 4.90 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) 3 .12 GRADUALLY VARIED FLOW PROFILE COMPtJTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 4.963 10.236 15.850 FLOW DEPTH (FT) 3 .122 3.093 3 . 065 3 . 036 VELOCITY (FT/SEC) 31.920 32.266 32.622 32.986 SPECIFIC ENERGY(FT) 18.952 19.270 19.599 19.942 PRESStJRE+ MOMENTUM (POtJNDS) 26565.14 26819.00 27080.01 27348.38 21.836 3 .008 33 359 20 .299 27624 .33 28 .234 2 .979 33 742 20 . 669 27908.11 35 . 087 2 .950 34 135 21 . 055 28199.96 42.447 2 .922 34 538 21 .456 28500.14 50.374 2 .893 34 951 21 . 874 28808 . 91 58.940 2 . 865 35 376 22 .309 29126.56 68.230 2 . 836 35 811 22 .762 29453.37 78 .347 2 .808 36 258 23 .234 29789.65 89.417 2 .779 36 717 23 . 725 30135.73 101.595 2 .750 37 188 24 .238 30491.95 115.080 2 .722 37 672 24 . 772 30858.64 130.125 2 .693 38 169 25 .330 31236.19 132.710 2 . 689 38 246 25 .417 31294.79 103.00 HGL = < 263 692>;EGL= < 279.522>;FLOWLINE= < 260.570 ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 105.00 103.00 TO NODE 105.00 IS CODE = 3 ELEVATION = 263.53 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 411.70 CFS CENTRAL ANGLE = 5.200 DEGREES PIPE LENGTH = 26.01 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) 2 .41 CRITICAL DEPTH(FT) 4 . 90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 3 .306 29.877 17.175 25088.12 4.391 3 .270 30 .252 17.489 25356.40 9.082 3 .234 30.638 17.818 25634.18 14.104 3 .198 31.036 18.164 25921.80 19.488 3 .162 31.446 18.526 26219.60 25.273 3 .126 31.869 18.906 26527.96 26.010 3 .122 31.920 18.952 26565.14 NODE 105.00 HGL < 266.836>;EGL= < 280.705>;FLOWLINE= < 263.530> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 105.90 105.00 TO NODE ELEVATION = 105.90 IS CODE = 5 263.86 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 406.80 60.00 0.00 263.86 DOWNSTREAM 411.70 60.00 - 263.53 LATERAL #1 3.30 18.00 90.00 267.00 LATERAL #2 1.60 18.00 90.00 267.00 CRITICAL DEPTH(FT.) 4.89 4.90 0.69 0 .48 VELOCITY (FT/SEC) 30.288 29.886 4.142 3 .330 Q5 0 . 00 = =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.04244 JUNCTION LENGTH = 4.0 0 FEET FRICTION LOSSES = 0.170 FEET ENTRANCE LOSSES = JtJNCTION LOSSES = (DY+HV1-HV2) +(ENTRANCE LOSSES) JtJNCTION LOSSES = ( 0.633) + ( 0.000) = 0.633 04327 04162 0.000 FEET NODE 105.90 : HGL = < 267.093>;EGL= < 281.338>;FLOWLINE= < 263.860> ****************************************************************************** FLOW PROCESS FROM NODE 105.90 TO NODE 106.00 IS CODE = 3 UPSTREAM NODE 106.00 ELEVATION = 266.28 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 406.80 CFS CENTRAL ANGLE = 9.550 DEGREES PIPE LENGTH = 47.42 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) = 3 . 06 CRITICAL DEPTH(FT) 4.89 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3 .28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 8 .257 16.913 26.001 35.563 45.646 47 .420 FLOW DEPTH (FT) 3 .279 3.270 3 .262 3 .253 3 .244 3 .235 3 .233 VELOCITY (FT/SEC) 29.793 29.886 29.979 30.073 30.167 30.263 30.278 SPECIFIC ENERGY(FT) 17.071 17.148 17.226 17.304 17.384 17.465 17.478 PRESSURE+ MOMENTUM(POUNDS) 24715.83 24781.16 24847.06 24913.54 24980.58 25048.21 25059.53 NODE 106.00 : HGL = < 269 . 559>;EGL= < 283.3 51>;FLOWLINE= < 266.280> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 106.10 106.00 TO NODE 106.10 IS CODE = 1 ELEVATION = 276.14 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 406.80 CFS PIPE DIAMETER 60.00 INCHES PIPE LENGTH = 192.90 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 3.06 CRITICAL DEPTH(FT) = 4.89 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) 3 .70 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 . 000 3 .703 26 . 080 14 271 22174 .51 6. 308 3 . 678 26 .272 14 402 22300 . 75 13 . 005 3 . 652 26 .468 14 536 22430 .40 20 . 124 3 . 626 26 . 668 14 676 22563 . 51 27 . 706 3 . 600 26.872 14 820 22700 . 17 35 . 798 3 .574 27.081 14 969 22840 .44 44 . 452 3 . 548 27.294 15 123 22984 .40 53 . 731 3 . 522 27.512 15 283 23132 .13 63 . 707 3 .496 27 . 734 15 448 23283 .71 74 . 466 3 .470 27.962 15 618 23439 .22 86 . 112 3 .444 28.194 15 795 23598 . 76 98 . 767 3 .418 28 .431 15 977 23762 .42 112 . 583 3 .393 28.673 16 166 23930 .28 127 . 750 3 .367 28.920 16 362 24102 .45 144 . 503 3 .341 29.173 16 564 24279 .03 163 . 149 3 .315 29.431 16 773 24460 . 12 184 . 090 3 .289 29.694 16 989 24645 .83 192 . 900 3 .279 29.793 17 071 24715 .83 NODE 106 .10 : HGL = < 279 . 843>;EGL= < 290.411>;FL0WLINE= < 276. 140> ****************************************************************************** FLOW PROCESS FROM NODE 106.10 TO NODE 106.20 IS CODE = 3 UPSTREAM NODE 106.20 ELEVATION = 281.44 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 406.80 CFS CENTRAL ANGLE = 19.100 DEGREES PIPE LENGTH = 103.88 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) 3 . 06 CRITICAL DEPTH(FT) 4.89 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 4.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 4 . 893 20 . 822 11.629 19351. 73 0 .401 4 . 819 20 . 954 11.641 19366. 13 1 .506 4 . 746 21 .116 11.674 19405. 86 3 .236 4. 672 21 .306 11.726 19467. 82 5 .567 4. 599 21 .521 11.795 19550. 37 8 .499 4 . 526 21 .760 11.883 19652. 60 12 . 052 4. 452 22 . 022 11.987 19774. 08 16 .265 4 . 379 22 .307 12.110 19914. 64 21 .191 4 . 305 22 .615 12.252 20074 . 38 26 .899 4 . 232 22 .946 12.412 20253 . 56 33 .479 4 . 159 23 .300 12.594 20452. 60 41 .043 4 . 085 23 .679 12.797 20672 . 07 49.732 59.727 71.255 84.616 100.205 103.880 4 . 012 3 . 938 3 . 865 3 . 792 3 .718 3 . 703 24.083 24.513 24.970 25 .456 25.973 26.080 13.023 13.275 13.553 13.860 14.199 14.271 20912.65 21175.17 21460.56 21769.90 22104.40 22174.51 NODE 106.20 : HGL = < 286.333>;EGL= < 293.069>;FLOWLINE= < 281.440> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 106.20 TO NODE 110.00 IS CODE = 1 ELEVATION = 283.85 (FLOW tJNSEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 406.80 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 133.86 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 5.00 CRITICAL DEPTH(FT) DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4 . 89 FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 . 000 4 . 893 20 . 822 11 629 19351 73 0 . 012 4 . 897 20 . 816 11 629 19351 79 0 . 047 4 .901 20 .809 11 629 19351 95 0 .105 4 .906 20 .803 11 630 19352 23 0 . 186 4 . 910 20 .797 11 630 19352 62 0 .290 4 . 914 20 .791 11 630 19353 12 0 .418 4 .918 20 .785 11 631 19353 75 0 .568 4 .923 20 .779 11 631 19354 49 0 .742 4 .927 20 .774 11 632 19355 36 0 .939 4 .931 20 .768 11 633 19356 36 1 .158 4 .936 20 .763 11 634 19357 50 1 .401 4 . 940 20 .758 11 635 19358 76 1 .666 4 . 944 20 .753 11 636 19360 17 1 .955 4 . 948 20 .748 11 637 19361 73 2 .267 4 . 953 20 .744 11 639 19363 44 2 .602 4 . 957 20 .740 11 640 19365 31 2 .961 4 .961 20 .736 11 642 19367 34 3 .344 4 .966 20 . 732 11 644 19369 55 3 .750 4 . 970 20 .728 11 646 19371 95 4 .181 4 . 974 20 .725 11 648 19374 54 4 .638 4 . 979 20 .722 11 650 19377 35 5 .121 4 .983 20 .719 11 653 19380 39 5 .631 4 . 987 20 .716 11 655 19383 70 6 . 171 4 . 991 20 .714 11 658 19387 30 6 .746 4 . 996 20 .713 11 662 19391 29 7 .368 5 .000 20 .712 11 665 19395 83 ===> FLOW IS UNDER 133.860 PRESSURE 5.809 20.718 12.474 20386.64 296.324>;FLOWLINE= < 283.850> NODE 110.00 HGL = < 289.659>;EGL= < ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.90 110.00 TO NODE ELEVATION = 110.90 IS CODE = 5 284.18 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 298.40 406.80 84.80 23 .60 0.00== DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 60.00 0.00 284.18 4.66 15.197 60.00 - 283.85 4.89 20.718 36.00 90.00 286.18 2.81 11.997 24.00 45.00 286.85 1.72 7.512 :=Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01876 4.00 FEET 0.075 FEET ENTRANCE LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 2.956)+( 0.000) = 2.956 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 01313 02439 0.000 FEET NODE 110.90 HGL = < 295.693>;EGL= 299.280>;FLOWLINE= 284.180> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 112.00 110.90 TO NODE ELEVATION = 112.00 IS CODE = 1 289.52 (FLOW IS tJNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 298.40 CFS PIPE DIAMETER = 60.00 INCHES 129.05 FEET MANNING'S N = 0.01300 (( 298.40)/( 2604.433))**2 = 0.01313 129.05)*(0.01313) = 1.694 NODE 112.00 : HGL = < 297.387>;EGL= < 300.974>;FLOWLINE= < 289.520> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 112.90 112.00 TO NODE ELEVATION = 112.90 IS CODE = 5 289.85 (FLOW IS UNDER PRESStJRE) CALCtJIuATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 294.70 298.40 2 .10 1.60 0.00 = DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 60.00 0.00 289.85 4.65 15.009 60.00 - 289.52 4.66 15.197 18.00 90.00 293.35 0.55 1.188 18.00 60.00 293.35 0.48 0.905 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JtJNCTION ASStJMED AS 0.01296 01280 01313 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.052 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.139)+( 0.000) = 0.139 NODE 112.90 : HGL = < 297.615>;EGL= < 301.113>;FLOWLINE= < 289.850> ****************************************************************************** FLOW PROCESS FROM NODE 112.90 TO NODE 113.00 IS CODE = 1 UPSTREAM NODE 113.00 ELEVATION = 290.69 (FLOW IS UNDER PRESStJRE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 294.70 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 84.39 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 294.70)/( 2604.464))**2 = 0.01280 HF=L*SF = ( 84.39)* (0.01280) = 1.080 NODE 113.00 : HGL = < 298.695>;EGL= < 302.193>;FLOWLINE= < 290.690> ****************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 3 UPSTREAM NODE 114.00 ELEVATION = 291.21 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 294.70 CFS PIPE DIAMETER = 60.00 INCHES CENTRAL ANGLE = 6.050 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 51.17 FEET BEND COEFFICIENT(KB) = 0.06482 FLOW VELOCITY = 15.01 FEET/SEC. VELOCITY HEAD = 3.498 FEET HB=KB*(VELOCITY HEAD) = ( 0.065)*( 3.498) = 0.227 SF=(Q/K)**2 = (( 294.70)/( 2604.423))**2 = 0.01280 HF=L*SF = ( 51.17)*(0.01280) = 0.655 TOTAL HEAD LOSSES = HB + HF = ( 0.227)+( 0.655) = 0.882 NODE 114.00 : HGL = < 299.577>;EGL= < 303.075>;FLOWLINE= < 291.210> ****************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 114.90 IS CODE = 2 UPSTREAM NODE 114.90 ELEVATION = 292.54 (FLOW IS tJNDER PRESSURE) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 294.70 CFS PIPE DIAMETER = 60.00 INCHES FLOW VELOCITY = 15.01 FEET/SEC. VELOCITY HEAD = 3.498 FEET HMN = .05*(VELOCITY HEAD) = .05* ( 3.498) = 0.175 NODE 114.90 : HGL = < 299.752>;EGL= < 303.250>;FLOWLINE= < 292.540> ****************************************************************************** FLOW PROCESS FROM NODE 114.90 TO NODE 120.00 IS CODE = 1 UPSTREAM NODE 120.00 ELEVATION = 296.48 (FLOW IS UNDER PRESSURE) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 294.70 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 493.12 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 294.70)/( 2604.437))**2 = 0.01280 HF=L*SF = ( 493.12)* (0.01280) = 6.314 NODE 120.00 : HGL = < 306.066>;EGL= < 309.564>;FLOWLINE= < 296.480> ****************************************************************************** FLOW PROCESS FROM NODE 12 0.00 TO NODE 120.90 IS CODE = 5 UPSTREAM NODE 120.90 ELEVATION = 297.98 (FLOW IS UNDER PRESSURE) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 229.10 294.70 65.60 0 . 00 0 . 00 = DIAMETER ANGLE (INCHES) (DEGREES) FLOWLINE ELEVATION 42.00 60.00 297.98 60.00 - 296.48 36.00 60.00 298.48 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 3 .48 4 . 65 2 . 59 0 . 00 VELOCITY (FT/SEC) 36.400 15.009 9.281 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: Dy=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.05784 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.231 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = (11.168)+( 0.000) = 11.168 10289 01280 0.000 FEET NODE 120.90 : HGL = < 300.158>;EGL= < 320.732>;FLOWLINE= < 297.980> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 124.00 120.90 TO NODE ELEVATION = 124.00 IS CODE = 1 303.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 229.10 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 41.45 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2 .01 CRITICAL DEPTH(FT) 3 .48 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 .25 GRADUALLY VARIED FLOW PROFILE COMPtJTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 2 . 245 35.124 21.414 15997.04 4 .833 2 . 236 35.293 21.589 16068 .27 9.908 2 . 227 35.464 21.768 16140.36 15.248 2 . 217 35.636 21.949 16213.33 20.878 2 . 208 35.811 22.134 16287.18 26.826 2 . 199 35.988 22.322 16361.94 33.125 2 . 190 36.166 22.513 16437.61 39.814 2 . 180 36.347 22.707 16514.20 41.450 2 . 178 36.389 22.752 16531.93 NODE 124.00 : HGL = < 305.655>;EGL= < 324.824>;FLOWLINE= < 303.410> ********************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 124.10 124.00 TO NODE ELEVATION = 124.10 IS CODE = 1 322.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 229.10 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 141.30 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 2 . 01 CRITICAL DEPTH(FT) = 3.48 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3 .13 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 .000 3 . 126 25 256 13 036 12047 .45 2 .056 3 . 