Loading...
HomeMy WebLinkAbout1040 AUTO CENTER CT; PARKING; CB023405; PermitCity of Carlsbad 1635 Faraday Av Carlsbad, CA 92008 Building Inspection Request Line (760) 602-2725 08- 14-2003 Commercial/lndustrial Permit Permit No: CB023405 Job Address: Permit Type: Parcel No: Valuation: Occupancy Group: Project Title: Applicant: SOLIVEN DOMINIC STE 101 2 FARADAY 926 18 949 595-801 1 1040 AUTO CENTER CT CBAD COMMIND Sub Type: COMM Lot#: 0 Status: ISSUED $2,479,329.00 Construction Type: IIN Applied: 11/12/2002 TOYOTA CARLSBAD Plan Approved: 08/14/2003 91,827 SF PARKING STRUCTURE Issued: 08/14/2003 Reference #: Entered By: MDP Inspect Area: Pian Check#: Owner: 1955 08/14/03 003002 01 02 Building Permit Add'l Building Permit Fee Plan Check Add'l Plan Check Fee Plan Check Discount Strong Motion Fee Park Fee LFM Fee Bridge Fee BTD #2 Fee BTD #3 Fee Renewal Fee Add'l Renewal Fee Other Building Fee Pot. Water Con. Fee Meter Size Add'l Pot. Water Con. Fee Recl. Water Con. Fee $6,059.61 $0.00 $3,938.75 $0.00 $0.00 $520.66 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 Meter Size Add'l Recl. Water Con. Fee Meter Fee SDCWA Fee CFD Payoff Fee PFF PFF (CFD Fund) License Tax License Tax (CFD Fund) Traffic Impact Fee Traffic Impact (CFD Fund) PLUMBING TOTAL ELECTRICAL TOTAL MECHANICAL TOTAL Master Drainage Fee Sewer Fee Redev Parking Fee Additional Fees TOTAL PERMIT FEES $0.00 $0.00 $0.00 $0.00 $45,123.79 $41,652.73 $0.00 $0.00 $0.00 $0.00 $1 32.00 $110.00 $30.50 $0.00 $0.00 $0.00 $0.00 $97,568.04 Total Fees: $97,568.04 Total Payments To Date: $4,034.00 Balance Due: $93,534.04 FINAL APPROVAL Inspector: zzz& Date: <by. d4 Clearance: NOTICE: Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as 'feeslexactions." You have 90 days from the date this permit was issued to protest imposition of these feeslexactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for prmssing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified feedexactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fa BUILDING DEPARTMENT Ave., Carlsbad, CA 92008 1 EST. VAL. 2; yG?iiTd?* Plan Ck. Deposit Validated By Date -- Total # of units 1@3mfx2/02 9002 01 02 Assessor's Parcel # Existing Use 91827 sf 2/w Basement SQ. FT. #of Stories # of Bedrooms CGFf Bathroo#%, # X issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the provisions of the Contractor's License Law tate License # City Business License # I have and will maintain a certificate of consent to self-insure for workers' compensation as provided by Section 3700 of the Labor Code, for the performance have and will maintain workers' compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is Is unlawful, and shall subject an employer to criminal penaltiea and civil fines up to one hundred 0 I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees. provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). 0 I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). 0 1. 2. 3. I am exempt under Section I personally plan to provide the major labor and materials for construction of the proposed property improvement. 0 YES ON0 I (have / have not) signed an application for a building permit for the proposed work. I have contracted with the following person (firm) to provide the proposed construction (include name / address / phone number 1 contractors license number): Business and Professions Code for this reason: 4. number / contractors license number): 5. of work): I plan to provide portions of the work, but I have hired the following person to coordinate, supervise and provide the major work (include name / address / phone I will provide some of the work, but I have contracted (hired) the following persons to provide the work indicated (include name / address / phone number / type PROPERTY OWNER SIGNATURE DATE Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials registration form or risk management and prevention program under Sections 25505, 25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? 0 YES 0 NO Is the applicant or future building occupant required to obtain a permit from the air pollution control district or air quality management district? 0 YES 0 NO Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? 0 YES 0 NO IF ANY OF THE ANSWERS ARE YES. A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTION CONTROL DISTRICT. LENDER'S NAME LENDER'S ADDRESS I certify that I have read the application and state that the above information is correct and that the information on the plans is accurate. I agree to comply with all City ordinances and State laws relating to building construction. I hereby authorize representatives of the City of Carlsbad to enter upon the above mentioned property for inspection purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AGAINST ALL LIABILITIES, JUDGMENTS, COSTS AND EXPENSES WHICH MAY IN ANY WAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT. OSHA: An OSHA permit is required for excavations over 5'0" deep and demolition or construction of structures over 3 stories in height. EXPIRATION. Every permit issued by the building Official under the provisions of this Code shall expire by limitation and become null and void if the building or wok authorized by such permit IS not corn nced within 180 days from the date of such permit or if the building or work authorized by such permit is suspended or abandoned at any time after the work is cornm ced fora pe e ' 106 . niform Building Code). APPLICANT'S SIGNATURE DATE // //z /@= / d428:z!!l! / File YELLOW: Applicant PINK: Finance L I Clty d Carlsbad Flnal Building lnsiectlon 4 2 Date Inspected: .$YAY Approved: Disapproved: City of Cirlrbrd Flnal Bulldlng lnsuectlon Dept: Building Planning CMWD St Li Plan Check #: Permit #: CB023405 Project Name: TOYOTA CARLSBAD Address: 1040 AUTO CENTER CT 91,827 SF PARKING STRUCTURE Permit Type: COMMIND SubType: COMM Lot: 0 Contact Person: Sewer Dist: Phone: Water Disk c/ Date Inspected: 6 - zz-~~ Approved: Disapproved: Inspected Date By: Inspected: Approved: Disapproved: Inspected Date By: Inspected: Approved: Disapproved: ............................................................................................................................................................. - City of Carlsbad Bldg Inspection Request For: Inspector Assignment: TP Permit# CB023405 YVv Title: TOYOTA CARLSBAD Description: 91,827 SF PARKING STRUCTURE Type: COMMIND Sub Type: COMM Job Address: Location: 1040 AUTO CENTER CT Suite: Lot 0 APPLICANT SOLIVEN DOMINIC Owner: STELLAR PROPERTIES LLC Remarks: AM PLEASE Total Time: Phone: 6262559591 Inspector: Requested By: CALVIN Entered By: CHRISTINE CD Description 19 Final Structural 29 Final Plumbing 39 Final Electrical I 49 Final Mechanical Associated PC Rs/CVs PCR03276 ISSUED TOYOTA CBAD-REVISE ELECTRIC-; PARKING STRUCTURE Date 05/0412004 05/03/2004 05/03/2004 05/03/2004 04/05/2004 03/31/2004 03/30/2004 03/30/2004 0330/2004 03/22/2004 03/22/2004 03/22/2004 OW1 8/2004 OW1 712004 031 712004 Inspection Historv Description 39 Final Electrical 14 FramelSteeWBoltingMIelding 34 Rough Electric 39 Final Electrical 62 SteeWBond Beam 11 FtgIFoundatiorVPiers 12 SteeWBond Beam 24 RougMopout 12 SteeWBond Beam 12 SteellBond Beam 66 Grout 66 Grout 24 RougMopout 61 Footing 24 RQUghfrOpoUt Act lnsp Comments PA TP PI TP PART WALK THRU/FINAL PREP, QUES CO TP ACCESS TO PNLS, TRANS WC JM AP TP 3RD LEVEL SPANDRILS AP TP DECKDRAINS WC TP AP TP SPANDRIL WALLS 2 & 2RD LEVEL AP TP DECKDRAINS AP TP SPANDRAL WALLS 2ND LEVEL AP TP CLMNSBRDLEVEL AP TP ELEV. ENCL CMU TI0 & ROOF SLAB AP TP ELEV ENCL 3RD LEVEL WC TP AP TP TSHENCL SUB PNLS, TRANS, NEED ELECT A/B NEED ELEV. ELECT ON PLAN ADD GATE CIR. *NEED ELEV. ELEC ON PLAN. - ADD GATE CIR. City of Carlsbad Bldg Inspection For: 05/18/2004 Request Permit# CB023405 Inspector Assignment: TP Title: TOYOTA CARLSBAD Description: 91,827 SF PARKING STRUCTURE Type: COMMIND SubType: COMM Job Address: Suite: Location: APPLICANT Owner: Remarks: Total Time: 1040 AUTO CENTER CT Lot 0 SOLIVEN DOMINIC STELLAR PROPERTIES LLC AM PLEASE Phone: 6262559591 Inspector: Requested By: CALVIN Entered By: CHRISTINE CD Description Act Corn m en t 19 Final Structural & A9vts Am+ t 29 Final Plumbing 39 Final Electrical 49 Final Mechanical t I Associated PCRs/CVs PCRO3276 ISSUED TOYOTA CBAD-REVISE ELECTRIC-; PARKING STRUCTURE InsDection History Date Description 05/04/2004 05/03/2004 05/03/2004 05/03/2004 04/05/2004 03/31/2004 03/30/2004 03/30/2004 03/30/2004 03/22/2004 03/22/2004 03/22/2004 ow1 8/2004 OW1 712004 031 712004 39 Final Electrical 14 FrarnelSteeVBoltingNVelding 34 Rough Electric 39 Final Electrical 62 SteeUBond Beam 24 RoughiTopout 1 1 Ftg/Foundation/Piers 12 SteeVBond Beam 24 RougWopout 12 SteeVBond Beam 12 SteeUBond Beam 66 Grout 66 Grout 24 RougMopout 61 Footing Act lnsp Comments PA TP PI TP CO TP WC JM AP TP AP TP WC TP AP TP AP TP AP TP AP TP AP TP AP TP WC TP AP TP SUB PNLS, TRANS, NEED ELECT NB NEED ELEV. ELECT ON PLAN PART WALK THRUIFINAL PREP, QUES ACCESS TO PNLS. TRANS ADD GATE CIR. *NEED ELEV. ELEC ON PIAN. - ADD GATE CIR. 3RD LEVEL SPANDRILS DECK DRAINS SPANDRIL WALLS 2 & 2RD LEVEL DECK DRAINS SPANDRAL WALLS 2ND LEVEL CLMNS 3RD LEVEL ELEV. ENCL CMU T/O 81 ROOF SLAB ELEV ENCL 3RD LEVEL TSH ENCL i \L i NOTICE (760) 602-2700 * CITY OF CARLSBAD BUILDING DEPARTMENT 1635 FARADAY AVENUE PERMIT NO. FOR INSPECTION CALL (760) 602-272f RE-INSPECTION FEE DUE? 0 YES FOR FURTHER INFORMATION, CONTACT -,7 '?d;ic PHONE 8 BUILDING INSPECTOR CODE ENFORCEMENT OFFICER City of Carlsbad Bldg inspection Request For: 1 0/2 1 /2003 Permit# CB023405 Inspector Assignment: TP Title: TOYOTA CARLSBAD Description: 91,827 SF PARKING STRUCTURE Type: COMMIND SubType: COMM 1040 AUTO CENTER CT Suite: Lot 0 Job Address: Location: APPLICANT SOLIVEN DOMINIC Owner: Remarks: Phone: 6262556821 Inspector: L Total Time: Requested By: NA CD Description Act Comment Entered By: CHRISTINE 11 Ftg/Foundation/Piers AP rcc r/u/on- cff , )L= UUWSd / Associated PCRdCVs Inspection History Date Description Act lnsp Comments 1011 5/2003 12 SteeWBond Beam AP TP STEEL CLMNS (SEE S1 REPORT AmACH) 10/07/2003 11 FtgFoundatiordPiers AP TP LOWER LEVEL (SEE CARD) 10/07/2003 12 SteeWBond Beam AP TP 09/24/2003 11 Ftg/FoundatiordPiers AP TP 4 CAISSON PIERS SEE PLN LOC. 09/24/2003 12 SteeWBond Beam AP TP 4 SOIL & TESTING, INC z K ! (619) 280-4321 U TOLL FREE U z (877) 21 5-4321 K YI FAX I c 0 PHONE -I (619) 280-4717 a VI P.O. Box 600627 San Diego, CA 92160-0627 6280 Riverdale Street San Diego, CA 92120 wwwscst .corn DATE: May 26,2004 Ms. Peggy Kelcher Steller Properties 6030 Avenida Encinas Carlsbad, California 92009 SCS&T Job No.: 9312376 Report No.: 2 Special inspection Agency1 Construction Materials Testing Laboratory Final Report SUBJECT: SATISFACTORY COMPLETION OF WORK REQUIRING: (PLEASE CHECK AS APPLICABLE) [XI SPECIAL INSPECTION CONSTRUCTION MATERIALS TESTING PERMIT NO.: CB 023405 PLAN FILE NO.: N/A PROJECT NAME: Tovota Carlsbad Parkincl Structure PHASE: N/A PROJECT ADDRESS: 1040 Auto Court Center, IxI The special inspection services were provided by: SPECIAL INSPECTION AGENCY: Southern California Soil and Testincl. Inc. ADDRESS: 6280 Riverdale Street, San Dieclo, California 921 20 SPECIAL INSPECTOR’S NAME: (TYPE OR PRINT) See sDecial inspection reDorts dated SeDtember 22.2003 throush April 15,2004. (each special inspector IS required to complete and submit this Final Report form) SPECIAL INSPECTOR’S CERTIFICATION NUMBER: see insDection reDorts EXPIRATION DATE: see insDection reports IxI The construction materials testing were performed by: TESTING LABORATORY: Southern California Soil and Testina. Inc. ADERESS: 6280 Riverdale Street. San Dieclo. California 92120 RESPONSIBLE MANAGING CIVIL ENGINEER .OF THE TESTING LABORATORY: (MR./MS.) Mr. Edward Trasoras Carlsbad, California I -_ -- STATE OF CALIFORNIA REGISTRATION NUMBER: R.C.E. #44233 EXPIRATION DATE: 06/30/05 - COMMENTS: SDecial inspection and/or material testincl of Dost tension concrete, reinforced concrete, reinforced masonrv and field weidincl were Derformed at the above referenced Droiect as detailed in special insDection reDorts dated SeDternber 22, 2003 throuqh April 15, 2004. *The concrete achieved a strenQth of 3,000 psi. 4,000 Dsi and 5,000 psi or Qreater. The ctrout achieved a - strenclth of 2,000 Dsi or Qreater. The mortar achieved a strenath of 2,500 psi or ctreater. The masonry prism achieved a strenclth of 1.500 psi or clreater. I declare under penalty of perjury that, to the best of my knowledge, all the work requiring special inspection and/or material sampling and testing for the structure constructed under th amended by The City of Carlsbad. Executed on this mit is in conformance with the approved plans and construction docu- ble workmanship provisions of the California Building Code as 2 I CAS L E) NOTE. Per our option this form has been store d reproduced OII our company’s letterhead cc: (2) Addressee ! (1 j City of Carlsbad City of Carlsbad Bldg Inspection Request For: 1 0/15/2003 Permit# CB023405 Inspector Assignment: TP Title: TOYOTA CARLSBAD Description: 91,827 SF PARKING STRUCTURE Type: COMMIND Sub Type: COMM Job Address: Location: 1040 AUTO CENTER CT Suite: Lot 0 APPLICANT SOLIVEN DOMINIC Owner: Remarks: - Total Time: Phone: Inspector: R Requested By: TOYOTA CARLSBAD Entered By: CHRISTINE CD Description Act Comment 12 SteeVBond Beam Associated PCRsKVs InsDection History Date Description Act lnsp Comments 10/07/2003 11 FtglFoundationPiers AP TP LOWER LEVEL (SEE CARD) 10/07/2003 12 SteeUBond Beam AP TP 09/24/2003 11 Ftg/Foundation/Piers AP TP 4 CAISSON PIERS SEE PLN LOC. 09/24/2003 12 SteeWBond Beam AP TP EsGil CorDoration In Partnership with Government for Building Safety DATE: FEB. 4,2003 JURISDICTION : CARLSBAD PLAN CHECK NO.: 02-3405 SET: I1 PROJECT ADDRESS: 1040 AUTO CENTER COURT PROJECT NAME: TOYOTA CARLSBAD (PARKING STRUCTURE) 0 FILE 0 w 0 0 0 o w 0 w The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction’s building codes. The plans transmitted herewith will substantially comply with the jurisdiction’s building codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at Esgil Corporation until corrected plans are submitted for recheck. The applicant‘s copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant’s copy of the check list has been sent to: DOMINIC SOLIVEN 2 FARADAY, # 101, IRVINE, CA 92618 Esgil Corporation staff did not advise the applicant that the plan check has been completed. Esgil Corporation staff did advise the applicant that the plan check has been completed. Person contacted: DOMINIC Date contacted: (by: 1 Fax #: -801 1 REMARKS: Please submit the name & information of the Speci &&&eam to the city for review and approval prior to the permit being issued. Telephone #: 949-595-8004 Mail Telephone Fax In Person By: AliSadre Enclosures: Esgil Corporation [7 GA 0 MB 0 EJ [7 PC 1 /30 tmsrntl.dot 9320 Chesapeake Drive, Suite 208 + San Diego, California 92123 + (858) 560-1468 + Fax (858) 560-1576 Em Corporation In Partnership with Government for Building Safety DATE: NOV. 21,2002 JURISDICTION: CARLSBAD PLAN CHECK NO.: 02-3405 g;*Sy 0 PLAN REVIEWER a FILE SET: I PROJECT ADDRESS: 1040 AUTO CENTER COURT PROJECT NAME: TOYOTA CARLSBAD (PARKING STRUCTURE) 0 0 0 w 0 w 17 IXI 0 The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction’s building codes. The plans transmitted herewith will substantially comply with the jurisdiction’s building codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at Esgil Corporation until corrected plans are submitted for recheck. The applicant’s copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant’s copy of the check list has been sent to: DOMINIC SOLIVEN 2 FARADAY, # 101, IRVINE, CA 92618 Esgil Corporation staff did not advise the applicant that the plan check has been completed. Esgil Corporation staff did advise the applicant that the plan check has been completed. Person contacted: DOMINIC Date contacted: &&-Ot (by:& ) REMARKS: Telephone #: 949-595-8004 Fax #: -801 1 Mail Telephone J Fax/ In Person By: AliSadre Enclosures: 0 GA 0 MB EJ PC 11/13 Esgil Corporation tmsmtl.dot 9320 Chesapeake Drive, Suite 208 San Diego, California 92123 + (858) 560-1468 + Fax (858) 560-1576 CARLSBAD 02-3405 NOV. 21,2002 PLAN REVIEW CORRECTION LIST COMMERCIAL PLAN CHECK NO.: 02-3405 OCCUPANCY: S4 USE: PARKING STRUCTURE TYPE OF CONSTRUCTION: 11-N JURIS D I CTI 0 N: CARLSBAD ll ACTUAL AREA: 9 1,827 ALLOWABLE FLOOR AREA: 30,00O/LEVEL STORIES: 3-LEVEL + BASEMENT HEIGHT: 26' SPRINKLERS?: NO OCCUPANT LOAD: 460 II REMARKS: 8-TIES PERMITTED DATE PLANS RECEIVED BY JURISDICTION: 11/12 ESGIL CORPORATION: 11/13 DATE INITIAL PLAN REVIEW COMPLETED: NOVEMBER 21,2002 DATE PLANS RECEIVED BY PLAN REVIEWER: Ali Sadre FOREWORD (PLEASE READ): This plan review is limited to the technical requirements contained in the Uniform Building Code, Uniform Plumbing Code, Uniform Mechanical Code, National Electrical Code and state laws regulating energy conservation, noise attenuation and access for the disabled. This plan review is based on regulations enforced by the Building Department. You may have other corrections based on laws and ordinances enforced by the Planning Department, Engineering Department, Fire Department or other departments. Clearance from those departments may be required prior to the issuance of a building permit. Code sections cited are based on the 1997 UBC. The following items listed need clarification, modification or change. All items must be satisfied before the plans will be in conformance with the cited codes and regulations. Per Sec. 106.4.3, 1997 Uniform Building Code, the approval of the plans does not permit the violation of any state, county or city law. To speed up the recheck process, please note on this list (or a COPV) where each correction item has been addressed, Le., plan sheet number, specification section, etc. Be sure to enclose the marked up list when vou submit the revised plans. CARLSBAD 02-3405 NOV. 21,2002 GENERAL 1. 2. 3. 4. 0 5. - 6. Please submit three revised, signed sets of prints, to: The Jurisdiction Building Department. 0 PLANS Any portion of the project shown on the site plan that is not included with the building permit application filed should be clearly identified as "not included" on the site plan or Title Sheet. Otherwise, provide construction details & references on plans for site walls, gate, fences, etc. Section 106.3.3. Include the following code information for the proposed building on Title Sheet: + Sarinklers: Yes or No + Stories: 3-Levels + Basement (Planning Department Regulation is different from Building Code). Also revise the notes on sheet AI .01 accordingly. + Permitted Floor Area: 30,000 s.f. per level. On the cover sheet of the plans, specify any items requiring special inspection, in a format similar to that shown below. REQUIRED SPECIAL INSPECTIONS In addition to the regular inspections, the following checked items will also require Special Inspection in accordance with Sec. 1701 of the Uniform Building Code. Alternatively, make a reference to Sheet SD-1 on cover sheet of plans. ITEM REMARKS: SOILS COMPLIANCE PRIOR TO FOUNDATION INSPECTION STRUCTURAL CONCRETE OVER 2500 PSI PRESTRESSEDSTEEL FIELD WELDING EXPANSION/EPOXY ANCHORS STRUCTURAL MASONRY HIGH-STRENGTH BOLTS When special inspection is required, the architect or engineer of record shall prepare an inspection program which shall be submitted to the building official for approval prior to issuance of the building permit. Please complete the attached form. Section 106.3.5. On the cover sheet of the plans, specify any items that will have a deferred submittal (stairs, etc.). Additionally, provide the following note on the plans, per Sec. 106.3.4.2: "Submittal documents for deferred items shall be submitted to the architect or engineer of record, who shall review them and foward them to the building official with a notation indicating that the deferred documents have been reviewed and that they have been found to be in general conformance with the design of the building. The deferred items shall NOT be installed until their design and submittal documents have been approved by the building official." CARLSBAD 02-3405 NOV. 21,2002 7. 8. 9. IO. 11. 12. 13. 14. 15. 16. 17. Provide a statement on the Title Sheet of the plans that this project shall comply with the 2001 edition of the California Building Code (Title 24), which adopts the 1997 UBC, 2000 UMC, 2000 UPC and the 1999 NEC. 0 SITEPLAN Provide a fully dimensioned site plan (A2.01) drawn to scale. Sec. 106.3.3. Include the following: a) Property lines/easernents. b) Streetdalleys . c) Existing and proposed buildings and structures. Clearly dimension building setbacks from property lines, street centerlines, and from all adjacent buildings and structures on the site plan. Provide a statement on the site plan stating: "All property lines, easements and buildings, both existing and proposed, are shown on this site plan." Show HC spaces required and that provided. The ratio of covered to uncovered parking spaces and HC parking spaces should be the same. Justify having no HC accessible parking spaces for employees. See attached HC list as well. Any appeals will need to be approved by the building official. 0 LOCATION ON PROPERTY When a new building is to be erected on the same property as an existing building, the location of the assumed property line with relation to the existing building shall be such that the exterior wall and opening protection of the existing building meets the criteria of Table 5-A and Chapter 6. Show this on site plans. Section 503. Show the required rating of the protected openings on site and floor plans. Also justify unprotected openings as shown on plans by grid line D. See next two items as well. The exterior wall shall have protected openings (3/4 hour) when closer than 10 feet to a property line or an assumed property line. Section 503 & Table 5-A. The exterior walls shall have no openings when closer than 5 feet to a property line or an assumed property line. Openings include windows, doors, scuppers, vents, etc. Section 503. Joints installed in walls required to have protected openings shall be protected by an approved fire-resistive joint system. Provide the UL, or equal, approval number for all the rated joints on plans. Section 706.1. CARLSBAD 02-3405 NOV. 21,2002 18. 19. 20. 21. 22. 23. 24. 25. Please justify the opening to qualify for an open garage. See the next item too. Provide calculations on plans to show how you comply with all the relevant provisions of Section 31 1.9.2.2. Coordinate revised floor plans with elevation plans as well as calculations on AO.O1. If the assumed PL is located against the existing service bay building show the floor plans of this building and indicate that the Structural elements exposed in walls required to be fire-resistive construction due to location on property must have the same fire-resistive rated protection as the wall, or as required for the structural frame for the type of construction, whichever is greater. Table 6-A, footnote 1, and Section 601.4. FIRE-RESISTIVE CONSTRUCTION Provide details of the fire-resistive construction as required on plans. Include wall assemblies, column and beam assemblies, etc. Table 6-A. Detail and reference I.C.B.O. number or other approval numbers for all rated assemblies on plans. Provisions in Chapter 7 require special treatment of penetrations at fire-resistive assemblies. Provide typical details on the plans showing how the fire-resistive integrity will be maintained at the following conditions (Include the manufacturers' names and ICBO numbers (or equal) for any sealant): THROUGH-PENETRATIONS (through the entire assembly): Fire-resistive walls shall have penetrations protected with through-penetration fire stops having an F-rating, T-rating or complying with UBC Standard 7-1, depending on their locations, sizes and combustibility. Fire resistive floorkeiling assemblies shall have penetrations protected with through-penetration fire stops having and F-rating, T-rating or complying with UBC Standard 7-1, depending on their sizes, combustibility and whether the penetrations are in walls above. MEMBRANE-PENETRATIONS (through only one side of an assembly): Fire-resistive walls shall have penetrations protected with membrane-penetration tire stops having an F-rating or complying with UBC Standard 7-1, depending on their size and combustibility. Limited steel electrical outlet boxes (not exceeding 16 sq. in., nor more than 100 sq. in. for any 100 sq. ft. of wall) require no protection. Fire-resistive floors or ceilings having penetrations shall comply with Section 71 0. NOTE: The plans should indicate the various fire-stop ratings required for all penetrations. Clearly specify minimum thickness of walls and slabs to provide the fire-resistive rating per Table 7-9 and C. Clearly specify minimum cover for reinforcing at the fire-rated columns & beams. CARLSBAD 02-3405 NOV. 21,2002 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. Clearly specify min. cover for prestressed concrete tendons per Section 704.3.3. Provide a note on plans stating: "Penetrations of rated assemblies shall be protected as required in UBC Sections 709 and 710." See electrical room. Detail column fire protection and specify column impact protection in garage areas per Section 704.2.5. As a minimum, show a 22 ga. steel jacket around each column (or angles) to a height of 3' above the ground for impact protection. This applies to the corner columns in the path of traffic. INTERIOR WALL AND CEILING FINISHES Provide a note on the plans or on the finish schedule, stating, "Wall and ceiling materials shall not exceed the flame spread classifications in UBC Table 8-B." Show 8'-2" clear height to the bottom of beams, etc. for HC access on plans. EXITS Please dimension the cross hatched area outside the stairs in each case (for all levels) to designate the pathways to and from exits not to be obstructed by parked cars. Also indicate the clear width on plans for each pathway (that provided versus what is required based on occupant load calculations). Regardless of occupant load, a floor or landing not more than I" (%" if disabled access is required) below the threshold is required on each side of an exit door. Section 1003.3.1.6. EXITSIGNS Exit signs are required whenever two exits are required. Show all required exit sign locations. Section 1003.2.8.2. If exit signs are required, provide the following notes on the plans, per Section 1003.2.8.2: a) b) Exit signs shall be located as necessary to clearly indicate the direction of egress travel. Exit signs shall be readily visible from any direction of approach. Show two sources of power for the lamps at exit signs. Section 1003.2.8.5. Show separate sources of power for exit illumination. (Occupant load exceeds 99). Section 1003.2.9.2. 0 TITLE 24 DISABLED ACCESS Provide notes and details on the plans to show compliance with the enclosed Disabled Access Review List. CARLSBAD 02-3405 NOV. 21,2002 0 MISCELLANEOUS ITEMS 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48 : 49. 50. 51. 52. Please specify the base plate anchorage information on plans for the light poles. FOUNDATION/ STRUCTURAL Provide a letter from the soils engineer confirming that the foundation plan and specifications have been reviewed and that it has been determined that the recommendations in the soil report are properly incorporated into the plans. Specify size, ICBO number and manufacturer of power driven pins, expansion anchors, drill in or epoxy anchors. Show end distance and spacing. Section 106.3.3. Please note where FIO is referenced on foundation plans per schedule on s2.01. On detail 11/S3.01, 7 bars at 12” O.C. plus clearances do not add up to 6’. The # 7 bars in the footing of detail 12E3.01 do not match those in the wall- foundation, per sketch 2K3.01. Please cross reference detail 9 on sketch 3E3.01, on the left boundary elements as well. Please show details of all lintel elements per sketch 5/S6.01. E.g., provide a schedule with such information related to different size openings. Please specify the ICBO approval number for the steel decking on 4K6.01. Please make references on the ramp to slab on grade and show its transition to raised slab. Show all the mild reinforcement on plans near all the diaphragm openings, such as stairs, ramps, etc. Similarly, for chords, collectors and boundary members. Prestressing strands are not permitted for such uses. Section 1921.6.12. Please show all drag bars with size and number on framing plans. Section 1633.2.6. See the next item as well. Please show chord bars in longitudinal direction on grid line A, Sheet S2.02. The extension of chord bars as shown on grid line B (terminated at grid point B- 7) is not acceptable. Show the extension of footing on grid line 14, beyond grid point C-14 on S2.01. CARLSBAD 02-3405 NOV. 21,2002 53. Show drag elements, splices and their connections are designed for the load combination per Section 1612.4. Section 1633.2.6. ADDITIONAL 54. Please see attached for electrical & HC items. The plumbing plans are OK as submitted. To speed up the review process, note on this list (or a copy) where each correction item has been addressed, Le., plan sheet, note or detail number, calculation page, etc. If you have any questions regarding these plan review items, please contact All Sadre at 858/560-I468 with Esgil Corporation. Thank you. CARLSBAD 02-3405 NOV. 21,2002 + ELECTRICAL PLAN REVIEW + 1999NEC + PLAN REVIEWER: Morteza Beheshti 1. Show the available fault current (Isc) from the serving utility co. and at the equipment where Isc exceeds 10,000 amps. 2. Show or note on the plans the method used to limit fault currents to 10,000 amps on branch circuits. 3. Indicate the total load demand on the existing service. 4. Specify the wiring method you intend to use for this project. Indicate the type of conduit to be used when exposed or buried underground, etc. (Le., EMT, Metal Flex, NMC etc.). NEC 110-3(a) and (b). 5. Please provide the branch circuit breaker for the inverter system in panel “LP” schedule. 6. Each sheet of the electrical plans must be signed by the person responsible for their preparation. Business and Professions Code. 7. Provide a disconnect for each sign. NEC 600-6. 8. Provide GFI protected receptacle(s) within 25 feet of HVAC equipment. NEC 210-8(b)2 & 210-63. 9. Please change all references the NEC code cycle date to 1999. Also, change all other code article references to the correct code section accordingly. IO. If utilizing a series-rated system, note on plans: ”Overcurrent device enclosures will be identified as series-rated and labeled in accordance with NEC 110-22” and I’ The overcurrent devices shall be AIC rated per manufacturers. labeling of the electrical equipment”. Note: If you have any questions regarding this electrical plan review list please contact Morteza Beheshti at (858) 560-1468. To speed the review process, note on this list (or a copy) where the corrected items have been addressed on the plans. CARLSBAD 02-3405 NOV. 21,2002 0 DISABLED ACCESS REVIEW LIST DEPARTMENT OF STATE ARCHITECT -TITLE 24 The following disabled access items are taken from the 2001 edition of California Building Code, Title 24. Per Section 101.17.1 1, all publicly and privately funded public accommodations and commercial facilities shall be accessible to persons with disabilities. NOTE: All Figures and Tables referenced in this checklist are printed in the California Building Code, Title 24. Please reflect the following items on plans. Le., imprint these items on plans and revise the plans accordingly. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. SITE PLAN REQUIREMENTS Clearly show that the site development and grading are designed to provide access to all entrances and exterior ground floor exits, as well as access to normal paths of travel, per Section 1127B.1. Where necessary to provide access, shall incorporate pedestrian ramps, curb ramps, stairways and handrails, etc. When more than one building or facility is located on a site, accessible routes of travel shall be provided between buildings and accessible site facilities, per Section 1 127B.1. The accessible route of travel shall be the most practical direct route between accessible building entrances, accessible site facilities, and the accessible entrance to the site. Section 1127B.1. Show, or note that at every primary public entrance, and at every major function area along, or leading to, an accessible route of travel, there is to be a sign displaying the international symbol of accessibility. Signs are required to indicate the direction to accessible building entrances and facilities, per Sections 11 17B.5.7 and 1127B.3. Show that an accessible route of travel is to be provided to all portions of the building, to accessible building entrances and between the buildinn and the public way, per Section 11 148.1.2. Where more than one route of travel is provided, all routes shall be accessible. Section 11 14B.1.2. 0 ACCESSIBLE PARKING Each lot or parking structure where parking is provided for the public, as clients, guests or employees, shall provide accessible parking as required by Section 1129B. Note that the maximum slope of the parking surface at the accessible space, in any direction, is ?4’/ft. (2%), per Section 1129B.4.4. The maximum slope at the passenger loading zone is to be 2%. Also show 8’2” clear height. 0 CURBRAMPS Curb ramps shall be constructed where a pedestrian way crosses a curb or at each comer of a street intersection, per Section 11278.5.1. Plans shall show that curb ramps are 248 wide with a slope of 1:12 (8.33%), per Sections 1127B.5.2 and 11278.5.3. The lower end of each curb ramp shall have a %” lip beveled 45O, per Section 1127B.5.5. Show that the landing at the top of the curb shall be level and 248” depth for the entire width of the curb ramp. Section 1127B.5.4. The slope of the fanned or flared sides of curb ramps shall not exceed l:lO, per Section 11278.5.4. The words ”NO PARKING shall be painted on the ground within each 8’ loading and unloading access aisle (in white letters no less than 12” high and located so that it is visible to traffic enforcement officials). Section 11 298.4.2. Ramps shall not encroach into any accessible parking space or the adjacent access aisle. Section 1129B.4.3. Show or note that the surface of all curb ramps and the flared sides are to be slip resistant, and contrasting from the adjacent sidewalk finish, per Section 11278.5.6. CARLSBAD 02-3405 NOV. 21,2002 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. Provide details or note on the plans that all curb ramps have a grooved border 12" wide at the level surface of the sidewalk along the top and each side approximately 3/411 o.c., per Section 11278.57. WALKS AND SIDEWALKS If any proposed walks slope >1:20 (5%) they must comply with ramp requirements, per Section 1 133B.5.1. Walks along an accessible route of travel are required to be 248 minimum in width and have slip resistant surfaces, per Section 11338.7. The maximum permitted cross slope shall be %,, per ft., per Section 11338.7.1.3. Show or note that any abrupt level changes will be %,, along any accessible route of travel. When changes do occur, they shall be beveled with a slope of 1 :2. Level changes of %" may be vertical. NOTE: If level changes >%l, they must comply with the requirements of curb ramps. Show that a 60" x 60 level area is provided at areas where a door swings toward the walk in the accessible route of travel, per Section 11 338.75 Show that the walk extends 224" beyond the strike edge of the strike edge of any door(or gate) that swings toward the walk. Show or note that 280" headroom is to be provided from all walkway surfaces to obstructions, per Section 1 1338.8.2. Plans indicate that more than one route of travel is to be provided. Revise plans to show that all routes are to be made accessible, per Section 1127B.1. 0 PEDESTRIAN RAMPS (if none, state so on plans & skip to the next section) Show that any path of travel with a slope 21:20 (5%) complies with pedestrian ramp requirements, per Section 1 1338.5. The allowable slope for an accessible ramp is 1 :12 (8.33%), per Section 1 1338.5.3. Revise plans to show the least possible slope is being provided for all ramps, per Section 1 1336.5.3.1. The allowable cross slope at pedestrian ramps shall be %,, per ft (2%), per Section 1133B.5.3.1. Show or note that ramp surfaces will be slip resistant. Ramps shall have a minimum width of 48 inches, per Section 1133852.2. Where a ramp serves a building having an occupant load of 300 or more, the minimum clear width shall be 60 inches. Show required landings at the top and bottom of ramps, per Section 11338.5.4. a) b) Show that the required intermediate landing is provided, per Section 11338.5.4 as follows: a) 260" long where the elevation change is 230"; 272" long at direction changes 230O. The bottom landing shall be 272 in the direction of travel. The top landing shall be a 260" x 60. Show the minimum required depth of landing where a door swings over the top landing. The minimum depth of the landing is required to be equal to the door width, plus 42", per Section 1003.3.4.4. Plans shall show that the strike edge distances at doors comply with the requirements of Section 11338.5.4.4, as follows: a) 224" at exterior ramps; 218 at interior ramps. Show handrails at each side of ramp(s) which are shown to be 21:20 (5%) in slope, per Section 11338.55 Exception: At exterior door landings, handrails are not required on ramps with a rise less than 6" (or a length less than 72). CARLSBAD 02-3405 NOV. 21,2002 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Show that handrails are 21%" but 1%" in any cross sectional dimension. Additionally, show that the handrails are placed a 21%" from any wall, per Section 11338.55 Show or note that handrails meet the following requirements, per Section 11338.5.5: a) b) c) Where the ramp surface is not bounded by a wall or fence and the ramp exceeds 10' in length, the ramp shall comply with one of the following requirements, per Section 1 1338.5.6: a) A guide curb a minimum of 2 in height shall be provided at each side of the ramp; or b) A wheel guide rail shall be provided, centered 3" f 1" above the surface of the ramp. Are continuous. Ends are to be returned. Are to be located 234" but 38 above the ramp surface. Extend 212" beyond both the top and bottom landings. 