Loading...
HomeMy WebLinkAboutCT 04-08; La Costa Village Townhomes; Water Analysis; 2011-09-10y I Domestic Water Analy^ , Initial f^-" ^ CT 04-08 La Costa Village Townhomes (Moonstone) Multi-Family Condominiums El Camino Real and Dove Lane In the City of Carlsbad, California Prepared For: City Ventures 2850 Red Hill Ave, Suite 200 Santa Ana, CA 92705 6 Prepared By: cmm CONSULTING. INC. 27156 Burbank Foothill Ranch, California 92610 Contact: Vince Scarpati, P.E. (949) 916-3800 February 28, 2011 Revised September 10, 2011 O O lii O TABLE OF CONTENTS SECTION 1. SITE DESCRIPTION AND PURPOSE OF STUDY, DESIGN CRITERIA & LOCATION MAP 2. WATER METER SIZING ANALYSIS 3. HYDRAULIC ANALYSIS 4. ANCHOR BLOCK CALCULATIONS 5. APPENDIX Sheets 14 through 17 Sewer and Water Improvement Plans 1.0 SITE DESCRIPTION & PURPOSE OF STUDY SITE DESCRIPTION: The project consists of 14.4 acres of which 8.9 acres are to remain open space. Fhe subject site is located at northwest corner of HI Camino Real and Dove Lane in the City ofCarlsbad, Califomia. This is an attached residential project containing 53 residenlial units, open space, and common area. The site is located in hilly terrain where the developmenl is located on a Hat graded area and is bordered by commercial use to the west, open space to the north, and residential to the ea.st. PURPOSE OF STUDY: This study will determine the adequacy ofthe proposed water distribution system designed under the criteria set forth by the City ofCarlsbad. The hydraulic analysis portion ofthe study will verify the proposed size of domestic water main conveyance pipes as well as verify thai the required minimum demands are met. The project proposes to build a loop water systein lied inlo Dove Lane where the existing water main will be adjusted lo a higher pressure zone by closing and opening valves lo increase the pressure at the connection to H.G.L. 375 from H.G.L. 318. Landscape areas will be serviced by connections into recycled water main available in Poinsettia Lane (H.G.L. 550). Landscape areas lhat are not allowed lo be served by recycled water will have an additional meter connection to the public potable domestic water system on-site. DESIGN CRITERIA: 1. The Hydraulic Grade Line ofthe 8" A.C.P. water main in Dove Lane at Station 11+71 is noted as elevation 375 per Dwg. No. 305-6E. where a closed valve will be opened. 2. The Average Day Domestic fiemand = 250 (iPD/multi-family dwelling unil. 3. The Total Average Day Domestic Demand = 250 GPD/Unit x 53 Units = 13.250 GPD. 4. The Peaking Factors (per City) used in the analysis area as follows: Average Day Demand (ADD) - 13.250 (iPD Maximum Month Demand = 1.5 x (ADD) = 1.5 x 13.250 GPD = 19,875 GPD - 13.8 GPM Maximum Day Demand = 1.65 x (.ADD) = 1.65 x 13.250 GPD = 21.863 GPD = 15.2 GPM Peak Hour Demand = 2.90 x (ADD) 2.90 x 13.250 GPD 38.425 GPD - 26.7 GPM 5. The required Fire Demand is for two on-site fire hydrants flowing simultaneously al 20 psi residual pressure for 2 hours is 3000 (iPM for Multi-Family. 