Loading...
HomeMy WebLinkAboutCT 74-21; Carlsbad Oaks East Lots 35-37; Drainage Study; 1988-09-29DRAINAGE STUDY FOR LOTS 35, 36 AND 37 CARISBAD OAKS EAST CARLSBAD, CALIFORNIA 92009 MS 767 AND MS 770 SEPTEMBER 29, 1988 RICK ENGINEERING JOB NUMBERS 10466 AND 10467 CITY OF. CARLSBAD P.E. 2.88.44, Dwg. No. 294-3A Prepared for: CARLSBAD OAKS EAST, LTD ENGINEERING DEPT LIBRARY 2075 Las Palmas Drive Carlsbad, CA 92009-4859 Prepared by: City of Carlsbad RICK ENGINEERING COMPANY TABLE OF CONTENTS Description Introduction Drainage Criteria and Methodology Explanation of the Rational Method Program Hydrology References Hydrology Computer Printouts Inlet Calculations Onsite Drainage Area Maps Paaes 2 3 4- 7 8 - 16 17 Map Pockets INTRODUCTION This project is the grading required to support the re-subdivision of two separate parcel maps within Carlsbad oaks East. The drainage for these lots is carried to existing storm drain catch basins on site or existing storm drain within the streets. March 23, 1989 Mr. Lloyd Hubbs CITY OF CARLSBAD 2075 as Palmas Drive Carlsbad, California 92009 SUBJECT: ROUGH GRADE CERTIFICATION FOR LOTS 35 AND 37 CARLSBAD OAKS EAST CT 74-21 (JOB NO. 10467-B) Dear Lloyd: Grade checks were performed (see enclosed exhibit) by our the information gathered from this survey, I certify that the surveyors, on February 1, 1989, for the above lots. Based on elevations shown on the Rough Grading Plans, Drawing No. 294-3A, slopes and elevations substantially conform with the slopes and and used in accordance with section 6735.5 of the Business and sheets 3 and 4. Certification within this letter is defined as Profession Code of the State of California. Sincerely, Enclosure BCB:KD:cea.003 ESTIMATE RICK ENGINEERING COMPANY 1 k'%%%Z'2 5620 FRIARS ROAD * SAN DIEGO. CALIFORNIA 92110 I( 3088 PI0 PIC0 DR. * SUITE 202 - P.O. BOX 1129 TELEPHONE AREA CODE 619 291-0707 CARLSBAO. CA 92008 * AREA CODE 619 . 729-4987 365 SO'. RANCHO SANTA FE ROAD . SUITE 100 -I, ,,$bs SAN MARCOS. CA 92069 * AREA CODE 619 . 744-4800 FILL I I iY I I I * I 5620 FRIARS ROAD * SAN DIEGO. CALIFORNIA 92110 TELEPHONE AREA CODE 619 * 291-0707 x88 PIO PIC0 OR. * SUITE 202 P.O. BOX 1129 CARLSBAD. CA 92008 AREA CODE 619 * 72S4987 365 SO. RANCHO SANTA FE ROAD * SUITE 100 SAN MARCOS. CA 92059 . AREA COOE 619 * 7444800 1 CUT I ... I I , I I I I I * 1 i 5620 FRIARS ROAD SAN OIEGO. CALIFORNIA 92110 3088 PI0 PIC0 OR. * SUITE 202 . P.O. Box 1129 CARLSBAO. CA 92008 AREA CODE 619 . 123.4987 385 SO. RANCHO SANTA FE ROAD - SUITE 100 This ertlmale is made lo Conform lo City Engineers Manual No. Sheet Of Sheets 1150-2 and may or mar no1 rellect the true cost of the work DRAINAGE CRITERIA AND METHODOLOGY Design Storm: Land Use: Soil Type: Runoff Coefficients: Rainfall Intensity: 50-year storm Industrial Hydrologic soil Group "C" was used for this analysis. ttct9 values based on County of San Diego Drainage Manual. Based on 1985 County of San Diego Drainage Manual Criteria. EXPLANATION OF THE RATIONAL METHOD PROGRAM AND CODES The rational method program is a computer aided design program where the user develops a node link model of the watershed. The program has the capability of estimating conduit sizes of specific design storm discharges. Soil types used in the model are based on sizes and conduits and open channels can be specified to convey hydrologic soils groups as outlined in the soils conservation distribution and runoff coefficients utilized by the program are service's Soil Survey for San Diecfo County. The rainfall intensity based on the County of San Diego's Drainase Desiqn Manual. The node link model is created by developing independent node link models of each interior watershed and linking these sub-models together at confluence points. The program allows up to five streams to be confluenced at a node. confluence must be made sequentially until all are entered. the Stream entries for the program allows consideration of only one confluence at a time. The program has the capability of performing calculations for eight hydrologic and hydraulic processes. These processed are assigned code numbers which appear in the printed output. The code numbers and their meanings are as follows: CODE 1: CODE 2: CODE 3: CODE 4: CODE 5: CODE 6: CODE 7: CODE 8: Confluence analysis at a Node. Initial Subarea Analysis. Pipe Flow Travel Time (Computer Estimated Pipe Size). Pipe Flow Travel Time (User Specified Pipe Trapezoidal Channel Travel time. size). User Specified Information at a Node. Street Flow Analysis