Loading...
HomeMy WebLinkAboutCT 03-03; BRESSI RANCH AFFORDABLE HOUSING; DRAINAGE REPORT ADDENDUM 1; 2006-01-01ADDENDUM #1 DRAINAGE REPORT FOR BRESSI RANCH - PLANNING AREA 15 AFFORDABLE HOUSING PROJECT JANUARY 2006 JANUARY 2005 JULY 2004 ^03-<a3 Prepared for LENNAR COMMUNITIES c/o LENNAR BRESSI VENTURE, LLC 1525 Faraday Ave, Suite 300 Carlsbad, CA 92008 Prepared By: PROJECT DESIGN CONSULTANTS 701 'B' Street, Suite 800 San Diego, CA 92101 (619) 235-6471 Job No. 2438.00 Prepared By: TE & TN Checked By: MB lard P. Hall, PE RCE 62034 Registration Expires 09/30/07 TABLE OF CONTENTS Section Page 1.0 INTRODUCTION 1 2.0 CONCLUSION 1 FIGURES 1 Vicinity Map 2 APPENDICES 1 AES Rational Method Computer Output 2 AES Pipeflow Computer Output 3 Desilt Basin Calculations EXHIBITS A Drainage Map B Pipe Node Number Map 11 T:\Water Resources\2438-Bressi Multi FamilyVAddendum July 04\Report\Addendum PA15 Desilt Basin.doc 1.0 INTRODUCTION This report amends the previously approved Bressi Ranch Mass Grading and Backbone Improvement Drainage Report prepared by Project Design Consultants to include a new storm drain connection within Town Garden Road at Station 41-f-22. The connection will accommodate the addition of a desilting basin for 1.9 acres of mixed use, office and retail. The desilting basin includes an emergency spillway that directs flow into the street. The runoff from this area was previously included in the backbone calculations. Therefore this new connection does not cause a diversion or increase in flow to the downstream storm drain system. This addendum also includes a second new connection at Station 43-1-85 in Town Garden Road. This connection will accommodate another desilting basin for the 0.96 acre parcel east of Finnila Place. The desilting basin includes an emergency spillway that directs flow into the street. The runoff from this area was previously included in the backbone calculations. The previous backbone design included an estimate of 5 cfs for this area. Due to flow rerouting, and a resulting change in time of concentration, the actual calculated flow is 4.8 cfs. Therefore this new connection does not cause a diversion or increase in flow to the downstream storm drain system. See Appendix 3 for desilting basin calculations. Along with these desilting basins, this addendum includes a new storm drain connection at Station 44441. The connection will accommodate the 0.79 acre area to the south of the above 0.96 acre area being diverted from the storm drain system that ultimately drained to the detention basin at the southwest comer of El Fuerte Street and Poinsettia Lane within OS-5. The result of this diversion is an additional 3.7 cfs into the OS-1 storm drain line and detention basin at Alicante Road and Town Garden Road (See Appendix 1). Calculations in Appendix 2 show that the additional flows will not put any storm drain pipe under pressure except where water-tight joints have already been required, and the 9.6 acre-ft detention basin has ample volume to accept the additional flow. The emergency spillway from the detention basin is also large enough to accept an additional 3.7 cfs without overtopping. Therefore this new connection does not cause adverse effects to the downstream storm drain system. 2.0 CONCLUSION There is no increase in flow to the storm drain backbone system and therefore no adverse effect. T:\Water Resources\2438-Bressi MuW FamilyXAddendum July 04\Report\Addendum PA15 Desilt Basin.doc EL FUERTE STREET MELROSE DRIVE POINSETTIA LANE Figure 1: Vicinity Map T:\Water Resources\2438-Bressi Multi FamilyVAddendum July 04\Report\Addendum PA15 Desilt Basin.doc APPENDIX 1 AES RATIONAL METHOD COMPUTER OUTPUT T:\Water Resources\2438-Bressi Multi FamilyVAddendum July 04\Report\Appendix.DOC *********************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 2.0 Release Date: 06/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - PA-15 MULTI FAMILY SITE * * 100 YEAR STORM EVENT * * BACKBONE SYSTEM 200 - NODES 200 - 202.5 * ************************************************************************** FILE NAME: 200AH.DAT TIME/DATE OF STUDY: 17:32 12/28/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0175 2 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0175 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 7.79 RAIN INTENSITY(INCH/HOUR) = 5.54 TOTAL AREA(ACRES) = 0.61 TOTAL RUNOFF(CFS) = 2.52 **************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 200.20 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 387.10 DOWNSTREAM ELEVATION(FEET) = 376.78 STREET LENGTH(FEET) = 280.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUTMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0149 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.40 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.19 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.53 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.09 STREET FLOW TRAVEL TIME(MIN.) = 1.32 Tc(MIN.) = 9.11 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.009 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 90 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.75 TOTAL AREA(ACRES) = 1.11 PEAK FLOW RATE(CFS) = 4.27 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.13 FLOW VELOCITY(FEET/SEC.) = 3.74 DEPTH*VELOCITY(FT*FT/SEC.) = 1.23 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 200.20 = 280.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 200.20 TO NODE 202.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«<< ELEVATION DATA: UPSTREAM(FEET) = 370.21 DOWNSTREAM(FEET) = 369.99 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.83 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.27 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 9.22 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 202.00 = 310.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.22 RAINFALL INTENSITY(INCH/HR) = 4.97 TOTAL STREAM AREA(ACRES) = 1.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.27 *************************************************************************^t.** FLOW PROCESS FROM NODE 201.00 TO NODE 201.10 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00 UPSTREAM ELEVATION(FEET) = 3 89.20 DOWNSTREAM ELEVATION(FEET) = 388.00 ELEVATION DIFFERENCE(FEET) = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 10.845 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.477 SUBAREA RUNOFF(CFS) = 0.34 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.34 **************************************************************************** FLOW PROCESS FROM NODE 201.10 TO NODE 201.20 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>»> (STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION(FEET) = 388.00 DOWNSTREAM ELEVATION(FEET) = 376.78 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0149 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 4.64 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.53 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.56 STREET FLOW TRAVEL TIME(MIN.) = 2.3 0 Tc(MIN.) = 13.15 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.954 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 88 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 1.00 TOTAL AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) = 1.35 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.08 FLOW VELOCITY(FEET/SEC.) = 2.75 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 201.20 = 470.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 201.20 TO NODE 202.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPtJTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 371.35 DOWNSTREAM(FEET) = 369.99 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.75 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NtTMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.35 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 13.19 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.00 = 490.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.19 RAINFALL INTENSITY(INCH/HR) = 3.95 TOTAL STREAM AREA(ACRES) = 0.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.35 **************************************************************************** FLOW PROCESS FROM NODE 145.00 TO NODE 145.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.06 RAIN INTENSITY(INCH/HOUR) = 5.42 TOTAL AREA(ACRES) = 1.66 TOTAL RUNOFF(CFS) = 6.44 **************************************************************************** FLOW PROCESS FROM NODE 145.00 TO NODE 202.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) «<<< ELEVATION DATA: UPSTREAM(FEET) = 379.60 DOWNSTREAM(FEET) = 370.06 FLOW LENGTH(FEET) = 115.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.10 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.44 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 8.21 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 202.00 = 115.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< »>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.21 RAINFALL INTENSITY(INCH/HR) = 5.3 6 TOTAL STREAM AREA(ACRES) = 1.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.44 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.27 9.22 4.973 1.11 2 1.35 13.19 3.946 0.60 3 6.44 8.21 5.359 1.66 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 11.40 8.21 5.359 2 11.32 9.22 4.973 3 9.48 13.19 3.946 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.40 Tc(MIN.) = 8.21 TOTAL AREA(ACRES) = 3.3 7 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.00 = 490.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.50 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«<< ELEVATION DATA: UPSTREAM(FEET) = 368.86 DOWNSTREAM(FEET) = 368.39 FLOW LENGTH(FEET) = 93.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.33 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.40 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 8.50 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 202.50 = 583.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.50 TO NODE 202.50 IS CODE = 10 >MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 **************************************************************************** FLOW PROCESS FROM NODE 250.00 TO NODE 255.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 37.00 UPSTREAM ELEVATION(FEET) = 416.40 DOWNSTREAM ELEVATION(FEET) = 416.00 ELEVATION DIFFERENCE(FEET) = 0.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.600 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RtrNOFP(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 255.00 TO NODE 260.00 IS CODE = 61 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<«<< >>>>>(STANDARD CURB SECTION USED)<<<<< UPSTREAM ELEVATION(FEET) = 416.00 DOWNSTREAM ELEVATION(FEET) = 404.88 STREET LENGTH(FEET) = 217.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 16.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.66 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.57 STREET FLOW TRAVEL TIME(MIN.) = 0.99 Tc(MIN.) = 6.99 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.944 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 1.07 TOTAL AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) = 1.38 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.19 HALFSTREET FLOOD WIDTH(FEET) = 3.28 FLOW VELOCITY(FEET/SEC.) = 3.07 DEPTH*VELOCITY(FT*FT/SEC.) = 0.59 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 260.00 = 254.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 399.17 DOWNSTREAM(FEET) = 399.00 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.18 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.38 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 7.01 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 265.00 = 262.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 265.00 TO NODE 265.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.01 RAINFALL INTENSITY(INCH/HR) = 5.93 TOTAL STREAM AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.38 **************************************************************************** FLOW PROCESS FROM NODE 270.00 TO NODE 275.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 37.00 UPSTREAM ELEVATION(FEET) = 416.40 DOWNSTREAM ELEVATION(FEET) = 416.00 ELEVATION DIFFERENCE(FEET) = 0.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 1.600 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.31 **************************************************************************** FLOW PROCESS FROM NODE 275.00 TO NODE 280.00 IS CODE = 61 »>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< »»> (STANDARD CURB SECTION USED) <<<<< UPSTREAM ELEVATION(FEET) = 416.00 DOWNSTREAM ELEVATION(FEET) = 404.88 STREET LENGTH(FEET) = 193.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 16.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 11.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.02 0 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.83 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.88 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.61 STREET FLOW TRAVEL TIME(MIN.) = 0.83 Tc(MIN.) = 6.83 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.034 ROAD (HARD SURFACE) COVER RtTNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 1.03 TOTAL AREA(ACRES) = 0.23 PEAK FLOW RATE(CFS) = 1.34 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.19 HALFSTREET FLOOD WIDTH(FEET) = 2.95 FLOW VELOCITY(FEET/SEC.) = 3.27 DEPTH*VELOCITY(FT*FT/SEC.) = 0.61 LONGEST FLOWPATH FROM NODE 270.00 TO NODE 280.00 = 230.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 280.00 TO NODE 265.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<«< ELEVATION DATA: UPSTREAM(FEET) = 399.22 DOWNSTREAM(FEET) = 399.00 FLOW LENGTH(FEET) = 22.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.94 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NtJMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.34 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) =6.92 LONGEST FLOWPATH FROM NODE 270.00 TO NODE 265.00 = 252.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 265.00 TO NODE 265.00 IS CODE = 1 >>»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< »>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.92 RAINFALL INTENSITY(INCH/HR) = 5.98 TOTAL STREAM AREA(ACRES) = 0.23 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.34 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.38 7.01 5.930 0.24 2 1.34 6.92 5.981 0.23 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.72 6.92 5.981 2 2.72 7.01 5.930 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.72 Tc(MIN.) = 7.01 TOTAL AREA(ACRES) = 0.47 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 265.00 = 262.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 265.00 TO NODE 415.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 398.68 DOWNSTREAM(FEET) = 397.68 FLOW LENGTH(FEET) = 103.0 0 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.75 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.72 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 7.38 LONGEST FLOWPATH FROM NODE 250.00 TO NODE 415.00 = 365.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = 10 >>»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<«< **************************************************************************** FLOW PROCESS FROM NODE 400.00 TO NODE 405.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 66.00 UPSTREAM ELEVATION(FEET) = 417.00 DOWNSTREAM ELEVATION(FEET) = 416.00 ELEVATION DIFFERENCE(FEET) = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.183 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RtTNOFF (CFS) = 0.39 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) = 0.39 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 410.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<« ELEVATION DATA: UPSTREAM(FEET) = 416.00 DOWNSTREAM(FEET) = 407.00 FLOW LENGTH(FEET) = 274.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.12 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.3 9 PIPE TRAVEL TIME(MIN.) = 1.11 Tc(MIN.) = 7.11 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 410.00 = 340.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<«< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.880 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.89 SUBAREA RUNOFF(CFS) = 4.45 TOTAL AREA(ACRES) = 0.96 TOTAL RUNOFF(CFS) = 4.84 TC(MIN.) = 7.11 **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 411.00 IS CODE = 31 >>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 400.90 DOWNSTREAM(FEET) = 399.90 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.23 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.84 PIPE TRAVEL TIME(MIN.) = 0.12 Tc{MIN.) = 7.22 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 411.00 = 390.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 1 >>»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<«< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.22 RAINFALL INTENSITY(INCH/HR) = 5.82 TOTAL STREAM AREA(ACRES) = 0.96 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.84 **************************************************************************** FLOW PROCESS FROM NODE 416.00 TO NODE 417.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 UPSTREAM ELEVATION(FEET) = 412.07 DOWNSTREAM ELEVATION(FEET) = 409.07 ELEVATION DIFFERENCE(FEET) = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.794 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.540 SUBAREA RUNOFF(CFS) = 3.72 TOTAL AREA(ACRES) = 0.79 TOTAL RUNOFF(CFS) = 3.72 **************************************************************************** FLOW PROCESS FROM NODE 417.00 TO NODE 411.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 400.62 DOWNSTREAM(FEET) = 399.90 FLOW LENGTH(FEET) = 54.14 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.80 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.72 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 7.95 LONGEST FLOWPATH PROM NODE 416.00 TO NODE 411.00 = 354.14 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 1 >>>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.95 RAINFALL INTENSITY(INCH/HR) = 5.47 TOTAL STREAM AREA(ACRES) = 0.79 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.72 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.84 7.22 5.819 0.96 2 3.72 7.95 5.470 0.79 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 RUNOFF (CFS) 8 .34 8 .27 Tc (MIN.) 7 .22 7 . 95 INTENSITY (INCH/HOUR) 5.819 5 .470 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.34 Tc(MIN.) = 7.22 TOTAL AREA(ACRES) = 1.75 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 411.00 390.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 415.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 400.62 DOWNSTREAM(FEET) = 397.68 FLOW LENGTH(FEET) = 94.61 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.81 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.34 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 7.38 LONGEST FLOWPATH FROM NODE 40 0.00 TO NODE 415.00 = 484.