6. Under Peak Hour Demand and no fire flow, minimum pressure should be no less lhan 40 psi and velocity less than 8.0 fps and do nol exceed 3.5 ft./lOOO ft. head loss in pipe. 7. The Maximum Day Demand plus Fire Flow is analyzed, and the pressure should not be less than 20 psi for the fire period of 2 hours. 8. The maximum drop belween static and dynamic pressures is 25 psi. 9. Hazen-Williams factor "C" value per pipe lables. 10. Maximum velocity in mainline pipes during domestic demand ^ 10 fi'sec. LOCATION MAP VICINITY MAP CITY OF OCEANSIDE HIGHWAY NO"" TO SCALE CITY OF VISTA .PROJECT LOCATION CITY OF SAN MARCOS i-ACinc OC^AN CITY OF ENCINITAS 2.0 WATER METER SIZING ANALYSIS Ihis seclion provides an analysis ofthe flows anticipated lo each ofthe buildings for proper sizing of the master meters for each building. In accordance with AWWA standards for meter sizing, the method utilized to establish the flow requiremenls lo size the master meters to the buildings is the total fixture value method. Pursuant to the AWWA M22 manual for sizing service lines and meters, it is stated lhat fixture values are applied to demand curves and that the demand curves are not linear as fixture counts increase. (See thc figure on the next page as copied from the AWWA Manual.) 1 herefore il is appropriate lo size the master meters for each building based on the total fixture count for that building. For this project the type and number of fixture have been established for each dwelling unit and is summarized in Table I. Flow values and flows are estimated utilizing the AWWA M22 standard criteria. A summary ofthe analysis is provided in Table 1. Fhe adjusted flow rates are adjusled by the appropriate pressure factor for the 375 pressure zone. In accordance with AWWA specifications as shown in Fable 2. the AWWA C700 standard, the recommended design criteria for sizing meters is that the peak design flow should not exceed 80% ofthe meter maximum capacity. Based on meter capaciiy. the flow of about 40 gpm as shown in Table 1 is about 80% ofthe capaciiy ofa 1 inch meter, (a 1 inch meter has a maximum capaciiy range of up lo 50 gpm.) Table 1 summarizes the proposed meter sizes for the building. Domestic Use Motets Stropping Cenle;;. Restaurants Donest,c use Apalirtents Cofidorriirnums Motets Traiiet ParKs 100 200 30C 400 iOO 60C Combined Fixture Value Figure 4-2 Water flow demand per fixture value - low range 4O0 E & DofTwsiic use Hcteis Snooping Cenlefs R&slaurariis Public Schools "ubiic Suiigings hoscidis VoteiS 1 rai'er Partes Combined Fixture Value 10^ units Figure 4-3 Water flow demand per fixture value - High range Water Meter Analysis (Moonstone) LA COSTA VILLAGE TOWNHOMES TABLE 1 Peak Desic n Flows - 375 Pressure Zone Building No No of Units Fixture Value Peak Design Flow AWWA at 60psi (gpm) Pressure Adjustment Factor to 80 psi Adjusted Peak Design Flow (gpm) 80% capacity Maximum Capacity AWWA Flow (gpm) Meter Size (inches) Max Meter Capacity per AWWA (gpm) Water Service Size (inches) Number of Meters 1 5 166 29 1.17 34 42 1 50 1 1 2 4 131 27 1 17 32 39 1 50 1 1 3 4 131 27 1.17 32 39 1 50 1 1 4 4 131 27 1 17 32 39 1 50 1 1 5 3 93 24 1 17 28 35 1 50 1 1 6 3 93 24 1.17 28 35 1 50 1 1 7 2 76 24 1 17 28 35 1 50 1 1 8 3 93 24 1 17 28 35 1 50 1 1 9 5 166 29 1.17 34 42 1 50 1 1 10 5 166 29 1 17 34 42 1 50 1 1 11 5 166 29 1 17 34 42 1 50 1 1 12 5 166 29 1 17 34 42 1 50 1 1 13 5 166 29 1 17 34 42 1 50 1 1 Rec BIdg 1 30 20 1.17 23 29 1 50 Table 2 Displacement-iypv Meters Mealing A H'IV.4 Staiidnirls Ffou-'Prcs.'ntre /.o.v.? .4verose!i nf 1990-Wodel Offerers •Size hlaximum Cajsitity AWWA Flow Criteria Rr^'ommcndcd Dcsi^ ChTeri.i—80*0 Cap. Coniiuuwii rk»w Criicfia—50r« Cap. Brands ijichutcil iu d\Cfi1gCS •Size vpm p.si p.\'i /I.VI Brands ijichutcil iu d\Cfi1gCS W I 15 79 12 5.0 7 5 2.0 1 5-8 20 9.7 16 S2 10 2.4 5 iO 10.4 24 6.7 15 2.6 5 % 1 50 y.s 40 0.3 25 2.5 100 1U.6 80 68 .'iO 2.7 4 1 1 2 160 • -1II 1 11..^ 1.^0 7.1 SO L. 2.8 / / / / 3.0 HYDRAULIC ANALYSIS The hydraulic grade line elevations used in thc analysis were based on the City ofCarlsbad Dwg. No. 305-61: for Dove Lane station 11+71. The hydraulic grade line elev ation is 375. Three network analysis runs were performed as follows: 1. Fire Demand 2. Maximum Day Domestic Demand 3. Peak Hour Domestic Demand The results from the analysis are in the tables and schematic on the following pages. The results prove that the demands can be provided for all points of connections. The minimum residual pressure requirements in accordance with the City of Carlsbad were met and the proposed mainline pipe sizes are adequate to support the system. HYDRAULIC NETWORK ANALYSIS FOR MAXIMUM DAY DEMAND TRIAL 1 Fire Hydrant Demand Junction Report Hydrant Hydrant Lateral Elevation Demand Hydraulic Pressure No Status Length (ft.) (gpm) Grade (ft) (psi) H-1 Closed 38 183.6 0 323 12 604 H-2 Closed 10 210 5 0 305.1 40.9 H-3 Open 25 2122 1,500 294 55 35,6 H-4 Open 5 2288 1,500 290.15 26.5 H-5 Closed 13 209 0 307 49 426 HYDRAULIC NETWORK ANALYSIS FOR MAXIMUM DAY DEMAND TRIAL 1 Fire Hydrant Flow Demand Pipe Report Headloss Pipe Start End Diameter Roughnes Discharge Gradient Velocity Number Junction Junction Length (ft) (in) Material s "C" (gpm) (ft/ft) (ft/s) P-1 R-1 H-1 4259 8 ACP 140 3,000 0.122 192 P-2 H-1 J-1 587 8 ACP 140 3,000 0.122 19,2 P-3 J-1 J-2 62 3 8 PVC 150 1,745 0.039 111 P-4 J-2 J-3 37.9 8 PVC 150 1,745 0.039 111 P-5 J-3 J-4 1892 8 PVC/STEEL 150 1,745 0.039 111 P-6 J-4 H-2 22 7 8 PVC 150 -1,255 0.021 80 P-7 H-2 J-5 4 3 8 PVC 150 -1,255 0.021 8.0 P-8 J-5 J-6 23.6 8 PVC 150 -1,255 0021 80 P-9 J-6 J-7 54 8 8 PVC 150 -1,255 0.021 80 P-10 J-7 J-8 296 8 PVC 150 -1.255 0.021 8,0 P-11 J-8 J-9 110.4 8 PVC 150 -1,255 0.021 8.0 P-12 J-9 J-10 532 8 STEEL 150 -1,255 0.021 80 P-13 J-10 J-11 61 9 8 PVC 150 -1,255 0.021 8.0 P-14 J-11 J-1 151 1 8 ACP 140 -1,255 0.024 80 P-15 J-12 J-13 43.7 8 PVC 150 0 0.000 0.0 P-16 J-13 H-3 16.0 8 PVC 150 0 0.000 0.0 P-17 H-3 J-14 34 7 8 PVC 150 -1,500 0.030 96 P-18 J-14 J-15 54.7 8 PVC 150 -3.000 0.107 19.2 P-19 J-15 J-4 296 8 PVC 150 -3,000 0.107 19.2 P-20 H-4 J-14 182 7 8 PVC/STEEL 150 -1,500 0.030 96 P-22 J-17 J-18 64.7 8 PVC 150 0 OOOO 0.0 P-23 J-18 J-19 33 3 8 PVC 150 0 OOOO 00 P-24 J-19 H-5 179 8 PVC 150 0 0.000 00 P-25 H-5 J-20 159 8 PVC 150 0 OOOO 00 P-26 J-20 J-21 240 8 PVC 150 0 0.000 00 P-27 J-21 J-8 31 4 8 PVC 150 0 0.000 00 HYDRAULIC NETWORK ANALYSIS FOR MAXIMUM DAY DEMAND TRIAL 2 Fire Hydrant Demand Junction Report Hydrant No. Hydrant Status Lateral Length Elevation (ft.) Demand (gpm) Hydraulic Grade (ft) Pressure (psi) H-1 Closed 38 183,6 0 323 1 60.4 H-2 Closed 10 210.5 0 306.0 41 3 H-3 Closed 25 212.2 0 3035 395 H-4 Open 5 2288 1,500 298.1 300 H-5 Open 13 209.0 1.500 3038 41 0 HYDRAULIC NETWORK ANALYSIS FOR MAXIMUM DAY DEMAND TRIAL 2 Fire Hydrant Flow Demand Pipe Report Headloss Pipe Start End Diameter Roughnes Discharge Gradient Velocity Number Junction Junction Length (ft) (in) Material s "C" (gpm) (ft/ft) (ft/s) P-1 R-1 H-1 4259 8 ACP 140 3,000 0.122 19.2 P-2 H-1 J-1 58 7 8 ACP 140 3.000 0.122 19.2 P-3 J-1 J-2 623 8 PVC 150 1,626 0.034 10.4 P-4 J-2 J-3 37.9 8 PVC 150 1.626 0.034 10.4 P-5 J-3 J-4 189.2 8 PVC/STEEL 150 1.626 0.034 10.4 P-6 J-4 H-2 22 7 8 PVC 150 126 0 0.8 P-7 H-2 J-5 43 8 PVC 150 126 0 0.8 P-8 J-5 J-6 236 8 PVC 150 126 0 08 P-9 J-6 J-7 548 8 PVC 150 126 0 0.8 P-10 J-7 J-8 296 8 PVC 150 126 0 0.8 P-11 J-8 J-9 110.4 8 PVC 150 -1,374 0.025 8.8 P-12 J-9 J-10 532 8 STEEL 100 -1,374 0.025 88 P-13 J-10 J-11 61 9 8 PVC 150 -1,374 0.025 8.8 P-14 J-11 J-1 151.1 8 ACP 140 -1,374 0.029 88 P-15 J-12 J-13 437 8 PVC 150 0 0 0.0 P-16 J-13 H-3 160 8 PVC 150 0 0 0.0 P-17 H-3 J-14 347 8 PVC 150 0 0 0.0 P-18 J-14 J-15 54 7 8 PVC 150 -1.500 0.03 96 P-19 J-15 J-4 296 8 PVC 150 -1,500 0.03 9.6 P-20 H-4 J-14 182 7 8 PVC/STEEL 150 -1,500 003 9.6 P-22 J-17 J-18 64 7 8 PVC 150 0 0 00 P-23 J-18 J-19 333 8 PVC 150 0 0 00 P-24 J-19 H-5 179 8 PVC 150 0 0 00 P-25 H-5 J-20 159 8 PVC 150 -1,500 0.03 9.6 P-26 J-20 J-21 240 8 PVC 150 -1,500 0.03 9.6 P-27 J-21 J-8 31 4 8 PVC 150 -1.500 003 96 TRIAL 3 HYDRAULIC NETWORK ANALYSIS FOR MAXIMUM DAY DEMAND Fire Hydrant Demand Junction Report Hydrant Hydrant Lateral Elevation Demand Hydraulic Pressure No Status Length (ft) (gpm) Grade (ft) (psi) H-1 Closed 38 183.6 0 323.1 60.4 H-2 Closed 10 210.5 0 306.0 41.3 H-3 Open 25 2122 1,500 302.5 39-1 H-4 Closed 5 2288 0 303 5 32 3 H-5 Open 13 209.0 1,500 303 8 41 0 HYDRAULIC NETWORK ANALYSIS FOR MAXIMUM DAY DEMAND TRIAL 3 Fire Hydrant Flow Denriand Pipe Report Headloss Pipe Start End Diameter Roughnes Discharge Gradient Velocity Number Junction Junction Length (ft) (in) Material s "C" (gpm) (ft/ft) (ft/s) P-1 R-1 H-1 4259 8 ACP 140 3,000 0.122 19.2 P-2 H-1 J-1 587 8 ACP 140 3,000 0 122 19.2 P-3 J-1 J-2 62 3 8 PVC 150 1,626 0.034 104 P-4 J-2 J-3 379 8 PVC 150 1,626 0034 10.4 P-5 J-3 J-4 1892 8 PVC/STEEL 150 1,626 0034 10,4 P-6 J^ H-2 22.7 8 PVC 150 126 OOOO 08 P-7 H-2 J-5 43 8 PVC 150 126 OOOO 08 P-8 J-5 J-6 236 8 PVC 150 126 0.000 0.8 P-9 J-6 J-7 548 8 PVC 150 126 0.000 0.8 P-10 J-7 J-8 296 8 PVC 150 126 0.000 0.8 P-11 J-8 J-9 110.4 8 PVC 150 -1.374 0.025 88 P-12 J-9 J-10 532 8 STEEL 150 -1,374 0025 88 P-13 J-10 J-11 61 9 8 PVC 150 -1,374 0.025 88 P-14 J-11 J-1 151.1 8 ACP 140 -1,374 0.029 88 P-15 J-12 J-13 43.7 8 PVC 150 0 OOOO 00 P-16 J-13 H-3 16.0 8 PVC 150 0 0.000 0.0 P-17 H-3 J-14 34.7 8 PVC 150 -1,500 0.030 9.6 P-18 J-14 J-15 54.7 8 PVC 150 -1.500 0.030 96 P-19 J-15 J-4 29.6 8 PVC 150 -1,500 0.030 9.6 P-20 H-4 J-14 182.7 8 PVC/STEEL 150 0 0.000 0.0 P-22 J-17 J-18 64 7 8 PVC 150 0 0.000 0.0 P-23 J-18 J-19 333 8 PVC 150 0 OOOO 0.0 P-24 J-19 H-5 17 9 8 PVC 150 0 OOOO 0.0 P-25 H-5 J-20 15.9 8 PVC 150 -1,500 0030 9.6 P-26 J-20 J-21 24.0 8 PVC 150 -1,500 0030 96 P-27 J-21 J-8 31 4 8 PVC 150 -1,500 0030 96 HYDRAULIC NETWORK ANALYSIS FOR MAXIMUM DAY DEMAND Maximum Day Domestic Demand Junction Report Junction Elevation Demand Hydraulic Pressure Number (ft) (gpm) Grade (ft) (psi) J-1 183.1 0 375.0 830 J-2 185.0 0 375.0 822 J-3 187.8 3 375.0 81.0 J-4 211 0 0 375.0 70.9 J-5 210.8 3 375.0 71.0 J-6 210.5 3 375.0 71 2 J-7 210.0 0 375.0 71 4 J-8 209.6 0 375.0 71 6 J-9 211.2 2 375.0 70.9 J-10 196.7 0 375.0 77.1 J-11 181.2 0 375.0 83.8 J-12 211.6 0 375.0 70.7 J-13 2124 13 375.0 70.3 J-14 211.9 3 375.0 706 J-15 211,3 0 3750 70.8 J-17 2100 0 3750 71 4 J-18 2095 2 375.0 71 6 J-19 209.2 0 375.0 71.7 J-20 209.0 2 375.0 71.8 J-21 209.2 0 375.0 71.7 HYDRAULIC NETWORK ANALYSIS FOR MAXIMUM DAY DEMAND Maximum Day Domestic Demand Pipe Report Headloss Pipe Start End Diameter Roughnes Discharge Gradient Velocity Number Junction Junction Length (ft) (in) Material s "C" (gpm) (ft/ft) (ft/s) P-1 R-1 H-1 4259 8 ACP 140 29 0 0 19 P-2 H-1 J-1 58 7 8 ACP 140 29 0 0 19 P-3 J-1 J-2 62 3 8 PVC 150 17 0 Oil P-4 J-2 J-3 37 9 8 PVC 150 17 0 Oil P-5 J-3 J-4 1892 8 PVC/STEEl 150 14 0 0,09 P-6 J-4 H-2 22 7 8 PVC 150 -2 0 0 01 P-7 H-2 J-5 4 3 8 PVC 150 -2 0 0.01 P-8 J-5 J-6 236 8 PVC 150 -4 0 003 P-9 J-6 J-7 548 8 PVC 150 -7 0 0.05 P-10 J-7 J-8 296 8 PVC 150 -7 0 005 P-11 J-8 J-9 110.4 8 PVC 150 -10 0 007 P-12 J-9 J-10 532 8 STEEL 150 -12 0 008 P-13 J-10 J-11 61 9 8 PVC 150 -12 0 008 P-14 J-11 J-1 151.1 8 ACP 140 -12 0 008 P-15 J-12 J-13 43.7 8 PVC 150 0 0 0.00 P-16 J-13 H-3 16.0 8 PVC 150 -13 0 008 P-17 H-3 J-14 34 7 8 PVC 150 -13 0 008 P-18 J-14 J-15 547 8 PVC 150 -16 0 0.10 P-19 J-15 J-4 296 8 PVC 150 -16 0 0 10 P-20 H-4 J-14 182 7 8 PVC/STEEl 150 0 0 0.00 P-22 J-17 J-18 647 8 PVC 150 0 0 0.00 P-23 J-18 J-19 333 8 PVC 150 -2 0 001 P-24 J-19 H-5 17.9 8 PVC 150 -2 0 0.01 P-25 H-5 J-20 159 8 PVC 150 -2 0 0.01 P-26 J-20 J-21 240 8 PVC 150 -3 0 0.02 P-27 J-21 J-8 31 4 8 PVC 150 -3 0 002 HYDRAULIC NETWORK ANALYSIS FOR PEAK HOUR DEMAND Peak Hour Domestic Demand Junction Report Junction Elevation Demand Hydraulic Number (ft) (gpm) Grade (ft) Pressure (psi) J-1 183.1 0 375.0 830 J-2 1850 0 375.0 822 J-3 187 8 4 375.0 81.0 J-4 211.0 0 375.0 709 J-5 2108 3 3750 71 0 J-6 210.5 5 375.0 71 2 J-7 210.0 0 375.0 71,4 J-8 209.6 0 375.0 71.6 J-9 211 2 4 3750 709 J-10 1967 0 375.0 77 1 J-11 181 2 0 375.0 83.8 J-12 211.6 0 375.0 70.7 J-13 212.4 5 375.0 70,3 J-14 211.9 5 375.0 70.6 J-15 211.3 0 3750 708 J-17 210.0 0 375.0 71.4 J-18 209.5 3 375.0 71.6 J-19 209.2 0 375.0 71,7 J-20 209.0 3 375.0 71 8 J-21 2092 0 3750 71.7 HYDRAULIC NETWORK ANALYSIS FOR PEAK HOUR DEMAND Peak Hour Domestic Demand Pi pe Report Pipe Number Start Junction End Junction Length (ft) Diameter (in) Matenal Roughnes s "C" Discharge (gpm) Headloss Gradient (ft/ft) Velocity . (ft/s) P-1 R-1 H-1 4259 8 ACP 140 29 0 0 19 P-2 H-1 J-1 58.7 8 ACP 140 29 0 0.19 P-3 J-1 J-2 623 8 PVC 150 16 0 Oil P-4 J-2 J-3 37.9 8 PVC 150 16 0 0.11 P-5 J-3 J-4 1892 8 PVC/STEEL 150 12 0 0.08 P-6 J-4 H-2 227 8 PVC 150 3 0 0.02 P-7 H-2 J-5 4.3 8 PVC 150 3 0 0.02 P-8 J-5 J-6 23.6 8 PVC 150 0 0 000 P-9 J-6 J-7 548 8 PVC 150 -4 0 003 P-10 J-7 J-8 296 8 PVC 150 -4 0 003 P-11 J-8 J-9 110.4 8 PVC 150 -9 0 0 06 P-12 J-9 J-10 532 8 STEEL 100 -13 0 0.08 P-13 J-10 J-11 61 9 8 PVC 150 -13 0 0.08 P-14 J-11 J-1 151.1 8 ACP 140 -13 0 0.08 P-15 J-12 J-13 43.7 8 PVC 150 0 0 0.00 P-16 J-13 H-3 16.0 8 PVC 150 -5 0 003 P-17 H-3 J-14 34.7 8 PVC 150 -5 0 003 P-18 J-14 J-15 54.7 8 PVC 150 -10 0 006 P-19 J-15 J-4 296 8 PVC 150 -10 0 006 P-20 H-4 J-14 182.7 8 PVC/STEEL 150 0 0 0.00 P-21 J-16 J-6 133.5 8 PVC 150 0 0 0.00 P-22 J-17 J-18 64.7 8 PVC 150 0 0 0.00 P-23 J-18 J-19 333 8 PVC 150 -3 0 0.02 P-24 J-19 H-5 17.9 8 PVC 150 -3 0 002 P-25 H-5 J-20 159 8 PVC 150 -3 0 0.02 P-26 J-20 J-21 240 8 PVC 150 -5 0 0.03 P-27 J-21 J-8 31.4 8 PVC 150 -5 0 0.03 P-28 J-22 J-18 92 4 8 PVC 150 0 0 0.00 4.0 ANCHOR BLOCK CALCULATIONS C and V Consulting, Inc. Calculation Sheet C and V Consulting, Inc. Prepared By: Thomas A. Petersert, P E. Signature O-e: 1 1 \' V C and V Consulting, Inc. Prepared By: Thomas A. Petersert, P E. Signature Page | ot cttoi<t g,UOCIJ^ Of^:^(^.i't^li^'^.'''.^.. -—\-^- r ; I T -XpA l^ )+6i C and V Consulting, Inc. Calculation Sheet C and V Consulting, Inc. PreparedBy: Thomas A. Petersen, P.E. Signature D-e: C and V Consulting, Inc. PreparedBy: Thomas A. Petersen, P.E. Signature Page 2 of "Z^ Z OOO \^^:cio\Qc^O pe^'L. wii. .i:i....i.M' *,:; VARIABLE - SEE NOTE ""W^l^iT^ "12" I 'MIN" 3 NOTES: BEARING AREA SHALL BE THE DIFFERENCE BETWEEN THE BEARING AREAS REQUIRED FOR THRUS' ANCHORAGE OF MAINS ON EACH SIDE OF REDUCER AS FOUND FROM STD. DWG. 19 PLUS THE AREA OF THE TRENCH (PENINC. MINIMUM DIMENSIONS SHOWN SHALL BE ADHERED TQ. ITEM DESCRiPTION SPEC/DWG POLYETHYLENE ENCASEMENT CONCRETE THRUST BLOCK I566-C-3250 CONCRETEl W-19 NO. 4 BAR 9 ON CENTER EACH WA'' REV. APPROVED DATE CARLSBAD MUNICIPAL WATER DISTRICT THRUST ANCHOR FOR WATER MAIN REDUCER - 4 THRU 16 INCH. CITY ENONEPR DATE THRUST ANCHOR FOR WATER MAIN REDUCER - 4 THRU 16 INCH. STANDARD DWG, NO W-|8 THRUST ANCHOR FOR WATER MAIN REDUCER - 4 THRU 16 INCH. STANDARD DWG, NO W-|8 NOTES: '0 Pipe Diometer in inches BASED ON 225 PSI TEST PRESSURE AND BEARING VALUES OF DRY SOU S VALUES FROM CURVES ARE FOR TEES ANO DEADENDS, I.E. , STRAGHI LiNE ^HRUST, FOR 90" BEND; 1,4 VALUE FROM CURVE. FOR 45" BEND: 0.8 VALUE fR(M CURVE m 22 1/2" BEND: 0.4 VALUE FROM CUR'/E FOR CONDITONS NOT COWRED BY CURVES, SPFCIAl THRIJST WAUS, THRUST BLOCKS AND ANCHORS MUST BE CALCULATED ANO APPROVED 16 REV. APPROVED DATE CARLSBAD MUNICIPAL WATER DISTRICT CIIY ENCINyR ' DATE — THRUST BLOCK BEARING AREAS CIIY ENCINyR ' DATE — THRUST BLOCK BEARING AREAS STANDARD dUQ HQ. y\/-j9 THRUST BLOCK BEARING AREAS STANDARD dUQ HQ. y\/-j9 TYP (3> #4012 oc EA FACE 2 #4 EACH FACE & \0 ^ EACH SIOC or PIPE ANCHOR SLOCK SECTION 10' MIN I6012' OC EA FACE ^ *b tACI fACt <Sc EACH SIDE OF PIPE ANCHOR BLOCK ELEVATION B ALL OMCNSONS CALCULA TEO BY ENONEER ANO SUBMITTED rou A*»P«OVAL 45- TYP / >•> III SPEC/DWG ITEM DESCRIPTiON STEEL PIPE, CML&C, WELDED JOINTS FLANGE X PUSH JOiNT ADAPTOR 3 CONCRETE ANCHOR BLOCK WITH REINFORCING STEEL THICK^X T"^HTGH WELD STL RING REV APPROVED DATE CARLSBAD MUNICIPAL WATER DISTRICT WELDED STEEL PIPE SECTION WITH THRUST WALLS FOR SLOPES AND DIPS CIIY LNUNElK DATE STANDARD DWG ND W-34 5.0 APPENDIX . o*» • Hi -.'fen*. a—i PKUL HMX saa tM r 2*00 tH»(9B«ER)