Through Subarea. Addition of Subarea Runoff to Mainline. RUNOFF COEFFICIENTS (RATIONAL METHOD) LAND USE Undeveloped Residential: Rural Single Family Multi-Units Mobile Homes (2) Commercial (2) 80% Impervious Industrial (2) 90% Impervious Coefficient , c Soil Group (1) A - B - C - D .30 .35 .40 .45 .30 .35 .40 .45 .40 .45 .50 .55 .45 .50 .60 .70 .45 .50 .55 .65 .70 .75 .80 .85 .80 .85 .90 .95 Notes: (1) Obtain soil group from maps on file with the Department of Sanitation and Flood Control. (2) Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less that 0.50. Consider commercial property on D soil group. For example: Actual imperviousness - - 50% Tabulated imperviousness = 80% Revised C = X 0.85 - 0.53 - ! P " e Y L Z .. i ....... W' g. 30 : .,: i ! i I ! i i I i .I I I i .I :. ! - . ...a - Ti . . ".. I 2 3 i 5 s 7 8910 20 30 . 40 53 DISCHARGE (C F: S.) .. MAMPLE: .:. . .. . ... ..... ~ :. - - .. Glvanl 41 IO S= 2.5% ..... __ ............ .. ..... .. .,. ,- -, . . .. ... .. Chart drmr 06th = 04, Velocity = 4.4 tps. ... : .... .: .. -. . 1 .. I G 0 c) 0 6-Hour Precipitation (inches) 0v)ov)oIn 0 In 0 .In ....". ............................................................................ (C) Copyright 1982,1986 Advanced Engineering Software [AES] Especially prepared for: RICK ENGINEERING COMPANY ............................................................................ ...................................... USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ....................................... 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 50.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.750 SPECIFIED MINIMUM PIPE SIZE(1NCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DEC1MAL) TO USE FOR FRICTION SLOPE = .95 ............................................................................ Advanced Engineering Software [AES] RELEASE DATE: 4/22/86 VER. 3.4A SERIAL NO. IO6051 ............................................................................ ............................................................................ FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 2 ....................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(GL0BAL): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 INITIAL SUBAREA FLOW-LENGTH(FEET) E 420.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 435.00 430.00 ELEVATION DIFFERENCE = 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.817 7.028 ...................................... ...................................... (8) SUBAREA RUNOFF(CFS) = 17.02 TOTAL AREA (ACRES) = 3.25 TOTAL RUNOFF (CFS) = 17.02 ............................................................................ FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 4 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< ...................................... >>>>>USING USER-SPECIFIED PIPESIZE<<<<< ...................................... ....................................... DEPTH OF FLOW IN 24.0 INCH PIPE IS 13.5 INCHES UPSTREAM NODE ELEVATION = 425.00 PIPEFLOW VELOCITY(FEET/SEC.) = 9.4 DOWNSTREAM NODE ELEVATION = 423.98 FLOWLENGTH (FEET) = GIVEN PIPE DIAMETER(1NCH) = 24.00 63.00 MANNINGS N = .013 PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF PIPES = 1 17.02 TRAVEL TIME (MIN. ) = .ll TC(M1N.) = 7.14 .............................................................................. FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TIME OF CONCENTRATION(M1NUTES) = 7.14 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: RAINFALL INTENSITY (INCH./HOUR) = 5.76 TOTAL STREAM AREA (ACRES) = 3.25 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 17.02 ...................................... ............................................................................ ............................................................................ FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(GL0BAL): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 ...................................... ....................................... ....................................... UPSTREAM ELEVATION = INITIAL SUBAREA FLOW-LENGTH (FEET) = 20.00 430.40 DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 430.30 .10 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 1.935 50 YEAR RAINFALL INTENSITY (INCH/HOUR) = 7.246 SUBAREA RUNOFF (CFS) = TOTAL AREA (ACRES) = . 01 TOTAL RUNOFF (CFS) = .07 .07 . . , . . . , . ............................................................................ FLOW PROCESS FROM NODE 202.00 TO NODE 103.00 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 430.30 DOWNSTREAM ELEVATION = STREET LENGTH(FEET) = 280.00 CURB HEIGTH(1NCHES) = 6. 428.90 STREET HALFWIDTH(FEET) = 42.00 STREET CROSSFALL(DEC1MAL) = .0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 ....................................... ...................................... ....................................... (9) STREET FLOWDEPTH(FEET) = .35 AVERAGE FLOW VELOCITY(FEET/SEC.) = HALFSTREET FLOODWIDTH (FEET) = 11.3 1 PRODUCT OF DEPTH&VELOCITY = .63 STREETFLOW TRAVELTIME(M1N) = 2.63 TC(M1N **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.48 ) 1.77 = 7.63 *USER SPECIFIED(GLOBAL) : 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.517 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 SUBAREA AREA(ACRES) = SUMMED AREA(ACRES) = .96 SUBAREA RUNOFF (CFS) = 4.77 END OF SUBAREA STREETFLOW HYDRAULICS: .97 TOTAL RUNOFF( CFS) = 4.83 DEPTH(FEET) = .43 HALFSTREET FLOODWIDTH(FEET) = 15.11 FLOW VELOCITY(FEET/SEC.) = 2.01 DEPTH*VELOCITY = .86 ............................................................................ FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1NUTES) = 7.63 RAINFALL INTENSITY (INCH./HOUR) = 5.52 TOTAL STREAM AREA (ACRES) = TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = .97 4.83 CONFLUENCE INFORMATION: STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 2 17.02 7.14 5.758 4.83 7.63 5.517 RAINFALL-INTENSITY-RTIO CONFLUENCE FORMULA USED FOR 2 STREAMS VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF (CFS) = TOTAL AREA(ACRES) = 21.64 TIME(M1NUTES) = 4.22 7.140 21.64 21.13 ............................................................................ FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 4 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< PIPEFLOW VELOCITY(FEET/SEC.) = 6.9 UPSTREAM NODE ELEVATION = 423.48 DOWNSTREAM NODE ELEVATION = 422.11 FLOWLENGTH(FEET) = 274.96 . MANNINGS N = .013 GIVEN PIPE DIAMETER(1NCH) = 24.00 PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF PIPES = 1 21.64 TRAVEL TIME(M1N. ) = -67 TC(M1N.) = 7.81 ...................................... ...................................... ....................................... .............................................................................. FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TIME OF CONCENTRATION(M1NUTES) = 7.81 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: RAINFALL INTENSITY (INCH./HOUR) = 5.44 TOTAL STREAM AREA (ACRES) = TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 4.22 21.64 ...................................... ....................................... ........................... ............................................................................ FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 2 "_""""""""_"""""""""""""""""""""""""""" >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ............................................................................ INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 *USER SPECIFIED(GL0BAL) : INITIAL SUBAREA FLOW-LENGTH(FEET) = 10.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 429.10 ELEVATION DIFFERENCE = 429.00 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = .10 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 1.072 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.246 SUBAREA RUNOFF(CFS) = .07 TOTAL AREA(ACRES) = . 01 TOTAL RUNOFF (CFS) = .07 ............................................................................ FLOW PROCESS FROM NODE 302.00 TO NODE 104.00 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 429.00 DOWNSTREAM ELEVATION = STREET LENGTH(FEET) = 170.00 CURB HEIGTH(1NCHES) = 6. 427.80 STREET HALFWIDTH(FEET) = 42.00 STREET CROSSFALL(DEC1MAL) = .0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 ....................................... """"""""""""~""""""""~"""""""-"""""""""- ....................................... STREET FLOWDEPTH(FEET) = .33 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.11 AVERAGE FLOW VELOCITY (FEET/SEC. ) = HALFSTREET FLOODWIDTH(FEET) = 10.04 1.88 PRODUCT OF DEPTH&VELOCITY = .61 STREETFLOW TRAVELTIME(M1N) = 1.51 TC(M1N) = 6.51 *USER SPECIFIED(GLOBAL) : 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.112 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 SUBAREA AREA(ACRES) = SUMMED AREA(ACRES) = .75 TOTAL RUNOFF(CFS) = .74 SUBAREA RUNOFF (CFS) = 4.07 END OF SUBAREA STREETFLOW HYDRAULICS: 4.14 DEPTH(FEET) = .39 HALFSTREET FLOODWIDTH(FEET) = 13.21 FLOW VELOCITY(FEET/SEC.) = .2.22 DEPTH*VELOCITY = .87 ............................................................................ FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< """"""""""""""""""""""""""""""""""~"""- I, 7, >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ............................................................................ TIME OF CONCENTRATION(MINUTES) = 6.51 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: RAINFALL INTENSITY (INCH./HOUR) = 6.11 TOTAL STREAM AREA (ACRES) = .75 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 4.14 CONFLUENCE INFORMATION: NUMBER STREAM RUNOFF TIME INTENSITY 1 2 21.64 7.81 5.436 4.14 6.51 6.112 ( CFS 1 (MIN. ) (INCH/HOUR) ...................................... RAINFALL-INTENSITY-RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: 25.32 23.39 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF (CFS) = TOTAL AREA (ACRES) = 25.32 TIME (MINUTES) = 4.97 7.805 ............................................................................ FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 4 ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.2 INCHES PIPEFMW VELOCITY(FEET/SEC.) = 12.1 UPSTREAM NODE ELEVATION = 421.73 DOWNSTREAM NODE ELEVATION = 421.13 FLOWLENGTH (FEET) = GIVEN PIPE DIAMETER(1NCH) = 24.00 24.00 MANNINGS N = .013 PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF PIPES = 1 25.32 TRAVEL TIME (MIN. ) = .03 TC(M1N.) = 7.84 ....................................... ""~"""""""~"""""""""""""""""""""""""-""- ............................................................................ FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... ""~""""""""""""""""""""""""""""""-""""" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT =-.9000 *USER SPECIFIED(GLOBAL): INITIAL SUBAREA FLOW-LENGTH(FEET) 10.00 .. UPSTREAM ELEVATION = 430.40 DOWNSTREAM ELEVATION = 430.30 ELEVATION DIFFERENCE = .10 URBAN SUBAREA OVERLAND TIME OF FMW(M1NUTES) = TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 1.072 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.246 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = -01 TOTAL RUNOFF(CFS) = . .07 .07 ............................................................................ FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 6 ....................................... 1121 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 430.30 DOWNSTREAM ELEVATION = 427.80 STREET LENGTH(FEET) = 350.00 CURB HEIGTH(1NCHES) = 6. STREET HALFWIDTH(FEET) = 42.00 STREET CROSSFALL(DEC1MAL) = .0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 ...................................... ...................................... **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.96 HALFSTREET FLOODWIDTH(FEET) = 11.31 STREET FLOWDEPTH (FEET) = .35 AVERAGE FLOW VELOCITY(FEET/SEC.) = PRODUCT OF DEPTH&VELOCITY = 2.12 .75 STREETFLOW TRAVELTIME(M1N) = 2.75 TC(M1N) = 7.75 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.460 *USER SPECIFIED(GLOBAL): SUBAREA AREA(ACRES) = INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 1.18 SUBAREA RUNOFF(CFS) = SUMMED AREA (ACRES ) = 5.80 END OF SUBAREA STREETFLOW HYDRAULICS: 1.19 TOTAL RUNOFF (CFS) = 5.86 DEPTH(FEET) = -43 HALFSTREET FLOODWIDTH(FEET) = 15.11 FLOW VELOCITY(FEET/SEC.) = 2.44 DEPTH*VELOCITY = 1.05 ............................................................................ FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 4 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.3 INCHES PIPEFMW VELOCITY(FEET/SEC.) = 4.6 UPSTREAM NODE ELEVATION = 421.48 DOWNSTREAM NODE ELEVATION = 421.11 FLOWLENGTH (FEET) = GIVEN PIPE DIAMETER(1NCH) = 18.00 73.75 MANNINGS N = .013 PIPEFMW THRU SUBAREA(CFS) = NUMBER OF PIPES = 1 5.86 TRAVEL TIME(M1N. ) = .27 TC(M1N.) = 8.02 ...................................... ...................................... ...................................... ............................................................................ FLOW PROCESS FROM NODE 500.00 TO NODE 502.00 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(GL6BAL) : INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .go00 INITIAL SUBAREA FLOW-LENGTH(FEET) = 400.00 UPSTREAM ELEVATION = 421.00 DOWNSTREAM ELEVATION = 415.90 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = ELEVATION DIFFERENCE = 5.10 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.976 6.739 ...................................... ....................................... """"""""""""""""""~"""""""""""""""""""- SUBAREA RUNOFF (CFS) = TOTAL AREA(ACRES) = 10.76 2.00 TOTAL RUNOFF(CFS) = 10.76 ............................................................................ FLOW PROCESS FROM NODE 502.00 TO NODE 503.00 IS CODE = 4 """""""""_""""""""""""""""""""""""""""~ I1 7) >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.5 UPSTREAM NODE ELEVATION = 412.70 DOWNSTREAM NODE ELEVATION = 409.35 GIVEN PIPE DIAMETER(1NCH) = 18.00 FLOWLENGTH(FEET) = 260.00 MANNINGS N = .013 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 10.76 TRAVEL TIME (MIN. ) = .58 TC(M1N.) = 7.32 ............................................................................ ............................................................................ FLOW PROCESS FROM NODE 503.00 TO NODE 503.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(M1NUTES) = 7.32 RAINFALL INTENSITY (INCH./HOUR) = 5.67 TOTAL STREAM AREA (ACRES) = 2.00 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 10.76 _""""""""""""~"""~""""~""""""""""""""""" ...................................... ............................................................................ FLOW PROCESS FROM NODE 600.00 TO NODE 503.00 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ~""""""-""""""""""""""~"""""""""""""~""" ...................................... *USER SPECIFIED(GLOBAL): INDUSTRIAL DEVEmPMENT RUNOFF COEFFICIENT = .9000 INITIAL SUBAREA FLOW-LENGTH(FEET) = 360.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 420.70 ELEVATION DIFFERENCE = 415.90 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = 4.80 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.233 6.314 SUBAREA RUNOFF (CFS) = TOTAL AREA (ACRES) = 11.33 2.02 TOTAL RUNOFF(CFS) = 11.33 .............................................................................. FLOW PROCESS FROM NODE 503.00 TO NODE 503.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< """""""""""""""""~""""""""""""""""""""- ...................................... CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1NUTES) = 6.31 RAINFALL INTENSITY (INCH./HOUR) = 6.23 TOTAL STREAM AREA (ACRES) = TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 2.02 11.33 CONFLUENCE INFORMATION: NUMBER STREAM RUNOFF TIME INTENSITY (CFS) (MIN. ) (INCH/HOUR) ...................................... 1 10.76 7.32 5.666 2 11.33 6.31 6.233 RAINFALL-INTENSITY-RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF (CFS) = 21.11 TIME(M1NUTES) = 6.314 TOTAL AREA(ACRES) = 4.02 21.06 21.11 ............................................................................ FLOW PROCESS FROM NODE 503.00 TO NODE 504.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.0 INCHES UPSTREAM NODE ELEVATION = 409.51 PIPEFLOW VELOCITY(FEET/SEC.) = 8.3 DOWNSTREAM NODE ELEVATION = 406.60 FLOWLENGTH(FEET) = 265.00 MANNINGS N = .013 ESTIMATED PIPE DIAMETER(1NCH) = 24.00 PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF PIPES = 1 TRAVEL TIME(M1N. ) = 21.11 ...................................... ...................................... ...................................... .53 TC(M1N.) = 6.84 ............................................................................ FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TIME OF CONCENTRATION(M1NUTES) = 6.84 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: RAINFALL INTENSITY (INCH./HOUR) = 5.92 TOTAL STREAM AREA (ACRES) = TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 4.02 21.11 ...................................... ...................................... ...................................... ............................................................................ FLOW PROCESS FROM NODE 700.00 TO NODE 504.00 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... *USER SPECIFIED(GL0BAL): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 INITIAL SUBAREA FLOW-LENGTH(FEET) = 260.00 ELEVATION DIFFERENCE = DOWNSTREAM ELEVATION = 410.90 4.10 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.128 5.128 UPSTREAM ELEVATION = 415.00 SUBAREA RUNOFF(CFS) = 8.92 TOTAL AREA (ACRES) = 1.39 TOTAL RUNOFF(CFS) = 8 92 ............................................................................ FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ....................................... CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1NUTES) = 5.13 RAINFALL INTENSITY (INCH ./HOUR) = 7.13 TOTAL STREAM AREA (ACRES) = 1.39 TOTAL STREAM RUNOFF(CFS) AT CONFLUENCE = 8.92 CONFLUENCE INFORMATION: NUMBER STREAM RUNOFF TIME INTENSITY (MIN. ) (INCH/HOUR) (CFS) ....................................... 