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.34 7.38 5.737 1.75 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 415.00 484.61 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RIMOFF Tc NUMBER (CFS) (MIN.) 1 2.72 7.38 LONGEST FLOWPATH FROM NODE INTENSITY AREA (INCH/HOUR) (ACRE) 5.741 0.47 250.00 TO NODE 415.00 365.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 RUNOFF (CFS) 11.05 11. 05 Tc (MIN.) 7.38 7.38 INTENSITY (INCH/HOUR) 5 . 741 5.737 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.05 Tc(MIN.) = TOTAL AREA(ACRES) = 2.22 7.38 **************************************************************************** FLOW PROCESS FROM NODE 415.00 TO NODE 202.53 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 397.68 DOWNSTREAM(FEET) = 387.76 FLOW LENGTH(FEET) = 175.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.19 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.05 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 7.61 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.53 = 659.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.53 TO NODE 202.53 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.61 RAINFALL INTENSITY(INCH/HR) = 5.63 TOTAL STREAM AREA(ACRES) = 2.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.05 **************************************************************************** FLOW PROCESS FROM NODE 202.51 TO NODE 202.52 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00 UPSTREAM ELEVATION(FEET) = 415.00 DOWNSTREAM ELEVATION(FEET) = 413.80 ELEVATION DIFFERENCE(FEET) = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.929 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 StTBAREA RUNOFF (CFS) = 1.11 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 1.11 **************************************************************************** FLOW PROCESS FROM NODE 202.52 TO NODE 202.53 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 413.80 DOWNSTREAM(FEET) = 400.00 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.53 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.11 PIPE TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) = 7.36 LONGEST FLOWPATH FROM NODE 202.51 TO NODE 202.53 = 570.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.53 TO NODE 202.53 IS CODE = 81 »>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.751 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA (ACRES) = 1.70 SUBAREA RtJNOFF(CFS) = 8.31 TOTAL AREA(ACRES) = 1.90 TOTAL RUNOFF(CFS) = 9.43 TC(MIN.) = 7.3 6 **************************************************************************** FLOW PROCESS FROM NODE 2 02.53 TO NODE 202.53 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.36 RAINFALL INTENSITY(INCH/HR) = 5.75 TOTAL STREAM AREA(ACRES) = 1.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.43 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.05 7.61 5.629 2.22 2 9.43 7.36 5.751 1.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.24 7.36 5.751 2 20.27 7.61 5.629 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.27 Tc(MIN.) = 7.61 TOTAL AREA(ACRES) = 4.12 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.53 = 659.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.53 TO NODE 305.00 IS CODE = 41 >>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< >>»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <«« ELEVATION DATA: UPSTREAM(FEET) = 387.76 DOWNSTREAM(FEET) = 379.04 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.99 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20.27 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 7.91 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 305.00 = 899.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 305.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.91 RAINFALL INTENSITY{INCH/HR) = 5.49 TOTAL STREAM AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2 0.27 **************************************************************************** FLOW PROCESS FROM NODE 340.00 TO NODE 340.00 IS CODE = 7 >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.47 RAIN INTENSITY(INCH/HOUR) = 4.09 TOTAL AREA(ACRES) = 3.3 0 TOTAL RUNOFF(CFS) = 9.68 **************************************************************************** FLOW PROCESS FROM NODE 340.00 TO NODE 305.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)«<<< ELEVATION DATA: UPSTREAM(FEET) = 386.63 DOWNSTREAM(FEET) = 379.04 FLOW LENGTH(FEET) = 58.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.3 0 ESTIMATED PIPE DIAMETER{INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.68 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 12.53 LONGEST FLOWPATH FROM NODE 202.51 TO NODE 305.00 = 628.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 3 05.00 TO NODE 305.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.53 RAINFALL INTENSITY(INCH/HR) = 4.08 TOTAL STREAM AREA(ACRES) = 3.3 0 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.68 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 20.27 7.91 5.487 4.12 2 9.68 12.53 4.080 3.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 27.47 7.91 5.487 2 24.76 12.53 4.080 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.47 Tc(MIN.) = 7.91 TOTAL AREA(ACRES) = 7.42 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 305.00 = 899.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 202.59 IS CODE = 31^ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 378.66 DOWNSTREAM(FEET) = 374.81 FLOW LENGTH(FEET) = 205.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.64 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.47 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 8.23 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.59 = 1104.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.59 TO NODE 202.59 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.23 RAINFALL INTENSITY(INCH/HR) = 5.35 TOTAL STREAM AREA(ACRES) = 7.42 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.47 **************************************************************************** FLOW PROCESS FROM NODE 285.00 TO NODE 290.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH(FEET) = 115.00 UPSTREAM ELEVATION(FEET) = 408.00 DOWNSTREAM ELEVATION(FEET) = 405.70 ELEVATION DIFFERENCE(FEET) = 2.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MIN.) = 2.2 98 TIME OF CONCENTRATION ASSUMED AS 6-MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.559 SUBAREA RUNOFF(CFS) = 0.56 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) = 0.56 **************************************************************************** FLOW PROCESS FROM NODE 290.00 TO NODE 202.56 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET) = 408.00 DOWNSTREAM ELEVATION(FEET) = 381.65 STREET LENGTH(FEET) = 709.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0175 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0149 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.13 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.43 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.18 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.87 STREET FLOW TRAVEL TIME(MIN.) = 3.71 Tc(MIN.) = 9.71 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.807 ROAD(HARD SURFACE) COVER RUNOFF COEFFICIENT = .9500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF(CFS) = 3.11 TOTAL AREA(ACRES) = 0.77 PEAK FLOW RATE(CFS) = 3.67 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.48 FLOW VELOCITY(FEET/SEC.) = 3.60 DEPTH*VELOCITY(FT*FT/SEC.) = 1.14 LONGEST FLOWPATH FROM NODE 285.00 TO NODE 202.56 = 824.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.56 TO NODE 202.59 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 376.55 DOWNSTREAM(FEET) = 375.31 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.06 ESTIMATED PIPE DIAMETER(INCH) = 18.00 PIPE-FLOW(CFS) = 3.67 PIPE TRAVEL TIME(MIN.) = 0.03 NUMBER OF PIPES = LONGEST FLOWPATH FROM NODE Tc(MIN.) = 9.75 285.00 TO NODE 202.59 844.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.59 TO NODE 202.59 IS CODE = »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 9.75 RAINFALL INTENSITY{INCH/HR) = 4.80 TOTAL STREAM AREA(ACRES) = 0.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.67 2 ARE: CONFLUENCE DATA ** STREAM NUMBER 1 2 RUNOFF (CFS) 27.47 3 .67 Tc (MIN. ) 8 .23 9 . 75 INTENSITY (INCH/HOUR) 5.348 4.796 AREA (ACRE) 7 .42 0.77 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 RUNOFF (CFS) 30 .76 28 .31 Tc (MIN. ) 8 .23 9 . 75 INTENSITY (INCH/HOUR) 5.348 4 .796 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 30.76 Tc(MIN.) = TOTAL AREA(ACRES) = 8.19 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 8.23 202.59 = 1104.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.59 TO NODE 202.50 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 374.48 DOWNSTREAM(FEET) = 368.57 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 13.72 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 30.76 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 8.45 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.50 = 1284.61 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.50 TO NODE 202.50 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 30.76 8.45 5.258 8.19 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 202.50 = 1284.61 FEET. ** MEMORY BANK # STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 11.40 8.50 LONGEST FLOWPATH FROM NODE 1 CONFLUENCE DATA ** INTENSITY (INCH/HOUR) 5.240 201.00 TO NODE AREA (ACRE) 3 .37 202 . 50 583.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 RUNOFF (CFS) 42 .12 42 . 05 Tc (MIN.) 8.45 8 .50 INTENSITY (INCH/HOUR) 5.258 5 .240 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS; PEAK FLOW RATE(CFS) = 42.12 Tc(MIN.) = TOTAL AREA(ACRES) = 11.56 8 .45 END OF STUDY StFMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 11.56 42 .12 TC(MIN.) 8.45 END OF RATIONAL METHOD ANALYSIS APPENDIX 2 AES PIPEFLOW COMPUTER OUTPUT T:\Water Resources\2438-Bressi Multi FamilyVAddendum July 04\Report\Appendix.DOC **************************************************************************^*^^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITIONS * * SYSTEM 100 - DOWNSTREAM OF CDS UNIT (NODES 100.0 TO 100.2 * * 100-YEAR STORM EVENT * ************************************************************************** FILE NAME: P100DS.DAT TIME/DATE OF STUDY: 11:40 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 100.00- 5.36 24752.95 2.36* 46251.53 } FRICTION 100.05- 5.16 24509.96 2.34* 46923.07 } FRICTION 100.10- 4.94 Dc 24285.70 2.44* 44542.44 } FRICTION+BEND 100.15- 4.94 Dc 24285.70 3.97* 26848.83 } JUNCTION 100.15- 5.26 24341.40 3.88* 26941.64 } FRICTION+BEND 100.20- 4.93*Dc 23992.89 4.93*Dc 23992.89 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = 194.64 PIPE FLOW = 464.00 CFS PIPE DIAMETER = 60.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 200.000 FEET NODE 100.00 : HGL = < 197.003>;EGL= < 237.082>;FLOWLINE= < 194.640> ****************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.05 IS CODE = 1 UPSTREAM NODE 100.05 ELEVATION 195.19 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 464.00 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 11.08 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 3.38 CRITICAL DEPTH(FT) 4 . 94 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 .34 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 11.080 FLOW DEPTH VELOCITY (FT) (FT/SEC) 2.336 51.552 2.363 50.789 SPECIFIC ENERGY(FT) 43 .630 42 .442 PRESSURE+ MOMENTUM(POUNDS) 46923.07 46251.53 NODE 100.05 HGL < 197.526>;EGL= < 238.820>;FLOWLINE= < 195.190> ****************************************************************************** FLOW PROCESS FROM NODE 100.05 TO NODE 100.10 IS CODE = 1 UPSTREAM NODE 100.10 ELEVATION = 202.14 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH = 464.00 CFS 18.80 FEET PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.85 CRITICAL DEPTH(FT) 4.94 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 .44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 .000 3 . 943 8 .126 12.570 17.302 18.800 FLOW DEPTH (FT) 2.436 2 .413 2.389 2.366 2.343 2.336 VELOCITY (FT/SEC) 48.842 49.447 50 . 068 50.704 51.356 51.552 SPECIFIC ENERGY(FT) 39.501 40.402 41.339 42.311 43 .322 43 . 630 PRESSURE+ MOMENTUM(POUNDS) 44542.44 45073 .40 45618.03 46176.77 46750 .11 46923.07 NODE 100.10 : HGL = < 204. 576>;EGL= < 241 .641>;FLOWLINE= < 202.140> ****************************************************************************** FLOW PROCESS FROM NODE 100.10 TO NODE 100.15 IS CODE = 3 UPSTREAM NODE 100.15 ELEVATION = 232.62 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 CALCtJLATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 464.00 CFS CENTRAL ANGLE = 42.000 DEGREES PIPE LENGTH = 80.00 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) 1.84 CRITICAL DEPTH(FT) 4.94 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.97 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY [FT) MOMENTUM(POUNDS) 0 .000 3 .967 27 .766 15 946 26848 83 1 .249 3 . 882 28 .360 16 378 27294 98 2 .648 3 . 797 28 . 997 16 861 27782 00 4 .216 3 . 711 29 .680 17 398 28312 29 5 . 971 3 . 626 30 .412 17 997 28888 58 7 .938 3 .541 31 .196 18 662 29513 97 10 .145 3 .456 32 .036 19 403 30191 96 12 .624 3 .371 32 . 937 20 227 30926 51 15 .416 3 .286 33 .904 21 146 31722 08 18 .567 3 .201 34 . 941 22 171 32583 71 22 .137 3 . 116 36 . 056 23 315 33517 09 26 .197 3 . 031 37 .256 24 596 34528 67 30 .836 2 .946 38 . 548 26 033 35625 77 36 .165 2 . 860 39 . 941 27 648 36816 70 42 .327 2 . 775 41 .448 29 468 38110 98 49 .508 2 .690 43 .078 31 524 39519 47 57 . 956 2 .605 44 . 848 33 856 41054 67 68 .009 2 .520 46 .771 36 509 42731 .01 80 .000 2 .436 48 . 842 39 .501 44542 .44 NODE 100.15 : HGL = < 236.587>;EGL= < 248.566>;FLOWLINE= < 232.620> ****************************************************************************** FLOW PROCESS FROM NODE 100.15 TO NODE 100.15 IS CODE = 5 UPSTREAM NODE 100.15 ELEVATION = 232.62 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 460.80 60 .00 0 . 00 232.62 4.93 28.169 DOWNSTREAM 464.00 60 . 00 -232.62 4.94 27.775 LATERAL #1 3 .20 18.00 90 .00 234.11 0 . 68 1. 811 LATERAL #2 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 000 Q5 0.00===Q5 EQUALS BASIN INPUT= LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03484 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03378 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03431 JUNCTION LENGTH = 1.50 FEET FRICTION LOSSES = 0.051 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = { 0.258)+( 0.000) = 0.258 NODE 100.15 : HGL = < 236.502>;EGL= < 248.824>;FLOWLINE= < 232.620> ****************************************************************************** FLOW PROCESS FROM NODE 100.15 TO NODE 100.20 IS CODE = 3 UPSTREAM NODE 100.20 ELEVATION 235.55 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 460.80 CFS CENTRAL ANGLE = 1.000 DEGREES PIPE LENGTH = 8.00 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) 1.85 CRITICAL DEPTH(FT) = 4.93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 4.93 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 4 . 934 23 . 521 13 530 23992 . 89 0 . 141 4 .811 23 . 754 13 578 24051 .12 0. 508 4 .688 24 . 087 13 703 24200 .60 1. 069 4 .564 24 . 502 13 893 24425 .38 1. 818 4 .441 24 . 993 14 146 24719 . 95 2 . 762 4 .318 25 . 556 14 465 25082 .89 3 . 917 4 . 194 26 . 193 14 855 25515 .17 5. 306 4 . 071 26 . 907 15 320 26019 .43 6. 959 3 . 948 27 . 702 15 872 26599 .68 8 . 000 3 . 882 28 . 161 16 204 26941 .64 NODE 100 .20 HGL = < 240 . 484>;EGL= < 249.080>;FLOWLINE= < 235. 550> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.20 FLOWLINE ELEVATION = 235.55 ASSUMED UPSTREAM CONTROL HGL = 240.48 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - MASS GRADING STORM DRAIN * * ALICANTE ROAD - SYSTEM 101 (ALICANTE ROAD STATION 103+00 TO 105+50) * * 100-YEAR ULTIMATE CONDITION STORM EVENT * ************************************************************************** FILE NAME: 101.DAT TIME/DATE OF STUDY: 12:09 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 101.00- 2.39* 210.50 0.63 85.91 } FRICTION 101.10- 1.55* 118.07 0.63 85.56 } FRICTION+BEND } HYDRAULIC JUMP 101.20- 0.88 Dc 74.13 0.64* 85.02 } FRICTION 101.30- 0.88*Dc 74.13 0.88*Dc 74.13 } JUNCTION 101.40- 1.23* 65.97 0.47 42.55 } FRICTION } HYDRAULIC JUMP 101.50- 0.66*Dc 36.26 0.66*Dc 36.26 } CATCH BASIN 101.50- 0.96* 19.47 0.66 Dc 12.89 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 101.00 FLOWLINE ELEVATION = 234.11 PIPE FLOW = 5.20 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 23 6.500 FEET NODE 101.00 : HGL = < 236.500>;EGL= < 236.634>;FLOWLINE= < 234.110> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 101.10 101.00 TO NODE 101.10 IS CODE = 1 ELEVATION = 235.08 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 5.20 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 53.81 FEET MANNING' S N = 0.01300 SF=(Q/K)**2 = (( 5.20)/ ( 105.043) )**2 = 0 00245 HF=L*SF = { 53 81)* (0 . 00245) = 0.132 NODE 101.10 : HGL = < 236.632>;EGL= < 236.766>;FLOWLINE= < 235.080> ****************************************************************************** FLOW PROCESS FROM NODE 101.10 TO NODE 101.20 IS CODE = 3 UPSTREAM NODE 101.20 ELEVATION = 235.63 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 5.2 0 CFS PIPE DIAMETER = 18.00 INCHES CENTRAL ANGLE = 45.000 DEGREES MANNING'S N = 0 01300 PIPE LENGTH = 3 0.79 FEET HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.63 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.64 0.88 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNDS) 0 . 000 0 .639 7 .243 1 454 85 02 0 . 975 0 .639 7 .247 1 455 85 05 1 .994 0 . 638 7 .251 1 455 85 08 3 .059 0 . 638 7 .256 1 456 85 11 4 .175 0 .638 7 .260 1 457 85 14 5 .347 0 . 638 7 .264 1 457 85 17 6 .580 0 . 637 7 .268 1 458 85 20 7 .882 0 .637 7 .272 1 459 85 23 9 .261 0 .637 7 .277 1 459 85 26 10 .725 0 .637 7 .281 1 460 85 29 12 .285 0 .636 7 .285 1 461 85 32 13 . 955 0 .636 7 .289 1 462 85 35 15 .752 0 . 636 7 .294 1 462 85 38 17 .694 0 .635 7 .298 1 463 85 41 19 . 809 0 . 635 7 .302 1 464 85 44 22 . 129 0 .635 7 .306 1 464 85 47 24 .696 0 .635 7 .310 1 465 85 50 27 .570 0 .634 7 .315 1 466 85 53 30 .790 0 .634 7 .319 1 466 85 56 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSUTRE HEAD (FT) = 1.55 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 3 . 915 PRESSURE HEAD(FT) 1.552 1.500 VELOCITY (FT/SEC) 2 . 943 2 . 943 SPECIFIC ENERGY(FT) 1. 686 1.634 PRESSURE+ MOMENTUM(POUNDS) 118.07 112.36 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM(POUNDS) 3 .915 1 500 2 . 942 1 . 634 112 36 5 .453 1 475 2 . 952 1 .611 109 72 6 . 924 1 450 2 . 972 1 . 587 107 19 8 .356 1 425 2 .997 1 .565 104 75 9 .755 1 400 3 . 028 1 . 543 102 37 11 . 126 1 376 3 . 063 1 .521 100 08 12 .469 1 351 3 . 102 1 .500 97 85 13 .786 1 .326 3 . 145 1 .480 95 71 15 . 077 1 .301 3 . 193 1 .459 93 64 16 .341 1 .276 3 .245 1 .440 91 65 17 .576 1 .251 3 .301 1 .420 89 75 18 .782 1 .226 3 .361 1 .402 87 94 19 .957 1 .201 3 .426 1 .384 86 22 21 . 096 1 .177 3 .496 1 .366 84 59 22 . 199 1 . 152 3 .571 1 .350 83 05 23 .259 1 .127 3 . 651 1 .334 81 62 24 .273 1 . 102 3 . 736 1 .319 80 30 25 .235 1 .077 3 . 828 1 .305 79 09 26 .138 1 .052 3 . 926 1 .292 77 99 26 . 974 1 .027 4 .030 1 .280 77 02 27 .732 1 .002 4 . 142 1 .269 76 18 28 .400 0 . 978 4 .262 1 .260 75 47 28 . 963 0 .953 4 .391 1 .252 74 90 29 .400 0 . 928 4 . 529 1 .247 74 48 29 . 688 0 .903 4 . 678 1 .243 74 22 29 .793 0 .878 4 . 837 1 .242 74 13 30 .790 0 .878 4 .837 1 .242 74 13 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTIM BALANCE OCCURS AT 20.61 FEET UPSTREAM OF NODE 101.10 DOWNSTREAM DEPTH = 1.187 FEET, UPSTREAM CONJUGATE DEPTH = 0.637 FEET NODE 101.20 : HGL = < 236.269>;EGL= < 237.084>;FLOWLINE= < 235.630> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 101.30 101.20 TO NODE ELEVATION = 101.30 IS CODE = 1 238.80 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 5.20 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH = 175.88 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 0.63 CRITICAL DEPTH (FT) = 0 . 88 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.88 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 .878 4 .837 1 242 74 13 0 .018 0 .868 4 .904 1 242 74 15 0 . 075 0 . 858 4 . 973 1 242 74 19 0 .173 0 . 848 5 .044 1 244 74 27 0 .319 0 .838 5 . 117 1 245 74 37 0 .515 0 .829 5 .193 1 247 74 51 0 .769 0 .819 5 .270 1 250 74 68 1 . 086 0 .809 5 .351 1 254 74 88 1 .475 0 .799 5 .434 1 258 75 12 1 . 944 0 .789 5 .519 1 262 75 40 2 .505 0 .779 5 .607 1 268 75 71 3 .171 0 . 769 5 .699 1 274 76. 06 3 .958 0 . 759 5 .793 1. 281 76. 45 4 .886 0 .749 5 .890 1 288 76. 89 5 . 981 0 . 739 5 . 991 1. 297 77 . 36 7 .275 0 .729 6 .096 1. 307 77. 88 8 . 812 0 .720 6 .204 1. 318 78 . 45 10 . 650 0 .710 6 .315 1. 329 79. 06 12 . 871 0 .700 6 .431 1. 342 79. 73 15 .596 0 .690 6 .551 1. 357 80. 44 19 . 010 0 .680 6 .676 1. 372 81. 21 23 .427 0 . 670 6 .805 1. 390 82 . 04 29 .432 0 .660 6 . 939 1. 408 82 . 92 38 .342 0 .650 7 .078 1. 429 83 . 87 54 .380 0 .640 7 .223 1. 451 84 . 87 175 .880 0 .639 7 .243 1. 454 85. 02 NODE 101.30 : HGL = < 239.678>;EGL= < 240.042>;FLOWLINE= < 238.800> ****************************************************************************** FLOW PROCESS FROM NODE 101.30 TO NODE 101.40 IS CODE = 5 UPSTREAM NODE 101.40 ELEVATION = 239.07 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 3 . 00 5.20 2.20 0.00 0.00== DIAMETER (INCHES) 18.00 18 . 00 18 . 00 0 . 00 ANGLE (DEGREES) 90.00 90.00 0.00 FLOWLINE ELEVATION 239.07 238.80 239.07 0 . 00 CRITICAL DEPTH(FT.) 0 . 66 0 . 88 0.56 0.00 VELOCITY (FT/SEC) 1.929 4.839 1.934 0 . 000 =Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00081 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00586 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00334 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.320)+( 0.000) = 0.320 NODE 101.40 HGL < 240.304>;EGL= < 240.361>;FLOWLINE= < 239.070> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 101.50 101.40 TO NODE 101.50 IS CODE = 1 ELEVATION = 239.70 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 31.25 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.46 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.66 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.66 DISTANCE FROM CONTROL(FT) 0 .000 0.013 0.054 0 .125 0 .230 0.372 0.556 0 . 786 068 409 817 301 874 550 349 294 417 762 388 11.385 13 . 890 17.133 21.547 28 .101 31.250 FLOW DEPTH (FT) 0 . 658 0 . 650 0 . 642 0 . 634 0 .626 0.618 0 .610 0 . 602 0 .594 0 . 586 0.578 0.569 0 .561 0 .553 0 .545 0 .537 0 . 529 0 . 521 0.513 0.505 0 .497 0.489 0.481 0 .472 0 .470 VELOCITY (FT/SEC) 4 . 017 083 151 221 293 368 445 525 608 693 781 873 968 066 168 274 384 498 617 741 869 003 143 288 328 SPECIFIC ENERGY(FT) 0.909 0 . 909 0 .910 0 . 911 0 . 912 0 . 914 0.917 0 . 920 0.924 0 . 928 0 . 933 0 . 938 0.945 0.952 0.960 0 . 969 0 . 979 0.991 . 003 . 017 , 032 .049 , 067 1.087 1.092 PRESSURE+ MOMENTUM(POUNDS) 36.26 36.26 36.29 36 .34 36.40 36.49 36.59 36.72 36.87 37.04 37.23 37.45 37 . 70 37 . 97 38 .27 38.59 38 .95 39.33 39.75 40.20 40.69 41.21 41.78 42 .38 42 .55 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.23 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 1.084 2 .160 3 .228 FLOW DEPTH VELOCITY (FT) 1.233 1 .210 1.187 1.164 (FT/SEC) 1.929 1.963 1.999 2 .037 SPECIFIC ENERGY(FT) 1.291 1.270 1.250 1.229 PRESSURE+ MOMENTUM(POUNDS) 65.97 63 .95 61.99 60.08 4 .288 1 .141 2 . 078 1 .209 58 .23 5.338 1 118 2 . 122 1 . 188 56 .43 6.377 1 095 2 . 169 1 169 54 .70 7.405 1 072 2 .218 1 149 53 .02 8 .421 1 049 2 271 1 130 51 .41 9.423 1 026 2 327 1 111 49 .86 10.409 1 003 2 387 1 092 48 38 11.378 0 980 2 451 1 074 46 98 12 .327 0 957 2 519 1 056 45 64 13.254 0 934 2 591 1 039 44 37 14.156 0 911 2 668 1 022 43 19 15.030 0 888 2 751 1 006 42 08 15.871 0 865 2 840 0 991 41 05 16.674 0 842 2 935 0 976 40 11 17.434 0 819 3 037 0 963 39 26 18.142 0 796 3 146 0 950 38 51 18.790 0 773 3 264 0 939 37 85 19.366 0 750 3 392 0 929 37 30 19.855 0 727 3 529 0 921 36 86 20.240 0 704 3 679 0 915 36 53 20.496 0 681 3 841 0. 911 36 32 20.591 0 658 4 017 0 . 909 36. 26 31.250 0 658 4 . 017 0 . 909 36 . 26 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 15.99 FEET UPSTREAM OF NODE 101.40 | I DOWNSTREAM DEPTH = 0.862 FEET, UPSTREAM CONJUGATE DEPTH = 0.493 FEET | NODE 101.50 : HGL = < 240.358>;EGL= < 240.609>;FLOWLINE= < 239.700> **********************************************************************^^^^^^^^ FLOW PROCESS FROM NODE 101.50 TO NODE 101.50 IS CODE = 8 UPSTREAM NODE 101.50 ELEVATION = 239.70 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.00 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.02 FEET/SEC. VELOCITY HEAD = 0.251 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.251) = 0.050 NODE 101.50 : HGL = < 240.659>;EGL= < 240.659>;FLOWLINE= < 239.700> *****************************************************************^^j^.j^^^^^^^^^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 101.50 FLOWLINE ELEVATION = 239.70 ASSUMED UPSTREAM CONTROL HGL = 240.36 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITIONS * * SYSTEM 10 0 - ALICANTE/GATEWAY CENTER DRIVE * * 100-YEAR STORM EVENT: UPSTREAM OF CDS UNIT * ************************************************************************** FILE NAME: P100US.DAT TIME/DATE OF STUDY: 12:30 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) 100.30- 14.12* 35193.80 } FRICTION 102.00- 12.26* 32920.19 } JUNCTION 102.00- 15.79* 33006.42 } FRICTION+BEND } HYDRAULIC JUMP 102.90- 11.35 27571.98 } FRICTION 103.00- 4.90 Dc 19749.61 } FRICTION+BEND 105.00- 4.90 Dc 19749.61 } JUNCTION 105.90- 5.05 19460.79 } FRICTION+BEND 106.00- 4.89 Dc 19351.73 } FRICTION 106.10- 4.89 Dc 19351.73 } FRICTION+BEND 106.20- 4.89*Dc 19351.73 } FRICTION 110.00- 5.81* 20386.61 } JUNCTION 110.90- 11.51* 19831.35 } FRICTION 112.00- 7.87* 15364.26 } JUNCTION 112.90- 7.76* 15022.05 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 3 .11 3.20 2 .61 2 .69* 3 .12* 3.31* 3 .23* 3 .28* 3 .70* 4.89*Dc 4.89 Dc 3 .10 3 .98 3 .98 33188.94 32207.43 32420.12 31294.79 26565.14 25088.12 25059.53 24715.83 22174.51 19351.73 19351.75 14568.52 12180.01 11930.99 113.00 114.00 114.90 120.00 120.90 124.00 124.10 124.10 125.00 125.90 126.00 126.90 130.00 130.90 139.00 139.90 140.00 140.90 150.00 150 . 90 160.00 160.90 170 . 00 170.90 175.00 175.90 176 . 00 MAXIMUM FRICTION 8 . 01* FRICTION+BEND 8.37* MANHOLE FRICTION JUNCTION FRICTION FRICTION JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 7.21* 9 . 59* 11.17 7.89 3.48 Dc 4 .13 3.48*Dc 15316 15760 14344 17253 16226 14256 11618 11662 11279 9.16* 10780 } HYDRAULIC JUMP 3.44 Dc 7370 3.44 Dc 7370 3.44 Dc 7370 5.26 7191 3.41*Dc 6118 7.36* 4714 } HYDRAULIC JUMP 2.82 Dc 2222 2.75 Dc 2285 2.75 Dc 2285 2.75 Dc 2285 2.75 Dc 2285 3.15 2165, 2.69*Dc 2047, 5.95* 3399, 6.07* 3452. 9.04* 4764. 9.17* 4821. .72 3.75 .13 3.61 .85 4.65 Dc ,18 4.65 Dc ,27 2.18* 66 2.25* 25 3.13* 85 2.95* 25 3.48*Dc 14 2.27 45 2.48* 45 2.46* 45 3.09* 73 2.38* 01 3.41*Dc 62 1.51 25 1.76* 77 1.83* 77 2.34* 77 2.60* 77 1.68* 31 1.48* 96 2.69*Dc 03 2.69 Dc 50 2.69 Dc 78 2.69 Dc 39 2.69 Dc EACH PROFILE = 25 12313.30 12607.80 11483.22 11483.22 16531.93 15997.04 12047.45 12115.27 11279.25 9619.63 8857.37 8917.78 7591.86 7470 . 09 6118.02 3406.93 2898.12 2833.98 2377.64 2297.94 3066.72 3056.51 2047.96 2047.96 2047.96 2047.96 2047 . 96 NUMBER OF ENERGY BALANCES USED IN NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 100.30 FLOWLINE ELEVATION = 235.88 PIPE FLOW = 460.80 CFS PIPE DIAMETER = 60.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 250.000 FEET NODE 100.30 : HGL = < 250.000>;EGL= < 258.552>;FLOWLINE= < 235.880> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 102.00 100.30 TO NODE 102.00 IS CODE = 1 ELEVATION = 238.44 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 460.80 CFS PIPE DIAMETER = 60.00 INCHES 22.50 FEET MANNING'S N = 0.01300 (( 460.80)/( 2604 .418))**2 = 0.03130 22.50)*(0 . 03130) = 0.704 NODE 102.00 : HGL = < 250.704>;EGL= < 259.257>;FLOWLINE= < 238.440> ****************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 5 UPSTREAM NODE 102.00 ELEVATION = 238.44 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 411.70 460.80 49 .10 0 . 00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 60.00 0.00 238.44 4.90 60.00 - 238.44 4.93 30.00 90.00 239.42 2.29 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== 20.968 23.468 10.003 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JXTNCTION ASSUMED AS 0.02814 JUNCTION LENGTH = 2.50 FEET FRICTION LOSSES = 0.070 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.796)+( 0.000) = 1.796 02499 03130 0.00 0 FEET NODE 102.00 : HGL = < 254.226>;EGL= < 261.052>;FLOWLINE= < 238.440> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 102.90 102.00 TO NODE 102.90 IS CODE = 3 ELEVATION = 245.48 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 411.70 CFS CENTRAL ANGLE = 3 0.500 DEGREES PIPE LENGTH = 64.47 FEET PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.44 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.69 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.90 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 2 . 689 38 . 246 25. 417 31294. 79 6.739 2 . 679 38 . 426 25 . 621 31431. 73 13.811 2 .669 38. 608 25. 829 31570 . 11 21 .245 2 .659 38 . 792 26. 040 31709. 95 29.074 2 . 648 38 . 977 26. 254 31851. 25 37.339 2 . 638 39. 165 26 . 471 31994 . 04 46.084 2 . 628 39. 354 26. 691 32138. 34 55.361 2 . 618 39 . 545 26. 915 32284. 17 64.470 2 . 609 39 . 723 27. 125 32420. 12 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ================= ========= ====== ====== ====== ========= = = = = = = =5 = =: = = = = ======= DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 15.79 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 64.470 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 15.786 20.968 11.350 20.968 SPECIFIC ENERGY(FT) 22.612 18.177 PRESSURE+ MOMENTUM(POUNDS) 33006 .42 27571. 98 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTtJM BALANCE OCCURS AT 8.45 FEET UPSTREAM OF NODE 102.00 | I DOWNSTREAM DEPTH =15.2 04 FEET, UPSTREAM CONJUGATE DEPTH = 2.617 FEET | NODE 102.90 : HGL = < 248.169>;EGL= < 270.897>;FLOWLINE= < 245.480> ****************************************************************************** FLOW PROCESS FROM NODE 102.90 TO NODE 103.00 IS CODE = 1 UPSTREAM NODE 103.00 ELEVATION = 260.57 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 411.70 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 132.71 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2.41 CRITICAL DEPTH(FT) = 4 .90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.12 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 4 . 963 10.236 15.850 FLOW DEPTH (FT) 3 .122 3 . 093 3 . 065 3 .036 VELOCITY (FT/SEC) 31.920 32 .266 32 . 622 32.986 SPECIFIC ENERGY(FT) 18.952 19.270 19.599 19.942 PRESSURE+ MOMENTUM(POUNDS) 26565.14 26819.00 27080.01 27348.38 21. 836 3 008 33 359 20 299 27624 .33 28 . 234 2 979 33 742 20 669 27908 . 11 35 . 087 2 950 34 135 21 055 28199 . 96 42 . 447 2 922 34 538 21 456 28500 . 14 50 . 374 2 893 34 951 21 874 28808 . 91 58 . 940 2 865 35 376 22 309 29126 .56 68. 230 2 836 35 811 22 762 29453 .37 78 . 347 2 808 36 258 23 234 29789 . 65 89. 417 2 779 36 717 23 725 30135 .73 101. 595 2 750 37 188 24 238 30491 . 95 115. 080 2 722 37 672 24 772 30858 .64 130. 125 2 693 38 169 25 330 31236 .19 132 . 710 2 689 38 246 25 417 31294 .79 103 . 00 HGL = < 263 692>;EGL= < 279.522>;FLOWLINE= < 260. 570 ****************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE = 3 UPSTREAM NODE 105.00 ELEVATION = 263.53 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 411.70 CFS CENTRAL ANGLE = 5.2 00 DEGREES PIPE LENGTH = 26.01 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) 2.41 CRITICAL DEPTH(FT) 4 . 90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 4.391 9.082 14.104 19.488 25.273 26.010 FLOW DEPTH (FT) 3 .306 3 .270 3 .234 3 .198 3 .162 3.126 3 .122 VELOCITY (FT/SEC) 29.877 30.252 30.638 31. 036 31.446 31. 869 31.920 SPECIFIC ENERGY(FT) 17.175 17.489 17.818 18.164 18.526 18.906 18.952 PRESSURE+ MOMENTUM(POUNDS) 25088.12 25356.40 25634.18 25921.80 26219.60 26527.96 26565.14 NODE 105.00 HGL < 266.836>;EGL= < 280.705>;FLOWLINE= < 263.530> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 105.90 105.00 TO NODE ELEVATION = 105.90 IS CODE = 5 263.86 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 406.80 60 . 00 0.00 263.86 4.89 30.288 DOWNSTREAM 411.70 60 . 00 -263.53 4 . 90 29.886 LATERAL #1 3.30 18 . 00 90 . 00 267.00 0.69 4.142 LATERAL #2 1.60 18.00 90.00 267.00 0 .48 3 .330 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: Dy=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04327 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04162 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04244 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.170 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.633)+( 0.000) = 0.633 NODE 105.90 : HGL = < 267.093>;EGL= < 281.338>;FLOWLINE= < 263.860> ****************************************************************************** FLOW PROCESS FROM NODE 105.90 TO NODE 106.00 IS CODE = 3 UPSTREAM NODE 106.00 ELEVATION = 266.28 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 406.80 CFS CENTRAL ANGLE = 9.550 DEGREES PIPE LENGTH = 47.42 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) 3.06 CRITICAL DEPTH(FT) 4.89 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.28 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3 .279 29.793 17.071 24715 . 83 8 .257 3.270 29.886 17.148 24781.16 16.913 3 .262 29.979 17.226 24847.06 26.001 3 .253 30.073 17.304 24913.54 35.563 3 .244 30.167 17.384 24980.58 45.646 3 .235 30.263 17.465 25048.21 47.420 3 .233 30.278 17.478 25059.53 NODE 106.00 : HGL = < 269.559>;EGL= < 283.351>;FLOWLINE= < 266.280> ****************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.10 IS CODE = 1 UPSTREAM NODE 106.10 ELEVATION = 276.14 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 406.80 CFS PIPE DIAMETER 60.00 INCHES PIPE LENGTH = 192.90 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 3 .06 CRITICAL DEPTH(FT) = 4 .89 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) II II 1 II Ul 1 II ~J 1 II o 1 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 6.308 13 .005 20.124 27.706 35.798 44 .452 53.731 63 .707 74 .466 86.112 98.767 112.583 127.750 144.503 163.149 184.090 192.900 FLOW DEPTH (FT) 3 . 703 678 652 626 600 574 548 522 496 470 444 418 393 367 341 315 289 279 VELOCITY (FT/SEC) 26.080 26 .272 26.468 26 .668 26.872 27.081 27.294 27 . 512 27 .734 27.962 28.194 28.431 28.673 28.920 29.173 29 .431 29.694 29.793 SPECIFIC ENERGY(FT) 14.271 14.402 14.536 14.676 14.820 14.969 15.123 15.283 15.448 15.618 15.795 15.977 16.166 16.362 16.564 16.773 16.989 17.071 PRESSURE+ MOMENTUM(POUNDS) 22174.51 22300.75 22430.40 22563.51 22700.17 22840.44 22984.40 23132.13 23283.71 23439.22 23598.76 23762.42 23930.28 24102.45 24279.03 24460.12 24645.83 24715.83 NODE 106.10 HGL < 279.843>;EGL= < 290.411>;FLOWLINE= < 276.140> ****************************************************************************** FLOW PROCESS FROM NODE 106.10 TO NODE 106.2 0 IS CODE = 3 UPSTREAM NODE 106.20 ELEVATION = 281.44 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 60.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 406.80 CFS CENTRAL ANGLE = 19.10 0 DEGREES PIPE LENGTH = 103.88 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) 3 . 06 CRITICAL DEPTH(FT) 4.89 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4 . 89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSirRE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 . 000 4 . 893 20 .822 11.629 19351. 73 0 .401 4 . 819 20 . 954 11.641 19366. 13 1 . 506 4 . 746 21 .116 11.674 19405. 86 3 .236 4 . 672 21 .306 11.726 19467. 82 5 .567 4. 599 21 .521 11.795 19550. 37 8 .499 4 . 526 21 .760 11.883 19652 . 60 12 . 052 4. 452 22 . 022 11.987 19774. 08 16 .265 4 . 379 22 .307 12.110 19914. 64 21 .191 4 . 305 22 .615 12.252 20074. 38 26 .899 4 . 232 22 .946 12.412 20253. 56 33 .479 4 . 159 23 .300 12.594 20452. 60 41 .043 4 . 085 23 .679 12.797 20672 . 07 49.732 59.727 71.255 84.616 100.205 103 . 880 4 . 012 3 . 938 3 . 865 3 .792 3 .718 3 .703 24.083 24.513 24.970 25.456 25.973 26.080 13.023 13.275 13.553 13.860 14.199 14.271 20912.65 21175.17 21460.56 21769.90 22104.40 22174.51 NODE 106.20 : HGL = < 286.333>;EGL= < 293.069>;FLOWLINE= < 281.440> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 106.20 TO NODE 110.00 IS CODE = 1 ELEVATION = 283.85 (FLOW UNSEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 406.80 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 133.86 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = 5.0 0 CRITICAL DEPTH(FT) = DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.89 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 4.89 : FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ -(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 . 000 4 . 893 20 . 822 11 .629 19351 73 0 . 012 4 . 897 20 .816 11 .629 19351 79 0 . 047 4 . 901 20 .809 11 629 19351 95 0 .105 4 . 906 20 .803 11 630 19352 23 0 . 186 4 . 910 20 .797 11 630 19352. 62 0 .290 4 . 914 20 .791 11 630 19353 12 0 .418 4 . 918 20 .785 11 631 19353. 75 0 .568 4 .923 20 .779 11 631 19354. 49 0 .742 4 . 927 20 .774 11 632 19355. 36 0 .939 4 . 931 20 .768 11 633 19356. 36 1 .158 4 .936 20 .763 11 634 19357. 50 1 .401 4 .940 20 .758 11 635 19358. 76 1 .666 4 .944 20 .753 11 636 19360. 17 1 .955 4 .948 20 .748 11 637 19361. 73 2 .267 4 . 953 20 . 744 11 639 19363. 44 2 . 602 4 . 957 20 .740 11 640 19365. 31 2 . 961 4 .961 20 .736 11 642 19367. 34 3 .344 4 .966 20 .732 11 644 19369. 55 3 .750 4 . 970 20 .728 11 646 19371. 95 4 .181 4 . 974 20 .725 11 648 19374. 54 4 .638 4 . 979 20 .722 11 650 19377. 35 5 . 121 4 . 983 20 .719 11 653 19380. 39 5 .631 4 .987 20 .716 11 655 19383 . 70 6 . 171 4 .991 20 .714 11 658 19387. 30 6 .746 4 . 996 20 .713 11 662 19391. 29 7 .368 5 .000 20 .712 11 665 19395. 83 ===> FLOW IS UNDER 133.860 PRESSURE 5.809 20.718 12.474 20386.64 NODE 110.00 HGL < 289.659>;EGL= < 296.324>;FLOWLINE= < 283.850> ****************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.90 IS CODE = 5 UPSTREAM NODE 110.90 ELEVATION = 284.18 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES ) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 298.40 60 . 