081 25 535 13 212 12146 . 12 4 .347 3 . 036 25 833 13 405 12253 . 86 6 .890 2 . 992 26 152 13 618 12370 .76 9 .705 2 . 947 26 490 13 850 12496 .96 12 .816 2 . 903 26 850 14 104 12632 . 63 16 .252 2 . 858 27 230 14 379 12778 . 03 20 .048 2 . 813 27 632 14 677 12933 .44 24 .247 2 . 769 28 057 15 000 13099 .20 28 . 897 2 . 724 28 505 15 349 13275 . 69 34 . 060 2 . 679 28 978 15 727 13463 .35 39 .810 2 . 635 29 476 16 134 13662 .66 46 .236 2 . 590 30 000 16 574 13874 . 14 53 .453 2 . 546 30 553 17 049 14098 .39 61 .604 2 . 501 31 134 17 562 14336 . 04 70 .875 2 . 456 31 747 18 116 14587 . 80 81 .510 2 . 412 32 392 18 715 14854 .46 93 .844 2 . 367 33 072 19 361 15136 .86 108 .343 2 . 323 33 788 20 061 15435 .92 125 .693 2 . 278 34 543 20 818 15752 .67 141 .300 2 . 245 35 124 21 414 15997 . 04 NODE 124.10 : HGL = < 325 . 126>;EGL= < 33 5.03 6>;FLOWLINE= < 322 . 000> ****************************************************************************** FLOW PROCESS FROM NODE 124.10 TO NODE 124.10 IS CODE = 5 UPSTREAM NODE 124.10 ELEVATION = 322.00 (FLOW IS SUPERCRITICAL) CALCtJLATE JtJNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH{FT.) (FT/SEC) UPSTREAM 225.40 42.00 0.00 322.00 3.48 26.058 DOWNSTREAM 229.10 42.00 - 322.00 3.48 25.264 LATERAL #1 3.70 18.00 90.00 322.67 0.73 2.094 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*VI*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04791 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04596 AVERAGED FRICTION SLOPE IN JtJNCTION ASStJMED AS 0.04694 JtJNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JtJNCTION LOSSES 1.50 FEET 0.070 FEET ENTRANCE LOSSES (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.456)+( 0.000) = 0.456 0.000 FEET NODE 124.10 : HGL = < 324.949>;EGL= < 335.492>;FLOWLINE= < 322.000> ****************************************************************************** FLOW PROCESS FROM NODE 124.10 TO NODE 125.00 IS CODE = 1 UPSTREAM NODE 125.00 ELEVATION = 324.28 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 225.40 CFS PIPE DIAMETER 42.00 INCHES PIPE LENGTH = 17 . 81 FEET MANNING'S N = 0 01300 NORMAL DEPTH(FT) 2 . 01 CRITICAL DEPTH(FT) 3 .48 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.48 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL( FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0 . 000 3 .477 23 .441 12 015 11279. 25 0 .352 3 .418 23 . 562 12 044 11296. 71 1 .214 3 .360 23 .740 12 117 11339. 74 2 .474 3 .301 23 . 963 12 . 223 11402. 50 4 .096 3 .242 24 .225 12 360 11482. 57 6 . 072 3 . 183 24 .523 12 527 11578. 77 8 .412 3 . 124 24 . 855 12 723 11690 . 48 11 .134 3 .066 25 .221 12 949 11817. 48 14 .271 3 . 007 25 .622 13 207 11959. 81 17 .810 2 . 949 26 . 050 13 . 492 12115. 27 NODE 125.00 : HGL = < 327.757>;EGL= < 336.295>;FLOWLINE= < 324.280> ****************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 125.90 IS CODE = 5 UPSTREAM NODE 125.90 ELEVATION = 324.61 (FLOW tJNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 177.30 225 .40 44 .80 3.30 0.00 = DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 42.00 0.00 324.61 3.44 42.00 - 324.28 3.48 30.00 60.00 325.61 2.22 18.00 90.00 326.61 0.69 ==Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 18 .428 23 .448 9.127 1.867 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03105 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04692 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03899 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.156 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.748) +( 0.000) = 2.748 0.000 FEET NODE 125.90 : HGL = < 333.770>;EGL= < 339.043>;FLOWLINE= < 324.610> ****************************************************************************** FLOW PROCESS FROM NODE 125.90 TO NODE 126.00 IS CODE = 1 UPSTREAM NODE 126.00 ELEVATION = 342.75 (HYDRAULIC JUMP OCCURS) CALCtJLATE FRICTION LOSSES(LACFCD): PIPE FLOW = 177.3 0 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 324.00 FEET MANNING'S N = 0.01300 HYDRAULIC JtJMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.25 CRITICAL DEPTH(FT) = 3.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.48 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 5.054 10.366 15.958 21.856 28.091 34.698 41.716 49.193 57.185 65.759 74.995 84.992 95.872 107.790 120.944 135.595 152.097 170.946 192.869 218.994 251.207 293.049 324.000 FLOW DEPTH (FT) .480 .471 .461 .452 .443 2 .434 2 .425 .416 .406 .397 .388 2 .379 2.370 2.361 2.351 2.342 2.333 2.324 2.315 2 .306 .296 .287 .278 .273 VELOCITY (FT/SEC) 24.318 24.416 24.515 24.615 24.716 24.818 24 . 921 25.025 25.131 25.237 25.345 25.454 25.564 25.675 25.788 25.901 26 .016 26 .132 26.250 26.368 26.488 26.610 26.732 26.797 SPECIFIC ENERGY(FT) 11.668 11.733 11.799 11. 866 11. 935 12.004 12.075 12.146 12 .219 12.294 12 .369 12 .446 12.524 12.603 12.684 12.766 12.850 12 .935 13.021 13.109 13.198 13.289 13 .382 13 .430 PRESSURE+ MOMENTUM(POUNDS) 8857.37 8886.83 8916.67 8946 .88 8977.48 9008 .47 9039.86 9071.64 9103.82 9136 .42 9169 .42 9202.84 9236.68 9270.96 9305.66 9340.80 9376 .38 9412.41 9448.89 9485.83 9523.24 9561.12 9599.47 9619.63 HYDRAtJLIC JUMP: UPSTREAM RUN ANALYSIS REStJLTS DOWNSTREAM CONTROL ASStJMED PRESStJRE HEAD (FT) = 9.16 PRESSURE FLOW PROFILE COMPtJTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE VELOCITY HEAD(FT) (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) 0 . 000 226.999 9.160 3 .500 18.428 18 .428 14 .433 8.773 10780.14 7382.33 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 226.999 227.080 227.150 227.212 227.269 227.321 227.368 227 .412 227.452 227.489 227.523 227.554 227.582 227.608 227.631 227.652 227.670 227.687 227.701 227.713 227.723 227.731 227.737 227.742 227.744 227.745 324.000 FLOW DEPTH (FT) 3 . 500 3 .498 3 .495 3 .493 3 .491 3.488 3.486 3 .483 3.481 3 .479 3 .476 3 .474 3 .472 3.469 3 .467 3 .465 462 460 457 455 3 .453 3 .450 3 .448 3 .446 3 .443 3 .441 3 .441 VELOCITY (FT/SEC) 18.422 18.423 18.424 18.425 18.427 18.429 18 .431 18.433 18.435 18.437 18.440 18.442 18.445 18.448 18.451 18.454 18.458 18.461 18.464 18.468 18.472 18.475 18.479 18.483 18.487 18.491 SPECIFIC ENERGY(FT) 8.773 8 .771 8 . 769 8.768 8.766 8.765 8.764 8.763 761 760 760 759 758 757 757 756 756 755 755 754 754 754 754 754 753 753 753 PRESSURE+ MOMENTtJM (POUNDS) 7382 .33 7381. 7380 . 7379 . 7378 . 7377. 7376 . 7375 . 7375. 7374 . 7374 . 7373 . 7373.13 7372.72 7372 . 7372 . 7371. 7371. 7371. 7370. 7370 . 7370. 7370.58 7370.51 7370.46 7370 .45 7370.45 , 09 , 02 , 05 ,16 .34 .58 .88 .24 .64 . 10 .59 .34 .00 .69 ,42 .19 ,99 . 82 ,69 18.491 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 82.18 FEET UPSTREAM OF NODE 125.90 DOWNSTREAM DEPTH = 7.111 FEET, UPSTREAM CONJUGATE DEPTH = 2.290 FEET NODE 126.00 HGL < 345.230>;EGL= < 354.418>;FLOWLINE= < 342.750> ****************************************************************************** FLOW PROCESS FROM NODE 126.00 TO NODE 126.90 IS CODE = 2 UPSTREAM NODE 126.90 ELEVATION = 343.08 (FLOW IS SUPERCRITICAL) CMiCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 177.3 0 CFS PIPE DIAMETER = 42.00 INCHES AVERAGED VELOCITY HEAD = 9.265 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* ( 9.265) = 0 .463 NODE 126.90 : HGL = < 345.541>;EGL= < 354.882>;FLOWLINE= < 343.080> ****************************************************************************** FLOW PROCESS FROM NODE 126.90 TO NODE 130.00 IS CODE = 1 UPSTREAM NODE 130.00 ELEVATION = 355.69 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 177.3 0 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 263.67 FEET MANNING'S N = 0 . 01300 NORMAL DEPTH(FT) 2 .38 CRITICAL DEPTH(FT) 3 .44 UPSTREAM CONTROL ASStJMED FLOWDEPTH(FT) 3 .09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 0 .000 3 . 086 19 .736 9 138 7591. 86 3 .028 3 . 058 19 .879 9 198 7625. 33 6 .334 3 . 030 20 .028 9 262 7661. 03 9 .939 3 . 001 20 .184 9 331 7698 . 97 13 .868 2 . 973 20 .346 9 405 7739 . 17 18 .150 2 . 945 20 .514 9 483 7781. 67 22 .819 2 . 917 20 .688 9 567 7826 . 50 27 . 915 2 . 889 20 .869 9 656 7873 . 69 33 .485 2 . 860 21 .057 9 750 7923 . 27 39 .585 2 . 832 21 .251 9 849 7975 . 31 46 .284 2 . 804 21 .452 9 954 8029 . 85 53 .663 2 . 776 21 .661 10 066 8086 . 94 61 .823 2 . 747 21 .876 10 183 8146. 64 70 . 890 2 . 719 22 . 099 10 307 8209. 02 81 .021 2 . 691 22 .329 10 438 8274. 15 92 .422 2 . 663 22 .567 10 576 8342 . 09 105 .361 2 . 635 22 .813 10 721 8412 . 92 120 .204 2 . 606 23 . 068 10 874 8486. 74 137 .463 2 . 578 23 .331 11 036 8563 . 62 157 .888 2 . 550 23 .602 11 205 8643 . 66 182 .645 2 . 522 23 .883 11 384 8726 . 95 213 .685 2 . 494 24 . 173 11 572 8813 . 61 254 . 668 2 . 465 24 .472 11 771 8903 . 75 263 . 670 2 . 461 24 .519 11 802 8917 . 78 NODE 130.00 : HGL = < 358.776>;EGL= < 364.828>;FLOWLINE= < 355.690> ****************************************************************************** FLOW PROCESS FROM NODE 13 0.00 TO NODE 130.90 IS CODE = 5 UPSTREAM NODE 130.90 ELEVATION = 356.02 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 158.90 177.30 18 .40 0.00 0 . 00 = DIAMETER ANGLE (INCHES) (DEGREES) FLOWLINE ELEVATION 42.00 0.00 356.02 42.00 - 355.69 36.00 60.00 356.52 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 3.41 3 .44 1.37 0.00 VELOCITY (FT/SEC) 22.778 19.742 3 . 538 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03832 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02788 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03310 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JtJNCTION LOSSES 4.00 FEET 0.132 FEET ENTRANCE LOSSES (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 1.631)+( 0.000) = 1.631 0.000 FEET NODE 130.90 : HGL = < 358.403>;EGL= < 366.459>;FLOWLINE= < 356.020> ****************************************************************************** FLOW PROCESS FROM NODE 130.90 TO NODE 139.00 IS CODE = 1 UPSTREAM NODE 139.00 ELEVATION = 362.33 (FLOW IS SUPERCRITICAL) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 158.90 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 116.83 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) 2 .12 CRITICAL DEPTH(FT) = 3.41 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 3.41 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTtJM (POUNDS) 0 .000 3.408 16 631 7. 705 6118 . 02 0 .236 3 .356 16 745 7 . 713 6122 . 54 0 .870 3 .304 16 883 7 . 733 6134 . 64 1 . 868 3 .253 17 043 7. 766 6153 .55 3 .220 3 .201 17 222 7. 809 6178 . 86 4 . 929 3 .149 17 420 7. 864 6210 .33 7 .011 3 . 098 17 637 7 931 6247 .86 9 .491 3 . 046 17 872 8 009 6291 .44 12 .400 2 . 994 18 126 8 099 6341 . 12 15 . 784 2.943 18 398 8 202 6397 . 00 19 .697 2.891 18 690 8 318 6459 .25 24 .208 2 .839 19 001 8 449 6528 . 04 29 .404 2 . 788 19 334 8. 595 6603 .62 35 .395 2 .736 19 687 8 758 6686 .27 42 .321 2.684 20 063 8 938 6776 .29 50 .365 2 .633 20 463 9 138 6874 . 06 59 .768 2 .581 20 887 9 359 6979 . 96 70 .861 2.529 21 337 9 603 7094 .46 84 .107 2 .478 21 816 9 872 7218 . 04 100 .188 2 .426 22 323 10 169 7351 .27 116 . 830 2 .383 22 771 10 439 7470 .09 NODE 139.00 : HGL = < 3 65. 738>;EGL= < 370.03 5>;FLOWLINE= < 362 . 330> ****************************************************************************** FLOW PROCESS FROM NODE 13 9.00 TO NODE 139.90 IS CODE = 5 UPSTREAM NODE 139.90 ELEVATION = 362.83 (FLOW UNSEALS IN REACH) CALCtJLATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 81.70 42.00 0.00 362.83 2.82 8.492 DOWNSTREAM 158.90 42.00 - 362.33 3.41 16.633 LATERAL #1 77.20 36.00 45.00 362.83 LATERAL #2 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 2.74 0 . 00 10.922 0 . 000 LACFCD AND OCEMA FLOW JtJNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00659 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02209 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01434 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.072 FEET ENTRANCE LOSSES = 0.000 FEET JtJNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.278)+( 0.000) = 1.278 NODE 139.90 : HGL = < 370.194>;EGL= < 371.313>;FLOWLINE= < 362.830> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 140.00 13 9.90 TO NODE ELEVATION = 140.00 IS CODE = 1 368.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 81.70 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 91.28 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RtJN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.41 CRITICAL DEPTH(FT) = 2.82 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.76 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 .000 1. 758 16 . 875 6 . 183 2898 .12 2 .529 1. 744 17. 047 6 .260 2921 .17 5 .215 1. 730 17 . 223 6 .339 2944 .82 8 .073 1. 717 17. 402 6 .422 2969 .09 11 .119 1. 703 17. 585 6 .507 2993 .99 14 .372 1. 689 17 . 772 6 .596 3019 .54 17 . 854 1. 675 17 . 963 6 . 688 3045 .77 21 . 592 1. 661 18 . 157 6 . 783 3072 .68 25 .614 1. 647 18. 356 6 .882 3100 .30 29 .957 1. 633 18 . 560 6 .985 3128 .64 34 . 662 1. 619 18 . 767 7 .091 3157 .73 39 . 782 1. 605 18. 980 7 .202 3187 .58 45 .378 1. 591 19. 197 7 .317 3218 .22 51 .529 1 577 19 . 418 7 .436 3249 .68 58 .332 1. 563 19. 645 7 .560 3281 .97 65 .913 1 549 19. 877 7 .688 3315 . 12 74 .439 1 535 20 . 115 7 .822 3349 .15 84 .134 1 521 20 . 358 7 . 960 3384 .10 91 .280 1 512 20. 