1 21.11 2 8.92 6.84 5.13 5.917 7.128 RAINFALL-INTENSITY-RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS VARIOUS CONFLUENCED RUNOFF VALUES ARE AS FOLLOWS: COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: RUNOFF (CFS) = TOTAL AREA(ACRES) = 28.51 TIME (MINUTES) = 5.41 6.844 28.51 26.44 ............................................................................ FLOW PROCESS FROM NODE 504.00 TO NODE 505.00 IS CODE = 3 >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 13.4 UPSTREAM NODE ELEVATION = 406.27 DOWNSTREAM NODE ELEVATION = 404.53 FLOWLENGTH (FEET) = ESTIMATED PIPE DIAMETER(1NCH) = 24.00 57.00 MANNINGS N = .013 PIPEFLOW THRU SUBAREA(CFS) = 28.51 NUMBER OF PIPES = 1 TRAVEL TIME(M1N.) = .07 TC(M1N.) = 6.91 END OF RATIONAL METHOD ANALYSIS ...................................... ........................................ """""""_"_""""""""""""""""""""""""""""" """""""""_""""""""""""""""""""""""""""~ ....................................... RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL ........................................ (C) Copyright1982,1986AdvancedEngineeringSoftware [AES] Especially prepared for: RICK ENGINEERING COMPANY ............................................ **********DESCRIPIION OF RESULTS********X**X**X****X*****XXXf*I********************* * LOTS 35, 36, & 37 CARLSBAD OAKS EAST * * 100 YEAR FOR INLETS * * jn. 10467 * ............................................................................ - - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: """""""""""" 1""" RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL ...................................... ...................................... ............................................................................ (C) Copyright 1982,1986 Advanced Engineering Software [AES] Especially prepared for: RICK ENGINEERING COMPANY ............................................................................ **********DESCRIPTION OF RESULTS******************************************** * LOTS 35, 36, & 37 * 100 YEAR FOR INLETS CARLSBAD OAKS EAST * * ............................................................................ * * jn. 10467 ...................................... USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ....................................... 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 3.000 SPECIFIED MINIMUM PIPE SIZE(1NCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DEC1MAL) TO USE FOR FRICTION SLOPE = .95 ............................................................................ Advanced Engineering Software [AES] VER. 3.4A RELEASE DATE: 4/22/86 SERIAL No. IO6051 ............................................................................ ............................................................................ FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... """""""""_""""""""""""""""""""""""""""~ ....................................... *USER SPECIFIED(GL0BAL): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 UPSTREAM ELEVATION = INITIAL SUBAREA FLOW-LENGTH(FEET) = 20.00 430.40 DOWNSTREAM ELEVATION = 430.30 ELEVATION DIFFERENCE = .10 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 1.935 SUBAREA RUNOFF (CFS) = .07 TOTAL AREA(ACRES) = .01 TOTAL RUNOFF(CFS) = .07 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.904 .............................................................................. FLOW PROCESS FROM NODE 202.00 TO NODE 103.00 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = STREET LENGTH(FEET) = 280.00 CURB HEIGTH(1NCHES) = 6. 430.30 DOWNSTREAM ELEVATION = 428.90 STREET HALFWIDTH(FEET) = 42.00 STREET CROSSFALL(DEC1MAL) = .0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ....................................... ....................................... """""""""_""""""""""""""""""""""""""""~ INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = **TRAVELTIME COMPUTED USING MEAN FLOW STREET FLOWDEPTH (FEET) = .37 HALFSTREET FLOODWIDTH(FEET) = 11.94 AVERAGE FLOW VELoCITY(FEET/SEC.) = PRODUCT OF DEPTH&VELOCITY = .64 STREETFLOW TRAVELTIME (MIN) = 2.67 TC (MIN 100 YEAR RAINFALL INTENSITYIINCH/HOUR) = 5 9000 CFS) = 2.70 1.75 = 7.67 999 *USER SPECIFIED (GLOBAL) : INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = -9000 SUBAREA AREA(ACRES) = SUMMED AREA(ACRES) = .96 SUBAREA RUNOFF(CFS) = 5.18 END OF SUBAREA STREETFLOW HYDRAULICS: .97 TOTAL RUNOFF(CFS) = 5.25 DEPTH(FEET) = .44 HALFSTREET FLOODWIDTH(FEET) = 15.74 FLOW VELOCITY(FEET/SEC.) = 2.02 DEPTH*VELOCITY = .89 ............................................................................ FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(GLOBAL) : INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 INITIAL SUBAREA FLOW-LENGTH (FEET) = 10.00 UPSTREAM ELEVATION = 429.10 ELEVATION DIFFERENCE = DOWNSTREAM ELEVATION = 429.00 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = .10 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 1.072 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.904 ...................................... ....................................... ...................................... SUBAREA RUNOFF (CFS) = TOTAL AREA (ACRES) = . 01 TOTAL RUNOFF (CFS) = .07 .07 ............................................................................ FLOW PROCESS FROM NODE 302.00 TO NODE 104.00 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 429.00 DOWNSTREAM ELEVATION = STREET LENGTH(FEET) = 170.00 CURB HEIGTH(1NCHES) = 6. 427.80 STREET HALFWIDTH(FEET) = 42.00 STREET CROSSFALL(DEC1MAL) = .0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = -9000 ....................................... ....................................... ....................................... I. ^. **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.30 STREET FLOWDEPTH(FEET) = .34 HALFSTREET FLOODWIDTH(FEET) = 10.68 AVERAGE FLOW VELOCITY(FEET/SEC.) = PRODUCT OF DEPTHLVELOCITY = 1.83 .62 STREETFLOW TRAVELTIME(M1N) = 1.55 TC(M1N) = 6.55 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.642 *USER SPECIFIED(GL0BAL): SUBAREA AREA(ACRES) = INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 SUMMED AREA(ACRES) = .74 SUBAREA RUNOFF(CFS) = 4.42 END OF SUBAREA STREETFLOW HYDRAULICS: .75 TOTAL RUNOFF(CFS) = 4.49 DEPTH(FEET) = .40 HALFSTREET FLOODWIDTH(FEET) = 13.84 FLOW VEMCITY(FEET/SEC.) = 2.21 DEPTH*VELOCITY = .89 ............................................................................ FMW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ~~~~~~~~~~~~~ ~~~ ~ ~~ ~~ ~ ~~ ~~~~~~~~ *USER SPECIFIED(GL0BAL): INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 INITIAL SUBAREA FLOW-LENGTH(FEET) = 10.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 430.40 ELEVATION DIFFERENCE = 430.30 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = .10 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 1.072 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.904 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = .Ol TOTAL RUNOFF(CFS) = .07 .07 ............................................................................ FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 430.30 DOWNSTREAM ELEVATION = STREET LENGTH(FEET) = 350.00 CURB HEIGTH(1NCHES) = 6. 427.80 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 ...................................... ....................................... ....................................... STREET HALFWIDTH(FEET) = 42.00 STREET CROSSFALL(DECIMAL) = .ozao **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = STREET FLOWDEPTH(FEET) = .37 3.29 HALFSTREET FLOODWIDTH(FEET) = 11.94 AVERAGE FLOW VELOCITY (FEET/SEC. ) = 2.13 PRODUCT OF DEPTH&VELOCITY = .78 STREETFLOW TRAVELTIME(M1N) = 2.74 TC(M1N) = 7.74 *USER SPECIFIED(GLOBAL) : 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.964 INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .go00 SUBAREA AREA (ACRES) = 1.18 SUBAREA RUNOFF(CFS) = SUMMED AREA(ACRES) = 6.33 1.19 TOTAL RUNOFF(CFS) = END OF SUBAREA STREETFLOW HYDRAULICS: 6.40 DEPTH(FEET) = .44 HALFSTREET FLOODWIDTH(FEET) = 15.74 FLOW VELOCITY(FEET/SEC.) = 2.47 DEPTH*VELOCITY = 1.09 Date a- 2c3 Job No. Page No. I RICK ENGINEERING COMPANY I :%'%,$%':~~; 365 SO. RANCHO SANTA FE ROAD 0 SUITE 10 RICK ENGINEERING COMPANY I UD CIWL EMQ~E 365 SO. RANCHO SANTA FE ROAD 0 SUITE 1C CU*"I*.iU)N.w.rU rrl"Prlnr-~~"n=r"nPrrP-"crrrn,po~-=~--~"=-~-~*="-~"~="~=~="~.~~ P!?ESSURE FLOW PROCESS FROM NOOE ' 138.00 TO NODE ' 140.00 'IS CODE - 3 VPSTREAM NODE ' 140.00 .-ELEUPTIOff ? 415.80 ""~"""""""""""""~~"~""""-~"~"""""~"""""""" .. CfiLCULATE PRESSURE FLOW P~PE-EEffO~LOSSEStOCE~~): .'. ~ ' .I PIPE- FLOW -: 74.50 CFS' PIPE OIAMETER - 36.00 INCHES CENTRAL ANGLE * 23.900 DEGREES PIPE LENGTH = .133.09;FEET' MANNINGS N = .01300 PRESSURE.FLOW ARE! =' 7.c169 SQUftRE FEET FLOW VELOCITY = 10.54 FEET PER SECOND '. VELOCITY HEAO - 1.725 ': BEND COEFFICIENT(K~) - .ma PIPE CONVEYANCE FACTOR - 666.983 tlB=KB*(UELOCITY HEAO) - .129)*( 1'.725) - '. .222 FRICTION LOSSES - L*SF * ( . 133.09)+( .0124762) 1.660 FRICTION SLOPEtSF) - .0124762 YODE 140.00 I HGLP < 419.654>;EGL- < 421.378>;FLOWLINE= .: 415.800> .. ~. . .. ~'~D"=""""""E'-Pr-=I-EO-IIT=Crl-P~==~~"~""~=~~*~="=~~~~="="~~=~ UPSTREOM ~ooi 142.e0 . ELEVATION 417.40 PRESSURE FLOW PROCESS FROM NOOE 140.00 TO NODE 142.00 IS COOE - 1 """"""""""'""--"""""-"""""~""~~""""~"""~"""" CALCULATE PRESS PZPE FLOW .m PIPE LENGTH - HF-L*SF - ( SF-(Q/Kl**Z D ( NODE ,142.00 URE FLOW FRICTION LOSSES~LWFCO): '74.50 GF6. . PIPE DIAMETER - 36.00 INCHES ,125.48 FEET NANNINGS N L .01300 ( ' 74'.5!3)/( 666.983))**2 - .0124762 125.d8 )*( .012476Z) 7 1.566 - . .- .' HGL- < 421;219>;€6Lt .. < 422;944>;FLO!+JtINE= < 417.400) .,. PEESSU,RE FLOW PROCESS FROH'NODE 142,00 TQ NODE 144.00 IS COOE - 5 UPSTREAM NODE 144 .'e0 ELEUATION - 417.40 CALCULATE PRESSURE PLOY JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA '1 HU 49.8. .36.00 7i068 7.045 ' ' ' ,000 .:2 . 74.5 ' 36.00 .771 7.069 18.500 " 1.725 '3- 7 6 3' 4 ' 11.1 24.00 . 13.6 24.00 .3.142 4.329 69.100 - 3:142 3.533 87.400 - ""_"""""""""~~"""""""""""""""~"""""""""" .. 5. .0---QS EQV?&S 8pSIN INPUT-- L.A.E. .. LACFCD AN5 OCEMA PRESSURE FLOW JUNCTlGN FORMULAE USED: DY-~QZ~UZ-Q1+Ul:COS~DELT~l )'Q3*U3*COS(DELTA3)- ' . SHE7 14. Q4*U4f.COS( DELTA4 ))I( (Al.tfl2 )*16.1)' . ' . .. UPSTREAM MANNINGS N = ,01300 UPSTREAM FRICTION SLOPE .PO557 DOWNSTREAM FRICTION SLOPE = :01248 PUERAGED FRICTIDN. SLOPE IN JUNCTION ASSUMED AS .at1903 JgNCTION LENGTH< FEET 1. = 4.0Q . FRICTION LOSS - . ,036 ENTRANCE LOSSES = , .OB0 JUNCTION LOSSES - 1.80-1.725t( .036)+( .000) = NODE 144.00 : HGL- < 423.063) EGL- < 423.834>;FLOWLINE= < 417.400) .E90 DOWNSTREAM MANNINGS N - .a1308 JUNCTION LOSSES DYtHUI-HUZt(.FRICTION LOSS)t(ENTRANCE LOSSES) """"-"-=-=c=ln~~~~~~~~~~lln-"31""""~~~~~~~""~~~~"~~~~"~.~~~ PRESSURE FLOW PROCESS FROM NOOE 144.00 TO NODE 146.00 IS CODE = 1 .. . .. UPSTREAM NOOE 146.08) ELEVATION - 419.53 .* .. """""""""_~"-~"""~~""""""""~"""""""""""""~ .. CALCULATE PRESSURE. FLOG FRTCTIO~~ LBSSES(LACFCO 1: PIPE FLOW -. ..'::.4B.80 CFS ' ' PIPE DIAMETER - 36.00 INCHES PIPE LENGTH - 246,94 FEET ,flANl?INGS N - . ,01300 SF=(Q/Kj**Z ((, . '49.80>/( 666,:983)'l*rZ 3 .0055748 HF*L*SF .- ( 246.94/*( ' ,0855748) - 1.377 NOOE 146.00 : HGL-'< '424.440>;EGC* < 425.21l>;FLOWLINE- < 419.530> . . .. .. .. ="P3~=D"=C==f-rP=,,TI--"-I="IT--LCI~~~~~""~~""~==""""~~~~~~"~~ PRESSURE FLOW PROCi6S FRON NOOE. 146.a0.TO NOOE' 148.00 IS CODE - 3 UPSTREAM NOOE 148.00 ' ELEVATION .. ?; 420.90' CALCULATE PRESSURE FLGY 'PIP6-BEND LOSSES(0CEMA): PIPE FLOW - 49.88 CFS "PFPE'DIAMETER I 36.00 INCHES CENTRAL ANGLE t'28.60@ pE6REES ' ' PIPE LENGTH = . 159.56 FEET MRNNINGS N ? .01300 PRESSURE'FLOW APEA.- 7.069 SOUARE FEET .. FLOW UELOCITY 7.05 FEET.PER SECOND VELOCITY HEAD = .771 BEND COEFFICIENT(K6) - .1409 PIPE CONVEYANCE FfiCTOR - 666.983 HB=KB*(UELOCITY HEAD) - ( .111)+( ,771 1 ? ' .I09 FRICTION SLOPE(SF) = .a055748 FRICTION LOSSES - L+SF - ( 159.561+( .@05$748) - .890 NODE 148.@0 .: HGL- < 425.439>;EGL= < IFLOWLINE= LOW LINE= < +20.900> """"""""""T---"""""""""~-""""""""""""""""""- . .. .. .. .. .' .- ,,,h"ln"~nPi="n"~"~~~~~~~~~"~""~~~~~"~"".""~"~~~"~~~~"~"~" UPSTREAM NOOE 152 .OO PRESSURE FLOW PROCESS FRO< NODE ' 148.08 TO NOOE 152.00- IS COO€ 5 ELEVATION ./ = 420.90 'CALCULATE PRESSURE FLOW JUNCTION LOSSES: "~""""""""""""""""""~"""""""""""""""""" .. . NO. DISCHARGE OIAMETER AREA UELOCITY DELTA HV 1 42.6 ' 36.00 7,069 5.942 .000 t 540 4Z.t 7 s SI4teEl- IS 2 49.8 36.W 7.069 7.845 " .771 3 4 '7.8 16.00 1.767 4.414 70.900 .Q .06 .000 % 000 ,000 - L.4.E. - .5 .&-=E EQUALS BASiN INPUT--- .. .. .. .. LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY-~PZ~U2-QI~Ul~COS~DELTAI )-Q3*U3tCOS(DELT43)- .. Q~~U~~COS(DELTA~)~/((,C~~~AZ)~~~.~) UPSTREAM MANNINGS N = .0!30a DOWNSTREAIi MANNINGS N :01300. . :: . ' UPSTREAM FRICT~ON SLOPE - ,00397~ DOWNSTREAM. FRICTION SLOPE -. .00sw AUERAGEO FRICTION SLOPE IN'JUNCT~ON ~ssuMEo ps ,00477 JUNCTION LENGTHCFEET ) 4 ,Q? FRICTION LOSS - .019 ENTRANCE LOSSES - ' .000 . ' JUNCTION LOSSES *, QYtHUI-HUZtf FPICTIPN L6SS)t(ENTRANCE LOSSES) . .. JLJ$CTION LOSSES - NODE 152.p0': H6L- <' 425.873); GL- C 426;421>:FLOWLINE- < 420.300) r4iD.?71+(' .B19)t( .000) - .212 .. .. .""-~""-=""=~"""""~"""=~"=~="""~=""""""-~"-="==~=~ PRESSURE FLOW PROCE8S FROM NODE 152.00 TO NODE i54.00 IS CODE = 3 UPSTREAM NOOE 154 00: ' ' ELEVATION - 422.74 CALCULATE PRESSURE .FLOW PIPE-BEN0 LOSSES(0CEMA j: """""""""""""""~"""""""""""""""""""--"--- .. .. .. .. le: