Loading...
HomeMy WebLinkAboutCT 80-33; El Camino Real Median Improvements; Hydrology & Hydraulic Report; 1990-04-22HYDROLOGY REPORT & HYDRAULIC ANALYSIS FOR THE VILLAS AT EL CAMINO REAL Prepared for: Aviara Land Associates 2011 Palomar Airport Road, Suit&206 Carlsbad, CA 92009 ,% > Prepared by: -7 .. BHA, Inc. land planning, civil engineering, surveying 5115 Avenida Encinas, Suite L Carlsbad, CA 92008-4387 (619) 931-8700 W.O. 113-0662-400 II TABLE OF CONTENTS I. Project Description 11. Discussion A. Developed Drainage Basin Hydrology B. Conclusion 111. Calculations A. Developed On-Site Hydrology for The Villas At El Camino Real B. Developed Off-Site and Perimeter Hydrology C. Curb Inlet Sizing (On-Site) D. Hydraulic Analysis of Storm Drain System E. Hydraulic Analysis of Detention Basin F. Developed Hydrology for El Camino Real Median Inlet G. Hydraulic Analysis of Street Flow with Inlet Sizing IV. Exhibits A. Detention Basin Inlet Control Design Methods and Equations B. Drainage Basin Hydrology Node Map C. On-Site Hydrology Node Map for The Villas At El Camino Real D. 6-Hour and 24-Hour Precipitation Chart E. SCS Soil Type Map F. El Camino Real Node Map V. References I. PROJECT DESCRIPTION 11. DISCUSSION I. PROJECT DESCRIPTION The Villas At El Camino Real project is located within the City of Carlsbad, South of Palomar Airport Road, along El Camino Real. The proposed site development consists of the construction of a 344-unit apartment complex with associated structures and roadways; the construction of a public roadway along the southerly boundary of subject development and widening of the westerly right-of-way of El Camino Real. The proposed site storm drain system will connect to an existing storm drain system (27" RCP pipe) that runs northerly along the easterly property line of Lot 8, Map 10061 (CT 80-33). The existing storm drain at the northwest comer of the site has a limited capacity that requires the construction of an on-site detention basin prior to connection of this project's drainage system. A majority of the total drainage basin is encompassed within the project's graded perimeter. The remainder of the basin drains towards the northwest comer of this project, where it is intercepted and drained into the existing 27" storm drain system, mentioned above. The surrounding land uses are industrial/commercial to the North, multi-family to the West (currently vacant), and nursery to the South. The East property line borders upon El Camino Real. The following Hydrology Study and Hydraulic's calculations are based on the proposed grading and improvement plans for the above referenced project. 11. DISCUSSION A. B. Drainage sub-basin areas were determined from the proposed finished grades as shown on the grading and improvement plans for the above referenced project. Using the Modified Rational Method, the on-site drainage system was determined from the drainage sub-basins and multi-family use. Exhiiit "C' shows the proposed on-site drainage system and nodal points. This study considers the run-off for a 100-Year Storm Frequency. Conclusions: The basin hydrology determined a 100-Year Storm Frequency runoff of 53.84 CFS. Our study concluded that with the use of a 10-foot deep detention basin (as shown on grading plan), all project drainage can be contained within the existing 27" RCP storm drain at the northwest comer area of this project. - bk A, Inc. HI. CALCULATIONS A. Developed On-Site Hydrology for The Villas At El Camino Real ............................................................................ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE .- REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) " VER. 5.5A RELEASE DATE: 4/22/90 SERIAL # 5810 ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 (619) 931-8700 .......................... DESCRIPTION OF STUDY .......................... - * VILLAS HYDROLOGY t BASIN DRAINAGE SECTION "A" t 3/21/94 * * * .......................................................................... - FILE NAME: VILLASl.DAT TIMEIDATE OF STUDY: 15:lO 3/21/1994 " """"""""~"""""""""""""""""""""""""""""- .. USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: """""""""""""""""""""""""""""""""""""- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR1 100.00 6-HOUR DURATION PRECIPITATION (INCHES) 2.750 SPECIFIED MINIMUM PIPE SIZE(1NCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DEC1MAL) TO USE FOR FRICTION SLOPE .95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ALL CONFLUENCE COMBINATIONS CONSIDERED --- FLOW PROCESS FROM NODE ............................................................................ 38.20 TO NODE 1.20 IS CODE = 2 ...................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ........................... """"""""""""""""""""""""""" "- SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 - UPSTREAM ELEVATION 319.00 INITIAL SUBAREA FLOW-LENGTH(FEET) = 90.00 DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE 311.00 8.00 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH -. URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = TIME OF CONCENTRATION ASSUMED AS 5-MINUTES DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. " 100 YEAR RAINFALL INTENSITY (INCHIHOUR) 7.246 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES1 = .05 TOTAL RUNOFF(CFS1 .22 - """""""""_ """""""""_ 4.122 .22 ."" ."" - FLOW PROCESS FROM NODE ............................................................................ 1.20 TO NODE 1.10 IS CODE = 6 """_ I"""_ I"""_ 294.40 -1 = .0200 51- """"""""""""""""""-"""""""""""""""" >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = STREET LENGTH(FEET) 740.00 CURB HEIGTH(INCHES1 6. 311.00 DOWNSTREAM ELEVATION = 294.40 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 """"""""""""""""""""""""""""""""""- """""""""""""""""""-""""""""""""""" - STREET HALFWIDTH(FEET) = 59.00 STREET CROSSFALL(DEC1MAL) = .0200 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS1 STREET FLOWDEPTH(FEET) = HALFSTREET FLOODWIDTH(FEET) 10.93 .34 AVERAGE FLOW VELOCITY(FEET/SEC.) = PRODUCT OF DEPTH&VELOCITY 3.43 1.18 4.51- - STREETFLOW TRAVELTIME(M1N) = 3.60 TC(M1N) 8.60 iN)-="-3.60 TC(M1N) 8.60 1.m 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.108 .- SOIL CLASSIFICATION IS "C" SUBAREA AREA(ACRES1 2.69 SUBAREA RUNOFF (CFS) SUMMED AREA (ACRES) = 2.74 TOTAL RUNOFF(CFS1 = DEPTH(FEET)~-=~- T40 HALFSTREET FLOODWIDTH(FEET) = FLOW VELOCITY(FEET/SEC.) = 4.28 DEPTH*VELOCITY ~~ ~ ~~ ~ ~ MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 rREETFLOW HYDRAULICS: - END OF SUBAREA S1 - - 8.46 8.24 13.63 1.71 - ................................................................... - FLOW PROCESS FROM NODE 1.10 TO NODE 32.10 IS CODE 3 """"""""""""""""""-""""""""""""""" >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< """""""_"""""""""""""""""""""""""" """""""""""""""""""""""""""""""""- INCHES = .013 NUMBER OF PIPES = 1 ,********* """"_ .""""_ ,""""_ 8.71 - ............................................................................ FLOW PROCESS FROM NODE 1.10 TO NODE 32.10 IS CODE 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ....................................... ...................................... """_""""""""""""""""""""""""""""""""""- - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - TOTAL STREAM AREA(ACRES1 = 2.74 TOTAL NUMBER OF STREAMS = 2 RAINFALL INTENSITY (INCH/HR) = 5.07 TIME OF CONCENTRATION(M1N.) 8.71 PEAK FLOW RATE(CFS1 AT CONFLUENCE 8.46 - ............................................................................ FLOW PROCESS FROM NODE 32.20 TO NODE 32.10 IS CODE 2 ....................................... - - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<**<< ...................................... ...................................... SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION 293.70 ELEVATION DIFFERENCE = 293.00 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.361 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 75.00 SUBAREA RUNOFF(CFS1 TOTAL AREA(ACRES1 = .07 TOTAL RUNOFF(CFS1 = .23 7.975 .23 ............................................................... FLOW PROCESS FROM NODE 32.20 TO NODE 32.10 IS CODE = ** ** 1 ** ** ** ** * - """"""~""_""""""""""""""""""""""""""""" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... "I"""""""""""""""""""""""""""""~""""""" .- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TOTAL NUMBER OF STREAMS 2 TIME OF CONCENTRATION(M1N.) = 7.98 RAINFALL INTENSITY(INCH/HR) 5.36 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS) AT CONFLUENCE = .07 .23 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME NUMBER (CFS) INTENSITY 1 (MIN. 1 (INCH/HOUR) 8.22 2 7.98 8.68 5.361 8.71 5.065 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 8.68 Tc(MIN.1 = TOTAL AREA(ACRES1 2.81 8.71 ................................................................... FLOW PROCESS FROM NODE 32.10 TO NODE 33.10 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.9 INCHES PIPEFLOW VELOCITY(FEET/SEC. 1 7.8 UPSTREAM NODE ELEVATION 288.00 - DOWNSTREAM NODE ELEVATION = 286.03 FLOWLENGTH(FEET1 = 127.43 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH1 18.00 NUMBER OF PIPES 1 TRAVEL TIME(MIN.1 = .27 TC(MIN.1 = 8.98 - """"""""""""""~"~"""""""""""""""""- >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< """"""""_""""""""""""""""""""""""" - """""""""""""""""""""""""""""""""- - PIPEFLOW THRU SUBAREA(CFS1 = 8.68 ,*e******* """"_ ............................................................................ FLOW PROCESS FROM NODE 32.10 TO NODE 33.10 IS CODE = 10 - ...................................... - >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<e<< ....................................... ...................................... ............................................................................ FLOW PROCESS FROM NODE 3.20 TO NODE 3.10 IS CODE = 2 - ...................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _""""""""""""""""""""""""""" """"""""""""""""""""""-""""" - SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = ,6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 110.00 UPSTREAM ELEVATION - DOWNSTREAM ELEVATION = 311.30 310.60 ELEVATION DIFFERENCE URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) .70 - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.364 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) = .55 .21 TOTAL RUNOFF(CFS) = 10 ""_ ""_ .974 .""""""" .""""""" .55 ." ." ............................................................................ - FLOW PROCESS FROM NODE 3.10 TO NODE 34.10 IS CODE = 3 """""""""""~""""""""""""""""""""""""""- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... PIPES = 1 ............................................................................ - FLOW PROCESS FROM NODE 34.10 TO NODE 4.10 IS CODE 3 """""~""""""""""-"""""""""""""""""""""" >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< """""""""""""""-""""""""""""""""""""""- ...................................... INCHES .013 NUMBER OF PIPES 1 11.20 - ............................................................................ FLOW PROCESS FROM NODE 34.10 TO NODE 4.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< - ...................................... ...................................... ...................................... - TOTAL NUMBER OF STREAMS = 2 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(M1N.) = 11.20 TOTAL STREAM AREA(ACRES1 = RAINFALL INTENSITY (INCH/HR) = 4.31 PEAK FLOW RATE(CFS1 AT CONFLUENCE = .21 .55 - - ............................................................................ FLOW PROCESS FROM NODE 4.20 TO NODE 4.10 IS CODE 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "C" - ....................................... ."""""""""""""""""""""""""""""""""""""~ ...................................... - MULTIIUNITS- DEVELOPMENT RUNOFF COEFFICIENT .6000 INITIAL SUBAREA FLOW-LENGTH (FEET) = 125.00 UPSTREAM ELEVATION = 310.60 - DOWNSTREAM ELEVATION 304.30 ELEVATION DIFFERENCE = 6.30 URBAN-SUBAREA- OVERLAND TIME OF-FLOW(MINUTES) - __ . *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH 5.869 DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.534 .~ "" SUBAREA RUNOFF (CFS) = ~~~~ ~ - TOTAL AREA(ACRES1 = .34 TOTAL RUNOFF(CFS) 1.33 i. 33 ............................................................................ FLOW PROCESS FROM NODE 4.20 TO NODE 4.10 IS CODE 1 ...................................... - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ....................................... .- CONFLUENCE VALUES USED FOR INDEPENDENT TOTAL NUMBER OF STREAMS 2 TIME OF CONCENTRATION(M1N.) = 5.87 RAINFALL ~ INTENSITY (INCH/HR) = 6.53 - T.OTAL..sTREA"AREA(AcREsj.". "" PEAK FLOW RATEKFS) AT CONFLUENCE .34 STREAM 1.33 2 ARE : - CONFLUENCE FORMULA USED FOR 2 STREAMS. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - STREAM ** PEAK FLOW RATE TABLE ** RUNOFF TIME INTENSITY NUMBER 1 (CFS) (MIN.) (INCH/HOUR) 1.70 5.87 6.534 - 2 1.43 11.20 4.308 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.70 Tc(MIN.1 5.87 - TOTAL AREA(ACRES1 = .55 ............................................................................. FLOW PROCESS FROM NODE 4.10 TO NODE 5.10 IS CODE = 3 ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... - DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.9 INCHES - UPSTREAM NODE ELEVATION = 301.62 PIPEFLOW VELOCITY(FEET/SEC.) = 4.4 DOWNSTREAM NODE ELEVATION = 299.80 FLOWLENGTH(FEET1 = 181.69 MANNING'S N = .013 - ESTIMATED PIPE DIAMETER(1NCH) 12.00 PIPEFLOW THRU SUBAREA(CFS1 NUMBER OF PIPES = 1 TRAVEL TIME(MIN.l = .69 1.70 TC(MIN.1 = 6.56 ............................................................................ FLOW PROCESS FROM NODE 4.10 TO NODE 5.10 IS CODE = 1 """""""""""""""""""-""""""""""""""""""- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... .""""""""""""""""""""""""""""""""~""""" - CONFLUENCE VALUES USED FOR INDEPENDEN TOTAL NUMBER OF STREAMS = 2 TIME OF CONCENTRATION(MIN.1 = 6.56 RAINFALL INTENSITY(INCH/HR) 6.08 PEAK FLOW RATE(CFS1 AT CONFLUENCE - TOTAL STREAM AREA(ACRES1 = .55 IT STREAM 1.70 1 ARE: - ............................................................................ FLOW PROCESS FROM NODE 5.20 TO NODE 5.10 IS CODE 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ."""""""""""""""""""""""""""""""""""""~ ...................................... ...................................... SOIL CLASSIFICATION IS "C" - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 = UPSTREAM ELEVATION = 305.00 - DOWNSTREAM ELEVATION 304.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES1 ELEVATION DIFFERENCE .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.722 95.00 " SUBAREA RUNOFF(CFS1 = .25 TOTAL AREA(ACRES1 = .09 TOTAL RUNOFF(CFS1 = 9.712 .25 - ............................................................................ FLOW PROCESS FROM NODE 5.20 TO NODE 5.10 IS CODE 1 ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ~~ ...................................... ...................................... ~~ TOTAL NUMBER OF STREAMS CONFLUENCE VALUES USED FOR TIME OF CONCENTRATION (MIN. 1 RAINFALL INTENSITY(INCH/HR) TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS1 AT CONF 2 INDEPENDENT = 9.71 = 4.72 .09 :LUENCE = STREAM .25 2 ARE: RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - ** PEAK FLOW RATE TABLE ** - 1 1.89 6.56 6.083 2 1.57 9.71 4.722 STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.1 (INCH/HOUR) ...................................... ...................................... >>>>>S3lllVA w\ntllS a33N3lllJN03 SflOIWA 31ndW03 aNV<<<<< - >>>>>33N3nlJN03 tlOJ WVltllS lN30N3d3aNI 31VN9IS3a<<<<< ...................................... 'I = la03 SI 01.9 3aON 01 02'9 300N WOW SS330tld MOlJ - ............................................................................ "" "" ."""_ ."""_ ." ." st7 * L98'L .""""" .""""" = (SJ3)JJONnIl lV101 91. = (S3d3V)WtlV lV101 st7 - = (SJ3)JJONfltl WtlVBflS - 609's = (tlflOH/H3NI)AlISN3lNI 11VJNIVd tlWA 001 (S3lflNIW)MOlJ JO 3WIl (INVlMAO V3WBnS NVBdfl ~ 06'1 O1'OOE 33N3MJJIa NOIlVA313 NOIlVA313 WV3tllSNMOa 00'011 = (133J)H19N31-MOlJ V38VfInS 1VIlINI 00'20E = NOIlVA313 WV3USdfl - 0009' = IN313IJJ303 JJONntl lN3Wd013A30 SlINfl-IllnW u3u SI NOIlV3I~ISSVl3 110s """""""""""""""""""""""""""" ........................... >>>>>SISAlVNV WWfInS 1VIlINI aOH13W lVNOIlVW<<<< ...................................... 68'1 33N3nlJN03 1V (SJ33llfIl MOW XV3d t79 - (S3li3V)V3W WV3tllS lV101 8S.9 ~'NIW)NOIlV~lN33N03 40 3WIl - LO'9 (8H/H3NI)AlISN31NI 1lVJNIVIl :3W 1 WWtllS lN30N3d3fJNI YOJ a3Sn S3fllVA 33N3fllJN03 z swvms 30 mwnN WLOL - ...................................... ...................................... >>>>>33N3nlJN03 80J WV3IllS lN3aN3d30NI 31VN9IS3Q<<<<< """""""""""""""""""""""""""""""""""""-. 1 """_ """_ = S3dId 000'8 01 S3H3NI 9 ~~~ ~ I""""""""""""""""""""""""""""""" ,""""""""""""""""""""""""""""""" ...................................... E = 3ao3 SI 01 -9 3a0N 01 01.5 ........................................................................... 3aON WOW SS330tld MOlJ - 95.9 = ('NIW)31 68.1 = (SJ3)YlW MOW XV3d t79 * = (S3tl3V)WtlV lV101 - :SMOllOJ SV 3W S31VWIlS3 33N3nlJN03 Q31ndW03 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N.) = 7.87 RAINFALL INTENSITY(INCH/HR) = 5.41 TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFLUENCE .14 .45 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF NUMBER TIME (CFS) INTENSITY (MIN.) (INCH/HOUR) 1 2 2.30 6.58 6.071 2.14 7.87 5.409 3 4 1.97 9.73 4.715 2.00 11.95 4.130 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.30 Tc(MIN.1 TOTAL AREA(ACRES1 = .78 6.58 - ............................................................................ FLOW PROCESS FROM NODE 6.10 TO NODE 7.10 IS CODE = 3 ...................................... - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.1 INCHES - ~~~ .~. PIPEFLOW VELOCITY(FEET/SEC~)- i- - 417 ~ - - -. . -. . - - UPSTREAM NODE ELEVATION = 297.53 DOWNSTREAM NODE ELEVATION = 295.60 __ . -. .... _- __ - -JAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS1 = 2.30 - FLOWLENGTH(FEET1 193.02 MANNING'S N .013 - TRAVEL TIME(M1N. = .68 TC(M1N.) 7.26 ESTIMATED PIPE ~ 01 - ............................................................................ FLOW PROCESS FROM NODE 6.10 TO NODE 7.10 IS CODE 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... ...................................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(M1N.) 7.26 RAINFALL INTENSITY (INCH/HR) 5.70 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS1 AT CONFLUENCE = .78 2.30 - FLOW PROCESS FROM NODE 7.20 TO NODE 7.10 IS CODE 2 ............................................................................ """""""""""""""""""""""""~""""""""""""- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "C" .""""""""""""""""""""""""""""""""""""""- ...................................... MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 - INITIAL SUBAREA FLOW-LENGTH(FEET1 100.00 - UPSTREAM ELEVATION 300.80 DOWNSTREAM ELEVATION = 300.10 - ELEVATION DIFFERENCE = URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) 10.136 .70 SUBAREA RUNOFF(CFS) = .33 ~- TOTAL AREA(ACRES1 .12 TOTAL RUNOFF(CFS1 = .33 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.593 ............................................................................ FLOW PROCESS FROM NODE 7.20 TO NODE 7.10 IS CODE 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-<<< - >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ""_"""""""""""""""""""""""""""""""""""" ...................................... ...................................... TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N. = 10.14 RAINFALL INTENSITY(INCH/HR) 4.59 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS) AT CONFLUENCE .12 .33 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE STREAM NUMBER RUNOFF (CFS) 1 2.56 2 2.44 3 4 2.26 5 2.29 2.29 TABLE ** TIME (MIN. 7.26 10.14 8.56 10.44 12.65 (INCH/HOUR) INTENSITY 5.697 5.123 4.593 4.507 3.981 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2.56 Tc(MIN.1 TOTAL AREA(ACRES1 = .90 7.26 - FLOW PROCESS FROM NODE 7.10 TO NODE 33.20 IS CODE 3 ............................................................................ """"""""""""-"""""""-"""""""""""""""""" >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< PIPES 1 - ............................................................................ FLOW PROCESS FROM NODE 33.20 TO NODE 33.10 IS CODE = 3 ....................................... - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< """""""""_"""""""""""" """""""""""""""""""""- - DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.2 PIPEFLOW VELOCITY (FEET/SEC. 1 = 6.3 UPSTREAM NODE ELEVATION = 286.48 DOWNSTREAM NODE ELEVATION = 286.03 - FLOWLENGTH (FEET) = 22.55 MANNING'S N ESTIMATED PIPE DIAMETER(1NCH) = 12.00 PIPEFLOW THRU SUBAREA(CFS1 = 2.56 -- TRAVEL TIME(M1N. ) .06 TC(M1N. 1 ""_""" """""_ INCHES .013 NUMBER OF 7.33 ."""" ."""" PIPES = ."""_ ."""_ 1 ."" ."" ."_ ."_ - FLOW PROCESS FROM NODE 33.20 TO NODE 33.10 IS CODE = 11 ............................................................................ """"""""~"""""""""""""""""""""""""""""- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ...................................... ...................................... ** PEAK FLOW RATE TABLE ** - STREAM RUNOFF NUMBER TIME (CFS) (MIN. 1 (INCH/HOUR) INTENSITY 1 10.18 7.33 5.660 2 - io; 60 81 25 5.244 3 10.89 8.63 5.094 4 11.05 8.98 5 10.25 10.21 4.570 4.965 "." - 6 io. i3 10.51 7 4; 486 9.21 12.73 3.966 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 11.05 Tc(M1N.) = TOTAL AREA(ACRES1 = 3.71 8.98 ............................................................................ FLOW PROCESS FROM NODE 33.20 TO NODE 33.10 IS CODE = 12 >>>>>CLEAR MEMORY BANK X 1 ex<< - """"~"""""""""""""""""""""""""""""""""- ....................................... ...................................... ............................................................................ FLOW PROCESS FROM NODE 33.10 TO NODE 33.30 IS CODE = 3 --"""""""""""""""""""""""""""""""""""""- >>*>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<* >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... """""""""""""~""""""""""""""""""""""""- .. DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.0 - DOWNSTREAM NODE ELEVATION = 284.48 UPSTREAM NODE ELEVATION = 285.70 FLOWLENGTH (FEET) = ESTIMATED PIPE DIAMETER(INCH1 = 18.00 61.01 MANNING'S N .013 NUMBER OF PIPES = 1 TRAVEL TIME(MIN.1 .ll 11.05 TC(MIN.1 = 9.10 - PIPEFLOW THRU SUBAREA(CFS) = - ............................................................................ FLOW PROCESS FROM NODE 33.30 TO NODE 8.10 IS CODE 3 ...................................... - - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< "_""""""""""""""""""""""""""""""""""""~ ...................................... - DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.8 INCHES UPSTREAM NODE ELEVATION = 284.15 PIPEFLOW VELOCITY (FEET/SEC. 1 = 9.0 - DOWNSTREAM NODE ELEVATION = 283.33 FLOWLENGTH(FEET1 = 41.16 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH1 = 18.00 NUMBER OF PIPES = 1 TRAVEL TIME(MIN.1 .08 TC(MIN.1 = 9.17 - PIPEFLOW THRU SUBAREA(CFS1 = 11.05 - ............................................................................ FLOW PROCESS FROM NODE 33.30 TO NODE 8.10 IS CODE 10 ...................................... '- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<e<< ...................................... ...................................... - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... ...................................... SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 INITIAL SUBAREA FLOW-LENGTH(FEET) UPSTREAM ELEVATION 304.30 DOWNSTREAM ELEVATION ELEVATION DIFFERENCE = 297.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES1 = 6.60 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.246 44.00 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = .09 .02 TOTAL RUNOFF(CFS) = 2.421 .09 - ............................................................................ FLOW PROCESS FROM NODE 8.20 TO NODE 8.10 IS CODE 6 ...................................... - >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ...................................... ...................................... UPSTREAM ELEVATION = STREET LENGTH(FEET1 485.00 CURB HEIGTH(INCHES1 6. 297.70 DOWNSTREAM ELEVATION = 289.00 STREET HALFWIDTH(FEET1 = 29.50 STREET CROSSFALL(DEC1MAL) .0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 - ~ **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = STREET FLOWDEPTH(FEET1 2.19 HALFSTREET FLOODWIDTH(FEET) .29 AVERAGE FLOW VELOCITY(FEET/SEC.) 8.06 PRODUCT OF DEPTH&VELOCITY = 2.86 .82 - STREETFLOW TRAVELTIME(MIN1 = 2.83 TC(M1N) 7.83 - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.425 SOIL CLASSIFICATION IS "C" SUBAREA AREA(ACRES1 1.27 SUBAREA RUNOFF(CFS) 4.13 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 - - SUMMED AREA(ACRES1 = 1.29 TOTAL RUNOFF(CFS) = END OF SUBAREA STREETFLOW HYDRAULICS: 4.22 FLOW VELOCITY (FEET/SEC. ) 3.35 DEPTH*VELOCITY = 1.14 - DEPTH(FEET1 .34 HALFSTREET FLOODWIDTH(FEET) = 10.69 ............................................................................. FLOW PROCESS FROM NODE 8.20 TO NODE 8.10 IS CODE = 11 - >>>>>CONFLUENCE MEMORY BANK Y 2 WITH THE MAIN-STREAM MEMORY<<<<< ...................................... ."""""""""_"""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""- - STREAM RUNOFF TIME INTENSITY 1 14.29 7.52 5.567 2 14.31 7.83 3 5.425 14.62 8.44 5.168 4 14.80 8.82 5.023 - ,5 14.86 9.17 6 4.899 13.76 7 10.41 4.516 13.58 10.71 4.434 8 12.27 12.92 3.927 ** PEAK FLOW RATE TABLE ** NUMBER (CFS) (MIN.) (INCH/HOUR) - - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.86 Tc(MIN.1 = 9.17 - TOTAL AREA(ACRES1 5.00 - FLOW PROCESS FROM NODE 8.20 TO NODE 8.10 IS CODE 12 ............................................................................ ....................................... >>>>>CLEAR MEMORY BANK # 2 <<e< """""~"""_""""""""""""""""""""""""""""" ....................................... ............................................................................ FLOW PROCESS FROM NODE 8.20 TO NODE 8.10 IS CODE = 10 ~"""""""_"""""""""""""""""""""""""""""" - >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK Y 2 <<+X ...................................... ...................................... ............................................................................ FLOW PROCESS FROM NODE 2.20 TO NODE 2.30 IS CODE = 2 - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... ...................................... SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 - INITIAL SUBAREA FLOW-LENGTH(FEET1 = UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 301.40 297.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES1 = 3.90 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH 3.736 60.00 - ELEVATION DIFFERENCE = .~ DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. - SUBAREA RUNOFF(CFS) .17 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.246 - TOTAL AREA(ACRES1 = .04 TOTAL RUNOFF(CFS1 = .17 - ............................................................................ FLOW PROCESS FROM NODE 2.30 TO NODE 2.10 IS CODE = 6 ...................................... - >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 297.50 DOWNSTREAM ELEVATION = - STREET LENGTH(FEET1 460.00 CURB HEIGTH(INCHES1 = 6. 289.10 STREET HALFWIDTH(FEET1 29.50 STREET CROSSFALL(DEC1MAL) .0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ."""""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""- - **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) 2.98 STREET FLOWDEPTH(FEET) = HALFSTREET FLOODWIDTH(FEET) = .32 AVERAGE FLOW VELOCITY (FEET/SEC. = 9.81 PRODUCT OF DEPTH&VELOCITY 2.76 .89 - STREETFLOW TRAVELTIME(M1N) = 2.78 TC(M1N) 7.78 - ,100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.447 SOIL CLASSIFICATION IS "C" SUBAREA AREA (ACRES) 1.68 SUBAREA RUNOFF(CFS) = 5.49 END OF SUBAREA STREETFLOW HYDRAULICS: MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 - SUMMED AREA(ACRES1 1.72 TOTAL RUNOFF(CFS1 = 5.66 - FLOW VELOCITY(FEET/SEC.) 3.40 DEPTH*VELOCITY 1.28 DEPTH (FEET) .38 HALFSTREET ~ FLOODWIDTH (FEET) 12.44 - ............................................................................ FLOW PROCESS FROM NODE 2.10 TO NODE 8.10 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< ....................................... - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ....................................... DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.1 INCHES UPSTREAM NODE ELEVATION 284.00 PIPEFLOW VELOCITY(FEET/SEC.) 8.4 DOWNSTREAM NODE ELEVATION = 283.33 FLOWLENGTH(FEET1 = 26.47 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS1 ESTIMATED PIPE DIAMETER(1NCH) 15.00 NUMBER OF PIPES 1 TRAVEL TIME(M1N. ) = 5.66 .05 TC(M1N.) = 7.83 - FLOW PROCESS FROM NODE 2.10 TO NODE 8.10 IS CODE = 11 ............................................................................ _"""""""""""""""""""""""""""""""""""""~ >>>>>CONFLUENCE MEMORY BANK X 2 WITH THE MAIN-STREAM MEMORY<<<<< ...................................... ....................................... ~~ ** PEAK FLOW RATE STREAM NUMBER RUNOFF 1 (CFS) 2 19.81 3 19.98 19.97 4 20.01 5 20.05 6 19.98 TABLE ** TIME (MIN. 7.52 7.83 8.44 7.83 8.82 9.17 (INCH/HOUR) INTENSITY 5.567 5.425 5.423 5.168 5.023 4.899 - 7 8 18.48 10.41 18.21 4.516 10.71 4.434 - 9 16.37 12.92 3.927 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 20.05 Tc(MIN.1 8.82 - TOTAL AREA(ACRES1 6.72 ............................................................................ FLOW PROCESS FROM NODE 8.10 TO NODE 18.10 IS CODE 3 """"""""""""""""""""""-~""""""""""""""" " >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< .""""""""""""""""""""-""""""""""""""""" ."""""""""""""""""""""""""""""""""""""- DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.8 INCHES .013 NUMBER OF 8.97 PIPES 1 - FLOW PROCESS FROM NODE 8.10 TO NODE 18.10 IS CODE = 1 ............................................................................ .""""""""""""""""""""""""""""""""-""""" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TOTAL NUMBER OF STREAMS 2 TIME OF CONCENTRATION(M1N.) = 8.97 - RAINFALL INTENSITY(INCH/HR) 4.97 TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFLUENCE 6.72 20.05 ...................................... ...................................... - - ............................................................................ - FLOW PROCESS FROM NODE 18.20 TO NODE 18.10 IS CODE = 2 ...................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< - SOIL CLASSIFICATION IS "C" ...................................... ...................................... 7.975 SUBAREA RUNOFF(CFS1 TOTAL AREA(ACRES1 .04 TOTAL RUNOFF(CFS1 = .13 .13 - FLOW PROCESS FROM NODE 18.20 TO NODE 18.10 IS CODE = 1 ............................................................................ """""""""""""""~""""""""""""""""""""""- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< - >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ............................. .""""""""""""""""""""""""""""- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N. 1 7.98 RAINFALL INTENSITY (INCH/HR) = 5.36 TOTAL STREAM AREA(ACRES1 PEAK FLOW RATE(CFS1 AT CONFLUENCE .04 .13 RAINFALL INTENSITY AND TIME CONFLUENCE FORMULA USED FOR 1 2 19.94 3 20.11 4 20.10 5 20.10 6 20.14 20.17 7 20.10 8 9 18.58 18.32 10 16.46 ** PEAK FLOW RATE TABLE ** STREAM NUMBER RUNOFF (CFS) TIME (MIN. ) 7.67 7.97 7.98 7.98 8.59 ~. .. 8.97 10.55 9.31 10.85 13.07 OF CONCENTRATION RATIO 2 STREAMS. (INCH/HOUR) INTENSITY 5.500 5.362 5.361 5.361 5.112 4.972 4.851 4.476 4.396 3.898 ESTIMATES ARE AS FOLLOWS: - 20.17 Tc(MIN.1 8.97 - 6.76 ." ." .""""_ .""""_ ."""_ ."""_ - >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 ...................................... ""_"""""""""""""""""""""""""""""""""""~ ...................................... - k*************************************************************************** FLOW PROCESS FROM NODE 13.20 TO NODE 13.10 IS CODE 2 ...................................... - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<- """""""""""""-""""""""""""""""""""""""- ...................................... SOIL CLASSIFICATION IS "C" - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 110.00 UPSTREAM ELEVATION = 292.90 - DOWNSTREAM ELEVATION ELEVATION DIFFERENCE = 292.20 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = 10.974 .70 - SUBAREA RUNOFF(CFS1 .58 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.364 TOTAL AREA(ACRES1 = .22 TOTAL RUNOFF(CFS) .58 ............................................................................ FLOW PROCESS FROM NODE 13.10 TO NODE 14.10 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< - ...................................... >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... - INCHES = .013 NUMBER OF 12.10 PIPES 1 ............................................................................ FLOW PROCESS FROM NODE 13.10 TO NODE 14.10 IS CODE - 1 - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... ...................................... - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TOTAL NUMBER OF STREAMS = 2 TIME OF CONCENTRATION(M1N. = 12.10 RAINFALL INTENSITY (INCH/HR) = 4.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = .58 - TOTAL STREAM AREA(ACRES1 = .22 - ............................................................................ FLOW PROCESS FROM NODE 14.20 TO NODE 14.10 IS CODE 2 ...................................... - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... SOIL CLASSIFICATION IS "C" - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 60.00 UPSTREAM ELEVATION DOWNSTREAM ELEVATION 292.90 - ELEVATION DIFFERENCE 292.20 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 6.044 - SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES1 = .51 .14 TOTAL RUNOFF(CFS1 = 6.622 .51 - ............................................................................ FLOW PROCESS FROM NODE 14.20 TO NODE 14.10 IS CODE = 1 ...................................... - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<*<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... - TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N.) 6.62 RAINFALL INTENSITY(INCH/HR) 6.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = .51 - TOTAL STREAM AREA(ACRES1 = .14 - RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME NUMBER INTENSITY (CFS) (MIN.) (INCH/HOUR) 1 - .90 6.62 6.044 - 2 .92 12.10 4.098 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) .92 Tc(M1N.) = 12.10 TOTAL AREA(ACRES1 = .36 ............................................................................ FLOW PROCESS FROM NODE 14.10 TO NODE 15.10 IS CODE 3 " ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ............................... ............................... - ESTIMATED PIPE DIAMETER(INCH1 INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 1.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) 14.0 DOWNSTREAM NODE ELEVATION = 283.94 FLOWLENGTH (FEET) 8.50 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS) = ESTIMATED PIPE DIAMETER(INCH1 = 8.00 NUMBER OF PIPES = TRAVEL TIME(M1N.) = .92 .Ol TC(MIN.1 = 12.11 - UPSTREAM NODE ELEVATION = 287.00 - .""""""" .""""""" 1 ............................................................................ FLOW PROCESS FROM NODE 14.10 TO NODE 15.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... ...................................... - TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(M1N.) 12.11 RAINFALL INTENSITY (INCH/HR) 4.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = .92 - TOTAL STREAM AREA(ACRES) .36 - k******************R******************************************************** . FLOW PROCESS FROM NODE 15.20 TO NODE 15.10 IS CODE = 2 ...................................... - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... SOIL CLASSIFICATION IS "C" - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 60.00 UPSTREAM ELEVATION = - DOWNSTREAM ELEVATION 290.50 ELEVATION DIFFERENCE = 289.80 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.044 6.622 - SUBAREA RUNOFF(CFS1 = .51 TOTAL AREA(ACRES1 = .14 TOTAL RUNOFF(CFS) = .51 - ............................................................................ FLOW PROCESS FROM NODE 15.20 TO NODE 15.10 IS CODE 1 ...................................... - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... - TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N. 6.62 RAINFALL INTENSITY (INCH/HR) 6.04 TOTAL STREAM AREA(ACRES1 PEAK FLOW RATE(CFS1 AT CONFLUENCE = .14 .51 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 1.41 2 6.62 6.044 1.41 3 6.63 6.038 1.26 12.11 4.096 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS1 = 1.41 Tc(M1N. = TOTAL AREA(ACRES1 = 6.63 .50 - FLOW PROCESS FROM NODE 15.10 TO NODE 16.10 IS CODE = 3 ............................................................................ ."""""""""""""""""""""""""""""""""""""- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< ~~ >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES - PIPEFLOW VELOCITY(FEET/SEC.) 4.1 UPSTREAM NODE ELEVATION 283.94 DOWNSTREAM NODE ELEVATION = 281.89 - ESTIMATED PIPE DIAMETER(1NCH) = 9.00 FLOWLENGTH(FEET1 = 204.96 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS1 NUMBER OF PIPES 1 TRAVEL TIME(M1N. ) = 1.41 .83 TC(MIN.1 = 7.46 ...................................... ...................................... - ............................................................................ - FLOW PROCESS FROM NODE 15.10 TO NODE 16.10 IS CODE = 1 ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - RAINFALL INTENSITY(INCH/HR) = 5.60 TIME OF CONCENTRATION(M1N.) = 7.46 TOTAL STREAM AREA(ACRES1 PEAK FLOW RATE(CFS) AT CONFLUENCE = .50 1.41 ...................................... ...................................... - TOTAL NUMBER OF STREAMS = 2 ............................................................................ FLOW PROCESS FROM NODE 16.20 TO NODE 16.10 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ....................................... ...................................... ...................................... - SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH(FEET) 60.00 - UPSTREAM ELEVATION 290.50 - DOWNSTREAM ELEVATION ELEVATION DIFFERENCE = 289.80 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.044 6.622 - SUBAREA RUNOFF(CFS1 = TOTAL AREA(ACRES1 = .13 TOTAL RUNOFF(CFS1 .47 .47 - - FLOW PROCESS FROM NODE ............................................................................ 16.20 TO NODE 16.10 IS CODE = 1 ."""""""""""""""""""""""""""""""""""""- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< - >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: - TIME OF CONCENTRATION(M1N.) = 6.62 RAINFALL INTENSITY(INCH/HR) = 6.04 TOTAL STREAM AREA(ACRES1 = .13 ...................................... .""""""""