516 8 .052 3406 .93 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS REStJLTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 7.36 DISTANCE FROM CONTROL(FT) 0.000 77 .202 PRESSURE HEAD(FT) 7.364 3 .500 VELOCITY (FT/SEC) 8 .492 8 .492 SPECIFIC ENERGY(FT) 8.483 4.620 PRESSURE+ MOMENTUM (POtJNDS) 4714.62 2395.08 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.50 GRADUALLY VARIED FLOW PROFILE COMPtJTED INFORMATION: DISTANCE FROM CONTROL(FT) 77.202 77.693 78.135 78.549 78.939 79.308 79.658 79.990 80 . 80 . 80 . 81. 81. 305 603 885 151 401 81.635 81.852 82 . 82 . 82 . 82 . 82 . 82 , 82 , 82 , 83 , 83 , 83 , 91, 054 239 406 557 689 803 898 973 028 061 073 280 FLOW DEPTH (FT) 3 . 500 3 .473 3 .446 3 .419 3 .391 3 .364 3 .337 3 .310 3 .283 256 228 201 174 147 120 093 065 038 Oil 984 957 930 902 875 848 821 821 VELOCITY (FT/SEC) 8.489 8.499 8.517 8 . 540 8.568 8.599 8.634 8.672 8.714 8 .758 8.805 8.854 8.907 8.962 9.019 9.079 9.142 9. 9. 9. 9. 9. 9. 9. 9. 9 . 9 . SPECIFIC ENERGY(FT) 4.620 .208 .276 .347 .420 .496 .575 .657 .741 . 829 .829 .595 .573 .552 ,532 ,513 ,495 ,478 .462 ,447 ,433 ,419 ,407 ,395 ,384 ,373 ,364 ,356 ,348 ,341 ,336 ,331 ,327 4.324 4.323 4 .322 4 .322 PRESSURE+ MOMENTUM(POUNDS) 2395.08 2380.34 2366.92 2354.38 2342.58 2331.44 2320.90 2310.95 2301.54 2292.68 2284.34 2276 . 2269 . 2262 . 2256 . 2250.41 2245.17 2240 . 2236 . 2232 . 2229. 2226 , 2224.89 2223.43 2222.55 2222.25 2222.25 .53 .23 ,44 , 17 ,45 ,26 ,60 ,48 ,90 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTtJM BALANCE OCCURS AT 50.68 FEET UPSTREAM OF NODE 13 9.90 I DOWNSTREAM DEPTH = 4.828 FEET, UPSTREAM CONJUGATE DEPTH = 1.603 FEET NODE 140.00 : HGL = < 369.758>;EGL= < 374.183>;FLOWLINE= < 368.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 140.90 140.00 TO NODE ELEVATION = 140.90 IS CODE = 5 368.33 (FLOW IS SUPERCRITICAL) CALCtJLATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM 77.90 36.00 0.00 368.33 DOWNSTREAM 81.70 42.00 - 368.00 CRITICAL DEPTH(FT.) 2 .75 2.82 VELOCITY (FT/SEC) 17.302 16.881 LATERAL #1 LATERAL #2 Q5 1.90 18.00 90.00 369.83 1.90 18.00 90.00 369.83 0.00===Q5 EQUALS BASIN INPUT=== 0.52 0 . 52 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 3 .500 3 .500 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02897 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02595 AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.02746 4.00 FEET 0.110 FEET ENTRANCE LOSSES = 0.000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 0.621)+( 0.000) = 0.621 NODE 140.90 : HGL = < 370.155>;EGL= < 374.804>;FLOWLINE= < 368.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 150.00 140.90 TO NODE ELEVATION = 150.00 IS CODE = 1 377.19 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 77.90 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 295.05 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.80 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.34 2 .75 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 1. 887 3 . 948 6 .199 8.659 11.347 14.288 17.510 21.046 24.935 29.222 33.965 39.232 45.108 51.702 59.153 67.644 77.422 88.836 102.395 118.891 139.648 167.149 206.978 FLOW DEPTH (FT) 2 .341 2.319 2.2 98 2.276 .255 ,233 ,212 , 190 , 169 , 147 2.126 2 .104 . 083 . 061 . 040 . 018 . 997 1. 976 1.954 1.933 , 911 .890 .868 .847 VELOCITY (FT/SEC) 13.162 13.282 13 .406 13.534 13.666 13.801 13 . 941 14.084 14.232 14.384 14.541 14.702 14 . 868 15 . 039 15.215 15.396 15.583 15.775 15.973 16.178 16.388 16.605 16.829 17.059 SPECIFIC ENERGY(FT) 5.032 5.060 5 . 090 5.122 5 .156 5 .193 5 .231 5.272 .316 .362 .411 .463 , 518 ,576 .637 .702 .770 ,842 , 918 ,999 , 084 , 174 ,268 .368 PRESSURE+ MOMENTtJM (POUNDS) 2377.64 2387.94 2398 .85 2410.40 2422.59 2435.45 2448 .99 2463.22 2478.17 2493 . 85 2510.29 2527.51 2545.52 2564.36 2584.05 2604.61 2626.07 2648.46 2671.81 2696.15 2721.52 2747.94 2775.47 2804.13 277.046 295.050 1. 825 1.825 17.297 17.297 6.474 6 .474 2833.98 2833.98 NODE 150.00 : HGL = < 379.531>;EGL= < 382 . 222>;FLOWLINE= < 377.190> ****************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 150.90 IS CODE = 2 UPSTREAM NODE 150.90 ELEVATION = 377.52 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 77.90 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 2.459 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = . 05* ( 2.459) = 0.123 NODE 150.90 : HGL = < 380.119>;EGL= < 382.345>;FLOWLINE= < 377.520> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 160.00 150.90 TO NODE 160.00 IS CODE = 1 ELEVATION = 381.78 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 77.90 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 355.34 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.71 & 2.91 CRITICAL DEPTH(FT) = 2.75 NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, tJNCERTAINTY, ETC. UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 11.779 23.675 35.702 47.876 60.215 72.738 85 .468 98 .431 111.657 125.180 139.042 153.290 167.982 183.188 198.995 215.512 232.879 251.282 270.977 292.334 315.929 342.754 355.340 FLOW DEPTH (FT) .682 .723 .764 , 805 ,846 , 887 .928 1.969 2.010 2.051 2 . 091 2 .132 2 .173 2 .214 .255 .296 .337 ,378 ,419 ,460 ,501 ,542 ,583 2.599 VELOCITY (FT/SEC) 19.092 18.539 18.019 17.530 17.069 16.635 16.225 15.838 15.473 15.128 14.801 14.492 14.200 13.923 13 .662 13.414 13.180 12.959 12.751 12.554 12.369 12.194 12.031 11.970 SPECIFIC ENERGY(FT) 7.346 , 063 , 809 , 579 ,373 ,186 ,018 , 866 ,729 .606 .495 .396 .306 5.226 5.155 5.092 5.036 4.988 4.945 4.909 4 . 878 4.852 4.832 4 . 825 PRESStJRE+ MOMENTUM(POUNDS) 3066.72 2993.76 2926.13 2863.46 2805.39 2751.61 2701.85 2655.85 2613.38 2574.23 2538.22 2505.16 2474.90 2447.30 2422.23 2399.57 2379.21 2361.06 2345.03 2331.03 2319.02 2308.91 2300.67 2297.94 NODE 160.00 HGL = < 383.462>;EGL= < 389.126>;FLOWLINE= < 381.780> ****************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 160.90 IS CODE = 5 UPSTREAM NODE 160.90 ELEVATION = 382.11 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 72 40 36.00 0 . 00 382 . 11 2 69 20 813 DOWNSTREAM 77 90 36.00 -381 .78 2 75 19 098 LATERAL #1 2 75 18 .00 90 . 00 383 .61 0 63 3 911 LATERAL #2 2 75 18 .00 90 . 00 383 .61 0 63 3 911 Q5 0 00 = = =Q5 EQUALS BASIN INPtJT== LACFCD AND OCEMA FLOW JUNCTION FORMtJLAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JtJNCTION ASStJMED AS 0.04328 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.173 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.192)+( 0.000) = 1.192 04918 03738 0.0 00 FEET NODE 160.90 : HGL = < 383.591>;EGL= < 390.318>;FLOWLINE= < 382.110> ****************************************************************************** FLOW PROCESS FROM NODE 160.90 TO NODE 170.00 IS CODE = 1 UPSTREAM NODE 170.00 ELEVATION = 394.39 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 72.40 CFS PIPE DIAMETER 3 6.00 INCHES PIPE LENGTH = 221.91 FEET MANNING'S N = 0 . 01300 NORMAL DEPTH(FT) 1.43 CRITICAL DEPTH (FT) = 2 .69 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 .69 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 0 .000 2 .688 10 . 836 4.513 2047 .96 0 .064 2 . 638 10 . 992 4.516 2049 . 14 0 .260 2 .588 11 . 164 4.524 2052 .70 0 .596 2 . 538 11 .350 4.539 2058 .68 1 .084 2 .487 11 .552 4.561 2067 .14 1 .738 2 .437 11 .769 4.589 2078 .17 2 .574 2 .387 12 . 003 4.625 2091 . 86 3 .614 2 .336 12 .254 4.669 2108 .35 4 .882 2 .286 12 .523 4.723 2127 .76 6 .410 2 .236 12 . 811 4.786 2150 .27 8 .235 2 .186 13 . 119 4.860 2176 . 03 10 .402 2 . 135 13 .449 4 . 946 2205 .27 12 . 968 2 085 13 803 5 . 045 2238 .20 16.004 2 035 14 181 5 . 159 2275 . 07 19.603 1 984 14 587 5 .290 2316 . 18 23.880 1 934 15 021 5 .440 2361 .84 28.993 1 884 15 488 5 .611 2412 .42 35.155 1 834 15 989 5 .806 2468 .30 42.666 1 783 16 528 6 .028 2529 .97 51.967 1 733 17 108 6 .281 2597 . 92 63.745 1 683 17 734 6 .569 2672 .76 79.152 1 632 18 411 6 .899 2755 .15 100.353 1 582 19 143 7 .276 2845 .87 132.217 1 532 19 938 7 .709 2945 .79 190.372 1 482 20 802 8 .205 3055 . 94 221.910 1 481 20 807 8 .208 3056 .51 170 . 00 HGL = < 397 078>;EGL= < 398.903>;FLOWLINE= < 394 . 390 NODE ****************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.90 IS CODE = 5 UPSTREAM NODE 170.90 ELEVATION = 394.72 (FLOW tJNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 72 .40 36 . 00 90 . 00 394.72 2 . 69 10.242 DOWNSTREAM 72 .40 36.00 -394.39 2 .69 10.839 LATERAL #1 0 . 00 0 . 00 0.00 0 . 00 0 . 00 0 . 000 LATERAL #2 0 .00 0 . 00 0 . 00 0 . 00 0.00 0 . 000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.01110 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.044 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.394)+( 0.000) = 3.394 01178 01041 0.000 FEET NODE 170.90 : HGL = < 400.668>;EGL= < 402.297>;FLOWLINE= < 394.720> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 175.00 170.90 TO NODE 175.00 IS CODE = 1 ELEVATION = 395.40 (FLOW IS UNDER PRESSURE) CALCtJLATE FRICTION LOSSES (LACFCD) PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 72.40 CFS PIPE DIAMETER = 36.00 INCHES 68.00 FEET MANNING'S N = 0.01300 {( 72.40)/( 666.979))**2 = 0.01178 68.00)* (0.01178) = 0.801 NODE 175.00 HGL < 401.469>;EGL= < 403.098>;FLOWLINE= < 395.400> ****************************************************************************** FLOW PROCESS FROM NODE 175.00 TO NODE 175.90 IS CODE = 5 UPSTREAM NODE 175.90 ELEVATION 395.73 (FLOW IS tJNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 72 40 36 . 00 90 . 00 395 .73 2 . 69 10 .242 DOWNSTREAM 72 40 36 . 00 -395 .40 2 .69 10 .243 LATERAL #1 0 00 0 . 00 0 . 00 0 . 00 0 .00 0 .000 LATERAL #2 0 00 0.00 0.00 0 . 00 0 .00 0 .000 Q5 0 00 = ==Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01178 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01178 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01178 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.047 FEET ENTRANCE LOSSES = 0.000 FEET JtJNCTION LOSSES = (DY+HVl-HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = { 3.305)+( 0.000) = 3.305 NODE 175.90 : HGL = < 404.775>;EGL= < 406.4 04>;FLOWLINE= < 395.730> ****************************************************************************** FLOW PROCESS FROM NODE 175.90 TO NODE 176.00 IS CODE = 1 UPSTREAM NODE 176.00 ELEVATION = 396.45 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = SF=(Q/K)**2 = HF=L*SF = ( 72.40 CFS PIPE DIAMETER = 36.00 INCHES 72.00 FEET MANNING'S N = 0.01300 ( 72.40)/( 666.984))**2 = 0.01178 72.00)* (0.01178) = 0.848 NODE 176.00 : HGL = < 405.623>;EGL= < 407.252>;FLOWLINE= < 396.450> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 176.00 ASStJMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 396.45 399.14 FOR DOWNSTREAM RtJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITIONS * * ALICANTE - SYSTEM 102 (PLANNING AREA 10 CONNECTION) * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: 102.DAT TIME/DATE OF STUDY: 12:10 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 102.00- 102 .21 102.22 102.40 102.41 102.50 102.51 102.60 102.60- UPSTREAM RtJN MODEL PRESStJRE PRESSURE+ PROCESS HEAD (FT) MOMENTUM (POtJNDS) 14.60* 5072.19 } HYDRAULIC JtJMP 4 .26 FRICTION MANHOLE FRICTION JUNCTION FRICTION MANHOLE FRICTION CATCH BASIN 4.01 2.3 0 Dc 2.77 2.29 Dc 2.29 Dc 2.29*Dc 4.31* 1905.77 1829.27 1343.83 1417.29 1311.28 1311.28 1311.28 938 . 67 DOWNSTREAM RtJN FLOW PRESSURE+ DE PTH (FT) MOMENTtJM (POtJNDS) 0.88 3150.97 0.81* 3512.68 0.80* 3572.36 1.00* 2666.45 0.89* 3022.17 1.69* 1486.57 1.76* 1444.59 2.29*DC 1311.28 2.29 Dc 318.94 MAXIMtJM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAtJLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMtlLAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 102.00 FLOWLINE ELEVATION = 239.60 PIPE FLOW = 49.90 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 254.2 00 FEET NODE 102.00 : HGL = < 254.200>;EGL= < 255.805>;FLOWLINE= < 239.600> ****************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.21 IS CODE = 1 UPSTREAM NODE 102.21 ELEVATION = 250.89 (HYDRAULIC JUMP OCCURS) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 49.90 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 64.36 FEET MANNING'S N = 0.01300 HYDRAtJLIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.92 CRITICAL DEPTH(FT) = 2.30 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) 0 . 81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0 .000 0 .813 36 . 013 20 965 3512 68 2 .790 0 . 818 35 .748 20 674 3487 44 5 .678 0 . 822 35 .487 20 389 3462 54 8 .674 0 . 826 35 .229 20 110 3437 98 11 . 788 0 . 831 34 .975 19 837 3413 75 15 .032 0 . 835 34 . 723 19 569 3389 84 18 .418 0 . 840 34 .476 19 307 3366 25 21 . 963 0 . 844 34 .231 19 050 3342 98 25 .685 0 . 848 33 .989 18 798 3320 01 29 .605 0 . 853 33 . 751 18 552 3297 34 33 .749 0 . 857 33 .515 18 310 3274 97 38 . 149 0 . 861 33 .283 18 073 3252 89 42 . 843 0 . 866 33 . 053 17 841 3231 09 47 . 877 0 . 870 32 . 827 17 613 3209 58 53 .312 0 . 875 32 . 603 17 390 3188 34 59 .223 0 .879 32 .382 17 171 3167 38 64 .360 0 . 882 32 .209 17 001 3150 97 HYDRAULIC JUMP: UPSTREAM RtJN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESStJRE HEAD(FT) = 14 . 