Loading...
HomeMy WebLinkAboutCT 05-12; Ocean Street Residences; PERMANENT SHORT DESIGN; 2013-05-24May 24, 2013 EARTH SUPPORT SYSTEMS RECEIVEOPe^*^ JUN 0 6 2013 CITY OF CARLSBAD BUILDING DIVtSION Mr. Michael Gadtjie MKG Consulting, Inc. 20857 Parkridge Lake Forrest, CA 92630 Phone (949) 439-0248 Fax (949) 855-6927 Re: Ocean Street Residences Carlsbad, California Subject: Permanent Shoring Design Submittal JOB #13-123 Dear Mr. Gaddie: Enclosed please find the permanent shoring design submittal for the above referenced project. Should you have any additional questions or comments regarding this matter, please advise. Sincerely, EARTH SUPPORT SYSTEMS, INC. Jordan, P.E. President / Engineering End: Design Calculations nager Roy Reed, P.E. Project Engineer 6 z o Ul X o 5937 Darwin Court, Suit 1051 Carlsbad, CA 920081 phone (760) 929-2851 I fax (760)929-2852 www.earthsupportsys.com Vi EARTH SUPPORT SYSTEMS Permanent Shoring Design Calculations Ocean Street Residences Carlsbad, California May 24, 2013 ESSI Project #13-123 Table of Contents: Section Shoring Plans: 1 Soldier Beam # 1-2 (H = 5'-3", max): 2 Soldier Beam # 3-4 (H = 6'-3", max): 3 Soldier Beam # 5-9 (H = 7'-3, max"): 4 Soldier Beam # 10-12, 21-22 (H = 9'-3, max"): 5 Soldier Beam # 13-20, 23-26 (H = 7'-3, max"): 6 Soldier Beam # 27-29 (H = 5'-3, max"): 7 Temporary Lagging Design: 8 Temporary Shotcrete Design: 9 Permanent Shotcrete Design: 10 Soldier Beam Schedule: 11 Geotechnical Report (Partial Copy): 12 5937 Darwin Court, Suit 1051 Carlsbad, CA 920081 phone (760) 929-2851 I fax (760) 929-2852 www.earthsupportsys.com r SECTION 1 SECTION 2 EARTH SUPPORT SYSTEMS S337 DARWIN COURT, SUITE 105, CARLSBAD, CA 92008 Ta(760)a2M861 FAX(760)92»-2e62 Name RPR Date 05-24-2013 Job No 13-123 Sheet \ of EARTH SUPPORT SYSTEMS S337 DARWIN COURT, SUITE 105, CARLSBAD, CA 92008 Ta(760)a2M861 FAX(760)92»-2e62 Checked By Client MKG Consulting, Inc. EARTH SUPPORT SYSTEMS S337 DARWIN COURT, SUITE 105, CARLSBAD, CA 92008 Ta(760)a2M861 FAX(760)92»-2e62 Job Description Ocean Street Residences - Carlsbad •PE(H-hD-Z)^d shaft LOADING DIAGRAM FOR CANTILEVERED SHORING SYSTEM NO HYDROSTATIC PRESSURE Earth Support Systenns, Inc. 5937 Darwin Court # 105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: 2. of Cantilever Desiqn Sb_Number := "1-2" This design calculations support 2010 CBC load combinations D + L + H (Eqn. 16-16) & D + L + H + E/1.4 (Eqn 16-20) in accordance with sections 1605.3.2 & 1605.3.2.1 Wall Geometry H := 5.25 ft dtriai := 25 ft Xsb := 8ft dshaft := 24 in Soil Parameters Pa := 52 pcf Pp := 300 pcf I := 2 4) := O deg •y^:= 125 pcf fs := 600 psf = Height of shoring system (Maximum) = Assumed initital emebedment depth = Soldier beam center to center spacing - Effective shaft diameter = Active pressure (Neglecting soil cohesion) = Passive pressure (Above ground water table) = Isolated pole factor (Soil arching) = Intemal soil friction angle - Not used = Unit weight of soil = Allowable soil friction Bouyant soil properties (As applicable) 1^;= 62.4pcf Unit weight of water p., := 30-ft P . — ap •- Pp if p.,="N/A" — (-^s ~ "fw) othenwise nfs Pa if p,^ = "N/A" —Hs-'^wj otherwise ts Distance below subgrade (B.O.W.) to standing water table (Design Groundwater Table = +1.00') ^ Bouyant Passive Earth Pressure = Bouyant Active Earth Pressure Submerged Soil Pressures (As Applicable) Ppp. = 150pcf Pap. = 26.pcf cant h=5.25 ft sb 1-2.xmcd Earth Support Systems, Inc. 5937 Danwin Court #105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: £> of Load Combinations Load Parameters: FS := 1.50 —> Load combination minimum factor of safety (static) 1. D + L + H(Eqn. 16-16) Pg = 52pcf Active pressure (Neglecting soil cohesion) Live load surcharge pressure (Also See Bousinesq Load) Dead load surcharge pressure 2. D-^ L+ H-H E/1.4 (Eqn. 16-20) FSg :- 1.13 ^oad combination minimum factor of safety (Dynamic) fsE := 1.33 fs = Allowable soil friction, with temporary increase Pp' := 1.33 Pp L = 72psf Passive pressure, with temporary increase Live load surcharge pressure D = 0psf Dead load surcharge pressure E := 15-pcf f := min ^sb I I 1 JJ Steel Parameters Fy := 50 ksi Es := 29000 ksi f]:= 1.67 F = Inverted seismic EFP surcharge = Arching ratio = Steel yield stress (Grade 50) = Elastic modulus of steel = Allowable strength safety factor - ASD, AISC F.l & El = Allowable flexural stress at fully braced maximum moment location - AISC F2-1 Fb = 30ksi cant h=5.25 ft sb 1-2.xmcd Earth Support Systems, Inc. Ocean Street Residence 5937 Darwin Court #105 Engr: RPR Date: 05/21/13 Carlsbad, CA 92008 Sheet: of Uniform Live Load Surcharge - CBC Eqn's 16-16 & 16-20 y:= Oft,0.01ft..H +dtriai Pfuii := L = Surcharge pressure full height Ppar '•= O psf = Surcharge pressure partial height Hpar •= O ft - Height of partial surcharge pressure Ps(y):= Ppar + Pfull if y^Hpar Pfuii it Hpar < y < H = Surcharge pressure as a function of depth Opsf if y>H Eccentric & Variable Point Loading e := O in = Eccentricity of axial load Pr .= O kip = Resultant axial load Pre MQ := = Moment due to eccentric axial load ><sb ft MQ - O kip — ft PH := O kip = Lateral point load XH := Oft = Distance to lateral point load from top grade (T.Q.W.) Seismic Lateral Load CBC Eqn. 16-20 —> E = 15 pcf ^^'^''~ "ZA ~ Seismic equivalent fluid pressure Pseis Peq 'i^ Pseis = 56.25 psf = Maximum seismic surcharge pressure at grade Peq(y) := Pseis Pseis y if = Inverted triangular distribution 0 if y > H cant h=5.25 ft sb 1-2.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR. Date: 05/21/13 Sheet: 6 of Boussinesq Surcharge Analysis CBC Eqn's 16-16 & 16-20 q := 2.5 ksf = Strip load intensity z' := 2 ft = Distance from grade to application of strip load xi := 9.75 ft X2 := xi + 2-ft K:= 0.50 9i(y) := atan 5(y):= 02(y)-ei(y) 02 (y) := atan = Distance to closest edge of strip load = Distance to furthest edge of strip load = Rigidity coefficient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) /^^^ K = 0.50 (Flexible) ^J "(y) := e1(y) + — Ps(y) := Opsf if 0<y<z' 2q K TT (6(y-z')-sin(6(y-z')cos(2a(y-z')))) if z'<y<H Opsf if y>H Psuroh(y) := Ps(y) Total Surcharge Load: Ps(y) dy 'Oft Pb = 134plf Centriod measured from grade: Ps(y) (H-y) dy R: Oft R= 1.12ft Surcharge Loading Diagram 300 cant h=5.25 ft sb 1-2.xmGd Earth Support Systems, Inc. 5937 Darwin Court #105 CaHsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: U of CALCULATE REQUIRED TOE DEPTH: (Determine goveming embedment condition) PA(H) = 273 psf —> Earth Pressure. H Pfuii = 72 psf —> Live Load Pressure, L ^eis = 56 psf -> Seismic Pressure, E D + L + H (Eqn. 16-16) D+ L + H + E/1.4 (Eqn 16-20) Summing forces horizontally: Sr a Pj(H+D) z - -PE(H+ D-z)^ mj(z,D) I •PE(H+D-Z) mj(z,D) Soil Loading Diagram 10000 -5000 0 Pressure (psf) rH+D-Z (PE(H + D-z) + mj(z,D)y)dy-h H+O PE(y) cly + PA(y) dy + 5000 PE(y) dy H+0 rH Ps(y) dy + H Peq(y) dy+ Pb + — 0 '^sb Summing moments about soldier beam toe: Pj(H+ D) z - -PE(H+D-z)f mj(z,D) j mj(z,D) (PE(H+D-z) + mj(z,D) y)-(z-y) dy H-l-D-z PE(y) (H+ D-y) dy + H+0 -H 0 •H-i-O PE(y) (H +D-y) dy-i-PA(y) (H+D-y) dy Ps(y)(H+D-y)dy + (H + D - y) Peq(y) dy + Pb (D + R)-i- (H + D - XH) + MQ Xsb Load Combination Results Di = 11.4ft D2 = 9.98 ft zi = 3.03ft —> Static Load Combination Z2 = 2.7ft --> Seismic Load Combination max(D) = 11.4ft cant h=5.25 ft sb 1 -2 .xmcd Earth Support Systems, Inc, 5937 Darwin Court # 105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: 7 of 1x10 Soil Loading Diagram 1x10" 2x10 WALL PRESSURES PA(H) = 273 psf f Psoil(H-i- •') = HOO psf Pfuii = 72psf Ppar = Opsf Pressure (psf) Shear Diagram 8- Distance to Zero Shear (From Top of Pile) e <- H T<-V_1(£) while T > 0 e e -t- O.IO-ft T ^ V_1(e) return e T = 10.9ft cant h=5.25 ft sb 1-2.xmcd Earth Support Systems, Inc. 5937 Danwin Court # 105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: *2 of Soldier Beam Moment: r-y M(y) = V(y) dy+Mo 0 Required Modulus Mn max 'Ml(Tl)-Xsb - Soldier Beam Bending Moment Required Section Modulus: Beam = "W8 x 48" A=14.1in^ bf = 8.11 in d = 8.5in tf = 0.69in tw = 0.4in k = 1.08in M„ Zr := Fb Zx = 49 in lx = 184in'* Sx = 43.2in^ Plastic modulus, L^ < Lp = 25.3-in" Fb = 30 ksi rx = 3.61 in L:= T K L Minor axis continuously braced K:= 1 = 36.4 4.71-113.4 2 ^ TT Es [rx j Check Axial Stresses: X := F„ := 0.658^ Fv if < 4.71 / — = Nominal compressive stress - AISC E.3-2 & E3-3 0.877 Fp otherwise Pp:= Fcr A Ma := Zx-Fb : Allowable compressive force - AISC E.3-1 = Allowable moment - AISC F,2-1 Combined Axial & Bending: Unity := ^ 8 Pc^ 9 f Mr - ' if — > 0.2 J _P^ Mn 2Pp ^ M, othenwise Check := if (Unity < 1.00, "Ok!" , "No Good") AISC H1-1a&H1-1b Unity = 0.52 Ma = 122.3kipft Mmax = 63.2 kip-ft Check = "Ok!" cant h=5.25 ft sb 1-2.xmcd Earth Support Systems, Inc. 5937DanA/in Court #105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: _3 of CHECK DEFLECTION: Beam = "W8 x 48" rH Pi := PA(y) dy = Total active soil load P4 := Ps(y) dy •"0 Total uniform surcharge load Pb = 134.2plf Total Boussinesq surcharge load P«.= Peq(y) dy = Total seismic surcharge load L ;= H -h — 3 ysurch yPs(y) dy Ps(y) dy Effective length of soldier beam for calculating deflection Centriod of uniform surcharge (From top of excavation) ^Bouss. ^ ^surch Vsurch tlsurch. Lj ysurch Distance from boftom of soldier beam to centriod of Boussinesq Distance from top of soldier beam to centriod of uniform surcharge Distance from bottom of soldier beam to centriod of unifonn surcharge 2 \2 P.-Xu.fLA"^ P4Xsb(bsurch.)'^ PbXsb(t>Bouss] ' ^ ''-(3.^ -i-_±,(3.M-.,„„..J. 15EsL 6Esl + if Ps-Xsb'beq , \ „ i=2, (3.L2-bJ,0 6Eslv '0.26^ 0.27 j in -> Maximum static deflection —> Maximum dynamic deftection cant h=5.25 ft sb 1-2.xmcd Earth Support Systems, Inc. 5937 Darwin Court #105 Carlsbad, CA 92008 GLOBAL STABLITY Increase embedment depths until acceptable factors of safetv are obtained Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: \0 of FS = 1.5 —> D + L + H Dhl := Round(l.00 Dl ,0.5ft) + 2.75 ft Dhl = 14.25ft FSE = 1.13 —> D + L + H + E/1.4 Dh2 := Round(l.00 D2 ,0.5ft)-i-1-ft Dh2 = 11 ft Slidding Forces: Fs = V(H+0) + •H+Dh Psoii(x) dx O, Static Condition Resisting Forces: Overtuming Moments: FR = .O2 Psoii(x) dx H-i-0 Fsi = 3.9klf FR.I =-6.98klf (Dh + H-y)PA(y)dy (Dh-t- H-y) Ps(y) dy + Seismic Condition Fs.2 = 4.2klf FR.2 = -5.43klf (Dh+ H-y)Ps(y)dy + (Dh+ H-y) Peq(y) dy •H-i-0 PE(y) dy H 2V Dh - -- I + 3 •H+Dh O2 H+Dh-02 PH , . Psoii(y) dy + Mo + (Dh + H - XH) 3 Xsb Resisting Moments: rOz MR = (H+Dh-y)Psoii(y)dy H+0 FACTOR OF SAFETY: Static Condition D + L + H FS = 1.5 Static Condition Seismic Condition Mo 1 = 22.71 ft kip MR 1 = -42.34 ftkip Mo 2 = 20.36 ftkip MR 2 = -26.79 ft-kip Seismic Condition D + L + H + E/1.4 FSE = 1.13 -R.1 = 1.79 "s.1 R.2 = 1.29 's.2 M R 1 M, = 1.86 '0 1 Static = "Ok" M R 2 M = 1.32 o 2 Seismic = "Ok" cant h=5.25 ft sb 1-2.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Cartsbad, CA 92008 Governing Lateral Embedment Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: \ \ of Dhl = 14.25ft = Minimum lateral embedment depth, for static load case D + L -t- H req'd factor of safety Dh2 = 11 ft = Minimum lateral embedment depth, for seismic load case D + L + H + E/1.4 req'd factor of safety Governing Lateral Embedment: Dh ;= max(Dh1, Dh2) qb = O psf ~> Allowable soil bearing for soldier beam toe (Not used) Check toe depth for vertical load: Dv := Ceil dshaft I Pr-TT—j-qb I 1.3,ft + Oft dshaft fs j Selected toe depth Dtoe: DESIGN SUMMARY: Beam = "W8 x 48" H = 5.25 ft Dtoe = 14.25 ft H+ Dtoe =20 ft Zr = 25.3in^ dshaft = 24 in Xsb = 8ft An ''0.26 ^ 0.27 j in Dtoe := if(Dh > Dv, Dh, Dv) Dtoe = 14.25ft~> Governing Embed Sb Number = "1-2" = Selected Soldier Beam Height of Shoring Toe Embedment Depth Total Length of Soldier Beam Required Modulus = Effective Diameter of Toe Shaft Maximum Soldier Beam Spacing = Maximum Theoretical Lateral Displacement Dh = 14.25ft Dv = Oft cant h=5.25 ft sb 1-2.xmcd SECTION 3 EARTH SUPPORT SYSTEMS 5937 DARWIN COURT, SUTE 105, CARISBAD, CA 92008 TEL (7S0) 029-2661 FAX (760) 929-2952 Name RPR Date 05-24-2013 Job No 13-123 Sheet ^ ^ of EARTH SUPPORT SYSTEMS 5937 DARWIN COURT, SUTE 105, CARISBAD, CA 92008 TEL (7S0) 029-2661 FAX (760) 929-2952 Checked By Client MKG Consulting, Inc. EARTH SUPPORT SYSTEMS 5937 DARWIN COURT, SUTE 105, CARISBAD, CA 92008 TEL (7S0) 029-2661 FAX (760) 929-2952 Job Description Ocean Street Residences - Cartsbad H D BOTTOM OF EXCAVATION PE(H-HD-Z)-^d •haft -PJ(H-I-D) LOADING DIAGRAM FOR CANTILEVERED SHORING SYSTEM NO HYDROSTATIC PRESSURE Earth Support Systems, Inc. 5937 DanA/in Court # 105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Cantilever Design Sb_Number := "3-4" This design calculations support 2010 CBC load combinations D + L + H (Eqn. 16-16) & D + L + H + E/1.4 (Eqn 16-20) in accordance with sections 1605.3.2 & 1605.3.2.1 Wall Geometry H:= 6,25 ft dtriai := 25 ft Xsb := 8ft dshaft := 24-in Soil Parameters Pg := 52-pcf = Pp:= 300 pcf I := 2 <t) := O deg = "fs - 125 pcf fs:= 600 psf = Bouyant soil properties (As applicable) Height of shoring system Assumed initital emebedment depth Soldier beam center to center spacing Effective shaft diameter Active pressure (Neglecting soil cohesion) Passive pressure (Above ground water table) Isolated pole factor (Soil arching) Intemal soil friction angle - Not used •• Unit weight of soil : Allowable soil friction -(^.= 62.4pcf Unit weight of water p.. := 27-ft pp P . •= ' ap • Pp if p., = "N/A" — ("fs - "(w) othenwise Is Pa if p,^ = "N/A" —hs-^w) othenMse •^s Distance below subgrade (B.O.W.) to standing water table (Design Groundwater Table = +1.00') Bouyant Passive Earth Pressure = Bouyant Active Earth Pressure Submerged Soil Pressures (As Applicable) Ppp. = 150 pcf Pap. =26pcf cant h=6.25 ft sb 3-4.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date; 05/21/13 Sheet: iH of Load Combinations Load Parameters: FS ;= 1.50 —> Load combination minimum factor of safety (static) 1. D+ L + H(Eqn. 16-16) Pg = 52 pcf L:= 72-psf Active pressure (Neglecting soil cohesion) Live load surcharge pressure (Also See Bousinesq Load) D .= 0 psf = Dead load surcharge pressure 2. D + L+ H + E/1.4 (Eqn. 16-20) FSE := 1.13 ^oad combination minimum factor of safety (Dynamic) fSE := 1.33 fs = Allowable soil friction, with temporary increase Pp. := 1.33 Pp L = 72psf = Passive pressure, with temporary increase Live load surcharge pressure D = Opsf E := 15 pcf f := min '•dshaft 1 JJ Steel Parameters Fy := 50-ksi Es := 29000 ksi Q:= 1.67 F„ Fh := — y fl Fb = 30 ksi Dead load surcharge pressure = Inverted seismic EFP surcharge •• Arching ratio = Steel yield stress (Grade 50) = Elastic modulus of steel = Allowable strength safety factor - ASD, AISC F.l & El = Allowable ftexural stress at fully braced maximum moment location - AISC F2-1 cant h=6.25 ft sb 3-4.xmcd Earth Support Systems, Inc. Ocean Street Residence 5937 Darwin Court # 105 Engr: RPR Date: 05/21 /13 Cartsbad, CA 92008 Sheet: 1^ of Uniform Live Load Surcharge - CBC Eqn's 16-16 & 16-20 y:= O ft.O.OI ft.. H + d,riai Pfyii := L = Surcharge pressure full height Ppar := O psf = Surcharge pressure partial height Hpar := O ft = Height of partial surcharge pressure Ps(y):= Ppar + Pfull if y^Hpar Pfuii if Hpar < y 5 H = Surcharge pressure as a function of depth Opsf if y>H Eccentric & Variable Point Loading e := O in = Eccentricity of axial load Pr := O kip = Resultant axial load Pre MQ := = Moment due to eccentric axial load Xsb MQ = Okip--ft PH := O kip = Lateral point load XH := O ft = Distance to lateral point load from top grade (T.O.W.) Seismic Lateral Load CBC Eqn. 16-20 —> E = 15 pcf Pgg := —- = Seismic equivalent ftuid pressure 1.4 Pseis •= Peq'H Pseis = 66.96 psf = Maximum seismic surcharge pressure at grade Peq(y) := p . ' seis Pseis 'y if y^H = Inverted triangular distribution 0 if y>H cant h=6.25 ft sb 3-4.xmcd Earth Support Systems, Inc. 5937 DanA/in Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: \Lff of Boussinesq Surcharge Analysis CBC Eqn's 16-16 & 16-20 q := 2.5 ksf = Strip load intensity z' ;= 2 ft = Distance from grade to application of strip load Xl .- 9.75 ft X2 := x-i + 2 ft K := 0.50 yJ 9-1 (y) := atan 8(y) := e2(y)-0i(y) Distance to closest edge of strip load Distance to furthest edge of strip load 02(y) := atan = Rigidity coefficient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) <X2^ K = 0.50 (Flexible) yJ a(y) := ei(y)+-^ Ps(y) := Opsf if 0<y<z' 2qK TT (6(y-z')-sin(6(y-z')cos(2a(y-z')))) if z'<y<H Opsf if y>H Psurch(y) := Ps(y) Total Surcharge Load: b := Ps(y) dy Oft Pb = 216plf Centriod measured from grade: R:= H 2 Ps(y) (H-y) dy •"Oft R= 1.5ft Surcharge Loading Diagram 300 cant h=6.25 ft sb 3-4.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: \1 of CALCULATE REQUIRED TOE DEPTH: (Determine goveming embedment condition) PA(H) = 325 psf —> Earth Pressure, H Pfuii = 72 psf —> Live Load Pressure, L Pseis = 67 psf —> Seismic Pressure, E D + L + H(Eqn. 16-16) D+ L + H + E/1.4 (Eqn 16-20) Summing forces horizontally: « 10- 8- Q Pj(H+ D) -PE(H+D-Z)^ mj(z,D) I ^ + mj(z,D) Soil Loading Diagram 10000 -5000 0 Pressure (psf) •H+0 PE(y) dy + PA(y) dy + Ps(y) dy + •"0 (PE(H+D-z) + mj(z,D).y)dy + "H p Peq(y) dy+ Pb + — 0 '^sb H+D-z 5000 PE(y) dy.. 'H+O Summing moments about soldier beam toe: Pj{H + D) -PE(H+D-z)f -PBi»^0-z) m j(z,D) j mj(z,D) (pE(H+D-z) + mj(z,D) y) (z-y)dy ... /•H+D-z PE(y) (H+ D-y) dy + H+0 -H 0 •H+O rH PE(y) (H + D-y) dy + PA(y) (H+D-y) dy 0 Ps(y) (H+D-y) dy + (H + D - y) Peq(y) dy + Pb (D + R) + (H + D - XH) + MQ Xsb Load Combination Results Di = 13.37ft D2 = 11.73ft z-j = 3.53ft —> Static Load Combination Z2 = 3.16ft —> Seismic Load Combination max(D) = 13.37ft cant h=6.25 ft sb 3-4.xmcd Earth Support Systems, Inc. 5937 Danwin Court #105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: \Q. of CL. a Soil Loading Diagram 2x10 -1x10 0 1x10 Pressure (psf) 2x10 WALL PRESSURES PA(H) = 325 psf f Psoil(H+ D')= 1297 psf P(,ii = 72psf Ppar = 0 psf Shear Diagram D. U Q Distance to Zero Shear (From Top of Pile) e <- H T <- VJ (e) while T > 0 e e + 0.10 ft T i- V_1(e) return e T = 12.9ft Shear (kips) cant h=6.25 ft sb 3-4.xmcd Earth Support Systems, Inc. 5937 Darwin Court #105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: \0\ of Soldier Beam Moment; ry M(y) = V(y) dy + Mo Required Modulus ffMi(Ti)-X3b ^^M2(T2)-Xsb jj Mmax := max Soldier Beam Bending Moment Required Section Modulus: Beam = "W8 x 48" A = 14.1in^ bf = 8.11in d = 8.5in tf = 0.69in t>„ = 0.4in k = 1.08in Zr := M„ Zx = 49-in 184 in Sx = 43.2in Plastic modulus, Lb < Lp Zf = 41.0 in Fb = 30 ksi . 3 rx = 3.61 in L:= T KL = 43 Minor axis continuously braced K:= 1 4.71- ly = 113.4 TT^ES [rx j Check Axial Stresses: X := — 0.658 Fy if K L / Es < 4.71 • — 0.877 Fe OthenA/ise = Nominal compressive stress - AISC E.3-2 & E3-3 Pc- For A n Ma :=Zx Fb • Allowable compressive force - AISC E.3-1 = Allowable moment - AISC F.2-1 Combined Axial & Bending: Unity := P^ 8 Pc"" 9 Pr M max I Pr ' if —>0.2 M, Mn 2P. 'max + otherwise M, Check ;= if (Unity < 1.00, "Ok!", "No Good" = AISC H1-1a & Hl-lb Unity = 0.84 Ma = 122.3kipft Mmax =102.3-kip-ft Check = "Ok!" cant h=6.25 ft sb 3-4.xmcd Earth Support Systems, Inc. 5937 DanA'in Court #105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: ZO of CHECK DEFLECTION: Beam = "W8 x 48" Pi := H PA(y) dy Total active soil load P4 := Ps(y) dy = Total unifomi surcharge load Pb = 216.5plf = Total Boussinesq surcharge ioad PR := Peq{y) dy Total seismic surcharge load D L := H + -3 = Effective length of soldier beam for calculating deflection ysurch • yPs(y) dy Ps(y) dy '^Bouss, ^i o = — + R i 3 ^surch •"' ysurch ^surch. •= Lj - ysurch = Centriod of uniform surcharge (From top of excavation) 15EsL = Distance from bottom of soldier beam to centriod of Boussinesq = Distance from top of soldier beam to centriod of uniform surcharge = Distance from bottom of soldier beam to centriod of unifonn surcharge 2 - ,. ^2 rch^ 6-Es-L P y (l-'\^ PA-Xsbfbsurch.r PbXsbfbsouss) A... ;= —— + (3 L| - bsurch.) + (3 L, beouss. Pe'Xsb'beq , . \ r. i=2,- _ . •(3-L2-beq),0 6Eslx An 0,58 ^ 0.61 j ~> Maximum static deftection -> Maximum dynamic deftection cant h=6.25 ft sb 3-4.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 GLOBAL STABLITY Increase embedment depths until acceptable factors of safetv are obtained Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: 2-1 of FS=1.5 —> D + L -I- H Dh1 ;= Round(l.OO Di ,0.5ft) + 2.25 ft Dh1 = 15.75ft FSE = 1.13 -> D + L + H-I- E/1.4 Dh2 := Round(l.00 D2,0.5ft) + 1-ft Dh2 = 12.5ft Slidding Forces: Fs = V(H+0) + •H+Dh Psoii(x) dx 02 Static Condition Resisting Forces: Overtuming Moments: "H O2 Psoii(x) dx H+0 Fs.i =5.27klf FR I =-8.14 klf Mc = (Dh + H-y)PA(y)dy + rH (Dh + H-y).Ps(y)dy + Seismic Condition FS2 = 5.74-klf FR2 =-6.82klf (Dh + H-y).ps(y) dy + 0 (Dh + H-y) Peq(y) dy •H+0 PE(y) dy-Dh V 2.) 3J rH+Dh O2 H+Dh-02 PH , , Psoii(y) dy + Mo + (Dh + H - XH) •i Xsb Resisting Moments: rOo MR = (H+Dh-y)Psoii(y)dy 'H+0 FACTOR OF SAFETY: Static Condition D + L + H FS=1.5 Static Condition Seismic Condition Mo 1 = 34.75 ft kip MR 1 = -55.28 ft kip Mo 2 = 32.06 ft-kip MR 2 = -38.49 ft-kjp Seismic Condition D + L + H + E/1.4 FSE = 1.13 FR.I| s.1 = 1.55 R.2 = 1.19 s.2 M R 1 M 1.59 0 1 Static = "Ok" M R 2 M, = 1.2 0 2 Seismic = "Ok" cant h=6.25 ft sb 3-4.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: £2- of Governing Lateral Embedment Dhl = 15.75ft = Minimum lateral embedment depth, for static load case D + L + H req'd factor of safety Dh2 = 12.5ft = Minimum lateral embedment depth, for seismic load case D + L + H + E/1.4 req'd factor of safety Governing Lateral Embedment: Dh := max(Dh1, Dh2) qb = 0-psf ~> Allowable soil bearing for soldier beam toe (Not used) Check toe depth for vertical load: Dv := Ceil dshaft I Pr-TT-—-qb I 1.3,ft + Oft •"••dshafffs j Selected toe depth Dtoe: DESIGN SUMMARY: Beam = "W8 x 48" H = 6.25 ft Dtoe= 15.75 ft H+ Dtoe = 22 ft Zr = 41 in^ dshaft = 24-in Xsb = 8ft 0.58^ •i 0.61 j Dtoe:= if(Dh>Dv,Dh,Dv) Dtoe = 15.75ft—> Governing Embed Sb_Number = "3-4" = Selected Soldier Beam = Height of Shoring = Toe Embedment Depth = Total Length of Soldier Beam = Required Modulus = Effective Diameter of Toe Shaft = Maximum Soldier Beam Spacing = Maximum Theoretical Lateral Displacement Dh = 15.75ft Dv = Oft cant h=6.25 ft sb 3-4.xmcd SECTION 4 EARTH SUPPORT SYSTEMS 5937 DARWIN COURT. SUITE 105, CARLSBAD, CA 92008 TEL (760) 929^651 FAX (760| 92»2e52 Nome RPR Dote 05-24-2013 Job No 13-123 Sheet ^^of EARTH SUPPORT SYSTEMS 5937 DARWIN COURT. SUITE 105, CARLSBAD, CA 92008 TEL (760) 929^651 FAX (760| 92»2e52 Checked By Client MKG Consulting, Inc. EARTH SUPPORT SYSTEMS 5937 DARWIN COURT. SUITE 105, CARLSBAD, CA 92008 TEL (760) 929^651 FAX (760| 92»2e52 Job Description Ocean Street Residences - Cartsbad H D BOTTOM OF EXCAVATION •PE(H+D-Z)-*IC1 shaft -Pj(H-l-D) LOADING DIAGRAM FOR CANTILEVERED SHORING SYSTEM NO HYDROSTATIC PRESSURE Earth Support Systems, Inc. 5937 DanA/in Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Cantilever Desiqn Sb_Number ;= "5-9" This design calculations support 2010 CBC load combinations D + L •^ H (Eqn. 16-16) & D + L + H + E/1.4 (Eqn 16-20) in accordance with sections 1605.3.2 & 1605.3.2.1 Wall Geometry H := 7.25-ft dtriai := 25-ft Xsb := 6ft dshaft := 24-in Soil Parameters Pa ;= 52-pcf Pp ;= 300 pcf = I ;= 2 (|) ;= O deg = -fs:=125-pcf fs;= 600-psf = Bouyant soil properties (As applicable) • Height of shoring system •• Assumed initital emebedment depth : Soldier beam center to center spacing : Effective shaft diameter •• Active pressure (Neglecting soil cohesion) •• Passive pressure (Above ground water table) • Isolated pole factor (Soil arching) •• Internal soil friction angle - Not used • Unit weight of soil • Allowable soil friction -Yw:= 62.4-pcf Unit weight of water p.. := 29-ft pp P . •= ' ap - Distance below subgrade (B.O.W.) to standing water table (Design Groundwater Table = +1.00') Pp if p.., = "N/A" — •{is - iZi otherwise ts Pa if p., = "N/A" P» = Bouyant Passive Earth Pressure Is •{is - fw) otherwise Bouyant Active Earth Pressure Submerged Soil Pressures (As Applicable) Ppp. = 150-pcf Pap. = 26-pcf cant h=7.25 ft sb 5-9.xmcd Earth Support Systems, Inc. 5937 DanA/in Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Load Combinations Load Parameters: FS ;= 1.50 —> Load combination minimum factor of safety (static) 1. D + L + H (Eqn. 16-16) Pg = 52-pcf Active pressure (Neglecting soil cohesion) L;= 72-psf Live load surcharge pressure (Also See Bousinesq Load) D ;= 0-psf Dead load surcharge pressure 2. D + L + H +E/1.4 (Eqn. 16-20) FSE := 1 -13 .„> Load combination minimum factor of safety (Dynamic) fSE := 1.33-fs = Allowable soil friction, with temporary increase Pp. ;= 1.33-Pp L= 72psf Passive pressure, with temporary increase Live load surcharge pressure D = 0-psf Dead load surcharge pressure E ;= 15-pcf f := min I dshaft ^ Xsb ^ 1 Steel Parameters Fy;= 50-ksi Es := 29000-ksi n := 1.67 F Fb = 30 ksi Inverted seismic EFP surcharge : Arching ratio • Steel yield stress (Grade 50) •• Elastic modulus of steel • Allowable strength safety factor - ASD, AISC F.l & E1 • Allowable flexural stress at fully braced maximum moment location - AISC F2-1 cant h=7.25 ft sb 5-9.xmcd Earth Support Systems, Inc. Ocean Street Residence 5937 DanA/in Court # 105 Engr: RPR Date: 05/21/13 Cartsbad, CA 92008 Sheet: of Uniform Live Load Surcharge - CBC Eqn's 16-16 & 16-20 y:= 0-ft,0.01-ft..H +dtriai Pf^ii := L = Surcharge pressure full height Ppar '•= 0-psf = Surcharge pressure partial height Hpar '•= 0-ft = Height of partial surcharge pressure Ps(y):= Ppar+Pfull if y^Hpar Pfuii if Hpar < y ^ H = Surcharge pressure as a function of depth 0-psf if y>H Eccentric & Variable Point Loading e ;= O in = Eccentricity of axial load Pr:= O kip = Resultant axial load Pr-e Mo ;= = Moment due to eccentric axial load Xsb ft Mn = Okip — ft PH := O kip = Lateral point load XH ;= 0-ft = Distance to lateral point load from top grade (T.O.W.) Seismic Lateral Load CBC Eqn. 16-20 —> E = 15 pcf p.„ -= = Seismic equivalent fluid pressure ^ 1.4 Pseis •= Peq H Pseis = 77.68-psf = Maximum seismic surcharge pressure at grade Peq(y) := Pseis Pseis j^ y if y-H = Inverted triangular distribution 0 if y>H cant h=7.25 ft sb 5-9.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Boussinesq Surcharge Analysis CBC Eqn's 16-16 & 16-20 q;= 2.5-ksf z';= 24-in X., ;= 9.75-ft X2 ;= x-i + 2-ft K ;= 0.50 0-, (y) ;= atan X-I 5(y) ;= 02(y)-0i(y) = strip load intensity = Distance from grade to application of strip load = Distance to closest edge of strip load = Distance to furthest edge of strip load = Rigidity coefllcient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) 02(y) ;= atan a(y):= 01 (y) X2 V y J 6(y) K = 0.50 (Flexible) Ps(y) := 0-psf if 0<y<z' 2-q-K (5(y-z')-sin(6(y-z')-cos(2a(y-z')))) if z'<y<H 0-psf if y>H Psurch(y)-= Ps(y) Total Surcharge Load: -H Ph := Ps(y) dy Oft Pb= 308-plf Centriod measured from grade: •H Ps(y)(H-y)dy 2 R;= 0-ft R= 1.9ft Surcharge Loading Diagram 300 cant h=7.25 ft sb 5-9.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of CALCULATE REQUIRED TOE DEPTH: (Determine governing embedment condition) PA(H) = 377-psf —> Earth Pressure, H Pfuii = 72-psf —> Live Load Pressure, L Pseis = 78-psf —> Seismic Pressure, E D + L + H (Eqn. 16-16) D + L-H H + E/1.4(Eqn 16-20) Summing forces horizontally: Soil Loading Diagram .a a. 10000 -5000 0 5000 Pressure (psf) Pj(H+ D) z - -PE(H+ D - z) mj(z,D) PE(H+D-Z) rH+O PE(y) dy + H PA(y) dy + 0 mj(z,D) Ps(y) dy + (PE(H+D-z) + mj(z,D)-y)dy + H+D-z PE(y) dy H+0 0 Peq(y) dy+ Pb + '0 Xsb Summing moments about soldier beam toe: 2 -PE(H+D-Z) Pj(H+D) ( V -PE(H+D-Z mj(z,D) rH+D-z PE(y)(H+ D-y) dy- H+O -H mj(z,D) (PE(H + D-z) + mj(z,D).y)-(z-y) dy •'0 •H+0 ^H PE(y)-(H + D-y)dy+ PA(y)-(H + D - y) dy ... H -^0 Ps(y)-(H + D-y) dy + r^H (H+ D-y)-Peq(y) dy+ Pb(D+ R) + (H + D - XH) + Mc Xsb Load Combination Results Di = 13.69 ft D2 = 11.98ft zi = 3.44ft —> Static Load Combination Z2 = 3.08ft —> Seismic Load Combination max(D) = 13.69ft cant h=7.25 ft sb 5-9.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Soil Loading Diagram s .c S. •2x10 0 2x10 Pressure (psf) WALL PRESSURES PA(H) = 377-psf f-Psoil(H+ D') = 2476-psf Pfuii = 72-psf Ppar = 0-psf Shear Diagram Q Distance to Zero Shear (From Top of Pile) £ <- H T <- V_1 (e) while T > 0 e <- e + 0.10-ft T <- V_1 (e) return e T= 14.1ft cant h=7.25 ft sb 5-9.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Soldier Beam Moment: M(y) = V(y) dy+Mo Soldier Beam Bending Moment Required Modulus ^^M,(T,)-X3b^^ Mmax := max VV M2(T2)-Xsb JJ Required Section IVIodulus: Beam ^ "W8 x 48" A=14.1-in^ bf=8.11-in d = 8.5-in tf = 0.69-in tw= 0.4in k = 1.08-in Zr:= Mn Zx = 49-in"^ lx= 184-in Sv = 43.2-in'^ . 3 Plastic modulus. Lb < Lp Zr = 43.8-in Fb = 30-ksi rx = 3.61-in L;= T K-L = 47 Minor axis continuously braced K:= 1 , Es 4.71- /— = 113.4 Fe := 2 r- TX -Es ^K-L^2 V 'X y Check Axial Stresses: X ;= — F. Fcr:= X K L / Es 0.658 -F„ if <4.71- / — 0.877-Fg OthenA/ise Nominal compressive stress - AISC E.3-2 & E3-3 Fcr-A n • Allowable compressive force - AISC E.3-1 Ma := Zx-Fb • Allowable moment - AISC F.2-1 Combined Axial & Bending: Unity Pr 8 Pc^ 9 Pr V J Pr if — > 0.2 P. M„ 'max + Otherwise 2P. M, Check ;= if(Unity < 1.00, "Ok!" , "No Good") = AISCH1-1a&H1-1b Unity = 0.89 Ma = 122.3kip-ft Mrr,ax= 109.3 kip ft Check = "Ok!" cant h=7.25 ft sb 5-9.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of CHECK DEFLECTION: Beam = "W8 x 48" rH Pi := PA(y) dy = Total active soil load Ps(y) dy = Total uniform surcharge load Pb = 308.1 -plf Total Boussinesq surcharge load PR := Peq(y) dy : Total seismic surcharge load L;= H + = Effective length of soldier beam for calculating deflection ysurch •- yPs(y) dy Ps(y) dy •'o bsouss. ^surch ysurch i^surch. •= Lj — ysurch Centriod of uniform surcharge (From top of excavation) PlXsb(L|)^ P4Xsb(bsurch.) Distance from bottom of soldier beam to centriod of Boussinesq Distance from top of soldier beam to centriod of uniform surcharge Distance from bottom of soldier beam to centriod of uniform surcharge 2 „ \2 i 15Es-lv 6-Es-L -|3-Lj - bgurch.j ^b^Xsh'^i^Bouss-j 6-Es-L -|3-Lj - beouss.j Ps'Xsb'beq / -V + ifli = 2, -(3-L2-beq),0 6-Es-L ^0.72^ V0.78y in —> Maximum static deflection —> Maximum dynamic deflection cant h=7.25 ft sb 5-9.xmcd Earth Support Systems, Inc. 5937 DanA/in Court # 105 Carisbad, CA 92008 GLOBAL STABLITY Increase embedment depths until acceptable factors of safetv are obtained FS = 1.5 —> D + L + H Dh1 := Round(l.OO-Di ,0.5ft) + 3.25-ft FSE =1.13 —> D + L + H + E/1.4 Dh2 ;= Round(l.00-D2,0.5ft) + 1-ft Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Dhl = 16.75ft Dh2= 13ft Slidding Forces: FS = V(H + 0) + H+Dh Psoii(x) dx Static Condition Resisting Forces: Overturning Moments: -H r^2 Psoii(x) dx H+0 Fs.i = 7.36klf FRI = -12.54-klf Mo = rH (Dh + H-y)-PA(y) dy + 0 (Dh + H-y)-Ps(y)dy + H+0 H 0 PE(y) dy-|^Dh -^\ + Seismic Condition Fs.2= 7.98-klf FR.2 = -9.95 klf (Dh + H-y)-Ps(y) dy + (Dh + H-y)-Peq(y) dy •H+Dh H+Dh-02 O2 Psoii(y) dy + Mo + (Dh + H - XH) O Xsb Resisting Moments: (H+ Dh-y) Psoii(y) dy .O2 MR = H+0 FACTOR OF SAFETY: Static Condition D + L + H FS=1.5 Static Condiflon Seismic Condition Mo 1 = 49.57 ft-kip MR -i = -87.92 ftkip Mo 2 = 44.97 ft-kip MR 2 = -56.96 ftkip Seismic Condition D + L + H + E/1.4 FSE =1-13 "R.1 Fs.i M R 1 M 1.7 = 1.77 o 1 static = "Ok" R.2 "s.2 M R 2 M = 1.25 = 1.27 0 2 Seismic = "Ok" cant h=7.25 ft sb 5-9.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Governing Lateral Embedment Dhl = 16.75 ft = Minimum lateral embedment depth, for static load case D + L + H req'd factor of safety Dh2 = 13 ft = Minimum lateral embedment depth, for seismic load case D + L + H + E/1.4 req'd factor of safety Governing Lateral Embedment: Dh := max(Dh1 ,Dh2) qb = 0-psf —> Allowable soil bearing for soldier beam toe (Not used) Check toe depth for vertical load: ^ H 2 ^ "shaft Pr-TT ^ qb Dv:= Ceil 1.3, ft + 0-ft V TT-dshaft fs J Selected toe depth Dtoe: DESIGN SUMMARY: Beam = "W8 x 48" H= 7.25-ft Dtoe = 16.75-ft H+ Dtoe = 24ft Zr= 43.8-in^ dshaft = 24-in Xsb = 6ft ^0.72^ ,0.78, in Dtoe := if(Dh > Dv,Dh,Dv) Dtoe = 16.75 ft—> Governing Embed Sb_Number = "5-9" = Selected Soldier Beam = Height of Shoring = Toe Embedment Depth = Total Length of Soldier Beam = Required Modulus = Effective Diameter of Toe Shaft = Maximum Soldier Beam Spacing = Maximum Theoretical Lateral Displacement Dh = 16.75 ft Dv = Oft cant h=7.25 ft sb 5-9.xmcd SECTION 5 EARTH SUPPORT SYSTEMS 5937 DARWIN COURT, SUITE 105, CARLSBAO, CA 92006 TO. (760) 929-2651 FAX (760) 929-2652 Name RPR Dote 05-24-2013 Job No „ , 13-123 Sheet of EARTH SUPPORT SYSTEMS 5937 DARWIN COURT, SUITE 105, CARLSBAO, CA 92006 TO. (760) 929-2651 FAX (760) 929-2652 Checked By Client MKG Consulting, Inc. EARTH SUPPORT SYSTEMS 5937 DARWIN COURT, SUITE 105, CARLSBAO, CA 92006 TO. (760) 929-2651 FAX (760) 929-2652 Job Description Ocean Street Residences - Carlsbad PE(H-f-D-Z)^d shaft Pj(H+D) - LOADING DIAGRAM FOR CANTILEVERED SHORING SYSTEM NQ HYDROSTATIC PRESSURE Earth Support Systems, Inc. 5937 Darwin Court #105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Cantilever Design Sb_Number;= "10-12, 21-22" This design calculations support 2010 CBC load combinations D + L •^ H (Eqn. 16-16) & D -f L + H + E/1.4 (Eqn 16-20) in accordance with sections 1605.3.2 & 1605.3.2.1 Wall Geometry H ;= 9.25-ft dtriai := 25-ft Xsb := 8ft dshaft := 24-in Soil Parameters Pa := 52 pcf = Pp:= 300-pcf I ;= 2 4) ;= O deg = -(s:=125-pcf fs:= 600-psf = Bouyant soil properties (As applicable) fw:= 62.4-pcf Height of shoring system Assumed initital emebedment depth Soldier beam center to center spacing Effective shaft diameter Active pressure (Neglecting soil cohesion) Passive pressure (Above ground water table) Isolated pole factor (Soil arching) Intemal soil friction angle - Not used Unit weight of soil Allowable soil friction Unit weight of water Ppp' Pap' Pp if p,., = "N/A" Distance below subgrade (B.O.W.) to standing water table (Design Groundwater Table = +1.00') ts •{is - 'Yw) otherwise • Bouyant Passive Earth Pressure Pa if p,., = "N/A" ( \ —Hs-'^w) othenA/ise •Ys = Bouyant Active Earth Pressure Submerged Soil Pressures (As Applicable) Ppp. = 150-pcf 26 pcf cant h=9.25 ft sb 10-12,21-22.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: 'iij> of Load Combinations Load Parameters: FS := 1.50 ~> Load combination minimum factor of safety (static) 1, D + L + H (Eon. 16-16) Pa = 52-pcf = Active pressure (Neglecting soil cohesion) L.= 72-psf Live load surcharge pressure D:= 0-psf = Dead load surcharge pressure 2. D+L+H + E/1.4 (Eqn. 16-20) FSg := 1.13 ^oad combination minimum factor of safety (Dynamic) fSE := 1.33-fs = Allowable soil friction, with temporary increase Pp' := 1.33-Pp L = 72-psf = Passive pressure, with temporary increase Live load surcharge pressure D = 0-psf = Dead load surcharge pressure E := 15-pcf f := min •Jshaft Xsb I I I 1 JJ steel Parameters Fy := 50-ksi Es ;= 29000 ksi n:= 1.67 F Fb = 30-ksi = Inverted seismic EFP surcharge = Arching ratio = Steel yield stress (Grade 50) = Elastic modulus of steel = Allowable strength safety factor - ASD, AISC F.l & El = Allowable flexural stress at fully braced maximum moment location - AISC F2-1 cant h=9.25 ft sb 10-12, 21-22.xmcd ^"PP°'^^yi*Ti^'J"^- Ocean Street Residence ? I?TTA oonio* Engr: RPR Date: 05/21/13 Carisbad, CA 92008 Sheet: of Uniform Live Load Surcharge - CBC Eqn's 16-16 & 16-20 y:= O ft.O.OI ft.. H+ d,riai Pfuii := L = Surcharge pressure full height Ppar := 0-psf = Surcharge pressure partial height Hpar := 0-ft = Height of partial surcharge pressure Ps(y):= Ppar + Pfull if y^Hpar Pfuii if Hpar < y < H = Surcharge pressure as a function of depth 0-psf if y>H Eccentric & Variable Point Loading e ;= O in = Eccentricity of axial load Pr := O kip = Resultant axial load Mo := = Moment due to eccentric axial load Xsb ft MQ = Okip — ft PH := O kip = Lateral point load XH := 0-ft = Distance to lateral point load from top grade (T.O.W.) Seismic Lateral Load CBC Eqn. 16-20 —> E = 15-pcf E Peq := — = Seismic equivalent fluid pressure 1.4 Pseis •= Peq'H Pseis = 99.11 - psf = Maximum seismic surcharge pressure at grade Peq(y) := p Pseis seis- 1^ y ' y-^ = Inverted triangular distribution 0 if y>H cant h=9.25 ft sb 10-12, 21-22.xmcd Earth Support Systems, Inc. 5937 Darwin Court #105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Boussinesq Surcharge Analysis CBC Eqn's 16-16 & 16-20 q := 2,5 ksf = Strip load intensity z' := 24-in = Distance from grade to application of strip load X-, := 16.5 ft X2 := Xi + 2-ft K := 0.50 01 (y) := atan yJ 8(y) := 02(y)-0i(y) 02(y) := atan Distance to closest edge of strip load Distance to furthest edge of strip load Rigidity coefficient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) ^X2^ K = 0.50 (Flexible) a{y):= ei(y) + -^ Ps(y) := 0-psf if OSy^z' 2 q-K (5(y-z')-sin(5(y-z')-cos(2a(y-z')))) if z'<y<H Opsf if y>H Psurch(y) := Ps(y) Total Surcharge Load: rH Ph := Ps(y) dy 'Oft Pb = 234-plf Centriod measured from grade: H R:= Ps(y) (H-y) dy 0-ft 2 R = 2.57 ft Surcharge Loading Diagram 300 cant h=9.25 ft sb 10-12, 21-22.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: ^ of CALCULATE REQUIRED TOE DEPTH: (Detemiine goveming embedment condition) P^(H) = 481 - psf —> Earth Pressure, H Pfuii = 72 psf —> Live Load Pressure, L Pgeis = 99-psf —> Seismic Pressure, E D+L+H (Eqn. 16-16) D + L + H + E/1.4 (Eqn 16-20) Summing forces horizontally: CL u Q Pj(H+D) z - -PE(H+D-Z)^ :— , mi(z,D) mj(z,D) j Soil Loading Diagram 10000 -5000 0 Pi^essure (psf) rH+D-Z •H+0 PE(y)dy + PA(y) dy + Ps(y) dy + (PE(H + D-z) + mj(z,D)y)dy + rH p Peq(y) dy+Pb + — 0 '^sb 5000 PE(y) dy H+0 Summing moments about soldier beam toe: Pj(H+D) z - -PE(H+D-z)f mj(z. mj(z,D) (PE(H+D-z) + mj(z,D)-y)-(z-y) dy ... /•H+D-z PE(y)-(H+D-y) dy + H+0 -H 0 •H+0 PE(y) (H + D-y) dy + PA(y) (H+D-y) dy Ps(y)(H+ D-y)dy + (H + D - y)-Peq(y) dy + Pb-(D + R) + (H + D - XH) + MQ Xsb Load Combination Results Di = 16.76ft D2 = 14.75ft z-i = 4.14ft ~> Static Load Combination Z2 = 3.74ft —> Seismic Load Combination max(D) = 16.76ft cant h=9.25 ft sb 10-12, 21-22.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: t^Q of •£ a. o D -2x10 Soil Loading Diagram 2x10 Pressure (psf) 4x10 WALL PRESSURES p^(H) = 481-psf f-Psoil(H+ D') = 2929-psf Pfuii = 72-psf Ppar = Opsf Shear Diagram a. Distance to Zero Shear (From Top of Pile) T := e <- H T<-V_1(e) while T > 0 e <- e + 0.10-ft T<-V_1(e) return e T = 17.7ft Shear (kips) cant h=9.25 ft sb 10-12, 21-22.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: ^ I of Soldier Beam Moment: -y M(y): V(y) dy+Mo •'O Required Modulus M„ max Ml(Tl)-Xsb M2(T2) xsb jj = Soldier Beam Bending Moment Required Section Modulus: BeamH"W14x6r' A = 17.9-in^ bf=10-in d = 13.9-in tf = 0.65-in tw = 0.38-in k = 1.24-in M„ Zr.= Zx = 102-in L = 640-in'^ Sx = 92.1-in Plastic modulus. Lb < Lp Zr = 106.6-in'' Fb = 30 ksi rx = 5.98-in L;= T K-L : 35.6 Minor axis continuously braced K:= 1 Es 4.71- /-p- = 113.4 2 r- TT -Es [rx j Check Axial Stresses: X ;= K_L rx 0.877-Fg otherwise Es F„ 0.658"-Fu if —— < 4.71 - / — = Nominal compressive stress - AISC E.3-2 & E3-3 Fcr A Pq := Ma := Zx-Fb : Allowable compressive force - AISC E.3-1 = Allowable moment - AISC F.2-1 Combined Axial & Bending: Unity := —+ - M„ M, Pr Mn 2P. M, 1^ Pr • ' if — > 0.2 J ^= otherwise Check ;= if (Unity < 1.00, "Ok!", "No Good" AISC H1-1a& Hl-lb Unity = 1 Ma = 254.5-kip-ft Mmax = 265.9.kip.ft Check = "Ok" cant h=9.25 ft sb 10-12, 21-22.xmcd Earth Support Systems, Inc. 5937 Darwin Court #105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: M2- of CHECK DEFLECTION: Beam = "W14x6r' "H PA(y) dy 0 Total active soil load Ps(y) dy = Total uniform surcharge load Pb = 233.7-plf = Total Boussinesq surcharge load Pfl.= Peq(y) dy •"0 = Total seismic surcharge load L;=H + H 3 = Effective length of soldier beam for calculating deflection ysurch •'" yPs(y) dy Ps(y) dy Centriod of unifonn surcharge (From top of excavation) bBouss. '-= "T + i^ I 3 ^surch •'— Vsurch '^surch. •= Lj — ysurch = Distance from bottom of soldier beam to centriod of Boussinesq = Distance from top of soldier beam to centriod of unifonn surcharge = Distance from bottom of soldier beam to centriod of unifomi surcharge 2 2 lXsb(L|)^ P4Xsb(bsurch,) PbXsb(bBouss.)' - •13-Li - bsurch.) + i 15-Es-l 6-Es-L 6-Es-•(SLj-bBouss,) PB'Xsb'beq , s i=2, 5_.(3,L2-be,),0 6-Es-lv ^0,73^ 0.84 j in —> Maximum static deflection —> Maximum dynamic deflection cant h=9,25ft sb 10-12, 21-22.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carlsbad, CA 92008 GLOBAL STABLITY Increase embedment depths until acceptable factors of safetv are obtained FS=1.5 -> D + L + H Dh1 := Round(l.00-Di ,0.5ft) + 2.75 ft FSE = 1.13 —> D + L + H + E/1.4 Dh2 := Round(l.00-D2,0.5ft) + 1-ft Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: 4S of Dh1 = 19.75ft Dh2 = 15.5 ft Slidding Forces: FS = V(H + 0) + H+Dh Psoii(x) dx O, Static Condition Overtuming Moments: 'H Mn = (Dh+ H-y)-PA(y) dy + 0 (Dh+ H-y)-Ps(y)dy + Seismic Condition Resisting Forces: FR = f02 Pscii(x) dx Fs.i = 10.59-klf Fs.2 = 11.69-klf H+0 FR.I =-16.45klf FR.2 = -13.39 klf rH (Dh+ H-y)-Ps(y)dy + 0 (Dh+H-y) Peq(y) dy '0 •H+0 PE(y) dy- H Dh -V •H+Dh 02 H+Dh-02 PH , , Psoii(y) dy + Mo + (Dh + H - XH) Xsb Resisting Moments: /•O2 Mo = (H+Dh-y).Psoii(y)dy 'H+0 FACTOR OF SAFETY: Static Condition D + L+H FS=1.5 "R.I "s,1 M R 1 M 1.6 1.6 0 1 Static = "Ok" Static Condition Seismic Condition Mo 1 = 84.89 ft-kip MR 1 =-136.16 ft-kip ft Mo 2 = 79.17 ft-kip MR 2 = -91-59 ftkip ft Seismic Condition D + L + H + E/1.4 FSE = 1.13 |FR.2| •s.2 M R 2 M 1.15 1,16 o 2 Seismic = "Ok" cant h=9.25 ft sb 10-12, 21-22.xmcd Earth Support Systems, Inc. 5937 Darwin Court #105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: M-M of Governing Laterai Embedment Dhl = 19.75ft = Minimum lateral embedment depth, for static load case D + L+H req'd factor of safety Dh2 = 15.5ft = Minimum lateral embedment depth, for seismic load case D + L + H + E/1.4 req'd factor of safety Governing Lateral Embedment: Dh := max[(Dh1), Dh2] qb = 0-psf —> Allowable soil bearing for soldier beam toe (Not used) Check toe depth for vertical load: Dv := Ceil dshaft ' Pr-TT qb I 1.3,ft +0-ft TT-dstiafffs j Selected toe depth Dtoe: Dtoe := if (Dh > Dv, Dh, Dv) Dtoe = 19.75ft—> Governing Embed DESIGN SUMMARY: Sb Number = "10-12. 21-22" Dh = 19.75ft Dv = Oft Beam = "W14x6r' = Selected Soldier Beam H = 9.25-ft = Height of Shoring Dtoe = 19.75 ft = Toe Embedment Depth H+ Dtoe = 29 ft Zr = 106.6in^ dshaft = 24-in = Total Length of Soldier Beam Required Modulus = Effective Diameter of Toe Shaft Xsb = 8ft '0-73 y 0.84 j in = Maximum Soldier Beam Spacing = Maximum Theoretical Lateral Displacement cant h=9.25 ft sb 10-12, 21-22.xmcd SECTION 6 EARTH SUPPORT SYSTEMS 6337 OARMN COURT, SUITE 106, CARLSBAD, CA 93008 TB. (760) 923-2851 FAX (760) 929-2852 Nome RPR Date Job No 05-24-2013 13-123 Sheet *^^of Checked By Client MKG Consulting, Inc. Job Description Ocean Street Residences - Carlsbad •PE(H+D-Z)—Id shaft PJ(H+D)- LOADING DIAGRAM FOR CANTILEVERED SHORING SYSTEM NO HYDROSTATIC PRESSURE Earth Support Systems, Inc. 5937 DanA/in Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: ^{j? of Cantilever Design Sb_Number := "13-20, 23-26" This design calculations support 2010 CBC load combinations D+L + H (Eqn. 16-16) & D + L + H + E/1.4 (Eqn 16-20) in accordance with sections 1605.3.2 & 1605.3.2.1 Wall Geometry H:= 7.25-ft dtriai := 25-ft Xsb := 8ft dshaft := 24-in Soil Parameters Pa := 52-pcf Pp := 300-pcf I := 2 (|) ;= O deg ts:= 125-pcf fs:= 600 psf = Height of shoring system = Assumed initital emebedment depth = Soldier beam center to center spacing = Effective shaft diameter = Active pressure (Neglecting soil cohesion) = Passive pressure (Above ground water table) = Isolated pole factor (Soil arching) = Internal soil friction angle - Not used = Unit weight of soil = Allowable soil friction Bouyant soil properties (As applicable) -i^:= 62.4-pcf Unit weight of water p,., := 27-ft P . — P . — Pp if p., = "N/A" -—•{is- Iw) otherwise Pa if PT = "N/A" —(fs-tw) otherwise Is Distance below subgrade (B.O.W.) to standing water table (Design Groundwater Table = +1.00') = Bouyant Passive Earth Pressure Bouyant Active Earth Pressure Submerged Soil Pressures (As Applicable) Ppp. = 150 pcf Pap. =26 pcf cant h=7.25 ft sb 13-20, 23-26.xmcd Earth Support Systems, Inc. 5937 DanA/in Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: 47 of Load Combinations Load Parameters: FS := 1.50 —> Load combination minimum factor of safety (static) 1. D+ L + H(Eqn. 16-16) Pa =52-pcf : Active pressure (Neglecting soil cohesion) L:= 72-psf Live load surcharge pressure D:= 0-psf = Dead load surcharge pressure 2. D + L + H + E/1.4 (Eqn. 16-20) FSE := 1.13 _> Load combination minimum factor of safety (Dynamic) fsE := 1.33-fs = Allowable soil friction, with temporary increase Pp' := 1.33-Pp = Passive pressure, with temporary increase L = 72-psf = Live load surcharge pressure D = 0-psf Dead load surcharge pressure E := 15-pcf f := min •dshaft y Xsb 1 JJ Steel Parameters Fy := 50-ksi Es ;= 29000-ksi n := 1.67 F --^ Fb = 30 ksi = Inverted seismic EFP surcharge : Arching ratio = Steel yield stress (Grade 50) = Elastic modulus of steel = Allowable strength safety factor - ASD, AISC F. 1 & El = Allowable flexural stress at fully braced maximum moment location - AISC F2-1 cant h=7,25 ft sb 13-20, 23-26.xmcd Earth Support Systems, Inc. 5937 Darwin Court #105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR X)ate: 05/21/13 Sheet: of Uniform Live Load Surcharge - CBC Eqn's 16-16 & 16-20 y:= 0-ft,0.01-ft.. H+ d,riai Pfull := L par -0-psf Hpar := 0-ft = Surcharge pressure full height = Surcharge pressure partial height = Height of partial surcharge pressure Ps(y) ••= Ppar + Pfull if y^Hpar Pfull if Hpar<y<H 0-psf if y>H = Surcharge pressure as a function of depth Eccentric & Variable Point Loading e .= Oin Pr := O kip Pr-e Mn := Xsb = Eccentricity of axial load = Resultant axial load Moment due to eccentric axial load Mo = 0-kip — PH := O kip XH := 0-ft = Lateral point load = Distance to lateral point load from top grade (T.O.W.) Seismic Lateral Load CBC Eqn. 16-20 ~> E = 15 pcf Peq •— 1.4 Seismic equivalent fluid pressure P — P -H 'seis -- "^eq Pseis = 77.68-psf = Maximum seismic surcharge pressure at grade Peq(y) := 0 if y>H -y if y<H = Inverted triangular distribution cant h=7.25 ft sb 13-20, 23-26.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Boussinesq Surcharge Analysis CBC Eqn's 16-16 & 16-20 q := 2.5 ksf = Strip load intensity z' := 24-in = Distance from grade to application of strip load xi := 15-ft X2 := X-I + 2-ft K := 0.50 01 (y) := atan — ly J 6(y) := 02(y)-0i(y) 02 (y) aia" Distance to closest edge of strip load = Distance to furthest edge of strip load Rigidity coefflcient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) /j^^^ K = 0.50 (Flexible) ^J a(y) := 0i(y) + 6(y) Ps(y) 0-psf if 0<y<z' 2-q-K IT (6(y-z')-sin(5(y-z')-cos(2a(y-z')))) if z'<y<H 0-psf if y>H Psurch(y) := Ps(y) Total Surcharge Load: -H Pb := Ps(y) dy 0-ft Pb = 155-plf Centriod measured from grade: •H Ps(y)(H-y)dy 2 R;= 0-ft R= 1.82ft Surcharge Loading Diagram 300 cant h=7.25 ft sb 13-20, 23-26.xmcd Earth Support Systems, Inc. 5937 Darwin Court #105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: ^oD of CALCULATE REQUIRED TOE DEPTH: (Determine goveming embedment condition) p^(H) = 377-psf —> Earth Pressure, H Pfuii = 72-psf —> Live Load Pressure, L Pseis = 78 psf —> Seismic Pressure, E D+L + H (Eqn. 16-16) D + L + H+ E/1.4 (Eqn 16-20) Summing forces horizontally: Pj(H+D). z - -PE(H + D-Z)^ nij(z,D) J i + •PE( H+D-z) mj(z,D) Soil Loading Diagram 10OOO - 5000 0 Pressure (psf) (PE(H + D-z) + mj(z,D)-y)dy + rH+D-z H+0 PE(y) dy + PA(y) dy + 5000 PE(y) dy... H+0 rH Ps(y)dy + Peq(y) dy + Pb + — •^sb Summing moments about soldier beam toe: Pj(H+ D) z - -PE(H+D-z)f -^ei^-^^-^) mj(z, mj(z,D) (PE(H+D-z) + mj(z,D)-y)-(z-y) dy rH+D-z PE(y) (H+ D-y) dy + H+0 •H 0 H+0 PE(y)-(H+D-y) dy + PA(y)(H+ D-y)dy Ps(y)-(H+ D-y)dy + (H+ D-y)-Peq(y)dy+ Pb-(D + R) +-^-(H + D- XH) + Mo Xsb Load Combination Results D-i = 14.9ft D2 = 13.13ft zi = 3.88 ft —> Static Load Combination Z2 = 3.49 ft —> Seismic Load Combination max(D) = 14.9ft cant h=7.25 ft sb 13-20, 23-26.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: I of JZ & Soil Loading Diagram 2x10 - 1x10 0 1x10 Pressure (psf) 2x10 WALL PRESSURES P^(H) = 377-psf f-Psoil(H+ D')= 1468-psf Pfull = 72-psf Ppar =0-psf Shear Diagram Distance to Zero Shear (From Top of Pile) e f- H T<-V_1(e) while T > 0 e <- e + 0.10 ft T <r- VJ (e) return e T = 14.7ft cant h=7.25 ft sb 13-20, 23-26.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Soldier Beam Moment: M(y) = V(y) dy+Mo = Soldier Beam Bending Moment Required Modulus ^rMi(Ti)xsb M2(T2) Xsb jj Mmax := max Required Section Modulus: Beam = "W14x38" A = 11.2-in^ bf = 6.77-in (j = 14.1 in tf = 0.52-in tvv = 0.31-in k = 0.91-in Zr := Mn Zx = 61.5-in^ L = 385-in'^ Sx = 54.6-in" . 3 Plastic modulus. Lb < Lp Zr = 57.7-in Fb = 30-ksi rx = 5.87-in L:= T K L = 30.2 Minor axis continuously braced K:= 1 , Es 4.71 /— = 113.4 Fe 2 ^ TT -Es fKVf Check Axial Stresses: X := — Fe Per := X K-L 0.658 -Fv if <4.71 ^ rx ^ Fy 0.877-Fg otherwise = Nominal compressive stress - AISC E.3-2 & E3-3 Fcr-A Pc := Ma :=Zx Fb : Allowable compressive force - AISC E.3-1 = Allowable moment - AISC F.2-1 Combined Axial & Bending: Unity := P^ 8 Pr. ^ 9 M„ M, :1 Pr • ' if — > 0.2 J Pr Mmax + otherwise 2P.. M, Check := if(Unity < 1.00,"Ok!" ,"No Good") AISC H1-1a & H1-1b Unity = 0.94 Ma = 153.4kip-ft M,nax = 143.9-kip-ft Check = "Ok!" cant h=7.25 ft sb 13-20, 23-26.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: i^'^ of CHECK DEFLECTION: Beam = "W14x38" rH Pi := PA(y) dy Total active soil load Ps(y) dy •"0 Total unifonn surcharge load Pb = 155.2plf Total Boussinesq surcharge load H P8:= I Peq{y)dy '^O Total seismic surcharge load D L := H + -3 Effective length of soldier beam for calculating deflection ysurch •— yPs(y) dy Ps(y) dy •'o Dj ^Bouss, ^ ^surch '— ysurch ^surch. •= Lj - ysurch Centriod of uniform surcharge (From top of excavation) Distance from bottom of soldier beam to centriod of Boussinesq Distance from top of soldier beam to centriod of uniform surcharge Distance from bottom of soldier beam to centriod of uniform surcharge PlXsb(Li)^ P4Xsb-(bsurch i 15-Es-lx Pa-Xsb'beq ..(3. + if i = 2,-6-Es-L 6-Es-lx 2 " •(3-L2-beq).0 PbXsb|bBoussJ ~ ^ 6-Es-L ' •(^•'-' " 0.47 1 0.52 j -> Maximum static deflection —> Maximum dynamic deflection cant h=7-25 ft sb 13-20, 23-26.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 GLOBAL STABLITY Increase embedment depths until acceptable factors of safetv are obtained Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: f~/-l of FS=1.5 ---> D+L+H Dh1 := Round(l.00-Di ,0.5ft) + 2.75 ft FSE = 1.13 —> D + L + H + E/1.4 Dh2 := Round(l.00-D2,0.5ft) + 1-ft Dhl = 17.75ft Dh2 = Mft Slidding Forces: FS = V(H + 0) + •H+Dh Psoii(x) dx Static Condition Resisting Forces: Overtuming Moments: -H FR = Oo Psoii(x) dx H+0 Fs.i = 6.54-klf FRI =-10.4-klf Mo = rH (Dh+H-y)-PA(y)dy + '0 (Dh+H-y).Ps(y) dy + Seismic Condition Fs.2 = 7.19-klf FR 2 = -8.55 klf (Dh + H-y)Ps(y)dy + 0 (Dh + H-y).Peq(y) dy 0 •H+0 PE(y) dy-Dh - — + 3j •H+Dh 02 H+Dh-02 PH , , Psoii{y) dy + Mo + — (Dh + H - XH) Xsb Resisting Moments: MR= (H + Dh-y)-Psoii(y)dy ^H+0 FACTOR OF SAFETY: Static Condition D + L+H FS=1.5 R.I = 1,6 S.1 Static Condition Seismic Condition Mo 2 = 44.68 ft-kip MR 2 = -53.74 ft-kip ft Seismic Condition D + L + H + E/1.4 FSE = 1.13 I FR.2 I !- = 1.19 s.2 M R 1 M = 1.64 0 1 static = "Ok" M R 2 M = 1.2 o 2 Seismic = "Ok" cant h=7.25 ft sb 13-20, 23-26.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carlsbad, CA 92008 Ocean Street Residence Engr: RPR_Date: 05/21/13 r: RPP . Sheet: of. Governing Lateral Embedment Dhl = 17.75ft = Minimum lateral embedment depth, for static load case D+L+H req'd factor of safety Dh2 = 14ft = Minimum lateral embedment depth, for seismic load case D + L + H + E/1.4 req'd factor of safety Governing Lateral Embedment: Dh := max(Dh1 ,Dh2) qb = 0-psf —> Allowable soil bearing for soldier beam toe (Not used) Check toe depth for vertical load: Dv := Ceil dshaft Pr-1T— qb V 1.3,ft + 0-ft dshaft fs j Selected toe depth Dtoe: Dtoe := if (Dh > Dv, Dh, Dv) Dh= 17.75ft Dtoe= 17.75ft—> Governing Embed Dv = Oft DESIGN SUMMARY: Beam = "W14 x 38" H = 7,25-ft Dtoe= 17.75-ft H + Dtoe = 25ft Zr = 57.7-in^ dshaft = 24-in Xsb = 8ft 0.47^ •i 0.52 j Sb_Number = "13-20, 23-26" = Selected Soldier Beam = Height of Shoring = Toe Embedment Depth = Total Length of Soldier Beam = Required Modulus = Effective Diameter of Toe Shaft = Maximum Soldier Beam Spacing = Maximum Theoretical Lateral Displacement cant h=7.25 ft sb 13-20, 23-26.xmcd SECTION 7 EARTH SUPPORT SYSTEMS 5937 DARWM COURT, SUITE 105, CARLSBAO, CA 9200S TH gSO) 9292851 FAX (760) 929-2852 Nome RPR Dote 05-24-2013 Job No 13-123 sheet^^-'of EARTH SUPPORT SYSTEMS 5937 DARWM COURT, SUITE 105, CARLSBAO, CA 9200S TH gSO) 9292851 FAX (760) 929-2852 Checked By Client MKG Consulting, Inc. EARTH SUPPORT SYSTEMS 5937 DARWM COURT, SUITE 105, CARLSBAO, CA 9200S TH gSO) 9292851 FAX (760) 929-2852 Job Description Ocean Street Residences - Cartsbad PE(H+D-Z)—j^l shoft Pj(H-fD)- LOADING DIAGRAM FOR CANTILEVERED SHORING SYSTEM NO HYDROSTATIC PRESSURE Earth Support Systems, Inc. 5937 DanA/in Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Cantilever Design Sb_Number := "27-29" This design calculations support 2010 CBC load combinations D + L + H (Eqn. 16-16) & D + L + H + E/1.4 (Eqn 16-20) in accordance with sections 1605.3.2 & 1605.3.2.1 Wall Geometry H:= 5.25-ft dtriai := 25 -ft Xsb := 8ft dshaft := 24-in Soil Parameters Pa := 52-pcf Pp := 300 pcf I := 2 (J) := O deg ^s:= 125 pcf fs := 600-psf = Height of shoring system = Assumed initital emebedment depth = Soldier beam center to center spacing = Effecflve shaft diameter = Achve pressure (Neglecting soil cohesion) = Passive pressure (Above ground water table) = Isolated pole factor (Soil arching) = Internal soil fricflon angle - Not used = Unit weight of soil = Allowable soil friction Bouyant soil properties (As applicable) -tw:= 62.4-pcf Unit weight of water Pv 27 ft pp ap Pp if p.., = "N/A" p P / \ hs - fw) OthenA/ise -Ys Pa if P-, = "N/A" / \ u -—(is - Iw) OthenA/ise -fs Distance below subgrade (B.O.W.) to standing water table (Design Groundwater Table = +1.00') Bouyant Passive Earth Pressure = Bouyant Active Earth Pressure Submerged Soil Pressures (As Applicable) PP 150-pcf Pap. = 26-pcf cant h= 5.25ft sb 27-29.xmcd Earth Support Systems, Inc. 5937 Darwin Court* 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Load Combinations Load Parameters: FS := 1.50 —> Load combinahon minimum factor of safety (static) 1. D + L + H (Eqn. 16-16) Pa = 52 pcf •• Active pressure (Neglecting soil cohesion) L:= 72-psf Live load surcharge pressure D := 0-psf = Dead load surcharge pressure 2. D + L + H + E/1.4 (Eqn. 16-20) FSE := 1.13 .„> Load combination minimum factor of safety (Dynamic) fsp ;= 1.33-fs = Allowable soil friction, with temporary increase Pp. := 1.33-Pp = Passive pressure, with temporary increase L= 72-psf Live load surcharge pressure D = 0-psf = Dead load surcharge pressure E := 15-pcf Inverted seismic EFP surcharge I dshaft f := min Xsb V I J Arching ratio Steel Parameters Fy := 50-ksi Es := 29000-ksi Steel yield stress (Grade 50) Elastic modulus of steel n := 1.67 F Fb = 30-ksi : Allowable strength safety factor - ASD, AISC F.l & El = Allowable flexural stress at fully braced maximum moment location - AISC F2-1 cant h= 5.25ft sb 27-29.xmcd Earth Support Systems, Inc. 5937 DanA/in Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Uniform Live Load Surcharge - CBC Eqn's 16-16 & 16-20 y:= 0-ft,0.01-ft,.H +dtriai Pfuii := L = Surcharge pressure full height Ppar '•- O psf = Surcharge pressure partial height Hpar := 0-ft = Height of partial surcharge pressure Ps(y) -= Ppar + Pfull if y ^ Hpar Pfull if Hpar<y<H 0-psf if y>H Surcharge pressure as a function of depth Eccentric & Variable Point Loading e := O in Eccentricity of axial load Pr:= Okip Pr-e Mn := Xsb Mo = 0-kip- = Resultant axial load Moment due to eccentric axial load PH := O kip XH:= 0-ft Lateral point load = Distance to lateral point load from top grade (T.O.W.) Seismic Lateral Load CBC Eqn. 16-20 —> E = 15 pcf E Peq 1.4 Seismic equivalent fluid pressure Pseis •- Peq H Pseis = 56.25-psf Maximum seismic surcharge pressure at grade Peq(y): 0 if y>H -y if y<H Inverted tnangular distribution cant h= 5.25ft sb 27-29.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Boussinesq Surcharge Analysis CBC Eqn's 16-16 & 16-20 q := 2.5-ksf = Strip load intensity z' := 24 -in = Distance from grade to applicaflon of strip load x-i := 8-ft X2 := x-i + 2-ft K := 0.50 0-i (y) := atan V y; 6(y) := 02(y)-0i(y) Distance to closest edge of strip load Distance to furthest edge of strip load = Rigidity coefficient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) 02 (y) := atan a(y) := 01 (y) + X2 , yJ 5(y) K = 0.50 (Flexible) Ps(y): 0-psf if 0<y<z' 2-q-K TT (6(y-z') - sin(6(y-z')-cos(2a(y-z')))) if z'<y<H 0-psf if y>H Psurch(y) := Ps(y) Total Surcharge Load: rH Pb- Ps(y)dy ^0-ft Pb= 185-plf Centriod measured from grade: Ps(y)(H-y)dy R:= 0-ft R= 1.14ft Surcharge Loading Diagram 150 225 300 cant h= 5.25ft sb 27-29.xmcd Earth Support Systems, Inc. 5937 DanA/in Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of CALCULATE REQUIRED TOE DEPTH: (Determine governing embedment condition) PA(H) = 273 psf —> Earth Pressure, H Pfuii = 72-psf —> Live Load Pressure, L Pseis = 56-psf —> Seismic Pressure, E D + L + H (Eqn. 16-16) D + L + H +E/1.4(Eqn 16-20) Summing forces horizontally: Pj(H + D) -PE(H+ D - z) mj(z,D) -PE(H+D-Z) rH+O rH PE(y)dy+ PA(y)dy + H -^0 mj(z,D) Soil Loading Diagram 10000 -5000 0 Pressure (psf) rH+D-z (PE(H + D-z) + mj(z,D)-y)dy + 0 •H 5000 PE(y) dy ... H+0 Ps(y) dy + 0 rH p Peq(y) dy+Pb + — 0 Summing moments about soldier beam toe •PE(H+ D-Z A D„m , n .,^\^ -PE(H+D-Z) Pj(H+D) z -mj(z,D) mj(z,D) rH+D-z - + •"0 rH+O (PE(H+D-z) + mj(z,D)-y)-(z-y) dy PE(y)-(H+D-y) dy + H+O •H PE(y)-(H+D-y) dy + PA(y)(H+D-y)dy,.. Ps(y)-(H + D-y)dy + •"0 (H + D - y)-Peq(y) dy + Pb-(D + R) + (H + D - XH) + MQ Xsb Load Combination Results Di = 11.57ft D2 = 10.12ft z-] = 3.09ft —> Staflc Load Combination Z2 = 2.75 ft —> Seismic Load Combination max(D) = 11.57ft cant h= 5.25ft sb 27-29.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Soil Loading Diagram .a a. 1x10 1x10 2x10 WALL PRESSURES PA(H)= 273-psf fPsoil(H+ D')= 1111 psf Pfuii = 72-psf Ppar = 0-psf Pressure (psf) Shear Diagram Distance to Zero Shear (From Top of Pile) e<r-H T <- V_1 (e) while T > 0 £ ^ e + 0.10-ft T <- V_1 (e) return e lift cant h= 5.25ft sb 27-29.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Soldier Beam Moment: ry M(y) = V(y) dy+ Mo = Soldier Beam Bending Moment Required Modulus V Ml(Tl)-Xsb M2(T2)xsb Required Section IVIodulus: Beam = "W14x30" A=8.85-in^ bf=6.73-in d = 13.8-in tf = 0.39-in tv^=0.27-in k = 0.78-in Zr:= Mn Zx = 47.3-in lx = 291-in'^ Sx = 42-in . 3 Plasflc modulus. Lb < Lp Zr = 26.3-in Fb = 30 ksi Tx = 5.73-in L:= T K-L 23.1 Minor axis continuously braced K:= 1 , Es 4.71- — = 113.4 F„ F„ := 2 r-TT -Es ^K-L>2 V fx y Check Axial Stresses: X := — Fcr:= X K-L / Es 0.658 F„ if <4.71- — 0.877-Fe OthenA/ise Nominal compressive stress - AISC E.3-2 & E3-3 Pc:= Fcr-A n Ma := Zx-Fb Allowable compressive force - AISC E.3-1 Allowable moment - AISC F.2-1 Combined Axial & Bending: Unity := Pr 8 Pc^ 9 Pr ^M^a ^ V Ma y Pr if — > 0.2 Pr M. 2P. 'max + otherwise M„ Check := if(Unity < 1.00, "Ok!" , "No Good"; : AISC Hl-la & H1-1b Unity = 0.56 Ma= 118-kip-ft Mmax= 65.6-kip-ft Check = "Ok!" cant h= 5.25ft sb 27-29.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Cartsbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of CHECK DEFLECTION: Beam = "W14x30" rH PA(y) dy 0 rH P4 := Ps(y) dy = Total achve soil load Total uniform surcharge load Pb= 185.3-plf = Total Boussinesq surcharge load Peq(y) dy •• Total seismic surcharge load L:= H + = Effecflve length of soldier beam for calculating deflechon rH yPs(y) dy ysurch •— Ps(y) dy = Centriod of uniform surcharge (From top of excavation) bsouss. ^ ^surch •— ysurch i^surch. •— Lj — ysurch = Distance from bottom of soldier beam to centriod of Boussinesq = Distance from top of soldier beam to centriod of uniform surcharge = Distance from bottom of soldier beam to centriod of uniform surcharge Pl Xsb (Li)^ P4-Xsb (bsurch. i 15-Es-L 6-Es- 3-Li - b I "surch PbXsb'(bBousS|j 6-Es-L -(3-Lj - beouss.j PeXsb'beq / X „ iii = 2. . _ . •(3-L2-beq),0 6-Es-L ^0.18^ V0.18y in —> Maximum static deflechon —> Maximum dynamic deflection cant h= 5.25ft sb 27-29.xmcd Earth Support Systems, Inc. 5937 DanA/in Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of GLOBAL STABLITY Increase embedment depths until acceptable factors of safetv are obtained FS = 1.5 —> D + L + H Dhl := Round(l .00-D-i ,0.5ft) + 2-ft FSE =1.13 —> D + L + H + E/1.4 Dh2 := Round(l .00-D2,0.5ft) + 1-ft Dhl = 13.5ft Dh2 = 11 ft Slidding Forces: FS = V(H + 0) + H+Dh Psoii(x) dx O2 Staflc Condiflon Resisting Forces: Overturning Moments: rH FR = Psoii(x) dx 'H+0 Fs.i = 3.94-klf FRI = -5.94-klf Mo = rH (Dh + H-y)-PA(y) dy + (Dh + H-y)-Ps(y)dy + Seismic Condiflon Fs.2 = 4.31-klf FR.2 = -5.38-klf rH (Dh + H-y)-Ps(y) dy + 0 (Dh + H-y)-Peq(y) dy rH+O PE(y) dy-|^Dh-- s rH+Dh H+Dh-02 PH , , Psoii(y) dy + Mo + (Dh + H - XH) O, ^ ^sb Resisting Moments: r02 Mp = (H+ Dh-y)-Psoii(y) dy H+O FACTOR OF SAFETY: Static Condition D + L + H FS = 1.5 Static Condition Seismic Condition Mo 1 = 22.54 ftkip MR 1 = -34.85 ft-kip Mo 2 = 21.05 ftkip MR 2 = -26.65 ftkip Seismic Condition D + L + H + E/1.4 FSp=1.13 R.1 1.5 s.1 R.2 s.2 = 1.25 M R 1 M 1.55 o 1 static = "Ok" M R 2 M 1.27 o 2 Seismic = "Ok" cant h= 5.25ft sb 27-29.xmcd Earth Support Systems, Inc. 5937 Darwin Court # 105 Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/21/13 Sheet: of Governing Lateral Embedment Dhl = 13.5ft = Minimum lateral embedment depth, for static load case D + L + H req'd factor of safety Dh2 = 11 ft = Minimum lateral embedment depth, for seismic load case D + L + H + E/1.4 req'd factor of safety Governing Lateral Embedment: Dh := max(Dh1, Dh2) qb = 0-psf —> Allowable soil bearing for soldier beam toe (Not used) Check toe depth for vertical load: Dv := Ceil Oshaft Pr-TT qb 4 1.3, ft V dshaft fs 0-ft Selected toe depth Dtoe: DESIGN SUMMARY: Beam = "W14x30" H = 5.25-ft Dtoe = 13.5-ft H + Dtoe = 19ft Zr= 26.3-in^ dshaft = 24-in Xsb = 8ft ^0.18^ V0.18y in Dtoe := if(Dh > Dv.Dh.Dv) Dtoe = 13.5ft —> Governing Embed Sb_N umber = "27-29" = Selected Soldier Beam = Height of Shoring = Toe Embedment Depth = Total Length of Soldier Beam = Required Modulus = Effective Diameter of Toe Shaft = Maximum Soldier Beam Spacing = Maximum Theoretical Lateral Displacement Dh = 13.5ft Dv = Oft cant h= 5.25ft sb 27-29.xmcd SECTION 8 EARTH SUPPORT SYSTEMS S937 DARWIN COURT. SUTE 105. CARLSBAD, CA 92008 T£L|7G0)99B^2851 FAX (700) 929-2B52 Name RPR Dote 05-24-2013 Job No 13-123 Sheet of EARTH SUPPORT SYSTEMS S937 DARWIN COURT. SUTE 105. CARLSBAD, CA 92008 T£L|7G0)99B^2851 FAX (700) 929-2B52 Checked By Client MKG Consulting, Inc. EARTH SUPPORT SYSTEMS S937 DARWIN COURT. SUTE 105. CARLSBAD, CA 92008 T£L|7G0)99B^2851 FAX (700) 929-2B52 Job Description Ocean Street Residences - Cartsbad •R=PHL, /3 ARCH ACTION LINE (PARABOLIC LOAD DISTRIBUTION) PHLJL, d 3L, PHL. /5L, d 3 116 2 PLAN -f =TAN(45-0/2) ni NOTE: SURCHARGE LOADS ARE CONSIDERED TO ACT BEHIND AREA L SURCHARGE LOADS INSIDE "LJ" ARE INCLUDED IN THE LAGGING DESIGN. VALUE OF PH? FOR GRANULAR SOIL PH,= rH,TAN^ (45-0/2) Hx< Hi TAN^ (45-0/2) FOR COHESIVE SOIL c = cohesion ifSlf PH,«, = 7 H, (45-0/2)-2 c™ (45-0/2) " =(7L2-2C)TAN(45-0/2) LAGGING DESIGN Earth Support Systems, Inc. 5937 Darwin Court Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/23/13 Sheet: / (M. of PARAMETERS: S := 8-ft d:= 24-in Li := S - d Li =6-ft 4) := 30-deg c:= lOOpsf ^ := 125-pcf K := 0.50 Fb := 900-psi Ps := 200-psf C,u:= 1.2 CD:= 1.0 CF:= 1.0 Fb-Cp = 900-psi L, = 3-ft LAGGING DESIGN (Maximum Beam Spacing = 8'-0", with 200-psf Surcharge) = MAXIMUM BEAM SPACING = MINIMUM EFFECTIVE SHAFT DIAMETER = CLEAR DISTANCE BETWEEN SOLDIER BEAMS = SURCHARGE AREA BEHIND WALL = INTERNAL FRICTION ANGLE FOR SOIL = COHESION VALUE FOR SOIL (Conservative) = UNIT WEIGHT OF SOIL = RIGIDITY COEFFICIENT FOR RELATIVE YIELDING OF SOIL & RETAINING STRUCTURE (K=0.5 for flexible walls) (K = 1 for rigid walls) = ALLOWABLE FLEXURAL STRESS FOR LAGGING (DF-LARCH#2) = MAXIMUM SURCHARGE LOAD Conservative = FLAT-USE FACTOR ( C = 1.2 FOR 2" & 3" x 12") (Cfu = 1.1 FOR4" X 12") = LOAD DURATION FACTOR = SIZE FACTOR ( C ^ = 1.0 FOR 2" & 3" x 12") (Cp = 1.1 FOR4"x 12") -'M • 1.0 if Fb-CF< 1150-psi 0.85 OthenA/ise 1.0 WET SERVICE FACTOR Lagging 3x12.xmcd Earth Support Systems, Inc. 5937 Darwin Court Carisbad, CA 92008 Ocean Street Residence Engr: RPR Date: 05/23/13 Sheet: I/A of CHECK 3" X 12" LAGGING TROUGH SAWN): b:= 12-in dw:= 2.75-in b-d„ Sm := Sni= 15.125 in = LAGGING WIDTH = LAGGING THICKNESS = SECTION MODULUS LAGGING STRESSES: Phmax:= (^ Lz - 2-c)-tan 45-deg-- + K-Ps 2j Ph := min Phmax = 201.036-psf Phmax 400-psf+ K-Ps jj Ph = 201.036 psf = MAXIMUM SOIL PRESSURE = MAXIMUM SOIL PRESSURE ALLOWED MH := Ph Li ^ 5-Li + - 16 2 j Moi = 1156-Ib-ft = MAXIMUM BENDING MOMENT fh:= Mci-b SmCfuCoCM-CF fb= 764.3-psi CHECK := if (fb ^ Fb, "OK", "NO GOOD") CHECK = "OK" = ACTUAL BENDING STRESS USE 3" X 12" DF#2 LAGGING Lagging 3x12.xmcd SECTION 9 Earth Support Systems 5937 Darwin Court #105 Carlsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 08/23/13 Sheet: 7(9 of Shotcrete Laaainq Design Shotcrete Sectional Properties Load proportion relative to wall rigidity h := 3.5-in = Minimum shotcrete thickness xsb := 6-ft = Maximum tributary area of shotcrete b:= 12-in = Strip width (For analysis purposes only) fc' := 4000-psi = Concrete compressive strength := 0.003-in in Concrete compressive strain -(c- 145-pcf = Concrete unit weight ir := xsb-h" 12 Ec:=pc'PCf , -33-vfc'-psi Soldier Beam Sectional Properties Beam = "WB x 48" = Shotcrete tributary moment of inertia Shotcrete Stiffness = Concrete modulus of elasticity lo = 257.3-in'* Eo = 3644 ksi A = 14.1-in^ d = 8.5-in tw = 0,4-in bf = 8.11in tf = 0.685-in k = 1.08-in Zx = 49-in lx = 184 in Sx = 43.2-in" Tx = 3.61-in ry = 2.08-in Es := 29000-ksi Rc:= IC-EC-(ES-IX+ Ic-Ec) -1 Rc= 15-% Shotcrete Lagging Design.xmcd Earth Support Systems 5937 Darwin Court #105 Carlsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 08/23/13 Sheet: "71 of Load Development Soil Loading Pa := 52-pcf H := 7.25-ft Boussinesq Surcharge Analvsis q := 0-ksf z' := 2-ft Xi := 9.75-ft X2 := X., + 2-ft K:= 0.50 9-,(y) := atan xi^ yJ 62(y) := atan Active pressure (Neglecting soil cohesion) = Height of excavated face = Strip load intensity = Distance from grade to application of strip load = Distance to closest edge of surcharge loading (Outside 1-1 Plane) = Distance to furthest edge of surcharge loading = Rigidity coefficient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) /x2^ K = 0.50 (Flexible) 7j 5(y):= e2(y)-9i(y) a(y):=ei(y) + 5(y) Ps(y) := 0-psf if 0<y<z' 2-q-K (5(y-z')-sin(5(y-z')-cos(2a(y-z')))) if z'<y<H 0-psf if y>H Unifonn Surcharge Loading Pfull ;= 0-psf Ppar := 0-psf Hpar := O ft = Surcharge pressure full height (See pennanent shotcrete design) = Surcharge pressure partial height = Height of partial surcharge pressure Ps(y) := Ppar + Pfull if y ^ Hpar Pfull if Hpar<y<H 0-psf if y>H Surcharge pressure per depth Shotcrete Lagging Design.xmcd Earth Support Systems 5937 Darwin Court #105 Cartsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 08/23/13 Sheet: 72. of Pressure Envelope y:= O ft, 0.10-ft,. H So(7 Pressure Geometry ai := 0.2-H 32 := 0.2-H a^',— H — a-) — 32 Psmax Pa H Soil trapazodial dimension - Top Soil trapazodial dimension - Bottom Soil trapazodial dimension - Middle Maximum active soil pressure Psoil(y) '•- Psmax 377 psf Soil pressure geometry Combined Soil Pressure- Pressure Envelope P(y) := Psoii(y) + Ps(y) + Ps(y) Maximum Pressure Initial Guess z:= 10-ft Given -P(z)=0 dz zval := Find(z) P(H) = 377-psf I Q Design Shoring Pressure Envelope 376.8 377 Pressure (psf) 377.2 377.4 Shotcrete Lagging Design.xmcd Earth Support Systems 5937 DanA/in Court #105 Carisbad, CA 92008 Ocean Street Residences Engr: RPR Date: 08/23/13 Sheet: 7^ of Maximum Bending & Shear ACI318-Chapter9 L := xsb - bf Shotcrete clear span Wu := P(H) = Maximum shotcrete load 1.6-Wu-b-L Mu := Rc " 8 Maximum bending moment between flanges Vu := 1.6-Wu-bL -Rc Maximum shear at flange supports Shotcrete demand p er foo t depth Vu =0.2kip Mu = 0.3-ft-kip Nominal Shear Capacitv Shear Design (\> := 0.85 Vc:= 2-\/fc'psi-b-d = Shear strength reduction factor ACI_318 9.3.2.3 = Concrete shear strength ACI_318 11.3.1.1 Shear := if(Vu < ct>-Vc, "Ok","Increase Thickness") Vc= 12.9-kip Shear = "Ok" Shotcrete Lagging Design.xmcd Earth Support Systems 5937 DanA/in Court #105 Carlsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 08/23/13 Sheet: 7^ of Reinforcing Steel Welded Wire Reinforcement Wire = "W4.0 x W4.0" fy := 60-ksi = Reinforcing steel yield strength (Welded wire & deformed bars) in ey := 0.002— in grid = 4-in Steel yielding strain = Welded wire center-to-center grid spacing N:= 1 Number of welded wire reinforcement per layer in N-Ast = 0.12 ft Weld wire reinforcement area per fool width h d:= -2 = Depth to effective centriod of tensile steel reinforcement Deformed Rebar bar = 4 = Defomned rebar size ("N/A" = Not applicable) space := 24-in Rebar center to center spacing db := diabar = Reinforcing bar nominal diameter Ab := areabar space = Reinforcing steel sectional area per foot As := N Ast-b + Ab b = Total reinforcing steel per foot depth Total area of reinforc ing ste el p erfoo t As = 0.22-in Shotcrete Lagging Design.xmcd Earth Support Systems 5937 Darwin Court #105 Cartsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 08/23/13 Sheet: 7^ of Nominal Capacity_ACI318 Equivalent stress block coefficient ACI_318 10.2.7.3 0.85 if fc'<4-ksi f fc'-4-ksi^ 0.85-0.05- V ksi j if 4-ksi < fc'< 8-ksi 0.65 if fc'>8 ksi Pl = 0.85 Check Maximum Steel Reinforcement Tension steel at balanced failure ab := 01 87000-psi ^ ^ 87000-psi + fy j = Depth of equivalent stress block at balanced failure ab = 0.9-in Ac := b-ab 0.85-fc'-Ac Asb := fy = Area of equivalent concrete stress block •• Area of steel at balanced failure Asmax := 0.75-Asb = Maximum steel reinforcement ACI_318 App. B 10.3.3 Max_Steel := if (As < As^ax. "OK" ."Overly Reinforced") As = 0.22-in 2 Asmax = 0.4-in Max Steel = "OK" Shotcrete Lagging Design.xmcd Earth Support Systems 5937 DanA/in Court #105 Carlsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 08/23/13 Sheet: ILP of Nominal Capacity_ACI318 (Continued) Check Minimum Steel Reinforcement Minimum flexural reinforcement ACI_318 10.5.1 Asmin •- i^^x 3-Vfc'-psi ^ 200-b-d kip^ fy 'fy-1000'.^2j Min_Steel := if(Asmin ^ As, "OK" , "Minimum Governs") As = 0.22-in Asmin = 0.07-in Min Steel = "OK" Strain Compatabilitv Eqn's (Assume Tension Steel Yields) a := As-fy 0.85-fc'-b = Depth of equivalent stress block c := = Depth to nuetral axis ecu-(d-c) es := = Stain in steel at assumed yielding Strain := "Compression Controlled" if es < ey "Transitional" if ey < es < 0.005 "Tension Controlled" if 0.005 <es ACI 318R9.3 c = 0.4-in es = 0.0108 Strain = "Tension Controlled" Shotcrete Lagging Design.xmcd Earth Support Systems 5937 Darwin Court #105 Cartsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 08/23/13 Sheet: 77 of Nominal Capacity ACI 318 (Continued) Strength Reduction Factor ACI_318 R9.3.2 0.90 if es > 0.005 250 0,65+(es-0.002)-— if 0.002 < es < 0.005 0.65 if es < 0.002 4) = 0.9 Nominal Moment Capacitv jd := d - -2 = Intemal moment lever ami . jd = Intemal moment lever arm coefftcient Mn := <t) As-fy-jd = Nominal moment capacity Bending := if(Mu < Mn,"Ok","No Good") Mu = 0.3-ft-kip Mn = 1.6-kip-ft Factored b end ing moment Reduced Capacily Bending = "Ok" Shotcrete Lagging Design.xmcd SECTION 10 Earth Support Systems, Inc. 5937 Darwin Court #105 Carlsbad, CA 92008 PERMANENT SHOTCRETE WALL DESIGN (Hmax = 10'-0" feet IVlax @ 8'-0" o.c.) Ocean Street Residences Engr: RPR Date: 05/23/13 Sheet 7^ of PARMETERS: Xb := 8-ft fy:= 60-ksi fc ;= 4000-psi tw := 8-in Hrr,ax:= 10-ft 4)1 := 0.9 (j)2 := 0.85 b:= 8-in f := 1 bf := Oin = MAXIMUM SOLDIER BEAM SPACING : STEEL YIELD STRENGTH OF REINFORCEMENT STEEL •• COMPRESSIVE STRENGTH OF SHOTCRETE @ 28-DAYS : SHOTCRETE WALL THICKNESS AT BASE OF EXCAVATION : MAXIMUM HEIGHT OF SHOTCRETE WALL •• STRENGTH REDUCTION FACTOR (FLEXURE) : STRENGTH REDUCTION FACTOR (SHEAR) : WIDTH OF WALL SECTION (FOR ANALYSIS) SOIL ARCHING FACTOR WIDTH OF SOLDIER BEAM FLANGE (CONSERVATIVE) Loading Pa := 52-pcf Ps := 72 psf PD := 100 psf = MAXIMUM SOILACTIVE PRESSURE = SURCHARGE PRESSURE = MAXIMUM BUILDING SURCHARGE (CONSERVATIVE) LOAD DEVELOPMENT: Pa •= Pa Hmax Pa =520 psf Pt -•= (Pa + Ps + PD) Pt = 0.692-ksf MAXIMUM ACTIVE SOIL PRESSURE SOILLOAD+ BLDG. SURCHARGE shotcrete facing h=10 ft.xmcd Earth Support Systems, Inc. 5937 Darwin Court #105 Carisbad, CA 92008 Ocean Street Residences Engr: RPR Date: 05/23/13 Sheet 7^ of WALL ANALYSIS: Wu:=f-b(l.6P,) Wu = 738.13 plf LINEAR LOAD ALONG WALL Span := Xb - bf Span=8-ft 2 Mu:= Wy-Span 8 Mu = 5.905-kft dave := tw - 2-in dav(. = 6-in Assumed initial values for A,: As := 0.5 in^ a := Ag-fy O.SS-fc-b Given Mu = 4)1 Ag-fy- • p As := Find (As) As = 0.24-in CALCULATED REQUIRED AREA OF STEEL REINFORCEMENT Preq bd. Preq = 0.0050 shotcrete facing fi=10 ft.xmcd Earth Support Systems, Inc. 5937 DanA/in Court #105 Cartsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 05/23/13 Sheet In of TRY: steel := "#5 Bars @ 12" O.C.-E.W." barno := 5 As.bar Ag bar barno As.bar =0.31-in spacing := 12-in Abar •= As.bar 1-ft "ba spacing "bar = 1 Ash •- Abar nba . 2 Ash = 0.31 in Asv •- Abar l^bar A,^, = 0.31-in . 2 = REBAR NOMINAL SIZE CROSSECTIONALAREA OF REBAR = REBAR SPACING O.C. = AREA OF STEEL = NUMBER OF BARS (PER FOOT WIDTH) TOTAL AREA OF HORIZONTAL STEEL REINFORCEMENT = TOTAL AREA OF VERTICAL STEEL REINFORCEMENT ^sh Ph := b-d. Ph = 0.0065 Pv := b-d. Pv = 0.0065 RATIO OF HORIZONTAL REINFORCEMENT = RATIO OF VERTICAL REINFORCEMENT Pmin := 0.0015 Pn,ir, = 0.0015 MINIMUM REINFORCEMENT RATIO shotcrete facing h=10 ft.xmcd Earth Support Systems, Inc. Ocean Street Residences 5937 Darwin Court #105 Engr: RPR Date: 05/23/13 Carlsbad, CA 92008 Sheet Y. [ of Pgov:= if(Preq > Pmin. Preq . if (l-S^-Preq > Pmin. Pmin. 1-33-Preq)) Pgov = 0.0050 As.req •= Pgov b dgve As.req = 0.241-in^ 2 Abar-ribar =0.310-in CHECK := if[(Abar -ribar S As.req) , "OK!", "NO GOOD!"] CHECK = "OK!" Steel := if[(Abar-nbar a As.req), steel. "NG! TRY ADDITIONALREINFORCEMENT"] Steel = "#5 Bars @ 12" O.C.-E.W." CHECK SHEAR: ONE-WAY ACTION _ Wu-Xb Vi,.— ——— Vu = 2.953 X 10^ lb Vu " 4)2b-dave Vn = 72.366-psi Vc := 2- 1 psi V PSi Vc= 126.5-psi CHECK ;= if(v(, > Vp, "No shear reinforcement required", "Shear reinforcement required") CHECK = "No shear reinforcement required" shotcrete facing h=10 ft.xmcd Earth Support Systems, Inc. 5937 DanA/in Court #105 Carlsbad, CA 92008 Ocean Street Residences Engr: RPR Daie: 05/23/13 Sheet of DEVELOPMENT & SPLICES OF REINFORCEMENT psi 5 . Ldb:= =:r---in nz 8 25 / — = BASIC DEVELOPMENT LENGTH FOR NO. 11 BAR AND SMALLER Ldb = 23.717-in Lsplice max , 12-in jj MINIMUM SPLICE LENGTH OF HORIZONTAL REINFORCEMENT Lsplice = 30.83-in USE: Lspiice:=31-in shotcrete facing h=10 ft.xmcd Esrth Support Systems, Inc. 5937 DanA/in Court #105 Cartsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 05/23/13 Sheet of PERMANENT SHOTCRETE WALL DESIGN (Hmax = 8-0" feet Max @ 6'-0" o.c.) PARMETERS: Xb := 6 ft fy:= 60-ksi fc := 4000-psi tw:= 6-in H^ax- 7.25-ft 4)-, := 0.9 4)2 := 0.85 b := 8-in f := 1 bf := Oin •• MAXIMUM SOLDIER BEAM SPACING STEEL YIELD STRENGTH OF REINFORCEMENT STEEL COMPRESSIVE STRENGTH OF SHOTCRETE @ 28-DAYS : SHOTCRETE WALL THICKNESS AT BASE OF EXCAVATION M/kXIMUM HEIGHT OF SHOTCRETE WALL STRENGTH REDUCTION FACTOR (FLEXURE) STRENGTH REDUCTION FACTOR (SHEAR) • WIDTH OF WALL SECTION (FOR ANALYSIS) SOIL ARCHING FACTOR WIDTH OF SOLDIER BEAM FLANGE (CONSERVATIVE) Loading Pa:= 52 pcf Ps := 72-psf PD := 100-psf MAXIMUM SOIL ACTIVE PRESSURE SURCHARGE PRESSURE MAXIMUM BUILDING SURCHARGE (CONSERVATIVE) LOAD DEVELOPMENT: Pa '•- Pa Hmax Pa = 377-psf Pt := (Pa + Ps + PD) Pt= 0.549-ksf MAXIMUM ACTIVE SOIL PRESSURE = SOIL LOAD + BLDG. SURCHARGE shotcrete facing h=8 ft.xmcd Earth Support Systems, Inc. 5937 Darwin Court #105 Carisbad, CA 92008 Ocean Street Residences Engr: RPR Date: 05/23/13 Sheet of WALL ANALYSIS: Wu:=f-b-(l.6P,) Wu = 585.6-plf LINEAR LOAD ALONG WALL Span := Xb - bf Span = 6-ft 2 Mu := Wu Span 8 M„ = 2.635-k-ft dave := tw - 2-in dave = 4-in Assumed initial values for A, 2 As := 0.5-in As-fy 0.85fc-b Given Mu = 4>1 As'fy' dave As := Find(As) As = 0.17-in^ = CALCULATED REQUIRED AREA OF STEEL REINFORCEMENT Preq bd. Preq 0.0053 shotcrete facing h=8 ft.xmcd Earth Support Systems, Inc. 5937 DanA/in Court #105 Cartsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 05/23/13 Sheet of TRY: steel := "#5 B3rs @ 12" O.C.-E.W." barno := 5 REBAR NOMINAL SIZE ^s.bar -~ "s.bar, barno As.bar = 0.31-in = CROSSECTIONAL AREA OF REBAR spacing := 12-in = REBAR SPACING O.C. Abar '•— As.bar 1-ft "bar •-spacing "bar = 1 = AREA OF STEEL NUMBER OF BARS (PER FOOT WIDTH) Ash Abar 'ribar Ash = 0.31-in . 2 : TOTAL AREA OF HORIZONTAL STEEL REINFORCEMENT Asv Abar '^bar TOTAL AREA OF VERTICAL STEEL REINFORCEMENT Asv = 0.31-in ^sh Ph bd. RATIO OF HORIZONTAL REINFORCEMENT Ph = 0.0097 Pv := b-da RATIO OF VERTICAL REINFORCEMENT Pv = 0.0097 Pmin:= 0.0015 = MINIMUM REINFORCEMENT RATIO Pr,,in= 0.0015 shotcrete facing h=8 ft.xmcd Earth Support Systems, Inc. 5937 DanA/in Court #105 Carisbad, CA 92008 Ocean Street Residences Engr: RPR Date: 05/23/13 Sheet of Pgov:= if(Preq > Pmin - Preq . if(l-33-Preq > Pmin - Pmin . 1-33-Preq)) Pgov = 0.0053 As.req •= Pgov'b dave As.req = 0.170-in2 Abarnbar = 0.310-in2 CHECK := if[(Abar nbar > As.req). "OK!" , "NO GOOD!"] CHECK = "OK!" Steel := if[(Abar nbar ^ As.req), Steel, "NG! TRY ADDITIONALREINFORCEMENT"] Steel = "#5 Bars @ 12" O.C.-E.W." CHECK SHEAR: ONE-WAY ACTION V„ Wu-Xb Vu= 1.757 X 10 lb V, Vn := <l>2b-dave Vn = 64.588-psi V(.:= 2- / —:-psi psi Vc= 126.5-psi CHECK ;= if(v(. > Vn, "No shear reinforcement required" , "Shear reinforcement required") CHECK = "No shear reinforcement required" shotcrete facing h=8 ft.xmcd Earth Support Systems, Inc. 5937 Darwin Court #105 Cartsbad, CA 92008 Ocean Street Residences Engr: RPR Date: 05/23/13 Sheet of DEVELOPMENT & SPLICES OF REINFORCEMENT Ldb •- psi ' c -in 25- / — psi BASIC DEVELOPMENT LENGTH FOR NO. 11 BAR AND SMALLER Ldb= 23.717-in ^^1.3-L,b^^ -splice := max VV 12in JJ MINIMUM SPLICE LENGTH OF HORIZONTAL REINFORCEMENT Lsplice = 30.83-in USE: Lsplice := 31 - in shotcrete facing h=8 ft.xmcd SECTION 11 EARTH SUPPORT SYSTEMS, INC. OCEAN STREET RESIDENCES SOLDIER BEAM SCHEDULE MAY 25, 2013 REVISION 0 SOLDIER BEAM SCHEDULE Soldier Toe Total Toe From To SB Use Beam Depth Drill Diameter SB SB Qty Section Height H Dtoe H+Dto8 d ft ft ft In 1 2 2 W8x48 5.00 15.00 20.00 24 3 4 2 W8x48 6.00 16.00 22.00 24 5 9 5 W8x48 7.00 18.00 25.00 24 9 9 1 W8x58 7.00 18.00 25.00 24 10 12 3 W 14x61 8.00 22.00 30.00 24 13 16 4 W 14 X 38 6.00 19.00 25,00 24 17 17 1 W 14 x 38 7.00 18.00 25.00 24 18 18 1 W 14x38 6,00 19.00 25.00 24 19 20 2 W 14 X 38 7.00 18.00 25,00 24 21 21 1 W 14x61 8.00 22.00 30.00 24 22 22 1 W14x68 9.00 21.00 30.00 24 23 26 4 W 14 X 38 6.00 19.00 25.00 24 27 29 3 W 14x30 5.00 15.00 20.00 24 NOTE: REFER TO SHEET 23 (ES1) FOR T.OW., T.O.B. & B.O.W. ELEVATIONS. SECTION 12 Roy Reed From: Jeff Chaney <jeffc@adv-geosolutions.com> Sent: Tuesday, May 21, 2013 12:04 PM To: Roy Reed; Jim McMenamin; Michael Gaddie Subject: Re: Ocesn Street Permsnent Shoring Roy, For the design ofthe Soldier beam wall I would recommend the following design parameters (P/W 1205-06 Ocean Street Carlsbad): Level Backfill- Active pressure Ka=0.41 Passive pressure Kp=2.46 Soil unit weight =125 pcf I assume that you will be putting some type of drainage board on the backcut? If you have questions please contact me. On Tue, May 21, 2013 at 11:06 AM, Roy Reed <rreedf<:<!earthsupportsvs.com> wrote: Jeff, Attached is the anticipated alignment & profile ofthe proposed permanent soldier beam wall. For our design we will need: 1. Active earth pressure for walls A&B... Or recommendations, I do not believe borings/sampling was performed along this stretch. 2. Passive earth pressure for walls A&B... The profile (Boxed in red) shows the anticipated BOW elevations we will be using. 3. Seismic - Monobe Okobe Give me call or email if you have any questions or concems. Thanks Project Engineer Eartii Support Systems, Inc. 5937 Darwin Court, Suite 105 Carlsbad, CA 92008 Phone: (760) 929-2851 Cell: (8581 531-6557 Fax: (760) 929-2852 E-Mail: rreed@earth5UPPort5Vs.com Regards, Jeff Chaney Geotechnical Engineer Vice President Advanced Geoicchnical Solutions. Inc. Si.in Diego 9707 'Waples Street, Suite 150 San Diego. CA 92121 Inland Empire 25109 .leffcrson Ave, /i200 jVliirrieta., Ca, 92562 Telephone: 619.70S, 1649 Fax: 714.409.3287 ielTcd:t:;adv-.!^eosolutions,coin This c-mail and any flics Iransmillcd wilh it moy contain privileged and confidcniial inrormation and arc intended solely for the use ofthe individual or entity to which Ihcy arc addressed. If you arc not Ihe intended recipient or the person responsible for delivering thc c-mail to thc inlended reeipient. you are hereby notified that any dissemination or copying of this c-mail or any of its allachmcnl(s) is strictly prohibited. If you have received Ihis e-mail in error, please immediately notify the sending individual or entity by e-mail and permanently delete the original c-mail and attaehmcnt(s) from your computer system. Thank you for your eooperolion. «.D'-M.O' alu/Oal i«Jl--t4J" Gap CPT-1 0,0'-SM* oru/^*> t.D.-S7.0' 0.O--I7JI* atu/tMl IT.O'-lt.a' te T.o.-a.o' CPT-3 T.D.-SJ.D* LEGEND B-1 APPR0X»MTE LOCATION OF BORING ^ (QEOCON »M) sf U/Qdl AFmnCIAL FILL. UNDOCUMENTED QOP OLO PARRALIC DEPOSITS (BRACKETa: WHERE BURIED) (CS-CLAYSTONE SUBUNir) (SS-.SM4DSTONE SUMJNTT) CROSS-SECTION LOCATION (A -20 \ CROSS SECTION AA' 20 10 0 -10 NEW BUILDING PAI afu/Qal Qop 20 P' -to 0 -10 CROSS SECTION FF SCALE: 1'=20' (H&V) PLATE 2 ^^L^l^Bl /\ g PIOI Wipe, ^^^^/.A. A- T*l.?»iMw: (61?) GBOnCHNKAL SOLLHOMS, 1^ 7flS.lM F»r(7|J)4W.12S7 Prcjad: P/W 1205-06 REPORT: 1205-O6-B-3 DO) SCALE: 1'=20' (HSeV) CROSS SECTION CC PLATE 3 mAGS AIH'ANCtl> tiCOIECfWKiU. SOlUnONS. INC Si.iiJi«go.(iiiii..t,«;,?*;i:i Projecl: P/V/ 1205-06 REPORT: 1205-06-B-3 o D 30 Qop (ss) Qop (cs) Qop (ss) 30 10 -10 B~2 Qop (ss) Qop (cs) Qop (ss) SCALE: 1'=20' (H&V) CROSS SECTION PD" NEW BUILDING E' -30- Qop CROSS SECTION EE' 10 -10 PLATE 4 HAGS ADl'MfXO GEUmjfMCAL MH.LT1IINS. KC. Projeck P/V^ 1205-06 REPtDRT: 1205-06-B-3