Loading...
HomeMy WebLinkAboutCT 03-04; Highland Drive Subdivision; Hydraulics and Hydrology Report for Highland Dr Sub; 2004-11-29HYDRAULICS AND HYDROLOGY REPORT FOR A& A DEVELOPMENT 2009 VIA TECA SAN CLEMENTE, CA 92673 PROJECT HIGHLAND DRIVE SUBDIVISION CT 03-04 PREPARED BY: Aquaterra Engineering Inc. 1843 Campesino Place Oceanside, CA 92054 tele: 760-439-2802 fax: 760-439-2866 Prep November 29, 2004 er the supervision of: £-^ Gary Lipsfca, RCE 23080 Exp. 12/31/05 Date Hydrology & Hydraulics Report City of Carlsbad This Hydraulics and Hydrology Report was prepared using the following Manuals: Hydrology Manual. County of San Diego Drainage of Highway Pavements. U.S. Dept. of Transportation The Rational Method was used to determine the 100 yr. storm Q values. The Rational Method uses the following formula to establish the flow: Q = CIA where, Q = the peak runoff in cubic feet per second C = Runoff coefficient representing the ratio of runoff to rainfall I = time average intensity in inches per hour A = Area of the subbasin in acres HYDROLOGY REPORT * Aquaterra Engineering Inc. PROJECT DATE; $A-LjJMN32^1C.P'JC.T 7J 2i LSZ <W>O f/iC2£ 0 7 E rtw It V y. ^^i -ii TO E6J12: * rti _ 7 4 C u? 4v i?f X 0 5 /H v i5Ttr^"^ 7 d 7?V^» a 0 a tr _d Aquaterra Engineering Inc. PROJECT CT 01-04 ™* 7 1?3/04: I Aquaterra Engineering Inc. PROJECT 0-3-04- &3t V >V m T , <' * ms £0 4 At f?a >f IT s EjZE^^ 10 !i TF t/ ^^ 7f u£F I2L C• ; T 2 i•e-?U mm , Aquaterra Engineering Inc. Aquaterra Engineering Inc. ii ii t i ii li ii i 1 t -4 's. County of San Diego Hydrology Manual Rainfall Isopluvials 100 Yenr Rainfall Event - 6 Hours i i i i t i i i i i i i i i I i i i i i i i i s 4 County of San Diego Hydrology Manualirlrj:' "pjitu ..JT.t4lt -. LTTc;J:n;t:; :r;'t:n±;'"':n'1 \.ILJ. ^r^^Pii-/!'': ft i i, ;• ItT 4Hlf:.r-tJ:r.'i'! -H- • •a4lBWHLi-H I'-ii+UhlH..^ i-t-M L-IU-'-L •^fwffnvT £ffl/S±f 100 Year Rainfall Event - 24 Hours i I i I i i i I i i i I l i i i j i i i i i 8.0 6.0 S.O dfl 3.0 2.0 'TIT' 1.1.0 IO.B s0-7 0.6 0.8 0.4 0.3 0.2 0.1 ^ N s S s N V S S s % ^ - s „ S V s s s V s^ > s ^ ^ ^1 s s, \, s s s •>s "*• s V [S s, s s ^\ X s s ** \ s s s s s % N s s, ^\ X*5^', ! N*-»s^'., "^S* ^;', ;,, X'^x; ;'• ;l; S* *X [', 1 : ''s, "^ 'v ( ! ' "n ' [ [ . "' v i ' li lx". """i::::::::::::;;:: i:::::::::::::::: :1 — .. .L , i___.. .1 . !___.. .1 1 EQUATION j = 7.44 P6 D-°>e4S = Intensity (in/nr) P6* 6-Hour Preclpitatior!. 