60 PRESSURE FLOW PROFILE COMPtJTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 64.360 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 14.600 10.166 4.263 10.166 SPECIFIC ENERGY(FT) 16.205 5.867 PRESSURE+ MOMENTtJM (POtJNDS) 5072.19 1905.77 END OF HYDRAULIC JtJMP ANALYSIS I PRESStJRE+MOMENTtJM BALANCE OCCURS AT 35.94 FEET UPSTREAM OF NODE 102.00 I DOWNSTREAM DEPTH = 8.828 FEET, UPSTREAM CONJUGATE DEPTH = 0.851 FEET NODE 102.21 : HGL = < 251.703>;EGL= < 271.855>;FLOWLINE= < 250.890> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 102.22 102.21 TO NODE 102.22 IS CODE = 2 ELEVATION = 251.22 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 49.90 CFS PIPE DIAMETER = 30.00 INCHES AVERAGED VELOCITY HEAD = 20.505 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* (20.505) = 1.025 NODE 102.22 : HGL = < 252.023>;EGL= < 272.881>;FLOWLINE= < 251.220> ****************************************************************************** FLOW PROCESS FROM NODE 102.22 TO NODE 102.40 IS CODE = 1 UPSTREAM NODE 102.40 ELEVATION = 268.24 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.90 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 35.45 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0 . 71 CRITICAL DEPTH(FT) 2.30 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 . 000 1 . 004 27 .067 12 387 2666 . 45 1 . 014 0 . 992 27 .498 12 740 2706 . 78 2 .094 0 . 980 27 . 941 13 111 2748 . 39 3 .248 0 . 968 28 .399 13 500 2791. 34 4 .484 0 . 957 28 . 871 13 907 2835. 67 5 . 809 0 .945 29 .357 14 336 2881. 46 7 .234 0 .933 29 . 859 14 785 2928 . 75 8 . 771 0 . 921 30 .377 15 258 2977 . 63 10 .432 0 .910 30 .911 15 756 3028 . 15 12 .235 0 . 898 31 .464 16 279 3080 . 40 14 .199 0 .886 32 .034 16 830 3134 . 45 16 .346 0 .874 32 .624 17 411 3190 . 38 18 .706 0 . 862 33 .234 18 024 3248 . 29 21 .315 0 . 851 33 .866 18 670 3308 . 27 24 .216 0 . 839 34 .519 19 353 3370 . 42 27 .468 0 . 827 35 .196 20 075 3434 . 84 31 . 146 0 .815 35 .898 20 838 3501. 65 35 .354 0 .803 36 .625 21 645 3570 . 98 35 .450 0 .803 36 .639 21 661 3572 . 36 NODE 102.40 : HGL = < 269.244>;EGL= < 280.627>;FLOWLINE= < 268.240> ****************************************************************************** FLOW PROCESS FROM NODE 102.40 TO NODE 102.41 IS CODE = 5 UPSTREAM NODE 102.41 ELEVATION = 268.57 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 49.10 30.00 0.00 268.57 2.29 31.383 DOWNSTREAM 49.90 30.00 - 268.24 2.30 27.075 LATERAL #1 LATERAL #2 Q5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 = ==Q5 EQUALS BASIN INPtJT=== 0 . 00 0.00 0 . 000 0 .000 LACFCV AND OCEMA FLOW JUNCTION FORMULAE USED: Dy=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JtlNCTION ASSUMED AS 0.16189 JUNCTION LENGTH = 2.44 FEET FRICTION LOSSES = 0.395 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JtJNCTION LOSSES = ( 1.849) + ( 2.277) = 4.126 19526 12851 2.277 FEET NODE 102.41 : HGL = < 269.459>;EGL= < 284.752>;FLOWLINE= < 268.570> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 102.50 102.41 TO NODE 102.50 IS CODE = 1 ELEVATION = 286.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 49.10 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 54 . 00 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 0 .78 CRITICAL DEPTH(FT) 2.29 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.69 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 0 . 000 1 . 690 13 . 900 4 692 1486 . 57 0 .378 1. 653 14 .247 4 807 1511. 66 0 .802 1. 617 14 .616 4 936 1539. 03 1 .279 1. 580 15 .009 5 080 1568 . 82 1 . 815 1. 544 15 .426 5 241 1601. 21 2 .419 1. 507 15 .871 5 421 1636 . 40 3 .098 1. 471 16 .346 5 622 1674 . 60 3 .864 1 . 434 16 .852 5 847 1716 . 05 4 .730 1. 397 17 .393 6 098 1761. 02 5 .712 1. 361 17 .973 6 380 1809 . 82 6 . 829 1. 324 18 .594 6 696 1862 . 79 8 . 104 1. 288 19 .260 7 051 1920 . 31 9 .566 1. 251 19 . 977 7 452 1982 . 82 11 .252 1. 215 20 .749 7 904 2050. 81 13 .208 1. 178 21 .583 8 416 2124 . 85 15 .496 1. 141 22 .484 8 996 2205 . 59 18 .195 1. 105 23 .462 9 658 2293 . 77 21 .417 1. 068 24 . 525 10 414 2390. 26 25 .318 1. 032 25 .683 11 281 2496. 05 30 .127 0. 995 26 . 950 12 280 2612 . 31 36 .205 0 . 958 28 .338 13 436 2740. 40 44 .155 0 . 922 29 . 866 14 781 2881. 94 54 .000 0 . 889 31 .373 16 182 3022 . 17 NODE 102.50 : HGL = < 287.990>;EGL= < 290.992>;FLOWLINE= < 286.300> ****************************************************************************** FLOW PROCESS FROM NODE 102.50 TO NODE 102.51 IS CODE = 2 UPSTREAM NODE 102.51 ELEVATION = 286.63 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 49.10 CFS PIPE DIAMETER = 30.00 INCHES AVERAGED VELOCITY HEAD = 2.874 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* ( 2.874) = 0.144 NODE 102.51 HGL < 288.390>;EGL= < 291.136>;FLOWLINE= < 286.630> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 102.60 102.51 TO NODE ELEVATION = 102.60 IS CODE = 1 287.43 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.10 CFS PIPE DIAMETER 3 0.00 INCHES PIPE LENGTH = 16 . 00 FEET MANNING'S N = 0 01300 NORMAL DEPTH(FT) 1 .30 CRITICAL DEPTH(FT) 2 .29 UPSTREAM CONTROL ASStJMED FLOWDEPTH( FT) = 2.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POtJNDS) 0 . 000 2 . 288 10 .426 3 977 1311.28 0 .063 2 . 248 10 . 554 3 979 1311.97 0 .254 2 . 209 10 . 695 3 986 1314.03 0 .580 2 . 169 10 . 849 3 998 1317.45 1 . 047 2 . 130 11 . 016 4 015 1322 .26 1 . 668 2 . 091 11 .195 4 038 1328 .48 2 .457 2 . 051 11 .389 4 066 1336.16 3 .430 2 . 012 11 .596 4 101 1345 .36 4 . 610 1. 972 11 . 817 4 142 1356.12 6 .022 1. 933 12 . 054 4 190 1368 .52 7 .697 1. 893 12 .306 4 246 1382.64 9 .674 1. 854 12 . 576 4 311 1398.56 12 . 002 1. 814 12 .863 4 385 1416.40 14 .741 1. 775 13 . 169 4 470 1436.27 16 . 000 1. 760 13 .294 4 506 1444.59 NODE 102.60 : HGL = < 289. 718>;EGL= < 291.407>;FLOWLINE= < 287.430> ****************************************************************************** FLOW PROCESS FROM NODE 102.60 TO NODE 102.60 IS CODE = 8 UPSTREAM NODE 102.60 ELEVATION = 287.43 (FLOW tINSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 49.10 CFS PIPE DIAMETER = 30.00 INCHES FLOW VELOCITY = 10.43 FEET/SEC. VELOCITY HEAD = 1.689 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 1.689) = 0.338 NODE 102.60 HGL < 291.745>;EGL= < 291.745>;FLOWLINE= < 287.430> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102.60 FLOWLINE ELEVATION = 287.43 ASSUMED UPSTREAM CONTROL HGL = 289.72 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITIONS * * SYSTEM 200 (PA-6) TOWN GARDEN DRIVE * * 100-YEAR * ************************************************************************** FILE NAME: L200.DAT TIME/DATE OF STtJDY: 12:21 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 200.00- 205.10 205.90 210.00 210.90 215.00 215.90 220.00 220 . 90 225.00 225 . 90 230.00 230.90 235.00- UPSTREAM RtJN MODEL PRESSURE PRESSURE+ PROCESS HEAD (FT) MOMENTUM (POtJNDS) 9.35* 5433.94 } HYDRAULIC JUMP FRICTION JtJNCTION FRICTION JtJNCTION FRICTION MANHOLE FRICTION JUNCTION FRICTION JtJNCTION FRICTION JtJNCTION FRICTION 2.81 Dc 3 . 60 2.72 Dc 3 .48 2.33 Dc 2.33 DC 2.33 Dc 2 . 62 2.29 Dc 2 . 52 2.25 Dc 2 .82 2.13*DC 2603.91 2487.28 2180.32 1783.15 1465.45 1465.45 1465.45 1373.78 1315 . 33 1231.80 1196.81 1113.84 969.63 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH (FT) MOMENTUM (POUNDS) 4682.89 1.34 1. 92* 1.56* 2 . 05* 1.29* 1.48* 1.49* 1.52* 1.35* 1. 67* 1.50* 1.57* 1.21* 2.13*Dc 3159.02 3134.60 2440 .24 2205.01 1912.10 1894 .25 1862.63 1830.36 1502.55 1470.33 1411. 87 1390 .47 969.63 235.90 235.91 236.00 236 .90 240 .00 240.10 240.20 240.30 240.30- JUNCTION 2.49* 891.00 FRICTION } HYDRAULIC JUMP 2.03 Dc FRICTION+BEND 2.03*Dc JUNCTION 3.95* FRICTION+BEND 3 .66* FRICTION 3 .12* JUNCTION 2 . 84* FRICTION 2 .70* CATCH BASIN 2 . 93* 834.84 834.84 610.11 551.83 447.45 273.56 258.12 240.71 1.82 1.84* 2 . 03*Dc 0.77 0.77 0.94 Dc 0.86 0.97 Dc 0.97 Dc 849.62 846.35 834 .84 109.62 109.59 103.27 97.66 95.56 31.94 MAXIMtJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 200.00 FLOWLINE ELEVATION = 286.18 PIPE FLOW = 84.80 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 295.530 FEET NODE 200.00 : HGL = < 295.530>;EGL= < 297.765>;FLOWLINE= < 286.180> ****************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 205.10 IS CODE = 1 UPSTREAM NODE 205.10 ELEVATION = 306.09 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 84.80 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 183.68 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.29 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.92 2 .81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 0 . 000 1.925 17 . 691 6.788 3159.02 1.605 1.900 17.964 6 . 914 3196.41 3.338 1. 874 18.247 7.048 3235.54 5.210 1.849 18.540 7 .190 3276.50 7.238 1.824 18.844 7.342 3319.36 9.437 1.799 19.160 7.503 3364 .21 11.828 1.773 19.488 7.674 3411.13 14 .432 1 .748 19 827 7 857 3460 .22 17.276 1 .723 20 181 8 051 3511. 58 20 .393 1 . 698 20 547 8 258 3565.32 23.819 1 . 672 20 929 8 478 3621.55 27.601 1 .647 21 325 8 713 3680 .41 31.795 1 .622 21 738 8 964 3742.01 36 .470 1 .597 22 167 9 232 3806.51 41.715 1 .571 22 614 9 517 3874.05 47.642 1 .546 23 080 9 823 3944.81 54 .402 1 .521 23 566 10 150 4018.94 62.197 1 .496 24 073 10 500 4096.66 71.312 1 .471 24 602 10 875 4178.14 82.163 1 .445 25 155 11 277 4263.63 95 .398 1 .420 25 732 11 708 4353.35 112.099 1 .395 26 337 12 172 4447.57 134.301 1 .370 26 969 12 671 4546.56 166.570 1 .344 27 632 13 208 4650.62 183 . 680 1 .337 27 837 13 377 4682 . 89 HYDRAULIC JtJMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD (FT) = 9.35 PRESSURE FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtlNDS) 0 .000 9 .350 11. 997 11 585 5433.94 68 . 849 3 .000 11. 997 5 235 2633.08 ASStJMED DOWNSTREAM PRESSURE HEAD (FT) = 3 . 00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 68 . 849 3 . 000 11. 993 5 235 2633 .08 68 . 921 2 .992 11. 996 5 228 2630.16 68 .984 2 .985 12 . 000 5 222 2627.60 69 . 040 2 .977 12 . 006 5 217 2625.26 69 .093 2 .970 12 . 014 5 212 2623.11 69 . 141 2 .962 12 . 022 5 208 2621.13 69 . 185 2 .955 12 . 031 5 204 2619.29 69 .227 2 .947 12 . 041 5 200 2617 . 58 69 .265 2 .939 12 . 051 5 196 2615.99 69 .301 2 .932 12 . 063 5 193 2614.53 69 .334 2 .924 12 . 075 5 190 2613.17 69 .364 2 .917 12 . 087 5 187 2611.92 69 .392 2 .909 12 . 100 5 184 2610.77 69 .418 2 .901 12 . 114 5 182 2609.72 69 .441 2 .894 12 . 128 5 179 2608.76 69 .462 2 .886 12 . 143 5 178 2607.90 69 .481 2 .879 12 . 159 5 176 2607.12 69 .497 2 .871 12 . 175 5 174 2606.44 69 .512 2 .864 12 . 191 5 173 2605.84 69 . 525 2 .856 12 . 208 5 172 2605.32 69 .535 2 .848 12 . 225 5 171 2604.89 69 544 2 .841 12.243 5 .170 2604 . 53 69 551 2 . 833 12.261 5 .169 2604 . 26 69 555 2.826 12.280 5.169 2604 . 07 69 558 2.818 12.299 5.168 2603 . 95 69 559 2.811 12.319 5.168 2603 . 91 183 680 2.811 END OF 12.319 HYDRAULIC JtJMP 5.168 ANALYSIS 2603 . 91 PRESSURE+MOMENTUM BALANCE OCCURS AT 19.44 FEET UPSTREAM OF NODE 200.00 | DOWNSTREAM DEPTH = 7.557 FEET, UPSTREAM CONJUGATE DEPTH = 1.346 FEET j NODE 205.10 : HGL = < 308.015>;EGL= < 312.878>;FLOWLINE= < 306.090> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 205.90 205.10 TO NODE ELEVATION = 205.90 IS CODE = 5 306.42 (FLOW IS SUPERCRITICAL) CALCtJLATE JtJNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION CRITICAL DEPTH(FT.) VELOCITY (FT/SEC) UPSTREAM 75 50 36 . 00 0.00 306 .42 2 72 20 377 DOWNSTREAM 84 80 36 . 00 -306 .09 2 81 17 696 LATERAL #1 6 40 36.00 90 . 00 306 .42 0 79 1 701 LATERAL #2 2 90 18 . 00 90.00 307 .92 0 65 3 976 Q5 0 00 = ==Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JtJNCTION ASStJMED AS 0.03726 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.149 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.547)+( 0.000) = 1.547 04521 02932 0.000 FEET NODE 205.90 HGL < 307.977>;EGL= < 314.424>;FLOWLINE= < 306.420> ****************************************************************************** FLOW PROCESS FROM NODE 2 05.90 TO NODE 210.00 IS CODE = 1 UPSTREAM NODE 210.00 ELEVATION = 312.03 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 75.50 CFS PIPE DIAMETER 36.00 INCHES PIPE LENGTH = 88.13 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) 1.41 CRITICAL DEPTH(FT) 2 .72 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 2.05 GRADUALLY VARIED FLOW PROFILE COMPtJTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 1.602 3 .343 FLOW DEPTH (FT) 2.045 2 .020 1.994 VELOCITY SPECIFIC (FT/SEC) ENERGY(FT) 14.705 5.405 14.912 5.475 15.127 5.550 PRESStJRE+ MOMENTUM (POtJNDS) 2440.24 2462.51 2485.97 5 .236 1 . 969 15 350 5 .630 2510.68 7.295 1 . 943 15 580 5 . 715 2536.68 9.540 1 . 918 15 819 5 . 806 2564.02 11.991 1 .892 16 067 5 .903 2592.75 14.671 1 . 867 16 324 6 . 007 2622.93 17.610 1 . 841 16 590 6 .118 2654.63 20 .841 1 . 816 16 867 6 .236 2687.91 24.404 1 .790 17 154 6 .362 2722.84 28.347 1 .765 17 451 6 .497 2759.49 32 .731 1 .739 17 761 6 .641 2797.94 37.629 1 . 714 18 082 6 .794 2838.28 43.135 1 .689 18 416 6 . 958 2880.59 49.368 1 .663 18 763 7 . 133 2924.98 56.489 1 .638 19 125 7 .321 2971.54 64.711 1 . 612 19 501 7 .521 3020.39 74.337 1 .587 19 893 7 .735 3071.64 85 . 808 1 .561 20 301 7 . 965 3125.43 88.130 1 .557 20 370 8 .004 3134.60 210.00 HGL = < 314 075>;EGL= < 317.435>;FLOWLINE= < 312.030 NODE ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 210.90 210.00 TO NODE ELEVATION = 210.90 IS CODE = 5 312.53 (FLOW IS SUPERCRITICAL) CALCULATE JtJNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 52 .80 75 . 50 22 . 70 0 .00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 30.00 0.00 312.53 2.33 36.00 - 312.03 2.72 30.00 60.00 312.53 1.62 0.00 0.00 0.00 0.00 :=Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 20.697 14.709 6.740 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S{DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05981 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01962 AVERAGED FRICTION SLOPE IN JtJNCTION ASStJMED AS 0.03971 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.159 FEET ENTRANCE LOSSES = 0.000 FEET JtJNCTION LOSSES = (DY+HVl-HV2) +(ENTRANCE LOSSES) JtJNCTION LOSSES = ( 3.036) + ( 0.000) = 3 .036 NODE 210.90 HGL = < 313.819>;EGL= < 320.470>;FLOWLINE= < 312.530> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 215.00 210.90 TO NODE ELEVATION = 215.00 IS CODE = 1 328.51 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 52.80 CFS PIPE DIAMETER = 3 0.00 INCHES PIPE LENGTH = 261.88 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.28 CRITICAL DEPTH(FT) = 2 .33 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.48 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ .OL (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0. 000 1 475 17 .512 6 240 1912 .10 2 . 414 1 467 17 . 624 6 293 1922 . 08 4. 960 1 460 17 .737 6 348 1932 .22 7 . 648 1 452 17 . 852 6 404 1942 . 54 10 . 494 1 444 17 . 969 6 461 1953 .04 13 . 511 1 436 18 . 087 6 519 1963 .71 16 . 719 1 429 18 .207 6 579 1974 .56 20 . 139 1 421 18 .328 6 640 1985 .60 23 . 793 1 413 18 .451 6 703 1996 .83 27 . 712 1 405 18 .576 6 767 2008 .24 31. 930 1 397 18 .703 6 833 2019 . 85 36 . 489 1 390 18 .832 6 900 2031 .66 41. 439 1 382 18 . 962 6 969 2043 .67 46 . 844 1 374 19 .095 7 039 2055 .88 52. 783 1 366 19 .229 7 112 2068 .30 59. 358 1 359 19 .366 7 186 2080 .94 66 . 706 1 351 19 .504 7 262 2093 .79 75 . 009 1 343 19 .645 7 339 2106 .86 84 . 522 1 335 19 .787 7 419 2120 . 16 95 . 623 1 328 19 .932 7 500 2133 .68 108. 892 1 320 20 . 079 7 584 2147 .44 125. 305 1 312 20 .228 7 670 2161 .44 146 . 692 1 304 20 .380 7 757 2175 .68 177 . 161 1 297 20 .533 7 847 2190 . 17 229. 899 1 289 20 .689 7 940 2204 .91 261. 880 1 289 20 . 690 7 940 2205 . 01 215.00 HGL = < 329 985>;EGL= < 334.750>;FLOWLINE= < 328. 510 ****************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.90 IS CODE = 2 UPSTREAM NODE 215.90 ELEVATION = 328.84 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 52.80 CFS PIPE DIAMETER = 30.00 INCHES AVERAGED VELOCITY HEAD = 4.711 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = . 05* ( 4.711) = 0.23 6 NODE 215.90 : HGL = < 330.329>;EGL= < 334.986>;FLOWLINE= < 328.840> ****************************************************************************** FLOW PROCESS FROM NODE 215.90 TO NODE 220.00 IS CODE = 1 UPSTREAM NODE 220.00 ELEVATION = 338.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 52.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 246.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.49 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.52 2 .33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 3 .293 6.731 10 .328 14.098 18.058 22.228 26.629 31.290 36.241 41 . 519 47 .170 53 .250 59.826 66.986 74.841 83.537 93.273 104.328 117.109 132.249 150 . 807 174.771 208.601 246.000 FLOW DEPTH (FT) 1.516 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1, 1. 1. 1. 1. 1. 1. 1. 1, ,515 ,513 ,512 ,511 ,510 . 509 . 508 ,507 ,506 ,505 ,503 .502 .501 .500 .499 .498 .497 .496 ,494 ,493 ,492 ,491 .490 1.489 VELOCITY (FT/SEC) 16.953 16.968 16.983 16.998 17.013 17.028 17.043 17.058 17.073 17.088 17.103 17.118 17.133 17.148 17.164 17.179 17.194 17.209 17.225 17.240 17.255 17.271 17.286 17.302 17.312 SPECIFIC ENERGY(FT) 5.981 5.988 5 . 995 6 . 002 6 . 008 6.015 6 . 022 6 . 029 6 . 036 6 . 043 6 . 049 6 . 056 6 . 063 , 070 , 077 , 084 , 091 ,098 6 .105 6 .113 120 127 134 ,141 , 146 PRESSURE+ MOMENTtJM (POtJNDS) 1862.63 1863.94 1865.24 1866.55 1867.86 1869.17 1870.49 1871.81 1873.13 1874.46 1875.79 1877.12 1878.46 1879.80 1881.14 1882.48 1883.83 1885.19 1886.54 1887.90 1889.26 1890.63 1892.00 1893 .37 1894.25 NODE 220.00 : HGL = < 339.616>;EGL= < 344.081>;FLOWLINE= < 338.100> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 220.90 220 . 00 TO NODE ELEVATION = 220.90 IS CODE = 5 338.43 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL 49.20 52 .80 3 .60 0 . 00 0 . 00== 30.00 30.00 18 . 00 0 . 00 0 . 00 45.00 0 . 00 338.43 338.10 339.10 0 . 00 2.29 2.33 0.72 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 18.174 16.959 4 .260 0 . 000 LACFCD AND OCEMA FLOW JtJNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04439 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03557 AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.03998 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.160 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.829)+( 0.000) = 0.829 NODE 220.90 : HGL = < 339.781>;EGL= < 344.910>;FLOWLINE= < 338.430> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 225.00 220.90 TO NODE 225.00 IS CODE = 1 ELEVATION = 350.49 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.20 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 263.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 .34 CRITICAL DEPTH(FT) 2 .29 UPSTREAM CONTROL ASStJMED FLOWDEPTH(FT) = 1. 67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 .000 1. 674 14 . 075 4 . 753 1502 . 55 1 . 921 1. 661 14 .204 4 . 796 1511. 92 3 . 972 1. 647 14 .336 4 . 841 1521. 60 6 . 164 1. 634 14 .471 4 888 1531. 58 8 .511 1. 620 14 .609 4 936 1541. 89 11 .029 1. 607 14 . 750 4 . 987 1552. 52 13 .736 1. 594 14 .894 5 040 1563 . 49 16 .653 1. 580 15 .041 5 . 095 1574. 81 19 .804 1. 567 15 . 192 5. 153 1586 . 47 23 .219 1. 553 15 .347 5 . 213 1598 . 50 26 .933 1. 540 15 . 505 5 275 1610 . 91 30 .988 1. 526 15 .667 5 340 1623 . 69 35 .435 1. 513 15 . 832 5 408 1636. 87 40 .339 1. 499 16 . 002 5 478 1650 . 45 45 .779 1. 486 16 . 176 5 551 1664 . 45 51 . 861 1. 472 16 .354 5 628 1678 . 87 58 .720 1. 459 16 .536 5 707 1693 . 73 66 .542 1. 446 16 .722 5 790 1709 . 05 75 .588 1. 432 16 . 914 5 877 1724. 83 86 .236 1. 419 17 .110 5 967 1741. 10 99 .078 1. 405 17 .310 6 061 1757. 85 115 . 102 1. 392 17 . 516 6 159 1775 . 12 136 .163 1. 378 17 . 727 6 261 1792 . 92 166 .426 1. 365 17 . 944 6 368 1811. 25 219 .256 1. 351 18 .166 6 479 1830 . 15 263 . 000 1. 351 18 . 169 6 480 1830 . 36 NODE 225.00 HGL < 352.164>;EGL= < 355.242>;FLOWLINE= < 350.490> ****************************************************************************** FLOW PROCESS FROM NODE 225.00 TO NODE 225.90 IS CODE = 5 UPSTREAM NODE 225.90 ELEVATION = 350.82 (FLOW IS SUPERCRITICAL) CALCULATE JtJNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 FLOW DIAMETER (CFS) (INCHES) 46.20 30.00 49.20 30.00 2.25 18.00 ANGLE FLOWLINE CRITICAL VELOCITY (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 0.00 350.82 2.25 15.035 350.49 2.29 14.080 90.00 351.82 0.57 3.679 LATERAL #2 0.75 18.00 90.00 351.82 Q5 0.00===Q5 EQUALS BASIN INPUT=== 0 .32 1.841 LACFCD AND OCEMA FLOW JtJNCTION FORMtJLAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.02564 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.103 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.587)+( 0.000) = 0.587 02816 02312 0.000 FEET NODE 225.90 HGL < 352.319>;EGL= < 355.829>;FLOWLINE= < 350.820> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23 0.00 225.90 TO NODE 230.00 IS CODE = 1 ELEVATION = 357.29 (FLOW IS SUPERCRITICAL) CALCtJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 46.20 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 227.76 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.49 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.57 2 .25 GRADUALLY VARIED FLOW PROFILE COMPtJTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2 . 901 5 . 941 9.132 12.488 16.024 19 .760 23 .717 27.921 32 .402 37.194 42 .342 47.898 53.928 60.514 67.762 75.813 84.856 95.156 107.102 121.298 138.754 161.365 193.387 227.760 FLOW DEPTH (FT) 1.571 1.568 1.565 1.562 1.559 1.556 1. 1. 1. 1. 1. 1. 1. 1. 1, 1. 1. 1. .553 ,550 ,547 ,544 ,541 , 538 ,534 ,531 ,528 ,525 ,522 ,519 1.516 1.513 1.510 1.507 1.504 1.501 1.499 VELOCITY (FT/SEC) 14.219 14.252 14.284 14.317 14.350 14.383 14.416 14.449 14.483 14.517 14.550 14.584 14.619 14.653 14.688 14.723 14.758 14.793 14.828 14.864 14.900 14 . 935 14.972 15.008 15.031 SPECIFIC ENERGY(FT) 4 . 713 4 .724 4.735 4.747 4.758 4.770 4.782 , 794 ,806 ,818 ,830 ,842 ,855 4.868 4.880 , 893 ,906 , 919 ,933 4.946 4 .959 4 .973 4 . 987 5 . 001 5.009 4 . 4 . 4 . 4 . 4 . 4 . PRESSURE+ MOMENTtJM (POtJNDS) 1411.87 1414.15 1416.44 1418.75 1421.08 1423.43 1425.79 1428.17 1430.57 1432.98 1435 .42 1437.86 1440.33 1442.82 1445.32 1447.84 1450.38 1452.93 1455.51 1458.10 1460.71 1463.34 1465.99 1468.66 1470.33 NODE 230.00 : HGL = < 358.861>;EGL= < 362.003>;FLOWLINE= < 357.290> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23 0.90 23 0.00 TO NODE ELEVATION = 23 0.90 IS CODE = 5 357.62 (FLOW IS SUPERCRITICAL) CALCtJLATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 40.00 30.00 0.00 357.62 2.13 16.965 DOWNSTREAM 46.20 30.00 - 357.29 2.25 14.224 LATERAL #1 6.20 18.00 90.00 358.62 0.96 5.177 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.03340 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.134 FEET ENTRANCE LOSSES = JtJNCTION LOSSES = (DY+HVl-HV2) +(ENTRANCE LOSSES) JtJNCTION LOSSES = ( 1.298) + ( 0.000) = 1.298 04235 02446 0.000 FEET NODE 230.90 : HGL = < 358.831>;EGL= < 363.300>;FLOWLINE= < 357.620> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 235.00 23 0.90 TO NODE ELEVATION = 235.00 IS CODE = 1 366.35 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 40.00 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 184.76 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 . 17 CRITICAL DEPTH(FT) 2 .13 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 .13 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0.000 2 . 129 8 .978 3 .381 969. 63 0 . 045 2. 091 9 .120 3 .383 970 . 10 0.185 2 . 052 9 .273 3 .388 971. 54 0.428 2 . 014 9 .435 3 .397 973 . 98 0.784 1. 976 9 .609 3 .411 977. 45 1.264 1. 938 9 .795 3 .428 981. 99 1.883 1. 900 9 .992 3 .451 987. 67 2.657 1. 861 10 .203 3 .479 994 . 53 3 .606 1. 823 10 .426 3 .512 1002 . 64 4.753 1. 785 10 .664 3 .552 1012. 05 6.129 1. 747 10 .918 3 .599 1022 . 86 7.767 1. 709 11 .187 3 .653 1035. 14 9.711 1 670 11 474 3 .716 1048.98 12.017 1 632 11 780 3 .788 1064.48 14.753 1 594 12 106 3 . 871 1081.77 18.009 1 556 12 454 3 . 965 1100.97 21.903 1 517 12 825 4 . 073 1122 .22 26.599 1 479 13 222 4 .196 1145.68 32.322 1 441 13 647 4.335 1171.52 39.409 1 403 14 102 4 .493 1199.95 48.378 1 365 14 591 4 . 672 1231.19 60.101 1 326 15 116 4.877 1265.50 76.217 1 288 15 682 5 .109 1303.16 100.409 1 250 16 292 5.374 1344.50 144.497 1 212 16 951 5.676 1389.91 184.760 1 211 16 959 5.680 1390.47 235.00 HGL = < 368 479>;EGL= < 369.731>;FLOWLINE= < 366.350 NODE ****************************************************************************** FLOW PROCESS FROM NODE 235.00 TO NODE 235.90 IS CODE = 5 UPSTREAM NODE 235.90 ELEVATION = 366.68 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 36 . 00 40 . 00 4 . 00 0 . 00 0 . 00 = DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 30.00 0.00 366.68 30.00 - 366.35 18.00 90.00 367.35 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 2 .03 2 .13 0 .77 0 .00 VELOCITY (FT/SEC) 7.338 8.981 2 .273 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION' SLOPE = DOWNSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.00810 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.032 FEET ENTRANCE LOSSES JtJNCTION LOSSES = (DY+HVl-HV2) +(ENTRANCE LOSSES) JtJNCTION LOSSES = ( 0.272)+ ( 0.000) = 0.272 00726 00893 0.000 FEET NODE 235.90 : HGL = < 369.167>;EGL= < 3 70.004>;FLOWLINE= < 366.680> ****************************************************************************** FLOW PROCESS FROM NODE 235.90 TO NODE 235.91 IS CODE = 1 UPSTREAM NODE 235.91 ELEVATION = 367.32 (HYDRAtJLIC JUMP OCCtJRS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 36.00 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 63.64 FEET MANNING'S N = 0.01300 HYDRAtJLIC JUMP: DOWNSTREAM RtJN ANALYSIS REStJLTS NORMAL DEPTH(FT) 1.81 CRITICAL DEPTH(FT) = 2.03 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.84 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 . 000 1. 843 9 275 3 180 846 .35 1 . 607 1. 842 9 282 3 181 846 .51 3 .293 1. 841 9 289 3 181 846 .67 5 . 065 1. 840 9 295 3 182 846 .83 6 . 931 1. 838 9 302 3 183 846 .99 8 . 900 1. 837 9 309 3 183 847 .15 10 .983 1. 836 9 315 3 184 847 .31 13 . 191 1. 835 9 322 3 185 847 .48 15 .540 1. 833 9 329 3 185 847 .64 18 .047 1. 832 9 335 3 186 847 .81 20 .732 1. 831 9 342 3 187 847 .98 23 .618 1. 830 9 349 3 188 848 .15 26 .737 1. 828 9 356 3 188 848 .32 30 . 126 1. 827 9 362 3 189 848 .49 33 .831 1. 826 9 369 3 190 848 .66 37 . 913 1. 825 9 .376 3 190 848 .83 42 .452 1. 823 9 .383 3 191 849 .01 47 .554 1 822 9 .390 3 192 849 .19 53 .372 1. 821 9 .396 3 193 849 .36 60 .127 1 820 9 .403 3 193 849 .54 63 .640 1 819 9 .406 3 . 194 849 .62 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNI 0 000 2 .487 7 336 3 . 324 891. 00 5 238 2 .469 7 348 3 .308 886 . 33 9 .847 2 .451 7 365 3 .294 881. 98 14 036 2 .433 7 386 3 .281 877. 90 17 .906 2 .415 7 410 3 .268 874 . 05 21 . 517 2.397 7 436 3 .256 870 . 41 24 .908 2 .379 7 465 3 .245 866 . 97 28 . 106 2.361 7 496 3 .234 863 . 72 31 . 130 2 .343 7 530 3 .224 860 . 65 33 .995 2.325 7 565 3 .214 857 . 75 36 .709 2.306 7 603 3 .205 855. 03 39 .281 2.288 7 643 3 . 196 852 . 48 41 .715 2 .270 7 685 3 . 188 850. 10 44 . 014 2.252 7 729 3 . 180 847. 89 46 . 178 2.234 7 775 3 . 173 845 . 84 48 .206 2 .216 7 823 3 .167 843 . 97 50 . 096 2 .198 7 873 3 . 161 842 . 27 51 . 844 2.180 7 924 3 .155 840 . 73 53 .442 2 .162 7 978 3 .151 839. 37 54 .884 2 .143 8 034 3 .146 838 . 19 56 .157 2.125 8 092 3 . 143 837. 18 57 .249 2.107 8 .152 3 .140 836 34 58 . 144 2.089 8 .213 3 .137 835 69 58.819 59.249 59.401 63.640 2 . 071 2 . 053 2 . 035 2 . 035 8 .277 8 .343 8 .412 8.412 3 .136 3 .135 3 .134 3 .134 835.22 834.94 834.84 834.84 END OF HYDRAtJLIC JUMP ANALYSIS I PRESSURE+MOMENTtJM BALANCE OCCURS AT 43.99 FEET UPSTREAM OF NODE 235.90 | I DOWNSTREAM DEPTH = 2.252 FEET, UPSTREAM CONJUGATE DEPTH = 1.831 FEET j NODE 235.91 : HGL = < 369.163>;EGL= < 370.500>;FLOWLINE= < 367.320> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23 6.00 235.91 TO NODE ELEVATION = 236.00 IS CODE = 3 368.06 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 3 0.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 36.00 CFS CENTRAL ANGLE = 35.900 DEGREES PIPE LENGTH = 75.22 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) 1 . 83 CRITICAL DEPTH(FT) 2 . 03 UPSTREAM CONTROL ASStJMED FLOWDEPTH(FT) = 2 . 03 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESStJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 . 000 2 . 035 8 412 3 .134 834 . 84 0 .038 2 . 027 8 443 3 .134 834 . 86 0 .155 2 . 018 8 476 3 . 134 834 . 92 0 .357 2 . 010 8 508 3 . 135 835 . 02 0 .653 2 . 002 8 542 3 . 135 835. 16 1 . 051 1. 993 8 575 3 .136 835 . 35 1 .561 1. 985 8 609 3 . 137 835 . 57 2 .194 1. 977 8 644 3 . 138 835 . 84 2 .964 1. 969 8 679 3 .139 836. 15 3 . 886 1. 960 8 715 3 .141 836 . 50 4 . 981 1. 952 8 751 3 . 142 836 . 90 6 .272 1. 944 8 788 3 . 144 837 . 34 7 .786 1. 936 8 825 3 . 146 837 . 82 9 .559 1. 927 8 862 3 . 148 838 . 35 11 .637 1. 919 8 900 3 .150 838 . 92 14 . 075 1. 911 8 939 3 .152 839 . 54 16 .950 1. 903 8 978 3 .155 840 . 20 20 .364 1. 894 9 018 3 . 158 840 . 91 24 .461 1. 886 9 058 3 .161 841. 67 29 .451 1. 878 9 099 3 .164 842 . 47 35 .660 1. 870 9 140 3 .168 843 . 32 43 .635 1. 861 9 182 3 .171 844 . 22 54 .401 1. 853 9 .225 3 .175 845 . 17 70 .262 1. 845 9 268 3 .179 846 . 17 75 .220 1. 843 9 .275 3 .180 846 . 35 NODE 236.00 : HGL = < 370. 095>;EGL= < 371.194>;FLOWLINE= < 368.060> ****************************************************************************** FLOW PROCESS FROM NODE 236.00 TO NODE 236.90 IS CODE = 5 UPSTREAM NODE 236.90 ELEVATION = 368.56 (FLOW tJNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) ( DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7 .10 24.00 0 . 00 368.56 0.95 2.260 DOWNSTREAM 36.00 30.00 -368.06 2 .03 8.414 LATERAL #1 28 . 90 24 . 00 90 . 00 368.56 1. 84 9.199 LATERAL #2 0 . 00 0.00 0 . 00 0.00 0.00 0.000 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.0043 9 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JtJNCTION LOSSES = ( 1.399)+( 0.000) = 1.399 00098 00780 0.000 FEET NODE 236.90 : HGL = < 372.514>;EGL= < 372.593>;FLOWLINE= < 368.560> ****************************************************************************** FLOW PROCESS FROM NODE 23 6.90 TO NODE 240.00 IS CODE = 3 UPSTREAM NODE 240.00 ELEVATION = 368.90 (FLOW IS tJNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 7.10 CFS CENTRAL ANGLE = 16.500 DEGREES PIPE LENGTH = 34.72 FEET FLOW VELOCITY = 2.26 FEET/SEC. HB=KB*(VELOCITY HEAD) = ( 0.107)*( 0.079) = 0.008 SF=(Q/K)**2 = (( 7.10)/( 226.209))**2 = 0.00099 HF=L*SF = ( 34.72)* (0 . 00099) = 0.034 TOTAL HEAD LOSSES = HB + HF = ( 0.008)+( 0.034) = 0.043 PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 BEND COEFFICIENT(KB) = 0.10704 VELOCITY HEAD = 0.079 FEET NODE 240.00 : HGL = < 372.556>;EGL= < 372.636>;FLOWLINE= < 368.900> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 240.10 240.00 TO NODE 240.10 IS CODE = 1 ELEVATION = 369.49 (FLOW IS tJNDER PRESSURE) CMjCtriiATE FRICTION LOSSES (LACFCD) : PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 7.10 CFS PIPE DIAMETER = 24.00 INCHES 58.40 FEET MANNING'S N = 0.01300 (( 7.10)/( 226.222))**2 = 0.00099 58.40)* (0.00099) = 0.058 NODE 240.10 : HGL = < 372.614>;EGL= < 372.693>;FLOWLINE= < 369.490> ****************************************************************************** FLOW PROCESS FROM NODE 240.10 TO NODE 240.20 IS CODE = 5 UPSTREAM NODE 240.20 ELEVATION = 369.99 (FLOW IS UNDER PRESStJRE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES ) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 6.30 18.00 90.00 369.99 0.97 3 .565 DOWNSTREAM 7.10 24 . 00 -369.49 0.95 2 .260 LATERAL #1 0 . 80 18 . 00 90 . 00 369.99 0.33 0 .453 LATERAL #2 0 . 00 0.00 0 . 00 0 .00 0.00 0.000 Q5 0 .00 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00360 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00098 AVERAGED FRICTION SLOPE IN JtJNCTION ASSUMED AS 0.00229 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.000 FEET JtJNCTION LOSSES = (DY+HVl-HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.330)+( 0.000) = 0.330 NODE 240.20 : HGL = < 372.826>;EGL= < 373.023>;FLOWLINE= < 369.990> ****************************************************************************** FLOW PROCESS FROM NODE 240.20 TO NODE 240.30 IS CODE = 1 UPSTREAM NODE 240.30 ELEVATION = 370.21 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.013 00 SF=(Q/K)**2 = (( 6.30)/( 105.034))**2 = 0.00360 HF=L*SF = ( 22.25)* (0 . 00360) = 0.080 NODE 240.30 : HGL = < 372.906>;EGL= < 373.103>;FLOWLINE= < 370.210> ****************************************************************************** FLOW PROCESS FROM NODE 240.30 TO NODE 240.30 IS CODE = 8 UPSTREAM NODE 240.30 ELEVATION = 370.21 (FLOW IS UNDER PRESStJRE) CALCtlLATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.56 FEET/SEC. VELOCITY HEAD = 0.197 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.197) = 0.039 NODE 240.30 : HGL = < 373.143>;EGL= < 373.143>;FLOWLINE= < 370.210> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 240.30 FLOWLINE ELEVATION = 370.21 ASSUMED UPSTREAM CONTROL HGL = 371.18 FOR DOWNSTREAM RtJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by:, ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2438.00 - BRESSI RANCH PA-15 * * ADDENDUM TO BACKBONE SYSTEM * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: ADDEN-l.DAT TIME/DATE OF STtJDY: 12:36 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NtJMBER 237 . 00- 237.10 238.00 238.70 238.90 238.40 238.50 239.00 239.10 239.40 239.50 2531.00 2532.00 2532.10 UPSTREAM RtJN MODEL PRESSURE PRESSURE+ PROCESS HEAD (FT) MOMENTtJM (POtJNDS) 3.95* 1160.05 FRICTION+BEND } HYDRAULIC JUMP 957.73 FRICTION 2 . 92 1.87*Dc JtJNCTION 2 .33* FRICTION+BEND 2.37* FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JtJNCTION 769.08 725.83 733.83 2.32* 725.13 3.05* 659.62 } HYDRAULIC JUMP 2.66 582.67 1.47 Dc 538.86 1.47*Dc 538.86 3.85* 475.63 } HYDRAtJLIC JUMP 1.27*Dc 206.91 DOWNSTREAM RUN FLOW PRESSURE* DEPTH (FT) MOMENTtJM (POUNDS) 972.39 1.65* FRICTION+BEND 1.09* 107.28 51.73 1.23 1.23* 1.87*Dc 1.61 1.62 1.82 Dc 1.03 0 .85* 1.06* 1.47*Dc 0 .73 1.27*Dc 0.52 0.53 969.26 769.08 664.24 661.75 648.93 538.06 660.57 644.22 538.86 294.67 206.91 33 .68 33 .45 } FRICTION } HYDRAULIC JUMP 2534.00- 0.63*Dc 31.96 0.63*Dc 31.96 MAXIMtJM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JtJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 237.00 PIPE FLOW = 3 0.71 CFS ASStJMED DOWNSTREAM CONTROL HGL FLOWLINE ELEVATION = 368.57 PIPE DIAMETER = 24.00 INCHES 372.520 FEET NODE 237.00 : HGL = < 372.520>;EGL= < 374.004>;FLOWLINE= < 368.570> ****************************************************************************** FLOW PROCESS FROM NODE 237.00 TO NODE 237.10 IS CODE = 3 UPSTREAM NODE 237.10 ELEVATION = 371.00 (HYDRAtJLIC JtJMP OCCtJRS) CMiCULATE PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 30.71 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 36.150 DEGREES MANNING'S N = 0 01300 PIPE LENGTH = 63.10 FEET HYDRAULIC JtJMP: DOWNSTREAM RtJN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.22 CRITICAL DEPTH(FT) = 1.87 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.23 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 .000 2 .548 5 .207 7 . 984 10.892 13.944 17.153 20.537 24.117 27.915 31.961 36.287 40 .937 45.961 51.424 57.412 63.100 FLOW DEPTH (FT) 1.230 230 229 229 229 229 228 228 228 228 227 227 227 226 226 226 226 VELOCITY (FT/SEC) 15.149 15.153 15.157 15.161 15.165 15.168 15.172 15.176 15.180 15.184 15.188 15.192 15.196 15.199 15.203 15.207 15.211 SPECIFIC ENERGY(FT) 4 . 796 797 799 800 802 804 805 ,807 ,808 810 ,811 ,813 , 814 ,816 ,818 ,819 ,821 PRESSURE+ MOMENTtJM (POtJNDS) 969.26 969.46 969.66 969.85 970.05 970.25 970.44 970.64 970 . 84 971.03 971.23 971.43 971.63 971.83 972.02 972.22 972 .39 HYDRAtJLIC JUMP: UPSTREAM RtJN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.95 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 63.100 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 3.950 9.775 2.918 9.775 SPECIFIC ENERGY(FT) 5.434 4 .402 PRESSURE+ MOMENTtJM (POUNDS) 1160.05 957.73 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTtJM BALANCE OCCURS AT 59.42 FEET UPSTREAM OF NODE 237.00 | I DOWNSTREAM DEPTH = 2.978 FEET, UPSTREAM CONJUGATE DEPTH = 1.230 FEET j NODE 237.10 : HGL = < 372.230>;EGL= < 375.796>;FLOWLINE= < 371.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23 8.00 237.10 TO NODE 238.00 IS CODE = 1 ELEVATION = 374.48 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3 0.71 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 72.58 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 . 14 CRITICAL DEPTH(FT) 1.87 UPSTREAM ::ONTROL ASStJMED FLOWDEPTH(FT) = 1. 87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 . 000 1. 873 10 .040 3 439 769. 08 0 .062 1. 843 10 . 140 3 441 769. 45 0 .245 1. 814 10 .251 3 447 770 . 56 0 .553 1. 785 10 .373 3 457 772 . 37 0 . 990 1. 756 10 . 506 3 470 774 . 89 1 .564 1. 726 10 . 649 3 488 778 . 12 2 .284 1. 697 10 . 804 3 510 782. 08 3 . 164 1. 668 10 . 969 3 537 786 . 77 4 .221 1. 638 11 . 146 3 569 792 . 22 5 .475 1. 609 11 .335 3 605 798 . 46 6 . 950 1. 580 11 .536 3 647 805. 50 8 .679 1. 550 11 .750 3 695 813 . 40 10 .698 1. 521 11 . 977 3 750 822 . 18 13 . 058 1. 492 12 .218 3 811 831. 88 15 .818 1. 462 12 .474 3 880 842 . 56 19 . 059 1. 433 12 . 745 3 957 854 . 27 22 .886 1. 404 13 . 033 4 043 867. 07 27 .444 1. 374 13 .339 4 139 881. 03 32 . 933 1. 345 13 .664 4 246 896 . 21 39 . 652 1. 316 14 . 009 4 365 912. 69 48 . 060 1. 286 14 .376 4 498 930. 58 58 .932 1. 257 14 .767 4 645 949. 96 72 .580 1. 230 15 .149 4 796 969. 26 NODE 238.00 HGL < 376.353>;EGL= < 377.919>;FLOWLINE= < 374.480> ****************************************************************************** FLOW PROCESS FROM NODE 238.00 TO NODE 238.70 IS CODE = 5 UPSTREAM NODE 238.70 ELEVATION = 374.81 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 27 .48 24.00 0.00 374.81 1.82 8.747 DOWNSTREAM 30.71 24.00 - 374.48 1.87 10.043 LATERAL #1 3 .23 18.00 90.00 375.31 0.68 1.856 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0 . 000 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.01475 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01593 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01534 JUNCTION LENGTH = 4.0 0 FEET FRICTION LOSSES = 0.061 FEET ENTRANCE LOSSES = 0.000 FEET JtlNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.344)+( 0.061)+( 0.000) = 0.405 NODE 238.70 : HGL = < 377.136>;EGL= < 378.324>;FLOWLINE= < 374.810> ****************************************************************************** FLOW PROCESS FROM NODE 238.70 TO NODE 238.90 IS CODE = 3 UPSTREAM NODE 238.90 ELEVATION = 377.39 (FLOW IS tJNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 27.48 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 19.030 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 168.36 FEET BEND COEFFICIENT(KB) = 0.11496 FLOW VELOCITY = 8.75 FEET/SEC. VELOCITY HEAD = 1.188 FEET HB=KB*(VELOCITY HEAD) = ( 0.115)*( 1.188) = 0.137 SF=(Q/K)**2 = (( 27.48)/( 226.224))**2 = 0.01476 HF=L*SF = ( 168.36)* (0.01476) = 2.484 TOTAL HEAD LOSSES = HB + HF = ( 0.137)+( 2.484) = 2.621 NODE 238.90 : HGL = < 379.757>;EGL= < 380.945>;FLOWLINE= < 377.390> ****************************************************************************** FLOW PROCESS FROM NODE 238.90 TO NODE 238.40 IS CODE = 1 UPSTREAM NODE 238.40 ELEVATION = 378.66 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.48 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 83.06 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 27.48)/( 226.225))**2 = 0.01476 HF=L*SF = ( 83.06)* (0 . 01476) = 1.226 NODE 238.40 : HGL = < 380.983>;EGL= < 382.171>;FLOWLINE= < 378.660> ****************************************************************************** FLOW PROCESS FROM NODE 238.40 TO NODE 238.50 IS CODE = 5 UPSTREAM NODE 238.50 ELEVATION = 379.04 (FLOW IS tJNDER PRESSURE) CALCtJLATE JtJNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 20.42 24.00 0.00 379.04 1.62 DOWNSTREAM 27.48 24.00 - 378.66 1.82 LATERAL #1 7.06 24.00 90.00 379.04 0.94 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 6 . 500 8 . 747 2.247 0 . 000 JtJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00815 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01475 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01145 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.046 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.532)+( 0.046)+( 0.000) = 0.578 NODE 238.50 : HGL = < 382.093>;EGL= < 382.749>;FLOWLINE= < 379.040> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23 9.00 238.50 TO NODE 23 9.00 IS CODE = 1 ELEVATION = 379.88 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.42 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 54.92 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.27 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.62 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0 000 0 . 853 15.966 4 814 660 .57 4 538 0 . 870 15.566 4 635 646 . 07 9 149 0 . 887 15.185 4 469 632 .35 13 838 0 . 903 14.821 4 316 619 .35 18 615 0. 920 14.473 4 174 607 .05 23 490 0 . 936 14.141 4 044 595 .38 28 473 0 . 953 13.824 3 922 584 .33 33 578 0 . 970 13.520 3 810 573 .86 38 820 0 . 986 13.230 3 706 563 .93 44 217 1. 003 12.951 3 609 554 . 52 49 790 1. 019 12.684 3 519 545 .59 54 920 1. 034 12.456 3 445 538 .06 HYDRAULIC JUMP: UPSTREAM RtJN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3 .05 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 .000 PRESStJRE VELOCITY HEAD(FT) (FT/SEC) 3.053 6.500 SPECIFIC ENERGY(FT) 3.709 PRESStJRE+ MOMENTUM (POtJNDS) 659.62 54.920 2.660 6.500 3.316 582.67 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 36.73 FEET UPSTREAM OF NODE 238.50 | I DOWNSTREAM DEPTH = 2.790 FEET, UPSTREAM CONJUGATE DEPTH = 0.918 FEET j NODE 239.00 : HGL = < 380.733>;EGL= < 384.694>;FLOWLINE= < 379.880> ****************************************************************************** FLOW PROCESS FROM NODE 239.00 TO NODE 239.10 IS CODE = 5 UPSTREAM NODE 239.10 ELEVATION = 380.38 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 20.42 18.00 0.00 380.38 1.47 15.292 DOWNSTREAM 20.42 24.00 - 379.88 1.62 15.971 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FtJLL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05257 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05678 AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.05467 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.219 FEET ENTRANCE LOSSES = 0.000 FEET JtJNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.158)+( 0.219)+( 0.000) = 0.377 NODE 239.10 : HGL = < 381.440>;EGL= < 385.071>;FLOWLINE= < 380.380> ****************************************************************************** FLOW PROCESS FROM NODE 239.10 TO NODE 239.40 IS CODE = 1 UPSTREAM NODE 239.40 ELEVATION = 388.34 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.42 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 145.22 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.04 CRITICAL DEPTH(FT) = 1.47 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.47 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE* (FT) (FT) (FT/ SEC) ENERGY (FT) MOMENTtJM (POUN 0 .000 1 .470 11 .608 3 563 538 . 86 0 . Ill 1 .453 11 .662 3 566 539.12 0 .409 1 .436 11 .727 3 572 539.83 0 . 871 1 .419 11 . 801 3 582 540.93 1 .488 1 .401 11 . 885 3 596 542.40 2 .256 1 .384 11 .976 3 613 544.21 3 .178 1 .367 12 . 076 3 633 546.36 4 .262 1 . 350 12 . 184 3 657 548 . 83 5 .517 1 .333 12 .299 3 684 551.62 6 .959 1 .316 12 .422 3 714 554.73 8 . 606 1 299 12 553 3 747 558 . 16 10 . 482 1 282 12 691 3 785 561 .91 12 . 619 1 265 12 837 3 826 566 . 00 15 . 054 1 248 12 991 3 870 570 .42 17 . 837 1 231 13 154 3 919 575 .18 21. 034 1 214 13 324 3 972 580 .29 24 . 730 1 197 13 503 4 030 585 .76 29 . 042 1 180 13 691 4 092 591 .60 34. 136 1 163 13 888 4 160 597 .83 40 . 252 1 146 14 095 4 233 604 .45 47. 768 1 129 14 311 4 311 611 .49 57 . 313 1 112 14 538 4 396 618 . 96 70 . 070 1 095 14 776 4 487 626 .88 88 . 698 1 077 15 024 4 585 635 .27 121. 731 1 060 15 285 4 690 644 .14 145 . 220 1 060 15 287 4 691 644 .22 239 .40 HGL = < 389 810>;EGL= < 391.903>;FLOWLINE= < 388. 340 NODE ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23 9.50 239.40 TO NODE ELEVATION = 239.50 IS CODE = 5 388.67 (FLOW UNSEALS IN REACH) CALCULATE JtJNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) ( DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 11. 06 18 . 00 0.00 388.67 1.27 6.259 DOWNSTREAM 20 .42 18 . 00 -388.34 1.47 11.611 LATERAL #1 9 . 36 18 . 00 60.00 388.67 1.18 5 .297 LATERAL #2 0 . 00 0 . 00 0.00 0 . 00 0 . 00 0 . 000 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02247 JtlNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.090 FEET ENTRANCE LOSSES = JtJNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.132)+( 0.090)+( 0.000) = 1.222 01109 03385 0.000 FEET NODE 239.50 : HGL = < 392.517>;EGL= < 3 93.125>;FLOWLINE= < 388.670> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2531.00 239.50 TO NODE 2531.00 IS CODE = 1 ELEVATION = 397.35 (HYDRAULIC JUMP OCCtJRS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.06 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 160.40 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RtJN ANALYSIS REStJLTS NORMAL DEPTH(FT) = 0.71 CRITICAL DEPTH(FT) = 1.27 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.27 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 000 1 273 6 .916 2 . 016 206 .91 0 023 1 250 7 . 025 2 . 017 207 .01 0 094 1 228 7 . 142 2 . 020 207 .31 0 218 1 205 7 .267 2 . 025 207 .81 0 399 1 182 7 .399 2 .033 208 .54 0 644 1 160 7 .541 2 . 043 209 .48 0 960 1 137 7 .692 2 .056 210 .67 1 354 1 115 7 . 852 2 . 073 212 .09 1 838 1 092 8 . 022 2 . 092 213 .78 2 423 1 069 8 .203 2 . 115 215 .74 3 124 1 047 8 .396 2 .142 217 .99 3 959 1 024 8 .601 2 . 174 220 . 55 4 950 1 002 8 .819 2 .210 223 .42 6 125 0 979 9 . 050 2 .252 226 .65 7 518 0 956 9 .297 2 .299 230 .24 9 176 0 934 9 . 561 2 .354 234 .23 11 159 0 911 9 . 841 2 .416 238 . 64 13 548 0 889 10 . 141 2 .487 243 .51 16 459 0 866 10 .462 2 .567 248 .87 20 062 0 843 10 .805 2 .657 254 .76 24 620 0 821 11 . 173 2 .760 261 .23 30 575 0 798 11 . 568 2 . 877 268 .33 38 758 0 776 11 . 993 3 . 010 276 . 11 51 034 0 753 12 .451 3 . 162 284 .65 73 394 0 730 12 . 945 3 .334 294 .02 160 400 0 729 12 . 979 3 .346 294 .67 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD (FT) = 3 . 85 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 .000 54.542 PRESSURE HEAD(FT) 3 .847 1 . 500 VELOCITY (FT/SEC) 6.259 6.259 SPECIFIC ENERGY(FT) 4 .455 2 .108 PRESSURE+ MOMENTUM(POUNDS) 475.63 216.84 ASStJMED DOWNSTREAM PRESSURE HEAD (FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 54 .542 54.729 54.896 55.050 55.193 55.328 55.454 55.573 55.685 FLOW DEPTH VELOCITY (FT) 1.500 1.491 1.482 1.473 1.464 1.455 1.445 1.436 1.427 (FT/SEC) 6.257 262 271 283 297 313 330 350 370 SPECIFIC ENERGY(FT) 2 .108 100 093 086 080 074 068 063 058 PRESStJRE+ MOMENTtJM (POtJNDS) 216.84 215.95 215.15 214.40 213.71 213.05 212.44 211.86 211.32 55 790 1. 418 6 393 2 . 053 210 82 55 889 1. 409 6 416 2 . 049 210 34 55 982 1. 400 6 441 2 . 045 209 . 90 56 068 1. 391 6 467 2 . 041 209 49 56 148 1. 382 6 495 2 . 037 209 11 56 222 1. 373 6 523 2 . 034 208 76 56 291 1. 364 6 553 2 . 031 208 44 56 353 1. 355 6 584 2 . 028 208 15 56 408 1. 346 6 616 2 . 026 207 89 56 458 1. 336 6 650 2 . 023 207 66 56 502 1. 327 6 684 2. 022 207 46 56 539 1. 318 6 720 2 . 020 207 30 56 570 1. 309 6 757 2 . 019 207 16 56 594 1. 300 6 795 2. 017 207 05 56 611 1. 291 6 834 2 . 017 206 97 56 622 1. 282 6 875 2 . 016 206 92 56 626 1. 273 6 916 2 . 016 206 91 160 400 1. 273 6 916 2 . 016 206 91 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 3 8.20 FEET UPSTREAM OF DOWNSTREAM DEPTH = 2.203 FEET, UPSTREAM CONJUGATE DEPTH NODE 23 9.50 = 0.73 0 FEET NODE 2531.00 : HGL = < 398.623>;EGL= < 399.366>;FLOWLINE= < 397.350> ****************************************************************************** FLOW PROCESS FROM NODE 2531.00 TO NODE 2532.00 IS CODE = 5 UPSTREAM NODE 2532.00 ELEVATION = 397.68 (FLOW tJNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) ( DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2 .72 18 . 00 60.00 397.68 0 .63 1.539 DOWNSTREAM 11 . 06 18 .00 -397.35 1.27 6 . 919 LATERAL #1 8.34 18 . 00 0 . 00 397.68 1.12 5.138 LATERAL #2 0 . 00 0 .00 0.00 0 . 00 0 . 00 0 .000 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT=== JtJNCTION ANALYSIS USING FULL INTEGRATION FORMtJLATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00067 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01047 AVERAGED FRICTION SLOPE IN JUNCTION ASStJMED AS 0.00557 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.022 FEET ENTRANCE LOSSES = 0.000 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTtJM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 2532.00 : HGL = < 399.329>;EGL= < 399.366>;FLOWLINE= < 397.680> ****************************************************************************** FLOW PROCESS FROM NODE 2532.00 TO NODE 2532.10 IS CODE = 3 UPSTREAM NODE 2532.10 ELEVATION = 398.26 (FLOW SEALS IN REACH) CALCtlLATE PIPE-BEND LOSSES (OCEMA) : PIPE PLOW = 2.72 CFS CENTRAL ANGLE = 32.990 DEGREES PIPE LENGTH = 57.58 FEET ADJUSTED CENTRAL ANGLE = (32.990)*( PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 BEND COEFFICIENT(KB) = 0.08028 16.20/ 57.58) = 9.280 FLOW VELOCITY = 1.54 FEET/SEC. VELOCITY HEAD = 0.037 FEET HB=KB*(VELOCITY HEAD) = ( 0.080)*( 0.037) = 0.003 SF=0.00066 HF=L*SF = ( 57.58)* (0.00066) = 0.038 TOTAL HEAD LOSSES = HB + HF = ( 0.003)+( 0.038) = 0.041 DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD (FT) 1.65 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 .000 1 . 649 1. 539 1. 686 107. 28 16 .197 1 .500 1. 539 1. 537 90 . 82 NORMAL DEPTH(FT) = 0.52 CRITICAL DEPTH(FT) 0.63 ASStJMED DOWNSTREAM PRESStJRE HEAD (FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 16 .197 1 .500 1. 539 1. 537 90. 82 19 .851 1 .465 1. 548 1. 502 87 . 02 23 .451 1 .430 1. 565 1. 468 83 . 29 27 . 020 1 .395 1. 588 1. 434 79 . 65 30 .563 1 .360 1. 615 1. 401 76 . 08 34 . 085 1 .325 1 . 646 1. 367 72. 61 37 .586 1 .290 1. 682 1. 334 69. 23 41 .067 1 .255 1. 722 1. 301 65 . 95 44 . 527 1 .220 1. 766 1. 269 62. 78 47 . 965 1 . 185 1. 816 1. 236 59. 73 51 .379 1 . 150 1. 870 1 205 56 . 79 54 . 768 1 .115 1. 930 1 173 53 . 98 57 .580 1 . 086 1. 985 1 147 51. 73 NODE 2532.10 : HGL = < 399.346>;EGL= < 399.407>;FLOWLINE= < 398.260> ****************************************************************************** FLOW PROCESS FROM NODE 2532.10 TO NODE 2534.00 IS CODE = 1 UPSTREAM NODE 2534.00 ELEVATION = 398.68 (HYDRAtlLIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.72 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 42.56 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RtJN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.52 CRITICAL DEPTH(FT) = 0.63 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 0.63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) FLOW DEPTH VELOCITY (FT) (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTtJM (POUNDS) 0.000 0 626 3 . 896 0 862 31 96 0 . oil 0 622 3 . 931 0 862 31 96 0 . 046 0 617 3 . 966 0 862 31 97 0 .107 0 613 4 . 001 0 862 31 98 0 .195 0 609 4 . 037 0 862 32 00 0 .315 0 605 4 . 074 0 863 32 02 0 .470 0 601 4 . 111 0 864 32 04 0 . 662 0 597 4 . 149 0 864 32 07 0.897 0 593 4 . 188 0 865 32 11 1.180 0 589 4 . 227 0 866 32 15 1.517 0 584 4 . 267 0 867 32 20 1. 916 0 580 4 . 308 0 869 32 25 2 .385 0 576 4 . 349 0 870 32 31 2 . 937 0 572 4 . 392 0 872 32 37 3 .586 0 568 4 . 435 0 873 32 44 4.351 0 564 4 . 478 0 875 32 51 5.255 0 560 4 . 523 0 878 32 59 6 .333 0 556 4 568 0 880 32 68 7.631 0 551 4 615 0 882 32 77 9.217 0 547 4 662 0 885 32 87 11.197 0 543 4 710 0 888 32 97 13.748 0 .539 4 759 0 891 33 08 17.203 0 . 535 4 809 0 .894 33 20 22.308 0 . 531 4 860 0 .898 33 32 31.461 0 . 527 4 911 0 . 901 33 45 42.560 0 . 527 4 912 0 . 902 33 45 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS REStJLTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 1 086 1 .985 1 147 51 . 73 1 798 1 068 2 . 021 1 131 50 .36 3 586 1 049 2 . 060 1 115 49 . 04 5 364 1 031 2 .100 1 099 47 .75 7 .129 1 . 012 2 .143 1 084 46 . 50 8 .882 0 . 994 2 . 188 1 068 45 .29 10 .620 0 . 975 2 .235 1 053 44 . 13 12 .343 0 . 957 2 .285 1 038 43 . 01 14 . 048 0 . 939 2 .337 1 024 41 . 93 15 .734 0 . 920 2 .392 1 009 40 .90 17 .398 0 . 902 2 .450 0 995 39 . 92 19 . 038 0 . 883 2 .512 0 981 38 . 98 20 .650 0 . 865 2 .576 0 968 38 . 09 22 .231 0 . 847 2 .645 0 955 37 .26 23 .777 0 .828 2 .717 0 943 36 .47 25 .282 0 . 810 2 .794 0 931 35 .75 26 .739 0 . 791 2 .876 0 920 35 . 07 28 .142 0 . 773 2 .962 0 909 34 .46 29 .480 0 .755 3 . 054 0 .899 33 . 90 30 .740 0 .736 3 .152 0 .890 33 .41 31 . 908 0 . 718 3 .256 0 .882 32 .99 32 . 963 0 . 699 3 .367 0 .875 32 .63 33.878 0.681 3.486 0.870 32.34 34.615 0.662 3.613 0.865 32.13 35.120 0.644 3.750 0.863 32.00 35.314 0.626 3.896 0.862 31.96 42.560 0.626 3.896 0.862 31.96 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 32.06 FEET UPSTREAM OF NODE 2532.10 | I DOWNSTREAM DEPTH = 0.715 FEET, UPSTREAM CONJUGATE DEPTH = 0.545 FEET j NODE 2534.00 : HGL = < 399.306>;EGL= < 399.542>;FLOWLINE= < 398.680> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 2534.00 FLOWLINE ELEVATION = 398.68 ASStJMED UPSTREAM CONTROL HGL = 3 99.31 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STtJDY ************************** * 2438.00 - BRESSI RANCH PA-15 * * ADDENDUM TO BACKBONE SYSTEM - DESILT OUTLET * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: ADDEN-2.DAT TIME/DATE OF STtJDY: 12:50 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RtJN DOWNSTREAM RtIN NODE MODEL PRESSURE PRESSURE+ FLOW PRESStJRE+ NtJMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTtJM (POUNDS) 239.60- 3.85* 439.35 0.61 266.72 } FRICTION 240.00- 1.19*Dc 165.22 1.19*Dc 165.22 } CATCH BASIN 240.00- 1.92* 129.43 1.19 Dc 50.26 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 23 9.60 FLOWLINE ELEVATION = 388.67 PIPE FLOW = 9.43 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 3 92.520 FEET NODE 239.60 : HGL = < 392.520>;EGL= < 392.962>;FLOWLINE= < 388.670> ****************************************************************************** FLOW PROCESS FROM NODE 239.60 TO NODE 240.00 IS CODE = 1 UPSTREAM NODE 240.00 ELEVATION = 393.15 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.43 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 56.00 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD (FT) = 3 . 85 PRESSURE FLOW PROFILE COMPtJTED INFORMATION : DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0. 000 3 . 850 5. 336 4. 292 439. 35 32 . 666 1. 500 5 . 336 1. 942 180. 22 NORMAL DEPTH(FT) = 0 .58 CRITICAL DEPTH(FT) 1.19 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 32 . 666 1. 500 5 . 335 1. 942 180. 22 32 . 824 1. 487 5 . 342 1. 931 178 . 96 32 . 968 1. 475 5 . 354 1. 920 177. 81 33 . 102 1. 462 5 . 371 1 . 911 176. 74 33 . 230 1. 450 5 . 390 1. 901 175. 72 33 . 351 1. 437 5 . 412 1. 892 174 . 76 33 . 466 1. 425 5 . 437 1. 884 173 . 85 33 . 575 1. 412 5 . 464 1. 876 172 . 99 33 . 679 1. 400 5. 493 1. 868 172 . 17 33 . 778 1. 387 5 . 524 1. 861 171. 40 33 . 872 1. 375 5 . 557 1. 854 170 . 67 33 . 960 1. 362 5 . 592 1. 848 169. 99 34 044 1. 349 5 . 629 1. 842 169 . 35 34 . 122 1. 337 5 . 668 1. 836 168. 76 34. 195 1. 324 5. 709 1. 831 168. 21 34 263 1. 312 5 . 752 1. 826 167. 70 34 325 1. 299 5 . 796 1. 821 167. 24 34 382 1. 287 5 . 843 1. 817 166 . 83 34 433 1. 274 5 . 892 1. 814 166 . 46 34 478 1. 262 5 . 942 1. 810 166. 13 34 516 1. 249 5. 995 1. 807 165. 86 34 549 1. 237 6 . 049 1. 805 165. 63 34 575 1. 224 6 106 1. 803 165. 45 34 593 1. 212 6 165 1. 802 165. 32 34 605 1. 199 6 225 1. 801 165. 24 34 609 1. 186 6 288 1 801 165. 22 56 000 1 186 6 288 1. 801 165 . 22 NODE 240.00 : HGL = < 394 . 336>;EGL= < 3 94.951>;FLOWLINE= < 393.150> ****************************************************************************** FLOW PROCESS FROM NODE 240.00 TO NODE 240.00 IS CODE = 8 UPSTREAM NODE 240.00 ELEVATION = 393.15 (FLOW tJNSEALS IN REACH) CALCtJLATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW = 9.43 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 6.29 FEET/SEC. VELOCITY HEAD = 0.614 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.614) = 0.123 NODE 240.00 : HGL = < 395.074>;EGL= < 395.074>;FLOWLINE= < 393.150> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 240.00 FLOWLINE ELEVATION = 393.15 ASStJMED UPSTREAM CONTROL HGL = 3 94.34 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STtJDY ************************** * BRESSI RANCH STORM DRAIN ON TOWN GARDEN ROAD STATIONS 4275-4400 * * CONSTRUCTION CHANGE DUE TO STAGING * * PDC JOB #243 8 * ************************************************************************** FILE NAME: ADDEN-3.DAT TIME/DATE OF STUDY: 12:50 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RtJN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NtJMBER PROCESS HEAD (FT) MOMENTUM (POtJNDS) DEPTH (FT) MOMENTUM (POUNDS) 2532.00- 1.63* 173.31 0.82 158.52 } FRICTION } HYDRAULIC JUMP 2533.00- 1.12*Dc 139.47 1.12*Dc 139.47 } JUNCTION 2533.10- 1.50* 108.89 0.60 78.91 } FRICTION } HYDRAULIC JUMP 2533.20- 0.85*Dc 67.47 0.85*Dc 67.47 MAXIMtJM NtJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 2532.00 FLOWLINE ELEVATION = 397.68 PIPE FLOW = 8.34 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 3 99.310 FEET NODE 2532.00 : HGL = < 399.310>;EGL= < 399.656>;FLOWLINE= < 397.680> ****************************************************************************** FLOW PROCESS FROM NODE 2531.90 TO NODE 2533.00 IS CODE = 1 UPSTREAM NODE 2533.00 ELEVATION = 399.57 (HYDRAULIC JtJMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.34 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH 94.60 FEET MANNING'S N 0 . 01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.80 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.12 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.12 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POtJNDS) 0 000 1. 118 5 900 1 659 139 47 0 024 1. 106 5 970 1 660 139 50 0 099 1. 093 6 042 1 660 139 57 0 230 1. 081 6 116 1 662 139 71 0 422 1 068 6 194 1 664 139 .89 0 681 1. 056 6 274 1 667 140 .13 1 014 1. 043 6 356 1 671 140 .44 1 431 1 030 6 442 1 675 140 . 80 1 941 1 018 6 531 1 681 141 .22 2 555 1 005 6 622 1 687 141 .71 3 288 0 993 6 717 1 694 142 .26 4 157 0 980 6 816 1 702 142 . 88 5 182 0 968 6 917 1 711 143 .58 6 390 0 955 7 023 1 721 144 .34 7 814 0 942 7 132 1 733 145 .19 9 495 0 930 7 .245 1 745 146 .11 11 490 0 917 7 .363 1 760 147 . 11 13 873 0 905 7 .484 1 775 148 .20 16 750 0 892 7 . 611 1 792 149 .37 20 277 0 880 7 . 742 1 811 150 . 64 24 694 0 867 7 . 878 1 831 152 .00 30 404 0 854 8 . 019 1 854 153 .46 38 163 0 842 8 . 166 1 878 155 . 03 49 .668 0 829 8 .319 1 905 156 .71 70 .370 0 817 8 .478 1 933 158 .49 94 .600 0 816 8 .480 1 .934 158 . 52 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD (FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1.63 DISTANCE FROM CONTROL(FT) 0 . 000 9 .507 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 1.630 1.500 4 . 719 4 . 719 SPECIFIC ENERGY(FT) 1.976 1.846 PRESStJRE+ MOMENTUM(POUNDS) 173 .31 158.98 ASStJMED DOWNSTREAM PRESSURE HEAD (FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 9.507 FLOW DEPTH VELOCITY (FT) (FT/SEC) 1.500 4.718 SPECIFIC ENERGY(FT) 1. 846 PRESSURE+ MOMENTtJM (POUNDS) 158.98 10 . 515 1 485 4 . 726 1 832 157 43 11 430 1 469 4 . 741 1 819 155 99 12 290 1 454 4 . 761 1 806 154 64 13 108 1 439 4 784 1 795 153 35 13 889 1 424 4 810 1 783 152 12 14 636 1 408 4 840 1 772 150 95 15 352 1 393 4 872 1 762 149 83 16 039 1 378 4 907 1 752 148 77 16 697 1 363 4 944 1 742 147 77 17 327 1 347 4 984 1 733 146 81 17 928 1 332 5 027 1 725 145 91 18 500 1 317 5 072 1 717 145 07 19 043 1 302 5 119 1 709 144 28 19 556 1 286 5 169 1 701 143 54 20 038 1 271 5 222 1 695 142 87 20 487 1 256 5 277 1 688 142 24 20 901 1 241 5 334 1 683 141 68 21 280 1 .225 5 395 1 678 141 18 21 619 1 .210 5 458 1 673 140 74 21 .917 1 . 195 5 524 1 669 140 36 22 .170 1 . 180 5 593 1 666 140 04 22 .375 1 . 164 5 665 1 663 139 80 22 .528 1 .149 5 .740 1 .661 139 62 22 . 624 1 .134 5 . 818 1 .660 139 51 22 .658 1 .118 5 . 900 1 .659 139 47 94 .600 1 . 118 5 . 900 1 . 659 139 47 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTtJM BALANCE OCCURS AT DOWNSTREAM DEPTH = 1.495 FEET, 9.81 FEET UPSTREAM OF UPSTREAM CONJUGATE DEPTH NODE 2531.90 | = 0.817 FEET I NODE 2533.00 HGL < 400.688>;EGL= < 401.229>;FLOWLINE= < 399.570> ****************************************************************************** FLOW PROCESS FROM NODE 2533.00 TO NODE 2533.10 IS CODE = 5 UPSTREAM NODE 2533.10 ELEVATION = 399.90 (FLOW UNSEALS IN REACH) CALCULATE JtJNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER (CFS) (INCHES) 4.84 18.00 8.34 18.00 3.50 18.00 0.00 0.00 ANGLE (DEGREES) 60 .00 0 . 00 0 . 00 FLOWLINE ELEVATION 399.90 399.57 399.65 0 . 00 CRITICAL DEPTH(FT.) 0 . 85 1.12 0.71 0 . 00 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JtJNCTION ASSUMED AS 0.00490 JtJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = JtJNCTION LOSSES = (DY+HVl-HV2) +(ENTRANCE LOSSES) JtJNCTION LOSSES = ( 0.292) + ( 0.000) = 0.292 VELOCITY (FT/SEC) 2 . 739 5.902 2 . 042 0 . 000 00212 00769 0.000 FEET NODE 2533.10 : HGL = < 401.405>;EGL= < 401.521>;FLOWLINE= < 399.900> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2533.20 2533.10 TO NODE ELEVATION = 2533 .20 IS CODE = 1 400.89 (HYDRAULIC JUMP OCCtJRS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 49.69 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RtJN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.59 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 0.85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.85 DISTANCE PROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 0 . 000 0 846 4 . 713 1 191 67 47 0 . 017 0 835 4 . 784 1 191 67 48 0 . 071 0 825 4 . 857 1 192 67 53 0 .165 0 815 4 . 933 1 193 67 61 0 .303 0 805 5 . Oil 1 195 67 72 0 .490 0 794 5 . 092 1 197 67 87 0 .732 0 784 5 . 175 1 200 68 05 1 .035 0 774 5 .262 1 204 68 27 1 .406 0 764 5 .351 1 209 68 52 1 . 854 0 754 5 .443 1 214 68 82 2 .391 0 743 5 .539 1 220 69 15 3 . 028 0 733 5 . 638 1 227 69 53 3 .782 0 723 5 .741 1 235 69 95 4 .671 0 713 5 . 848 1 244 70 42 5 . 722 0 702 5 . 958 1 254 70 93 6 .965 0 692 6 . 073 1 265 71 49 8 .442 0 682 6 . 192 1 277 72 10 10 .210 0 672 6 .315 1 291 72 76 12 .349 0 661 6 .443 1 306 73 48 14 . 976 0 651 6 .577 1 323 74 26 18 .270 0 641 6 . 716 1 342 75 .10 22 .536 0 631 6 . 860 1 362 76 00 28 .341 0 620 7 . Oil 1 384 76 97 36 .963 0 610 7 . 168 1 408 78 00 49 .690 0 602 7 .302 1 430 78 91 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASStJMED PRESSURE HEAD (FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1.50 DISTANCE FROM CONTROL(FT) 0.000 0 .255 PRESSURE HEAD(FT) 1.505 1.500 VELOCITY (FT/SEC) 2.739 2 .739 SPECIFIC ENERGY(FT) 1.621 1.616 PRESSURE+ MOMENTtJM (POtJNDS) 108.89 108.39 ASStJMED DOWNSTREAM PRESSURE HEAD (FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPtJTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTtJM {POtJNDS) 0.255 1.500 2.738 1.616 108.39 1.665 1.474 2.749 1.591 105.61 3.023 1.448 2.768 1.567 102.93 4.348 1.421 2.794 1.543 100.33 5.647 1.395 2.825 1.519 97.80 6.922 1.369 2.860 1.496 95.35 8.175 1.343 2.899 1.474 92.98 9.406 1.317 2.943 1.451 90.69 10.614 1.291 2.991 1.430 88.47 11.799 1.264 3.044 1.408 86.35 12.960 1.238 3.101 1.388 84.31 14.094 1.212 3.163 1.368 82.36 15.201 1.186 3.229 1.348 80.51 16.277 1.160 3.300 1.329 78.76 17.319 1.134 3.377 1.311 77.11 18.323 1.107 3.459 1.293 75.58 19.285 1.081 3.548 1.277 74.15 20.199 1.055 3.643 1.261 72.84 21.058 1.029 3.745 1.247 71.66 21.855 1.003 3.854 1.234 70.61 22.580 0.977 3.972 1.222 69.69 23.220 0.950 4.099 1.211 68.92 23.760 0.924 4.235 1.203 68.30 24.181 0.898 4.382 1.196 67.85 24.458 0.872 4.541 1.192 67.57 24.560 0.846 4.713 1.191 67.47 49.690 0.846 4.713 1.191 67.47 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 17.09 FEET UPSTREAM OF NODE 2533.10 | I DOWNSTREAM DEPTH = 1.139 FEET, UPSTREAM CONJUGATE DEPTH = 0.615 FEET j NODE 2533.20 : HGL = < 401.736>;EGL= < 402.081>;FLOWLINE= < 400.890> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NtJMBER = 2533.20 FLOWLINE ELEVATION = 400.89 ASSUMED UPSTREAM CONTROL HGL = 401.74 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPtJTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH STORM DRAIN ON TOWN GARDEN ROAD AT STATIONS 43+85 TO 44+41 * * FIELD CONSTRUCTION CHANGE * * PDC JN 3219.00/2438.00 * ************************************************************************** FILE NAME: ADDEN-4.DAT TIME/DATE OF STUDY: 17:46 01/16/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTtJM (POtJNDS) 2533.10- 1.51* 98.98 0.59 51.68 } FRICTION 2533.70- 0.74*Dc 47.88 0.74*Dc 47.88 MAXIMtJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2533.10 FLOWLINE ELEVATION = 399.90 PIPE FLOW = 3.72 CFS PIPE DIAMETER = 18.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 401.410 FEET NODE 2533.10 : HGL = < 401.410>;EGL= < 401.479>;FLOWLINE= < 399.900> ****************************************************************************** FLOW PROCESS FROM NODE 2533.10 TO NODE 2533.70 IS CODE = 1 UPSTREAM NODE 2533.70 ELEVATION = 400.60 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.72 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 56.00 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.51 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY( FT) MOMENTtJM (POtJNDS) 0 . 000 1. 510 2 . 105 1. 579 98 . 98 0 . 890 1. 500 2 . 105 1. 569 97. 88 NORMAL DEPTH(FT) 0 .58 CRITICAL DEPTH(FT) 0.74 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1. 50 GRADUALLY VARIED FLOW PROFILE COMPtJTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtJNDS) 0 890 1. 500 2 . 104 1 569 97. 88 3 526 1. 469 2 . 115 1 539 94. 59 6 095 1. 439 2 . 134 1 510 91. 39 8 624 1. 408 2 . 159 1 481 88. 27 11 122 1 . 378 2 . 189 1 452 85. 23 13 591 1. 347 2 . 223 1 424 82. 27 16 034 1. 317 2 . 262 1 396 79. 39 18 451 1. 286 2 . 306 1 369 76. 60 20 842 1. 256 2 . 354 1 342 73 . 90 23 205 1. 225 2 . 406 1 315 71. 31 25 540 1. 195 2 . 464 1 289 68. 81 27 842 1. 164 2 . 527 1 263 66 . 43 30 110 1. 134 2 . 595 1 238 64 . 15 32 339 1 103 2 670 1 .214 62. 00 34 .523 1 073 2 750 1 . 190 59. 97 36 .656 1 042 2 838 1 .167 58 06 38 .730 1 012 2 933 1 . 145 56 29 40 . 734 0 981 3 037 1 . 124 54 67 42 .655 0 951 3 150 1 .105 53 19 44 .476 0 920 3 273 1 . 086 51 87 46 .174 0 889 3 407 1 . 070 50 71 47 .720 0 859 3 554 1 . 055 49 74 49 . 073 0 828 3 715 1 . 043 48 95 50 . 174 0 798 3 893 1 . 033 48 37 50 .939 0 767 4 088 1 .027 48 00 51 .235 0 737 4 305 1 . 025 47 88 56 . 000 0 .737 4 305 1 . 025 47 88 NODE 2533.70 : HGL = < 401. 337>;EGL= < 401.625>;FLOWLINE= < 400.600> **.jntJt************************************************************************* UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2533.70 FLOWLINE ELEVATION = 400.60 ASSUMED UPSTREAM CONTROL HGL = 401.34 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS INSERT MAP HERE