_""""""""""""""""""""""""""""" - PEAK FLOW RATE(CFS1 AT CONFLUENCE .47 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - CONFLUENCE FORMULA USED FOR 2 STREAMS. STREAM ** PEAK.FLOW RATE TABLE ** RUNOFF TIME INTENSITY -- NUMBER (CFS) (MIN.) (INCH/HOUR) 1 1.77 6.62 6.044 . . " 2 i.84 7.45 5 I 600 - 3 1.84 7.46 5.595 4 1.57 12.95 3.922 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: - PEAK FLOW RATE(CFS) = 1.84 Tc(M1N.) TOTAL AREA(ACRES1 .63 7.46 - ............................................................................ FLOW PROCESS FROM NODE 16.10 TO NODE 18.10 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< ...................................... - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... """""""""""""""~""""""""""""-"------------------ ~ DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.2 INCHES E ELEVATION = 281.89 T/SEC. = 4.5 .............................................................................. FLOW PROCESS FROM NODE 16.10 TO NODE 18.10 IS CODE = 11 .~ >>>>>CONFLUENCE MEMORY BANK X 3 WITH THE MAIN-STREAM MEMORY<<*<< -"""""""""""""""""""""""""""""""""""""- ...................................... ...................................... - ** PEAK FLOW RATE TABLE ** STREAM NUMBER 1 2 3 4 5 6 8 7 10 9 11 12 13 14 RUNOFF (CFS) 20.34 21.78 21.73 21.72 21.91 21.90 21.90 21.85 21.84 21.73 20.09 19.79 18.02 17.93 TIME (MIN. 6.86 7.67 7.69 7.70 7.97 7.98 7.98 8.59 8.97 9.31 10.55 10.85 13.07 13.21 (INCH/HOUR) INTENSITY 5.907 5.500 5.487 5.483 5.362 5.361 5.361 5.112 4.972 4.851 4.476 4.396 3.898 3.872 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.91 Tc(MIN.1 TOTAL AREA(ACRES1 7.39 7.97 - FLOW PROCESS FROM NODE 16.10 TO NODE 18.10 IS CODE = 12 ............................................................................ ."""""""""""""""""""""""""""""""""""""~ >>>>>CLEAR MEMORY BANK X 3 <<<-x ...................................... ...................................... - ............................................................................ FLOW PROCESS FROM NODE 16.10 TO NODE 18.10 IS CODE 10 ."""""""""""""""""""""""""""""""""""""~ >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <-X<< ...................................... _"""""""""""""""""""""""""""""""""""""~ ............................................................................ FLOW PROCESS FROM NODE 9.20 TO NODE 9.10 IS CODE 2 ....................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< - .............................. .............................. SOIL CLASSIFICATION IS "C" - INITIAL SUBAREA FLOW-LENGTH(FEET1 = 100.00 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 296.90 - ELEVATION DIFFERENCE = 296.20 .70 BAREA OVERLAND TIME OF FLOW(M1NUTESb 10.136 " 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4-51 URBAN SU-. -. ~ . -. .- -. . .. . - - - . _. . . - . _. . -. . . . . - - -. . . -. . - - . . . -. . -. . . . . - - . - . SUBAREA RUNOFF(CFS1 = .30 ."YS - TOTAL AREA(ACRES) = .ll TOTAL RUNOFF(CFS1 = ."""" """ .""""""" .30 ." ." ............................................................................ FLOW PROCESS FROM NODE 9.10 TO NODE 10.10 IS CODE 3 - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< - ESTIMATED PIPE DIAMETER(INCH1 INCREASED TO 8.000 ...................................... >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.8 INCHES UPSTREAM NODE ELEVATION 293.06 PIPEFLOW VELOCITY(FEET/SEC.) 2.8 DOWNSTREAM NODE ELEVATION = 291.70 FLOWLENGTH(FEET) = 135.50 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS1 = TRAVEL TIME(MIN.1 = . a0 TC(M1N.) 10.93 .30 ESTIMATED PIPE DIAMETERUNCH) 8.00 NUMBER OF PIPES = 1 - ............................................................................ FLOW PROCESS FROM NODE 9.10 TO NODE 10.10 IS CODE = - 1 ...................................... - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - TOTAL STREAM AREA(ACRES) = .ll TOTAL NUMBER OF STREAMS = 2 TIME OF CONCENTRATION(MIN.1 10.93 RAINFALL INTENSITY (INCH/HR) 4.37 PEAK FLOW RATE(CFS) AT CONFLUENCE = .30 ................................................................. FLOW PROCESS FROM NODE 10.20 TO NODE 10.10 IS CODE 2 - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< """"""""""""""""""""""""""""""""- ................................. ................................. MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 SOIL CLASSIFICATION IS "C" - UPSTREAM ELEVATION 296.90 DOWNSTREAM ELEVATION = - ELEVATION DIFFERENCE = 296.20 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) 10.136 .70 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 100.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.593 - SUBAREA RUNOFF(CFS1 = TOTAL AREA(ACRES1 = .10 TOTAL RUNOFF(CFS1 .2a .2a '*********** """""_ I"""""_ ."""""_ - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< """"""-""""""""""""""""""""""""" ................................ MS= 2 D FOR INDEPENDENT STREAM 2 ARE: /HR) = 4.59 [ACRES) i) AT CONFLUENCE .10 .2a - RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - ** PEAK FLOW RATE TABLE ** STREAM NUMBER RUNOFF TIME INTENSITY (CFS) (MIN.) (INCH/HOUR) 1 - .56 10.14 4.593 - 2 .57 10.93 4.375 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) .57 Tc(M1N. = 10.93 TOTAL AREA(ACRES1 = .21 ............................................................................ FLOW PROCESS FROM NODE 10.10 TO NODE 11.10 IS CODE = 3 """"""""""""""""""""""~"""""""""""""""- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... ESTIMATED PIPE DIAMETER(INCH1 INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 1.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.2 UPSTREAM NODE ELEVATION 291.70 DOWNSTREAM NODE ELEVATION = 289.55 FLOWLENGTH(FEET1 = 13.00 MANNING'S N .013 ESTIMATED PIPE DIAMETER(INCH1 8.00 PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF TRAVEL TIME(MIN.1 = .57 .02 TC(M1N.) 10.96 PIPES 1 ............................................................................ FLOW PROCESS FROM NODE 10.10 TO NODE 11.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(M1N.) = 10.96 RAINFALL INTENSITY(INCH/HR) 4.37 PEAK FLOW RATE(CFS) AT CONFLUENCE = .57 ...................................... ...................................... ...................................... " TOTAL NUMBER OF STREAMS = 2 - TOTAL STREAM AREA(ACRES) = .21 - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... ...................................... SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 UPSTREAM ELEVATION 292.80 DOWNSTREAM ELEVATION = 292.10 ELEVATION DIFFERENCE URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.593 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES1 = .36 .13 TOTAL RUNOFF(CFS) = 10.136 .36 - ............................................................................ FLOW PROCESS FROM NODE 11.20 TO NODE 11.10 IS CODE 1 """""""""""""""""""""""""""~""""""""""- - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N. 1 = 10.14 RAINFALL INTENSITY (INCH/HR) = 4.59 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS1 AT CONFLUENCE = .13 .36 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM -. . . - . - - . - . - . . - . . " - - RUNOFF TIME INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 .92 10.14 2 4.593 .92 10.16 3 4.586 .91 10.96 4.369 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = .92 Tc(MIN.1 = 10.16 TOTAL AREA(ACRES1 .34 - FLOW PROCESS FROM NODE 11.10 TO NODE 12.10 IS CODE 3 ............................................................................ ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 3.8 upsTREAM NooE~ELEvATZoN~~~~.28g~55" DOWNSTREAM NODE ELEVATION 287.60 FLOWLENGTH(FEET1 = 195.08 MANNING'S N PIPEFLOW THRU SUBAREA(CFS1 ESTIMATED PIPE DIAMETER(INCH1 = 9.00 TRAVEL TIME(M1N.) .86 TC(MIN.1 = .92 .013 NUMBER OF 11.02 PIPES 1 ............................................................................ - FLOW PROCESS FROM NODE 11.10 TO NODE 12.10 IS CODE 1 ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT TIME OF CONCENTRATION(M1N.) = 11.02 RAINFALL ~ INTENSITY (INCH/HR) = 4.35 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS) AT CONFLUENCE = .34 STREAM .92 1 ARE: - ............................................................................ FLOW PROCESS FROM NODE 12.20 TO NODE 12.10 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<- -""""""""""""""""""""""""-"""""""""""""- - SOIL CLASSIFICATION IS "C" ...................................... ...................................... MULTIiUNITS- DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH (FEET) = 110.00 - UPSTREAM ELEVATION = 292.80 - DOWNSTREAM ELEVATION 292.10 ELEVATION DIFFERENCE URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.364 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES1 = .29 . 11 TOTAL RUNOFF (CFS) - - 10.974 - - .29 - FLOW PROCESS FROM NODE ............................................................................ 12.20 TO NODE 12.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< - >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< .""""""""_""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""~ ."""""""~"""""""""""""""""""""""""""""" TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: RAINFALL INTENSITY(INCH/HR) 4.36 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS) AT CONFLUENCE = . 11 - TIME OF CONCENTRATION(M1N. 1 10.97 - .29 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME NUMBER (CFS) (MIN. 1 1.21 10.97 2 1.21 11-00 - 4 3 "" . 1.21 11.02 1.18 11.82 (INCH/HOUR) INTENSITY 4.364 4.358 4.352 4.159 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 1.21 Tc(MIN.) = 11.00 TOTAL AREA(ACRES) = .45 ............................................................................ FLOW PROCESS FROM NODE 12.10 TO NODE 18.10 IS CODE 3 ...................................... - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <+X< ~ ~ ~ ~ ~~ ~ ...................................... ...................................... PIPES 1 - k*************************************************************************** FLOW PROCESS FROM NODE 12.10 TO NODE 18.10 IS CODE 11 """"""""_"""""""""""""""""""""""""""""~ " >>>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<<*<< """"~""""""""""""""""""""""""""""""""--- """"""""_""""""""""""""""""""""""""""--- - STREAM ** PEAK FLOW RATE RUNOFF - NUMBER (CFS) 1 21.23 2 3 22.73 22.69 4 22.68 5 6 22.89 22.89 - 7 22.89 8 22.89 9 22.90 - 10 11 22.81 12 21.27 13 20.99 20.85 14 15 20.82 16 20.79 19.90 - 17 19.13 18 19.03 - - TABLE ** TIME (MIN. 6.86 7.69 7.67 7.70 7.97 7.98 8.59 7.98 8.97 10.55 9.31 10.85 10.98 11.01 11.03 11.83 13.07 13.21 (INCH/HOUR) INTENSITY 5.907 5.500 5.487 5.483 5.362 5.361 5.361 5.112 4.972 4.851 4.476 4.396 4.361 4.355 4.349 4.157 3.898 3.872 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: - PEAK FLOW RATE(CFS) = 22.90 Tc(MIN.1 = 8.97 TOTAL AREA(ACRES) = 7.84 - ............................................................................ FLOW PROCESS FROM NODE 18.10 TO NODE 35.10 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< """"""""""""""""""""~"""""""""""""""""- - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... - DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.9 INCHES UPSTREAM NODE ELEVATION 281.24 PIPEFLOW VELOCITY(FEET/SEC.) = 30.2 - DOWNSTREAM NODE ELEVATION 273.31 FLOWLENGTH (FEET) = 26.07 MANNING'S N .013 PIPEFLOW THRU SUBAREA(CFS1 = ESTIMATED PIPE DIAMETER(INCH1 15.00 NUMBER OF PIPES 1 - TRAVEL TIME(M1N. 22.90 .Ol TC(MIN.1 = 8.98 ............................................................................. FLOW PROCESS FROM NODE 35.10 TO NODE 19.10 IS CODE = 3 - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< ...................................... >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... INCHES .013 NUMBER OF 9.09 PIPES = 1 - ............................................................................ - FLOW PROCESS FROM NODE 35.10 TO NODE 19.10 IS CODE = 1 .- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ."""""""""_"""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - TIME OF CONCENTRATION(M1N.) = 9.09 RAINFALL INTENSITY(INCH/HR) = 4.93 TOTAL STREAM AREA(ACRES1 = 7.84 - PEAK FLOW RATE(CFS1 AT CONFLUENCE = 22.90 - ............................................................................ FLOW PROCESS FROM NODE 40.20 TO NODE 19.20 IS CODE = 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< .""_""""""""""""""""""""""""""""""""""" - ."""""""""""""~"""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""- 3.524 ,48 - FLOW PROCESS FROM NODE 19.20 TO NODE 19.10 IS CODE 6 ............................................................................ ...................................... >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< - ...................................... ...................................... UPSTREAM ELEVATION = 283.40 DOWNSTREAM ELEVATION STREET LENGTH(FEET1 = 330.00 CURB HEIGTH(INCHES1 = 6. STREET HALFWIDTH(FEET1 59.00 STREET CROSSFALL(DECIMA1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = STREET FLOWDEPTH(FEET1 2. .29 HALFSTREET FLOODWIDTH(FEET1 = AVERAGE FLOW VELOCITY(FEET/SEC.) = 8.24 PRODUCT OF DEPTH&VELOCITY 2.85 .83 STREETFLOW TRAVELTIME(MIN1 1.93 TC(MIN1 = 6.93 276.80 = .0200 27 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.871 SOIL CLASSIFICATION IS 'IC" SUBAREA AREA(ACRES1 = SUMMED AREA(ACRES1 1.13 TOTAL RUNOFF(CFS1 = 1.02 SUBAREA RUNOFF(CFS1 = 3.59 4.07 DEPTH(FEET) = .34 HALFSTREET FLOODWIDTH(FEET) = 10.93 FLOW VELOCITY (FEET/SEC. 1 = 3.10 DEPTH*VELOCITY 1.07 - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 - END OF SUBAREA STREETFLOW HYDRAULICS: - ............................................................................ - FLOW PROCESS FROM NODE 19.20 TO NODE 19.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE*<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TOTAL NUMBER OF STREAMS 2 - TIME OF CONCENTRATION(M1N. ) = 6.93 RAINFALL INTENSITY(INCH/HR) = 5.87 TOTAL STREAM AREA(ACRES1 = 1.13 RATE(CFS1 AT CONFLUENCE .- PEAK FLOW ,- .- 4.07 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - CONFLUENCE FORMULA USED FOR 2 STREAMS. END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) - TOTAL AREA(ACRES1 = *** PEAK FLOW RATE TABLE O(CFS) Tc(M1N. ) -1 25.18 2 6.93 25.28 3 6.99 4 26.51 7.79 -5 26.46 7.81 6 26.44 7.82 26.57 7 26.57 8.09 8.10 -8 9 26.57 8.10 26.40 8.71 10 26.32 9.09 - 11 26.15 9.44 12 13 24.35 10.68 24.02 10.98 14 - 23.85 11.11 26.57 8.97 *** Tc(M1N.) 8.09 15 16 23.79 23.82 11.13 11.16 - 17 18 22.76 11.96 21.82 13.20 19 21.69 13.34 """""""""_""""""""""""""""""""""""""""- ....................................... - END OF RATIONAL METHOD ANALYSIS .- ............................................................................ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985 1981 HYDROLOGY MANUAL (c) COPYRIGHT 1982-96 ADVANCED ENGINEERING SOFTWARE (AES) - - VER. 5.5A RELEASE DATE: 4/22/90 SERIAL # 5810 ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 (619) 931-8700 A VILLAS HYDROLOGY .......................... DESCRIPTION OF STUDY .......................... c BASIN DRAINAGE SECTION "B" k 3/21/94 * * * .......................................................................... - FILE NAME: VILLAS2.DAT. TIME/DATE OF STUDY: 15:18 3/21/1994 ...................................... USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ...................................... - 1985 SAN DIEGO MANUAL CRITERIA - 6-HOUR DURATION PRECIPITATION (INCHES) = 2.750 USER SPECIFIED STORM EVENT(YEAR) = 100.00 - SPECIFIED PERCENT OF GRADIENTS(DEC1MAL) TO USE FOR FRICTION SLOPE = .95 SPECIFIED MINIMUM PIPE SIZE(1NCH) = 8.00 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED " NOTE: ALL CONFLUENCE COMBINATIONS CONSIDERED - FLOW PROCESS FROM NODE 19.20 TO NODE 19.10 IS CODE 7 ............................................................................ ...................................... >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< ...................................... ....................................... USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(M1N) = 8.09 RAIN INTENSITY(INCH/HOUR) = 5.31 .- TOTAL AREA(ACRES1 = 8.97 TOTAL RUNOFF(CFS1 = 26.57 - FLOW PROCESS FROM NODE ............................................................................ 19.10 TO NODE 22.10 IS CODE 3 ...................................... -- >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< ....................................... ....................................... DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.0 INCHES - PIPEFLOW VELOCITY(FEET/SEC.) = 11.2 - UPSTREAM NODE ELEVATION = 271.27 DOWNSTREAM NODE ELEVATION 269.83 - FLOWLENGTH (FEET) = ESTIMATED PIPE DIAMETER(INCH1 24.00 71.92 MANNING'S N .013 PIPEFLOW THRU SUBAREA(CFS1 NUMBER OF PIPES = 1 TRAVEL TIME(MIN.1 = 26.57 .ll TC(MIN.1 8.20 - - FLOW PROCESS FROM NODE ............................................................................ 19.10 TO NODE 22.10 IS CODE = 10 ."""""""""_"""""""""""""""""""""""""""" >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK X 1 <<<<< ...................................... ...................................... - - FLOW PROCESS FROM NODE 20.10 TO NODE 20.30 IS CODE 2 ............................................................................ ...................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ."""""""""""""""""""""""""""""""""""""" ...................................... SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 - UPSTREAM ELEVATION 282.90 INITIAL SUBAREA FLOW-LENGTH(FEET1 75.00 DOWNSTREAM ELEVATION = 282.20 ELEVATION DIFFERENCE .70 - URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.361 SUBAREA RUNOFF(CFS) = .23 - TOTAL AREA(ACRES1 = .07 TOTAL RUNOFF(CFS) = 7.976 .23 - FLOW PROCESS FROM NODE 20.30 TO NODE 20.20 IS CODE 3 ............................................................................ ...................................... - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< ...................................... ...................................... PIPES 1 " FLOW PROCESS FROM NODE 20.20 TO NODE 21.10 IS CODE 3 ............................................................................ ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... ESTIMATED PIPE DIAMETER(1NCH) INCREASED TO 8.000 " DEpTH~ OF^ FLow~IN~~ ~~ ~8~o~~INcH~ PIPE~1S~ ~.~i. 0. PIPEFLOW VELOCITY(FEET/SEC.) = 9.2 UPSTREAM NODE ELEVATION = 277.99 - DOWNSTREAM NODE ELEVATION = 274.00 - FLOWLENGTH (FEET) 11.00 MANNING'S N .013 ESTIMATED PIPE DIAMETER(INCH1 = 8.00 PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF PIPES = 1 TRAVEL TIME(M1N. = .23 .02 TC(MIN.1 = 8.48 - ............................................................................. FLOW PROCESS FROM NODE 20.20 TO NODE 21.10 IS CODE = 1 - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ."""""""""""""""""""""""""""""""""""""- ...................................... TOTAL NUMBER OF STREAMS = 2 TIME OF CONCENTRATION(M1N.) = 8.48 RAINFALL INTENSITY(INCH/HR) = 5.15 TOTAL STREAM AREA(ACRES) = .07 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - PEAK FLOW RATE(CFS1 AT CONFLUENCE .23 ............................................................................ FLOW PROCESS FROM NODE 21.20 TO NODE 21.10 IS CODE 2 .""""""""""""""""""~""""""~""""""""""""- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 = UPSTREAM ELEVATION = 279.60 DOWNSTREAM ELEVATION 278.90 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) ELEVATION DIFFERENCE .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.179 80.00 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES1 .28 .09 TOTAL RUNOFF(CFS) ."""""""_ ."-"""""" 8.416 .28 ."" ."_ ."_ ............................................................................ FLOW PROCESS FROM NODE 21.20 TO NODE 21.10 IS CODE = 1 ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N.) 8.42 RAINFALL INTENSITY (INCH/HR) = 5.18 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS) AT CONFLUENCE = .09 .28 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME NUMBER (CFS) INTENSITY 1 (MIN.) (INCH/HOUR) .50 2 8.42 .50 5.179 8.48 5.155 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = .50 Tc(MIN.1 = 8.42 - TOTAL AREA(ACRES1 .16 - ............................................................................ FLOW PROCESS FROM NODE 21.10 TO NODE 22.10 IS CODE 3 ...................................... - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< """""""""_""""""""""""""""" """"""""""""""""""""-"""""" """ """ PIPES ""_ ""_ 1 - ............................................................................ FLOW PROCESS FROM NODE 21.10 TO NODE 22.10 IS CODE = 1 - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< """"""""""""""""""""""""""'"""""""""""" ...................................... ...................................... - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - TOTAL STREAM AREA(ACRESI = .16 TOTAL NUMBER OF STREAMS 2 TIME OF CONCENTRATION(M1N.) 8.91 RAINFALL INTENSITY(INCH/HRI 4.99 PEAK FLOW RATE(CFS) AT CONFLUENCE .50 ............................................................................. FLOW PROCESS FROM NODE 22.20 TO NODE 22.10 IS CODE 2 - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< """"""""""""""""""""""""""~"""""""""""- ...................................... . ...................................... SOIL CLASSIFICATION IS "C" - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 85.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 279.60 - ELEVATION DIFFERENCE = 278.90 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTESI = .70 100 YEAR RAINFALL INTENSITY(INCH/HOURI 5.013 8.852 - SUBAREA RUNOFF(CFS1 .30 TOTAL AREA(ACRESI .10 TOTAL RUNOFF(CFS1 = .30 - ............................................................................ FLOW PROCESS FROM NODE 22.20 TO NODE 22.10 IS CODE = 1 - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ....................................... ...................................... - TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N.I = 8.85 - RAINFALL INTENSITY (INCH/HRI 5.01 - TOTAL STREAM AREA(ACRES1 PEAK FLOW RATE(CFS1 AT CONFLUENCE .10 .30 - RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - ** PEAK STREAM NUMBER - 1 2 3 FLOW RATE TABLE ** RUNOFF (CFS) TIME .80 (MIN. .80 8.85 .80 8.91 8.97 (INCH/HOUR) INTENSITY 5.013 4.969 4.991 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) -80 Tc(MIN.1 = TOTAL AREA(ACRES1 = .26 8.91 ............................................................................ - FLOW PROCESS FROM NODE 21.10 TO NODE 22.10 IS CODE = 11 ...................................... >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ...................................... ...................................... ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME - NUMBER (CFS) 1 27.33 (MIN.) 2 8.20 26.09 - 3 25.98 8.91 8.85 4 25.87 8.97 (INCH/HOUR) INTENSITY 5.267 5.013 4.991 4.969 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: TOTAL AREA(ACRES1 = 9.23 - PEAK FLOW RATE(CFS) = 27.33 Tc(MIN.1 8.20 - ............................................................................ FLOW PROCESS FROM NODE 21.10 TO NODE 22.10 IS CODE 12 ...................................... - >>>>>CLEAR MEMORY BANK # 1 <e<<< ...................................... ...................................... ............................................................................ FLOW PROCESS FROM NODE 22.10 TO NODE 23.30 IS CODE = 3 - ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ..................... """""""""~"""""""""""- ,"""""""" ,"""""""" INCHES .013 NUMBER OF PIPES """"""""_ """"""""_ =1 8.21 ............................................................................ FLOW PROCESS FROM NODE 23.30 TO NODE 23.10 IS CODE 3 ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... - DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) 11.2 UPSTREAM NODE ELEVATION = 262.07 - DOWNSTREAM NODE ELEVATION 260.97 FLOWLENGTH (FEET) = ESTIMATED PIPE DIAMETER(1NCH) 24.00 54.77 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF PIPES =- 1 TRAVEL TIME(M1N. ) = 27.33 .08 TC(MIN.1 = 8.29 - ............................................................................ FLOW PROCESS FROM NODE 23.30 TO NODE 23.10 IS CODE 1 - *>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - TIME OF CONCENTRATION(M1N.I 8.29 RAINFALL INTENSITY(INCH/HR) = 5.23 TOTAL STREAM AREA(ACRES) = 9.23 ...................................... ."""""""""""""""""""""""""""""""""""""~ .""""~""""""""""""""""""""""""""""""""" - PEAK FLOW RATE(CFS1 AT CONFLUENCE 27.33 - ............................................................................ FLOW PROCESS FROM NODE 41.10 TO NODE 23.20 IS CODE = 2 ...................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< - ...................................... """"""""""""""""~"""""""""""""""""""""- SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 - INITIAL SUBAREA FLOW-LENGTH(FEET1 = 83.00 UPSTREAM ELEVATION DOWNSTREAM ELEVATION = 282.20 271.00 - ELEVATION DIFFERENCE = URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = 11.20 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.246 - TOTAL AREA(ACRES) = .04 TOTAL RUNOFF(CFS) - TIME OF CONCENTRATION ASSUMED AS 5-MINUTES SUBAREA RUNOFF(CFS) = .17 3.444 .17 - FLOW PROCESS FROM NODE 23.20 TO NODE 23.10 IS CODE = 6 ............................................................................ ...................................... >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION 271.00 DOWNSTREAM ELEVATION = STREET LENGTH(FEET) = 225.00 CURB HEIGTH(INCHES1 = 6. 266.30 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ...................................... ...................................... - STREET HALFWIDTH(FEET) = 59.00 STREET CROSSFALL(DEC1MAL) = .0200 STREET FLOWDEPTH(FEET) **TRAVELTIME COMPUTED USING MEAN FLOW(CFS1 1.38 - .26 AVERAGE FLOW VELOCITY(FEET/SEC.) HALFSTREET FLOODWIDTH (FEET) 6.44 PRODUCT OF DEPTH&VELOCITY 2.59 - STREETFLOW TRAVELTIME(M1N) 1.45 TC(M1N) = 6.45 .66 - SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 SUBAREA AREA(ACRES1 = .66 SUBAREA RUNOFF(CFS1 - SUMMED AREA(ACRES) = END OF SUBAREA STREETFLOW HYDRAULICS: .70 TOTAL RUNOFF(CFS1 = DEPTH(FEET1 .29 HALFSTREET FLOODWIDTH(FEET) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.150 - FLOW VELOCITY(FEET/SEC.) 3.27 DEPTH*VELOCITY = 2.61 ,24 . .95 2.44 - FLOW PROCESS FROM NODE >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< - >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: - TIME OF CONCENTRATION(M1N.) = 6.45 RAINFALL INTENSITY(INCH/HR) = 6.15 TOTAL STREAM AREA(ACRES1 = .70 ............................................................................ 23.20 TO NODE 23.10 IS CODE 1 ...................................... ...................................... ...................................... - PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.61 CONFLUENCE FORMULA USED FOR 2 STREAMS. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - ** PEAK FL STREAM - NUMBER 1 2 - 3 4 5 .OW RATE RUNOFF (CFS) 25. a4 28.20 28.08 29.55 27.96 TABLE ** TIME (MIN. 1 6.45 a. 29 a. 95 9.01 9.07 (INCH/HOUR) INTENSITY 6.150 5.227 4.977 4.956 4.934 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) 9.93 29.55 Tc(M1N. 1 = a. 29 - ............................................................................ - FLOW PROCESS FROM NODE 23.10 TO NODE 28.10 IS CODE = 3 ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< """""""""""" """""""""""" INCHES .""""_ .""""_ = .013 NUMBER OF PIPES = 1 - FLOW PROCESS FROM NODE 23.10 TO NODE 28.10 IS CODE 1 ............................................................................ ,"""""""""""""""""""""""""""""""""""""- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT TIME OF CONCENTRATION(M1N.) 8.38 RAINFALL INTENSITY (INCH/HR) 5.19 TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFLUENCE 9.93 STREAM 29.55 1 ARE: ............................................................................ FLOW PROCESS FROM NODE 27.20 TO NODE 27.10 IS CODE = 2 - ."""""""""""""""""""""""""""""""""""""- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... - SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 UPSTREAM ELEVATION DOWNSTREAM ELEVATION = 269.10 256.20 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) ELEVATION DIFFERENCE 12.90 3.020 DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. INITIAL SUBAREA FLOW-LENGTH(FEET1 = 75.00 - - *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH TIME OF CONCENTRATION ASSUMED AS 5-MINUTES - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.246 SUBAREA RUNOFF(CFS1 TOTAL AREA(ACRES1 = .65 .15 TOTAL RUNOFF(CFS) .65 ............................................................................ FLOW PROCESS FROM NODE 27.10 TO NODE 28.10 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< - ...................................... >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... INCHES = .013 NUMBER OF PIPES = 5.83 1 - ............................................................................ FLOW PROCESS FROM NODE 27.10 TO NODE 28.10 IS CODE 1 ....................................... - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... TOTAL NUMBER OF STREAMS = 3 TIME OF CONCENTRATION(M1N.) = 5.83 RAINFALL INTENSITY(INCH/HR) = 6.56 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: - TOTAL STREAM AREA(ACRES1 = .15 PEAK FLOW RATE(CFS1 AT CONFLUENCE = .65 ........................................................................... FLOW PROCESS FROM NODE 24.20 TO NODE 28.10 IS CODE 2 - ...................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< .""""""""""""""""""""""""""- .""""""""""""""""""""""""""- SOIL CLASSIFICATION IS "C" ~ ~~~~~ - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 125.00 - DOWNSTREAM ELEVATION = UPSTREAM ELEVATION = 269.80 256.20 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) ELEVATION DIFFERENCE = 13.60 - *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.246 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES - SUBAREA RUNOFF(CFS1 = 1.00 TOTAL AREA(ACRES1 .23 TOTAL RUNOFF(CFS) = """""""""_ """""""""_ 4.541 1.00 ."" ."" - ............................................................................ FLOW PROCESS FROM NODE 24.20 TO NODE 28.10 IS CODE 1 ...................................... - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(M1N.) 5.00 RAINFALL INTENSITY(INCH/HR) 7.25 TOTAL STREAM AREA(ACRES1 PEAK FLOW RATE(CFS) AT CONFLUENCE = .23 1.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK STREAM NUMBER 1 2 3 4 5 6 7 FLOW RATE RUNOFF (CFS) 23.34 25.57 30.78 27.29 29.37 29.25 29.13 TABLE ** TIME (MIN. 1 5.00 5.83 8.38 6.53 9.03 9.09 9.16 (INCH/HOUR) INTENSITY 7.246 6.563 6.098 5.193 4.947 4.926 4.905 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 30.78 Tc(MIN.1 = TOTAL AREA(ACRES) = 10.31 8.38 - FLOW PROCESS FROM NODE 28.10 TO NODE 29.10 IS CODE = 3 ............................................................................ _"""""""""""""""""""""""""""""""""""""~ - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<*<< - PIPEFLOW VELOCITY(FEET/SEC. = 10.2 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.1 UPSTREAM NODE ELEVATION = 249.84 DOWNSTREAM NODE ELEVATION = 247.48 .- FLOWLENGTH(FEET1 164.49 MANNING'S N PIPEFLOW THRU SUBAREA(CFS) = ESTIMATED PIPE DIAMETER(1NCH) = 27.00 30.78 TRAVEL TIME(M1N.) = .27 TC(M1N. ) - INCHES = .013 NUMBER OF 8.65 PIPES = 1 ............................................................................ - FLOW PROCESS FROM NODE 28.10 TO NODE 29.10 IS CODE = 1 - ,"""""""""""""""""""""""""""""-"""""""" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ....................................... - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(M1N.) = 8.65 - RAINFALL INTENSITY(INCH/HR) 5.09 TOTAL STREAM AREA(ACRES) = 10.31 AENCE = 30.78 PEAK FLOW RATE(CFS) AT CONFI s*************************************************************************** FLOW PROCESS FROM NODE 29.20 TO NODE 29.10 IS CODE 2 - .~""""""""""""""""""""""""""""""""""""" x+r>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< .............................. .............................. - SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 UPSTREAM ELEVATION = - 256.90 DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 255.00 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) 10.470 1.90 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES1 .73 .27 TOTAL RUNOFF(CFS) = INITIAL SUBAREA FLOW-LENGTH(FEET1 = 155.00 - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.498 - """""""" """""""" .73 ............................................................................ - FLOW PROCESS FROM NODE 29.20 TO NODE 29.10 IS CODE 1 ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... TOTAL NUMBER OF STREAMS = 2 CONFLUENCE-VALUES-USED-FOR INDEPENDENT STREAM 2 ARE: - TIME OF CONCENTRATION(M1N. 1 = 10.47 RAINFALL INTENSITY(INCH/HR) = 4.50 TOTAL STREAM AREA(ACRES) = PEAK FLOW RATECCFS) AT CONFLUENCE = .27 - .73 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY - NUMBER (CFS) (MIN.) (INCH/HOUR) 23.81 26.08 27.84 31 43 30.05 29.93 29.81 27.95 5.29 6.11 6.81 8.65 9.31 9.36 10.47 9.43 6.988 6.364 5.938 5.089 4.854 4.834 4.813 4.498 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS1 TOTAL AREA(ACRES) = 10.58 31.43 Tc(MIN.1 8.65 - ............................................................................ - FLOW PROCESS FROM NODE 29.10 TO NODE 30.10 IS CODE = 3 """"""""""""""""""""~"""""""""""""""""- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< - - .""""""""" .""""""""" INCHES .""""""_ .""""""_ ...................... ...................... DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.0 PIPEFLOW VELOCITY(FEET/SEC. 1 = 11.8 DOWNSTREAM NODE ELEVATION = 245.00 FLOWLENGTH(FEET1 = 99.22 MANNING'S N ESTIMATED PIPE DIAMETER(INCH1 = 24.00 - PIPEFLOW THRU SUBAREA(CFS1 = TRAVEL TIME(MIN.l 31.43 .14 TC(MIN.1 = - UPSTREAM NODE ELEVATION = 247.15 .013 NUMBER OF PIPES = 8.79 1 - ............................................................................ FLOW PROCESS FROM NODE 29.10 TO NODE 30.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TOTAL NUMBER OF STREAMS 2 TIME OF CONCENTRATION(M1N. 1 = 8.79 RAINFALL INTENSITY (INCH/HR) 5.04 PEAK FLOW RATE(CFS1 AT CONFLUENCE = 31.43 ....................................... - ....................................... ...................................... - TOTAL STREAM AREA(ACRES1 10.58 - ............................................................................ FLOW PROCESS FROM NODE 30.20 TO NODE 30.10 IS CODE = 2 ...................................... - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... - ............................................................................ FLOW PROCESS FROM NODE 30.20 TO NODE 30.10 IS CODE = 2 ...................................... - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... SOIL CLASSIFICATION IS "C" ~- MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 UPSTREAM ELEVATION = 255.70 - DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE 255.00 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.012 8.852 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 85.00 - SUBAREA RUNOFF(CFS1 = TOTAL AREA(ACRES1 = .07 TOTAL RUNOFF(CFS1 = .21 .21 10 8.852 - - .21 - .t*************************************************************************** FLOW PROCESS FROM NODE 30.20 TO NODE 30.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< - ."""""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" ...................................... TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.1 = 8.85 RAINFALL INTENSITY(INCH/HR) = 5.01 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS1 AT CONFLUENCE .07 .21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. (INCH/HOUR) INTENSITY 6.866 6.269 5.859 5.036 5.012 4.807 4.787 4.768 4.459 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS1 = 31.64 Tc(MIN.1 TOTAL AREA(ACRES1 10.65 8.79 ............................................................................ - FLOW PROCESS FROM NODE 30.10 TO NODE 31.10 IS CODE 3 ~"""""""""-"""""""""""""""""""""""""""" >>*>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< """""""""_""""""""""""""""""""""""""""" ...................................... DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.7 INCHES PIPEFLOW VELOCITY(FEET/SEC. 1 23.7 DOWNSTREAM NODE ELEVATION 239.00 FLOWLENGTH(FEET1 = 45.00 MANNING'S N .013 - PIPEFLOW THRU SUBAREA(CFS1 ESTIMATED PIPE DIAMETER(INCH1 = 18.00 NUMBER OF PIPES = 1 TRAVEL TIME(M1N. 1 = 31.64 .03 TC(MIN.1 8.82 - UPSTREAM NODE ELEVATION 245.00 ...................................... ...................................... - END OF STUDY SUMMARY: - *** PEAK FLOW RATE TABLE *** PEAK FLOW RATE(CFS1 TOTAL AREA(ACRES1 = 31.64 Tc(M1N. 1 = 10.65 8.82 1 Q(CFS1 Tc(MIN.1 2 23.96 5.47 26.25 -3 6.29 4 28.02 6.98 31.64 5 8.82 31.49 8.88 -6 30.25 9.48 - 7 30.13 9.54 8 30.01 9.60 -9 28.14 10.64 ...................................... ...................................... END OF RATIONAL METHOD ANALYSIS - ............................................................................ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE - REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985 1981 HYDROLOGY MANUAL (c) COPYRIGHT 1982-9b ADVANCED ENGINEERING SOFTWARE (AES) - VER. 5.5A RELEASE DATE: 4/22/90 SERIAL # 5810 ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 (619) 931-8700 .......................... DESCRIPTION OF STUDY .......................... * VILLAS HYDROLOGY -k BASIN DRAINAGE FOR SECTION "c" * * * k 4/5/94 .......................................................................... - FILE NAME: VILLAS3. DAT TIMEIDATE OF STUDY: 0:56 41 511994 ...................................... - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ...................................... 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR1 = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.750 SPECIFIED MINIMUM PIPE SIZE(1NCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL1 TO USE FOR FRICTION SLOPE .95 NOTE: ALL CONFLUENCE COMBINATIONS CONSIDERED SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED ............................................................................ - FLOW PROCESS FROM NODE 6.20 TO NODE 6.10 IS CODE = 2 """""""-"""""""""""""""""""-""""""""""" >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< - SOIL CLASSIFICATION IS "C" """""~""""""""""""""""""""""""""""""""- ""~"""""""""""""""""""""""""""""""""""- MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 160.00 -~ UPSTREAM ELEVATION 311.70 DOWNSTREAM ELEVATION = ELEVATION -DIFFERENCE = 306.60 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = 5.10 7.736 DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.468 ~- *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH - SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES1 = 1.64 .50 TOTAL RUNOFF(CFS) = 1.64 - k*************************************************************************** - FLOW PROCESS FROM NODE 6.10 TO NODE 5.10 IS CODE 3 ...................................... >>>-COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<- DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.2 INCHES ESTIMATED PIPE DIAMETER(1NCH) INCREASED TO 8.000 - PIPEFLOW VELOCITY(FEET/SEC.) = 12.6 UPSTREAM NODE ELEVATION = 302.48 DOWNSTREAM NODE ELEVATION = 301.00 FLOWLENGTH(FEET1 = 8.52 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS1 = 1.64 TRAVEL TIME(MIN.l . 