00 0 . 00 284 .18 4 .66 15.197 DOWNSTREAM 406.80 60.00 -283.85 4 .89 20.718 LATERAL #1 84.80 36 . 00 90 .00 286.18 2 .81 11.997 LATERAL #2 23 .60 24.00 45 . 00 286 . 85 1.72 7.512 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.01313 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02439 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01876 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.075 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.956)+( 0.000) = 2.956 NODE 110.90 : HGL = < 295.693>;EGL= < 299.280>;FLOWLINE= < 284.180> ****************************************************************************** FLOW PROCESS FROM NODE 110.90 TO NODE 112.00 IS CODE = 1 UPSTREAM NODE 112.00 ELEVATION = 289.52 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 298.40 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 129.05 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 298.40)/( 2604.433))**2 = 0.01313 HF=L*SF = ( 129.05)*(0.01313) = 1.694 NODE 112.00 : HGL = < 297.387>;EGL= < 300.974>;FLOWLINE= < 289.520> ****************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.90 IS CODE = 5 UPSTREAM NODE 112.90 ELEVATION = 289.85 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 294.70 60.00 0.00 289.85 4.65 15.009 DOWNSTREAM 298.40 60 . 00 -289 .52 4.66 15.197 LATERAL #1 2.10 18 . 00 90.00 293.35 0 .55 1.188 LATERAL #2 1.60 18.00 60.00 293.35 0.48 0 . 905 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTI0N LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01280 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01313 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01296 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.052 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.139)+( 0.000) = 0.139 NODE 112.90 : HGL = < 297.615>;EGL= < 301.113>;FLOWLINE= < 289.850> ****************************************************************************** FLOW PROCESS FROM NODE 112.90 TO NODE 113.00 IS CODE = 1 UPSTREAM NODE 113.00 ELEVATION = 290.69 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 294.70 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 84.39 FEET MANNING'S N = 0.01300 SF={Q/K)**2 = (( 294.70)/( 2604.464))**2 = 0.01280 HF=L*SF = ( 84.39)*(0.01280) = 1.080 NODE 113.00 : HGL = < 298.695>;EGL= < 302.193>;FLOWLINE= < 290.690> ****************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 3 UPSTREAM NODE 114.00 ELEVATION = 291.21 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 294.70 CFS PIPE DIAMETER = 60.00 INCHES CENTRAL ANGLE = 6.050 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 51.17 FEET BEND COEFFICIENT(KB) = 0.06482 FLOW VELOCITY = 15.01 FEET/SEC. VELOCITY HEAD = 3.498 FEET HB=KB*(VELOCITY HEAD) = ( 0.065)*( 3.498) = 0.227 SF=(Q/K)**2 = (( 294.70)/( 2604 .423))**2 = 0.01280 HF=L*SF = ( 51.17)* (0.01280) = 0.655 TOTAL HEAD LOSSES = HB + HF = ( 0.227)+( 0.655) = 0.882 NODE 114.00 : HGL = < 299.577>;EGL= < 303.075>;FLOWLINE= < 291.210> ****************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 114.90 IS CODE = 2 UPSTREAM NODE 114.90 ELEVATION = 292.54 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 294.70 CFS PIPE DIAMETER = 60.00 INCHES FLOW VELOCITY = 15.01 FEET/SEC. VELOCITY HEAD = 3.498 FEET HMN = .05*(VELOCITY HEAD) = .05* ( 3.498) = 0.175 NODE 114.90 : HGL = < 299.752>;EGL= < 303.250>;FLOWLINE= < 292.540> ****************************************************************************** FLOW PROCESS FROM NODE 114.90 TO NODE 120.00 IS CODE = 1 UPSTREAM NODE 120.00 ELEVATION = 296.48 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 294.70 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 493.12 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 294.70)/( 2604.437))**2 = 0.01280 HF=L*SF = ( 493.12)* (0.01280) = 6.314 NODE 120.00 : HGL = < 306.066>;EGL= < 309.564>;FLOWLINE= < 296.480> ****************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 120.90 IS CODE = 5 UPSTREAM NODE 120.90 ELEVATION = 297.98 (FLOW IS UNDER PRESSURE) (NOTE: POSSIBLE JtJMP IN OR UPSTREAM OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 229.10 294.70 65 . 60 0.00 0 . 00 = DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 42.00 60.00 297.98 3.48 60.00 - 296.48 4.65 36.00 60.00 298.48 2.59 0.00 0.00 0.00 0.00 =Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 36.400 15.009 9.281 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05784 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.231 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = (11.168)+( 0.000) = 11.168 10289 01280 0.000 FEET NODE 120.90 : HGL = < 300.158>;EGL= < 320.732>;FLOWLINE= < 297.980> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 124.00 120.90 TO NODE 124.00 IS CODE = 1 ELEVATION = 303.41 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 229.10 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 41.45 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2 . 01 CRITICAL DEPTH(FT) 3 .48 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 .25 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 2 .245 35.124 21.414 15997.04 4 . 833 2 .236 35.293 21.589 16068.27 9.908 2 .227 35.464 21.768 16140.36 15.248 2 .217 35.636 21.949 16213.33 20.878 2 .208 35.811 22 .134 16287.18 26.826 2 .199 35.988 22.322 16361.94 33 .125 2 .190 36.166 22.513 16437.61 39.814 2 .180 36.347 22.707 16514.20 41.450 2 .178 36.389 22.752 16531.93 NODE 124.00 : HGL = < 305.655>;EGL= < 324.824>;FLOWLINE= < 303.410> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 124.10 124.00 TO NODE 124.10 IS CODE = 1 ELEVATION = 322.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 229.10 CFS PIPE DIAMETER 42.00 INCHES PIPE LENGTH = 141.30 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) = 2 . 01 CRITICAL DEPTH(FT) 3.4 3 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3.13 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM{POUNDS) 0 .000 3 . 126 25 .256 13 036 12047 .45 2 .056 3 . 081 25 .535 13 212 12146 .12 4 .347 3 . 036 25 .833 13 405 12253 86 6 .890 2 .992 26 . 152 13 618 12370 76 9 .705 2 . 947 26 .490 13 850 12496 96 12 .816 2 . 903 26 . 850 14 104 12632 63 16 .252 2 .858 27 .230 14 379 12778 03 20 .048 2 .813 27 . 632 14 677 12933 44 24 .247 2 .769 28 . 057 15 000 13099 20 28 .897 2 . 724 28 .505 15 349 13275 69 34 . 060 2 . 679 28 . 978 15 727 13463 35 39 .810 2 . 635 29 .476 16 134 13662 66 46 .236 2 .590 30 . 000 16 574 13874 14 53 .453 2 .546 30 . 553 17 049 14098 39 61 .604 2 .501 31 . 134 17 562 14336 04 70 .875 2 .456 31 . 747 18 116 14587 80 81 .510 2 .412 32 .392 18 715 14854 46 93 .844 2 .367 33 . 072 19 361 15136 86 108 .343 2 . 323 33 .788 20 061 15435 92 125 .693 2 .278 34 . 543 20 818 15752 67 141 .300 2 .245 35 . 124 21 414 15997 04 NODE 124.10 HGL < 325.126>;EGL= < 33 5.03 6>;FLOWLINE= < 322.000> ****************************************************************************** FLOW PROCESS FROM NODE 124.10 TO NODE 124.10 IS CODE = 5 UPSTREAM NODE 124.10 ELEVATION = 322.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 225.40 229 . 10 3 .70 0 . 00 0 . 00== DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT. 42.00 0.00 322.00 3.48 42.00 - 322.00 3.48 18.00 90.00 322.67 0.73 0.00 0.00 0.00 0.00 :=Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 26.058 25.264 2 . 094 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04791 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04596 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04694 JUNCTION LENGTH = 1.50 FEET FRICTION LOSSES = 0.070 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.456)+( 0.000) = 0.456 0.000 FEET NODE 124.10 : HGL = < 324.949>;EGL= < 335.492>;FLOWLINE= < 322.000> ****************************************************************************** FLOW PROCESS FROM NODE 124.10 TO NODE 125.00 IS CODE = 1 UPSTREAM NODE 125.00 ELEVATION = 324.28 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 225.40 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 17 . 81 FEET MANNING'S N = 0. 01300 NORMAL DEPTH(FT) = 2 .01 CRITICAL DEPTH(FT) 3 .48 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 3 .48 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/ SEC) ENERGY (FT) MOMENTUM(POUNDS) 0 . 000 3 .477 23 .441 12 .015 11279. 25 0 .352 3 .418 23 . 562 12 .044 11296. 71 1 .214 3 .360 23 .740 12 . 117 11339. 74 2 .474 3 .301 23 .963 12 .223 11402. 50 4 .096 3 .242 24 .225 12 .360 11482. 57 6 . 072 3 . 183 24 .523 12 .527 11578 . 77 8 .412 3 .124 24 . 855 12 .723 11690 . 48 11 .134 3 . 066 25 .221 12 .949 11817. 48 14 .271 3 .007 25 .622 13 207 11959. 81 17 . 810 2 . 949 26 .050 13 492 12115. 27 NODE 125.00 HGL < 327.757>;EGL= < 336.295>;FLOWLINE= < 324.280> ****************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 125.90 IS CODE = 5 UPSTREAM NODE 125.90 ELEVATION = 324.61 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 177.30 42.00 0.00 324.61 3.44 18.428 DOWNSTREAM 225.40 42.00 - 324.28 3.48 23.448 LATERAL #1 44.80 30.00 60.00 325.61 2.22 9.127 LATERAL #2 3.30 18.00 90.00 326.61 0.69 1.867 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03899 JUNCTION LENGTH = 4.00 FEET 0.03105 0.04692 FRICTION LOSSES = 0.156 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.748)+( 0.000) = 2.748 0.000 FEET NODE 125.90 : HGL = < 333.770>;EGL= < 339.043>;FLOWLINE= < 324.610> ****************************************************************************** FLOW PROCESS FROM NODE 125.90 TO NODE 126.00 IS CODE = 1 UPSTREAM NODE 126.00 ELEVATION = 342.75 (HYDRAULIC JUMP OCCXJRS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 177.3 0 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 324.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.25 CRITICAL DEPTH(FT) 3 .44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 . 48 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) ( FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 0 . 000 2 .480 24 .318 11 668 8857 .37 5 . 054 2 .471 24 .416 11 733 8886 . 83 10 .366 2 .461 24 .515 11 799 8916 . 67 15 .958 2 .452 24 .615 11 866 8946 .88 21 .856 2 .443 24 716 11 935 8977 .48 28 . 091 2 .434 24 818 12 004 9008 .47 34 . 698 2 .425 24 921 12 075 9039 .86 41 .716 2 .416 25 025 12 146 9071 . 64 49 . 193 2 .406 25 131 12 219 9103 .82 57 .185 2 .397 25 237 12 294 9136 .42 65 .759 2 .388 25 345 12 369 9169 .42 74 . 995 2 .379 25 454 12 446 9202 .84 84 . 992 2 .370 25 564 12 524 9236 . 68 95 .872 2 .361 25 675 12 603 9270 . 96 107 .790 2 .351 25 788 12 684 9305 .66 120 .944 2 .342 25 901 12 766 9340 80 135 .595 2 .333 26 016 12 850 9376 38 152 . 097 2 .324 26 132 12 935 9412 41 170 .946 2 .315 26 250 13 021 9448 89 192 . 869 2 .306 26 368 13 . 109 9485 83 218 . 994 2 .296 26 488 13 198 9523 24 251 .207 2 .287 26 610 13 . 289 9561 12 293 .049 2 .278 26 732 13 . 382 9599 47 324 .000 2 .273 26 797 13 . 430 9619 63 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 9.16 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE VELOCITY HEAD(FT) (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) 0 . 000 226.999 9.160 3 .500 18 .428 18 .428 14 .433 8.773 10780.14 7382.33 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) ( FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 226 999 3 .500 18 .422 8 773 7382 .33 227 080 3 .498 18 .423 8 771 7381 .09 227 150 3 .495 18 .424 8 769 7380 .02 227 212 3 .493 18 .425 8 768 7379 .05 227 269 3 .491 18 .427 8 766 7378 .16 227 321 3 .488 18 .429 8 765 7377 .34 227 368 3 .486 18 .431 8 764 7376 .58 227 412 3 .483 18 .433 8 763 7375 .88 227 452 3 .481 18 .435 8 761 7375 .24 227 489 3 .479 18 .437 8 760 7374 .64 227 523 3 .476 18 .440 8 760 7374 . 10 227 554 3 .474 18 .442 8 759 7373 .59 227 582 3 .472 18 .445 8 758 7373 . 13 227 608 3 .469 18 .448 8 757 7372 .72 227 631 3 .467 18 .451 8 757 7372 .34 227 652 3 .465 18 .454 8 756 7372 . 00 227 670 3 .462 18 .458 8 756 7371 .69 227 687 3 .460 18 .461 8 755 7371 .42 227 701 3 .457 18 .464 8 755 7371 .19 227 713 3 .455 18 .468 8 754 7370 .99 227 723 3 .453 18 .472 8 754 7370 . 82 227 731 3 .450 18 .475 8 754 7370 .69 227 737 3 .448 18 .479 8 754 7370 .58 227 742 3 .446 18 .483 8 754 7370 .51 227 744 3 .443 18 .487 8 753 7370 .46 227 745 3 .441 18 .491 8 753 7370 .45 324 000 3 .441 18 .491 8 753 7370 .45 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 82.18 FEET UPSTREAM OF NODE 125.90 | I DOWNSTREAM DEPTH = 7.111 FEET, UPSTREAM CONJUGATE DEPTH = 2.290 FEET j NODE 126.00 : HGL = < 345.230>;EGL= < 354.418>;FLOWLINE= < 342.750> ****************************************************************************** FLOW PROCESS FROM NODE 126.00 TO NODE 126.90 IS CODE = 2 UPSTREAM NODE 126.90 ELEVATION = 343.08 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 177.3 0 CFS PIPE DIAMETER = 42.00 INCHES AVERAGED VELOCITY HEAD = 9.265 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 9.265) = 0.463 NODE 126.90 : HGL = < 345.541>;EGL= < 354.882>;FLOWLINE= < 343.080> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 13 0.00 126.90 TO NODE ELEVATION = 130.00 IS CODE = 1 355.69 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 177.3 0 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 263.67 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 2 . 38 CRITICAL DEPTH(FT) 3 .44 UPSTREAM CONTROL ASSUMED FLOWDEPTH( FT) 3.09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 3 .086 19 .736 9 138 7591 86 3 .028 3 .058 19 .879 9 198 7625 33 6 .334 3 . 030 20 .028 9 262 7661 03 9 .939 3 . 001 20 . 184 9 331 7698 97 13 .868 2 . 973 20 .346 9 405 7739 17 18 .150 2 . 945 20 . 514 9 483 7781 67 22 . 819 2 . 917 20 .688 9 567 7826 50 27 .915 2 .889 20 .869 9 656 7873 69 33 .485 2 .860 21 . 057 9 750 7923 27 39 .585 2 .832 21 .251 9 849 7975 31 46 .284 2 .804 21 .452 9 954 8029 85 53 .663 2 .776 21 .661 10 066 8086 94 61 .823 2 . 747 21 .876 10 183 8146. 64 70 . 890 2 .719 22 . 099 10 307 8209. 02 81 . 021 2 .691 22 .329 10 438 8274 . 15 92 .422 2 . 663 22 .567 10 576 8342 . 09 105 .361 2 .635 22 . 813 10 721 8412. 92 120 .204 2 .606 23 . 068 10 874 8486 . 74 137 .463 2 .578 23 .331 11 036 8563 . 62 157 .888 2 .550 23 .602 11 205 8643 . 66 182 .645 2 .522 23 . 883 11 384 8726. 95 213 .685 2 .494 24 . 173 11 572 8813 . 61 254 . 668 2 .465 24 .472 11 771 8903 . 75 263 .670 2 .461 24 . 519 11 802 8917. 78 NODE 130.00 : HGL = < 358.776>;EGL= < 364.828>;FLOWLINE= < 355.690> ****************************************************************************** FLOW PROCESS FROM NODE 13 0.00 TO NODE 130.90 IS CODE = 5 UPSTREAM NODE 130.90 ELEVATION = 356.02 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 158 90 42 .00 0 . 00 356 . 02 3 41 22 778 DOWNSTREAM 177 30 42 .00 -355. 69 3 44 19 742 LATERAL #1 18 40 36.00 60 . 00 356. 52 1 37 3 538 LATERAL #2 0 00 0 .00 0 . 00 0. 00 0 00 0 000 Q5 0 00 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/{(A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 03832 02788 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03310 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 4.00 FEET 0.132 FEET ENTRANCE LOSSES (DY+HVl-HV2)+(ENTRANCE LOSSES) ( 1.631)+( 0.000) = 1.631 0.000 FEET NODE 130.90 : HGL = < 358.403>;EGL= < 366.459>;FLOWLINE= < 356.020> ****************************************************************************** FLOW PROCESS FROM NODE 13 0.90 TO NODE 139.00 IS CODE = 1 UPSTREAM NODE 139.00 ELEVATION = 362.33 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 158.90 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 116.83 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.12 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.41 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 3 .41 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 3 408 16. 631 7.705 6118.02 0. 236 3 356 16 . 745 7 . 713 6122.54 0. 870 3 304 16 . 883 7.733 6134.64 1. 868 3 .253 17. 043 7.766 6153.55 3 . 220 3 .201 17 222 7.809 6178.86 4 929 3 .149 17 420 7 . 864 6210.33 7 Oil 3 . 098 17 637 7 . 931 6247.86 9 491 3 . 046 17 872 8.009 6291.44 12 400 2 .994 18 126 8 . 099 6341.12 15 784 2 .943 18 398 8 .202 6397.00 19 697 2 . 891 18 690 8 .318 6459.25 24 208 2 .839 19 001 8 .449 6528.04 29 404 2 .788 19 334 8.595 6603.62 35 .395 2 .736 19 687 8 . 758 6686 .27 42 .321 2 .684 20 063 8.938 6776.29 50 .365 2 . 633 20 463 9.138 6874.06 59 .768 2 .581 20 .887 9.359 6979.96 70 .861 2 .529 21 .337 9.603 7094.46 84 .107 2 .478 21 .816 9 . 872 7218.04 100 .188 2 .426 22 .323 10 .169 7351.27 116 .830 2 .383 22 . 771 10.439 7470.09 NODE 139.00 : HGL = < 365.738>;EGL= < 370.035>;FLOWLINE= < 362.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 139.90 13 9.00 TO NODE ELEVATION = 139.90 IS CODE = 5 362.83 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 81.70 42.00 0.00 362.83 2.82 8.492 DOWNSTREAM 158.90 42.00 - 362.33 3.41 16.633 LATERAL #1 77.20 36.00 45.00 362.83 2.74 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 10.922 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01434 JUNCTION LENGTH = 5.0 0 FEET FRICTION LOSSES = 0.072 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.278)+( 0.000) = 1.278 00659 02209 0.000 FEET NODE 139.90 HGL < 370.194>;EGL= < 371.313>;FLOWLINE= < 362.830> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 140.00 139.90 TO NODE ELEVATION = 140.00 IS CODE = 1 368.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 81.70 CFS PIPE DIAMETER = 42.00 INCHES PIPE LENGTH = 91.28 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.41 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.76 2 .82 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 2 .529 5 .215 8.073 11.119 14.372 17.854 21.592 25.614 29.957 34.662 39.782 45.378 51.529 58.332 65.913 74.439 84.134 91.280 FLOW DEPTH (FT) 1.758 1. 1. 1. 1. 1. 1, 1. 1. 1. .744 .730 .717 .703 .689 .675 , 661 , 647 , 633 1.619 605 591 577 563 549 535 1.521 1.512 VELOCITY (FT/SEC) 16.875 17.047 17.223 17.402 17.585 17.772 17.963 18.157 18.356 18.560 18.767 18.980 19.197 19.418 19.645 19.877 20.115 20.358 20.516 SPECIFIC ENERGY(FT) 6 .183 6.260 6 .339 6 .422 6.507 6.596 .688 .783 .882 . 985 7.091 7.202 7.317 7 .436 7.560 7.688 7.822 7.960 8.052 PRESSURE+ MOMENTUM(POUNDS) 2898 .12 2921.17 2944.82 2969.09 2993.99 3019.54 3045.77 3072.68 3100.30 3128.64 3157.73 3187.58 3218.22 3249.68 3281.97 3315.12 3349.15 3384.10 3406 . 93 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 7.36 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 7 .364 8 492 8 .483 4714 .62 77 .202 3 .500 8 492 4 . 620 2395 .08 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 3 . 50 =========== ======== === = = = = = ====== ====== ======== ======= =1==== = = =========== = = = = = = := = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 77 .202 3 .500 8 489 4 .620 2395 . 08 77 .693 3 .473 8 499 4 .595 2380 .34 78 .135 3 .446 8 517 4 .573 2366 .92 78 .549 3 .419 8 540 4 .552 2354 .38 78 .939 3 .391 8. 568 4 .532 2342 .58 79 .308 3 .364 8. 599 4 .513 2331 .44 79 .658 3 .337 8 . 634 4 .495 2320 .90 79 .990 3 .310 8 . 672 4 .478 2310 . 95 80 .305 3 .283 8 . 714 4 462 2301 .54 80 .603 3 .256 8 . 758 4 447 2292 .68 80 .885 3 .228 8 . 805 4 433 2284 .34 81 . 151 3 .201 8 . 854 4 419 2276 53 81 .401 3 . 174 8. 907 4 407 2269 23 81 .635 3 . 147 8 . 962 4 395 2262 44 81 .852 3 . 120 9 . 019 4 384 2256 17 82 . 054 3 . 093 9. 079 4 373 2250 41 82 .239 3 .065 9. 142 4 364 2245 17 82 .406 3 .038 9. 208 4 356 2240 45 82 . 557 3 . Oil 9. 276 4 348 2236 26 82 .689 2 . 984 9 . 347 4 341 2232 60 82 .803 2 . 957 9 . 420 4 336 2229 48 82 .898 2 . 930 9. 496 4 331 2226 90 82 . 973 2 .902 9. 575 4 327 2224 89 83 .028 2 .875 9. 657 4 324 2223 43 83 .061 2 .848 9 . 741 4 323 2222 55 83 .073 2 .821 9 . 829 4 322 2222 25 91 .280 2 . 821 9. 829 4 322 2222 25 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 50.68 FEET UPSTREAM OF NODE 139.90 1.603 FEET DOWNSTREAM DEPTH = 4.828 FEET, UPSTREAM CONJUGATE DEPTH : 369.758>;EGL= < 374.183>;FLOWLINE= < 368.000> NODE 140.00 HGL ****************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 140.90 IS CODE = 5 UPSTREAM NODE 140.90 ELEVATION = 368.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 77.90 36.00 0.00 368.33 2.75 17.302 DOWNSTREAM 81.70 42.00 - 368.00 2.82 16.881 LATERAL #1 LATERAL #2 Q5 1.90 18.00 90.00 369.83 1.90 18.00 90.00 369.83 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02746 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.110 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.621)+( 0.000) = 0.621 0 . 52 0.52 3.500 3 .500 02897 02595 0.000 FEET NODE 140 . 90 HGL < 370.155>;EGL= < 374.804>;FLOWLINE= < 368.330> ********* ********************************************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 150.00 140.90 TO NODE ELEVATION = 150.00 IS CODE = 1 377.19 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 77.90 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 295.05 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 .80 CRITICAL DEPTH(FT) 2 .75 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .34 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 2 . 341 13 . 162 5 . 032 2377.64 1. 887 2 . 319 13 . 282 5 . 060 2387.94 3 . 948 2 . 298 13 . 406 5 . 090 2398.85 6 .199 2 . 276 13 . 534 5 .122 2410.40 8 .659 2 . 255 13 . 666 5.156 2422.59 11.347 2 . 233 13 . 801 5.193 2435.45 14.288 2 . 212 13 . 941 5 .231 2448.99 17.510 2 . 190 14 . 084 5.272 2463.22 21.046 2 . 169 14 . 232 5.316 2478.17 24.935 2 . 147 14 . 384 5.362 2493.85 29.222 2 . 126 14 . 541 5.411 2510.29 33.965 2 . 104 14 . 702 5 .463 2527.51 39.232 2 . 083 14 868 5.518 2545.52 45.108 2 . 061 15 039 5.576 2564.36 51.702 2 040 15 215 5.637 2584.05 59.153 2 018 15 396 5.702 2604.61 67.644 1 997 15 583 5.770 2626.07 77.422 1 976 15 775 5 .842 2648.46 88.836 1 954 15 973 5.918 2671.81 102.395 1 933 16 178 5.999 2696.15 118.891 1 911 16 388 6.084 2721.52 139.648 1 890 16 605 6 .174 2747.94 167 .149 1 868 16 829 6 .268 2775.47 206.978 1 847 17 > 059 6 .368 2804.13 277.046 295.050 1. 825 1.825 17.297 17.297 6.474 6 .474 2833.98 2833.98 NODE 150 . 00 HGL < 379.531>;EGL= < 382.222>;FLOWLINE= < 377.190> ****************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 150.90 IS CODE = 2 UPSTREAM NODE 150.90 ELEVATION = 377.52 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 77.90 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 2.459 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = . 05* ( 2.459) = 0.123 NODE 150.90 HGL < 380.119>;EGL= < 382.345>;FLOWLINE= < 377.520> ****************************************************************************** FLOW PROCESS FROM NODE 150.90 TO NODE 160.00 IS CODE = 1 UPSTREAM NODE 160.00 ELEVATION = 381.78 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 77.90 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 355.34 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.71 & 2.91 CRITICAL DEPTH(FT) = NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. 2.75 UPSTREAM CONTROL ASSXMED FLOWDEPTH(FT) 1.68 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 11.779 23.675 35.702 47.876 60 .215 72.738 85 .468 98 .431 111.657 125.180 139.042 153.290 167.982 183.188 198 .995 215.512 232 .879 251.282 270.977 292.334 315.929 342 .754 355.340 FLOW DEPTH (FT) 1. 1. 1. 1. 1. 1. .682 ,723 .764 , 805 . 846 .887 1.928 1.969 2 . 010 2 . 051 2 . 091 2 .132 2.173 2 .214 .255 .296 .337 .378 .419 2.460 2.501 2 .542 2 . 583 2.599 VELOCITY (FT/SEC) 19.092 18 . 539 18.019 17.530 17.069 16.635 16.225 15.838 15.473 15.128 14.801 14.492 14.200 13.923 13.662 13.414 13.180 12.959 12.751 12.554 12.369 12.194 12.031 11.970 SPECIFIC ENERGY(FT) 7.346 7 . 063 6.809 .579 .373 .186 .018 , 866 .729 .606 .495 .396 .306 .226 .155 , 092 5.036 4 . 988 4.945 4.909 4 . 878 4 . 852 4.832 4 . 825 6. 6 . 6. 6. 5 . 5 . 5 , 5 . 5, 5, 5 . 5 . 5 . PRESSURE+ MOMENTUM(POUITOS) 3066.72 2993 .76 2926.13 2863.46 2805.39 2751.61 2701.85 2655.85 2613.38 2574.23 2538.22 2505.16 2474.90 2447.30 2422.23 2399.57 2379.21 2361.06 2345.03 2331. 03 2319.02 2308.91 2300.67 2297.94 NODE 160.00 : HGL = < 383.462>;EGL= < 389.126>;FLOWLINE= < 381.780> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 160.90 160.00 TO NODE ELEVATION = 160.90 IS CODE = 5 382.11 (FLOW IS SUPERCRITICAL) (DEGREES) ELEVATION DEPTH(FT.) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) UPSTREAM 72.40 36.00 DOWNSTREAM 77.90 36.00 LATERAL #1 2.75 18.00 LATERAL #2 2.75 18.00 Q5 0.00===Q5 EQUALS BASIN INPin'=== CRITICAL VELOCITY 0 .00 90 . 00 90 . 00 382.11 381.78 383.61 383 .61 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04328 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.173 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.192)+( 0.000) = 1.192 2 . 69 2 .75 0.63 0.63 (FT/SEC) 20.813 19.098 3 . 911 3 . 911 04918 03738 0.000 FEET NODE 160.90 : HGL = < 383.591>;EGL= < 390.318>;FLOWLINE= < 382.110> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 170.00 160.90 TO NODE 170.00 IS CODE = 1 ELEVATION = 394.39 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 72.40 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 221.91 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.43 CRITICAL DEPTH(FT) 2.69 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 . 69 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 2 .688 10 . 836 4.513 2047 .96 0 .064 2 . 638 10 . 992 4.516 2049 . 14 0 .260 2 . 588 11 . 164 4.524 2052 .70 0 .596 2.538 11 .350 4.539 2058 .68 1 .084 2 .487 11 .552 4.561 2067 . 14 1 .738 2.437 11 . 769 4.589 2078 . 17 2 .574 2 .387 12 . 003 4.625 2091 .86 3 .614 2.336 12 .254 4.669 2108 .35 4 .882 2 .286 12 .523 4 . 723 2127 .76 6 .410 2 .236 12 .811 4 .786 2150 .27 8 .235 2 .186 13 . 119 4 . 860 2176 . 03 10 .402 2 .135 13 .449 4 . 946 2205 .27 12.968 2 085 13 803 5 045 2238 .20 16.004 2 035 14 181 5 159 2275 . 07 19.603 1 984 14 587 5 290 2316 . 18 23.880 1 934 15 021 5 440 2361 .84 28.993 1 884 15 488 5 611 2412 .42 35.155 1 834 15 989 5 806 2468 .30 42.666 1 783 16 528 6 028 2529 . 97 51.967 1 733 17 108 6 281 2597 .92 63 .745 1 683 17 734 6 569 2672 .76 79.152 1 632 18 411 6 899 2755 .15 100 .353 1 582 19 .143 7 276 2845 .87 132.217 1 532 19 . 938 7 .709 2945 .79 190.372 1 .482 20 .802 8 .205 3055 .94 221.910 1 .481 20 . 807 8 .208 3056 .51 170.00 HGL = < 397 078>;EGL= < 398.903>;FLOWLINE= < 394 . 390 NODE ****************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.90 IS CODE = 5 UPSTREAM NODE 170.90 ELEVATION = 394.72 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 72 .40 72 .40 0.00 0 . 00 0.00== DIAMETER (INCHES) 36 . 00 36.00 0.00 0 . 00 ANGLE FLOWLINE (DEGREES) ELEVATION 90 . 00 0.00 0 . 00 394.72 394.39 0 .00 0 . 00 CRITICAL DEPTH(FT.) 2 .69 2.69 0 . 00 0 . 00 VELOCITY (FT/SEC) 10.242 10.839 0.000 0.000 =Q5 EQUALS BASIN INPUT= LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01110 4.00 FEET 0 . 044 FEET ENTRANCE LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 3.394)+( 0.000) = 3.394 JUNCTION LENGTH = FRICTION LOSSES = JUNCTION LOSSES = JUNCTION LOSSES = 01178 01041 0.000 FEET NODE 170.90 HGL < 400.668>;EGL= < 402.297>;FLOWLINE= < 394.720> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 175.00 170.90 TO NODE 175.00 IS CODE = 1 ELEVATION = 395.40 (FLOW IS UNDER PRESStJRE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 72.40 CFS PIPE DIAMETER = 3 6.00 INCHES 68.00 FEET MANNING'S N = 0.01300 (( 72.40)/( 666.979))**2 = 0.01178 68.00)* (0.01178) = 0.801 NODE 175.00 : HGL = < 401.469>;EGL= < 403.098>;FLOWLINE= < 395.400> ****************************************************************************** FLOW PROCESS FROM NODE 175.00 TO NODE 175.90 IS CODE = 5 UPSTREAM NODE 175.90 ELEVATION 395.73 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 72 .40 72 .40 0 . 00 0.00 0.00 = DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 36.00 90.00 395.73 36.00 - 395.40 0.00 0.00 0.00 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 2.69 2 . 69 0.00 0 . 00 VELOCITY (FT/SEC) 10.242 10.243 0.000 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01178 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01178 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01178 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.047 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.305)+( 0.000) = 3.305 NODE 175.90 HGL < 404.775>;EGL= < 406.404>;FLOWLINE= < 395.730> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 176.00 175.90 TO NODE 176.00 IS CODE = 1 ELEVATION = 396.45 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 72.40 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 72.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 72.40)/( 666.984))**2 = 0.01178 HF=L*SF = ( 72.00)* (0.01178) = 0.848 NODE 176.00 : HGL = < 405.623>;EGL= < 407.252>;FLOWLINE= < 396.450> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 176.00 FLOWLINE ELEVATION = 396.45 ASSUMED UPSTREAM CONTROL HGL = 3 99.14 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITIONS * * ALICANTE - SYSTEM 102 (PLANNING AREA 10 CONNECTION) * * lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: 102.DAT TIME/DATE OF STUDY: 12:10 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 102.00- 102.21 102.22 102.40 102.41 102.50 102.51 102.60 102.60 UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 14.60* 5072.19 } HYDRAULIC JUMP 1905.77 FRICTION MANHOLE FRICTION JUNCTION FRICTION MANHOLE FRICTION CATCH BASIN 4.26 4 . 01 2.3 0 Dc 2 . 77 2.29 Dc 2.29 Dc 2.29*Dc 4.31* 1829.27 1343 . 83 1417.29 1311.28 1311.28 1311.28 938 . 67 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 0 . 88 0. 81* 0 . 80* 1. 00* 0 . 89* 1. 69* 1.76* 2.29*Dc 2.29 Dc 3150.97 3512.68 3572.36 2666.45 3022.17 1486.57 1444.59 1311.28 318.94 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102.00 FLOWLINE ELEVATION = 239.60 PIPE FLOW = 49.90 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 254.200 FEET NODE 102.00 : HGL = < 254.200>;EGL= < 255.805>;FLOWLINE= < 239.600> ****************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.21 IS CODE = 1 UPSTREAM NODE 102.21 ELEVATION = 250.89 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.90 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 64.36 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.92 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.30 DISTANCE FROM CONTROL(FT) 0 .000 2.790 5.678 8.674 11.788 15.032 18.418 21.963 25.685 29.605 33.749 38.149 42.843 47.877 53.312 59.223 64.360 FLOW DEPTH (FT) 0.813 0 . 818 0 . 822 0 . 826 0 . 831 0 . 835 0 . 840 0 . 844 0.848 0.853 0.857 0 . 861 0 . 866 0 . 870 0 . 875 0 . 879 0 . 882 VELOCITY (FT/SEC) 36.013 35.748 35.487 35.229 34.975 34.723 34.476 34.231 33.989 33.751 33.515 33.283 33.053 32.827 32.603 32.382 32.209 SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) 20 . 965 3512 68 20 . 674 3487 44 20 .389 3462 54 20 . 110 3437 98 19 .837 3413 75 19 .569 3389 84 19 .307 3366 25 19 .050 3342 98 18 .798 3320 01 18 .552 3297 34 18 .310 3274 97 18 .073 3252 89 17 . 841 3231 09 17 . 613 3209 58 17 .390 3188 34 17 .171 3167 38 17 .001 3150 97 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 14 . 60 PRESStTRE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 64.360 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 14.600 10.166 4.263 10.166 SPECIFIC ENERGY(FT) 16.205 5.867 PRESSURE+ MOMENTUM(POUNDS) 5072.19 1905.77 END OF HYDRAULIC JXTMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 35.94 FEET UPSTREAM OF NODE 102.00 I DOWNSTREAM DEPTH = 8.828 FEET, UPSTREAM CONJUGATE DEPTH = 0.851 FEET NODE 102.21 : HGL = < 251.703>;EGL= < 271.855>;FLOWLINE= < 250.890> ********************************************* FLOW PROCESS FROM NODE UPSTREAM NODE 102.22 102.21 TO NODE 102.22 IS CODE = 2 ELEVATION = 251.22 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 49.90 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 20.505 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* (20.505) = 1.025 3 0.00 INCHES NODE 102.22 : HGL = < 252.023>;EGL= < 272.881>;FLOWLINE= < 251.220> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 102.40 102.22 TO NODE 102.40 IS CODE = 1 ELEVATION = 268.24 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.90 CFS PIPE DIAMETER 3 0.00 INCHES PIPE LENGTH = 35.45 FEET MANNING'S N = 0 01300 NORMAL DEPTH(FT) 0 . 71 CRITICAL DEPTH(FT) 2.30 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1. 004 27 . 067 12 387 2666 . 45 1 . 014 0 . 992 27 .498 12 740 2706. 78 2 .094 0 . 980 27 . 941 13 111 2748 . 39 3 .248 0 . 968 28 .399 13 500 2791. 34 4 .484 0 . 957 28 .871 13 907 2835. 67 5 . 809 0 . 945 29 .357 14 336 2881. 46 7 .234 0. 933 29 .859 14 785 2928 . 75 8 .771 0 . 921 30 .377 15 258 2977 . 63 10 .432 0 . 910 30 .911 15 756 3028 . 15 12 .235 0 . 898 31 .464 16 279 3080. 40 14 . 199 0 . 886 32 .034 16 830 3134 . 45 16 .346 0 . 874 32 .624 17 411 3190 . 38 18 .706 0. 862 33 .234 18 024 3248 . 29 21 .315 0 . 851 33 .866 18 670 3308 . 27 24 .216 0 . 839 34 .519 19 353 3370 . 42 27 .468 0 . 827 35 .196 20 075 3434 . 84 31 . 146 0 . 815 35 .898 20 838 3501. 65 35 .354 0 . 803 36 .625 21 645 3570 . 98 35 .450 0 . 803 36 .639 21 661 3572 . 36 NODE 102.40 : HGL = < 269.244>;EGL= < 280.627>;FLOWLINE= < 268.240> ****************************************************************************** FLOW PROCESS FROM NODE 102.40 TO NODE 102.41 IS CODE = 5 UPSTREAM NODE 102.41 ELEVATION = 268.57 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) UPSTREAM 49.10 30.00 0.00 268.57 2.29 DOWNSTREAM 49.90 30.00 - 268.24 2.30 VELOCITY (FT/SEC) 31.383 27.075 LATERAL #1 0.00 0.00 0.00 0.00 0.00 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.80===Q5 EQUALS BASIN INPUT=== 0 .000 0 .000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.19526 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.12851 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.16189 JUNCTION LENGTH = 2.44 FEET FRICTION LOSSES = 0.395 FEET ENTRANCE LOSSES = 2.277 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.849)+( 2.277) = 4.126 NODE 102.41 : HGL = < 269.459>;EGL= < 284.752>;FLOWLINE= < 268.570> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 102.50 102.41 TO NODE 102.50 IS CODE = 1 ELEVATION = 286.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 49.10 CFS PIPE DIAMETER 30.00 INCHES PIPE LENGTH = 54 . 00 FEET MANNING'S N = 0 01300 NORMAL DEPTH(FT) 0 . 78 CRITICAL DEPTH(FT) 2 .29 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.69 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 1 . 690 13 . 900 4 692 1486 . 57 0 .378 1. 653 14 .247 4 807 1511. 66 0 . 802 1. 617 14 . 616 4 936 1539 . 03 1 .279 1. 580 15 .009 5 080 1568 . 82 1 . 815 1. 544 15 .426 5 241 1601. 21 2 .419 1. 507 15 .871 5 421 1636. 40 3 .098 1. 471 16 .346 5 622 1674 . 60 3 . 864 1. 434 16 .852 5 847 1716 . 05 4 .730 1. 397 17 .393 6 098 1761. 02 5 .712 1. 361 17 .973 6 380 1809. 82 6 .829 1. 324 18 .594 6 696 1862 . 79 8 . 104 1 . 288 19 .260 7 051 1920. 31 9 . 566 1. 251 19 . 977 7 452 1982 . 82 11 .252 1. 215 20 .749 7 904 2050 . 81 13 .208 1. 178 21 .583 8 416 2124 . 85 15 .496 1. 141 22 .484 8 996 2205 . 59 18 .195 1. 105 23 .462 9 658 2293 . 77 21 .417 1. 068 24 .525 10 414 2390 . 26 25 .318 1. 032 25 .683 11 281 2496. 05 30 . 127 0 . 995 26 .950 12 280 2612. 31 36 .205 0 . 958 28 .338 13 436 2740 . 40 44 .155 0 . 922 29 .866 14 781 2881. 94 54 .000 0. 889 31 .373 16 182 3022 . 17 NODE 102.50 : HGL = < 287.990>;EGL= < 290.992>;FLOWLINE= < 286.300> ****************************************************************************** FLOW PROCESS FROM NODE 102.50 TO NODE 102.51 IS CODE = 2 UPSTREAM NODE 102.51 ELEVATION = 286.63 (FLOW IS SUPERCRITICAL) 3 0.00 INCHES CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 49.10 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 2.874 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 2.874) = 0.144 NODE 102.51 : HGL = < 288.390>;EGL= < 291.136>;FLOWLINE= < 286.630> ****************************************************************************** FLOW PROCESS FROM NODE 102.51 TO NODE 102.60 IS CODE = 1 UPSTREAM NODE 102.60 ELEVATION = 287.43 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.10 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 16.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.30 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2 .29 :E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )L (FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 2 .288 10 .426 3 977 1311.28 0 . 063 2 .248 10 . 554 3 979 1311. 97 0 . 254 2 .209 10 .695 3 986 1314.03 0 . 580 2 .169 10 .849 3 998 1317.45 1. 047 2 . 130 11 . 016 4 015 1322 .26 1. 668 2 . 091 11 .195 4 038 1328 .48 2 . 457 2 . 051 11 .389 4 066 1336 . 16 3 . 430 2 . 012 11 .596 4 101 1345.36 4 . 610 1 . 972 11 .817 4 142 1356.12 6 . 022 1 .933 12 . 054 4 190 1368.52 7. 697 1 . 893 12 .306 4 246 1382.64 9 . 674 1 .854 12 .576 4 311 1398.56 12 . 002 1 . 814 12 .863 4 385 1416.40 14 . 741 1 .775 13 .169 4 470 1436.27 16 . 000 1 .760 13 .294 4 506 1444.59 102 .60 HGL = < 289 . 718>;EGL= < 291.407>;FLOWLINE= < 287.430> ****************************************************************************** FLOW PROCESS FROM NODE 102.60 TO NODE 102.60 IS CODE = 8 UPSTREAM NODE 102.60 ELEVATION = 287.43 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 49.10 CFS PIPE DIAMETER = 30.00 INCHES FLOW VELOCITY = 10.43 FEET/SEC. VELOCITY HEAD = 1.689 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 1.689) = 0.338 NODE 102.60 : HGL = < 291.745>;EGL= < 291.745>;FLOWLINE= < 287.430> ************************************************************************^^J^J^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102.60 FLOWLINE ELEVATION = 287.43 ASSUMED UPSTREAM CONTROL HGL = 289.72 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH - ULTIMATE CONDITIONS * * SYSTEM 2 00 (PA-6) TOWN GARDEN DRIVE * * lOO-YEAR * ************************************************************************** FILE NAME: L200.DAT TIME/DATE OF STUDY: 12:21 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 200.00- 205.10 205.90 210.00 210.90 215.00 215.90 220.00 220 . 90 225.00 225.90 230.00 230.90 235.00- UPSTREAM RUN MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 9.35* 5433.94 } HYDRAULIC JUMP 2603.91 DOWNSTREAM RUN FLOW PRESSURE+ DEPTH(FT) MOMENTUM(POUNDS) 4682.89 FRICTION JUNCTION FRICTION JUNCTION FRICTION MANHOLE FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 2.81 Dc 3 .60 2.72 Dc 3 .48 2.33 Dc 2.33 Dc 2.33 Dc 2 . 62 2.29 Dc 2 .52 2.25 Dc 2 . 