Loading...
HomeMy WebLinkAboutCT 82-12; Cannon Road Box Culvert - Hydrology Calculation; Cannon Road Box Culvert - Hydrology Calculation; 1989-01-12HYDROLOGY CALCULATION CANNON ROAD BOX CULVERT STA 48+00 I I I I I I I I I I | JANUARY 12,1989 I P & D TECHNOLOGIES I I I I I I LEE S. WOOTEN RCE 25142 DATE m *"* TABLE OF CONTENTS *• Page *" 1. Project Discussion 1 up 2. Method and References 2 mm 3. Criteria 3 ^ 4. Procedure 4 *• 5. Water Surface Pressure Gradient 8 ** 6. Charts and Tables 10-17 7. Hydrology Map 18 «m 8. Basin Runoff Calculations 19-31ti» 9. Water Surface Profile 32«PM «* 10. Drainage Basin Map 33 I 1 I I 1 I I I CANNON ROAD BOX CULVERT STA. 48+00 HYDROLOGY & HYDRAULIC ANALYSIS I I I J| PROJECT DISCUSSION The box culvert undercrossing of Cannon Road has been designed to • accommodate the ultimate 100 year storm flow for a developed H drainage basin upstream of the culvert.The channel downstream of the box has been designed to carry the lOOyr storm flow from the, m same drainage basin based on fisting land use."*'-\ (Affr- ^^^^V^t" , The modified rational method was used to determine flow rar.es (j m from the contributing drainage basin. The basin was broken into • subareas and runoff values were calculated for each. These flows were then routed thru the basin and peak flow for the drainage • basin was calculated. The flow velocity and depth of flow for existing conditions were calculated using a water surface £ pressure gradient program developed by L.A. County Flood control. The 100 year storm flow for existing conditions is 1287cfs and was used to design the channel. The flow depth at station 2+00 where the riprap channel begins is 3.12 feet with an average flow velocity of 4.35 fps. METHOD AND REFERENCES The Modified Rational method was used in this hydrology study. The Rational Formula is as follows: Q = CiA, where: Q = Peak discharge in cubic feet/second* *1 acre inches/hour = 1.008 cubic feet/second C = Runoff coefficient (dimensionless) i = Rainfall intensity (inches/hour) A = Tributary drainage area (acres) If rainfall is applied at a uniform rate to an impervious area, the runoff attributed to this area would eventually reach a rate equal to the rate of precipitation. The time required to reach this equilibrium is termed the "time of concentration." For small, impervious areas, one may assume that if precipita- tion persists at a uniform rate for at least as long as the time of concentration, the peak discharge will equal the precipitation rate. This formula may be used for areas up to 1/2-square mile (320 acres) according to the San Diego County Flood Control District Design and Procedure Manual. The design procedure followed is described in the San Diego Flood Control District Design and Procedure Manual (1973 edition). The following charts and tables used in this study are taken from the above manual and ITS Manual and are included in this set of calculations: c c I c £ Table 1 RUNOFF COEFICIENTS Figure 1 HYDROLOGIC SOILS CLASSIFICATIONS FIGURE 2 NOMOGRAPH FOR TIME OF CONCENTRATION FIGURE 3 EFFECTIVE SLOPE FOR NATURAL WATERSHEDS FIGURE 4 URBAN OVERLAND FLOW CURVES FIGURE 5 100 YEAR 6-HR PRECIPITATION MAP FIGURE 6 100 YEAR 24-HR PRECIPITATION MAP CHART 1 INTENSITY-DURATION DESIGN CHART CRITERIA Frequency - 100 year storm Hydrologic soils groups from Soil Conservation Service survey maps Land use per specific plan and tentative map Open channel flow, where possible, in closed conduits c c •c PROCEDURE ** The following procedure was used in calculating quantity of storm flow at various •locations along the route of the proposed storm drains. Whenever the term "Manual" .. .«p» is used, it refers to the Design and Procedure Manual of San Diego County Floodm Q ° l Control District, dated December 1973. The general procedure was developed by Losr«* Angeles County Flood Control District and has been modified for use in San Diego "?•" County. f~ 1. On the drainage map, divide the runoff area into subareas. These divisions should, if possible, be based on the topography, soil type, arid the land development. L> The size of the initial area should be chosen such that the length of travel for the p water from the most remote point to the point of concentration should not exceed """** 2,000 feet and if possible be near 500 feet and be of a generally uniform slope. . «•» 2. Determine the quantity of water for the initial area. «M — a. Estimate the initial time of concentration. This can be obtained *"" from Appendix X-A of the "Manual" (Figure 4). ..«* b. Determine the type of soil from "Hydrologic Soil Groups-Runoff : «• JB Potential" maps of the Soil Conservation Service soils survey. m c. Determine the land uses from the specific plan and tentative map. p d. Obtain the runoff coefficient "C" from Table 2 or Table 3. e. Obtain the intensity (i) from Appendix XI, "Rainfall Curves for m County of San Diego" of the "Manual" (Figure 3). t» f* f. Calculate the quantity of water (Q) from the "Rational Equation", Q = CiA. -..*•» ,-W 3. Determine the quantity of water in a drain or water course at the «• confluence with subsequent subareas as follows: a. Determine the water route from the point of concentration of the previous subarea to the point of concentration of the subarea in question. — b. Calculate the time necessary for the quantity of water arriving at this subarea to pass through to its point of concentration by the above route. The physical properties of this route must be considered ;?*» and the velocities obtained from the following:. *•» ••*• — (1) If traveling in a street the velocity can be figured from -*" Appendix X-D, "Gutter and Roadway Discharged-Velocity ~* Chart" of the "Manual" (Figure 6). ^ (2) If traveling in a ditch, pipe or other regular section, calculate -. the velocity from the actual section. (3) If traveling in a natural watercourse, the velocity can be derived from Figure 1A, "Velocity in Natural Valley Channels" or Figure IB, "Velocity in Natural Mountain Channels." c. Measure the length of flow to the point of inflow of the next subarea downstream. From the velocity, compute the time of flow and add this time to the time for the first area to determine a new time of concentration. When determining the time of concentration (T ), the expected future drainage facility and route is used to determine velocity and travel time (Tt>. Wherever junctions occur, or there is a change in slope or drainage facility, it is necessary to calculate the velocity and travel time for the preceding reach. The slope of the hydraulic grade line is generally assumed to be parallel to the grade slope. d. Calculate Q for the second subarea, using the new time of concentra- tion and continue downstream in similar fashion until a junction with a lateral drain is reached. e. Start at the upper end of the lateral and carry its Q down to the junction with the main line. <f. Compute the peak Q at each junction. Let QA, TA, IA, corresponding to the tributary area with the longer time of concentration. Let QB> Tn, IB, correspond 6 to the tributary area with the shorter time of concentration and Q , T correspond to the peak Q and time of concentration when the peak flow occurs. a. If the tributary areas have the same time of concentration, the tributary's q's are added to obtain the peak Q. b. If the tributary areas have different times of concentration, the smaller of the tributary Q's must be corrected as follows: (1) The usual case is where the tributary area with the longer time of concentration has the larger Q. In this case, the smaller Q is corrected by a ratio the intensities and added to the larger Q to obtain the peak Q. The tabling is then continued downstream using the longer time of concentration Q sQA*QB<Wy VTA (2) In some cases, the tributary areas with the shorter time of concentration has the larger Q. In this case, the smaller Q is corrected by a ratio of the times of concentration and added to the larger Q to obtain the peak Q. The tabling is then continued downstream using the shorter time of concentration QP = QB * QA <TB/TA> T = TB WATER SURFACE PRESSURE GRADIENT This water surface pressure gradient program is a hydraulic analysis system developed by the Los Angeles County Flood Control District. The program computes uniform and nonuniform steady flow water surface profiles and pressure gradients in open channels or closed conduits with irregular or regular sections. The flow in a system may alternate between super critical, subcritical or pressure flow in any sequence. The computational procedure is based on solving Bernoulli's equation for the total energy at each section and Manning's formula for friction loss between the sections in a reach. The open channel flow procedure utilizes the standard step method. Confluences and bridge piers are analyzed using pressure and momemtum theory. The program uses basic mathematical and hydraulic principles to calculate all such data as cross sectional area, wetted perimeter, normal depth, critical depth, pressure, and momentum. The channel or conduit system is initially subdivided into the following elements: system outlet, reach, transition, confluence (junction), bridge exit, bridge entrance, wall entrance (sudden contraction), wall exit (sudden expansion), and system headworks. Each element is internally assigned a number. The input data must consist of a minimum of three elements (system outlet, system headwork and any other element) and is limited to a maximum of 200 elements. A greater number of elements will require a breakup into two or more systems. The starting flow rate (Q) at the upstream terminus of a system is specified. The flow rate (Q) is increased at the desired locations by specifying lateral inflow rates at a confluence. The flow rate can be reduced by using a negative lateral Q, this reduction is intended to account for channel storage. If it is used in cases where the channel or conduit branches it should be understood no loss is computed. 8 The program uses the Manning formula for the friction loss in all types of conduits or natural channels. The program can only take one "n" value per element, however, the "n" value can change at subsequent elements. If a section has a lining composed of different roughness coefficients a composite "n" based on anticipated depth of flow should be hand computed. The lower stage w.s. profile begins at the system headworks and ends at the system outlets. The computation will proceed downstream in every consecutive element as long as energy is available to maintain flow in the supercritical stage. When energy becomes expended at any point in an element, the lower stage profile will be discontinued from that point to the downstream end of that element. Then computation will resume in the next element with a critical depth control until the system outlet is analyzed. The upper stage w.s. profile, begins at the system outlet, and end at the headworks. Computation proceeds upstream in every element as long as the water surface at the downstream end of any two adjacent points can support the moving mass of water to flow at the critical or subcritical depth. Otherwise, computation will be discontinued from the downstream point to the upstream end of that element. Then computation will resume at the downstream end of the next element with critical depth control, provided no depth less than critical depth has been computed at that point on the lower stage profile. Then computation will proceed upstream until the system headworks is analyzed. Note that if the computed depth of flow in any open section exceeds the given section height the program will assume an additional 10-f eet of vertical wall except for a Trapezoidal Channel where the side slopes are extended outward until the 10-f eet vertical height is reached. The jump routine begins at the system outlet and ends at the headworks. It searches the lower stage and the upper stage profiles for points of equal energy. If a jump is encountered, it will be approximately located; and data on either the upper stage or lower stage not consistent with the greater energy theory will be deleted from every element. The final profile will be a composite of upper stage and lower stage with hydraulic jumps in between. 9 I I I I ]1I I I I I II I RUNOFF COEFFICIENTS (RATIONAL METHOD) LAND USE Coefficient, C Soil Group (1) A 1 £ D Undeveloped .30 .35 .40 .45 Residential: Rural .30 .35 .40 .^5 Single Family .40 .45 .50 .55 Multi-Units .45 .50 .60 .70 Mobile Homes (2) .45 .SO .55 .65 Commercial (2) .70 .75 .80 .85 80% Impervious Industrial (2) .80 .85 .90 . .93 90% Impervious NOTES: (1) Obtain soil group from maps on file with the Department of Sanitation and Flood Control. (2) Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficient C, may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Considej commercial property on D soil group. Actual imperviousness = 50% Tabulated imperviousness = 80?; Revised C = |° X 0.85 = 0.5580 APPENDIX -X 10 r r i , r» 4 . I 0 r t IX-C2 }CMZ.<*s BEST ORIGINAL IBFUIWTIW «*TE5 EVE:. -VE>. THC=.O,-OHLY ... -ELL TO EXCESSIVU» CS-,::.EO SA.-IO .i^'on C 0' WATER Tf^rSKISSlOX -T.3 -Cc',9 SiSutT I'. .VEL « UV -:;=^TE !BFH.:V;TICH WTES JK£-: THOSI^IIY -•; V.T£IT OEE» T; CEE?. ^OOE=AT-:IY VEL: TO •.-£'.. T: raoEUTE'.v co»»s£ TtfTu'.Es. THESE tou; -N S'.IIS SWV1'.-: SI.3U IKf I'.TSiTICM SATES '.«!: TMOSC'XMIT L'ErfEO. -- C= (I) SOIL! -ITH « UYC? TH>T I-=£OES THE Ca.?iSRO KOVEMEKT OF ** JJfj ^'V •-£?M«.tlT •---; -^vc A nx£^T- ;r ''•', CLAY s:«t; '-'ITM A -ICH S-.EILII.-C POTEHII.M: (?) so'iS.^.»'-"•..;-=» TABLE- ;•; s:us ..ITII CIAY ?A:: »> CIAY LAYER »T o*^* I; •«.» '..?: KATE :- --'..TES T?A:SnISSICK >>c\s SAN DIEGO COUNTY DEPT. OF SPECIAL DISTRICT SERVICES FLOOD CONTROL DIVISION DESIGN MANUAL HYDROLOGIC SOIL CLASSIFICATIONS BY : DATE .APR IX -C 2 11 • 4OOO L • LenaM of tva/er*Aed . i: mmi- I***u lw i:-. h> *. ;.«•> «~ IJ» ^c c *•» »• Mf/cs - — /^^? «. -^ ^<? - - 800 _ — 700 _ — ^0tf \ —5-^ X\ ~ ^./^ >^-> " '^300 ^ ^ \ 200 \ ^1 I \ \ - \- — too ' / _ — — - ~ 1_^2? ^-^ — mm ••••• 4fl ^ J*/ pU7»<K-K^rur^rc« jexf^a* ^"^j |NOTE: 5 — 10 | ADO TEN MINUTES TO J I COMPUTED TIME OF CON- ! ^CENTRATION- _j — /O fcet //ovs-s 3- *— / •S-30M ~i^4000N \ — 3000 \ \ \ — 2000 \—/soo \ — /6OO M/'/it/tes — 240 '—/80 — /20 — /OO — 30 "—BO '—70 — fO_ — 40 - — 30 9Q^^_» fc *^ — /a — /£ —/* — /2 /O — MOO 1—5 — /2OO t— ^ SOOO — 9OO — 800 — TOO — 600 —-SOO — 30O -c ~~s — t-- — 200 *» // / 7-** ^u //* ** SAN DIEGO COUNTY ^ DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAl^^ \j w o i vjii rn/A M \j ML. APPRnVPn 0 / // /^^C^re -tf~i?C^ 4 o NOMOGRAPH FOR DETERMINATION OF TIME OF CONCENTRATION (Tc) FOR NATURAL WATERSHEDS OATP /2///£? 1 APPENDIX X-A i: "/?' * Area. SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAl APPROVED _, //,fer COMPUTATION OF EFFECTIVE SLOPS FOR NATURAL WATERSHEDS DATE APPENDIX X-S 13 G/resr ••a/ /~/ow • 3 GO //. % o/ fusto//. C • . SO C SAN DIEGO COUNTY DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN M>VNUAL^_ APPROVE /•>' / /^^c-'T-'^^r^,'^^~'} URBAN AREAS OVERLAND TIME OF FLOW CURVES OATF -'''/'/ty APPFNDIX X-C 14 I T I T~l I i • I I i i i f i i i i i § i i t i I • 1 ft ft II COIWTY OF SAN DIEGO DEPARTMENT OF SANITATION FLOOD CONTROL 33° 100-YEAR 6-HOlrt PRECIPITATION ^2(U ISOPLUVIALS OF 100-YEAR 6-HOUR PRECIPITATION IN TENTHS OF AM ISiCII •Otn a io U.S. DEPARTMEN NATIONAL OCEANIC AND AT.< SPECIAL STUDIES DRANCII. OFFICE OF II 30'_ SPHERIC ADMINISTRATION ROLOOY. NATIONAL WEATHER SERVICE 30'15' 116° APPENDIX XI-D ir~i ir~i v~i i i t i r i r r t i • i • i • i • i r i t i § i 0) COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION fi- FLOOD CONTROL '•5 33° 30' 15' 100-YEAR 24-IIOIJR PRECIPITATION --2(MSOPLin/IALS O.F 100 -YEAR 24-IIOUR PRECIPITATION IN *tlEMTIIS OF AN INCH rns:oi—i X XhH I 0 U.S. DEPARTMfclM NATIONAL OCKAMC AND AT:. SPECIAL STUDIES UKAMtll. OFKlCli OK Iff 30' 111!"30'II1 117'IV 116" APPENDIX XI- G l -1 i I I -I ! "T 'i Vt 1 j Y~i JNTENSITY'DUMTluN DESIGN CHART II I I I i li I ) J Equation: I '••= 7.44 P. D'"'64S Intensity (In./Hr.) Pfi » 6 Hr, Precipitation (In.) D » Duration (Min.) 15 20 Minutes 40 50 1 Duration 5 6 Directions for Application: 1) From precipitation naps determine 6 hr. and 24 hr. amounts for the selected frequency. These maps are printed 1n the County Hydrology Manual (10, 50 and 100 yr. maps included in th Design and Procedure Manual). 2) Adjust 6 hr. precipitation (if necessary) so that 1t Is within the range of 45% to 65% of the 24 hr. precipitation. (Not applicable to Desert) 3) Plot 6 hr. precipitation on the right side of the chart. 4) Draw a line through the point parallel to the plotted lines. 5) This Hne 1s the Intensity-duration curve for the location being analyzed. Application Form: 0) Selected Frequency /00 yr. P24= 2) Adjusted 3) tc-_ 4) I = 24 in. min.~ In/hr. *Not Applicable to Desert Region APPriNOIX XI-A .iSSv ^.c <ji - - r -•-i^-^^i ?MVy N >^5 S' ._i =:^j=^r C.r»P«rW iM^ff .•*.-•'y> (ii .rf?U&S W /•BwuS^I Sch_V / t&*tf ,'-^r;=i ..,V^ ,,=^f 8;Sch =ix?&sffiir' '-••^f s^-i/ :=0' Park JjXIMfg Sr. 1 . _- _. _ _ r,- ~>*--•«%' v7? =^i - r*f ^ c«,V/**«. v«•^•2?>>-. H5<^<./ * »U*\ Mir»costa ^ ^ ]Coll«f«/.x . WT« -^ Breeze . Hiir Libr ^^^N-iii .VTCTA-II'3W-' ^ -s.r25\ ?===-» ^A>" A r-& 5 -TVs^ .-vS. ;.::« 1- , Sewage.o?al f*:•*•:/ -1 .^ V^> //?_,* Heliport , Hospital xx . 4M-M~9^-.—--V--;^b • S^^v'S ^^^A irf*v Country I f-BDY"l A«•x^. /:f^\.JL^.-K«. Xi' l^?T<v ^~ *i. /I •J^>" »•' X.^&£ y**.~ •^A?-? Park^ s^»---. V«JSp.* I «*•&= I 35> J" :;x ,1.53 f..-"-' •*S£*^w ^W'*^ :.l:J'/•".^Wl.. -—-I. _*»-j *i->-/<^r-2^r«T. O ' i ™>_Ji /y:.\( •as--: J*T\ . V \ —^=ZZ^» :? A /—i ,*&&£=^- ..^.-//-V.fH L/S!r- Trailer r—• 3^, -y-./j ^NT:'->/;^>^ ~y\Sf /Vj mi->-i\ j rtaoi *•.* ^1- fc4^-^N^^^S^^ ^ \^C^ "\~ "*b~ "-V^r ORP X~ VM %A ./W»t«r. •.nkP ^ •*Ji *»•• S^\« sr--*«.t:!5 CCer x.. 9L----^T—^ N &tf2:-.\^^r . •-- ~~r=* V >. "*?=.- "-^ S. > -^ Mi^-' ^e ^ ^,KeV ^!\ ••x '/>]^/ s X* i J i^^' SWMO^h:....VH:Sn^n1 -tM^t2.0:L£U f^Sff t *~,a-/ -<^\ L5'fc -J N-^OO- H^J-.'\-'-' »•».«K1 ^? / M; /Gravel T Pit-' C€^ ^ yx .^ 14. r^E•^|07- V. A £ ;• i_- • -i**,-!'*'!>v. ;..-. Coxey/% f <i >] - /f Hiit^ >4^.J y(, :A;:' :._Ji;^^ y\^ltettf=2N t-rV'^i^ f LN jTsy'-jC' If:" .- Si: ^ X f >V ,v ?•? •2.1* --.-^-:&&?*' /r,^ -7>j? /- ..^-' f .'... -^ /• -. • Counlfy _ mf%s^ T T> .S\ /^7 :W^J^g. |i/^ -r':<^^^SS3^^=Dr A:l C '<c? %$^^ •';;V/^fy^^^f\ ^ ^o ?' x ..*^-''" "*7 «^V—> j *• i -' - ' ^ ^ ' '-•• Vt ' ^-''-;--=-—"^7^ ** ,x> jy ^_ ^^_- -f A ^an^;,c." .- V;^S^->'. - S^r^^--'i^i^mirt'xi''"~' "": '^~ -' -'--"^ "^"~ ^X^^^fex-t^^V-1 !^isT ORIGINAL'^-•if-S^^^^'tAi. *=--^=^«-. i TO ' - ' / ~-7 --.-> <UV^5g^>==r¥; TTt i 1-^-j '- ' ( v =Oj ^arron^CC-: * M = ,.^ !.- ---.- X^ i lit &;<•-' fi/r.- ; ^'— x \ ^ S- ./ ' &J <.\^^-^ _ .!a- •' " SAN DIEGO COUNTY R ATIONAL-HYDROGRA P H PROGRAM PACKAGE: Copyright (c> CivilOadd , 1988 R a t i anal I I y cl r o 1 n g y S t i.i cl y D a t e :10--2 0-8 8 HYDROLOGY FOR CANNON RD BOX CULVERT STA.48+ WITH EXISTING LAND USE IN DRAINAGE BASIN *USFR SPECIFIED HYDROLOGY INFORMATION* Rational method hydrology program based on San Diego County Flood Control Division 1985 Hydrology Manual Storm Event (Year) =» 100.00 Map data precipitation entered: f. HOUR, Prooipitat ion( Xnoh«M) "" 2.75O 24 Hour Precipitation (Inches) = 4-. 750 Adjusted 6 Hour Precipitation (Inches) «= 2.75O P6/P24 = 57.9 % San Diego Hydrology Manual "C" Values Used Runoff Coefficients by MODIFIED RATIONAL METHOD 4-4^4-4^4-4-4 4 4-4-4 4-4-4H-4-4-+4-4-4H-+4-4-4-4-4-+4-4-4-++^ Process -from Point/Stat ion 10O.OO to Point/Stat ion 101.00 *** INITIAL AREA EVALUATION *** Decimal Fraction Soil Group A = .OOO Decimal Fraction Soil Group B = .OOO Decimal Fraction Soil Group C = 1.OOO Decimal Fraction Soil Group D *» .OOO RURAL (lots > 1/2 acre) runo-f-f coefficient =• .40OO Initial Subarea is assummed uniform Area Type is: RURAL(Greater than 1/2 Acre) Time of concentration computed by the Natural Watersheds nomograph, (App. X—A) TC = Cll.9*Length(Mi)*3)/(Elevation Change)3~.385*6O(MIN/HR) 4- 1O min . Initial Subarea Flow Diet. => 946O . OO Highest Elevation = 5OO.OO Lowest Elevation = 333.00 Elevation Difference = 167.OO TC = C(11.9* 1.7S17**3)/( 167.OO)3**..385 = 42.560 4- 1O Min. = 52.56O Min. 1OO.OO Year Rainfall Intensity(In./Hr.) = 1.589 Subarea (Acres) = 476. OO Subarea Runoff (CFS) •=• 302.52 Total Area(Acres) = 476.OO Total Runoff(CFS) = 3O2.52 TC(MIN) 52 56 CA = 19O.40 Sum of CA « 19O.40 Process from Point/Station 100.OO to Point/Station 1O1.OO *** CONFLUENCE OF MAIN STREAMS *** I I I I I I I 1 I I! I I I II I I I 1 II FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 1.0O OO »ar Rainfall Intensit y < In / Hr . ) == 1.589 The flaw v«»lu «•>••; used for the stream: 1 are: Timti of eonoent rat ion (min . ) = 5S.5S Rairif al 1 -i n tensity (in./hr/) *» t .59 Total flow area < Acres) « 4-76 . OO Total runoff <Cf-"!3> at confluence point « 3O2.32 Program is now starting with MAIN STREAM NO. 2 ++++.f+++++++++++4.+++++++++++++++++^^ Process from Point /Station 2OO . OO to Point /Station 101. OO *** INITIAL AREA EVALUATION *** Decimal Fraction Soil Croup A =• . OOO Decimal Fraction Soil Cr.oup B «* .OOO Decimal Fraction Soil Croup C «" l.OOO Decimal Fraction Soil Group D •» .OOO RURAL, (lots > 1/2 acre) runoff coe-f -Ficient =» . 4.QOO Initial Subarea is as summed uniform Area Type is: RURAL (Greater than 1/2 Acre) Time of concentration computed by the Natural Watersheds nomograph, (App. X— A) TC - Cll 9*L.ength(Mi)*3)/ (Elevation Change) D* .385*60 (MIN/HR) •4- 1 0 mi n . Initial Subarea Flow Dist . =• 505O . OO Highest Elevation •= 470. OO Lowest Elevation •» 333 . OO Elevation Difference »• 137 . OO TC » Cdl.S* .9564**3)/( 137 . OO) 3**. .385 = 22.34-6 + 1O Min. « 32.246 Min . 1OO.OO Year Rainfall Intensity ( In . /Hr .) - 2.177 Subarea (Acres) = 132 . OO Subarea Runoff (CFS) = 114.97 Total Area (Acres) •» 132 . OO Total Runoff (CFS) = 114.97 TC(MIN) = 32.25 CA - 52. SO Sum of CA - 52. 8O Process from Point /Station 2OO . OO to Point /Stat ion 1O1.OO *** CONFLUENCE OF MAIN STREAMS *** *** Compute Various Confluenced Flow Values *** FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 1OO.OO Year Rainfall Intensity (In ./Hr .) •= 2.177 The flow values used for the stream: 2 are: Time of concentration(min.) = 32.25 Rainfall intensity (in./hr/) = 2.18 Total f-1-ew-a^ea (Acres) » 132. OO Total runoff (CFS) at confluence point = 114.97 I I I I I I I I I I I I 1 I I! I I C o n i .1 i.i '•••> n o *•? 1.n •(• o i- ma 1.1 o n : St r earn run o I ( T i me Intensity Number (CFB) (miri.) (inch/hour) 1 302.52 52.56 1 .58'£> 2 114.97 33.25 2.177 QSMX <1) = •fl . OOO*1 . OOO* 302.5) f 730*1.000* 115.0) = 386.4O8 QSHX(2) = 4-1. OOO* .614* 302.5) fl.000*1 OOO* 115.0) = 3OO.564 Pain-fall intensity and time of concent rait ion used for 2 MAIN stream's. Individual stream flow values are: 302.52 114.97 Possible confluenced flow values are: 386.41 300.56 Individual Stream Area values are: 476.OO 132.00 Computed confluence estimates are: Runoff(CFS) » 386.41 Time(min.) - 52.560 Total main stream study area (Acres) «=• 6O8. OO Process from Point/Station 1O1.OO to Point/Station 1O2.0O *** TRAPEZOIDAL/RECT. CHANNEL TRAVEL TIME ***• Upstream point elevation — 333.00 Downstream point elevation ** 203 . OO Channel length thru subareafFeet) •• 41OO.OO Channel base(Feet) « 1O.OO Slope or "7." of left channel bank •» 3. OOO Slope or "Z" of right channel bank - 3.OOO Mannings "N" = .O45 Maximum depth of channel (Ft.) = 2O.OO Flow(O.) thru subarea(CFS) » 386.41 Upstream point elevation == 333. OO Downstream point elevation "= 285.00 Flow length(Ft.) = 410O.OO Travel time (Min.) = 11.58 TC(min.) = 64.14 Depth of flow =• 3.29 (Ft.) Average Velocity = 5.90 (Ft./Sec.) Channel flow top width = 29.76 (Ft.) 4-+4-++^ Process from Point /Stat ion 1O1 . OO to Point / Stat ion 1O2.OO *** SURAREA FLOW ADDITION *** 1. 0 0 . O (> Yea r Ra :i. n -f a 1 1 I n t en s i t y ( I n . / Hr . ) = .1. . 397 Decimal Fraction Soil Group A = . OOO Decimal Fraction Soil Group & - .OOO Decimal Fraction Soil Group C = 1 . OOO Decimal Fraction Soil Group D = .000 RURAL (lots > 1/2 acre) runoff coef -f icient ~ .4000 Subarea < Acres) « 305 . OO Subarea Runoff (CFS) » 133. S3 Total Area (Acres?) *• 913.00 Total Runoff(CFS) » 510.33 TC(MIN) - 64- . 14 CA - 122.OO Sum of CA •» 365. SO Process from Point /Stat ion 1O1.OO to *** CONFLUENCE OF MAIN STREAMS Point /Stat ion 103. OO *** FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 100.00 Year Rainfall Intensity(In./Hr.) = 1.397 The> flow values used for the stream: 1 are: Time of concent rat ion (min .) «= 64.14- Rainfall intensity (in./hr/) => 1.4O Total flow area (Acres) «* 913. OO Total runoff (CFS) at confluence point = 51O.33 Program is now starting with MAIN STREAM NO. 2 •4-f •»••»•-H Process from Point/Station 30O.OO to Point/Station 102.OO *** INITIAL AREA EVALUATION ***' Decimal Fraction Soil Group A Decimal Fraction Soil Group B Fract ionDecimal Decimal Fract ion Soil Soil Group Group .4OOO .OOO .OOO 1 . 000 .OOO RURAL (lots > 1/2 acre) runoff coefficient Initial Subarea is assummed uniform Area Type is: RURAL(Greater than 1/2 Acre) Time of concentration computed by the Natural watersheds nomograph, (App. X—A) TC = Cll.9*Length(Mi)A3)/(Elevation Change) -f 1O min . Initial Subarea Flow Dist. = 1OOOO.OO Highest Elevation == 435 . OO Lowest Elevation = 285.OO Elevat. ion Difference = ISO . OO TC = [(11 9* 1 .893S»**3) / ( 150.00)D**. + 10 Min = 57.293 Min. 1OO.OO Year Rainfall Intensity(In./Hr.) Subarea(Acres) = 433.OO Subarea Runoff(CFS) Total Area(Acres) = 433.OO Total Runoff(CFS) TC(MIN) = 57.29 CA = 173.20 Sum of CA « 173.2O .385*60(MIN/HR) .385 ==47.293 1.503 260.30 26O.3O I I I I I I I I I I I I 4-4 •»-* i •»-»••• 4••^•^•^•^4••^•^^•^•^•4• ITCH-WKT; -I- row Point/Station 30O . OO to Point /Stat ion 1O2.OO *** CONFLUENCE OF MAIN STREAMS *** *** Compute Various Confluenced Flow Values *** FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 1 I I I I I 1OO.OO Year Rainfall Intensity ( In . /Hr .) = 1.5O3 The -Flow values used for the stream: 2 are: Time of concentration (min .) «« " 57.29 Rainfall intensity (in./hr/) « l.SO Total flow area < Acres) «• 433.00 Total runoff (CFS) at confluence point = 260.30 Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) 1 51O.33 64.14 1.397 2 26O.30 57.29 1.503 QSMX ( 1 > - 4-1.00O*1.00O* 51O.3) 4- .93O*1.OOO* 26O.3) » 752 . 365 QSMX ( 2 ) - 4-1 000* S93* S1O.3) 4-1 OOO*1 OOO* 26O.3) 716.185 Rainfall intensity and time of concentration used for 2 MAIN streams. Individual stream flow values are: 510.33 260. 3O Possible confluenced flow values are: 752.36 716.18 Individual Stream Area values are: •513. OO 433.OO Computed confluence estimates are: Runoff (CFS) - 752.36 Time(min.) = 64.136 Total main stream study area (Acres) = 1346.00 •»• f 4- •«••«• 4- f f •«• »• f -f •»• -f *• *- f 4-H- f -f + -M-f -f f -4- f -4- f -f + -f •*• •«"»• + *• + -r-f-f -f -f-f-f + f - Process from Point / St. at ion 1O2.OO to Point /Stat ion *** TRAPtii'/oiDAL/RECT. CHANNEL TRAVEL TIME 103.OO *** Up s»t. r«=?;an» point, wlevat. ion =a 285 . CO Downstream point el«v»tion «• 239 . OO Channel length thru subarea ( Feet ) - 320O . OO Channel base < Feet) =• 1O.OO Slope or "Z" of left channel bank =• 3 . OOO Slope or "7L" of right channel bank = 3 . OOO Mannings "N" = . O45 Maximum depth o-f channel (Ft.) Flow(Q) thru subarea(CFS) = 752.36 Upstream point elevation =» S85 . OO Downstream point elevation "= 23S . OO Flow length (Ft . ) = 3200 . OO Travel time <Min.) = 7 . 02 TC(min.) « 71.16 Depth of flow » 4.32 (Ft.) Average Velocity = 7.60 (Ft. /Sec.) Channel flow top width = 35.S>O (Ft.) 6.00 Process from Point /Station *** SUBAREA FLOW ADDITION 1O2.00 to Point /Stat ion 103 . OO *** _ 100.00 Year Rainfall Intensity ( In . /Hr .) = 1.3O7 Decimal Fraction Soil Group A =• .OOO •** Decimal Fraction Soil Group & <= .OOO Decimal Fraction Soil Group C «• l.OOO *™ Decimal Fraction Soil Group D «= .OOO j; RURAL (lots > 1/2 acre) runoff coefficient » .400O Subarea( Acres) = 127 . OO Subarea Runoff (CFS) « 17.62 Total Area (Acres) = 1473. OO Total Runoff (CFS) -" 769.99 TC(MIN) =71.16 CA = *>O.8O Sum of CA »= 589 . 2O 1 Process from Point / Stat ion 1O2.OO to Point /Stat ion *** CONFLUENCE OF MAIN STREAMS 1O3.OO *** FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 1OO.OO Year Rainfall Intensity(In./Hr.) = 1.3O7 The flow values used for the stream: 1 are: Time of concentration(min.) = 71.16 Rainfall intensity lin./hr/) = 1.31 Total flow area (Acres) = 1473.OO Total runoff (CFS) at confluence, point — 769.99 C- c IT ocji-i-ni, i -. IMIW ;;. Hiirtinu with MAIN STREAM NO. 2 .f+f 4.,. M.4..t.M..,..f ».f ^. + .4. + ++^^ Process from Point/Station 4OO.OO to Point/Station 103.OO *** TNITT.A!... AREA EVALUATION *** Qi-y.r. i riV:.'! Fraction Gail Group A "= .OOO Decimal Fraction Soil Group B = .000 Decimal Fraction Gail Group C = 1 . OOO Decimal Fraction Soil Group D = .OOO SINGLE FAMILY runoff coefficient « .5000 Initial Subarea is as-summed uniform Area Type is: SINGLE FAMILY Time of concentration computed by the Natural Watersheds nomograph, (App. X—A) TC •- Cll .9*Length(Mi) A3)/ (Elevation Change ) 3" . 385*60 ( MIN/HR) •f J O mi n . Initial Subarea Flow Dist . = 6OOO.OO ^_* Highest Elevation = 355.OO Lowest Elevation = 239.OO Elevation Difference = 116.00 TC = C(11.9* 1.1364**3>/< 116.O0>3**..385 = 28.943 •t- 1O Min. = 38.943 Min. 10O.OO Year Rainfall Intensity(In./Hr.) = 1.928 Subarea (Acres) = 323. OO Subarea Runoff (CFS) =* 311.35 Total Area(Acres) = 323.OO Total Runoff(CFS) = 311.35 TC(MIN) = 38.94 CA - 161.5O Sum of CA «= 161.5O Process from Point/Station 4OO.OO to Point/Station 103.OO *** CONFLUENCE OF MAIN STREAMS *** *** Compute Various Confluenced Flow Values *#* FOLLOUING DATA INSIDE MAIN STREAM ARE CALCULATED 100.00 Year Rainfall Intensity<In./Hr.) = 1.928 The flow values used for the stream: 2 are: Time of concentration(min.) = 38.94 Rainfall intensity (in./hr/) = 1.93 Total flow area (Acres) =•= 323 . OO Total runoff (CFS) at confluence.point = 311.35 Con f 1 uenc-e i n f ormat ion: Stream runoff Time Number (CFS) (min.) Intensity (inch/hour) 1 769 99 71.16 2 311.35 38.94 QSMX(1) ~ t .1 . OOO*1 . OOO* 770 . 0 ) f .678*1.OOO* 311.4) 981.O39 QSMX(2) - +1.OOO* .547* 770.0) +1.OOO*1.OOO* 311.4) 732.743 1 .307 1 .928 I I I I i I i i i i i i i i i i i i i ft a i. n i a J II i r> t e 11 •., 11. y a n d t i me ei f r.: o n c e n 1. r a t :i. 1:1 n u'-sed for P MAIN streams. Individual ••; I. r »>;;ii'i> flow values i»\rt»: 7t>9 .99 an. .35 P o si si :i. t) 1 e c c:> n •(• 1 u <» n ce d flow values a r e : 981 04 732 . 74 I n r.l :i. v i dun I St. r earn Area va 1 Lies are?: 14/3 00 :.-)£'3.00 Computed confluence e<st imat es are: Runoff (CFS) =••=•• 981.04 TinvsMmiri.) ==' 71.158 Total main 'stream study area (Acres) = 179S . OO Process from Point/Station 1O3.00 to Point /Stnt ion 104 . OO *** TRAPEZOIDAL/ RECT. CHANNEL TRAVEL TIME *** Upstream point elevation •» 239 . OO Downstream point elevation » 212 . OO Channel length thru su bar ea< Feet I- 8700. OO Channel base (Feet) « 10. OO Slope or "Z" of left channel bank =• 3 . OOO Slope or "Z" of right channel bank = 3. OOO Mannings "N" » . O45 Maximum depth of channel <Ft.) «= 6.00 Flow(Q) thru subarea(CFS) - S81.O4 Upstream point elevation = 239 . OO Downstream point elevation = 212 . OO Flow length < Ft .) = 2700. OO Travel time <Min.) - 6.33 TC<min . ) = 77.49 Depth of flow = 5.3S (Ft.) Average velocity = 7.11 (Ft. /Sec.) Channel flow top width • 41.90 (Ft.) Process from Point/Station 1O3.00 to Point /Station 104 . OO *** SUBAREA FLOW ADDITION *** 1OO.OO Year Rainfall Intensity ( In . /Hr .) « 1.237 Decimal Fraction Soil Group A •* .OOO Decimal Fraction Soil Group B = .OOO Decimal Fraction Soil Group C = 1 . OOO Decimal Fraction Soil Grou'p D = .OOO MOBILE HOMES runoff coefficient = .55OO Subarea< Acres) = 127 . OO Subarea Runoff (CFS) *= 33.95 Total Area(Acres) = 1923. OO Total Runoff (CFS) =• 1O14.99 TC<MIN) -~ 77.49 CA = 69.35 Sum of CA = 82O.55 ++++++++4-++++++++^ Process from Point /Station 1O3.0O to Point /Station 1O4 . OO *** CONFLUENCE OF MAIN STREAMS *** FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 100.00 Year Rainfall Intensity(In./Hr.) = 1.237 The flow values used for the stream: 1 are: Time of concentration(min.) = 77.49 Rainfall intensity (in./hr/) - 1.24 Total flow area (Acres) - 1923.OO Total runoff (CFS) at eon-Ftuonr?** orH n+ = lotx QC, I I I I I I I I I I I I I I I I I I I Program :i s now starting with MAIN STREAM NO. £' f » ^4 « M t M- M + M M M ++-f f++-M + f +-M-+^ Process from Point. AStat ion 5OO.OO to Point /Stat ion 1O4.OO *** INITIAL AREA EVALUATION *** Decimal Fraction Soil Group A =• . OOO Decimal Fraction Soil Group B •* .OOO Decimal Fraction Soil Group C =» 1 . OOO Decimal Fraction Soil Group D « .OOO RURAL (lots > 1/2 acre) runoff coefficient « .400O Initial Subarea is assuiraned uniform Area Type is: RURAL. (Greater than 1/2 Acre) Time of concentration computed by the Natural Watersheds nomograph, (App. X— A) TC •=• Cll .9*Length(Mi)*3>/ (Elevation Change) 3* . 38S*6O(MIN/HR) + 10 min . Initial Subarea Flow Dist . *» 565O . 00 Highest Elevation = 42O . OO Lowest Elevation - 212 . OO Elevation Difference *• SOS . OO TC « C(11.9* l.O701**3)/( 208.00)3**. .385 - 31.565 + 1O Min. « 31.565 Min. 1OO.OO Year Rainfall Intensity ( In . /Hr .) » 2. SOS Subarea (Acres) « 183 . OO Subarea Runoff (CFS) *» 161.59 Total Area (Acres) - 183 . OO Total Runoff (CFS) » 161.59 TC(MIN) «= 31.57 CA = 73.2O Sum of CA - 73. SO Process from Point /Station 50O.OO to Point /Station 1O4.OO *** CONFLUENCE OF MAIN STREAMS *** *** Compute various Confluenced Flow Values *** FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 10O.OO Year Rainfall Intensity(In./Hr.) = 2.SOS The flow values used for the stream: 2 are: Time of concentration(min.) ™ 31.57 Rainfall intensity (in./hr/) » 2.21 Total flow area (Acres) «• 183. OO Total runoff (CFS) at confluence point «• 161.59 Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch/hour) 1 1014.99 77.49 1.237 2 161.59 31.57 2.2O8 QSMX (1) =•• +1.OOO*1 OOO*1015.O) Jr. -56_0*1 .OOQ*_16l .6) 11O5.532 QSMX (2) =» H.OOO* .407*1015.0) +1.000*1.000* 161.6) = 575 . O65 f'»• ;s :i. n f a 11 int. •;;• n s i t y a n d t i rne cH; c o n c « r> t1- a t i ti n us tad for /2 MAIN streams. I nr.l i w i . di.ia I stream -Flow values arw: 1O14 . W 161 . 59 P a •;;;.•; i b I e rronfluenced flaw values are: .1 1.O5 S3 S75 . 07 In dividual Stream Area valuer; are: 1 Tic?3. 00 1.83.OO Computed confluence estimates arra: Runoff <CFS) = 1105.53 Time<min.) = 77.4-86 Total main stream study area < Acres) ««= 21O6.OO I -4 "f-t-H f *H-H- »• »-+-f +^-t--f -4-f -f -f -f -f 4-i Process -from Point /Stat ion 1O4.OO to *** TRAPEZOIDAL/ RECT. CHANNEL. TRAVEL Point /Stat ion 105. OO TIME . *** Upstream point elevation •» 212 . OO Downstream point elevation "" 175 . OO Channel length thru subarea(Feet) = 250O.OO Channel base (Feet) •» 20 . OO Slope or "Z" of left channel bank •= 4. OOO Slope or "Z" of right channel bank « 4.OOO Mannings "N" = .O45 Maximum depth of channel (Ft.) Flow(Q) thru subarea(CFS) » 1105.53 Upstream point elevation •» Downstream point elevation « Flow length (Ft.) =• 2500 . OO Travel time (Min.) = 5.35 Depth of flow =« Average Velocity = 6 . OO 212 . OO 175.00 TC(min.) 3.96 (Ft.) 7.79 (Ft. /Sec.) 82.84 Channel flow top width « 51.69 (Ft.) Process from Point /Stat ion *** SUBAREA FLOW ADDITION 1O4.OO to Point /Stat ion 105. OO . *** 1OO.OO Year Rainfall Decimal Fraction Soil Decimal Fraction Soil Decimal Fraction Soil Decimal Fraction Soil RURAL (lots > 1/2 Subarea( Acres) «= Total Area (Acres) TC(MIN) - 82.84 CA = 79.2O Sum of CA = Intensity ( In . /Hr .) = 1.185 Group A = .OOO Group B = .OOO Group C = 1 . OOO Group D = .OOO acre) runoff coefficient = .40OO 198.00 Subarea Runoff (CFS) •= 47.23 = 2304.00 Total Runoff (CFS) = 1152.76 972.95 ++++++++++++++++++++++++++ F'-'rocess from Point /Stat ion 105. OO to Point /Stat ion 1O6 . OO '*** "-ITTAPezaiDALABECT. CHANNEL~TRAVEL~ TIME *** Upstream point elevation = 175.OO Downstream pioint elevation =» 78 . OO Channel length thru subarea (Feet ) == 360O.OO Channel ba«;e ( Feet ) ~ 1.O . OO S3 ope cir "/" o-F left channel bank =•= 3 . OOO Slope or- "'£" of right channel bank =» 3 . OOO Manning's "N" ~= .045 Maximum depth of channel Flow(Q.) thru subarea (CFS) =-' 11.52.76 Upstream point elevation = 175.00 Downstream point elevation = 78.OO Flow length(Ft.) = 3600.00 Travel time (Min.) =» 5.60 TC(min.) » 88.44 Depth of flow = 4.55 (Ft.) Average Velocity = 1O.71 (Ft./Sec.) Channel flow top width « 37.30 (Ft.) (Ft . ) ••* 8 . 00 || Process from Point /Station *** SUB AREA FLOW ADDITION 1O5.OO to Point /Station 106.00 *** 1OO.OO Year Rainfall Intensity(In./Hr.) « 1.136 Decimal Fraction Soil Group A «= .OOO Decimal Fraction Soil Group 8 *» .000 Decimal Fraction Soil Group C = 1.OOO Decimal Fraction Soil Group D = .OOO RURAL (lots > 1/H acre) runoff coefficient «= .4OOO Subarea( Acres) = 231. OO Subarea Runoff (CFS) =* 57.31 Total Area (Acres) •* 2535. OO Total Runoff (CFS) « 121O.07 TC(MIN) » 88.44 CA = 92.40 Sum of CA =• 1O65.35 Process from Point/Station 1O5.OO to Point/Station 1O6.0O. *** CONFLUENCE OF MAIN STREAMS *** FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED 1OO.OO Year Rainfall Intensity(In./Hr.) * 1.136 The flow values used for the stream: 1 are: Time of concentration(min.) = 88.44 Rainfall intensity (in./hr/) = 1.14 Total flow area (Acres) = 2535.OO Total runoff (CFS) at confluence point = 121O.07 3 Program is now starting with MAIN STREAM NO. 2 +++++++++++++++++++++++++++++++ Process from Point/Station 60O.OO to Point/Station 106.OO *** INITIAL AREA EVALUATION *** Decimal Fraction Soil Group A -• . OOO Decimal. Fraction Soil Group 13 ~ .OOO Decimal Fract i on Soil Group C ~ 1. . OOO Decimal F-'raction Soil Group D == OOO RURAL (lots; > 1/2 acre) runoff coefficient --- .40OO Initial Subarea is as summed uniform Area Type is: RURAL ( Great er than 1/2 Acre) Time of concent i-at iori computed by the Natural UI.3 i <>> r • ••• \"< e cl s nomograph, ( App . X--A) I I.: ~ I! I. :l S*l..en<:jt h ( Mi ) ~3 ) / ( Elevat ion Change > ::i ~ . 38S*6O < MIN/ HP ) I 1.0 min Initial Su barer. Flow Dist. =- SHOO . OO Highest Elevation = 365 . OO Lowest Elevation « 7Q . 00 Elevation Di-f -Ferenee =» 287 . OO TC =• C(11.9* 1 .OOOO**3>/ ( 887.00)3**. .385 » 17.618 •f 10 Min. - 27.618 Min. 100.00 Year Rain-fall Intensity ( In . /Hr .) » 2.406 <3ubarea( Acres) = 148 . OO Subarea Runoff <CFS) « 142.45 Total Ar«~»a< Acres) « 148 . OO Total Runoff <CFS) » 148.45 TC(MIN) « 27.62 CA =*= 59.20 Sum of CA - 5S.2O Process from Point /Station 6OO . OO to Point /Station 1O6 . OO *** CONFLUENCE OF MAIN STREAMS ***_ _ _ ..„ „«_______„______________._______ ________________ ___ __ *** Compute Various Confluenced Flow Values *#* *- FOLLOWING DATA INSIDE MAIN STREAM ARE CALCULATED ** 100.00 Year Rainfall Intensity(In./Hr.) « 2.4O6 The flow values used for the stream: 2 are: Time of concentration(min.) = 27.62 m Rainfall intensity <in./hr/) « 2.41 Total flow area (Acres) « 148.OO — Total runoff <CFS) at confluence point « 142.45 Confluence information: Stream runoff Time Intensity Number <CFS) (min,) Cinch/hour) 1 1210.O7 88.44 1.136 2 142.45 27.62 2.406 QSMX <1) « •H . OOO*1 . OOO*121.O . 1 ) 4- .472*1.OOO* 142.4) 1277.312 QSMX ( 2 ) -- •M .OOO* .312*1210.1) +1.000*1.000* 142.4) 520.328 Rainfall intensity and time of concentration used for 2 MAIN streams. Individual stream flow values are: 1210 07 142.45 Passible canfluenced flow values are: 1277.31 520.33 Individual Stream Area values are: 2535.00 148.OO I I I I I I I I I I I I I I I I I I I confluence estimates are: i;...io I f (CF53) ••••••• J.cT/7.31 Time (mi ri.) =• 88.44O ID1/•» I main stream study area (Acres) •=•= 2683. OO .4. < ..,. .f .4..M. + .f..f.f f .|.+.f .f + + .f c-e^r. from Point / Stat ion 106 . OO to vi:;'APE/.o.i:DAi../necT. CHANNEL. TRAVEL. Point /Stat ir»n TIME 1O7.OO *** IJpT;1 • r*».;im point e»J ovation » V8 . OO Downstream point elevation = 61. OO Channel length thru subarea(Feet ) »= H65O . OO Channel base (Feet) = 20 . OO Slope or "Z" of left channel bank - 4 . OOO Slope or "Z" of right channel bank - 4. OOO Mannings "N" •» . O45 Maximum depth of channel (Ft.) Flow(Q) thru subarea(CFS) - 1H77.31 Upstream point elevation •* 78.00 Downstream point elevation = 61 . OO Flow length (Ft.) - 2650.00 Travel time (Min.) « 7.4O TC(min.) « S3. 84 Depth of flow » 3.23 (Ft.) Average Velocity - 5.97 (Ft. /Sec.) Channel flow top width » 61.84 (Ft.) 6.0O Process from Point/Station *** SUBAREA FLOW ADDITION 106.OO to Point/Station 1O7.OO *** 10O.OO Year Rainfall Intensity(In./Hr.) - 1.O78 Decimal Fraction Soil Group A •« .OOO Decimal Fraction Soil Croup B « .OOO Decimal Fraction Soil Group C «• 1. OOO Decimal Fraction Soil Group D •= .OOO RURAL (lots > 1/2 acre) runoff coefficient «= .4OOO Subarea (Acres) •» 171. OO Subarea Runoff(CFS) •= 9.24 Total Area (Acres) «• 2854. OO Total Runoff (CFS) » 1286.35 TC(MIN) = 95.84 CA = 68.40 Sum of CA « 1192.95 End of computations.. , TOTAL STUDY AREA(ACRES)2854.OO STORM DRAIN STA. 4B + 00 F031SP WATER SURFACE PROFILE! LISTING ; a c a 0 0 0 0 0 0 0 0 0 0 w °ro °0 0 0 0 0 0 0 0 0 0 ; o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0o o 0 0 0 0 0 0 0 o 0 1 1 STATION I../ EL EM ************ .00 200 . OO aoo .00 16 .21 8.16.81 3.79 220 . 00 17 .46 337 .46 23.73 261 . 19 a.af. 270 . 0() 23 . 87 893.87 86 . 73 320.00 33. 82 353 . SB 21 .78 375 .00 18.83 387 . 83 7. 17 395 . 00 393.00 3.94 398 . 94 3.50 408 .44 8.97 405 .41 a. 38 407.93 8. 10 410.03 1 .78 4.11 .73 1 .38 413 . 13 1 .08 414.21 413 10 423 WALL 425 20 445 34 500 49 549 43 393 WALL. 595 . 3 . 600 . 4 . 60S .79 .00 .00. oo EXIT . 00 .31 .31 .92 .23 .81 .44 .36 . OO INVERT IrlLEV ISO [******** 57 . 00 . 00830 57 .50 . 00830 57 . 34 . 00230 57 . 53 .00260 57 . 60 . 00260 37 .66 . 0026O 57 .68 .00240 37 . 74 . 00840 57 .80 .00255 57 .88 . 00833 57 . 94 . 00300 57 .98 .00300 38 . 00 58.00 . 10000 30 . 99 . 10000 58.74 . 10000 59 . 04 . 1OOOO 59 . 29 . 1 0000 59 .30 . 10000 59 . 67 . 1OOOO 59.81 . 1OOOO 59 . 92 . 1OOOO 60 . 00 . 01000 60 . 10 60 . I 0 . 004.1. a 60 . 18 . OO412 SO .4.1. . O04J.H 6O . 61- . OO4J.2 SO .ISO DEPTH OF FLOW <********* 3 . 100 3 . 121 a . 246 3.271 3.409 3.333 3 .598 3 . 737 3.901 4 . 081 4 . 177 4 .349 4 . 429a. 111 2.304 2 . 305 a. 410 8. 519 2 . 633 2.758 a . 876 3 . 005 9. 140 3 . 855 3.6061 3 . S53 3 . 388 3 .230 3 . OHO W.8. ELEV ;********** 60 . 100 60.621 60 .787 60.821 61 . 004 61 .810 61 .278 61 .493 61 .701 61 .966 68. 117 62 . 388 68 . 489 60. Ill 60.398 61.049 61 .431 61.818 68 . 136 68 . 487 68 . 689 68 . 986 63 63 63 63 63 63 63 . 140 .355 .708 .737 .798 .842 .880 Q :****** 1807 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 1887 ***] .0 .0 .0 .0 .0 .0 .0 .0 .0 ,0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 VEL. ******** 4.71 4.33 4. 13 4.67 4.45 4.84 4.81 4.58 4.85 4.63 6.99 6.09 5.96 17.85 17.03 16.86 13.30 14.78 14.09 13.43 18.81 12.81 18.81 18.36 11.39 18.07 18.66 13.88 13.99 VEL HEAD SF AVE **********.344 . 008377 .894 .008371 .867 . 007788 .338 . 008744 .308 . 007488 .880 . 006755 .359 .007833 .886 .006801 .866 . 006980 .833 .006808 .634 .011948 .576 .010760 .358 4.949 . 013808 4.514 .011303 4. 103 . 009933 9.780 . 008566 3.991 . 007896 3.083 . 006389 8.803 . 005588 8.348 . 004773 8.316 .004188 8.547 . 003809 8.371 8. 195 . 004780 8.863 . 005888 S.49O . 005973 8.789 . 006889 a. 013 ENERGY SUPER GRD . EL . ELEV HF :***************** 60.444 .58 60.915 . 14 61 .034 .03 61 . 139 .13 61.318 .18 61.490 .06 61.637 . IB 61.819 .18 68 . 067 .83 68.899 .14 68.731 .13 68.904 .08 68.981 65 . 060 .05 65.118 .04 63 . 138 .08 65. 181 .02 65.803 .08 65.819 .01 65 . 830 .01 65 . 837 .01 65.848 0 65 63 63 66 66 66 66 00 .687 .04 .786 .903 .10 .000 .89 .888 .89 .581 .81 .893 .00 .00 .00 .00 .00 .00 .00 CRITICAL HUT/ BASF/ ?L NO AVDPR DEPTH 01 A IO NCI. PTF.R NORM DEPTH /R t************************ ************************ a . i4a 7 o o 3 . 135 8 . 183 H 0.0 4 986 8 . 183 8 0 . O 4 .386 8 . 199 9 O . 0 4 . 649 ' &. 199 9 0.0 4 .649 8 . 199 9 O . 0 4 .649 8.301 10 0 .0 3 . 166 8.901 10 0.0 3 . lf.6 8 . 958 1 1 0.0 3 .400 a . 332 11 o . o 3 .400 3.080 18 O .0 6 .301 3 , 080 12 " • 0 6.301 3.080 t8 0 .0 8.549 13 0 .0 1 . 171 3.549 tM 0 . 0 1 . 171 3.549 13 0 .0 1 . 171 3.549 13 0.0 1 . 171 3.549 13 0 .0 1.171 3 . 549 18 0.0 1 . 171 3.549 13 0 .0 1.171 3.349 13 0 .0 1 . 171 3.349 13 0 0 1 . 171 3.691 8.349 3.691 3 .833 3 . 778 3.853 3 . 778 3.853 3.778 3.833 3 . 778 3 . £>33 6. 00 6 . 00 3 . 00 3 . 00 3 . OO 3 . 00 3 OO 88 32 31 31 31. 31 31 .OO OO . 00 . 00 . 00 . oo . oo ENTRANCE 00 88aa la o'o 60 .80 . 00500 60 .89 . OOSOO GO .83 2 . 738 a .aoa a .940 63 63 63. .338 .631 .790 1887 1887 1287 . 0 .0 . 0 tO .45 10.81 9 . 73 1 .694 .008848 1 .617 . 002543 ) .469 63 65 65 .832 .08 .848 . 01 .839 .00 .00 .00 8 .940 2 .380 2.940 2 . 380 a .940 6 . 00 C> . 00 6 . 00 45 . 43 43 00 oo . oo .00 .00 . 00 . 00on . 00 . 00 . 00 .00 . 00. oo 00 oo . 00 00 . 00 . oo . 00 oo 0 o a f> p p f?. o o 0 . 0 . 0 ."f . H .3 3 f> O O . 0