01 TC(MIN.1 7.75 >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... - ESTIMATED PIPE DIAMETER(INCH1 8.00 NUMBER OF PIPES = 1 k*************************************************************************** .- FLOW PROCESS FROM NODE 6.10 TO NODE 5.10 IS CODE 1 ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.1 7.75 - RAINFALL INTENSITY (INCH/HR) 5.46 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS1 AT CONFLUENCE .50 1.64 """"""""""""""""""""""""""""""""""""-"- ...................................... ............................................................................ FLOW PROCESS FROM NODE 5.20 TO NODE 5.10 IS CODE = 2 =>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< - ...................................... ...................................... ...................................... SOIL CLASSIFICATION IS "C" - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00 UPSTREAM ELEVATION - DOWNSTREAM ELEVATION = 304.70 304.00 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = 10.136 ELEVATION DIFFERENCE = .70 SUBAREA RUNOFF(CFS1 = TOTAL AREA(ACRES1 = .28 .10 TOTAL RUNOFF(CFS1 .28 - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.593 ............................................................................ FLOW PROCESS FROM NODE 5.20 TO NODE 5.10 IS CODE 1 >>>*>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... """"""~"""""""""""""""""""""""""""""""- """""""""""""""""""~"""""""""------------------- " CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TOTAL NUMBER OF STREAMS = 2 TIME OF CONCENTRATION(M1N. = 10.14 - RAINFALL INTENSITY(INCH/HR) = 4.59 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS) AT CONFLUENCE = .10 .28 - RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME NUMBER (CFS) (MIN.) (INCH/HOUR) INTENSITY 1 1.87 7.75 5.463 2 1.65 10.14 4.593 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.87 Tc(M1N.) = TOTAL AREA(ACRES1 .60 7.75 ............................................................................ - FLOW PROCESS FROM NODE 5.10 TO NODE 4.10 IS CODE 3 ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<*< ...................................... ...................................... DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) 9.2 DOWNSTREAM NODE ELEVATION = 296.52 FLOWLENGTH (FEET) = 67.67 MANNING'S N = .013 - PIPEFLOW THRU SUBAREA(CFS1 ESTIMATED PIPE DIAMETER(INCH1 = 9.00 NUMBER OF PIPES 1 TRAVEL TIME(M1N. 1 = .12 1.87 TC(MIN.1 = 7.87 - UPSTREAM NODE ELEVATION 301.00 - ............................................................................ FLOW PROCESS FROM NODE 5.10 TO NODE 4.10 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... - """"-"""""""""""""""""""""""""""""""""- ...................................... - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: -- TOTAL STREAM AREA(ACRES) = .60 TOTAL NUMBER OF STREAMS = 3 TIME OF CONCENTRATION(M1N. = 7.87 RAINFALL INTENSITY(INCH/HR) 5.41 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.87 ...................................... ...................................... SOIL CLASSIFICATION IS "C" .- MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 = UPSTREAM ELEVATION DOWNSTREAM ELEVATION = 304.70 - ELEVATION DIFFERENCE = 304.00 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.461 5.972 53.00 - SUBAREA RUNOFF(CFS1 = TOTAL AREA(ACRES1 = .23 .06 TOTAL RUNOFF(CFS) .23 ............................................................................ - FLOW PROCESS FROM NODE 4.20 TO NODE 4.10 IS CODE = 1 .""""""""""""-""""""""""""""""""""""""" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< - TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.1 = 5.97 - RAINFALL INTENSITY(INCH/HR) = 6.46 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS1 AT CONFLUENCE .06 .23 ...................................... ...................................... ............................................................................ FLOW PROCESS FROM NODE 3.20 TO NODE 3.10 IS CODE 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "C" - ...................................... ...................................... ...................................... - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 85.00 UPSTREAM ELEVATION 301.20 - DOWNSTREAM ELEVATION ELEVATION DIFFERENCE 300.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES1 = .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.013 8.852 SUBAREA RUNOFF(CFS1 = TOTAL AREA(ACRES) = .ll TOTAL RUNOFF(CFS1 .33 .33 - ............................................................................ FLOW PROCESS FROM NODE 3.10 TO NODE 3.30 IS CODE 3 ....................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< ~~ ~~ >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ....................................... - ESTIMATED PIPE DIAMETER(INCH1 INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.9 INCHES PIPEFLOW VELOCITY (FEET/SEC. ) = 2.9 DOWNSTREAM NODE ELEVATION = 296.89 FLOWLENGTH(FEET1 = 111.50 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS1 = TRAVEL TIME(MIN.l = .33 .64 TC(MIN.1 = 9.49 - UPSTREAM NODE ELEVATION = 298.00 -- ESTIMATED PIPE DIAMETER(INCH1 = 8.00 NUMBER OF PIPES = 1 ............................................................................ FLOW PROCESS FROM NODE 3.30 TO NODE 4.10 IS CODE 3 - ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ............................... - ............................... ~. ESTIMATED PIPE DIAMETER(INCH1 INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 2.9 - UPSTREAM NOWELEVATION-=". 296.89" DOWNS?REAM-NoDE-ELEV~fION - 296.52 FLOWLENGTH (FEET) = 37.9i MANNING'S N = .013 """ - ESTIMATED PIPE DIAMETER(INCH1 8.00 NUMBER OF PIPES = ,""" ,""" 1 ."""" ."""" PIPEFLOW THRU SUBAREA(CFS1 = TRAVEL TIME(M1N.) = .33 .- .22 TC(M1N.) = 9.71 - FLOW PROCESS FROM NODE ............................................................................ 3.30 TO NODE 4.10 IS CODE 1 ."""""""""""""""""""""""""""""""""""""- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< .- >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: - TIME OF CONCENTRATION(M1N.) = 9.71 RAINFALL INTENSITY(INCH/HR) = 4.72 TOTAL STREAM AREA(ACRES1 = .ll - PEAK FLOW RATE(CFS) AT CONFLUENCE = .33 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY - NUMBER (CFS) 1 (MIN.) (INCH/HOUR) 2 2.04 5.97 2.36 7.87 5.407 6.461 - 3 2.14 9.71 4.722 4 2.14 10.26 4.556 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: TOTAL AREA(ACRES1 = .77 - PEAK FLOW RATE(CFS) 2.36 Tc(MIN.1 = 7.87 - ............................................................................ FLOW PROCESS FROM NODE 4.10 TO NODE 8.30 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< ""~"""""""""""""""""""""""""""""""""""- - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... - ESTIMATED PIPE DIAMETER(1NCH) INCREASED TO 8.000 - UPSTREAM NODE ELEVATION = 296.52 DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.1 INCHES PIPEFLOW VELOCITY (FEET/SEC. ) = 19.0 DOWNSTREAM NODE ELEVATION = 273.78 FLOWLENGTH (FEET) = 56.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH1 = 8.00 - PIPEFLOW THRU SUBAREA(CFS1 = NUMBER OF PIPES 1 TRAVEL TIME(MIN.1 = .05 2.36 TC(M1N.) = 7.92 - -"""""""""""""""""""""""""""""""""""""- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... - DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.8 INCHES PIPEFLOW VELOCITY(FEET/SEC. = 6.2 UPSTREAM NODE ELEVATION = 273.78 - DOWNSTREAM NODE ELEVATION = 272.40 FLOWLENGTH (FEET) = ESTIMATED PIPE DIAMETER(INCH1 12.00 68.88 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF PIPES = 1 TRAVEL TIME(M1N.) .19 2.36 TC(M1N.) 8.10 ............................................................................ FLOW PROCESS FROM NODE 8.40 TO NODE 10.20 IS CODE = 3 ...................................... - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ....................................... ...................................... - DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.9 INCHES UPSTREAM NODE ELEVATION = 272.40 PIPEFLOW VELOCITY(FEET/SEC.) 9.5 - DOWNSTREAM NODE ELEVATION = 267.26 FLOWLENGTH (FEET) = 81.97 MANNING'S N .013 PIPEFLOW THRU SUBAREA(CFS1 = ESTIMATED PIPE DIAMETER(INCH1 = 9.00 NUMBER OF PIPES 1 2.36 - TRAVEL TIME(M1N. = .14 TC(MIN.1 = 8.25 ............................................................................ FLOW PROCESS FROM NODE 8.40 TO NODE 10.20 IS CODE 1 __ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - TIME OF CONCENTRATION(M1N.) = 8.25 RAINFALL INTENSITY(INCH/HR) = 5.25 TOTAL STREAM AREA(ACRES) = .77 ...................................... ...................................... ...................................... - PEAK FLOW RATE(CFS) AT CONFLUENCE 2.36 - FLOW PROCESS FROM NODE 10.10 TO NODE 10.20 IS CODE 2 ............................................................................ ...................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... """"""""~"""""""""""""""""""""""""""""- SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 - INITIAL SUBAREA FLOW-LENGTH(FEET1 = 110.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 275.50 274.40 ELEVATION DIFFERENCE 1.10 - URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.809 9.439 - TOTAL AREA(ACRES1 = SUBAREA RUNOFF (CFS) = .40 .14 TOTAL RUNOFF(CFS) = .40 .............................................................................. FLOW PROCESS FROM NODE 10.10 TO NODE 10.20 IS CODE = 1 >>*>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE****< ...................................... " ...................................... "-""""""""""""""""""""""""""""""""""""- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: - TIME OF CONCENTRATION(M1N.) = 9.44 - RAINFALL INTENSITY(INCH/HR) = 4.81 TOTAL STREAM AREA(ACRES1 .14 - PEAK FLOW RATE(CFS1 AT CONFLUENCE .40 ............................................................................ FLOW PROCESS FROM NODE 11.20 TO NODE 11.10 IS CODE = 2 ...................................... " >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ."""""""""""""""""""""""""" ."""""""""""""""""""""""""" SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 - INITIAL SUBAREA FLOW-LENGTH(FEET1 = UPSTREAM ELEVATION DOWNSTREAM ELEVATION = 280.10 279.40 - ELEVATION DIFFERENCE URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) .70 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.722 95.00 - TOTAL AREA(ACRES1 = .08 TOTAL RUNOFF(CFS1 SUBAREA RUNOFF(CFS) .23 "- "- 9. ."""""" ,"""""" 712 .23 ."" ."" ."" ."" ............................................................................ FLOW PROCESS FROM NODE 11.10 TO NODE 10.20 IS CODE 3 ...................................... - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ........................... ........................... ~- DEPTH OF FLOW IN 8.0 INCH PIPE IS .9 INCHES ESTIMATED PIPE DIAMETER(1NCH) INCREASED TO 8.000 PIPEFLOW VELOCITY(FEET/SEC.) = 10.6 UPSTREAM NODE-ELEVAi1ON-i". 274.90 - DOWNSTREAM NODE ELEVATION = 267.26 FLOWLENGTH (FEET) = 14.86 MANNING'S N PIPEFLOW THRU SUBAREA(CFS) = ESTIMATED PIPE DIAMETER(INCH1 8.00 TRAVEL TIME(MIN.1 = .23 .02 TC(M1N.) = ". - - = .013 NUMBER OF 9.74 .""""""""""" .""""""""""" PIPES = 1 ............................................................................ FLOW PROCESS FROM NODE 11.10 TO NODE 10.20 IS CODE = 1 >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< """""""""""""""-""""""""""""""""""""""- ~ ~~~~~~~ - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM TOTAL NUMBER OF STREAMS = 3 TIME OF CONCENTRATION(M1N.I 9.74 RAINFALL INTENSITY(INCH/HR) = 4.71 PEAK FLOW RATE(CFS) AT CONFLUENCE = .23 - TOTAL STREAM AREA(ACRES1 .08 ...................................... ...................................... 3 ARE: ...................................... ...................................... TOTAL NUMBER OF STREAMS = 3 TIME OF CONCENTRATION(M1N.I 9.74 RAINFALL INTENSITY(INCH/HR) = 4.71 PEAK FLOW RATE(CFS) AT CONFLUENCE = .23 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: - TOTAL STREAM AREA(ACRES1 .08 - RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. - STREAM ** PEAK FLOW RATE TABLE ** RUNOFF NUMBER (CFS) TIME INTENSITY (MIN.) (INCH/HOUR) 1 2.53 6.37 6.199 2 2.93 8.25 5.246 - - 3 2.79 9.44 4.809 5 4.714 2.74 10.10 4.603 6 2.73 10.66 4.447 - 4 2.74 9.74 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS1 = 2.93 Tc(MIN.1 = TOTAL AREA(ACRES1 .99 a. 25 ............................................................................ FLOW PROCESS FROM NODE 10.20 TO NODE 9.10 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< - ."""""""""""""""""""""""""""""""""""""- >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) 5.0 - DOWNSTREAM NODE ELEVATION = 265.55 UPSTREAM NODE ELEVATION = 267.26 FLOWLENGTH(FEET1 = 171.00 MANNING'S N .013 ESTIMATED PIPE DIAMETER(INCH1 = 12.00 NUMBER OF PIPES 1 TRAVEL TIME(MIN.l = .57 TC(MIN.) 8.82 2.93 - PIPEFLOW THRU SUBAREA(CFS1 = - ............................................................................ FLOW PROCESS FROM NODE 10.20 TO NODE 9.10 IS CODE 1 """"""_""""""""""""""""""""""""""~""""" - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< .- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: ...................................... ...................................... TOTAL NUMBER OF STREAMS = 3 TIME OF CONCENTRATION(MIN.) 8.82 RAINFALL INTENSITY(INCH/HR) = 5.02 TOTAL STREAM AREA(ACRES1 .99 - PEAK FLOW RATE(CFS) AT CONFLUENCE 2.93 ............................................................................ FLOW PROCESS FROM NODE 9.20 TO NODE 9.10 IS CODE = 2 .- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< """""""""""""""""""""""""""""""-"""---"" ........................... ........................... MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 SOIL CLASSIFICATION IS "C" - INITIAL SUBAREA FLOW-LENGTH(FEET1 = UPSTREAM ELEVATION = 275.50 -- ELEVATION DIFFERENCE DOWNSTREAM ELEVATION = 274.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES1 = 1.10 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.524 TOTAL AREA(ACRES1 = .12 TOTAL RUNOFF(CFS1 85.00 - SUBAREA RUNOFF(CFS1 .40 ." ." 7. .""""" .""""" 614 .40 .""_ .""_ ,""_ .""_ - ............................................................................ FLOW PROCESS FROM NODE 9.20 TO NODE 9.10 IS CODE 1 ...................................... - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ."""""""""""""""""""""""""""""""""""""~ ...................................... TOTAL NUMBER OF STREAMS = 3 TIME OF CONCENTRATION(M1N.I = 7.61 RAINFALL INTENSITY(INCH/HRI = 5.52 PEAK FLOW RATE(CFSI AT CONFLUENCE = .40 " CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: - TOTAL STREAM AREA(ACRES1 = .12 - ............................................................................ FLOW PROCESS FROM NODE 7.10 TO NODE 7.20 IS CODE . 2 ...................................... - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<*< ...................................... ...................................... *USER SPECIFIED~SUBAREA) - SINGLE FAMILY DEVELOP MEN^ RUNOFF COEFFICIENT .6ooo INITIAL SUBAREA FLOW-LENGTH(FEET) = 10.00 UPSTREAM ELEVATION 316.40 , DOWNSTREAM ELEVATION 316.30 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTESI = ELEVATION DIFFERENCE .10 2.846 100 YEAR RAINFALL INTENSITY(INCH/HOURI = 7.246 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES SUBAREA RllNnFFlCF<b = nn TOTAL I. ..-..-. . ."."I - AREA (ACRES) = .OO TOTAL RUNOFF(CFS1 = . 00 . "" ............................................................................ - FLOW PROCESS FROM NODE 7.20 TO NODE 8.20 IS CODE 6 ...................................... >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ...................................... ...................................... - UPSTREAM ELEVATION 316.30 DOWNSTREAM ELEVATION = " SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET LENGTH(FEET1 = 360.00 CURB HEIGTH(INCHES1 = 6. STREET HALFWIDTH(FEET1 20.00 STREET CROSSFALL(DECIMA1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFSI = STREET FLOWDEPTH(FEET1 = .16 HALFSTREET FLOODWIDTH(FEETI AVERAGE FLOW VELOCITY(FEET/SEC.I = 1.50 PRODUCT OF DEPTH&VELOCITY = .65 - 4.18 STREETFLOW TRAVELTIME(MIN1 1.43 TC(M1NI 6.43 290.30 -I = .0200 159 SOIL CLASSIFICATION IS "C" SUBAREA AREA(ACRES1 = SUMMED AREA(ACRESI .31 SUBAREA RUNOFF(CFSI = .31 TOTAL RUNOFF(CFSI 1.15 1.15 END OF SUBAREA STREETFLOW HYDRAULICS: FLOW VELOCITY(FEET/SEC.I = 4.01 DEPTH*VELOCITY .84 100 YEAR RAINFALL INTENSITY(INCH/HOURI = 6.158 - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 - DEPTH(FEET1 = .21 HALFSTREET FLOODWIDTH(FEETI 4.10 ...................................... ...................................... UPSTREAM ELEVATION = 290.30 DOWNSTREAM ELEVATION = 272.00 .- STREET LENGTH(FEET1 490.00 CURB HEIGTH(1NCHESI = 6. STREET HALFWIDTH(FEET1 = 59.00 STREET CROSSFALL(DEC1MAL) .0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOWKFS) = STREET FLOWDEPTH (FEET) 3.98 HALFSTREET FLOODWIDTH(FEET) .31 AVERAGE FLOW VELOCITY(FEET/SEC.) = 9.14 PRODUCT OF DEPTHWELOCITY 4.18 1.29 STREETFLOW TRAVELTIME(MIN1 1.95 TC(M1N) = 8.39 SOIL CLASSIFICATION IS "C" SUBAREA AREA(ACRES1 = SUMMED AREA (ACRES) = 1.83 SUBAREA RUNOFF(CFS) = 2.14 TOTAL RUNOFF(CF9 5.70 END OF SUBAREA STREETFLOW HYDRAULICS: 6.85 DEPTH(FEET) .36 HALFSTREET FLOODWIDTH(FEET) 11.83 FLOW VELOCITY(FEET/SEC.) = 4.51 DEPTH*VELOCITY 1.64 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.190 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 - ............................................................................ FLOW PROCESS FROM NODE 8.10 TO NODE 9.30 IS CODE 3 -------"""---"""""-""""""""""""""""""""""""~ - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... ~~ - DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) 6.2 UPSTREAM NODE ELEVATION = 267.00 DOWNSTREAM NODE ELEVATION 266.17 - FLOWLENGTH (FEET) = ESTIMATED PIPE DIAMETER(INCH1 18.00 83.43 MANNING'S N .013 PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF PIPES 1 6.85 - TRAVEL TIME(M1N. 1 .22 TC(M1N.) = 8.61 - FLOW PROCESS FROM NODE 9.30 TO NODE 9.10 IS CODE = 3 ............................................................................ ---""""""""""""""""""""""""""""""""""""- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ............................... ............................... DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.7 INCHES - PIPEFLOW VELOCITY(FEET/SEC.) 8.2 UPSTREAM NODE ELEVATION = 266.17 DOWNSTREAM NODE ELEVATION = 265.55 FLOWLENGTH (FEET) = - ESTIMATED PIPE DIAMETER(1NCH) 15.00 29.23 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS) NUMBER OF PIPES TRAVEL TIME(M1N.) .06 TC(MIN.1 = 8.67 6.85 - .""""""" .""""""" 1 ............................................................................ .- FLOW PROCESS FROM NODE 9.30 TO NODE 9.10 IS CODE 1 ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES*<<<< - ...................................... ...................................... TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: - TIME OF CONCENTRATION(M1N.) 8.67 RAINFALL INTENSITY(INCH/HR) = 5.08 TOTAL STREAM AREA(ACRES1 2.14 - PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.85 - CONFLUENCE FORMULA USED FOR 3 STREAMS. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO ** PEAK FI - STREAM NUMBER * ; - 3 4 5 7 6 8 - .OW RATE RUNOFF (CFS) 8.84 10.11 9.36 10.06 9.36 9.19 8.83 9.05 TABLE ** TIME (MIN. 7.61 6.96 8.67 10.02 8.82 10.32 10.69 11.24 (INCH/HOUR) INTENSITY 5.854 5.524 5.079 4.628 5.023 4.541 4.439 4.297 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS1 TOTAL AREA(ACRES1 = 3.25 10.11 Tc(MIN.1 = 8.67 - - FLOW PROCESS FROM NODE 9.10 TO NODE 15.10 IS CODE 3 ............................................................................ ."""_"""""""""""""""""""""""""""""""""" >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ................................. ................................. DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) 26.2 DOWNSTREAM NODE ELEVATION = 250.68 FLOWLENGTH (FEET) 41.00 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS1 10.11 TRAVEL TIME(M1N. = .03 TC(MIN.1 = 8.70 - UPSTREAM NODE ELEVATION = 265.22 - ESTIMATED PIPE DIAMETER(INCH1 = 12.00 NUMBER OF PIPES 1 - ." ." ."""" ."""" ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TOTAL NUMBER OF STREAMS = 2 TIME OF CONCENTRATION(M1N.) = 8.70 RAINFALL INTENSITY (INCH/HR) = 5.07 PEAK FLOW RATE(CFS1 AT CONFLUENCE 10.11 - TOTAL STREAM AREA(ACRES1 = 3.25 - ............................................................................ FLOW PROCESS FROM NODE 15.20 TO NODE 15.10 IS CODE 2 ...................................... - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... SOIL CLASSIFICATION IS "C" - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 10.557 - - .67 ............................................................................ FLOW PROCESS FROM NODE 15.20 TO NODE 15.10 IS CODE = 1 - ._""""""""""""""""""""""""""""""""""""" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<**<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... TOTAL NUMBER OF STREAMS 2 CONFLUENCE-VALUES ~USED-FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.1 10.56 - RAINFALL INTENSITY(INCH/HR) = 4.47 TOTAL STREAM AREA(ACRES1 PEAK FLOW RATE(CFS1 AT CONFLUENCE = .25 .67 - CONFLUENCE FORMULA USED FOR 2 STREAMS. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO ** PEAK FLOW RATE TABLE ** STREAM RUNOFF NUMBER (CFS) TIME (MIN.1 (INCH/HOUR) INTENSITY 1 9.36 2 9.90 6.99 5.839 3 10.70 7.64 5.511 8.70 5.070 - 4 10.66 8.85 5 10.01 5.014 6 10.05 9.85 4.620 10.34 - 7 9.74 10.56 4.533 8 9.71 10.71 4.432 4.474 9 9.47 11.27 4.291 - - - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: TOTAL AREA(ACRES1 = PEAK FLOW RATE(CFS1 3.50 10.70 Tc(MIN.1 8.70 - k*************************************************************************** - FLOW PROCESS FROM NODE 15.10 TO NODE 17.10 IS CODE = 3 ...................................... >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9.0 DOWNSTREAM NODE ELEVATION 248.08 FLOWLENGTH(FEET1 = 113.60 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH1 = 18.00 - PIPEFLOW THRU SUBAREA(CFS1 = 10.70 NUMBER OF PIPES = 1 TRAVEL TIME(MIN.l = .21 TC(MIN.1 = 8.91 >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... - UPSTREAM NODE ELEVATION = 250.35 ............................................................................ - FLOW PROCESS FROM NODE 15.10 TO NODE 17.10 IS CODE = 10 .""""""""_""""""""""""""""""""""""""""" >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK 4 1 <e<<< ...................................... ....................................... - ............................................................................ - FLOW PROCESS FROM NODE 12.20 TO NODE 12.10 IS CODE = 2 .""""""""""""""""""""""""""""""""""""-" >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< 2.547 .83 ............................................................................ FLOW PROCESS FROM NODE 12.10 TO NODE 13.10 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< - ."""""""""""""""""""""""""""""""""""""~ >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< """_""""""""""""""""""""""""""-"""""""" ....................................... I. 6 INCHES .013 NUMBER OF 5.55 PIPES = 1 - ............................................................................ FLOW PROCESS FROM NODE 12.10 TO NODE 13.10 IS CODE 1 """"""""""""""""""~"""""""""""""""""""- - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... """""""""_""""""""""""""""""""""""""""~ TOTAL~NUMBER OF~~STREAMS = 2 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(M1N.) = 5.55 RAINFALL INTENSITY (INCH/HR) = 6.77 PEAK FLOW RATE(CFS) AT CONFLUENCE = .83 - TOTAL STREAM AREA(ACRES1 = .19 - ............................................................................ FLOW PROCESS FROM NODE 13.20 TO NODE 13.10 IS CODE = 2 """"""""""""""""""""""""""""""""""""---- - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ........................... ........................... - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 70.00 SOIL CLASSIFICATION IS "C" UPSTREAM ELEVATION = - DOWNSTREAM ELEVATION = 279.40 ELEVATION DIFFERENCE = 257.90 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES1 = 21.50 - *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.246 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES - SUBAREA RUNOFF(CFS1 .57 TOTAL AREA(ACRES1 = .13 TOTAL RUNOFF(CFS) """"""_ """"""_ 2.405 .57 .""""" .""""" - ............................................................................ FLOW PROCESS FROM NODE 13.20 TO NODE 13.10 IS CODE = 1 ...................................... - ;>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... ~~~~ - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN. 5.00 - RAINFALL INTENSITY(INCH/HR) = 7.25 TOTAL STREAM AREA(ACRES1 = PEAK FLOW RATE(CFS) AT CONFLUENCE = .13 .57 - RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - ** PEAK FLOW RATE TABLE ** STREAM RUNOFF NUMBER (CFS) TIME (MIN. (INCH/HOUR) INTENSITY 1 2 1.34 1.35 5.00 7.246 5.55 6.770 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: - PEAK FLOW RATE(CFS) = 1.35 Tc(MIN.1 = TOTAL AREA(ACRES1 .32 5.55 - ............................................................................ FLOW PROCESS FROM NODE 13.10 TO NODE 14.20 IS CODE 3 ...................................... - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ........................... ........................... ~~ - ESTIMATED PIPE DIAMETER(1NCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.8 INCHES PIPEFLOW VELOCITY (FEET/SEC. ) = 12.3 DOWNSTREAM NODE ELEVATION = 251.60 FLOWLENGTH (FEET) = ESTIMATED PIPE DIAMETER(INCH1 = 8.00 7.50 MANNING'S N = .013 - PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF TRAVEL TIME(MIN.1 = 1.35 . 01 TC(M1N.) 5.56 - UPSTREAM NODE ELEVATION = 253.00 """ """ ~ ~~ ~ PIPES """"""""_ """"""""_ =1 ............................................................................ .- FLOW PROCESS FROM NODE 13.10 TO NODE 14.20 IS CODE = 1 ."""""""""""""""""""""""""""""""""""""- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(M1N.) = 5.56 RAINFALL INTENSITY(INCH/HR) = 6.76 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.35 - TOTAL NUMBER OF STREAMS = 2 ...................................... ...................................... - TOTAL STREAM AREA(ACRES) = .32 ............................................................................ FLOW PROCESS FROM NODE 14.30 TO NODE 14.20 IS CODE 2 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "C" - ...................................... ...................................... ...................................... - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6ooo INITIAL SUBAREA FLOW-LENGTH (FEET) = 105.00 UPSTREAM ELEVATION = 256.40 ELEVATION DIFFERENCE = 255.70 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = 10.557 .70 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES1 .62 .23 TOTAL RUNOFF(CFS) = .62 - DOWNSTREAM ELEVATION - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.474 ............................................................................ FLOW PROCESS FROM NODE 14.30 TO NODE 14.20 IS CODE = 1 ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ...................................... ...................................... - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N.) = 10.56 - RAINFALL INTENSITY(INCH/HR) = 4.47 TOTAL STREAM AREA(ACRES) PEAK FLOW RATE(CFS) AT CONFLUENCE = .23 .62 - CONFLUENCE FORMULA USED FOR 2 STREAMS. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - ** PEAK FLOW RATE STREAM NUMBER RUNOFF (CFS) - 1 2 1.72 3 1.76 1.51 TABLE ** TIME (MIN. ) 5.01 10.56 5.56 (INCH/HOUR) INTENSITY 7.236 6.762 4.474 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS1 TOTAL AREA(ACRES1 = .55 1.76 Tc(MIN.1 = 5.56 - -- FLOW PROCESS FROM NODE ............................................................................ 14.20 TO NODE 14.10 IS CODE = 3 ................................. >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.9 INCHES UPSTREAM NODE ELEVATION 251.60 DOWNSTREAM NODE ELEVATION = 250.18 - FLOWLENGTH(FEET1 = ESTIMATED PIPE DIAMETER(INCH1 9.00 71.10 MANNING'S N = .013 PIPEFLOW THRU SUBAREA(CFS1 = NUMBER OF PIPES = 1 TRAVEL TIME(MIN.1 = 1.76 .21 - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ................................. ................................. - PIPEFLOW VELOCITY(FEET/SEC.) 5.7 - TC(M1N. = 5.77 ,""""" .""""" .""""" - FLOW PROCESS FROM NODE ............................................................................ 14.20 TO NODE 14.10 IS CODE = 1 ."""""""""""""""""""~~~~~~~""""""""""""""" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... - TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - RAINFALL INTENSITY(INCH/HR) = 6.60 TIME OF CONCENTRATION(M1N.) = 5.77 TOTAL STREAM AREA(ACRES) PEAK FLOW RATE(CFS) AT CONFLUENCE .55 1.76 ............................................................................ - FLOW PROCESS FROM NODE 16.20 TO NODE 16.10 IS CODE = 2 ...................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< - SOIL CLASSIFICATION IS "C" ...................................... ...................................... MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 UPSTREAM ELEVATION DOWNSTREAM ELEVATION 273.00 ELEVATION DIFFERENCE = 258.50 14.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES1 = 3.691 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 100.00 - " *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.246 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. SUBAREA RUNOFF (CFS) = TOTAL AREA(ACRES1 .17 TOTAL RUNOFF(CFS) = .74 .74 ............................................................................ FLOW PROCESS FROM NODE 16.10 TO NODE 14.10 IS CODE 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA*<<<< .- ...................................... >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... ~~ ESTIMATED PIPE DIAMETER(1NCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 6.6 DOWNSTREAM NODE ELEVATION = 250.18 FLOWLENGTH (FEET) = 53.70 MANNING'S N = .013 - UPSTREAM NODE ELEVATION = 253.00 - ESTIMATED PIPE DIAMETER(INCH1 = 8.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = TRAVEL TIME(MIN.l .74 - .14 TC(MIN.1 = 5.14 - FLOW PROCESS FROM NODE ............................................................................ 16.10 TO NODE 14.10 IS CODE = 1 ."""""""""""""""""""""""""""""""""""""- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< .- >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ."""""""""""""""""""""""""""""""""""""- ."""""""""""""-"""""""""""""""""""""""" TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: - TIME OF CONCENTRATION(MIN.1 = 5.14 RAINFALL INTENSITY(INCH/HR) 7.12 TOTAL STREAM AREA(ACRES1 .17 - PEAK FLOW RATE(CFS) AT CONFLUENCE = .74 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - CONFLUENCE FORMULA USED FOR 2 STREAMS. STREAM ** PEAK FLOW RATE TABLE ** RUNOFF TIME INTENSITY - NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2.44 5.14 7.121 5.22 7.047 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: - PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES1 = 2.45 Tc(MIN.1 5.22 .72 - ............................................................................ FLOW PROCESS FROM NODE 14.10 TO NODE 17.10 IS CODE = 3 ...................................... - >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)*<<<< >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< ...................................... ...................................... - DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.4 INCHES UPSTREAM NODE ELEVATION = 250.18 PIPEFLOW VELOCITY(FEET/SEC.) = 4.8 - DOWNSTREAM NODE ELEVATION 248.08 FLOWLENGTH (FEET) 209.88 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH1 = 12.00 PIPEFLOW THRU SUBAREA(CFS) = NUMBER OF PIPES = 1 TRAVEL TIME(M1N. 1 = .73 TC(MIN.1 = 5.95 2.45 - ............................................................................. FLOW PROCESS FROM NODE 14.10 TO NODE 17.10 IS CODE = 11 - >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ...................................... ...................................... ...................................... - STREAM ** PEAK FLOW RATE TABLE ** RUNOFF NUMBER (CFS) TIME INTENSITY (MIN. 1 (INCH/HOUR) 1 10.64 5.87 6.536 2 10.73 5.95 6.476 - 3 4 11.22 11.65 5 12.07 6 12.70 8 7 12.64 9 11.84 10 11.71 11.63 11 11.62 12 11.44 13 11.41 - COMPUTED CONFLUENCE PEAK FLOW RATE(CFS1 TOTAL AREA(ACRES) = - 7.20 6.50 7.86 8.91 10.26 9.06 10.56 10.77 10.93 11.48 11.54 6.115 5.414 5.724 4.992 4.938 4.557 4.474 4.416 4.375 4.238 4.225 ESTIMATES ARE AS FOLLOWS: - 12.70 Tc(MIN.1 = 8.91 - 4.22 k*************************************************************************** - FLOW PROCESS FROM NODE 14.10 TO NODE 17.10 IS CODE = 12 ...................................... >>>>>CLEAR MEMORY BANK # 1 <<e<< ...................................... ...................................... - ............................................................................ - FLOW PROCESS FROM NODE 14.10 TO NODE 17.10 IS CODE 10 """_""""""""""""""""""""""""""""""""""- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<e<< ...................................... ...................................... - - FLOW PROCESS FROM NODE 26.30 TO NODE 26.40 IS CODE = 2 ............................................................................ "~""""""""""""""""""""""""""""""""""""- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... - SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH (FEET) = 130.00 - UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 281.50 ELEVATION DIFFERENCE = 279.00 2.50 .- URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.245 8.252 SUBAREA RUNOFF (CFS) - TOTAL AREA(ACRES1 = .23 TOTAL RUNOFF(CFS) = .72 .72 ~ FLOW PROCESS FROM NODE 26.30 TO NODE 26.40 IS CODE = 1 ............................................................................ ...................................... =>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... - ...................................... TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(M1N.) = 8.25 - RAINFALL INTENSITY(INCH/HR) = 5.24 TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFLUENCE = .23 .72 -- FLOW PROCESS FROM NODE ............................................................................ 26.21 TO NODE 26.20 IS CODE = 2 ."""""""""~~~~~~~~~"""""""""""""""""""""""" >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ............................ ............................ *USER SPECIFIED(SUBAREA1: SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6000 - UPSTREAM ELEVATION = 290.40 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 10.00 DOWNSTREAM ELEVATION 290.30 ELEVATION DIFFERENCE .10 - URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES1 = TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 2. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.246 - SUBAREA RUNOFF(CFS1 .oo TOTAL AREA(ACRES1 = .OO TOTAL RUNOFF(CFS1 = ."""""""""" ."""""""""" 846 . 00 ............................................................................. FLOW PROCESS FROM NODE 26.20 TO NODE 26.40 IS CODE 6 - >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< """"""""""""""""""""""""""""""~"""""""- """""""""""-""""""""""""""""""""""""""- ....................................... UPSTREAM ELEVATION = STREET LENGTH(FEET1 = 130.00 CURB HEIGTH(INCHES1 = 6. 290.30 DOWNSTREAM ELEVATION 279.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 - STREET HALFWIDTH(FEET1 = 20.00 STREET CROSSFALL(DEC1MAL) = .0200 STREET FLOWDEPTH(FEET1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS1 .13 HALFSTREET FLOODWIDTH(FEET1 .16 AVERAGE FLOW VELOCITY(FEET/SEC.) 1.50 PRODUCT OF DEPTH&VELOCITY .91 .14 - - STREETFLOW TRAVELTIME(MIN1 = 2.39 TC(MIN1 = 7.39 - SOIL CLASSIFICATION IS "C" 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.631 MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 SUBAREA AREA(ACRES1 = - SUMMED AREA(ACRES) .07 SUBAREA RUNOFF(CFS1 .24 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET1 = .16 HALFSTREET FLOODWIDTH(FEET1 1.50 - FLOW VELOCITY(FEET/SEC.) = 1.71 DEPTH*VELOCITY = .27 .07 TOTAL RUNOFF(CFS1 = .24 - FLOW PROCESS FROM NODE 26.20 TO NODE 26.40 IS CODE 1 ............................................................................ """"""""""-----"""""""""""""""""""""""""- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<* - >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES*<<<< TOTAL NUMBER OF STREAMS = 2 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.1 = 7.39 RAINFALL INTENSITY(INCH/HR) = 5.63 TOTAL STREAM AREA(ACRES1 .07 ...................................... ...................................... - PEAK FLOW RATE(CFS1 AT CONFLUENCE = .24 - CONFLUENCE FORMULA USED FOR 2 STREAMS. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO ** PEAK FLOW RATE TABLE ** NUMBER (CFS) TIME INTENSITY (MIN. 1 (INCH/HOUR) - STREAM RUNOFF 1 .91 7.39 5.631 - 2 .95 8.25 5.245 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) .95 Tc(M1N. 1 = 8.25 - TOTAL AREA(ACRES1 .30 ............................................................................ FLOW PROCESS FROM NODE 26.40 TO NODE 26.10 IS CODE = 6 ....................................... - >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ....................................... ...................................... - STREETFLOW- TRAvELT~ ,~uSING""EAN~F.Low~cFS) =1 = 91 1.13 *) = 4.10 'JSEC.) = 3.93 . JEPTHWELOCITY .82 tME(M1N) = 2.06 TC(M1N) 10.31 . "" INFALL INTENSITY(INCH/HOUR) " = 4.544 - - 1.30 .35 4.68 .85 - FLOW PROCESS FROM NODE 26.10 TO NODE 17.10 IS CODE = 8 ............................................................................ """""""""""""""~""""""""""""""""""""""- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< *USER SPECIFIED(SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT .9000 TOTAL AREA(ACRES1 = 1.03 TOTAL RUNOFF(CFS1 = TC(M1N) 10.31 3.76 - SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .9000 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .9000 ** PEAK FLOW RATE TABLE ** -1 O(CFS) Tc(M1N. 1 3.88 2 3.76 9.49 NEW PEAK FLOW DATA ARE: 10.31 """""""~""""""""""""-"""""""""""""""""" ...................................... ~ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.544 - SUBAREA AREA(ACRES1 .60 SUBAREA RUNOFF(CFS1 = 2.45 - PEAK FLOW RATE(CFS) 3.88 Tc(M1N.) = 9.49 - ............................................................................ FLOW PROCESS FROM NODE 26.10 TO NODE 17.10 IS CODE = 11 ...................................... - >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ."""""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""- TABLE ** TIME (MIN. 1 5.95 5.87 7.20 6.50 8.91 7.86 9.06 10.26 9.49 10.31 10.56 10.77 10.93 11.48 11.54 (INCH/HOUR) INTENSITY 6.536 6.476 6.115 5.724 5.414 4.992 4.938 4.792 4.557 4.544 4.474 4.416 4.375 4.238 4.225 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 16.42 Tc(M1N. 1 8.91 - TOTAL AREA(ACRES) = 5.25 ............................................................................ FLOW PROCESS FROM NODE 17.10 TO NODE 18.10 IS CODE = 3 - >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< -"""""""""""""""""""""""""""""""""""""- >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ............................... ............................... DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.6 INCHES - PIPEFLOW VELOCITY (FEET/SEC. 1 10.0 UPSTREAM NODE ELEVATION = 247.75 DOWNSTREAM NODE ELEVATION = 244.00 ESTIMATED PIPE DIAMETER(1NCH) 21.00 PIPEFLOW THRU SUBAREA(CFS1 = NUMBER OF PIPES = 16.42 - FLOWLENGTH(FEET1 = 187.50 MANNING'S N .013 " TRAVEL TIME(M1N. ) .31 TC(MIN.1 = 9.22 .""""""" ,""""""" 1 - FLOW PROCESS FROM NODE 17.10 TO NODE 18.10 IS CODE = 1 ............................................................................ ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<* TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - TIME OF CONCENTRATION(M1N.) = 9.22 RAINFALL INTENSITY(INCH/HR) 4.88 TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFLUENCE 5.25 16.42 ...................................... ...................................... - -- FLOW PROCESS FROM NODE 25.30 TO NODE 25.20 IS CODE = 2 .............................................................................. ...................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< - """""""""_"""""""""""""""""" """""""""""""""""""""""-"""" *USER SPECIFIED(SUBAREA) : SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .6000 UPSTREAM ELEVATION DOWNSTREAM ELEVATION 316.40 ELEVATION DIFFERENCE = 316.30 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = .10 2 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 7.246 - INITIAL SUBAREA FLOW-LENGTH(FEET1 = 10.00 - TIME OF CONCENTRATION ASSUMED AS 5-MINUTES - SUBAREA RUNOFF(CFS) = .oo TOTAL AREA(ACRES1 .OO TOTAL RUNOFF(CFS) ""_ ""_ .846 ."""""""" ."""""""" . 00 - ............................................................................ FLOW PROCESS FROM NODE 25.20 TO NODE 18.20 IS CODE = 6 - ir>>rCOMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ----""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""- UPSTREAM ELEVATION = 316.30 DOWNSTREAM ELEVATION STREET HALFWIDTH(FEET1 20.00 STREET CROSSFALL(DECIMA1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 - **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1. - STREET LENGTH(FEET) = 1035.00 CURB HEIGTH(INCHES1 6. STREET FLOWDEPTH(FEET1 HALFSTREET FLOODWIDTH(FEET) = .21 AVERAGE FLOW VELOCITY (FEET/SEC. 1 = 4.10 PRODUCT OF DEPTH&VELOCITY = 4.40 .92 - STREETFLOW TRAVELTIME(M1N) = 3.92 TC(M1N) 8.92 249.20 -1 .0200 26 \R RAINFALL INTENSITY(INCH/HOUR) 4.988 2.49 2.48 .41 1.20 """_ ............................................................................. FLOW PROCESS FROM NODE 18.20 TO NODE 18.10 IS CODE 8 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ...................................... - ...................................... ...................................... 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.988 - SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .9000 *USER SPECIFIED(SUBAREA): SUBAREA AREA(ACRES1 .93 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) 1.76 TOTAL RUNOFF(CFS) 4.18 6.66 - TC(M1N) = 8.92 - FLOW PROCESS FROM NODE 18.20 TO NODE 18.10 IS CODE = 1 ............................................................................ """""""""""""""~""""""""""""""""""""""- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< - >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<**<< - ...................................... _"""""""""""""""""""""""""""""""""""""- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N.) = 8.92 RAINFALL INTENSITY(INCH/HR) 4.99 TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONFLUENCE 1.76 6.66 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE STREAM NUMBER RUNOFF 1 (CFS) 18.76 2 3 18.91 19.87 4 20.87 6 5 21.80 22.73 8 7 22.94 22.85 9 10 22.41 11 21.55 12 21.51 13 21.27 14 21.07 15 20.97 16 20.50 20.45 TABLE ** TIME (MIN. ) 6.20 6.29 7.52 6.84 8.92 9.22 9.37 9.81 10.58 10.63 10.88 11.09 11.25 11.80 11.86 a. 17 (INCH/HOUR) INTENSITY 6.305 5.920 6.251 5.566 5.277 4.988 4.882 4.831 4.692 4.469 4.456 4.389 4.334 4.295 4.164 4.151 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 22.94 Tc(M1N. = TOTAL AREA(ACRES) = 7.01 9.22 - ............................................................................ FLOW PROCESS FROM NODE 18.10 TO NODE 31.20 IS CODE = 3 ...................................... .- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<* >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ...................................... ...................................... ~~ ~~ - DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.4 INCHES UPSTREAM NODE ELEVATION = 247.75 PIPEFLOW VELOCITY (FEET/SEC. = 25.3 DOWNSTREAM NODE ELEVATION = 239.00 - FLOWLENGTH (FEET) ESTIMATED PIPE DIAMETER(1NCH) = 15.00 NUMBER OF PIPES = 1 45.00 MANNING'S N .013 PIPEFLOW THRU SUBAREA(CFS1 - TRAVEL TIME (MIN. 22.94 .03 TC(MIN.1 = 9.25 ...................................... ...................................... END OF STUDY SUMMARY: - PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 22.94 Tc(MIN.1 = 9.25 *** PEAK FLOW RATE TABLE *** 7.01 Q(CFS) Tc (MIN. ) -1 18.76 6.23 2 18.91 3 19.87 6.32 6.87 -4 20.87 7.56 ...................................... ...................................... END OF STUDY SUMMARY: - PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = *** PEAK FLOW RATE TABLE -1 Q(CFS) Tc (MIN. ) 2 18.76 18.91 6.23 3 19.87 6.32 6.87 -4 20.87 7.56 22.94 Tc(MIN.1 = 9.25 7.01 *** 5 6 -7 9 - 10 11 12 - 14 13 15 16 a ...................................... _""""""""""""~""""""""""""""""""""""""" END OF RATIONAL METHOD ANALYSIS - ............................................................................ RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE - REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985 1981 HYDROLOGY MANUAL (c) COPYRIGHT 1982-96 ADVANCED ENGINEERING SOFTWARE (AES) ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L CARLSBAD, CALIFORNIA. 92008 VER. 5.5A RELEASE DATE: 4/22/90 SERIAL X 5810 - - BHA, INC. - (619) 931-8700 .......................... DESCRIPTION OF STUDY .......................... 4 BASIN DRAINAGE SECTIONS "8" + "C" * VILLAS HYDROLOGY * 4/5/94 * * .......................................................................... - FILE NAME: VILLATOT.DAT TIMEIDATE OF STUDY: 2: 0 41 511994 ...................................... - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ."""""""""""""""""""""""""""""""""""""- - 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 - 6-HOUR DURATION PRECIPITATION (INCHES) = 2.750 SPECIFIED MINIMUM PIPE SIZE(1NCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DEC1MAL) TO USE FOR FRICTION SLOPE = .95 .- SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED - ............................................................................ - FLOW PROCESS FROM NODE 30.20 TO NODE 30.10 IS CODE 7 .-""""""""""""""""""""""""""""""""""""" >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< - USER-SPECIFIED VALUES ARE AS FOLLOWS: ...................................... ...................................... TC(M1N) = 8.79 RAIN INTENSITY(INCHIH0UR) 5.04 TOTAL AREA(ACRES1 10.65 TOTAL RUNOFF(CFS) = 31.64 ............................................................................. FLOW PROCESS FROM NODE 30.20 TO NODE 30.10 IS CODE = 1 - ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(M1N.) = 8.79 - RAINFALL INTENSITY(1NCHlHR) = 5.04 111. CALCULATLONS B. Developed Off-Site and Perimeter Hydrology For The Villas At El Camino Real ............................................................................ - RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT (c) COPYRIGHT 1982-9b ADVANCED ENGINEERING SOFTWARE (AES) VER. 5.5A RELEASE DATE: 4/22/90 SERIAL X 5810 - 1985 1981 HYDROLOGY MANUAL ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD CALIFORNIA. 92008 (619) 931-8700 - .......................... DESCRIPTION OF STUDY .......................... .: VILLAS HYDROLOGY * * BASIN DRAINAGE FOR OFFSITE & NORTHERLY SEWER EASEMENT * -c 3/22/94 * .......................................................................... - FILE NAME: VILLAS4.DAT TIMEIDATE OF STUDY: 14: 3 3/24/1994 ...................................... - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: .""""""""~""""""""""""""""""""""""""""" 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR1 = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.750 SPECIFIED MINIMUM PIPE SIZE(1NCH) 12.00 SPECIFIED PERCENT OF GRADIENTS(DEC1MAL) TO USE FOR FRICTION SLOPE = .95 NOTE: ALL CONFLUENCE COMBINATIONS CONSIDERED SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED """_ """_ ,""""_ I""""_ - FLOW PROCESS FROM NODE 100.10 TO NODE 100.20 IS CODE 1 ............................................................................ .---"""""""""""""""""""""""""""""""""""" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: - RAINFALL INTENSITY(INCH/HR) = 3.31 TIME OF CONCENTRATION(M1N.) = 16.84 TOTAL STREAM AREA(ACRES1 PEAK FLOW RATE(CFS) AT CONFLUENCE 5.03 9.99 ...................................... ...................................... - - FLOW PROCESS FROM NODE 2.10 TO NODE 2.20 IS CODE = 2 ............................................................................ ............................................................................ - FLOW PROCESS FROM NODE 2.20 TO NODE 2.30 IS CODE = 6 ....................................... >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ."""""""""""""""""""""""""""" ."""""""""""""""""""""""""""" ."""""""""- ."""""""""_ UPSTREAM ELEVATION = 306.80 DOWNSTREAM ELEVATION STREET LENGTH(FEET1 310.00 CURB HEIGTH(1NCHES) = 6. STREET HALFWIDTH(FEET1 = 59.00 STREET CROSSFALL(DECIMA1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET FLOWDEPTH(FEET1 = **TRAVELTIME COMPUTED USING MEAN FLOW(CFS1 = 2. HALFSTREET FLOODWIDTH(FEET) .27 AVERAGE FLOW VELOCITY(FEET/SEC. ) 7.34 PRODUCT OF DEPTH&VELOCITY = "90 3.28 STREETFLOW TRAVELTIME(M1 . . " - - -. . 'N) = 1.57 TCIMIN) = 6.57 29 .I 15 - SOIL CLASSIFICATION IS "C" SUBAREA AREA(ACRES1 = SUMMED AREA(ACRES1 .88 SUBAREA RUNOFFKFS) = 1.01 TOTAL RUNOFF(CFS) = 3.21 END OF SUBAREA STREETFLOW HYDRAULICS: 3.77 FLOW VELOCITY(FEET/SEC. 1 3.35 DEPTH*VELOCITY = 1.10 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.072 - MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT .6000 - DEPTH(FEET1 .33 HALFSTREET FLOODWIDTH(FEET) = 10.04 - 19.10 f0200 - ............................................................................ FLOW PROCESS FROM NODE 2.30 TO NODE 100.20 IS CODE 5 >>>>>TRAVELTIME THRU SUBAREA<<*<< ...................................... >>>>>COMPUTE TRAPEZOIDAL-CHANNEL FLOW<<<<< ~ ~ ~ ~ ~ . ...................................... ...................................... - UPSTREAM NODE ELEVATION = DOWNSTREAM NODE ELEVATION = 299.10 CHANNEL LENGTH THRU SUBAREA(FEET1 = 165.00 285.50 - CHANNEL BASE(FEET1 = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET1 = 1.00 . - FLOW VELOCITY(FEET/SEC) 9.34 FLOW DEPTH(FEET1 CHANNEL FLOW THRU SUBAREA(CFS1 = 3.77 TRAVEL TIMEMIN. 1 .29 TC(MIN.1 6.87 .26 - ............................................................................ FLOW PROCESS FROM NODE 2.30 TO NODE 100.20 IS CODE = 1 - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< .......................................... --------------""""""""""""~""""""""" ~~ L OF STREAMS 2 ._ TOTAL NUMBEK ~ ~ ~ ~ ~~~~ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(M1N. 1 = 6.87 RAINFALL INTENSITY (INCH/HR) 5.90 PEAK FLOW RATE(CFS1 AT CONFLUENCE = 3.77 - TOTAL STREAM AREA(ACRES1 1.01 - RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - STREAM ** PEAK FLOW RATE TABLE ** NUMBER RUNOFF (CFS) TIME INTENSITY WIN. 1 (INCH/HOUR) 1 9.38 6.87 5.903 2 12.11 16.84 3.311 - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: - PEAK FLOW RATE(CFS1 = TOTAL AREA(ACRES1 = 12.11 Tc(M1N.) = 16.84 6.04 .......................... .......................... SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 300.00 ELEVATION DIFFERENCE 232.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES1 = 68.00 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH *CAUTION: SUBAREA FLOWLENGTH EXCEEDS COUNTY DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.160 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 750.00 ."""""_ ."""""_ l.821 USED. ." ." .""""_ .""""_ SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES1 = 4.83 TOTAL RUNOFF(CFS) = 12.05 12.05 x*************************************************************************** - FLOW PROCESS FROM NODE 101.10 TO NODE 101.20 IS CODE = 1 ...................................... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ...................................... ...................................... - TOTAL NUMBER OF STRW CONFLUENCE VALUES USE1 - RAINFALL INTENSITY(INCH/I TIME OF CONCENTRATION c,.,~, TOTAL STREAM AREA(ACRES1 PEAK FLOW RATE(CFS) AT 0 ils= 2 I FOR INDEPENDENT STREAM 1 ARE: 11.82 HR) = 4.16 4.83 DNFLUENCE = 12.05 ............................................................................ FLOW PROCESS FROM NODE 101.30 TO NODE 101.20 IS CODE 2 ....................................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ...................................... ...................................... - SOIL CLASSIFICATION IS "C" UPSTREAM ELEVATION = - DOWNSTREAM ELEVATION = 304.50 ELEVATION DIFFERENCE = 232.00 URBAN SUBAREA OVERLAND TIME OF FLOW(M1NUTES) = 16.522 72.50 - *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH *CAUTION: SUBAREA FLOWLENGTH EXCEEDS COUNTY - NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. MULTI-UNITS DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH(FEET1 = 1150.00 DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. SUBAREA RUNOFF (CFS) TOTAL AREA(ACRES1 = .53 TOTAL RUNOFF(CFS) = 1.07 1.07 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.352 - - FLOW PROCESS FROM NODE 101.30 TO NODE 101.20 IS CODE = 1 ............................................................................ ,""""_""""""""""""""""""""""""""""""""" >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< .""_""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""- TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: - TIME OF CONCENTRATION(M1N. 16.52 RAINFALL INTENSITY(INCH/HR) = 3.35 TOTAL STREAM AREA(ACRES) = .53 - PEAK FLOW RATE(CFS) AT CONFLUENCE 1.07 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO - CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY - NUMBER (CFS) 1 (MIN.) (INCH/HOUR) 12.91 11.82 4.160 2 10.78 16.52 3.352 - - COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.91 Tc(M1N.) = 11.82 - TOTAL AREA(ACRES1 = 5.36 ,"""""""""""""""""""""""""""""""""""""- """"""""""""-""""""""""""""""""""""""" END OF STUDY SUMMARY: TOTAL AREA(ACRES1 = *** PEAK FLOW RATE TABLE *** 5.36 - PEAK FLOW RATEKFS) = 12.91 Tc(M1N.) 11.82 -1 Q(CFS) Tc(M1N. 1 2 12.91 10.78 11.82 16.52 ...................................... ...................................... - END OF RATIONAL METHOD ANALYSIS 111. CALCULATIONS C. Curb Inlet Sizing - (On-Site) ............................................................................ (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) ANALYSIS PREPARED BY: - HYDRAULIC ELEMENTS - I PROGRAM PACKAGE VER. 2.8A RELEASE DATE: 8/19/89 SERIAL X 3856 - 5115 AVENIDA ENCINAS , SUITE L BHA, INC. CARLSBAD, CALIFORNIA 92008 (619) 931-8700 .""""""""""""""""""""""""""~""""""""""" TIMEIDATE OF STUDY: 21:44 41 411994 ...................................... ....................................... - C STREET DEPTH OF FLOW CALCS * 4-5-94. NODE 1.10 ........................................................................... .. * * """"~"""""""""""""""""""""""""""""""""- STREET FLOWDEPTH(FEET1 = HALFSTREET FLOODWIDTH (FEET) = 16.24 .45 PRODUCT OF DEPTHWELOCITY = 1.38 " AVERAGE FLOW VELOCITY (FEETISEC. ) = 3.07 ...................................... ...................................... ~~ " - ............................................................................ HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) ANALYSIS PREPARED BY: - VER. 2.8A RELEASE DATE: 8/19/89 SERIAL kt 3856 5115 AVENIDA ENCINAS SUITE L BHA, INC. CARLSBAD~ CALIFORNIA 92008 (619) 931-8700 - TIMEIDATE OF STUDY: 21:52 41 411994 ...................................... ...................................... ...................................... ........................... DESCRIPTION OF STUDY .......................... k VILLAS HYDRAULICS * INLET SIZE CALCS 4 4-5-94. NODE 1.10 * * * .......................................................................... .- ............................................................................ >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< _""_"""""""""""""""""""""""~"""""""""""~ " CURB INLET CAPACITIES ARE APPROXIMATED BASED ON THE BUREAU OF PUBLIC ROADS NOMOGRAPH PLOTS FOR FLOWBY BASINS AND SUMP BASINS. - STREETFLOW (CFS) = 8.46 " BASIN LOCAL DEPRESSION(FEET) GUTTER FLOWDEPTH(FEET) = .45 FLOWBY BASIN WIDTH(FEET1 = 10.00 .30 - >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 20.3 >>>>CALCULATED ESTIMATED INTERCEPTION (CFS) 5.5 - ...................................... ...................................... - ............................................................................ HYDRAULIC ELEMENTS - I PROGRAM PACKAGE " (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) VER. 2.8A RELEASE DATE: 8/19/89 SERIAL X 3856 ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS , SUITE L BHA, INC. CARLSBAD CALIFORNIA 92008 (619) 931-8700 - ...................................... TIMEIDATE OF STUDY: 2:43 41 511994 ...................................... ...................................... .......................... DESCRIPTION OF STUDY .......................... f STREET DEPTH OF FLOW CALCULATION, NODE 1.10 AFTER 10 FT. INLET OPENING * * .......................................................................... * VILLAS HYDRAULICS 4/5/94 * - ............................................................................ *>>>STREETFLOW MODEL INPUT INFORMATION<<<< ...................................... CONSTANT STREET GRADE(FEETlFEET1 .OlOOOO CONSTANT STREET FLOW(CFS1 = AVERAGE STREETFLOW FRICTION FACTOR(MANN1NG) = .015000 3.00 CONSTANT SYMMETRICAL STREET CROSSFALL(DEC1MAL) .020000 CONSTANT SYMMETRICAL CURB HEIGTH(FEET) = CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET1 1.50 .50 CONSTANT SYMMETRICAL GUTTER-LIP (FEET) = CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) .03125 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET1 = 20.00 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS .12500 """_""""""""""""""""""""""""""""""""""- ...................................... STREETFLOW MODEL RESULTS: - STREET FLOWDEPTH(FEET) HALFSTREET FLOODWIDTH (FEET) 11.04 .35 AVERAGE FLOW VELOCITY (FEETISEC. ) = PRODUCT OF DEPTH&VELOCITY 2.24 .78 ...................................... - ...................................... ...................................... V-41 OFFICE STANDARD NO 108 ............................................................................. (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) - VER. 2.8A RELEASE DATE: 8/19/89 SERIAL # 3856 ANALYSIS PREPARED BY: HYDRAULIC ELEMENTS - I PROGRAM PACKAGE 5115 AVENIDA ENCINAS , SUITE L BHA, INC. CARLSBAD, CALIFORNIA 92008 (619) 931-8700 BHA. INC. 5115 AVENIDA ENCINAS , SUITE L CARLSBAD, CALIFORNIA 92008 (619) 931-8700 ...................................... - TIMEIDATE OF STUDY: 1:39 41 511994 .""""""""""""~""""""""""""""""""""""""" .""""""""""""""""""""""""""~"""""""""~"- ........................... DESCRIPTION OF STUDY .......................... * SUMP INLET SIZE CALCULATION, NODE 2.1 t VILLAS HYDRAULICS * -4 4/5/94 * * .......................................................................... ............................................................................ -*>>>SUMP TYPE BASIN INPUT INFORMATION<<<< ."""""""""""""""""""""""""""""""""""""- - CURB INLET CAPACITIES ARE APPROXIMATED BASED ON THE BUREAU OF PUBLIC ROADS NOMOGRAPH PLOTS FOR FLOWBY BASINS AND SUMP BASINS. BASIN INFLOW(CFS) 5.66 BASIN OPENING(FEET1 = .50 - DEPTH OF WATER(FEET1 .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH (FEET) = 3.04 ...................................... ""_"""""""""""""""""""""""""""""""""""- ............................................................................. (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) .~ VER. 2.8A RELEASE DATE: 8/19/89 SERIAL X 3856 HYDRAULIC ELEMENTS - I PROGRAM PACKAGE ANALYSIS PREPARED BY: BHA, INC. 5115 AVENIDA ENCINAS , SUITE L CARLSBAD, CALIFORNIA 92008 (619) 931-8700 - TIMEIDATE OF STUDY: 1:42 41 511994 """""""""""""""""""-""""""""""""""""""- _"""""""""""""""""""""""""""""""""""""- ...................................... ............................ DESCRIPTION OF STUDY .......................... 4 4/5/94 * SUMP INLET SIZE CALCULATION, NODE 8.3 t VILAS HYDRAULICS * * * .......................................................................... - ............................................................................ *>>>SUMP TYPE BASIN INPUT INFORMATION<<<< CURB INLET CAPACITIES ARE APPROXIMATED BASED ON THE BUREAU OF PUBLIC ROADS NOMOGRAPH PLOTS FOR FLOWBY BASINS AND SUMP BASINS. BASIN INFLOW(CFS) = BASIN OPENING(FEET) = 4.22 .50 - DEPTH OF WATER(FEET1 = .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH (FEET) 2.27 - ...................................... """""""""~""""""""""""""""""""""""""""- ............................................................................. (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) ANALYSIS PREPARED BY: HYDRAULIC ELEMENTS - I PROGRAM PACKAGE - VER. 2.8A RELEASE DATE: 8/19/89 SERIAL # 3856 5115 AVENIDA ENCINAS , SUITE L BHA, INC. CARLSBAD CALIFORNIA 92008 (619) 931-8700 - TIMEIDATE OF STUDY: 1:45 41 511994 ...................................... ...................................... _""""_""""""""""""""""""""""""""""""""" ........................... DESCRIPTION OF STUDY .......................... * SUMP INLET SIZE CALCULATION, NODE 19.1 t VILLAS HYDRAULICS * 4 4/5/94 * * .......................................................................... - ............................................................................ *>>>SUMP TYPE BASIN INPUT INFORMATION<<<< """"""""""~"""""""""""""""""""""""""""- - CURB INLET CAPACITIES ARE APPROXIMATED BASED ON THE BUREAU OF PUBLIC ROADS NOMOGRAPH PLOTS FOR FLOWBY BASINS AND SUMP BASINS. BASIN INFLOW(CFS) = BASIN OPENING(FEET) = 4.07 .50 - DEPTH OF WATER(FEET1 = .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH (FEET) = 2.19 - ...................................... ...................................... ............................................................................ (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) - VER. 2.8A RELEASE DATE: 8/19/89 SERIAL t 3856 ANALYSIS PREPARED BY: HYDRAULIC ELEMENTS - I PROGRAM PACKAGE - TIMEIDATE OF STUDY: 1:48 41 511994 ...................................... ...................................... """"""""~"""""""""""""""""""""""""""""- ........................... DESCRIPTION OF STUDY .......................... * SUMP INLET SIZE CALCULATION, NODE 23.1 t VILLAS HYDRAULICS * "4. 4/5/94 * * .......................................................................... "*>>>SUMP TYPE BASIN INPUT INFORMATION<<<< ............................................................................ ...................................... CURB INLET CAPACITIES ARE APPROXIMATED BASED ON THE BUREAU OF PUBLIC ROADS NOMOGRAPH PLOTS FOR FLOWBY BASINS AND SUMP BASINS. BASIN INFLOW(CFS) = 2.61 BASIN OPENING(FEET1 .50 - DEPTH OF WATER(FEET1 = .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH (FEET) = 1.40 - ........................................ ........................................... ............................................................................ HYDRAULIC ELEMENTS - I PROGRAM PACKAGE - (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) VER. 2.8A RELEASE DATE: 8/19/89 SERIAL f 3856 ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS , SUITE L BHA, INC. CARLSBAD CALIFORNIA 92008 (619) 931-8700 - """"""""""""~"""""""""""""""""""""""""- TIMEIDATE OF STUDY: 1:18 41 511994 ...................................... ...................................... -. .......................... DESCRIPTION OF STUDY .......................... * VILLAS HYDRAULICS * c 4/5/94 A SUMP INLET SIZE CALCULATION, NODE 8.1 * * .......................................................................... ............................................................................ *>>>SUMP TYPE BASIN INPUT INFORMATION<<<< - - ""_"""""""""""""""""""""""""""""""""""- CURB INLET CAPACITIES ARE APPROXIMATED BASED ON THE BUREAU OF PUBLIC ROADS NOMOGRAPH PLOTS FOR FLOWBY BASINS AND SUMP BASINS. - BASIN OPENING(FEET) = BASIN INFLOW(CFS) 6.85 .50 DEPTH OF WATER(FEET1 .83 - >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET1 3.68 """"~""""""""""""-""""""""""""""""""""" "~"_""""""""""""""""""""""""""""""""""" - ............................................................................. (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) ANALYSIS PREPARED BY: HYDRAULIC ELEMENTS - I PROGRAM PACKAGE -. VER. 2.8A RELEASE DATE: 8/19/89 SERIAL X 3856 5115 AVENIDA ENCINAS , SUITE L BHA, INC. CARLSBAD, CALIFORNIA 92008 (619) 931-8700 - TIMEIDATE OF STUDY: 1:21 41 511994 ....................................... ...................................... ."""""""""""""""""""""""""-"""""""""""" ........................... DESCRIPTION OF STUDY .......................... t VILLAS HYDRAULICS * SUMP INLET SIZE CALCULATION, NODE 17.1 * * * -$ 4/5/94 .......................................................................... - ............................................................................ *>>>SUMP TYPE BASIN INPUT INFORMATION<<<< ."""""~"""""""""""""""""""""""""""""""" CURB INLET CAPACITIES ARE APPROXIMATED BASED ON THE BUREAU OF PUBLIC ROADS NOMOGRAPH PLOTS FOR FLOWBY BASINS AND SUMP BASINS. - BASIN INFLOW(CFS) 3.88 BASIN OPENING(FEET1 .50 - DEPTH OF WATER(FEET) .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET1 2.09 - ...................................... ...................................... ............................................................................ HYDRAULIC ELEMENTS - I PROGRAM PACKAGE - (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) VER. 2.8A RELEASE DATE: 8/19/89 SERIAL Y 3856 ANALYSIS PREPARED BY: .- 5115 AVENIDA ENCINAS , SUITE L BHA, INC. CARLSBAD CALIFORNIA 92008 (619) 931-8700 - ...................................... TIMEIDATE OF STUDY: 23:lO 41 411994 _"""""""""""""""""""""""""""""""""""""- .~""""""""""""""""""""""""""""""""""""" - .......................... DESCRIPTION OF STUDY .......................... * VILLAS HYDRAULICS A SUMP INLET SIZE CALC. * * * 4/5/94 &ON /B,/ .......................................................................... - ............................................................................ .>>>SUMP TYPE BASIN INPUT INFORMATION<<<< ...................................... - PUBLIC ROADS NOMOGRAPH PLOTS FOR FLOWBY BASINS AND SUMP BASINS. CURB INLET CAPACITIES ARE APPROXIMATED BASED ON THE BUREAU OF BASIN INFLOW(CFS) = - BASIN OPENING(FEET1 = 6.66 DEPTH OF WATER(FEET1 .50 .83 -. >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 3.58 ...................................... ...................................... - 111. CALCULATIONS D. Hydraulic Analysis of Storm Drain System HYDROLOGY CALCULATION INDEX STORM DRAIN I.D.: CALCULATION1.D.: Line "A" Line "BI Line "C' Line "D" Line "E" Line "F' Line "G" Line "H Line "I" Line "J" Line "K" Line "L" Line "M" "Villas 6.DAT" "Villas 7.DAT" "Villas 8.DAT' "Villas 9.DAT" "Villas 1O.DAT" "Villas 5.DAT' "Villas 11.DAT' "Villas 12.DAT' "Villas 13.DAT' "Villas 1ADAT' "Villas 15.DAT' "Villas 16.DAT' "Villas 17.DAT" ....................................... ............................................................................. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE ~ (REFERENCE: LACFCD, LACRD, AND OCEMA HYDRAULICS CRITERION) (c) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) ANALYSIS PREPARED BY: VER. 4.3A RELEASE DATE: 5/17/90 SERIAL # 5610 - BHA, INC. 5115 AVENIDA ENCINAS, SUITE L CARLSBAD CALIFORNIA. 92008 (619) 931-8700 - .......................... DESCRIPTION OF STUDY .......................... t SECTION "C" LINE "A" * VILLAS HYDRAULICS * * * --C 3/22/94 REV. 4/5/94 .......................................................................... - """"""""""""""""""""""""""""""""""""""- FILE NAME: VILLAS6. DAT TIMEIDATE OF STUDY: 4:27 41 511994 - ............................................................................. """"""""""""""""""""""""""""""""""""""- - GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (NOTE: "*" INDICATES NODAL POINT DATA USED.) - NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ UPSTREAM RUN DOWNSTREAM RUN NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 31.20- 9. oo* 1892.90 .88 794.43 18.11- 4.78* 1065.64 1.70 Dc 497.78 3 FRICTION 3 JUNCTION 3 FRICTION 3 JUNCTION 3 FRICTION 3 HYDRAULIC JUMP 3 MANHOLE 1 FRICTION 3 JUNCTION 1 FRICTION 3 JUNCTION 3 FRICTION - - 18.12- 5.88* 1122.66 1.06 357.56 17.11- 3.12* 581.18 1.46 Dc 312.29 - 17.12- 15.11- 15.12- 1.83 244.11 .50* 435.37 - 9.11- 1.26*Dc 197.36 1.26*Dc 197.36 2.79* 228.16 .97 Dc 139.83 3.22* 397.70 .87 233.89 2.13 277.36 .50* 435.29 - 9.12- - 9.31- 3.58* 266.90 .97 Dc 139.83 9.32- 8.11- 7.74* 470.50 .97 Dc 139.83 5.48* 360.03 .97 Dc 139.83 - """"""""""""""""""""""""""""""""""""""- - MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 10 ."""""""""""""""""""""""""""""""""""""" NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST DESIGN MANUALS. -CONSERVATIVE FORMULAE FROM THE CURRENT LACRD'LACFCD, AND OCEMA ............................................................................. - DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 31.20 PIPE FLOW FLOWLINE ELEVATION = 239.00 22.94 CFS ASSUMED DOWNSTREAM CONTROL HGL = 248.000 PIPE DIAMETER 24.00 INCHES NODE 31.20 : HGL = e 248.000>;EGL= e 248.828>;FLOWLINE=.c 239.000> FLOW PROCESS FROM NODE UPSTREAM NODE 18.11 31.20 TO NODE ELEVATION = 243.67 (FLOW IS UNDER PRESSURE) 18.11 IS CODE 1 - ."""""""""""""""""~""""""""""""""""""""~ ............................................................................. """"""""""""""""""""""""""""""""""""""- - CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 22.94 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 43.77 FEET MANNING'S N .01300 HF=L*SF = ( 43.77)*( .01028) = .450 22.94) / ( 226.225) 1 **2 = .01028 - SF=(Q/K) **2 ( ( - NODE 18.11 : HGL e 248.450>;EGL= e 249.278>;FLOWLINE= e 243.670r """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. (FT/SEC) UPSTREAM DOWNSTREAM 16.42 22.94 24.00 60.00 244.00 1.46 5.227 24.00 LATERAL #1 243.67 .oo 1.70 . 00 7.302 LATERAL #2 . 00 .oo . 00 . 00 . 00 .oo .ooo . 00 . 00 . 000 6.52===05 EQUALS BASIN INPUT=== _"""""""""""""""""""""""""""""""""""""" NODE 18.12 : HGL = e 249.878>; EGL= 250.303>; FLOWLINE= < 244.000, """""""""""""""""""-""""""""""""""~""""- CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 16.42 CFS PIPE DIAMETER = 24.00 INCHES 16.42)/( 226.22511~2 .00527 SF=(Q/K) **2 ( ( HF=L*SF = ( 187.50)*( .00527) = .988 - PIPE LENGTH 187.50 FEET MANNING'S N .01300 - ....................................... - ........................... CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION - UPSTREAM DOWNSTREAM 10.70 18.00 20.00 248.08 16.42 LATERAL U1 24.00 - 247.75 2.45 - LATERAL #2 12.00 . 00 90.00 248.08 . 00 . 00 . 00 3.27===Q5 EQUALS BASIN INPUT=== a5 .............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 17.11 TO NODE 17.12 17.12 IS CODE 5 ELEVATION 248.08 (FLOW IS UNDER PRESSURE) ,- """"""""""" DEPTH(FT. 1 (FT/SEC) CRITICAL VELOCITY 1.26 1.46 6.055 5.227 .67 3.119 . 00 . 000 - LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1) UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .01038 -DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00527 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00782 JUNCTION LENGTH = 4.00 FEET -FRICTION LOSSES .031 FEET ENTRANCE LOSSES = .085 F JUNCTION LOSSES = ( .461)+( .031)+( .085) = .577 JUNCTION LOSSES (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) :EET NODE 17.12 : HGL = < 251.298>;EGL= e 251.867>;FLOWLINE= e 248.080~ """"""""""""""""""""""""""""""""""""""- -FLOW PROCESS FROM NODE UPSTREAM NODE 17.12 TO NODE 15.11 15.11 IS CODE = 1 ELEVATION 250.35 (HYDRAULIC JUMP OCCURS) ............................................................................. """"""""""""""""""""""""""""""""""""""- ~ ~~~ - CALCULATE FRICTION LOSSES(LACFCD): .PIPE FLOW 10.70 CFS PIPE LENGTH = 113.60 FEET PIPE DIAMETER = 18.00 INCHES MANNING'S N = .01300 - HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS -----------""-----""""""""""""""""""""""""""""~ .----------"-----"""""""""""""""""""""""""""""~ NORMAL DEPTH(FT) .94 CRITICAL DEPTH (FT) 1.26 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""-"""""""""""""""""" UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = .50 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""-"""""""" ~~ ." - GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ."""""""""""""""""""""""""""""""""""""-- DISTANCE FROM .ooo 9.964 20.270 - 31.031 42.416 54.694 84.130 68.316 104.035 113.600 - CONTROL(FT1 - FLOW DEPTH (FT) .501 .546 .590 .634 .678 .722 .766 .855 .810 .869 VELOCITY (FT/SEC) 20.663 18.417 16.583 15.063 13.788 12.706 11.779 10.980 10.285 10.083 ENERGY (FT) SPECIFIC 7.135 5.816 4.863 4.159 3.632 3.231 2.922 2.498 2.684 2.448 PRESSURE+ MOMENTUM(P0UNDS) ~~~~~~~~~ 435.29 390.23 353.88 324.22 299.81 279.60 248.80 262.79 237.16 233.89 - .------"------""""""""""""""~"""""~""""""""""" HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS - DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 3.22 .................................... ------------""""""""""""""""""""""""""""""""~ - ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""~"""""""""~""""""" PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE VELOCITY HEAD(FT) (FT/SEC) SPECIFIC ENERGY (FT) PRESSURE+ MOMENTUM(P0UNDS) .- . 000 3.218 6.055 3.787 113.600 2.127 6.055 2.696 277.36 397.70 .""""""""""" END OF. HYDRAULIC JUMP ANALYSIS------------------------ PRESSURE+MOMENTUM BALANCE OCCURS AT 78.20 FEET UPSTREAM OF NODE 17.12 I DOWNSTREAM DEPTH 2.467 FEET, UPSTREAM CONJUGATE DEPTH = .651 FEET I NODE 15.11 : HGL = < 250.851>; EGL= 257.485; FLOWLINE=- < 250.350s """"""""""""""""""""""""""""""""""""""- - ."""""""""""""""""""""""""""""""""""""" ............................................................................. FLOW PROCESS FROM NODE 15.11 TO NODE UPSTREAM NODE 15.12 IS CODE 2 - 15.12 ELEVATION 250.68 (FLOW IS SUPERCRITICAL) ."""""""""""""""""""""""""""""""""""""" CALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW 10.70 CFS PIPE DIAMETER 18.00 INCHES HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 6.635) .332 -AVERAGED VELOCITY HEAD = 6.635 FEET """"""""""""""""""""""""""""""""""""""- - NODE 15.12 : HGL 251.181s; EGL= < 257.817>; FLOWLINE= 250.680r ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES (LACFCD) : PIPE LENGTH 41.00 FEET MANNING'S N = .01300 -PIPE FLOW = 10.70 CFS PIPE DIAMETER = 18.00 INCHES -------------"-----"~""""""""""""""""""""""""""" - NORMAL DEPTH(FT) = .42 CRITICAL DEPTH (FT) 1.26 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- ~~ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.26 ~ ~ .~ ~. """"""""""""""""""""""""""""""""""""""- """""""""""""""""""""""""""""""""""-""" -GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ."""""""""""""""""""""""""""""""""""""" DISTANCE FROM .ooo .041 - .184 .964 .469 1.786 3.149 5.494 9.882 - 19.893 41.000 - CONTROL(FT) - FLOW DEPTH VELOCITY (FT) (FT/SEC) 1.255 1.172 6.772 1.088 7.790 7.222 1.005 8.502 .921 .838 9.399 10.542 .754 .670 12.024 .587 13.992 .503 16.691 .501 20.557 20.666 ENERGY (FT) SPECIFIC 1.968 1.982 2.031 2.128 2.294 3.001 2.564 3.712 4.916 7.069 7.137 MOMENTUM(P0UNDS) PRESSURE+ 197.36 198.70 203.03 210.95 223.31 241.41 267.18 303.69 356.01 433.16 435.37 "---------------""----"""""""""""""""""""""""""" - NODE 9.11 : HGL = < 266.475>; EGL= < 267.188>;FLOWLINE= 265.2202 ............................................................................. FLOW PROCESS FROM NODE 9.11 TO NODE 9.12 9.12 IS CODE = 5 ELEVATION = 265.55 (FLOW IS AT CRITICAL DEPTH) - UPSTREAM NODE ....................................... ~ ~ ~ ~ ~~~ ~ ~~. CALCULATE JUNCTION LOSSES: ~- PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 05 (CFS) (INCHES) (DEGREES) ELEVATION 10.70 6.85 12.00 80.00 265.55 18.00 2.93 12.00 265.22 . 00 . 00 90.00 . 00 265.55 .92===05 EQUALS BASIN INPUT=== . 00 - DEPTH (FT. 1 .97 1.26 .73 . 00 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .03697 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .01001 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES = .094 FEET ENTRANCE LOSSES = .143 F DY=(Q2*V2-Ql*Vl*COS(DELTA1)-03*V3*COS(DELTA3)- " Q4*V4*COS (DELTA41 1 / ( (Al+A2) 46.1) ~- AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02349 JUNCTION LOSSES = (DY+HVl-HVE) + (FRICTION LOSS) + (ENTRANCE LOSSES) "JUNCTION LOSSES ( 2.100)+( .094)+( .143) = 2.336 ."""""""""""""""""""""""""""""""" NODE 9.12 : HGL = 268.343>;EGL= < 269.524>;FLOWLINE= < - (FT/SEC) 8.722 6.774 3.731 . 000 :EET ."""""" 265.550* t**************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 9.12 TO NODE 9.31 IS CODE = 1 - 9.31 ELEVATION = 265.84 (FLOW IS UNDER PRESSURE) _"""""""""""""""""""""""""""- CALCULATE FRICTION LOSSES (LACFCD) : - PIPE LENGTH = PIPE FLOW = 29.23 FEET 6.85 CFS MANNING'S N PIPE DIAMETER = SF=(Q/K) **2 ( ( 6.85) / ( HF=L*SF ( 29.23)*( .03697) = 35.628))**2 = .03697 1.081 """"""""""_ 12.00 INCHES .01300 - ----------""------""""""""""""""""""""""""""""~ NODE 9.31 : HGL < 269.424>;EGL= < 270.605>;FLOWLINE= < 265.840> -FLOW PROCESS FROM NODE UPSTREAM NODE 9.31 TO NODE 9.32 9.32 IS CODE 5 ELEVATION 266.17 (FLOW IS UNDER PRESSURE) ............................................................................. - """""" ,""""" CRITICAL DEPTH (FT. ) .97 .97 . 00 . 00 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE . MANNING'S N = .01300; FRICTION SLOPE = . AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .03697 JUNCTION LENGTH 2.00 FEET FRICTION LOSSES = .074 FEET ENTRANCE LOSSES = JUNCTION LOSSES = ( 2.156)+( .074)+( .OOO) 2.230 - DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*Y3*COS(DELTA3)- 04*V4*COS(DELTA4))/((Al+A2)*16.1) - - JUNCTION LOSSES = (DY+HVl-HVP) + (FRICTION LOSS)+(ENTRANCE 03697 03697 i LOSSES) .OOO F VELOCITY (FT/SEC) 8.722 8.722 . 000 . 000 :EET - NODE - FLOW PROCESS FROM NODE 9.32 TO NODE 8.11 IS CODE 1 -"""""""""""""""""""""""""""""""""""""" 9.32 : HGL = < 271.654>;EGL= < 272.835>;FLOWLINE= < 266.170, ............................................................................. - UPSTREAM NODE 8.11 ELEVATION = 267.00 (FLOW IS UNDER PRESSURE) -CALCULATE FRICTION LOSSES(LACFCD1: - SF=(Q/K)**2 (( 6.85) / ( 35.628) 1 **2 = .03697 _"""""""""""""""""""""""""""""""""""""" PIPE FLOW = 6.85 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH 83.43 FEET MANNING'S N = .01300 HF=L*SF = ( 83.43)*( .03697) = 3.084 NODE 8.11 : HGL = 274.738>; EGL= 275.919>; FLOWLINE= < 267.000, _"_""""""""""""""""""""""""""""""""""""~ - ............................................................................. UPSTREAM PIPE FLOW CONTROL DATA: ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 267.00 267.97 FOR DOWNSTREAM RUN ANALYSIS - NODE NUMBER = 8.11 """"""""""""""""""""""""""""""""-"""""" ....................................... - END OF GRADUALLY VARIED FLOW ANALYSIS ............................................................................. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (REFERENCE: LACFCD, LACRD, AND OCEMA HYDRAULICS CRITERION) ....................................... - (c) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) VER. 4.3A RELEASE DATE: 5/17/90 SERIAL # 5610 ANALYSIS PREPARED BY: - 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 (619) 931-8700 -t SECTION "C" LINE "B" .......................... DESCRIPTION OF STUDY .......................... * * 3/22/94 REV. 4/6/94 t VILLAS HYDRAULICS * * - .......................................................................... - FILE NAME: VILLAS7. DAT """"""""""""""""""""""""""""""""""""""- TIMEIDATE OF STUDY: 21:lO 41 511994 - ....................................... 9.13- 2.79* > FRICTION > JUNCTION > FRICTION > MANHOLE > FRICTION > HYDRAULIC JUMP > MANHOLE > FRICTION > JUNCTION 133.41 2.24* 106.29 69.66 1.57* 57.83 58.60 85.76 2.89 86.54 38.02 - 10.21- 10.22- 2.11* - 8.41- -~ 8.42- 1.60* 8.31- 2.85 - 8.32- 4.11- .64*Dc - 4.13- 2.12* 5.11- .62 Dc 26.28 5.12- > FRIC~TION > HYDRAULIC JUMP > MANHOLE > FRICTION 58.29 - .67 26.78 .69 .73 Dc .52 .64 Dc .64 Dc .25* .25* .64*Dc .37 .35* .34* 39.~73. 39.54 41.33 38.02 38.02 89.27 91.52 38.02 35.99 38.48 39.41 - 6.11- ~~ .62*Dc 26.28 .62*Dc 26.28 -----------"-------""""""""""""""""""""""""""""~ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 10 .- ---------"------"""""""""""""""""""""""""""""" - NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD'LACFCD, AND OCEMA DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER -PIPE FLOW = 9.13 FLOWLINE ELEVATION = 265.55 2.93 CFS PIPE DIAMETER 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 268.340 - DESIGN MANUALS. ............................................................................. """"""""""""""""""""""""""""""""""""""- - NODE 9.13 : HGL = < 268.340>;EGL= < 268.556>;FLOWLINE= 265.550s ............................................................................. - UPSTREAM NODE FLOW PROCESS FROM NODE 9.13 TO NODE 10.21 10.21 IS CODE = 1 ELEVATION 267.26 (FLOW IS UNDER PRESSURE) -"""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD): -PIPE FLOW = PIPE LENGTH = 2.93 CFS PIPE DIAMETER = 12.00 INCHES 171.00 FEET MANNING'S N .01300 SF=(Q/K)**2 (( 2.93)/( 35.628))**2 .00676 - HF=L*SF ( 171.00)*( .00676) = 1.157 """"""""""""""""""""""""""""""""""""""- NODE 10.21 : HGL < 269.496>; EGL= < 269.713>; FLOWLINE= 267.260s - ............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 10.22 10.21 TO NODE ELEVATION = 267.26 (FLOW IS UNDER PRESSURE) 10.22 IS CODE = 5 ....................................... CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY .- (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. I (FT/SEC) UPSTREAM DOWNSTREAM 2.36 8.00 30.00 2.93 12.00 267.26 .64 6.761 LATERAL #1 267.26 .57 8.00 .73 90.00 3.731 " LATERAL #2 . 00 267.26 .35 1.633 -00 .oo .oo .oo . 000 .00===Q5 EQUALS BASIN INPUT=== - (15 -LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1) - UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = . DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE . AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02245 JUNCTION LENGTH = 1.50 FEET - FRICTION LOSSES .034 FEET ENTRANCE LOSSES JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE JUNCTION LOSSES ( .336)+( .034)+( .OOO) = .369 03814 00676 i LOSSES) .OOO F :EET ....................................... NODE 10.22 : HGL 269.372>;EGL= < 270.082>;FLOWLINE= 267.260> ............................................................................. _- FLOW PROCESS FROM NODE 10.22 TO NODE 8.41 IS CODE 1 UPSTREAM NODE 8.41 ELEVATION = 270.93 (FLOW IS UNDER PRESSURE) """"""""""""""""""""""""""""""""""""""- -CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.36 CFS PIPE LENGTH = 81.97 FEET MANNING'S N .01300 HF=L*SF ( 81.97)*( .03814) 3.126 PIPE DIAMETER 8.00 INCHES 2.36)/( - SF=(Q/K)**2 (( 12.084) 1 **2 .03814 """"""""""""""""""""""""""""""""""""""- .- NODE 8.41 : HGL = < 272.499r; EGL= < 273.208>;FLOWLINE= < 270.930r --FLOW PROCESS FROM NODE UPSTREAM NODE 8.41 TO NODE 8.42 8.42 IS CODE 2 ELEVATION 270.93 (FLOW IS UNDER PRESSURE) ............................................................................. CALCULATE MANHOLE LOSSES(LACFCD): FLOW VELOCITY = 6.76 FEET/SEC. VELOCITY HEAD = HMN = .05*(VELOCITY HEAD) = .05*( .7101 .710 FEET .035 .-PIPE FLOW = 2.36 CFS PIPE DIAMETER = 8.00 INCHES - _"""""""""""""""""""""""""""""""""""""" NODE 8.42 : HGL = c 272.534>;EGL= c 273.244>;FLOWLINE=.c 270.930> FLOW PROCESS FROM NODE UPSTREAM NODE 8.42 TO NODE 8.31 8.31 IS CODE = 1 ELEVATION = 272.31 (HYDRAULIC JUMP OCCURS) ............................................................................. """"""""""""""""""""""""""""""""""""""- -CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.36 CFS PIPE LENGTH 68.88 FEET MANNING'S N = .01300 PIPE DIAMETER = 8.00 INCHES """"""""""""""""""""""""""""""""""""""- HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) = .67 CRITICAL DEPTH (FT) = .64 """"""""""""""""""""""""""""""""""""""- _"""""""""""""""""""""""""""""""""""""" ....................................... UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = .25 ""_"""""""""""""""""""""""""""""""""""" ....................................... GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: "_""""""""""""""""""""""""""""""""""""" - DISTANCE FROM CONTROL(FT1 6.178 . 000 - 12.312 18.379 24.349 - 30.179 35.779 40.977 - 45.452 48.668 49.905 - 68.880 FLOW DEPTH (FT) .254 .293 .332 .371 .410 .449 .488 .527 .566 .606 .645 .645 VELOCITY (FT/SEC) 19.338 15.983 13.590 11.820 10.474 8.611 9.430 7.966 7.463 7.083 6.828 6.828 ENERGY(FT1 SPECIFIC 6.064 4.262 3.202 2.542 2.115 1.831 1.640 1.513 1.432 1.385 1.369 1.369 MOMENTUM(P0UNDS) PRESSURE+ 89.27 74.25 63.70 56.05 50.41 46.22 43.11 40.86 39.30 38.36 38.02 38.02 ....................................... HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ....................................... ....................................... -DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 = 1.60 ""_"""""""""""""""""""""""""""""""""""" """"""""""""""""""""""-"""""""""""""""" PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) PRESSURE VELOCITY HEAD(FT1 (FT/SEC) SPECIFIC ENERGY(FT1 MOMENTUM(P0UNDS) PRESSURE+ .ooo 1.604 6.761 2.314 68.880 2.851 6.761 3.561 ~~ ~. - 58.60 85.76 .""""""""""" END OF HYDRAULIC JUMP ANALYSIS------------------------ PRESSURE+MOMENTUM BALANCE OCCURS AT 67.16 FEET UPSTREAM OF NODE 8.42 I .- DOWNSTREAM DEPTH 2.820 FEET, UPSTREAM CONJUGATE DEPTH = .265 FEET I "---""--------------""""""""""""""""""""""""""" NODE 8.31 : HGL = < 272.564s;EGLz c 278.374>;FLOWLINE= c 272.310r - ............................................................................. FLOW PROCESS FROM NODE 8.31 TO NODE 8.32 IS CODE 2 CALCULATE MANHOLE LOSSES(LACFCD): AVERAGED VELOCITY HEAD = 5.962 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 5.962) = .298 -UPSTREAM NODE 8.32 ELEVATION = 272.31 (FLOW IS SUPERCRITICAL) ."""""""""""""""""""""""""""""""""""""" -PIPE FLOW = 2.36 CFS PIPE DIAMETER = 8.00 INCHES """_""""""""""""""""""""""""""""""""""" - NODE 8.32 : HGL = 272.559>;EGL= 278.673*;FLOWLINE= < 272.310> -FLOW PROCESS FROM NODE ............................................................................. 8.32 TO NODE 4.11 IS CODE = 1 UPSTREAM NODE 4.11 ELEVATION 296.52 (FLOW IS SUPERCRITICAL) - CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.36 CFS PIPE DIAMETER = 8.00 INCHES PIPE LENGTH 56.00 FEET MANNING'S N .01300 - NORMAL DEPTH(FT) = .25 CRITICAL DEPTH (FT) = .64 """"""""""""""""""""""""""""""""""""""- """""""""""""""""""""-""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = .64 ....................................... """"""""""""""""""""""""""""""""""""""- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- DISTANCE FROM .ooo .041 .162 .375 .712 - 1.235 3.376 2.050 10.800 5.726 56.000 - CONTROL(FT) - - FLOW DEPTH (FT) .645 .605 .565 .526 .486 .447 .407 .368 .328 .289 .249 VELOCITY (FT/SEC) 6.828 7.087 7.474 7.987 8.647 9.486 10.560 11.952 13.791 16.295 19.837 ENERGY (FT) SPECIFIC 1.369 1.386 1.433 1.517 1.648 1.845 2.140 2.587 3.283 4.414 6.363 PRESSURE+ MOMENTUM(P0UNDS) 38.02 38.37 39.33 40.93 43.24 46.44 50.77 56.62 64.58 75.64 91.52 - NODE ....................................... 4.11 : HGL 297.165>; EGL= < 297.889>; FLOWLINE= < 296.520> ............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 4.11 TO NODE 4.13 ELEVATION 296.52 (FLOW IS AT CRITICAL DEPTH) 4.13 IS CODE 5 ~ ~ ~. ~ ~. . ~. ~. ~. - ."""""""""""""""""""""""""""""""""""""" - CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY UPSTREAM (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 1.87 - DOWNSTREAM 8.00 90.00 296.52 2.36 8.00 .62 5.357 LATERAL #1 - 296.52 .64 .49 8.00 80.00 .33 1.404 6.830 LATERAL 82 296.52 . 00 . 00 . 00 . 00 . 00 .ooo Q5 - .OO===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ol*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- - Q4*V4*COS (DELTA4) ) / ( (Al+A2) *16.1) . - - - . - - - . . . . . UPSTREAM: MANNING'S. N '=- ~:Oi30oI-. FRICTION SLOPE .02395 DOWNSTREAM: MANNING'S N .01300; FRICTION SLOPE .03346 -AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02870 -FRICTION, LOSSES = .043 FEET ENTRANCE LOSSES = .OOO FEET JUNCTION LENGTH = 1.50 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.152)+( .043)+( .OOO) = 1.195 - ....................................... NODE 4.13 : HGL = < 298.638r;EGL= 299.084r;FLOWLINE= < 296.520r -FLOW PROCESS FROM NODE 4.13 TO NODE 5.11 IS CODE = 1 ............................................................................. UPSTREAM NODE 5.11 ELEVATION = 301.00 (HYDRAULIC JUMP OCCURS) """"""""""""""""""""""""""""""""""""""- -CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.87 CFS PIPE LENGTH = 67.67 FEET MANNING'S N .01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = .37 CRITICAL DEPTH (FT) = .62 PIPE DIAMETER 8.00 INCHES - """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" ....................................... """"""""""""""""""""""""""""""""""""""- UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) .35 """"""""""""""""""""""""""""""""""""""- ....................................... -GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ."""""""""""""""""""""""""""""""""""""" DISTANCE FROM . 000 1.640 3.451 5.480 10.496 7.793 - 13.762 17.922 23.712 33.500 67.670 - CONTROL(FT) - - FLOW DEPTH (FT) .348 .350 .353 .355 .358 .360 .363 .365 .368 .370 .370 VELOCITY (FT/SEC) 10.144 10.054 9.966 9.879 9.794 9.710 9.628 9.547 9.467 9.389 9.384 SPECIFIC ENERGY (FT) 1.947 1.921 1.896 1.872 1.848 1.825 1.803 1.781 1.760 1.740 1.739 """"""""""""""""""""""""""""""""""""""- . HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 2.12 ....................................... ....................................... """"""""""""""""""""""""""""""""""""""- ....................................... - PRESSURE FLOW PROFILE COMPUTED INFORMATION: ....................................... DISTANCE FROM CONTROL(FT1 PRESSURE VELOCITY HEAD(FT) (FT/SEC) SPECIFIC ENERGY (FT) MOMENTUM(POUNDS1 PRESSURE+ ~ . 000 2.118 5.357 2.564 58.29 .667 5.357 1.112 26.67 34.354 ....................................... ....................................... -ASSUMED DOWNSTREAM PRESSURE HEAD(FT1 .67 """"""_"""""""""""""""""""""""""""""""" """"""_"""""""""""""""""""""""""""""""" GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""_"""""""""""""""""""""""""""""""" - DISTANCE FROM CONTROL(FT) 34.354 - 34 I 448 34.521 34.581 - 34.630 34.671 FLOW DEPTH (FT) .667 .662 .657 .652 .647 -641 VELOCITY (FT/SEC) 5.355 5.361 5.372 5.387 5.403 5.422 ENERGY (FT) SPECIFIC 1.112 1.108 1.105 1.102 1.100 1.098 34.703 34.728 .636 5.444 1.097 .631 5.467 34.745 1.096 .626 34.756 .621 5.492 5.518 1.095 34.759 1.094 - .616 67.670 .616 5.547 1.094 5.547 1.094 PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = 1.095 FEET, UPSTREAM CONJUGATE DEPTH " 24.22 FEET UPSTREAM OF - .""""""""""" END OF HYDRAULIC JUMP ANALYSIS--------- 26.34 26.31 26.30 26.29 26.28 26.28 NODE = .370 FEET I 4.13 I """""""_ ."""""""""""""""""""""""""""""""""""""" NODE 5.11 : HGL = 301.348>;EGL= 302.947>;FLOWLINE=-< 301.000> - ............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 5.11 TO NODE 5.12 IS CODE = 2 - 5.12 ELEVATION 301.00 (FLOW IS SUPERCRITICAL) ."""""""""""""""""""""""""""""""""""""" CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW 1.87 CFs HMN .05*(AVERAGED VELOCITY HEAD) = .05*( 1.644) = .082 ~~ ~~. . PIPE DIAMETER 8.00 INCHES -AYERAGED VELOCITY HEAD = 1.644 FEET - NODE 5.12 : HGL < 301.341>;EGL= < 303.029r;FLOWLINE= < 301.000> """"""""""""""""""""""""""""""""""""""- ............................................................................. FLOW PROCESS FROM NODE -UPSTREAM NODE 5.12 TO NODE 6.11 6.11 IS CODE 1 ELEVATION = 302.48 (FLOW IS SUPERCRITICAL) ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD): PIPE LENGTH 8.52 FEET MANNING'S N .01300 -PIPE FLOW 1.87 CFS PIPE DIAMETER = 8.00 INCHES """"""""""""""""""""""""""""""""""""""- - NORMAL DEPTH(FT) = .28 CRITICAL DEPTH (FT) .62 """"""""""""""""""""""""""""""""""""""- ....................................... UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = .62 -GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- ....................................... """"_"""""""""""""""""""""""""""""""""" DISTANCE FROM .ooo .045 - .189 .455 .887 1.558 2.598 4.260 7.131 - 8.520 - CONTROL(FT1 - FLOW DEPTH (FT) .616 .583 .549 .516 .482 .449 .415 .382 .348 .341 VELOCITY (FT/SEC) 5.547 5.776 6.076 6.451 6.913 7.480 8.178 9.044 10.133 10.425 ENERGY (FT) SPECIFIC 1.094 1.101 1.123 1.162 1.225 1.454 1.653 1.944 2.029 1.318 , MOMENTUM(P0UNDS) PRESSURE+ 26.28 26.43 26.85 27.59 28.68 30.19 32.22 34.90 38.44 39.41 """_""""""""""""""""""""""""""""""""""" NODE 6.11 : HGL < 303.096>;EGL= < 303.574>;FLOWLINE= < 302.480> - ............................................................................. UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6.11 ASSUMED UPSTREAM CONTROL HGL 303.10 FOR DOWNSTREAM RUN ANALYSIS FLOWLINE ELEVATION = 302.48 ....................................... """_""""""""""""""""""""""""""""""""""" ~- END OF GRADUALLY VARIED FLOW ANALYSIS -,"""""""""""""""""""""""""""""""""""""" ............................................................................. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE - (REFERENCE: LACFCD LACRD, AND OCEMA HYDRAULICS CRITERION) (c) COPYRIGHT 1982-60 ADVANCED ENGINEERING SOFTWARE (AES) VER. 4.3A RELEASE DATE: 5/17/90 SERIAL X 5610 ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 (619) 931-8700 "c 3/22/94 * VILLAS HYDRAULICS * * .......................................................................... ."""""""""""""""""""""""""""""""""""""" FILE NAME: VILLAS8.DAT - TIMEIDATE OF STUDY: 8:40 3/22/1994 _"""""""""""""""""""""""""""""""""""""" ~ - NODE NUMBER 4.12- 3 3.31- > - 3.32- > 3.11- - ............................................................................. GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (NOTE: "*" INDICATES NODAL POINT DATA USED.) UPSTREAM RUN MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ DOWNSTREAM RUN PROCESS HEAD(FT) MOMENTUM(P0UNDS) DEPTH(FT) MOMENTUM(P0UNDS) FRICTION MANHOLE FRICTION 2.12* 39.48 .24 2.57 1.78* 1.78* 32.05 .24 2.57 .75* 9.68 .27 Dc 2.53 32.03 .26 Dc 2.53 . - MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST ~~~~~~~" ~- CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA' DESIGN MANUALS. - DOWNSTREAM PIPE FLOW CONTROL DATA: ............................................................................. NODE NUMBER = 4.12 PIPE FLOW = FLOWLINE ELEVATION = 296.52 ASSUMED DOWNSTREAM CONTROL HGL = 298.638 .33 CFS PIPE DIAMETER = 8.00 INCHES - """"_"""""""""""""""""""""""""""""""""" NODE 4.12 : HGL = 298.638*; EGL= 298.652>; FLOWLINE= 296.520> .............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 4.12 TO NODE 3.31 IS CODE 1 3.31 ELEVATION = 296.89 (FLOW IS UNDER PRESSURE) - ....................................... CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = .33 CFS PIPE DIAMETER 8.00 INCHES SF=(Q/K)**2 = (( .33)/ ( 12.085) **2 = .00075 -PIPE LENGTH 37.90 FEET MANNING'S N = .01300 HF=L*SF ( 37.90)*( .00075) = .028 NODE 3.31 : HGL = < 298.666>;EGL= < 298.680>;FLOWLINE= < 296.8902 """"""""""""""""""""""""""""""""""""""- - -FLOW PROCESS FROM NODE 3.31 TO NODE 3.32 IS CODE = 2 ............................................................................. UPSTREAM NODE 3.32 ELEVATION 296.89 (FLOW IS UNDER PRESSURE) - CALCULATE MANHOLE LOSSES (LACFCD) : ~ HMN = .05*(VELOCITY HEAD) = .05*( .014) = . 000 PIPE FLOW = .33 CFS PIPE DIAMETER 8.00 INCHES FLOW VELOCITY = .95 FEET/SEC. VELOCITY HEAD .014 FEET ."""""""""""""""""""""""""""""""""""""" NODE 3.32 : HGL < 298.667>;EGL= < 298.681>;FLOWLINE= < 296.890> FLOW PROCESS FROM NODE 3.32 TO NODE UPSTREAM NODE 3.11 ELEVATION 298.00 (FLOW IS UNDER PRESSURE) 3.11 IS CODE 1 CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW .33 CFS PIPE DIAMETER = 8.00 INCHES PIPE LENGTH = 111.50 FEET MANNING'S N .01300 HF=L*SF = ( 111.50)*( .00075) = .083 .............................................................................. ....................................... - - SF=(Q/K) **2 = ( ( .33)/( 12.086) 1 **2 = .00075 """"""""""""""""""""""""""""""""""""""- - NODE 3.11 : HGL = < 298.750>;EGL= < 298.764>;FLOWLINE= < 298.000> ............................................................................. - UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER 3.11 FLOWLINE ELEVATION = 298.00 ASSUMED UPSTREAM CONTROL HGL = 298.27 FOR DOWNSTREAM RUN ANALYSIS """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- END OF GRADUALLY VARIED FLOW ANALYSIS - ....................................... ............................................................................. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (REFERENCE: LACFCD, LACRD, AND OCEMA HYDRAULICS CRITERION) - (c) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) VER. 4.3A RELEASE DATE: 5/17/90 SERIAL X 5610 ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 (619) 931-8700 ........................... DESCRIPTION OF STUDY .......................... t SECTION "C" LINE "D" * * VILLAS HYDRAULICS * - * 3/22/94 REV. 4/6/94 * .......................................................................... - _"""""""""""""""""""""""""""""""""""""" TIMEIDATE OF STUDY: 21:34 41 511994 FILE NAME: VILLAS9.DAT - ............................................................................. """"""""""""""""""""""""""""""""""""""- - GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (NOTE: "*" INDICATES NODAL POINT DATA USED.) UPSTREAM RUN DOWNSTREAM RUN - NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT1 MOMENTUM(P0UNDS) DEPTH(FT1 MOMENTUM(P0UNDS) 17.13- 3.22* 148.11 .61 31.43 14.11- 2.11* 93.84 .67 Dc 31.05 - 14.12- 2.34* 97.87 .42 22.54 1.09* 36.77 .56 Dc 20.04 - 14.22- 1.27~ .24 25.54 13.11- .49*Dc 14.19 .49*Dc 14.19 13.12- 17.10 .41 8.44 12.11- .43*Dc 8.39 .43*Dc 8.39 > FRICTION > JUNCTION > FRICTION 1 JUNCTION > FRICTION 1 HYDRAULIC JUMP > JUNCTION > FRICTION 1 HYDRAULIC JUMP .- 14.21- 42.22 - .94* - -"""""""""""""""""""""""""""""""""""""" MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 10 -"""""""""""""""""""""""""""""""""""""" - NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER PIPE FLOW 17.13 2.45 CFS FLOWLINE ELEVATION = 248.08 PIPE DIAMETER = 12.00 INCHES - ASSUMED DOWNSTREAM CONTROL HGL = 251.300 - ............................................................................. -NODE 17.13 : HGL = e 251.300>; EGL= e 251.451>;FLOWLINE= e 248.080r """"""""""""""""""""""""""""""""""""""- ............................................................................. FLOW PROCESS FROM NODE 17.13 TO NODE 14.11 IS CODE = 1 -UPSTREAM NODE 14.11 ELEVATION = 250.18 (FLOW IS UNDER PRESSURE) ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD) : PIPE LENGTH = 209.88 FEET MANNING'S N .01300 SF=(Q/K) **2 = ( ( 2.45)/( 35.628) 1 **2 = .00473 --PIPE FLOW = 2.45 CFS PIPE DIAMETER = 12.00 INCHES -HF=L*SF = ( 209.88)*( .00473) .992 ."""""""""""""""""""""""""""""""""""""" NODE 14.11 : HGL = < 252.292>;EGL= < 252.444>;FLOWLINE= < 250.180r - ............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 14.11 TO NODE 14.12 IS CODE 5 14.12 ELEVATION = 250.18 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW (CFS) (INCHES) DIAMETER UPSTREAM 1.76 12.00 DOWNSTREAM 2.45 12.00 LATERAL #1 - LATERAL #2 .69 8.00 . 00 . 00 .00===05 EQUAL ~~ 05 (DEGREES) ELEVATION ANGLE FLOWLINE 80.00 250.18 - 250.18 5.00 250.18 .oo . 00 .S BASIN INPUT=== CRITICAL DEPTH(FT. 1 .56 .67 .39 .oo -LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ol*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- UPSTREAM: -~ DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE .00473 MANNING'S N .01300; FRICTION SLOPE = .00244 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00358 JUNCTION LENGTH = 2.00 FEET Q4*V4*COS (DELTA41 1 / ( (Al+A2) *16.1) -FRICTION LOSSES = .007 FEET ENTRANCE LOSSES = .OOO F JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( .148)+( .007)+( .OOO) .155 NODE 14.12 : HGL = < 252.521*;EGL= < 252.599>;FLOWLINE= """"""""""""""-"""""""""""""""""" _- VELOCITY (FT/SEC) 2.241 3.119 1.977 . 000 :EET ."""""" 250.180r - FLOW PROCESS FROM NODE UPSTREAM NODE 14.12 TO NODE 14.21 14.21 IS CODE = 1 ELEVATION = 251.60 (FLOW IS UNDER PRESSURE) ............................................................................. ....................................... -CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.76 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 71.00 FEET MANNING'S N = .01300 HF=L*SF = ( 71.00)*( .00244) = .173 1.76) / ( " SF=(Q/K) **2 = ( ( 35.628) 1 **2 = .00244 """"""""""""""""""""""""""""""""""""""- NODE 14.21 : HGL = < 252.694>;EGL= < 252.772>;FLOWLINE= < 251.600, __ ............................................................................. FLOW PROCESS FROM NODE 14.21 TO NODE 14.22 IS CODE = 5 CALCULATE JUNCTION LOSSES: - UPSTREAM NODE 14.22 ELEVATION = 251.60 (FLOW IS UNDER PRESSURE) ....................................... ~- PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.1 (FT/SEC) FLOWLINE CRITICAL VELOCITY UPSTREAM 1.35 12.00 90.00 251.60 .49 1.719 LATERAL #1 . 00 . 00 . 00 . 00 . 00 . 000 LATERAL #2 . 00 . 00 . 00 . 00 . 00 . 000 - DOWNSTREAM 1.76 12.00 - 251.60 .56 2.241 - 05 .41===05 EOUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: DOWNSTREAM: MANNING'S N .01300; FRICTION SLOPE = .00244 MANNING'S N = .01300; FRICTION SLOPE = .00144 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = .004 FEET ENTRANCE LOSSES = .016 FEET DY=(02*V2-Ol*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- - O4*V4*COS (DELTA4) ) / ( (Al+A2) *16.1) -AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00194 JUNCTION LOSSES = (DY+HVl-HVZ) +(FRICTION LOSS)+ (ENTRANCE LOSSES) -JUNCTION LOSSES ( .124)+( .004)+( .016) = .143 ."""""""""""""""""""""""""""""""""""""" NODE 14.22 : HGL < 252.870>;EGL= 252.916>;FLOWLINE= < 251.6002 - ............................................................................. FLOW PROCESS FROM NODE 14.22 TO NODE 13.11 IS CODE 1 .- UPSTREAM NODE 13.11 ELEVATION 253.00 (HYDRAULIC JUMP OCCURS) ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.35 CFS PIPE DIAMETER = 12.00 INCHES -PIPE LENGTH = 7.50 FEET MANNING'S N = .01300 _"""""""""""""""""""""""""""""""""""""" HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT1 = .20 CRITICAL DEPTH (FT) .49 ""_"""""""""""""""""""""""""""""""""""" ....................................... ""_"""""""""""""""""""""""""""""""""""" - UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .49 _"""""""""""""""""""""""""""""""""""""" ....................................... GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- - DISTANCE FROM .ooo - .020 .091 .232 - .477 1.525 .876 2.605 4.545 7.500 CONTROL(FT) - FLOW DEPTH (FT) .491 .462 .433 .404 .375 .346 .317 .287 .258 .238 VELOCITY (FT/SEC) 4.141 4.541 5.020 5.603 6; 322 8.392 7.227 9.429 ENERGY (FT) SPECIFIC .683 .687 .699 .724 .766 .833 1.099 .938 1.352 1.619 MOMENTUM(P0UNDS) PRESSURE+ 14.19 14.27 14.53 15.02 15.76 16.82 18.29 20.29 23.02 25.54 -HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 1.27 ....................................... """"""""""""""""""""""""""""""""""""""- - PRESSURE FLOW PROFILE COMPUTED INFORMATION: ....................................... DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ ~~ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY (FT) MOMENTUM(P0UNDS) . 000 1.456 1.270 1.719 1.316 1.000 1.719 1.046 42.22 29.00 """"""""""""-"""""""""""""""""""""""""" ....................................... - ASSUMED DOWNSTREAM PRESSURE HEAD(FT1 1.00 ....................................... ....................................... "GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""_"""""""""""""""""""""""""""""" - NODE 13.11 : HGL = < 253.491r; EGL= < 253.683>; FLOWLINE= 253.000> ............................................................................. FLOW PROCESS FROM NODE 13.11 TO NODE 13.12 IS CODE = 5 -UPSTREAM NODE 13.12 ELEVATION = 253.00 (FLOW IS AT CRITICAL DEPTH) ."""""""""""""""""""""""""""""""""""""" CALCULATE JUNCl - PIPE DOWNSTREAM UPSTREAM - LATERAL #1 LATERAL #2 a5 'ION LOSSES: FLOW (CFS) (INCHES) DIAMETER .83 8.00 1.35 12.00 . 00 . 00 . 00 . 00 .52===05 EOUAl CRITICAL DEPTH(FT. .43 .49 * 00 . 00 - LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: MANNING'S N .01300; FRICTION SLOPE = .00472 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00541 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE .00610 FRICTION LOSSES .011 FEET ENTRANCE LOSSES = .038 F DY=(Q2*V2-Ql*Vl*COS(DELTAl)-03*V3*COS(DELTA3)- - 04*V4*COS(DELTA4) 1 / ( (Al+A2) *16.1) - JUNCTION LENGTH 2.00 FEET JUNCTION LOSSES = (DY+HVl-HVP) +(FRICTION LOSS)+ (ENTRANCE LOSSES) - JUNCTION LOSSES = ( .298)+( .011)+( .038) = f347 VELOCITY (FT/SEC) 2.378 3.516 . 000 . 000 'EET FLOW PROCESS FROM NODE 13.12 TO NODE 12.11 IS CODE = 1 UPSTREAM NODE 12.11 ELEVATION = 254.23 (HYDRAULIC JUMP OCCURS) ....................................... CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = .83 CFS PIPE DIAMETER = 8.00 INCHES - PIPE LENGTH 122.50 FEET MANNING'S N = .01300 ....................................... HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS - NORMAL DEPTH(FT) = .41 CRITICAL DEPTH (FT) .43 ....................................... ....................................... ....................................... -UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 .43 ...................................... ...................................... GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -DISTANCE FROM CONTROL(FT1 .ooo .019 .083 .204 - .399 .696 1.139 - 1.815 2.916 122.500 5.058 - FLOW DEPTH (FT) .431 .429 .426 .423 .421 .418 .416 .413 .410 .408 .405 VELOCITY (FT/SEC) 3.473 3.498 3.522 3.547 3.573 3.599 3.625 3.652 3.679 3.707 3.734 ENERGY (FT) SPECIFIC .619 .619 .619 .619 .619 .620 .620 .620 .621 .621 .622 MOMENTUM(P0UNDS) PRESSURE+ 8.39 8.39 8.40 8: 40 8.40 8.41 8.41 8.42 8.42 " " 8.43 8.44 "c"""""""""""~"""""""""""""""""""""""""- HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS "_""""""""""""""""""""""""""""""""""""" """"""""""""""""""""""""""""""""""""""- - DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 = .94 ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" PRESSURE FLOW PROFILE COMPUTED INFORMATION: ....................................... -DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ 51.854 17.10 - .667 2.378 .754 11.09 CONTROL (FT) HEAD(FT) (FT/SEC) ENERGY (FT) MOMENTUM(P0UNDS) .ooo .943 2.378 1.030 ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" ASSUMED DOWNSTREAM PRESSURE HEAD(FT1 = .67 -GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- "_""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC - CONTROL(FT) (FT) (FT/SEC) PRESSURE+ ENERGY (FT) 51.854 .667 2.377 .754 MOMENTUM(P0UNDS) 55.636 .643 11.09 2.404 58.961 .733 10.62 - .620 2.454 .713 10.20 62.072 .596 65.026 2.520 .695 .573 2.601 9.81 .678 9.47 70.5.16 .525 .662 2.812 9.16 73.021 .502 2.943 .648 8.90 75.288 .478 .627 8.53 .636 3.095 8.69 77.151 - .455 78.086 3.271 .431 .621 3.473 8.43 122.500 .431 3.473 .619 8.39 .619 8.39 67. a42 .549 2.698 - - """""""""""- PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH = .456 FEET, UPSTREAM CONJUGATE DEPTH = .407 FEET I 77.04 FEET UPSTREAM OF NODE 13.12 I END OF HYDRAULIC JUMP ANALYSIS------------------------ - NODE 12.11 : HGL = < 254.661>; EGL= < 254.849>;FLOWLINE= < 254.230r """"_"""""""""""""""""""""""""""""""""" -UPSTREAM PIPE FLOW CONTROL DATA: ............................................................................. NODE NUMBER = 12.11 FLOWLINE ELEVATION 254.23 ASSUMED UPSTREAM CONTROL HGL 254.66 FOR DOWNSTREAM RUN ANALYSIS - END OF GRADUALLY VARIED FLOW ANALYSIS - - ....................................... ............................................................................ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (REFERENCE: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) - (c) COPYRIGHT 1982-90 ADVANCED ENGINEERING SDFTWARE (AES) VER. 4.3A RELEASE DATE: 5/17/90 SERIAL X 5610 ANALYSIS PREPARED BY: BHA, INC. 5115 AVENIDA ENCINAS, SUITE L CARLSBAD CALIFORNIA. 92008 (619) 931-8700 ........................... DESCRIPTION OF STUDY .......................... ' SECTION "C" LINE "E" * X VILLAS HYDRAULICS * 3/22/94 REV. 4/6/94 * * - .......................................................................... - ,"""""""""""""""""""""""""""""""""""""" FILE NAME: VILLAS1O.DAT TIMEIDATE OF STUDY: 21:45 41 511994 - ."""""""""""""""""""""""""""""""""""""" ............................................................................. - GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (NOTE: 'I*" INDICATES NODAL POINT DATA USED.) UPSTREAM RUN 2.34* 46.75 .25 9.65 MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ DOWNSTREAM RUN - NODE NUMBER PROCESS HEAD(FT1 MOMENTUM(P0UNDS) DEPTH(FT1 MOMENTUM(P0UNDS) 14.13- 16.11- .41*Dc 7.21 .41*Dc 7.21 1 FRICTION 1 HYDRAULIC JUMP - ."""""""""""""""""""""""""""""""""""""" MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 10 - ."""""""""""""""""""""""""""""""""""""" CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST - DESIGN MANUALS. ............................................................................. DOWNSTREAM PIPE FLOW CONTROL DATA: - NODE NUMBER = 14.13 FLOWLINE ELEVATION 250.18 PIPE FLOW .74 CFS PIPE DIAMETER = 8.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 252.520 - NODE 14.13 : HGL .c 252.520>;EGL= 252.590*;FLOWLINE= c 250.180~ ....................................... ............................................................................. -FLOW PROCESS FROM NODE 14.13 TO NODE 16.11 IS CODE 1 UPSTREAM NODE 16.11 ELEVATION = 253.00 (HYDRAULIC JUMP OCCURS) ....................................... CALCULATE FRICTION LOSSES(LACFCD): -PIPE FLOW = PIPE LENGTH .74 CFS PIPE DIAMETER = 8.00 INCHES 53.70 FEET MANNING'S N = .01300 -HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ....................................... ....................................... - NORMAL DEPTH(FT) = .24 CRITICAL DEPTH (FT) = .41 ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = .41 -GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ....................................... ....................................... ."""""""""""""""""""""""""""""""""""""" - -369 . -" .737 1.312 - 2.199 3.597 5.955 53.700 ""_ -. 10.717 FLOW DEPTH (FT) .406 .389 .372 .355 .338 .321 .304 .287 .270 .252 .250 VELOCITY (FT/SEC) 3.320 3.496 3.692 3.914 4.165 4.451 4.778 5.155 5.593 6.107 6.187 ENERGY (FT) SPECIFIC .578 .579 .584 .593 .608 .629 .658 .700 .756 .832 .845 ."""""""""""""""""""""""""""""""""""""" HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.34 ....................................... _"""""""""""""""""""""""""""""""""""""" """_""""""""""""""""""""""""""""""""""" ....................................... .- PRESSURE FLOW PROFILE COMPUTED INFORMATION: - CONTROL(FT1 HEAD(FT) (FT/SEC) ENERGY (FT) MOMENTUM(P0UNDS) _"""""""""""""""""""""""""""""""""""""" DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ . 000 2.340 2.120 2.410 46.75 34.315 .667 2.120 .736 10.30 ....................................... ....................................... -ASSUMED DOWNSTREAM PRESSURE HEAD(FT) .67 _"""""""""""""""""""""""""""""""""""""" _"""""""""""""""""""""""""""""""""""""" GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """_""""""""""""""""""""""""""""""""""" """_""""""""""""""""""""""""""""""""""" NODE 16.11 : HGL 253.406r; EGL= < 253.578>; FLOWLINE= 253.000> - k**************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 16.11 FLOWLINE ELEVATION 253.00 -- ASSUMED UPSTREAM CONTROL HGL = 253.41 FOR DOWNSTREAM RUN ANALYSIS """"""""""""""""""""""""~""--"-"""""""""- ....................................... - END OF GRADUALLY VARIED FLOW ANALYSIS - - - - -. - """""""""""""""""""""""""""-""""""""""" - ............................................................................. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (REFERENCE: LACFCD LACRD, AND OCEMA HYDRAULICS CRITERION) (c) COPYRIGHT 1982-40 ADVANCED ENGINEERING SOFTWARE (AES) ANALYSIS PREPARED BY: .- VER. 4.3A RELEASE DATE: 5/17/90 SERIAL # 5610 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD CALIFORNIA. 92008 (619) 931-8700 : VILLAS HYDRAULICS x 3/22/94 * * .......................................................................... - - FILE NAME: VILLAS5. DAT """"""""""""""""""""""""""""""""""""""- TIMEIDATE OF STUDY: 15:22 3/25/1994 ............................................................................. GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM - NODAL POINT STATUS TABLE (NOTE: "*" INDICATES NODAL POINT DATA USED.) UPSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ - NUMBER PROCESS HEAD(FT1 MOMENTUM(P0UNDS) DEPTH(FT) MOMENTUM(P0UNDS) 10. oo* 2381.84 1.01 1262.67 - 30.11- 5.14* 1428.50 1.89 Dc 805.76 30.12- 5.35* 1461.56 1.58 838.08 DOWNSTREAM RUN 31.10- 3 FRICTION 3 JUNCTION 3 FRICTION > JUNCTION 3 FRICTION 3 JUNCTION 3'FRICTION 3 HYDRAULIC JUMP 3 JUNCTION 3 FRICTION 3 MANHOLE > FRICTION 3 JUNCTION - 29.11- 5.11* 1415.53 1.88 Dc 797.39 29.12- 5.30* 1426.60 1.76 777.60 28.11- 5.98* 1560.90 1.13 1060.24 - 28.12- 6.30* 1576.78 .93 1217.13 23.11- 1.86 Dc 724.66 1.40* 811.90 - - 23.12- 2.46 746.16 1.04* 925.26 23.31- 2.16 687.22 .84* 1189.83 23.32- 1.81 Dc 643.61 .83* 1193.37 - 22.11- 1.81*Dc 643.61 1.81*Dc 643.61 - 22.12- 19.11- 19.12- 35.11- 35.12- 18.11- 18.12- 8.11- 8.12- 33.31- 33.32- 33.11- 33.12- 32.11- 32.12- 1.11- 3 FRICTION 3 JUNCTION 3 FRICTION 3 MANHOLE 3 FRICTION 3 JUNCTION 3 FRICTION 3 JUNCTION 3 FRICTION 3 MANHOLE 3 FRICTION 3 JUNCTION 3 FRICTION 3 JUNCTION 3 FRICTION 2.18* 3 HYDRAULIC JUMP 667.54 1.80*Dc 617.03 2.87 690.18 2.20 558.17 1.85 502.05 1.70*Dc 496.53 2.18* 3 HYDRAULIC JUMP 479.91 1.61*Dc 411.30 3.37* 422.88 3.01* 382.68 2.71* 349.64 2.16* 289.56 2.30* 3 HYDRAULIC JUMP 253.53 1.14 Dc 147.33 1.41 153.71 1.13*Dc 142.23 1.44 1.80*Dc .97* .73* .73* 1.70*Dc 1.18 1.61*Dc .94 .89 .99 1.27 Dc .90 .94* .83* 1.13*Dc 661.11 617.03 710.20 1001.49 1004.85 496.53 465.18 411.30 233.63 243.77 225.17 206.64 159.25 155.15 160.06 142.23 -MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" -CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST DESIGN MANUALS. ............................................................................. - DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 31.10 FLOWLINE ELEVATION = 239.00 PIPE FLOW 31.64 CFS ASSUMED DOWNSTREAM CONTROL HGL 249.000 PIPE DIAMETER 24.00 INCHES NODE 31.10 : HGL = < 249.000,; EGL= < 250.575,; FLOWLINE= < 239.000, - ."""""""""""""""""""""""""""""""""""""" ............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 31.10 TO NODE 30.11 IS CODE = 1 30.11 ELEVATION = 244.67 (FLOW IS UNDER PRESSURE) -~ """_""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 31.64 CFS PIPE LENGTH = 41.25 FEET MANNING'S N .01300 HF=L*SF ( 41.25)*( .01956) = .807 PIPE DIAMETER = 24.00 INCHES 31.64) / ( 226.224) ) **2 = .01956 - SF=(Q/K) **2 = ( ( ....................................... -- NODE 30.11 : HGL = < 249.807>;EGL= 251.382>;FLOWLINE= 244.670, ............................................................................. - FLOW PROCESS FROM NODE UPSTREAM NODE 30.11 TO NODE 30.12 30.12 IS CODE = 5 ELEVATION = 245.00 (FLOW IS UNDER PRESSURE) LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: - DY=(Q2*V2-0l*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE .01930 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE .01956 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES .078 FEET ENTRANCE LOSSES .315 FEET JUNCTION LOSSES ( .127)+( .078)+( .315) .519 Q4*V4*COS(DELTA4))/((Al+A2)*16.1) -AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01943 -JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) """"""""""""""""""""""""""""""""""""""- - NODE 30.12 : HGL = < 250.347r; EGL= 251.901>; FLOWLINE= < 245. 000~ ............................................................................. FLOW PROCESS FROM NODE 30.12 TO NODE 29.11 IS CODE = 1 -UPSTREAM NODE 29.11 ELEVATION 247.15 (FLOW IS UNDER PRESSURE) ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD) : PIPE LENGTH = 99.22 FEET MANNING'S N = .01300 SF=(Q/K)**2 = (( 31.43) / ( 226.224) 1 **2 .01930 HF=L*SF ( 99.22)*( .01930) = 1.915 - PIPE FLOW = 31.43 CFS PIPE DIAMETER 24.00 INCHES - ."""""""""""""""""""""""""""""""""""""" NODE 29.11 : HGL 252.262>;EGL= < 253.817>;FLOWLINE= 247.150> FLOW PROCESS FROM NODE 29.11 TO NODE UPSTREAM NODE 29.12 IS CODE 5 29.12 ELEVATION = 247.48 (FLOW IS UNDER PRESSURE) .............................................................................. """"""""""""""""""""""""""""""""""""""- - CALCULATE JUNCTION LOSSES: PIPE FLOW (CFS) (INCHES) DIAMETER ." -. -- UPSTREAM 30.78 DOWNSTREAM 24.00 LATERAL #1 31.43 24.00 . 00 - LATERAL #2 . 00 . 00 . 00 . -. . -. . - - . a5 .65===05 EQUAL ANGLE FLOWLINE CRITICAL (DEGREES) ELEVATION DEPTH(FT. 1 . 00 247.48 1.87 - 247.15 1.88 -00 -00 . 00 . 00 IO0 IO0 .S BASIN INPUT=== - LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAI)-03*V3*COS(DELTA3)- UPSTREAM: MANNING'S N = .01300: FRICTION SLOPE = - Q4*V4*COS(DELTA4))I((Al+A2)*16.1) - FRICTION LO 01851 01930 LOSSES) .311 F VELOCITY (FT/SEC) 10.004 9.798 . 000 . 000 :EET - NODE 29.12 : HGL = e 252.776>;EGL= < 254.267*;FLOWLINE= e 247.480r """"""""""""""""""""""""""""""""""""""- .............................................................................. FLOW PROCESS FROM NODE 29.12 TO NODE UPSTREAM NODE 28.11 ELEVATION 249.84 (FLOW IS UNDER PRESSURE) 28.11 IS CODE = 1 """"""""""""""""""""""""""""""""""""""- -CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 30.78 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 164.49 FEET MANNING'S N = .01300 HF=L*SF = ( 164.49)*( .01851) = 3.045 -SF=(Q/K)**2 = (( 30.78) / ( 226.224) ) **2 = .01851 "_""""""""""""""""""""""""""""""""""""" " NODE 28.11 : HGL = 255.821>;EGL= 257.312*;FLOWLINE= < 249.840> ............................................................................. -UPSTREAM NODE FLOW PROCESS FROM NODE 28.11 TO NODE 28.12 28.12 IS CODE = 5 ELEVATION = 250.17 (FLOW IS UNDER PRESSURE) ...................................... CALCULATE JUNCTION LOSSES: - PIPE FLOW (CFS) (INCHES) DIAMETER UPSTREAM 29.55 24.00 DOWNSTREAM 30.78 - LATERAL #1 24.00 .65 8.00 LATERAL X2 . 00 . 00 a5 .58===05 EQUAL ANGLE (DEGREES) ELEVATION DEPTH(FT. FLOWLINE CRITICAL 10.00 250.17 1.86 - 249.84 1.87 90.00 250.17 .38 . 00 .oo .S BASIN INPUT=== . 00 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: DOWNSTREAM: MANNING'S N .01300; FRICTION SLOPE = .01851 MANNING'S N = .01300; FRICTION SLOPE = .01706 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01779 FRICTION LOSSES .071 FEET ENTRANCE LOSSES = .298 F DY=(02*V2-01*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- - 04*V4*COS(DELTA4))/((Al+A2)*16.1) -JUNCTION LENGTH = 4.00 FEET JUNCTION LOSSES (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) -JUNCTION LOSSES = ( .159)+( .071)+( .298) .528 VELOCITY (FT/SEC) 9.406 9.798 1.862 . 000 :EET ."""""""""""""""""""""""""""""""""""""" NODE 28.12 : HGL < 256.466>;EGL= < 257.840>;FLOWLINE= 250.1702 ............................................................................. FLOW PROCESS FROM NODE 28.12 TO NODE UPSTREAM NODE 23.11 IS CODE 1 23.11 ELEVATION = 260.64 (HYDRAULIC JUMP OCCURS) - ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 29.55 CFS PIPE DIAMETER 24.00 INCHES -PIPE LENGTH = 104.73 FEET MANNING'S N = .01300 ."""""""""""""""""""""""""""""""""""""" HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS - NORMAL DEPTH (FT) = .90 CRITICAL DEPTH(FT) 1.86 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 1.40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """_""""""""""""""""""""""""""""""""""" """_""""""""""""""""""""""""""""""""""" """"""""""""""""""""""~""""""""""~"""""- - DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC ~ ~ ~~ ~ ~ ~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ CONTROL(FT1 (FT) (FT/SEC) ENERGY(FT1 MOMENTUM(P0UNDS) PRESSURE+ . 000 1.398 .795 1.378 12.596 3.863 12.798 1.663 1.358 13.009 3.987 3.923 811.90 820.55 829.74 - 2.613 3.653 4.793 6.045 8.938 7.421 10.615 12.474 14.543 16.854 19.449 22.382 25.720 29.552 34.001 39.235 45.507 53.202 62.972 76.035 95.133 - 104.730 1.338 1.318 1.298 1.277 1.257 1.237 1.217 1.197 1.177 1.157 1.137 1.117 1.097 1.057 1.077 1.036 1.016 .996 .976 .956 .936 .930 4.057 4.131 4.212 4.299 4.392 4.493 4.601 4.718 4.844 4.979 5.126 5.284 5.455 5.639 5.839 6.055 6.290 6.544 6.821 7.121 7.449 7.547 839.49 860.75 849.82 872.32 884.55 897.49 911.16 925.60 940.86 956.98 974.01 992.00 1011.01 1031.09 1052.33 1074.78 1098.53 1123.66 1150.27 1178.46 1208.35 1217.13 ."""""""""""""""""""""""""""~""""""""""- HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ....................................... """"""""""""""""""""""""""""""""""""""- -DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 = 6.30 ....................................... """""""""""""""""""""-""""""""""""""""" PRESSURE FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- - DISTANCE FROM PRESSURE VELOCITY CONTROL(FT1 SPECIFIC HEAD(FT) (FT/SEC) PRESSURE+ ENERGY (FT) . 000 6.296 9.406 MOMENTUM(P0UNDS) 51.812 2.000 3.374 734.67 7.670 9.406 1576.78 - """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 627 3.324 644 3.324 661 3.323 680 3.323 717 698 3.322 717 3.322 3.322 .IC JUMP ANALYSIS---------- 24.06 FEET UPSTREAM OF UPSTREAM CONJUGATE DEPTH 725.00 724.87 724.78 724.71 724.67 724.66 724.66 .""""""" NODE 28.12 I = .951 FEET I "_""""""""""""""""""""""""""""""""""""" - NODE 23.11 : HGL = c 262.038% EGL= < 264.503r; FLOWLINE= c 260.640r .............................................................................. FLOW PROCESS FROM NODE 23.11 TO NODE 23.12 IS CODE = 5 -UPSTREAM NODE 23.12 ELEVATION 260.97 (FLOW IS SUPERCRITICAL) ...................................... CALCULATE JUNC - PIPE UPSTREAM LATERAL #1 LATERAL #2 - DOWNSTREAM a5 1 'ION LOSSES: FLOW (CFS) (INCHES) DIAMETER 27.33 24.00 29.55 24.00 . 00 . 00 . 00 . 00 2.22===05 EQUAI (DEGREES) ELEVATION ANGLE FLOWLINE 15.00 260.97 - 260.64 . 00 . 00 . 00 . 00 -S BASIN INPUT=== CRITICAL DEPTH(FT. 1.81 1.86 . 00 . 00 VELOCITY (FT/SEC) 16.614 12.600 .ooo . 000 .""""""""""""""""""""""""""""""~"""""""- . NODE 23.12 : HGL c 262.007,; EGL= c 266.293>;FLOWLINE= < 260.970> - ............................................................................. FLOW PROCESS FROM NODE 23.12 TO NODE 23.31 IS CODE = 1 UPSTREAM NODE 23.31 ELEVATION = 262.07 (FLOW IS SUPERCRITICAL) - ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 27.33 CFS PIPE DIAMETER = 24.00 INCHES - PIPE LENGTH = 54.77 FEET MANNING'S N = .01300 ."""""""""""""""""""""""""""""""""""""" NORMAL DEPTH(FT) = 1.42 CRITICAL DEPTH (FT) = 1.81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .84 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ ....................................... """""""""_""""""""""""""""""""""""""""" - ....................................... ....................................... - """"""""""""""""""""""""""""""""""""""- (FT) (FT/SEC) ENERGY(FT) MOMENTUM(P0UNDS) - . 000 21.945 8.319 1189.83 .836 .860 21.161 7.817 1150.15 .883 20.429 7.367 1113.28 .906 .930 19.744 19.102 6.963 6.599 1078.97 1047.01 5.974 12.027 18.166 24.402 - 30.747 .953 18.499 37.214 6.270 .976 17.933 1017.21 43.820 1.000 5.973 17.400 989.40 50.583 5.704 1.023 16.898 963.42 54.770 5.460 1.037 939.14 - 16.609 5.323 925.26 ...................................... NODE 23.31 : HGL = < 262.9062; EGL= < 270.389,; FLOWLINE= < 262.070> FLOW PROCESS FROM NODE 23.31 TO NODE UPSTREAM NODE 23.32 23.32 IS CODE = 2 ELEVATION = 262.40 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 27.33 CFS PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD 7.506 FEET NODE 23.32 : HGL = < 263.234>;EGL= 270.764>;FLOWLINE= < 262.400> ............................................................................. - ....................................... -HMN .05*(AVERAGED VELOCITY HEAD) = .05*( 7.506) .375 ,"""""""""""""""""""""""""""""""""""""" - ............................................................................. FLOW PROCESS FROM NODE 23.32 TO NODE UPSTREAM NODE 22.11 IS CODE = 1 - 22.11 ELEVATION = 269.50 (FLOW IS SUPERCRITICAL) ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.33 CFS PIPE DIAMETER 24.00 INCHES -PIPE LENGTH = 27.76 FEET MANNING'S N = .01300 ............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 22.12 22.11 TO NODE ELEVATION 269.83 (FLOW IS AT CRITICAL DEPTH) 22.12 IS CODE = 5 """"""""""""""""""""""""""""""""""""""- -CALCULATE JUNCT PIPE - UPSTREAM DOWNSTREAM LATERAL Y1 - LATERAL Y2 05 'ION LOSSES: FLOW (CFS) (INCHES) (DEGREES) ELEVATION DIAMETER ANGLE FLOWLINE 26.57 27.33 24.00 24.00 10.00 269. a3 90.00 269.50 269.83 . 00 . 00 - .S BASIN INPUT=== .50 a. oo . 00 . 00 .26===05 EQUAL CRITICAL DEPTH ( FT . ) 1.81 .33 . 00 1.80 VELOCITY (FT/SEC) 9.123 1.432 . 000 a. 457 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: -DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .01277 MANNING'S N .01300; FRICTION SLOPE .01379 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01328 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = .053 FEET ENTRANCE LOSSES = .25a FEET JUNCTION LOSSES = ( .206)+( .053)+ ( .258) .517 -DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1) -JUNCTION LOSSES = (DY+HVl-HVZ) + (FRICTION LOSS) + (ENTRANCE LOSSES) """""""""_""""""""""""""""""""""""""""" - NODE 22.12 : HGL 272.014>; EGL= < 273.124>; FLOWLINE= 269.830> - FLOW PROCESS FROM NODE UPSTREAM NODE 19.11 22.12 TO NODE ELEVATION 271.27 (HYDRAULIC JUMP OCCURS) 19.11 IS CODE = 1 ............................................................................. ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD): PIPE LENGTH 71.92 FEET MANNING'S N = .01300 -PIPE FLOW 26.57 CFS PIPE DIAMETER = 24.00 INCHES - HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS -"""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" NORMAL DEPTH(FT1 = 1.39 CRITICAL DEPTH (FT) 1.80 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.80 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- """"""""-"""""""""""""""""""""""""""""" - """-""""""""""""""""""""""""""""""""""" DISTANCE FROM CONTROL (FT) - . 000 .059 .238 - .544 .984 1.568 2.308 3.218 4.313 5.616 - 7.149 8.943 11.035 13.471 16.310 - FLOW DEPTH (FT) 1.799 1.783 1.766 1.750 1.734 1.717 1.701 1.685 1.668 1.652 1.636 1.619 1.603 1.587 1.570 VELOCITY (FT/SEC) 8.923 8.983 9.047 9.113 9.182 9.254 9.328 9.406 9.571 9.658 9.748 9.841 9.938 10.038 9.487 SPECIFIC ENERGY (FT) 3.036 3.036 3.038 3.040 3.043 3.048 3.053 3.059 3.067 3.075 3.085 3.096 3.108 3.121 3.136 MOMENTUM(P0UNDS) PRESSURE+ 617.03 617.37 617.12 617.80 618.39 619.16 620.10 621.21 622.51 623.99 625.65 627.50 629.55 631.79 634.23 19.627 1.554 10.141 3.152 23.522 1.538 10.248 636.88 28.130 1.521 3.170 10.359 639.73 33.643 1.505 10.473 3.189 642.81 40.340 3.209 646.10 - 1.489 10.592 48.653 3.232 1.472 649.63 59.310 10.714 1.456 3.256 10.840 653.39 71.920 3.282 1.442 10.955 3.306 657.39 661.11 """""""""""""""""""""""""""-""""""""""" HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- - DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 2.18 .""""""""""""""""~"""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" PRESSURE FLOW PROFILE COMPUTED INFORMATION: """""_""""""""""""""""""""""""""""""""" -DISTANCE FROM PRESSURE VELOCITY ~ ~~ ~ CONTROL(FT1 SPECIFIC HEAD(FT1 (FT/SEC) PRESSURE+ ENERGY(FT) MOMENTUM(P0UNDS) . 000 29.510 2.184 2.000 8.457 3.294 667.54 - 8.457 3.111 631.51 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- ~~ ~~~~~ ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- - GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ."""""""""""""""""""""""""""""""""""""" -"""""""""""""""""""""""""""""""""""""" NODE 19.11 : HGL = 273.069>; EGL= < 274.306>;FLOWLINE= < 271.270r - ............................................................................. FLOW PROCESS FROM NODE 19.11 TO NODE 19.12 IS CODE 5 (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ~- UPSTREAM NODE 19.12 ELEVATION = 271.60 (FLOW IS AT CRITICAL DEPTH) CALCULATE JUNCT PIPE UPSTREAM LATERAL X1 LATERAL X2 _- - DOWNSTREAM - Q5 'ION LOSSES: FLOW (CFS) (INCHES) DIAMETER 22.90 24.00 26.57 . 00 24.00 . 00 . 00 . 00 3.67===Q5 EQUAL CRITICAL DEPTH (FT. 1 1.70 1.80 . 00 . 00 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*Y2-Q1*Vl*COS (DELTA11 -03*V3*COS (DELTA31 - - Q4*V4*COS(DELTA4))/((Al+A2)*16.1) UPSTREAM: MANNING'S N = .01300: I DOWNSTREAM: MANNING'S N ;oi3ooi FRICTION SLOPE = : FRICTION SLOPE - AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02870 JUNCTION LENGTH = 4.00 FEET FRICTIOI -EET JUNCTIOI ENTRANCE LOSSES (FRICTION LOSS)+(ENTRANCE 1.819 04525 01215 LOSSES) .247 F VELOCITY (FT/SEC) 15.128 8.926 . 000 . 000 :EET ."""""""""""""""""""""""""""""""""""""" NODE 19.12 : HGL = < 272.571>; EGL= < 276.1252; FLOWLINE= < 271.600> - ............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 19.12 TO NODE 35.11 IS CODE = 1 - 35.11 ELEVATION 272.98 (FLOW IS SUPERCRITICAL) ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 22.90 CFS -PIPE LENGTH = 68.96 FEET MANNING'S N = .01300 PIPE DIAMETER = 24.00 INCHES NORMAL DEPTH(FT1 1.25 CRITICAL DEPTH (FT) 1.70 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .73 """"""""""""""""""""""""""""""-"""""""" """""""""""""""""""""""""""""""""""""-" """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 5.343 . 000 10.760 - 16.260 21.850 33.351 27.543 39.287 45.370. 51.620 58.061 64.722 68.960 .~ - - FLOW DEPTH (FT) .729 .750 .771 .812 .791 .833 .854 .875 .896 .917 .938 .959 .971 VELOCITY (FT/SEC) 22.119 21.289 20.515 19.791 19.114 17.883 18.479 16.795 17.323 15.828 16.297 15.123 15.383 ENERGY (FT) SPECIFIC 8.331 7.792 7.310 6.878 6.489 6.139 5.823 5.538 5.279 4.830 5.044 4.636 4.525 MOMENTUM(P0UNDS) PRESSURE+ 1001.49 966.01 933.07 873.91 902.43 847.32 822.50 799.31 777.63 757.34 738.35 720.55 710.20 - -"""""""""""""""""""""""""""""""""""""" NODE 35.11 : HGL < 273.709>; EGL= < 281.311>; FLOWLINE= < 272.980r - FLOW PROCESS FROM NODE 35.11 TO NODE 35.12 IS CODE = 2 ............................................................................. UPSTREAM NODE 35.12 ELEVATION 273.31 (FLOW IS SUPERCRITICAL) ....................................... -CALCULATE MANHOLE LOSSES(LACFCD) : PIPE FLOW = 22.90 CFS PIPE DIAMETER 24.00 INCHES AVERAGED VELOCITY HEAD = 7.629 FEET NODE 35.12 : HGL = 274.037*;EGL= < 281.693>;FLOWLINE= < 273.310> FLOW PROCESS FROM NODE 35.12 TO NODE UPSTREAM NODE 18.11 ELEVATION 280.91 (FLOW IS SUPERCRITICAL) 18.11 IS CODE = 1 -HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 7.629) = .381 ."""""""""""""""""""""""""""""""""""""" - ............................................................................. - .""""""""""""""""""""""""""~"~"""""""""" CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 22.90 CFS -PIPE LENGTH 26.07 FEET MANNING'S N .01300 PIPE DIAMETER 24.00 INCHES .""""""""""""""""""""""""""""""-"""""""- NORMAL DEPTH(FT1 .59 CRITICAL DEPTH (FT) = 1.70 UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) 1.70 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- " """"""""""""""-"""""""""""""""""""""""" _"""""""""""""""""""""""""""""""""""""" - ........................................... DISTANCE FROM CONTROL (FT) - -000 : oii .044 - .lo1 .188 .306 .460 .657 .904 1.209 - 1.582 2.038 2.593 - 3.270 4.096 5.111 6.366 - 7.932 9.911 12.459 - 15.817 20.397 26.070 - FLOW DEPTH ( FT) 1.703 1.658 1.614 1.569 1.524 1.480 1.435 1.390 1.346 1.301 1.257 1.212 1.167 1.123 1.078 1.033 .989 .944 .899 .855 .810 .727 .765 VELOCITY (FT/SEC) 8.031 8.220 8.428 8.658 8.910 9.186 9.488 9.819 10.182 10.579 11.016 11.496 12.026 12.611 13.260 13.982 14.789 15.694 16.714 17.871 19.189 20.704 22.198 SPECIFIC ENERGY(FT) 2.705 2.708 2.718 2.734 2.758 2.791 2.834 2.889 2.957 3.040 3.142 3.265 3.414 3.594 3.810 4.071 4.387 4.771 5.240 5.817 6.531 8.383 7.425 MOMENTUM(P0UNDS) PRESSURE+ 496.53 497.05 498.64 501.36 505.28 510.48 517.07 525.15 534.87 546.37 559.84 575.49 593.57 614.38 638.25 665.63 697.00 732.98 821.96 774.32 877.06 941.09 1004.85 - NODE 18.11 : HGL = < 282.613*;EGL= < 283.615*;FLOWLINE= < 280.910r ....................................... ............................................................................. UPSTREAM NODE 18.12 ELEVATION = 281.24 (FLOW IS AT CRITICAL DEPTH) - FLOW PROCESS FROM NODE 18.11 TO NODE 18.12 IS CODE = 5 """"""""""""""""""""""""""""""""""""""- - CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) FLOWLINE CRITICAL VELOCITY - DOWNSTREAM UPSTREAM 20.05 24.00 . 00 281.24 1.61 6.382 22.90 24.00 - 280.91 1.70 8.034 LATERAL #l 1.84 8.00 90.00 281.24 LATERAL #2 .88 8.00 75.00 .61 5.271 - 281.24 a5 .13===Q5 EQUALS BASIN INPUT=== .44 2.521 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: -DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00962 MANNING'S N = .01300; FRICTION SLOPE = .00785 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00874 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES .035 FEET ENTRANCE LOSSES = .200 FEET JUNCTION LOSSES ( .205)+( .035)+( .200) = .440 -DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((Al+A2)*16.1) -JUNCTION LOSSES = (DY+HVl-HVZ) + (FRICTION LOSS) + (ENTRANCE LOSSES) """""""""""""""""""""""""""""-""""""""" -NODE 18.12 : HGL = -c 283.4232; EGL= 284.0562; FLOWLINE= < 281.2402 ............................................................................. ~- FLOW PROCESS FROM NODE 18.12 TO NODE 8.11 IS CODE = 1 UPSTREAM NODE 8.11 ELEVATION = 283.00 (HYDRAULIC JUMP OCCURS) ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES (LACFCD) : PIPE LENGTH 88.01 FEET MANNING'S N .01300 -PIPE FLOW 20.05 CFS PIPE DIAMETER = 24.00 INCHES """"""""""""""""""""""""""""""""""""""- -HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ."""""""""""""""""""""""""""""""""""""" NORMAL DEPTH(FT) = 1.15 CRITICAL DEPTH (FT) = 1.61 - UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) 1.61 """"""""""""""""""""""""""""""""""""""- """""""""""""""""""-""""""""""""""""""" """"""""""""""~"""""""""""""""""""""~""- ....................................... GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - ."""""""""""""""""""""""""""""""""""""" DISTANCE FROM CONTROL(FT1 - . 000 -040 I i64 - .380 .696 1.121 1.668 2.350 3.181 4.182 - 5.373 6.784 8.446 12.702 15.416. 18.632 - 22.471 27.102 32.774 - 39.871 49.039 61.488 79.939 88.010 - .- 10.401 - FLOW DEPTH (FT) 1.608 1.589 1.571 1.553 1.534 1.516 1.497 1.479 1.460 1.442 1.424 1.405 1.387 1.368 1.350 1.332 1.313 1.276 1.295 1.258 1.240 1.221 1.203 1.180 1.184 VELOCITY (FT/SEC) 7.405 7.487 7.572 7.660 7.751 7.847 7.945 8.048 8.154 8.265 8.379 8.498 8.622 a. 750 a. 883 9.022 9.166 9.315 9.470 9.632 9.800 9.974 10.156 10.346 10.393 ENERGY (FT) SPECIFIC 2.460 2.460 2.462 2.464 2.468 2.472 2.478 2.485 2.494 2.503 2.515 2.527 2.542 2.558 2.576 2.619 2.596 2.643 2.670 2.699 2.732 2.767 2.805 2.847 2.858 MOMENTUM(P0UNDS) PRESSURE+ 411.30 411.38 411.62 412.02 412.59 413.34 414.26 415.36 416.66 418.14 419.83 421.73 423.84 426.18 428.75 431.56 434.61 437.93 441.51 445.37 449.53 453.99 458.77 465.18 463.88 -HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ....................................... ."""""""""""""""""""""""""""~""""""""""~ .""""_"""""""""""""""""""""""""""""""""- DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 2.18 """"""""""""""""""""""""""""""""""""""- """"""""""""-"""""""""""""""""""""""""" -PRESSURE FLOW PROFILE COMPUTED INFORMATION: ,"""""""""""""""""""""""""""""""""""""" DISTANCE FROM PRESSURE VELOCITY -- CONTROL(FT1 HEAD(FT1 (FT/SEC) SPECIFIC PRESSURE+ ENERGY (FT) MOMENTUM(P0UNDS) . 000 2.183 6.382 2.816 2.000 6.382 2.632 444.01 479.91 15.081 ""~"""""""~""""""""""""""""""""""""""""- ....................................... -ASSUMED DOWNSTREAM PRESSURE HEAD(FT1 = 2.00 ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - ."""""""""""""""""""""""""""""""""""""" - NODE 8.11 : HGL = < 284.608>;EGL= < 285.460>;FLOWLINE= e 283.000r """"""""""""""""""""""""""""""""""""""- ............................................................................. - FLOW PROCESS FROM NODE UPSTREAM NODE 8.11 TO NODE a. 12 ELEVATION = 283.33 (FLOW IS AT CRITICAL DEPTH) 8.12 IS CODE 5 - CALCULATE JUNCTION LOSSES: ....................................... PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. 1 (FT/SEC) FLOWLINE CRITICAL VELOCITY UPSTREAM - DOWNSTREAM 11.05 18.00 1.27 6.253 20.05 90.00 24.00 283.33 - 1.61 7.408 283.00 LATERAL #l LATERAL #2 5.66 18.00 45.00 283.33 .92 3.203 . 00 . 00 . 00 . 00 . 00 . 000 3.34===Q5 EQUALS BASIN INPUT=== " Q5 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: -DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE .00814 MANNING'S N .01300; FRICTION SLOPE .01107 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00961 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = .038 FEET ENTRANCE LOSSES = .l70 F JUNCTION LOSSES ( 1.639)+( .038)+( .170) 1.848 -DY=(Q2*Y2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1) -JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) -NODE 8.12 : HGL < 286.701>;EGL= 287.308>;FLOWLINE= """"""""-"""""""""""""""""""""""" :EET .""_ 283.3 ,"" ;30> ,"- -FLOW PROCESS FROM NODE UPSTREAM NODE 33.31 8.12 TO NODE ELEVATION = 284.15 (FLOW IS UNDER PRESSURE) 33.31 IS CODE = 1 ............................................................................. ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD): -PIPE FLOW PIPE LENGTH 11.05 CFS 41.16 FEET MANNING'S N = .01300 SF=(Q/K)**2 (( 11.05)/( 105.043))**2 .01107 PIPE DIAMETER 18.00 INCHES -HF=L*SF = ( 41.16)*( .01107) = .455 .-----------""""""""""""""""""""""""""""""""~ NODE 33.31 : HGL < 287.156,; EGL= c 287.763>;FLOWLINE= < 284.150~ - ............................................................................. FLOW PROCESS FROM NODE 33.31 TO NODE UPSTREAM NODE 33.32 IS CODE = 2 33.32 ELEVATION 284.48 (FLOW IS UNDER PRESSURE) - ."""""""""""""""""""""""""""""""""""""" CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 11.05 CFS PIPE DIAMETER 18.00 INCHES HMN = .05*(VELOCITY HEAD) = .05*( .607) = .030 - FLOW VELOCITY = 6.25 FEET/SEC. VELOCITY HEAD .607 FEET """"""""""""""""""""""""""""""""""""""- - NODE 33.32 : HGL = c 287.186>;EGL= < 287.794>;FLOWLINE= c 284.480> ............................................................................. FLOW PROCESS FROM NODE - UPSTREAM NODE 33.11 33.32 TO NODE ELEVATION = 285.70 (FLOW IS UNDER PRESSURE) 33.11 IS CODE = 1 ........................................... CALCULATE FRICTION LOSSES(LACFCD): ~~ -PIPE FLOW = 11.05 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH = 61.01 FEET MANNING'S N .01300 SF=(Q/K)**2 = (( 11.05) / ( 105.043) 1 **2 .01107 - HF=L*SF = ( 61.01)*( .01107) .675 ....................................... NODE 33.11 : HGL = < 287.862>; EGL= 288.469r; FLOWLINE= < 285.700> .............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 33.11 TO NODE 33.12 33.12 IS CODE = 5 ELEVATION = 286.03 (FLOW IS UNDER PRESSURE) - -"""""""""""""""""""""""""""""""""""""" CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) " UPSTREAM 8.68 18.00 . 00 286.03 1.14 4.912 DOWNSTREAM 11.05 18.00 - 285.70 LATERAL 11 1.27 LATERAL 12 2.37 12.00 75.00 286.03 . 00 . 00 . 00 286.03 .66 . 00 . OO===Q5 EQUALS BASIN INPUT=== a5 6.253 3.018 . 000 -LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: -UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00683 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00895 DOWNSTREAM: MANNING'S N .01300; FRICTION SLOPE = .01107 JUNCTION LENGTH = 4.00 FEET DY=(Q2*V2-0l*Vl*COS (DELTA11 -Q3*V3*COS(DELTA3) - Q4*V4*COS (DELTA41 1 / ( (Al+A2) *16.1) -FRICTION LOSSES = .036 FEET ENTRANCE LOSSES = .OOO FEET JUNCTION LOSSES = (DY+HVl-HVZ) + (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( .200)+( .036)+( .OOO) = .236 - ,"""""""""""""""""""""""""""""""""""""" NODE 33.12 : HGL < 288.330>; EGL= 288.705>;FLOWLINE= 286.030, ............................................................................. - FLOW PROCESS FROM NODE 33.12 TO NODE 32.11 IS CODE = 1 UPSTREAM NODE 32.11 ELEVATION = 288.00 (HYDRAULIC JUMP OCCURS) -CALCULATE FRICTION LOSSES(LACFCD): "_""""""""""""""""""""""""""""""""""""" PIPE FLOW = 8.68 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 127.43 FEET MANNING'S N .01300 ....................................... HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ....................................... - NORMAL DEPTH(FT) .89 CRITICAL DEPTH (FT) = 1.14 """"""""""""""""""""""""""""""""""""""- """"""""""""""""-"""""""""""""""""""""" UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = .94 -GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""-"""""""""""""""""""""" """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""-"""""""""""""""" DISTANCE FROM .ooo 1.005 - 2.062 3.176 4.352 5.596 6.916 8.319 9.815 11.416 13.134 14.987 16.994 19.179 21.574 24.219 27.167 30.489 34.286 38.704 43.971 50.468 58.910 70.904 - CONTROL (FT) FLOW DEPTH (FT) .938 .936 .934 .933 .931 .929 .927 .926 .924 .922 .920 .918 .917 .915 .913 .911 .910 .908 .906 .904 .903 .go1 .899 .897 VELOCITY (FT/SEC) 7.464 7.480 7.497 7.514 7.531 7.548 7.565 7.582 7.599 7.616 7.634 7.651 7.668 7.686 7.704 7.722 7.740 7.758 7.776 7.794 7.812 7.830 7.849 7.867 ENERGY (FT) SPECIFIC 1.804 1.806 1.808 1.810 1.812 1.814 1.816 1.819 1.821 1.823 1.826 1.828 1.830 1.833 1.835 1.838 1.840 1.843 1.845 1.848 1.851 1.853 1.856 1.859 MOMENTUM(P0UNDS) PRESSURE+ 155.15 155.30 155.45 155.60 155.76 155.92 156.08 156.24 156.40 156.56 156.73 156.90 157.07 157.24 157.41 157.59 157.76 157.94 158.12 158.31 158.49 158.68 158.86 159.05 91.605 - 127.430 .895 7.886 .895 7.887 1.862 1.862 159.25 159.25 ...................................... HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ""_"""""""""""""""""""""""""""""""""""" ....................................... -DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 2.30 ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" PRESSURE FLOW PROFILE COMPUTED INFORMATION: ._"""""""""""""""""""""""""""""""""""""" DISTANCE FROM CONTROL(FT1 PRESSURE VELOCITY HEAD(FT1 (FT/SEC) SPECIFIC PRESSURE+ ENERGY (FT) MOMENTUM(P0UNDS) 92.673 1.500 4.912 1.875 2.675 - . 000 2.300 4.912 253.53 165.32 ."""""""""""""""-""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""~""""""""""""""""""""~ """"""""""""""""""""""""""""""""""""""- ....................................... NODE 32.11 : HGL = < 288.938>; EGL= < 289.804>; FLOWLINE= 288.000, - ............................................................................. FLOW PROCESS FROM NODE 32.11 TO NODE 32.12 IS CODE = 5 - UPSTREAM NODE 32.12 ELEVATION = 288.33 (FLOW IS SUPERCRITICAL) ....................................... CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. (FT/SEC) UPSTREAM 8.46 DOWNSTREAM 18.00 8.68 18.00 . 00 288.33 1.13 8.393 - LATERAL #l - 288.00 1.14 7.466 LATERAL Y2 . 00 . 00 . 00 . 00 . 00 . 000 . 00 . 00 . 00 . 00 . 00 . 000 05 .22===Q5 EQUALS BASIN INPUT=== - LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE .01336 MANNING'S N = .01300; FRICTION SLOPE = .01832 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01584 FRICTION LOSSES = .063 FEET ENTRANCE LOSSES = .173 FEET DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3~- .- 04*V4*COS(DELTA4))/((Al+A2)*16.1) -JUNCTION LENGTH 4.00 FEET JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) -JUNCTION LOSSES = ( .217)+( .063)+( .173) .453 ."""""""""""""""""""""""""""""""""""""" NODE 32.12 : HGL c 289.1632; EGL= < 290.2572; FLOWLINE= c 288.3302 ............................................................................. - FLOW PROCESS FROM NODE 32.12 TO NODE UPSTREAM NODE 1.11 ELEVATION = 289.45 (FLOW IS SUPERCRITICAL) 1.11 IS CODE 1 - ....................................... CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 8.46 CFS PIPE DIAMETER = 18.00 INCHES - PIPE LENGTH 56.17 FEET MANNING'S N .01300 ....................................... NORMAL DEPTH(FT) = .81 CRITICAL DEPTH (FT) = 1.13 """"""""""""""""""""""""""""""-"""""""" """"""_"""""""""""""""""""""""""""""""" -UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = 1.13 """"""""""""""""""""""""""-"""""""""""" """"""_"""""""""""""""""""""""""""""""" GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- DISTANCE FROM CONTROL (FT) - .ooo .024 - 100 .232 .426 1.024 .687 "" - - i I445 1.959 2.579 4.195 3.319 5.229 6.447 7.883 11.587 9.577. - 13.989 16.888 20.441 - 24.890 30.640 38.453 50.037 56.170 - - - FLOW DEPTH (FT) 1.126 1.114 1.101 1.089 1.076 1.063 1.051 1.038 1.026 1.013 1.000 .988 .975 .963 .950 .938 .925 .912 .goo .887 .875 .862 .849 .837 .833 VELOCITY (FT/SEC) 5.942 6.011 6.083 6.157 6.234 6.313 6.396 6.481 6.569 6.660 6.754 6.852 6.953 7.058 7.167 7.279 7.396 7.517 7.642 7.772 7.907 8.048 8.193 8.345 8.391 ENERGY (FT) SPECIFIC 1.675 1.675 1.676 1.678 1.680 1.683 1.686 1.691 1.696 1.702 1.709 1.717 1.726 1.737 1.748 1.761 1.775 1.790 1.807 1.826 1.846 1.868 1.892 1.919 1.927 MOMENTUM(P0UNDS) PRESSURE+ 142.23 142.25 142.33 142.46 142.65 142.89 143.20 143.56 143.99 144.48 145.03 145.66 146.36 147.13 147.97 148.90 149.91 151.00 152.18 153.45 154.82 156.29 157.86 159.54 160.06 .""_ - NODE ....................................... 1.11 : HGL = < 290.576>; EGL= 291.125>; FLOWLINE= < 289.4502 ............................................................................. UPSTREAM PIPE FLOW CONTROL DATA: ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION 289.45 290.58 FOR DOWNSTREAM RUN ANALYSIS -NODE NUMBER = 1.11 ....................................... ....................................... - END OF GRADUALLY VARIED FLOW ANALYSIS - - ............................................................................ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (REFERENCE: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) ~ (c) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) - ANALYSIS PREPARED BY: VER. 4.3A RELEASE DATE: 5/17/90 SERIAL # 5610 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 (619) 931-8700 ........................... DESCRIPTION OF STUDY .......................... X VILLAS HYDRAULICS * 3/22/94 SECTION "B" LINE "6" * * * - .......................................................................... - """""""""""""""""""""""""""""~""""""""- FILE NAME: VILLASll. DAT TIMEIDATE OF STUDY: 11:58 3/24/1994 - ...................................... ............................................................................. - GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (NOTE: "*" INDICATES NODAL POINT DATA USED.) UPSTREAM RUN MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ DOWNSTREAM RUN - NODE NUMBER PROCESS HEAD(FT) MOMENTUM(P0UNDS) DEPTH(FT) MOMENTUM(P0UNDS) 28.13- 6.37* 133.81 .35 6.14 27.11- 5.16* 107.55 .38 Dc 6.08 > FRICTION - """"""""""""""""""""""""""~"""""""""""- MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA -DESIGN MANUALS. ............................................................................. DOWNSTREAM PIPE FLOW CONTROL DATA: - NODE NUMBER 28.13 FLOWLINE ELEVATION 250.17 PIPE FLOW = .65 CFS PIPE DIAMETER = 8.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 256.539 - ,"""""""""""""""""""""""""""""""""""""" NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST --NODE 28.13 : HGL = e 256.539>;EGL= e 256.593>;FLOWLINE= < 250.170> """"""""""""""""""""""""""""""""""""""- -FLOW PROCESS FROM NODE ............................................................................. UPSTREAM NODE 27.11 28.13 TO NODE ELEVATION 251.87 (FLOW IS UNDER PRESSURE) 27.11 IS CODE 1 CALCULATE FRICTION LOSSES (LACFCD) : -PIPE FLOW = PIPE LENGTH = .65 CFS 170.86 FEET PIPE DIAMETER 8.00 INCHES SF=(Q/K) **2 = ( ( MANNING'S N = .65)/( 12.084))**2 = .00289 .01300 -HF=L*SF = ( 170.86)*( .00289) .494 """"""""""""""""""""""""~""--""""""""""" " NODE 27.11 : HGL < 257.033>;EGL= < 257.087>;FLOWLINE= < 251.870> ............................................................................ UPSTREAM PIPE FLOW CONTROL DATA: RSSUMEO UPSTREAM CONTROL HGL = 252.25 FOR DOWNSTREAM RUN ANALYSIS -NODE NUMBER = 27.11 FLOWLINE ELEVATION = 251.87 ...................................... """"""""""""""""""""""""""""""""""""""- END OF GRADUALLY VARIED FLOW ANALYSIS - ....................................... ............................................................................ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (REFERENCE: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) ~- (c) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) - ANALYSIS PREPARED BY: VER. 4.3A RELEASE DATE: 5/17/90 SERIAL # 5610 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 - (619) 931-8700 ........................... DESCRIPTION OF STUDY .......................... II VILLAS HYDRAULICS * 3/22/94 SECTION "B" LINE "H" * * * - .......................................................................... - ...................................... FILE NAME: VILLAS12. DAT TIMEIDATE OF STUDY: 12:41 3/24/1994 - - NODE 22.13- - 3 21.11- 3 21.12- 3 20.21- 3 - 20.22- 3 20.31- NUMBER - - ...................................... ............................................................................. GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (NOTE: "*I' INDICATES NODAL POI MODEL PRESSURE UPSTREAM RUN PROCESS HEAD(FT1 MOMENTUM(P0UNDS) PRESSURE+ FRICTION 2.18* 41.70 3 HYDRAULIC JUMP JUNCTION .33*Dc 4.32 .53 FRICTION 4.93 JUNCTION .24*Dc 2.05 .36* FRICTION 3 HYDRAULIC JUMP 2.33 .22*Dc 1.59 :NT DATA USED.) DEPTH(FT1 MOMENTUM(P0UNDS) FLOW PRESSURE+ DOWNSTREAM RUN .23 5.27 .33*Dc 4.32 .lo* 5.02 .24*Dc 2.05 .20 1.62 .22*Dc 1.59 -MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 -CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA """_""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST DESIGN MANUALS. -DOWNSTREAM PIPE FLOW CONTROL DATA: ............................................................................. NODE NUMBER PIPE FLOW = 22.13 FLOWLINE ELEVATION = 269.83 .50 CFS ASSUMED DOWNSTREAM CONTROL HGL 272.014 PIPE DIAMETER = 8.00 INCHES - ."""""""""""""""""""""""""""""""""""""" NODE 22.13 : HGL = < 272.014>;EGL= < 272.046>:FLOWLINE= 269.830r ............................................................................. - FLOW PROCESS FROM NODE UPSTREAM NODE 22.13 TO NODE 21.11 21.11 IS CODE = 1 - ELEVATION = 274.00 (HYDRAULIC JUMP OCCURS) """"""""""""""""""""""""""""""---------------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = .50 CFS """""_ ~ -PIPE LENGTH PIPE DIAMETER 8.00 INCHES 142.50 FEET MANNING'S N = .01300 ...................................... HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = .22 CRITICAL DEPTH(FT) .33 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .33 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - """"""""""""""""""""""""""""""""""""""- ...................................... ...................................... - ...................................... ...................................... """"""""""""""""""""""""""""""""""""""- -DISTANCE FROM CONTROL (FT) . 000 .005 .021 .048 .088 .142 .212 .300 .408 .539 .695 1.101 .881 1.360 1.668 2.032 2.465 2.983 3.612 4.384 5.354 6.611 8.323 10.870 15.463 - 142.500 -. FLOW DEPTH (FT) .331 .327 .322 .318 .314 .309 .305 .301 .297 .292 .288 .284 .279 .275 .271 .266 .262 .258 .253 .245 .249 .241 .236 .232 .228 .225 VELOCITY (FT/SEC) 2.890 2.938 2.989 3.041 3.095 3.151 3.209 3.269 3.331 3.396 3.463 3.533 3.605 3.680 3.758 3.839 3.924 4.012 4.105 4.201 4.301 4.406 4.515 4.630 4.750 4.814 ENERGY (FT) SPECIFIC .461 .461 .461 .462 .463 .464 .465 .467 .469 .471 .474 .477 .481 .485 .490 .495 .501 .515 .508 .523 .532 .542 .553 .578 .565 .585 MOMENTUM(P0UNDS) PRESSURE+ 4.32 4.32 4.32 4.33 4.34 4.35 4.36 4.40 4.38 4; 42 4.45 4.47 4.51 4.54 4: 58 4.63 4.67 4.72 4.78 4.84 4.91 4.98 5.05 5.14 5.22 5.27 ~~~~ ."""""""""""""""""""""""""""""""""""""" HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS """"""""""""""""""""""""""""""""""""""- """""""""-""""""""""""""""""""""""""""" -DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.18 ."""""""""""""""""""~""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM. CONTROL(FT) PRESSURE VELOCITY HEAD(FT1 (FT/SEC) SPECIFIC ENERGY (FT) MOMENTUM(P0UNDS) PRESSURE+ - . 000 2.184 55.074 1.432 .667 2.216 1.432 - ASSUMED DOWNSTREAM PRESSURE HEAD(FT1 = .67 - ."""""""""""""""""""""""""""""""""""""" 41.70 .699 8.65 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- """"-"""""""""""""""""""""""""""""""""" """"""""""""""""""""""""""""""""""""""- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ """"""""""""""""""""""""""""""""""""""- (FT) .667 .653 .640 .626 .613 .600 .586 .573 .546 .559 .532 .519 .506 .492 .479 .465 .452 .438 .425 .412 .398 .385 .371 .358 -344 (FT/SE 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.6 1.7 1.7 1.8 ENERGY (FT) .699 .685 .673 .660 .647 .635 .623 .611 .599 .587 .576 .565 .554 .543 .523 .533 .513 .504 .495 .487 .480 .474 .469 .464 : 462 .461 MOMENTUM(P0UNDS) 8.65 8.36 8.09 7.82 7.55 7.29 7.04 6.80 6.57 6.34 6.13 5.92 5.72 5.54 5.36 5.20 5.04 4.90 4.78 4.66 4.56 4.48 4.41 4.36 4.33 4.32 4.32 63.874 " .33i 2;aso 142.500 .331 2.890 .461 -""""""""""" -PRESSURE+MOMENTUM BALANCE OCCURS AT 61.35 FEET UPSTREAM OF NODE 22.13 I DOWNSTREAM DEPTH = .469 FEET, UPSTREAM CONJUGATE DEPTH = .226 FEET I END OF HYDRAULIC JUMP ANALYSIS"-"------------------- -NODE 21.11 : HGL = < 274.3312; EGL= 274.461r; FLOWLINE= 274.000> ....................................... ............................................................................. -FLOW PROCESS FROM NODE 21.11 TO NODE 21.12 IS CODE 5 UPSTREAM NODE 21.12 ELEVATION = 274.00 (FLOW IS AT CRITICAL DEPTH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ."""""""""""- CRITICAL VELOCITY DEPTH(FT. 1 (FT/SEC) .24 9.113 .33 2.891 . 00 . 000 . 00 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: -DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00701 MANNING'S N = .01300; FRICTION SLOPE = .27455 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .14078 JUNCTION LENGTH = 1.00 FEET - FRICTION LOSSES = .141 FEET ENTRANCE LOSSES = .026 F JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( .758)+( .141)+( .026) = .924 -DY=(Q2*V2-Ol*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- 04*V4*COS<DELTA4))/((Al+A2)*16.1) :EET - NODE 21.12 : HGL = < 274.0962; EGL= < 275.385>; FLOWLINE= < 274.000> -"""""""""""""""""""""""""""""""""""""" -FLOW PROCESS FROM NODE 21.12 TO NODE 20.21 IS CODE 1 ............................................................................. UPSTREAM NODE 20.21 ELEVATION 277.99 (FLOW IS SUPERCRITICAL) PIPE FLOW .28 CFS PIPE DIAMETER = 8.00 INCHES PIPE LENGTH 11.00 FEET MANNING'S N = .01300 """"""""""""""""""""""""""""""""""""""- -CALCULATE FRICTION LOSSES(LACFCD): -NORMAL DEPTH(FT1 .09 CRITICAL DEPTH(FT) = .24 """"""""""""""""""""""""""""""""""""""- ...................................... ...................................... UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) .24 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- ...................................... """"""""""""""""""""""""""""""""""""""- - DISTANCE FROM FLOW DEPTH VELOCITY CONTROL (FT) ( FT) (FT/SEC) ENERGY (FT) SPECIFIC PRESSURE+ MOMENTUM(P0UNDS) . 000 . 000 .245 2.411 .335 2.05 .238 .004 2.497 .335 2.05 .009 .232 2.588 .226 2.686 .336 .338 2.06 .016 2.07 .220 2.790 .341 .027 2.08 - .214 2.903 .041 .344 .207 2.11 .059 .201 3.023 .349 3.153 2.14 .081 .195 .356 2.17 - 3.294 .363 2.21 .lo9 .144 .189 3.446 .182 .373 3.611 2.26 .186 .385 2.32 .176 .238 3.790 .400 .170 2.39 3.986 .301 .164 4.201 .438 .417 2.47 .378 2.56 .473 .158 4.437 .464 2.66 .151 - 4.697 .494 .590 .145 4.986 2.78 .737 .139 .531 2.91 .921 .133 5.306 5.664 .576 3.07 1.157 .631 .127 3.24 1.468 6.067 .698 .120 6.522 3.44 1.890 .114 7.039 .781 3.67 2.492 .lo8 .884 3.94 3.434 7.631 1.013 4.24 5.222 .lo2 8.314 1.176 .096 9.110 4.60 11.000 1.385 .096 5.02 - 9.110 1.385 5.02 -. - - - ."""""""""""""""""""""""""""""""""""""" NODE 20.21 : HGL = 278.235r; EGL= < 278.325r; FLOWLINE= < 277.990r ............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 20.21 TO NODE 20.22 20.22 IS CODE = 5 ELEVATION 277.99 (FLOW IS AT CRITICAL DEPTH) """"_"""""""""""""""""""""""""""""""""" CALCULATE JUNCT PIPE - UPSTREAM DOWNSTREAM LATERAL X1 - LATERAL #2 Q5 'ION LOSSES: FLOW (CFS) (INCHES) DIAMETER .23 8.00 .28 8.00 . 00 . 00 . 00 . 00 .05===Q5 EQUAL ANGLE FLOWLINE (DEGREES) ELEVATION . 00 277.99 -00 277.99 -00 - : 00 : 00 .S BASIN INPUT=== CRITICAL DEPTH(FT. 1 99 . LL -24 .~ . 00 . 00 VELOCITY (FT/SEC) 1.217 2.412 -LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-01*Vl*COS (DELTAl) -Q3*V3*COS (DELTA31 - Q4*V4*COS (DELTA41 ) / ( (Al+A2) d6.1) -UPSTREAM: MANNING'S N .01300; FRICTION SLOPE = .00117 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00384 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00651 -JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = .004 FEET ENTRANCE LOSSES = .o1a F - JUNCTION LOSSES = ( .021)+( .004)+( .018) = .043 JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) 'EET ....................................... NODE 20.22 : HGL = c 278.345>; EGL= c 278.368>;FLOWLINE=-* ,277.990r ............................................................................. FLOW PROCESS FROM NODE 20.22 TO NODE 20.31 IS CODE = 1 UPSTREAM NODE 20.31 ELEVATION = 278.70 (HYDRAULIC JUMP OCCURS) - CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = .23 CFS PIPE DIAMETER = 8.00 INCHES PIPE LENGTH = 73.90 FEET MANNING'S N .01300 - HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ...................................... -NORMAL DEPTH(FT1 = .20 CRITICAL DEPTH (FT) = .22 ""_"""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" ,"""""""""""""""""""""""""""""""""""""" UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) .22 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - "-""""""""""""""""""""""""""""""""""""" """"""""""""""""""""""""""""""""""""""- ,"""""""""""""""""""""""""""""""""""""" DISTANCE FROM - CONTROL(FT1 . 000 .002 - .009 .021 .03a - .061 .091 .128 .173 .227 .292 .368 - .458 .563 .687 - .833 1.006 1.211 1.458 1.759 2.135 2.619 - 3.274 4.240 5.970 73.900 - - FLOW DEPTH (FT) .221 .220 .219 .218 .217 .217 .216 .215 .214 .213 .212 .211 .210 .210 .209 .208 I .207 .206 I .205 I .204 .203 1- .203 .202 1 .201 1 .200 1 .199 VELOCITY (FT/SEC) 2.276 2.288 2.301 2.313 2.326 2.339 2.352 2.365 2.379 2.392 2.405 2: dig 2.433 2.447 2.461 2.475 2.490 2.504 2.519 2.534 2.549 2.564 2.580 2.595 2.611 2.622 ENERGY(FT) SPECIFIC .301 .301 .301 .301 .301 .302 .302 .302 .302 .302 .302 .302 .302 .303 .303 .303 .303 .304 .304 .304 .304 .305 .305 .305 .306 .306 MOMENTUM(P0UNDS) PRESSURE+ 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.61 1.61 1.61 1.61 1.61 1.62 1.62 1.62 - ."""""""""""""""""""""""""""""""""""""" HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS """""""""""""""""""""""""""-""""""---------- """"_"""""""""""""""""""""""""""""""""" -DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .36 ....................................... ....................................... - GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ...................................... .- ....................................... NODE 20.31 : HGL = 278.921>;EGL= < 279.001>;FLOWLINE= 278.700, -UPSTREAM PIPE FLOW CONTROL DATA: ............................................................................. NODE NUMBER = 20.31 FLOWLINE ELEVATION = 278.70 ASSUMED UPSTREAM CONTROL HGL = 278.92 FOR DOWNSTREAM RUN ANALYSIS - ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" END OF GRADUALLY VARIED FLOW ANALYSIS - - ....................................... ............................................................................ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (REFERENCE: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) - (c) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) VER. 4.3A RELEASE DATE: 5/17/90 SERIAL X 5610 ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 (619) 931-8700 ........................... DESCRIPTION OF STUDY .......................... x VILLAS HYDRAULICS * 3/22/94 SECTION "A" LINE "I" * * * - .......................................................................... - ...................................... FILE NAME: VILLAS13.DAT TIMEIDATE OF STUDY: 13: 4 3/24/1994 - .......................................... ............................................................................. ~- GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE - 3 12.11- 1 3 - 11.11- (NOTE: "*" INDICATES NODAL POINT UPSTREAM RUN - NODE NUMBER PROCESS HEAD(FT1 MOMENTUM(P0UNDS) MODEL PRESSURE PRESSURE+ 18.14- 2.18* FRICTION 3 HYDRAULIC JUMP .52*Dc 48.42 - JUNCTION 13.99 12.12- 3 FRICTION - .86* 16.25 3 HYDRAULIC JUMP 11.12- JUNCTION .45*Dc 9.63 .75* FRICTION 3 HYDRAULIC JUMP 10.86 .35*Dc 3 JUNCTION 5.12 1 FRICTION .57* 5.84 3 HYDRAULIC JUMP 9.11- .25*Dc 2.23 - 10.11- 3 10.12- DATA USED. FLOW PRESSURE+ DOWNSTREAM RUN DEPTH(FT) MOMENTUM(P0UNDS) .18 38.97 .52*Dc 13.99 .44 9.66 .45*Dc 9.63 .16 9.93 .35*Dc 5.12 .23 2.28 .25*Dc 2.23 - ...................................... MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 -""""""""""""""""""""""""~"""""""""""""- -NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ............................................................................. -DOWNSTREAM PIPE FLOW CONTROL DATA: ~~ ~~~ NODE NUMBER = PIPE FLOW 18.14 1.21 CFS FLOWLINE ELEVATION = 281.24 PIPE DIAMETER 8.00 INCHES -ASSUMED DOWNSTREAM CONTROL HGL 283.423 ...................................... NODE - 18.14 : HGL = 283.423>;EGL= 283.610>;FLOWLINE= 281.240> FLOW PROCESS FROM NODE 18.14 TO NODE 12.11 IS CODE = 1 ............................................................................ -UPSTREAM NODE 12.11 - PIPE FLOW = 1.21 CFS ELEVATION = 287.60 (HYDRAULIC JUMP OCCURS) ...................................... CALCULATE FRICTION LOSSES (LACFCD) : PIPE LENGTH = 10.41 FEET MANNING'S N = .01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = .16 CRITICAL DEPTH (FT) = .52 PIPE DIAMETER = 8.00 INCHES ...................................... - """"""_"""""""""""""""""""""""""""""""- -UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = .52 ,"""""""""""""""""""""""""""""""""""""" ,"""""""""""""""""""""""""""""""""""""" GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -DISTANCE FROM CONTROL(FT1 . 000 . 001 .006 .014 - .027 .044 .067 - .096 .133 .179 .236 - .306 .392 .498 - .629 .792 .995 1.252 1.580 2.008 2.579 - 3.370 4.523 6.366 10.410 9.952 - - - FLOW DEPTH ( FT) .521 .507 .492 .478 .463 .449 .435 .420 .406 .391 .377 .363 .348 .334 .319 .305 .291 .276 .262 .247 .233 .204 .219 .176 .190 .176 VELOCITY (FT/SEC) 4.134 4.379 4.251 4.671 4.519 4.838 5.020 5.219 5.438 5.678 5.942 6.234 6.558 6.918 7.769 7.319 8.276 8.851 10.257 9.505 11.126 12.139 13.334 14.759 16.479 16.474 ENERGY(FT) SPECIFIC .786 .787 .790 .795 .802 .813 .826 .843 .865 .892 .967 .926 1.016 1.077 1.152 1.243 1.355 1.493 1.666 1.882 2.156 2.508 2.967 3.574 4.395 4.392 MOMENTUM(P0UNDS) PRESSURE+ 13.99 14.01 14.06 14.14 14.26 14.42 14.63 14.88 15.19 15.56 15.99 16.50 17.09 17.77 18.56 19.47 20.53 21.75 23.16 24.82 26.75 29.04 31.75 35.02 38.98 38.97 ."""""""""""""""""""""""""""""""""""""" HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ~~~ """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" ~~ ~ ~~~~~~ DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 2.18 -PRESSURE FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" DISTANCE FROM CONTROL(FT) HEAD(FT) (FT/SEC) PRESSURE VELOCITY SPECIFIC PRESSURE+ . 000 ENERGY (FT) MOMENTUM(P0UNDS) 2.183 2.523 3.466 .667 3.466 .- 2.370 48.42 .853 15.39 ....................................... """"""""""""""""""""""""""""""""""""""- -ASSUMED DOWNSTREAM PRESSURE HEAD(FT1 = .67 ....................................... ....................................... GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -NODE 12.11 : HGL = 288.121>; EGL= 288.386>; FLOWLINE= < 287.600, """""""""_""""""""""""""""""""""""""""" -FLOW PROCESS FROM NODE 12.11 TO NODE 12.12 IS CODE = 5 ............................................................................. UPSTREAM NODE 12.12 ELEVATION = 287.60 (FLOW IS AT CRITICAL DEPTH) -CALCULATE JUNCT PIPE """""""" - DOWNSTREAM UPSTREAM LATERAL Y2 LATERAL X1 - a5 ,""""""""""""""""""" . 1.21 8.00 -00 - 00 . 00 . 00 - ". . -1 : 00 . 00 . 00 .29===05 EQUALS BASIN INPUT=== . 00 -" CRITICAL DEPTH(FT. 1 .45 .52 . 00 . 00 8""- """ ~. "" VELOCITY (FT/SEC) 2.636 4.135 . 000 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: - DY=(Q2*VE-Ql*Vl*COS (DELTA11 -03*V3*COS (DELTA31 - UPSTREAM: . MANNING'S N = .01300; FRICTION SLOPE = .00580 Q4*V4*COS (DELTA41 1 / ( (Al+A2) *16.11 -AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00840 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .01101 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = .008 FEET ENTRANCE LOSSES = .053 FEET - JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) - JUNCTION' LOSSES = ( .123)+( .008)+( .053) .185 """""""""""-""""""""""""""""""""""""""" -NODE 12.12 : HGL = 288.463>; EGL= e 288.571>;FLOWLINE= < 287.600> -FLOW PROCESS FROM NODE 12.12 TO NODE 11.12 IS CODE = 1 ............................................................................. UPSTREAM NODE 11.12 ELEVATION = 289.55 (HYDRAULIC JUMP OCCURS) ....................................... - CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW .92 CFS PIPE DIAMETER 8.00 INCHES PIPE LENGTH = 195.08 FEET MANNING'S N = .01300 -HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ....................................... ...................................... NORMAL DEPTH(FT1 = .44 CRITICAL DEPTH (FT) = .45 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = .45 - GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ....................................... """_""""""""""""""""""""""""""""""""""" ....................................... ."""""""""""""""""""""""""""""""""""""" ....................................... DISTANCE FROM CONTROL(FT1 . 000 .002 .OlO - .022 .041 .066 .138 .186 .245 - .314 .397 .493 - .607 .740 .897 1.082 1.303 1.568 1.891 - 2.294 2.813 3.515 104.117 6.404 195.080 - .oga - - - 4.550 FLOW DEPTH (FT) .455 .454 .453 .452 .452 .451 .450 .449 .449 .447 .446 .445 .445 .444 .443 .442 .442 .441 .440 .439 .438 .438 .437 .436 .435 .435 .44a VELOCITY (FT/SEC) 3.626 3.633 3.640 3.647 3.654 3.661 3.668 3.675 3.682 3.696 3.689 3.704 3.711 3.718 3.726 3.733 3.740 3.748 3.755 3.763 3.770 3.778 3.786 3.793 3.801 3.809 3.809 SPECIFIC ENERGY (FT) .659 .659 .659 .659 .659 .659 .659 .659 ,659 .659 .659 .659 .659 .659 .660 .660 .660 .660 .660 .660 .660 .660 .660 .660 .661 ,661 .661 ~~~~~ MOMENTUM(P0UNDS) PRESSURE+ 9.63 9.63 9.63 9.63 9.63 9.63 -. " 9.63 9.63 9.64 9.64 9.64 9I64 9.64 9.64 9.64 9.64 9.64 9.64 9.65 9I65 9.65 9.65 9.65 9.66 9.66 9.66 9.66 -."""""""""""""""""""""""""""""""""""""" HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS -DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 = .86 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" PRESSURE FLOW PROFILE COMPUTED INFORMATION: -DISTANCE FROM PRESSURE VELOCITY CONTROL (FT) HEAD(FT1 (FT/SEC) SPECIFIC PRESSURE+ ENERGY (FT) . 000 .863 MOMENTUM(P0UNDS) 2.636 46.856 .667 .775 11.96 .971 2.636 16.25 """"""""""""""""""""""""""""""""""""""- - ............................................................................. FLOW PROCESS FROM NODE 11.12 TO NODE 11.11 IS CODE = 5 ."""""""""""""""""""""""""""""""""""""" CALCULATE JUNCTION LOSSES: - UPSTREAM NODE 11.11 ELEVATION = 289.55 (FLOW IS AT CRITICAL DEPTH) PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. 1 (FT/SEC) DOWNSTREAM .92 .57 8.00 289.55 .35 1.632 8.00 . 00 289.55 - LATERAL #1 . 00 . 00 . 00 .45 3.627 LATERAL #2 . 00 . 00 . 00 . 00 . 00 . 000 . 00 . 00 . 000 - UPSTREAM - a5 .35===05 EQUALS BASIN INPUT=== -LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: -UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00223 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00554 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00886 -JUNCTION LENGTH = 1.00 FEET DY= (Q2*V2-01*Vl*COS (DELTA1) -Q3*V3*COS (DELTA3) - Q4*V4*COS (DELTA4) ) / ((Al+A2) d6.1) FRICTION LOSSES = .006 FEET ENTRANCE LOSSES .041 FEET JUNCTION LOSSES = (DY+HVl-HVP) +(FRICTION LOSS)+(ENTRANCE LOSSES) -JUNCTION LOSSES = ( .085)+( .006)+( .041) = .131 NODE 11.11 : HGL = < 290.299>;EGL= < 290.340>;FLOWLINE= 289.550* ...................................... - ............................................................................ FLOW PROCESS FROM NODE UPSTREAM NODE 11.11 TO NODE 10.12 IS CODE = 1 ~ 10.12 ELEVATION = 291.70 (HYDRAULIC JUMP OCCURS) - CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = .57 CFS PIPE DIAMETER = 8.00 INCHES HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = .15 CRITICAL DEPTH(FT) .35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ...................................... -PIPE LENGTH = 13.00 FEET MANNING'S N .01300 ....................................... - ....................................... """"_"""""""""""""""""""""""""""""""""- ...................................... """"_"""""""""""""""""""""""""""""""""" ...................................... ....................................... -DISTANCE FROM CONTROL (FT) . 000 - .002 .OlO .022 .042 .068 .lo3 .147 - .203 .271 .354 .577 .724 .go1 - 1.117 1.380 1.702 - 2.104 2.610 3.264 - 4.137 5.362 10.737 7.240 - 13.000 - - .455 FLOW DEPTH ( FT) .355 .346 .338 .330 .322 .314 .306 .298 .290 .282 .274 .266 .258 .250 .242 .234 .226 .218 .210 .202 .194 .185 .177 .169 .161 .161 VELOCITY (FT/SEC) 3.021 3.109 3.203 3.302 3.408 3.521 3.642 3.770 3.908 4.056 4.214 4.385 4.570 4.769 4.985 5.220 5.475 5.755 6.062 6.399 6.771 7.185 7.645 8.161 8.741 8.745 ENERGY (FT) SPECIFIC .496 .497 .498 .500 .503 .507 .512 .519 .527 .538 .550 .565 .582 .603 .628 .657 .692 .732 .781 .838 .906 .988 1.086 1.204 1.348 1.349 MOMENTUM(POUNDS1 PRESSURE+ 5.12 5.12 5.14 5.16 5.19 5.23 5.28 5.35 5.43 5.52 5.62 5.75 5.89 6.05 6.23 6.43 6.66 7.21 6.92 7.53 7.90 8.32 8.79 9.32 9.93 9.93 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 .75 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY CONTROL(FT1 HEAD(FT1 (FT/SEC) SPECIFIC ENERGY (FT) PRESSURE+ MOMENTUM(P0UNDS) ...................................... """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- __ ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" - ....................................... - . 000 .749 1.633 .791 10.86 - .505 .667 1.633 .708 9.06 """""""""""""""""""""""""""""""""""""-" """"""""""""""""""""""""""""""""""""""- -ASSUMED DOWNSTREAM PRESSURE HEAD(FT1 .67 ...................................... ...................................... GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - DISTANCE FROM CONTROL(FT) .505 .580 .652 .723 - .793 .862 .929 - .996 1.061 1.126 1.189 1.250 1.310 1.368 - 1.424 1.478 1.530 - 1.579 1.625 1.667 1.705 - -. FLOW DEPTH (FT) .667 .654 .642 .629 .617 .604 .592 .579 .567 .554 .542 .529 .517 .504 .492 .479 .467 .454 .442 .429 .417 - 1.738 .404 1.766 .392 1.788 .379 - 1.802 1.807 .367 .355 13.000 - 355 . VELOCITY (FT/SEC) 1.632 1.640 1.653 1.670 1.690 1.713 1.740 1.769 1.802 1.837 1.875 1.917 1.962 2.011 2.064 2.121 2.182 2.248 2.320 2.397 2.481 2.572 2.670 2.777 2.893 3.021 ENERGY (FT) SPECIFIC .708 .696 .684 .673 .661 .650 .639 .628 .617 .607 .596 .586 .577 .567 .558 .549 .541 .533 .526 .519 .513 .507 .503 .499 .497 -496 MOMENTUM(P0UNDS) PRESSURE+ 8.80 9.06 8.55 8.30 8.05 7.82 7.59 7.37 7.16 6.95 6.76 6.57 6.39 6.22 5.91 6.06 5.77 5.65 5.53 5.43 5.34 5.26 5.20 5.16 5.13 5.12 5.12 ~~~~~ . "_ 3; 021 I496 -PRESSURE+MOMENTUM BALANCE OCCURS AT -""""""""""" END OF HYDRAULIC JUMP ANALYSIS------------------------ .26 FEET UPSTREAM OF NODE 11.11 I DOWNSTREAM DEPTH = .706 FEET, UPSTREAM CONJUGATE DEPTH .161 FEET I - NODE 10.12 : HGL < 292.055>; EGL= e 292.196>;FLOWLINE= < 291.700> ............................................................................. -UPSTREAM NODE FLOW PROCESS FROM NODE 10.12 TO NODE 10.11 10.11 IS CODE = 5 ELEVATION 291.70 (FLOW IS AT CRITICAL DEPTH) """"""""""""""""""""""""""""""""""""""- I"""""""""""""""""""""""""""""""""""""" ANGLE (DEGREES) ELEVATION FLOWLINE 00 291.70 . 00 291.70 . 00 .. . 00 . 00 .S BASIN INPUT=== CRITICAL DEPTH(FT. .25 .35 . 00 . 00 VELOCITY (FT/SEC) 3.021 .939 . 000 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00724 MANNING'S N .01300; FRICTION SLOPE = .00057 DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- __ Q4*V4*COS(DELTA4) 1 / ((Al+A2) *16.1) - AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00391 - JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = .004 FEET ENTRANCE LOSSES .028 FEET JUNCTION LOSSES = ( .058)+( .004)+( .028) = .091 -JUNCTION LOSSES (DY+HVl-HVZ) + (FRICTION LOSS)+(ENTRANCE LOSSES) "_""""""""""""""""""""""""""""""""""""" - NODE 10.11 : HGL = 292.2732; EGL= e 292.287>;FLOWLINE= < 291.7002 FLOW PROCESS FROM NODE 10.11 TO NODE 9.11 IS CODE = 1 ............................................................................ -UPSTREAM NODE 9.11 ELEVATION = 293.06 (HYDRAULIC JUMP OCCURS) ...................................... CALCULATE FRICTION LOSSES(LACFCD): PIPE LENGTH 135.50 FEET MANNING'S N = .01300 -PIPE FLOW = .30 CFS PIPE DIAMETER = 8.00 INCHES ...................................... - HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ...................................... NORMAL DEPTH(FT) .23 CRITICAL DEPTH(FT) = .25 ....................................... ....................................... -UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .25 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ ...................................... ....................................... """"""i"""""""""""""""""""""""""""""""" - CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(P0UNDS) . 000 .254 2.461 .348 2.23 .003 .252 2.476 .348 .Oll 2.23 .026 .251 2.490 .348 2.24 .250 2.505 .348 2.24 .047 - .249 2.520 .075 .248 .348 2.24 2.535 .348 .112 .247 2.550 2.24 .158 .246 .348 2.24 - 2.566 .348 .214 .245 2.581 .348 2.24 .282 2.24 .362 .244 2.597 .243 .348 2.613 .349 2.24 .457 2.24 .241 .569 .240 2.629 .349 2.645 2.24 .700 .239 2.662 .349 .349 2.25 .854 2.25 - .238 1.035 2.678 .237 .350 2.695 2.25 1.249 .236 .350 2.25 2.712 1.505 .350 2.25 1.812 .235 2.729 .351 .234 2.26 2.747 2.186 ,351 2.26 2.654 .233 2.765 .232 .351 2.782 2.26 3.256 .352 .231 2.26 4.070 2.801 ,229 .352 2.27 5.273 .228 2.819 .353 2.837 2.27 7.427 .353 2.27 122.770 .227 2.856 .354 2.28 .226 .226 2.875 .355 2.28 2.875 .355 2.28 - - - - - 135.500~ -"""""""""""""""""""""""""""""""""""""" "HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 .57 - """"""""""""""""""""""""""""-"""""""""" ."""""""""""""""""""""""""""""""""""""" GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """""""""""""""""""""""""""-""""""""""" - DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT1 (FT) -000 -573 MOMENTUM(P0UNDS) 5.84 5.60 5.36 5.14 4.91 4.70 4.49 (FT/SEC) 1: 296 -" .939 - .560 2.588 ,548 .957 .977 3.876 .535 5.161 .522 6.441 7.718 .509 8.990 .497 .484 - 10.257 11.518 .471 12.774 .458 14.021 .445 - .433 15.261 16.490 .420 17.708 .407 .394 18.912 20.099 .381 .369 21.265 .356 -. 22.405 .343 23.512 24.576 .330 25.581 .317 26.505 .305 27.310 .292 .279 27.925 .266 2.304 - 28.196 .254 2.461 """-"""""""" END OF HYDRAULIC JUMP ANALYSIS------------------------ - PRESSURE+MOMENTUM BALANCE OCCURS AT 27.09 FEET UPSTREAM OF NODE 10.11 I DOWNSTREAM DEPTH = .283 FEET, UPSTREAM CONJUGATE DEPTH .226 FEET I - - - 135.500 .254 2.461 .348 ."""""""""""""""""""""""""""""""""""""" NODE 9.11 : HGL = 293.314r; EGL= 293.408>; FLOWLINE= < 293.060> .- ENERGY (FT) .587 .575 .550 .563 .538 .526 .503 .515 .491 .480 .468 .457 .446 .435 .424 .414 .404 .395 .386 .377 .369 .363 .357 .352 .349 .348 2.83 2.72 2.61 2.52 2.44 2; 37 2.31 2.27 2.24 2.23 2.23 ............................................................................. UPSTREAM PIPE FLOW CONTROL DATA: ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION 293.06 293.31 FOR DOWNSTREAM RUN ANALYSIS -NODE NUMBER 9.11 """"""""""""""""""""""""""""""""""""""- """""""""""-""""""""""""""""""""""""""" -END OF GRADUALLY VARIED FLOW ANALYSIS .............................................................................. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (REFERENCE: LACFCD, LACRD, AND OCEMA HYDRAULICS CRITERION) - (c) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) - ANALYSIS PREPARED BY: VER. 4.3A RELEASE DATE: 5/17/90 SERIAL I 5610 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 (619) 931-8700 ........................... DESCRIPTION OF STUDY .......................... : SECTION "A" LINE "J" * * 3/22/94 .: VILLAS HYDRAULICS * * ........................................................................... .. """"""""""""""""""""""""""""""""""""""- TIME/DATE OF STUDY: 13:18 3/24/1994 FILE NAME: VILLAS14.DAT - ."""""""""""""""""""""""""""""""""""""" ............................................................................. GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM (NOTE: "*'I INDICATES NODAL POINT DATA USED.) - NODAL POINT STATUS TABLE UPSTREAM RUN - NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ DOWNSTREAM RUN NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM(P0UNDS) 18.13- 2.18* 59.08 .61 Dc 25.64 3 FRICTION > JUNCTION 3 FRICTION 3 JUNCTION 3 FRICTION 3 JUNCTION 3 FRICTION 1 HYDRAULIC JUMP - 16.11- 3.03* 77.50 .61 Dc 25.64 16.12- 3.91* 88.91 .56 Dc 17.34 15.11- - 4.65* 105.03 .44 18.70 - 15.12- 5.00* 106.35 .18 22.14 14.11- 1.99* 40.77 .45 Dc 9.63 41.33 .33 5.31 - 14.12- 2.15* 13.11- .36*Dc 5.24 .36*Dc 5.24 ....................................... MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 -"""""""""""""""""""""--"""---"""-""""-------- " CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST - DOWNSTREAM PIPE FLOW CONTROL DATA: - ASSUMED DOWNSTREAM CONTROL HGL = 283.423 ............................................................................. NODE NUMBER 18.13 FLOWLINE ELEVATION = 281.24 PIPE FLOW 1.84 CFS PIPE DIAMETER = 8.00 INCHES ....................................... - NODE 18.13 : HGL = < 283.423r; EGL= < 283.854>; FLOWLINE= < 281.240> ............................................................................. FLOW PROCESS FROM NODE 18.13 TO NODE 16.11 IS CODE = 1 -UPSTREAM NODE 16.11 ELEVATION 281.89 (FLOW IS UNDER PRESSURE) ...................................... CALCULATE FRICTION LOSSES(LACFCD): -PIPE FLOW = PIPE LENGTH = 1.84 CFS 64.51 FEET MANNING'S N = SF=(Q/K)**2 = (( 1.84)/( .01300 12.084) 1 **2 = .02319 - HF=L*SF ( 64.51)*( .02319) = 1.496 PIPE DIAMETER = 8.00 INCHES ,"""""""""""""""""""""""""""""""""""""" NODE 16.11 : HGL = 284.919>;EGL= < 285.350>;FLOWLINE= < 281.8902 ............................................................................. FLOW PROCESS FROM NODE, UPSTREAM NODE 16.11 TO NODE 16.12 IS CODE 5 16.12 ELEVATION = 281.89 (FLOW IS UNDER PRESSURE) ........................... - CALCULATE JUNCT PIPE - UPSTREAM DOWNSTREAM LATERAL X1 - LATERAL X2 05 '1 :ON LOSSES: FLOW (CFS) (INCHES) DIAMETER 1.41 8.00 1.84 8.00 . 00 . 00 . 00 . 00 .43===05 EQUAL ANGLE FLOWLINE (DEGREES) ELEVATION 80.00 281.89 . 00 281.89 .oo - . 00 : 00 .S BASIN INPUT=== """"" DEPTH(FT. CRITICAL .56 .61 . 00 . 00 . VELOCITY 1 (FT/SEC) 4.039 5.271 . 000 . 000 - NODE 16.12 : HGL = < 285.798*;EGL= < 286.052>;FLOWLINE= < 281.8902 ....................................... -FLOW PROCESS FROM NODE ............................................................................. UPSTREAM NODE 15.11 ELEVATION = 283.94 (FLOW IS UNDER PRESSURE) 16.12 TO NODE 15.11 IS CODE 1 ............................ - CALCULATE FRICTION LOSSES(LACFCD1: PIPE FLOW 1.41 CFS PIPE DIAMETER = PIPE LENGTH = 204.96 FEET SF=(Q/K)**2 = (( 1.41) / ( MANNING'S N = 12.084) 1 **2 = .01361 -HF=L*SF = ( 204.96)*( .01361) = 2.790 .01300 8.00 INCHES ."""""""""""""~~~""~~""""""""~~"""""""""""~ NODE 15.11' : HGL = 288.589r; EGL= < 288.842>; FLOWLINE= < 283.940* - ............................................................................. FLOW PROCESS FROM NODE 15.11 TO NODE 15.12 IS CODE 5 - UPSTREAM NODE 15.12 ELEVATION = 283.94 (FLOW IS UNDER PRESSURE) .-------"""""-------"""""""""""""""""""""""""" CALCULATE JUNCTION LOSSES: ~~ ~~~ - PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM .92 DOWNSTREAM 1.41 8.00 . 00 283.94 8.00 283.94 .45 2.636 LATERAL tl . 00 - .56 4.040 LATERAL t2 . 00 . 00 . 00 . 00 . 00 . 00 . 000 . 00 . 00 . 00 . 000 .49===Q5 EQUALS BASIN INPUT=== - a5 - LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAI)-Q3*V3*COS(DELTA3)- - Q4*V4*COS(DELTA4) 1 / ((Al+A2) *i6ii) UPSTREAM: MANNING'S N .01300! FRICTION SLOPE = .nn!iRn . - - . " . JUNCTION LO%ES = (DY+HVl-HV21+(FRTCTTflN I - .. -JUNCTION LOSSES = ( . FEET :s ) "-------""-------""""""""""""""""""""""""""""~ NODE 15.12 : HGL = < 288.940>; EGL= < 289.048>; FLOWLINE= 283.940> ............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 15.12 TO NODE 14.11 14.11 IS CODE 1 ELEVATION 287.00 (FLOW IS UNDER PRESSURE) " ."""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = .92 CFS SF=(Q/K)**2 = (( .92)/( HF=L*SF ( 12.086) 1 **2 .00579 8.50)*( .00579) = .049 -PIPE LENGTH = 8.50 FEET PIPE DIAMETER 8.00 INCHES MANNING'S N = .01300 - """"""""""""""""""""""""""""""""""""""- NODE 14.11 : HGL = < 288.989~; EGL= < 289.097~; FLOWLINE= < 287.000> -FLOW PROCESS FROM NODE UPSTREAM NODE 14.11 TO NODE 14.12 14.12 IS CODE = 5 ELEVATION = 287.00 (FLOW IS UNDER PRESSURE) ............................................................................. -CALCULATE JUNCTION LOSSES: PIPE FLOW (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. 1 (FT/SEC) DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY UPSTREAM - DOWNSTREAM .58 8.00 . 00 287.00 .36 1.661 8.00 LATERAL X1 .92 . 00 - 287.00 .45 2.635 LATERAL #2 .oo . 00 . 00 . 00 . 00 . 00 . 00 . 00 . 00 . 000 . 000 ....................................... - a5 .34===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00230 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00580 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = .004 FEET ENTRANCE LOSSES .022 F JUNCTION LOSSES = ( .065)+( .004)+( .022) = .091 -DY=(QZ*V2-Ql*VI*COS(DELTAl)-Q3*V3*COS(DELTA3)- 04*V4*COS(DELTA4))/((Al+A2)*16.1) -AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00405 -JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) 'EET - NODE 14.12 : HGL = < 289.145>;EGL= < 289.188>;FLOWLINE= e 287.000* """"""""""""""""""""""""""""""""""""""- k**************************************************************************** - UPSTREAM NODE FLOW PROCESS FROM NODE 13.11 14.12 TO NODE ELEVATION 289.24 (HYDRAULIC JUMP OCCURS) 13.11 IS CODE 1 ....................................... CALCULATE FRICTION LOSSES(LACFCD): PIPE LENGTH = 224.46 FEET MANNING'S N = .01300 -PIPE FLOW = .58 CFS PIPE DIAMETER = 8.00 INCHES -HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" NORMAL DEPTHtFT) = .33 CRITICAL DEPTH (FT) = .36 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = .36 - GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- - ."""""""""""""""""""""""""""""""""""""" """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" PRESSURE+ MOMENTUM(P0UNDS) 5.24 FLOW DEPTH (FT) .358 .356 .355 .354 .353 .351 .350 .349 .347 .346 .345 .344 .342 .341 .340 .338 .337 .336 .335 ,333 .332 .331 .329 .328 .327 .326 .326 VELOCITY (FT/SEC) 3.039 3.053 3.066 3.080 3.094 3.109 3.123 3.137 3.152 3.167 3.182 3.197 3.212 3.227 3.242 3.258 3.274 3.290 3.306 3.322 3.338 3.355 3.372 3.389 3.406 3.423 3.423 ENERGY (FT) SPECIFIC .501 .501 .501 .501 .501 .501 .502 .502 .502 .502 .502 .502 .503 .503 .503 .503 .504 .504 .504 .505 .505 .506 .506 .507 .507 .508 .508 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.25 5.25 5.25 5.25 5.26 5.26 5.26 5.27 5.27 5.28 5.28 5.29 5.29 5.30 5.30 5I3i 5.31 """"""""""""""""""""""""""""""""""""""- HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS """"""""""""""""""""""""""""""""""""""- """""""""""""""""""""""""""""-""""""""" - DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 = 2.15 """-""""""""""""""""""""""""""""""""""" """"""""""""""""""""""""""""""""""""""- PRESSURE FLOW PROFILE COMPUTED INFORMATION: -DISTANCE FROM PRESSURE VELOCITY CONTROL (FT) HEAD(FT1 (FT/SEC) ENERGY(FT1 SPECIFIC MOMENTUM(P0UNDS) PRESSURE+ .ooo 192.599 2.145 .667 1.662 2.188 1.662 41.33 - .710 9.13 """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" ASSUMED DOWNSTREAM PRESSURE HEAD(FT) .67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC (FT) (FT/SEC) ENERGY (FT) PRESSURE+ MOMENTUM(P0UNDS) - CONTROL(FT1 ............................................................................. UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 13.11 "ASSUMED UPSTREAM CONTROL HGL = 289.60 FOR DOWNSTREAM RUN ANALYSIS FLOWLINE ELEVATION 289.24 ....................................... -END OF GRADUALLY VARIED FLOW ANALYSIS """"""_"""""""""""""""""""""""""""""""" - ............................................................................. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (REFERENCE: LACFCD LACRD, AND OCEMA HYDRAULICS CRITERION) - (c) COPYRIGHT 1982-40 ADVANCED ENGINEERING SOFTWARE (AES) VER. 4.3A RELEASE DATE: 5/17/90 SERIAL X 5610 - ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L (619) 931-8700 BHA, INC. CARLSBAD, CALIFORNIA. 92008 - ."""""""""""""""""""""""""""""""""""""" FILE NAME: VILLAS15. DAT TIMEIDATE OF STUDY: 13:22 3/24/1994 - ."""""""""""""""""""""""""""""""""""""" ~- - NODE NUMBER 8.13- - 1 2.11- ............................................................................. GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (NOTE: "*'* INDICATES NODAL POINT DATA USED.) UPSTREAM RUN 3.37* 324.15 .65 97.39 MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ DOWNSTREAM RUN PROCESS HEAD(FT1 MOMENTUM(P0UNDS) DEPTH(FT) MOMENTUM(P0UNDS) FRICTION 2.78* 258.74 .92 Dc 82.90 ."""""""""""""""""""""""""""""""""""""" - MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 .~"""~~"""~~~~""""""~~"""""""""""""""""""""~ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST -DESIGN MANUALS. CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA ............................................................................. DOWNSTREAM PIPE FLOW CONTROL DATA: PIPE FLOW FLOWLINE ELEVATION = 283.33 ASSUMED DOWNSTREAM CONTROL HGL = 286.701 5.66 CFS PIPE DIAMETER = 18.00 INCHES - NODE NUMBER = 8.13 - NODE 8.13 : HGL e 286.701>; EGL= e 286.860>;FLOWLINE= e 283.330> ....................................... ............................................................................. -FLOW PROCESS FROM NODE UPSTREAM NODE 8.13 TO NODE 2.11 2.11 IS CODE 1 ELEVATION = 284.00 (FLOW IS UNDER PRESSURE) """"""""""""""""""""""""""""""""""""""- - CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 5.66 CFS PIPE LENGTH 26.47 FEET MANNING'S N = SF=(Q/K)**2 ( ( 5.66)/( 105.049))**2 = .00290 .01300 PIPE DIAMETER = 18.00 INCHES -- HF=L*SF ( 26.47)*( .00290) .077 ....................................... - NODE 2.11 : HGL = < 286.778,; EGL= < 286.937,; FLOWLINE= < 284.000, ............................................................................. UPSTREAM PIPE FLOW CONTROL DATA: ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 284.00 284.92 FOR DOWNSTREAM RUN ANALYSIS -NODE NUMBER = 2.11 """"""""""""""""""""""""""""""""""""""- """""""""""""""""""""""""""""""-""""""" END OF GRADUALLY VARIED FLOW ANALYSIS - ....................................... ............................................................................. PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE - (REFERENCE: LACFCD LACRD, AND OCEMA HYDRAULICS CRITERION) (c) COPYRIGHT 1982-40 ADVANCED ENGINEERING SOFTWARE (AES) VER. 4.3A RELEASE DATE: 5/17/90 SERIAL it 5610 - ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD, CALIFORNIA. 92008 (619) 931-8700 ........................... DESCRIPTION OF STUDY .......................... t SECTION "A" LINE "L" * VILLAS HYDRAULICS * * * _x 3/22/94 .......................................................................... - .""""""""""""""""""""""""""""""~"""""""- FILE NAME: VILLAS16.DAT TIMEIDATE OF STUDY: 13:57 3/24/1994 - ."""""""""""""""~""""""""""""""""""""""- x**************************************************************************** - GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (NOTE: "*'I INDICATES NODAL POINT DATA USED.) - NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ UPSTREAM RUN 2.26* 102.38 .36 52.13 DOWNSTREAM RUN NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM(P0UNDS) 33.13- 33.21- 1.93* 86.03 .25 83.47 3 FRICTION 3 MANHOLE 3 FRICTION 3 HYDRAULIC JUMP 3 JUNCTION 3 FRICTION 3 HYDRAULIC JUMP 3 JUNCTION 3 FRICTION 3 JUNCTION - - 33.22- 86.43 .25 85.57 1.93* 7.11- .69*Dc 32.94 .69*Dc 32.94 - 7.12- 1.08* .47 32.55 41.35 6.11- .65 Dc 28.54 .46* 33.09 6.12- - .98 32.60 .27* 41.21 - 5.11- .59*Dc 22.01 .59*Dc 22.01 5.12- - 4.11- 3 FRICTION .go* 27.15 .49 19.63 .55*Dc 19.15 .55*Dc 19.15 3 HYDRAULIC JUMP 3 JUNCTION 3 FRICTION 3 MANHOLE 3 FRICTION 3 HYDRAULIC JUMP 4.12- 1.08* 17.98 .31 4.99 - 34.12- 34.11- .78* 11.42 .15 10.14 - .78* .15 10.39 11.47 3.11- .35*Dc 4.89 .35*Dc 4.89 """"""""""""""""-"""""""""""""""""""""" - MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ....................................... -CONSERVATIVE FORMULAE FROM THE CURRENT LACRD'LACFCD, AND OCEMA NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST DESIGN MANUALS. -DOWNSTREAM PIPE FLOW CONTROL DATA: ............................................................................. NODE NUMBER 33.13 PIPE FLOW = FLOWLINE ELEVATION 286.03 ASSUMED DOWNSTREAM CONTROL HGL = 288.289 2.56 CFS PIPE DIAMETER = 12.00 INCHES - .-----""---------------"""""""""""""""""""""""""" NODE 33.13 : HGL 288.289>; EGL= < 288.454r; FLOWLINE= < 286.030> CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.56 CFS PIPE LENGTH - 22.55 FEET MANNING'S N = .01300 2.56)/( SF=(Q/K)**E (( 35.628) 1 **2 = .00516 HF=L*SF = ( 22.55)*( .00516) = .116 PIPE DIAMETER 12.00 INCHES - NODE 33.21 : HGL e 288.405>;EGL= < 288.570r;FLOWLINE= < 286.480> """"""""""""""""""""""""""""""""""""""- ............................................................................. -FLOW PROCESS FROM NODE UPSTREAM NODE 33.22 33.21 TO NODE ELEVATION 286.48 (FLOW IS UNDER PRESSURE) 33.22 IS CODE = 2 .......................................... CALCULATE MANHOLE LOSSES(LACFCD): FLOW VELOCITY 3.26 FEET/SEC. PIPE DIAMETER 12.00 INCHES HMN .05*(VELOCITY HEAD) = .05*( .165) = VELOCITY HEAD .008 .165 FEET -PIPE FLOW 2.56 CFS ............................................ NODE 33.22 : HGL = -z 288.414>;EGL= < 288.579>;FLOWLINE= 286.480r - ............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 33.22 TO NODE 7.11 7.11 IS CODE = 1 ELEVATION = 293.67 (HYDRAULIC JUMP OCCURS) - CALCULATE FRICTION LOSSES(LACFCD) : -"---"""""""""""""""""""""""""""""""""""- PIPE FLOW = 2.56 CFS PIPE LENGTH = 18.00 FEET MANNING'S N .01300 PIPE DIAMETER = 12.00 INCHES """"""""""""""""""""""""""""""""""""""- HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS -"""""""""""""""""""""""""""""""""""""" - NORMAL DEPTH(FT) = .23 CRITICAL DEPTH (FT) = .69 ....................................... """""""""""""""""""""-""""""""""""""""" UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 = .69 -GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -"""""""""""""""""""""""""""""""""""""" ....................................... ....................................... DISTANCE FROM FLOW DEPTH VELOCITY - CONTROL(FT1 (FT) (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE+ MOMENTUM(P0UNDS) . 000 .686 .003 .667 4.459 4.597 .995 32.94 .Oll .996 .649 4.745 32.97 .025 ,631 1.004 33.27 .999 4.905 33.08 - .047 .077 .117 .169 .234 .316 .416 .539 .691 1.104 .876 1.386 1.737 2.177 2.737 3.462 4.423 7.647 5.741 10.662 16.466 18.000 5.078 5.265 5.468 5.688 5.929 6.191 6.478 6.792 7.139 7.522 7.946 8.419 8.947 9.541 10.213 10.976 11.850 12.859 14.033 15.413 17.052 17.052 1.013 1.040 1.025 1.060 1.085 1.154 1.116 1.201 1.258 1.327 1.410 1.512 1.636 1.789 1.976 2.209 2.501 2.870 3.342 3.955 4.764 4.764 33.54 34.37 33.90 35.62 34.94 36.44 37.40 38.53 39.82 41.33 43.05 45.04 47.33 49.96 52.99 56.50 60.59 70.96 65.36 77.61 85.57 85.57 - """"""""""""""""""""-"""""""""""""""""" HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS -DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT1 = 1.93 ....................................... """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""-"""""""""""" PRESSURE FLOW PROFILE COMPUTED INFORMATION: - DISTANCE FROM CONTROL (FT) HEAD(FT1 (FT/SEC) PRESSURE VELOCITY ENERGY (FT) SPECIFIC MOMENTUM(P0UNDS) PRESSURE+ """"""""""""""""""""""""""""""""""""""- . 000 1.934 3.259 2.099 86.43 2.368 1.000 3.259 1.165 40.67 - 33.32 33.18 33.08 33.00 32.95 32.94 32.94 .""""""" NODE 33.22 I = .246 FEET I -----"""""""""""""""""""""""""""""""""""" - NODE 7.11 : HGL = < 294.356>;EGL= < 294.665>;FLOWLINE= < 293.670> ............................................................................. FLOW PROCESS FROM NODE 7.11 TO NODE -UPSTREAM NODE 7.12 IS CODE 5 7.12 ELEVATION = 293.67 (FLOW IS AT CRITICAL DEPTH) .""""""""""""""""""""""""""- CALCULATE JUNCTION LOSSES: - PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION FLOWLINE DOWNSTREAM UPSTREAM 2.30 12.00 50.00 293.67 2.56 - LATERAL X1 12.00 - 293.67 LATERAL X2 . 00 . 00 . 00 . 00 . 00 . 00 . 00 . 00 .26===05 EQUALS BASIN INPUT=== Q5 DEPTH(FT. 1 (FT/SEC) CRITICAL VELOCITY .65 2.928 .69 . 00 4.461 . 000 . 00 . 000 - LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE .00417 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00598 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE .00779 FRICTION LOSSES .006 FEET ENTRANCE LOSSES = .062 F DY=(Q2*VZ-(Il*Vl*COS (DELTA11 -03*V3*COS (DELTA3) - - Q4*V4*COS(DELTA4) ) / ( (Al+A2) d6.1) -JUNCTION LENGTH = 1.00 FEET JUNCTION LOSSES (DY+HVl-HVP) + (FRICTION LOSS) + (ENTRANCE LOSSES) -JUNCTION LOSSES = ( .148)+( .006)+( .062) = .216 :EET ."""""""""""""""""""""""""""""""""""""" NODE 7.12 : HGL = 294.747>;EGL= < 294.880>;FLOWLINE= 293.670, ............................................................................. UPSTREAM NODE FLOW PROCESS FROM NODE 7.12 TO NODE 6.11 6.11 IS CODE 1 ELEVATION = 297.53 (HYDRAULIC JUMP OCCURS) - - ."""""""""""""""""""""""""""""""-""""""- CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 2.30 CFS PIPE DIAMETER = 12.00 INCHES -PIPE LENGTH 193.02 FEET MANNING'S N .01300 ."""""""""""""""""""""""""""""""""""""" HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS -NORMAL DEPTH(FT1 = .47 CRITICAL DEPTH (FT) = .65 """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .46 """"""""""""""""""""""""""""""""""""""- ."""""""""""""""""""""""""""""""""""""" GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) SPECIFIC (FT/SEC) PRESSURE+ ENERGY (FT) MOMENTUM(P0UNDS) .464 6.444 .464 6.437 1.109 33.09 1.406 .465 1.107 33.04 1.108 6.429 33.07 . 000 ,689 - "_""""""""""""""""""""""""""""""""""""" """"""""""""""""""""""""""""""""""""""- - PRESSURE FLOW PROFILE COMPUTED INFORMATION: ........................................... DISTANCE FROM PRESSURE VELOCITY CONTROL(FT1 HEAD(FT) (FT/SEC) ENERGY(FT1 MOMENTUM(P0UNDS) SPECIFIC PRESSURE+ 4.883 . 000 1.077 2.928 1.000 1.210 2.928 41.35 1.133 37. Sh " """"""""""""""""""""""""""""""""""""""- """""""""""""""""""""""""""""""""""-""" " ." -ASSUMED DOWNSTREAM PRESSURE HEAD(FT1 = 1.00 """""""""""""""""""""""""-""""""""""""" """"""""""""""""""""""""""""""""""""""- . GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """""""_ - DISTANCE FROM 4.883 5.712 6.490 7.239 - 7.963 8.667 9.351 10.665 11.295- 11.907 12.499 13.072 13.624 - 14.154 14.659 15.138 16.007 CONTROL(FT1 - - 10.017 - - 15.589 """""""_ FLOW DEPTH (FT) 1.000 .986 .972 .958 .944 .930 .916 ,902 ,888 .874 .860 .845 .831 .817 .803 .789 .775 .761 .747 """""_ VELOCITY (FT/SEC) 2.928 2.936 2.951 2.971 2.994 3.021 3.051 3.084 3.120 3.201 3.159 3.246 3.294 3.346 3.400 3.458 3.519 3.653 3.584 *"""""""_ ENERGY (FT) SPECIFIC 1.133 1.120 1.107 1.095 1.083 1.072 1.060 1.049 1.039 1.029 1.019 1.000 1.009 .991 .983 .975 .968 .961 .955 " """""""""_ MOMENTUM(P0UNDS) PRESSURE+ 37.56 36.91 36.29 35.70 35.12 34.57 34.04 33.53 33.05 32.58 32.13 31.71 31.31 30.93 30.57 30.24 29.94 29.66 29.41 16.391 .733 16.734 3. 17.033 ,719 .705 3. 17.282 3. 17.472 ,691 3. 17.595 4. 17.638 .663 4. 193.020 .649 4. .649 4. END OF HYDRAUL PRESSURE+MOMENTUM BALANCE OCCURS AT DOWNSTREAM DEPTH .873 FEET, - - .677 ""-""""""""" 803 726 .949 .944 885 .940 972 .936 063 161 .933 264 .932 264 .931 .931 .IC JUMP ANALYSIS---------- 11.34 FEET UPSTREAM OF UPSTREAM CONJUGATE DEPTH ."""""" NODE 7.12 = .474 FEET " __ """"""""""""""""""""""""""""""""""""""- NODE 6.11 : HGL = 297.994>;EGL= < 298.639>;FLOWLINE= 297.5302 -FLOW PROCESS FROM NODE UPSTREAM NODE 6.11 TO NODE 6.12 6.12 IS CODE = 5 ELEVATION = 297.53 (FLOW IS SUPERCRITICAL) ............................................................................. - ........................... -CALCULATE JUNCl PIPE - DOWNSTREAM UPSTREAM LATERAL tl LATERAL #2 - a5 'ION LOSSES: FLOW (CFS) (INCHES) DIAMETER 1.89 12.00 2.30 12.00 . 00 . 00 . 00 . 00 .41===05 EQUAl ANGLE (DEGREES) ELEVATION FLOWLINE 20.00 297.53 297.53 . 00 -00 . 00 I00 .S BASIN INPUT=== .""""_ CRITICAL DEPTH(FT. .59 .65 . 00 . 00 ,"""""_ VELOCITY (FT/SEC) 10.921 6.446 . 000 . 000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE .lo719 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE .02155 JUNCTION LENGTH = 1.50 FEET FRICTION LOSSES = .097 FEET ENTRANCE LOSSES = .129 FEET JUNCTION LOSSES = ( .789)+( .097)+( .129) = 1.015 - DY= (02*V2-01*Vl*COS (DELTA11 -03*V3*COS (DELTA31 - 04*V4*COS (DELTA41 1 / ( (Al+A2) *16.1) " AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .06437 - JUNCTION LOSSES = (DY+HVl-HVZ) + (FRICTION LOSS) + (ENTRANCE LOSSES) """"""""""""""""""""""""""""""""""""""- - NODE 6.12 : HGL = < 297.8022; EGL= < 299.6542; FLOWLINE= < 297.5302 ............................................................................. FLOW PROCESS FROM NODE 6.12 TO NODE 5.11 IS CODE 1 CALCULATE FRICTION LOSSES (LACFCD) : PIPE LENGTH = 14.53 FEET MANNING'S N = .01300 - UPSTREAM NODE 5.11 ELEVATION = 299.80 (FLOW IS SUPERCRITICAL) -"""""""""""""""""""""""""""""""""""""" - PIPE FLOW = 1.89 CFS PIPE DIAMETER = 12.00 INCHES --"""""""-"""""""""""""""""""""""""""""" - NORMAL DEPTH(FT1 = .25 CRITICAL DEPTH (FT) .59 -"""""""""""""""""""""""""""""""""""""" --"""""""""""""""""""""""""""""""""""""- UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 .59 -- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- ....................................... DISTANCE FROM FLOW DEPTH VELOCITY ~- CONTROL(FT1 (FT) (FT/SEC) ENERGY(FT1 SPECIFIC PRESSURE+ MOMENTUM(P0UNDS) . 000 .004 .586 3.952 .828 .572 4.066 22.01 .017 .559 4.186 .041 .545 4.315 .835 22.18 22.09 .a29 22.03 .a31 - .076 .124 .187 .268 .369 .493 .645 1.052 .829 1.322 1.648 2.044 2.528 3.123 3.864 4.801 6.014 7.636 13.425 9.918 14.530 .532 .518 ,505 .491 .478 .464 .450 - 437 - ." .423 .410 .396 .383 .369 .356 .342 .329 .315 .302 .288 .275 .272 4.452 4.599 4.755 4.923 5.103 5.296 5.504 5.729 5.972 6.235 6.520 6.831 7.171 7.544 8.406 7.954 8.907 9.465 10.089 10.790 10.917 .840 .847 .856 .868 .882 ,900 .921 ,947 1.014 .977 1.057 1.108 1.168 1.240 1.325 1.427 1.548 1.694 1.870 2.084 2.124 22.32 22.50 22.74 23.02 23.36 23.76 24.23 24.77 25.38 26.09 26.88 27.78 28.80 29.95 31.24 32.71 34.36 36.23 38.35 40.77 41.21 ....................................... - NODE 5.11 : HGL = < 300.386>; EGL= 300.628>; FLOWLINE= 299.800> -FLOW PROCESS FROM NODE ............................................................................. 5.11 TO NODE UPSTREAM NODE 5.12 5.12 IS CODE = 5 ELEVATION = 299.80 (FLOW IS AT CRITICAL DEPTH) ........................... - CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE (CFS) (INCHES) (DEGREES) ELEVATION FLOWLINE UPSTREAM 1.70 12.00 45.00 299.80 - DOWNSTREAM LATERAL Y1 1.89 12.00 - 299.80 LATERAL #2 . 00 . 00 . 00 . 00 . 00 . 00 a5 . 00 . 00 - .19===05 EQUALS BASIN INPUT=== """"""""""" CRITICAL VELOCITY DEPTH(FT. 1 (FT/SEC) .55 2.287 .59 . 00 3.953 . 000 . 00 . 000 ,""""_ 299.800> "- ............................................................................. FLOW PROCESS FROM NODE - UPSTREAM NODE 5.12 TO NODE 4.11 4.11 IS CODE = 1 ELEVATION = 301.62 (HYDRAULIC JUMP OCCURS) ....................................... CALCULATE FRICTION LOSSES (LACFCD) : PIPE LENGTH 181.69 FEET MANNING'S N .01300 - PIPE FLOW = 1.70 CFS PIPE DIAMETER = 12.00 INCHES ....................................... - HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ....................................... NORMAL DEPTH(FT1 = .49 CRITICAL DEPTH (FT) = .55 UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = .55 - GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - _"""""""""""""""""""""""""""""""""""""" """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""-"""""""""""""""" """""""""""""""""""""-""""""""""""""""" """"""""""""""""""""""""""""""""""""""- DISTANCE FROM CONTROL (FT) - . 000 .007 .030 - .071 .129 .209 .311 .438 .593 .780 - 1.002 1.265 1.574 2.365 2.868 3.463 - 4.171 5.024 6.065 - 7.364 9.037 11.302 14.646 20.639 181.690 - - 1.938 - FLOW DEPTH (FT) .554 .552 .549 .546 .543 .541 .538 .535 .532 .530 .527 .524 .522 .519 .516 .513 .511 .508 .505 .503 .500 .497 .494 .492 .489 .488 VELOCITY (FT/SEC) 3.803 3.826 3.850 3.874 3.898 3.922 3.947 3.972 3.997 4.023 4.049 4.075 4.102 4.129 4.157 4.184 4.213 4.270 4.241 4.300 4.329 4.360 4.390 4.421 4.453 4.469 ENERGY (FT) SPECIFIC .779 .779 .779 .779 .779 .780 .780 .780 .781 .782 .781 .782 .783 .785 .784 .785 .786 .787 .789 .791 .790 .792 .794 f795 .797 .798 MOMENTUM(P0UNDS) PRESSURE+ 19.15 19.16 19.16 19.16 19.17 19.17 19.18 19.19 19.20 19.21 19.23 19.24 19.26 19.28 19.30 19.32 19.35 19.37 19.40 19.43 19.46 19.50 19.53 19.57 19.61 19.63 - HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS """"""""""""""""""""""""""""""""""""""- ""_"""""""""""""""""""""""""""""""""""" """""""""""""""""""""""""""-""""""""""" . DOWNSTREAM CONTROL ASSUMED FLOWDEPTH (FT) .90 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- .- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """""""_ - CONTROL(FT1 DISTANCE FROM 1.481 . 000 - 2.947 4.397 5.833 - 7.253 8.657 10.045 11.416 12.769 14.103 15.415 - 16.704 17.968 19.203 20.405 21.570 - "" b"""""" FLOW DEPTH (FT) .898 .884 .870 .857 .843 .829 .815 .802 .788 .774 .760 .747 .733 .719 .705 .692 .678 """"" VELOCITY (FT/SEC) 2.286 2.313 2.342 2.373 2.406 2.441 2.478 2.518 2.560 2.605 2.652 2.702 2.755 2.811 2.870 2.932 2.998 ."_ ,"""""""""""""""- ENERGY (FT) SPECIFIC .979 .967 .956 ,944 .933 .922 .911 .goo .890 .880 .870 .860 .851 .842 .833 .825 .818 MOMENTUM(P0UNDS) PRESSURE+ 27.15 26.60 26.07 25.55 25.05 24.56 24.09 23.64 23.21 22.39 22.79 22.01 21.65 21.31 20.99 20.69 20.42 " 20.17 19.94 19.74 19.57 19.42 19.31 19.22 19.17 19.15 19.15 ."""""" NODE 5.12 = .488 FEET " ................................................... NODE 4.11 : HGL = 302.174>; EGL= < 302.399,; FLOWLINE= < 301.6202 - ............................................................................. FLOW PROCESS FROM NODE - UPSTREAM NODE 4.12 4.11 TO NODE ELEVATION = 301.62 (FLOW IS AT CRITICAL DEPTH) 4.12 IS CODE = 5 ........................... CALCULATE JUNCTION LOSSES: - PIPE FLOW DIAMETER ANGLE FLOWLINE (CFS) (INCHES) (DEGREES) ELEVATION UPSTREAM DOWNSTREAM .55 8.00 65.00 1.70 301.62 - LATERAL X1 12.00 - 301.62 LATERAL f2 . 00 . 00 . 00 . 00 . 00 . 00 . 00 . 00 a5 1.15===Q5 EQUALS BASIN INPUT=== """"""""""" DEPTH(FT. 1 (FT/SEC) CRITICAL VELOCITY .35 .55 1.576 3.804 . 00 . 000 . 00 . 000 - LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(QP*VZ-Ql*Vl*COS (DELTA11 -03*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((Al+A2)*16.1) - UPSTREAM: MANNING'S N .01300; FRICTION SLOPE = .00207 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00427 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00647 - JUNCTION LENGTH = 1.50 FEET FRICTION LOSSES = JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS) +(ENTRANCE LOSSES) .006 FEET ENTRANCE LOSSES = .045 F - JUNCTION LOSSES = ( .290)+( .006)+( .045) = .341 ................................. NODE 4.12 : HGL = < 302.702>;EGL= < 302.740*;FLOWLINE= :EET .""""_ 301.620> .............................................................................. FLOW PROCESS FROM NODE UPSTREAM NODE 4.12 TO NODE 34.12 34.12 IS CODE 1 ELEVATION = 302.00 (FLOW IS UNDER PRESSURE) - -"""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = .55 CFS PIPE LENGTH = 38.14 FEET MANNING'S N = - SF=(Q/K) **2 ( ( .55)/( .01300 12.084) 1 **2 = .00207 HF=L*SF ( ~ 38.14)*( ,00207) = .079 PIPE DIAMETER = 8.00 INCHES - NODE 34.12 : HGL = < 302.781>;EGL= < 302.819*;FLOWLINE= e 302.000* """"""""""""""""""""""""""""""""""""""- - FLOW PROCESS FROM NODE 34.12 TO NODE 34.11 IS CODE = 2 ............................................................................. UPSTREAM NODE 34.11 ELEVATION = 302.00 (FLOW IS UNDER PRESSURE) ....................................... CALCULATE MANHOLE LOSSES (LACFCD) : - PIPE FLOW = .55 CFS PIPE DIAMETER = 8.00 INCHES FLOW VELOCITY = 1.58 FEET/SEC. VELOCITY HEAD = .039 FEET -HMN = .05*(VELOCITY HEAD) = .05*( .039) .002 ."""""""""""""""""""""""""""""""""""""" NODE 34.11 : HGL < 302.783>; EGL= < 302.82b; FLOWLINE= < 302.000* UPSTREAM NODE FLOW PROCESS FROM NODE 34.11 TO NODE 3.11 3.11 IS CODE = 1 ELEVATION = 306.00 (HYDRAULIC JUMP OCCURS) .............................................................................. ._"""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = PIPE LENGTH = .55 CFS PIPE DIAMETER = 8.00 INCHES - 18.00 FEET MANNING'S N = .01300 """"""""""""""""""""""""""""""""""""""- HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS - NORMAL DEPTH(FT) .14 CRITICAL DEPTH (FT) = .35 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- "-""""""""""""""""""""""""""""""""""""" UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = .35 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""-"""""""""""""""""" .""""""""""""""""""""""""""""""""""""""- ....................................... - CONTROL (FT) DISTANCE FROM . 000 .002 .008 .018 .034 - .055 .083 .165 .119 .221 .289 .373 - .474 .596 .746 1.150 .927 1.425 1.769 2.206 3.538 2.775 - 4.617 6.285 18.000 9.415 - - - - ~~ FLOW DEPTH ( FT) .348 .340 .331 .323 .315 .306 .298 .290 .281 .265 .273 .256 .248 .240 .231 .223 .215 .206 .198 .190 .182 .173 .165 .157 .148 .148 VELOCITY (FT/SEC) 2.984 3.076 3.175 3.280 3.392 3.512 3.640 3.926 3.778 4.086 4.258 4.444 4.646 4.866 5.106 5.368 5.656 5.973 6.323 7.146 6.712 8.180 7.632 8.801 9.510 9.543 ENERGY (FT) SPECIFIC .486 .487 .488 .490 .493 .498 .504 .511 .521 .532 .546 .563 .584 .608 .637 .671 .712 .761 .819 .890 1.078 .975 1.204 1.360 1.554 1.563 MOMENTUM(P0UNDS) PRESSURE+ 4.89 4.89 4.90 4.93 4.96 5.01 5.06 5.13 5.22 5.32 5.43 5.72 5.56 5.89 6.09 6.31 6.57 7.18 6.86 7.56 7.98 8.46 9.00 9.63 10.36 10.39 - """"""""""""""""""""""""""""""""""""""- HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS - DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = .78 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""-"""""""""" PRESSURE FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- ~~ DISTANCE FROM PRESSURE VELOCITY CONTROL(FT1 HEAD(FT) (FT/SEC) SPECIFIC ENERGY (FT) PRESSURE+ MOMENTUM(P0UNDS) .667 1.576 .821 .705 ~ ~ ~ ~ ~ - . 000 .783 1.576 .527 11.47 8.94 ....................................... ....................................... -ASSUMED DOWNSTREAM PRESSURE HEAD(FT1 = .67 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """""""_""""""""""""""""""""""""""""""" -DISTANCE FROM CONTROL ( FT) .527 - .583 .638 .692 - .745 .798 .850 - 900 ~~~~~~~~ I950 .999 1.048 1.095 1.141 1.185 1.228 1.270 1.310 1.347 1.383 1.415 1.445 1.470 1.492 1.509 1.520 FLOW DEPTH (FT) .667 .654 .641 .628 .616 .603 .590 -577 VELOCITY (FT/SEC) 1.575 1.582 1.595 1.612 1.632 1.656 1.682 1.712 1.744 1.779 1.818 1.860 1.905 1.954 2.007 2.065 2.127 2.194 2.266 2.345 2.430 2.522 2.623 2.733 2.853 SPECIFIC ENERGY (FT) .705 .693 .681 .669 .657 .646 .634 .623 .612 .601 .591 .580 .570 .560 .551 .542 .533 .525 .517 .510 .503 .498 .493 .489 .487 -486 MOMENTUM(POUN0S) PRESSURE+ 8.94 8.67 8.41 8.15 7.91 7.66 7.43 7.20 6.99 6.77 6.57 6.38 6.20 6.02 5.86 5.70 5.56 5.43 5.31 5.20 5.11 5.03 4.97 4.92 4.90 4.89 4.89 - 1.524 .348 2.984 18.000 .348 2.984 : 486 """""""""""- END OF HYDRAULIC JUMP ANALYSIS------------------------ - PRESSURE+MOMENTUM BALANCE OCCURS AT .22 FEET UPSTREAM OF NODE 34.11 I DOWNSTREAM DEPTH = .733 FEET, UPSTREAM CONJUGATE DEPTH = .148 FEET I - NODE 3.11 : HGL = 306.348>; EGL= < 306.486,; FLOWLINE= < 306.000> """"""""""""""""""""""""""""""""""""""- ............................................................................. UPSTREAM PIPE FLOW CONTROL DATA: ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 306.00 306.35 FOR DOWNSTREAM RUN ANALYSIS - NODE NUMBER = 3.11 """"""""""""-"""""""""""""""""""""""""" """"""""""""""""""""""""""""""""""""""- END OF GRADUALLY VARIED FLOW ANALYSIS - """"""""""""""""""""""""""""""""""""""- ............................................................................. (REFERENCE: LACFCD LACRD, AND OCEMA HYDRAULICS CRITERION) PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE - (c) COPYRIGHT 1982-60 ADVANCED ENGINEERING SOFTWARE (AES) VER. 4.3A RELEASE DATE: 5/17/90 SERIAL X 5610 - ANALYSIS PREPARED BY: BHA, INC. 5115 AVENIDA ENCINAS, SUITE L CARLSBAD CALIFORNIA. 92008 (619) 931-8700 - .......................... DESCRIPTION OF STUDY .......................... * VILLAS HYDRAULICS c DETENTION BASIN OUTLET DRAIN * * 3/22/94 * * - .......................................................................... - """"""""""""""""""""""""""""""""-"""""" FILE NAME: VILLAS17. DAT TIMEIDATE OF STUDY: 15:47 3/25/1994 k**************************************************************************** - GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (NOTE: "*" INDICATES NODAL POINT DATA USED.) UPSTREAM RUN MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ DOWNSTREAM RUN - NODE NUMBER PROCESS HEAD(FT1 MOMENTUM(POUNDS1 DEPTH(FT) MOMENTUM(P0UNDS) 50.15- 2.25* 1266.95 2.15 Dc 1258.04 50.14- 4.32 1295.73 .94* 1309.18 50.13- 4.00 1215.60 .85* 1474.83 50.12- 3.72 1146.28 .85* 1482.66 - 50.11- 1.95*Dc 752.86 1.95*Dc 752.86 > JUNCTION > FRICTION > MANHOLE > FRICTION - - -"""""""""""""""""""""""""""""""""""""" MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 - """"""""""""""""""""""""""""""""""""""- NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. .............................................................................. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 50.15 FLOWLINE ELEVATION = 227.61 - PIPE FLOW 45.02 CFS ASSUMED DOWNSTREAM CONTROL HGL = 229.860 PIPE DIAMETER = 27.00 INCHES ---""""""""""""""""""""""""""""""""""""" - NODE 50.15 : HGL = < 229.860>;EGL= 231.851>;FLOWLINE= 227.610* ............................................................................. FLOW PROCESS FROM NODE 50.15 TO NODE 50.14 IS CODE = 5 - UPSTREAM NODE 50.14 ELEVATION 227.94 (FLOW IS UNDER PRESSURE) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ....................................... -CALCULATE JUNCl PIPE - UPSTREAM DOWNSTREAM LATERAL #l - LATERAL #2 05 'ION LOSSES: FLOW (CFS) (INCHES) DIAMETER 32.11 27.00 45.02 27.00 . 00 . 00 . 00 . 00 12.91===Q5 EQUAI CRITICAL DEPTH(FT. 1.95 2.15 . 00 . 00 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: -DY= (Q2*V2-Ql*Vl*COS (DELTA11 -03*V3*COS (DELTA31 - -DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE .02113 UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .08097 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .05105 JUNCTION LENGTH = 3.00 FEET FRICTION LOSSES = .153 FEET ENTRANCE LOSSES = .398 F JUNCTION LOSSES = ( 2.951)+( .153)+( .398) = 3.503 Q4*V4*COS(DELTA4) 1 / ((Al+A2) *16.1) -JUNCTION LOSSES = (DY+HVl-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) VELOCITY (FT/SEC) 20.418 11.323 . 000 . 000 'EET -NODE 50.14 : HGL e 228.8802; EGL= 235,3532; FLOWLINE= < 227.9402 """"""""""""""""""""""""""-"-""""""""""- -FLOW PROCESS FROM NODE 50.14 TO NODE 50.13 IS CODE = 1 ............................................................................. UPSTREAM NODE 50.13 ELEVATION = 228.53 (FLOW IS SUPERCRITICAL) ,"""""""""""""""""""""""""""""""""""""" CALCULATE FRICTION LOSSES(LACFCD): PIPE LENGTH 24.84 FEET MANNING'S N = .01300 -PIPE FLOW = 32.11 CFS PIPE DIAMETER = 27.00 INCHES """"""""""""""""""""""""""""""""""""""- -NORMAL DEPTH(FT1 1.35 CRITICAL DEPTH(FT1 = 1.95 ."""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""" UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT1 .85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- - ."""""""""""""""""""""""""""""""""""""" - CONTROL(FT1 DISTANCE FROM . 000 5.585 - 11.265 17.051 22.955 - 24.840 FLOW DEPTH (FT) .854 .874 .894 .913 .933 .940 VELOCITY (FT/SEC) 23.200 22.493 21.824 21.191 20.593 20.412 ENERGY (FT) SPECIFIC 9.217 8.734 8.294 7.891 7.522 7.411 MOMENTUM(P0UNDS) PRESSURE+ 1474.83 1432.51 1392.69 1355.18 1319.81 1309.18 ."""""""""""""""""""""""""""""""""""""" NODE 50.13 : HGL = < 229.3842; EGL= < 237.7472; FLOWLINE= 228.5302 FLOW PROCESS FROM NODE UPSTREAM NODE 50.12 50.13 TO NODE ELEVATION = 228.86 (FLOW IS SUPERCRITICAL) 50.12 IS CODE = 2 ............................................................................. ....................................... CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = AVERAGED VELOCITY HEAD = 8.411 FEET 32.11 CFS PIPE DIAMETER = 27.00 INCHES - HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 8.411) .421 ."""""""""""""""""""""""""""""""""""""" NODE 50.12 : HGL = < 229.7102; EGL= < 238.1682; FLOWLINE= < 228.8602 - .............................................................................. FLOW PROCESS FROM NODE 50.12 TO NODE 50.11 IS CODE = 1 -UPSTREAM NODE 50.11 ELEVATION = 239.00 (FLOW IS SUPERCRITICAL) - NODE 50.11 : HGL c 240.949>; EGL= < 242.145>;FLOWLINE= < 239.000> ....................................... ............................................................................. UPSTREAM PIPE FLOW CONTROL DATA: ASSUMED UPSTREAM CONTROL HGL FLOWLINE ELEVATION = 239.00 240.95 FOR DOWNSTREAM RUN ANALYSIS -NODE NUMBER 50.11 """"""""""""""""""""""""""""""""""""""- """"""""""""""""""""""""""""""""""""""- END OF GRADUALLY VARIED FLOW ANALYSIS 111. CALCULATIONS E. Hydraulic Analysis of Detention Basin :HECKED BY DAT- SHEET OF ., ... .;. -. ''8:- .. 180 168 156 I44 132 I20 I08 In W 0 I- - 72 z 5 0 -54 k a w -48 - 60 I.. 42 0 /- 27 OUTLET STRUCTURE FILE: MIKE . STR POND-2 VERSION: 4.10 SIN: 88021211 DATE EXECUTED: 03-26-1994 TIME EXECUTED: 07:56:01 ................................... VILLAS DETENTION BASIN OUTFLOW TEST ................................... OUTFLOW RATING TABLE FOR STRUCTURE #1 CULVERT-CR CIRCULAR CULVERT (WITH INLET CONTROL) ***** INLET CONTROL ASSUMED ***** ELEVATION (FT) a (CFS) COMPUTATION MESSAGES """"""" """_ 239.00 240.00 0.0 3.2 UNSUBMERGED (2): HW = 0.0 241.00 UNSUBMERGED (2) : HW = 1.0 11.3 242.00 UNSUBMERGED (2) : HW 2.0 23.3 UNSUBMERGED (2): HW 3.0 243.00 31.4 244.00 TRANSITION FLOW: HW = 4.0 31.7 TRANSITION FLOW: HW = 5.0 245.00 31.9 TRANSITION FLOW: HW = 6.0 246.00 32.2 247.00 TRANSITION FLOW: HW = 7.0 32.9 248.00 35.2 SUBMERGED FLOW: HW = 8.0 SUBMERGED FLOW: HW = 9.0 """""""""""" USED UNSUBMERGED Eau. FORM (2) FOR ELEV. LESS THAN 242.525 FT USED SUBMERGED EQUATION FOR ELEVATIONS GREATER THAN 246.785 FT TRANSITION FLOWS INTERPOLATED FROM THE FOLLOWING VALUES: El= 242.525 FT; Q1= 31.281 CFS; E2= 246.785 FT; 02= 32.377 CFS OUTLET STRUCTURE FILE: MIKE . STR POND-2 VERSION: 4.10 SIN: 88021211 DATE EXECUTED: 03-26-1994 TIME EXECUTED: 07:56:01 ................................... VILLAS DETENTION BASIN OUTFLOW TEST ................................... CULVERT-CR CIRCULAR CULVERT (WITH INLET CONTROL) El ELEV. (FT)? DIM. (FT)? E2 ELEV. (FT)? INV. EL. (FT)? T1 RATIO? T2 RATIO? K COEFF.? M COEFF.? Y COEFF.? c COEFF.? SLOPE FACTOR? SLOPE (FTIFT)? FORM 1 OR 2? 239 1.5 239 .1806 2.35 5.19 ,534 .555 .0196 2 .89 -. 5 248.001 .. APPENDIX A DESIGN METHODS AND EQUATIONS .. : 3, f. . lf, 1 ; , ' ~ . .,~~_ .~. .. ., A. Introductlon. ..: This appendix' contains explanations of the' equations and methods used to develop the design charts of this publication, where those equations and mejhods are not fully described in the main text. The following topics are discussed , the design equations for the unsubmerged and submerged inlet control nomographs, the dimension- less design curves for culvert shapes and sizes without nomographs, and the dimen- sionless critical depth charts for long span culverts and corrugated metal box cul- verts. B. Inlet Control NomoeraDh Eourtions. the research conducted by the National Bureau of Standards (NBS) under the sponsor- The design equations used to develop the inlet control nomographs are based on ship of the Bureau of Public Roads (now the Federal Highway Administration). Seven progress reports were produced as a result of this .research. Of these, the first and fourth through seventh reports dealt with the hydraulics of pipe and box culvert entrances, with and without tapered inlets. (4.7 to 10) These reports were one source of the equation coefficients and exponents, along with other references and ullpublished FHWA notcs on the development of the nomographs. (56.57) the culvert is or is not submerged by the upstream headwater. If the inlet is not The two basic conditions of inlet controi depend upon whether the inlet end of submerged, the inlet performs as a weir. If the inlet is submerged, the inlet performs as an orif.ice. Equations are available for each of the above conditions. for which the NBS research provided only limited information. The transition zone Between the unsubmerged and the submerged conditions, there is a transition zone is defined empirically by drawing a curve between and tangent to the curves defined short and the curve is easily constructed. by the unsubmerged and submerged equations. In most cases, ,the transition zone is Table 8 contains the unsubmerged and submerged inlet control design equations. Note that there are two forms of the unsubmerged equation. Form (1) is based on the specific head at critical depth, adjusted with two correction factors. . Form (2) is an exponential equation similar to a weir equation. Form (1) is preferable from a form of equation for some of the inlet control nomographs. Either form of unsub- merged inlet control equation will produce adequate results. - theoretical standpoint, but .form (2) is easier to apply and is the only documented arranged in the same order as the design nomographs in appendix D, and provides the The constants for the equations in table 8 are given in table 9. Table 9 is unsubmerged and submerged equation coefficients for each shape, material, and edge configuration. For the unsubmerged equations, the form' of the.equation is also noted. r 145 Table 8 Inlet control design cquatlons. UNSUBMERGEDI ;", ,. ... .... ,,:. <,. ........ ...... Form' (2) i ., L J HW, Headwater depth above inlet control section invert, ft He ,' . , Specific herd at critical depth (de + V,'/2g). ft A 'S ,' Full cross sectional area of culvert barrel, ft' Culvert barrel slope, Wft R.hf,c,Y Constants from table 9 NOTES I Equations (26) and (27) (unsubmcrged) apply up to about Q/ADo.' - 2. For mitered inlets use +0.7S instead of -0.5s as the slope correc- D Interior height of culvert barrel, ft ' , . Q , Discharge, fts/s I .1 . ,,~ , 3.5. --\ tion factor. .. -:j - '. .. ,2 Equation (28) (submerged) applies above about WADo.' 9.4.0;. .,--: .. ... ,,,; ...... .,: ',( ,.::;*i .. .......... .......... ' ..:.!.! ,.2.::7 146 -. 147 "I "n "I "I - "" -.. -n" - -.. - .- .. - . ... III. CALCULATIONS F. Developed Hydrology for El Camino Real Median Inlet ............................................................................. RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE - REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985 1981 HYDROLOGY MANUAL (c) COPYRIGHT 1982-9b ADVANCED ENGINEERING SOFTWARE (AES) VER. 5.5A RELEASE DATE: 4/22/90 SERIAL X 5810 - ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS, SUITE L BHA, INC. CARLSBAD CALIFORNIA. 92008 (619) 931-8700 * VILLAS HYDROLOGY .......................... DESCRIPTION OF STUDY .......................... 4 EL CAMINO REAL MEDIAN INLET. * * * t 4-21-94 MS .......................................................................... - FILE NAME: VILLAECR.DAT TIME/OATE OF STUDY: 14:35 4/21/1994 - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: "_""""""""""""""""""""""""""""""""""""- ...................................... - 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR1 = 50.00 - 6-HOUR DURATION PRECIPITATION (INCHES) 2.430 SPECIFIED MINIMUM PIPE SIZE(1NCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL1 TO USE FOR FRICTION SLOPE = .95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED ............................................................................ FLOW PROCESS FROM NODE .30 TO NODE .20 IS CODE = 2 ......................... >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<< *USER SPECIFIED(SUBAREA) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 ,_"""_""""""""""""""""""""" .""""""""""""""""""""""""" INITIAL SUBAREA FLOW-LENGTH(FEET1 = 10.00 UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = 322.80 ELEVATION DIFFERENCE = 322.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES1 = .10 SUBAREA RUNOFF (CFS) = 50 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.402 TOTAL AREA(ACRES) = .OO TOTAL RUNOFF(CFS1 . 00 TIME OF CONCENTRATION ASSUMED AS 5-MINUTES "- < "_ "- I"""""_ .854 . 00 ,"""""- ._""""" ."""""_ - ............................................................................ FLOW PROCESS FROM NODE .20 TO NODE .lo IS CODE 6 """""""""""~""""""""""""-""""""""-"""""- - >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< """""""""""""""""""""""""""""""""""""- """""""""""""""""""""""""""""""""""""- UPSTREAM ELEVATION = 322.70 DOWNSTREAM ELEVATION = 304.00 STREET LENGTH(FEET1 760.00 CURB HEIGTH(INCHES1 = 6. STREET HALFWIDTH(FEET1 40.00 STREET CROSSFALL(DECIMAL1 = .0600 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT .9500 STREET FLOWDEPTH(FEET1 = **TRAVELTIME COMPUTED USING MEAN FLOW(CFS1 2.08 HALFSTREET FLOODWIDTH(FEET1 = .31 4.06 AVERAGE FLOW VELOCITY(FEET/SEC.) = PRODUCT OF DEPTH&VELOCITY = 3.68 1.14 STREETFLOW TRAVELTIME(MIN1 = 3.45 TC(MIN1 = 8.45 3 RAINFALL INTENSITY (INCH/HOUR) = 4.566 - - 4.08 4.08 5.26 1.73 ._""""""""""""""""""""""""""""""""""""" ."""""""""""""""""""""""""""""""""""""- - PEAK FLOW RATE(CFS1 END OF STUDY SUMMARY: 4.08 Tc(MIN.1 = TOTAL AREA(ACRES1 = .94 8.45 ....................................... ...................................... - END OF RATIONAL METHOD ANALYSIS In. CALCULATIONS G. Hydraulic Analysis of Street Flow with Inlet Sizing - ............................................................................ HYDRAULIC ELEMENTS - I PROGRAM PACKAGE ~ (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) VER. 2.8A RELEASE DATE: 8/19/89 SERIAL # 3856 ANALYSIS PREPARED BY: 5115 AVENIDA ENCINAS , SUITE L BHA, INC. CARLSBAD, CALIFORNIA 92008 (619) 931-8700 - TIMEIDATE OF STUDY: 14:39 4/21/1994 """"~"""""""""""""""""-"""""""""""""""" ...................................... .""""""""""""""""""""""""""""""""""~""" * VILLAS HYDRAULICS * STREET DEPTH OF FLOW CALCULATION. .......................... DESCRIPTION OF STUDY .......................... * * * -t 4-21-94 MS .......................................................................... ............................................................................ *>>>STREETFLOW MODEL INPUT INFORMATION<<<< ...................................... CONSTANT STREET GRADE(FEET/FEET) = .020800 AVERAGE STREETFLOW FRICTION FACTOR(MANN1NG) .015000 CONSTANT STREET FLOW(CFS) = 4.08 CONSTANT SYMMETRICAL STREET CROSSFALL(DEC1MAL) = .060000 CONSTANT SYMMETRICAL CURB HEIGTH(FEET) = CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET1 1.50 .50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET1 CONSTANT SYMMETRICAL GUTTER-HIKE (FEET) = .09000 .03125 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 40.00 ...................................... ...................................... - STREETFLOW MODEL RESULTS: ...................................... - HALFSTREET FLOODWIDTH(FEET) = 5.56 STREET FLOWDEPTH(FEET1 = .36 AVERAGE FLOW VELOCITY(FEET/SEC.) PRODUCT OF DEPTH&VELOCITY 1.53 4.19 ...................................... """"""""""""""""-""""""-""""""""""""""" ............................................................................. HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) COPYRIGHT 1982-89 ADVANCED ENGINEERING SOFTWARE (AES) ANALYSIS PREPARED BY: - VER. 2.8A RELEASE DATE: 8/19/89 SERIAL # 3856 5115 AVENIDA ENCINAS , SUITE L BHA, INC. CARLSBAD, CALIFORNIA 92008 (619) 931-8700 ....................................... - TIMEIDATE OF STUDY: 14:40 4/21/1994 """""~""""""""""""""""""""""""""""""""- ...................................... ........................... DESCRIPTION OF STUDY .......................... k VILLAS HYDRAULICS * INLET SIZE CACULATION * * * 3 4-21-94 MS .......................................................................... -*>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< ............................................................................ """""""""""""""""""""""""""""""""~""""- - CURB INLET CAPACITIES ARE APPROXIMATED BASED ON THE BUREAU OF PUBLIC ROADS NOMOGRAPH PLOTS FOR FLOWBY BASINS AND SUMP BASINS. STREETFLOW(CFS1 = GUTTER FLOWDEPTH(FEET1 4.08 - BASIN LOCAL DEPRESSION(FEET1 .36 FLOWBY BASIN WIDTH (FEET) = 12.40 .30 >**>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION 12.4 >>>>CALCULATED ESTIMATED INTERCEPTION (CFS) = 4.1 - - ...................................... ...................................... IV. EXHIBITS .. 1 D. n : Revised 1/85 APPENDIX XI-D - " I IY i hi c: tJ + L .a v) 0 aJ c, 0 . .. .. . .. .. 6-Hour Precipitation (inches) .. .. :.,. ... /dd d .. .... .... I .. ._ .......... ~ .. .. .. .. I ... ." 'URBAN AREAS OVERLAND TIME OF ' FLOW CURsVES ". .. . ' 144 132 '. I20 8 100 96 04 72 GO 54 .. . 1 1 - 12 HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS DUREAU OF PURLlC ROADS JAN. 1963 WITH INLET CONTROL RATRV/RATSD F. . MENU XODE NUMDERS- 0 to 9999.991 Upstream =) Downstrcam =) ' SUBAREA 1IYDROLOGIC PROCESSES 1: CONFLUENCE analysis at node 2: INITIAL subarea analysis 4: PIPEFLOX traveltime . . . . (USER Specified pipesize) 3: PIPEFLOX traveltime (COMPUTER Estimated pipesize) 5: TRAPEZOIDAL channel travel time 6: STREET-FLOX analysis thru subarea 7: USER-SPECIFIED information at node. 8: ADDITION of subarea runoff to mainline 9: V-GUTTER flow thru subarea 10: COPY Hain-Stream data onto a memory BANK I, ,, .,11: CONFLUENCE a memory DANK with the Main-Stream memory " .. 12: CLEAR a memory DANK ,,. 14: COPY a memory DANK onto the Uain-Stream memory 13: CLEAR the Main-Stream memory , ,.15: DEFINE a memory DANK Select subarea hydrologic process =) i TYPE: EXIT to leave program : TOP to go to top of Page ' ' ' -Data Area- HAIN to go to main menu ( 99% free) - 10: - 11: 12: - - 14: COPE3 ME MAIN-STREAM PEAK FLOW RATE TABLE (Q,% $,Ac,& A$ TO ONE OF THE MORY BANKS. .. . CONFLUENCES THE PEAK FLOW RATE TABLE IN THE SPECIFIED hEMORY BANK Wmr THE NIAIN-STFiEAM PEAK FLOW RATE TABLE CLEARS THE SPECIFIED MEMORY BANK'S PEAK FLOW RATE TAEE FOR LATER USE. . ,. .. THE PEAK FLOW RATE TABLE IN THE SFiXFED MEMORY BANK. REPLACES Tlf PEAK FLOW RATE TABLE INTHE MAlFtSTREAh4 MEMORY WITH. :i i I ! i 1. ! 8 .. . ,. ., ALLOWS THE USER TODEFINEME PEAK FLOW RATETABLE (UPTO 20 STREAMS) IN THE SPECIFIED MEMORY BANK. .. .. , COMPUTER PHOlJRAM . \VSPZ Same Y OCEMA LACFCD LACnD Same as OCEM,\ Ssma LI OCEMA Same Y OCE!4A. I PI", Entrsnce Loll I Clty of L.A.'a Thompson Eq. Junctlon Pressure + Momentum or Clty of L.A. Thompson Eq. Same Y OCEMA Same Y LACFCD t , ... , Same u LACFCD Same as LACFCD I hL = 0.05 2;i v2 I Same Y LACFCD -NO Elevallon Drop Xmhole Same LACFCD Sudden Contrecllon EXHLBIT "A" Kt .60 I .64 I .67 I .72 1 .72 I .67 I .55 .49 .40 .31 .16 , ., EXEBXU nBn Head Loss Coefficient "Ka" for Angle Points r 4. eo 9 8 7 51 6 4 3 2 1 K, ,021 '' .024 .022 .020 .011 .014 .all .008 .005 - .. EXmDIT nCn Kead Loss Coefficient "KCR for Sudden Contractions 0.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Kc 0 .02 .06 .12 .18 .24 .30 .36 .41 -46 where A1 and A2 are the upstream and downstrenm ilow, areas. respectively. ... .. .. . /" .i . . . , - .. ". . . . . , - . . . , . .COUNTY OF SAN DIEGO PROCEDURES FOR HYDROLOGIC COMPUTATIONS SECTION IV EXTRACTS FROM SAN DIEGO COUNTY FLOOD CONTROL DISTRICT DESIGN AND PROCEDURE MANUAL ' . ! .. .. . .. , '. I .. .. .. . .. ., . ." . . . ... Rev. 11/75 .... .. i - . -. -. . , . . - v. HYDROLOGY "- r A. DESIGN RUNOFF -- GENERAL - 1. Design runoff conditions on patural stream channels within the - Sari Diego County Flood Control District will be based on the 100-year storm krequency as outlined in paragraph (2) below. - 2. 'Design runoff is based on criteria. taken from "Section 5.7 ... ........ ~ . ,- -. ... , .... .. DT(li1NAGE";. San.-Diego County Standards.: - Tributary Drainage Area Runoff Criteria -. a. Areas over I square mile 100-year frequency storm b'. Areas under 1 square mile. (1); The storm drain system shall be designed so that the combination of storm drain systcm ,. ' capacity and overflow both inside and outside the fight of way will be able to carry the 100-year frequency storm without' damaging adjacent existing buildings or potential building sites. (2) The storm drain system shall be designed so that the , combination of.storm drain system capacity and allowable street overflow will be able to carry the 50-year frequency storm without damaging adjacent property. (3) 1Yhcx-e a storm drain is rcquired under headings (1) or (2) .. t' above, then as a minimum, the storm drain system shall be designed to carry,the 10-ywr frequency storm. 3. Sump areas are to be designed for a sump capacity or outfall of a .~ , .. .. 100-year frequency storni. .... ." ...... ... C .. . .-" . ." . . . .. ?. Xarcrslrcds Over 15 Square Miles, Excepting Major Rivers - .i. ' :I. ,\ mast.&* plan of drainagc and flobd control facilities for the County or' San Dicgo h3s.becn adopted for the Flood Control Districts. Zones 1 through 4 hnve'conprehensivc plans and Zone 5 has a plan for the liorrego Springs area. The flood discharges indicated in thcsc plans will normally b'c acccptablc an& should be used in all design work. Rapidly devcloping arcas from time to time may warrant idditional stud!. and Flood Control District reports shouid be consulted. ! ! .. . ... ; ._ . .- . . ,. .. . ... .... ._ . .- -.. . , . .. 3. i:':ltershcds " q.5 Squarc Milcs - 15 Squarc Miles .. a. IJ. C. Soil Conservation Service unit hydrograph wy be used.* , b. Stcrrn duration of G to24,hours are appropriate for developing flooc! disch:irges for 50 2nd 101)-ycar'storms. The Sanitation and Flood ContrDl's Hydrology ?!nnual should be ccnsultcd fcc short duration dinfall used in developing discharges for this size watersheds. c. Vodificrl ratimal rne.ti7.d~ by routing sub-watersheds may bc ~rsed. (1. I.crcz?l n::cn flonc! conr-ol reports,, prepared for the Flood Control tllstrict, ~111 take precedence over the above described methods. -. .- I. 4. Xzt-rsheds Less than 0.5 Squarc Nil0 "_ Xethod of Conptinz Runoff " Use the htionsl Formula Q = CIA where: - Q is thc peak rate of flow in cubic feet per sccond .- C 1s $1 rlunoff coefficient expressed as that percentage of rainfall. which Lcccrncs sxrface runoff. '. I , .(-- - -. ~ + Refer to "llydrology - Eniinecring Handbook, Section 4,'' U. S. Soil Conservation - IV-A-3 Rev. 5/81 - j - I .is' the avcragc..rh'ihfall intensity in inches per hour for B storm !! J. ! ." ...... - .. .. Juration cqu31 to thc' time of concentration (Tc) of. the. contributYng .j .. .... -. .... - r clztinllge arca. 1 ! - ,. .. .4' i's the drainage area in the acres tributary to the design point. (. - I, . ' ' (1) Runoff, Cocfficient, C - - Appendix IX lists the estimntcd coefficicnts for both undcveloped and dcvel6pcd.areas. For rural arcas which includes all drainage arcas with a 'development density less than one dwelling unit per acre, thc coefficient is based mahly on the .soil group alone. Sclcct the appropriate coefficicnt from rlppendix IX. For urban arcas - ... ......... . ,. . : - ....... - .. - ... - ., .. -. select in appropriate cocfficicnt for cach type of land use. >lulti- ply this coefficient by the perccntagc of thc"tota1 arca included .,. in that class. Tlic sum of these products is the wcightcd runoff - coefficient. !!aps showing the various soil groups arc.on fi!c in the dffisc of Snnitntion and Flood Control. - -~ - ". 4. (2). Rainfall Intensity, I_ I I - Intensity - duration - frcquency curves applicable to 311 areas w.ithin Sm Dicgo County are given in Appendix XI. - f.:l Time of Concentration, Tc 'Thc time of concentration. is the time requircd for runoff to flow . from the most remote part of the watershed to the outlct point - - under consideration. blethods .of calculation differ for natural watersheds (non-urbanized) and for urban drainage systems. Also, .. - when designine storm drain systems, the dcsigner must consider .the possiblility that an existing natural watershed may become urban- izcd during thc UscFuI lifc of the storm drain system. , . ' (a) Natural !Vatershcds: Obtain'Tc from Appendices X-A and X-B - - (b) Urban drainage systcms: In the"chse of urban drainage systems, . the time of conccntration at any point within the drainaec area. I 7" LI is givcn by Tc = Ti + T where: f 1'. is thc inlct tine or the timc rcquired for the, storm wazer - 1 ...... - .. IV-A-4.::.'Y ....... ". . .Rev.5/81 . . '.. .... ". ...... *, ., . ..... .~ . .- .. TABLE 2 RUNOFF COEFFICIENTS (RATIOML METHOD) .. .... .. DEVELOPED AREAS (URBAN) Land Use Residential: Single Family .40 .45 .50 .55 Multi-Units .45 ' .SO .60 . 70 Hobi le homes .45 ..so I55 .65 Rkral (lots greater thin 1/2 acrc) .30 .35 .40 .45 Comnerci a1 (2) 86% Impervious Industrial (2) 90% Impervious 70 .75 . .80 .a5 - ..,. . .a0 .85 .90 .95 NOTES : (l)sOil croup mips are available at tl~e'.officcs of the Department of Public lvorks. (2)Where actual conditions deviate significantly from the tabulated impervious- . ness values of 80% or 90%, thc values given for coefficient C. may be revised by multiplying 80% or 30% by the ratio of actual; imperviousness to the tabulated imperviousness. However, In no case shall the final coefficient be less than 0.50. For example: Consider commercial property on 0 soil,-group. Actual imperviousness = 50% Tabulated imperviousness = 80% ! ... Revised C = X 0.85.i 0.53 80 .. .. . .......... .- ....... APPENDIX IX-8 Rev. 5/81 V. REFERENCES LIST OF REFERENCES k County of San Diego Hydrology Manual (January, 1985) B. County of San Diego Design and Procedure Manual (October, 1985) C. Advanced Engineering Software, "Rational Method Hydrology" (April 1990) D. Advanced Engineering Software, "Hydraulic Elements" (August, 1989)