0 = Duration (min) ::;! : n ::::::::::: •/'••''' : i •' >sx!;x j : ^*^N 'X N^§': s* L "*^h *"" i ''• ! r "'s >Sfc ' I t^ "* » 'Ns'\, L*'^^* *x< ' •, Ls *Sy» f N %h s ;;,;;;; :^;; • -• 6 ' 6 ' 7 8 9 10 15 20 30 40 50 1 2 3 Minutes Hours Duration HI o JIL « 1 (: (in) 1 li (' - . , 11 utr \ • ' 1 (' " r i f b . i Si. g o ^ ' S1^ ' ! fil 5.5 § , 1 5.0 3 ( . | jf 4.5 •§ , ' 'I4-° 1 ''» 'I ' li2'5 ' J ' * ' il'° - - Sr1-5 i II- 111Ml 1 456 irectior )From fbrlhe Counl In the !)Adjus there applk 3) Plot e \) Draw 3} This being tppltcal a) Selec b)P6 = c) Adju d)tx = is for precip jsele yHyd Desij t6hr ngee ;aple >hrpr aline inels anal lonF :ted fr stedF API iltati •ted roloj jna pre< f45 toD eclp thr< the /zed orrn equ ^(2) __tr in vlote: This chart r curves use P6 Durations 10 ""15 20 4C 5646 50 80 91 120 150 180 240 300 360 _..!1 I 2.63 ~27l2~ 1.68 1.30 ,1.08. 0.83 -0.69J0.60 0.63.._... 0.34 6.29 0.2F1 0.22 0.19 0.17 ITi J.95_. 2.S3 1,95 1 40 1.24 1.03 tj.90 0.80oTei" 0.51 0.44 0.39 0.33 0.28 O25 )lica anm freqi jyMt ndP :iplta %to eserl itatic lugh inter . : ency n.,P = -^ il*lt /hr. epla dsin n 6.27 i 4.24' 3.37 [ 2Tl5" 1 87 1.66 1.38 1.19a 0.68 0.59 0.52 0.43 0.38oaS tion: aps deter lency, Th jnual (10, rocedure tion (if ne 65%oftl ). n on the the point sity-dura \ 24 = 75f-' i ± mine ese 50, i Man cess ie2 right pan tion fear ** 7 1 6 hr and 24 hr amounts I maps are included in the md 1 00 yr maps Included ual). sary) so that it Is within 4 hr precipitation (not side of the chart, allel to the plotted lines, curve for the location 'P24=-^i2-% ses the Intensity-Duration-Frequency ce 1965. _4 6.59 "KS 3.24 2.69 233 2.07 1.72 1.49 1.33 LOT 0.85 0.73 0.65 0.54 6.47 "0.42 i 3 -j 3.5 " f TT" 7.90 536"!6.6s] 3.89) 3.23 2 60 J?-49HELD? 1.79 1.59 Ti23 1.02 0.88 0.78 0.6S 0.56 10.50 9.22 5.90 4.9435f 327 2.90 2.41 2.09 1,86 1143 1.19 1.03 "0.91 0.76 Sm 0.58 '"4" l 10.64 8.48" 6741 8.19 ~4.31 373 3.32 2.76 2.39 2.12Teif 1.36 1.18 1.04 0.87••or 0.67 :ort...... 11.86J 9.54 JM 5.84 4.85 4.20 3.73 "3.10 2.69 2.39 1,84 1.53 1.32 1.18 0.98"to 0.75™ Intensity-Duration Design Chart - Template 1 , 13.17 10.60 8.42 6.49 5.39 487 4.15 3.45 2.98 2.85 £64 1.70 1,47 1.08 0.94 "0.84 ^ . „„....r-.s 8. (,.._ ..._... 14.49 15.81 ii.66 12.72 9.27 10.11 7.13 7,78 5.93 6.46 5.13 5.60 IP. ,*:§!.. 3.79 4.13"SSs ise 2.92" 3.18 Z2S 2,45 i".l7 ^04 1,62 1.76 TgT t.13 0.92" 1.00 F I CURE 3-1 t i till till San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 6 of 26 Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use . NRCS Elements Undisturbed Natural Terrain (Natural) Low Density Residential (LDR) Low Density Residential (LDR) Low Density Residential (LDR) Medium Density Residential JMDR) Medium Density Residential (MDR) Medium Density Residential (MDR) Medium Density Residential (MDR) High Density Residential (HDR) High Density Residential (HDR) Commercial/Industrial (N. Cora) Commercial/Industrial (G. Com) Commercial/Industrial (O.P. Com) Commercial/Industrial (Limited I.) CommercialAndustrial (General I.) County Elements Permanent Open Space Residential, 1.0 DU/A or less Residential, 2.0 DU/A or less Residential, 2.9 DU/A or less Residential, 4.3 DU/A or less Residential, 7.3 DU/A or less Residential, 10.9 DU/A or less Residential, 14.5 DU/A or less Residential, 24.0 DU/A or less Residential, 43.0 DU/A or less Neighborhood Commercial General Commercial Office Professional/Commercial Limited Industrial General Industrial Runoff Coefficient "C" Soil Type % IMPER. 0* 10 20 25 30 40 45 50 65 80 80 85 90 90 95 A 0.20 0.27 0.34 0.38 .fl.41 . 0.48 0.52 0.55 0.66 0.76 • 0.76 0.80 0.83 0.83 0.87 B 0.25 0.32 0.38 0.41 0.45 0.51 0.54 0.58 0.67 0.77 0.77 0.80 0.84 0.84 0.87 C . 0.30 0.36 0.42 0.45 0.48 0.54 0.57 0.60 0.69 0.78 0.78 0.81 0.84 0.84 0.87 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.85 0.87 *The values associated with 0% impervious may be used for direct calculation of the coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. is located in Cleveland National Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service runoff coefficient as described in Section 3.1.2 (representing the pervious runoff Justification must be given that the area will remain natural forever (e.g., the area 3-6 San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 12 of 26 Note that the Initial Time of Concentration should be reflective of the general land-use at Ihe upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. \- Table 3-2 provides limits of the length ^Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial Tj values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) & INITIAL TIME OF CONCENTRATION (TO /" Element* Natural LDR LDR LDR MDR MDR MDR MDR HDR HDR N. Com G. Com , O.P./Com Limited I. General I. DU/ Acre J I 2 2.9 4.3 7.3 10.9 14.5 24 43 .5% LM 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 Ts 13.2 12.2 11.3 10.7 10.2 9.2 8.7 8.2 6.7 5.3 5.3 4.7 4.2 4.2 3.7 1% LM 70 70 70 70 70 65 65 65 65 65 60 60 60 60 60 Ti 12.5 11.5 10.5 10.0 9.6 8.4 7.9 7.4 6.1 4.7 4.5 4.1 3.7 3.7 3.2 2% LM 85 85 85 85 80 80 80 80 75 75 75 75 70 70 70 Ti 10.9 10.0 9.2 8.8 8.1 7.4 6.9 6.5 5.1 4.0 4.0 3.6 3.1 3.1 2.7 3% LM 100 100 100 95 95 95 90 90 90 85 85 85 80 80 80 Ti 10.3 9.5 8.8 8.1 7.8 7.0 6.4 6.0 4.9 3.8 3.8 3.4 2.9 2.9 2.6 5% LM 100 100 100 100 100 100 100 100 95 95 95 90 90 90 90 T; 8.7 8.0 7.4 7.0 6.7 6.0 5.7 5.4 4.3 3.4 3.4 2.9 2.6 2.6 2.3 10% LM 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 T; 6.9 6.4 5.8 5.6 5.3 4.8 4.5 4.3 3.5 2.7 2.7 2.4 2.2 2.2 1.9 k *SeeTable 3-1 Jormore detailed description 3-12 EQUATION AE Feet .5000 .4000 .3000 -2000 -1000-900 ^800 -•TOO Tc Tc L • 500"\ .400 .300 -200 100 Time of concentration (houis) Watercourse Distance (mites) Change in elevation along effective slope Hn& (See Rgure 3-5)(feet) Tc Hours Minutes -240 -180 -120 •100 .90 -80 .70 -60 -50\ » — 50 .40 • 30 .20 — 10 0.5 • AE SOURCE: California Division of Highways (1941) and Kirpich (1940) Feet 4000 3000 .2000 —1800 — 1600 1400 1—1200 .1000 — 900 — 700 — 600 -500 —400 —300 — 200 \ r-\\\ — 40 — 30 -20 18 16 14 12 10 9 8 —6 c Nomograph for Determination of Time of Concentration (To) or Travel Time (Tt) for Natural Watersheds FIGURE 3-4 ) QUADRANGLE 2000' TABLE 11.--INTERPRETATIONS FOR LAND MANAGEMENT--Continued Map symbol LfE LpB LpC LpC2 LpD2 LpE2 LrE LrE2 LrG LsE LsF Lu LvF3 Md MIC MnA MnB MoA MpA2 MrG MvA MvC MvD MxA OhC OhE OhF OkC OkE PeA PeC PeC2 PeD2 PfA PfC Py Soil Las Flores-Urban land complex, 9 to 30 percent slopes: Las Posas fine sandy loam, 2 to 5 percent slopes -- Las Posas fine sandy loam, 5 to 9 percent slopes, eroded. Las Posas fine sandy loam, 9 to 15 percent slopes, eroded . Las Posas fine sandy loam, 15 to 30 percent slopes, eroded. Las Posas stony fine sandy loam, 9 to 30 percent slopes. Las Posas stony fine sandy loam, 9 to 30 percent slopes, eroded. Las Posas stony fine sandy loam, 30 to 65 percent slopes. Loamy alluvial land-Huerhuero complex, 9 to 50 percent slopes, severely eroded: ^liliaii.lifliaillYnrV^Tf'ffjiSSBl^T 9 to 30 percent slopes Mecca coarse sandy loam, 0 to 2 percent slopes 4ottsville loamy coarse sand, wet, 0 to 2 percent slopes. Olivenhain-Urban land complex, 2 to 9 percent slopes: Olivenhain-Urban land complex, 9 to 30 percent slopes: Placentia sandy loam, thick surface, 0 to 2 percent slopes, 'lacentia sandy loam, thick surface, 2 to 9 percent slopes. Hydro- logic group D D D D D D D D D D C C B D D D A ~~_ A— J B B B D A A A D D D D D D D D D D D D D D D Erodibility Moderate 2 Moderate 2 Moderate 2 Moderate 1 Moderate 1 Moderate 1 — Moderate 2 — Severe 16 Severe 2 "Severe T6 Severe 16 Severe 16 Severe 16 Severe 16 Severe 16 Severe 16 Severe 16 Moderate 2 Limitations for conversion from brush to grass Slight. Slight . Slight. Slight. Slight. Moderate. Moderate . Moderate . Moderate . Moderate . Slight. Severe . Severe . Slight. Slight. Severe . Slight. 4/ Slight. 4/ Slight. 4/ Slight. 4_/ Slight. Slight. Moderate . Slight. Slight. Slight. Slight. Slight. Slight. See footnotes at end of table. HYDRAULIC REPORT /ityi/aferra Engineering Inc. PROJECT t~T 03-0 DATE: Mv j.^>^-•^--i 0£ i 18 :ci: M r-rSf IS <PVT I J2AI<> 5^.ft!±E j_J__, .11 i ! i 1 "T i-LJ _L H1 ' T< ^4165-4 ^^H- 4-, 4_ -t —(-— 0 a /a 2> PT^ f/?/o^ r<7~lr/s1iT~ 30_L _|j_. §§E r H_,. .._r ! I ' -M-t- ~i— 4- i -h L_L_ I J r * Aquaterra Engineering Inc. PROJECT 01-04- y.J£ t Vyit y s.17 V fV c.li^c>H 9;M I?33 UT/2^A ^>h / I ffi^^?. C 1 0 23 -k.~7 w W a ^x m t-J,> ^ s i 0 D!J \3 A^a 01 t H/ i 71-1? a X 0 »^tl Aquaterra Engineering Inc. PROJECT 03-04- C CTitc.S 7 tr ^ /A£*.?&u .C ^w m ?Tf-r^c.2 o.i a£" Z ^S.2 z:i?Tf 2 s> ^ tr5 0£J X-/nz * Aquaterra Engineering Inc. PROJECT IT */!py /u fcfMu7' ')£fc EEOWRD-^v^^-0 +9 £L eHi /^S:CLV A&x ±»y.Zittid. n ftvi/v f-V I0L .l-v £^=e 0 7 ip( at>r?d 7 t t 2 Aquaterra Engineering Inc. PROJECT 01-04 tf fay)C e 41 -JrKlb f t,t^l /u SM Iw ' A 7 ir2=£IJ * Ut 5E /k^L C£^?V^d _t±±€^* t? m h- «• H r!TY AC CAM niFfiQ > DESIGN GUIDE GUTTER AND ROADWAY DISCHARGE-VELOCITY CHART 70A 4. Depth of gutter flow calculation. Inlet calculations. Show gutter flow Q, inlet Q, and bypass Q on a plan of the street Storm Drain Pipes and Open Channels - provide: 1) Hydraulic loss calculations for: entrance, friction, junction, access holes, bends, angles, reduction and enlargement. 2) Analyze existing conditions upstream and downstream from proposed system, to be determined by the City Engineer on a case-by-case basis. 3) Calculate critical depth and normal depth for open channel flow conditions. 4) Design for non-silting velocity of 4 FPS in a two-year frequency storm unless otherwise approved by the City Engineer. 5) All pipes and outlets shall show HGL, velocity and Q value(s) for which the storm drain is designed to discharge. 6) Confluence angles shall be maintained between 45° and 90° from the main upstream flow. Flows shall not oppose main line flows. INLETS A.Curb inlets at a sump condition should be designated for two CFS per lineal foot of opening when heKJw^irmay"ll8irS^e't6ip:'of curb: «~~~-~-. B. Curb inlets on a continuous grade should be designed based on the following*,. —taf .-.-.y-j.^..^---3.fn-rnre ****.s VAgaM^«wH-J*»^*»^..fc.*i-«aii^^ •"mwm*i*mtm.»mim .rn'rimitminiiaimu MimuMnifcHiiimiam.i\«*m*mwu*im* HI ' MMII m*vrm-*m*timmmu \irnn «m i'i mifn ii»a»**t- equation: Q = 0.7 L (a + y)*2 Where: y = depth of flow in approach gutter in feet a = depth of depression of flow line at inlet in feet L = length of clear opening in feet (maximum 30 feet) Q = flow in CFS, use 50-year design storm minimum C. Grated inlets should be avoided when possible. When necessary, the design should be based on the Bureau of Public Roads Nomographs (now known as the Federal Highway Administration). All grated inlets shall be bicycle proof. D. All catch basins shall have an access hole in the top unless access through the grate section satisfactory to the City Engineer is provided. E. Catch basins/curb inlets shall be located so as to eliminate, whenever possible, cross gutters. Catch basins/curb inlets shall not be located within 5' of any curb return or driveway. 19 WATER QUALITY CALCULATIONS Aquaterra Engineering Inc. PROJECT DATE:: 7/73 /0> •y n t 2£& M ¥6, i F En £U ^r. /-n V c:-;s I Uii P zs £ ^ ^?42&- 3 l^rFaeC/' ^ E B ^?iZ ^ ~T I *&fc- 'CiiiiiE >•*!E»liJ ^H * r f * Aquaterra Engineering Inc. Aquaterra Engineering Inc. Aquaterra Engineering Inc. •Mi, Aquaterra Engineering Inc.