82 2.13*Dc 2487.28 2180.32 1783.15 1465.45 1465.45 1465.45 1373.78 1315.33 1231.80 1196.81 1113.84 969.63 1.34 1. 92* 1.56* 2 . 05* 1.29* 1.48* 1.49* 1.52* 1.35* 1. 67* 1.50* 1.57* 1.21* 2.13*Dc 3159.02 3134.60 2440.24 2205.01 1912.10 1894 .25 1862.63 1830.36 1502.55 1470.33 1411.87 1390.47 969.63 235.90 235.91 236.00 236.90 240.00 240.10 240.20 240.30 24 0.3 0 JUNCTION 2.49* 891.00 FRICTION } HYDRAULIC JUMP 2.03 Dc 834.84 FRICTION+BEND 2.03*DC 834.84 JUNCTION 3.95* 610.11 FRICTION+BEND 3 .66* FRICTION 3 . 12* JUNCTION 2.84* FRICTION 2 .70* CATCH BASIN 2.93* 551.83 447.45 273.56 258.12 240.71 1. 82 1.84* 2.03*Dc 0 .77 0.77 0.94 Dc 0.86 0.97 Dc 0.97 Dc 849.62 846 .35 834.84 109.62 109.59 103.27 97.66 95.56 31. 94 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 200.00 FLOWLINE ELEVATION = 286.18 PIPE FLOW = 84.80 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 295.53 0 FEET NODE 200.00 : HGL = < 295.530>;EGL= < 297.765>;FLOWLINE= < 286.180> ****************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 205.10 IS CODE = 1 UPSTREAM NODE 205.10 ELEVATION = 306.09 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 84.80 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 183.68 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT] 1.29 CRITICAL DEPTH(FT) = 2.81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1. 92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POtTNDS) 0 . 000 1. 925 17.691 6.788 3159.02 1.605 1.900 17.964 6.914 3196.41 3 .338 1.874 18.247 7.048 3235.54 5.210 1. 849 18.540 7.190 3276.50 7.238 1.824 18.844 7.342 3319.36 9.437 1.799 19.160 7 .503 3364 .21 11.828 1.773 19 .488 7.674 3411.13 14 432 1 748 19 827 7 .857 3460 22 17 276 1 723 20 181 8 .051 3511 58 20 393 1 698 20 547 8 .258 3565 32 23 819 1 672 20 929 8 .478 3621 55 27 601 1 647 21 325 8 .713 3680 41 31 795 1 622 21 738 8 . 964 3742 01 36 470 1 597 22 167 9 .232 3806 51 41 715 1 571 22 614 9 .517 3874 05 47 642 1 546 23 080 9 .823 3944 81 54 402 1 521 23 566 10 .150 4018 94 62 197 1 496 24 073 10 . 500 4096 66 71 312 1 471 24 602 10 .875 4178 14 82 163 1 445 25 155 11 .277 4263 63 95 398 1 420 25 732 11 .708 4353 35 112 099 1 395 26 .337 12 . 172 4447 57 134 301 1 370 26 969 12 .671 4546 56 166 570 1 344 27 .632 13 .208 4650 62 183 680 1 337 27 . 837 13 .377 4682 89 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 9.35 DISTANCE FROM CONTROL(FT) 0 . 000 68 .849 PRESSURE HEAD(FT) 9.350 3 .000 VELOCITY (FT/SEC) 11.997 11.997 SPECIFIC ENERGY(FT) 11. 585 5.235 PRESSURE+ MOMENTUM(POUNDS) 5433.94 2633 .08 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 3 . 00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtrM(POUN! 68 .849 3 . 000 11 993 5 235 2633 .08 68 .921 2 .992 11 996 5 228 2630 .16 68 .984 2 .985 12 000 5 222 2627 .60 69 . 040 2 .977 12 006 5 217 2625 .26 69 .093 2 .970 12 014 5 212 2623 . 11 69 . 141 2 .962 12 022 5 208 2621 .13 69 . 185 2 .955 12 031 5 204 2619 .29 69 .227 2 . 947 12 041 5 200 2617 . 58 69 .265 2 .939 12 051 5 196 2615 . 99 69 .301 2 .932 12 063 5 193 2614 .53 69 .334 2 .924 12 075 5 190 2613 .17 69 .364 2 .917 12 087 5 187 2611 .92 69 .392 2 .909 12 100 5 184 2610 .77 69 .418 2 .901 12 114 5 182 2609 .72 69 .441 2 .894 12 128 5 179 2608 .76 69 .462 2 .886 12 143 5 178 2607 .90 69 .481 2 .879 12 159 5 176 2607 .12 69 .497 2 .871 12 .175 5 174 2606 .44 69 .512 2 .864 12 .191 5 173 2605 .84 69 . 525 2 .856 12 .208 5 172 2605 .32 69 .535 2 .848 12 .225 5 .171 2604 .89 69 544 2 841 12 243 5 170 2604.53 69 551 2 833 12 261 5 169 2604.26 69 555 2 826 12 280 5 169 2604.07 69 558 2 818 12 299 5 168 2603.95 69 559 2 811 12 319 5 168 2603.91 183 680 2 811 12 319 5 168 2603.91 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 19.44 FEET UPSTREAM OF NODE 200.00 DOWNSTREAM DEPTH = 7.557 FEET, UPSTREAM CONJUGATE DEPTH = 1.346 FEET NODE 205.10 : HGL = < 308.015>;EGL= < 312.878>;FLOWLINE= < 306.090> ****************************************************************************** FLOW PROCESS FROM NODE 205.10 TO NODE 205.90 IS CODE = 5 UPSTREAM NODE 205.90 ELEVATION = 306.42 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW (CFS) DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) VELOCITY (FT/SEC) UPSTREAM 75 50 36 .00 0 . 00 306 .42 2 72 20 377 DOWNSTREAM 84 80 36 . 00 -306 .09 2 81 17 696 LATERAL #1 6 40 36 . 00 90 . 00 306 .42 0 79 1 701 LATERAL #2 2 90 18 . 00 90 . 00 307 . 92 0 65 3 976 Q5 0 00 = ==Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03726 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.149 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.547)+( 0.000) = 1.547 04521 02932 0.000 FEET NODE 205.90 : HGL = < 307.977>;EGL= < 314.424>;FLOWLINE= < 306.420> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 210.00 205.90 TO NODE 210.00 IS CODE = 1 ELEVATION = 312.03 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW 75.50 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 88.13 FEET MANNING'S N = 0 01300 NORMAL DEPTH(FT) 1.41 CRITICAL DEPTH(FT) 2 .72 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 2 . 05 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 1.602 3 .343 FLOW DEPTH (FT) 2.045 2.020 1. 994 VELOCITY (FT/SEC) 14.705 14.912 15.127 SPECIFIC ENERGY(FT) 5.405 5 .475 5.550 PRESSURE+ MOMENTUM(POUNDS) 2440 .24 2462.51 2485.97 5 236 1 969 15 350 5 630 2510.68 7 295 1 943 15 580 5 715 2536.68 9 540 1 918 15 819 5 806 2564.02 11 991 1 892 16 067 5 903 2592.75 14 671 1 867 16 324 6 007 2622.93 17 610 1 841 16 590 6 118 2654.63 20 841 1 816 16 867 6 236 2687.91 24 404 1 790 17 154 6 362 2722.84 28 347 1 765 17 451 6 497 2759.49 32 731 1 739 17 761 6 641 2797.94 37 629 1 714 18 082 6 794 2838.28 43 135 1 689 18 416 6 958 2880.59 49 368 1 663 18 763 7 133 2924.98 56 489 1 638 19 125 7 321 2971.54 64 711 1 612 19 501 7 521 3020.39 74 337 1 587 19 893 7 735 3071.64 85 808 1 561 20 301 7 965 3125 .43 88 130 1 557 20 .370 8 004 3134.60 NODE 210.00 HGL = < 314.075>;EGL= < 317.435>;FLOWLINE= < 312.030> ****************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.90 IS CODE = 5 UPSTREAM NODE 210.90 ELEVATION = 312.53 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 52 . 80 30.00 0 . 00 312.53 2 .33 20.697 DOWNSTREAM 75.50 36 . 00 -312 .03 2 . 72 14.709 LATERAL #1 22 . 70 30.00 60 . 00 312.53 1.62 6 . 740 LATERAL #2 0.00 0 .00 0 . 00 0.00 0 . 00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT= LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/( (A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03971 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.159 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.036)+( 0.000) = 3.036 05981 01962 0.000 FEET NODE 210.90 : HGL = < 313.819>;EGL= < 320.470>;FLOWLINE= < 312.530> ****************************************************************************** FLOW PROCESS FROM NODE 210.90 TO NODE 215.00 IS CODE = 1 UPSTREAM NODE 215.00 ELEVATION = 328.51 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 52.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 261.88 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.28 CRITICAL DEPTH(FT) = 2 .33 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.48 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2 .414 4.960 7 .648 10.494 13.511 16.719 20.139 23.793 27.712 31.930 36 .489 41.439 46.844 52.783 59.358 66 .706 75.009 84.522 95.623 108.892 125.305 146.692 177.161 229.899 261. 880 FLOW DEPTH (FT) 1.475 1. 1. 1. 1, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1, 1, 1. 1. 1. 1. 1. 1. 1, 1. .467 .460 ,452 .444 .436 .429 .421 .413 .405 .397 .390 .382 .374 .366 .359 .351 , 343 ,335 ,328 ,320 .312 .304 .297 .289 1.289 VELOCITY (FT/SEC) 17.512 17.624 17.737 17.852 17.969 18.087 18.207 18.328 18.451 18.576 18.703 18.832 18.962 19.095 19.229 19.366 19.504 19.645 19.787 19.932 20.079 20 .228 20 . 380 20.533 20 . 689 20.690 SPECIFIC ENERGY(FT) 6.240 293 348 404 461 519 579 640 703 767 833 900 969 039 112 186 262 339 419 500 7.584 7 . 670 757 847 940 940 PRESSURE+ MOMENTUM(POUNDS) 1912.10 1922.08 1932.22 1942.54 1953.04 1963.71 1974.56 1985.60 1996.83 2008.24 2019.85 2031.66 2043.67 2055.88 2068.30 2080.94 2093.79 2106.86 2120.16 2133.68 2147.44 2161.44 2175.68 2190.17 2204.91 2205.01 NODE 215.00 : HGL = < 329.985>;EGL= < 334.750>;FLOWLINE= < 328.510> ****************************************************************************** FLOW PROCESS FROM NODE 215.00 TO NODE 215.90 IS CODE = 2 UPSTREAM NODE 215.90 ELEVATION = 328.84 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 52.80 CFS PIPE DIAMETER = 30.00 INCHES AVERAGED VELOCITY HEAD = 4.711 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = . 05* ( 4.711) = 0.236 NODE 215.90 : HGL = < 330.329>;EGL= < 334.986>;FLOWLINE= < 328.840> ****************************************************************************** FLOW PROCESS FROM NODE 215.90 TO NODE 220.00 IS CODE = 1 UPSTREAM NODE 220.00 ELEVATION = 338.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 52.80 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 246.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.49 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.52 2 .33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 3 .293 6 .731 10.328 14.098 18.058 22 .228 26.629 31.290 36.241 41.519 47.170 53 .250 59.826 66.986 74 .841 83 .537 93.273 104 .328 117.109 132.249 150 .807 174.771 208 .601 246.000 FLOW DEPTH (FT) 1.516 1.515 1.513 1.512 1.511 1. 510 1. 509 1. 1. 1. 1 . 1. 1. 1. 1. 1. 508 ,507 ,506 ,505 ,503 ,502 ,501 .500 .499 1.498 1 .497 1.496 1.494 1.493 1.492 1.491 1.490 1.489 VELOCITY (FT/SEC) 16.953 16.968 16.983 16.998 17.013 17 . 028 17.043 17.058 17.073 17.088 17.103 17.118 17 .133 17.148 17.164 17.179 17.194 17.209 17 .225 17.240 17.255 17.271 17.286 17.302 17.312 SPECIFIC ENERGY(FT) 5 . 981 6 . 6. 6 . 6 . 6 . 6 . 6 . 6. , 988 , 995 , 002 , 008 .015 6 . 022 6 . 029 6. 036 , 043 , 049 . 056 . 063 . 070 . 077 . 084 , 091 6.098 6 .105 6 .113 6 .120 6 .127 6 .134 6 .141 6.146 PRESSURE+ MOMENTUM(POUNDS) 1862.63 1863.94 1865.24 1866.55 1867.86 1869.17 1870.49 1871.81 1873.13 1874.46 1875.79 1877.12 1878.46 1879.80 1881.14 1882 .48 1883 .83 1885.19 1886.54 1887.90 1889.26 1890.63 1892.00 1893 .37 1894 .25 NODE 220.00 : HGL = < 339.616>;EGL= < 344.081>;FLOWLINE= < 338.100> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 220.90 220.00 TO NODE 220.90 IS CODE = 5 ELEVATION = 338.43 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 49 .20 52 . 80 3.60 0.00 0.00 = DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 30 . 00 30 . 00 18.00 0 . 00 0.00 45 . 00 0 . 00 338 .43 338 .10 339.10 0 . 00 =Q5 EQUALS BASIN INPUT=== 2.29 2.33 0.72 0 . 00 18.174 16.959 4.260 0.000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03998 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.160 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.829)+( 0.000) = 0.829 04439 03557 0.000 FEET NODE 220.90 : HGL = < 339.781>;EGL= < 344.910>;FLOWLINE= < 338.430> ****************************************************************************** FLOW PROCESS FROM NODE 220.90 TO NODE 225.00 IS CODE = 1 UPSTREAM NODE 225.00 ELEVATION = 350.49 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.20 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 263.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.34 CRITICAL DEPTH(FT) 2.29 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .674 14 075 4 753 1502 . 55 1 . 921 1 . 661 14 204 4 796 1511. 92 3 . 972 1 . 647 14 336 4 841 1521. 60 6 . 164 1 . 634 14 471 4 888 1531. 58 8 .511 1 .620 14 609 4 936 1541. 89 11 .029 1 .607 14 750 4 987 1552 . 52 13 .736 1 .594 14 894 5 040 1563 . 49 16 .653 1 .580 15 041 5 095 1574. 81 19 .804 1 .567 15 192 5 153 1586. 47 23 .219 1 .553 15 347 5 213 1598 . 50 26 .933 1 .540 15 505 5 275 1610 . 91 30 .988 1 .526 15 667 5 340 1623 . 69 35 .435 1 .513 15 832 5 408 1636. 87 40 .339 1 .499 16 002 5 478 1650. 45 45 .779 1 .486 16 176 5 551 1664 . 45 51 .861 1 .472 16 354 5 628 1678 . 87 58 .720 1 .459 16 536 5 707 1693 . 73 66 .542 1 .446 16 722 5 790 1709 . 05 75 .588 1 .432 16 914 5 877 1724 . 83 86 .236 1 .419 17 110 5 967 1741. 10 99 .078 1 .405 17 310 6 061 1757. 85 115 .102 1 .392 17 516 6 159 1775 . 12 136 . 163 1 .378 17 727 6 261 1792 . 92 166 .426 1 .365 17 944 6 368 1811. 25 219 .256 1 .351 18 166 6 479 1830 . 15 263 . 000 1 .351 18 169 6 480 1830. 36 NODE 225.00 : HGL = < 352.164>;EGL= < 355.242>;FLOWLINE= < 350.490> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 225.90 225.00 TO NODE ELEVATION = 225.90 IS CODE = 5 350.82 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) UPSTREAM 46.20 30.00 0.00 350.82 2.25 DOWNSTREAM 49.20 30.00 - 350.49 2.29 LATERAL #1 2.25 18.00 90.00 351.82 0.57 VELOCITY (FT/SEC) 15.035 14.080 3 .679 LATERAL #2 0.75 18.00 90.00 351.82 Q5 0.00===Q5 EQUALS BASIN INPUT=== 0.32 1.841 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02564 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.103 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.587)+( 0.000) = 0.587 NODE 225.90 : HGL = < 352.319>;EGL= < 355.829>;FLOWLINE= < 350.820> ****************************************************************************** ,02816 ,02312 0.000 FEET FLOW PROCESS FROM NODE UPSTREAM NODE 23 0.00 225.90 TO NODE ELEVATION = 230.00 IS CODE = 1 357.29 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 46.20 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 227.76 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.49 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.57 2 .25 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2 . 901 5.941 9.132 12.488 16.024 19.760 23.717 27.921 32.402 37.194 42.342 47.898 53.928 60.514 67.762 75.813 84.856 95.156 107.102 121.298 138 .754 161.365 193.387 227.760 FLOW DEPTH (FT) 1.571 1.568 1 .565 1.562 1, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. .559 . 556 .553 ,550 ,547 .544 .541 .538 .534 .531 .528 .525 ,522 ,519 ,516 ,513 ,510 .507 .504 .501 .499 VELOCITY (FT/SEC) 14.219 14.252 14.284 14.317 14.350 14.383 14.416 14.449 14.483 14.517 14.550 14.584 14.619 14.653 14.688 14.723 14.758 14.793 14.828 14.864 14.900 14.935 14.972 15.008 15.031 SPECIFIC ENERGY(FT) 4 .713 4.724 4 .735 4.747 4.758 4.770 .782 . 794 .806 .818 .830 4.842 4 . 855 4.868 4.880 .893 . 906 .919 .933 .946 .959 . 973 4 . 987 5.001 5.009 4 . 4 . 4 . 4 . 4 . 4 . 4 , PRESSURE+ MOMENTUM (POUNDS) 1411.87 1414.15 1416.44 1418.75 1421.08 1423.43 1425.79 1428.17 1430.57 1432.98 1435.42 1437.86 1440.33 1442.82 1445.32 1447.84 1450.38 1452.93 1455.51 1458.10 1460.71 1463.34 1465.99 1468.66 1470.33 NODE 230.00 : HGL = < 358.861>;EGL= < 362.003>;FLOWLINE= < 357.290> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23 0.90 230.00 TO NODE ELEVATION = 23 0.90 IS CODE = 5 357.62 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES; PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 40 . 00 46.20 6.20 0 . 00 0.00== DIAMETER ANGLE FLOWLINE CRITICAL 30 . 00 30 . 00 18 .00 0 .00 0 . 00 90 . 00 0 . 00 357.62 357.29 358.62 0 . 00 2 .13 2 .25 0.96 0.00 :=Q5 EQUALS BASIN INPUT=== VELOCITY (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 16.965 14.224 5 .177 0 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04235 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02446 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03340 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.134 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.298)+( 0.000) = 1.298 NODE 230.90 HGL < 358.831>;EGL= < 363.300>;FLOWLINE= < 357.620> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23 5.00 23 0.90 TO NODE ELEVATION = 235.00 IS CODE = 1 366.35 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 40.00 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 184.76 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.17 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.13 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.13 DISTANCE FROM CONTROL(FT) 0.000 0 . 045 0.185 0 .428 0. 784 1.264 1. 883 2 .657 3 .606 4.753 6 .129 7.767 FLOW DEPTH (FT) 2 .129 2. 2 . 2 . 1. 1. 1. 1. 1, 1. 1. 1, ,091 , 052 . 014 .976 .938 .900 ,861 .823 .785 .747 .709 VELOCITY (FT/SEC) 8 . 978 9 . 9. 9 . 9. 9. 9. .120 .273 .435 ,609 .795 , 992 10.203 10.426 10.664 10.918 11.187 SPECIFIC ENERGY(FT) 3 .381 ,383 ,388 ,397 ,411 ,428 ,451 ,479 ,512 .552 ,599 .653 PRESSURE+ MOMENTUM(POUNDS) 969.63 970.10 971.54 973.98 977.45 981.99 987.67 994.53 1002.64 1012.05 1022.86 1035.14 9. 711 1. 670 11 474 3 .716 1048.98 12 . 017 1. 632 11 780 3 .788 1064.48 14 . 753 1. 594 12 106 3 . 871 1081.77 18 . 009 1. 556 12 454 3 .965 1100.97 21. 903 1. 517 12 825 4 . 073 1122.22 26 . 599 1. 479 13 222 4 .196 1145.68 32 . 322 1. 441 13 647 4.335 1171.52 39. 409 1. 403 14 102 4 .493 1199.95 48 . 378 1. 365 14 .591 4.672 1231.19 60 . 101 1. 326 15 .116 4.877 1265.50 76. 217 1. 288 15 .682 5 .109 1303 .16 100. 409 1. 250 16 .292 5.374 1344.50 144 . 497 1 212 16 .951 5.676 1389.91 184 . 760 1 211 16 .959 5.680 1390.47 235.00 HGL = < 368 479>;EGL= < 369.731>;FLOWLINE= < 366.350 NODE ****************************************************************************** FLOW PROCESS FROM NODE 235.00 TO NODE 235.90 IS CODE = 5 UPSTREAM NODE 235.90 ELEVATION = 366.68 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 36 00 30 . 00 0.00 366 . 68 2 03 7 .338 DOWNSTREAM 40 00 30 .00 -366 .35 2 13 8 .981 LATERAL #1 4 00 18.00 90.00 367 .35 0 77 2 .273 LATERAL #2 0 00 0 . 00 0 . 00 0 . 00 0 00 0 .000 Q5 0 00 = ==Q5 EQUALS BASIN INPUT== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00810 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.032 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.272)+( 0.000) = 0.272 00726 00893 0.000 FEET NODE 235.90 HGL < 369.167>;EGL= < 370.004>;FLOWLINE= < 366.680> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 235.91 23 5.90 TO NODE ELEVATION = 23 5.91 IS CODE = 1 367.32 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 36.00 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 63.64 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 1.81 CRITICAL DEPTH(FT) = 2 . 03 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.84 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0 000 1. 843 9 . 275 3 . 180 846.35 1 607 1. 842 9 . 282 3 . 181 846.51 3 293 1. 841 9 289 3 181 846.67 5 065 1. 840 9 295 3 182 846.83 6 931 1. 838 9 302 3 183 846.99 8 900 1 837 9 309 3 183 847.15 10 983 1 836 9 315 3 184 847.31 13 191 1 835 9 322 3 185 847.48 15 .540 1 833 9 329 3 185 847.64 18 . 047 1 832 9 335 3 186 847.81 20 .732 1 831 9 342 3 187 847.98 23 .618 1 830 9 349 3 188 848.15 26 .737 1 828 9 356 3 188 848.32 30 . 126 1 827 9 362 3 .189 848 .49 33 .831 1 .826 9 369 3 . 190 848.66 37 .913 1 . 825 9 .376 3 . 190 848.83 42 .452 1 . 823 9 .383 3 . 191 849.01 47 .554 1 . 822 9 .390 3 .192 849.19 53 .372 1 . 821 9 .396 3 .193 849.36 60 .127 1 . 820 9 .403 3 .193 849.54 63 .640 1 .819 9 .406 3 . 194 849.62 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 5.238 9 . 847 14 . 036 17.906 21.517 24.908 28.106 31.130 33.995 36.709 39.281 41.715 44.014 46 .178 48.206 50.096 51.844 53.442 54.884 56.157 57 .249 58.144 FLOW DEPTH (FT) 2 .487 2.469 2 .451 2 .433 2 .415 2 .397 2 .379 2.361 2 .343 .325 .306 2.288 2 .270 2.252 2 .234 2.216 2 .198 2 .180 2.162 2 .143 2 .125 2.107 2 .089 2 , 2 VELOCITY (FT/SEC) 7.336 7.348 7.365 7.386 7.410 7 .436 7 .465 7.496 . 530 .565 . 603 .643 .685 .729 . 775 7.823 7.873 7.924 7.978 8 . 034 8 . 092 8 .152 8.213 7 . 7 , 7 , 7 7 7 7. SPECIFIC ENERGY(FT) 3 .324 3.308 3 .294 3 .281 3 .268 3 .256 3.245 3 .234 3 .224 3.214 3.205 3.196 3 .188 3 .180 3 .173 3.167 3 .161 3 .155 3 .151 3 .146 3 .143 3.140 3.137 PRESSURE+ MOMENTUM(POUNDS) 891.00 886.33 881.98 877.90 874.05 870.41 866.97 863.72 860.65 857.75 855.03 852.48 850.10 847.89 845.84 843.97 842.27 840.73 839.37 838.19 837.18 836.34 835.69 58.819 59.249 59.401 63.640 2 . 071 2 . 053 2 . 035 2 . 035 8 .277 8.343 8 .412 8 .412 3 .136 3 . 135 3 .134 3 .134 835 .22 834.94 834.84 834.84 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 43.99 FEET UPSTREAM OF NODE 235.90 I DOWNSTREAM DEPTH = 2.252 FEET, UPSTREAM CONJUGATE DEPTH = 1.831 FEET NODE 235.91 : HGL = < 369.163>;EGL= < 370.500>;FLOWLINE= < 367.320> ****************************************************************************** FLOW PROCESS FROM NODE 23 5.91 TO NODE 236.00 IS CODE = 3 UPSTREAM NODE 236.00 ELEVATION = 368.06 (FLOW IS SUPERCRITICAL) PIPE DIAMETER = 30.00 INCHES MANNING'S N = 0.01300 CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 36.00 CFS CENTRAL ANGLE = 35.900 DEGREES PIPE LENGTH = 75.22 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. NORMAL DEPTH(FT) 1 . 83 CRITICAL DEPTH(FT) 2.03 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .03 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 2 . 035 8 412 3 . 134 834 . 84 0 038 2 . 027 8 443 3 . 134 834 . 86 0 155 2 . 018 8 476 3 . 134 834. 92 0 357 2 . 010 8 508 3 . 135 835 . 02 0 653 2 . 002 8 542 3 . 135 835 . 16 1 051 1. 993 8 575 3 . 136 835. 35 1 561 1. 985 8 609 3 . 137 835 . 57 2 194 1. 977 8 .644 3 . 138 835. 84 2 964 1. 969 8 679 3 . 139 836 . 15 3 886 1. 960 8 .715 3 141 836 . 50 4 981 1. 952 8 . 751 3 142 836 . 90 6 272 1. 944 8 .788 3 144 837 . 34 7 786 1. 936 8 .825 3 146 837 . 82 9 559 1. 927 8 . 862 3 148 838 . 35 11 .637 1. 919 8 . 900 3 150 838 . 92 14 . 075 1. 911 8 .939 3 152 839 . 54 16 .950 1. 903 8 . 978 3 155 840 . 20 20 .364 1 894 9 .018 3 158 840 . 91 24 .461 1 886 9 .058 3 161 841. 67 29 .451 1 878 9 . 099 3 164 842 47 35 .660 1 870 9 . 140 3 168 843 32 43 .635 1 861 9 .182 3 171 844 22 54 .401 1 853 9 .225 3 175 845 17 70 .262 1 845 9 .268 3 179 846 17 75 .220 1 843 9 .275 3 180 846 35 NODE 236.00 HGL < 370.095>;EGL= < 371.194>;FLOWLINE= < 368.060> ****************************************************************************,J^^ FLOW PROCESS FROM NODE 236.00 TO NODE 236.90 IS CODE = 5 UPSTREAM NODE 236.90 ELEVATION = 368.56 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7 .10 24.00 0.00 368.56 0.95 2 .260 DOWNSTREAM 36.00 30 . 00 -368.06 2.03 8 .414 LATERAL #1 28 . 90 24 . 00 90 . 00 368.56 1. 84 9.199 LATERAL #2 0 .00 0.00 0 . 00 0 . 00 0 . 00 0 . 000 Q5 0 . 00 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00439 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.399)+( 0.000) = 1.399 00098 00780 0.000 FEET NODE 236.90 : HGL = < 372.514>;EGL= < 372.593>;FLOWLINE= < 368.560> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 240.00 23 6.90 TO NODE 240.00 IS CODE = 3 ELEVATION = 368.90 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA) PIPE FLOW = 7.10 CFS CENTRAL ANGLE = 16.500 DEGREES PIPE LENGTH = 34.72 FEET FLOW VELOCITY = 2.2 6 FEET/SEC. PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 BEND COEFFICIENT(KB) = 0.10704 VELOCITY HEAD = 0.079 FEET HB=KB*(VELOCITY HEAD) = ( 0.107)*( 0.079) = 0.008 SF=(Q/K)**2 = (( 7.10)/( 226.209))**2 = 0.00099 HF=L*SF = ( 34 . 72)* (0.00099) = 0.034 TOTAL HEAD LOSSES = HB + HF = ( 0.008)+( 0.034) = 0.043 NODE 240.00 : HGL = < 372.556>;EGL= < 372.636>;FLOWLINE= < 368.900> *****************************************************************************^^ FLOW PROCESS FROM NODE UPSTREAM NODE 240.10 240.00 TO NODE 240.10 IS CODE = 1 ELEVATION = 3 69.49 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( 7.10 CFS PIPE DIAMETER = 24.00 INCHES 58.40 FEET MANNING'S N = 0.01300 {( 7.10)/( 226.222))**2 = 0.00099 58.40)* (0.00099) = 0.058 NODE 240.10 : HGL = < 372.614>;EGL= < 372.693>;FLOWLINE= < 369.490> ****************************************************************************** FLOW PROCESS FROM NODE 240.10 TO NODE 240.20 IS CODE UPSTREAM NODE 240.20 ELEVATION 369.99 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 6.30 7 .10 0 . 80 0 . 00 0.00 = DIAMETER ANGLE (INCHES) (DEGREES) 18.00 90.00 24.00 18.00 90.00 0.00 0.00 FLOWLINE ELEVATION 369.99 369.49 369.99 0 . 00 CRITICAL DEPTH(FT.) 0.97 0.95 0.33 0 . 00 VELOCITY (FT/SEC) 3 .565 2.260 0 .453 0.000 =Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.00360 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00098 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00229 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.330)+( 0.000) = 0.330 NODE 240.20 : HGL = < 372.826>;EGL= < 373.023>;FLOWLINE= < 369.990> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 240.30 240.20 TO NODE 240.30 IS CODE = 1 ELEVATION = 370.21 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.30 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.25 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 6.30)/( 105.034))**2 = 0.00360 HF=L*SF = ( 22.25)*(0.00360) = 0.080 NODE 240.30 : HGL = < 372.906>;EGL= < 373.103>;FLOWLINE= < 370.210> ****************************************************************************** FLOW PROCESS FROM NODE 240.30 TO NODE 240.30 IS CODE = 8 UPSTREAM NODE 240.30 ELEVATION = 370.21 (FLOW IS UNDER PRESSURE) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.3 0 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.56 FEET/SEC. VELOCITY HEAD = 0.197 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.197) = 0.039 NODE 240.30 : HGL = < 373.143>;EGL= < 373.143>;FLOWLINE= < 370.210> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 240.30 FLOWLINE ELEVATION = 370.21 ASSUMED UPSTREAM CONTROL HGL = 371.18 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by:, I ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2438.00 - BRESSI RANCH PA-15 * * ADDENDUM TO BACKBONE SYSTEM * * lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: ADDEN-l.DAT TIME/DATE OF STUDY: 12:36 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3 .95* FRICTION+BEND } HYDRAULIC JUMP 2 . 92 237 . 00- 237.10- 238.00 238.70 238.90 238.40 238.50 239.00 239 .10 239.40 239.50 2531.00 2532.00 2532.10 1.87*Dc 2 .32^ 3 .05* FRICTION JUNCTION 2 .33* FRICTION+BEND 2.37* FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION 1.65* FRICTION+BEND 1.09* 1160.05 JUMP 957.73 769.08 725.83 733.83 725.13 659.62 } HYDRAULIC JUMP 2 . 66 1.47 Dc 1.47*Dc 582.67 538.86 538.86 475.63 3 . 85* } HYDRAULIC JUMP 1.27*Dc 206.91 107.28 51.73 1.23 1.23* 1.87*Dc 1.61 1.62 1.82 Dc 1.03 0 . 85* 1.06* 1.47*Dc 0.73 1.27*Dc 0.52 0.53 972 .39 969 .26 769.08 664.24 661.75 648.93 538 . 06 660.57 644.22 538.86 294.67 206.91 33 .68 33 .45 } FRICTION } HYDRAULIC JUMP 2534.00- 0.63*Dc 31.96 0.63*Dc 31. 96 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 237.00 PIPE FLOW = 3 0.71 CFS ASSUMED DOWNSTREAM CONTROL HGL FLOWLINE ELEVATION = 368.57 PIPE DIAMETER = 24.00 INCHES 372.520 FEET NODE 237.00 : HGL = < 372.520>;EGL= < 374.004>;FLOWLINE= < 368.570> ****************************************************************************** FLOW PROCESS FROM NODE 237.00 TO NODE 237.10 IS CODE = 3 UPSTREAM NODE 237.10 ELEVATION = 371.00 (HYDRAULIC JUMP OCCURS) CALCULATE PIPE -BEND LOSSES(OCEMA): PIPE FLOW = 3 0.71 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 36.150 DEGREES MANNING'S N = 0 01300 PIPE LENGTH = 63.10 FEET HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.22 CRITICAL DEPTH(FT) 1.87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.23 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1 .230 15 . 149 4 796 969 26 2 548 1 .230 15 . 153 4 797 969 46 5 207 1 .229 15 .157 4 799 969 66 7 984 1 .229 15 . 161 4 800 969 85 10 892 1 .229 15 . 165 4 802 970 05 13 944 1 .229 15 . 168 4 804 970 25 17 153 1 .228 15 . 172 4 805 970 44 20 537 1 .228 15 . 176 4 807 970 64 24 117 1 .228 15 . 180 4 808 970 84 27 915 1 .228 15 . 184 4 810 971 03 31 961 1 .227 15 .188 4 811 971 23 36 287 1 .227 15 . 192 4 813 971 43 40 937 1 .227 15 . 196 4 814 971 63 45 961 1 .226 15 .199 4 816 971 83 51 424 1 .226 15 .203 4 818 972 02 57 412 1 .226 15 .207 4 819 972 22 63 100 1 .226 15 .211 4 821 972 39 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3 . 95 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 .000 63 .100 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 3.950 9.775 2.918 9.775 SPECIFIC ENERGY(FT) 5.434 4.402 PRESSURE+ MOMENTUM(POUNDS) 1160.05 957.73 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 59.42 FEET UPSTREAM OF NODE 237.00 | I DOWNSTREAM DEPTH = 2.978 FEET, UPSTREAM CONJUGATE DEPTH = 1.230 FEET j NODE 237.10 : HGL = < 372.230>;EGL= < 375.796>;FLOWLINE= < 371.000> ****************************************************************************** FLOW PROCESS FROM NODE 237.10 TO NODE 238.00 IS CODE = 1 UPSTREAM NODE 238.00 ELEVATION = 374.48 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 30.71 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 72 . 58 FEET MANNING'S N = 0 01300 NORMAL DEPTH(FT) 1 .14 CRITICAL DEPTH(FT) 1. 87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.87 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL( FT) (FT) (FT/ SEC) ENERGY (FT) MOMENTUM(POUNDS) 0 .000 1 . 873 10 . 040 3 439 769. 08 0 .062 1 . 843 10 . 140 3 441 769. 45 0 .245 1 . 814 10 .251 3 447 770 . 56 0 . 553 1 . 785 10 .373 3 457 772 . 37 0 .990 1 . 756 10 . 506 3 470 774 . 89 1 .564 1 . 726 10 .649 3 488 778 . 12 2 .284 1 . 697 10 . 804 3 510 782 . 08 3 .164 1 . 668 10 . 969 3 537 786 . 77 4 .221 1 . 638 11 . 146 3 569 792 . 22 5 .475 1 . 609 11 .335 3 605 798 . 46 6 . 950 1 . 580 11 . 536 3 647 805 . 50 8 .679 1 . 550 11 . 750 3 695 813 . 40 10 .698 1 . 521 11 . 977 3 750 822 . 18 13 .058 1 .492 12 .218 3 811 831. 88 15 .818 1 .462 12 .474 3 880 842 . 56 19 . 059 1 .433 12 . 745 3 957 854 . 27 22 .886 1 .404 13 .033 4 043 867. 07 27 .444 1 .374 13 .339 4 139 881. 03 32 .933 1 .345 13 .664 4 246 896. 21 39 .652 1 .316 14 .009 4 365 912 . 69 48 .060 1 .286 14 .376 4 498 930. 58 58 .932 1 .257 14 .767 4 645 949 . 96 72 .580 1 .230 15 .149 4 796 969. 26 NODE 238.00 HGL < 376.353>;EGL= < 377.919>;FLOWLINE= < 374.480> ****************************************************************************** FLOW PROCESS FROM NODE 238.00 TO NODE 238.70 IS CODE = 5 UPSTREAM NODE 238.70 ELEVATION 374.81 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 27.48 30.71 3 .23 0 . 00 0 . 00 = DIAMETER ANGLE FLOWLINE (INCHES) (DEGREES) ELEVATION 24.00 0.00 374.81 24.00 - 374.48 18.00 90.00 375.31 0.00 0.00 0.00 ==Q5 EQUALS BASIN INPUT=== CRITICAL DEPTH(FT.) 1.82 1. 87 0.68 0 . 00 VELOCITY (FT/SEC) 8.747 10.043 1.856 0 . 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01475 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01593 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01534 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.061 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.344)+( 0.061)+( 0.000) = 0.405 NODE 238.70 : HGL = < 377.136>;EGL= < 378.324>;FLOWLINE= < 374.810> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 238.90 238.70 TO NODE 238.90 IS CODE = 3 ELEVATION = 377.39 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 27.48 CFS CENTRAL ANGLE = 19.03 0 DEGREES PIPE LENGTH = 168.36 FEET FLOW VELOCITY = 8.75 FEET/SEC. PIPE DIAMETER = 24.00 INCHES MANNING'S N = 0.01300 BEND COEFFICIENT(KB) = 0.11496 VELOCITY HEAD = 1.188 FEET HB=KB*(VELOCITY HEAD) = ( 0.115)*( 1.188) = 0.137 SF=(Q/K)**2 = (( 27.48)/( 226.224))**2 = 0.01476 HF=L*SF = ( 168.36)* (0.01476) = 2.484 TOTAL HEAD LOSSES = HB + HF = ( 0.137)+( 2.484) = 2.621 NODE 238.90 : HGL = < 379.757>;EGL= < 380.945>;FLOWLINE= < 377.390> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 23 8.40 238.90 TO NODE 238.40 IS CODE = 1 ELEVATION = 378.66 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.48 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 83.06 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 27.48)/( 226.225))**2 = 0.01476 HF=L*SF = ( 83 . 06)* (0 . 01476) = 1.226 NODE 238.40 : HGL = < 380.983>;EGL= < 382.171>;FLOWLINE= < 378.660> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 238.50 238.40 TO NODE 238.50 IS CODE = 5 ELEVATION = 379.04 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 20.42 24.00 0.00 379.04 1.62 DOWNSTREAM 27.48 24.00 - 378.66 1.82 LATERAL #1 7.06 24.00 90.00 379.04 0.94 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== 6.500 8 . 747 2 .247 0 . 000 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01145 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.046 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.532)+( 0.046)+( 0.000) = 0.578 NODE 238.50 : HGL = < 382.093>;EGL= < 382.749>;FLOWLINE= < 379.040> ****************************************************************************** ,00815 , 01475 0.000 FEET FLOW PROCESS FROM NODE UPSTREAM NODE 23 9.00 238.50 TO NODE 239.00 IS CODE = 1 ELEVATION = 379.88 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.42 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 54.92 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.27 CRITICAL DEPTH(FT) = 1. 62 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 . 853 15.966 4 814 660 57 4 .538 0 .870 15.566 4 635 646 07 9 . 149 0 .887 15.185 4 469 632 35 13 .838 0 .903 14.821 4 316 619 35 18 .615 0 . 920 14.473 4 174 607 05 23 .490 0 .936 14 .141 4 044 595 38 28 .473 0 .953 13.824 3 922 584 33 33 .578 0 .970 13.520 3 810 573 86 38 .820 0 .986 13.230 3 706 563 93 44 .217 1 .003 12.951 3 609 554 52 49 .790 1 .019 12.684 3 519 545 59 54 . 920 1 . 034 12.456 3 445 538 06 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3 . 05 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 PRESSURE VELOCITY HEAD(FT) (FT/SEC) 3.053 6.500 SPECIFIC ENERGY(FT) 3.709 PRESSURE+ MOMENTUM(POUNDS) 659.62 582.67 54.920 2.660 6.500 3.316 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 36.73 FEET UPSTREAM OF NODE 238.50 DOWNSTREAM DEPTH = 2.790 FEET, UPSTREAM CONJUGATE DEPTH = 0.918 FEET NODE 239 . 00 HGL < 380.733>;EGL= < 384.694>;FLOWLINE= < 379.880> ****************************************************************************** FLOW PROCESS FROM NODE 23 9.00 TO NODE 239.10 IS CODE = 5 UPSTREAM NODE 239.10 ELEVATION = 380.38 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 20 .42 18 . 00 0 . 00 380.38 1.47 15.292 DOWNSTREAM 20.42 24 .00 -379.88 1.62 15.971 LATERAL #1 0 . 00 0 .00 0 . 00 0 . 00 0 . 00 0 . 000 LATERAL #2 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0.000 Q5 0.00 = =Q5 EQUALS BASIN INPUT=== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05257 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05678 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05467 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.219 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.158)+( 0.219)+( 0.000) = 0.377 NODE 239.10 : HGL = < 381.440>;EGL= < 385.071>;FLOWLINE= < 380.380> ****************************************************************************** FLOW PROCESS FROM NODE 23 9.10 TO NODE 239.40 IS CODE = 1 UPSTREAM NODE 239.40 ELEVATION = 388.34 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.42 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 145.22 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.04 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.4 7 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.47 FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .000 1 .470 11 608 3 .563 538 86 0 .111 1 .453 11 662 3 566 539 12 0 .409 1 .436 11 727 3 572 539 83 0 . 871 1 .419 11 801 3 582 540 93 1 .488 1 .401 11 885 3 596 542 40 2 .256 1 .384 11 976 3 613 544 21 3 . 178 1 .367 12 076 3 633 546 36 4 .262 1 .350 12 184 3 657 548 83 5 .517 1 .333 12 299 3 684 551 62 6 . 959 1 .316 12 422 3 714 554 73 8 . 606 1 .299 12 . 553 3 .747 558 . 16 10 . 482 1 .282 12 .691 3 .785 561 .91 12 . 619 1 .265 12 .837 3 .826 566 .00 15 . 054 1 .248 12 . 991 3 . 870 570 .42 17 . 837 1 .231 13 . 154 3 . 919 575 .18 21. 034 1 .214 13 .324 3 .972 580 .29 24 . 730 1 . 197 13 .503 4.030 585 .76 29 . 042 1 .180 13 . 691 4 . 092 591 .60 34 . 136 1 . 163 13 .888 4.160 597 .83 40 . 252 1 . 146 14 . 095 4.233 604 .45 47 . 768 1 . 129 14 .311 4.311 611 .49 57 . 313 1 . 112 14 .538 4.396 618 .96 70 . 070 1 . 095 14 .776 4.487 626 .88 88 . 698 1 . 077 15 . 024 4.585 635 .27 121. 731 1 . 060 15 .285 4 .690 644 .14 145 220 1 . 060 15 .287 4.691 644 .22 NODE 23 9.40 : HGL = < 389 . 810>;EGL= < 391.903>;FLOWLINE = < 388. 340> ****************************************************************************** FLOW PROCESS FROM NODE 239 .40 TO NODE 239.50 IS CODE = 5 UPSTREAM NODE 239 . 50 ELEVATION = 388 . 67 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT. ) (FT/SEC) UPSTREAM 11. 06 18 .00 0 . 00 388 . 67 1. 27 6.259 DOWNSTREAM 20 . 42 18 .00 -388 .34 1. 47 11.611 LATERAL #1 9. 36 18 .00 60 . 00 388 .67 1. 18 5 .297 LATERAL #2 0 . 00 0 . 00 0 . 00 0 .00 0 . 00 0.000 Q5 0 . 00 = = = =Q5 EQUALS BASIN INPUT== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0 .01300; FRICTION SLOPE = 0.01109 DOWNSTREAM: MANNING'S N = 0 .01300; FRICTION SLOPE = 0.03385 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02247 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.090 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES ( 1.132)+( 0.090)+( 0.000) = 1.222 NODE 239.50 HGL = < 392.517>;EGL= 393.125>;FL0WLINE= 388.670> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2531.00 23 9.50 TO NODE ELEVATION = 2531.00 IS CODE = 1 397.35 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.06 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 160.40 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.71 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.27 1.27 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1 .273 6 . 916 2 . 016 206 . 91 0 023 1 .250 7 . 025 2 . 017 207 . 01 0 094 1 .228 7. 142 2 . 020 207 .31 0 218 1 .205 7 . 267 2 .025 207 . 81 0 .399 1 . 182 7 . 399 2 .033 208 .54 0 .644 1 . 160 7 . 541 2 .043 209 .48 0 .960 1 . 137 7. 692 2 . 056 210 .67 1 .354 1 . 115 7 . 852 2 .073 212 .09 1 .838 1 .092 8 . 022 2 . 092 213 .78 2 .423 1 . 069 8. 203 2 . 115 215 .74 3 . 124 1 . 047 8 . 396 2 .142 217 . 99 3 . 959 1 . 024 8 . 601 2 . 174 220 . 55 4 . 950 1 . 002 8 . 819 2 .210 223 .42 6 .125 0 . 979 9. 050 2 .252 226 . 65 7 .518 0 . 956 9 . 297 2 .299 230 .24 9 .176 0 . 934 9. 561 2 .354 234 .23 11 .159 0 . 911 9 . 841 2 .416 238 .64 13 .548 0 .889 10 . 141 2 .487 243 .51 16 .459 0 .866 10. 462 2 .567 248 . 87 20 .062 0 . 843 10 . 805 2 .657 254 .76 24 .620 0 . 821 11. 173 2 .760 261 .23 30 .575 0 . 798 11. 568 2 . 877 268 .33 38 .758 0 . 776 11. 993 3 . 010 276 .11 51 .034 0 .753 12 . 451 3 . 162 284 .65 73 .394 0 . 730 12 . 945 3 .334 294 . 02 160 .400 0 . 729 12 979 3 .346 294 .67 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 3.85 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 3 . 847 6.259 4 . 455 475.63 54.542 1 . 500 6.259 2 . 108 216.84 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 54.542 1 .500 6.257 2 . 108 216.84 54.729 1 .491 6.262 2 . 100 215.95 54.896 1 .482 6.271 2 . 093 215.15 55.050 1 .473 6 .283 2. 086 214.40 55.193 1 .464 6.297 2 . 080 213.71 55.328 1 .455 6.313 2 . 074 213.05 55 .454 1 .445 6.330 2 . 068 212.44 55.573 1 .436 6.350 2 . 063 211. 86 55.685 1 .427 6.370 2 . 058 211.32 55 .790 1.418 6 393 2 . 053 210 .82 55 .889 1.409 6 416 2 . 049 210 .34 55 . 982 1.400 6 441 2 . 045 209 . 90 56 .068 1.391 6. 467 2 . 041 209 .49 56 .148 1.382 6. 495 2 . 037 209 . 11 56 .222 1.373 6 . 523 2 . 034 208 .76 56 .291 1.364 6 . 553 2 . 031 208 .44 56 .353 1.355 6 . 584 2 . 028 208 . 15 56 .408 1.346 6 . 616 2 . 026 207 .89 56 .458 1.336 6. 650 2 . 023 207 .66 56 . 502 1.327 6 . 684 2 . 022 207 .46 56 .539 1.318 6 . 720 2 . 020 207 .30 56 .570 1.309 6 . 757 2 . 019 207 .16 56 .594 1.300 6 . 795 2. 017 207 . 05 56 .611 1.291 6. 834 2 . 017 206 . 97 56 .622 1.282 6 . 875 2 . 016 206 92 56 . 626 1.273 6. 916 2 . 016 206 91 160 .400 1.273 6 . 916 2 . 016 206 91 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 3 8.20 FEET UPSTREAM OF DOWNSTREAM DEPTH = 2.203 FEET, UPSTREAM CONJUGATE DEPTH NODE 23 9.50 | = 0.730 FEET j NODE 2531.00 : HGL = < 398.623>;EGL= < 399.366>;FLOWLINE= < 397.350> ****************************************************************************** FLOW PROCESS FROM NODE 2531.00 TO NODE 2532.00 IS CODE = 5 UPSTREAM NODE 2532.00 ELEVATION = 397.68 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 DIAMETER ANGLE FLOWLINE FLOW (CFS) 2 .72 11.06 8.34 0 . 00 0.00===Q5 EQUALS BASIN INPUT=== CRITICAL (INCHES) 18 . 00 18 . 00 18 . 00 0 .00 DEGREES) ELEVATION DEPTH(FT.) 60.00 0 . 00 0 . 00 397.68 397.35 397.68 0 . 00 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00557 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.022 FEET ENTRANCE LOSSES 0.63 1.27 1.12 0 . 00 00067 01047 VELOCITY (FT/SEC) 1.539 6 . 919 5.138 0 . 000 0.000 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 2532.00 : HGL = < 399.329>;EGL= < 399.366>;FLOWLINE= < 397.680> ****************************************************************************** FLOW PROCESS FROM NODE 2532.00 TO NODE 2532.10 IS CODE = 3 UPSTREAM NODE 2532.10 ELEVATION = 398.26 (FLOW SEALS IN REACH) CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 2.72 CFS CENTRAL ANGLE = 32.990 DEGREES PIPE LENGTH = 57.58 FEET ADJUSTED CENTRAL ANGLE = (32.990)*( PIPE DIAMETER = 18.00 INCHES MANNING'S N = 0.01300 BEND COEFFICIENT(KB) = 0.08028 16.20/ 57.58) = 9.280 FLOW VELOCITY = 1.54 FEET/SEC. VELOCITY HEAD = 0.037 FEET HB=KB*(VELOCITY HEAD) = ( 0.080)*( 0.037) = 0.003 SF=0.00066 HF=L*SF = ( 57.58)* (0.00066) = 0.038 TOTAL HEAD LOSSES = HB + HF = ( 0.003)+( 0.03 8) = 0.041 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1. 65 DISTANCE FROM CONTROL(FT) 0.000 16.197 PRESSURE HEAD(FT) 1.649 1.500 VELOCITY (FT/SEC) 1.539 1. 539 SPECIFIC ENERGY(FT) 1.686 1.537 PRESSURE+ MOMENTUM (POUNDS) 107.28 90 . 82 NORMAL DEPTH(FT) = 0.52 CRITICAL DEPTH(FT) = 0.63 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 16.197 1 500 1 539 1 . 537 90 .82 19.851 1 465 1 548 1 . 502 87 . 02 23.451 1 430 1 565 1 .468 83 .29 27.020 1 395 1 588 1 .434 79.65 30.563 1 360 1 615 1 .401 76 . 08 34 . 085 1 325 1 646 1 .367 72 .61 37.586 1 290 1 682 1 .334 69.23 41.067 1 255 1 722 1 .301 65.95 44.527 1 220 1 766 1 .269 62.78 47.965 1 185 1 816 1 .236 59. 73 51.379 1 150 1 870 1 .205 56.79 54.768 1 115 1 930 1 . 173 53 .98 57.580 1 086 1 985 1 . 147 51.73 NODE 2532.10 HGL = < 399 346>;EGL= < 399.407>;FLOWLINE= < 398.260> ****************************************************************************** FLOW PROCESS FROM NODE 2532.10 TO NODE 2534.00 IS CODE = 1 UPSTREAM NODE 2534.00 ELEVATION = 398.68 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.72 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 42.56 FEET MANNING'S N = 0.013 00 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.52 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.63 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.63 DISTANCE FROM CONTROL(FT) FLOW DEPTH (FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM (POUNDS) 0 000 0 . 626 3 896 0 862 31 96 0 Oil 0 . 622 3 931 0 862 31 96 0 046 0 . 617 3 966 0 862 31 97 0 107 0 . 613 4 001 0 862 31 98 0 195 0 . 609 4 037 0 862 32 00 0 315 0. 605 4 074 0 863 32 02 0 470 0. 601 4 111 0 864 32 04 0 662 0. 597 4 149 0 864 32 07 0 897 0 . 593 4 188 0 865 32 11 1 180 0 . 589 4 227 0 866 32 15 1 517 0 . 584 4 267 0 867 32 20 1 916 0 . 580 4 308 0 869 32 25 2 385 0 . 576 4 349 0 870 32 31 2 937 0 . 572 4 392 0 872 32 37 3 586 0 . 568 4 435 0 873 32 44 4 351 0 . 564 4 478 0 875 32 51 5 255 0 . 560 4 523 0 878 32 59 6 333 0 . 556 4 568 0 880 32 68 7 631 0. 551 4 615 0 882 32 77 9 217 0 547 4 662 0 885 32 87 11 197 0 543 4 710 0 888 32 97 13 748 0 539 4 759 0 891 33 08 17 203 0 535 4 809 0 .894 33 20 22 .308 0 531 4 .860 0 .898 33 32 31 .461 0 527 4 . 911 0 . 901 33 45 42 .560 0 527 4 . 912 0 . 902 33 45 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.09 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 000 1 086 1 985 1 147 51 . 73 1 798 1 068 2 021 1 131 50 .36 3 586 1 049 2 060 1 115 49 . 04 5 364 1 031 2 100 1 099 47 .75 7 129 1 . 012 2 143 1 084 46 .50 8 882 0 . 994 2 188 1 068 45 .29 10 .620 0 . 975 2 235 1 053 44 . 13 12 .343 0 . 957 2 285 1 038 43 . 01 14 . 048 0 . 939 2 337 1 024 41 . 93 15 .734 0 . 920 2 392 1 009 40 . 90 17 .398 0 . 902 2 450 0 995 39 . 92 19 . 038 0 . 883 2 512 0 981 38 . 98 20 .650 0 . 865 2 576 0 968 38 . 09 22 .231 0 . 847 2 .645 0 955 37 .26 23 . 777 0 .828 2 .717 0 943 36 .47 25 .282 0 .810 2 .794 0 931 35 .75 26 .739 0 . 791 2 .876 0 920 35 . 07 28 .142 0 . 773 2 .962 0 909 34 .46 29 .480 0 .755 3 . 054 0 .899 33 .90 30 .740 0 .736 3 .152 0 .890 33 .41 31 .908 0 . 718 3 .256 0 .882 32 . 99 32 .963 0 . 699 3 .367 0 .875 32 . 63 33.878 0.681 3.486 0.870 32.34 34.615 0.662 3.613 0.865 32.13 35.120 0.644 3.750 0.863 32.00 35.314 0.626 3.896 0.862 31.96 42.560 0.626 3.896 0.862 31.96 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 32.06 FEET UPSTREAM OF NODE 2532.10 | I DOWNSTREAM DEPTH = 0.715 FEET, UPSTREAM CONJUGATE DEPTH = 0.545 FEET j NODE 2534.00 : HGL = < 399.306>;EGL= < 399.542>;FLOWLINE= < 398.680> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2534.00 FLOWLINE ELEVATION = 398.68 ASSUMED UPSTREAM CONTROL HGL = 3 99.31 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * 2438.00 - BRESSI RANCH PA-15 * * ADDENDUM TO BACKBONE SYSTEM - DESILT OUTLET * * lOO-YEAR STORM EVENT * ************************************************************************** FILE NAME: ADDEN-2.DAT TIME/DATE OF STUDY: 12:50 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM (POUNDS) 239.60- 3.85* 439.35 0.61 266.72 } FRICTION 240.00- 1.19*DC 165.22 1.19*Dc 165.22 } CATCH BASIN 240.00- 1.92* 129.43 1.19 Dc 50.26 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 23 9.60 FLOWLINE ELEVATION = 388.67 PIPE FLOW = 9.43 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 3 92.52 0 FEET NODE 239.60 : HGL = < 392.520>;EGL= < 392.962>;FLOWLINE= < 388.670> ****************************************************************************** FLOW PROCESS FROM NODE 239.60 TO NODE 240.00 IS CODE = 1 UPSTREAM NODE 240.00 ELEVATION = 393.15 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.43 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 56.00 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3.85 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 32.666 PRESSURE HEAD(FT) 3 . 850 1.500 VELOCITY (FT/SEC) 5 .336 5.336 SPECIFIC ENERGY(FT) 4.292 1. 942 PRESSURE+ MOMENTUM(POUNDS) 439.35 180.22 NORMAL DEPTH(FT) = 0.58 CRITICAL DEPTH(FT) = 1.19 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 32.666 32.824 32.968 33.102 33 .230 33 .351 33.466 33.575 33.679 33.778 33.872 33.960 34.044 34.122 34.195 34.263 34.325 34.382 34.433 34.478 34.516 34.549 34.575 34.593 34.605 34.609 56.000 FLOW DEPTH (FT) ,500 ,487 ,475 ,462 ,450 ,437 ,425 ,412 ,400 ,387 ,375 ,362 ,349 ,337 ,324 ,312 .299 .287 ,274 .262 .249 . 237 .224 .212 .199 .186 . 186 VELOCITY (FT/SEC) 5.335 ,342 ,354 ,371 ,390 ,412 ,437 ,464 ,493 ,524 ,557 ,592 . 629 .668 ,709 .752 .796 .843 .892 .942 . 995 . 049 .106 . 165 .225 .288 .288 SPECIFIC ENERGY(FT) 1. 942 931 920 911 901 892 884 876 868 861 854 848 842 836 831 826 821 817 814 810 807 805 803 802 801 801 801 PRESSURE+ MOMENTUM(POUNDS) 180.22 178.96 177.81 176.74 175.72 174.76 173.85 172.99 172.17 171.40 170 . 67 169.99 169 .35 168.76 168.21 167.70 167.24 166.83 166.46 166.13 165.86 165.63 165.45 165 .32 165.24 165.22 165.22 NODE 240.00 HGL = < 394.336>;EGL= < 3 94.951>;FLOWLINE= < 393.150> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 240.00 240.00 TO NODE ELEVATION = 240.00 IS CODE = 8 393.15 (FLOW UNSEALS IN REACH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 9.43 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 6.29 FEET/SEC. VELOCITY HEAD = 0.614 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.614) = 0.123 NODE 240.00 : HGL = < 395.074>;EGL= < 395.074>;FLOWLINE= < 393.150> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 240.00 FLOWLINE ELEVATION = 393.15 ASSUMED UPSTREAM CONTROL HGL = 3 94.34 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH STORM DRAIN ON TOWN GARDEN ROAD STATIONS 4275-4400 * * CONSTRUCTION CHANGE DUE TO STAGING * * PDC JOB #243 8 * ************************************************************************** FILE NAME: ADDEN-3.DAT TIME/DATE OF STUDY: 12:50 01/13/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2532.00- 1.63* 173.31 0.82 158.52 } FRICTION } HYDRAULIC JUMP 2533.00- 1.12*Dc 139.47 1.12*Dc 139.47 } JUNCTION 2533.10- 1.50* 108.89 0.60 78.91 } FRICTION } HYDRAULIC JUMP 2533.20- 0.85*Dc 67.47 0.85*Dc 67.47 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2532.00 FLOWLINE ELEVATION = 397.68 PIPE FLOW = 8.34 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 3 99.310 FEET NODE 2532.00 : HGL = < 399.310>;EGL= < 399.656>;FLOWLINE= < 397.680> ****************************************************************************** FLOW PROCESS FROM NODE 2531.90 TO NODE 2533.00 IS CODE = 1 UPSTREAM NODE 2533.00 ELEVATION = 399.57 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.34 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 94.60 FEET MANNING'S N 0.01300 1.12 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.80 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.12 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1 118 5 900 1 659 139 47 0 024 1 106 5 970 1 660 139 50 0 099 1 093 6 042 1 660 139 57 0 230 1 081 6 116 1 662 139 71 0 422 1 068 6 194 1 664 139 89 0 681 1 056 6 274 1 667 140 13 1 014 1 043 6 356 1 671 140 44 1 431 1 030 6 442 1 675 140 80 1 941 1 018 6 531 1 681 141 22 2 555 1 005 6 622 1 687 141 71 3 288 0 993 6 717 1 694 142 26 4 157 0 980 6 816 1 702 142 88 5 182 0 968 6 917 1 711 143 58 6 390 0 955 7 023 1 721 144 34 7 814 0 942 7 132 1 733 145 19 9 495 0 930 7 245 1 745 146 11 11 490 0 917 7 363 1 760 147 11 13 873 0 905 7 484 1 775 148 20 16 750 0 892 7 611 1 792 149 37 20 277 0 880 7 742 1 811 150 64 24 694 0 867 7 878 1 831 152 00 30 404 0 854 8 019 1 854 153 46 38 .163 0 842 8 166 1 878 155 03 49 .668 0 829 8 319 1 905 156 71 70 .370 0 817 8 478 1 933 158 49 94 . 600 0 816 8 480 1 934 158 52 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 1. 63 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 9.507 PRESSURE HEAD(FT) 1.630 1.500 VELOCITY (FT/SEC) 4 .719 4 . 719 SPECIFIC ENERGY(FT) 1. 976 1.846 PRESSURE+ MOMENTUM(POUNDS) 173.31 158.98 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 9.507 FLOW DEPTH VELOCITY (FT) (FT/SEC) 1.500 4.718 SPECIFIC ENERGY(FT) 1.846 PRESSURE+ MOMENTUM(POUNDS) 158.98 10 515 1 485 4 726 1 832 157 43 11 430 1 469 4 741 1 819 155 99 12 290 1 454 4 761 1 806 154 64 13 108 1 439 4 784 1 795 153 35 13 889 1 424 4 810 1 783 152 12 14 636 1 408 4 840 1 772 150 95 15 352 1 393 4 872 1 762 149 83 16 039 1 378 4 907 1 752 148 77 16 697 1 363 4 944 1 742 147 77 17 327 1 347 4 984 1 733 146 81 17 928 1 332 5 027 1 725 145 91 18 500 1 317 5 072 1 717 145 07 19 043 1 302 5 119 1 709 144 28 19 556 1 286 5 169 1 701 143 54 20 038 1 271 5 222 1 695 142 87 20 487 1 256 5 277 1 688 142 24 20 901 1 241 5 334 1 683 141 68 21 280 1 225 5 395 1 678 141 18 21 619 1 210 5 458 1 673 140 74 21 917 1 195 5 524 1 669 140 36 22 170 1 180 5 593 1 666 140 04 22 375 1 164 5 665 1 663 139 80 22 528 1 149 5 740 1 661 139 62 22 624 1 134 5 818 1 660 139 51 22 658 1 118 5 900 1 659 139 47 94 600 1 118 5 900 1 659 139 47 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 9.81 FEET UPSTREAM OF NODE 2531.90 | I DOWNSTREAM DEPTH = 1.495 FEET, UPSTREAM CONJUGATE DEPTH = 0.817 FEET j NODE 2533.00 : HGL = < 400.688>;EGL= < 401.229>;FLOWLINE= < 399.570> ****************************************************************************** FLOW PROCESS FROM NODE 2533.00 TO NODE 2533.10 IS CODE = 5 UPSTREAM NODE 2533.10 ELEVATION = 399.90 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 4 . 84 18 .00 60 . 00 399.90 0 . 85 2 . 739 DOWNSTREAM 8.34 18.00 -399.57 1.12 5.902 LATERAL #1 3 .50 18 .00 0 .00 399.65 0.71 2 . 042 LATERAL #2 0 .00 0 . 00 0 .00 0 . 00 0 . 00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0.00212 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00769 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00490 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.292)+( 0.000) = 0.292 NODE 2533.10 : HGL = < 401.405>;EGL= < 401.521>;FLOWLINE= < 399.900> ****************************************************************************** FLOW PROCESS FROM NODE 2533.10 TO NODE 2533.20 IS CODE = 1 UPSTREAM NODE 2533.20 ELEVATION = 400.89 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 49.69 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.59 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.85 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/ SEC) ENERGY (FT) MOMENTUM(POUNDS) 0 000 0 846 4 .713 1 191 67 47 0 017 0 835 4 .784 1 191 67 48 0 071 0 825 4 . 857 1 192 67 53 0 165 0 815 4 . 933 1 193 67 61 0 303 0 805 5 . Oil 1 195 67 72 0 490 0 794 5 . 092 1 197 67 87 0 732 0 784 5 . 175 1 200 68 05 1 035 0 774 5 .262 1 204 68 27 1 406 0 764 5 .351 1 209 68 52 1 854 0 754 5 .443 1 214 68 82 2 391 0 743 5 .539 1 220 69 15 3 028 0 733 5 .638 1 227 69 53 3 782 0 723 5 .741 1 235 69 95 4 671 0 713 5 . 848 1 244 70 42 5 722 0 702 5 . 958 1 254 70 93 6 965 0 692 6 .073 1 265 71 49 8 442 0 682 6 .192 1 277 72 10 10 210 0 672 6 .315 1 291 72 76 12 349 0 661 6 .443 1 306 73 48 14 976 0 651 6 .577 1 323 74 26 18 270 0 641 6 .716 1 342 75 10 22 536 0 631 6 .860 1 362 76 00 28 341 0 620 7 . Oil 1 384 76 97 36 963 0 610 7 .168 1 408 78 00 49 690 0 602 7 .302 1 430 78 91 HYDRAULIC JXJMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 1.50 DISTANCE FROM CONTROL(FT) 0.000 0.255 PRESSURE HEAD(FT) 1.505 1. 500 VELOCITY (FT/SEC) 2.739 2 .739 SPECIFIC ENERGY(FT) 1. 621 1.616 PRESSURE+ MOMENTUM(POUNDS) 108.89 108.39 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .255 1 .500 2 738 1 616 108 .39 1 .665 1 .474 2 749 1 591 105 .61 3 . 023 1 .448 2 768 1 567 102 . 93 4 .348 1 .421 2 794 1 543 100 .33 5 .647 1 .395 2 825 1 519 97 .80 6 . 922 1 .369 2 860 1 496 95 .35 8 . 175 1 .343 2 899 1 474 92 .98 9 .406 1 .317 2 943 1 451 90 .69 10 .614 1 .291 2 991 1 430 88 .47 11 .799 1 .264 3 044 1 408 86 .35 12 . 960 1 .238 3 101 1 388 84 .31 14 . 094 1 .212 3 163 1 368 82 .36 15 .201 1 . 186 3 229 1 348 80 .51 16 .277 1 . 160 3 300 1 329 78 .76 17 .319 1 . 134 3 377 1 311 77 .11 18 .323 1 . 107 3 459 1 293 75 .58 19 .285 1 . 081 3 548 1 277 74 . 15 20 . 199 1 .055 3 643 1 261 72 . 84 21 . 058 1 . 029 3 745 1 247 71 .66 21 .855 1 . 003 3 854 1 234 70 .61 22 .580 0 .977 3 972 1 222 69 .69 23 .220 0 .950 4 099 1 211 68 .92 23 .760 0 . 924 4 235 1 203 68 .30 24 . 181 0 .898 4 382 1 196 67 .85 24 .458 0 . 872 4 541 1 192 67 .57 24 .560 0 . 846 4 713 1 191 67 .47 49 .690 0 . 846 4 713 1 191 67 .47 END OF HYDRAULIC JUMP ANALYSIS I PRESSURE+MOMENTUM BALANCE OCCURS AT 17.09 FEET UPSTREAM OF NODE 2533.10 | j DOWNSTREAM DEPTH = 1.139 FEET, UPSTREAM CONJUGATE DEPTH = 0.615 FEET j NODE 2533.20 : HGL = < 401.736>;EGL= < 402.081>;FLOWLINE= < 400.890> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2533.20 FLOWLINE ELEVATION = 400.89 ASSUMED UPSTREAM CONTROL HGL = 401.74 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2005 Advanced Engineering Software (aes) Ver. 10.2 Release Date: 01/01/2005 License ID 1509 Analysis prepared by: ProjectDesign Consultants 701 B Street Suite 800 San Diego, CA 92101 619-235-6471 ************************** DESCRIPTION OF STUDY ************************** * BRESSI RANCH STORM DRAIN ON TOWN GARDEN ROAD AT STATIONS 43+85 TO 44+41 * * FIELD CONSTRUCTION CHANGE * * PDC JN 3219.00/2438.00 * ************************************************************************** FILE NAME: ADDEN-4.DAT TIME/DATE OF STUDY: 17:46 01/16/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2533.10- 1.51* 98.98 0.59 51.68 } FRICTION 2533.70- 0.74*Dc 47.88 0.74*Dc 47.88 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2533.10 FLOWLINE ELEVATION = 399.90 PIPE FLOW = 3.72 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 401.410 FEET NODE 2533.10 : HGL = < 401.410>;EGL= < 401.479>;FLOWLINE= < 399.900> ****************************************************************************** FLOW PROCESS FROM NODE 2533.10 TO NODE 2533.70 IS CODE = 1 UPSTREAM NODE 2533.70 ELEVATION = 400.60 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.72 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 56.00 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.51 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(POUNDS) 0 . 000 0 . 890 1. 510 1. 500 2.105 1.579 2.105 1.569 98 . 98 97.88 NORMAL DEPTH(FT) = 0.58 CRITICAL DEPTH(FT) = 0.74 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 890 1 .500 2 104 1 569 97 .88 3 . 526 1 .469 2 115 1 539 94 .59 6 . 095 1 .439 2 134 1 510 91 .39 8 . 624 1 .408 2 159 1 481 88 .27 11. 122 1 .378 2 189 1 452 85 .23 13 . 591 1 . 347 2 223 1 424 82 .27 16 . 034 1 .317 2 262 1 396 79 .39 18 . 451 1 .286 2 306 1 369 76 .60 20 . 842 1 .256 2 354 1 342 73 . 90 23 . 205 1 .225 2 406 1 315 71 .31 25 . 540 1 .195 2 464 1 289 68 .81 27 . 842 1 . 164 2 527 1 263 66 .43 30 . 110 1 . 134 2 595 1 238 64 .15 32 . 339 1 .103 2 670 1 214 62 .00 34 . 523 1 . 073 2 750 1 190 59 .97 36. 656 1 . 042 2 838 1 167 58 .06 38. 730 1 . 012 2 933 1 145 56 .29 40 . 734 0 . 981 3 037 1 124 54 .67 42 . 655 0 . 951 3 150 1 105 53 . 19 44 . 476 0 . 920 3 273 1 086 51 . 87 46. 174 0 .889 3 407 1 070 50 .71 47 . 720 0 . 859 3 554 1 055 49 .74 49 . 073 0 .828 3 .715 1 043 48 .95 50 . 174 0 .798 3 893 1 033 48 .37 50 . 939 0 .767 4 088 1 027 48 . 00 51. 235 0 . 737 4 305 1 025 47 . 88 56. 000 0 . 737 4 305 1 025 47 .88 NODE 2533 .70 HGL = < 401. 337>;EGL= < 401.625>;FLOWLINE= < 400. S00> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2533.70 FLOWLINE ELEVATION = 400.60 ASSUMED UPSTREAM CONTROL HGL = 401.34 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS