Loading...
HomeMy WebLinkAboutCT 04-09; La Costa Greens Neighborhood 1.17; Drainage Study; 2005-05-09DRAINAGE STUDY for LA COSTA GREENS NEIGHBORHOOD 1.17 I 3 2005 ENGINEERING City of Carlsbad, California Prepared for: Real Estate Collateral Management Company c/o Morrow Development 1903 Wright Place Suite 180 Carlsbad, CA 92008 W.O. 2352-109 May 9, 2005 Hunsaker & Associates San Diego, Inc. Ra^friond L. Martin, R.C.E. Vice President z^o < Q. AH ah H:\REPORTS\2352\109 Greens 1.17V2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 TABLE OF CONTENTS Chapter 1 - Executive Summary 1.1 Introduction 1.2 Vicinity Maps 1.3 Existing Condition 1.4 Proposed Project 1.5 Summary of Results 1.6 Conclusion 1.7 References SECTION I Chapter 2 - Methodology & Model Development 2.1 City of Carlsbad Engineering Standards 2.2 Rational Method Hydrologic Analysis 2.3 Storm Drain System Analysis Chapter 3 - Rational Method Hydrologic Analysis 3.1 100-Year Developed Condition AES Model Output 3.2 Weighted Runoff Coefficient Calculations III Chapter 4 - Hydraulic Analysis 4.1 Storm Drain Legend (Sheets 1-3) 4.2 Storm Model Output IV Chapter 5 - Inlet & Catch Basin Sizing 5.1 Inlet Sizing & Calculations 5.2 Catch Basin Sizing & Calculations Chapter 6 - Drainage Ditch Sizing VI Chapter 7 - Headwater Depth Calculation VII Chapter 8 - Appendices Appendix 8.1 100-Year, 6-Hour Isopluvial Plan Appendix 8.2 VIII AH ah H:\REPORTS\2352\109 Greens 1.17\2NO SUBMITTAl\A02.doc W.O. 2352-109 5/8/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 Intensity-Duration Design Chart Appendix 8.3 Nomograph for Determination of Time of Concentration (Tc) for Natural Watersheds Appendix 8.4 Urban Areas Overland Time of Flow Curves Appendix 8.5 Runoff Coefficients (Rational Method) Appendix 8.6 Gutter and Roadway Discharge-Velocity Chart Appendix 8.7 100-Year Offsite Hydrologic Analysis & Hydrology Map for Existing Development (From "SWMP for La Costa Greens Neighborhood 1.17") Appendix 8.8 100-Year Existing Condition Hydrologic Analysis & Hydrology Map (From "SWMP for La Costa Greens Neighborhood 1.17') Appendix 8.9 Excerpts from the 100-Year Mass-Graded Hydrologic Analysis & Hydrology Map (From "Drainage Study for La Costa Greens Neighborhood 1.16, CT99- 03") Appendix 8.10 Detention Basin Design (From "SWMP for La Costa Greens Neighborhood 1.17') Appendix 8.11 Vortechs Manufacture Data (From "SWMP for La Costa Greens Neighborhood 1.16") Chapter 9 - Hydrology Exhibits IX Exhibit 9.1 Developed Condition Hydrology Map AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SU8MITTAHA02.doc W.O. 2352-109 SSQ0056:30PM I Drainage Study La Costa Greens - Neighborhood 1.17 EXECUTIVE SUMMARY Introduction The La Costa Greens Neighborhood 1.17 site is located directly south of Poinsettia Lane and north of Alga Road between El Camino Real and Alicante Road in the City of Carlsbad, California. The project site is also bounded by the existing La Costa Greens Neighborhood 1.16 to the south, the La Costa Greens Golf Course to the east, and another existing development to the west. The vicinity maps below have been included to illustrate the project site's location. FIGURE 1 Vicinity Maps •THE GREENS 1.17 VICINITYMAP NTS uuxm m mr-x LA COSTA VKXNfTYMAP This drainage study will address: • 100-Year Peak Flowrates for Developed Conditions • Hydraulic Calculations • Curb Inlet and Catch Basin Sizing • Drainage Ditch Sizing • Headwater Depth Calculations Existing Condition The La Costa Greens Neighborhood 1.17 site is part of the La Costa Greens development in the City of Carlsbad, California. Located in the Batiquitos AH ah H:\REPORTS\2352\109 Greens 1.17N2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 watershed, the site consists mainly of undisturbed terrain covered with natural vegetation with some portions being mass-graded per Drawing No. 423-7A. The site receives offsite runoff from the adjacent residential development to the west and the La Costa Greens Neighborhood 1.16 to the south at four different locations. Peak flow data from the adjacent developments, summarized in Table 1 below, was obtained from the "Storm Water Management Plan (SWMP) for La Costa Greens Neighborhood 1.17' prepared by Hunsaker & Associates on February 2005 (see Appendix 8.6 for offsite AES model output and hydrology map for the existing westerly development) and from the "Drainage Study for La Costa Greens Neighborhood 1.16 CT 99-03" prepared also by Hunsaker & Associates on January 2004 (see Appendix 8.8 for excerpts of the mass-graded AES model output and hydrology map for La Costa Greens Neighborhood 1.16). TABLE 1 Offsite Runoff to the La Costa Greens Neighborhood 1.17 Site Offsite Runoff Location Node 13* Node116+ Node 11 9* Node114+ Offsite Runoff Location Node 124A Node155A Node161A Node159A Drainage Area (ac) 10.7 0.8 0.3 9.5 100-Year Peak Flow (cfs) 28.9 2.5 1.6 25.6 Time of Concentration (min) 10.3 9.4 5.0 12.3 * Node pertains to Offsite Hydrology Map nomenclature (Appendix 8.6) + Node pertains to Mass-Graded Hydrology Map for Neighborhood 1.16 nomenclature (Appendix 8.8)A Node pertains to Developed Condition Hydrology Map nomenclature (Exhibit 9.1) At the project's outfall which corresponds to the existing detention basin's location (Node 100), existing conditions peak flow data, summarized on Table 2 below, was obtained from the "SWMP for La Costa Greens Neighborhood 1.17' (see Appendix 8.7 for existing conditions AES model output and hydrology map). TABLE 2 Summary of Existing Conditions Hydrologic Analysis Runoff Location* Node 15 Runoff LocationA Node 100 Drainage Area (ac) 52.9 100-Year Peak Flow (cfs) 101.4 Time of Concentration (min) 12.3 * Node 15 pertains to Existing Condition Hydrology Map nomenclature (Appendix 8.7) A Node pertains to Developed Condition Hydrology Map nomenclature (Exhibit 9.1) Natural runoff from the undeveloped site flows in an easterly direction to an unnamed tributary of San Marcos Creek, which then flows in a southerly direction AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SU8MITTAHA02.doc W.O. 2352-109 5/6/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 along the site boundary of the La Costa Greens Golf Course. All the runoff eventually drains under Alga Road via three 96" RCP culverts and discharges into San Marcos Creek towards Batiquitos Lagoon. The existing detention basin located at the project site's outfall towards the southeast has been designed per the "SWMP for La Costa Greens Neighborhood 1.17" (see Appendix 8.9 for calculations related to the detention basin design). Best Management Practices (BMPs) have been recommended for this project site per the "SWMP for La Costa Greens Neighborhood 1.16". One existing Vortech Model 7000 unit (or approved equivalent unit) with a treatment flow capacity of 11.0- cfs has been recommended for the flow-based storm water treatment unit located upstream of the detention basin (see Appendix 8.10 for Vortechs manufacturer data). Proposed Project The construction of the La Costa Greens Neighborhoods 1.17 site will include rough grading of the site in order to match and adjust the existing grade to the grading of Poinsettia Lane and Estrella De Mar Road along with other surrounding developments. The proposed project consists of single-family residential homes with its associated streets, sidewalks, curbs and gutters, underground utilities including internal storm drainage systems, and open space areas. Peak discharge from the developed site will be collected and conveyed by several proposed curb inlets and Type "F" catch basins and will be drained by a proposed storm drain system with its highest point located at the Poinsettia Lane-Estrella De Mar Road intersection. The storm drain system drains south through Estrella De Mar Road where it confluences with flows carried by storm drain systems along Street C and Street E. The proposed storm drain system will tie to an existing storm drain system along Estrella De Mar Road at approximate Station 27+50 per Drawing No. 423-7. The runoff then follows its existing condition path flowing in an easterly direction to an unnamed tributary of San Marcos Creek, which then flows in a southerly direction along the site boundary of the La Costa Greens Golf Course eventually draining under Alga Road via three 96" RCP culverts and discharges into San Marcos Creek towards Batiquitos Lagoon. Summary of Results The drainage study prepared by Hunsaker and Associates for the La Costa Greens Neighborhood 1.16 existing storm drain system was designed using the 1993 San Diego County hydrologic methodology. To be consistent, the hydrologic analysis prepared for the proposed La Costa Greens Neighborhood 1.17 development also uses the 1993 San Diego County methodology. Future developments, which do not tie into systems designed per the older methodology, will be analyzed with the current 2003 San Diego County methodology. AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 For the Rational Method Analysis, a runoff coefficient of 0.45 was used for undisturbed, natural terrain; a runoff coefficient of 0.95 was used for paved streets, corresponding to areas that are 90% impervious; and a runoff coefficient of 0.55 was used for constructed slopes and developed areas, which corresponds to single- family residential land use. Also, weighed runoff coefficients were used where a combination of land uses was present (see Section 3.2 for weighted runoff coefficient calculations). All runoff coefficients are based on the "1993 San Diego County Hydrology Manuaf. Developed condition peak flowrates, listed on Table 3 below, are based on the AES-99 computer program and criteria set forth in the City of Carlsbad Engineering Standards (see Chapter 2 for methodology and model development and Section 3.1 for the AES model output). Watershed delineations are visually depicted on Exhibit 9.1, which is located in the back pocket of this report (see Chapter 9). TABLE 3 Summary of Developed Conditions Hydrologic Analysis Runoff Location* Node 15 Runoff LocationA Node 100 Drainage Area (ac) 56.0 100-Year Peak Flow (cfs) 110.1 Time of Concentration (min) 11.7 Node 15 pertains to Existing Condition Hydrology Map nomenclature (Appendix 8.7) A Node pertains to Developed Condition Hydrology Map nomenclature (Exhibit 9.1) During developed conditions, the flow into the detention basin at Node 100 is 110.1-cfs which corresponds to an 8.6% increment from existing conditions (see Table 2 and Appendix 8.7). However, after detention of the peak runoff within the existing detention basin, the runoff will have been successfully decreased to 56.9-cfs which is less than the existing condition peak runoff of 101.4-cfs (see Table 2 and the "SWMP for La Costa Greens Neighborhood 1.17' located in Appendix 8.9 of this report for calculations related to the detention basin design). The 43.9% reduction of flowrate from existing conditions to developed conditions within the basin is possible due to the successful functionability of the detention basin. For the hydraulic portion of this report, all pipes were analyzed with the Storm software. Using a starting downstream water surface elevation at the discharge location, the program calculated the hydraulic grade line for the RCP storm drain system (see Chapter 4 for Storm model output). All curb inlets have been sized to ensure that they are capable of handling 100-year peak flows. A curb inlet at Node 116 would require an opening length of 22-ft in order to capture the 8.2-cfs draining into it. However, the inlet at Node 116 has been designed to have an opening length of 20-ft which will capture 7.2-cfs. The additional 1.0-cfs will bypass the inlet at Node 116 and will be conveyed by the next downstream inlet at Node 441, increasing its captured flow form 3.5-cfs to 4.5-cfs and increasing its opening length from 12-ft to 14-ft. In addition, two existing Type B sump inlets with CSP risers along Estrella De Mar Road per Drawing No. 423-7 AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 (approximate Station 26+80) will be modified by removing the risers and replacing them with two Type "B-2" inlets (see Chapter 5 for inlet sizing). All Type "F" catch basins have been sized to ensure that they are capable of handling 100-year peak flows. Also, one existing catch basin (per Drawing No. 423- 7) at Node 151, located west of Station 27+00 along Estrella de Mar Road, was checked to ensure that it could still convey peak discharge (see Chapter 5 for catch basin sizing). Regarding drainage ditch design, four proposed ditches were sized to convey 100- year peak flows at a minimum slope of 1% while containing at least 6-inches of freeboard. Also, one existing ditch per Drawing No. 423-7A was checked to ensure that it could still convey peak discharge. The flow conveyed in the ditches was determined to be less than the maximum capacity they can handle (see Chapter 6 for drainage ditch). A headwater depth calculation with inlet control at Node 124 was also determined using the nomograph for inlet control based on head available in order to ensure that the discharge will not overflow onto Lot 59 or Street C (see Appendix 7.9). Conclusion Based on the calculations completed herein, the storm drain system shall be able to function as designed and handle the flows generated from the La Costa Greens Neighborhood 1.17 site. Drainage design, including watershed delineation and storm drain sizing, shall result in no adverse impact to downstream property owners. Construction of the storm drain improvements as shown herein should safely collect and convey peak discharge through the development. AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTALAA02.doc W.O. 2352-109 5/6/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 References "San Diego County Hydrology Manual"; Department of Public Works - Flood Control Division; County of San Diego, California; Revised April 1993. "City of San Diego Regional Standard Drawings"; Section D - Drainage Systems; Updated March 2000. "City of Carlsbad Engineering Standards"; City of Carlsbad, California; June 2004. "Drainage Study for La Costa Greens Neighborhood 1.16 CT 99-03"; Hunsaker & Associates San Diego, Inc.; January 2005. "Storm Water Management Plan (SWMP) for La Costa Greens Neighborhood 1.16"; Hunsaker & Associates San Diego, Inc.; November 2004. "Storm Water Management Plan (SWMP) for La Costa Greens Neighborhood 1.17'; Hunsaker & Associates San Diego, Inc.; February 2005. Drawing No. 423-7 "Improvement and Utility Plans for La Costa Greens - Neighborhood 1.16"; Hunsaker & Associates San Diego, Inc.; January 2005. Drawing No. 423-7A "Grading and Erosion Control Plans for La Costa Greens - Neighborhood 1.16 and 1.17'; Hunsaker & Associates San Diego, Inc.; January 2005. AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAHA02.doc W.O. 2352-109 5/6/2005 6:30 PM II Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 2 METHODOLOGY & MODEL DEVELOPMENT 2.1 - City of Carlsbad Engineering Standards AH ah H:\REPORTS\2352\109 Greens 1.17\2NO SUBMITTAHA02.doc W.O. 2352-109 5/6/2005 8:30 PM CHAPTER 5- DRAINAGE AND STORM DRAIN STANDARDS 1. GENERAL A All drainage design and requirements shall be in accordance with the latest City of Carlsbad Standard Urban Storm Water Mitigation Plan (SUSMP), Jurisdictional Urban Runoff Management Plan (JURMP), Master Drainage and Storm Water Quality Management Plan and the requirements of the City Engineer and be based on full development of upstream tributary basins. B. Public drainage facilities shall be designed to carry the ten-year six-hour storm underground and the 100-year six-hour storm between the top of curbs. All culverts shall be designed to accommodate a 100-year six-hour storm with a one foot freeboard at entry conditions such as inlets and head walls. C. The use of underground storm drain systems, in addition to standard curb and gutter shall be required: 1) When flooding or street overflow during 100-year six-hour storm cannot be maintained between the top of curbs. 2) When 100-year six-hour storm flow from future upstream development (as proposed in the existing General Plan) will cause damage to structures and improvements. 3) When existing adequate drainage facilities are available for use (adjacent to proposed development). 4) When more than one travel lane of arterial and collector streets would be obstructed by 10-year 6-hour storm water flow. Special consideration will be required for super-elevated streets. D. The use of underground storm drain systems may be required: 1) When the water level in streets at the design storm is within 1" of top of curb. 2) When velocity of water in streets exceeds 11 FPS. 3) When the water travels on surface street improvements for more than 1,000'. E. The type of drainage facility shall be selected on the basis of physical and cultural adaptability to the proposed land use. Open channels may be considered in lieu of underground systems when the peak flow exceeds the capacity of a 48" diameter RCP. Fencing of open channels may be required as determined by the City Engineer. F. Permanent drainage facilities and right-of-way, including access, shall be provided from development to point of approved disposal. Page 1 of 5 G Storm Drains constructed at a depth of 15' or greater measured from finish grade to the top of pipe or structure shall be considered deep storm drains and should be avoided if at all possible. When required, special design consideration will be required to the satisfaction of the City Engineer. Factors considered in the design will include: 1) Oversized specially designed access holes/air shafts 2) Line encasements 3) Oversizing lines 4) Increased easement requirements for maintenance access 5) Water-tight joints 6) Additional thickness of storm drain The project designer should meet with the planchecker prior to initiation of design to review design parameters. ; H. Concentrated drainage from lots or areas greater than 0.5 acres shall not be discharged to City streets unless specifically approved by the City Engineer. I. Diversion of drainage from natural or existing basins is discouraged. J. Drainage design shall comply with the City's Jurisdictional Urban Runoff Management Plan (JURMP) and requirements of the National Pollutant Discharge Elimination System (NPDES) permit. 2. HYDROLOGY A. Off site, use a copy of the latest edition City 400-scale topographic mapping. Show existing culverts, cross-gutters and drainage courses based on field review. Indicate the direction of flow; clearly delineate each drainage basin showing the area and discharge and the point of concentration. B. On site, use the grading plan. If grading is not proposed, then use a 100-scale plan or greater enlargement. Show all proposed and existing drainage facilities and drainage courses. Indicate the direction of flow. Clearly delineate each drainage basin showing the area and discharge and the point of concentration. C. Use the charts in the San Diego County Hydrology Manual for finding the "Tc" and "I". For small areas, a five minute "Tc" may be utilized with prior approval of the City Engineer. D. Use the existing or ultimate development, whichever gives the highest "C" factor. E. Use the rational formula Q = CIA for watersheds less than 0.5 square mile unless an alternate method is approved by the City Engineer. For watersheds in excess of 0.5 square mile, the method of analysis shall be approved by the City Engineer prior to submitting calculations. Page 2 of 5 HYDRAULICS A Street - provide: 1) Depth of gutter flow calculation. 2) Inlet calculations. 3) Show gutter flow Q, inlet Q, and bypass Q on a plan of the street. B. Storm Drain Pipes and Open Channels - provide: 1) Hydraulic loss calculations for: entrance, friction, junction, access holes, bends, angles, reduction and enlargement. 2) Analyze existing conditions upstream and downstream from proposed system, to be determined by the City Engineer on a case-by-case basis. 3) Calculate critical depth and normal depth for open channel flow conditions. 4) Design for non-silting velocity of 2 FPS in a two-year frequency storm unless otherwise approved by the City Engineer. 5) All pipes and outlets shall show HGL, velocity and Q value(s) for design storm. 6) Confluence angles shall be maintained^ between 45° and 90° from the main upstream flow. Flows shall not oppose main line flows. 4. INLETS A. Curb inlets at a sump condition should be designated for two CFS per lineal foot of opening when headwater may rise to the top of curb. B. Curb inlets on a continuous grade should be designed based on the following equation: Q = 0.7 L (a + y)3'2 Where: y = depth of flow in approach gutter in feet a = depth of depression of flow line at inlet in feet L = length of clear opening in feet (maximum 30 feet) Q = flow in CFS, use 100-year design storm minimum C. Grated inlets should be avoided. When necessary, the design should be based on the Bureau of Public Roads Nomographs (now known as the Federal Highway Administration). All grated inlets shall be bicycle proof. D. All catch basins shall have an access hole in the top unless access through the grate section satisfactory to the City Engineer is provided. Page 3 of 5 E. Catch basins/curb inlets shall be located so as to eliminate, whenever possible, cross gutters. Catch basins/curb inlets shall not be located within 5' of any curb return or driveway. F. Minimum connector pipe for public drainage systems shall be 18". G Flow through inlets may be used when pipe size is 24" or less and open channel flow characteristics exist. 5. STORM DRAINS A. Minimum pipe slope shall be .005 (.5%) unless otherwise approved by the City Engineer. B. Minimum storm drain, within public right-of-way, size shall be 18" diameter. C. Provide cleanouts at 300' maximum spacing, at angle points and at breaks in grade greater than 1%. For pipes 48" in diameter and larger, a maximum spacing of 500' may be used. When the storm drain clean-out Type A dimension of "V" less "Z" is greater than 18", a storm drain clean-out Type B shall be used. D. The material for storm drains shall be reinforced concrete pipe designed in conformance with San Diego County Flood Control District's design criteria, as modified by Carlsbad Standard Specifications. Corrugated steel pipe shall not be used. Plastic/rubber collars shall be prohibited. E. Horizontal curve design shall conform to manufacturer recommended specifications. Vertical curves require prior approval from the City Engineer. F. The pipe invert elevations, slope, pipe profile line and hydraulic grade line for design flows shall be delineated on the mylar of the improvement plans. Any utilities crossing the storm drain shall also be delineated. The strength classification of any pipe shall be shown on the plans. Minimum D-load for RCP shall be 1350 in all City streets or future n'ghts-of-way. Minimum D-load for depths less than 2', if allowed, shall be 2000 or greater. G For all drainage designs not covered in these Standards, the current San Diego County Hydrology and Design and Procedure Manuals shall be used. H. For storm drain discharging into unprotected or natural channel, proper energy dissipation measures shall be installed to prevent damage to the channel or erosion. In cases of limited access or outlet velocities greater than 18 fps, a concrete energy dissipater per SDRS D-41 will be required. Page 4 of 5 I. The use of detention basins to even out storm peaks and reduce piping is permitted with substantiating engineering calculation and proper maintenance agreements. Detention basins shall be fenced. J. Desiltation measures for silt caused by development shall be provided and cleaned regularly during the rainy season (October 1 to April 30) and after major rainfall as required by the City Engineer or his designated representative. Adequate storage capacity as determined by the City Engineer shall be maintained at all times. K. Protection of downstream or adjacent properties from incremental flows (caused by change from an undeveloped to a developed site) shall be provided. Such flows shall not be concentrated and directed across unprotected adjacent properties unless an easement and storm drains or channels to contain flows are provided. . L. Unprotected downstream channels shall have erosion and grade control structures installed to prevent degradation, erosion, alteration or downcutting of the channel banks. M. Storm drain pipes designed for flow meeting or exceeding 20 feet per second will require additional cover over invert reinforcing steel as approved by the City Engineer. N. Storm drain pipe under pressure flow for the design storm, i.e., HGL above the soffit of the ripe, shall meet the requirements of ASTM C76, C361, C443 for water-tight joints in the sections of pipe calculated to be under pressure and an additional safety length beyond the pressure flow point. Such safety length shall be determined to the satisfaction of the City Engineer taking into consideration such factors as pipe diameter, Q, and velocity. O. An all weather access road from a paved public right-of-way shall be constructed to all drainage and utility improvements. The following design parameters are required: Maximum grade 14%, 15 MPH speed, gated entry, minimum paved width 12 feet, 38' minimum radius, paving shall be a minimum of 4" AC over 4" Class II AB, turnaround required if over 300'. Work areas should be provided as approved by the plan checker. Access roads should be shown on the tentative project approval to ensure adequate environmental review. P. Engineers are encouraged to gravity drain all lots to the street without use of a yard drain system. On projects with new street improvements proposed, a curb outlet per SDRSD D-27 shall be provided for single-family residential lots to allow yard drains to connect to the streets gutter. Page 5 of 5 CHAPTER 2 CITY OF CARLSBAD MODIFICATIONS TO THE SAN DIEGO REGIONAL STANDARD DRAWINGS Note: The minimum allowable concrete mix design for all concrete placed within public right- of-way shall be 560-C-3250 as specified in the Standard Specifications for Public Works Construction. DWG. MODIFICATION m D-2 Enlarge curb inlet top to width of sidewalk (not to exceed 5'6") by length of inlet including wings. Existing reinforcing steel shall be extended across enlarged top to clear distances shown.•«• D-20 Delete. - D-27 Add: A maximum of three (3) combined outlets in lieu of Std. D-25. D-40 Add: "T" dimension shall be a minimum of three (3) times size of rip rap. ***D-70 Minimum bottom width shall be 6' to facilitate cleaning. ^i D-71 Minimum bottom width shall be 6' to facilitate cleaning. W D-75 Delete "Type-A" Add: 6" x 6" x #10 x #10 welded wire mesh, instead of stucco netting. .-!•<» E-1 Delete direct burial foundation. Add: The light standard shall be pre-stressed concrete round pole. v*i E-2 Grounding per note 2. Attachment of the grounding wire to the anchor bolt shall be below the light standard base plate with an approved connection. G-3 Delete. G-5 Add: Note 4. Tack coat shall be applied between dike and existing asphalt concrete ** surface as specified in Section 302-5.4 SSPWC. G-6 Type B-1 not used. When specified, Type B-2 shall have a curb height of8", width of 6", ** with a 3:1 batter. When specifically approved by the City Engineer, Type B-3 shall have a curb height of 8", width of 6", a 3:1 batter with the hinge point eliminated. S9» * G-11 Add: Remove curb/gutter and sidewalk from score-mark to score-mark or from joint-to-joint or approved combination. Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 2 METHODOLOGY & MODEL DEVELOPMENT 2.2 - Rational Method Hydrologic Analysis AH ah H:\REPORTS\2352\109 Greens 1.17\2NO SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 Rational Method Hvdrologic Analysis Computer Software Package - AES-99 Design Storm - 100-Year Return Interval Land Use -Single-Family Residential in Developed Areas Soil Type - Hydrologic soil group D was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer at or near the surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission. Runoff Coefficient - In accordance with the County of San Diego standards, single-family residential areas were designated a runoff coefficient of 0.55, natural areas were designated a runoff coefficient of 0.45, and paved areas were designated a runoff coefficient of 0.95. Method of Analysis - The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation: Q = CIA, where: Q = The peak runoff rate in cubic feet per second at the point of analysis. C = A runoff coefficient representing the area - averaged ratio of runoff to rainfall intensity. I = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration. A = The drainage basin area in acres. To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes. The procedure for the subarea summation model is as follows: 1. Subdivide the watershed into an initial subarea (generally 1 lot) and subsequent subareas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each subarea. 2. Estimate an initial Tc by using the appropriate nomograph or overland flow velocity estimation. 3. Using the initial Tc, determine the corresponding values of I. Then Q = C I A. 4. Using Q, estimate the travel time between this node and the next by Manning's equation as applied to the particular channel or conduit linking the AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 8:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration) The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-99 computer subarea menu is as follows: SUBAREA HYDROLOGIC PROCESS 1. Confluence analysis at node. 2. Initial subarea analysis (including time of concentration calculation). 3. Pipeflow travel time (computer estimated). 4. Pipeflow travel time (user specified). 5. Trapezoidal channel travel time. 6. Street flow analysis through subarea. 7. User - specified information at node. 8. Addition of subarea runoff to main line. 9. V-gutter flow through area. 10. Copy main stream data to memory bank 11. Confluence main stream data with a memory bank 12. Clear a memory bank At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape. (1). If the collection streams have the same times of concentration, then the Q values are directly summed, Qp = Qa + Qb; Tp = Ta = Tb (2). If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows: (i). The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities. Qp = Qa + Qb (U/lb); Tp = Ta AH ah H:\R6PORTS\2352109 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 (ii). In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a ratio of the T values. ); Tp = Tb AH ah H:\REPORTS\2352\109 Greens 1.17\2NO SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 2 METHODOLOGY & MODEL DEVELOPMENT 2.3 - Storm Drain System Analysis AH ah H:\REPORTS\2352M09 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 Storm Drain Hydraulic Analysis Computer Software Package - Storm Design Storm - 100-Year Return Interval Roughness Coefficient - Manning's "n" value of 0.013 (concrete pipe) Minimum Pipe Diameter-18 inches Minimum Grade of Storm Drains - 0.50% Given the discharge and the physical characteristics of a proposed storm drain system, the "Storm" computer program, from Los Angeles Public Works, generates hydraulic grade line elevations at junctions and inlet locations. Hydraulic grade line elevations are calculated by evaluating friction and minor losses throughout the system. To determine the hydraulic characteristics at a junction, the pressure plus momentum equation is applied at end points of the junction to determine the control point and to compute the conjugate depth at the opposite end of the junction. When flow changes from partial flow to full flow or from full flow to partial flow, the program determines the location in the line where the change occurs. The program also determines the precise locations of hydraulic jumps (where flow changes from supercritical to sub critical flow) along with the pressure plus momentum at the jump and flow depth before and after the jump. A typical storm drain analysis procedure is as follows: 1. Establish the main line of the entire storm drain system. Generally, lines carrying the majority of the flow will constitute the main line. 2. Establish the main line of any lateral system by proceeding upstream from the main line junction to the highest upstream inlet. 3. Number the main line segments consecutively in the upstream direction to the most upstream inlet. Then, number each lateral system in the same manner (with values greater than that of the main line). Note: The storm program is number sensitive. Therefore, a chronological number system must be established. 4. For each line, tabulate pertinent data such as the maximum design flow, conduit size and length, flow line elevations, minor loss coefficients for manholes, bends, etc., entrance loss coefficients for the inlets, and confluence angles at all junctions. Junction loss coefficients, Kj, range from 0 to 1.0 depending on the efficiency of the junction design. Junction losses are calculated by multiplying Kj times the velocity head in the outlet conduit. If the value of Kj is left blank or the pipe flow condition is AH ah H:\REPORTS\2352M09 Greens 1.17\2ND SUBMITTAHA02.doc W.O. 2352-109 50/2005 6:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 partially full, the pressure plus momentum equation is used to determine the junction losses. Entrance loss coefficients, Ke, range from 0.04 (bell-mounted entrance) to 0.5 (flush headwall entrance). The entrance loss is computed by multiplying Ke times the velocity head in the outlet conduit. Minor loss coefficients, Km, are the summation of losses from bends, manholes, etc. The total minor loss, computed as Km times the velocity head in the conduit, is added to friction losses in the hydraulic analysis for full flow only. AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/80005 6:30 PM Ill Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 3 RATIONAL METHOD HYDROLOGIC ANALYSIS (AES MODEL OUTPUT) 3.1 - 100-Year Developed Condition AES Model Output AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/8/2005 6:30 PM **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates - San Diego, Inc. 10179 Huennekens Street San Diego, Ca. 92121 (858) 558-4500 ************************** DESCRIPTION OF STUDY ************************** * LA COSTA GREENS - NEIGHBORHOOD 1.17 * * 100-YERA DEVELOPED CONDITION HYDROLOGIC ANALYSIS • * * W.O.# 2352-109 PREPARED BY: TF, AH * ************************************************* FILE NAME: H:\AES99\2352\109\DEV100.DAT TIME/DATE OF STUDY: 19:39 2/15/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED BEGIN NEIGBORHOOD 1.17 (NODE SERIES 100) **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 239.77 UPSTREAM ELEVATION = 260.40 DOWNSTREAM ELEVATION = 257.67 ELEVATION DIFFERENCE = 2.73 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 14.681 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.551 SUBAREA RUNOFF(CFS) = 0.66 TOTAL AREA(ACRES) = 0.34 TOTAL RUNOFF(CFS) = 0.66 ******7 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 257.67 DOWNSTREAM ELEVATION = 221.33 STREET LENGTH(FEET) = 816.26 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.86 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.27 HALFSTREET FLOODWIDTH(FEET) = 7.43 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.27 PRODUCT OF DEPTH&VELOCITY = 1.17 STREETFLOW TRAVELTIME(MIN) = 3.18 TC(MIN) = 17.86 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.129 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.56 SUBAREA RUNOFF (CFS) = 4.41 SUMMED AREA(ACRES) = 2.90 TOTAL RUNOFF(CFS) = 5.07 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.33 HALFSTREET FLOODWIDTH(FEET) = 10.01 FLOW VELOCITY(FEET/SEC.) = 4.53 DEPTH*VELOCITY = 1.48 **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.86 RAINFALL INTENSITY(INCH/HR) = 3.13 TOTAL STREAM AREA(ACRES) = 2.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.07 *********** FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 199.98 UPSTREAM ELEVATION = 250.30 DOWNSTREAM ELEVATION = 247.14 ELEVATION DIFFERENCE = 3.16 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 12.020 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.040 SUBAREA RUNOFF(CFS) = 0.51 TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) = 0.51 c******************** FLOW PROCESS FROM NODE 105.00 TO NODE 103.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 247.14 DOWNSTREAM ELEVATION = 221.33 STREET LENGTH(FEET) = 485.59 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.23 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.25 HALFSTREET FLOODWIDTH(FEET) = 6.40 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.23 PRODUCT OF DEPTH&VELOCITY = 1.08 STREETFLOW TRAVELTIME(MIN) = 1.91 TC(MIN) =13.93 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.673 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 3.45 SUMMED AREA(ACRES) = 1.94 TOTAL RUNOFF(CFS) = 3.97 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) = 8.46 FLOW VELOCITY(FEET/SEC.) = 4.75 DEPTH*VELOCITY = 1.40 *************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.93 RAINFALL INTENSITY(INCH/HR) = 3.67 TOTAL STREAM AREA(ACRES) = 1.94 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.97 ********* FLOW PROCESS FROM NODE 106.00 TO NODE 179.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.61(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 319.20 UPSTREAM ELEVATION = 295.00 DOWNSTREAM ELEVATION = 263.30 ELEVATION DIFFERENCE = 31.70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.132 SUBAREA RUNOFF(CFS) = 0.33 TOTAL AREA(ACRES) = 0.18 TOTAL RUNOFF(CFS) = 0.33 FLOW PROCESS FROM NODE 179.00 TO NODE 180.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)' ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 3.9 UPSTREAM NODE ELEVATION = 263.30 DOWNSTREAM NODE ELEVATION = 223.00 FLOWLENGTH(FEET) = 950.70 MANNING'S N = 0.015 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 0.33 TRAVEL TIME(MIN.) = 4.06 TC(MIN-) = 15.67 *************************************************** FLOW PROCESS FROM NODE 179.00 TO NODE 180.00 IS CODE = 8 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.404 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.39 SUBAREA RUNOFF(CFS) = 2.60 TOTAL AREA(ACRES) = 1.57 TOTAL RUNOFF(CFS) = 2.94 TC(MIN) = 15.67 ******* FLOW PROCESS FROM NODE 180.00 TO NODE 103.00 IS CODE = 4 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.0 UPSTREAM NODE ELEVATION = 217.50 DOWNSTREAM NODE ELEVATION = 217.20 FLOWLENGTH(FEET) = 28.73 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 2.94 TRAVEL TIME(MIN.) = 0.10 TC(MIN.) = 15.77 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 15.77 RAINFALL INTENSITY(INCH/HR) = 3.39 TOTAL STREAM AREA(ACRES) = 1.57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.94 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.07 17.86 3.129 2.90 2 3.97 13.93 3.673 1.94 3 2.94 15.77 3.391 1.57 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 11.00 13.93 3.673 2 11.28 15.77 3.391 3 11.16 17.86 3.129 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.28 Tc(MIN.) = 15.77 TOTAL AREA(ACRES) = 6.41 **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 107.00 IS CODE = 4 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE«<« DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.5 UPSTREAM NODE ELEVATION = 216.70 DOWNSTREAM NODE ELEVATION = 198.28 FLOWLENGTH(FEET) = 170.17 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 11.28 TRAVEL TIME(MIN.) = 0.17 TC(MIN.) = 15.94 **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 24.0 INCH PIPE IS 7.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12.6 UPSTREAM NODE ELEVATION = 197.95 DOWNSTREAM NODE ELEVATION = 187.46 FLOWLENGTH(FEET) = 203.57 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 11.28 TRAVEL TIME(MIN-) = 0.27 TC(MIN.) = 16.21 t*******************************************j FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <«« FLOW PROCESS FROM NODE 169.00 TO NODE 170.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 275.73 UPSTREAM ELEVATION =259.00 DOWNSTREAM ELEVATION = 253.44 ELEVATION DIFFERENCE = 5.56 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 13.012 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.839 SUBAREA RUNOFF(CFS) = 1.01 TOTAL AREA(ACRES) = 0.48 TOTAL RUNOFF(CFS) = 1.01 **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 171.00 IS CODE = 6 »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 253.44 DOWNSTREAM ELEVATION = 216.67 STREET LENGTH(FEET) = 676.50 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.87 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.26 HALFSTREET FLOODWIDTH(FEET) = 6.83 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.91 PRODUCT OF DEPTH&VELOCITY = 1.29 STREETFLOW TRAVELTIME(MIN) = 2.30 TC(MIN) = 15.31 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.457 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.98 SUBAREA RUNOFF(CFS) = 3.76 SUMMED AREA(ACRES) = 2.46 TOTAL RUNOFF(CFS) = 4.78 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.30 HALFSTREET FLOODWIDTH(FEET) = 8.77 FLOW VELOCITY(FEET/SEC.) = 5.39 DEPTH*VELOCITY = 1.63 ***********************! FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESI2E««< DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.0 UPSTREAM NODE ELEVATION = 210.04 DOWNSTREAM NODE ELEVATION = 209.58 FLOWLENGTH(FEET) = 4.43 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 4.78 TRAVEL TIME(MIN.) = 0.01 TC(MIN.) = 15.31 ***********************J FLOW PROCESS FROM NODE 172.00 TO NODE 172.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.31 RAINFALL INTENSITY(INCH/HR) = 3.46 TOTAL STREAM AREA(ACRES) = 2.46 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.78 **************************************************************************** FLOW PROCESS FROM NODE 173.00 TO NODE 174.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .9500 INITIAL SUBAREA FLOW-LENGTH = 208.70 UPSTREAM ELEVATION = 221.49 DOWNSTREAM ELEVATION = 216.47 ELEVATION DIFFERENCE = 5.02 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.911 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.325 ' SUBAREA RUNOFF(CFS) = 0.90 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) = 0.90 t**********^ FLOW PROCESS FROM NODE 174.00 TO NODE 172.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING USER-SPECIFIED PIPESIZE<«« ?^J^~ —^ = = — — ~t^~^^^^ = S~~~^ = SS~~~^: = ~ — ~ — ~~~ = — ^"S^^"^ — ~ = ~ — ~ — ~~~ = ~~ DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.3 UPSTREAM NODE ELEVATION = 210.04 DOWNSTREAM NODE ELEVATION = 208.58 FLOWLENGTH(FEET) = 45.38 MANNING'S N = 0.013 GIVEN PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = '. PIPEFLOW THRU SUBAREA(CFS) = 0.90 TRAVEL TIME(MIN.) = 0.14 TC(MIN.) = 6.14 FLOW PROCESS FROM NODE 172.00 TO NODE 172.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.14 RAINFALL INTENSITY(INCH/HR) = 6.23 TOTAL STREAM AREA(ACRES) = 0.15 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.90 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.78 15.31 3.456 2.46 2 0.90 6.14 6.229 0.15 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3.55 6.14 6.229 2 5.28 15.31 3.456 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.28 Tc(MIN.) = 15.31 TOTAL AREA(ACRES) = 2.61 FLOW PROCESS FROM NODE 172.00 TO NODE 175.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.8 UPSTREAM NODE ELEVATION = 209.25 DOWNSTREAM NODE ELEVATION = 208.09 FLOWLENGTH(FEET) = 113.42 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 5.28 TRAVEL TIME(MIN-) = 0.33 TC(MIN.) = 15.64 **********************************5 FLOW PROCESS FROM NODE 175.00 TO NODE 112.00 IS CODE >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.7 UPSTREAM NODE ELEVATION = 207.76 DOWNSTREAM NODE ELEVATION = 205.29 FLOWLENGTH(FEET) = 250.46 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 5.28 TRAVEL TIME(MIN-) = 0.73 TC(MIN.) = 16.38 **************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.38 RAINFALL INTENSITY(INCH/HR) = 3.31 TOTAL STREAM AREA(ACRES) = 2.61 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.28 **************************************************************************** FLOW PROCESS FROM NODE 109.00 TO NODE 110.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 223.48 UPSTREAM ELEVATION = 243.70 DOWNSTREAM ELEVATION = 236.71 ELEVATION DIFFERENCE = 6.99 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.120 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.514 SUBAREA RUNOFF(CFS) = 0.87 TOTAL AREA(ACRES) = 0.35 TOTAL RUNOFF(CFS) = 0.87 **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 236.71 DOWNSTREAM ELEVATION = 218.56 STREET LENGTH(FEET) = 416.49 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.85 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.24 HALFSTREET FLOODWIDTH(FEET) = 5.86 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.01 PRODUCT OF DEPTH&VELOCITY = 0.98 STREETFLOW TRAVELTIME(MIN) = 1.73 TC(MIN) = 11.85 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.077 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 0.87 SUBAREA RUNOFF(CFS) = 1.95 SUMMED AREA(ACRES) = 1.22 TOTAL RUNOFF(CFS) = 2.82 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.28 HALFSTREET FLOODWIDTH(FEET) = 7.80 FLOW VELOCITY(FEET/SEC.) = 3.88 DEPTH*VELOCITY = 1.10 **************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 4 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.1 UPSTREAM NODE ELEVATION = 205.51 DOWNSTREAM NODE ELEVATION = 204.98 FLOWLENGTH(FEET) = 5.26 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 2.82 TRAVEL TIME(MIN.) = 0.01 TC(MIN.) = 11.86 ********* FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.} = 11.86 RAINFALL INTENSITY(INCH/HR) = 4.08 TOTAL STREAM AREA(ACRES) = 1.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.82 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.28 16.38 3.310 2.61 2 2.82 11.86 4.075 1.22 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.11 11.86 4.075 2 7.57 16.38 3.310 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.57 Tc(MIN.) = 16.38 TOTAL AREA(ACRES) = 3.83 FLOW PROCESS FROM NODE 112.00 TO NODE 183.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 24.0 INCH PIPE IS 9.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 6.2 UPSTREAM NODE ELEVATION = 204.79 DOWNSTREAM NODE ELEVATION = 201.84 FLOWLENGTH(FEET) = 298.07 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 7.57 TRAVEL TIME(MIN.) = 0.80 TC(MIN.) = 17.18 ********************** FLOW PROCESS FROM NODE 183.00 TO NODE >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.7 UPSTREAM NODE ELEVATION = 201.51 DOWNSTREAM NODE ELEVATION = 187.46 FLOWLENGTH(FEET) = 246.61 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CPS) = 7.57 TRAVEL TIME(WIN.) = 0.35 TC(MIN.) = 17.53 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 11 >»»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<«« ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 7.57 17.53 3.168 3.83 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.28 16.21 3.331 6.41 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 18.47 16.21 3.331 2 18.29 17.53 3.168 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.47 Tc(MIN.) = TOTAL AREA(ACRES) = 10.24 16.21 ******************* FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 12 »»>CLEAR MEMORY BANK # 1 <«« ******************************************************************* FLOW PROCESS FROM NODE 108.00 TO NODE 176.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »>»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 36.0 INCH PIPE IS 8.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.9 UPSTREAM NODE ELEVATION = 186.46 DOWNSTREAM NODE ELEVATION = 182.52 FLOWLENGTH(FEET) = 77.48 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 18.47 TRAVEL TIME(MIN.) = 0.09 TC(MIN.) = 16.30 **************************************************************************** FLOW PROCESS FROM NODE 176.00 TO NODE 176.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATIONS IN.) = 16.30 RAINFALL INTENSITY(INCH/HR) = 3.32 TOTAL STREAM AREA(ACRES) = 10.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.47 FLOW PROCESS FROM NODE 119.00 TO NODE 120.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 198.13 UPSTREAM ELEVATION = 223.40 DOWNSTREAM ELEVATION = 219.00 ELEVATION DIFFERENCE = 4.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.681 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.360 SUBAREA RUNOFF(CFS) = 0.74 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) = 0.74 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA«<« UPSTREAM ELEVATION = 219.00 DOWNSTREAM ELEVATION = 194.62 STREET LENGTH(FEET) = 667.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.04 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.28 HALFSTREET FLOODWIDTH (FEET) = 7.80 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.18 PRODUCT OF DEPTH&VELOCITY = 1.18 STREETFLOW TRAVELTIME(MIN) = 2.66 TC(MIN) = 13.34 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.777 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.23 SUBAREA RUNOFF(CFS) = 4.63 SUMMED AREA(ACRES) = 2.54 TOTAL RUNOFF(CFS) = 5.38 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.34 HALFSTREET FLOODWIDTH(FEET) = 10.70 FLOW VELOCITY(FEET/SEC.) = 4.25 DEPTH*VELOCITY = 1.45 FLOW PROCESS FROM NODE 121.00 TO NODE 176.00 IS CODE = 4 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.9 UPSTREAM NODE ELEVATION = 186.88 DOWNSTREAM NODE ELEVATION = 183.32 FLOWLENGTH(FEET) = 25.75 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 5.38 TRAVEL TIME(MIN.) = 0.03 TC(MIN.) = 13.37 FLOW PROCESS FROM NODE 176.00 TO NODE 176.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.37 RAINFALL INTENSITY(INCH/HR) = 3.77 TOTAL STREAM AREA(ACRES) = 2.54 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.38 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 18.47 16.30 3.319 10.24 2 5.38 13.37 3.772 2.54 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 21.63 13.37 3.772 2 23.20 16.30 3.319 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23.20 Tc(MIN.) = 16.30 TOTAL AREA(ACRES) = 12.78 **************************************************** FLOW PROCESS FROM NODE 176.00 TO NODE 113.00 IS CODE = 4 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 36.0 INCH PIPE IS 9.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.9 UPSTREAM NODE ELEVATION = 182.52 DOWNSTREAM NODE ELEVATION = 180.05 FLOWLENGTH(FEET) = 48.46 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 23.20 TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 16.36 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 10 »>»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <«« ******************************* FLOW PROCESS FROM NODE 114.00 TO NODE 115.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 192.40 UPSTREAM ELEVATION = 218.40 DOWNSTREAM ELEVATION = 213.26 ELEVATION DIFFERENCE = 5.14 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.897 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.580 SUBAREA RUNOFF(CFS) = 0.78 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) = 0.78 FLOW PROCESS FROM NODE 115.00 TO NODE 116.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA«<« UPSTREAM ELEVATION = 213.26 DOWNSTREAM ELEVATION = 191.55 STREET LENGTH(FEET) = 269.80 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 18.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.04 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.22 HALFSTREET FLOODWIDTH(FEET) = 4.68 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.50 PRODUCT OF DEPTH&VELOCITY = 0.99 STREETFLOW TRAVELTIME(MIN) = 1.00 TC(MIN) = 10.90 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.304 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.90 SUBAREA RUNOFF(CFS) = 4.50 ..I SUMMED AREA(ACRES) = 2.21 TOTAL RUNOFF (CFS) = 5.28 END OF SUBAREA STREETFLOW HYDRAULICS: '" DEPTH(FEET) = 0.25 HALFSTREET FLOODWIDTH(FEET) = 6.41 FLOW VELOCITY(FEET/SEC.) = 4.98 DEPTH*VELOCITY = 1.27 in***************************************************************************** M FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 1 -• »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« = = = = = = = = = = = = = = = = = =5 = = = = = = := = = = = =: = = = = = = = :=: = = = =s = = = = = = = = = = = = = = = ss = = = = = = =: = = = = = = =:= = = = — TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: "" TIME OF CONCENTRATION(MIN.) = 10.90 ^ RAINFALL INTENSITY(INCH/HR) = 4.30 TOTAL STREAM AREA(ACRES) = 2.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.28 FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« =: = = = = = :=: = = = = = = = = = = = = = = = = = = = = = = :=: = = = = = =.s= = = = = = = = = = = = = = = = = = = = s= = = =; == = = = *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .7400 INITIAL SUBAREA FLOW-LENGTH = 400.00 UPSTREAM ELEVATION = 219.00 DOWNSTREAM ELEVATION = 209.00 ELEVATION DIFFERENCE = 10.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.549 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.687 SUBAREA RUNOFF(CFS) = 2.01 TOTAL AREA(ACRES) = 0.58 TOTAL RUNOFF(CFS) = 2.01 **************************************************************************** FLOW PROCESS FROM NODE 118.00 TO NODE 116.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =- = = = = = = = = = = = = = = = = = :=: = = = = :=::=: = UPSTREAM ELEVATION = 209.00 DOWNSTREAM ELEVATION = 191.55 STREET LENGTH(FEET) = 277.07 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.49 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.26 HALFSTREET FLOODWIDTH(FEET) = 6.83 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.26 PRODUCT OF DEPTH&VELOCITY = 1.12 STREETFLOW TRAVELTIME(MIN) = 1.08 TC(WIN) = 10.63 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.372 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .8400 SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 0.95 SUMMED AREA(ACRES) = 0.84 TOTAL RUNOFF(CFS) = 2.97 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.26 HALFSTREET FLOODWIDTH(FEET) = 6.83 FLOW VELOCITY(FEET/SEC.) = 5.08 DEPTH*VELOCITY = 1.33 ************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.63 RAINFALL INTENSITY(INCH/HR) = 4.37 TOTAL STREAM AREA(ACRES) = 0.84 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.97 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.28 10.90 4.304 2.21 2 2.97 10.63 4.372 0.84 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 8.16 10.63 4.372 2 8.20 10.90 4.304 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.20 Tc(MIN.) = 10.90 TOTAL AREA(ACRES) = 3.05 FLOW PROCESS FROM NODE 116.00 TO NODE 113.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.0 UPSTREAM NODE ELEVATION = 181.66 DOWNSTREAM NODE ELEVATION = 181.22 FLOWLENGTH(FEET) = 5.26 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 8.20 TRAVEL TIME(MIN-) = 0.01 TC(MIN.) = 10.90 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 11 >»»CONFLUENCE MEMORY BANK ft 2 WITH THE MAIN-STREAM MEMORY<«« ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.20 10.90 4.303 3.05 ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 23.20 16.36 3.312 12.78 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 26.06 10.90 4.303 2 29.51 16.36 3.312 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 29.51 Tc(MIN.) = TOTAL AREA(ACRES) = 15.83 16.36 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 12 **************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 178.00 IS CODE = 4 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 36.0 INCH PIPE IS 11.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 15.8 UPSTREAM NODE ELEVATION = 179.72 DOWNSTREAM NODE ELEVATION = 168.04 FLOWLENGTH(FEET) = 232.61 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 29.51 TRAVEL TIME(MIN-) = 0.24 TC(MIN.) = 16.60 FLOW PROCESS FROM NODE 178.00 TO NODE 138.00 IS CODE = 4 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 36.0 INCH PIPE IS 11.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14 . 8 UPSTREAM NODE ELEVATION = 167.71 DOWNSTREAM NODE ELEVATION = 158.58 FLOWLENGTH(FEET) = 221.16 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 29.51 TRAVEL TIME(MIN-) = 0.25 TC(MIN.) = 16.85 ******* FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.85 RAINFALL INTENSITY(INCH/HR) = 3.25 TOTAL STREAM AREA(ACRES) = 15.83 PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.51 ***************************************** FLOW PROCESS FROM NODE 139.00 TO NODE 140.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« = = = = = = = = = = = = = = = = = = = := = = = = — = = = = = =: = = = = = =:=:=: = = :=: = = = = = = == = = = = = = =: = =: = = = = = == = = = = ====:= = = = = *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6700 INITIAL SUBAREA FLOW-LENGTH = 356.00 UPSTREAM ELEVATION = 191.55 DOWNSTREAM ELEVATION = 175.96 ELEVATION DIFFERENCE = 15.59 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 8.927 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.895 SUBAREA RUNOFF(CFS) = 2.46 TOTAL AREA(ACRES) = 0.75 TOTAL RUNOFF(CFS) = 2.46 **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 175.96 DOWNSTREAM ELEVATION = 170.97 STREET LENGTH(FEET) = 188.73 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.98 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.25 HALFSTREET FLOODWIDTH(FEET) = 6.40 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.83 PRODUCT OF DEPTH&VELOCITY = 0.72 STREETFLOW TRAVELTIME(MIN) = 1.11 TC(MIN) = 10.04 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.538 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6400 SUBAREA AREA(ACRES) = 0.36 SUBAREA RUNOFF(CFS) = 1.05 SUMMED AREA(ACRES) = 1.11 TOTAL RUNOFF(CFS) = 3.51 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.26 HALFSTREET FLOODWIDTH(FEET) = 6.91 FLOW VELOCITY(FEET/SEC.) = 2.94 DEPTH*VELOCITY = 0.78 FLOW PROCESS FROM NODE 141.00 TO NODE 138.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.5 UPSTREAM NODE ELEVATION = 160.24 DOWNSTREAM NODE ELEVATION = 159.75 FLOWLENGTH(FEET) = 5.25 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 3.51 TRAVEL TIME(MIN.) = 0.01 TC(MIN.) = 10.05 **************************************************************************** FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.05 RAINFALL INTENSITY(INCH/HR) = 4.54 TOTAL STREAM AREA(ACRES) = 1.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.51 t************************************************* FLOW PROCESS FROM NODE 144.00 TO NODE 145.00 IS CODE = 21 >»»RATTONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 241.20 UPSTREAM ELEVATION = 195.30 DOWNSTREAM ELEVATION = 188.90 ELEVATION DIFFERENCE = 6.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 11.106 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.252 SUBAREA RUNOFF(CFS) = 0.91 TOTAL AREA(ACRES) = 0.39 TOTAL RUNOFF(CFS) = 0.91 c********* FLOW PROCESS FROM NODE 145.00 TO NODE 146.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 188.90 DOWNSTREAM ELEVATION = 170.97 STREET LENGTH(FEET) = 412.50 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.94 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.28 HALFSTREET FLOODWIDTH(FEET) = 7.80 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.05 PRODUCT OF DEPTH&VELOCITY = 1.14 STREETFLOW TRAVELTIME(MIN) = 1.70 TC(MIN) = 12.81 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.879 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.89 SUBAREA RUNOFF(CFS) = 4.03 SUMMED AREA(ACRES) = 2.28 TOTAL RUNOFF(CFS) = 4.94 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) = 9.73 FLOW VELOCITY(FEET/SEC.) = 4.64 DEPTH*VELOCITY = 1.49 ************************************** FLOW PROCESS FROM NODE 14S.OO TO NODE 138.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.8 UPSTREAM NODE ELEVATION = ISO.60 DOWNSTREAM NODE ELEVATION = 159.75 FLOWLENGTH(FEET) = 25.25 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 4.94 TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 12.85 ****************** FLOW PROCESS FROM NODE 138.00 TO NODE 138.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 12.85 RAINFALL INTENSITY(INCH/HR) = 3.87 TOTAL STREAM AREA(ACRES) = 2.28 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.94 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 29.51 16.85 3.249 15.83 2 3.51 10.05 4.536 1.11 3 4.94 12.85 3.869 2.28 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 28.86 10.05 4.536 2 32.72 12.85 3.869 3 36.18 16.85 3.249 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 36.18 Tc(MIN.) = 16.85 TOTAL AREA(ACRES) = 19.22 t********************************** FLOW PROCESS FROM NODE 138.0.0 TO NODE 122.00 IS CODE = 4 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =:=: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =:==: = = =: = = = = DEPTH OF FLOW IN 36.0 INCH PIPE IS 13.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 15.5 UPSTREAM NODE ELEVATION = 158.25 DOWNSTREAM NODE ELEVATION = 155.23 FLOWLENGTH(FEET) = 74.43 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 36.18 TRAVEL TIME(MIN-) = 0.08 TC(MIN.) = 16.93 FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 10 »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <«« FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 7 >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE<«« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 10.28 RAIN INTENSITY(INCH/HOUR) = 4.47 TOTAL AREA(ACRES) = 10.66 TOTAL RUNOFF(CFS) = 28.92 FLOW PROCESS FROM NODE 148.00 TO NODE 124.00 IS CODE = 8 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.469 *USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4700 SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) = 1.01 TOTAL AREA(ACRES) = 11.14 TOTAL RUNOFF(CFS) = 29.93 TC(MIN) = 10.28 **************************************************************************** FLOW PROCESS FROM NODE 124.00 TO NODE 157.00 IS CODE = 4 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« = = = = = = = = = = = = = = = = = = = = = = =: = = = = = = = = = = = := = := = = = = = = = = = ±=s::= = = = = = = =: = :==: = = = =: = = =± = = = = = = = = =: = DEPTH OF FLOW IN 30.0 INCH PIPE IS 9.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 23.2 UPSTREAM NODE ELEVATION = 214.00 DOWNSTREAM NODE ELEVATION = 203.12 FLOWLENGTH(FEET) = 79.33 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 29.93 TRAVEL TIME(MIN-) = 0.06 TC(MIN.) = 10.34 **************************************************************************** FLOW PROCESS FROM NODE 168.00 TO NODE 157.00 IS CODE = 8 >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.453 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.24 TOTAL AREA(ACRES) = 11.24 TOTAL RUNOFF(CFS) = 30.17 TC(MIN) = 10.34 FLOW PROCESS FROM NODE 157.00 TO NODE 125.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 30.0 INCH PIPE IS 15.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.4 UPSTREAM NODE ELEVATION = 202.79 DOWNSTREAM NODE ELEVATION = 201.43 FLOWLENGTH(FEET) = 68.81 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 30.17 TRAVEL TIME(MIN.) = 0.10 TC(MIN.) = 10.44 FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) =10.44 RAINFALL INTENSITY(INCH/HR) = 4.43 TOTAL STREAM AREA(ACRES) =11.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 30.17 **************************************************************************** FLOW PROCESS FROM NODE 126.00 TO NODE 181.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 12.47(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 250.00 UPSTREAM ELEVATION = 223.40 DOWNSTREAM ELEVATION = 218.40 ELEVATION DIFFERENCE = 5.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.945 SUBAREA RUNOFF(CFS) = 0.85 TOTAL AREA(ACRES) = 0.39 TOTAL RUNOFF(CFS) = 0.85 **************************************************************************** FLOW PROCESS FROM NODE 181.00 TO NODE 182.00 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 4.4 UPSTREAM NODE ELEVATION = 218.40 DOWNSTREAM NODE ELEVATION = 211.70 FLOWLENGTH(FEET) = 257.00 MANNING'S N = 0.015 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 0.85 TRAVEL TIME(MIN-) = 0.98 TC(MIN.) = 13.46 FLOW PROCESS FROM NODE 181.00 TO NODE 182.00 IS CODE = >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.756 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 0.42 SUBAREA RUNOFF(CFS) = 0.87 TOTAL AREA(ACRES) = 0.81 TOTAL RUNOFF(CFS) = 1.71 TC(MIN) = 13.46 FLOW PROCESS FROM NODE 182.00 TO NODE 125.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.7 UPSTREAM NODE ELEVATION = 206.20 DOWNSTREAM NODE ELEVATION = 202.43 FLOWLENGTH(FEET) = 21.07 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 1.71 TRAVEL TIME(MIN.) = 0.03 TC(MIN.) = 13.49 **************************************************************************** FLOW PROCESS FROM NODE 125.00 TO NODE 125.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-;«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.49 RAINFALL INTENSITY(INCH/HR) = 3.75 TOTAL STREAM AREA(ACRES) = 0.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.71 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 30.17 10.44 4.425 11.24 2 1.71 13.49 3.751 0.81 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 31.63 10.44 4.425 2 27.29 13.49 3.751 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 31.63 Tc(MIN.) = 10.44 TOTAL AREA(ACRES) = 12.05 FLOW PROCESS FROM NODE 125.00 TO NODE 127.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«<« »»>USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 30.0 INCH PIPE IS 16.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 11.4 UPSTREAM NODE ELEVATION = 201.10 DOWNSTREAM NODE ELEVATION = 199.82 FLOWLENGTH(FEET) = 66.84 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 31.63 TRAVEL TIME(MIN.) = 0.10 TC(MIN.) = 10.54 r**************************** FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 10 »>»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <«« t************************************************** FLOW PROCESS FROM NODE 128.00 TO NODE 158.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 380.70 UPSTREAM ELEVATION = 215.80 DOWNSTREAM ELEVATION = 210.05 ELEVATION DIFFERENCE = 5.75 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 16.836 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.251 SUBAREA RUNOFF(CFS) = 0.95 TOTAL AREA(ACRES) = 0.53 TOTAL RUNOFF(CFS) = 0.95 ************************* FLOW PROCESS FROM NODE 158.00 TO NODE 158.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.84 RAINFALL INTENSITY(INCH/HR) = 3.25 TOTAL STREAM AREA(ACRES) = 0.53 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.95 FLOW PROCESS FROM NODE 129.00 TO NODE 130.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 200.09 UPSTREAM ELEVATION = 218.70 DOWNSTREAM ELEVATION = 215.64 ELEVATION DIFFERENCE = 3.06 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 12.155 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.011 SUBAREA RUNOFF(CFS) = 0.57 TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) = 0.57 **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 158.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 215.64 DOWNSTREAM ELEVATION = 210.05 STREET LENGTH(FEET) = 220.51 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 18.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.27 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.24 HALFSTREET FLOODWIDTH(FEET) = 5.84 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.76 PRODUCT OF DEPTH&VELOCITY = 0.67 STREETFLOW TRAVELTIME(MIN) = 1.33 TC(MIN) = 13.49 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.751 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 0.67 SUBAREA RUNOFF(CFS) = 1.38 SUMMED AREA(ACRES) = 0.93 TOTAL RUNOFF(CFS) = 1.96 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.27 HALFSTREET FLOODWIDTH(FEET) = 6.99 FLOW VELOCITY(FEET/SEC.) = 3.22 DEPTH*VELOCITY = 0.86 c******************************************** FLOW PROCESS FROM NODE 158.00 TO NODE 158.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.49 RAINFALL INTENSITY(INCH/HR) = 3.75 TOTAL STREAM AREA(ACRES) = 0.93 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.96 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 0.95 16.84 3.251 0.53 2 1.96 13.49 3.751 0.93 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.78 13.49 3.751 2 2.64 16.84 3.251 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.78 Tc(MIN.) = 13.49 TOTAL AREA(ACRES) = 1.46 **************************************************************************** FLOW PROCESS FROM NODE 158.00 TO NODE 127.00 IS CODE = 4 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »>»USING USER-SPECIFIED PIPESIZE<«« = = =r = =: = = =5 = = =: = = = = = = = = = = = = = = = = = = = = = = = = = = =:=: = = = = = = = = = = = = = = = = = = = = = = = =: = = = =:=:=5 = = = = = = = DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 4.9 UPSTREAM NODE ELEVATION = 200.88 DOWNSTREAM NODE ELEVATION = 200.82 FLOWLENGTH(FEET) = 5.75 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2.78 TRAVEL TIME(MIN.) = 0.02 TC(MIN.) = 13.51 ***************************************t************* FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 11 >»»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY«<« ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.78 13.51 3.748 1.46 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 31.63 10.54 4.399 12.05 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 33.99 10.54 4.399 2 29.72 13.51 3.748 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 33.99 Tc(MIN.) = 10.54 TOTAL AREA(ACRES) = 13.51 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 12 >»»CLEAR MEMORY BANK # 1 <«« FLOW PROCESS FROM NODE k************ 127.00 TO NODE t********************* 131.00 IS CODE »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »>»USING USER-SPECIFIED PIPESIZE««< DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.9 UPSTREAM NODE ELEVATION = 199.49 DOWNSTREAM NODE ELEVATION = 199.18 FLOWLENGTH(FEET) = 30.89 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 33.99 TRAVEL TIME(MIN.) = 0.06 TC(MIN.) = 10.59 ************************************* FLOW PROCESS FROM NODE 131.00 TO NODE 131.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.59 RAINFALL INTENSITY(INCH/HR) = 4.38 TOTAL STREAM AREA(ACRES) = 13.51 PEAK FLOW RATE(CFS) AT CONFLUENCE = 33.99 *************i FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 218.70 UPSTREAM ELEVATION = 214.80 DOWNSTREAM ELEVATION = 211.40 ELEVATION DIFFERENCE = 3.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 12.638 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.912 SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) = 0.60 FLOW PROCESS FROM NODE 133.00 TO NODE 131.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 211.40 DOWNSTREAM ELEVATION = 210.08 STREET LENGTH(FEET) = 101.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) =20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 18.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 0.90 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.24 HALFSTREET FLOODWIDTH(FEET) = 5.84 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97 PRODUCT OF DEPTH&VELOCITY = 0.48 STREETFLOW TRAVELTIME(MIN) = 0.86 TC(MIN) = 13.49 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.750 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 0.29 SUBAREA RUNOFF(CFS) = 0.60 SUMMED AREA(ACRES) = 0.57 TOTAL RUNOFF(CFS) = 1.20 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.25 HALFSTREET FLOODWIDTH(FEET) = 6.41 FLOW VELOCITY(FEET/SEC.) = 2.27 DEPTH*VELOCITY = 0.58 ********************************* FLOW PROCESS FROM NODE 131.00 TO NODE 131.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.49 RAINFALL INTENSITY(INCH/HR) = 3.75 TOTAL STREAM AREA(ACRES) = 0.57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.20 **************************************************************************** FLOW PROCESS FROM NODE 134.00 TO NODE 135.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 186.40 UPSTREAM ELEVATION = 218.70 DOWNSTREAM ELEVATION = 215.74 ELEVATION DIFFERENCE = 2.96 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 11.586 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.137 SUBAREA RUNOFF(CFS) = 0.61 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) = 0.61 ******************v FLOW PROCESS FROM NODE 135.00 TO NODE 131.00 IS CODE = »>»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA«<« UPSTREAM ELEVATION = 215.74 DOWNSTREAM ELEVATION = 210.08 STREET LENGTH(FEET) = 254.24 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 18.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.61 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.27 HALFSTREET FLOODWIDTH(FEET) = 6.99 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.66 PRODUCT OF DEPTH&VELOCITY = 0.71 STREETFLOW TRAVELTIME(MIN) = 1.59 TC(MIN) = 13.18 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.807 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 0.95 SUBAREA RUNOFF(CFS) = 1.99 SUMMED AREA(ACRES) = 1.22 TOTAL RUNOFF(CFS) = 2.60 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.30 HALFSTREET FLOODWIDTH(FEET) = 8.73 FLOW VELOCITY(FEET/SEC.) = 2.96 DEPTH*VELOCITY = 0.89 r********************* FLOW PROCESS FROM NODE 131.00 TO NODE 131.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 13.18 RAINFALL INTENSITY(INCH/HR) = 3.81 TOTAL STREAM AREA(ACRES) = 1.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.60 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 33.99 10.59 4.383 13.51 2 1.20 13.49 3.750 0.57 3 2.60 13.18 3.807 1.22 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 37.28 10.59 4.383 2 33.31 13.18 3.807 3 32.84 13.49 3.750 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 37.28 Tc(MIN.) = 10.59 TOTAL AREA(ACRES) = 15.30 **************************************************************************** FLOW PROCESS FROM NODE 131.00 TO NODE 136.00 IS CODE = 4 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.0 UPSTREAM NODE ELEVATION = 198.85 DOWNSTREAM NODE ELEVATION = 197.82 FLOWLENGTH(FEET) = 103.73 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 37.28 TRAVEL TIME(MIN.) = 0.19 TC(MIN.) = 10.78 t*************************************************************** FLOW PROCESS FROM NODE 136.00 TO NODE 137.00 IS CODE = »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 30.0 INCH PIPE IS 8.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 35.1 UPSTREAM NODE ELEVATION = 197.49 DOWNSTREAM NODE ELEVATION = 159.91 FLOWLENGTH(FEET) = 102.24 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 37.28 TRAVEL TIME(MIN-) = 0.05 TC(MIN.) = 10.83 ************************************************** FLOW PROCESS FROM NODE 137.00 TO NODE 122.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 30.0 INCH PIPE IS 16.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.2 UPSTREAM NODE ELEVATION = 159.58 DOWNSTREAM NODE ELEVATION = 155.40 FLOWLENGTH(FEET) = 166.23 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME(MIN.) = 0.21 MANNING'S N = 0.013 30.00 NUMBER OF PIPES 37.28 TC(MIN.) = 11.04 t**********************i c******* FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 11 »>»CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<«« ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 37.28 11.04 4.267 15.30 ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 36.18 16.93 3.239 19.22 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 64.74 11.04 4.267 2 64.47 16.93 3.239 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 64.74 Tc(MIN.) = TOTAL AREA(ACRES) = 34.52 11.04 ************************* ************ FLOW PROCESS FROM NODE 122.00 TO NODE 122.00 IS CODE = 12 >»»CLEAR MEMORY BANK # 3 <«« *****************************************************) FLOW PROCESS FROM NODE 122.00 TO NODE 176.00 IS CODE >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 36.0 INCH PIPE IS 17.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 19.3 UPSTREAM NODE ELEVATION = 154.90 DOWNSTREAM NODE ELEVATION = 145.48 FLOWLENGTH(FEET) = 196.17 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 64.74 TRAVEL TIME(WIN.) = 0.17 TC(MIN.) = 11.21 **************************************************************************** FLOW PROCESS FROM NODE 176.00 TO NODE 177.00 IS CODE = 4 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »»>USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 36.0 INCH PIPE IS 13.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 26.2 UPSTREAM NODE ELEVATION = 145.15 DOWNSTREAM NODE ELEVATION = 113.38 FLOWLENGTH(FEET) = 287.21 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 64.74 TRAVEL TIME(MIN.) = 0.18 TC(MIN.) = 11.40 **************************************************************************** FLOW PROCESS FROM NODE 177.00 TO NODE 147.00 IS CODE = 4 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING USER-SPECIFIED PIPESIZE««< DEPTH OF FLOW IN 36.0 INCH PIPE IS 14.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 23.5 UPSTREAM NODE ELEVATION = 113.05 DOWNSTREAM NODE ELEVATION = 101.59 FLOWLENGTH(FEET) = 140.39 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 64.74 TRAVEL TIME(MIN-) = 0.10 TC(MIN.) = 11.50 ********************j FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 10 »>»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <«« *****************< FLOW PROCESS FROM NODE 149.00 TO NODE 150.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.51(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 300.00 UPSTREAM ELEVATION = 239.00 DOWNSTREAM ELEVATION = 208.00 ELEVATION DIFFERENCE = 31.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.154 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.33 TOTAL RUNOFF(CFS) = 0.62 *********************** FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 3 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.5 UPSTREAM NODE ELEVATION = 208.00 DOWNSTREAM NODE ELEVATION = 126.00 FLOWLENGTH(FEET) = 512.00 MANNING'S N = 0.015 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 0.62 TRAVEL TIME(MIN.) = 1.14 TC(MIN.) = 12.65 **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 8 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.909 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .4800 SUBAREA AREA(ACRES) = 1.32 SUBAREA RUNOFF(CFS) = 2.48 TOTAL AREA(ACRES) = 1.65 TOTAL RUNOFF(CFS) = 3.09 TC(MIN) = 12.65 FLOW PROCESS FROM NODE 151.00 TO NODE 151.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) =12.65 RAINFALL INTENSITY(INCH/HR) = 3.91 TOTAL STREAM AREA(ACRES) = 1.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.09 FLOW PROCESS FROM NODE 152.00 TO NODE 153.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 12.26(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 355.00 UPSTREAM ELEVATION = 250.00 DOWNSTREAM ELEVATION = 232.00 ELEVATION DIFFERENCE = 18.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.988 SUBAREA RUNOFF(CFS) = 0.93 TOTAL AREA(ACRES) = 0.52 TOTAL RUNOFF(CFS) = 0.93 ************ FLOW PROCESS FROM NODE 153.00 TO NODE 151.00 IS CODE = 3 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <«« ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.8 UPSTREAM NODE ELEVATION = 232.00 DOWNSTREAM NODE ELEVATION = 126.84 FLOWLENGTH(FEET) = 840.00 MANNING'S N = 0.015 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 0.93 TRAVEL TIME(MIN.) = 1.80 TC(MIN.) = 14.07 **************************************************************************** FLOW PROCESS FROM NODE 153.00 TO NODE 151.00 IS CODE = 8 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.650 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .4600 SUBAREA AREA(ACRES) = 1.12 SUBAREA RUNOFF(CFS) = 1.88 TOTAL AREA(ACRES) = 1.64 TOTAL RUNOFF(CFS) = 2.81 TC(MIN) = 14.07 **************************************************************************** FLOW PROCESS FROM NODE 151.00 TO NODE 151.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.07 RAINFALL INTENSITY(INCH/HR) = 3.65 TOTAL STREAM AREA(ACRES) = 1.64 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.81 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.09 12.65 3.909 1.65 2 2.81 14.07 3.650 1.64 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.72 12.65 3.909 2 5.70 14.07 3.650 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.72 Tc(MIN.) = 12.65 TOTAL AREA(ACRES) = 3.29 **************************************************************************** FLOW PROCESS FROM NODE 151.00 TO NODE 147.00 IS CODE = 4 >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.7 UPSTREAM NODE ELEVATION = 114.85 DOWNSTREAM NODE ELEVATION = 103.12 FLOWLENGTH(FEET) = 65.81 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 5.72 TRAVEL TIME(MIN.) = 0.07 TC(MIN.) = 12.72 ************< FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 11 »>»CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<«« ** MAIN STREAM CONFLUENCE DATA ** STREAM NUMBER 1 RUNOFF (CFS) 5.72 TC (MIN.) 12.72 INTENSITY (INCH/HOUR) 3.896 ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 64.74 11.50 4.158 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 70.10 11.50 4.158 2 66.38 12.72 3.896 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 70.10 Tc(MIN.) = TOTAL AREA(ACRES) = 37.81 AREA (ACRE) 3.29 AREA (ACRE) 34.52 11.50 FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 12 »>»CLEAR MEMORY BANK # 2 ««< t**************************j FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 10 »>»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <«« FLOW PROCESS FROM NODE 155.00 TO NODE 155.00 IS CODE = 7 >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE<«« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 9.36 RAIN INTENSITY(INCH/HOUR) = 4.75 TOTAL AREA(ACRES) = 0.76 TOTAL RUNOFF(CFS) = 2.53 **************************************************************************** FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 114.00 DOWNSTREAM ELEVATION = 110.90 STREET LENGTH(FEET) = 120.01 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 18.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.02 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) = 8.73 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.43 PRODUCT OF DEPTH&VELOCITY = 1.03 STREETFLOW TRAVELTIME(MIN) = 0.58 TC(MIN) = 9.95 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.565 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6500 SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 0.98 SUMMED AREA(ACRES) = 1.09 TOTAL RUNOFF(CFS) = 3.51 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.31 HALFSTREET FLOODWIDTH(FEET) = 9.30 FLOW VELOCITY(FEET/SEC.) = 3.57 DEPTH*VELOCITY = 1.11 k*************** FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 9.95 RAINFALL INTENSITY(INCH/HR) = 4.57 TOTAL STREAM AREA(ACRES) = 1.09 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.51 FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 192.80 UPSTREAM ELEVATION = 177.70 DOWNSTREAM ELEVATION = 174.40 ELEVATION DIFFERENCE = 3.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 11.492 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.159 SUBAREA RUNOFF(CFS) = 0.94 TOTAL AREA(ACRES) = 0.41 TOTAL RUNOFF(CFS) = 0.94 **************************************************************************** FLOW PROCESS FROM NODE 143.00 TO NODE 156.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 174.40 DOWNSTREAM ELEVATION = 110.90 STREET LENGTH(FEET) = 926.80 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.45 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.27 HALFSTREET FLOODWIDTH(FEET) = 7.43 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.15 PRODUCT OF DEPTH&VELOCITY = 1.41 STREETFLOW TRAVELTIME(MIN) = 3.00 TC(MIN) = 14.49 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.581 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.55 SUBAREA RUNOFF(CFS) = 5.02 SUMMED AREA(ACRES) = 2.96 TOTAL RUNOFF(CFS) = 5.96 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) = 9.49 FLOW VELOCITY(FEET/SEC.) = 5.85 DEPTH*VELOCITY = 1.85 t********************************************* FLOW PROCESS FROM NODE 154.00 TO NODE 156.00 IS CODE = 8 »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.581 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.26 SUBAREA RUNOFF(CFS) = 2.48 TOTAL AREA(ACRES) = 4.22 TOTAL RUNOFF(CFS) = 8.44 TC(MIN) = 14.49 t************************************************************************** FLOW PROCESS FROM NODE 156.00 TO NODE 156.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.49 RAINFALL INTENSITY(INCH/HR) = 3.58 TOTAL STREAM AREA(ACRES) = 4.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.44 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.51 9.95 4.565 1.09 2 8.44 14.49 3.581 4.22 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS . ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 10.13 9.95 4.565 2 11.19 14.49 3.581 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 11.19 Tc(MIN.) = 14.49 TOTAL AREA(ACRES) = 5.31 FLOW PROCESS FROM NODE 156.00 TO NODE 159.00 IS CODE = 4 »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.8 UPSTREAM NODE ELEVATION = 103.18 DOWNSTREAM NODE ELEVATION = 102.92 FLOWLENGTH(FEET) = 3.38 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 11.19 TRAVEL TIME(MIN.) = 0.00 TC(MIN.) = 14.50 t****************************************** FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 10 >»»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <«« FLOW PROCESS FROM NODE 161.00 TO NODE 161.00 IS CODE = >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE<«« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 5.00 RAIN INTENSITY (INCH/HOUR) = 7.11 TOTAL AREA (ACRES) = 0.27 TOTAL RUNOFF (CFS) = 1.62 FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 114.00 DOWNSTREAM ELEVATION = 110.90 STREET LENGTH(FEET) = 120.78 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) =17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.20 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.28 HALFSTREET FLOODWIDTH(FEET) = 7.80 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.03 PRODUCT OF DEPTH&VELOCITY = 0.85 STREETFLOW TRAVELTIME(MIN) = 0.66 TC(MIN) = 5.66 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.564 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .8000 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 1.16 SUMMED AREA(ACRES) = 0.49 TOTAL RUNOFF(CFS) = 2.78 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.30 HALFSTREET FLOODWIDTH(FEET) = 8.77 FLOW VELOCITY(FEET/SEC.) = 3.13 DEPTH*VELOCITY = 0.94 ********************* FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5.66 RAINFALL INTENSITY(INCH/HR) = 6.56 TOTAL STREAM AREA(ACRES) = 0.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.78 **************************************************************************** FLOW PROCESS FROM NODE 163.00 TO NODE 164.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 277.40 UPSTREAM ELEVATION = 171.90 DOWNSTREAM ELEVATION = 165.42 ELEVATION DIFFERENCE = 6.48 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 12.427 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.954 SUBAREA RUNOFF(CFS) = 0.85 TOTAL AREA(ACRES) = 0.39 TOTAL RUNOFF(CFS) = 0.85 r********************************** FLOW PROCESS FROM NODE 164.00 TO NODE 162.00 IS CODE = 6 >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 155.42 DOWNSTREAM ELEVATION = 110.90 STREET LENGTH(FEET) = 683.39 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 15.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.30 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.26 HALFSTREET FLOODWIDTH(FEET) = 6.83 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.65 PRODUCT OF DEPTH&VELOCITY = 1.48 STREETFLOW TRAVELTIME(MIN) = 2.02 TC(MIN) = 14.44 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.589 *USER SPECIFIED(SUBAREA): SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.47 SUBAREA RUNOFF(CFS) = 4.88 SUMMED AREA(ACRES) = 2.86 TOTAL RUNOFF(CFS) = 5.72 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.30 HALFSTREET FLOODWIDTH(FEET) = 8.77 FLOW VELOCITY(FEET/SEC.) = 6.46 DEPTH*VELOCITY = 1.95 t******* FLOW PROCESS FROM NODE 162.00 TO NODE 162.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.44 RAINFALL INTENSITY(INCH/HR) = 3.59 TOTAL STREAM AREA(ACRES) =2.86 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.72 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2.78 5.66 6.564 0.49 2 5.72 14.44 3.589 2.86 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.90 5.66 6.564 2 7.24 14.44 3.589 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.24 Tc(MIN.) = TOTAL AREA(ACRES) = 3.35 14 .44 FLOW PROCESS FROM NODE 162.00 TO NODE 159.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 18.0 INCH PIPE IS PIPEFLOW VELOCITY(FEET/SEC.) = 8.2 UPSTREAM NODE ELEVATION = 104.05 DOWNSTREAM NODE ELEVATION = 103.42 FLOWLENGTH(FEET) = 29.38 GIVEN PIPE DIAMETER(INCH) = PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME(MIN.) = 0.06 9.0 INCHES MANNING'S N = 0.013 18.00 NUMBER OF PIPES 7.24 TC(MIN.) = 14.50 FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 11 >»»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<«« ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.24 14.50 3.579 ** MEMORY BANK # STREAM RUNOFF NUMBER (CFS) 1 11.19 1 CONFLUENCE DATA ** Tc INTENSITY (MIN.) (INCH/HOUR) 14.50 3.580 ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 RUNOFF (CFS) 18.43 18.43 Tc (MIN.) 14.50 14.50 INTENSITY (INCH/HOUR) 3.580 3.579 AREA (ACRE) 3.35 AREA (ACRE) 5.31 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.43 Tc(MIN.) = TOTAL AREA(ACRES) = 8.66 14.50 FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 12 >»»CLEAR MEMORY BANK # 1 <«« FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.50 RAINFALL INTENSITY(INCH/HR) = 3.58 TOTAL STREAM AREA(ACRES) = 8.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.43 ****** FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 7 >»»USER SPECIFIED HYDROLOGY INFORMATION AT NODE<«« = = = = = = = = = = = = = = = = = = = = = = = = = = =: = =: = = = = = =: = = =: = = = = = = = = = = = = = = =:=: = = = = = = = = = = = = = =: = = = = =: = = USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 12.34 RAIN INTENSITY(INCH/HOUR) = 3.97 TOTAL AREA(ACRES) = 9.48 TOTAL RUNOFF(CFS) = 25.62 ***************** FLOW PROCESS FROM NODE 159.00 TO NODE 159.00 IS CODE = 1 >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<« >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« = ==== = = = = = = = =: = =:=:=:=:=: = = = = = = = =r=:=:±= = = = = = = =:s==: = = = = =:=: = = = = = = = =:==== = = = = == = = = = == = = = = =:=:== = = =:==== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) =12.34 RAINFALL INTENSITY(INCH/HR) = 3.97 TOTAL STREAM AREA(ACRES) = 9.48 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.62 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 18.43 14.50 3.580 8.66 2 25.62 12.34 3.972 9.48 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 42.23 12.34 3.972 2 41.52 14.50 3.580 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 42.23 Tc(MIN.) = 12.34 TOTAL AREA(ACRES) = 18.14 FLOW PROCESS FROM NODE 159.00 TO NODE 147.00 IS CODE = »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>»USING USER-SPECIFIED PIPESIZE<«« = = = = = =: = = = = = = = = := = = = := = = = = = = = = =:=:=:=: = = = = = = = = = =: = = = = = = = = = =: = = = ;= DEPTH OF FLOW IN 36.0.INCH PIPE IS 27.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.3 UPSTREAM NODE ELEVATION = 101.92 DOWNSTREAM NODE ELEVATION = 101.59 FLOWLENGTH(FEET) = 64.81 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 42.23 TRAVEL TIME(MIN.) = 0.15 TC(MIN.) = 12.49 **************************************************************************** FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 11 >»»CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<«« ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 42.23 12.49 3.942 18.14 ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 70.10 11.50 4.158 37.81 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 110.14 11.50 4.158 2 108.69 12.49 3.942 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 110.14 Tc(MIN.) = TOTAL AREA(ACRES) = 55.95 11.50 **************************************************************************** FLOW PROCESS FROM NODE 147.00 TO NODE 147.00 IS CODE = 12 >»»CLEAR MEMORY BANK # 3 <«« FLOW PROCESS FROM NODE 147.00 TO NODE 165.00 IS CODE = >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 54.0 INCH PIPE IS 37.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.4 UPSTREAM NODE ELEVATION = 100.12 DOWNSTREAM NODE ELEVATION = 99.87 FLOWLENGTH(FEET) = 48.44 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 110.14 TRAVEL TIME(MIN.) = 0.09 TC(MIN.) = 11.58 FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »»>USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 54.0 INCH PIPE IS 34.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.2 UPSTREAM NODE ELEVATION = 99.87 DOWNSTREAM NODE ELEVATION = 99.84 FLOWLENGTH(FEET) = 4.75 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 110.14 TRAVEL TIME(WIN.) = 0.01 TC(MIN.) = 11.59 **************************************************************************** FLOW PROCESS FROM NODE 166.00 TO NODE 100.00 IS CODE = 4 »>»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 54.0 INCH PIPE IS 23.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) =16.8 UPSTREAM NODE ELEVATION = 99.64 DOWNSTREAM NODE ELEVATION = 97.00 FLOWLENGTH(FEET) = 112.77 MANNING'S N = 0.013 GIVEN PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 110.14 TRAVEL TIME(MIN.) = 0.11 TC(MIN.) = 11.70 !_____ -.__ ^ I | END NEIGHBORHOOD 1.17 (NODE SERIES 100) | END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 110.14 Tc(MIN.) = 11.70 TOTAL AREA(ACRES) = 55.95 END OF RATIONAL METHOD ANALYSIS Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 3 RATIONAL METHOD HYDROLOGIC ANALYSIS (AES MODEL OUTPUT) 3.2 - Weighted Runoff Coefficient Calculations AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAHA02.doc W.O. 2352-109 5/6/2005 6:30 PM i i WEIGHTED RUNOFF COEFFICIENT CALCULATIONS LA COSTA GREENS - NEIGHBORHOOD 1.17 u/s NODE 117 118 139 140 148 150 155 161 D/S NODE 118 116 140 141 124 151 156 162 Paved Streets A, (acres) 0.28 0.19 0.23 0.08 0.08 0.14 Ci 0.95 0.95 0.95 0.95 0.95 0.95 Constructed Slopes A2 (acres) 0.30 0.07 0.52 0.28 0.09 0.40 0.25 0.08 C2 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 Natural Terrain A3 (acres) 0.39 0.92 C3 0.45 0.45 Total Area AT (acres) 0.58 0.26 0.75 0.36 0.48 1.32 0.33 0.22 Weighed C Cw 0.74 0.84 0.67 0.64 0.47 0.48 0.65 0.80 5/6/2005 1 of 1 H:\EXCEL\2352\109\2ND SUBMITTAL\Weighted-C.xls IV Drainage Study La Costa Greens - Neighborhood 1.17 *» CHAPTER 4 HYDRAULIC ANALYSIS 4.1 - Storm Drain Legend (Sheets 1-3) AH ah H:\REPORTS\2352\109 Greens 1.17V2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM SCALE: 1 "= 60 ' (M LJJ I CO LJJ LJJ CO SEE SHEET 2 LEGEND PIPE NODE ID £6j EXISTING STORM DRAIN ®* PROPOSED STORM DRAIN 13= PREPARED FOR: HUNSAKER & ASSOCIATES SAN DIEGO, INC PUNNING 10179 Huenmkan Street ENGINEERING San Diego, Cl 92121 SURVEYING m(«58)5584500- FX(B58)558.14K STORM DRAIN LEGEND FOR LA COSTA GREENS NEIGHBORHOOD 1.17 CITY OF CARLSBAD, CALIFORNIA SHEET 1 OF Ic\i LT) R:\0375\lHyd\0375lH08-STORM LEGEND. d*g[ 0]Moy-06-200& ia-54 r SEE SHEET 1 CO SCALE: 1"= 60 LEGEND PIPE NODE ID EXISTING STORM DRAIN PROPOSED STORM DRAIN -D- PREPARED FOR: HUNSAKER & ASSOCIATES SAN DIEGO, INC PUNNING 10179 Huermekens Street ENGINEERING San Diego, Ca 92121 SURVEYING PHt8W)55W500- FX(858)55S-1414 STORM DRAIN LEGEND FOR LA COSTA GREENS NEIGHBORHOOD 1.17 CITY OF CARLSBAD, CALIFORNIA SHEET OF ft \0375\»Hyd\0375jH08-STORM LEGEM>.d»g[ 0]May-06-2005:1& 54 SCALE: 1"= 100' SEE SHEET 2 LEGEND PIPE NODE ID EXISTING STORM DRAIN PROPOSED STORM DRAIN PREPARED FOR: HUNSAKER & ASSOCIATES SAN DIEGO, INC PUNNING 10179 Huennekens Street ENGINEERING San D«8o, Ca 92121 SUKWY1NC PHSSSBSIHSOO' FX(»5B)5S6-1414 STORM DRAIN LEGEND FOR LA COSTA GREENS NEIGHBORHOOD 1.17 CITY OF CARLSBAD, CALIFORNIA ft \0375\*Hyd\0375|HOB-STORM LEGEND.d* SHEET 3 OF 3 01o I C\l c\i =fc O Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 4 HYDRAULIC ANALYSIS 4.2 - Storm Model Output AH ah H:\R6PORTSV2352\109 Greens 1.17N2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM •M LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412 .1 «• (INPUT) DATE: 05/08/05 PAGE 1,m ^PROJECT: LA COSTA GREENS NEIGHBORHOOD 1.17 DESIGNER: TF\AH «• CD L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW D W S KJ KE KM LC LI L3 L4 Al A3 A4 J N •'*» 4g 8 1 98.10 ••2 5 110.1 110.1 112.77 97.00 99.67 0.00 54. 0. 3 0.15 0.00 0.05 1 6 0 0 0. 0. 0. 4.00 0.013 •2 6 110.1 110.1 4.75 99.84 99.87 0.00 54. 0. 3 0.15 0.00 0.05 0 7 0 0 0. 0. 0. 5.00 0.013 «• 2 7 110.1 110.1 48.44 99.87 100.12 0.00 54. 0. 3 0.50 0.00 0.05 0 8 25 45 91. 87. 90. 4.00 0.013 m 2 8 67.2 67.2 236.45 101.59 123.47 0.00 36. 0. 3 0.50 0.00 0.05 0 9 50 00. 90. 0. 5.00 0.013 m ^ 2 9 64.7 64.7 191.15 123.80 145.15 0.00 36. 0. 3 0.50 0.00 0.05 0 10 0 0 0. 0. 0. 5.00 0.013 «*. 2 10 64.7 64.7 196.17 145.48 154.90 0.00 36. 0. 3 0.50 0.00 0.05 0 11 55 0 0. 90. 0. 4.00 0.013 2 11 36.2 36.2 74.43 155.23 158.25 0.00 36. 0. 3 0.50 0.00 0.05 0 12 75 85 0. 89. 91. 5.00 0.013 2 12 29.5 29.5 221.16 158.58 167.71 0.00 36. 0. 3 0.50 0.00 0.05 0 13 0 0 0. 0. 0. 5.00 0.013 *** 2 13 29.5 29.5 232.61 168.04 179.72 0.00 36. 0. 3 0.50 0.00 0.05 0 14 95 0 0. 90. 0. 5.00 0.013 ^ 2 14 23.2 23.2 48.67 180.05 182.52 0.00 36. 0. 3 0.50 0.00 0.05 0 15 105 0 0. 90. 0. 5.00 0.013 - 2 15 18.5 18.5 77.88 182.52 186.46 0.00 36. 0. 3 0.50 0.00 0.05 0 16 115 0 0. 93. 0. 5.00 0.013 "" 2 16 7.6 7.6 246.61 187.46 201.51 0.00 24. 0. 3 0.50 0.00 0.05 0 17 0 0 0. 0. 0. 5.00 0.013 2 17 7.6 7.6 298.07 201.84 204.79 0.00 24. 0. 3 0.50 0.00 0.05 0 18 125 0 0. 91. 0. 5.00 0.013 2 18 5.3 5.3 250.47 205.29 207.76 0.00 18. 0. 3 0.50 0.00 0.05 0 19 0 0 0. 0. 0. 5.00 0.013 2 19 5.3 5.3 113.42 208.09 209.25 0.00 18. 0. 3 0.50 0.00 0.05 0 20 135 0 90. 90. 0. S.OO 0.013 •tt» ,,„ 2 20 0.9 0.9 45.38 209.58 210.04 0.00 18. 0. 1 0.00 0.20 0.05 0 0 0 0 0. 0. 0. 4.00 0.013 * 2 25 42.2 42.2 65.68 101.59 101.92 0.00 36. 0. 3 0.50 0.00 0.05 8 26 35 0 93. 95. 0. 4.00 0.013 2 26 7.2 7.2 29.38 103.42 104.05 0.00 18. 0. 1 0.00~'6.20 0.05 0 0.0 0 0. 0. 0. 4.00 0.013 -M 2 35 11.2 11.2 3.38 102.92 103.18 0.00 24. 0. 1 0.00 0.20 0.05 26 0 0 0 0. 0. 0. 4.00 0.013 mi 2 45 5.7 5.7 65.81 103.12 114.85 0.00 18. 0. 1 0.00 0.20 0.18 8 0 0 0 0. 0. 0. 3.00 0.013 •M* „ 2 50 2.5 2.5 40.07 125.30 129.62 0.00 18. 0. 1 0.00 0.20 0.30 9 0 0 0 0. 0. 0. 3.00 0.013 *" 2 55 37.3 37.3 166.23 155.40 159.58 0.00 30. 0. 3 0.50 0.00 0.05 11 56 0 0 85. 0. 0. 5.00 0.013 2 56 37.3 37.3 102.24 159.91 197.49 0.00 30. 0. 3 0.50 0.20 0.05 0 57 0 0 5. 0. 0. 2.46 0.013 *» 2 57 37.3 37.3 103.73 197.82 198.85 0.00 30. 0. 3 0.50 0.20 0.05 0 58 0 0 5. 0. 0. 4.00 0.013 LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS (INPUT) REPT: PC/RD4412.1 DATE: 05/08/05 PAGE 2 PROJECT: LA COSTA GREENS NEIGHBORHOOD 1.17 DESIGNER: TF\AH **e CD L2 MAX Q ADJ Q LENGTH FL 1 PL 2 CTL/TW D W S KJ KE KM LC LI L3 L4 Al A3 A4 J N ^ 2 58 34.0 34.0 30.89 199.18 199.49 0.00 30. 0. 3 0.50 0.20 0.05 0 59 70 0 87. 0. 0. 5.00 0.013 *• 2 59 31.6 31.6 66.84 199.82 201.10 0.00 30. 0. 3 0.50 0.20 0.05 0 60 73 0 0. 90. 0. 4.00 0.013 tM 2 60 30.2 30.2 68.81 201.43 202.79 0.00 30. 0. 3 0.50 0.20 0.05 0 61 0 0 0. 0. 0. 2.46 0.013 -*K 2 61 29.9 29.9 79.33 203.12 213.80 0.00 30. 0. 1 0.00 0.20 0.05 0 0 0 0 0. 0. 0. 4.04 0.013 <*• 2 70 2.8 2.8 5.75 200.82 200.88 0.00 IB. 0. 1 0.00 0.20 0.05 60 0 0 0 0. 0. 0. 4.00 0.013 •im m 2 73 1.7 1.7 21.07 202.43 206.20 0.00 18. 0. 1 0.00 0.20 0.05 60 0 0 0 0. 0. 0. 2.46 0.013 « 2 75 4.9 4.9 25.25 159.75 160.60 0.00 18. 0. 1 0.00 0.20 0.05 12 0 0 0 0. 0. 0. 4.00 0.013 — 2 85 3.5 3.5 5.25 159.75 160.24 0.00 18. 0. 1 0.00 0.20 0.05 12 0 0 0 0. 0. 0. 4.00 0.013 2 95 8.2 8.2 5.26 181.22 181.66 0.00 18. 0. 1 0.00 0.20 0.05 14 0 0 0 0. 0. 0. 4.00 0.013 Ml 2 105 5.4 5.4 25.75 183.32 186.88 0.00 18. 0. 1 0.00 0.20 0.05 15 0 0 0 0. 0. 0. 4.00 0.013 — 2 115 11.3 11.3 133.06 187.46 191.56 0.00 24. 0. 3 0.50 0.00 0.05 16 116 0 0 0. 0. 0. 5.00 0.013 ,» 2 116 11.3 11.3 66.51 191.89 197.95 0.00 24. 0. 3 0.50 0.00 0.05 0 117 0 0 90. 0. 0. 4.50 0.013 ** 2 117 11.3 11.3 126.49 198.28 202.53 0.00 24. 0. 3 0.50 0.00 0.05 0 118 0 0 0. 0. 0. 4.00 0.013 2 118 11.3 11.3 39.68 202.86 216.70 0.00 24. 0. 3 0.50 0.20 0.05 0 119 0 0 63. 0. 0. 4.00 0.013 -&W 2 119 2.9 2.9 28.73 217.20 217.50 0.00 18. 0. 1 0.00 0.20 0.05 0 0 0 0 0. 0. 0. 2.46 0.013 2 125 2.8 2.8 5.26 205.29 205.82 0.00 18. 0. 1 0.00 0.20 0.05 18 0 0 0 0. 0. 0. 4.00 0.013«** ,,„ 2 135 4.8 4.8 4.43 209.58 210.04 0.00 18. 0. 1 0.00 0.20 0.05 20 0 0 0 0. 0. 0. 4.00 0.013 LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 05/08/05 PAGE 1 PROJECT: LA COSTA GREENS NEIGHBORHOOD 1.17 DESIGNER: TF\AH LINE Q D W DN DC FLOW SF-FULL VI V 2 FL 1 FL 2 HG 1 HG 2 D 1 ' NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) D 2 TW TW (FT) CALC CK REMARKS 1 HYDRAULIC GRADE LINE CONTROL = 98.10 5 110.1 54 0 1.88 3.08 PART 0.00313 15.6 11.5 97.00 99.67 99.06 102.29 2.06 2.62 0.00 0.00 1W 6 110.1 54 0 2.79 3.08 PART 0.00313 9.9 9.8 99.84 99.87 102.81 102.86 2.97 2.99 0.00 0.00 *" 7 110.1 54 0 2.99 3.08 PART 0.00313 9.8 9.5 99.87 100.12 102.86 103,20 2.99 3.08 0.00 0.00 X - 0.00 X(N) . 16.88 m 8 67.2 36 0 1.19 2.61 PART 0.01015 25.8 26.4 101.59 123.47 102.78 124.64 1.19 1.17 0.00 0.00 HJ ® DJT * 9 64.7 36 0 1.11 2.58 PART 0.00941 27.1 19.7 123.80 145.15 124.91 146.56 1.11 1.41 0.00 0.00 m 10 64.7 36 0 1.40 2.58 PART 0.00941 19.1 10.0 145.48 154.90 146.93 157.48 1.45 2.58 0.00 0.00m m 11 36.2 36 0 1.06 1.95 SEAL 0.00295 5.1 12.5 155.23 158.25 159.60 159.54 4.37 1.29 0.00 0.00 HYD JUMP X = 33.30 X(N) = 0.00 X(J) - 33.30 F(J) = 17.20 D(BJ) = 1.17 D (AJ) =• 3.11 •tf 12 29.5 36 0 0.95 1.76 PART 0.00196 15.4 17.1 158.58 167.71 159.53 168.59 0.95 0.88 0.00 0.00 ** X = 0.00 X(N) = 101.12 JH 13 29.5 36 0 0.90 1.76 PART 0.00196 16.4 10.4 168.04 179.72 168.94 180.99 0.90 1.27 0.00 0.00 X = 0.00 X(N) = 67.37 •— 14 23.2 36 0 0.79 1.55 PART 0.00121 13.4 9.7 180.05 182.52 180.93 183.64 0.88 1.12 0.00 0.00 15 18.5 36 0 0.71 1.37 PART 0.00077 13.4 5.9 182.52 186.46 183.27 187.83 0.75 1.37 0.00 0.00 mt 16 7.6 24 0 0.51 0.98 PART 0.00113 12.1 8.6 137.46 201.51 187.97 202.16 0.51 0.65 0.00 0.00 HJ ® DJT *• X = 0.00 X(N) = 70.88 17 7.6 24 0 0.80 0.98 PART 0.00113 6.5 5.9 201.84 204.79 202.64 205.65 0.80 0.86 0.00 0.00 "* X = 0.00 X(N) = 254.97 — 18 5.3 18 0 0.76 0.89 PART 0.00255 5.9 8.3 205.29 207.76 206.05 208.34 0.76 0.58 0.00 0.00 X - 0.00 X(N) - 168.89 m 19 5.3 18 0 0.75 0.89 PART 0.00255 6.0 4.9 208.09 209.25 208.84 210.14 0.75 0.89 0.00 0.00 X - 0.00 X(N) = 71.06 * 20 0.9 18 0 0.30 0.35 PART 0.00007 0.6 1.1 209.58 210.04 210.76 210.75 1.18 0.71 210.77 0.00 HYDRAULIC GRADE LINE CONTROL . 102.86 25 42.2 36 0 2.21 2.12 PART 0.00400 7.9 7.6 101.59 101.92 103.71 104.13 2.12 2.21 0.00 0.00 X = 0.00 X(N) - 27.64 26 7.2 18 0 0.72 1.04 FULL 0.00470 4.1 4.1 103.42 104.05 106.96 107.10 3.54 3.05 107.41 0.00 LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 05/08/05 PAGE 2 PROJECT: LA COSTA GREENS NEIGHBORHOOD 1.17 DESIGNER: TF\AH LINE Q D W DN DC 1 NO (CFS) (IN) (IN) (FT) (FT) FLOW SF-FULL TYPE (FT/FT) V1V2 FL1 FL2 HG1 HG2 Dl D2 TW TW (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS 26 HYDRAULIC GRADE LINE CONTROL = 105.55 35 11.2 24 0 0.57 1.20 FULL 0.00245 3.6 3.6 102.92 103.18 105.55 105.56 2.63 2.38 105.80 0.00 7 HYDRAULIC GRADE LINE CONTROL - 102.99 45 5.7 18 0 0.36 0.92 PART 0.00294 17.3 5.0 103.12 114.85 103.48 115.77 0.36 0.92 116.24 0.00 X = 0.00 X(N) = 16.01 9 HYDRAULIC GRADE LINE CONTROL = 124.78 50 2.5 18 0 0.27 0.60 PART 0.00057 11.4 3.8 125.30 129.62 125.57 130.22 0.27 0.60 130.49 0.00 X =• 0.00 X(N) = 1.86 „ 11 HYDRAULIC GRADE LINE CONTROL - 158.54 55 37.3 30 0 1.36 2.06 SEAL 0.00827 7.6 8.6 155.40 159.58 158.54 161.64 3.14 2.06 X = 11.98 X(N) - 0.00 X(J) = 11.98 F(J) = 17.08 D(BJ) = 1.39 D(AJ) - 2.92 0.00 0.00 HYD JUMP 56 37.3 30 0 0.65 2.06 PART 0.00827 34.8 11.3 159.91 197.49 160.59 199.08 0.68 1.59 0.00 0.00 HJ (9 DJT 57 37.3 30 0 1.88 2.06 PART 0.00827 9.4 8.6 197.82 198.85 199.70 200.91 1.88 2.06 X = 0.00 X(N) - 28.95 58 34.0 30 0 1.73 1.98 PART 0.00687 7.3 8.1 199.18 199.49 201.41 201.47 2.23 1.98 X - 0.00 X(N) = 0.00 X(J) =• 8.76 F (J) - 12.47 D(BJ) - 1.83 D(AJ) = 2.14 0.00 0.00 0.00 0.00 HYD JUMP 59 31.6 30 0 1.33 1.91 SEAL 0.00593 6.4 15.8 199.82 201.10 203.26 202.17 3.44 1.07 X - 30.02 X(N) = 0.00 X(J) = 30.02 F(J) = 15.13 D(BJ) = 1.15 D(AJ) = 3.04 0.00 0.00 HYD JUMP 60 30.2 30 0 1.28 1.87 PART 0.00542 15.9 21.7 201.43 202.79 202.45 203.61 1.02 0.82 0.00 0.00 61 29.9 30 0 0.76 1.86 PART 0.00531 21.4 7.6 203.12 213.80 203.94 215.66 0.82 1.86 216.75 0.00 60 HYDRAULIC GRADE LINE CONTROL = 202.31 70 2.8 18 0 0.52 0.63 PART 0.00071 1.6 1.6 200.82 200.88 202.31 202.31 1.49 1.43 202.36 0.00 LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: 05/08/05 PAGE 3 PROJECT: LA COSTA GREENS NEIGHBORHOOD 1.17• DESIGNER: TF\AH • LINE Q D W DN DC FLOW SF-FULL VI V 2 FL 1 * NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) FL 2 KG 1 HG 2 D 1 D 2 TW TW (FT) CALC CALC (FT) (FT) CALC CK REMARKS 60 HYDRAULIC GRADE LINE CONTROL = 202.31 73 1.7 18 0 0.20 0.49 PART 0.00026 12.3 3.4 202.43 206.20 202.63 206.69 0.20 0.49 206.90 0.00 X = 0.00 X(N) = 4.09 11 HYDRAULIC GRADE LINE CONTROL = 159.53 75 4.9 18 0 0.52 0.85 PART 0.00218 8.2 4.8 159.75 160.60 160.31 161.45 0.56 0.85 161.87 0.00 11 HYDRAULIC GRADE LINE CONTROL = 159.53 85 3.5 18 0 0.33 0.71 PART 0.00111 7.4 4.2 159.75 160.24 160.22 160.95 0.47 0.71 161.29 0.00 13 HYDRAULIC GRADE LINE CONTROL = 180.96 95 8.2 18 0 0.53 1.11 PART 0.00609 8.8 5.9 181.22 181.66 182.00 182.77 0.78 1.11 183.41 0.00 * 14 HYDRAULIC GRADE LINE CONTROL = 183.45 I 105 5.4 18 0 0.38 0.90 PART 0.00264 13.5 4.9 183.32 186.88 183.73 187.78 0.41 0.90 188.22 0.00 16 HYDRAULIC GRADE LINE CONTROL = 187.90 » 115 11.3 24 0 0.73 1.21 PART 0.00249 10.9 15.9 187.46 191.56 188.19 192.11 0.73 0.55 0.00 0.00 * X = 0.00 X(N) = 10.10 116 11.3 24 0 0.55 1.21 PART 0.00249 15.1 5.7 191.89 197.95 192.46 199.16 0.57 1.21 0.00 0.00I ,117 11.3 24 0 0.71 1.21 PART 0.00249 11.8 11.8 198.28 202.53 198.97 203.22 0.69 0.69 0.00 O.OOHJSUJT X = 0.00 X(N) = 99.32 HJ <9 DJT *118 11.3 24 0 0.39 1.21 PART 0.00249 24.5 5.7 202.86 216.70 203.27 217.91 0.41 1.21 0.00 0.00 119 2.9 18 0 0.53 0.64 SEAL 0.00076 1.6 1.7 217.20 217.50 218.94 218.96 1.74 1.46 219.01 0.00 - X = 24.74 X(N) = 0.00 LA COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REFT: PC/RD4412.2 DATE: 05/08/05 PAGE 4 PROJECT: LA COSTA GREENS NEIGHBORHOOD 1.17 'DESIGNER: TF\AH LINE Q D W DN DC FLOW SF-FULL V 1 V 2 FL 1 FL 2 HG 1 HG 2 D 1 D 2 TW TW "" NO (CFS) (IN) (IN) (FT) (FT) TYPE (FT/FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK REMARKS 18 HYDRAULIC GRADE LINE CONTROL = 205.85 125 2.8 18 0 0.29 0.63 PART 0.00071 4.7 4.0 205.29 205.82 205.85 206.45 0.56 0.63 206.74 0.00 20 HYDRAULIC GRADE LINE CONTROL . 210.45 .135 4.8 18 0 0.38 0.84 PART 0.00209 8.0 4.7 209.58 210.04 210.14 210.88 0.56 0.84 211.29 0.00 VI, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL, 2, D 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ ffl UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ ® DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE EOJ 5/ 8/2005 19:18 V Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 5 INLET & CATCH BASIN SIZING 5.1 - Inlet Sizing & Calculations AH ah H:\REPORTS\2352M09 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM CURB INLET SIZING LA COSTA GREENS - NEIGHBORHOOD 1.17 Type of Inlet ON-GRADE ON-GRADE ON-GRADE ON-GRADE ON-GRADE ON-GRADE ON-GRADE ON-GRADE Inlet at Node 174 111 121 146 116* 141* 116* 141* Street Slope1 S (%) 0.87% 1.66% 5.95% 4.15% 5.95% 4.15% 5.95% 4.15% Surface Flow2 Q (cfs) 0.9 2.8 5.4 4.9 8.2 3.5 7.2 4.5 Gutter Depression a (ft) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 Flow Depth3 y(ft) 0.25 0.31 0.31 0.31 0.35 0.29 0.34 0.31 Required Length of Opening4 (ft) 2.9 7.9 15.0 13.8 21.0 10.3 18.9 12.6 Use Length 5 (ft) 5 9 16 15 22 12 20 14 1 From street profiles in Improvement Plans 2 From AES ouput 3 From Manning's Equation: Q = (1.49/n)*A*S1/2*R2/3 The hydraulic radius, R, and area, A, are expressed as a function of the flow depth, y. Typical cross-section of a Type G gutter is used for the analysis. 4 Per City of Carlsbad Standards From Equation: Q = 0.7L(a+y)A3/2 5 Length shown on plans (Required Length of Opening + 1 foot) * The inlet at Node 116 would need to have a length of 22-ft in order to capture the 8.2-cfs draining into it. However, the inlet at Node 116 has been designed to have a length of 20-ft which will capture 7.2-cfs. The additional 1.0-cfs will bypass the inlet at Node 116 and will be captured by the next downstream inlet at Node 141 increasing its length from 12-ftto14-ft. Type of Inlet SUMP SUMP SUMP SUMP SUMP SUMP Inlet at Node 103 171 158 131 156 163 Street Slope1 S (%) N\A N\A N\A N\A N\A N\A Surface Flow2 Q (cfs) 6.9 4.8 2.8 3.8 11.2 7.2 Gutter Depression a (ft) N\A N\A N\A N\A N\A N\A Flow Depth y(ft) N\A N\A N\A N\A N\A N\A Required Length of Opening3 (ft) 3.5 2.4 1.4 1.9 5.6 3.6 Use Length 5 (ft) 5 5 5 5 7 5 1 From street profiles in Improvement Plans 2 From AES ouput 3 Per City of Carlsbad Standards From Ratio: Q/L = 2 5 Length shown on plans (Required Length of Opening + 1 foot) 5/6/2005 1 of 1 H:\EXCEL\2352\109\2NDSUBMITTAL\INLETS.xls Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 5 INLET & CATCH BASIN SIZING 5.2 - Catch Basin Sizing & Calculations AH ah H:\REPORTS\2352\109 Greens 1.17N2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 8:30 PM LA COSTA GREENS - NEIGHBORHOOD 1.17 TYPE F CATCH BASIN Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): 3' 4.5" 13.5" y = 0.405' (Centroid) Qmax=0.6AV(2gh) Qmax=0.6AV(2gh) Qmax= 0.6(1.875+0.1875)[V(2)(32.2)(1.125-0.405)] Qmax= 8.42 cfs per opening NODE 182 Q= 1.71 cfs One Opening: Northwesterly Side NODE 151* Q= 5.72 cfs One Opening: Northerly Side Southerly Side The catch basin at Node 151 is an existing catch basin per Neighborhood 1.16. 5/6/2005 1 of 4 H:\EXCEL\2352\109\2ND SUBMITTALVCB TYPE F.xls LA COSTA GREENS NEIGHBORHOOD 1.17 MODIFIED CATCH BASIN TYPE "F" MAXIMUM CAPACITY CALCULATION Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): V H= 0.0 NODE 180 (Q = 2.94cfs) One Opening: Westerly Side W= X= X-6"= EAy= IA= ~y=IAy/IA= 2.46 (ft) 13.5 (in) 7.5 (in) 0.68 (ft3) 1.69 (ft2) 0.41 (ft) h= 0.72 (ft) H= 0.00 (ft) H+h= 0.72 (ft) Qmax=0.6AV(2gh) Input width of opening Input depth from top of box to flowline Height of rectangular opening Sum of each area times each centroid Sum of areas Height of effective centroid Computed head to top of box (X - y) Additional ponding height allowable Total height above centroid Qmax = 6.90 cfs per opening *Assumes no clogging of opening 5/6/2005 2 of 4 H:\EXCEL\2352\109\2ND SUBMITTALACB TYPE F.xls LA COSTA GREENS NEIGHBORHOOD 1.17 MODIFIED CATCH BASIN TYPE "F" MAXIMUM CAPACITY CALCULATION Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): V H= 0.0 X= 13.5 (in) NODE 157 (For emergency overflow only) Two Openings: Northwesterly Side and Southeasterly Side w= x= X-6"= EAy= ZA= ~y=ZAy/EA= h= H= H+h= 2.46 (ft) 13.5 (in) 7.5 (in) 0.68 (ft3) 1.69 (ft2) 0.41 (ft) 0.72 (ft) 0.00 (ft) 0.72 (ft) Input width of opening Input depth from top of box to flowline Height of rectangular opening Sum of each area times each centroid Sum of areas Height of effective centroid Computed head to top of box (X - y) Additional ponding height allowable Total height above centroid Qmax=0.6AV(2gh) Qmax = 6.90 cfs per opening *Assumes no clogging of opening 5/6/2005 3 of 4 H:\EXCEL\2352\109\2ND SUBMITTAL\CB TYPE F.xls LA COSTA GREENS NEIGHBORHOOD 1.17 MODIFIED CATCH BASIN TYPE "F" MAXIMUM CAPACITY CALCULATION Dimensions obtained from City of San Diego Standard Drawings (Drawing D-7): V H= 0.0 NODE 136 (For emergency overflow only) Two Openings: Northeasterly Side and Southwesterly Side W= X= X-6"= EAy= EA= "y=IAy/TA= 2.46 (ft) 13.5 (in) 7.5 (in) 0.68 (ft3) 1.69 (ft2) 0.41 (ft) h= 0.72 (ft) H= 0.00 (ft) H+h= 0.72 (ft) Qmax=0.6AV(2gh) Input width of opening Input depth from top of box to flowline Height of rectangular opening Sum of each area times each centroid Sum of areas Height of effective centroid Computed head to top of box (X - y) Additional ponding height allowable Total height above centroid Qmax = 6.90 cfs per opening *Assumes no clogging of opening 5/6/2005 4 of 4 H:\EXCEL\2352\109\2ND SUBMITTAL\CB TYPE F.xls VI Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 6 DRAINAGE DITCH SIZING AH ah H:\REPORTS\2352\109Greens 1.17\2NDSUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 8:30 PM DITCH SIZING LA COSTA GREENS NEIGHBORHOOD 1.17 Ditch ID Node1 A B C D E* Conveyed Flow2 (cfs) 2.94 1.71 3.09 28.92 2.81 Ditch Size3 (ft) 3 3 3 4 3 1 Refer to Developed Condition Hydrology Map (Chapter IX) 2 Flows from AES output (Chapter III) 3 Refer to Grading Plans for ditch detail (Sheet 3) * Ditch E is an existing ditch built per Neighborhood 1.16 Maximum Capacities for Brow Ditches Ditch Size (ft) 3 4 Ditch Minimum Slope (%) 1.00 1.00 Maximum Flow (cfs) 13.98 37.48 NOTES: Based on a ditch minimum slope, s = 1.00%, and Manning's n = 0.015 Refer to attached FlowMaster output for calculations (Chapter VI) Refer to Sheet Grading Plans for ditch detail (Sheet 3) 5/6/2005 1 of 1 H:\EXCEL\2352\109\2ND SUBMITTAL\DITCH.xls Worksheet for Mod. Type D, W=3' Flow Element: Friction Method: Solve For: Circular Pipe Manning Formula Normal Depth Roughness Coefficient: Channel Slope: Diameter: Discharge: 0.015 1.00 3.00 13.98 ft fP/s Normal Depth: Flow Area: Wetted Perimeter: Top Width: Critical Depth: Percent Full: Critical Slope: Velocity: Velocity Head: Specific Energy: Froude Number: Maximum Discharge: Discharge Full: Slope Full: Flow Type: 1.00 2.08 3.70 2.83 1.19 33.5 0.00530 6.73 0.70 1.71 1.39 62.18 57.80 0.00058 Supercritical ft ft2 ft ft ft % ft/ft ft/s ft ft fP/s fP/s ft/ft Downstream Depth: Length: Number Of Steps: 0.00 0.00 0 ft ft Upstream Depth: 0.00 Profile Description: N/A Profile Headloss: 0.00 Average End Depth Over Rise: 0.00 Normal Depth Over Rise: 0.00 Downstream Velocity: 0.00 ft/s Worksheet for Mod. Type D, W=4' Flow Element: Friction Method: Solve For. Circular Pipe Manning Formula Normal Depth Roughness Coefficient: Channel Slope: Diameter: Discharge: 0.015 1.00 4.00 37.48 ft fP/s Normal Depth: Flow Area: Wetted Perimeter: Top Width: Critical Depth: Percent Full: Critical Slope: Velocity: Velocity Head: Specific Energy: Froude Number: Maximum Discharge: Discharge Full: Slope Full: Flow Type: 1.50 4.32 5.28 3.88 1.82 37.6 0.00498 8.67 1.17 2.67 1.45 133.91 124.48 0.00091 Supercritical J»*!'5«BKI»»«KmWw ft ft2 ft ft ft % ft/ft ft/S ft ft fP/s fP/S ft/ft Downstream Depth: Length: Number Of Steps: 0.00 0.00 0 Upstream Depth: 0.00 Profile Description: N/A Profile Headless: 0.00 Average End Depth Over Rise: 0.00 Normal Depth Over Rise: 0.00 Downstream Velocity: 0.00 ft/s DRAINAGE DITCH CROSS SECTION Project Description Worksheet Flow Element Method Solve For Cross Section Circular Channe Manning's Formi Channel Depth Section Data Mannings Coeffic).015 Slope Depth Diameter Discharge Diameter T iboard = C _L Freeboard = 0.50 ft Depth NTS h:\flow-m\2167\4\4thsubmittal\100yrbditch.fm2 06/1 8/03 03:34:28 PM © Haestad Methods, Inc. Hunsaker & Associates - San Diego, Inc. 37 Brookside Road Waterbury, CT 06708 USA Project Engineer Anabella Hedman FlowMaster v6.1 [614o] (203)755-1666 Page 1 of 1 VII Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 7 HEADWATER DEPTH CALCULATION AH ah H:\REPORTS2352\109 Greens 1.1TOND SUBMITTAL\A02.doc W.O. 2352-109 5/8/2005 6:30 PM HEADWATER DEPTH CALCULATION LA COSTA GREENS - NEIGHBORHOOD 1.17 Given: Location: Node 124 Diameter: D = 30 in (From storm drain profile) Discharge: Q= 28.92 cfs (From AES Output) Per Hydraulic Design of Highway Culverts: Appendix D - Design Charts, Tables, and Forms Chart 1 - Headwater Depth for Concrete Pipe Culverts with Inlet Control HW/D = HW = HW = 1.23 36.9 in 3.08ft Ground Surface Elevation = 217.00 ft (From storm drain profile) U/S Culvert Invert (Entrance) = 213.80 ft (From storm drain profile) HW Elevation (w/o freeboard) = 216.88 ft HWEIev= 216.88ft <; Ground Surface Elev = 217.00ft 5/6/2005 H:\EXCEL\2352\109\2ND SUBMITTAL\HW Depth Calc.xls C CHART-tO BUREAU OF JAM. 13« SCALES 2ft3 tD MAY S64 131 H£ADY^ATER DEPTH FOR CONCRETE PIPE CULVERTS WITH INLET CONTROL VIII Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.1 100-Year, 6-Hour Isopluvial Plan AH ah H:\REPORTS\2352\109 Greens 1.17N2ND SUBMITTAUA02.doc W.O. 2352-109 5/6/2005 8:30 PM Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.2 Intensity-Duration Design Chart AH ah H:\REPORTS\2352\109 Greens 1.17\2NO SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM i *i i i . i .5 — t , ii it ti ii ii JNTENSITY-DU/V\TAV DESIGN CHART i- i i t j Equation: I •••» 7.44 P, D'" Intensity (Jn./Hr.) Pfi = 6 Hr, Precipitation (In.] 15 20 30 40 50 1 5 6 Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr, amounts for the selected frequency. These maps are printed in the County Hydrology Manual (10, 50 and 100 yr. maps included in ths Design and Procedure Manual). 2} Adjust 6 hr. precipitation (if necessary) so that it is within the range of 45X to 652! of the 24 hr. precipitation. (Not applicable to Desert) 3) Plat 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This line is the intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency \00 yr. " P24= ,* %* 2) Adjusted *Pfi 3) t_ • 2..~=t-24 in. min. 4) I 1n/hr. *Not Applicable to Desert Region APPENDIX XI IV-A-14 r» ^ —.j T /or Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.3 Nomograph for Determination of Time of Concentration (Tc) for Natural Watersheds AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/8/2005 6:30 PM l//.3LJ\ \ H ) 77S Of CO; LengM of //? <?X?!/o://i?/7 aJoag e/fcch're s/0&<s /i/ie (See /Jppetic/fr X-B) Z. h MS/cs— 20aa i™« /MA *a v » *^*^4/j* soo -•800 . ~ - 760 - £06 \ -• "" \ . r— soo \s J — *w ^5L ^~ ""^?/v> Vr. ^?—*JL/L/ N "C*^ x*/?/) \ 2 —<b f tX X \ ~ \ \ ~ \~ /na / -^— » trtX * "-• •XV ~* ~~ .y-x, • ' fl.f"^~ w tr *^* ~^ — /^ -^ — 30 NOTE• JFOR NATURAr'wATERSHEDs] •— 20 | ADD TEN MINUTES TO 5 H COMPUTED TIME OF CON- ! [CE_NTRATION. Jl — JO — 5 i * SAN DIEGO COUNTY nCDAOTVJCXIT f\C fr\r-t+> >• mf,-~~>.~~ __ — fe*!1 Matis-s 4— 3 — 2. — / — 'f~Stj\j*•^-3000 "• V ,4 j\ * j* — 4^0 \— 3000 ^ \ — 2OOO \ — /S00 \ — S6 00 — J400 — /2OO — /ao0 — 9OO — 800 — 700 — £00 — tt£ — 4OO — 3OO — goo f M/fiu/-cs =- 240 ••«• ~— /80 '•* ^— •• ~— /2O — too — 30 — 80 — 70 — £0 •• — SO — 40 — 30 - — zo — J8 — /£ — /<* — /2 JO — 9 — a — 7 — £ S — 4- — 3 £ NOMOGRAPH FOR DETERMINATIONGE-TJAlsr. Ac,X,OMOOJTtt,«Xi-a*J,,/T-.» Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.4 Urban Areas Overland Time of Flow Curves AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 23S2-109 5/6/2005 8:30 PM -5i*7 G/'reff •• If/tffM of /Vow • 300 St S/opc */.0X Coeffa/e:/;/ o/ fo/iofr. C -.S0 SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES URBAN AREAS OVERLAND TIME' OF FLOW CURVES Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.5 Runoff Coefficients (Rational Method) AH ah H:\REPORTS\2352\109Greens1.17\2NDSUBMITTAL\A02.ltoc W.O. 2352-109 5/6/2005 6:30 PM RUNOFF COEFFICIENTS (RATIONAL METHOD) DEVELOPED AREAS (URBANE Coefficient. C „ Soil Group m Land Use A- J3 C_ D Residential: i Single Family (.-.•••' . ' .40 .45 .50 .55 Multi-Units . .45 .50 .60 .70 Mobile Homes .45 .50 .55 .65 ; Rural (lots greater than 1/2 acre) .30 .35 .40 .45' Commercial {Z] • ' 80% Impervious .70 .75 .80 .85 Industrial.121 90% Impervious . .80 .85 .90 .95 NOTES: 111 Soil Group maps are available at the offices of the Department of Public Works. I2> Where actual conditions deviate significantly from the tabulated imp'erviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient.be less than 0.50. For example: Consider commercial property on D soil group. Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C = 5J) x 0.85 = 0.53 - 80 IV-A-9 Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.6 Gutter and Roadway Discharge-Velocity Chart AH ah H:\REPORTS\2352M09 Greens 1.17\2ND SUBMITTAL\A02.aoc W.O. 2352-108 5/6/2005 6:30 PM RESIDENTIAL STREET ONE SIDE ONLY 0.4 EXAMPLE: Given: Q = 10 I MM! 5 6 7 8 9 10 DISCHARGE (C. F S.) S = 2.5 % I 20 I 30 40 50 Chart gives: Depth = 0.4, Velocity = 4.4 f.p.s. SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES DESI-GN MANUAL, / /j —s GUTTEf: AND ROADWAY DISCHARGE-VELOCITY CHART Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.7 100-Year Offsite Hydrologic Analysis & Hydrology Map for Existing Development AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.0.2352-109 5/6/2005 6:30 PM RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM 'PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego/ Inc. 10179 Huennekens Street San Diego, California (619) 558-4500 Planning Engineering Surveying ************************** DESCRIPTION OF STUDY ************************** * LA COSTA GREENS 1.17 & 1.16 H&A W.0.12352-62 * * 100 YEAR OFFSITE EXISTING CONDITIONS HYDROLOGY ANALYSIS * * October 22, 2004. * ************************************************************************** FILE NAME: H:\AES99\2352\62\OS-100.DAT TIME/DATE OF STUDY: 13:48 10/22/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE - 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE - 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT - .6300 INITIAL SUBAREA FLOW-LENGTH - 65.00 UPSTREAM ELEVATION - 293.50 DOWNSTREAM ELEVATION - 292.50 ELEVATION DIFFERENCE - 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) - 5.908 TIME OF CONCENTRATION ASSUMED AS 6-MINDTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 6.325 SUBAREA RUNOFF(CFS)' = 1.20 TOTAL AREA(ACRES) = 0.30 TOTAL RUNOFF(CFS) - • 1.20 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<«« UPSTREAM ELEVATION = 292.50 DOWNSTREAM ELEVATION - 263.00 STREET LENGTH(FEET) - 917.70 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) - 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK - 10.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) - 11.88 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) - 0.35 HALFSTREET FLOODWIDTH(FEET) = 11.02 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.46 PRODUCT OF DEPTHSVELOCITY - 1.55 STREETFLOW TRAVELTIME(MIN) = 3.43 TC(MIN) = 9.43 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.725 *USER SPECIFIED1SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT - .6300 SUBAREA AREA(ACRES) = 7.13 SUBAREA RUNOFF(CFS) - 21.23 SUMMED AREA(ACRES) = 7.43 TOTAL RUNOFF(CFS) = 22.42 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) =0.42 HALFSTREET FLOODWIDTH(FEET) = 12.00 FLOW VELOCITY(FEET/SEC.) = 5.23 DEPTH*VELOCITY - 2.17 FLOW PROCESS FROM NODE 102.00 TO NODE 13.00 IS CODE - 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« »»>TRAVELTIME THRU SUBAREA<«« UPSTREAM NODE ELEVATION = 263.00 DOWNSTREAM NODE ELEVATION = 220.00 CHANNEL LENGTH THRU SUBAREA(FEET) - 645'.10 CHANNEL SLOPE = 0.0667 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR - 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 CHANNEL FLOW THRU SUBAREA(CFS) = 22.42 FLOW VELOCITY(FEET/SEC) = 12.67 FLOW DEPTH(FEET) - 0.45 TRAVEL TIME(MIN.) - 0.85 TC(MIN.) - 10.28 FLOW PROCESS FROM NODE 102.00 TO NODE 13.00 IS CODE >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4.470 *USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA (ACRES) - 3.23 SUBAREA RUNOFF (CFS-) = 6.50 TOTAL AREA(ACRES) = 10.66 TOTAL RUNOFF(CFS) - 28.92 TC(MIN) - 10.28 END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) - 28.92 Tc(MIN.) - 10.28 TOTAL AREA(ACRES) - 10.66 END OF RATIONAL METHOD ANALYSIS 1 DISCHARGE POINT Qi™=28.9 CFS AREA=10.7AC oprane HKDBOLoaY MAP FOB LA COSTA GREENS 1.1641.17 Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.8 100-Year Existing Condition Hydrologic Analysis & Hydrology Map AH ah H:\REPORTS\2352M09 Greens 1.17V2ND SUBMITTAHA02.doc W.O. 2352-109 5/6C005 6:30 PM RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego, Inc. 10179 Huennekens Street San Diego, California (619) 558-4500 Planning Engineering Surveying ************************** DESCRIPTION OF STUDY ************************** * LA COSTA GREENS - NEIGHBORHOODS 1.15, 1.16, AND 1.17 * * 100-YEAR EXISTING CONDITION HYDROLOGY ANALYSIS * * W.0.# 2352-62 * FILE NAME: H:\AES99\2352\62\EX100.DAT TIME/DATE OF STUDY: 14:50 10/22/2004 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE =0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED BEGIN BASIN A FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.89(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 295.00 DOWNSTREAM ELEVATION = 215.00 ELEVATION DIFFERENCE = 80.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.068 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 4.39 2.40 TOTAL RUNOFF(CFS)4.39 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 52 »>»COMPUTE NATURAL VALLEY CHANNEL FLOW«<« »»>TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 215.00 DOWNSTREAM NODE ELEVATION = 167.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 800.00 CHANNEL SLOPE = 0.0600 CHANNEL FLOW THRU SUBAREA(CFS) = 4.39 FLOW VELOCITY(FEET/SEC) = 5.01 (PER PLATE D-6.1) TRAVEL TIME(MIN-) = 2.66 TC(MIN.) = 14.55 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.571 *USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 7.01 SUBAREA RUNOFF(CFS) = 11.27 TOTAL AREA(ACRES) = 9.41 TOTAL RUNOFF(CFS) = 15.66 TC(MIN) = 14.55 END BASIN A ANALYSIS BEGIN BASIN C ANALYSIS ***********************************jn FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 13.52(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 1000.00 UPSTREAM ELEVATION = 289.00 DOWNSTREAM ELEVATION = 161.00 ELEVATION DIFFERENCE = 128.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.745 SUBAREA RUNOFF(CFS) = 16.85 TOTAL AREA(ACRES) = 10.00 TOTAL RUNOFF(CFS) = 16.85 FLOW PROCESS FROM NODE 7.00 TO NODE 15.00 IS CODE >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) =13.52 RAINFALL INTENSITY (INCH/HR) = 3.75 TOTAL STREAM AREA (ACRES) = 10.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.85 | END BASIN C4 | BEGIN BASIN Cl FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 21 »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 13.06(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 912.00 UPSTREAM ELEVATION =255.00 DOWNSTREAM ELEVATION = 115.00 ELEVATION DIFFERENCE = 140.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.830 SUBAREA RUNOFF(CFS) = 8.89 TOTAL AREA (ACRES) = 5.16 TOTAL RUNOFF (CFS) = 8.89 FLOW PROCESS FROM NODE 9.00 TO NODE 15.00 IS CODE = 1 »>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.06 RAINFALL INTENSITY(INCH/HR) = 3.83 TOTAL STREAM AREA(ACRES) = 5.16 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.89 | END BASIN Cl I BEGIN BASIN C2 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« s~ = = = = := = — — = = = = := = = = = :=: = = :i: = = := = = = := = = = :=::s = = :==::s=::=s:=:=: —:= = = := —= = = = s = = = = s:=:s = = : *USER SPECIFIED^SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF. CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 12.75(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 801.00 UPSTREAM ELEVATION = 255.00 DOWNSTREAM ELEVATION = 130.00 ELEVATION DIFFERENCE = 125.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.890 SUBAREA RUNOFF(CFS) = 9.19 TOTAL AREA(ACRES) = 5.25 TOTAL RUNOFF(CFS) = 9.19 FLOW PROCESS FROM NODE 11.00 TO NODE ; 12.00 IS CODE = 52 »»>COMPUTE NATURAL VALLEY CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA«<« UPSTREAM NODE ELEVATION = 130.00 DOWNSTREAM NODE ELEVATION = 105.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 241.00 CHANNEL SLOPE = 0.1037 CHANNEL FLOW THRU SUBAREA(CFS) = 9.19 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION FLOW VELOCITY(FEET/SEC) = 7.74 (PER PLATE D-6.1) TRAVEL TIME(MIN-) = 0.52 TC(MIN.) = 13.27 FLOW PROCESS FROM NODE 12.00 TO NODE. 12.00 IS CODE = »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.791 *USER SPECIFIED (SUBAREA) : RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 3.03 SUBAREA RUNOFF(CFS) = 5.17 TOTAL AREA(ACRES) = 8.28 TOTAL RUNOFF(CFS) = 14.36 TC(MIN) = 13.27 FLOW PROCESS FROM NODE 12.00 TO NODE 15.00 IS CODE >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 13.27 RAINFALL INTENSITY(INCH/HR) = 3.79 TOTAL STREAM AREA(ACRES) = 8.28 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.36 4. END BASIN C2, BEGIN BASIN C3 | OFFSITE RATIONAL METHOD ANALYSIS FROM EXISTING DEVELOPMENT TO j THE WEST OF THE PROPOSED LA COSTA 1.17 SITE „ FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 7 »»>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<«« USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 10.28 RAIN INTENSITY(INCH/HOUR) = 4.47 TOTAL AREA(ACRES) = 10.66 TOTAL RUNOFF(CFS) = 28.92 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 52 >»»COMPUTE NATURAL VALLEY CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA<«« UPSTREAM NODE ELEVATION = 240.00 DOWNSTREAM NODE ELEVATION = 128.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 836.00 CHANNEL SLOPE = 0.1340 CHANNEL FLOW THRU SUBAREA(CFS) = 28.92 NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION FLOW VELOCITY(FEET/SEC) = 10.48 (PER PLATE D-6.1) TRAVEL TIME(MIN.) = 1.33 TC(MIN.) = 11.61 FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.132 *USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA (ACRES) = 8.74 SUBAREA RUNOFF (CFS) = 16.25 TOTAL AREA(ACRES) = 19.40 TOTAL RUNOFF(CFS) = 45.17 TC(MIN) = 11.61 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 52 >»»COMPUTE NATURAL VALLEY CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA«<« UPSTREAM NODE ELEVATION = 128.00 DOWNSTREAM NODE ELEVATION = 87.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 482.00 CHANNEL SLOPE = 0.0851 CHANNEL FLOW THRU SUBAREA(CFS) = 45.17 FLOW VELOCITY(FEET/SEC) = 10.96 (PER PLATE D-6.1) TRAVEL TIME(MIN.) = 0.73 TC(MIN.) = 12.34 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = >»»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.972 *USER SPECIFIED(SUBAREA): RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA (ACRES) = 10.08 SUBAREA RUNOFF (CFS) = 18.02 TOTAL AREA(ACRES) = 29.48 TOTAL RUNOFF(CFS) = 63.19 TC(MIN) =12.34 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<«« »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<«« TOTAL NUMBER OF STREAMS = 4 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TIME OF CONCENTRATION(MIN.) = 12.34 RAINFALL INTENSITY(INCH/HR) = 3.97 TOTAL STREAM AREA(ACRES) = 29.48 PEAK FLOW RATE(CFS) AT CONFLUENCE = 63.19 ** CONFLUENCE DATA ** 4 ARE: STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 16.85 13.52 2 8.89 13.06 3 14.36 13.27 4 63.19 12.34 RAINFALL INTENSITY AND TIME CONFLUENCE FORMULA USED FOR ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 101.36 12.34 2 100.52 13.06 3 100.12 13.27 4 99.32 13.52 INTENSITY (INCH/HOUR) 3.745 3.830 3.791 3.972 OF CONCENTRATION 4 STREAMS. INTENSITY (INCH/HOUR) — 3.972 3.830 3.791 3.745 AREA (ACRE) 10.00 5.16 8.28 29.48 RATIO COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 101.36 Tc(MIN.) = TOTAL AREA (ACRES) = 52.92 12.34 END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 101.36 52.92 Tc(MIN.)12.34 END OF RATIONAL METHOD ANALYSIS 1 Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.9 Excerpts from the 100-Year Mass-Graded Hydrologic Analysis & Hydrology Map AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.0.2352-109 5/6/2005 6:30 PM DRAINAGE STUDY for LA COSTA GREENS NEIGHBORHOOD 1.16 CT 99-03 City of Carlsbad, California Prepared for: Real Estate Collateral Management Company c/o Morrow Development 1903 Wright Place Suite 180 Carlsbad, CA 92008 W.O. 2352-112 January 7, 2004 Hunsaker & Associates San Diego, Inc. Raymond L. Martin, R.C.E. Vice President AH:ah H:\REPORTS\2352V112 Greens 1.18URD SUBMITTAlM03.doc W.O. 2352-112 2/15/2005 8:14 PM FLOW PROCESS FROM NODE 114.00 TO NODE 114.00 IS CODE = 10 >»»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <«« FLOW PROCESS FROM NODE 115.00 TO NODE 11S.OO IS CODE = 21 »>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«« *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7000 INITIAL SUBAREA FLOW-LENGTH = 380.00 UPSTREAM ELEVATION = 126.80 DOWNSTREAM ELEVATION = 114.00 ELEVATION DIFFERENCE = 12.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.363 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.746 SUBAREA RUNOFF(CFS) = 2.53 TOTAL AREA(ACRES) = 0.76 TOTAL RUNOFF(CFS) = 2.53 FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = 51 >»»COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA<«« UPSTREAM NODE ELEVATION = 114.00 DOWNSTREAM NODE ELEVATION = 111.10 CHANNEL LENGTH THRU SUBAREA(FEET) = 122.00 CHANNEL SLOPE = 0.0238 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 CHANNEL FLOW THRU SUBAREA(CFS) = 2.53 FLOW VELOCITY(FEET/SEC) = 5.53 FLOW DEPTH(FEET) = 0.48 TRAVEL TIME(MIN.) = 0.37 TC(MIN.) = 9.73 FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.630 *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6600 SUBAREA AREA(ACRES) = 0.34 SUBAREA RUNOFF(CFS) = 1.04 TOTAL AREA(ACRES) = 1.10 TOTAL RUNOFF(CFS) = 3.56 TC(MIN) =9.73 FLOW PROCESS FROM NODE 117.00 TO NODE 117.00 IS CODE = 10 TIME OF CONCENTRATION(MIN.) = 14.19 RAINFALL INTENSITY(INCH/HR) =3.63 TOTAL STREAM AREA(ACRES) = 26.97 PEAK FLOW RATE(CFS) AT CONFLUENCE = 65.89 FLOW PROCESS FROM NODE 118.00 TO NODE 119.00 IS CODE = 21 >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA) : MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .9500 INITIAL SUBAREA FLOW-LENGTH = 364.00 UPSTREAM ELEVATION = 126.80 DOWNSTREAM ELEVATION = 114.00 ELEVATION DIFFERENCE = 12.80 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3.388 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.325 SUBAREA RUNOFF(CFS) = 1.62 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) = 1.62 FLOW PROCESS FROM NODE 119.00 TO NODE 120.00 IS CODE = 51 »>»COMPUTE TRAPEZOIDAL CHANNEL FLOW<«« >»»TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 114.00 DOWNSTREAM NODE ELEVATION = 111.10 CHANNEL LENGTH THRU SUBAREA(FEET) = 119.00 CHANNEL SLOPE = 0.0244 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 CHANNEL FLOW THRU SUBAREA (CFS) = 1.62 FLOW VELOCITY(FEET/SEC) = 4.89 FLOW DEPTH(FEET) = 0.41 TRAVEL TIME(MIN-) = 0.41 TC(MIN.) = 6.41 *********** FLOW PROCESS FROM NODE 119.00 TO NODE -120.00 IS CODE = £ »>»ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<«« 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.063 *USER SPECIFIED(SUBAREA): MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .7300 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 0.97 TOTAL AREA(ACRES) = 0.49 TOTAL RUNOFF(CFS) = 2.60 TC(MIN) = 6.41 RAINFALL INTENSITY(INCH/HR) = 5.50 TOTAL STREAM AREA(ACRES) = 0.69 PEAK FLOW RATE(CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** 2.70 STREAM NUMBER 1 2 RUNOFF (CFS) 23.63 2.70 Tc (MIN.) 12.04 7.45 INTENSITY (INCH/HOUR) 4.036 5.501 AREA (ACRE) 8.79 0.69 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE **• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.04 7.45 5.501 2 25.62 12.04 4.036 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 25.62 Tc(MIN.) = TOTAL AREA(ACRES) = 9.48 12.04 FLOW PROCESS FROM NODE 110.00 TO NODE 113.00 IS CODE »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« >»»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 30.0 INCH PIPE IS 10.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.1 UPSTREAM NODE ELEVATION = 109.26 DOWNSTREAM NODE ELEVATION = 103.92 FLOWLENGTH(FEET) = 94.74 MANNING'S N = 0.013 GIVEN PIPE DIAMETER (INCH) = 30.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 25.62 TRAVEL TIME(MIN.) = 0.10 TC(MIN-) = 12.14 FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<«« »>»USING USER-SPECIFIED PIPESIZE<«« DEPTH OF FLOW IN 30.0 INCH PIPE IS 17.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 8.8 UPSTREAM NODE ELEVATION = 103.59 DOWNSTREAM NODE ELEVATION = 102.42 FLOWLENGTH(FEET) = 104.86 MANNING'S N = 0.013 GIVEN PIPE DIAMETER (INCH) = 30.00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) = 25.62 TRAVEL TIME(MIN.) = 0.20 TC(MIN.) = 12.34 Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.10 Detention Basin Design AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/BQ005 8:30 PM La Costa Greens 1.16 & 1.17 Detention Basin Results 2 YEAR RESULTS Rational Method Hydrograph Calculations for La CjDsta Greens 1.17 1.16, City of Carlsbad, CA #= 36 (7.44 D # (M1N) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 -29 30 31 32 33 34 35 36 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 ' 280 290 300 310 320 330 340 350 360 QlOQ= Tc= PIOO,S= *P6*DA-.645) 1 (IN/HR) 0.00 2.19 1.40 1.08 0.90 0.78 0.69 0.62 0.57 0.53 0.50 0.47 0.44 0.42 0.40 0.38 0.37 0.35 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.27 0.27 0.26 0.26 0.25 0.24 0.24 0.23 0.23 0.23 0.22 0.22 59.8 cfs 10 min 1.3 in (I*D/60) (V1-VO) VOL AVOL (IN) (IN) 0.00 0.37 0.47 0.54 0.60 0.65 0.69 0.73 0.76 0.80 0.83 0.86 0.88 0.91 0.93 0.95 0.98 1.00 1.02 1.04 1.06 1.08 1.09 1.11' 1.13 1.14 1.16 1.18 1.19 1.21 1.22 1.24 1.25 1.26 1.28 1.29 1.30 0.37 0.10 0.07 0.06 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 . c= A= (AV/AJ) \ (INCR) (IN/HR) 2.19 0.61 0.43 0.35 0.30 0.26 0>23 0.21 0.20 0.18 0.17 0.16 0.15 0.15 0.14 0.13 0.13 0.12 0.12 0.11 0.11 0.11 ' 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0,09 0.08 0.08 0.08 0.08 0.08 0.00 0.6 • 55.2 acres (Q=ciA) Q VOL (CFS) (CF) 59.80 20.24 14.36 11.52 9.78 8.59 7.71 7.03 6.48 6.03 5.65 5.33 5.05 4.81 4.59 4.40 4.22 4.07 3.92 3.79 3.67 3.56 3.46 3.36 3.27 3.19 3.11 3.04 2.97 2.90 . 2.84 2.78 2.73 2.67 2.62 2.58 0.00 SUNN 35880 12143 8619 6913 5870 5153 4625 4216 3888 3619 3392 3199 3031 2884 2754 2638 2534 2439 2354 2275 2203 2136 2074 2017 1963 1913 1866 1822 1781 1742 1705 1670 1636 1605 1574 1546 0 147679 3.39 (Re-ordered) • ORDINATE SUM= 2.58 2.62 2.73 2.78 2.90 2.97 3.11 3.19 3.36 3.46 3.67 3.79 4.07 4.22 4.59 4.81 5.33 5.65 6.48 7.03 8.59 9.78 14.36 20.24 59.80 11.52 7.71 6.03 5.05 4.40 .3.92 3.56 3.27 3.04 2.84 2.67 cubic feet acre-feet Check: V=C*A*P6 V= 3.59 OK acre-feet RM-Hydrograph-117&116(2 YEAR).xls 11/1/2004 LA COSTA GREENS NEIGHBORHOOD 1.17 ORIFICE CALCULATIONS DISCHARGE RATING CURVE Riser Perforations Calculations Based on Orifice Equation BOTTOM ELEVATION OF HOLE NO. 1 = 91.00 feet HOLE NO. 1 DIAMETER = 30.0 inches NUMBER OF ORIFICES* 1.0 2.5 feet 4.908734 area (sq ft) WEIR EQUATION Q = CLHM where C = Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H>= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) Headwatei Elevation (feet) 91 92 93 94 95 96 97 98 99 99.2 100 100.5 Holel (1) Riser-Orif (cfs) 0.00 11.29 20.47 31.27 39.19 45.77 51.51 56.68 61.41 62.31 65.80 67.89 Orifice Equation... .* CA(2gh)1 where C = Orifice Coefficient 0.60 (per Brater & King "Handbook of Hydraulics") A = Cross Sectional Area of the Orifice g = Gravitational Constant 32.2 feet/s2 h = Effective Head on the Orifice Measured from the Centroid of the Opening 30" orifice centroid ell top of orifle 92 92.25 94.50 H3EXC5UZ3WBZORIRCE-S»Jfn-117&11Sjcl« 1085/2004 RATING TABLE FOR FLOW OVER RISER BOX Detention Basin La Costa Greens Neighborhoods 1.17&1.1S T x 7' Concrete Riser WEIR EQUATION Q = CLHW where C = Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H >= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) ORIFICE EQUATION Q = CA(2gH)1' C = Orifice Coefficient = 0.60 A = Cross Sectional Area of Orifice (ft2) g = Gravitational Constant (32.2 fVs2) H = Water Height over Centroid of Orifice (ft) Riser Riser Weir Weir Orifice Orifice Weir Length Width Coeff. Length CoefF. Area Flow (feet) (feet) (feet) (feet) (ft2) (cfs) Water Height Orifice Weir Orifice Flow Flow Flow CLOGGING FACTOR 10% (cfs) (cfs) (cfs) 0.2 0.3 0.4 0.5 0.6 0.8 1 1.2 1.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 2.8 2.86 2.92 3 3.08 3.2 3.32 3.32 3.32 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 7.01 13.16 20.68 29.70 40.08 64.11 92.96 122.20 137.79 105.51 129.23 149.22 166.83 182.75 211.03 235.93 258.45 269.01 6.31 11.84 18.62 26.73 36.07 57.70 83.66 109.98 124.01 89.69 109.84 126.84 141.81 155.34 179.37 200.54 219.68 228.66 1.5 1.6 1.8 2 7 7 7 7 7 7 7 7 3.32 3.32 3.32 3.32 28.00 28.00 28.00 28.00 0.6 0.6 0.6 0.6 49.00 49.00 49.00 49.00 170.78 188.14 224.49 262.93 288.96 298.44 316.54 333.66 153.70 169.32 202.04 236.64 245.61 253.67 269.06 283.61 H:\EXCEU23S2\62\Overflow-Rlsar-7 x 7.x(3 STAGE-STORAGE TABLE LA-COSTA GREENS NEIGHBORHOODS 1.17 1.16 Elevation (ft) 91 92 93 94 95 96 97 98 99 100 100.5 Area (acres) 0.0050 0.03 0.0730 0.1290 0.1890 0.237 0.286 0.34 0.394 0.458 0.473 Total Volume (acre-ft.) 0.00 0.02 0.07 0.17 0.33 0.54 0.81 1.12 1.49 1.91 2.14 10/25/2004 1 of 1 H:\EXCEL\0025\294\Stage-Storage-ENG.xls Data Time 2400 0001 0002 0003 0004 0005 OOOS 0007 0003 0009 0010 0011 0012 0013 0014 0015 001S 0017 0018 0019 0020 0021 0022 0023 0024 0025 002S 0027 0023 0029 0030 0031 0032 0033 0034 0035 003S 0037 0033 0039 0040 Reservoir Storage (ae-ft) 0.00000 0.00012 0.00041 0.00075 0.00112 0.00149 0.00187 0.00225 0.00262 0.00300 0.00338 0.00364 0.00374 0.00377 0.00373 0.00380 0.00331 0.00332 0.00382 0.00383 0.00383 0.00334 0.00386 0.00337 0.00339 0.00390 0.00392 0.00394 0.00395 0.00397 0.00338 0.00400 0.00401 0.00402 0.00402 0.00403 0.00404 0. (30405 0.00405 0.0040$ 0.00407 Reservoir Elevation (ft) 91.000 91.007 91.025 91.045 91.068 91.090 91.113 91.136 91.159 91.181 31.204 31.220 31.226 31.228 91.229 91.230 91.230 91.231 . 91.231 31.231 91.232 91.232 91.233 91.234 91.235 91.236 91 ."23 7 91.238 91.239 91.240 91.241 91.242 91.242 91.243 91.243 91.244 91.244 91.244 91.245 91.245 91.245 Inflow (cfs) 0.000 0.253 0.516 0.774 1.032 1.290 1.543 1.806 2.064 2.322 2.580 2.534 2.588 2.532 2.536 2.600 2.604 2.603 2.612 2.616 2. 620 2.631 2.642 2.653 2.664 2.675 2.636 2.697 2.703 2.713 2.730 2.735 2.740 2.745 2.750 2.755 2. 760 2.7S5 2.770 2.775 2.780 Outflow (cfs) 0.000 0.082 0.277 0.512 0.762 1.017 1.274 1.532 1.730 2.047 2.305 2.482 2.549 2.575 2.587 2.594 2.593 2.604 2.603 2.612 2. SIS 2.622 2.631 2.642 2.652 2.663 2.674. 2.685 2.696 2.707 2.713 2.727 2.734 2.739 2.745 2.750 2.755 2.760 2.765 2.770 2.775 Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0041 0042 0043 0044 0045 0045 0047 0048 0043 0050 0051 0052 0053 0054 0055 0056 0057 0058 0053 0100 0101 0102 0103 0104 0105 0106 0107 0108 0103 0110 0111 0112 0113 0114 0115 0115 0117 0113 0113 0120 0121 0122 0123 0124 0125 0126 0127 0128 0123 0130 0131 Reservoir Storage (ac-ft) 0.00408 0.00403 0.00411 0.00413 0.00414 0.00416 0.00418 0.00420 0.00421 0.00423 0.00425 ' 0.00426 0.00427 0.00428 0.00423 0.00430 0.00431 0.00432 0.00433 0.00434 0.00436 0.00437 0.00433 0.00441 0.00443 0.00445 0.00448 0.00450 0.00452 0.00454 0.00455 0.00457 0.00458 0.00453 0.00460 0.00462 0.00463 0.00464 0.00465 0.00466 0.00468 0.00470 0.00473 0.00475 0.00477 0.00480 0.00482 0.00435 0.00487 0.00430 0.00432 Reservoir Elevation (ft) 31.245 31.247 31.248 31.243 31.250 31.251 31.253 31.254 31.255 31.256 31.257 31.257 31.258 31.253 31.253, 31.260 31.261 31.261 31.262 91.262 91.263 31.264 31.265 31.257 31.263 31.263 31.270 31.272 31.273 31.274 31.275 31.275 31.277 91.273 91.278 91.273 31.230 31.230 31.231 91.282 91.283 91.234 91.235 91.237 31.233 31.230 91.291 91.293 91.295 91.296 31.237 Inflow (cfs) 2.732 2.804 2.816 2.828 2.340 2.352 2.864 2.376 2.883 2.300 2.307 2.314 2.321 2.323 2.335 2.342 2.349 2.356 2.363 2.370 2.384 2.333 3.012 3.026 3.040 3.054 3.063 3.032 3.096 3.110 3.113 3.126 3.134 3.142 3.150 3.153 3.166 3.174 3.132 3.190 3.207 3.224 3.241 3.253 3.275 3.292 3.309 3.326 3.343 3.360 3.370 Outflow (Cf3) 2.732 2.732 2.804 2.815 2.327 2.833 2.351 2.853 2.875 2.837 2.333 2.306 2.313 2.320 2.328 2.335 2.342 2.343 2.356 2.363 2.372 2.384 2.337 3.011 3.025 3.033 3.053 3.057 3.081 3.035 3.107 3.117 3.125 3.133 3.141 3.143 3.157 3.165 3,. 173 3.181 3.132 3.207 3.223 3.240 3.257 3.274 3.231 3.308 3.325 3.342 3.357Page: 2 Data 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 0132 0133 0134 013S 013 S 0137 0138 0139 0140 0141 0142 0143 0144 0145 014S 0147 0148 0149 0150 0151 0152 0153 0154 0155 0155 0157 0158 0159 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0210 0211 0212 0213 0214 0215 0215 0217 0218 0219 0220 0221 0222 Reservoir Storage (ae-ft) 0.00494 0.00495 0.00497 0.00498 0.00500 0.00501 • 0.00503 0.00504 0.0050S 0.00508 0.00510 0.00513 0.00516 0.00519 0.00522 0.00525 0.00529 0.00532 0.00535 0.00537 0.00539 0.00541 0.00543 0.00545 0.00547 0.00548 0.00550 0.00552 0.00554 0.0055S 0.005SO 0.005S4 0.00558 0.00572 0.0057S 0.00580 0.00534 0.00583 0.00592 0.00596 0.00598 O.OQS01 0.00603 0.00505 0.00607 0.00610 0.00612 0.00614 0.00616 0.00619 0.00624 Reservoir Elevation (ft) * 91.293 91.299 91.300 91.301 91.302 91.303 91.304 91.305 91.306 91.307 91.308 91.310 91.312 91.314 91.316; 91.318 91.319 91.321 91.323 91.325 91.326 91.327 91.323 91.329 91.330 91.331 91.332 91.334 91.335 91.336 91.338 91.341 91.343 91.345 91.348 91.350 91.353 91.355 91.358 91.360 91.352 91.363 91.364 91.366 91.367 91.368 91.370 91.371 91.372 91.374 91.377 Inflow <cfs) 3.380 3.390 3.400 3.410 3.420 3.430 3.440 3.450 3.460 3.481 3.502 3.523 3.544 3.565 3.586 3.607 3.623 3.649 3.670 3.632 3.694 3.706 3.718 3.730 3.742 3.754 3.766 3.778 3.790 3.318 3.846 3.874 3.902 3.930 3.953 3.986 4.014 4.042 4.070 4.035 4.100 4.115 4.130 4.145 4.160 4.175 4.190 4.205 4.220 4.257 4.294 Outflow (cfs) 3.368 3.379 3.389 3.399 3.409 3.419 3.429 3.439 3.449 3.463 3.481 3.501 3.522 3.543 3.564 3.535 3.606 3.627 3.648 3.666 3.680 3.693 3.705 3.717 3.729 3.741 3.753 3.765 3.777 3.794 3.818 3.845 3.872 3.900 3.923 3.956 3.984 4.012 4.040 4.064 4.082 4.098 4.114 4.129 4.144 4.159 4.174 4.189 4.204 4.226 4.258 Paga: 3 Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0223 0224 0225 0226 0227 0228 0223 0230 0231 0232 0233 0234 0235 0236 0237 0238 0233 0240 0241 0242 0243 0244 0245 0246 0247 0243 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0253 0300 0301 0302 0303 0304 0305 0306 0307 0308 0303 0310 0311 0312 0313 Reservoir Storage (ac-ft) 0.00629 0.00635 0.00640 0.00645 0.00651 0.00656 0.00662 0.00667 0.00672 0.00676 0.00679 0.00532 0.00586 0.00689 0.00692 0.00695 0.00693 0.00702 0.00706 0.00713 0.00720 0.00728 0.00735 0.00743 0.00750 0.00753 0.00765 0.00773 0.00780 0.00785 0.00730 0.00735 0.00800 0.00804 0.00803 0.00814 0.00813 0.00823 0.00330 0.00841 0.00852 0.00864 0.00876 0.00888 0.00300 0.00913 0.00325 0.00337 0.00343 0.00357 0.00365 Reservoir Elevation (ft) 31.380 31.383 31.387 31.390 31.333 91.397 91.400 91.403 31.406 91.408 31.410 31.412 91.414 91.415 31.418; 31.420 31.422 31.424 31.427 31.431 31.435 31.440 31.444 31.443 31.453 31.453 31.453 31.467 31.471 31.475 31.477 31.480 31.483 31.486 31.483 31.492 31.495 31.437 31.502 31.508 31.515 91.522 91.523 31.537 31.544 91.551 91.553 91.556 31.573 91.573 91.533 Inflow • (Cf3) 4.331 4.368 4.405 ,. 4.442 4.473 4.516 4.553 4.530 4.612 4.634 4.656 4.673 4.700 4.722 4.744 4.766 4.788 4.810 4.862 4.314 4.366 5.018 5.070 5.122 5.174 5.226 5.273 5.330 5.362 5.394 5.426 5.458 5.430 5.522 5.554 5.536 5.618 5.650 5.733 5.315 5.333 5.382 6.065 6.143 6.231 6.314 6.337 6.430 6.535 6.530 6.645 Outflow (cfs) 4.233 4.323 4.366 4.403 4.440 4.477 4.514 4.551 4.533 4.603 4.632 4.654 4.575 4.599 4.721 4.743 4.765 4.787 4.818 4.863 4.912 4.963 5.015 5.067 5.119 5.171 5.223 5.275 5.320 5.357 5.331 5.424 5.456 5.488 5.520 5.552 5.584 5.616 5.664 5.735 5.813 5.895 5.977 6.060 6.143 6. 226 6.303 6.332 6.466 £.528 6.535 Page: 4 Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0314 0315 0316 0317 0313 0319 • 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0353 0359 0400 0401 0402 0403 0404 Reservoir Storage (ac-ft) 0.00373 0.00382 0.00390 0.00993 0.01006 0.01014 0.01022' 0.01035 0.01054 0.01076 0.01098 0.01121 ' 0.01143 0.01166 0.01139 0.01212 0.01235 0.01256 0.01275 0.01293 0.01310 0.01328 0.01345 0.01363 0.01330 0.01398 0.01415 0.01443 0.01503 0.01566 0.01632 0.01711 0.01823 0.01366 0.02133 0.02320 0.02522 0.02743 0.02388 0.03251 0.03528 0.03817 0.04113 0.04417 0.04726 0.05039 0.05355 0.05830 0.06774 0.03011 0.03534 Reservoir Elevation (ft) 31.538 31.533 31.598 91.603 91.608 91.613 91.617 91.625 31.637 31.650 31.663 31.677 31.631 31.705 91.719; 91.732 91.746 91.759 91.770 91.781 31.792 91.802 91.813 91.823 91.334 91.344 91.855 31.875 31.903 31.346 91.986 92.011 92.033 32.061 32.034 32.130 92.170 92.213" 92.261 32.312 32.367 32.423 32.431 32.540 92.601 92.662 92.724 92.827 33.001 93.125 93.283 Inflow (ofs) 6.700 6.755 6.810 6.865 6.920 6.375 7.030 7.186 7.342 7.498 7.654 7.810 7.966 8.122 8.278 8.434 8.590 8.709 8.328 8.947 9.066 3.195 3.304 3.423 3.542 3.661 3.780 10.238 10.636 11.154 11.612 12.070 12.523 12.386 13.444 13.302 14.360 14.343 15.536 16.124 16.712 17.300 17.833 13.476 19.064 19.652 20.240 24.196 23.152 32.108 36.064 Outflow (cfa) 6.641 6.636 6.751 6.806 6.861 6.316 6.371 7.059 7.190 7.337 7.490 7.645 7.800 7.956 8.112 8.263 8.424 8.568 8.696 8.819 8.939 9.053 3.177 3.296 3.415 3.534 3.653 3.381 10.256 10.634 11.131 11.392 11.531 11.848 12.143 12.484 12.847 13.245 13.685 14.157 14.655 15.172 15.705 16.251 16.805 17.367 17.935 18.873 20.479 21.813 23.523 Paga: 5 Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0433 0440 0441 0442 0443 0444 0445 044S 0447 0443 0443 0450 0451 0452 0453 0454 0455 Reservoir Storage (ao-ft) 0.11445 0.13554 0.15878s. 0.18450 0.21344 0.24572 0.27526 0.23641 0.30971 0.31570 0.31486 0.30765 0.29449 0.27578 0.25189 0.22317 0.19289 0.16425 0.13814 0.11517 0.09491 0.07697 0.06132 0.04324 0.03758 0.02873 0.02160 0.01537 0.01259 0.01122 0.01056 0.01017 0.00987 0.00960 0.00935 0.00910 0.00889 tt. 00872 0.00857 0.00342 0.00327 0.00313 0.00799 0.00784 0.00770 0.0075S 0.00743 0.00732 0.00722 0.00712 0.00703 Reservoir Elevation (ft) 93.469 93.681 93.914 94.109 94.232 34.436 34.683 94.817 94.301 34.333 34.333 34.883 34.804 34.686 34.535: 34.353 34.162 33.363 93.707 33.477 33.273 33.033 32.876 32.620 32.411 32.240 32.033 31.365 91.761 91.673 31.633 91.614 31.536 91.580 31.565 31.550 31.537 31.527 31.513 31.503 31.500 91.431 31.483 91.474 91.455 91.457 31.449 91.442 91.436 91.430 91.425 Inflow (Cf3) 40.020 43.376 47.332 51.888 55.844 59.800 54.972 50.144 45.31S 40.433 35.660 30.832 26.004 21.176 16.348 11.520 11.133 10.758 10.377 3.996 9.615 9.234 8.853 8.472 8.031 7.710 7.542 7.374 7.206 7.038 6.870 6.702 6.534 6.366 6.138 6.030 5.932 5.834 5.736 5.638 5.540 5.442 5.344 5.24S 5.143 5.050 4.335 4.920 4.355 4.790 4.725 Outflow (Cf3) 25.539 27.825 30.343 32.130 33.580 35.198 36.678 37.738 38.404 33.704 38.662 38.301 37.642 36.704 35.507 34.068 32.550 30.935 23.107 25.618 23.422 21.478 19.331 16.932 15.066 13.439 12.198 10.896 8.591 7.652 7.206 6.937 6.733 6.552 6.379 6.210 6.064 5.943 5.344 5.744 5.645 5.546 5.448 5.350 5.252 5.154 5.067 4.994 4.326 4.860 4.794 Page: 6 Date "" 01 Jan 01 ,« 01 Jan 01 01 Jan 01 ** 01 Jan 01 ,m 01 Jan 01 01 Jan 01 "** 01 Jan 01 m 01 Jan 01 01 Jan 01 "* 01 Jan 01 — 01 Jan -01 01 Jan 01 "» 01 Jan 01 — 01 Jan 01 01 Jan 01 •» 01 Jan 01 01 Jan 01 01 Jan 01 "» 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 ,„ 01 Jan 01 01 Jan 01m01 Jan 01 m 01 Jan 01 01 Jan 01 1-1 01 Jan 01 01 Jan 01 01 Jan 01 ** 01 Jan 01 01 Jan 01 01 Jan 01 «* 01 Jan 01 01 Jan 01 01 Jan 01 *>« 01 Jan 01 01 Jan 01 ** 01 Jan 01 tt 01 Jan 01 01 Jan 01 ** 01 Jan 01 m 01 Jan 01 01 Jan 01 ** 01 Jan 01 m 01 Jan 01 01 Jan 01 '* 01 Jan 01 01 Jan 01 Time 0456 0457 0458 0459 0500 0501 0502 0503 0504 0505 0506 0507 0503 0509 0510 0511 0512 0513 0514 0515 0516 0517 0513 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 Reservoir Storage (ac-ft) 0.00693 0.00684 0.00674 0.00665 0.00655 0.00646 0.00639 _ 0.00631 0.00624 0.00617 0.00610 0.00603 0.00596 0.00589 0.00582 0.00576 0.00570 0.00564 0.00559 0.00554 0.00549 0.00543 0.00538 0.00533 0.00527 0.00523 0.00513 0.00514 0.00509 0.00505 0.00501 0.00497 0.00492 0.00488 0.00484 0.00480 0.00476 0.00473 0.00469 0.00466 0.00463 0.00459 0.00456 0.00453 0.00449 0.0044S 0.00443 0.00440 0.00437 0.00434 0.00431 Reservoir Elevation (ft) 91.419 91.413 91.407 91.402 91.396 91.391 91.386 91.382 91.377 91.373 91.369 91.364 91.360 91.356 91.352; 91.343 91.344 91.341 91.333 91.335 91.331 91.328 91.325 91.322 91.319 91.316 91.313 91.310 91.308 91.305 91.303 91.300 91.293 91.295 91.292 91.290 91.288 91.236 91.234 91.232 91.280 91.278 91.276 91.273 91.271 91.269 91.268 91.266 91.264 91.262 91.261 Inflow (cfa) 4.660 4.595 4.530 4.465 4.400 4.352 4.304 4.256 4.208 4.160 4.112 4.064 4.016 3.968 3.920 3.884 3.848 3.812 3.776 3.740 3.704 3.663 3.632 3.596 3.560 3.531 3.502 3.473 3.444 3.415 3.336 3.357 3.328 3.299 3.270 3.247 3.224 3.201 3.178 3.155 3.132 3.109 3.086 3.063 3.040 3.020 3.000 2.980 2.960 2.940 2.920 Outflow (cfs) 4.729 4.664 4.599 4.534 4.469 4.410 4.357 4.303 4.259 4.211 4.163 4.115 4.067 4.019 3.971 3.927 3.888 3.851 3.815 3.773 3.742 3.705 3.670 3.634 3.593 3.555 3.534 3.504 3.475 3.445 3.417 3.388 3.359 3.330 3.301 3.274 3.249 3.226 3.203 3.180 3.156 3.133 3.110 3.087 3.064 3.042 3.022 3.001 2.981 2.951 2.941 Page: 7 Date 01 01 01 01 01 01 01 01 01 01 01 01 01 01 Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan 01 01 01 01 01 01 01 01 01 Ql 01 01 01 01 Time 0547 0543 0549 0550 0551 0552 0553 0554 0555 055S 0557 0558 0559 OSOO Reservoir Storage (ac-ft) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .00423 .00425 .00422 .00419 .00417 .00414 .00412 .00409 .00407 .00404 .00402 .00399 .00397 .00394 Reservoir Elevation (ft) 91 91 91 91 91 91 91 91 91 91 91 91 91 91 .259 .257 .255 .253 .252 .250 .249 .247 .24S .244 .243 .241 .240 .238 Inflow (c£s) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 .900 .880 .350 .840 .823 .80S .789 .772 .755 .738 .721 .704 .687 .670 Outflow (cfs) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 .321 .901 .881 .851 .842 .825 .807 .790 .773 .756 .739 .722 .705 .583 ?age: 8 La Costa Greens 1.16 & 1.17 Detention Basin Results 10 YEAR RESULTS Rational Method Hydrograph Calculations for La Cpsta Greens 1.17 1.16, City of Carlsbad, CA QIOO= - Tc= #= 36 Pioo,6= (7.44*P6*D\645) D \ # (WIN) (IN/HR) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 . 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 0.00 3.03 1.94 1.49 1.24 1.07 0.95 0.86 0.79 0.74 0.69 0.65 0.61 0.58 0.55 0.53 0.51 0.49 0.47 0.45 0.44 0.43 0.41 0.40 0.39 0.38 0.37 0.36 0.35 0.35 0.34 0.33 0.32 0.32 0.31 0.31 0.30 . 83.7 cfs 10 min 1.8 in (ro/eo) (vi-vo) VOL AVOL (IN) (IN) 0.00 0.51 0.65 0.75 0.83 0.90 0.95 1.01 1.06 1.10 1.14 1.18 1.22 1.26 1.29 1.32 1.35 1.38 1.41 1.44 1.46 1.49 1.51 1.54 1.56 1.58 1.61 1.63 1.65 1.67 1.69 1.71 1.73 1.75 1.77 1.79 1.80 0.51 0.14 0.10 0.08 0.07 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 C= A= (AV/AT) \ (INCR) (IN/HR) 3.03 0.85 0.60 0.48 0.41 0.36 0.32 0.29 0.27 0.25 0.24 0.22 0.21 0.20 0.19 0.18 0.18 0.17 0.16 0.16 0.15 . 0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.00 0.6 ' 55.2 acres (Q=dA) Q VOL (CFS) (CF) 83.70 28.02 19.89 15.95 13.55 11.89 10.67 9.73 8.97 8.35 7.83 7.38 6.99 6.66 6.36 6.09 5.85 5.63 5.43 5.25 5.08 4.93 4.79 4.65 4.53 4.42 4.31 4.21 4.11 4.02 3.93 3.85 3.78 3.70 3.63 3.57 0.00 SUM= 50220 . 16814 11933 9571 8127 7135 6404 5838 5384 5011 4697 4429 4197 3994 3814 3653 3508 3378 3259 3150 3050 2958 2872 2793 2719 2649 2584 2523 2466 2412 2360 2312 2266 2222 2180 2140 0 205019 4.71 (Re-ordered) ORDINATE SUM= 3.57 3.63 3.78 3.85 4.02 4.11 4.31 4.42 4.65 4.79 5.08 5.25 5.63 5.85 6.36 6.66 7.38 7.83 8.97 9.73 11.89 13.55 19.89 28.02 83.70 15.95 10.67 . 8.35 6.99 6.09 5.43 4.93 4.53 4.21 3.93 3.70 cubic feet acre-feet Check: V = C*A*P6 V= 4.97 OK acre-feet RM-Hydrograph-117&116(10 YEAR).xls 11/1/2004 LA COSTA GREENS NEIGHBORHOOD 1.17 ORIFICE CALCULATIONS DISCHARGE RATING CURVE Riser Perforations Calculations Based on Orifice Equation BOTTOM ELEVATION OF HOLE NO. 1 < HOLE NO. 1 DIAMETER = NUMBER OF ORIFICES= 91.00 feet 30.0 inches 2.5 feet 1.0 4.908734 area (sq ft) - WEIR EQUATION Q = CLHM where C = Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H>= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) Orifice Equation... c.= CA(2gh)1" where Headwater Elevation (feet) 91 92 93 94 95 96 97 98 99 99.2 100 100.5 Hole 1 (1) Riser-Orif (cfs) 0.00 11.29 20.47 31.27 39.19 45.77 51.51 56.68 61.41 62.31 65.80 67.89 C = Orifice Coefficient 0.60 (per Brater & King "Handbook of Hydraulics") A = Cross Sectional Area of the Orifice g = Gravitational Constant 32.2 feet/s2 h = Effective Head on the Orifice Measured from the Centroid of the Opening 30"orifice centroid eli top of orific 92 92.25 94.50 H:\EXCSUnHVS2\ORIFICE-aMin-117i118jdl 10/25/2004 RATING TABLE FOR FLOW OVER RISER BOX Detention Basin La Costa Greens Neighborhoods 1.17&1.16 7' x 7' Concrete Riser WEIR EQUATION Q = CLrr where C = Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H>= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) ORIFICE EQUATION Q = CA(2gH)1' Water Height C = Orifice Coefficient = 0.60 A = Cross Sectional Area of Orifice (ft2) g = Gravitational Constant (32.2 ftfs2) H = Water Height over Centroid of Orifice (ft) Riser Length (feet) (feet) Riser Width (feet). Weir Coeff. Weir Orifice Length Coeff. (feet) Orifice Weir Orifice Weir Orifice Area Flow Flow Flow Flow CLOGGING FACTOR 10% (ft2) (cfs) (cfs) (cfs) (cfs) 0.2 0.3 0.4 0.5 0.6 0.8 1 1.2 1.3 fTCRBB1.5 1.6 1.8 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 BEJSs ^jlsTJSl 7 7 7 7 2.8 2. as 2.92 3 3.08 3.2 3.32 3.32 3.32 3.32 3.32 3.32 3.32 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.6 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 7.01 13.16 20.68 29.70 40.08 64.11 92.96 122.20 137.79 105.51 129.23 149.22 166.83 182.75 211.03 235.93 258.45 269.01 6.31 11.84 18.62 2S.73 36.07 57.70 83.66 109.98 124.01 89.69 109.84 ' 126.84 141.81 155.34 179.37 200.54 219.68 228.66 28.00 28.00 28.00 28.00 0.6 0.6 0.6 0.6 49.00 49.00 49.00 49.00 170.78 188.14 224.49 262.93 233.96 298.44 316.54 333.66 153.70 169.32 202.04 236.64 245.61 253.67 269.06 283.61 H:\EXCEU2362\62\Ovartlow-Riser-7 x 7,xls STAGE-STORAGE TABLE LA COSTA GREENS NEIGHBORHOODS 1.17 1.16 Elevation (ft) 91 92 93 94 95 96 97 98 99 100 100.5 Area (acres) 0.0050 0.03 0.0730 0.1290 0.1890 0.237 0.286 0.34 0.394 0.458 0.473 -Total Volume (acre-ft.) 0.00 0.02 0.07 0.17 0.33 0.54 0.81 1.12 1.49 1.91 2.14 10/25/2004 1 oft H:\EXCEL\0025\294\Stage-S torage-ENG.xls Date Time 2400 0001 0002 0003 0004 0005 OOOS 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0013 0013 0020 0021 0022 0023 0024 0025 0026 0027 0023 0029 0030 0031 0032 0033 0034 0035 003S 0037 0033 0033 0040 Reservoir Storage (ac-ft) 0.00000 0.00017 0.00056 0.00104 0.00155 0.00206 0.00258 0.00311 0.003 S3 0.00415 0.004S3 0.00504 0.00517 0.00522 0.00525 0.00526 0.0052S 0.00528 0.00523 0.00530 O.OOS31 0.00532 0.00534 0.00536 0.00533 0.00541 0.00543 0.00545 0.00547 0.00550 0.00552 0.00554 0.00555 0.00556 0.00557 0.00553 0.00559 0.00560 0.005S1 0.00562 0.005S3 Reservoir Elevation (ft) 31.000 31.010 31.034 31,063 31.093 31.125 31.156 31.133 31.219 31.251 31.283 31.304 31.312 31.31S 31.317 91.313 91.319 91.319 91.320 91.320 31.321 91.322 91.323 91.324 31.325 31.327 31'. 32 8 31.329 91.331 31.332 31.333 31.334 31.335 31.33$ 31.337 31.337 91.338 31.333 31.333 91.340 91.340 Inflow (cfa) 0.000 0.357 0.714 1.071 1.423 1.785 2.142 2.499 2.856 3.213 3.570 3.576 3.582 3.583 3.594 3.600 3.606 3.612 3.613 3.624 3.630 3.645 ' 3.660 3.675 3.690 3.705 3.720 3.735 3.750 3.765 3.780 3.737 3.794 3.301 3.808 3.815 3.822 3.329 3.336 3.843 3.850 Outflow (cfa) 0.000 0.114 0.384 0.703 1.055 1.407 1.763 2.113 2.476 2.833 3.130 3.435 3.527 3.564 3.581 3.531 3.539 3.605 3.612 3.618 3.624 3.632 3.645 3.659 3.674 3.683 3.704 3.713 3.734 3.743 3.764 3.776 3.785 . 3.733 3.800 3.807 3.815 3.822 3.823 3.836 3.343 Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0041 0042 0043S 0044 0045 oats 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 . 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 012S 0127 0128 0129 0130 0131 Reservoir Storage (ao-ft) O.OQ5S5 0.005S7 0.00569 0.00572 0.00574 0.00577 0.00579 0.00532 0.00584 0.00537 0.00539 0.00590 0.00532 0.00593 0.00594 0.00595 0.00597 0.00593 0.00600 O.OOS01 0.00603 0.00605 0.00603 0.00611 0.00614 0.00617 0.00620 0.00623 0.00626 0.00629 0.00631 0.00633 0.00635 0.00637 0.00638 0.00640 0.00641 0.00643 0.00645 0.00646 0.00643 0.00651 0.00655 0.00658 0.006S1 0.00665 0.00663 0.00671 0.00675 0.00673 0.00681 Reservoir Elevation (ft) 31.341 91.343 91.344 91.345 91.347 91.343 91.350 91.351 91.353 91.354 91.356 91.357 31.358 91.358 91.353; 91.360 91.361 31.362 91.362 91.363 91.364 91.366 91.363 91.369 31.371 31.373 31.375 91.376 31.378 91.330 91.381 31.383 91.384 91.385 91.386 91.387 91.338 91.389 91.389 91.390 91.392 91.334 91.395 91.397 91.400 91.402 91.404 91.406 91.403 91.413 91.411 Inflow (cfs) 3.867 3.884 3.901 3.313 3.335 3.352 3.969 3.986 4.003 4.020 4.023 4.033 4.047 4.056 4. OSS 4.074 4.083 4.032 4.101 4.110 4.130 4.150 4.170 4.130 4.210 4.230 4.250 4.270 4.230 4.310 4.321 4.332 4.343 4.354 4.365 4.376 4.387 4.338 4.403 4.420 4.443 4.466 4.433 4.512 4.535 4.553 4.581 4.604 4.S27 4.650 4.664 Outflow (cfs) 3.353 3.867 3.883 3.300 3.917 3.934 3.351 3.968 3.335 4.002 4.016 4.027 4.037 4.046 4.055 4.064 4.073 4.082 4.031 4.100 4.113 4 . 13 0 4.143 4.163 4.189 4.209 4.229 4.249 4.269 4.289 4.306 4.319 4.331 4.342 4.353 4.364 4.375 4.386 4.337 4.408 4.423 4.443 4.465 4.488 4.511 4.S34 4.557 4.530 4.603 4.626 4.646 Page: 2 J, Date 1 01 Jan 01 •• 01 Jan 01 01 Jan 01 01 Jan 01 m 01 Jan 01 01 Jan 01 ** 01 Jan 01 • 01 Jan 01 01 Jan 01 "* 01 Jan 01 M 01 Jan 01 01 Jan 01 "* 01 Jan 01 — 01 Jan 01 01 Jan 01 01 Jan 01 M 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 -, 01 Jan 01 01 Jan 01 01 Jan 01 _ 01 Jan 01 01 Jan 01 ** 01 Jan 01 01 Jan 01 01 Jan 01 ** 01 Jan 01 01 Jan 01 01 Jan 01 ** 01 Jan 01 01 Jan 01 01 Jan 01 * 01 Jan 01 01 Jan 01 01 Jan 01 * 01 Jan 01 01 Jan 01 ** 01 Jan 01 m 01 Jan 01 01 Jan 01 ** 01 Jan 01 * 01 Jan 01 01 Jan 01 "" 01 Jan 01 m 01 Jan 01 Time 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0200 0201 0202 0203 0204 0205 0206 0207 0203 0209 0210 0211 0212 0213 0214 0215 0216 0217 0213 0219 0220 0221 0222 Reservoir Storage tac-ft) 0.00633 0.00685 0 .00683 0.00590 0.00692 0 .00694 0.00696 0.00698 0 .00700 0 .00703 0.00706 0.00710 0.00715 0.00719 0.00723 0.00727 0 .00732 0.00736 0.00740 0.00744 0.00747 0.00749 0.00752 0 .00754 0.00757 0 .00759 0.00762 0 .00764 0.00767 0.00770 0.00775 0 .00781 0.00786 0.00792 0.00797 0.00803 0.00803 0.00814 0.00819 0.00824 0.00828 0.00831 0.00335 0.00833 0.00841 0.00844 0.00343 0.00851 0.00854 0.00859 0.00865 Reservoir Elevation (ft) * 91.413 91.414 91.415 91.417 91.413 91.419 91.420 91.422 91.423 91.425 91.427 91.429 91.432 91.434 91.437 . 91.440 91.442 91.445 91.447 91.449 91.451 91.453 91.454 91.456 91.457 91.459 91.460 91.462 91.463 91.466 91.468 91.472 91.475 91.478 91.482 91.435 91.438 91.492 91.495 91.493 91.500 91.502 91.504 91.506 91.503 91.510 91.512 91.514 91.516 91.519 91.523 Inflow 4.678 4.692 4.706 4.720 4.734 4.748 4.762 4.775 4.790 4.319 4.843 4.877 4.905 4.935 4.964 4.993 5.022 5.051 5.030 5.097 5.114 5.131 5.148 5.165 5.132 5.199 5.216 5.233 5.250 5.283 5.326 5.364 5.402 5.440 5.473 5.516 5.554 5.592 5.630 5.652 5.674 5.696 5.713 5.740 5.762 5.734 5.806 5.328 5.350 5.901 5.952 Outflow (Cf3) 4.662 4.677 ,4.591 4.705 4.719 4.733 4.747 4.761 4.775 4.794 4.819 4.847 4.875 4.904 4.933 4.962 4.991 5.020 5.049 5.074 5.094 5.112 5.130 5.147 5.164 5.181 5.198 5.215 5.232 5.256 5.288 5.325 5.362 5.400 5.438 5.476 5 . 514 5.552 5.590 5.622 5.648 5.572 5.694 5.716 5.739 5.761 5.783 5.305 5.327 5.358 5.902 Pago: 3 Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0223 0224 0225 0226 0227 0223 0223 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0243 0250 0251 0252 0253 0254 0255 0256 0257 0258 0253 0300 0301 0302 0303 0304 0305 030S 0307 0308 0309 0310 0311 0312 0313 Reservoir Storage (ac-ft) 0.00872 0.00880 0.00887 0.00834 0.00302 0.00909 0.00917 0.00924 0.00931 0.00935 0.00941 . 0.00945 0.00950 0.00954 0.0095.3 0.00963 0.00967 0.00372 0.00378 0.00987 0.00997 0.01007 0.01018 0.01028 0.01039 0.01049 0.01060 0.01071 0.01080 0.01037 0.01094 0.01101 0.01108 0.01114 0.01121 0.01128 0.01134 0.01141 0.01151 0.01165 0.01181 0.01137 0.01214 0.0123Q 0.01247 0.01264 0.01280 0.01297 0.01312 0.01325 0.01335 Reservoir Elevation (ft) 91.527 31.531 31.536 31.540 31.545 31.549 31.554 31.553 31.5S2 91.566 31. 5S8 31.571 31.574 31.57S 91.575 91.582 91.534 91.587 31.591 91.59S 91.502 91.609 31.615 31.621 31.628 31.634 31.541 31.547 31.553 31.557 91.651 31.565 91.669 91.673 31.677 31.681 31.635 31.539 31.635 31.704 31.713 91.723 91.733 91.743 91.753 31.764 91.774 91.734 91.793 91.800 91.307 Inflow (cfs) 5.003 5.054 5.105 5.155 6.207 5.258 6.309 6.350 6.390 5.420 6.450 6.480 6.510 6.540 6.570 6.600 5.630 6.660 6.732 6.804 6.876 6.943 7.020 7.092 7.154 7.236 7.308 7.380 7.425 7.470 7.515 7.560 7.605 7.650 7.695 7.740 7.785 7.830 7.344 8.058 8.172 8.286 8.400 8.514 3.628 8.742 8.856 8.970 9.045 9.122 9.193 Outflow (cfg) 5.350 6.000 6.051 5.102 6.153 6.204 6.255 6.306 6.350 6.385 6.417 6.448 6.478 6.508 6.538 6.568 6.598 6.628 5.671 5.733 6.801 6.872 6.944 7.015 7.087 7.153 7.231 7.303 7.357 7.418 7.466 7.512 7.557 7.602 7 . 647 7 . 692 7.737 7.782 7.849 7.346 8.054 8.166 3.279 8.393 3.507 8.621 3.735 3.349 8.951 9.036 3.115 Page: 4 Date m "" 01 Jan 01 — 01 Jan 01 01 Jan 01 * 01 Jan 01 — 01 Jan 01 01 Jan 01 « 01 Jan 01 M 01 Jan 01 01 Jan 01 — 01 Jan 01 01 Jan 01 01 Jan 01 ™ 01 Jan 01 01 Jan 01 01 Jan 01 •* 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 ^ 01 Jan 01 01 Jan 01 " 01 Jan 01 01 Jan 01 01 Jan 01 m 01 Jan 01 01 Jan 01 01 Jan 01 M 01 Jan 01 01 Jan 01 *" 01 Jan 01 ,«• 01 Jan 01 01 Jan 01 ""* 01 Jan 01 m 01 Jan 01 01 Jan 01 * 01 Jan 01 ^ 01 Jan 01 01 Jan 01 •*• 01 Jan 01 jy 01 Jan 01 01 Jan 01 •*• 01 Jan 01 — 01 Jan 01 01 Jan 01 «« 01 Jan 01 01 Jan 01 Time 0314 0315 0316 0317 0318 0319 0320 0321 ' 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 035S 0357 0353 0359 0400 0401 0402 0403 0404 Reservoir Storage (ac-ft) 0.01347 0.01359 0.01370 0.01331 0.01392 0.01403 0.01414 0.01432 0.01459 0.01439 0.01520 0.01551 0.01583 0.01614 0.01646 0.01685 0.01738 0.01804 0.01875 0.01951 0.02031 0.02113 0.02198 0.02234 0.02372 0.02460 0.02550 0.02669 0.02839 0.03050 0.03292 0.03558 0.03844 0.04144 0.04456 0.04777 0.05105 0.05449 0.05818 0.06204 0.06606 0.07030 0.07492 0.07994 0.03531 0.09097 0.09639 0.10608 0.12113 0.14122 0.16566 Reservoir Elevation (ft) 91.814 91.821 91.828 91.334 91.841 91.848 91.855 91.865 91.831 91.899 91.918 91.937 91.956 91.975 91.995 ; 92.006 92.016 92.029 92.043 92.058 92 .073 92.090 92.106 92.123 92.140 92.158 92.175 92.198 92.232 92.273 92.320 92.372 92.423 92.487 92.548 92.611 92.675 92.742 92.814 92.890 92.969 93.026 93.073 93.123 93.177 93.234 93.293 93.385 93.536 93.738 93.983 Inflow (efs) 9.274 9.350 9.426 9.502 9.578 9.654 9.730 9.946 10.162 10.378 10.594 10.810 11.026 11.242 11.458 11.674 11.890 12.056 12.222 12.388 12.554 12.720 12.886 13.052 13.218 13.334 13.550 14.184 14.813 15.452 16.086 15.720 17.354 17.988 18.622 19.256 19.890 20.703 21.516 22.329 23.142 23.955 24.768 ' 25.581 26.394 27.207 28.020 33.583 39.156 44.724 50.292 Outflow (cfs) 9.192 9.269 9.345 9.421 9.4S7 9.573 9.649 9.770 9.952 10.155 10.367 10.531 10.796 11.012 11.228 11.343 11.440 11.557 11.685 11.822 11.965 12.113 12.265 12.420 12.577 12.737 12.897 13.111 13.417 13.795 14.230 14.708 15.221 15.760 16.321 16.837 17.486 18.105 18.766 19.451 20.182 20.756 21.257 21.301 22.382 22.996 23.637 24.632 26.263 28.440 31.088 Page: 5 Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 ' 01 Jan 01 01 Jan 01 > 01 Jan 01 01 Jan 01V 01 Jan 01 • 01 Jan 01 01 Jan 01 Time 040S 04 OS 0407 0403 0409 0410 0411 0412 0413 0414 0415 0416 0417 0413 0419 0420 0421 0422 0423 0424 0425 0426 0427 0423 0429 0430 0431 0432 0433 0434 0435 043S 0437 0438 0439 0440 0441 0442 0443 0444 0445 044S 0447 0443 0449 0450 0451 0452 0453 0454 0455 Reservoir Storage (ae-ft) 0.19487 0.22943 0.2S920 0.31368 0.3S308 0.41778 0.46333 0.50969 0.53919 0.55345 0.56793 0.5S794 0.5537S 0.54066 0.51405 0.47940 0.44127 0.40402 0.3S7S2 0.33202 0.29755 0.26460 0.233.15 0.20303 0.17433 0.14755 0.12375 0.10295 0.03474 O.OS877 0.05523 0.04443 0.03568 0.02353 0.02275 0.01793 0.01455 0.01288 0.01215 0.01176 0.01149 0.01127 0. 0110S 0.01086 0.01066 0.01046 0.01023 0.01013 0.00999 0.00936 0.00973 Reservoir Elevation (ft) 94.174 94.393 94.S44 94.326 95.177 95.435 95.S77 95.867 96.005 96.079 96.115 96.115 96.080 96.010 95.888: 95.725 95.545 95.370 95.199 95.031 94.324 94.615 94.416 94.226 94.044 93.301 93.563 93.354 93.171 93.011 92.758 92.545 92.374 92.235 92.121 92.027 91.879 91.778 91.734 91.711 91.695 91.681 91.663 91.656 91.644 91.632 91.621 91.612 91.604 91.596 91.583 Inflow (cfs) 55.860 61.428 £6.996 72.564 78.132 83.700 76.925 70.150 63.375 56.600 49.825 43.050 36.275 29.500 22.725 15.950 15.422 14.894 14.366 13.838 13.310 12.782 12.254 11.726 11.198 10.670 10.438 10.206 9.974 9.742 9.510 9.278 9.046 8.814 8.582 8.350 8.214 8.078 7.942 7.806 7.670 7.534 7.398 7.262 7.126 6.990 6.900 6.310 6.720 S.630 6.540 Outflow (ofs) 32.650 34.384 36.374 33.603 40.357 42.050 43.648 44.396 45.793 46.221 46.429 46.430 46.223 45.830 45.031 43.958 42.777 41.624 40.497 39.395 37.795 36.144 34.568 33.061 31.620 29.126 26.547 24.293 22.321 20.590 13.247 IS. 298 14.727 13.450 12.404 11.537 9.926 3.788 8.291 8.024 7.841 7.633 7.546 7.408 7.271 7.135 7.013 6.912 6.318 6.727 6.636Page: 6 Date 01 Jan 01 01 Jan 01 01 Jan 01s, 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01- Jan 01 01 Jan 01 01 Jan 01 1 01 Jan 01 01 Jan 01 01 Jan 01 1 01 Jan 01 , 01 Jan 01 01 Jan 01 • 01 Jan 01 01 Jan 01 01 Jan 01 - 01 Jan 01 01 Jan 01 Time 0456 0457 0458 0453 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 Reservoir Storage (ac-ft) 0.00960 0.00946 0.00933 0.00920 0.00907 0.00895 0.00884 0.00874 0.00864 0.00855 0.00845 0.00835 0.00826 0.00816 0.00806 0.00797 0.00789 0.00782 0.00774 0.00767 0.00760 0.00752 0.00745 0.00738 0.00730 0.00724 0.00717 0.00711 0.00705 0.00700 0.00694 0.00683 0.00682 0.00676 0.00670 0.00665 0.00660 0.00655 0.00650 0.00646 0.00641 0.00636 0.00632 0.00627 0.00622 0.00618 0.00613 0.00609 0.00605 0.00601 0.00597 Reservoir Elevation (ft) 91.580 91.572 91.564 91.556 91.548 91.541 91.534 91.528 91.522 91.516 91.511 91.505 91.499 91.493 91.487; 91.482 91.477 91.472 91.468 31.464 31.453 31.455 31.450 31.446 91.441 91.437 31.433 31.430 31.426 31.423 31.419 31.416 91.412 31.409 91.405 91.402 91.399 91.396 91.393 91.390 91.387 91.384 91.382 91.379 91.376 91.373 91.371 91.368 91.366 91.363 91.361 Inflow (cfs) 6.450 6.360 6.270 6.180 6.090 6.024 5.958 5.892 5.326 5.760 5.694 5.628 5.562 5.496 5.430 5.380 5.330 5.280 5.230 5.180 5.130 5.080 5.030 4.980 4.930 4.890 4.850 4.810 4.770 4.730 4.630 4.S50 4.610 4.570 4.530 4.438 4.466 4.434 4.402 4.370 4.338 4.306 4.274 4.242 4.210 4.182 4.154 4.126 4.098 4.070 4.042 Outflow (cfs) 6.546 6.456 6.366 6.276 6.136 6.103 6.032 5.963 5.897 5.330 5.764 5.698 5.632 5.566 5.500 5.439 5.385 5.334 5.283 5.233 5.183 5.133 5.083 5.033 4.983 4.936 4.894 4.853 4.313 4.773 4.733 4.633 4.653 4.613 4.573 4.535 4.501 4.468 4.436 4.404 4.372 4.340 4.303 4.276 4.244 4.213 4.184 4.156 4.123 4.100 4.072 Fags: 7 Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time QS47 0543 0545 0550 0551 0552 0553 0554 0555 0555 0557 0553 0559 0500 Reservoir Storage (ae-ft) 0.00593 0.00583 0.00535 0.00580 0.00577 0.00573 0.00570 Q.005S6 0.005S3 0.00559 0.0055S 0.00553 0.00549 0.0054S Reservoir Elevation (ft) 91.353 91.35S 91.353 91.351 91.348 91.34S 91.344 31.342 91.340 91.338 91.33S 91.334 91.332 91.330 Inflow (cfs) 4.014 3.93S 3.958 3.930 3.307 3 .884 3.8£1 3 .838 3.815 3.732 3. 769 3.74S 3.723 3.700 Outflow (cfs) 4.044 4.0.16 3.938 3.9SO 3.933 3.909 3.38S 3. 853 3.840 3.816 3.793 3.770 3.747 3.724 Page: 3 La Costa Greens 1.16 & 1.17 Detention Basin Results 100 YEAR RESULTS LA COSTA GREENS NEIGHBORHOOD 1.17 ORIFICE CALCULATIONS DISCHARGE RATING CURVE Riser Perforations Calculations Based on Orifice Equation BOTTOM ELEVATION OF HOLE NO. 1 = 91.00 feet HOLE NO. 1 DIAMETER = 30.0 inches NUMBER OF ORIFICES= 1.0 2.5 feet 4.908734 area (sq ft) WEIR EQUATION Q = CLK" where Orifice Equation... CA(2gh)1' C= Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H>= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) where -leadwatei Elevation (feet) 91 92 93 94 95 96 97 98 99 99.2 100 100.5 Holel (1) Riser-Orif (cfs) 0.00 11.29 20.47 31.27 39.19 . 45.77 51.51 56.68 61.41 62.31 65.80 67.89 C = Orifice Coefficient 0.60 (per Brater & King "Handbook of Hydraulics") A = Cross Sectional Area of the Orifice g = Gravitational Constant 32.2 feet/s2 i h = Effective Head on the Orifice Measured from the Centroid of the Opening 30" orifice centroid eli top of orific 92 92.25 94.50 H:\EXCEU2352TB2\ORIHCS-aMln-H7l1ia-xH 10/29/2004 Rational Method Hydrograph Calculations for La C0sta Greens 1.17 1.16, City of Carlsbad, CA QIOO= Tc= #= 36 Pms= (7.44*P6'DA-.645) D 1 # (MIN) (IN/MR) 0 1 ' 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20' 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 0 10 20 30 40 50 60 70 80 •90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 0.00 4.55 2.91 2.24 1.86 1.61 1.43 1.30 1.19 1.10 1.03 0.97 0.92 0.87 0.83 0.79 0.76 0.73 0.71 0.68 0.66 0.64 0.62 0.60 0.59 0.57 0.56 0.54 0.53 0.52 0.51 0.50 0.49 0.48 0.47 0.46 0.45 126.4 cfs 10 min 2.7 in (ro/eo) (vi-vo) VOL AVOL (IN) (IN) 0.00 0.76 0.97 1.12 1.24 1.34 1.43 1.51 1.59 1.65 1.72 1.78 1.83 1.88 1.93 1.98 2.03 2.07 2.12 2.16 2.20 2.23 2.27 2.31 2.34 2.38 2.41 2.44 2.47 2.51 2.54 2.57 2.59 2.62 2.65 2.68 2.71 0.76 0.21 0.15 0.12 0.10 0.09 0.08 0.07 0.07 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 c= A= (A V/-A T) I (1NCR) (IN/HR) 4.55 1.27 0.90 0.72 0.61 0.54 0.48 O'l44 0.41 0.38 0.35 0.33 0.32 0.30 0.29 0.28 0.26 0.25 0.25 0.24 0.23 0.22 0.22 0.21 0.21 0.20 0.20 0.19 0.19 0.18 0.18 0.17 0.17 0.17 0.16 0.16 0.00 0.6 • 55.2 acres (Q=ciA) Q VOL (CFS) (CF) 126.40 42.03 29.83 23.93 20.32 17.84 16.01 14.59 13.46 12.53 11.74 11.07 10.49 9.98 9.53 9.13 8.77 8.44 8.15 7.87 7.62 7.39 7.18 6.98 6:80 6.62 6.46 6.31 6.16 6.03 5.90 5.78 5.66 5.55 5.45 5.35 0.00 SUM= 75840 25221 17900 14357 12191 10703 9606 8757 8076 7516 7046 6644 6295 5990 5720 5479 5263 5067 4888 4725 4575 4436 4308 4189 4078 3974 3877 3785 3699 3617 3540 3467 3398 3332 3270 3210 0 308039 7.07 (Re-ordered) ORDINATE SUM= 5.35 5.45 5.66 5.78 6.03 6.16 6.46 6.62 6.98 7.18 7.62 7.87 8.44 8.77 9.53 9.98 11.07 11.74 13.46 14.59 17.84 20.32 29.83 42.03 126.40 23.93 16.01 12.53 10.49 9.13 8.15 7.39 6.80 6.31 5.90 5.55 cubic feet acre-feet Check: V = C*A*P3 V= 7.45 OK acre-feet RM-Hydrograph-117&116.xls 11/1/2004 RATING TABLE FOR FLOW OVER RISER BOX Detention Basin La Costa Greens Neighborhoods 1.178.1.16 T x T Concrete Riser WEIR EQUATION Q = CLHM where C = Weir Coefficient = 3.0 when H = 0.5 feet = 3.3 when H >= 1.0 feet L = Length of the Weir (feet) H = Water Height over Weir (feet) ORIFICE EQUATION Q = CA(2gH)" C = Orifice Coefficient = 0.60 A = Cross Sectional Area of Orifice (ft2) g = Gravitational Constant (32.2 ft/s2) H = Water Height over Centroid of Orifice (ft) Water Height Riser Length Riser Width Weir Coeff. Weir Length Orifice Coeff. Orifice Area Weir Flow Orifice Flow Weir Flow Orifice Flow CLOGGING FACTOR 10% (feet) 0.2 0.3 0.4 0.5 0.6 0.8 1 1.2 1.3 1.5 1.6 1.8 2 (feet) 7 7 7 7 7 7 7 7 7BiSslillB 7 7 7 7 (feet) 7 7 7 • 7 7 7 7 7 7 7 7 7 7 2.8 2.86 2.92 3 3.08 3.2 3.32 3.32 3.32 3.32 3.32 3.32 3.32 (feet) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 (ft2) 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 (cfs) 7.01 13.16 20.63 29.70 40.08 64.11 92.96 122.20 137.79 170.78 183.14 224.49 262.93 (cfs) 105.51 129.23 149.22 166.83 182.75 211.03 235.93 258.45 269.01 288.96 298.44 316.54 333.66 (cfs) 6.31 11.84 18.62 2S.73 36.07 57.70 83.66 109.98 124.01 153.70 169.32 202.04 236.64 (cfs) 89.69 109.84 126.84 141.81 155.34 179.37 200.54 219.68 228.66 245.61 253.67 269.06 283.61 H:\EXCEL\2352\62\Overflow-Risar-7 x 7_xls STAGE-STORAGE TABLE LA-COSTA GREENS NEIGHBORHOODS 1.17 1.16 Elevation (ft) 91 92 93 94 95 96 97 98 99 100 100.5 Area (acres) 0.0050 0.03 0.0730 0.1290 0.1890 0.237 0.286 0.34 0.394 0.458 0.473 Total Volume (acre-ft.) 0.00 0.02 0.07 0.17 0.33 0.54 0.81 1.12 1.49 1.91 2.14 10/25/2004 1of 1 H:\EXCEL\0025\294\Stage-S torage-ENG.xls Page: 6 Data Time 2400 0001 0002 0003 0004 0005 OOOS 0007 0003 0009 0010 0011 0012 0013 0014 0015 001S 0017 ooia 0013 0020 0021 0022 0023 0024 0025 002S 0027 0023 0029 0030 0031 0032 0033 0034 0035 0036 0037 0033 0039 0040 Reservoir Storage (ac-£t) 0.0000 0.0003 0.0003 0.0016 0.0023 0.0031 0.0039 0.0047 0.0054 0.0062 0.0070 0.0075 0.0077 0.0078 0.0079 0.0079 0.0079 0.0079 0.0079 0.0030 0.0080 0.0080 0.0030 0.0080 0.0081 0.0081 0.0081 0.0082 0.0082 0.0082 0.0083 0.0083 0.0083 0.0083 0.0083 0.0034 0.0034 0.0084 0.0084 0.0084 0.0085 Reservoir Elevation (ft) 91.000 91.015 91.051 91.094f 91.140 91.187 91.234 91.281 91.329 91.37S 91.423 91.456 91.4S8 91.473 91.47S 91.477 91.478 91.479 91.480 91.481 91.482 91.483 91.485 91.43S 91.483 91.490 91~492 91.494 91.49S 91.497 91.499 91.501 91.502 91.503 91.504 31. SOS 91.507 91.508 91.509 91.510 91.511 Inflow (cfa) 0.000 0.535 1.070 1.605 2.140 2. 675 3.210 3.745 4.280 4.815 5.350 5.360 5.370 5.380 5.390 5.400 5.410 5.420 5.430 5.440 5.450 5.471 5.492 5.513 5.534 5.555 5.576 5.597 5.618 5.639 5.660 5.672 5.634 5.696 5.703 5.720 5.732 5.744 5.756 5.768 5.730 Outflow (eta) 0.000 0.171 0.575 1.062 1.530 2.109 2.642 3.176 3.711 4.246 4.731 5.143 5.287 5.343 5.370 5.336 5.393 5.409 5.419 5.429 5.439 5.453 5.471 5.491 5.512 5.533 5.554 5.575 5.596 5.617 5.638 5.656 5.670 5.683 5.695 5.707 5.719 5.731 5.743 5.755 5.767 **» m •*n m m m 91 • •*» Ml «• m •i «• w 41 -" ,Mt - •Mi .- ,<ilt *« •^H ,- *s* - •• •4i * 4N) •4* «* -*«* •** Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0100 0101 0102 0103 0104 0105 0106 0107 0103 0109 0110 0111 0112 0113 0114 0115 0116 0117 0113 0119 0120 0121 0122 0123 0124 0125 0126 0127 0123 0129 0130 0131 Reservoir Storage (ac-ft) 0.0035 0.0035 0.0035 0.0086 0.0036 0.0037 0.0087 0.0087 0.0038 0.0038 0.0088 0.0039 0.0089 0.0089 0.0089 0.0089 0.0090 0.0090 0.0090 0.0090 0.0090 0.0091 0.0091 0.0092 0.0092 0.0092 0.0093 0.0093 0.0094 0.0094 0.0095 0.0095 0.0095 0.0095 0.0096 0.0096 0.0096 0.0096 0.0097 0.0097 0.0097 0.0098 Q..0098 0.0099 0.0099 0.0100 0.0100 0.0101 0.0101 0.0102 0.0102 Reservoir Elevation (ft) • 91.512 91.514 91.516 91.513 91.521 91.523 91.525 91.527 91.530 91.532 91.534 91.535 91.536 91.537 91.539;' 91.540 91.541 91.542 91.543 91.544 91.546 91.548 91.551 91.553 91.556 91.559 91.561 91.564 91.567 91.569 91.572 91.573 91.575 91.576 91.578 91.579 91.581 91.532 91.533 91.535 91.587 91.590 91.593 91.596 91.599 91.602 91.605 91.608 91.612 91.615 91.618 Inflow (cfa) 5.805 5.830 5.855 s 5.880 5.905 5.930 5.955 5.930 6.005 6.030 6.043 6.056 6.069 6.082 6.095 6.108 6.121 6.134 6.147 6.160 6.190 6.220 6.250 6.280 6.310 6.340 6.370 6.400 6.430 6.460 6.476 6.492 6.503 6.524 6.540 6.556 6.572 6.588 6.604 6.620 6.656 6.692 6.728 S.764 6.300 6.836 6.872 6.908 6.944 6.980 7.000 Outflow (ofs) 5.783 5.805 5.829 5.854 5.873 5.903 5.923 5.953 5.978 6.003 6.025 6.041 6.055 6.068 6.081 6.094 6.107 6.120 6.133 6.146 6.165 6.190 6.219 6.248 6.278 6.308 6.338 6.368 6.398 6.423 6.454 6.473 6.490 6.507 6.523 6.539 6.555 6.571 6.587 6.603 6.625 6.656 6.691 6.726 6.762 6.798 6.834 6.370 6.906 6.942 6.973Saga: 2 m m * m m •m « m * *** M "• — - ~ , •m Ml ™"* W m ~ m m * *» M n* •m Date 01 Jan 01 01 Jan 01 01 Jan 01 .01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0200 0201 0202 0203 0204 0205 0206 . 0207 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0213 0219 0220 0221 0222 Reservoir Storage (ac-ft) 0.0103 0.0103 0.0103 0.0103' 0.0104 0.0104 0.0104 0.0105 0.0105 0.0105 0.0105 0.0107 0.0107 • 0.0108 0.0108 0.0109 0.0110 0.0110 0.0111 0.0112 0.0112 0.0112 0.0113 0.0113 0.0114 0.0114 0.0114 0.0115 0.0115 0.0115 0.0116 0.0117 0.0113 0.0119 0.0119 0.0120 0.0121 0.0122 0.0123 0.0124 0.0124 0.0125 0.0125 0.0126 0.0126 0.0127 0.0127 0.0123 0.0123 0.0129 0.0130 Reservoir Elevation (ft) 91.620 91.622 91.623 91.525 91.627 91.629 91.631 91.632 91.634 91.637 91.640 91.644 91.647 91.651 91.655; 91.659 91.663 91.667 91.671 91.674 91.677 91.679 91.681 91.684 91.686 91.688 91.690 91.693 91.695 91.698 91.702 91.707 91.712 91.717 91.722 91.727 91.732 91.737 91.742 91.747 91.750 91.753 91.756 91.759 91.762 91.765 91.763 91.771 91.774 91.778 91.734 Inflow (cfs) 7.020 7.040 7.060 7.080 7.100 7.120 7.140 7.160 7.180 7.224 7.263 7.312 7.356 7.400 7'. 444 7.483 7.532 7.576 7.620 7.645 7.670 7.595 7.720 7.745 7.770 7.795 7.820 7.845 7.870 7.927 7.984 8.041 8.098 8.155 8.212 8.269 8.326 8.383 3.440 8.473 8.505 3.539 8.572 3.605 8.638 8.671 8.704 8.737 8.770 3.846 3.922 Outflow (cfs) 6.997 7.018 7.033 7.059 7.079 7.099 7.119 7.139 ' ' 7.159 7.186 7.224 7.266 7.310 7.353 7.397 7.441 7.435 7.529 7.573 7.611 7.641 7.657 7.593 7.718 7.743 7.758 7.793 7.813 7.843 7.879 7.928 7.982 8.038 8.095 8.151 3.208 8.265 8.322 8.379 8.429 8.468 8.503 8.536 8.570 3.603 8.636 8.659 8.702 8.735 8.782 8.847 Paga: 3 «* * a*H m "m * «i 41 -MR * «*» <• •«» M «• m -. dU sw 41 ** 4M **l •m •** ,«• 0 «• *» 41 <*« a *W •O Data 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0223 0224 0225 0226 0227 0223 0223 0230 0231 0232 0233 0234 0235 023S 0237 0238 0239 0240 0241 0242 0243 0244 0245 024S 0247 0243 0249 0250 0251 0252 0253 0254 0255 Q25S 0257 0253 0259 0300 0301 0302 0303 0304 0305 030S 0307 0308 0309 0310 0311 0312 0313 Reservoir Storage (ac-ft) 0.0131 0.0132 0.0133^ 0.0134 0.0135 0.0136 0.0137 0.0139 0.0139 0.0140 0.0141 0.0142 0.0142 0.0143 0.0144 0.0144 0.0145 0.014S 0.0147 0.0143 0.0149 0.0151 0.0153 0.0154 0.0156 0.0157 0.0159 0.0161 0.0162 0.0163 0.01S4 0.0165 0.016S 0.0163 0.0170 0.0173 0.0175 0.0178 0.0182 0.0187 0.0193 0.0200 0.0207 0.0215 0.0224 0.0232 0.0241 0.0250 0.0259 0.0267 0.0275 Reservoir Elevation (ft) • 91.790 91.797 91.303 91.810 91.817 . 91.823 91.330 91.837 91.843 91.847 31.852 91.856 91.860 31.864 ' . 31.868; 31.872 31.876 91.880 31.886 91.894 31.303 31.312 31.322 91.932 31.341 31.951 31.961 91.370 91.979 91.98S 31.392 91.333 92.002 92.005 92.009 32.014 32.013 32.025 32.032 92 .'042 92.054 92.067 92.082 92.097 32.113 32.130 32.147 32.165 32.132 32.193 92.213 Inflow (cfa) 3.333 3.074 3.150 3.22S 9.302 9.378 3.454 3.530 9.575 3.620 9.665 3.710 9.755 3.800 9.345 9.890 3.935 9.380 10.033 10.138 10.307 10.416 10.525 10.634 10.743 10.852 10.361 11.070 11.137 11.204 11.271 11.338 11.405 11.472 11.533 11.606 11.673 11.740 11.312 12.084 12.256 12.423 12.600 12.772 12.944 13.116 . 13.288 13.460 13.573 13.636 13.799 Outflow (cfs) 8.313 8.394 9.069 9.145 9.221 9.297 9.373 9.449 9.515 9.568 3.616 9.662 9.707 9.752 9.797 3.842 3.887 3.932 9.393 10.091 10.134 10.301 10.403 10.518 10.627 10.736 10.845 10.354 11.050 11.127 11.138 11.266 11.305 11.334 11.372 11.416 11.465 11.518 11.586 11.677 11.785 11.308 12.041 12.183 12.332 12.436 12 . 643 12.304 12.361 13.108 13.248 Page: 4 >. „ Ml m m m m •m. m •m « „ « -, -m •*» m •m m « «* « •W « '** <• '«* .<* *« * <*» Date 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 Time 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0323 0323 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0343 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0400 0401 0402 0403 0404 Reservoir Storage (ac-ft) 0.0282 0.0239 0.0296 0.0303 0.0310 0.0316 0.0323 0.0331 0.0341 0.0353 0.0366 0.0330 0.0395 0.0411 0.0427 0.0444 0.0461 0.0478 0.0494 0.0509 0.0525 0.0540 0.0554 0.0569 0.0583 0.0597 0.0611 0.0630 0.0656 0.0633 0.0727 0.0773 0.0825 • 0.0882 0.0943 0.1007 0.1075 0.1148 0.1226 0.1309 0.1395 0.1485 0.1580 0.1676 0.1778 0.1390 0.2011 0.2188 0.246S 0.2837 0.329S Reservoir Elevation (ft) 92.223 92.242 92.256 92.259 92.282 32.235 32.303 32.323 32.343 92.3SS 92.392 92.420 32.443 92.430 92 . 512 ; 92.545 92.573 92.611 92.642 92.673 32.703 92.732 92.760 92.789 92.817 92.845 92.372 92.903 92.959 93.012 33.051 33.097 33.143 33.206 33.257 33.332 93.400 93.473 93.551 93.634 33.721 33.812 93.906 94.002 94.066 94.137 94.214 94.325 94.501 94.736 95.020 Inflow (cfs) 13.912 14.025 14.133 14.251 .14.364 14.477 14.590 14.915 15.240 15.565 15.890 16.215 16.540 16.865 17.190 17.515 17.840 13.088 18.336 18.584 18.832 19.030 13.328 13.576 19.824 20.072 20.320 21.271 22.222 23.173 24.124 25.075 26.026 25.977 27.328 23.873 29.830 31.050 32.270 33.490 34.710 35.930 37.150 38.370 39.530 40.310 42.030 50.467 53.904 67.341 75.778 Outflow (cfs) 13.382 13.511 13.636 13.753 13.830 13.333 14.117 14.257 14.437 14.650 14.887 15.144 15.415 15.699 15.391 16.291 16.596 16.897 17.187 17.467 17.740 18.008 18.271 13.531 18.739 13.044 13.297 19.627 20.094 20.594 21.018 21.516 22.076 22.691 23.352 24.054 24.790 25.574 26.420 27.317 23.259 23.233 30.253 31.282 31.796 32.357 32.961 33.848 35.233 37.099 39.320 Page: 5 Date 01 Jan .01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 | 01 Jan 01 , 01 Jan 01 01 Jan 011 01 Jan 01 , 01 Jan 01 01 Jan 01 ' 01 Jan 01 01 Jan 01 01 Jan. 01 * 01 Jan 01 01 Jan 01* 01 Jan 01 * 01 Jan 0.1 01 Jan 01 01 Jan 01 > 01 Jan 01 01 Jan 01 01 Jan 01 I 01 Jan 01 01 Jan 01 01 Jan 01 1 01 Jan 01 01 Jan 01 *' 01 Jan 01 , 01 Jan 01 01 Jan 01 01 Jan 01 - 01 Jan 01 Time 0405 0406 0407 0403 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0423 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 Reservoir Storage (ac-ft) 0.3845 0.4484 0.5211 0.6.024 0.6928 0.7918 0.8870 0.3661 1.0234 1.0774 1.1103 1.1286 1.1325 1.1224 1.0986 1.0612 1.0172 0.9731 0.9283 0.8847 0.8403 0.7359 0.7516 0.7076 0.6637 0.6201 0.5771 0.5343 0.4336 0.4537 0.4150 0.3774 0.3409 0.3057 0.2722 0.2405 0.2106 0.1823 0.1561 0.1327 0.1124 0.0945 0.0789 0.0653 0.0540 0.0443 0.0375 0.0317 0.0270 0.0231 0.0133 Reservoir Elevation (ft) 35.278 35.573 35.321 35.247 36.533 36.372 37.281 37.534 97.737 97.890 97.996 93.046 38.057 38.023 37.358; 37.833 37.638 37.557 37.416 37.274 97.132 96.988 96.813 96.650 96.482 96.315 96.150 95.935 35.732 35.604 35.422 95.245 35.073 94.876 94.664 94.463 94.273 94.095 93.837 93.653 33.448 33.270 93.113 92.954 32.732 32.554 92.412 32.237 32.204 32.123 32.066 Inflow (cfs) 84.215 32.652 101.039 109.525 117.363 126.400 115.153 105.906 95.659 85.412 75.165 64.918 54.671 44.424 34.177 23.930 23.138 22.346 21.554 20.762 19.370 19.178 13.386 17.594 16.802 16.010 15.662 15.314 14.966 14.618 14.270 13.322 13.574 13.226 12.878 12.530 12.326 12.122 11.918 11.714 11.510 11.306 11.102 10.838 10.634 10.430 10.354 10.213 10.082 3.346 9.810 Outflow (cfs) 41.013 42.993 45.247 47.138 49.173 51.351 52.365 54.273 55.320 56.113 55.653 55.833 56.343 56.813 56.463 55.846 55.118 54.383 53.653 52.326 52.193 51.441 50.467 49.493 48.535 47.577 46.530 45.674 44.339 43.163 41.964 40.800 39.671 33.205 36.527 34.938 33.436 '32.020 30.054 27.522 25.312 23.381 21.630 20.051 13.013 16.373 15.063 14.015 13.164 12.471 11.300 Page: 6 s 1 f 1 1 ** n •m « *« :• " am v~ wit .,„ m m *m " •m •** - Date 01 Jan 01 01 Jan 0.1 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 M 01 Jan 01 a* « ** m m a 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 01 Jan 01 , 01 Jan 01 Time 0456 0457 0453 0459 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0513 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0545 Reservoir Storage (ac-£t) 0.0173 0.0154 0.0144 0.0140 0.0137 0.0134 0.0133 0.0131 0.0130 0.0123 0.0127 0.0125 0.0124 0.0122 0.0121 0.0120 0.0118 0.0117 0.0116 0.0115 0.0114 0.0113 0.0112 0.0111 0.0110 0.0108 0.0108 0.0107 0.0106 0.0105 0.0104 0.0103 0.0102 0.0101 0.0101 0.0100 0.0099 0.0098 0.0098 0.0097 0.0096 0.0095 0.0095 0.0094 0.0093 0.0093 0.0092 0.0091 0.0091 0.0090 0.0090 Reservoir Elevation (ft) 92.015 91.932 91.872. 91.843 91.825 91.812 91.801 91.792 91.783 91.775 91.766 91.757 91.748 91.740 91.733; 91.723 91.715 91.709 91.702 91.695 91.689 91.632 91.675 91.663 91.662 91.655 91.650 91.645 91.639 91.634 91.629 91.624 91.618 91.613 91.608 91.603 91.598 91.594 91.590 91.585 91.531 91.577 91.572 91.558 91.554 91.559 91.555 91.552 91.548 91.545 91.541 Inflow (cfg) 9.574 9.538 9.402 9.266 9.130 9.032 8.934 8.835 8.733 3.640 3.542 8.444 8.346 8.248 8.150 8.074 7.998 7.922 7.846 7.770 7.694 7.618 7.542 7.465 7.390 7.331 7.272 7.213 7.154 7.095 7.036 6.977 6.918 6.859 6.800 6.751 6.702 6.653 6.604 6.555 6.506 6.457 6.408 6.359 6.310 6.269 6.228 6.137 6.146 6.105 6.064 Outflow (c£s) 11.425 10.518 9.348 9.519 9.314 9.165 9.049 8.944 8.844 8.745 8.646 8.548 8.450 8.352 8.254 8.163 8.082 3.004 7.927 7.851 7.775 7.599 7.623 7.547 7.471 7.400 7.337 . 7.277 7.217 7.153 7.099 7.040 6.981 6.922 6.863 6.807 5.756 5.706 6.556 6.607 6.558 6.509 5.450 6.411 6.362 6.316 6.273 6.231 6.190 6.149 6.108 Faga: 7 Date 01 Jan 01 01 Jan 01 01 Jan 01 , 01 Jan 01 01 Jan 01i01 Jan 01 ., 01 Jan 01 01 Jan 01 •4'01 Jan 01 .,„ 01 Jan 01 01 Jan 01 flNI 01 Jan 01 I(1 01 Jan 01 01 Jan 01 Time 0547 0543 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0600 Reservoir Storage (ac-ft) 0.0089 0.0088 0.0088 0.0087 0.0087 0.0086 0.0085 0.0085 0.0034 0.0084 0.0033 0.0083 0.0082 0.0082 Reservoir Elevation (ft) 91.537 91.534 91.530 91.52S 91.523 91.520 91.517 91.513 91.510 91.507 91.504 91.501 91.498 91.495 Inflow (cfs) 6.023 5.982 5.941 5.900 5.865 5.830 5.795 5.760 5.725 5.690 5.655 5.620 5.585 5.550 Outflow (cfs) 6.067 6.026 5.985 5.944 5.905 5.868 5.833 5.797 5.762 5.727 5. 692 5.657 5.622 5.587 Page: 8 Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 8 APPENDICES Appendix 8.11 Vortechs Manufacturer Data AH ah H:\REPORTS\2352M09 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 6:30 PM ; Plan View ...._. • .;• ';:.";X'': Grit Chamber,^^:^\:^^^^. — •-—-^—=- ;' "?.swirling iniptiqn;crdated.b<'4'h°ir' •"•*•• ^^™i%T4ivf''A.:v.,'n'Vii-ri_'i' 31: :_-m»^:_" 1) Initial Wet Weather Phase During a two-month storm event the water level begins to rise above the top of the inlet pipe. This influent control feature reduces turbulence and avoids resuspension of pollutants. 2) Transition Phase As the inflow rate increases above the controlled outflow rate, the tank fills and the floating contaminant layer accu- mulated from past storms rises. Swirling action increases at this stage, while sediment pile remains stable. 3) Full Capacity Phase When the higfvfiow outlet approaches full discharge, storm drains are flowing at peak capacity The Vfcrtechs System is designed to match your design storm flow and provide treat- ment throughout the range of storm events without bypass- ing. To accommodate very high flow rates, Vortechnics can 4) Storm Subsidence Phase/Cleaning Treated runoff is decanted at a controlled rate, restoring the water level to a low dry-weather volume. The low water level facilitates inspection and cleaning; and g'gnificantiy reduces maintenance costs. The system's central baffle prevents trans- fer of floatables to the outlet during cleaning or during the next the W)rtecl ,„Storm water Treatment System Perforated Covers^ 0 Plus 6' Typical r—XSad 6fta9' Typical _ IN«|_ T Plan View To begin the design of your Vortechs System, refer to the sizing chart .below and com- plete a Specifier's Worksheet to provide details about your site and design flows. Then simply fax or mail the worksheet to Vortechnics with your site plan, and we'll produce detailed Vortechs System scale draw- ings free of charge. Elevation View ;: Diameter/Area;'Desfgrir edfrnenfc .'Stiarace?".- Approx--1 Vortechs System Inlet/Outlet Configurations Vortechs Systems can be configured to accommo- date various inlet and outlet pipe orientations. The inlet pipe can enter the end or side of the tank at right angles - outlet pipes can exit the end or the side of system at most angles. End Inlet Side Inlet Offline To Polish ^ ) 1 1 Pretreatment ciitfrii I \ I I NOTE: Vortechs Systems installed in a bypass configuration require an upstream diversion structure that shall be detailed by the Consulting Engineer with elevation and weir width data provided by Vortechnics. LA INLET. See notes 8, 9 Sealant Aluminum angle flange with neoprene gasket Sealant Baffle Wall Row Control Wall PLAN VIEW B - B Rim elevations to match finished grade 1 I Concrete reinforced for HS20-44 loading — -^_ 7'- 0 8'- T: IB -0" r -3" 'P INLET Invert 3'- T) -0' r-p ========n •'••/• :'\J~*.^'.Tl".v-'''-i/*: •i • .<• : j 't Butyl rubber sealant — v 0 ^1 1, L_.M I •*„ •-..•"':?"• ;;': Top and sealed tc ' U— _1 L ujj •*^Ju<tV*u V? u^' ^u' "Ju, : = side vau 3'- Tj £j. V -"I « ,«..A j>£ \J -a"p T T. 4 1.. 1 • 2. Weir and Orifice / Plates-^ := ===- Weir " Orifice : : 3'- '.. -0" r-p \ ?'• ^ -«'^5^ s — Risers by other: B r OUTLET Invert- — 1 1 1 6" compacted gravel SECTION A - A 1 1 Stormwatar Treatment System (SWTS) shall have:Psak treatment capacity: 8.3 cfs Sfldlment staragi: 3.2S cu yd Sadiment chambar dla: T min SWTS shall ba cantalnwi In one rectangular structure SWTS shall ramava aOX at annual TSS loading SWTS shall retain flaatablu and trapp«d sadimwit up to and including peak treatment capacity 5. SWTS Inverts in and out shall b« at the same elevation 8. SWTS shall not b« compromised by affects of downstream tailwater7. SWTS shall have no internal components that obstruct maintenance access 9. Inlet pipe must be perpendicular to the structure 9. Pipe orientation may vary, see site plan for size and location 10. Purchaser shall not be responsible far assembly of unit 11. Manhole frames and perforated covers supplied with system, not installed 12. Purchaser to prepare excavation and provide lifting equipment 13. Contact Vortechnics O (207) 378-3662 Ext. '?:: for ordering information This CADO file Is for the purpose of specifying starmweter treatment equipment to be furnished by Vortechnics, Inc. and may only be transferred to other documents exactly as provided by Vortechnics. Title block information, excluding the Vortechnics logo and Ihe Vortechs "•Starmwater Treatment System designation and patent number, may be deleted if necessary. Revisions to any part of this CAOO lie without prior coordination with Vortechnics shall be considered unauthorized use of proprietary information. I 1 Vortechnicr 41 Evergreen Drive Portland, ME 04103 STANDARD DETAIL STORMWATER TREATMENT SYSTEM VORTECHS™ MODEL 50QO .us.*, IX Drainage Study La Costa Greens - Neighborhood 1.17 CHAPTER 9 HYDROLOGY EXHIBITS Exhibit 9.1 Mass-Graded Condition Hydrology Map AH ah H:\REPORTS\2352\109 Greens 1.17\2ND SUBMITTAL\A02.doc W.O. 2352-109 5/6/2005 8:30 PM