0 DOORS (for electricallelevator equipment room doors) Show that every required passage door has 232" clear width, per Section 1133B.2. Show, or note, that there is a level floor or landing on each side of all doors. The floor or landing is to be %" lower than the doorway threshold, per Section 11 33.2.4.1. Show or note that all hand-activated door opening hardware meets the following requirements, per Section 1 1338.2.5.1 : a) Latching, or locking, doors in a path of travel are operated with a single effort by lever type hardware, by panic bars, push-pull activating bars, or other hardware designed to provide passage without requiring the ability to grasp the opening hardware. b) Is to be centered 230 but 44" above floor. Show or note that the maximum effort to operate doors shall not exceed 84 pounds for exterior doors and 5 pounds for interior doors, with such pull or push effort being applied at right angles to hinged doors and at the center plane of sliding or folding doors. Section 11338.25 Show or note that the lower lo" of all doors comply with Section 1 1338.2.6, as follows: a) b) To be smooth and uninterrupted, to allow the door to be opened by a wheelchair footrest, without creating a trap or hazardous condition. Narrow frame doors may use a 10" high smooth panel on the push side of the door. 0 ELEVATORS Show on the plans to show that the inside of the elevator car complies with the following, per Section 11 168.1.8. The clear distances between walls, or between the walls and the door, excluding return panels, is: a) b) c) Show that a handrail is provided on one wall of the car, preferably the rear, per Section 11 16B.11. The rails shall be smooth and the inside surface 11%" clear of the walls at a height of 32"fl" from the floor. Show, or note, that call operation buttons are to be =42" above the floor, per Section 11 16B.1 .lo. Special access lifts may be provided as part of an accessible route onJ for the following conditions, per Section 11 16B.2: a) b) 280" by 54" (at center opening doors). 268 by 54" (at side-slide opening doors). The distance from walls to return panel is 251". To provide an accessible route to a performing area in an assembly occupancy. To comply with the wheelchair viewing position line-of-sight and dispersion requirements of Section 1104B.3.5. CARLSBAD 02-3405 NOV. 21,2002 c) To provide access to incidental occupiable spaces and rooms which are not open to the general public and which house no more than 5 person, such as control rooms and projection booths. To provide access where existing site constraints or other constraints make use of a ramp or an elevator infeasible. For additions and alterations, lifts are not limited to the four conditions listed above. d) e) STAIRWAYS AND HANDRAILS 46. Show or note that interior stair treads are marked at the upper approach and the lower tread of each stair, by a strip of clearly contrasting color, per Section 1133B.4.4, as follows: a) b) At least 2” wide. The strip shall be as slip resistant as the other treads of the stair. Placed parallel to and not more than 1” from the nose of the step or landing. 0 SIGNAGE 47. Per Section 1003.2.8.6.1, tactile exit signs shall be required at the following locations: a) Wherever basic UBC provisions require exit signs from an area. The tactile exit sign shall have the words, ”EXIT ROUTE.” Each grade-level exit door. The tactile exit sign shall have the word, “EXIT.” Each exit door that leads directly to a grade-level exterior exit by means of a stairway or ramp. The tactile exit sign shall have the following words as appropriate: i) “EXIT STAIR DOWN.” ii) ”EXIT RAMP DOWN.” iii) “EXIT STAIR UP.” iv) “EXIT RAMP UP.” Each exit door that leads directly to a grade-level exterior exit by means of an exit enclosure or an exit passageway. The tactile exit sign shall have the words, “EXIT ROUTE.” Each exit door through a horizontal exit. The tactile exit sign shall have the words, “TO EXIT.” b) c) d) e) 48. Tactile stair level identification signs (complying with Section 1117B.5.1) shall be located at each floor level landing in all enclosed stairways in buildings two or more stories in height to identify the floor level. At the exit discharge level, the sign shall include a raised five-pointed star located to the left of the identifyng floor level. Section 1003.3..3.13.1. Where permanent identification is provided for spaces, raised letters shall also be provided and shall be accompanied by Braille. Section 1 1 17B.5. 49. 50. - Provide a note on the plans stating that the signage requirements of Section 1 1 17B.5 will be satisfied. CARLSBAD 02-3405 NOV. 21,2002 - City of Carlsbad BUILDING DEPARTMENT NOTICE OF REOUIREMENT FOR SPECIAL INSPECTION Do Not Remove From Plans Plan Check No. 02-3405 Job Address or Legal Description 1040 AUTO CENTER COURT Owner Address You are hereby notified that in addition to the inspection of construction provided by the Building Department, an approved Registered Special Inspector is required to provide continuous inspection during the performance of the phases of construction indicated on the reverse side of this sheet. The Registered Special Inspector shall be approved by the City of Carlsbad Building Department prior to the issuance of the building permit. Special Inspectors having a current certification from the City of San Diego, Los Angeles, or ICBO are approved as Special Inspectors for the type of construction for which they are certified. The inspections by a Special Inspector do not change the requirements for inspections by personnel of the City of Carlsbad building department. The inspections by a Special Inspector are in addition to the inspections normally required by the County Building Code. The Special Inspector is not authorized to inspect and approve any work other than that for which he/she is specifically assigned to inspect. The Special Inspector is not authorized to accept alternate materials, structural changes, or any requests for plan changes. The Special Inspector is required to submit written reports to the City of Carlsbad building department of all work that he/she inspected and approved. The final inspection approval will not be given until all Special Inspection reports have been received and approved by the City of Carlsbad building department. Please submit the names of the inspectors who will perform the special inspections on each of the items indicated on the reverse side of this sheet. (over) CARLSBAD 02-3405 NOV. 21,2002 0 SPECIAL INSPECTION PROGRAM ADDRESS OR LEGAL DESCRIPTION: PLAN CHECK NUMBER: OWNER'S NAME: I, as the owner, or agent of the owner (contractors may not employ the special inspector), certify that I, or the architectlengineer of record, will be responsible for employing the special inspector(s) as required by Uniform Building Code (UBC) Section 1701 .I for the construction project located at the site listed above. UBC Section 106.3.5. Signed I, as the engineedarchitect of record, certify that I have prepared the following special inspection program as required by UBC Section 106.3.5 for the construction project located at the site listed above. Signed I. List of work requiring special inspection: Soils Compliance Prior to Foundation Inspection IXI Structural Concrete Over 2500 PSI Field Welding High Strength Bolting Prestressed Concrete IX1 ExpansionIEpoxy Anchors Structural Masonry Sprayed-On Fireproofing Designer Specified Other 2. Name(s) of individual@) or firm@) responsible for the special inspections listed above: B. C. 3. Duties of the special inspectors for the work listed above: A. B. Special inspectors shall check in with the City and present their credentials for approval prior to beginning work on the job site. CARLSBAD 02-3405 NOV. 21,2002 VALUATION AND PLAN CHECK FEE JURISDICTION: CARLSBAD PLAN CHECK NO.: 02-3405 PREPARED BY: Ali Sadre BUILDING ADDRESS: 1040 AUTO CENTER COURT DATE: NOV. 21,2002 BUILDING OCCUPANCY: S4 TYPE OF CONSTRUCTION: 11-N 1994 UBC Building Permit Fee j v Type of Review: El Complete Review 0 Repetitive FW IEl Repeats 0 Structural Only 0 Other Hourly -1 Hour * Esgil Plan Review Fee 0 I $3,938.75 I Comments: Sheet 1 of 1 rnacvalue.doc - City of Carlsbad BUILDING PLANCHECK CHECKLIST DATE: +i43 PLANCHECK NO.: CB a 434&5 BUILDING ADDRESS: /@/o /& Tbw ct: PROJECT DESCRIPTION: Vak;W s.3- CUL-kAW ASSESSOR'S PARCEL NUMBER: 2 I I -% 01 EST. VALUE: wr - OW4! ENGINEERING DEPARTMENT APPROVAL The item you have submitted for review has been approved. The approval is based on plans, information and/or specifications provided in your submittal; therefore any changes to these items after this date, including field modifications, must be reviewed by this office to insure continued conformance with applicable codes. Please review carefully all comments attached, as failure to comply with instructions in this report can result in suspension of permit to build. A Right-of-way permit is required prior to 'construction of the following improvements: DENIAL attached report of deficiencies t::f?ed i.1 ake necessary corrections to plans or specifications for compliance with applicable codes and standards. Submit corrected plans and/or specifications to this office for review. By: Date: 4 $3 Q3 FOR OFFICIAL USE ONLY /- ENGINEERING AUTHORIZATION TO ISSUE BUILDING PERMIT ATTACHMENTS Dedication Application Dedication Checklist Improvement Application Improvement Checklist Future Improvement Agreement Grading Permit Application Grading Submittal Checklist Right-of-way Permit Application Right-of-way Permit Submittal Checklist and Information Sheet Sewer Fee Information Sheet ENGINEERING DEPT. CONTACT PERSON Name: TANIYA BARROWS City of Carlsbad Address: 1635 Faraday Avenue, Carlsbad, CA 92008 Phone: (760) 602-2773 CFD INFORMATION Parcel Map No: Lots: Recordation: Carlsbad Tract: 1635 Faraday Avenue - Carlsbad, CA 92008-731 4 - (760) 602-2720 - FAX (760) 602-8562 @ Rev. 7l141UO 1 FWJILDING PLANCHECK CKLST FORM.& .- BUILDING PLANCHECK CHECKLIST SITEPLAN - 1. Provide a fully dimensioned site plan drawn to scale. Show: A. NorthArrow B. Existing & Proposed Structures G. Driveway widths C. Existing Street Improvements H. Existing or proposed sewer lateral D. Property Lines I. Existing or proposed water service E. Easements J. Existing or proposed irrigation service 2. Show on site plan: CpddA. Drainage Patterns F. Right-of-way Width & Adjacent Streets & I. Building pad surface drainage must maintain a minimum slope of one percent towards an adjoining street or an approved drainage course. 2. ADD THE FOLLOWING NOTE: “Finish grade will provide a minimum positive drainage of 2% to swale 5’ away from building.” B. Existing & Proposed Slopes and Topography C. Size, type, location, alignment of existing or proposed sewer and water service (s) dwelling units and apartment complexes are an exception. D. Sewer and water laterals should not be located within proposed driveways, per standards. that serves the project. Each unit requires a separate service, however, second 3. Include on title sheet: A. Site address B. Assessor’s Parcel Number C. Legal Description For commercial/industriaI buildings and tenant improvement projects, include: total building square footage with the square footage for each different use, existing sewer permits showing square footage of different uses (manufacturing, warehouse, office, etc.) previously approved. EXISTING PERMIT NUMBER DESCRIPTION F:\BUILDING PLANCHEW WLST FORM.doc 2 Rev. 7/1m .’ ~ BUILDING PLANCHECK CHECKLIST 5= AA SCRETIONARY APPROVAL COMPLIANCE @ 4a. Project do 0 0 0 4b. All conditions are in compliance. Date: DEDICATION REQUIREMENTS 5. Dedication for all street Rights-of-way adjacent to the building site and any storm drain or utility easements on the building site is required for all new buildings and for remodels with a value at or exceeding $ 15,000 , pursuant to Carlsbad Municipal Code Section 18.40.030. Dedication required as follows: 0 0 0 Dedication required. Please have a registered Civil Engineer or Land Surveyor prepare the appropriate legal description together with an 8 %” x 11” plat map and submit with a title report. All easement documents must be approved and signed by owner(s) prior to issuance of Building Permit. Attached please find an application form and submittal checklist for the dedication process. Submit the completed application form with the required checklist items and fees to the Engineering Department in person. Applications will not be accept by mail or fax. Dedication completed by: Date: IMPROVEMENT REQUIREMENTS 6a. All needed public improvements upon and adjacent to the building site must be constructed at time of building construction whenever the value of the construction exceeds $ 75,000 , pursuant to Carlsbad Municipal Code Section 18.40.040. fl@i Public improvements required as follows: Attached please find an application form and submittal checklist for the public improvement requirements. A registered Civil Engineer must prepare the appropriate improvement plans and submit them together with the requirements on the attached checklist to the Engineering Department through a separate plan check process. The completed application form and the requirements on the 3 Rev. 7HUm BUILDING PLANCHECK CHECKLIST 1ST 2ND 3RD checklist must be submitted in person. Applications by mail or fax are not accepted. Improvement plans must be approved, appropriate securities posted and fees paid prior to issuance of building permit. Improvement Plans signed by: Date: . 0 0 0 6b. Construction of the public improvements may be deferred pursuant to Carlsbad Municipal Code Section 18.40. Please submit a recent property title report or current grant deed on the property and processing fee of $310 so we may prepare the necessary Neighborhood Improvement Agreement. This agreement must be signed, notarized and approved by the City prior to issuance of a Building permit. Future public improvements required as follows: 0 6c. Enclosed please find your Neighborhood Improvement Agreement. Please return agreement signed and notarized to the Engineering Department. Neighborhood Improvement Agreement completed by: Date: d 0 0 6d. No Public Improvements required. SPECIAL NOTE: Damaqed or defective imrxovements found adiacent to buildincr site must be repaired to the satisfaction of the City Inspector prior to occupancy. GRADING PERMIT REQUIREMENTS The conditions that invoke the need for a grading permit are found in Section 11.06.030 of the Municipal Code. 7a. Inadequate information available on Site Plan to make a determination on grading requirements. Include accurate grading quantities (cut, fill import, export). 0 @ d 7b. Grading Permit required. A separate grading plan prepared by a registered Civil Engineer must be submitted together with the completed application form attached. The Gradinq Permit must be issued and rouqh aradinq amroval obtained prior to issuance of a Buildinq Permit. 0 0 +* ,3 NOTE: Grading Inspector sign off by: if a grading permit is not required.) Date: 7c. Graded Pad Certification required. (Note: Pad certification may be required even @d I F:\BUILDING PLANCHECK CKLST FORM.& 4 Rev. 7/1uoO I ST 0 0 0 0 0 0 2ND 0 0 0 cl 3RD 0 0 0 a BUILDING PLANCHECK CHECKLIST 7d .No Grading Permit required. 7e. If grading is not required, write “No Grading” on plot plan. MISCELLANEOUS PERMITS 8. A RIGHT-OF-WAY PERMIT is required to do work in City Right-of-way and/or private work adjacent to the public Right-of-way. Types of work include, but are not limited to: street improvements, tree trimming, driveway construction, tying into public storm drain, sewer and water utilities. Right-of-way permit required for: 9. INDUSTRIAL WASTE PERMIT If your facility is located in the City of Carlsbad sewer service area, you need to contact the Carlsbad Municipal Water District, located at 5950 El Camino Real, Carlsbad, CA 92008. District personnel can provide forms and assistance, and will check to see if your business enterprise is on the EWA Exempt List. You may telephone (760) 438-2722, extension 7153, for assistance. Industrial Waste permit accepted by: Date: IO. NPDES PERMIT Complies with the City’s requirements of the National Pollutant Discharge Elimination System (NPDES) permit. The applicant shall provide best management practices to reduce surface pollutants to an acceptable level prior to discharge to sensitive areas. Plans for such improvements shall be approved by the City Engineer prior to issuance of grading or building permit, whichever occurs first. a* Gd:y lQlans a*d WATER METER REVIEW 12a. Domestic (potable) Use Ensure that the meter proposed by the owner/developer is not oversized. Oversized meters are inaccurate during low-flow conditions. If it is oversized, for the life of the meter, the City will not accurately bill the owner for the water used. 0 All single family dwelling units received “standard” I” service with 5/8” service. 5 Rev. 7114/w BUILDING PLANCHECK CHECKLIST If owner/developer proposes a size other than the “standard”, then owner/developer must provide potable water demand calculations, which include total fixture counts and maximum water demand in gallons per minute (gpm). A typical fixture count and water demand worksheet is attached. Once the gpm is provided, check against the “meter sizing schedule” to verify the anticipated meter size for the unit. Maximum service and meter size is a 2 service with a 2” meter. If a developer is proposing a meter greater than 2, suggest the installation of multiple 2” services as needed to provide the anticipated demand. (manifolds are considered on case by case basis to limit multiple trenching into the street). 0 12b. Irrigation Use (where recycled water is not available) All irrigation meters must be sized via irrigation calculations (in gpm) prior to approval. The developer must provide these calculations. Please follow these guidelines: F?8ULDING PIANCHECKCKLST FORM.doc 1. If the project is a newer development (newer than 1998), check the recent improvement plans and observe if the new irrigation service is reflected on the improvement sheets. If so, at the water meter station, the demand in gpm may be listed there. Irrigation services are listed with a circled “I”, and potable water is typically a circled “W“. The irrigation service should look like: STA 1 +00 Install 2” service and - 1.5: meter (estimated 100 gpm) 17 2. If the improvement plans do not list the irrigation meter and the service/meter will be installed via another instrument such as the building plans or grading plans (w/ a right of way permit of course), then the applicant must provide irrigation calculations for estimated worst-case irrigation demand (largest zone with the farthest reach). Typically, Larry Black has already reviewed this if landscape plans have been prepared, but the applicant must provide the calculations to you for your use. Once you have received a good example of irrigation calculations, keep a set for your reference. In general .the calculations will include: Hydraulic grade line 0 Elevation at point of connection (POC) Pressure at POC in pounds per square inch (PSI) Worse case zone (largest, farthest away from valve Total Sprinkler heads listed (with gprn use per head) 0 Include a 10% residual pressure at point of connection 3. In general, all major sloped areas of a subdivision/project are to be irrigated via separate irrigation meters (unless the project is only SFD with no HOA). As long as the project is located within the City recycled water 6 Rev. 7lluoO BUILDING PLANCHECK CHECKLIST 3RD IST 2ND service boundary, the City intends on switching these irrigation services/meters to a new recycled water line in the future. 0 c] 12c. Irrigation Use (where recycled water is available) 1. Recycled water meters are sized the same as the irrigation meter above. 2. If a project fronts a street with recycled water, then they should be connecting to this line to irrigate slopes within the development. For subdivisions, this should have been identified, and implemented on the improvement plans. Installing recycled water meters is a benefit for the applicant since they are exempt from paying the San Diego County Water Capacity fees. However, if they front a street which the recycled water is there, but is not live (sometimes they are charged with potable water until recycled water is available), then the applicant must pay the San Diego Water Capacity Charge. If within three years, the recycled water line is charged with recycled water by CMWD, then the applicant can apply for a refund to the San Diego County Water Authority (SDCWA) for a refund. However, let the applicant know that we cannot guarantee the refund, and they must deal with the SDCWA for this. FWLWNG PLANMCK CKLST FORM.doc 7 Rev. 7HuOO From: Jeremy Riddle To: Taniya Barrows Date: 7/29/03 12:09PM Subject: Re: Toyota of Carlsbad Parking Stucture This project involves the excavation to support a below grade (and mulit level) parking garage. The pad cannot be certified for this structure without the retaining walls being constructed concurrently with the development. In order to prevent the applicant from caught in allcatch 22", please release the building permit for engineering. Let me know if there are further questions related to this. Please send a copy of this email to the building file. Thanks. >>> Taniya Barrows 07/29/03 1 1 :46AM >>> Jeremy, I am in need of direction regarding the building permit for the parking structure at Toyota of Carlsbad (CB 02-3405). Currently I have two outstanding issues I need resolved before engineering can sign off on the building permit. The first is a minor site plan issue that can be taken care of over the counter at the time the permit is pulled, and the second is the Pad Cert. As we discussed, the grading of this site must take place concurrently with the building of the structure. Therefore, I won't be able to get pad certs prior to issuing the building permit. Can you please help direct me as to what I need in order to issue this permit? Thanks, Taniya cc: Don Moore 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 PLANNING COMMISSION RESOLUTION NO. 5395 A RESOLUTION OF THE PLANNING COMMISSION OF THE CITY OF CARLSBAD, CALIFORNIA, APPROVING SITE ALLOW THE ADDITION OF A PARKING STRUCTURE FOR AN EXISTING CAR DEALERSHIP AND SERVICE CENTER ON PROPERTY GENERALLY LOCATED AT 5124 CANNON ROAD IN LOCAL FACILITIES MANAGEMENT ZONE 3. CASE NAME: TOYOTA CARLSBAD PARKING STRUCTURE DEVELOPMENT PLAN AMENDMENT, SDP 95-08(A) TO CASE, NO.: SDP 95-08(A) WHEREAS, Stellar Properties, LLC, “DevelopeiT‘Owner,” has filed a verified application with the City of Carlsbad regarding property described as Lot 1 of Carlsbad Tract No. 87-3, in the City of Carlsbad, County of San Diego, State of California, According to Map thereof No. 12242, filed in the office of the County Recorder of San Diego County, October 28,1988; together with Lot 4 of Carlsbad Tract No. 72-3, in the City of Carlsbad, County of San Diego, State of California, According to Map thereof No. 7492, filed in the office of the County Recorder of San Diego County, November 30,1972 (“the Property”); and WHEREAS, said verified application constitutes a request for a Site Development Plan Amendment as shown on Exhibits “An - “K” dated April 2,2003, on file in the Planning Department, TOYOTA CARLSBAD PARKING STRUCTURE - SDP 95-08(A) as provided by Chapter 21 -06 of the Carlsbad Municipal Code; and WHEREAS, the Planning Commission did, on the 2nd day of April, 2003, hold a duly noticed public hearing as prescribed by law to consider said request; and WHEREAS, at said public hearing, upon hearing and considering all testimony and arguments, if any, of all persons desiring to be heard, said Commission considered all factors relating to the Site Development Plan Amendment. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 WHEREAS, on March 23,1983, the Planning Commission approved PCD-42, as described and conditioned in Planning Commission Resolution No. 2097, and; WHEREAS, on May 1,1996, the Planning Commission approved, SDP 95-08; as described and conditioned in Planning Commission Resolution No. 3928. NOW, THEREFORE, BE IT HEREBY RESOLVED by the Planning Commission of the City of Carlsbad as follows: A) That the foregoing recitations are true and correct. B) That based on the evidence presented at the public hearing, the Planning Commission APPROVES TOYOTA CARLSBAD PARKING STRUCTURE - SDP 95-08(A) based on the following findings and subject to the following conditions: Findings: 1. That the requested use is properly related to the site, surroundings and environmental settings, is consistent with the various elements and objectives of the General Plan, will not be detrimental to existing uses or to uses specifically permitted in the area in which the proposed use is to be located and will not adversely impact the site, surroundings or traffic circulation, in that the proposed parking structure will be designed with a similar architectural style as the existing service building. The site is surrounded by other car dealerships in the area and the addition of the parking structure will provide additional parking for employees and for new and used vehicles and will have no negative impacts on the surrounding uses. 2. That the site for the intended use is adequate in size and shape to accommodate the use, in that the proposed addition is 23,809 square feet in area and the total lot coverage is 19.9%, which is less than the allowable lot coverage of 25% for properties within the Car Country Specific Plan Area. 3. That all yards, setbacks, walls, fences, landscaping and other features necessary to adjust the requested use to existing or permitted future uses in the neighborhood will be provided and maintained, in that the proposed addition is located behind the existing service building, the existing landscaping will be supplemented to screen the parking structure and the proposed structure is consistent with all development standards contained in the Speciffc Plan - SP-l9(C). 4. That the street systems serving the proposed use is adequate to properly handle all trac generated by the proposed use, in that the addition of the parking structure will not impact the street system. a PC RES0 NO. 5395 -2- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 5. That the Planning Director has determined that the project belongs to a class of projects that the State Secretary for Resources has found do not have a significant impact on the environment, and it is therefore categorically exempt fkom the requirement for the preparation of environmental documents pursuant to Section 15332 - in-fill development of the state CEQA Guidelines. In making this determination, the Planning Director has found that the exceptions listed in Section 15300.2 of the state CEQA Guidelines do not apply to this project. 6. The project is consistent with the City-Wide Facilities and Improvements Plan, the Local Facilities Management Plan for Zone 3 and all City public facility policies and ordinances. The project includes elements or has been conditioned to construct or provide funding to ensure that all facilities and improvements regarding: sewer collection and treatment; water; drainage; circulation; fire; schools; parks and other recreational facilities; libraries; government administrative facilities; and open space, related to the project will be installed to serve new development prior to or concurrent with need. 7. The Planning Commission has reviewed each of the exactions imposed on the Developer contained in this resolution, and hereby finds, in this case, that the exactions are imposed to mitigate impacts caused by or reasonably related to the project, and the extent and the degree of the exaction is in rough proportionality to the impact caused by the project. Conditions: Note: 1. 2. 3. 4. Unless otherwise specified herein, all conditions shall be satisfied prior to issuance of building permits. If any of the following conditions fail to occur; or if they are, by their terms, to be implemented and maintained over time, if any of such conditions fail to be so implemented and maintained according to their terms, the City shall have the right to revoke or modify all approvals herein granted, deny or mer condition issuance of all future building permits; deny, revoke or mer condition all certificates of occupancy issued under the authority of approvals herein granted; institute and prosecute litigation to compel their compliance with said conditions or seek damages for their violation. No vested rights are gained by Developer or a successor in interest by the City’s approval of this Site Development Plan Amendment. Staff is authorized and directed to make, or require the Developer to make, all conections and modifications to the Site Development Plan Amendment documents, as necessary to make them internally consistent and in conformity with the final action on the project. Development shall occur substantially as shown on the approved Exhibits. Any proposed development different fiom this approval shall require an amendment to this approval. Developer shall comply with all applicable provisions of federal, state and local laws and regulations in effect at the time of building permit issuance. If any condition for construction of any public improvements or facilities, or the payment of any fees in-lieu thereof, imposed by this approval or imposed by law on this Project are challenged, this approval shall be suspended as provided in Government Code Section PC RES0 NO. 5395 -3- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 5. 6. 7. 8. 9. 10. 11. 12. 66020. If any such condition is determined to be invalid this approval shall be invalid unless the City Council determines that the project without the condition complies with all requirements of law. Developer/Operator shall and does hereby agree to indemnify, protect, defend and hold harmless the City of Carlsbad, its Council members, officers, employees, agents, and representatives, from and against any and all liabilities, losses, damages, demands, claims and costs, including court costs and attorney’s fees incurred by the City arising, directly or indirectly, fiom (a) City’s approval and issuance of this Site Development Plan Amendment, and (b) City’s approval or issuance of any permit or action, whether discretionary or non-discretionary, in connection with the use contemplated herein. This obligation survives until all legal proceedings have been concluded and continues even if the City’s approval is not validated. Developer shall submit to the Planning Department a reproducible 24” x 36,” mylar copy of the Site Plan Amendment reflecting the conditions approved by the final decision making body. Prior to the issuance of a building permit, the Developer shall provide proof to the Director from the Carlsbad Unified School District that this project has satisfied its obligation to provide school facilities. This project shall comply with all conditions and mitigation measures which are required as part of the Zone 3 Local Facilities Management Plan and any amendments made to that Plan prior to the issuance of building permits. Prior to issuance of building permit, Developer shall submit to the City a Notice of Restriction to be filed in the office of the County Recorder, subject to the satisfaction of the Planning Director, notifjhg all interested parties and successors in interest that the City of Carlsbad has issued a Site Development Plan Amendment and Coastal Development Permit by Resolutions No. 5395 and 5396 on the red property owned by the Developer. Said Notice of Restriction shall note the property description, location of the file containing complete project details and all conditions of approval as well as any conditions or restrictions specified for inclusion in the Notice of Restriction. The Planning Director has the authority to execute and record an amendment to the notice which modifies or terminates said notice upon a showing of good cause by the Developer or successor in interest. This approval is subject to all conditions contained in Planning Commission Resolutions No. 2097 for PCD-42 and No. 3928 for SDP 95-08 incorporated by reference herein. This approval is granted subject to the approval of CDP 02-29 and is subject to all conditions contained in Resolution No. 5396 for that other approval incorporated by reference herein. Up to 10 additional 24” box trees may be required to provide additional screening of the west side of the parking structure, The species, quantity and location of the trees to be sited within the slope area shall be subject to Planning Director approval. PC RES0 NO. 5395 -4- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 13. Developer shall submit and obtain Planning Director approval of an exterior lighting plan for the parking structure. All lighting shall be designed to reflect downward and avoid any impacts on adjacent homes or property. The pole height shall not exceed a maximum of 20'. The number of poles shall be kept to a minimum where possible by combining several luminaries on a single pole. To reduce off-site impacts, fifty (50) percent of all outdoor lights shall be turned off after 10 p.n Engineering General 4-d prior to hauling dirt or construction materials to or fiom any proposed construction site within this project, Developer shall apply for and obtain approval fiom, the City Engineer for the proposed haul route. 44. Prior to issuance of any building pet, Developer shall comply with the requirements of the City's anti-graffiti program for wall treatments if and when such a program is formally established by the City. FeedAgreements Prior to approval of any grading or building permits for this project, Developer shall cause Owner to give written consent to the City Engineer to the annexation of the area shown within the boundaries of the subdivision into the existing City of Carlsbad Street Lighting and Landscaping District No. 1, on a fonn provided by the City Engineer. Gradin No grading for private improvements shall occur outside the limits of this approval unless slope easement or agreement from the ownm of the affected properties. If Developer is unable to obtain the grading or slope easement, or agreement, no grading permit will be issued. In that case Developer must either apply for and obtain an amendment of this approval or modi@ the plans so grading will not OCCUT outside the project and apply for and obtain a finding of substantial conformance from both the City Engineer and Planning Director. Based upon a review of the proposed grading and the grading quantities shown on the site plan, a grading permit for this project is required. Developer shall apply for and obtain a grading permit fiom the City Engineer prior to issuance of a building permit for the project. d Developer obtains, records and submits a recorded copy to the City Engineer a grading or K All grading activities shall be planned in units it can be completed by October 1st. Grading activities shall be limited to the "dry season", April 1st to October 1st of each year. Grading activities may be extended to November 15th and beyond upon written approval of the City Engineer, obtained in advance, and only if all erosion control measures are in place by October 1st. PC RES0 NO. 5395 -5- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 evel lo per shall have the entire drainage system designed, submitted to and approved by the City Engineer, to ensure that runoff resulting from 10-year frequency storms of 6 hours and 24 hours duration under developed conditions, are equal to or less than the runoff from a storm of the same frequency and duration under existing developed conditions. Both 6 hour and 24 hour storm durations shall be analyzed to determine the jetention basin capacities necessary to accomplish the desired results. Developer shall comply with the City's requirements of the National Pollutant Discharge Elimination System (NPDES) pennit, latest version. Developer shall provide improvements constructed pursuant to best management practices as referenced in the "California Storm Water Best Management Practices Handbook" to reduce surface pollutants to an acceptable level prior to discharge to sensitive areas. Plans for such improvements shall be submitted to and subject to the approval of the City Engineer. Said plans shall include but not be limited to notifjing prospective owners and tenants of the following: A. B. C. All owners and tenants shall coordinate efforts to establish or work with established disposal programs to remove and properly dispose of toxic and hazardous waste products. Toxic chemicals or hydrocarbon compounds such as gasoline, motor oil, antifreeze, solvents, paints, paint thinners, wood preservatives and other such fluids shall not be discharged into any street, public or private, or into storm drain or stom water conveyance systems. Use and disposal of pesticides, fimgicides, herbicides, insecticides, fertilizers and other such chemical treatments shall meet Federal, State, County and City requirements as prescribed in their respective containers. Best Management Practices shall be used to eliminate or reduce surface pollutants when planning any changes to the landscaping and surface improvements. Prior to the issuance of grading permit or building permit, whichever occurs first, The SWMP shall be in compliance with current requirements and provisions established by the San Diego Region of the California Regional Water Quality Control Board and City of Carlsbad Requirements. The SWMP shall address measures to reduce, to the maximum extent possible, storm water pollutant runoff at both construction and post- construction stages of the project. The SWMP shall: @if Developer shall submit for City approval a "Storm Water Management Plan (SWMP)". A. Identify existing and post-development on-site pollutants. B. Recommend structural and non-structural measures to be implemented to avoid pollution or treat pollutants from storm water before being discharged from the site. C. Establish specific procedures for handling spills and routine clean up. Special considerations and effort shall be applied to employee, customer or resident PC RES0 NO. 5395 -6- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 education on the proper procedures for handling clean up and disposal of pollutants. D. Ensure long-term maintenance of all post construct BMPs in perpetuity. - Fire: 23. Code Reminders: The project is subject to all applicable provisions of local ordinances, including but not limited to the following: Sprinklers and standpipes shall be required for the proposal. 24. 25. 26. 27. 28. Developer shall exercise special care during the construction phase of this project to prevent offsite siltation. Planting and erosion control shall be provided in accordance with Carlsbad Municipal Code Chapter 15.16 (the Grading Ordinance) to the satisfaction of the City Engineer. Approval of this request shall not excuse compliance with all applicable sections of the Zoning Ordinance and all other applicable City ordinances in effect at time of building pennit issuance, except as otherwise specifically provided herein. The project shall comply with the latest non-residential disabled access requirements pursuant to Title 24 of the State Building Code. Premise identification (addresses) shall be provided consistent with Carlsbad Municipal Code Section 18.04.320. Any signs proposed for this development shall at a minimum be designed in confomance with the City’s Sign Ordinance and shall require review and approval of the Planning Director prior to installation of such signs. NOTICE Please take NOTICE that approval of your project includes the “imposition” of fees, dedications, reservations, or other exactions hereafter collectively referred to for convenience as “fees/exactions.” You have 90 days fiom date of final approval to protest imposition of these feedexactions. If you protest them, you must follow the protest procedure set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURT€3ER NOTIFIED that your right to protest the specified feedexactions DOES NOT APPLY to water and sewer connection fees and capacity charges, nor planning, PC RES0 NO. 5395 -7- . . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 zoning, grading or other similar application processing or service fees in connection with this project; NOR DOES IT APPLY to any feedexactions of which you have previously been given a NOTICE similar to this, or as to which the statute of limitations has previously otherwise expired, PASSED, APPROVED AND ADOPTED at a regular meeting of the planning Commission of the City of Carlsbad, California, held on the 2nd day of April, 2003, by the following vote, to wit: AYES: Chairperson Baker, Commissioners Dominguez, Heineman, Montgomery, Segall, White, and Whitton NOES: None ABSENT: None ABSTAIN: None C-P-G COMMISSION ATTEST Planning Director PC RES0 NO. 5395 -8- c c. PLANNING DEPARTMENT BUILDING PLAN CHECK REVIEW CHECKLIST '$1 *+-& crJ\ab&dG"J SlWAcC Q u99 mmm 000 Plan Check NO. CB Odl - 3ct OS Planner Barbara Kennedy Phone j760) 602- 4626 / I Type of Project & Use: @cU'Lnl 6b-f Net Project Density:- DU A Zoning: C-d - (3, Genkral Pdn: E Facilities Management Zone: 3 CFD (in/out) # Date of participation: Remaining net dev acres: Address 14" %b &VL+ && APN: 211 -os/- /v Circle One (For non-residential development: Type of land used created by this permit: 1 Leaend: Item Complete 0 Item Incomplete - Needs your action Environmental Review Required: YES NO TYPE f2af-t- ais 32 DATE OF COMPLETION: Cornplianc'e with conditions of approval? If not, state conditions which require action. Conditions of Approval: Discretionary Action Required: YES >( NO -TYPE SDU /&DP APPROVAL/RESO. NO. 539s ts39 b DATE (c!z!O3 PROJECT NO. SDP woF;(Wmma-iWmf OZ-J-? OTHER RELATED CASES: SB P9S -08(_AJ &bP a2- r9 Conditions of Approval: see &&&A &% 04 Compliance with conditions or approval? If not, state conditions which require action. Coastal Zone Assessment/Compliance Project site located in Coastal Zone? YES)( NO CA Coastal Commission Authority? YES NO)( If California Coastal Commission Authority: Contact them at - 3111 Camino Del Rio North, Suite 200, San Diego CA 92108-1725; (619) 521-8036 Coastal Permit Determination YES NO If NO, complete Coastal Permit Determination Form now. Coastal Permit Determination Log #: Determine status (Coastal Per r Exempt): oa- 29 Follow-Up Actions: 1) Stamp Building Plans as "Exempt" or "Coastal Permit Required" (at minimum Floor Plans). 2) Completes Coastal Permit Determination Log as needed. H:\ADMiN\COUNTER\BldgPlnchkRevChklst lnclusionary Housing Fee required: YES NO & [Effective date of lnclusionary Housing Ordinance - May 21, 1993.) Data Entry Completed? YES NO i" (A/P/Ds, Activity Maintenance, enter CB#, toolbar, Screens, Housing Fees, Construct Housing Y/N, Enter Fee, UPDATE!) Site Plan: 1. Provide a fully dimensional site plan drawn to scale. Show: North arrow, property lines, easements, existing and proposed structures, streets, , existing street improvements, right-of-way width, dimensional setbacks and. existing topographical lines. 2. Provide legal description of property and assessor's parcel number. Zoning: 1. 2. 3. 4. 5. Setbacks: Front: Required 2 5' Shown 25' Interior Side: Required Shown Street Side: Required 0' Rear: Required Shown Shown Io' Shown Shown Accessory structure setbacks: Front: Required Interior Side: Required Street Side: Required Shown Rear: Required ' Shown Structure separation: Required Shown Lot Coverage: Required 25% y~ &sf Shown \q .4 % Height: Par king : Spaces Required 29s Shown 531 Guest Spaces Required Shown OK TO ISSUE AND ENTERED APPROVAL INTO COMPUTER p *&kb) DATE ?I23/03 H:\ADMIN\COUNTER\BldgPlnchkRevChklst Carlsbad Fire Department 023405 1635 Faraday Ave. Fire Prevention Carlsbad, CA 92008 (760) 602-4660 Plan Review Requirements Category: Building Plan - Date of Report: 12/06/2002 Reviewed by: e. &&&- - Name: Frame Design Group 2 Faraday Avenue Suite 101 Address: City, State: lrvine CA 92618 Job #: 023405 Plan Checker: Job Name: Toyota Carlsbad Bldg #: CB023405 Job Address: 1040 Auto Center Ct. Ste. or Bldg. No. Approved The item you have submitted for review has been approved. The approval is based on plans, information and / or specifications provided in your submittal; therefore any changes to these items after this date, including field modifications, must be reviewed by this office to insure continued conformance with applicable codes and standards. Please review carefully all comments attached as failure to comply with instructions in this report can result in suspension of permit to construct or install improvements. IXI Approved Subject to The item you have submitted for review has been approved subject to the attached conditions. The approval is based on plans, information and/or specifications provided in your submittal. Please review carefully all comments attached, as failure to comply with instructions in this report can result in suspension of permit to construct or install improvements. Please resubmit to this office the necessary plans and / or specifications required to indicate compliance with applicable codes and standards. Incomplete The item you have submitted for review is incomplete. At this time, this office cannot adequately conduct a review to determine compliance with the applicable codes and / or standards. Please review carefully all comments attached. Please resubmit the necessary plans and / or specifications to this office for review and approval. Review 1 st 2nd 3rd Other Agency ID FD Job # 023405 FD File # TOYOTA CARLSBAD PARKING STRUCTURE ND 2 SUBMITTAL Plan Check Number:02-3405 January 22,2003 Attn: Mr. Ali Sadre 4 C .*h, U ~ Frame Design Group "p P-4 pe rl P =48 Frame Design Group Proiect : Page: e Frame Design Group t 1021 'I t 6 Project: lo ,y 0 fa Cacllsb~ . Page : V Frame Design Group Frame Design Group 8’ r Project: JoqoCa C o 3 i<bd Page: U Frame Design Group 0' Proiect: Page: e Frame Design Group 8 Frame Design Group Frame Design Group Frame Design Group I2 Sheet No. . 1 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.2 LL FACTOR=l. CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi -. 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f’c=424psi BOT 7.5 SQRT f’c=530psi %SUP. OL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 2.00 in EXTERIOR SPANS TOP 2.00 in UNBONDED, LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELDdO. OOksi TENDON DIAM=0.50in MAX LONG BAR SIZE46 STIRRUP SIZE44 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.2/1./1.7/1.3/1.2/.75/1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.00 in BOTTOM 2.00 in 0.004A @ TOP & BOT DL + LL/4 RATIO=1.00 < - - - - - - - TENDON PROF I LE- - - - - - -> CONC <------ SUPERIMPOSED LOADS- - - - - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) r 2 12.00 12.00 0.00 0.00 0.00 1.267 1 U 0.002 0.030 0.00 39.17 <-------------------- COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31 1 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix 1 836.20 28.45 6931.36 9597.33 2 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD- - - -> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -87.27 i34.94(19.6) -87.27 87.46 -111.07 (19.6) 87.46 82.47 82.47 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS(FACT0RED) 1 0.00 25.11(19.6) 0.00 -26.70 O.OO( 8.4) -26.70 1 33.47 56.11 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 2 -33.47 -56.11 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.276 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 132.35 13.24 5.0 28.00 46.00 0.00 28.00 0.158 0.158 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) O+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.40 0.00 1.59 0.00 1 0.00 0.00 0.00 0.61 0.00 1.75 2 0.00 0.00 0.40 0.00 1.59 0.00 Rebar Weight=l ,273 psf ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.37 0.00 1.59 0.00 1 0.00 0.00 0.00 0.65 0.00 1.75 2 0.00 0.00 0.37 0.00 1.59 0.00 Rebar Weight=1.273 psf -. ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0 1 D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.37 0.00 1.59 0.00 1 0.00 0.00 0.00 0.67 0.00 1.75 2 0.00 0.00 0.37 0.00 1.59 0.00 Rebar Weight=1.273 psf Section5-BEAM SHEAR DESIGN Span 1 L49.17ft X Left Vu Mu Vcn vcw Vci Av #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@24.OOin o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) -- ---> SPAN Tension (XI Compression (XI Tension (XI Compression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.112 ( 1.00) -0.243 ( 19.59) -0.190 ( 19.59) -0.213 ( 38.17) 1 0.008 61340 0.006 76256 'B -0.097 ( 19.59) -0.191 ( 1.00) -0.164 ( 38.17) -0.181 ( 19.59) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maximum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 36.11 33.47 56.11 36.11 33.47 56.11 2 36.11 -33.47 -56.11 36.11 -33.47 -56.11 Frame Design Group Frame Design Group Frame Design Group c Project: J0,ota cas I&& Page: I 7 4 V Frame Design Group Frame Design Group Frame Design Group dl It$ T Frame Design Group Title : Toyota Carlsbad Page: lrvine Description.. . . CA92618 2 Faraday Job# : 01-196. Dsgnr: Shamhi, Date: DEC This Wall in File: c:\project\r7\retaining wall.rp5 Cantilevered Retaining Wall Design RetainPro Version 6.0 Build Date : 10-SEP-2001, (c) 1989-2001 /-Criteria [Soil Data 1 Footing Dimensions & Strengths Retained Height = 8.00 ft Wall height above soil = 0.00 ft Slope Behind Wall = 0.00 : 1 Height of Soil over Toe = 0.00 in Passive Pressure = 345.0 psf/ft - Allow Soil Bearing = 5,000.0 psf Toe Width - 2.04 ft - - 2.46 - 4.50 = 24.00 in - 0.00 in Key Distance from Toe = 0.00 ft -. ___ - Equivalent Fluid Pressure Method Heel Active Pressure = 40.0 psf/ft Total Footing Width Toe Active Pressure = 30.0 Psflft Footing Thickness Water height over heel = 0.0 ft FootingllSoil Frictior = 0.400 Heel Width - Key Width Key Depth - . Soil Density = 120.00 pcf - 0.00 in Wind on Stem = 0.0 psf Soil height to ignore for passive pressure = 12.00 in Pc = 3,OOOpsi Fy = 60,000 psi Footing Concrete Density = 150.00 pcf Min. As % = 0.0018- Cover@ Top = 2.00in Q Btm.= 3.00 in -. - LDesign Summary Stem Construction lop Stem Stem OK Total Bearing Load = 3,694 Ibs Design height ft= - 0.00 ... resultant ecc. = 13.71 in Wall Material Above "Ht" = Masonrv Soil Pressure Q Toe = 2,223 psf OK Soil Pressure Q Heel = 0 psf OK Soil Pressure Less Than Allowable Allowable = 5.000 psf ACI Factored Q Heel = 0 psf ACI Factored Q Toe = 3,112 psf Footing Shear Q Toe = 14.4 psi OK Footing Shear Q Heel = 11.6 psi OK - Allowable - 93.1 psi - - 1.62 OK Wall Stability Ratios Overturning Sliding Calcs Slab Resists All Sliding ! - Slidin% - 1.03 Ratio c 1.5! Lateral Sliding Force = 1,940.0 Ibs LFooting Design Results h Factored Pressure Mu' : Upward Mu' : Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe Reinforcing Heel Reinforcing Key Reinforcing Toe Heel = 3.112 0 psf = 5,908 75 R# = 1,024 3.383 ft-# = 4.884 3,308 ft# = 14.41 11.56 psi = 93.11 93.11 psi = NoneSpec'd = NoneSpec'd = NoneSpec'd Thickness = 8.00 Rebar Size = #a Rebar Spacing = 8.00 Rebar Placed at = Edge fblFB + fdFa = 0.984 Total Force Q Section Ibs = 1,280.0 Moment. .. .Actual ft#= 3,413.3 Moment ..... Allowable = 3,469.6 Shear ..... Actual psi = 24.7 Shear ..... Allowable psi = 38.7 Lap Splice if Above in= 48.00 Lap Splice if Below in= 15.34 Wall Weight = 78.0 Rebar Depth 'd' in= 5.38 Pm psi= 1.500 Fs psi= 24,000 Solid Grouting - Yes Special Inspection - Yes Modular Ratio 'n' = 25.78 Short Term Factor = 1.000 Equiv. Solid Thick. in= 7.60 Masonry Block Type = Medium Weight Pc psi = FY psi = Other Acceptable Sizes EL Spacings Toe: Not req'd. Mu .e S Fr Heel: Not req'd, Mu e S Fr Key: No key defined Design Data Masonry Data - - Concrete Data -. C 8.=.Mas~ - Lateral Restrain 426.7 # 8'-0" 8'-0" 8." Masonry wW@ d." L 8. Jsonrywl#8 Sliding Restraint I -4 2'-0" t -f #0@18.in @Toe #0@18.in Q Heel J 4-6" c c c c c International Design, Inc. im Parking Architecture . Engineering . Conauitlng Frame Design Group 2 Famd Suite 101 hj C4 92618 Phone 9835 8015 Focsim3e 94 !i95 8018 TOYOTA CARLSBAD PARKING STRUCTURE CARLSBAD, CA STRUCTURAL CALCULATIONS CALC GENERAL BUILDING DESCRIPTION / DESIGN CRITERIA SEISMIC ANALYSIS, SHEAR WALL DESIGN SHEAR WALL FOUNDATIONS DIAPHRAGM DESIGN PT SLABS PT BEAMS PT GIRDERS COLUMNS & FOOTINGS CMU RETAINING WALLS SH T 0 1 26 42 49 66 116 1 40 171 JOB NO. 01-196 Yizy??z% c c c TOYOTA CARLSBAD PARKING STRUCTURE 3 DECKS, 4 LEVELS TYPE 1 CONST occ s2 1997 UBC ACI 318 95 SEISMIC ZONE 4 PARKING LL = 50 PSF REDUCIBLE TO BMS COLS FTGS STAIR LL = 100 PSF LACBD TASK FORCE REQUIREMENTS FOR CONCRETE STRUCTURES* MEMBER TG COLUMNS EXTERIOR COLUMNS INTERIOR COLUMNS TYPICAL BEAMS TYPICAL GIRDERS TYP ONE WAY SLABS CONCREETE SPANDRELS SLAB ON GRADE FOUNDATIONS MEMBER LOADS 5" SLABS 14x30 BEAMS @ 18'-0" OC 24x30 GIRDERS 24x28 COLUMNS x 10.25' 24x20 COLUMNS x 10.25' 6" CONC SPANDRELS SIZE 24"x24" 20"x24" 24"x24" 14"x30" 24"x30", 20"x30" 5" t 6" 5" SEE PLANS F'c psi 5000 5000 5000 5000 5000 5000 4000 3000 4000 1.0 D.L. 63 PSF 26 PSF 775 PLF 8K EA LIFT 6K EA LIFT 270 PLF SHEAR WALL IN BOTH DIRECTION. R=5.5 1. CONCRETE: F'c FOR ALL STRUCTURAL COLUMNS, BEAMS AND SLABS SHALL NOT BE LESS THAN 5000 PSI. 2. TRANSVERSE REINFORCEMENT BEAMS TRANSVERSE REINFORCEMENT FOR ALL FRAME BEAMS & NON FRAME BEAMS, SHALL COMPLY WITH UBC 1921.3.3. 3. TRANSVERSE REINFORCEMENT COLUMNS TRANSVERSE REINFORCEMENT FOR ALL FRAME COLUMNS, NON FRAME COLUMNS, AND SHEARWALL JAMBS SHALL COMPLY WTH UBC 1921.4.4. 4. DIAPHRAGMS ALL DIAPHRAGMS SHALL HAVE A MINIMUM THICKNESS OF 5". 5. DRIFT cwpneiLin, NON SEISMIC ELEMENTS ALL NON SEISMIC RESISTING STRUCTURAL ELEMENTS SHALL BE DESIGNED TO SURWE SEISMIC DRIFT = TO ELASTIC DRIFT (DELTA-M). P r- P P r- Frame Design Group L . rc 4 I h * 't- f.7 Frame Design Group Frame Design Group e CY c c Project Title = Toyota Carlsbad Project Number = Seismic Zone Factor (Z) = 0.4 Importance Factor (I) = 1.0 Structural System Coefficient (R) = 5.5 Soil Profile Type = Sc Near-Source Factor (Na) = 1.00 Near-Source Factor (Nv) = 1.20 Seismic Coefficient (Ca) = 0.40 Seismic Coefficient (Cv) = 0.67 Coefficient (Ct) = 0.020 Ultimate Concrete Strength (f c) = 5000 s f z From Table 16-1 From Table 16-K From Tables 16-N From Table 16-S From Table 16-T Seismic Source me = B From Table 164 From Table 16-Q From Table 16-R Ca*Na = 0.400 Cv*Nv = 0.804 0.035 for steel moment-resisting frames 0.030 for concrete moment-resisting frames or EBF's 0.020 for all other buildings psi Structure Geometry (8 levels max) Level 0 0 0 0 0 4 3 2 Base 0.00 0.00 0.00 0.00 9.67 9.67 10.83 0.00 Bldg Height (ft) I 30.17 20.50 10.83 0.00 Story Mass (kips) 0 0 0 0 0 2422 2422 1992 0 Base Level Foot Print Length = 228.00 Ft Width= 120.00 Ft Area = 23517 Ft' Width Center of Mass at Base cx = 107.70 Ft cy= 58.30 Ft 5 sw1 1 sw2 14 sw3 sw4 Lwi B LW~ D LW3 Wall Definition 42.0 20.0 0.8 35.7 20.0 227.2 54.0 20.0 54.0 20.0 .... c c F- c- sw1 x=o Y=O LW1 LW1 sw3 LW4 0 L LW3 dY sw4 LW2 r sw2 Initial Size Selections "rib Floor Area L (ft) t (in) dx (ft) dy (ft) To Wall (ft') DL (psf, Levels I LW4 c c 119.2 0.8 630.0 65 3 360.0 65 3 1512.0 85 3.0 972.0 85 3 G Level I P- c e hi wi wi*hi Fi Vi Story Moment OTMi Diagram Toyota Carlsbad 1997 UBC Seismic Force Analysis Z- 0.4 I= 1 R= 5.5 Soil Profile Type= Sc Seismic Coefficients Ca*Na= 0.40 Cv*Nv= 0.80 NearSource Factors Na= 1.00 Nv= 1.20 For Calculation of T: Ct= 0.020 hn= 30.17 c Method A: T = Ct(hn)*.75 = 0.257 Method B: Tmax = 1.3T = 0.335 UBC (30-5) UBC (30-4) Max.Base Shear Coef,2.5*Ca*I/R = 0.182 Base Shear Coeff, Cv*I/R*T = 0.568 c c- c- c c c c c c - c c UBC (30-7) Min.Base Shear Coeff, OB*Z*Nv*I/R = 0.070 (Seismic Zone 4 Only) UBC (30-6) Min.Base Shear Coeff, O.ll*Ca*I = 0.044 (All other Zones) UBC (30-14) Concentrated force at top Ft = 0 Value Used for Base Shear = 0.182 Base Shear, V = 1,242.9 Kips Base Sum ft. kip ft:kips kip kips 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 30.17 2422 73072 629.41 629.41 20.50 2422 49651 427.67 1,057.08 10.83 1992 21573 185.82 1,242.91 0.00 0 0 0.00 1,242.91 6836 144296 1242.91 ft.'kiPS 0 0 0 0 0 18,989 8,767 2,012 0 29,769 ft.'kiPS 0 0 0 0 0 6086 16308 29769 29769 Omega = Force Distribution to Each Diaphragm: Phi= 0.85 2.8 Level wi Fi FPX FPX Fpx DesignFpx Vn i I kips kips kips Max Min I kips I kips kips 01 0 0.00 I I I 0 0 0 0 4 3 2 Base 0 0 0 0 2422 2422 1992 0 0.00 0.00 0.00 0.00 629.41 629.41 968.80 484.40 427.67 528.54 968.80 484.40 185.82 362.18 796.80 398.40 0.00 0.00 0.00 0.00 629.41 740.48 1762.3 528.54 621.81 1479.9 398.40 468.71 1115.5 0.00 I o.ol 0.0 P P c c c c c Toyota Carlsbad Rotational Rigidity Analysis N/S Direction v= 100 el = 22.37 e2 = -0.43 Xcr = 96.73 Xcm = 107.70 Width = 228.00 Xcm+5% = 119.10 Xcm-5% = 96.30 Ycr = 60.00 x- WALLS h L t E 1 30.17 42.00 20.00 4031 14 30.17 35.70 20.00 4031 Y- WALLS h L t E B 30.17 54.00 20.00 4031 D 30.17 54.00 20.00 4031 R = (1/{[4(h/L)"3+30ln)]/(E*t)} Total Design WALL R WSWII-R X dx Rdx Rdx"2 Fv Ft+ Ft- Force 1 22160.0 0.58 0.8333 -95.89 HHHHmm 2.OE+08 57.64 -6.61 0.13 57.76 14 16286.4 0.42 227.2 130.47 2124964 2.83+08 42.36 6.61 -0.13 48.98 0.0 0.00 0.00 0 0.00 0.00 0.00 0.0 0.00 0.00 0 0.00 0.00 0.00 38446 4.83+08 100 0.00 0.00 WALL R Y dv Rdv Rdv"2 Ft+ Ft- B 33960 119.167 59.17 2009276 1.2E+08 6.25 -0.12 D 33960 0.8333 -59.17 #MYMY# 1.2E+O8 -6.25 0.12 0 0 0 0.00 0.00 0 0 0 0.00 0.00 67919 2.43+08 0.00 0.00 7 8 r P- r- I r c Toyota Carlsbad Rotational Rigidity Analysis EN Direction v= 100 el = 4.3001 e2 = -7.7 Xcr = 60 Xcm = 58.30 Width = 120.00 Xcm+5% = 64.3 Xcm-5% = 52.3 Ycr = 96.73 x- WALLS h L t E B 30.17 54.00 20.00 4031 D 30.17 54.00 20.00 4031 Y- WALLS h L t E 1 30.17 42.00 20.00 4031 14 30.17 35.70 20.00 4031 R = (1/([4(h/L)"3+3(h/L)]/(E*t)} Total Design WALL R WSUXU-R X dx Rdx Rdx"2 Fv Ft+ Ft- Force B 33960 0.50 119.17 59.17 2009276 1.2E+08 50.00 1.20 -2.15 51.20 D 33960 0.50 0.8333 -59.17 #W#HW# 1.2E+08 50.00 -1.20 2.15 52.15 0 0.00 0 0 0.00 0.00 0.00 0 0.00 0 0 0.00 0.00 0.00 L 67919 2.43+08 100 2E-16 0 r i WALL R Y dv Rdv Rdv"2 Ft+ Ft- r r 1 22160 0.8333 -95.89 ###WH 2.OE+08 -1.27 2.28 14 16286 227.2 130.47 2124964 2.83+08 1.27 -2.28 0 0 0 0.00 0.00 0 0 0 0.00 0.00 38446 4.83+08 0.00 0.00 Toyota Carlsbad Load Distribution to Individual Shearwalls: N/S Direction fc= 5000 psi LINE 1 %LOAD= 57.8 Level hi Fi Mi Ri i ft. kips ft.*kips 0 0 0 0 0 4 30.17 363.58 3,516 0.138 3 20.50 247.04 9,420 0.138 2 10.83 107.34 17,196 0.138 Base 0.00 0.00 17,196 At Base ho*Mu = 18,086 rho*Vu = 755.10 Vu= 717.96 0.138 EIW Direction LINE 14 %LOAD= 49.0 Level hi Fi Mi Ri i ft. kips ft.*kips 0 0 0 0 0 4 30.17 308.26 2,981 0.137 3 20.50 209.46 7,987 0.137 2 10.83 91.01 14,580 0.137 Base 0.00 0.00 14,580 At Base ho*Mu = 15,334 rho*Vu = 640.22 Vu = 608.73 0.137 LINE B %LOAD= 51.2 LINE D %LOAD= 52.2 Level hi Fi Mi Ri i ft. kips ft.*kips 0 0 0 0 0 4 30.17 322.27 3116 0.095 3 20.50 218.98 8350 0.095 2 10.83 95.15 15242 0.095 Base 0.00 0.00 15242 At Base ho*Mu = 15,242 rho*Vu = 636.39 Vu= 636.39 0.095 Level hi Fi Mi Ri i ft. ki~s ft.*kiDs 0 0 0 0 0 4 30.17 328.25 3174 0.097 3 20.50 223.04 8505 0.097 2 10.83 96.91 15525 0.097 Base 0.00 0.00 15525 At Base ho*Mu = 15,525 rho*Vu = 648.21 Vu= 648.21 0.097 Redundency Factors N/S Direction: Rmax = 0.138 Rho = 1.052 Use Rho = 1.05 E/W Direction: Rmax = 0.097 Rho = 0.650 1.00 Ab = 23517.0 ft' ,- lo 1997 UBC CONCRETE SHEARWALL ANALYSIS AND DESIGN RCWALLPRO by STRUCTECH Frame Design Group Project : Toyota Carlsbad 2 Faraday, Irvine, CA Building : Shear Wall (949) 595-8015 / (949) 595-8018 Wall ID : WALL # B LUE SHADING INPUT Concrete Strength, f'c: Rebar Yield Strength, fy: Total Wall Length, Ltot: End 1 Length, L-1: End 2 Length, 42: Wall Thickness, T-0: End 1 Thickness, T-1: End 2 Thickness, T-2: Wall Vert. Steel, As-0: Wall Horiz. Steel, As-h: End 1 Rebar, As-1: End 2 Rebar, As-2: Wall Dead Load, P-DL: Wall Live Load, P-LL: Wall Seismic Load, P-EQ: R Factor, UBC Chapter 16 Shear Distribution Coefficient, Shear Strength Reduction Factor, 5 60 672 24 24 20 45 45 2 2 10 10 386 136 162 wv Phi-v ksi Conc E, Econc: 4031 ksi ks i Steel E, Es: 29000 ksi in c includes end sections > in c length of left end section in c length of right end section in c thickness between end sects > in c thickness @ left end section in c thickness @ right end section > layers - # 5@ 12 in, O.C. layers - # 5@ 12 in, O.C. -# 10 c total x pieces #y bar > -# 10 c total x pieces #y bar > kips c NOT including wall self wt > kips kips c Seismic axial load @ wall center > 5.5 ndim 1.33 ndim 0.6 ndim STORY HEIGHTS & UNFACTORED FORCES story No. 10 9 8 7 6 5 4 3 2 1 Total : 5/8/2002 Story Height feet 9.67 9.67 10.83 30.17 Story story Height Story Dist Story Moment EQ EQ Above EQ From Moment Diagram Force Shear Base OTM TOP kips kips feet k-ft feet k-ft k-ft 0.0 0.0 0.0 0.0 0.0 0.0 0.0 387.0 (3223) 387.0 263.0 3-flpD) 650.0 139.0 (q5.2) 789.0 30.17 30.17 30.17 30.17 30.17 30.17 30.17 30.17 20.50 10.83 0 0 0 0 0 0 0 11674 5391 1506 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 9.67 3741 19.33 6283.3 30.17 8547.5 0 0 0 0 0 0 0 3740.97 10024.3 18571.7 789.0 18571.738/: A = RCWALLPRO EXAMPLE 1 '[,e; 1 of 4 P c - c c c c Int. Wall Length c wall length betw end sects 5, L-0: Total Gross Area, ATOT: Centroid Distance to End 1, NAXIS Gross Moment of Inertia, I-GROSS: Elastic Bending Deflection, d-eb: Elastic Shear Deflection : d-v Comb. Bending and Shear Defl. at Top of Wall, d-e tot : 624 in 14640 1nA2 336 in 631803 X 10A3 inA4 0.003 in 0.013 in 0.017 in Wall Geometry wall Self Weight, P-SW: Wall Axial Load, P'u: Factored Shear, Vu: Factored EQ Moment, Mu: Factored Axial Force Compressive Strength, Po Ratio of Pu /Po = Mu/(VULW) = VU/ (Acv*df 'c) 1 = SYMMETRIC 460 kips 789 kips 18572 kip-ft 0.02 Ag.fc' 52347 kips 1245 kips e P'u = 1.2D + 0.5L + E 0.024 OK, CAN BE USED AS SHEARWALL 0.42 0.83 BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.4 5/8/2002 - RCWALLPRO EXAMPLE 1 2 of 4 c c r- c CALCULATE NOMINAL FLEXURAL CAPACITY Mln @ P'u =1.2D+0.5L+E Wall Vert Steel, Rhov: 0.00258 ndim Wall Horiz Steel, Rhoh: 0.00258 ndim End 1 Steel, As-1: 12.70 inA2 End 2 Steel, As-2: 12.70 inA2 Beta1 : 0.80 ndim Sum of Forces, ftot: 0 kips OK M'n: 127848 k-f t Strength Red. Factor, Phi 0.87 ndim Phi M'n: 110713 kip-ft OK 5 Mu at P'u ESTIMATE INELASTIC BEHAVIOR Elast.Bending Defl.,d-eb: 0.00 inches Yield Deflection, d-y: 0.02 inches Total Deflection, d-t: 0.03 inches Inelast. Deflect., d-i: 0.00 inches Yield Curvature, phi-y: 4.463-06 rad/in Total Curvature, phi-t: 4.51E-06 rad/in Maximum Comp. Strain, ee-t: 0.00010 ndim Max Allow Strain, ee-m: 0.01500 ndim c BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.5 c c c. "&%B@NSI%NS, €@OPS ~ AEJD "VERTICAL BaRs PER 1921.6.6.6 Minimum Length, L-BZ : 0.00 in Maximum Height Above The Base, H-BZ : 0.00 in Thickness, T-BZ in Hoops Vertical Spacing, S-v in Dist. from Face of Concrete to Center of Hoops, D-c in Req. Area of Hoops in Longitudinal Dir., Ash-x: 0.00 inA2 Req. Area of Hoops in Transverse Dir., Ash-y: 0.00 inA2 Minimum Area of Vertical Bars, A-bv 0.00 inA2 c 5/8/2002 - RCWALLPRO EXAMPLE 1 3 of 4 c P- c c c c Wall's Height to Length Ratio Coefficient ALFA-C Shear Capacity, Phi-v Vn: Code Shear Demand/Capacity, Vu/(Phi-v Vn) 0.5 3.0 2961 kips 0.27 ndim SEE BELOW FOR RFQTJXREED VALUE OF PHI-v Overstrength Flexural Capacity, Mo Mo/Mu Ratio Plastic Shear Demand, Vp Plastic Shear Demand/Capacity, Vp/(Phi-v Vn) 15 98 10 kip- f t 8.60 ndim 9030 kips 3.05 ndim PER SEC. 18139.3.4, USE PHI-v = 0.60 FOR SHEAR STRENGTH RECHECK YOUR INPUT FOR CORRECT PHI-V # END OF CALCULATIONS To report any 'bug' in the spreadsheet, please contact structech@juno.com. I c c c c 5/8/2002 + RCWALLPRO EXAMPLE 1 4 of 4 1997 UBC CONCRETE SHEARWALL ANALYSIS AND DESIGN RCWALLPRO by STRUCTECH Frame Design Group Project : Toyota Carlsbad 2 Faraday, Imine, CA Building : Shear Wall (949) 595-8015 / (949) 595-8018 Wall ID : WALL # D REQUIReD INPUT ARE IJSDECATEZ) BY BMJE COLOR NUMBERS OR WITH BLUE SHADING INPUT Concrete Strength, f'c: Rebar Yield Strength, fy: Total Wall Length, Ltot: End 1 Length, 41: End 2 Length, L-2: Wall Thickness, T-0: End 1 Thickness, T-1: End 2 Thickness, T-2: Wall Vert. Steel, As-0: Wall Horiz. Steel, As-h: End 1 Rebar, As-1: End 2 Rebar, As-2: Wall Dead Load, P-DL: Wall Live Load, P-LL: Wall Seismic Load, P-EQ: R Factor, UBC Chapter 16 Shear Distribution Coefficient, Shear Strength Reduction Factor, 5 60 672 24 24 20 20 20 2 2 8 8 526.2 188 203.2 WV Phi-v ks i Conc E, Econc: 4031 ksi ks i Steel E, Es: 29000 ksi in e includes end sections =. in c length of left end section > in e length of right end section in e thickness between end sects in e thickness @ left end section > in e thickness @ right end section > layers - # 5@ 12 in, O.C. layers - # 5@ 12 in, O.C. -# 10 c total x pieces #y bar -# 10 < total x pieces #y bar > kips e NOT including wall self wt > kips kips e Seismic axial load @ wall center > 5.5 ndim 1.33 ndim 0.6 ndim STORY HEIGHTS & UEJFACTORED FORCES Story No 10 9 8 7 6 5 4 3 2 1 Total : 5/8/2002 Story Story Story Height EQ EQ Force Shear feet kips kips 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.67 395.0 (?2S8%) 395.0 9.67 268.0[@3.0) 663.0 10.83 142.0 (q7.b) 805.0 30.17 805.0 Height Story Dist Story Moment Above EQ From Moment Diagram Base OTM TOP feet k-ft feet k-ft k-ft 30.17 30.17 30.17 30.17 30.17 30.17 30.17 30.17 20.50 10.83 0 0 0 0 0 0 0 11916 5494 1538 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 9.67 3818.3 3818.31 19.33 6409 10227.3 30.17 8720.8 18948.1 18948.069 /(.+ 13S3Sr" RCWALLPRO EXAMPLE 1 (k525/,.4= \Q~Oj 1 of 4 c v-. c Int. Wall Length e wall length betw end sects >, L-0: Total Gross Area, ATOT: Centroid Distance to End 1, NAXIS Gross Moment of Inertia, I-GROSS: Elastic Bending Deflection, d-eb: Elastic Shear Deflection : d-v Comb. Bending and Shear Defl. at Top of Wall, d-e tot : 624 in 13440 inA2 336 in 505774 x 10A3 in^4 0.004 in 0.015 in 0.019 in Wall Geometry Wall Self Weight, P-SW: Wall Axial Load, P'u: Factored Shear, Vu: Factored EQ Moment, Mu: Factored Axial Force Compressive Strength, Po Ratio of Pu /Po = MU/ (VULW) = VU/ (Acv*df 'c) ) = SYMMETRIC 422 kips 805 kips 18948 kip-ft 0.02 Ag.fc' 48040 kips 0.030 OK, CAN BE USED AS SHEARWALL 1435 kips c P'u = 1.2D + 0.5L + E > 0.42 0.85 BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.4 5/8/2002 - RCWALLPRO EXAMPLE 1 2 of 4 fb c *_-- CALCULATE NOMINAL FLEXURAL CAPACITY M’n @ P’u =1.2D+0.5L+E e wall Vert Steel, Rhov: 0.00258 ndim Wall Horiz Steel, Rhoh: 0.00258 ndim End 1 Steel, As-1: 10.16 inA2 c End 2 Steel, As-2: 10.16 inA2 Beta1 : 0.80 ndim c Strain, eesy: OK M’n: 121665 k-ft Strength Red. Factor, Phi 0.86 ndim Phi M’n: 104 3 0 1 kip- f t c OK Mu at P’u ESTIMATE INELASTIC BEHAVIOR c Elast.Bending Defl.,d-eb: 0.00 inches Yield Deflection, d-y: 0.03 inches Total Deflection, d-t: 0.03 inches Inelast. Deflect., d-i: 0.01 inches Yield Curvature, phi-y: 4.463-06 rad/in Total Curvature, phi-t: 4.553-06 rad/in Maximum Comp. Strain, ee-t: 0.00021 ndim Max Allow Strain, ee-m: 0.01500 ndim c L BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.5 Minimum Length, L-BZ : 0.00 in c Maximum Height Above The Base, H-BZ : 0.00 in Thickness, T-BZ in Hoops Vertical Spacing, S-v in c Dist. from Face of Concrete to Center of Hoops, D-c in Req. Area of Hoops in Longitudinal Dir., Ash-x: 0.00 inA2 Req. Area of Hoops in Transverse Dir., Ash-y: 0.00 inA2 Minimum Area of Vertical Bars, A-bv 0.00 inA2 c c 5/8/2002 c RCWALLPRO EXAMPLE 1 3 of 4 /7 Wall's Height to Length Ratio Coefficient ALFA-C Shear Capacity, Phi-v Vn: Code Shear Demand/Capacity, Vu/(Phi-v Vn) 0.5 3.0 2961 kips 0.27 ndim SEE BELOW FOR REQUIRED VMJJE OF PHI-v Overstrength Flexural Capacity, Mo 152082 kip-ft Mo/Mu Ratio 8.03 ndim Plastic Shear Demand, Vp 8593 kips Plastic Shear Demand/Capacity, Vp/(Phi-v Vn) 2.90 ndim END OF CALCULATIONS To report any 'bug' in the spreadsheet, please contact structech@juno.com. 5/8/2002 RCWALLPRO EXAMPLE 1 4 of 4 1997 UBC CONCRETE SHEARWALL ANALYSIS AND DESIGN RCWALLPRO by STRUCTECH Frame Design Group Project : Toyota Carlsbad 2 Faraday, Imine, CA Building : Parking Structure (949) 595-8015 / (949) 595-8018 Wall ID : WALL # 1 ' INPUT Concrete Strength, f'c: Rebar Yield Strength, fy: Total Wall Length, Ltot: End 1 Length, 41: End 2 Length, 42: Wall Thickness, T-0: End 1 Thickness, T-1: End 2 Thickness, T-2: Wall Vert. Steel, As-0: Wall Horiz. Steel, As-h: End 1 Rebar, As-1: End 2 Rebar, As-2: Wall Dead Load, P-DL: Wall Live Load, P-LL: Wall Seismic Load, P-EQ: R Factor, UBC Chapter 16 Shear Distribution Coefficient, Shear Strength Reduction Factor, 5 60 504 24 24 20 20 20 2 2 8 8 288 80 145 WV Phi-v ks i ks i in in in in in in layers layers -# -# kips kips kips Conc E, Econc: 4031 ksi Steel E, Es: 29000 ksi c includes end sections c length of left end section > c length of right end section > c thickness between end sects =. c thickness @ left end section > c thickness @ right end section > -# 5@ 12 in, O.C. -# 5@ 12 in, O.C. 10 c total x pieces #y bar > 10 c total x pieces #y bar > c NOT including wall self wt > c Seismic axial load 0 wall center > 5.5 ndim 1.33 ndim 0.6 ndim STORY HEIGHTS & UNFACTORED FORCES Story No. 10 9 8 7 6 5 4 3 2 1 Total : 5/7/2002 Story Height feet 9.67 9.67 10.83 30.17 story story EQ EQ Force Shear kips kips 0.0 0.0 0.0 Icb;,os 0.0 9: 0.0 0.0 I 0.0 458.9 [3SIA) 458.9 311.9 (/Lsq.4)770.8 164.9 (112.1) 935.7 Height Above Base feet 30.17 30.17 30.17 30.17 30.17 30.17 30.17 30,17 20.50 10.83 story EQ OTM k-ft 0 0 0 0 0 0 0 13843 6394 1786 Dist From TOP feet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.67 19.33 30.17 Story Moment Moment Diagram k-ft k-ft 0 0 0 0 0 0 0 4436 7451 10137 0 0 0 0 0 0 0 4436 11887 22023.7 935.7 22023.737 RCWALLPRO EXAMPLE 1 [l$obLA,+ : \ zsI4) of h c f9 Int. Wall Length e wall length betw end sects >, L-0: Total Gross Area, ATOT: h Centroid Distance to End 1, NAXIS Gross Moment of Inertia, I-GROSS: - Elastic Bending Deflection, d-eb: Elastic Shear Deflection : d-v Comb. Bending and Shear Defl. at Top of Wall, d-e tot : c 456 in 10080 inA2 252 in 213373 X 10*3 inA4 0.012 in 0.023 in 0,035 in - c c Wall Geometry Wall Self Weight, P-SW: Wall Axial Load, P'u: Factored Shear, Vu: Factored EQ Moment, Mu: Factored Axial Force Compressive Strength, Po Ratio of Pu /Po = Mu/ (V~LW) = Vu/ (Acv*df IC) ) = SYMMETRIC 317 kips 93 6 kips 22024 kip-ft 0.02 Ag.fc' 36229 kips 0.025 OK, CAN BE USED AS SHEARWALL 911 kips < P'u = 1.2D + 0.5L + E > 0.56 1.31 BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.4 5/7/2002 - RCWALLPRO EXAMPLE 1 2 of 4 7 CALCULATE NOMINAL FLEXURAL CAPACITY M'n @ P'u =1.2D+0.5L+E Wall Vert Steel, Rhov: 0.00258 ndim r Wall Horiz Steel, Rhoh: 0.00258 ndim 10.16 inA2 End 1 Steel, As-1: End 2 Steel, As-2: 10.16 inA2 Beta1 : 0.80 ndim I r Steel Yld Strain, eesy: 0.002069 ndim Sum of Forces, ftot: 0 kips OK M'n: 70447 k- f t Strength Red. Factor, Phi 0.86 ndim r Phi M'n: 60857 kip-ft OK > MU at P'u I ESTIMATE INELASTIC BEHAVIOR c I I Elast.Bending Defl.,d-eb: 0.01 inches Yield Deflection, d-y: 0.04 inches 7 Total Deflection, d-t: 0.09 inches Yield Curvature, phi-y: 5.95E- 06 rad/ in Total Curvature, phi-t: 6.863-06 rad/in Maximum Comp. Strain, ee-t: 0.00023 ndim Max Allow Strain, ee-m: 0.01500 ndim b Inelast. Deflect., d-i: 0.05 inches r4 1 r BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.5 c B0U"DMZY' ZONE PIFfENSIONS, HOOPS ANDYERT~CAL BARS PER 1921.6.6.6 Minimum Length, L-BZ : 0.00 in Maximum Height Above The Base, H-BZ : 0.00 in Thickness, T-BZ in Hoops Vertical Spacing, S-v in fh Dist. from Face of Concrete to Center of Hoops, D-c in Req. Area of Hoops in Longitudinal Dir., Ash-x: 0.00 inA2 Req. Area of Hoops in Transverse Dir., Ash-y: 0.00 inA2 Minimum Area of Vertical Bars, A-bv 0.00 inA2 I r r 5/7/2002 r I RCWALLPRO EXAMPLE 1 3 of 4 Wall's Height to Length Ratio Coefficient ALFA-C Shear Capacity, Phi-v Vn: Code Shear Demand/Capacity, Vu/(Phi-v Vn) 0.7 3.0 2220 kips 0.42 ndim - SEE: BELOW FOR REWIKED VaLuE OF PHI-v Overstrength Flexural Capacity, Mo Plastic Shear Demand, Vp Plastic Shear Demand/Capacity, Vp/(Phi-v Vn) I Mo/Mu Ratio 8 8 059 kip- f t 4.00 ndim 4976 kips 2 .24 ndim - PER SEC. 1909.3.4, Us16 PHI-v = 0.60 FOR SHEAR STRENGTH REQIECK YOUR INPUT FOR CORRECT PHI-v c END OF CALCULATIONS To report any 'bug' in the spreadsheet, please contact structech@juno.com. ."- r. A c 5/7/2002 -1 RCWALLPRO EXAMPLE 1 4 of 4 c- 1997 UBC CONCRETE SHEARWALL ANALYSIS AND DESIGN RCWALLPRO by STRUCTECH 22 L- Frame Design Group 2 Faraday, Imine, CA (949) 595-8015 / (949) 595-8018 c Project : Toyota Carlsbad Building : Shear Wall Wall ID : WALL #14 REQUIRED INPUT ARE rmcATED BY BLUE COLOR NUMBERS OR WITH BLUE SHADING Concrete Strength, f'c: Rebar Yield Strength, fy: Total Wall Length, Ltot: End 1 Length, L-1: End 2 Length, L-2: Wall Thickness, T-0: End 1 Thickness, T-1: End 2 Thickness, T-2: Wall Vert. Steel, AS-0: Wall Horiz. Steel, As-h: End 1 Rebar, As-1: End 2 Rebar, As-2 : Wall Dead Load, P-DL: Wall Live Load, P-LL: Wall Seismic Load, P-EQ: R Factor, UBC Chapter 16 Shear Distribution Coefficient, Shear Strength Reduction Factor, 5 60 430 24 24 20 20 20 2 2 8 8 92 33 74 wv Phi-v ksi Conc E, Econc: 4031 ksi ks i Steel E, Es: 29000 ksi in e includes end sections in c length of left end section > in c length of right end section > in e thickness between end sects > in e thickness @ left end section > in e thickness @ right end section layers - # 5@ 12 in, O.C. layers - # 5@ 12 in, O.C. -# 10 c total x pieces #y bar > -# 10 e total x pieces #y bar kips e NOT including wall self wt > kips kips e Seismic axial load @ wall center > 5.5 ndim 1.33 ndim 0.6 ndim I STORY HEIGHTS & UNPACTORED FORCES story CL No. c 10 9 8 7 6 5 4 3 2 P - c 0.- rc Total : Story Story story Height Story Dist Story Moment Height EQ EQ Above EQ From Moment Diagram Force Shear Base OTM TOP feet kips kips feet k-ft feet k-ft k-ft 0.0 0.0 0.0 0.0 I de+ "I..S P', 0.0 0.0 0.0 9.67 388.5 (%?'5+88.5 9.67 264.6 ($loa) 653.1 10.83 139.7 (4 j.G) 792.8 30.17 792.8 30.17 30.17 30.17 30.17 30.17 30.17 30.17 30.17 20.50 10.83 0 0 0' 0 0 0 0 11720 5424 1513 18656.829 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 9.67 3755.5 19.33 6313.3 30.17 8588.1 0 0 0 0 0 0 0 3755.47 10068.7 18656.8 4/15/2002 + RCWALLPRO EXAMPLE 1 1 of 4 r i r r L t r c I i i r t f L f Int. Wall Length e wall length betw end sects >, L-0: Total Gross Area, ATOT: Centroid Distance to End 1, NAXIS Gross Moment of Inertia, I-GROSS: Elastic Bending Deflection, d-eb: Elastic Shear Deflection : d-v Comb. Bending and Shear Defl. at Top of Wall, d-e tot : 382 in 8600 in^2 215 in 132512 X 10^3 in^4 0.016 in 0.023 in 0.039 in Wall Geometry Wall Self Weight, P-SW: Wall Axial Load, P'u: Factored Shear, Vu: Factored EQ Moment, Mu: Factored Axial Force Compressive Strength, Po Ratio of Pu /Po = Mu/ (VULW) = Vu/ (Acv*df 'c) ) = SYMMETRIC 270 kips 793 kips 18657 kip-f t 0.01 Ag.fc* 31027 kips 0.017 OK, CAN BE USED AS SHEARWALL 525 kips c P'u = 1.2D + 0.5L + E > 0.66 1.30 BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.4 4/15/2002 RCWALLPRO EXAMPLE 1 2 of 4 CALCULATE NOMINAL FLEXURAL CAPACITY M'n @ P'u =1.2D+0.5L+E Wall Vert Steel, Rhov: 0.00258 ndim Wall Horiz Steel, Rhoh: 0.00258 ndim End 1 Steel, As-1: 10.16 inA2 End 2 Steel, As-2: 10.16 inA2 Beta1 : 0.80 ndim Conc Yld Strain, eecy: o.vo3oo nafm Steel Yld Strain, eesy: 0.002069 ndim Compr Zone Length, c: 26.43 in Sum of Forces, ftot: 0 kips OK M'n: 49696 k-ft Strength Red. Factor, Phi 0.88 ndim Phi M'n: 43512 kip-ft OK > Mu at P'u ESTIMATE INELASTIC BEHAVIOR Elast.Bending Defl.,d-eb: 0.02 inches Yield Deflection, d-y: 0.04 inches Total Deflection, d-t: 0.13 inches Inelast. Deflect., d-i: 0.08 inches Yield Curvature, phi-y: 6.983-06 rad/in Total Curvature, phi-t: 8.493-06 rad/in Maximum Comp. Strain, ee-t: 0.00022 ndim Max Allow Strain, ee-m: 0.01500 ndim BOUNDARY ELEMENT IS NOT REQUIRED PER SEC. 1921.6.6.5 BouMlaR Y 2- ~WWSIONS,~ %IWPS AND VISRTIC& BARS PER 1921.6.6.6 Minimum Length, L-BZ : Maximum Height Above The Base, H-BZ : Thickness , T-BZ Hoops Vertical Spacing, S-v Dist. from Face of Concrete to Center of Hoops, D-c Req. Area of Hoops in Longitudinal Dir., Ash-x: Req. Area of Hoops in Transverse Dir., Ash-y: Minimum Area of Vertical Bars, A-bv 0.00 in 0.00 in in in in 0.00 inA2 0.00 inA2 0.00 inA2 i d 4/15/2002 RCWALLPRO EXAMPLE 1 3 of 4 Wall's Height to Length Ratio Coefficient ALFA-C Code Shear Demand/Capacity, Vu/(Phi-v Vn) L Shear Capacity, Phi-v Vn: 0.8 3.0 18 94 kips 0.42 ndim ..- 6EE BELOW FOR REQUIRBD VALlfE OF PHI-v Overstrength Flexural Capacity, Mo Plastic Shear Demand, Vp - Mo/Mu Ratio .J Plastic Shear Demand/Capacity, Vp/(Phi-v Vn) 62 119 kip- f t 3.33 ndim 3511 kips 1.85 ndim + PER SEC. 1909.3.4, USE PHI-v = 0.60 FOR SHEAR STRENGTH RECHECK YOUR IIWT FOR CORRECT PHI-v END OF CALCULATIONS To report any 'bug' in the spreadsheet, please contact structech@juno.com. -.I 4/15/2002 RCWALLPRO EXAMPLE 1 4 of 4 n' Project: /AWL I Page: Ycp Frame Design Group Dd ': c c h - e/- -- c .- - - - - r GV 145' c e c r r ci ! r I r- Frame Design Group Proiect: Page: w F c I L c. c . c- c Project: Page: ZB Frame Design Group X = 46.82' I 2 a Project: Page: ri9 c. c - Frame Design Group 5 Project: Page: 90 c c c Frame Design Group - L Company : Frame Design Group Designer : JEH Job Number : 01-196 Shear Wall Q Line 14 1 - April 16, 2002 Checked By: 4 I EL 53 3.5 ft B 430 in I 13326 - (Reverse EL) D dyx U 58 ft z Geometry and Materials Allowable Soil Bearing : 5000 psf Steel fj~ :60 ksi Length :58ft eX :Oin Width :loft eZ :91 in Concrete Weight : 145 pcf Minimum Steel : .0018 Thickness :66 in pX :20 in Concrete fc :3 ksi Rebar CL :3 in Height :O in pZ :430 in DL+LL DL+LL ._ DL+LL+WI- DL+LL+WL - DL+mGWL -__ j DL+LL-WL DL+LL+EL ~ DL+LL+EL DL+LL+EL DL+LL-EL - DL+EL DL+EL 5000 1 2094.42(A) i NA _!!!A- - NA 6665 , 2094.42(A) NA 6665 2094.42 (A) NA ____ NA 6665 3443.01 (B) ' 2.346 ~ NA NA 6665 5455.28 (A) 1.673 NA -_ - -. 6665 3442.64 (B) 2.256 -_ AD DC BA AD c'p Service Corn bina tion Results R BR BR BR BR B DL+LL DL+LL+WL DL+LL-WL DL+ LL+EL DL+LL-EL QA: 2094.42 psf QA: 2094.42 psf QA: 2094.42 psf QA: 0 psf QA: 5455.28 psf QB: 1042.06 psf QB: 1042.06 psf QB: 1042.06 psf QB: 3443.01 psf QB: 0 psf QC: 1042.06 psf QC: 1042.06 psf QC: 1042.06 psf QC: 3443.01 psf QC: 0 psf QD: 2094.42 psf QD: 2094.42 psf QD: 2094.42 psf QD: 0 psf QD: 5455.28 psf BPI B QA: 0 psf QA: 5474.55 psf QB: 3442.64 psf QB: 0 psf QC: 3442.64 psf QC: 0 psf QD: Opsf QD: 5474.55 psf DL+EL DL-EL RlSAFoot Version 1.03 [Untitled.rft] Page 1 c P c ,D 1.4DL 1 1.2D+L+E 1.2DL+1 LL+1.4EL D+L 1.4DL+1.7LL Company : Frame Design Group Designer : JEH Job Number : 01-196 Shear Wall Q Line 14 NA NA 214.353 .305 .614 NA NA 219.504 .312 .642 NA NA 545.944 , .776--- .58 April 16, 2002 32 Checked By: 1.2D+L+E ' 0.9E+E Flexure Design Results Description Load Sets and Factors MU-XX (k-ft) Z Dir As (in2) Mu-ZZ (k-ft) X ___ Dir As (in2 ) D 1 1.4DL 2763.79 ] 14.256 1065.29 - -~ 82,685 I 1.4DL+1.7LL 2828.47 1 14.256 I1 13.98 82.685 1.2DL+1 LL-1.4EL NA NA I 2.554 .004 SO5 .9DL+1.4EL NA NA , 564.81 .802 .432 ___- 71 70.46 51 2.398 7472.28 2298.25 D -- - -- ~~ D+L 1.4DL+1.7LL 1.2D+L+E 1.2DL+1 LL+1.4EL 1.2D+L+E-- ___ 1.2DL+1 LL-1.4EL 0.9E+E ~~ .9DL+1.4EL 1.4nL O.xE+E 1 .9DL-1.4EL 7 j 14.256 1 27.537 ~ 14.256 1227.21 .04 1283.31 .042 I 1159.09 .038 1010.69 I .033 I 863.12 .028 714.72 I .023 I f Note: Overburden and footing self weight are included in the DL load case. Controlling X direction steel requires Region 1 (starts at A): 197 in Region 2 (middle): 120 in Region 3 (ends at B): 379 in the following placement: Steel: 19.962 in: Steel: 24.319 in2 Steel: 38.404 in 1006.16~~ 877.338 ~ 749.236 620.41 7 ____ ~~ ~ ~__ 82.685 82.685 82.685 82.685 .. . Shear Check Results Two Way (Punching) Vc: NA One Way (X Dir. Cut) Vc 828.157 k One Way (2 Dir. Cut) Vc: 4803.31 k Punchina X Dir. Cut Z Dir. Cut vu/ -vc 0 0 0 0 0 0 ._ Note: Overburden and footing self weight are included in the DL load case. RlSAFoot Version 1.03 [Untitled.rft] Page 2 Project: LIJCC- \+ Page: $3 c Frame Design Group c c c c Proiect : Page: zd. c Frame Design Group P c c c f- c c c Frame Design Group LL ** 0.03 x - i 18 Project: LWE I3 Page: %< 35.0 3 c W+Lt& c c r .. 799.6 11 0.4 160 I c I I I I 1 100 , 13266 1 (Reverse EL) Company : Frame Design Group Designer : JEH Job Number : 01-196 Toyota Carlsbad -Wall B ~- DL+LL DL+LL+EL DL+LL+EL DL+EL DL+EL I 36 May 8,2002 ~- ~~~ NA - DL+LL 5000 ; 2880.49(A) NA DL+LL+EL 6665 6535.92 (B) ' 3.054 *~ NA DL+LL-EL 6665 ! 5847.21 (A) I 2.282 ____ DL-EL 6665 i 5758.17(A) 2.016 - - NA - _- NA DL+EL 6665 i 6257.49(B) j 2.7E-__- ~ NA- - Checked By: Geometry and Materials Length :64ft ex :Oin Allowable Soil Bearing : 5000 psf Steel fj : 60 ksi Width :6 ft e2 :Oin Concrete Weight : 145 pcf Minimum Steel : .0018 Thickness :36 in pX :20 in Concrete fc :4 ksi Rebar CL : 3.5 in Height : 0 in pZ :672 in F c - Loads DL - LL EL - AD DC BA AD c c P c e P W-E W-E S-E W-fi 1-6 DL+LL D L+ LL+ E L DL+LL-EL DL+EL DL-EL QA: 2880.49 psf QA: 58.383 psf QA: 5847.21 psf QA: 0 psf QA: 5758.17 psf QB: 2880.49 psf QB: 6535.92 psf QB: 0 psf QB: 6257.49 psf QB: 0 psf QC: 2880.49 psf QC: 6535.92 psf QC: 0 psf QC: 6257.49 psf QC: 0 psf QD: 2880.49 psf QD: 58.383 psf QD: 5847.21 psf QD: 0 psf QD: 5758.17 psf RlSAFoot Version 1.03 [Untitled.rft] Page 1 Company : Frame Design Group Designer : JEH Job Number : 01-196 1.4D 1.4D+1.7L 1.2D+1 .OL+1.4E May 8,2002 Checked By: $1 Toyota Carlsbad -Wall B I I 49.766. 1.4DL 174.249 j 4.666 545.334 1.4DL+1.4LL 193.569 I 4.666 ~ 605.798 ~~ 49.766 1.4DL+1 LL+1.4EL 424.631 1 4.666 ! 676.152 49.766 c Flexure Design Results I 1.4D I 1.4D+1.7L ' 1.2D+1 .OL+1.4E c c 1.4DL NA NA 28.134 .112 .697 0 1.4DL+1.4LL NA NA 31.253 .124 .774 0 ,~~ __ 1.4DL+1 LL+1.4EL NA NA 69.315 , .276 -864 ~ ~ 0 - 1.2D+1 .OL+1.4E , 1.4DL+1 LL-1.4EL ! NA NA Note: Overburden and footing self weight are included in the DL load case. 1 ?+a 62.247 .247 -~f~ .64 ~~ 0 Controlling X direction steel requires the following placement: Region 1 (starts at A): 348 in Region 2 (middle): 72 in Steel: 8.531 in Region 3 (ends at B): 348 in Steel: 20.618 in Steel: 20.618 if2 1.4D __ - __ 1.4DL 1.2D+1 OL+K4E 1.4DL+1 LL-1.4EL 0.9D+1.4E i .9DL-1.4EL c 1.4D+1.7L 1.4DL+1.4LL 1.2D+1 .OL+14ETDL+l LL+1.4EL 0.9D+l.4E I .9DL+1.4EL - A D 1393.99 .022 1548.55 .025 1728.39 .027 1120.14 .018 4 I 672.136 .Oil 1280.39 ! .02 I Shear Check Resulfs Two Way (Punching) Vc: NA One Way (X Dir. Cut) Vc 295.989 k One Way (Z Dir. Cut) Vc: 3157.22 k c IC- - c RlSAFoot Version 1.03 [Untitled.rft] Page 2 Frame Design Group Company : Frame Design Group Designer : JEH Job Number : 01-196 Toyota Carlsbad - Wall W D DL 101 6.2 LL ' 188 EL 1 203.2 May 8,2002 VI Checked By: I I I I ~ 100 ~- 13535 , 1 (Reverse EL) 672 in +, 7.5 ft I B .. - -_ DL+LL+EL , DL+LL+EL __ DL+LL+EL ~ DL+LL-EL _-- DL+EL ~ DL+EL DL+EL I DL-EL D 6665 i 6646.83(B) 4.427 - ._ - NA NA 6665 5692.84(A) 1 3.361 6665 6205.52(B) I 3.934 NA _- ~ 6665 5254.32(A) ~ 2.868 NA- c CI"; 71 ft Geometry and Materials Length :71 ft eX :Oin Allowable Soil Bearing : 5000 psf Steel fy : 60 ksi Width :6ft eZ :Oin Concrete Weight : 145 pcf Minimum Steel : .0018 Thickness :48 in pX :20 in Concrete f c :4 ksi Rebar CL : 3.5 in Height : 0 in pZ :672 in AD DC BA AD Service Combination Results z-z ~~ s-6 s-6 E-6 s-6 s-6 DL-EL DL+LL DL+LL+EL DL+LL-EL DL+EL QA: 3484.85 psf QA: 1276.86 psf QA: 5692.84 psf QA: 835.549 psf QA: 5254.32 psf QB: 3484.85 psf QB: 6646.83 psf QB: 322.873 psf QB: 6205.52 psf QB: 0 psf QC: 3484.85 psf QC: 6646.83 psf QC: 322.873 psf QC: 6205.52 psf QC: 0 psf QD: 3484.85 psf QD: 1276.86 psf QD: 5692.84 psf QD: 835.549 psf QD: 5254.32 psf RlSAFoot Version 1.03 [Untitled.rft] Page 1 Company : Frame Design Group Designer : JEH Job Number : 01-196 1.4D 1.4DL 71 9.036 I 6.221 May 8,2002 Checked By: Qo Toyota Carlsbad - Wall t 0 710.099 i 73.613 c 1.4D+lX : 1.4DL+1.4LL 1.2D+1 .OL+1.4E 1.4DL+1 LL+l.4EL 1.2D+l .OL+1.4E 1.4DL+1 LL-1.4EL 0.9D+1.4E .9DL-1.4EL ' 0.9D+1.4E .9DL+1.4EL c 823.296 6.221 813.064 1 73.613 1495.85 0.63) 894.935 I 73.61 3 1270.47 6.459 ) 672.356 73.6 13- 567.782 ~ 73.613 11 09.53 6.221 345.203 - 73.61 __ 3 1 167.47 6.221 I __ ~ Flexure Design Results 1.40 1.4DL 1.4D+1.7L ~ 1.4DL+1.4LL I~+l.OL+1.4E ' 1.4DL+1 LL+1.4EL 1.2D+1 .OL+1.4E 1.4DL+1 LL-1.4EL 0.9D+l.4E .9DL+1.4EL 1 0.9D+1.4E .9DL-1.4EL NA NA , 96.937 ~ .281 j .908 0 NA NA ' 110.993 i .322 j 1.039 0 NA NA 203.119 ~ .59 1.144 0 NA NA 172.734 , .SO1 ~ .859 ~~ 0 NA j NA 158.859 .461 .726 - 0 NA I NA 151.865 ' .441 I .441 0 Note: Overburden and footing self weight are included in the DL load Controlling X direction steel requires the following placement: Region 1 (starts at A): 390 in Steel: 31.07 in' Region 2 (middle): 72 in Steel: 11.472 '2"' Region 3 (ends at B): 390 in Steel: 31.07 in - 1.4D j 1.4DL ! 1815.17 -~ 1.4D21.7L ~ 1.4DL+1.4LL ' 2078.37 2287.65 1.2D+1 .OL+1.4E 1.4DL+1 LL-1.4EL 1718.69 0.9D+1.4E .9DL+1.4EL 1451.37 - ___ 0.9D+1.4E ~ .9DL-1.4EL 882.41 2 _- 1.2D+l .OL+1.4E 1 1.4DL+1 LL+1.4EL Shear Check Results Two Way (Punching) Vc: NA One Way (X Dir. Cut) Vc 405.278 k One Way (Z Dir. Cut) Vc: 4795.78 k Punchins X Dir. Cut 2 Dir. Cut .029 .033 1 .036 I .027 .023 .014 I Concrete Bearing Check Results (Only Vertical Loads Consideredl) Bearing Bc : 89994.1 k Note: Overburden and footing self weight are included in the DL load case. c c RlSAFoot Version 1.03 [Untitled.rft] Page 2 Project: 1 oy ota ha Ls 136L04 Page: d/ Frame Design Group 4 c c Project: Page: tr2 c Frame Design Group c c c c P rc c e I c c e 32” c- c c c c- c c L 63 Frame Design Group, Inc. Sheet No. 2 Faraday, Suite 101 Imine, CA 92618 94 9/595 - 8015 ======================================PTData for Windows {v2.000-0229)========~============================== POST TENSIONED ONE-WAY SLAB DESIGN 03-21-2002 PROJECT : Toyota Calrsbad MEMBER ID: Diaphragm Slab at the florr STORAGE ID: C:\PTPLUS32\PTRUNS\TOYOTA-l\DIAPHR-l.PTD ------------------------------------Copyright .................................... 2000 Structural Data Inc ._______________----------------- ________________________________===== 13 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.2 LL FACTOR=l. CONCRETE: BEAM 5OOOpsi 150pCf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi l5Opcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f1c=424psi BOT 6.0 SQRT f'c=424psi %SUP.DLBTRANSFER=O.O TENDON COVER: INTERIOR SPANS TOP 0.75 in EXTERIOR SPANS TOP 0.75 in UNBONDED, LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A B TOP & BOT DL + LL/4 RATIO=l.OO REBAR YIELD=60.00ksi LOAD FACTORS 1.2/1./1.7/1.3/.9/.75/1.2/1. fse=173.0ksi COl Ie/Ig=l.OO NO Top COlUtllnS @ Stressing ====================================Copyright 2000 Structural Data Inc.===================================== BOTTOM 0.75 in BOTTOM 1.00 in TENDON DIAM=O.50in MAX LONG BAR SIZE=#4 REBAR COVER: 1.00in TOP 1.00in BOT Sectionl-ONE-WAY SLAB INPUT DATA <--- L SPAN (ft) 1 12.00 2 18.00 3 18.00 4 18.00 5 18.00 6 18.00 7 18.00 8 18.00 9 18.00 10 18.00 11 18.00 12 18.00 13 16.00 ----_ GEOMETRY----- t TribL TribR (in) (ft) (ft) 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 5.00 0.50 0.50 ---- > < -------- TENDON PROFILE------ Yref CL cR A B (in) TYPE (in) (in) (ft) (ft) 0.00 3 0.00 0.00 1.20 1.20 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.80 1.80 0.00 3 0.00 0.00 1.60 1.60 -> C (ft) 6.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 8.00 ~ ~ ~~ <----- SUPERIMPOSED LOADS----> LOAD DL SPAN TYPE (k,ft) 1 2 3 4 5 6 7 8 9 10 11 12 13 U U U U U U U U U U U U U 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 LL (k. ft) 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 JOINT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 s PAN 1 2 3 4 5 6 7 8 9 10 11 12 13 <--------------------coLUMNs--------------------> H c2 Cl Far H c2 C1 Far (ft) (in) (in) End (ft) (in) (in) End 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin <--------Bottom------> <--------Top---------> Section2 - SLAB AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored < - - - - - - - L 0.15 -1.28 -1.56 -1.47 -1.50 -1.49 -1.49 -1.49 -1.49 -1.49 -1.51 -1.43 -1.68 .DEAD LOAD- - - - - - M(x-ft) 0.48( 3.9) 0.82( 9.0) 0.72( 9.0) 0.75( 9.0) 0.74( 9.0) 0.75( 9.0) 0.75( 9.0) 0.75( 9.0) 0.75( 9.0) 0.74( 9.0) 0.77( 9.0) 0.67( 9.0) 1.14( 9.5) --> R -1.31 -1.55 -1.48 -1.50 -1.49 -1.49 -1.49 -1.49 -1.49 -1.51 -1.43 -1.72 0.24 <----- L .o. 01 0.55 0.63 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.63 -BALANCED LOAD- - - M(x-ft) -0.15 ( 6.0) -0.37( 9.0) -0.34( 9.0) -0.35( 9.0) -0.35( 9.0) -0.35( 9.0) -0.35( 9.0) -0.35( 9.0) -0.35( 9.0) -0.35( 9.0) -0.35( 9.0) -0.34( 9.0) -0.33( 8.0) -> R 0.53 0.63 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.60 0.64 -0.01 BEAM SECONDARY L R 0.00 0.07 0.08 0.16 0.16 0.14 0.14 0.15 0.15 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.15 0.15 0.14 0.14 0.17 0.16 0.01 A B (ft) (ft) 0.00 12.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 16.00 e L .- c c c <----- SPAN L 1 0.18 2 0.31 3 0.40 4 0.53 5 0.55 6 0.56 7 0.56 8 0.56 9 0.56 10 0.56 11 0.54 12 0.53 13 0.29 ,-MOST POS LL----- M (X-ft) 0.85( 6.0) 1.14( 9.0) 1.24( 9.0) 1.29( 9.0) 1.30( 9.0) 1.30( 9.0) 1.30( 9.0) 1.30( 9.0) 1.30( 9.0) 1.29( 9.0) 1.29( 9.0) 1.20( 9.0) 1.29( 9.5) .-> R 0.34 0.42 0.53 0.55 0.56 0.56 0.56 0.56 0.56 0.54 0.53 0.26 0.23 <------ MOST NEG LL---- L M(x-ft) -0.07 -0.07( 0.7) -1.30 -0.33( 4.0) -1.61 -0.64( 5.7) -1.67 -0.69( 5.7) -1.71 -0.72( 5.7) -1.72 -0.72( 5.7) -1.72 -0.72( 5.7) -1.72 -0.72 (12.3) -1.72 -0.72 (12.3) -1.71 -0.72 (12.3) -1.71 -0.67 (12 -3) -1.65 -0.66 (14 .O) -1.60 -0.04(15.3) --> R -1.35 -1.62 -1.67 -1.71 -1.72 -1.72 -1.72 -1.72 -1.71 -1.71 -1.64 -1.59 -0.04 Section3-EFFECTIVE FORCES AND PROFILES Eff Force No. CGS Dim. (in. from datum) F/A (ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13 JOINT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95 ULT(%R= 0.0) TOP BOT 0.00 0.00 0.09 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.12 0.00 0.13 0.00 0.12 0.00 0.13 0.00 0.00 0.00 JOINT TOP 0.1 2.50 3.08 0.1 1.00 4.00 0.1 1.00 4.00 0.1 1.00 4.00 0.1 1.00 4.00 0.1 1.00 4.00 0.1 1.00 4.00 0.1 1.00 4.00 0.1 1.00 4.00 0.1 1.00 4.00 0.1 1.00 4.00 0.1 1.00 4.00 0.1 1.00 3.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Section 4 - R E B A R TOP BOT TOP BOT 0.00 0.00 0.12 0.00 0.09 0.00 0.12 0.00 0.11 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.11 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.11 0.00 0.12 0.00 D+L/I(%R= 0.0) MIN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.50 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0,066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 REQUI SPAN 1 2 3 4 5 6 7 8 9 10 11 12 13 REMENTS ULT(%R= 0.0) TOP BOT 0.00 0.01 0.00 0.05 0.00 0.05 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.05 0.00 0.09 COLUMN MOMENTS (FACTORED) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 3 0.00 0.00 4 0.00 0.00 5 0.00 0.00 6 0.00 0.00 7 0.00 0.00 8 0.00 0.00 9 0.00 0.00 10 0.00 0.00 11 0.00 0.00 12 0.00 0.00 13 0.00 0.00 14 0.00 0.00 Tendon Weight=O.OlO psf (in2 ) D+L/4 (%R= 0.0) TOP BOT 0.00 0.04 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.05 0.00 0.08 0.00 0.00 0.00 0.00 Rebar Weight=O.612 psf Controlling Rebar For This Redistribution Case BOT SPAN BOT 1 #4x 3.0'69 20.0in o/c 2 #4x 7.5'8 20.0in o/c 3 #4x 9.0'8 19.7in o/c 4 #4x 9.0'8 19.8in o/c 5 #4x 9.0'8 19.2in o/c 6 #4x 9.0'8 19.2in o/c 7 #4x 9.0'8 19.2in o/c 8 #4x 9.0'8 19.2in o/c 9 #4x 9.0'8 19.lin o/c 10 #4x 9.0'8 19.3in o/c 11 #4x 9.0'8 19.0in o/c 12 #4x 9.0'8 20.0in o/c 13 #4x 8.5'8 18.2in o/c 14 #4x 4.0'8 O.Oin o/c #4x 2.0'69 #4x 5.0'8 #4x 6.0'8 #4x 6.0'8 #4x 6.0'8 #4x 6.0'8 #4x 6.0'0 #4x 6.0'0 #4x 6.0'8 #4x 6.0'0 #4x 6.0'8 #4x 6.0'8 #4x 5.7'8 #4x 2.7'8 O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.oin o/c O.Oin o/c 1 #4x 9.0'69 20.0in o/c 2 #4x 13.5'69 20.0in o/c 3 #4x 13.5'8 20.0in o/c 4 #4x.13.5'69 20.0in o/c 5 #4x 13.5'8 20.0in o/c 6 #4x 13.5'8 20.0in o/c 7 #4x 13.5'8 20.0in o/c 8 #4x 13.5'8 20.0in o/c 9 #4x 13.5'0 20.0in o/c 10 #4x 13.5'8 20.0in o/c 11 #4x 13.5'8 20.0in o/c 12 #4x 13.5'8 20.0in o/c 13 #4x 12.0'8 20.0in o/c MIN TOP BOT 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 TOP #4x 6.0'8 #4x 9.0'69 #4x 9.0'69 #4x 9.0'8 #4x 9.0'69 #4x 9.0'8 #4x 9.0'8 #4x 9.0'8 #4x 9.0'8 #4x 9.0'8 #4x 9.0'9 #4x 9.0'8 #4x 8.0'8 O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c Frame Design Group, Inc. 2 Faradav. Suite 101 Sheet No. 45 Tovota Calrsbad c c ULT(%R= 6.7) TOP BOT 0.00 0.00 0.08 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.10 0.00 0.12 0.00 0.00 0.00 D+L/4 (%R=lO .O) TOP BOT 0.00 0.00 0.09 0.00 0.10 0.00 0.09 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.09 0.00 0.11 0.00 0.00 0.00 MIN TOP BOT 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.00 0.00 ULT(%R= 6.7) SPAN TOP BOT 1 0.00 0.01 2 0.00 0.05 3 0.00 0.05 4 0.00 0.05 5 0.00 0.05 6 0.00 0.05 7 0.00 0.05 8 0.00 0.05 9 0.00 0.05 10 0.00 0.05 11 0.00 0.05 12 0.00 0.04 13 0.00 0.09 Rebar Weight=O.605 D+L/4 (%R=10.0) TOP BOT 0.00 0.03 0.00 0.06 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.08 PSf MIN TOP BOT 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 JOINT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 c c Controllinu Rebar For This Redistribution Case - JOINT TOP BOT 1 #4x 3.0'8 20.0in o/c #4x 2.0'63 2 #4x 7.5'8 20.0in o/c #4x 5.0'63 3 #4x 9.0'8 20.0in o/c #4x 6.0'63 4 #4x 9.0'63 20.0in o/c #4x 6.0'@ 5 #4x 9.0'63 20.0in o/c #4x 6.0'63 6 #4x 9.0'8 20.0in o/c #4x 6.0'@ 7 #4x 9.0'63 20.0in o/c #4x 6.0'63 8 #4x 9.0'8 20.0in o/c #4x 6.0'63 9 #4x 9.0'63 20.0in o/c #4x 6.0'8 10 #4x 9.0'63 20.0in o/c #4x 6.0'63 11 #4x 9.0'63 20.0in o/c #4x 6.0'8 O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c 0 .Oin o/c O.Oin o/c O.Oin o/c 0 .Oin o/c O.Oin o/c O.Oin o/c SPAN BOT 1 #4x 9.0'63 20.0in o/c #4x 2 #4x 13.5'63 20.0in o/c #4x 3 #4x 13.5'63 20.0in o/c #4x 4 #4x 13.5'63 20.0in o/c #4x 5 #4x 13.5'63 20.0in o/c #4x 6 #4x 13.5'63 20.0in o/c #4x 7 #4x 13.5'63 20.0in o/c #4x 8 #4x 13.5'63 20.0in o/c #4x 9 #4x 13.5'63 20.0in o/c #4x 10 #4x 13.5'8 20.0in o/c #4x 11 #4x 13.5'63 20.0in o/c #4x 12 #4x 13.5'63 20. Oin o/c #4x 13 #4x 12.0'63 20.0in o/c #4x TOP 6.0'63 9.0'8 9.0'8 9.0'63 9.0'63 9.0'@ 9.0'63 9.0'63 9.0'63 9.0'63 9.0'8 9.0'9 8.0'63 O.Oin o/c O.Oin o/c O.oin o/c O.Oin o/c O.Oin o/c 0 .Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c - O.Oin o/c O.Oin o/c 12 #4x 9.0163 20 13 #4x 8.5'63 20 14 #4X 4.0'@ 0 Oin o/c #4x 6.0'8 O.Oin o/c Oin o/c #4x 5.7'8 O.Oin o/c Oin o/c #4x 2.7'63 O.Oin o/c ULT(%R=15.0) TOP BOT 0.00 0.01 0.00 0.05 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.08 D+L/4 (%R=15.0) TOP BOT 0.00 0.03 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.05 0.00 0.08 MIN BOT 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 JOIN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 'T ULT(%R=15.0) TOP BOT 0.00 0.00 0.07 0.00 0.09 0.00 0.09 0.00 0.09 0.00 0.09 0.00 0.09 0.00 0.09 0.00 0.09 0.00 0.09 0.00 0.09 0.00 0.09 0.00 0.10 0.00 0.00 0.00 D+L/4 (%R=15.0) TOP BOT 0.00 0.00 0.09 0.00 0.10 0.00 0.09 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.09 0.00 0.11 0.00 0.00 0.00 MIN TOP BOT 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.00 0.00 SPAN 1 2 3 4 5 6 7 8 9 10 11 12 13 TOP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=0.605 psf c L c Controlling Rebar For This Redistribution Case Oin o/c #4x 2.0'8 O.oin o/c 1 #4x 9.0'8 20.0in o/c BOT SPAN BOT JOINT TOP 1 #4x 3.0'63 20 TOP #4x 6.0'8 #4x 9.0'8 #4x 9.0'8 #4x 9.0'8 #4x 9.0'63 #4x 9.0'63 #4x 9.0'63 #4x 9.0'63 #4x 9.0'63 #4x 9.0'8 #4x 9.0'63 #4x 9.0'63 #4x 8.0'@ O.oin o/c 0.oin o/c O.Oin o/c O.oin o/c O.Oin o/c O.Oin o/c 0.Oin o/c o.0in o/c O.Oin o/c O.oin o/c O.Oin o/c 0.Oi.n o/c O.Oin o/c 2 3 4 5 6 7 8 9 10 11 12 13 14 #4x #4x #4x #4x #4x #4x #4x #4x #4x #4x #4x #4x #4x #4x 5.0'8 #4x 6.0'63 #4x 6.0'63 #4x 6.0'63 #4x 6.0'8 #4x 6.0'63 #4x 6.0'63 #4x 6.O'Q #4x 6.0'@ #4x 6.0'63 #4x 6.0'@ #4x 5.7'63 #4x 2.7'63 0 .Oin o/c O.Oin o/c O.Oin o/c O.oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c O.Oin o/c 2 #4x 13.5'63 20.0in o/c 3 #4x 13.5'8 20.0in o/c 4 #4x 13.5'63 2O.Oin o/c 5 #4x,13.5'8 20.0in o/c 6 #4x 13.5'63 20.0in o/c 7 #4x 13.5'63 20.0in o/c 8 #4x 13.5'63 20.0in o/c 9 #4x 13.5'8 20.0in o/c 10 #4x 13.5'8 20.0in o/c 11 #4x 13.5'63 20.0in o/c 12 #4x 13.5'8 20.0in o/c 13 #4x 12.0'63 20.Oin o/c c L c c c L c c Service Loads SPAN Tension (XI Compression (x) 1T B 2T B 3T B 4T B 5T B 6T B 7T B 8T B 9T B 10 T B 11 T B 12 T B 13 T B JOINT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0.448 0.205 0.544 0.317 0.545 0.322 0.557 0.340 0.557 0.340 0.559 0.342 0.559 0.342 0.559 0.342 0.559 0.342 0.561 0.338 0.561 0.345 0.574 0.301 0.571 0.440 ( 11.33) ( 4.93) ( 17.33) ( 9.00) ( 17.33) ( 9.00) ( 17.33) ( 9.00) ( 17.33) ( 9.00) ( 17.33) ( 9.00) ( 0.67) ( 9.00) ( 17.33) ( 9.00) ( 0.67) ( 9.00) ( 17.33) ( 9.00) ( 0.67) ( 9.00) ( 17.33) ( 9.00) ( 0.67) ( 9.47) -0.337 ( 4.93) -0.579 ( 11.33) -0.448 ( 9.00) -0.675 ( 17.33) -0.454 ( 9.00) -0.676 ( 17.33) -0.471 ( 9.00) -0.689 ( 17.33) -0.472 ( 9.00) -0.689 ( 17.33) -0.474 ( 9.00) -0.690 ( 17.33) -0.474 ( 9.00) -0.690 ( 0.67) -0.473 ( 9.00) -0.691 ( 17.33) -0.474 ( 9.00) -0.691 ( 0.67) -0.470 ( 9.00) -0.693 ( 17.33) -0.476 ( 9.00) -0.692 ( 0.67) -0.432 ( 9.00) -0.706 ( 17.33) -0.572 ( 9.47) -0.703 ( 0.67) Section 6 - F A C T 0 R E D Maximum Axial Load Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 0.59 0.00 0.00 2.26 0.00 0.00 2.48 0.00 0.00 2.46 0.00 0.00 2.49 0.00 0.00 2.49 0.00 0.00 2.49 0.00 0.00 2.49 0.00 0.00 2.49 0.00 0.00 2.48 0.00 0.00 2.49 0.00 0.00 2.43 0.00 0.00 2.56 0.00 0.00 0.81 0.00 0.00 Transfer of Prestress Tension (x) Compression (x) 0.081 ( 11.33) -0.002 ( 3.87) 0.107 ( 17.33) 0.011 ( 9.00) 0.108 ( 0.671 0.100 ( 17.33) 0.000 ( 9.00) 0.100 ( 0.67) -0.001 ( 9.00) 0.099 ( 17.33) -0.001 ( 9.00) 0.099 ( 0.67) -0.001 ( 9.00) 0.099 ( 17.33) -0.001 ( 9.00) 0.099 ( 0.67) 0.000 ( 9.00) 0.103 ( 17.33) -0.002 ( 9.00) 0.103 ( 0.67) 0.004 ( 9.00) 0.144 ( 17.33) -0.017 ( 9.00) 0.139 ( 0.67) 0.103 ( 10.93) -0.004 ( 9.00) -0.151 ( 3.87) -0.234 ( 11.33) -0.164 ( 9.00) -0.261 ( 17.33) -0.149 ( 9.00) -0.262 ( 0.67) -0.154 ( 9-00) -0.253 ( 17.33) -0.153 ( 9-00) -0.254 ( 0.67) -0.153 ( 9.00) -0.253 ( 17.33) -0.153 ( 9.00) -0.253 ( 0.67) -0.153 ( 9.00) -0.253 ( 17.33) -0.153 ( 9.00) -0.253 ( 0.67) -0.151 ( 9.00) -0.257 ( 17.33) -0.158 ( 9-00) -0.256 ( 0.67) -0.136 ( 9.00) -0.298 ( 17.33) -0.257 ( 10.93) -0.293 ( 0.67) COLUMN LOADS Maximum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 0.59 0.00 0.00 1.89 0.00 0.00 1.93 0.00 0.00 1.85 0.00 0.00 1.85 0.00 0.00 1.84 0.00 0.00 1.84 0.00 0.00 1.84 0.00 0.00 1.84 0.00 0.00 1.84 0.00 0.00 1.86 0.00 0.00 1.82 0.00 0.00 2.04 0.00 0.00 0.81 0.00 0.00 DEFLECTIONS SPAN 1 2 3 4 5 6 7 8 9 10 11 12 13 <----- Deflections (in) -----> Delta L/Delta Delta L/Delta DL + Bal LL 0.008 0.030 0.021 0.023 0.023 0.023 0.023 0.023 0.023 0.022 0.026 0.013 0.053 19193 7232 10404 9193 9534 9433 9452 9486 9347 9829 8394 16114 3636 0.041 0.106 0.118 0.125 0.126 0.127 0.127 0.127 0.127 0.126 0.126 0.114 0.107 3524 2031 1824 1726 1711 1702 1701 1702 1702 1716 1720 1894 1803 c L Page: #7 Project : Frame Design Group c h c c c c t /= 60 c c c c c c c c c Project: Page: (cs Frame Design Group c Frame Design Group. Inc. Sheet No. Y9 2 Faraday, Suite 101 Irvine. CA 92618 949/ 595 - 8015 ...................................... PTData for Windows {V2,000-0229)=====-==================~============= POST TENSIONED ONE-WAY SLAB DESIGN 05-09-2002 PROJECT : Toyota Carl sbad MEMBER ID: Typical 18' Span Slabs STORAGE ID: C: \PTPLUS32\PTRUNS\\TOYOTA-SLAB. PTD 8 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 1.00 in EXTERIOR SPANS TOP 1.00 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=0.50in MAX LONG BAR SIZE=#4 REBAR COVER: 1. OOi n TOP 1, OOi n BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns (b Stressing BOTTOM 0.75 in BOTTOM 0.75 in 0.004A @ TOP & BOT DL + LL/4 RATIO=l .67 <--- L SPAN (ft) 1 12.00 2 18.00 3 18.00 4 18.00 5 18.00 6 18.00 7 18.00 8 15.50 Sectionl-ONE-WAY SLAB INPUT DATA GEOMETRY---------> <--------TENDON PROFILE-------> < - - - - -SUPERIMPOSED LOADS- - - -> CL cR A B C LOAD DL LL AB t TribL TribR Yref (in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 5.00 0.50 0.50 0.00 2 7.00 8.00 0.00 0.00 0.00 1 U 0.002 0.050 0.00 12.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 2 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 3 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 4 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 5 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 6 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 7 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 7.00 0.00 0.00 0.00 8 U 0.002 0.050 0.00 15.50 <--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> H C2 C1 Far H C2 C1 Far JOINT (ft) (in) (in) End (ft) (in) (in) End 1 0.00 0.00 14.00 Pin 0.00 0.00 0.00 Pin 2 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 3 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 4 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 5 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 6 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 7 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 8 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 9 0.00 0.00 14.00 Pin 0.00 0.00 0.00 Pin Section2 - SLAB AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored < - - - - - - - DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 0.13 0.48( 3.8) -1.31 0.01 -0.35( 3.8) 1.12 0.01 0.20 2 -1.28 0.82( 9.0) -1.55 1.14 -0.75( 9.0) 1.40 0.22 0.48 3 -1.56 0.72( 9.0) -1.48 1.41 -0.65( 9.0) 1.33 0.49 0.41 4 -1.47 0.76( 9.0) -1.49 1.33 -0.68( 9.0) 1.35 0.41 0.43 5 -1.50 0.74( 9.0) -1.51 1.35 -0.67( 9.0) 1.35 0.43 0.43 6 -1.50 0.76( 9.0) -1.45 1.35 -0.68( 9.0) 1.34 0.43 0.42 7 -1.45 0.69( 9.0) -1.65 1.34 -0.66( 9.0) 1.38 0.42 0.46 8 -1.62 1.05( 9.2) 0.20 1.36 -0.77( 9.2) 0.02 0.44 0.02 c <----- SPAN L 1 0.16 2 0.31 3 0.40 4 0.52 5 0.54 6 0.54 7 0.52 8 0.30 -MOST POS LL------> M(X-ft) R 0.85( 6.0) 0.34 1.14( 9.0) 0.42 1.23( 9.0) 0.53 1.29( 9.0) 0.54 1.29( 9.0) 0.53 1.28( 9.0) 0.51 1.19( 9.0) 0.26 1.23( 7.8) 0.20 <----- L -0.06 -1.30 -1.61 -1.67 -1.70 -1.70 -1.64 -1.56 -MOST NEG LL----- M(X-ft) -0.06( 0.6) -0.33( 4.0) -0.64( 5.7) -0.69( 5.7) -0.71( 12.3) -0.67( 12.3) -0.61( 14.0) -0.04( 14.9) , -> R -1.35 -1.62 -1.67 -1.70 -1.70 -1.63 -1.54 -0.04 COLUMN MOMENTS( FACTORED) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 3 0.00 0.00 4 0.00 0.00 5 0.00 0.00 6 0.00 0.00 7 0.00 0.00 8 0.00 0.00 9 0.00 0.00 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.180 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 8.83 8.83 0.3 2.50 3.00 0.00 1.25 0.147 0.147 2 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147 3 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147 4 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147 5 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147 6 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147 7 8.83 8.83 0.3 1.25 4.00 0.00 1.25 0.147 0.147 8 8.83 8.83 0.3 1.25 3.75 0.00 2.50 0.147 0.147 -L (/Z'Lp @ GF Section 4 - R E B A R R E Q U I R E M E N T S (in21 JOINT 1 2 3 4 5 6 7 8 9 ULT(%R= 0.0) TOP BOT 0.00 0.00 0.06 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.12 0.00 0.10 0.00 0.11 0.00 0.00 0.00 D+L/4(%R= 0.0) MIN TOP BOT TOP BOT 0.00 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.00 0.00 0.00 0.00 ULT(%R= 0.0) SPAN TOP BOT 1 0.00 0.00 2 0.00 0.03 3 0.00 0.04 4 0.00 0.04 5 0.00 0.04 6 0.00 0.04 7 0.00 0.03 8 0.00 0.06 Rebar Weight=0.602 Control 1 i ng Rebar For This Redistribution Case JOINT TOP BOT SPAN BOT 1 #4x 3.0'8 20.0in o/c #4x 2.0'8 O.Oin o/c 1 #4x 9.0'8 20.0in 2 #4x 7.5'8 20.0in o/c #4x 5.0'8 O.Oin o/c 2 #4x 13.5'8 20.0in 3 #4x -9.0'8 19.8in o/c #4x 6.0'8 O.Oin o/c 3 #4x 13.5'@ 20.0in 4 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 4 #4x 13.5'@ 20.0in 5 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 5 #4x 13.5'8 20.0in 6 #4x 9.0'8 19.9in o/c #4x 6.0'8 O.Oin o/c 6 #4x 13.5'8 20.0in 7 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 7 #4x 13.5'8 20.0in 8 #4x 8.4'8 19.2in o/c #4x 5.6'8 O.Oin o/c 8 #4x 11.6'8 20.0in 9 #4x 3.9'8 O.Oin o/c #4x 2.6'@ O.Oin o/c D+L/I(%R= 0.0) TOP BOT 0.00 0.04 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.06 0.00 0.08 PSf MIN TOP BOT 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 TOP o/c #4x 6.0'8 O.Oin o/c o/c #4x 9.0'8 O.Oin o/c o/c #4x 9.0'8 O.Oin o/c o/c #4x 9.0'8 O.Oin o/c o/c #4x 9.0'8 O.Oin o/c o/c #4x 9.0'8 O.Oin o/c o/c #4x 9.0'8 O.Oin o/c o/c #4x 7.8'8 O.Oin o/c ULT(%R= 6.7) JOINT TOP BOT 1 0.00 0.00 2 0.05 0.00 3 0.09 0.00 4 0.09 0.00 5 0.09 0.00 6 0.10 0.00 7 0.09 0.00 8 0.09 0.00 9 0.00 0.00 D+L/4(%R=10 .O) MIN TOP BOT TOP BOT 0:OO 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.11 0.00 0.12 0.00 0.11 0.00 0.12 0.00 0.11 0.00 0.12 0.00 0.11 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.11 0.00 0.12 0.00 0.00 0.00 0.00 0.00 ULT( %R= 6.7 ) O+L/4( %R=10.0 1 MIN SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.04 0.00 0.12 2 0.00 0.02 0.00 0.07 0.00 0.12 3 0.00 0.03 0.00 0.06 0.00 0.12 4 0.00 0.03 0.00 0.06 0.00 0.12 5 0.00 0.03 0.00 0.06 0.00 0.12 6 0.00 0.03 0.00 0.06 0.00 0.12 7 0.00 0.02 0.00 0.06 0.00 0.12 8 0.00 0.06 0.00 0.08 0.00 0.12 Rebar Weight=0.600 psf Controlling Rebar For This Redistribution Case JOINT TOP BOT 1 #4x 3.0'8 20.0in o/c #4x 2.0'8 O.Oin o/c 2 #4x 7.5'0 20.0in o/c #4x 5.0'8 O.Oin o/c 3 #4x 9.0'0 20.0in o/c #4x 6.0'8 O.Oin o/c 4 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 5 #4x 9.0'0 20.0in o/c #4x 6.0'0 O.Oin o/c 6 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 7 #4x 9.0'0 20.0in o/c #4x 6.0'8 O.Oin o/c 8 #4x 8.4'8 20.0in o/c #4x 5.6'8 O.Oin o/c 9 #4x 3.9'8 O.Oin o/c #4x 2.6'8 O.Oin o/c ULT( %R=15.0 JOINT TOP BOT 1 0.00 0.00 2 0.03 0.00 3 0.06 0.00 4 0.07 0.00 5 0.07 0.00 6 0.07 0.00 7 0.06 0.00 8 0.07 0.00 9 0.00 0.00 D+L/4(%R=15.0 TOP BOT 0.00 0.00 0.10 0.00 0.11 0.00 0.10 0.00 0.10 0.00 0.11 0.00 0.10 0.00 0.11 0.00 0.00 0.00 MIN TOP BOT 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.00 0.00 SPAN BOT TOP 1 #4x 9.0'8 20.0in o/c #4x 6.0'0 O.Oin o/c 2 #4x 13.5'8 20.0in o/c #4x 9.0'0 O.Oin o/c 3 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 4 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 5 #4x 13.5'8 20.0in o/c #4x 9.0'0 O.Oin o/c 6 #4x 13.5'0 20.0in o/c #4x 9.0'8 O.Oin o/c 7 #4x 13.5'@ 20.0in o/c #4x 9.0'8 O.Oin o/c 8 #4x 11.6'0 20.0in o/c #4x 7.8'0 O.Oin o/c ULT ( %R=15.0 ) D+L 14 ( %R=l5.0 1 MIN SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.04 0.00 0.12 2 0.00 0.02 0.00 0.07 0.00 0.12 3 0.00 0.01 0.00 0.06 0.00 0.12 4 0.00 0.02 0.00 0.06 0.00 0.12 5 0.00 0.02 0.00 0.06 0.00 0.12 6 0.00 0.02 0.00 0.06 0.00 0.12 7 0.00 0.01 0.00 0.06 0.00 0.12 8 0.00 0.05 0.00 0.08 0.00 0.12 Rebar Weight=0.600 psf Control 1 i ng Rebar For This Redi stri buti on Case JOINT TOP BOT SPAN BOT 1 #4x 3.0'0 20.0in o/c #4x 2.0'8 O.Oin o/c 1 #4x 9.0'0 20.0in o/c 2 #4x 7.5'8 20.0in o/c #4x 5.0'8 O.Oin o/c 2 #4x 13.5'0 20.0in o/c 3 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 3 #4x 13.5'8 20.0in o/c 4 #4x -9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 4 #4x 13.5'0 20.0in o/c 5 #4x 9.0'0 20.0in o/c #4x 6.0'8 O.Oin o/c 5 #4x 13.5'0 20.0in o/c 6 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 6 #4x 13.5'0 20.0in o/c 7 #4x 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 7 #4x 13.5'8 20.0in o/c 8 #4x 8.4'8 20.0in o/c #4x 5.6'8 O.Oin o/c 8 #4x 11.6'8 20.0in o/c 9 #4x 3.9'8 O.Oin o/c #4x 2.6'0 O.Oin o/c TOP #4x 6.0'0 O.Oin o/c #4x 9.0'8 O.Oin o/c #4x 9.0'8 O.Oin o/c #4x 9.0'0 O.Oin o/c #4x 9.0'0 O.Oin o/c #4x 9.0'0 O.Oin o/c #4x 9.0'0 O.Oin o/c #4x 7.8'0 O.Oin o/c c Frame Design Group, Inc. Sheet No. sz c r6 Section 5 - C 0 N C R ET E F L E X U R A L S T R E S S E S AN D <-----------------------Stresses (ksi)-----------------------> Service Loads Transfer of Prestress SPAN Tension (XI Compression (XI Tension (XI Compression (XI 1 T 0.223 ( 11.33) -0.373 ( 4.88) -0.176 ( 8.11) -0.206 ( 0.58) B 0.079 ( 4.88) -0.518 ( 11.33) -0.137 ( 0.58) -0.168 ( 8.11) 2 T 0.276 ( 17.33) -0.439 ( 9.00) -0.153 ( 9.00) -0.205 ( 17.33) B 0.145 ( 9.00) -0.570 ( 17.33) -0.139 ( 17.33) -0.190 ( 9.00) 3 T 0.289 ( 17.33) -0.461 ( 9.00) -0.157 ( 9.00) -0.205 ( 0.67) B 0.166 ( 9.00) -0.583 ( 17.33) -0.138 ( 0.67) -0.186 ( 9.00) 4 T 0.295 ( 17.33) -0.473 ( 9.001 -0.156 ( 9.00) -0.203 ( 17.33) B 0.179 ( 9.00) -0.590 ( 17.33) -0.140 ( 17.33) -0.187 ( 9.00) 5 T 0.298 ( 17.33) -0.472 ( 9.00) -0.156 ( 9.00) -0.203 ( 0.67) B 0.178 ( 9.00) -0.593 ( 17.33) -0.140 ( 0.67) -0.188 ( 9.00) 6 T 0.298 ( 0.67) -0.475 ( 9.00) -0.159 ( 9.00) -0.210 ( 17.33) B 0.181 ( 9.00) -0.593 ( 0.67) -0.133 ( 17.33) -0.184 ( 9.00) 7 T 0.286 ( 17.33) -0.441 ( 9.00) -0.145 ( 10.67) -0.209 ( 0.67) B 0.146 ( 9.00) -0.580 ( 17.33) -0.134 ( 0.67) -0.198 ( 10.67) 8 T 0.288 ( 0.67) -0.508 ( 9.22) -0.176 ( 0.67) -0.224 ( 14.92) B 0.214 ( 9.22) -0,582 ( 0.67) -0.119 ( 14.92) -0.167 ( 0.67) 7 &/ Section 6 - JOINT 1 2 3 4 5 6 7 8 9 FACTORED COLUMN LOADS Maximum Axial Load Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 0.83 0.00 0.00 3.14 0.00 0.00 3.47 0.00 0.00 3.44 0.00 0.00 3.48 0.00 0.00 3.48 0.00 0.00 3.41 0.00 0.00 3.52 0.00 0.00 1.09 0.00 0.00 Maxi mum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 0.83 0.00 0.00 2.52 0.00 0.00 2.54 0.00 0.00 2.40 0.00 0.00 2.40 0.00 0.00 2.41 0.00 0.00 2.39 0.00 0.00 2.66 0.00 0.00 1.09 0.00 0.00 DEFLECTIONS e----- Deflections (in) -----> DL + Bal LL SPAN Delta L/Delta Delta L/Delta 1 0.004 36212 0.041 3523 2 0.004 49981 0.106 2031 3 0.004 53606 0.118 1825 4 0.004 50141 0.125 1728 5 0.004 60042 0.125 1727 6 0.006 36754 0.124 1735 8 0.019 9801 0.095 1949 7 -0.004 59407 0.113 1908 h c Frame Design Group, Inc Sheet No. 53 i P- 8 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 175psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0 TENDON COVER: INTERIOR SPANS TOP 1.25 in EXTERIOR SPANS TOP 1.25 in UNBONDED, LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=O.SOin MAX LONG BAR SIZE=#4 REBAR COVER: 1, OOi n TOP 1, OOi n BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 0.75 in BOTTOM 0.75 in 0.004A @ TOP & BOT DL + LL/4 RATIO=l .67 <---. L SPAN (ft) 1 12.00 2 18.00 3 18.00 4 18.00 5 18.00 6 18.00 7 18.00 8 15.50 Section 1 - 0 N E - W A Y S L A B I N P U T D A T A GEOMETRY---------> <--------TENDON PROFILE-------> <-----SUPERIMPOSED LOADS----> t TribL TribR Yref CL cR A B C LOAD DL LL AB (in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 5.00 0.50 0.50 0.00 2 7.00 8.00 0.00 0.00 0.00 1 U 0.002 0.050 0.00 12.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 2 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 3 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 4 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 5 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 6 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 7 U 0.002 0.050 0.00 18.00 5.00 0.50 0.50 0.00 2 8.00 7.00 0.00 0.00 0.00 8 U 0.002 0.050 0.00 15.50 <--------------------COLuMNS--------------------> < - - - - - - - - Bottom------> <--------Top---------> H C2 C1 Far H C2 C1 Far JOINT (ft) (in) (in) End (ft) (in) (in) End 1 0.00 0.00 14.00 Pin 0.00 0.00 0.00 Pin 2 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 3 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 4 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 5 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 6 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 7 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 8 0.00 0.00 16.00 Pin 0.00 0.00 0.00 Pin 9 0.00 0.00 14.00 Pin 0.00 0.00 0.00 Pin Section2 - SLAB AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <- - ----BALANCED LOAD- - - -> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 0.13 0.48( 3.8) -1.31 0.02 -0.37( 3.8) 1.21 0.02 0.33 2 -1.28 0.82( 9.0) -1.55 1.24 -0.82( 9.0) 1.53 0.36 0.65 3 -1.56 0.72( 9.0) -1.48 1.54 -0.71( 9.0) 1.45 0.66 0.57 4 -1.47 0.76( 9.0) -1.49 1.45 -0.74( 9.0) 1.48 0.57 0.59 5 -1.50 0.74( 9.0) -1.51 1.48 -0.73( 9.0) 1.48 0.59 0.59 6 -1.50 0.76( 9.0) -1.45 1.47 -0.74( 9.0) 1.46 0.59 0.57 7 -1.45 0.69( 9.0) -1.65 1.46 -0.71( 9.0) 1.53 0.57 0.65 8 -1.62 1.05( 9.2) 0.20 1.50 -0.87( 9.2) 0.02 0.62 0.02 c c1 <-- SPAN L 1 0.16 2 0.31 3 0.40 4 0.52 5 0.54 6 0.54 7 0.52 8 0.30 -MOST POS LL------> M(X-ft) R 0.85( 6.0) 0.34 1.14( 9.0) 0.42 1.23( 9.0) 0.53 1.29( 9.0) 0.54 1.29( 9.0) 0.53 1.28( 9.0) 0.51 1.19( 9.0) 0.26 1.23( 7.8) 0.20 <----- L -0.06 -1.30 -1.61 -1.67 -1.70 -1.70 -1.64 -1.56 -MOST NEG LL------> M(X-ft) R -0.06( 0.6) -1.35 -0.33( 4.0) -1.62 -0.64( 5.7) -1.67 -0.69( 5.7) -1.70 -0.71(12.3) -1.70 -0.67( 12.3) -1.63 -0.61(14.0) -1.54 -0.04( 14.9 ) - 0.04 COLUMN MOMENTS( FACTORED 1 JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 3 0.00 0.00 4 0.00 0.00 5 0.00 0.00 6 0.00 0.00 7 0.00 0.00 8 0.00 0.00 9 0.00 0.00 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.216 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 10.60 10.60 0.4 2.50 3.00 0.00 1.50 0.177 0.177 2 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177 3 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177 4 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177 5 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177 6 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177 7 10.60 10.60 0.4 1.50 4.00 0.00 1.50 0.177 0.177 8 10.60 10.60 0.4 1.50 3.75 0.00 2.50 0.177 0.177 .L/Q"9 @ 3QY (j 42% i- 4QisOu) Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) JOINT TOP BOT 1 0.00 0.00 2 0.04 0.00 3 0.08 0.00 4 0.08 0.00 5 0.09 0.00 6 0.09 0.00 7 0.08 0.00 8 0.08 0.00 9 0.00 0.00 D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 0.00 0.00 0.12 0.00 1 0.00 0.00 0.00 0.04 0.00 0.12 0.10 0.00 0.12 0.00 2 0.00 0.01 0.00 0.07 0.00 0.12 0.12 0.00 0.12 0.00 3 0.00 0.01 0.00 0.07 0.00 0.12 0.12 0.00 0.12 0.00 4 0.00 0.02 0.00 0.07 0.00 0.12 0.12 0.00 0.12 0.00 5 0.00 0.02 0.00 0.07 0.00 0.12 0.12 0.00 0.12 0.00 6 0.00 0.02 0.00 0.07 0.00 0.12 0.12 0.00 0.12 0.00 7 0.00 0.01 0.00 0.06 0.00 0.12 0.12 0.00 0.12 0.00 8 0.00 0.03 0.00 0.08 0.00 0.12 0.00 0.00 0.00 0.00 Rebar Weight=O .602 psf Controlling Rebar For This Redistribution Case JOINT TOP BOT SPAN BOT TOP 1 #4x 3.0'8 20.0in o/c #4x 2.0'0 O.Oin o/c 1 #4x 9.0'8 20.0in o/c #4x 6.0'13 O.Oin o/c 2 #4x 7.5'8 20.0in o/c #4x 5.0'0 O.Oin o/c 2 #4x 13.5'8 20.0in o/c #4x 9.0'@ O.Oin o/c 3 #4x '9.0'0 19.8in o/c #4x 6.0'0 O.Oin o/c 3 #4x 13.5'@ 20.0in o/c #4x 9.0'@ O.Oin o/c 4 #4x 9.0'0 20.0in o/c #4x 6.0'8 O.Oin o/c 4 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 5 #4x 9.0'0 20.0in o/c #4x 6.0'8 O.Oin o/c 5 #4x 13.5'0 20.0in o/c #4x 9.0'@ O.Oin o/c 6 #4x 9.0'@ 19.9in o/c #4x 6.0'8 O.Oin o/c 6 #4x 13.5'0 20.Gin o/c #4x 9.0'0 O.Oin o/c 7 #4x 9.0'8 20.0in o/c #4x 6.0'0 O.Oin o/c 7 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 8 #4x 8.4'@ 19.2in o/c #4x 5.6'0 O.Oin o/c 8 #4x 11.6'0 20.0in o/c #4x 7.8'0 O.Oin o/c 9 #4x 3.9'0 0,Oin o/c #4x 2.6'8 O.Oin o/c t ULT(%R= 6.7) PcL/4(%R=lO.O) MIN JOINT TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0:OO 0.00 0.12 0.00 2 0.02 0.00 0.10 0.00 0.12 0.00 3 0.06 0.00 0.11 0.00 0.12 0.00 4 0.07 0.00 0.11 0.00 0.12 0.00 5 0.07 0.00 0.11 0.00 0.12 0.00 6 0.07 0.00 0.11 0.00 0.12 0.00 7 0.06 0.00 0.10 0.00 0.12 0.00 8 0.06 0.00 0.11 0.00 0.12 0.00 9 0.00 0.00 0.00 0.00 0.00 0.00 ULT( %R- 6.7 D+L/4 ( %R=10.0 MIN SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.04 0.00 0.12 2 0.00 0.00 0.00 0.07 0.00 0.12 3 0.00 0.00 0.00 0.06 0.00 0.12 4 0.00 0.01 0.00 0.06 0.00 0.12 5 0.00 0.01 0.00 0.06 0.00 0.12 6 0.00 0.01 0.00 0.06 0.00 0.12 7 0.00 0.00 0.00 0.06 0.00 0.12 8 0.00 0.03 0.00 0.08 0.00 0.12 Rebar Wei ght=O. 600 psf Controlling Rebar For This Redistribution Case JOINT TOP 1 #4x 3.0'6 20.0in o/c #4x 2 #4x 7.5'8 20.0in o/c #4x 3 #4x 9.0'8 20.0in o/c #4x 4 #4x 9.0'8 20.0in o/c #4x 5 #4x 9.0'8 20.0in o/c #4x 6 #4x 9.0'@ 20.0in o/c #4x 7 #4x 9.0'8 20.0in o/c #4x 8 #4x 8.4'8 20.0in o/c #4x 9 #4x 3.9'8 O.Oin o/c #4x BOT 2.0'8 O.Oin o/c 5.0'8 O.Oin o/c 6.0'8 O.Oin o/c 6.0'8 O.Oin o/c 6.0'8 O.Oin o/c 6.0'8 O.Oin o/c 6.0'8 O.Oin o/c 5.6'8 O.Oin o/c 2.6'8 O.Oin o/c JOINT 1 2 3 4 5 6 7 8 9 ULT( %R=15.0 1 TOP BOT 0.00 0.00 0.01 0.00 0.04 0.00 0.04 0.00 0.05 0.00 0.05 0.00 0.04 0.00 0.04 0.00 0.00 0.00 D+L/4(%R=15.0) MIN TOP BOT TOP BOT 0.00 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.11 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.11 0.00 0.12 0.00 0.10 0.00 0.12 0.00 0.11 0.00 0.12 0.00 0.00 0.00 0.00 0.00 JOINT 1 #4x 2 #4x 3 #4x 4 #4x 5 #4x 6 #4x 7 #4x 8 #4x 9 #4x SPAN BOT TOP 1 #4x 9.0'6 20.0in o/c #4x 6.0'8 O.Oin o/c 2 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 3 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 4 #4x 13.5'@ 20.0in o/c #4x 9.0'8 O.Oin o/c 5 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 6 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 7 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 8 #4x 11.6'8 20.0in o/c #4x 7.8'8 O.Oin o/c ULT ( %R=15,0 ) D+L/4 ( %R=15.0 1 MIN SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.04 0.00 0.12 2 0.00 0.00 0.00 0.07 0.00 0.12 3 0.00 0.00 0.00 0.06 0.00 0.12 4 0.00 0.00 0.00 0.06 0.00 0.12 5 0.00 0.00 0.00 0.06 0.00 0.12 6 0.00 0.00 0.00 0.06 0.00 0.12 7 0.00 0.00 0.00 0.06 0.00 0.12 8 0.00 0.03 0.00 0.08 0.00 0.12 Rebar Wei ght=O. 600 psf Controlling Rebar For This Redistribution Case TOP BOT SPAN BOT TOP 3.0'@ 20.0in o/c #4x 2.0'8 O.Oin o/c 1 #4x 9.0'8 20.0in o/c #4x 6.0'@ O.Oin o/c 7.5'8 20.0in o/c #4x 5.0'8 O.Oin o/c 2 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 3 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c '9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 4 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 9.0'8 20.0in o/c #4x 6.0'@ O.Oin o/c 5 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 9.0'8 20.0in o/c #4x 6.0'8 O.Oin o/c 6 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 9.0'8 20.0in o/c #4x 6.0'6 O.Oin o/c 7 #4x 13.5'8 20.0in o/c #4x 9.0'8 O.Oin o/c 8.4'8 20.0in o/c #4x 5.6'8 O.Oin o/c 8 #4x 11.6'8 20.0in o/c #4x 7.8'8 O.Oin o/c 3.9'8 O.Oin o/c #4x 2.6'8 O.Oin o/c c SPAN 1T B 2T B 3T B 4T B 5T B 6T B 7T B 8T B JOINT 1 2 3 4 5 6 7 8 9 <-----------------------Stresses (ksi)-----------------------> Service Loads Transfer of Prestress Tension (XI Compression (XI Tension (x) Compression (XI SPAN 0.173 ( 11.33) -0.399 ( 4.88) -0.210 ( 5.96) -0.242 ( 0.58) 1 0.046 ( 4.88) -0.526 ( 11.33) -0.170 ( 0.58) -0.202 ( 5.96) 2 0.215 ( 17.33) -0.451 ( 9.00) -0.168 ( 9.00) -0.275 ( 17.33) 3 0.098 ( 9.00) -0,569 ( 17.33) -0.137 ( 17.33) -0.245 ( 9.00) 4 0.230 ( 17.33) -0.476 ( 9.00) -0.175 ( 9.00) -0.276 ( 0.67) 5 0.123 ( 9.00) -0.584 ( 17.33) -0.136 ( 0.67) -0.237 ( 9.00) 6 0.236 ( 17.33) -0.488 ( 9.00) -0.173 ( 9.00) -0.272 ( 17.33) 7 0.134 ( 9.00) -0.590 ( 17.33) -0.140 ( 17.33) -0.239 ( 9.00) 8 9.00) -0.272 ( 0.67) 0.67) -0.239 ( 9.00) 9.00) -0.277 ( 17.33) 7.33) -0.236 9.00) 9.00) -0.276 ( 0.67) 0.67) -0.246 ( 9.00) 7.79) -0.260 ( 14.92) 4.92) -0.209 ( 7.79) 0.239 ( 17.33) -0.487 ( 9.00) -0.173 ( 0.134 ( 9.00) -0.592 ( 17.33) -0.140 ( 0.239 ( 0.67) -0.489 ( 9.00) -0.176 ( 0.136 ( 9.00) -0.592 ( 0.67) -0.135 ( 0.221 ( 17.33) -0.457 ( 9.00) -0.166 ( 0.104 ( 9.00) -0.574 ( 17.33) -0.136 ( 0.225 ( 0.67) -0.514 ( 9.22) -0.203 ( 0.161 ( 9.22) -0.578 ( 0.67) -0.152 ( Section6- FACTORED COLUMN Maximum Axial Load Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 0.82 0.00 0.00 3.15 0.00 0.00 3.48 0.00 0.00 3.44 0.00 0.00 3.48 0.00 0.00 3.48 0.00 0.00 3.41 0.00 0.00 3.53 0.00 0.00 1.07 0.00 0.00 LOADS Maximum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 0.82 0.00 0.00 2.52 0.00 0.00 2.54 0.00 0.00 2.40 0.00 0.00 2.40 0.00 0.00 2.41 0.00 0.00 2.39 0.00 0.00 2.67 0.00 0.00 1.07 0.00 0.00 <-----Deflections (in)-----> Delta L/Oel ta DL + Bal LL Delta L/Oel ta 0.004 36250 0.041 3521 0.001 99999 0.118 1824 0.001 99999 0.125 1728 0.000 99999 0.125 1727 0.002 99999 0.125 1735 0.013 14269 0.095 1948 -0.001 99999 0.106 2030 -0.004 48641 0.113 1908 h c .-J c I- 2 SPANS 0 CANTILEVERS SKIP LL DL FACTDR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP, OL@TRANSFER=O. 0 TENDON COVER: INTERIOR SPANS TOP 1.00 in EXTERIOR SPANS TOP 1.00 in UNBONDED, LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=0.50in MAX LONG BAR SIZE=#4 REBAR COVER: 1.00in TOP 1.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 0.75 in BOTTOM 0.75 in 0.004A @ TOP & BOT DL + LL/4 RATIO=l, 67 Section 1 - 0 N E - W A Y S L A 8 I N P UT 0 AT A <--------GEOMETRY---------> <--------TENDON PROFILE-------> <-----SUPERIMPOSED LOADS----> L t TribL TribR Yref CL cR A 8 C LOAD DL LL AB SPAN (ft) (in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 1 U 0.002 0.050 0.00 18.00 2 18.00 5.00 0.50 0.50 0.00 2 8.00 8.00 0.00 0.00 0.00 2 U 0.002 0.050 0.00 18.00 Section2 - SLAB AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft R L M(x-ft) R L R 1 0.27 1.34( 7.3) -2.42 0.04 -1.28( 7.3) 2.37 0.04 0.99 2 -2.42 1.34(10.7) 0.27 2.37 -1.28(10.7) 0.04 0.99 0.04 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) SPAN L' M( X- ft 1 R L M(x-ft) R JOINT TOP BOT 1 0.25 1.50( 7.3) 0.00 -0.04 -0.04( 0.7) -1.88 1 0.00 0.00 2 0.00 1.50(10.7) 0.25 -1.88 -0.04(17.3) -0.04 2 0.00 0.00 3 0.00 0.00 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.292 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 13.25 13.25 0.5 2.50 4.00 0.00 1.25 0.221 0.221 2 13.25 13.25 0.5 1.25 4.00 0.00 2.50 0.221 0.221 c Section 4 - ULT(%R= 0.0) D+L/4(%R= 0.0) JOINT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 2 0.10 0.00 0.18 0.00 3 0.00 0.00 0.00 0.00 Control 1 ing REBAR REQUIREMENTS (in21 MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN TOP BOT SPAN TOP BOT TOP BOT TOP BOT 0.00 0.00 1 0.00 0.03 0.00 0.11 0.00 0.12 0.12 0.00 2 0.00 0.03 0.00 0.11 0.00 0.12 0.00 0.00 Rebar Weight=0.558 psf Rebar For This Redistribution Case JOINT TOP BOT SPAN BOT TOP 1 #4x 4.5'6 O.Oin o/c #4x 3.0'6 O.Oin o/c 1 #4x 13.5'6 20.0in o/c #4x 9.0'6 O.Oin o/c 2 #4x 9.0'6 13.6in o/c #4x 6.0'13 O.Oin o/c 2 #4x 13.5'6 20.0in o/c #4x 9.0'6 O.Oin o/c 3 #4x 4.5'@ O.Oin o/c #4x 3.0'@ O.Oin o/c ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.03 0.00 0.10 0.00 0.12 2 0.08 0.00 0.16 0.00 0.12 0.00 2 0.00 0.03 0.00 0.10 0.00 0.12 3 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=0.542 psf Controlling Rebar For This Redistribution Case JOINT TOP BOT SPAN BOT TOP 1 #4x 4.5'6 O.Oin o/c #4x 3.0'@ O.Oin o/c 1 #4x 13.5'6 20.0in o/c #4x 9.O'B O.Oin o/c 2 #4x 9.0'6 15.2in o/c #4x 6.0'6 O.Oin o/c 2 #4x 13.5'6 20.0in o/c #4x 9.0'6 O.Oin o/c 3 #4x 4.5'6 O.Oin o/c #4x 3.0'6 O.Oin o/c ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT( %R=15.0) O+L/4( %R=15.0 MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 0.00 0.00 3 0.00 0.02 0.00 0.11 0.00 0.12 2 0.06 0.03 0.16 0.00 0.12 0.00 2 0.00 0.02 0.00 0.11 0.00 0.12 3 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=0.562 psf Controlling Rebar For This Redistribution Case JOINT TOP BOT SPAN BOT TOP 1 #4x 4.5'6 O.Oin o/c #4x 3.0'6 O.Oin o/c 1 #4x 13.5'6 20.0in o/c #4x 9.0'6 O.Oin o/c 2 #4x 9.0'6 15.2in o/c #4x 6.0'6 69.2in o/c 2 #4x 13.5'6 20.0in o/c #4x 9.0'6 O.Oin o/c 3 #4x 4.5'6 O.Oin o/c #4x 3.0'6 O.Oin o/c Section5-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.242 ( 17.33) -0.594 ( 7.33) -0.208 ( 9.00) -0.358 ( '17.33) 1 0.007 29519 0.148 1459 B 0.153 ( 7.33) -0.684 ( 17.33) -0.157 ( 17.33) -0.307 ( 9.00) 2 0.007 29526 0.148 1459 2 T 0.242 ( 0.67) -0.594 ( 10.67) -0.208 ( 9.00) -0.358 ( 0.67) B 0.153 ( 10.67) -0.684 ( 0.67) -0.157 ( 0.67) -0.307 ( 9.00) .- c- Section 6 - F A C T 0 R E D Maximum Axial Load Axial Column Moment Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 1.19 0.00 0.00 2 4.15 0.00 0.00 3 1.19 0.00 0.00 c COLUMN LOADS Maxi mum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 1.19 0.00 0.00 3.17 0.00 0.00 1.19 0.00 0.00 c ./ 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 0.75 in EXTERIOR SPANS TOP 0.75 in UNBONOEO. LOW RELAXATION BOTTOM 0.75 in BOTTOM 1.50 in PERP F/A=125psi MIN REBAR REQUIREMENTS: 0.075% @ TOP, Nc/O.Sfy @ BOT WHEN ft>2 SQRT f'c=14lpsi REBAR Y IELD=60. OOksi TENDON DIAM=0.50in MAX LONG BAR SIZE=#4 REBAR COVER: 1. OOi n TOP 1. OOi n BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing Sectionl-EQUIVALENT FRAME INPUT DATA L t TribL TribR Yref CL cR A B C LOAD DL LL AB < - - - - - - - - GEOMETRY---------> <-------- TENDON PROFILE- - --- - -> <-----SUPERIMPOSED LOADS----> SPAN (ft) (in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 34.00 8.00 15.00 15.00 0.00 2 12.00 12.00 0.00 0.00 0.00 1 U 0.002 0.030 0.00 30.00 Section2 - SLAB AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------ BALANCED LOAD- - - -> BEAM SECONDARY SPAN L M(X-ft) R L M(x-ft 1 R L R 1 -107.07 284.44(13.8) 0.00 58.10 -114.97(13.8) 0.00 58.10 0.00 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED 1 1 -45.89 67.11(13.8) 0.00 -45.89 67.11(13.8) 0.00 1 99.08 187.26 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 2 -96.78 -185.12 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.646 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 923.07 30.77 34.9 4.00 6.25 0.00 4.00 0.321 0.321 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 2.45 0.00 1 0.00 3.68 0.00 0.00 0.00 5.69 2 0.00 0.00 0.00 0.00 2.45 0.00 Rebar Weight=0.784 psf Control 1 i ng Rebar For This Redistribution Case JOINT TOP BOT SPAN BOT TOP 1 13-# 4~ 6.8' '0-# 4~ 5.7' 1 29-# 4x 17.0'@ 12.4in o/c 0-# 4x 11.3'@ O.Oin o/c 2 13-# 4~ 6.8' 0-# 4~ 5.7' ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 2.45 0.00 1 0.00 4.15 0.00 0.00 0.00 5.69 2 0.00 0.00 0.00 0.00 2.45 0.00 Rebar Wei ght=O. 784 psf Control 1 i ng Rebar For This Redistribution Case JOINT TOP BOT SPAN BOT TOP 1 13-# 4~ 6.8' 0-# 4~ 5.7' 1 29-# 4x 17.0'@ 12.4in o/c 0-# 4x 11.3'@ O.Oin o/c 2 13-# 4~ 6.8' 0-# 4~ 5.7' ULT(%R=15.0) D+L/4(%R-15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 1.06 0.00 0.00 2.45 0.00 1 8.98 5.58 0.00 0.00 0.00 5.69 2 0.00 1.11 0.00 0.00 2.45 0.00 Rebar Weight=l ,334 psf Controlling Rebar For This Redistribution Case JOINT TOP BOT SPAN BOT TOP 1 13-# 4~ 6.8' 6-# 4~ 5.7' 1 29-# 4x 17.0'@ 12.4in o/c 45-# 4x 11.3'@ 8.0in o/c 2 13-# 4~ 6.8' 6-# 4~ 5.7' Section 5 - P U N C H I N G S H E A R AN A L Y S I S Factored Jt. Shears & Moments Critical Section #1 Maximum Shear Maximum Moment Ac Jc Ex XL xR fL fR Allow d/Bo Gamma Shear Moment Shear Moment JOINT (in21 (in41 (in) (in) (in) (ksi) (ksi) (ksi) (in/in) (kips) (k-ft) (kips) (k-ft) 1 0.00 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.00 98.59 286.34 98.59 286.34 2 0.00 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.00 92.63 -281.89 92.63 -281.90 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) -- - - -> SPAN Tension (x) Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Oelta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.000 ( 32.67) -1.060 ( 13.80) 0.000 ( 32.67) -0.827 ( 13.80) 1 0.491 831 0.175 2333 B 0.419 ( 13.80) -0.618 ( 32.67) 0.079 ( 13.80) -0.490 ( 1.00) Section7-FACTORED COLUMN LOADS * Maximum Axial Load Maximum Moment Axi a1 Col umn Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 98.59 99.08 187.26 98.59 99.08 187.26 2 92.63 -96.78 -185.12 92.63 -96.78 -185.12 c c c c Frame Design Group. Inc. Sheet No. 6% 2 Faraday. Suite 101 Irvine. CA 92618 949/595-8015 ................................. PTData for Windows {V2,000-0229}====================================== POST TENSIONED TWO-WAY SLAB DESIGN 05- 09-2002 PROJECT: Toyota Carl sbad MEMBER ID: Ramp Slab-T STORAGE ID: C: \PTPLUS32\PTRUNS\TOYOTA-2WAY -T. PTD 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 0.75 in EXTERIOR SPANS TOP 0.75 in UNBONDED. LOW RELAXATION BOTTOM 0.75 in BOTTOM 1.50 in PERP F/A=125psi MIN REBAR REQUIREMENTS: 0.075% 13 TOP, Nc/0.5fy @ BOT WHEN ft>2 SQRT f'c=14lpsi REBAR YIELD=60. OOksi TENDON DIAM=0.50in MAX LONG BAR SIZE=#4 REBAR COVER: 1. OOi n TOP 1. OOi n BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing Sectionl-EQUIVALENT FRAME INPUT DATA L t TribL TribR Yref CL cR A B C LOAD DL LL AB <--------GEOMETRY---------> <--------TENDON PROFILE-------> <-----SUPERIMPOSED LOADS----> SPAN (ft) (in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 30.00 8.00 17.00 17.00 0.00 2 12.00 12.00 0.00 0.00 0.00 1 U 0.002 0.030 0.00 30.00 Section2 - SLAB AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <- - - - - -BALANCED LOAD- - - -> BEAM SECONDARY SPAN L M(X-ft) R L M( X-ft) R L R 1 -63.41 276.46(12.2) 0.00 39.66 -106.05(12.2) 0.00 39.66 0.00 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 -32.98 66.98(12.2) 0.00 -32.98 66.98(12.2) 0.00 1 77.49 142.71 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 2 -77.49 -142.71 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.483 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 777.14 22.86 29.4 4.00 6.25 0.00 4.00 0.238 0.238 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 2.45 0.00 1 0.00 4.76 0.00 0.00 0.00 7.21 2 0.00 0.00 0.00 0.00 2.45 0.00 Rebar Weight=0.843 psf Controlling Rebar For This Redistribution Case JOINT TOP BOT SPAN BOT TOP 1 13-# 4~ 6.0' .O-# 4~ 5.0' 1 37-# 4x 15.0'@ 1l.Oin o/c 0-# 4x 10.0'@ O.Oin o/c 2 13-# 4~ 6.0' 0-# 4~ 5.0' ULT(%R= 6.7 1 D+L/4(%R=10.0 ) MI N ULT(%R= 6.7) D+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 2.45 0.00 1 0.00 5.06 0.00 0.00 0.00 7.21 2 0.00 0.00 0.00 0.00 2.45 0.00 Rebar Weight=0.843 psf Controlling Rebar For This Redistribution Case JOINT TOP BOT SPAN BOT TOP 1 13-# 4~ 6.0' 0-# 4~ 5.0' 1 37-# 4x 15.0'@ 1l.Oin o/c 0-# 4x 10.0'@ O.Oin o/c 2 13-# 4~ 6.0' 0-# 4~ 5.0' ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 2.45 0.00 1 5.08 5.97 0.00 0.00 0.00 7.21 2 0.00 0.00 0.00 0.00 2.45 0.00 Rebar Weight=l. 097 psf Control 1 i ng Rebar For This Redistribution Case \ JOINT TOP BOT SPAN BOT TOP 1 13-# 4~ 6.0' 0-# 4~ 5.0' 1 37-# 4x 15.0'@ 1l.Oin o/c 26-# 4x 10.0'@ 15.7in o/c 2 13-# 4~ 6.0' 0-# 4~ 5.0' Section 5 - P U N C H I N G S H E A R AN A L Y S I S Factored Jt. Shears & Moments Critical Section #1 Maximum Shear Maximum Moment Ac Jc Ex XL xR fL fR Allow d/Bo Gamma Shear Moment Shear Moment JOINT (in21 (in41 (in) (in) (in) (ksi) (ksi) (ksi) (in/in) (kips) (k-ft) (kips) (k-ft) 1 0.00 0.0 0.00 0.00 0.00 0,000 0.000 0,000 0.000 0.00 98.84 220.21 98.84 220.21 2 0.00 0.0 0.00 0.00 0.00 0,000 0.000 0,000 0.000 0.00 98.84 -220.21 98.84 -220.21 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - ---Deflections (in) - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T 0,000 ( 28.67) -0.893 ( 12.20) 0.000 ( 28.67) -0.684 ( 12.20) 1 0.349 1030 0.126 2855 B 0.416 ( 12.20) -0.395 ( 1.00) 0.128 ( 12.20) -0.322 ( 1.00) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maximum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 98.84 77.49 142.71 98.84 77.49 142.71 2 98.84 -77.49 -142.71 98.84 -77.49 -142.71 c c 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR-1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 1.00 in EXTERIOR SPANS TOP 1.00 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y I ELD-60. OOksi TENDON DIAM=0.50in MAX LONG BAR SIZE45 REBAR COVER: 1.00in TOP 1.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1,2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 0.75 in BOTTOM 0.75 in 0.004A @ TOP ti BOT DL + LL/4 RATIO=1.00 Sectionl-ONE-WAY SLAB INPUT DATA <--------GEOMETRY---------> <--------TENDON PROFILE-------> <-----SUPERIMPOSED LOADS-- - -> L t TribL TribR Yref CL cR A B C LOAD DL LL AB SPAN (ft) (in) (ft) (ft) (in) TYPE (in) (in) (ft) (ft) (ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 30.00 8.00 0.50 0.50 0.00 2 0.00 0.00 0.00 0.00 0.00 1 U 0.002 0.050 0.00 30.00 Section2 - SLAB AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAO- - - -> BEAM SECONDARY SPAN L M(X-ft 1 R L M(X-ft) R L R 1 0.00 11.48(15.0) 0.00 0.00 -7.95(15.0) 0.00 0.00 0.00 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 1 0.00 5.63(15.0) 0.00 0.00 5.63(15.0) 0.00 1 0.00 0.00 2 0.00 0.00 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.673 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 31.80 31.80 1.2 4.00 7.00 0.00 4.00 0.331 0.331 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 0.19 0.00 1 0.00 0.31 0.00 0.40 0.00 0.19 2 0.00 0.00 0.00 0.00 0.19 0.00 Rebar Weight=1.690 psf c c ic Controlling Rebar For This JOINT TOP BOT 1 #5x 7.5'8 19.4in o/c #5x 5.0'8 O.Oin o/c 2 #5x 7.5'@ 19.4in o/c #5x 5.0'8 O.Oin o/c ULT(%R- 6.7 ) D+L/4( %R=10.0 1 MIN JOINT TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 0.19 0.00 2 0.00 0.00 0.00 0.00 0.19 0.00 Controlling Rebar For This JOINT TOP BOT 1 #5x 7.5'@ 19.4in o/c #5x 5.0'@ O.Oin o/c 2 #5x 7.5'@ 19.4in o/c #5x 5.0'@ O.Oin o/c ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 0.19 0.00 2 0.00 0.00 0.00 0.00 0.19 0.00 Controlling Rebar For This JOINT TOP BOT 1 #5x 7.5'@ 19.4in o/c #5x 5.0'8 O.Oin o/c 2 #5x 7.5'8 19.4in o/c #5x 5.0'8 O.Oin o/c Section 5 - C 0 N C R E T E F L E X U R A L S T Redi s t ri buti on Case SPAN BOT TOP 1 #5x 22.5'@ 9.3in o/c #5x 15.0'@ O.Oin o/c ULT(%R= 6.7) D+L/4(%R=lO.O) MIN SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.31 0.00 0.40 0.00 0.19 Rebar Wei ght=l ,690 psf Redistribution Case SPAN BOT TOP 1 #5x 22.5'8 9.3in o/c #5x 15.0'@ O.Oin o/c ULT(%R=15.0) D+L/4(%R=15.0) MI N SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.31 0.00 0.40 0.00 0.19 Rebar Weight=l.690 psf Redistribution Case SPAN BOT TOP 1 #5x 22.5'8 9.3in o/c #5x 15.0'8 O.Oin o/c RESSES AND DEFLECTIONS <----------------------- Stresses (ksi)-----------------------> c- - - - -Defl ecti ons (in) - - - - -> SPAN Tension (XI Comoression (XI Tension (x) ComDression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.331 ( 0.00) -1.189 ( 15.00) -0.386 ( 0.00) -0.572 B 0.527 ( 15.00) -0.331 ( 0.00) -0.201 ( 15.00) -0.386 Section6-FACTORED COLUMN LOADS Maximum Axial Load Maximum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 3.42 0.00 0.00 3.42 0.00 0.00 2 3.42 0.00 0.00 3.42 0.00 0.00 ( 15.00) 1 0.272 1326 0.433 831 ( 0.00) 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O. 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=l. 67 REBAR YIELD=60,00ksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#9 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.040 0.00 30.00 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M( X-ft R L M(X-ft R L R 1 -51.13 76.00(15.0) -108.28 53.65 -64.16(15.0) 95.96 51.82 94.13 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 -32.98 30.39(15.0) -50.73 -32.98 30.39( 15.0) -50.73 1 57.41 65.89 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 2 -76.87 -110.30 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.124 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 5.88 4.0 8.75 24.50 0.00 8.75 0.124 0.124 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.48 0.00 2.17 0.00 1 0.00 0.00 0.00 0.65 0.00 1.25 2 0.00 0.00 0.96 0.00 2.17 0.00 Rebar Weight=0.567 psf ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT( %R= 6.7 D+L/4( %R=10.0 1 MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.43 0.00 2.17 0.00 1 0.00 0.00 0.00 0.72 0.00 1.25 2 0.00 0.00 0.86 0.00 2.17 0.00 Rebar Weight=0.567 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.41 0.00 2.17 0.00 1 0.00 0.00 0.00 0.75 0.00 1.25 2 0.00 0.00 0.82 0.00 2.17 0.00 Rebar Wei ght=O. 567 psf Section5-BEAM SHEAR DESIGN X Left Vu Mu Vcn vcw Vci Av #4@ Span 1 L=30.00ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - - -Defl ecti ons ( i n - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Oelta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.021 ( 29.17) -0.192 ( 15.00) -0.143 ( 17.83) -0.165 ( 0.83) 1 0.006 59551 0.012 30520 B 0.037 ( 15.00) -0.365 ( 29.17) -0.096 ( 0.83) -0.148 ( 17.83) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maximum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 45.83 57.41 65.89 45.83 57.41 65.89 2 56.06 -76.87 -110.30 56.06 -76.87 -110.30 c c e c c c c c c c c c IC- - I c c 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O . 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#9 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOAOS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 1.328 1 U 0.002 0.030 0.00 57.83 SPAN 1 SPAN 1 Sect SPAN 1 Section 2 - B E A M A N D C 0 L SPAN 1 IN BEAM CROSS-SECTION PROPERTIES A Yt St Sb (in21 (in) (in31 (in31 855.00 9.08 7478.80 3245.52 0 M E N T S (k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------ BALANCED LOAD- - - -> BEAM SECONDARY L M( X-ft) R L M( X- ft 1 R L R 390.21 373.65(34.4) 31.18 344.52 -314.72(34.4) 8.10 342.43 6.01 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED 1 L M(X-ft) R L M(X-ft) R JOINT TOP BOT 154.04 113.64(34.41 9.90 -154.04 113.64(34.4) 9.90 1 264.25 302.86 2 0.00 0.00 on 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Eff Force No. CGS Dim. (in. from datum) F/A(ksi) (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 317.63 21.18 12.0 9.00 27.00 0.00 9.00 0.371 0.371 Tendon Weight=0.434 psf c Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.15 0.00 3.55 0.00 2.16 0.00 1 0.00 0.16 0.00 3.10 0.00 1.26 2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=1.067 psf ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) MI N JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.48 3.17 0.00 2.16 0.00 1 0.00 0.24 0.00 3.22 0.00 1.26 2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=1.091 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 3.02 2.99 0.00 2.16 0.00 1 0.00 0.36 0.00 3.28 0.00 1.26 2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=l. 190 psf - I Section 5 - B E A M S H E A R D E S I G N X Left Vu Mu Vcn vcw Vci AV #4@ Span 1 L=57.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in olc max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in)--- --> SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.051 ( 0.83) -0.648 ( 34.43) -0.424 ( 23.23) -0.497 ( 56.83) 1 0.109 6382 0.187 3717 8 0.267 ( 34.43) -1.110 ( 0.83) -0.286 ( 56.83) -0.454 ( 23.23) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maximum Moment Axi a1 Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 98.92 264.25 302.86 98.92 264.25 302.86 2 55.28 0.00 0.00 55.28 0.00 0.00 c 2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- - - - - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 33.83 2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83 <--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31 1 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 1 855.00 8.96 7383.25 3142.75 2 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 2 855.00 8.96 7383.25 3142.75 3 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <:------DEAD LOAD-------> < - - - - - -BALANCED LOAD- - 1 -> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -35.42 67.52(13.6) -254.62 10.74 -18.56(10.4) 141.64 8.91 36.53 2 -430.01 254.42(29.0) -277.48 259.37 -153.95(29.0) 178.26 154.25 174.61 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED 1 1 10.87 29.80(16.8) 0.00 -34.82 O.OO( 7.2) -71.34 1 57.62 91.07 2 167.01 213.47 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 2 0.00 82.03(29.0) 2.58 -145.61 O.OO(40.2) -119.55 3 -202.92 -307.25 Frame Design Group. Inc. Sheet No. 7/ 2 Faraday, Suite 101 Irvine. CA 92618 820 949/595-8015 Page 2 Toyota Carl sbad _____ _____=r=__________ ---______~~==~~~~~~=====~==~~~~~~~a for Windows {V2 OOO-O229}====================================== Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.205 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 5.88 4.0 8.75 13.00 0.00 3.00 0.124 0.248 2 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.37 0.00 2.17 0.00 2 2.38 0.00 3.91 0.00 2.17 0.00 3 0.93 0.00 2.53 0.00 2.17 0.00 JOINT 1 2 3 JOINT 1 2 3 ULT( %R= 6.7 D+L/4( %R=10.0 1 MIN TOP BOT TOP BOT TOP BOT 0.00 0.00 0.33 0.00 2.17 0.00 1.90 0.00 3.49 0.00 2.17 0.00 0.64 0.00 qO.00 2.17 0.00 ULTI %R=15.0 1 O+L/4 (%R=15.0 1 MIN TOP BOT TOP BOT TOP BOT 0.00 0.00 0.31 0.00 2.17 0.00 1.16 2.94 3.39 0.51 2.17 0.00 0.25 2.45 2.13 0.00 2.17 0.00 ‘Lq+p4’i/n~~~, 2W f2*hSa ULT(%R= 0.0) D+L/4(%R= 0.0) SPAN TOP BOT TOP BOT 1 0.00 0.18 0.00 0.58 2 0.00 0.68 0.00 2.13 Rebar Weight=O. 770 psf ULT( %R= 6.7 D+L/4(%R=10.0) SPAN TOP BOT TOP BOT 1 0.00 0.18 0.00 0.65 2 0.00 0.95 0.00 2.42 Rebar Wei ght=O. 777 psf ULT(%R=15.0) D+L/4(%R=15.0) SPAN TOP BOT TOP BOT 1 0.00 0.32 0.00 0.71 2 0.00 1.35 0.00 2.58 MIN TOP BOT 0.00 1.25 0.00 1.25 MIN TOP BOT 0.00 1.25 0.00 1.25 MI N TOP BOT zicys Rebar Wei ght=O. 929 psf 0.00 1.25 .-?% 0.00 1.25 Section 5 - B E A M S H E A R D E S I G N X Left Vu Mu Vcn vcw Vci Av #4@ Span 1 L=33.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22,50in o/c max. for Span 1 Span 2 L=57.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c rnax. for Span 2 X Left Vu Mu Vcn vcw Vci AV #4@ Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - - -Def 1 ecti ons (in 1 - - - - -> SPAN Tension (XI Compression (x) Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta 1 T 0.052 ( 32.83) -0.249 ( 13.63) -0.075 ( 26.43) -0.217 ( 13.63) 1 0.018 23198 0.015 27066’ Service Loads Transfer of Prestress DL + Bal LL 8 0.191 ( 13.63) -0,951 ( 32.83) 0.026 ( 13.63) -0.608 ( 32.83) 2 0.153 4547 0.116 5976 2 T 0.266 ( 1.00) -0.544 ( 29.00) -0.098 ( 1.00) -0.401 ( 29.00) B 0.449 ( 29.00) -1.455 ( 1.00) -0.026 ( 29.00) -0.737 ( 1.00) P- Section 7 - F A C T 0 R E D Maxi mum Axi al Load Axial Column Moment Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 42.12 57.62 91.07 2 157.89 123.63 177.09 c 3 85.54 -202.92 -307.25 COLUMN LOADS Maximum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 42.12 57.62 91.07 142.17 167.01 213.47 85.54 -202.92 -307.25 2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONOED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELDdO . OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#ll STIRRUP SIZE=#4 REBAR COVER: 2. OOi n TOP 2. OOi n BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing TOP 6.0 SQRT f' c=424psi BOT 7.5 SQRT f c-53Opsi BOTTOM 2.50 in BOTTOM 2.50 in 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <------ SUPERIMPOSED LOADS- - - - - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 33.83 2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83 <--------------------COLuMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31 1 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 1 855.00 8.96 7383.25 3142.75 2 0.00 0.00 24.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75 3 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <' - - - - - - DEAD LOAD-------> <------ BALANCED LOAD- - 1 -> BEAM SECONDARY SPAN L M( X- ft 1 R L M(X-ft) R L R 1 -0.40 55.49(10.4) -370.10 -10.75 -16.84( 7.2) 212.49 -12.57 107.38 2 -361.98 275.88(29.0) -302.59 217.63 -167.12(29.0) 193.67 112.51 190.01 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 41.38 41.38( 0.8) 0.00 -46.11 O.OO( 7.2) -120.02 1 55.91 74.59 2 0.00 94.69(29.0) 9.82 -117.35 O.OO(40.2) -139.11 2 0.00 0.00 3 -229.96 -340.17 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT Frame Design Group, Inc. 2 Faraday, Suite 101 Sheet No. Toyota Carl sbad Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.205 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 5.88 4.0 8.75 13.00 0.00 3.00 0.124 0.248 2 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.14 0.00 2.17 0.00 1 0.00 0.09 0.00 0.47 0.00 1.25 2 1.49 0.00 3.30 0.00 2.17 0.00 2 0.00 1.00 0.00 2.33 0.00 1.25 3 1.51 0.00 2.80 0.00 2.17 0.00 Rebar Weight=O. 774 psf ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.13 0.00 2.17 0.00 1 0.00 0.05 0.00 0.56 0.00 1.25 2 1.22 0.00 3.25 0.00 2.17 0.00 2 0.00 1.15 0.00 2.58 0.00 1.25 3 1.14 0.36 2.51 0.00 2.17 0.00 Rebar Weight=O ,800 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 2 0.00 1.52 0.00 2.72 0.00 1.25 1 0.00 0.00 0.12 0.00 2.17 0.00 1 0.00 0.16 0.00 0.60 0.00 i.25--4% 2 1.09 2.87 3. 24y-3;*(1 :: i: b: Cl; 3 0.69 2.89 Rebar Weight-0.952 psf ~%~~~S~C~\~~ 5 - B E AM S H EAR DE S I G N Span 1 L=33.83ft X Left Vu Mu Vcn vcw Vci Av #4@ 2@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Span 2 L=57.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 2 X Left Vu Mu Vcn vcw Vci Av #4@ Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------stresses (ksi)-----------------------> <-----Deflections (in) - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.204 ( 32.83) -0.241 ( 13.63) -0.038 ( 26.43) -0.209 ( 10.43) 1 -0.015 27860 0.023 17975 B 0.152 ( 13.63) -1.308 ( 32.83) 0.007 ( 10.43) -0.723 ( '32.83) 2 0.179 3870 0.153 4526 2 T 0.178 ( 1.00) -0.578 ( 29.00) -0.127 ( 1.00) -0.410 ( 29.00) B 0.529 ( 29.00) -1.247 ( 1.00) -0.004 ( 29.00) -0.670 ( 1.00) Frame Design Group. Inc. 2 Faraday. Suite 101 Sheet No. 7s’ Toyota Carlsbad Section 7 - F A C T 0 R E D Maximum Axi a1 Load Axial Column Moment Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 34.21 55.91 74.59 2 166.78 0.00 0.00 3 91.01 -229.96 -340.17 COLUMN LOADS Maxi mum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 34.21 55.91 74.59 152.15 0.00 0.00 91.01 -229.96 -340.17 2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE411 STIRRUP SIZE=W REBAR COVER: 2. OOin TOP 2. OOi n BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A @ TOP & BOT DL + LL/4 RATIO=l. 67 Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 2 33.83 15.00 30.00 5.00 0.00 9.00 9.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- - - - - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 0.992 1 U 0.002 0.030 0.00 33.83 2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83 <--------------------COLuMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in2) (in) (in3) (in31 1 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 1 652.50 11.12 5035.03 2965.84 2 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 2 855.00 8.96 7383.25 3142.75 3 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <<------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -14.77 39.55(10.4) -202.15 1.99 -9.85(10.4) 140.09 1.19 -3.21 2 -417.07 258.50(29.0) -282.26 250.88 -156.63(29.0) 181.40 145.76 177.74 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 9.90 28.89(16.8) 0.00 -36.13 O.OO( 7.2) -68.44 1 51.22 65.61 2 0.00 82.14(29.0) 2.60 -145.27 O.OO(40.2) -119.73 2 181.58 242.50 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 3 -203.76 -309.69 e Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.171 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 79.41 4.41 3.0 11.00 11.75 0.00 3.00 0.122 0.325 2 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MI N JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.22 0.00 1.48 0.00 1 0.00 0.05 0.00 0.35 0.00 1.13 2 2.30 0.00 3.80 0.00 2.17 0.00 2 0.00 0.70 0.00 2.16 0.00 1.25 3 0.97 0.00 2.57 0.00 2.17 0.00 Rebar Weight=0.750 psf ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.20 0.00 1.48 0.00 1 0.00 0.06 0.00 0.40 0.00 1.13 2 1.82 0.00 3.39 0.00 2.17 0.00 2 0.00 0.97 0.00 2.45 0.00 1.25 3 0.67 0.00 2.30 0.00 2.17 0.00 Rebar Wei ght=O. 757 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.19 0.00 1.48 0.00 1 0.00 0.18 0.00 0.44 0.00 1.13 2 1.10 2.88 3.28 0.40 2.17 0.00 2 0.00 1.36 0.00 2.60 0.00 1.25 3 0.27 2.47 2.17 0.00 2.17 0.00 Rebar Weight=0.906 psf Section5-BEAM SHEAR DESIGN X Left Vu Mu Vcn vcw Vc i Av #4@ Span 1 L=33.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Span 2 L=57.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50i n o/c max. for Span 2 X Left Vu Mu Vcn vcw Vci Av #4@ Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksj)-----------------------> <-----Oeflecti ons (in) -----> SPAN Tension (XI Compression (x) Tension (XI Compression (x) SPAN Delta L/Oelta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.062 ( 26.43) -0.252 ( 13.63) -0.012 ( 26.43) -0.330 ( 29.63) 1 -0.009 46624 0.017 24185 B 0.180 ( 13.63) -0.853 ( 32.83) -0.035 ( 10.43) -0.512 ( 32.83) 2 0.156 4436 0.117 5953 2 T 0.259 ( 1.00) -0.547 ( 29.00) -0.103 ( 1.00) -0.402 ( 29.00) B 0.455 ( 29.00) -1.437 ( 1.00) -0.022 ( 29.00) -0.726 ( 1.00) c Frame Design Group, Inc. 2 Faraday, Suite 101 Irvine. CA 92618 Sheet No. 75 Toyota Carlsbad 822 /L Section 7 - F A C T 0 R E D Maximum Axial Load Axial Column Moment Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 32.11 51.22 65.61 2 142.27 137.81 205.79 c 3 86.15 -203.76 -309.69 .- c P f h COLUMN LOADS Maximum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 32.11 51.22 65.61 126.57 181.58 242.50 86.15 -203.76 -309.69 r k r 1 I P P r \ c I r , r' 2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT OL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 2 33.83 15.00 30.00 5.00 0.00 9.00 15.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD OL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 0.992 1 U 0.100 0.030 0.00 33.83 2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83 <--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31 1 5.00 24.00 20.00 Fix 5.00 24.00 20.00 Fix 1 652.50 11.12 5035.03 2965.84 2 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 2 855.00 8.96 7383.25 3142.75 3 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix Section2 - BEAM AND COLUMN MOMENTSck-ft) Column Moments are Factored, All Other Moments are Unfactored <--------DEAD LOAD-------> <------BALANCED LOAD- -> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -220.59 146.83(16.8) -353.97 65.07 -43.43(13.6) 198.99 64.00 55.69 2 -456.47 246.07(29.0) -267.72 263.12 -152.77(29.0) 176.88 158.01 173.22 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 12.29 35.03(16.8) 0.00 -60.97 O.OO(10.4) -78.48 1 119.66 318.96 2 0.00 82.11(29.0) 3.16 -146.68 O.OO(40.2) -119.67 2 140.66 105.65 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 3 -201.40 -297.13 c c c- .- c / Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.183 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 4.41 4.0 11.00 22.75 0.00 3.00 0.162 0.325 2 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MI N JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 1.73 0.00 1.87 0.00 1.48 0.00 1 0.00 0.85 0.00 1.19 0.00 1.13 2 2.72 0.00 4.15 0.00 2.17 0.00 2 0.00 0.60 0.00 2.07 0.00 1.25 3 0.82 0.00 2.45 0.00 2.17 0.00 Rebar Weight=O ,680 psf ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 1.50 0.00 1.68 0.00 1.48 0.00 1 0.00 0.93 0.00 1.39 0.00 1.13 2 2.17 0.17 3.69 0.00 2.17 0.00 2 0.00 0.87 0.00 2.37 0.00 1.25 3 0.54 0.00 2.19 0.00 2.17 0.00 Rebar Weight=0.700 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BDT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 1.25 1.64 1.67 0.00 1.48 0.00 1 1.61 1.28 0.00 1.50 0.00 1.13 2 1.40 3.18 3.61 0.73 2.17 0.00 2 0.00 1.27 0.00 2.52 0.00 1.25 3 0.17 2.36 2.07 0.00 2.17 0.00 Rebar Weight=0.913 psf Section5-BEAM SHEAR DESIGN X Left Vu Mu Vcn vcw Vci Av #4@ Span 1 L=33.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Span 2 L=57.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 2 X Left Vu Mu Vcn vcw Vci Av #4@ Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - - -Defl ecti ons (i n) - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.354 ( 0.83) -0.494 ( 16.83) -0.077 ( 26.43) -0.473 ( 32.83) 1 0.053 7640 0.019 21568 B 0.401 ( 16.83) -1.269 ( 32.83) 0.021 ( 0.83) -0.500 ( 29.63) 2 0.133 5202 0.116 6004 2 T 0.305 ( 1.00) -0.533 ( 29.00) -0.128 ( 1.00) -0.410 ( 29.00) B 0.422 ( 29.00) -1.546 ( 1.00) -0.004 ( 29.00) -0.668 ( 1.00) c c. Section 7 - F A C T 0 R E D Maximum Axi a1 Load Axial Column Moment Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 96.14 119.66 318.96 2 202.30 87.53 61.09 c - 3 84.64 -201.40 -297.13 t- COLUMN LOADS Maximum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 96.14 119.66 318.96 181.97 140.66 105.65 84.64 -201.40 -297.13 r , P- r r c I F- r c t- P L Frame Design Group, Inc 2 Faraday, Suite 101 Sheet No. 'ISZ 3 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=l.4 LL FACTOR=l.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 3 16.00 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 2 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 3 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 < - - - - - - - TENDON PROFILE- - - --- -> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 16.00 2 2 10.00 12.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 33.83 3 2 12.00 10.00 0.00 0.00 0.00 1.516 3 U 0.002 0.030 0.00 57.83 c--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in3) (in31 1 0.00 0.00 20.00 Fix 0.00 0.00 0.00 Fix 1 855.00 8.96 7383.25 3142.75 2 0.00 0.00 20.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75 3 0.00 0.00 24.00 Fix 0.00 0.00 0.00 Fix 3 855.00 8.96 7383.25 3142.75 4 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <- - - - - -BALANCED LOAD- - - -> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 8.09 34.52( 6.6) -21.46 2.03 -14.12( 5.1) 56.27 0.20 3.71 2 -20.76 42.42(10.4) -366.14 60.33 -47.72(13.6) 274.12 7.77 155.07 3 -357.37 277.34(29.0) -304.29 279.46 -177.09(29.0) 205.10 161.20 200.98 f c <------MOST POS LL------> SPAN L M(X-ft) R 1 5.18 38.42(15.2) 38.42 2 36.87 40.63(16.8) 1.29 3 1.49 95.40(29.0) 10.37 <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) L M( X-ft 1 R JOINT TOP BOT -2.54 -2.54( 0.8) -49.04 1 0.00 0.00 -47.11 -4.88( 7.2) -120.20 2 0.00 0.00 117.57 -0.01(40.2) -140.22 3 0.00 0.00 4 -231.40 -332.77 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.210 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 5.88 4.0 8.75 10.25 0.00 3.00 0.124 0.124 2 105.88 5.88 4.0 3.00 22.75 0.00 3.00 0.124 0.279 3 238.22 13.23 9.0 3.00 27.00 0.00 8.75 0.279 0.279 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.07 0.00 0.35 0.00 1.25 2 0.00 0.00 0.31 0.00 2.17 0.00 2 0.00 0.09 0.00 0.39 0.00 1.25 3 1.00 0.00 3.27 0.00 2.17 0.00 3 0.00 0.69 0.00 2.34 0.00 1.25 4 1.10 0.00 2.82 0.00 .2.17 0.00 Rebar Weight=0.728 psf ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.07 0.00 0.35 0.00 1.25 2 0.00 0.00 0.30 0.00 2.17 0.00 2 0.00 0.09 0.00 0.45 0.00 1.25 3 1.00 0.12 3.21 0.00 2.17 0.00 3 0.00 0.80 0.00 2.59 0.00 1.25 4 0.73 0.42 2.52 0.00 2.17 0.00 Rebar Wei ght=O. 753 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 0.00 0.00 0.00 1 0.00 0.09 0.00 0.34 0.00 1.25 2 0.00 0.00 0.30 0.00 2.17 0.00 2 0.00 0.09 0.00 0.49 0.00 1.25 3 1.00 2.86 3.20 0.32 2.17 0.00 3 0.00 1.26 0.00 2.73 0.00 1.25 4 0.29 2.95 2.38 0.00 2.17 0.00 Rebar Weight=O. 880 psf Section5-BEAM SHEAR DESIGN X Left Vu Mu Vcn vcw Vc i AV #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) Span 1 L=16.00ft Use #4@24.00in o/c max. for Span 1 Span 2 L=33.83ft X Left Vu Mu Vcn vcw Vci AV #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) Use #4@22.50in o/c max. for Span 2 Span 3 L=57.83ft X Left Vu Mu Vcn vcw Vci Av #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) Use #4@22.50in o/c max. for Span 3 CODE CODE CODE IC. Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) - - -- -> SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta LL DL + Bal Service Loads Transfer of Prestress 1 T -0.101 ( 15.17) -0.243 ( 15.17) -0.161 ( 0.83) -0.217 ( 15.17) 1 0.005 42381 0.006 31559 B 0.156 ( 15.17) -0.178 ( 15.17) 0.026 ( 15.17) -0.105 ( 0.83) 2 -0.040 10211 0.024 16597 2 T 0.167 ( 26.43) -0.248 ( 0.83) -0.002 ( 26.43) -0.264 ( 32.83) 3 0.174 3993 0.151 4585 c c B 0.168 ( 0.83) -1.164 ( 29.63) 0.047 ( 0.83) -0.769 ( 29.63) 3 T 0.111 ( 57.00) -0.597 ( 29.00) -0.231 ( 57.00) -0.430 ( 29.00) B 0.468 ( 29.00) -1.193 ( 57.00) -0.080 ( 29.00) -0.546 ( 57.00) c rc c r" c c- c Section 7 - F A C T 0 R E D - Maximum Axial Load Axial Column Moment c Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 24.96 0.00 0.00 2 68.37 0.00 0.00 3 167.25 0.00 0.00 4 90.60 -231.40 -332.77 COLUMN LOADS Maxi mum Moment Axi a1 Col umn Moment Load Top Bottom (kips) (k-ft) (k-ft) 24.96 0.00 0.00 59.67 0.00 0.00 151.44 0.00 0.00 90.60 -231.40 -332.77 L P c * #- 3 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=l .4 LL FACTOR=l. 7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES %SUP. DL@TRANSFER=O .O TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing TOP 6.0 SQRT f 'c=424psi BOT 7.5 SQRT f ' c=53Opsi BOTTOM 2.50 in BOTTOM 2.50 in 0.004A @ TOP & BOT DL + LL/4 RATIO=l. 67 Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy-------------------------------------..-----> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 3 30.00 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 2 2 33.83 15.00 30.00 5.00 0.00 9.00 9.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 30.00 2 2 10.00 12.00 0.00 0.00 0.00 0.992 2 U 0.033 0.030 0.00 33.83 3 2 12.00 10.00 0.00 0.00 0.00 1.516 3 U 0.002 0.030 0.00 57.83 <-------------------- COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in2) (in) (in3) (in31 1 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 1 855.00 8.96 7383.25 3142.75 2 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 2 652.50 11.12 5035.03 2965.84 3 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 3 855.00 8.96 7383.25 3142.75 4 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <- - - - - -BALANCED LOAD- - - -> BEAM SECONDARY SPAN L M( X-ft 1 R L M(X-ft) R L R 1 -48.37 73.24(12.2) -118.03 47.50 -58.58( 12.2) 113.19 45.67 60.63 2 -100.52 45.39(13.6) -222.92 131.01 -64.77( 16.8) 234.61 59.36 91.31 3 -422.89 256.66(29.0) -280.11 270.81 -150.34(29.0) 174.04 165.69 170.39 c rc c <- ___ __ MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 5.20 25.97(15.0) 3.41 -28.63 -0.35( 6.5) -44.91 1 50.89 62.63 3 0.52 82.28(29.0) 2.52 -145.12 O.OO(40.2) -119.93 3 177.70 292.51 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 2 10.77 27.94(16.8) 4.22 -48.92 -5.24(10.4) -67.25 2 -35.50 -47.15 4 -203.53 -314.99 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.183 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 5.88 4.0 8.75 21.50 0.00 3.00 0.124 0.124 2 105.88 5.88 4.0 3.00 27.00 0.00 3.00 0.162 0.325 3 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.45 0.00 2.17 0.00 1 0.00 0.00 0.00 0.61 0.00 1.25 2 0.00 0.00 1.02 0.00 2.17 0.00 2 0.00 0.00 0.00 0.41 0.00 1.13 3 2.17 0.00 3.85 0.00 2.17 0.00 3 0.00 0.73 0.00 2.15 0.00 1.25 4 1.01 0.00 2.55 0.00 2.17 0.00 Rebar Wei ght=O. 714 psf ULT(%R= 6.7) D+L/4(%R=10.0) MI N ULT(%R= 6.7) D+L/4(%R=10.0) MI N JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.40 0.00 2.17 0.00 1 0.00 0.00 0.00 0.66 0.00 1.25 2 0.00 0.00 0.92 0.00 2.17 0.00 2 0.00 0.00 0.00 0.49 0.00 1.13 3 1.70 0.00 3.43 0.00 2.17 0.00 3 0.00 1.00 0.00 2.44 0.00 1.25 4 0.72 0.00 2.28 0.00 2.17 0.00 Rebar Weight=0.719 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN TOP BOT 1 0.00 0.00 0.38 0.00 2.17 0.00 1 0.00 0.00 0.00 0.69 0.00 1.25 2 0.00 0.00 0.92 0.00 2.17 0.00 2 0.00 0.00 0.00 0.56 0.00 1.13 3 1.00 2.79 3.33 0.45 2.17 0.00 3 0.00 1.39 0.00 2.59 0.00 1.25 4 0.31 2.51 2.15 0.00 2.17 0.00 Rebar Weight=0.830 Dsf JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT Section5-BEAM SHEAR DESIGN Span 1 L=30.00ft X Left Vu Mu Vcn vcw Vci Av #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) Use #4@24.OOin o/c max. for Span 1 Span 2 L=33.83ft Left Vu Mu Vcn vcw Vci Av #4@ ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) Use #4@22.50in o/c max. for Span 2 Span 3 L=57.83ft Left Vu Mu Vcn vcw Vc i Av #4@ ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) Use #4@22.50in o/c max. for Span 3 CODE CODE CODE c Frame Design Group, Inc. 2 Faraday, Suite 101 Sheet No. %7 Toyota Carl sbad e Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> e- - - - -Deflecti ons (in 1 - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.043 ( 29.17) -0.190 ( 15.00) -0.148 ( 0.83) -0.206 ( 29.17) 1 0.008 44863 0.011 32672 B 0.033 ( 15.00) -0.314 ( 29.17) -0.001 ( 29.17) -0.136 ( 0.83) 2 -0.024 16773 0.016 25671 2 T -0.007 ( 26.43) -0.362 ( 32.83) -0.021 ( 20.03) -0.607 ( 32.83) 3 0.169 4114 0.118 5903 c c- B 0.005 ( 0.83) -0.718 ( 29.63) 0.186 ( 0.83) -0.493 ( 29.63) 3 T 0.235 ( 1.00) -0.554 ( 29.00) -0.148 ( 1.00) -0.417 ( 29.00) B 0.472 ( 29.00) -1.382 ( 1.00) 0.011 ( 29.00) -0.621 ( 1.00) - Section7- FACTORED Maximum Axial Load Axial Column Moment Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 42.67 50.89 62.63 3 154.60 131.56 253.81 c 2 99.12 2.23 -15.49 4 85.50 -203.53 -314.99 COLUMN LOADS Maxi mum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 42.67 50.89 62.63 137.84 177.70 292.51 80.54 -35.50 -47.15 85.50 -203.53 -314.99 ..-- I c 4 c c rcc c’ c c c I- - 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTDR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O. 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#9 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns 8 Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A 8 TOP & BOT DL + LL/4 RATIO=1.67 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- - - - - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k,ft) (k.ft) (ft) (ft) 1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.040 0.00 30.00 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M( X-ft 1 R L R 1 -56.86 74.38(15.0) -105.78 57.89 -62.97(15.0) 94.11 56.06 92.28 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED 1 1 -26.38 34.51(15.0) -49.09 -26.38 34.51(15.0) -49.09 1 0.00 107.59 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 2 0.00 -182.61 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.124 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 5.88 4.0 8.75 24.50 0.00 8.75 0.124 0.124 c c- c ULT(%R= 0.0) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 ULT(%R= 6.7) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 ULT(%R=15.0) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 Section 4 - R E B A R R E Q U I R E M E N T S (in21 D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.50 0.00 2.17 0.00 1 0.00 0.00 0.00 0.65 0.94 0.00 2.17 0.00 Rebar Wei ght=O. 567 psf D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.45 0.00 2.17 0.00 1 0.00 0.00 0.00 0.72 0.84 0.00 2.17 0.00 Rebar Weight=O. 567 psf D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.42 0.00 2.17 0.00 1 0.00 0.00 0.00 0.76 0.80 0.00 2.17 0.00 Rebar Weight=0.567 psf MIN TOP BOT 0.00 1.25 MIN TOP BOT 0.00 1.25 MI N TOP BOT 0.00 1.25 Section 5 - B E A M S H E A R D E S I G N X Left Vu Mu Vcn vcw Vci Av #4@ Span 1 L=30.00ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - - - Def 1 ecti ons (in) - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Ea1 LL 1 T -0.025 ( 29.17) -0,198 ( 15.00) -0.143 ( 17.83) -0.164 ( 0.83) 1 0.006 62916 0.015 24637 B 0.052 ( 15.00) -0.356 ( 29.17) -0.099 ( 0.83) -0.148 ( 17.83) Section7-FACTORED COLUMN LOADS Maximum Axi a1 Load Maximum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 45.89 0.00 107.59 45.89 0.00 107.59 2 56.00 0.00 -182.61 56.00 0.00 -182.61 c c e' .- e P 1 SPANS 0 CANTILEVERS UNIF LL DL FACTORfl.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP, OL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED, LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE+ STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A (3 TOP & BOT DL + LL/4 RATIG1.67 c h L c P- #- h .C <-------TENDON PROFILE-------> CONC C- - - - - -SUPERIMPOSED LOADS- - - - - -> CL cR A B C DL LOAD OL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 1.328 1 U 0.002 0.030 0.00 57.83 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M( X-ft) R L R 1 -409.90 365.57(34.4) 30.83 360.48 -308.17(34.4) 8.38 358.39 6.29 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 -135.82 121.13(34.4) 10.22 -135.82 121.13(34.4) 10.22 1 0.00 517.13 2 0.00 0.00 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.434 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 317.63 21.18 12.0 9.00 27.00 0.00 9.00 0.371 0.371 Section 4 - R E B A R R E Q U I R E M E N T S (in2) ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 3.66 0.00 2.16 0.00 1 0.00 0.33 0.00 3.06 0.00 1.26 2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Wei ght=l ,065 psf ULT(%R= 6.7) D+L/4(XR=10.0) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 3.26 0.00 2.16 0.00 1 0.00 0.40 0.00 3.18 0.00 1.26 2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=1.071 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 2.51 3.07 0.00 2.16 0.00 1 0.00 0.50 0.00 3.25 0.00 1.26 2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=l. 168 psf Section5-BEAM SHEAR DESIGN Span 1 L=57.83ft (ft) (k) (k-ft) (k) (k) (k) (in2lft) (in) CODE Use #4@22.50in o/c max. for Span 1 X Left Vu Mu Vcn vcw Vci Av #4@ Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) -- - --> SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Oelta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.074 ( 0.83) -0.658 ( 34.43) -0.424 ( 23.23) -0.497 ( 56.83) 1 0.105 6640 0.207 3347 B 0.289 ( 34.43) -1.056 ( 0.83) -0.286 ( 56.83) -0.456 ( 23.23) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maxi mum Moment Axi a1 Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 98.62 0.00 517.13 98.62 0.00 517.13 2 55.58 0.00 0.00 55.58 0.00 0.00 P 2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 500Opsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi TENDON DIAM=l.OOin MAX LONG BAR SIZE411 STIRRUP SIZE44 REBAR COVER: 2.00in TOP 2.00in BOT LOA0 FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- -- - - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 33.83 2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83 <--------------------COLuMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31 1 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix 1 855.00 8.96 7383.25 3142.75 2 9.67 24.00 24.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75 3 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <?------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -42.88 68.00(13.6) -242.24 17.84 -24.53(13.6) 153.06 15.56 34.80 2 -427.02 248.26(29.0) -292.78 290.58 - 169.11(29.0) 209.94 172.32 205.82 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED) 1 13.84 33.81(16.8) 0.00 -28.76 O.OO( 7.2) -84.30 1 0.00 128.29 2 0.00 89.27(29.0) 3.61 -148.61 O.OO(45.8) -105.51 2 0.00 331.84 SPAN L M(x-ft) R L M(X-ft 1 R JOINT TOP BOT 3 0.00 -452.46 .- c c Frame Design Group, Inc. Sheet No. 43 2 Faraday. Suite 101 Toyota Carl sbad Irvine. CA 92618 620 949/595-8015 Page 2 _________- ...................................... PTData for Windows {V2,OOO-O229}====-================================ Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.235 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 132.35 7.35 5.0 8.75 13.00 0.00 3.00 0.155 0.279 2 238.22 13.23 9.0 3.00 27.00 0.00 8.75 0.279 0.279 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) JOINT TOP BOT TOP BOT TOP BOT SPAN TOP, BOT TOP BOT 1 0.00 0.00 0.41 0.00 2.17 0.00 1 0.00 0.00 0.00 0.60 2 1.79 0.00 3.90 0.00 2.17 0.00 2 0.00 0.40 0.00 2.11 3 0.03 0.00 2.61 0.00 2.17 0.00 Rebar Weight=0.769 psf ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) D+L/4(%R=10.0) JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1 0.00 0.00 0.36 0.00 2.17 0.00 1 0.00 0.00 0.00 0.65 2 1.32 0.00 3.47 0.00 2.17 0.00 2 0.00 0.64 0.00 2.40 3 0.00 0.00 2.33 0.00 2.17 0.00 Rebar Weight=O. 776 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1 0.00 0.00 0.34 0.00 2.17 0.00 1 0.00 0.04 0.00 0.71 2 0.60 2.85 3.38 0.49 2.17 0.00 2 0.00 1.01 0.00 2.55 3 0.00 1.95 2.25 0.00 2.17 0.00 Rebar Weight=0.916 psf Section 5 - B E A M S H E A R D E S I G N X Left Vu Mu Vcn vcw Vci Av #4@ Span 1 L=33.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Span 2 L=57.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 2 X Left Vu Mu Vcn vcw Vci Av #4@ MIN TOP BOT 0.00 1.25 0.00 1.25 MIN TOP BOT 0.00 1.25 0.00 1.25 MIN TOP BOT 0.00 1.25 0.00 1.25 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in 1 - - - - -> SPAN Tension (x) Compression (XI Tension (XI Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.003 ( 32.83) -0.278 ( 13.63) -0.125 ( 26.43) -0.254 ( 29.63) 1 0.016 25397 0.018 21969 B 0.135 ( 13.63) -0.941 ( 32.83) -0.036 ( 13.63) -0.547 ( 32.83) 2 0.118 5877 0.134 5188 2 T 0.185 ( 1.00) -0.552 ( 29.00) -0.198 ( 1.00) -0.399 ( 29.00) B 0.364 ( 29.00) -1.367 ( 1.00) -0.152 ( 29.00) -0.623 ( 1.00) c Frame Design Group, Inc. 2 Faraday. Suite 101 Sheet No. w Toyota Carl sbad c Section7 - FACTORED Maximum Axial Load Axial Column Moment Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 42.00 0.00 128.29 2 159.33 0.00 261.16 P c 3 85.31 0.00 -452.46 COLUMN LOADS Maximum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 42.00 0.00 128.29 142.64 0.00 331.84 85.31 0.00 -452.46 c 2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM51.00in MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <- - - - - -SUPERIMPOSED LOADS- - - - - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 33.83 2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83 <--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31 1 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix 1 855.00 8.96 7383.25 3142.75 2 0.00 0.00 24.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75 3 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <:------DEAD LOAD-------> <- - - ---BALANCED LOAD- - -> BEAM SECONDARY SPAN L M( X- f t ) R L M(X-ft) R L R 1 -3.30 55.38( 10.4) -363.68 -9.19 -20.96( 7.2) 236.01 -11.48 117.75 2 -355.69 270.14(29.0) -320.37 241.86 - 184.05(29.0) 228.78 123.60 224.67 <------ MOST POS LL------> <------ MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 35.86 42.33(16.8) 0.00 -37.01 O.OO( 7.21 -126.57 1 0.00 112.41 2 0.00 101.44(29.0) 9.36 -123.79 O.OO(45.8) -120.85 2 0.00 0.00 3 0.00 -500.77 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT c c Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.235 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 132.35 7.35 5.0 8.75 13.00 0.00 3.00 0.155 0.279 2 238.22 13.23 9.0 3.00 27.00 0.00 8.75 0.279 0.279 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) O+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.14 0.00 2.17 0.00 1 0.00 0.00 0.00 0.49 0.00 1.25 2 1.04 0.00 3.27 0.00 2.17 0.00 2 0.00 0.71 0.00 2.31 0.00 1.25 3 0.48 0.00 2.89 0.00 2.17 0.00 Rebar Wei ght=O. 772 psf ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT(%R= 6.7) O+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.12 0.00 2.17 0.00 1 0.00 0.00 0.00 0.56 0.00 1.25 2 0.76 0.00 3.21 0.00 2.17 0.00 2 0.00 0.82 0.00 2.56 0.00 1.25 3 0.20 0.00 2.58 0.00 2.17 0.00 Rebar Weight=0.791 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.12 0.00 2.17 0.00 1 0.00 0.00 0.00 0.60 0.00 1.25 2 0.62 2.87 3.20 0.32 2.17 0.00 2 0.00 1.18 0.00 2.70 0.00 1.25 3 0.00 2.41 2.47 0.00 2.17 0.00 Rebar Weight=0.942 psf Section 5 - B E A M S H E A R D E S I G N X Left Vu Mu Vcn vcw Vc i Av #4@ Span 1 L=33.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Span 2 L=57.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 2 X Left Vu Mu Vcn vcw Vci Av #4@ Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (i n) - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Oelta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.135 ( 32.83) -0.274 ( 13.63) -0,099 ( 26.43) -0.236 ( 10.43) 1 -0.011 36055 0.026 15652 B 0.124 ( 13.63) -1.249 ( 32.83) -0.052 ( 10.43) -0.630 ( 32.83) 2 0.136 5095 0.165 4197 2 T 0.108 ( 1.00) -0.583 ( 29.00) -0.219 ( 1.00) -0.405 ( 29.00) B 0.437 ( 29.00) -1.186 ( 1.00) -0.137 ( 29.00) -0.574 ( 1.00) c Frame Design Group, Inc 2 Faraday, Suite 101 Sheet No. 9 7 Tovota Carl sbad Section 7 - F A C T 0 R E D Maximum Axial Load Axial Column Moment Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 33.30 0.00 112.41 2 168.06 0.00 0.00 3 90.67 0.00 -500.77 c c- c c c c c c c c C OLUMN LOADS Maxi mum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 33.30 0.00 112.41 152.53 0.00 0.00 90.67 0.00 -500.77 P c c c 2 SPANS 0 CANTILEVERS SKIP LL DL FACTDR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SORT f'c=530psi %SUP.DL@TRANSFER=O.O TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60. OOksi TENDON DIAM=l ,001 n MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------.-----------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 2 33.83 15.00 30.00 5.00 0.00 9.00 9.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <- - - - - -SUPERIMPOSE0 LOADS- - - - - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 0.992 1 U 0.002 0.030 0.00 33.83 2 2 12.00 10.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 57.83 <--------------------COLUMNS--------------------> <.-------Bottom------> <--------Top---------> BEAM CROSS- SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in3) 1 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix 1 652.50 11.12 5035.03 2965.84 2 9.67 24.00 24.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75 3 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <:------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -20.46 39.24( 10.4) -189.87 6.43 -13.12(10.4) 148.15 5.37 -13.06 2 -415.71 251.73(29.0) -297.16 281.63 -171.85(29.0) 213.40 163.37 209.29 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 13.07 32.48(16.8) 0.00 -30.47 O.OO( 7.2) -80.51 1 0.00 100.13 2 0.00 89.54(29.0) 3.68 -147.88 O.OO(45.8) -105.85 2 0.00 369.26 SPAN L M(x-ft) R L M(X-ft) R JOINT TOP BOT 3 0.00 -455.88 c c Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.226 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 5.88 4.0 11.00 11.75 0.00 3.00 0.162 0.365 2 238.22 13.23 9.0 3.00 27.00 0.00 8.75 0.279 0.279 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.24 0.00 1.48 0.00 1 0.00 0.00 0.00 0.37 0.00 1.13 2 1.70 0.00 3.79 0.00 2.17 0.00 2 0.00 0.43 0.00 2.13 0.00 1.25 3 0.06 0.00 2.65 0.00 2.17 0.00 Rebar Weight=0.749 psf ULT ( %R= 6 .7 ) D+L / 4 ( %R= 1 0 . 0 ) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.22 0.00 1.48 0.00 1 0.00 0.00 0.00 0.41 0.00 1.13 2 1.24 0.00 3.38 0.00 2.17 0.00 2 0.00 0.66 0.00 2.42 0.00 1.25 3 0.00 0.00 2.37 0.00 2.17 0.00 Rebar Wei ght=O. 756 psf ULT(%R=15.0) D+L/4(%R=l5.0 1 MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.21 0.00 1.48 0.00 1 0.00 0.00 0.00 0.45 0.00 1.13 2 0.54 2.79 3.29 0.40 2.17 0.00 2 0.00 1.03 0.00 2.57 0.00 1.25 3 0.00 1.98 2.28 0.00 2.17 0.00 Rebar Weight=0.894 psf Section5-BEAM SHEAR DESIGN X Left Vu Mu Vcn vcw Vci AV #4@ Span 1 L=33.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Span 2 L=57.83ft X Left Vu Mu Vcn vcw Vci Av #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in olc max. for Span 2 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in)--- --> SPAN Tension (x) Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.024 ( 26.43) -0.305 ( 29.63) -0.081 ( 26.43) -0.413 ( 29.63) 1 0.008 53977 0.020 19834 B 0.065 ( 13.63) -0,860 ( 32.83) -0.098 ( 10.43) -0.473 ( 32.83) 2 0.120 5787 0.134 5160 2 T 0.180 ( 1.00) -0.554 ( 29.00) -0.199 ( 1.00) -0.399 ( 29.00) B 0.368 ( 29.00) -1.355 ( 1.00) -0.151 ( 29.00) -0.620 ( 1.00) JOINT 1 2 3 c c- Section7-FACTORED COLUMN LOADS Maxi mum Axi a1 Load Maximum Moment Axi a1 Col umn Moment Axial Column Moment Load Top Bottom Load Top Bottom kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 32.19 0.00 100.13 32.19 0.00 100.13 43.41 0.00 297.31 126.75 0.00 369.26 85.97 0.00 -455.88 85.97 0.00 -455.88 P 2 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=l. 67 REBAR YIELD=60.00ksi TENDON DIAM=l.OOin MAX LONG BAR SIZE411 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy------------------------------------------.-> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 2 33.83 15.00 30.00 5.00 0.00 9.00 15.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 0.992 1 U 0.002 0.030 0.00 33.83 2 2 12.00 10.00 0.00 0.00 0.00 1.516 1 P 11.500 4.000 19.17 0.00 2 U 0.002 0.030 0.00 57.83 c--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in2) (in) (in31 (in31 1 5.00 24.00 20.00 Fix 0.00 0.00 0.00 Fix 1 652.50 11.12 5035.03 2965.84 2 10.83 24.00 24.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75 3 0.00 0.00 20.00 Fix 0.00 0.00 0.00 Fix SPAN 1 2 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored. All Other Moments are Unfactored <--.----DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY L M(X-ft) R L M(X-ft) R L R -46.38 50.78( 13.6) -280.08 3.05 -19.94(10.4) 267.36 1.99 52.42 561.34 376.09(34.6) 27.97 495.60 -332.29( 34.6) 10.44 337.92 4.96 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 27.51 52.53(16.8) 0.00 -73.32 O.OO(10.4) -120.80 1 0.00 225.77 2 0.00 134.13(34.6) 9.85 -200.45 -0.19(57.0) -0.19 2 0.00 380.73 3 0.00 0.00 SPAN L M(X-ft) R L M(x-ft 1 R JOINT TOP BOT c Frame Design Group, Inc. Sheet No. /e% 2 Faraday. Suite 101 Irvine. CA 92618 B24R 949/595 - 80 15 Page 2 Toyota Carlsbad ........................................ PTData for Windows {V2,000-0229}====================================== Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.257 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 4.41 4.0 11.00 15.00 0.00 3.00 0.162 0.487 2 317.63 17.65 12.0 3.00 27.00 0.00 8.75 0.371 0.371 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1 0.15 0.00 0.57 0.00 1.48 0.00 1 0.00 0.33 0.00 0.52 2 1.62 0.00 5.30 0.00 2.17 0.00 2 0.00 0.44 0.00 3.20 3 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=0.773 psf ULT( %R= 6.7) D+L/4(%R=10.0 MIN ULT(%R= 6.7) D+L/4(%R=10.0) JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1 0.04 0.00 0.51 0.00 1.48 0.00 1 0.00 0.25 0.00 0.57 2 0.89 0.76 4.71 0.00 2.17 0.00 2 0.00 0.54 0.00 3.37 3 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=O. 788 psf ULT( %R=15.0 D+L/4( %R=15.0) MIN ULT ( %R= 15.0 O+L /4 ( %R=15.0 JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1 0.00 0.27 0.48 0.00 1.48 0.00 1 1.20 0.64 0.00 0.65 2 0.07 3.72 4.48 1.60 2.17 0.00 2 0.00 0.77 0.00 3.47 3 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=0.912 psf Section5-BEAM SHEAR DESIGN X Left Vu Mu Vcn vcw Vci Av #4@ Span 1 L=33.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Span 2 L=57.83ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE X Left Vu Mu Vcn vcw Vci Av #4@ Use #4@22.50in o/c max. for Span 2 MIN TOP BOT 0.00 1.13 0.00 1.25 MIN TOP BOT 0.00 1.13 0.00 1.25 MIN TOP BOT 0.00 1.13 0.00 1.25 Section6-CONCRETE FLEXURAL STRESSES AN0 DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - - -Def 1 ecti ons ( i n) - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Oelta Delta L/Oelta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.116 ( 0.83) -0.456 ( 32.83) -0.087 ( 26.43) -0.754 ( 32.83) 1 0.015 27610 0.030 13753 B 0.218 ( 16.83) -1,027 ( 32.83) -0.150 ( 10.43) -0.458 ( 29.63) 2 0.073 9482 0.223 3109 2 T 0.061 ( 1.00) -0.661 ( 34.60) -0.402 ( 29.00) -0.498 ( 57.00) B 0.308 ( 34.60) -1.388 ( 1.00) -0.282 ( 57.00) -0.508 ( 29.00) c c Section 7 - F A C T 0 R E D Maximum Axial Load Axial Column Moment Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 43.77 0.00 225.77 2 191.14 0.00 276.93 ?-- 3 62.43 0.00 0.00 c c c c COLUMN LOADS Maximum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 43.77 0.00 225.77 166.72 0.00 380.73 62.43 0.00 0.00 c- 3 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 3 16.00 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 2 3 33.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 3 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 16.00 2 2 10.00 12.00 0.00 0.00 0.00 1.516 2 U 0.002 0.030 0.00 33.83 3 2 12.00 10.00 0.00 0.00 0.00 1.516 3 U 0.002 0.030 0.00 57.83 <--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31 1 0.00 0.00 20.00 Fix 0.00 0.00 0.00 Fix 1 855.00 8.96 7383.25 3142.75 2 0.00 0.00 20.00 Fix 0.00 0.00 0.00 Fix 2 855.00 8.96 7383.25 3142.75 3 0.00 0.00 24.00 Fix 0.00 0.00 0.00 Fix 3 855.00 8.96 7383.25 3142.75 4 9.67 24.00 20.00 Fix 0.00 0.00 0.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M( x-ft) R L R 1 7.96 33.51( 6.6) -23.80 2.11 -13.65( 5.1) 57.66 0.28 5.10 2 -23.00 42.75(10.4) -359.81 61.67 -48.42( 13.6) 270.37 9.10 152.12 3 -351.20 271.52(29.0) -322.10 275.81 -173.64(29.0) 215.65 157.55 211.54 P <------MOST pOS LL------> SPAN L M(X-ft) R 1 5.32 40.92(15.2) 40.92 2 39.26 40.79(16.8) 1.26 3 1.46 101.65(29.0) 9.02 <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) L M(X-ft) R JOINT TOP BOT -2.55 -2.55( 0.8) -49.20 1 0.00 0.00 -47.27 -4.87( 7.2) -126.48 2 0.00 0.00 123.68 -0.16(45.8) - 121.12 3 0.00 0.00 4 0.00 -517.64 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.210 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksil SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 5.88 2 105.88 5.88 3 238.22 13.23 ULT(%R= 0.0) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 3 1.11 0.00 4 0.64 0.00 ULT(%R= 6.7) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 3 1.11 0.24 4 0.34 0.03 ULT(%R=15.0) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 3 1.11 2.98 4 0.00 2.58 4.0 8.75 10.25 0.00 3.00 0.124 0.124 4.0 3.00 22.75 0.00 3.00 0.124 0.279 9.0 3.00 27.00 0.00 8.75 0.279 0.279 Section 4 - R E B A R R E Q U I R E M E N T S (in21 D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.00 0.00 0.00 0.00 1 0.00 0.12 0.00 0.34 0.33 0.00 2.17 0.00 2 0.00 0.14 0.00 0.39 3.24 0.00 2.17 0.00 3 0.00 0.82 0.00 2.32 2.90 0.00 -2.17 0.00 Rebar Wei ght=O. 726 psf D+L/4(%R=lO.O) MI N ULT(%R= 6.7) D+L/4(%R=10.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.00 0.00 0.00 0.00 1 0.00 0.12 0.00 0.34 0.32 0.00 2.17 0.00 2 0.00 0.14 0.00 0.45 3.18 0.00 2.17 0.00 3 0.00 0.92 0.00 2.57 2.60 0.00 2.17 0.00 Rebar Weight=0.748 psf Span 1 L=16.00ft X Left Vu Mu (ft) (k) (k-ft) Use #4@24. OOi n o/c rnax Span 2 L=33.83ft X Left Vu Mu (ft) (k) (k-ft) Use #4@22.50in o/c rnax D+L/4( %R=15.0) MI N ULT(%R=15.0) D+L/4(%R=15.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.00 0.00 0.00 0.00 1 0.00 0.14 0.00 0.34 0.32 0.00 2.17 0.00 2 0.00 0.14 0.00 0.49 3.17 0.29 2.17 0.00 3 0.00 1.27 0.00 2.71 2.49 0.00 2.17 0.00 Rebar Weight=0.876 psf Span 3 L=57.83ft X Left Vu Mu (ft) (k) (k-ft) Section5-BEAM SHEAR DESIGN Vcn vcw Vci Av #4@ (k) (k) (k) (in2/ft) (in) for Span 1 Vcn vcw Vci AV #4@ (k) (k) (k) (in2/ft) (in) for Span 2 Vcn vcw Vci Av #4@ (k) (k) (k) (in2/ft) (in) Use #4@22.50in o/c rnax. for Span 3 CODE CODE CODE MIN TOP BOT 0.00 1.25 0.00 1.25 0.00 1.25 MIN TOP BOT 0.00 1.25 0.00 1.25 0.00 1.25 MIN TOP BOT 0.00 1.25 0.00 1.25 0.00 1.25 P- A c Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in)- - - --> SPAN Tension (x) Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.099 ( 15.17) -0,245 ( 15.17) -0.161 ( 0.83) -0.216 ( 15.17) 1 0.004 43332 0.006 30288 B 0.162 ( 15.17) -0.182 ( 15.17) 0.024 ( 15.17) -0.105 ( 0.83) 2 -0.039 10421 0.025 16505 2 T 0.172 ( 26.43) -0.250 ( 0.83) -0.004 ( 26.43) -0.267 ( 32.83) 3 0.169 4118 0.168 4128 c c 6 0.174 ( 0.83) -1.178 ( 29.63) 0.044 ( 0.83) -0.763 ( 29.63) 3 T 0.091 ( 57.00) -0.603 ( 29.00) -0.223 ( 57.00) -0.427 ( 29.00) B 0.483 ( 29.00) -1.148 ( 57.00) -0.086 ( 29.00) -0.566 ( 57.00) Section 7 - F A C T 0 R E D - Maximum Axial Load Axi a1 Column Moment -- Load Top Bottom JOINT (kips) (k-ft) (k-ft) 1 25.17 0.00 0.00 2 68.61 0.00 0.00 3 168.12 0.00 0.00 4 90.01 0.00 -517.64 COLUMN LOADS Maximum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 25.17 0.00 0.00 60.15 0.00 0.00 152.39 0.00 0.00 90.01 0.00 -517.64 c Frame Design Group, Inc. Sheet No. lo? 2 Faraday, Suite 101 Irvine. CA 92618 949/595- 8015 ==============--------------==========PToata for Windows {v2,oOo-o229}====================================== POST TENSIONED BEAM DESIGN 05 - 13 - 2002 PROJECT: Toyota Carl sbad MEMBER ID: B31R STORAGE ID: C : \PTPLUS32\PTRUNS\T0YOTA-1\\B31RI PTD 3 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 1 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f’c=424psi BOT 7.5 SQRT f’c=530psi %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONOEO. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi TENDON DIAM=l. OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1. fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop 8web Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 3 30.00 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 2 2 33.83 15.00 30.00 5.00 0.00 9.00 9.00 4.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 3 57.83 14.00 30.00 5.00 5.00 9.00 9.00 4.00 4.00 16.00 0.00 1.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- - - - - -> CL cR A B C DL LOAD DL LL A 8 SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 10.00 0.00 0.00 0.00 1.516 1 U 0.002 0.030 0.00 30.00 2 2 10.00 12.00 0.00 0.00 0.00 0.992 2 U 0.033 0.030 0.00 33.83 3 2 12.00 10.00 0.00 0.00 0.00 1.516 3 U 0.002 0.030 0.00 57.83 <--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31 1 10.83 24.00 20.00 Fix 0.00 0.00 0.00 Fix 1 855.00 8.96 7383.25 3142.75 2 10.83 24.00 20.00 Fix 0.00 0.00 0.00 Fix 2 652.50 11.12 5035.03 2965.84 3 10.83 24.00 24.00 Fix 0.00 0.00 0.00 Fix 3 855.00 8.96 7383.25 3142.75 4 10.83 24.00 20.00 Fix 0.00 0.00 0.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored. All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M( X- ft 1 R L M(X-ft) R L R 1 -48.37 73.24(12.2) -118.03 47.50 -58.58( 12.2) 113.19 45.67 60.63 2 -100.52 45.39(13.6) -222.92 131.01 -64.77( 16.8) 234.61 59.36 91.31 3 -422.89 256.66(29.0) -280.11 270.81 -150.34(29.0) 174.04 165.69 170.39 P <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 5.75 32.64(15.0) 8.66 -22.71 -0.24( 6.5) -49.29 1 0.00 95.89 2 17.41 31.22(16.8) 5.89 -51.57 -9.38(10.4) -82.61 2 0.00 -77.75 3 1.36 92.53(29.0) 3.67 -148.31 -0.13(45.8) -101.23 3 0.00 423.58 4 0.00 -463.09 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.183 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 5.88 4.0 8.75 21.50 0.00 3.00 0.124 0.124 2 105.88 5.88 4.0 3.00 27.00 0.00 3.00 0.162 0.325 3 211.75 11.76 8.0 3.00 27.00 0.00 8.75 0.248 0.248 Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MI N ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.43 0.00 2.17 0.00 1 0.00 0.00 0.00 0.63 0.00 1.25 2 0.00 0.00 1.04 0.00 2.17 0.00 2 0.00 0.00 0.00 0.42 0.00 1.13 3 2.25 0.00 3.86 0.00 2.17 0.00 3 0.00 0.96 0.00 2.18 0.00 1.25 4 0.47 0.00 2.49 0.00 2.17 0.00 Rebar Weight=0.716 psf ULT(%R= 6.7) D+L/4(%R=10.0) MI N ULT(%R= 6.7) D+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.38 0.00 2.17 0.00 1 0.00 0.00 0.00 0.66 0.00 1.25 2 0.00 0.00 0.95 0.00 2.17 0.00 2 0.00 0.00 0.00 0.47 0.00 1.13 3 1.78 0.00 3.44 0.00 2.17 0.00 3 0.00 1.18 0.00 2.46 0.00 1.25 4 0.22 0.00 2.23 0.00 2.17 0.00 Rebar Wei ght=0 ,721 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.36 0.00 2.17 0.00 1 0.00 0.00 0.00 0.70 0.00 1.25 2 0.00 0.00 0.95 0.00 2.17 0.00 2 0.00 0.00 0.00 0.54 0.00 1.13 3 1.07 2.85 3.35 0.46 2.17 0.00 3 0.00 1.56 0.00 2.61 0.00 1.25 4 0.00 2.05 2.15 0.00 2.17 0.00 Rebar Wei ght=0 ,828 psf Section5-BEAM SHEAR DESIGN Span 1 L=30.00ft X Left Vu Mu (ft) (k) (k-ft) Use #4@24.00in o/c max. Span 2 L=33.83ft X Left Vu Mu (ft) (k) (k-ft) Use #4@22.50in o/c max. Span 3 L=57.83ft X Left Vu Mu (ft) (k) (k-ft) Use #4@22.50in o/c rnax. Vcn vcw Vci Av #4@ (k) (k) (k) (in2/ft) (in) CODE for Span 1 Vcn vcw Vc i Av #4@ (k) (k) (k) (in2/ft) (in) CODE for Span 2 Vcn vcw Vc i AV #4@ (k) (k) (k) (in2/ft) (in) CODE for Span 3 c Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in 1 - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.036 ( 29.17) -0.201 ( 15.00) -0.148 ( 0.83) -0.206 ( 29.17) 1 0.008 44863 0.016 23116 B 0.058 ( 15.00) -0.331 ( 29.17) -0.001 ( 29.17) -0.136 ( 0.83) 2 -0.024 16773 0.019 21154 2 T 0.026 ( 26.43) -0,366 ( 32.83) -0.021 ( 20.03) -0.607 ( 32.83) 3 0.172 4043 0.146 4741 c - B 0.032 ( 0.83) -0.770 ( 29.63) 0.186 ( 0.83) -0.493 ( 29.63) 3 T 0.241 ( 1.00) -0.571 ( 29.00) -0.148 ( 1.00) -0.417 ( 29.00) B 0.512 ( 29.00) -1.395 ( 1.00) 0.011 ( 29.00) -0.621 ( 1.00) Section 7 - F A C T 0 R E D c Maxi mum Ax; a1 Load Ax; a1 Column Moment c Load Top Bottom 1 42.52 0.00 95.89 3 157.71 0.00 351.08 JOINT (kips) (k-ft) (k-ft) 2 99.88 0.00 -20.96 4 84.53 0.00 -463.09 COLUMN LOADS Maximum Moment Axial Column Moment Load Top Bottom 42.52 0.00 95.89 140.46 0.00 423.58 (kips) (k-ft) (k-ft) 79.04 0.00 -77.75 84.53 0.00 -463.09 1c c c c c c e c- Frame Design Group, Inc. Sheet No. l/o 2 Faraday, Suite 101 Imine, CA 92618 949/595-8015 ======================================PTData for Windows (V2.000-OZ29}====================================== POST TENSIONED BEAM DESIGN 03-25-2002 PROJECT : Toyota Carlsbad MEMBER ID: rn or10 STORAGE ID: C:\PTPLUS32\PTRUNS\TOYOTA-l\\WTll.PTD .................................... .................................... Copyright 2000 Structural Data Inc.============================P========== 1 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT fVc=530psi %SUP.DLBTRANSFER=O.O TENDON COVER: INTERIOR SPANS TOP 2.00 in EXTERIOR SPANS TOP 2.00 in UNBONDED, LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A B TOP & BOT DL + LL/4 RATIO=l.OO REBAR YIELD=60.00ksi TENDON DIAM=O.SOin MAX LONG BAR SIZE=#5 STIRRUP SIZE44 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/1.4/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=l.OO No Top Columns B Stressing BOTTOM 2.00 in BOTTOM 2.00 in .................................... .................................... Copyright 2000 Structural Data Inc.============r======================== Sectionl-BEAM INPUT DATA c----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 4 30.00 0.00 49.00 5.00 5.00 3.50 3.50 3.67 3.67 14.00 0.00 0.00 0.00 0.00 0.00 0.00 < - - - - - - - TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL CR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k,ft) (k,ftl (ft) (ft) 1 2 10.00 12.00 0.00 0.00 0.00 1.079 1u 0.002 0.030 0.00 30.00 <--------------------COLUMNS--------------------> < - - - - - - - - Bottom- - -- - -> <--------Top---------> H c2 C1 Far H c2 C1 Far A Yt St Sb BEAM CROSS-SECTION PROPERTIES JOINT (ft) (in) (in) End (ft) (in) (in) End s PAN (in21 (in) (in3 ) (in3) 1 10.83 24.00 20.00 Fix 9.67 24.00 20.00 Fix 1 836.20 28.45 6931.36 9597.33 2 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored BEAM SECONDARY <-------DEAD LOAD-------> <------ BALANCED LOAD----> s PAN L M(x-ft) R L M(x-ft) R L R 1 -27.44 76.17(14.9) -37.04 44.31 -82.52(14.9) 55.35 39.33 50.37 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS (FACTORED ) 1 0.00 11.55 (14.9) 0.00 -8.28 O.OO( 6.5) -10.26 1 22.62 19.45 s PAN L M(x-ft) R L M(x-ft) R JOINT TOP BOT 2 -28.15 -25.08 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weiqht=0.400 psf SPAN 1 c JOINT c. 1 2 JOINT c- 1 2 c JOINT 1 2 Ef f Force (k) (k/ft) 132.35 18.91 ULT(%R= 0.0) TOP BOT 0.00 0.00 0.00 0.00 ULT(%R= 6.7) TOP BOT 0.00 0.00 0.00 0.00 ULT (%R=15.0) TOP BOT 0.00 0.00 0.00 0.00 No. CGS Dim. (in. from datum) F/A(ksi) Strands HiL Lo1 Lo2 HiR Min Max 5.0 28.00 40.00 0.00 28.00 0.158 0.158 Section 4 - R E B A R R E Q U I R E M E N T S (in2) D+L/4 (%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.13 0.00 1.59 0.00 1 0.00 0.00 0.00 0.34 0.17 0.00 1.59 0.00 Rebar Weight=1.813 psf D+L/4 (%R=10.0) MIN ULT (%R= 6.7) D+L/4 (%R=10.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.12 0.00 1.59 0.00 1 0.00 0.00 0.00 0.36 0.16 0.00 1.59 0.00 Rebar Weight=1.813 psf D+L/4 (%R=15.0) MIN ULT(%R=15.0) D+L/4 (%R=15.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 0.12 0.00 1.59 0.00 1 0.00 0.00 0.00 0.36 0.16 0.00 1.59 0.00 Rebar Weight=1.813 psf MIN TOP BOT 0.00 1.75 MIN TOP BOT 0.00 1.75 MIN TOP BOT 0.00 1.75 c L- F- c Section5-BEAM SHEAR DESIGN Span 1 L=30.00ft X Left Vu Mu Vcn vcw Vc i Av #4@ (ft) (k) (k-ft) (k) (k) (k) (inz/ft) (in) Use #4024.00in o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND c-----------------------Stresses (ksi)-----------------------> Service Loads Transfer of Prestress SPAN Tension (x) Compression (x) Tension (x) Compression (x) 1 T -0.147 ( 14.92) -0.190 ( 29.00) -0.148 ( 14.92) -0.233 ( 29.00) B -0.135 ( 29.00) -0.166 ( 14.92) -0.150 ( 29.00) -0.211 ( 14.92) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maximum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 27.16 22.62 19.45 27.16 22.62 19.45 2 29.47 -28.15 -25.08 29.47 -28.15 -25.08 CODE DEFLECTIONS e----- Deflections (in) -----> DL + Bal LL SPAN Delta L/Delta Delta L/Delta 1 0.000 99999 0.002 99999 r” Frame Design Group, Inc. 2 Faradav. Suite 101 Sheet No. /% c- ic- c c L c Imine, ti 92618 949/595-8015 ...................................... --------------------------------------PTData for Windows (V2.000-OZ29}====================================== POST TENSIONED BEAM DESIGN 03-18-2002 PROJECT : Toyota Carlsbad MEMBER ID: PT BM/ G/L l/c-c.8-Upturn I STORAGE ID: C:\PTPLUS32\PTRUNS\TOYOTA-l\\B-C-C8.PTD ====================================Copyright 2000 StNctur-1 Data Inc.===================================== 1 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f1c=424psi BOT 7.5 SQRT f1c=530psi %SUP.DL@TRANSFER=O.O TENDON COVER: INTERIOR SPANS TOP 2.00 in EXTERIOR SPANS TOP 2.00 in UNBONDED, LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.00 REBAR YIELD=CO.OOksi TENDON DIAM=O.SOin MAX LONG BAR SIZE=#5 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/1.4/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=l.OO No Top Columns @ Stressing BOTTOM 2.00 in BOTTOM 2.00 in copyright 2000 Structural Data Inc.===================================== Section1 - BEAM INPUT DATA <----------------------------------------GEOMETRY--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 4 39.17 0.00 49.00 5.00 5.00 3.00 3.00 3.67 3.67 14.00 0.00 0.00 0.00 0.00 0.00 0.00 < - - - - - - - TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k,ft) (k,ftl (ftl (ft) 1 2 12.00 12.00 0.00 0.00 0.00 1.017 1u 0.002 0.030 0.00 39.17 <--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H c2 C1 Far H c2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End s PAN (in21 (in) (in3 ) (in31 1 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix 1 836.20 28.45 6931.36 9597.33 2 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------ BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M(x-ft) R L R 1 -69.77 107.88119.6) -69.77 87.46 -111.07 (19.6) 87.46 82.47 82.47 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS (FACTORED) 1 0.00 15.07 (19.6) 0.00 -16.02 O.OO( 8.4) -16.02 1 43.09 41.38 SPAN L M(X-ft) R L M(x-ft) R JOINT TOP BOT 2 -43.09 -41.38 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=O.460 psf Eff Force No. CGS Dim. (in. from datum) F/A (ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 132.35 22.06 5.0 28.00 46.00 0.00 28.00 0.158 0.158 c Section 4 - R E B A R R E Q U I R E M E N T S (in2) ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) JOINT TOP BOT !.e 1 0.00 0.00 2 0.00 0.00 ULT(%R= 6.7) JOINT TOP BOT - 1 0.00 0.00 2 0.00 0.00 ULT (%R=15.0) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 TOP 0.32 0.32 D+L/4 TOP 0.30 0.30 D+L/4 TOP 0.30 0.30 BOT 0.00 0.00 %R=10.0) BOT 0.00 0.00 %R=15.0) BOT 0.00 0.00 TOP BOT 1.59 0.00 1.59 0.00 MIN TOP BOT 1.59 0.00 1.59 0.00 MIN TOP BOT 1.59 0.00 1.59 0.00 SPAN TOP BOT TOP BOT 1 0.00 0.00 0.00 0.48 Rebar Weight=2.122 psf ULT (%R= 6 .7) D+L/4 (%R=10.0) SPAN TOP BOT TOP BOT 1 0.00 0.00 0.00 0.51 Rebar Weight=2.122 psf ULT (%R=15.0) D+L/4 (%R=15.0) SPAN TOP BOT TOP BOT 1 0.00 0.00 0.00 0.53 Rebar Weight=2.122 psf MIN TOP BOT 0.00 1.75 MIN TOP BOT 0.00 1.75 MIN TOP BOT 0.00 1.75 rrs c- 1 c Sections-BEAM SHEAR DESIGN X Left Vu Mu Vcn vcw Vci Av #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) Use #4@24.00in o/c max. for Span 1 Section 6 - C 0 N C RE T E F L E X U R A L S T R E S S E S AND Span 1 L=39.17ft <-----------------------Stresses (ksi)-----------------------, Service Loads Transfer of Prestress SPAN Tension (x) Compression (x) Tension (x) Compression (x) 1 T -0.153 ( 19.59) -0.189 ( 38.17) -0.145 ( 19.59) -0.242 ( 38.17) B -0.136 ( 38.17) -0.162 ( 19.59) -0.143 ( 38.17) -0.213 ( 19.59) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maximum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 34.20 43.09 41.38 34.20 43.09 41.38 2 34.20 -43.09 -41.38 34.20 -43.09 -41.38 CODE DEFLECTIONS <----- Deflections (in) -----> DL + Bal LL SPAN Delta L/Delta Delta L/Delta 1 0.000 99999 0.004 99999 c P 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O. 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATID=1.67 REBAR YIELDdO. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE411 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1./1./.9/1./1.2/1, fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in <-------TENDON PROFILE-------> CDNC <- - - - --SUPERIMPOSED LOADS- - - - - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 2 10.00 8.00 0.00 0.00 0.00 0.942 1 U 0.002 0.050 0.00 30.00 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft R L M(X-ft) R L R 1 -79.27 66.21(17.9) 7.30 29.81 -23.19(17.9) 1.48 29.00 0.66 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 -37.17 31.05(17.9) 3.43 -37.17 31.05(17.9) 3.43 1 0.00 175.68 2 0.00 0.00 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.249 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 105.88 11.76 4.0 18.75 23.00 0.00 18.75 0.181 0.181 ,-.. c Frame Design Group, Inc 2 Faraday. Suite 101 Sheet No. Id Toyota Carlsbad Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+LI4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.17 0.00 0.67 0.00 1.06 0.00 1 0.00 0.00 0.00 0.57 0.00 1.28 2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Weight=O. 932 psf ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.09 0.00 0.61 0.00 1.06 0.00 1 0.00 0.00 0.00 0.59 0.00 1.28 2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Wei ght=O. 932 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT( %R=15.0 1 D+L/4 (%R=15.0 1 MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.57 0.00 1.06 0.00 1 0.00 0.00 0.00 0.60 0.00 1.28 2 0.00 0.00 0.00 0.00 0.00 0.00 Rebar Wei ght=O. 932 psf Section 5 - B E AM S H E A R D E S I G N X Left Vu Mu Vcn vcw Vci Av #4@ Span 1 L=30.00ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@23.25in o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <----- Deflections (in) - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.182 ( 0.83) -0.492 ( 17.93) -0.031 ( 0.83) -0.370 ( 17.93) 1 0.024 14745 0.017 20679 B 0.019 ( 17.93) -0.416 ( 0.83) -0.109 ( 17.93) -0.328 ( 0.83) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maxi mum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 39.47 0.00 175.68 39.47 0.00 175.68 2 23.78 0.00 0.00 23.78 0.00 0.00 c c 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED, LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/ .9/ .75/1.4/1.7 fse=173.0ksi Col Ie/Ig=l. 00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in < - - - - - - - TENOON PROFILE- - - - - - -> CONC <------SUPERIMPOSED LOAOS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 5 12.00 12.00 23.00 0.00 0.00 1.646 1 U 0.002 0.030 0.00 46.00 1 P 16.100 5.600 23.00 0.00 Section2 - BEAM AN0 COLUMN MOMENTS(k-ft) Column Moments are Factored. All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -294:87 289.23(23.0) -294.87 125.96 -174.02(23.0) 125.96 125.96 125.96 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 -106.35 85.93(23.0) -106.35 -106.35 85.93(23.0) -106.35 1 177.19 391.99 SPAN L M(X-ft) R L M( X- ft ) R JOINT TOP BOT 2 -177.19 -391.99 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.243 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 211.75 11.76 8.0 10.00 27.00 0.00 10.00 0.212 0.212 c- Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) JOINT TOP BOT 1 1.30 0.00 2 1.30 0.00 ULT(%R= 6.7) JOINT TOP BOT 1 1.00 0.00 2 1.00 0.00 ULT(%R=15.0) JOINT TOP BOT 1 0.64 2.31 2 0.64 2.31 D+L/4(%R= 0.0) MIN ULT(%R= 0.0) TOP BOT TOP BOT SPAN TOP BOT 2.58 0.00 2.40 0.00 1 0.00 0.79 2.58 0.00 2.40 0.00 Rebar Wei ght=0 ,838 D+L/4(%R=10 .O) MIN ULT(%R= 6.7) TOP BOT TOP BOT SPAN TOP BOT 2.31 0.00 2.40 0.00 1 0.00 1.06 2.31 0.00 2.40 0.00 Rebar Weight=O .86B D+L/4(%R=15.0) MIN ULT(%R=15.03 TOP BOT TOP BOT SPAN TOP BOT 2.18 0.00 2.40 0.00 1 0.00 1.40 2.18 0.00 2.40 0.00 Rebar Weight=l.O37 O+L/4( %R= 0.0 1 TOP BOT 0.00 2.40 DSf O+L/4(%R=10.0) TOP BOT 0.00 2.65 Psf D+L/4(%R=15.0) TOP BOT 0.00 2.78 PSf MIN TOP BOT 0.00 1.60 MI N TOP BOT 0.00 1.60 MIN TOP BOT 0.00 1.60 Section 5 - B E A M S H E A R 0 E S I G N X Left Vu Mu Vcn vcw Vc i Av #4@ Span 1 L=46.00ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AN0 DEFLECTIONS '-----------------------Stresses (ksi)-----------------------> <- - - - -0efl ecti ons (in) - - - - -> SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Oelta Delta L/Oelta Service Loads Transfer of Prestress OL + Bal LL 1 T 0.185 ( 1.00) -0.501 ( 23.00) -0.146 ( 1.00) -0.325 ( 14.20) 1 0.108 5127 0.054 10291 B 0.368 ( 23.00) -1.005 ( 1.00) -0.090 ( 14.20) -0.449 ( 1.00) Section7-FACTORED COLUMN LOADS Maxi mum Axi a1 Load Maximum Moment Axi a1 Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 91.30 177.19 391.99 91.30 177.19 391.99 2 91.30 -177.19 -391.99 91.30 -177.19 -391.99 IL- L- /- e P .5 /- +- e 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f’c=424psi BOT 7.5 SQRT f’c=530psi %SUP. DLOTRANSFER=O . 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELO=60.00ksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns O Stressing BOTTOM 2.50 in BOTTOM 2.50 in <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft.1 (ft) (ft) 1 5 12.00 12.00 18.00 0.00 0.00 0.625 1 U 0.002 0.030 0.00 36.00 1 P 30.000 10.500 18.00 0.00 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M( X-ft) R L R 1 -139:36 206.44(18.0) -139.36 86.91 -138.07( 18.0) 86.91 86.91 86.91 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 -42.86 53.61(18.0) -42.86 -42.86 53.61(18.0) -42.86 1 86.34 150.86 SPAN L M(X-ft) R L M(x-ft) R JOINT TOP BOT 2 -86.34 -150.86 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=1.994 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 158.81 95.29 6.0 10.00 27.00 0.00 10.00 0.159 0.159 ULT(%R= 0.0) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 ULT(%R= 6.7) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 ULT(%R=15.0) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.00 D+L/4(%R= 0.0) TOP BOT 1.17 0.00 1.17 0.00 D+L/4(%R=10.0) TOP BOT 1.05 0.00 1.05 0.00 D+L/4(%R=15.0) TOP BOT 0.99 0.00 0.99 0.00 MIN TOP BOT 2.40 0.00 2.40 0.00 MIN TOP BOT 2.40 0.00 2.40 0.00 MIN TOP BOT 2.40 0.00 2.40 0.00 ULT(%R= 0.0) SPAN TOP BOT 1 0.00 0.24 Rebar Weight=7.337 ULT(%R= 6.7) SPAN TOP BOT 1 0.00 0.34 Rebar Weight=7.574 ULT(%R=15.0) SPAN TOP BOT 1 0.00 0.48 Rebar Weight=7.693 Section5-BEAM SHEAR DESIGN Span 1 L=36.00ft X Left Vu Mu Vcn vcw Vci AV #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) Use #4@24.00in o/c max. for Span 1 Section 6 - C 0 N C R E T E F L E X U R A L S T R E S S E S AN D <-----------------------Stresses (ksi)-----------------------> Service Loads Transfer of Prestress SPAN Tension (XI Compression (XI Tension (x) Compression (XI 1 T -0.022 ( 35.00) -0.334 ( 18.00) -0.020 ( 18.00) -0.268 ( 1.00) B 0.192 ( 18.00) -0.433 ( 1.00) -0.020 ( 1.00) -0.516 ( 18.00) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maximum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 47.29 86.34 150.86 47.29 86.34 150.86 2 47.29 -86.34 -150.86 47.29 -86.34 -150.86 D+L/4(%R= 0.0) TOP BOT 0.00 1.69 PSf D+L/4(%R=lO.O) TOP BOT 0.00 1.80 Psf D+L/4(%R=15.0) TOP BOT 0.00 1.86 PSf CODE MIN TOP BOT 0.00 1.60 MIN TOP BOT 0.00 1.60 MIN TOP BOT 0.00 1.60 DEFLECTIONS <-----Deflections (in) - - - - -> DL + Bal LL SPAN Delta L/Del ta Delta L/Del ta 1 0.033 13280 0.017 25252 c Y c ! i c I i r- i c c c r t- I c F i 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A (3 TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi TENDON DIAM=l .OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in <-------TENDON PROFILE-------> CONC <- - - ---SUPERIMPOSED LOADS- - - - - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 5 12.00 12.00 18.00 0.00 0.00 0.625 1 P 16.600 5.800 18.00 0.00 1 U 0.002 0.030 0.00 30.00 <--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> BEAM CROSS-SECTION PROPERTIES H C2 C1 Far H C2 C1 Far A Yt St Sb JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN (in21 (in) (in31 (in31 1 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix 1 999.80 10.00 8330.92 4166.40 2 10.83 20.00 24.00 Fix 9.67 20.00 24.00 Fix Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -58r50 105.62(17.8) -66.11 57.83 -118.75( 17.8) ' 74.15 57.81 74.13 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 -16.10 24.20(17.8) -20.59 -16.10 24.20(17.8) -20.59 1 36.35 47.10 SPAN L M(X-ft) R L M(x-ft) R JOINT TOP BOT 2 -45.72 -49.19 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=2.011 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 158.81 95.10 6.0 10.00 24.25 0.00 10.00 0.159 0.159 c Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1 0.00 0.00 0.48 0.00 2.40 0.00 1 0.00 0.00 0.00 0.85 2 0.00 0.00 0.55 0.00 2.40 0.00 Rebar Weight=7.131 psf ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1 0.00 0.00 0.43 0.00 2.40 0.00 1 0.00 0.00 0.00 0.90 2 0.00 0.00 0.50 0.00 2.40 0.00 Rebar Weight=7.131 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1 0.00 0.00 0.41 0.00 2.40 0.00 1 0.00 0.00 0.00 0.93 2 0.00 0.00 0.47 0.00 2.40 0.00 Rebar Wei ght=7.131 psf MI N TOP BOT 0.00 1.60 MIN TOP BOT 0.00 1.60 MIN TOP BOT 0.00 1.60 Section 5 - B E A M S H E A R D E S I G N Span 1 L=30. OOft X Left Vu Mu Vcn vcw Vc i Av #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@24.OOin o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <----- Deflections (in)-- - --> SPAN Tension (XI Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Oelta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.135 ( 1.00) -0.192 ( 12.20) -0.033 ( 17.80) -0.273 ( 29.00) 1 0.003 99999 0.006 63440 8 -0.092 ( 12.20) -0.207 ( 1.00) -0.011 ( 29.00) -0.489 ( 17.80) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maxi mum Moment Axi a1 Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 26.17 36.35 47.10 26.17 36.35 47.10 2 35.88 -45.72 -49.19 35.88 -45.72 -49.19 Frame Design Group. Inc. Sheet No. 12% *- e. c + c 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O. 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#!11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns (b Stressing BOTTOM 2.50 in BOTTOM 2.50 in <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- - - - - -> cL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 5 12.00 12.00 16.00 0.00 0.00 0.625 1 U 0.002 0.030 0.00 36.00 1 P 42.500 14.800 '18.00 0.00 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored. All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -179.'39 272.66(18.0) -179.39 78.49 - 123.33( 18.0) 78.49 76.83 76.83 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 -58.79 74.24(18.0) -58.79 -58.79 74.24( 18.0) -58.79 1 114.49 230.83 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 2 -114.49 -230.83 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=1.994 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 158.81 95.29 6.0 11.75 27.00 0.00 11.75 0.199 0.199 ULT(%R= 0.0) JOINT TOP BOT 1 0.41 0.00 2 0.41 0.00 tlLT(%R= 6.7) JOINT TOP BOT 1 0.24 0.00 2 0.24 0.00 ULT(%R=15.0) JOINT TOP BOT 1 0.06 0.98 2 0.06 0.98 Section 4 - R E B A R R E Q U I R E M E N T S (in21 D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1.53 0.00 1.75 0.00 1 0.00 1.47 0.00 2.25 1.53 0.00 1.75 0.00 Rebar Wei ght=7.848 psf D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=lO.O) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1.37 0.00 1.75 0.00 1 0.00 1.65 0.00 2.40 1.37 0.00 1.75 0.00 Rebar Wei ght=8.160 psf D+L/4(%R=15.0) MIN ULT(%R-15.0) D+L/4(%R=15.0) TOP BOT TOP BOT SPAN TOP BOT TOP BOT 1.29 0.00 1.75 0.00 1 2.16 1.84 0.00 2.48 1.29 0.00 1.75 0.00 Rebar Weight=11.186 psf MIN TOP BOT 0.00 1.45 MIN TOP BOT 0.00 1.45 MIN TOP BOT 0.00 1.45 Section 5 - B E A M S H E A R D E S I G N X Left Vu Mu Vcn vcw Vc i AV #4@ Span 1 L=36.00ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@22.50in o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) - -- - -> SPAN Tension (XI Compression (x) Tension (x) Compression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T 0.132 ( 1.00) -0,661 ( 18.00) -0.029 ( 18.00) -0.330 ( 1.00) 1 0.076 5691 0.029 14760 B 0.508 ( 18.00) -0.703 ( 1.00) -0.082 ( 35.00) -0.540 ( 18.00) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maxi mum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 59.69 114.49 230.83 59.69 114.49 230.83 2 59.69 -114.49 -230.83 59.69 -114.49 -230.83 c Frame Design Group. Inc 2 Faraday, Suite 101 Sheet No. 12+ 6 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 EN0 SPANS LEFT 2 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. OL@TRANSFER=O. 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l. OOi n MAX LONG BAR SIZE=#11 STIRRUP SIZE=#3 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A (3 TOP & BOT DL + LL/4 RATIO=l .67 SPAN TYPE (ft) (in) (in) (in) (in) 1 1 30.00 24.00 30.00 5.00 5.00 2 1 36.00 24.00 30.00 5.00 5.00 3 1 36.00 24.00 30.00 5.00 5.00 4 1 36.00 24.00 30.00 5.00 5.00 5 1 36.00 24.00 30.00 5.00 5.00 6 1 36.00 24.00 30.00 5.00 5.00 <-------TENDON PROFILE-------> CL cR A B C SPAN TYPE (in) (in) (ft) (ft) (ft) 1 5 12.00 12.00 12.00 0.00 0.00 2 5 12.00 12.00 18.00 0.00 0.00 3 5 12.00 12.00 18.00 0.00 0.00 5 5 12.00 12.00 18.00 0.00 0.00 6 5 12.00 12.00 18.00 0.00 0.00 4 5 12.00 12.00 18.00 0.00 0.00 1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 4.33 4.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CONC DL (k/ft) SPAN 0.750 1 0.750 1 0.750 2 0.750 2 0.750 3 0.750 3 4 4 5 5 6 6 <------SUPERIMPOSED LOADS- - - - - -> LOAD TYPE U P U P U P U P U P U P DL (k.ft) 0.002 28.100 0.002 83.900 0.002 83.900 0,002 83.900 0.002 83 900 0.002 83.900 LL (k.ft) 0.030 9.800 0.030 29.200 0.030 29.200 0.030 29.200 0.030 29.200 0.030 29.200 A (ft) 0.00 12.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 B (ft) 30.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00 c <--------------------COLUMNS--------------------> <--------Bottom------> <--------Top---------> H C2 C1 Far H C2 C1 Far JOINT (ft) (in) (in) End (ft) (in) (in) End SPAN 1 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 1 2 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 2 3 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 3 4 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 4 5 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 5 6 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix 6 7 10.83 24.00 24.00 Fix 9.67 24.00 24.00 Fix BEAM CROSS-SECTION PROPERTIES A Yt St Sb (in21 (in) (in31 (in31 1120.00 10.54 9018.03 4881.34 1120.00 10.54 9018.03 4881.34 1120.00 10.54 9018.03 4881.34 1120.00 10.54 9018.03 4881.34 1120.00 10.54 9018.03 4881.34 1120.00 10.54 9018.03 4881.34 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <--- SPAN L 1 -49.41 2 -353.08 3 -441.48 4 -429.11 5 -417.57 6 -501.62 <---- SPAN L 1 13.81 2 13.32 3 14.03 4 16.32 5 16.68 6 3.28 - -DEAD LOAD- - - M(X-ft) 124.05( 12.2) 416.20( 18.0) 388.79( 18.0) 395.08 ( 18.0) 383.39( 18.0) 449.74( 18.0) R -256.75 -458.73 -425.15 -424.93 -459.85 -243.10 -MOST POS LL------> M(X-ft) R 39.84( 12.2) 3.81 142.80( 18.0) 6.60 143.33( 18.0 16.27 144.05( 18.0 16.45 143.13(18.0) 13.19 145.15( 18.0) 12.41 <---- L 44.79 262.06 326.79 316.27 316.86 369.84 <----- - L -34.59 -124.76 - 145.92 -146.15 - 144.98 -147.72 --BALANCED LOAD- M(X-ft) -104.27( 12.2) -334.60( 18.0) -314.80(18.0) -318.22(18.0) -317.35(18.0) -346.84( 18.0 .MOST NEG LL-- M(X-ft) -0.45( 6.6) -4.29(11.2) -16.85( 14.6) -16.87( 21.4) -17.11( 14.6) -0.29(24.8) ___ R 175.43 339.26 314.12 317.80 352.21 187.16 R -62.82 -144.52 -145.31 -146.03 -146.72 -108.91 Section3-EFFECTIVE FORCES AND PROFILES Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 317.63 158.82 12.0 10.50 15.25 0.00 3.00 0.284 0.284 2 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284 3 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284 4 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284 5 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.331 6 370:57 185.29 14.0 3.00 27.00 0.00 10.50 0.331 0.331 BEAM SECONDARY L R 43.85 -24.03 62.59 139.79 127.33 114.66 116.81 118.34 117.40 119.50 137.13 186.05 COLUMN MOMENTS( FACTORED) JOINT TOP BOT 1 61.87 75.62 2 129.26 140.63 4 103.44 88.85 6 113.13 126.90 3 -105.90 -94.35 5 -104.15 -94.80 7 -195.18 -266.87 Tendon Weight=3.319 psf c T JOINT 1 2 3 4 5 6 7 ULT(%R= 0.0) TOP BOT 0.00 0.00 0.00 0.00 0.47 0.00 0.34 0.00 0.28 0.00 0.13 0.00 0.00 0.00 JOIN 1 2 3 4 5 6 7 ULT(%R= 6.7) T TOP BOT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ULT(%R=15.0) JOINT TOP BOT 1 0.00 0.00 2 0.00 0.93 3 0.00 1.66 4 0.00 1.56 5 0.00 1.51 6 0.00 2.13 7 0.00 1.03 Section 4 - D+L/4(%R= 0.0) TOP BOT 0.47 0.00 3.08 0.00 4.00 0.00 3.76 0.00 3.73 0.00 4.36 0.00 2.17 0.00 D+L/4(%R=10.0) TOP BOT 0.42 0.00 2.76 0.00 3.61 0.00 3.38 0.00 3.34 0.00 3.95 0.00 1.95 0.00 D+L/4(%R=15.0) TOP BOT 0.40 0.00 2.70 0.00 3.61' 0.00 3.38 0.00 3.34 0.00 3.95- 0.00 1.84 0.00 Span 1 L=30.00ft X Left Vu Mu Vcn (ft) (k) (k-ft) (k) Use #3@24.00in o/c max. for Span 1 Span 2 L=36.00ft X Left Vu Mu Vcn (ft) (k) (k-ft) (k) Use #3@22.50in o/c max. for Span 2 Span 3 L=36.00ft X Left Vu Mu Vcn (ft) (k) (k-ft) (k) Use #3@22.50in o/c max. for Span 3 Span 4 L=36.00ft X Left Vu Mu Vcn (ft) (k) (k-ft) (k) Use #3@22.50in o/c max. for Span 4 REBAR REQUIREMENTS (in21 MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN TOP BOT SPAN TOP BOT TOP BOT TOP BOT 2.61 0.00 1 0.00 0.00 0.00 1.03 0.00 1.87 2.61 0.00 2 0.00 0.62 0.00 3.52 0.00 1.87 2.61 0.00 3 0.00 0.50 0.00 3.32 0.00 1.87 2.61 0.00 4 0.00 0.54 0.00 3.37 0.00 1.87 2.61 0.00 5 0.00 0.43 0.00 3.28 0.00 1.87 2.61 0.00 6 0.00 0.33 0.00 3.78 0.00 1.87 2.61 0.00 Rebar Weight=9.302 psf MIN TOP BOT 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 ULT(%R= 6.7) D+L/4(%R=10.0) MIN SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.00 1.10 0.00 1.87 2 0.00 0.72 0.00 3.80 0.00 1.87 3 0.00 0.45 0.00 3.59 0.00 1.87 4 0.00 0.48 0.00 3.63 0.00 1.87 5 0.00 0.38 0.00 3.55 0.00 1.87 6 0.00 0.42 0.00 4.05 0.00 1.87 Rebar Weight=9.427 psf MI N ULT (%R=15.0 1 D+L/4 (%R=15.0 1 MIN TOP BOT SPAN TOP BOT TOP BOT TOP BOT 2.61 0.00 1 0.00 0.00 0.00 1.15 0.00 1.87 2.61 0.00 2 0.00 1.21 0.00 3.98 0.00 1.87 2.61 0.00 3 0.00 0.97 0.00 3.77 0.00 1.87 2.61 0.00 4 0.00 0.99 0.00 3.81 0.00 1.87 2.61 0.00 5 0.00 0.90 0.00 3.74 0.00 1.87 2.61 0.00 6 0.00 0.84 0.00 4.21 0.00 1.87 2.61 0.00 culs Rebar Weight=10.477 psf BEAM SHEAR DESIGN vcw Vci AV #3@ (k) (k) (in2/ft) (in) CODE (t4w5 -c 2w *4+w* bob \*c*rs 5 Pd vcw Vci Av #3@ (k) (k) (in2/ft) (in) CODE vcw Vci Av #3@ (k) (k) (in2/ft) (in) CODE vcw Vc i Av #3@ (k) (k) (inZ/ft) (in) CODE c frame Design Group, Inc. 2 faraday. Suite 101 Sheet No. /z? Toyota Carl sbad Span 5 L=36.00ft (ft) (k) (k-ft) . (k) (k) (k) (in2/ft) (in) CODE Use #3@22.50in olc max. for Span 5 X Left Vu Mu Vcn vcw Vc i Av #3@ Span 6 L=36.00ft (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #3@22.50in o/c max. for Span 6 X Left ’ Vu Mu Vcn vcw Vci AV #3@ Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in)- - ---> SPAN Tension (XI Compression (x) Tension (XI Compression (XI SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.092 ( 29.00) -0.363 ( 12.20) -0.211 ( 12.20) -0.515 ( 29.00) 1 0.004 87578 0.008 43901 B -0.137 ( 12.20) -0.638 ( 29.00) 0.010 ( 29.00) -0.553 ( 12.20) 2 0.024 17879 0.039 11123 2T B 3T B 4T 8 5T B 6T B JOINT 1 2 3 4 5 6 7 0.068 ( 35.00) 0.268 ( 18.00) 0.063 ( 1.00) 0.251 ( 18.00) 0.061 ( 1.00) 0.259 ( 18.00) 0.043 ( 1.00) 0.231 ( 18.00) 0.041 ( 1.00) 0.279 ( 18.00) -0,582 ( 18.00) 0.139 ( 18.00) -0.760 ( 35.00) 3 0.019 22797 0.039 11020 -0,933 ( 35.00) 0.462 ( 35.00) -1.200 ( 18.00) 4 0.021 20651 0.040 10884 -0.573 ( 18.00) 0.110 ( 18.00) -0.742 ( 1.00) 5 0.014 30699 0.039 11059 -0.924 ( 1.00) 0.428 ( 1.00) -1.145 ( 18.00) 6 0.036 11853 0.040 10680 -0.578 ( 18.00) 0.115 ( 18.00) -0.729 ( 35.00) -0.920 ( 1.00) 0.405 ( 35.00) -1.154 ( 18.00) -0.562 ( 18.00) 0.116 ( 18.00) -0.829 ( 35.00) -0.956 ( 35.00) 0.433 ( 35.00) -1.156 ( 18.00) -0.661 ( 18.00) 0.091 ( 18.00) -0.847 ( 1.001 -1.018 ( 1.00) 0.466 ( 1.00) -1.267 ( 18.00) Section 7 - F A C T 0 R E D Maximum Axi a1 Load Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 45.10 61.87 75.62 147.82 106.27 121.35 212.54 1.45 3.30 223.39 9.84 40.26 220.52 -2.95 -8.00 211.73 -2.09 -9.19 96.06 -195.18 -266.87 C OLUMN LOADS Maximum Moment Axial Column Moment Load Top Bottom (kips) (k-ft) (k-ft) 45.10 61.87 75.62 140.08 129.26 140.63 181.28 103.44 88.85 192.20 113.13 126.90 189.10 -105.90 -94.35 180.44 -104.15 -94.80 96.06 - 195.18 -266.87 c c Frame Design Group. Inc. Sheet No. 1zV 2 Faraday. Suite 101 Irvine. CA 92618 949/595-8015 --------==.;=====;.=pTData for Windows {V2,000-0229}====================================== POST TENSIONED BEAM DESIGN 05-13-2002 PROJECT : Toyota Carl sbad MEMBER ID: .G10 STORAGE ID: C: \PTPLUS32\PTRUNS\TOYOTA-l\\GlOR. PTD 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f’c=424psi BOT 7.5 SQRT f’c=530psi %SUP. DL@TRANSFER=O. 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#ll STIRRUP SIZE=#/4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1,7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 5 12.00 12.00 23.00 0.00 0.00 1.646 1 U 0.002 0.030 0.00 46.00 1 P 16.100 5.600 23.00 0.00 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored. All Other Moments are Unfactored <-------DEAD LOAD-------> <------BALANCED LOAD- - - -> BEAM SECONDARY SPAN L M( x- ft ) R L M( X- ft 1 R L R 1 -294: 87 289.23(23.0) -294.87 125.96 -174.02(23.0) 125.96 125.96 125.96 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) 1 -96.63 95.65(23.0) -96.63 -96.63 95.65(23.0) -96.63 1 0.00 540.79 SPAN L M(X-ft) R L M(X-ft) R JOINT TOP BOT 2 0.00 -540.79 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=0.243 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 211.75 11.76 8.0 10.00 27.00 0.00 10.00 0.212 0.212 c Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) O+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 1.03 0.00 2.55 0.00 2.40 0.00 1 0.00 1.03 0.00 2.43 0.00 1.60 2 1.03 0.00 2.55 0.00 2.40 0.00 Rebar Weight=0.842 psf ULT ( %R= 6.7 ) O+L/4( %R=10.0 ) MIN ULT(%R= 6.7 1 O+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.75 0.00 2.29 0.00 2.40 0.00 1 0.00 1.28 0.00 2.68 0.00 1.60 2 0.75 0.00 2.29 0.00 2.40 0.00 Rebar Weight=0.875 psf ULT(%R=15.0) O+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.42 2.09 2.15 0.00 2.40 0.00 1 0.00 1.60 0.00 2.80 0.00 1.60 2 0.42 2.09 2 15 0.00 2.40 0.00 Rebar Weight=1.030 psf - - Span 1 L=46.00ft X Left Vu Mu (ft) (k) (k-ft) Use #4@22.50in o/c max Section 6 - C 0 N C R E Section 5 - B E A M S H E A R 0 E S I G N Vcn vcw Vci Av #4@ (k) (k) (k) (in2/ft) (in) for Span 1 TE FLEXURAL STRESSES AN0 <-----------------------Stresses (ksi)-----------------------> Service Loads Transfer of Prestress SPAN Tension (XI Compression (x) Tension (XI Compression (XI 1 T 0.171 ( 1.00) -0.515 ( 23.00) -0.146 ( 1.00) -0.325 ( 14.20) B 0.396 ( 23.00) -0.977 ( 1.00) -0.090 ( 14.20) -0.449 ( 1.00) Section7- FACTORED COLUMN LOADS Maximum Axial Load Maxi mum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 91.30 0.00 540.79 91.30 0.00 540.79 2 91.30 0.00 -540.79 91.30 0.00 -540.79 CODE DEFLECTIONS <- - - - -0efl ecti ons (in I - - - - -> DL + Bal LL SPAN Delta L/Delta Delta L/Delta 1 0.108 5127 0.066 8357 c Frame Design Group, Inc. 2 Faraday. Suite 101 Sheet No. 1.30 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. OL@TRANSFER=O. 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED, LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns 13 Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 Sectionl-BEAM INPUT DATA <----------------------------------------GEOMETRy--------------------------------------------> L Bbot H tL tR TribL TribR FL FR Btop Bweb Y1 Y2 Y3 Y4 Yref SPAN TYPE (ft) (in) (in) (in) (in) (ft) (ft) (ft) (ft) (in) (in) (in) (in) (in) (in) (in) 1 1 36.00 20.00 30.00 5.00 5.00 0.83 0.83 4.17 4.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 5 12.00 12.00 18.00 0.00 0.00 0.625 1 U 0.002 0.030 0.00 36.00 1 P 30.000 10.500 18.00 0.00 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored <-------DEAD LOAD-------> <- - - - - -BALANCED LOAD- - - -> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -145:65 200.14(18.0) -145.65 90.21 -134.77( 18.0) '90.21 90.21 90.21 <------MOST p0S LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED) 1 -38.44 58.04(18.0) -38.44 -38.44 58.04(18.0) -38.44 1 0.00 225.84 SPAN L M(X-ft) R L M(x-ft) R JOINT TOP BOT 2 0.00 -225.84 Section 3 - E F F E C T I V E F D R C E S A N D P R 0 F I L E S Tendon Weight=1.994 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 158.81 95.29 6.0 10.00 27.00 0.00 10.00 0.159 0.159 c Frame Design Group, Inc 2 Faraday, Suite 101 Sheet No. l3 I Toyota Carl sbad c Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 1.21 0.00 2.40 0.00 1 0.00 0.33 0.00 1.65 0.00 1.60 2 0.00 0.00 1.21 0.00 2.40 0.00 Rebar Weight=7.270 psf ULT(%R= 6.7) D+L/4(%R=lO.O) MIN ULT(%R= 6.7) D+L/4(%R=10.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 1.08 0.00 2.40 0.00 1 0.00 0.43 0.00 1.77 0.00 1.60 2 0.00 0.00 1.08 0.00 2.40 0.00 Rebar Weight=7.514 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 1.02 0.00 2.40 0.00 1 0.00 0.56 0.00 1.83 0.00 1.60 2 0.00 0.00 1.02 0.00 2.40 0.00 Rebar Weight=7.636 psf Section 5 - B E A M S H E A R D E S I G N Span 1 L=36.00ft X Left Vu Mu Vcn vcw Vci Av #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) CODE Use #4@24.00in o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <- - - --Deflections ( i n) - - - - -> SPAN Tension (x) Compression (XI Tension (x) Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.024 ( 1.00) -0.337 ( 18.00) -0.023 ( 18.00) -0.270 ( 1.00) 1 0.030 14306 0.021 21007 B 0.197 ( 18.00) -0.429 ( 1.00) -0.015 ( 35.00) -0.511 ( 18.00) Section7-FACTORED COLUMN LOADS Maxi mum Axi a1 Load Maxi mum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 47.29 0.00 225.84 47.29 0.00 225.84 2 47.29 0.00 -225.84 47.29 0.00 -225.84 P Frame Design Group, Inc. 2 Faradar. Suite 101 Sheet No. 13L 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 7.5 SQRT f'c=530psi %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED, LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse-173.0ksi Col Ie/Ig=1.00 No Top Columns 8 Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A (3 TOP & BOT DL + LL/4 RATIO=1.67 <-------TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS- --- - -> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 5 12.00 12.00 18.00 0.00 0.00 0.625 1 P 16.600 5.800 18.00 0.00 1 U 0.002 0.030 0.00 30.00 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored < - - - - - - - DEAD LOAD- - - - - - -> <- - - - - -BALANCED LOAD- - - -> BEAM SECONDARY SPAN L M(X-ft) R L M(X-ft) R L R 1 -61r97 101.45(17.8) -70.75 60.32 -115.22( 17.8) ' 78.37 60.30 78.35 <------MOST POS LL------> <------MOST NEG LL------> COLUMN MOMENTS ( FACTORED 1 1 -14.16 27.00(17.8) -17.22 -14.16 27.00( 17.8) -17.22 1 0.00 77.53 2 0.00 -84.02 SPAN L M( X- ft R L M(x-ft 1 R JOINT TOP BOT Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=2.011 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 158.81 95.10 6.0 10.00 24.25 0.00 10.00 0.159 0.159 L Frame Design Group, Inc. 2 Faraday, Suite 101 Sheet No. 3 Toyota Carlsbad c c c c c c Section 4 - R E B A R R E Q U I R E M E N T S (in21 ULT(%R= 0.0) D+L/4(%R- 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.50 0.00 2.40 0.00 1 0.00 0.00 0.00 0.83 0.00 1.60 2 0.00 0.00 0.58 0.00 2.40 0.00 Rebar Wei ght=7.131 psf ULT(%R= 6.7) D+L/4(%R=lO.O) MI N ULT(%R= 6.7) D+L/4(%R=10.0) MI N JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 0.45 0.00 2.40 0.00 1 0.00 0.00 0.00 0.88 0.00 1.60 2 0.00 0.00 0.52 0.00 2.40 0.00 Rebar Weight=7.131 psf ULT(%R=15.0) D+L/4(%R=15.0) MIN ULT(%R=15.0) D+L/4(%R=15.0) MIN TOP BOT 1 0.00 0.00 0.43 0.00 2.40 0.00 1 0.00 0.00 0.00 0.91 0.00 1.60 2 0.00 0.00 0.49 0.00 2.40 0.00 Rebar Weight=7.131 psf JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT Section 5 - B E A M S H E A R D E S I G N X Left Vu Mu Vcn vcw Vci Av #4@ Span 1 L=30.00ft (ft) (k) (k-ft) (k) (k) (k) (inillft) (in) CODE Use #4@24.OOin o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND DEFLECTIONS <-----------------------Stresses (ksi)-----------------------> <-----Deflections (in) - - - - -> SPAN Tension (XI Compression (XI Tension (XI Compression (x) SPAN Delta L/Delta Delta L/Delta Service Loads Transfer of Prestress DL + Bal LL 1 T -0.136 ( 1.00) -0.195 ( 12.20) -0.037 ( 17.80) -0.277 ( 29.00) 1 0.003 99999 0.007 50624 B -0.087 ( 12.20) -0.204 ( 1.00) -0.002 ( 29.00) -0.483 ( 17.80) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maxi mum Moment Axial Column Moment Axial Column Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 26.21 0.00 77.53 26.21 0.00 77.53 2 35.84 0.00 -84.02 35.84 0.00 -84.02 IC- c 1 SPANS 0 CANTILEVERS UNIF LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 0 END SPANS LEFT 0 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SORT f'c=424psi BOT 7.5 SORT f'c=530psi %SUP. DL@TRANSFER=O. 0 TENDON COVER : INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: REBAR Y IELD=60. OOksi TENDON DIAM=l.OOin MAX LONG BAR SIZE=#/11 STIRRUP SIZE=#4 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns I3 Stressing BOTTOM 2.50 in BOTTOM 2.50 in 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 < - - - - - - - TENDON PROFILE-------> CONC <------SUPERIMPOSED LOADS------> CL cR A B C DL LOAD DL LL A B SPAN TYPE (in) (in) (ft) (ft) (ft) (k/ft) SPAN TYPE (k.ft) (k.ft) (ft) (ft) 1 JOINT 1 2 SPAN 1 SPAN 1 5 12.00 12.00 18.00 0.00 0.00 0.625 1 U 0.002 0.030 0.00 36.00 1 P 42.500 14.800 18.00 0.00 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored. All Other Moments are Unfactored <-------DEAD LOAD-------> <- -----BALANCED LOAD- - - -> BEAM SECONDARY L M(x-ft) R L M(x-ft) R L R - 187 :38 264.66( 18.0) -187.38 108.52 -160.58(18.0) 108.52 106.32 106.32 <------MOST pOS LL------> <------MOST NEG LL------> COLUMN MOMENTS( FACTORED) L M( x- ft R L M( X- ft R JOINT TOP BOT -52.77 80.25(18.0) -52.77 -52.77 80.25(18.0) -52.77 1 0.00 304.95 2 0.00 -304.95 Section 3 - E F F E C T I V E F 0 R C E S A N 0 P R 0 F I L E S Tendon Weight=2.659 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 211.75 127.06 8.0 11.75 27.00 0.00 11.75 0.265 0.265 c Section 4 - R E B A R R E Q U I R E M E N T S (in2) ULT(%R= 0.0) D+L/4(%R= 0.0) MIN ULT(%R= 0.0) D+L/4(%R= 0.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 1.57 0.00 1.75 0.00 1 0.00 0.68 0.00 2.21 0.00 1.45 2 0.00 0.00 1.57 0.00 1.75 0.00 Rebar Weight=7.784 psf ULT(%R= 6.7) D+L/4(%R=10.0) MIN ULT( %R= 6.7 D+L/4(%R=10.0 ) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.00 1.41 0.00 1.75 0.00 1 0.00 0.83 0.00 2.37 0.00 1.45 2 0.00 0.00 1.41 0.00 1.75 0.00 Rebar Wei ght=8.104 psf ULT ( %R=15.0) D+L/4(%R=15.0) MIN ULT (%R=15.0 1 D+L/4 (%R=15.0) MIN JOINT TOP BOT TOP BOT TOP BOT SPAN TOP BOT TOP BOT TOP BOT 1 0.00 0.52 1.33 0.00 1.75 0.00 1 2.49 0.97 0.00 2.44 0.00 1.45 2 0.00 0.52 1.33 0.00 1.75 0.00 Rebar Weights11 .157 psf Section5-BEAM SHEAR DESIGN Span 1 L=36.00ft X Left Vu Mu Vcn vcw Vc i Av #4@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) Use #4@22.50in o/c max. for Span 1 Section6-CONCRETE FLEXURAL STRESSES AND <-----------------------Stresses (ksi)-----------------------> Service Loads Transfer of Prestress SPAN Tension (x) Compression (x) Tension (XI Compression (XI 1 T 0.008 ( 1.00) -0.646 ( 18.00) -0.012 ( 18.00) -0.475 ( 35.00) B 0.318 ( 18.00) -0.681 ( 1.00) -0.055 ( 35.00) -0.761 ( 18.00) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maxi mum Moment Axial Column Moment Axi a1 Col umn Moment Load Top Bottom Load Top Bottom JOINT (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 1 59.69 0.00 304.95 59.69 0.00 304.95 2 59.69 0.00 -304.95 59.69 0.00 -304.95 CODE DEFLECTIONS <-----Deflections (in) - - ---> DL + Bal LL SPAN Delta L/Delta Delta L/Delta 1 0.053 8131 0.034 12660 c 6 SPANS 0 CANTILEVERS SKIP LL DL FACTOR=1.4 LL FACTOR=1.7 CONCRETE: BEAM 5OOOpsi 150pcf E=4287ksi 1 END SPANS LEFT 2 END SPANS RIGHT 125psi MINIMUM F/A COLUMN 5OOOpsi 150pcf E=4287ksi ALLOWABLE TENSILE STRESSES TOP 6.0 SQRT f'c=424psi BOT 6.0 SQRT f'c=424psi %SUP. DL@TRANSFER=O . 0 TENDON COVER: INTERIOR SPANS TOP 2.50 in EXTERIOR SPANS TOP 2.50 in UNBONDED. LOW RELAXATION MIN REBAR REQUIREMENTS: 0.004A @ TOP & BOT DL + LL/4 RATIO=1.67 REBAR YIELD=60.00ksi TENDON DIAN=l.OOin MAX LONG BAR SIZE=#11 STIRRUP SIZE=#3 REBAR COVER: 2.00in TOP 2.00in BOT LOAD FACTORS 1.4/1.7/1.7/1.3/.9/.75/1.4/1.7 fse=173.0ksi Col Ie/Ig=1.00 No Top Columns @ Stressing BOTTOM 2.50 in BOTTOM 2.50 in <---------- L Bbot SPAN TYPE (ft) (in) 1 1 30.00 24.00 2 1 36.00 24.00 3 1 36.00 24.00 4 1 36.00 24.00 5 1 36.00 24.00 6 1 36.00 24.00 Section 1 - B E A M I N P U T GEOMETRY - - - H tL tR TribL TribR FL FR (in) (in) (in) (ft) (ft) (ft) (ft) 30.00 5.00 5.00 1.00 1.00 4.33 4.33 30.00 5.00 5.00 1.00 1.00 4.33 4.33 30.00 5.00 5.00 1.00 1.00 4.33 4.33 30.00 5.00 5.00 1.00 1.00 4.33 4.33 30.00 5.00 5.00 1.00 1.00 4.33 4.33 30.00 5.00 5.00 1.00 1.00 4.33 4.33 DATA ________________________ Btop Bweb Y1 Y2 (in) (in) (in) (in) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ________________ Y3 Y4 Yref (in) (in) (in) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <-------TENDON PROFILE-------> CL cR A B C SPAN TYPE (in) (in) (ft) (ft) (ft) 1 5 12.00 12.00 12.00 0.00 0.00 2 5 12.00 12.00 18.00 0.00 0.00 3 5 12.00 12.00 18.00 0.00 0.00 4 5 12.00 12.00 18.00 0.00 0.00 5 5 12.00 12.00 18.00 0.00 0.00 6 5 12.00 12.00 18.00 0.00 0.00 CONC OL (k/ft) 0.750 0.750 0.750 0.750 0.750 0.750 SPAN 1 1 2 2 3 3 4 4 5 5 6 6 <------SUPERIMPOSED LOADS------> LOAD TYPE U P U P U P U P U P U P DL (k.ft) 0.002 28.100 0.002 83.900 0.002 83.900 0.002 83.900 0.002 83 .'900 0.002 83.900 LL (k.ft) 0.030 9.800 0.030 29.200 0.030 29.200 0.030 29.200 0.030 29.200 0.030 29.200 A (ft) 0.00 12.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 0.00 18.00 B (ft) 30.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00 c Frame Design Group, Inc. 2 Faraday. Suite 101 Sheet No. 133 Toyota Carl sbad c c- c c <--- <--- H JOINT (ft) 1 9.67 2 9.67 3 9.67 4 9.67 5 9.67 6 9.67 7 9.67 ___________-_____ COLUMNS- - - - ----- Bottom------> <---- C2 C1. Far H (in) (in) End (ft) 24.00 24.00 Fix 0.00 24.00 24.00 Fix 0.00 24.00 24.00 Fix 0.00 24.00 24.00 Fix 0.00 24.00 24.00 Fix 0.00 24.00 24.00 Fix 0.00 24.00 24.00 Fix 0.00 ----------------> ----Top---------> C2 C1 Far (in) (in) End SPAN 0.00 0.00 Fix 1 0.00 0.00 Fix 2 0.00 0.00 Fix 3 0.00 0.00 Fix 4 0.00 0.00 Fix 5 0.00 0.00 Fix 6 0.00 0.00 Fix BEAM CROSS-SECTION PROPERTIES A Yt St Sb (in21 (in) (in31 (in31 1120.00 10.54 9018.03 4881.34 1120.00 10.54 9018.03 4881.34 1120.00 10.54 9018.03 4881.34 1120.00 10.54 9018.03 4881.34 1120.00 10.54 9018.03 4881.34 1120.00 10.54 9018.03 4881.34 <----- SPAN L 1 -56.81 2 -357.44 3 -439.94 4 -429.10 5 -419.22 6 -496.26 <----- SPAN L 1 16.03 2 17.77 3 19.22 4 23.58 5 24.58 6 6.52 Section2 - BEAM AND COLUMN MOMENTS(k-ft) Column Moments are Factored, All Other Moments are Unfactored --DEAD LOAD-------> <------BALANCED LOAD----> BEAM SECONDARY M(X-ft) R L M(X-ft) R L R 123.07(12.2) -248.10 49.83 - 103.71 (12.2) 169.26 48.89 -30.20 414.45( 18.0) -457.86 265.30 -333.32( 18.0) 338.57 65.84 139.11 389,42( 18.0) -425.42 325.63 -315.23( 18.0) 314.43 126.16 114.96 394.57(18.0) -425.97 316.40 -317.99(18.0) 318.14 116.94 118.68 385.14(18.0) -454.72 317.84 -318.19(18.0) 349.55 118.38 116.84 443.18(18.0) -261.59 365.64 -342.84(18.0) 199.35 132.93 198.24 .-MOST POS LL----- M(X-ft) 44.56U2.2) 150.63( 18.0) 151.65(18.0) 153.21( 18.0) 151.27( 18.0) 155.92( 18.0) .-> <- ___ - - R L 7.44 -29.52 11.17 -123.44 23.50 -152.73 24.06 -153.37 17.42 -151.47 15.08 -156.55 .MOST NEG LL-- M(X-ft) -0.47( 6.6) -7.18( 11.2) -25.45( 11.2 1 -25.64( 24.8 1 -26.22( 11.2) - 0.54( 28.2 1 ----> R -76.27 -150.72 -152.08 -152.99 - 154.96 -94.59 COLUMN MOMENTS( FACTORED) JOINT TOP BOT 1 0.00 119.79 2 0.00 220.43 4 0.00 161.39 6 0.00 214.77 3 0.00 -168.02 5 0.00 -169.33 7 0.00 -420.38 Section 3 - E F F E C T I V E F 0 R C E S A N D P R 0 F I L E S Tendon Weight=3.319 psf Eff Force No. CGS Dim. (in. from datum) F/A(ksi) SPAN (k) (k/ft) Strands HiL Lo1 Lo2 HiR Min Max 1 317.63 158.82 12.0 10.50 15.25 0.00 3.00 0.284 0.284 2 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284 3 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284 4 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.284 5 317.63 158.82 12.0 3.00 27.00 0.00 3.00 0.284 0.331 6 370:57 185.29 14.0 3.00 27.00 0.00 10.50 0.331 0.331 Section 4 - R E B A R R E Q U I R E M E N T S (in21 JOINT 1 2 3 4 5 6 7 JOINT 1 2 3 4 5 6 7 JOINT 1 2 3 4 5 6 7 ULT(%R= 0.0) TOP BOT 0.00 0.00 0.00 0.00 0.59 0.00 0.46 0.00 0.39 0.00 0.34 0.00 0.00 0.00 ULT(%R= 6.7) TOP BOT 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ULT(%R=15.0) TOP BOT 0.00 0.00 0.00 0.87 0.00 1.76 0.00 1.65 0.00 1.60 0.00 2.30 0.00 0.58 D+L/4(%R= 0.0) TOP BOT 0.51 0.00 3.11 0.00 4.01 0.00 3.79 0.00 3.76 0.00 4.34 0.00 2.27 0.00 D+L/4(%R=lO.O) TOP BOT 0.46 0.00 2.79 0.00 3.65 0.00 3.42 0.00 3.40 0.00 3.95 0.00 2.04 0.00 D+L/4(%R=15.0) TOP BOT 0.43 0.00 2.75 0.00 3.65 0.00 3.42 0.00 3.40 0.00 3.95 0.00 1.97 0.00 Span 1 L=30.00ft X Left Vu Mu (ft) (k) (k-ft) Use #3@24.00in o/c max. Span 2 L=36.00ft X Left Vu Mu (ft) (k) (k-ft) Use #3@22.50in o/c rnax. Span 3 L=36.00ft X Left Vu Mu (ft) (k) (k-ft) Use #3@22.50in o/c max. Span 4 L=36.00ft X Left Vu Mu (ft) (k) (k-ft) Use #3@22.50in o/c rnax. MIN TOP BOT 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 MIN TOP BOT 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 MIN TOP BOT 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 2.61 0.00 ULT(%R= 0.0) D+L/4(%R= 0.0) SPAN TOP BOT TOP BOT 1 0.00 0.00 0.00 1.04 2 0.00 0.75 0.00 3.53 3 0.00 0.62 0.00 3.35 4 0.00 0.68 0.00 3.39 5 0.00 0.54 0.00 3.32 6 0.00 0.52 0.00 3.76 Rebar Weight=9.341 psf ULT(%R= 6.71 D+L/4(%R=10.0) SPAN TOP BOT TOP BOT 1 0.00 0.00 0.00 1.09 2 0.00 0.70 0.00 3.78 3 0.00 0.46 0.00 3.57 4 0.00 0.50 0.00 3.60 5 0.00 0.39 0.00 3.54 6 0.00 0.50 0.00 4.01 Rebar Wei ght=9.422 psf ULT(%R=15.0) D+L/4(%R=15.0) SPAN TOP BOT TOP BOT 1 0.00 0.00 0.00 1.14 2 0.00 1.19 0.00 3.96 3 0.00 0.88 0.00 3.76 4 0.00 0.91 0.00 3.79 5 0.00 0.81 0.00 3.73 6 0.00 0.91 0.00 4.17 Rebar Wei ght=lO. 492 psf Section 5 - B E A M S H E A R D E S I G N Vcn (k) for Span 1 Vcn (k) for Span 2 Vcn (k) for Span 3 Vcn (k) for Span 4 vcw Vci Av #3@ (k) (k) (in2/ft) (in) vcw Vc i Av #3@ (k) (k) (in2/ft) (in) vcw Vci Av #3@ (k) (k) (inZ/ft) (in) vcw Vci Av #3@ (k) (k) (in2/ft) (in) MIN TOP BOT 0.00 1.87 0.00 1.87 0.00 1.87 0.00 1.87 0.00 1.87 0.00 1.87 MIN TOP BOT 0.00 1.87 0.00 1.87 0.00 1.87 0.00 1.87 0.00 1.87 0.00 1.87 MIN TOP BOT 0.00 1.87 0.00 1.87 0.00 1.87 0.00 1.87 0.00 1.87 0.00 1.87 CODE CODE CODE CODE Frame Design Group, Inc. 2 Faraday. Suite 101 Sheet No. 13 9 Toyota Carl sbad Span 5 L=36.00ft X Left Vu Mu Vcn vcw Vci Av #3@ (ft) (k) (k-ft). (k) (k) (k) (in2/ft) (in) Use #3@22.50in o/c max. for Span 5 Span 6 L=36.00ft X Left ' Vu Mu Vcn vcw Vci Av #3@ (ft) (k) (k-ft) (k) (k) (k) (in2/ft) (in) Use #3@22.50in o/c max. for Span 6 Section6-CONCRETE FLEXURAL STRESSES AND <-----------------------Stresses (ksi)-----------------------> Service Loads Transfer of Prestress SPAN Tension (XI Compression (XI Tension (XI Compression (XI 1 T -0.077 ( 29.00) -0.369 ( 12.20) -0.210 ( 12.20) -0.507 ( 29.00) B -0.126 ( 12.20) -0.665 ( 29.00) -0.005 ( 29.00) -0.553 ( 12.20) 2T B 3T B 4T B 5T B 6T B JOINT 1 2 3 4 5 6 7 0.076 ( 35.00) 0.286 ( 18.00) 0.072 ( 1.00) 0.272 ( 18.00) 0.070 ( 1.00) 0.281 ( 18.00) 0.053 ( 1.00) 0.253 ( 18.00) 0.051 ( 1.00) 0.299 ( 18.00) -0.592 ( 18.00) -0.947 ( 35.00) -0.584 ( 18.00) -0.940 ( 1.00) -0.589 ( 18.00) -0.938 ( 1.00) -0.574 ( 18.00) -0.970 ( 35.00) -0.672 ( 18.00) -1.037 ( 1.00) 0.137 ( 18.00) 0.460 ( 35.00) 0.111 ( 18.00) 0.425 ( 1.00) 0.114 ( 18.00) 0.406 ( 35.00) 0.117 ( 18.00) 0.428 ( 35.00) 0.086 ( 18.00) 0.456 ( 1.00) -0.759 ( 35.00) -1.196 ( 18.00) -0.740 ( 1.00) -1.147 ( 18.00) -0.730 ( 35.00) -1.154 ( 18.00) -0.827 ( 35.00) -1.158 ( 18.00) -0.842 ( 1.00) -1.259 ( 18.00) Section7-FACTORED COLUMN LOADS Maximum Axial Load Maxi mum Moment Axial Column Moment Axi a1 Col umn Moment Load Top Bottom Load Top Bottom (kips) (k-ft) (k-ft) (kips) (k-ft) (k-ft) 45.19 0.00 119.79 45.19 0.00 119.79 149.55 0.00 185.30 140.66 0.00 220.43 214.59 0.00 6.13 181.39 0.00 161.39 225.49 0.00 55.23 192.01 0.00 214.77 222.37 0.00 -9.96 188.64 0.00 -168.02 213.80 0.00 -13.44 180.50 0.00 -169.33 96.01 0.00 -420.38 96.01 0.00 -420.38 CODE CODE DEFLECTIONS <- - - - -Def 1 ecti ons ( i n) - - - - -> OL + Bal LL SPAN Delta L/Delta Delta L/Delta 1 0.004 89920 0.010 34606 2 0.024 18117 0.044 9773 3 0.019 22630 0.045 9620 4 0.021 20843 0.046 9398 5 0.015 29404 0.045 9676 6 0.035 12455 0.048 9032 Toyota Carlsbad New Parking Structure August 24,2001 Our Job NO. 01-44 Page 14 To reduce the potential for erosion, the slopes shall be planted as soon as possible after grading. Slope erosion, including sloughing, ding, and slumping of surface soils may be anticipated if the slopes are left unplanted for a long period of time, especially during rainy seasons. Swales or earth berms are recommended at the top of all permanent slopes to prevent surface water runoff fiom overtopping the slopes. Animal burrows should be controlled or eliminated since they can serve to collect normal sheet flow on slopes, resulting in rapid and destructive erosion. Erosion control and drainage devices must be installed in compliance with the requirements of the controlling agencies. Foundation Recommendations Seismic Site Categorization: The following seismic site categorization parameters may be used for foundation design. These design parameters are based on the information provided in Chapter 16 of the 1997 Uniform Building Code. Soil Profile Type = sc Near Source Factor Na = 1.0 Near Source Factor N, = 1.2 'b Seismic Source Type =B Footings: The on-site overburden soil is not considered suitable for foundation or floor slab support. To provide more uniform support, we recommend that the proposed structure be supported by foundations that are entirely embedded into dense formational sediments. Footings shall be designed with the minimum dimensions and allowable dead plus live load soil bearing values given in the following table: WESTERN Toyota Carlsbad New Parking Structure August 24,2001 OW Job NO. 01-44 Page 15 Footinm Established on Bedrock Minimum Minimum Allowable Footing Depth Width Soil Bearing Type (inches) (inches) Value (p.s.f.) Continuous 30 30 5,000 Square 30 48 6,000 Square 30 60 6,400 Square 30 72 6,800 The minimum depth given shall be below lowest adjacent finish subgrade. If foundations are proposed adjacent to the top of any slope, we recommend that the footings be deepened to provide a horizontal distance of 10 feet between the outer edge of the footing and the adjacent slope face. The soil load bearing values presented above may be increased by one-third for short term loads, including wind or seismic. The soil load bearing values of square pad footings may be increased 800 psf for each additional foot of depth below 30 inches. All foundations shall be reinforced in accordance with recommendations provided by a Structural Engineer. Settlements under building loads are expected to be within tolerable limits for the proposed structure. Drilled Piers: Foundations may consist of end-bearing, reinforced cast-in-place concrete drilled piers carried through the overburden soils, and established no less than 5 feet into the firm undisturbed formational materials. Drilled piers should extend at least 10 feet below proposed top of slab-on- grade. Deeper embedment depths may be required by the Structural Engineer. Toyota Carlsbad New Parking Structure August 24,2001 OW Job NO. 01-44 Page 19 Lateral Resistance: Resistance to lateral loads may be provided by friction at the base of the footings and floor slabs and by the passive resistance of the supporting soils. Allowable values of frictional and passive resistance are presented for the fill soils in the table below. The frictional resistance and the passive resistance of the materials may be combined without reduction in determining the total lateral resistance. Lateral Resistance Values Allowable Coefficient Passive Pressure Soil Type of Friction (psflfl of depth) Compacted Fill 0.35 250 Formational Sandstone 0.39 350 Footing Observations: Prior to the placement of reinforcing steel and concrete all foundation excavations should be observed by the Soil Engineer, Engineering Geologist or their representative. Footing excavations shall be cleaned of any loosened soil and debris before placing steel or concrete. Footing excavations should be observed and probed for soft areas. Any soft or disturbed soils shall be over-excavated prior to placement of steel and concrete. Over-excavation of soils should not be performed in locations that were undercut for transition areas. This would compromise the thickness of the soil supporting the footings. In undercut transition areas loose soils should be recompacted. c c c CL f r R I B- I Toyota Carlsbad New Parking Structure August 24,2001 OW Job NO. 01-44 Page 20 Retaining Walls Lateral Pressures: Retaininglrestrainhg walls are proposed for development on this site. Specific wall heights and design have not been provided to us. Our analysis anticipated that retaining walls up to 20 feet in height may be constructed. These recommendations should be reviewed and updated if walls greater than 20 feet in height are to be installed. For the design of cantilevered retaining walls where the backfill is well drained, the equivalent fluid pressures for both active and at-rest conditions are presented below. Backfill Active Pressure At-Rest Pressure Inclination (p.c.f.) (p.c.f.) Level 42 60 2:l slope 60 78 Wherever walls are subject to surcharge loads, they should be designed for an additional uniform lateral pressure equal to one-third the anticipated surcharge pressure, in case of unrestrained walls, and one-half the anticipated surcharge, in case of restraining walls. Drainage and Waterproofing: Ifthe backfill is placed and compacted as recommended herein and good surface drainage is provided, the infiltration of water into the wall backfill may be reduced. Adequate drainage of adjacent planters should likewise be provided to reduce water infiltration into wall backfills. WfSTERN SOlL AND FOUNDATION €NGINEERlNG INC Frame Design Group c e Y c c c c c c P-- Proiect: Page: I#$ Frame Design Group c ri Frame Design Group %%ZO Proiect: Page: 1+7 c Frame Design Group c c c 0 0 0 Y 0 +x 0 0 0 0 24 x 20 in ;ode: ACI 318-95 Jnits: English iun axis: About X-axis iun option: investigation Slenderness: Not considered 'olumn type: Structural J Bars: ASTM A615 ! Date: 05/13/02 A Time: 09:33:02 , fs=O ,' - I I / /" / fs=O. 5fy ~ + / "'i ,,/ i2t, 12s 1 I CI -600 - 1 PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA d File: untitled.col c 1 Project: Toyota Carlsbad J fc=5 ksi fy = 60 ksi Engineer: Ag = 480 inA2 8 #9 bars , Ec= 4031 ksi Es = 29000 ksi As = 8.00 inA2 Rho = 1.67% . e fc = 4.25 ksi e-rup = Infinity Xo = 0.00 in Ix = 16000 inY . e-u = 0.003 in/in Yo = 0.00 in ly = 23040 inY c Beta1 = 0.8 Clear spacing = 6.43 in Clear cover = 1.88 in 1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 c cc I 8 8 8 0 +x 0 Y 8 8 8 24 x 20 in Code: ACI 318-95 Units: English 1 Run axis: About X-axis -; Run option: Investigation I Slenderness: Not considered 'olumn type: Structural Bars: ASTM A61 5 Date: 05/13/02 ] Time: 10:30:31 CL I 'i ,-l 2500 41' -1 000 -_ 13-v I , 2=0.5fy I , -. Vi + 600 MX (k-ft) /' I PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Imine, CA J File: untitled.co1 A Project: Toyota Carlsbad A fc = 5 ksi Column: C\ (TOP CVL) L~~JC D Engineer: fL = 60 ksi Ag = 480 inA2 \ 14 bars & -k 6+( 0 l Ec= 4031 ksi Es = 29000 ksi As = 15.35 in"2 Rho = 3.20% fc =4.25 ksi e-rup = Infinity Xo = 0.00 in Ix = 16000 inA4 e-u = 0.003 in/in Beta1 = 0.8 Yo = 0.00 in Clear spacing = -0.06 in ly = 23040 inY Clear cover = 1.80 in c 1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 i 0 0 0 Y I 0 +x Oi 0 0 0 24 x 20 in Code: ACI 318-95 Units: English Run axis: Biaxial Run option: Investigation Slenderness: Not considered 'olumn type: Structural I c i Bars: ASTM A61 5 Date: 05/13/02 Time: 13:34:40 d I c / / i I 700 T My(k-ft) -I f / i I t MX (k-ft) \ -700 \ 700 -700 - P = 453 kip j PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, lrvine, CA J File: C:\PROGRA-l\PCACOL\DATA\EXT2024.COL I 1 Project: Toyota Carlsbad c Column: C2 -1 f'c= 5 ksi Ec = 4287 ksi I A fc =4.25 ksi fy = 60 ksi Es = 29000 ksi e-rup = Infinity Engineer: JEH Ag = 480 in"2 8 #I 1 bars As = 12.48 inA2 Rho =2.60% Xo = 0.00 in Ix = 16000 in"4 I e-u = 0.003 in/in Yo = 0.00 in ly = 23040 in"4 c Beta1 = 0.8 Clear spacing = 5.89 in Clear cover = 2.00 in 1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 i 0 0 0 Y 0 +x 0 0 0 0 24 x 20 in Code: ACI 31 8-95 Units: English Run axis: Biaxial Run option: Investigation *I '1 Slenderness: Not considered -I olurnn type: Structural I Bars: ASTM A615 Date: 031 3/02 I 1 Time: 13:29:32 r --i 7; \ \ I I , I I I , I ,' 500 -800 - l PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA c File: C:\PROGRA-l\PCACOL\DATA\EXT2024,COL Project: Toyota Carlsbad Column: C2 Engineer: JEH I l Fc= 4287 ksi I fc = 4.25 ksi ' P-u = 0.003 in/in I I- Beta1 = 0.8 fy = 60 ksi Es = 29000 ksi e-rup = Infinity Ag = 480 in"2 As = 12.48 inA2 Xo = 0.00 in Yo = 0.00 in Clear spacing = 5.89 in 8 #11 bars Rho = 2.60% Ix = 16000 inA4 ly = 23040 inA4 Clear cover = 2.00 in i Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 rli 8 8 i' 24 x 20 in Code: ACI 318-95 Units: English Run axis: Biaxial Run option: Investigation Slenderness: Not considered 'olumn type: Structural 1 Bars: ASTM A615 I Date: 05/13/02 F- ' I -1 Time: 13:35:45 900 T My(k-ft) I / 4 1 i I /i I ,' I t -900 P = 151 kip MX (k-ft) 900 1 PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA -. File: C:\PROGRA-l\PCACOL\DATA\EXT242OT.COL Project: Toyota Carlsbad i Column: C2 Top Engineer: I -1 fc= 5 ksi I I Ec= 4031 ksi --' fc = 4.25 ksi 1 I e-u = 0.003 idin = 60 ksi Es = 29000 ksi e-rup = Infinity Ag = 480 in"2 14 bars 8011 6 '(0 As = 20.10 in"2 Rho =4.19% Xo = 0.00 in Ix = 16000 in"4 Yo = 0.00 in ly = 23040 in"4 t- Beta1 = 0.8 Clear spacing = -0.20 in Clear cover = 1.73 in A Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 c 7 I n &I1 8 8 ~8 8 8 Y -0 0 -I/ 8 8 8 24 x 20 in I , Code: ACI 318-95 Units: English I Run axis: Biaxial 1 Run option: Investigation -\ Slenderness: Not considered 'olumn type: Structural Bars: ASTM A615 Date: 05/13/02 1 Time: 13:36:26 J i d t I I I , 1,'' 700 , I ,"M (31 ") (k-fl) I I I , 1,'' 700 , I i I ,"M (31 ") (k-fl) ! /' I I I -1' -1500 j PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Iwine, CA L-i File: C:\PROGRA-I\PCACOL\DATA\EXT2420T.COL 1 Project: Toyota Carlsbad , Column: C2 Top I r' Pc = 5 ksi , Ec= 4031 ksi fc = 4.25 ksi I e-u = 0.003 in/in h Beta1 = 0.8 fy = 60 ksi Es = 29000 ksi e-rup = Infinity Engineer: Ag = 480 inA2 14 bars As = 20.10 inA2 Rho =4.19% Xo = 0.00 in Ix = 16000 inA4 Yo = 0.00 in Clear spacing = -0.20 in ly = 23040 in"4 Clear cover = 1.73 in 1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 c '2. c 0 0 0 0 0 \. 0 24 x 42 in ,*-.I 1 Code: ACI 318-95 -1 Units: English Run axis: Biaxial Run option: Investigation Slenderness: Not considered 'olumn type: Structural r.r I c- I j Bars: ASTM A615 Date: 05/13/02 1 Time: 11 :06:42 <d I c 2ooo T My (k-fi) /' ,,,:;\\ I I MX (k-ft) 1 I I I t 11 I - ..- ~ , -2000 i 2000 I I '\ -2000 P = 536 kip I PCACOL V3.00 (PCA 1999) - Licensed to: Frame Desian Grouo. Irvine. CA File: C:\PROGRA-I\PCACOL\DATA\TOYOTAC3.COL fy = 60 ksi Es = 29000 ksi e-rup = Infinity c j Project: Toyota Carlsbad Column: C3 Engineer: f'c= 5 ksi Ec= 4031 ksi As = 12.70 inA2 fc = 4.25 ksi Xo = 0.84 in ' e-u = 0.003 in/in Yo = -7.35 in Ag = 912 in"2 ! c Beta1 = 0.8 Clear spacing = 5.73 in 1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 r-lr 10 #IO bars Rho = 1.39% - Ix = 120768 in"4 ly = 40825.3 in"4 Clear cover = N/A Code: ACI 318-95 Units: English J Run axis: Biaxial i Run option: Investigation P Slenderness: Not considered 'olumn type: Structural Bars: ASTM A615 J Date: 05/13/02 I Time: 11 :05:14 I 2000 T My (k-ft) I I MX (k-ft) ~ 2000 I I -2000 I/ I ! I I ' (\ /\ \ I -2000 P = 225 kip I PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Imine, CA File: C:\PROGRA-1 \PCACOL\DATA\TOYOTAC3.COL 1 Project: Toyota Carlsbad Column: ~3 ~e-1 f'c= 5 ksi -p. I Ec= 4031 ksi fc = 4.25 ksi fy = 60 ksi Es = 29000 ksi e-rup = Infinity Engineer: Ag = 912 inA2 As = 15.60 inA2 Xo = 0.84 in e-u = 0.003 in/in Beta1 = 0.8 Yo = -7.35 in Clear spacing = 5.59 in - 10 #I 1 bars Rho = 1.71% - Ix = 120768 in"4 ly = 40825.3 in"4 Clear cover = N/A I Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 :A '0 0 0 Y 0 +x 0 0 0 0 24 x 20 in Code: ACI 318-95 Units: English Run axis: Biaxial Run option: Investigation Slenderness: Not considered rc- c olumn type: Structural 1 Bars: ASTM A615 -( Date: 05/13/02 I Time: 10:57:01 -1 I 600 / /' I ! MX (k-ft) I I I 1 I I I I 1 -600 600 1 + \ I \ -600 P = 439 kip PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA 1 I File: C:\PROGRA-l\PCACOL\DATA\EXT2024,COL I I' J Project: Toyota Carlsbad Column: 24x20 - C4 Engineer: J E H 1 I --/ f'c= 5 ksi I 1 Ec= 4287ksi I fy = 60 ksi Es = 29000 ksi e-rup = Infinity Ag = 480 inA2 As = 8.00 inA2 4i fc = 4.25 ksi Xo = 0.00 in I I e-u = 0.003 in/in Yo = 0.00 in c i Beta1 = 0.8 Clear spacing = 6.31 in 8 #9 bars Rho = 1.67% Ix = 16000 inA4 ly = 23040 inA4 Clear cover = 2.00 in J Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 0 0 0 I I i c Y 0 +x 0 P = 146 kip 0 0 0 24 x 20 in Code: ACI 318-95 Units: English Run axis: Biaxial Run option: Investigation Slenderness: Not considered olumn type: Structural I Bars: ASTM A61 5 \ Date: 05/13/02 -1 1 Time: 10:57:30 1 i ,i / 600 T My(k-ft) + 1-2 MX (k-ft) i -600 I \ I 1 jl , I 1 I 1 I 600 1, - \ \\ 1 - ',, \ 1 -600 - i PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA c File: C : \P ROG RA- 1 \PCACO L\DATA\EXT2024. CO L Project: Toyota Carlsbad Column: 24x20 - C4 Tbg L@& Engineer: JEH fy = 60 ksi Ag = 480 in"2 Es = 29000 ksi As = 8.00 in"2 1 -I fc=5 ksi \, i Ec= 4287ksi - fc = 4.25 ksi e-rup = Infinity Xo = 0.00 in I e-u = 0.003 in/in c Beta1 = 0.8 Yo = 0.00 in Clear spacing = 6.31 in 8 #9 bars Rho = 1.67% Ix = 16000 in"4 ly = 23040 in"4 Clear cover = 2.00 in 1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 i I 40 x 20 in Code: ACI 318-95 Units: English 1 Run axis: Biaxial Run option: Investigation Slenderness: Not considered 'olumn type: Structural 1 I Bars: ASTM A61 5 Date: 05/13/02 1 Time: 12:56:46 1 3000 i t ,' 7 I 1 1 800 M (39") (k-ft) /' - / -1000 I PCACOL V3.00 (PCA 1999) - Licensed to: Frame Desian GrOUD. Irvine. CA File. untitled. col I 1 Project: Toyota Carlsbad Column: C5 Engineer: 1 fc= 5 ksi Ag = 702 inA2 ! Ec= 4031 ksi fc = 4.25 ksi ' e-u = 0.003 in/in c Beta1 = 0.8 fy = 60 ksi Es = 29000 ksi e-rup = Infinity As = 11.43 in"2 Xo = 5.86 in Yo = -0.74 in Clear spacing = 5.73 in 9 #I 0 bars Rho = 1.63% Ix = 22422.9 in"4 ly = 79342.1 in"4 Clear cover = N/A i Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 c 8 8 8 Y 0 +x 0 8 8 8 24 x 20 in Code: ACI 318-95 Units: English Run axis: About X-axis Run option: Investigation Slenderness: Not considered 'olumn type: Structural Bars: ASTM A61 5 Date: 05/1 3/02 Time: 12:04:35 4'' -800 I PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Imine, CA ? L- File: C:\PROGRA-1 \PCACOL\DATA\EXT2420T.COL Project: Toyota Carlsbad Column:- ~7 TOP Engineer: fc = 5 ksi fy = 60 ksi Ag = 480 inA2 14 bars -k 6*7 Ec= 4031 ksi Es = 29000 ksi As = 13.76 inY Rho =2.87% fc = 4.25 ksi e-rup = Infinity Xo = 0.00 in Ix = 16000 in"4 e-u = 0.003 in/in ly = 23040 inA4 Beta1 = 0.8 Clear cover = 1.80 in Confinement: Tied Yo = 0.00 in Clear spacing = 0.07 in phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 -I Y 0 +x 0 0 0 0 24 x 20 in Code: ACI 318-95 i Units: English Run axis: About X-axis - Run option: Investigation I Slenderness: Not considered olumn type: Structural J ~ Bars: ASTM A615 I Date: 05/13/02 J Time: 09:33:13 c ,/ + fs=O /, I ,’ I ~ /’ fs=OSfy ~ I/ ! ,;, 4a” / 500 MX (k-ft) -, 3fi, - /” -600 1 ~ PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Imine, CA i File: untitled.col 1 Project: Toyota Carlsbad Column: ~31. C7 Engineer: , i -1 fc = 5 ksi Ec= 4031 ksi fc =4.25 ksi fy = 60 ksi Es = 29000 ksi e-rup = Infinity Ag = 480 inA2 As = 10.16 inY Xo = 0.00 in ’ 9-u = 0.003 in/in Yo = 0.00 in P Beta1 = 0.8 Clear spacing = 6.22 in 8 #10 bars Rho = 2.12% Ix = 16000 inA4 ly = 23040 inA4 Clear cover = 1.88 in 1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 0 0 0 Y 0 +x 0 0 0 20 x 20 in Code: ACI 31 8-95 Units: English Run axis: About X-axis Run option: Investigation Slenderness: Not considered 'olumn type: Structural A Bars: ASTM A615 I Date: 05/13/02 1 Time: 09:35:38 i -400 1 PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA A I File: untitled.col c I Project: Toyota Carlsbad , Column:& ~a 4 ~4 I -1 fc=5ksi -1 fc = 4.25 ksi I I I Ec= 4031 ksi I e-u = 0.003 in/in c- 1 Beta1 = 0.8 fy = 60 ksi Es = 29000 ksi e-rup = Infinity Engineer: Ag = 400 inA2 8 #8 bars As = 6.32 inA2 Rho = 1.58% Xo = 0.00 in Yo = 0.00 in Ix = 13333.3 inA4 ly = 13333.3 inA4 Clear spacing = 6.63 in Clear cover = 1.88 in -1 Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 c c L r.- c c L Y 0 +x 0 0 OI 0 0 0 / I I 1 1 I I MX (k-ft) I I I 1 Code: ACI 318-95 Units: English Run axis: Biaxial Run option: Investigation ' Slenderness: Not considered I 800 T My(k-ft) ,\ i t i 4 olumn type: Structural Bars: ASTM A615 Date: 05/13/02 1 ~ Time: 12:45:48 i I I P = 1151 kip rc t I f I i -800 ~~ 1 PCACOL V3.00 (PCA 1999) - Licensed to. Frame Design Group, Imine, CA A File: C : \P ROG RA- 1 \PCACO L\DATA\I NT2424. CO L 1 Project: Toyota Carlsbad A f'c= 5 ksi Column: W CIO Engineer: JEH Ag = 576 inA2 8 #11 bars , Ec= 4287 ksi As = 12.48 inA2 Rho = 2.17% fc = 4.25 ksi ,.A I e-u = 0.003 in/in c Beta1 = 0.8 fy = 60 ksi Es = 29000 ksi e-rup = Infinity Xo = 0.00 in Ix = 27648 inY Yo = 0.00 in Clear spacing = 7.89 in ly = 27648 inA4 Clear cover = 2.00 in J Confinement: Tied phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.7 0 0 0 - Y 0 +x 0 Ec = 4287 ksi Es = 29000 ksi As = 12.48 in"2 Rho = 2.17% fc = 4.25 ksi e-rup = Infinity Xo = 0.00 in Ix = 27648 in"4 0 0 0 24 x 24 in Code: ACI 318-95 Units: English Run axis: Biaxial Run option: Investigation Slenderness: Not considered 'olumn type: Structural Bars: ASTM A61 5 Date: 05/13/02 Time: 12:45:56 800 T My (k-ft) + t 1 I MX (k-ft) I I I I /I 1 I I 1 I I I 800 I -800 \ \ - i i -800 P = 384 kip 1 PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA ~ File: C:\PROGRA-l\PCACOL\DATA\lNT2424.COL c I Beta1 = 0.8 Clear spacing = 7.89 in Clear cover = 2.00 in c c c L c c- c 2- c c e F c c c c 0 0 U TA 0 0 0 24 x 24 in Code: ACI 318-95 Units: English Run axis: Biaxial Run option: Investigation Slenderness: Not considered olumn type: Structural Bars: ASTM A61 5 Date: 05/13/02 Time: 12:46:03 1 i / / I lee 800 - My(k-ft) I J i i t MX (k-ft) t I -800 P = 254 kip PCACOL V3.00 (PCA 1999) - Licensed to: Frame Design Group, Irvine, CA File: C:\PROGRA-l\PCACOL\DATA\lNT2424.COL Project: Toyota Carlsbad Column: C 10 6/13 Lvc) Engineer: JEH f'c = 5 ksi fy = 60 ksi Ag = 576 in"2 Ec = 4287 ksi Es = 29000 ksi As = 12.48 inA2 Rho =2.17% fc = 4.25 ksi e-rup = Infinity Xo = 0.00 in Ix = 27648 inA4 e-u = 0.003 in/in ly = 27648 in"4 8 #I 1 bars Yo = 0.00 in P I Beta1 = 0.8 Clear spacing = 7.89 in Clear cover = 2.00 in I I Confinement: Tied phi(a) = 0.8, phi(b) = 0.9. phi(c) = 0.7 I c c c Frame Design Group 6-6 P c ./ Project: Page: i; 3 I 300.6 5 - C-13 e Frame Design Group c L Project: Page: 14 G P c c Project: Page: fG7 c Frame Design Group 8-4 P c 5 c f= 122.3 f(37 361% = 266.3 c %2 26 - F”7 -! P c c gr4 5 Pa p. 3- -9 c 1 53. s - 5 c Project: Page: IG8 Frame Design Group c c c CI A -1 b I c c- L e A B I 23.6 Toyota Carlsbad -Wall B 1 bc/ I I ~ 100 *- &I r ID ID d-4- C Allowable Soil Bearing : 5000 psf Concrete Weight : 145 pcf Concrete fc :4 ksi Steel fy : 60 ksi Service Soil Bearing Maximum Bearing 4938.42 psf DL+LL Max/Allowable Ratio ,988 4938.42 psf A B 0 psf Uplift D C Flexure Design Maximum MuXX /’ 5.908 k-ft Maximum MuZZ /@ 16.451 k-ft $$X Dir. Steel: 8 z Dir. Steel: 1.555 in2 (min) 1.944 in2 (min) Z direction steel requires the following placement: Region 1 (starts at A): 6 in Steel: .I08 in2 Region 2 (middle): 48 in Steel: 1.728 in2 Region 3 (ends at D): 6 in Steel: .I08 in2 Maximum Shear Check Ratios (Vu /@ Vc) Two Way (Punching) Shear ,089 1.4D+1.7L One Way Shear, X dir. cut .006 1.4D One Way Shear, Z dir. cut .065 1.4D+1.7L Overturning Moment Safety Factors (OTM SF) OTM SF About X-X Axis NA DL+LL OTM SF About Z-Z Axis NA DL+LL Concrete Bearing (For Vertical Loads Only!) Maximum Bu /@ 76.144 k 1.4D+1.7L Allowable Bc 1360 k AD DC BA AD c c- c In0 EJO ON sx 22 c9'9 * m 2 . EJ c c c c c- Frame Design Group Project: 704 tn Cas IS bd Page: 131 1 Frame Design Group Title : Toyota Carlsbad Page: (7% 2 Faraday Job# : 01-196 Dsgnr: JEH Date: MAY 14,2002 Irvine, CA Desctiption.. .. 949-595-801 5 1O'WaIl This Wall in File: C:\PROGRAM FILES\RPG\WORK FILES.RI F~x 949-595-8018 Cantilevered Retaining Wall Design RetainPro Version 6.0 Build Date : 10-SEP-2001, (c) 1989-2001 Criteria [Soil Data ' Footing Dimensions & Strengths I Retained Height = 9.50ft Allow Soil Bearing = 5,000.0 psf Toe Width Heel Width Wall height above soil = 0.50 ft Height of Soil over Toe = 12.00 in Passive Pressure = 250.0psflft 3.00 ft 2.50 - 5.50 - - - - ____ - Equivalent Fluid Pressure Method Heel Active Pressure = 40.0 psf/ft Total Footing Widtt Toe Active Pressure = 30.0 Psflft Footing Thickness = 20.00in - 0.00 in - 0.00 in Water height over heel = 0.0 ft Key Width Key Depth Key Distance from Toe = 0.00 ft FootingllSoil Frictior = 0.400 Slope Behind Wal = 0.00: 1 Soil Density = 110.00pcf Wind on Stem - - 0.0 psf Soil height to ignore - - for passive pressure = 12.00 in fc = 2,OOOpsi Fy = 60,OOOpsi Footing Concrete Density = 150.00 pcf Min. As YO = 0.0018 Cover Q Top = 2.00in @ Btm.= 3.00 in ~ Design Summary Stem Construction TopStem 2nd 3rd Stern OK Stem OK Stem OK ... resultant ecc. = 15.15 in Wall Material Above "Ht" = Masonry Masonry Masonry Total Bearing Load = 4.438 lbs Design height ft= 10.00 4.00 0.00 Soil Pressure Q Toe = 1,989 psf OK Soil Pressure Q Heel = 0 psf OK Soil Pressure Less Than Allowable Allowable = 5.000 psf ACI Factored Q Toe = 2,658 psf Footing Shear Q Toe = 19.1 psi OK Footing Shear Q Heel = 12.6 psi OK Allowable - Overturning - Sliding - ACI Factored Q Heel = 0 psf 76.0 psi 1.72 OK 1.06 Ratio 1.5! - - Wall Stability Ratios - Sliding Calcs Slab Resists All Sliding ! Lateral Sliding Force = 2,387.2 Ibs Footing Design Results c Factored Pressure Mu' : Upward Mu' : Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe Reinforcing Heel Reinforcing Key Reinforcing TOe Heel = 10,629 36 ft-# = 2,662 2,776 ft# = 7,968 2,74Oft# = 19.10 12.65 psi = 76.03 76.03 psi = NoneSpec'd = NoneSpec'd = NoneSpec'd -- = 2.658 0 psf Thickness - - 8.00 8.00 12.00 Rebar Size = #6 #5 #7 Rebar Spacing = 16.00 16.00 16.00 Rebar Placed at = Edge Edge Edge fblFB + fa/Fa - 0.000 0.524 0.882 Total Force Q Section Ibs = 0.0 605.0 1.790.0 Moment.. . .Actual ft# 0.0 1,109.2 5,710.8 Moment ..... Allowable ft#= 2,374.3 2,115.9 6,477.9 Shear ..... Actual psi = 0.0 10.8 18.8 Shear ..... Allowable psi = 38.7 38.7 38.7 Lap Splice if Above in= 36.00 30.00 42.00 Lap Splice if Below in = 36.00 30.00 16.44 Wall Weight psf= 78.0 78.0 124.0 ___________~_ Design Data - Rebar Depth 'd' in = 5.25 5.25 9.00 Masonry Data ~- fm psi= 1,500 1,500 1,500 Fs psi= 24,000 24,000 24,000 Solid Grouting - Yes Yes Yes Special Inspection - Yes Yes Yes Modular Ratio 'n' = 25.78 25.78 25.78 Short Term Factor = 1.000 1.000 1 .ooo Equiv. Solid Thick. in = 7.60 7.60 11.60 Masonry Block Type = Medium Weight Pc psi = FY psi = Other Acceptable Sizes & Spacings Toe: #4Q 6.75 in, #5@ 10.50 in, #6@ 15.00 in, #7@ 20.25 in. #8@ 26.75 in, #9@ 33 Heel: Not req'd, Mu < S Fr Key: No key defined - - Concrete Data ~ Frame Design Group Title : Toyota Carlsbad Page: VI 3 2 Faraday Job# : 01-196 Dsgnr: JEH Date: MAY 14,2002 Inrine, CA 949-5958015 10' Wall Description. ... This Wall in File: C:\PROGRAM FILES\RPG\WORK FILES.Rf F~x 949-595-8018 Retainpro Version 6.0 Cantilevered Retaining Wall Design Build Date : 1OSEP-2001, (c) 1989-2001 Summary of Overturning & Resisting Forces & Moments I ..... RESISTING ..... ..... OVERTURNING ..... Force Distance Moment Force Distance Moment ft-# -~ ~ Item Ibs ft ft# Ibs ft Heel Active Pressure = 2,493.9 3.72 9,282.8 Soil Over Heel = 1.567.5 4.75 7,445.6 Toe Active Pressure = -106.7 0.89 -94.8 Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem = 0.00 Load Q Stem Above Soil = Soil Over Toe - - 330.0 1.50 495.0 Stem Weight(s) - 964.0 3.42 3,296.0 ResistinglOverturning Ratio = 1.72 Footing Weigh1 = 1,375.0 2.75 3,781.3 Surcharge Over Toe = Total = 2,387.2 O.T.M. = 9,188.0 Earth Q Stem Transitions = Key Weight - - - 201.7 3.83 773.1 - Vert. Component - Vertical Loads used for Soil Pressure = 4,438.2 Ibs Vertical component of active pressure NOT used for soil pressure Total = 4,438.2 Ibs R.M.= 15,790.9 c c I /a *I c - 3" f e c Sliding Restraint ..-. 8.in Mas wl #t6 Q 16.in olc Solid Grout, Spc lnsp I I 6-0" ~ 12.in Mas wl#7 Q 16.in olc Solid Grout, Spc lnsp I 4-0" WQ18.in t I I c @Toe Designer select #0@18.in all horiz. reinf. I 3-0" 2'-6" M t 7 10'-0" 9-6" I c 5-6" c c c Frame Design Group Title : Toyota Carlsbad Page: /79 2 Faraday Job# : 01-196 Dsgnr: JEH Date: MAY 14,2002 Irvine, CA Description.. .. 6'Wall This Wall in File: C:\PROGRAM FILES\RPG\WORK FILES.Rf I I F& &9-JS5-8018 Cantilevered Retaining Wall Design RetainPro Version 6.0 Build Date : 1OSEP-2001, (c) 1989-2001 Criteria Retained Height = 6.00ft Allow Soil Bearing = 5,000.0 psf Toe Width Heel Width Wall height above soil = 0.50 ft Height of Soil over Toe = 12.00 in Passive Pressure = 250.0 psflft - - - 3.33 ft - 0.67 - 4.00 - - Equivalent Fluid Pressure Method Heel Active Pressure = 40.0 psf/ft Total Footing Widtt - Slope Behind Wal = 0.00 : 1 Toe Active Pressure = 30.0 PSfM Footing Thickness - 16.00 in Soil Density = 11o.oopcf Key Width - - - - 0.00 in 0.00 in Water height over heel = 0.0 ft FootinglISoil Frictior = 0.400 Key Depth Key Distance from Toe = 0.00 ft Wind on Stem - 0.0 psf Soil height to ignore - for passive pressure = 12.00 in fc = 2,OOOpsi Fy = 60,OOOpsi Footina Concrete Densitv = 150.00 DCf Min. AS % - = 0.0018' Cover Q Top = 2.00in Q Btm.= 3.00 in ,Design Summary j Stem Construction Topstem -~ Stem OK ... resultant ecc. = 13.21 in Wall Material Above "Ht" = Masonry Total Bearing Load = 1,674 Ibs Design height ft= 0.00 Soil Pressure Q Toe = 1,241 psf OK Soil Pressure Q Heel = 0 psf OK Soil Pressure Less Than Allowable Allowable = 5,000 psf ACI Factored Q Toe = 1,737 psf Footing Shear Q Toe = 6.0 psi OK Footing Shear Q Heel = 0.0 psi OK Allowable - Overturning - Sliding - 1.23 Ratio 1.51 Sliding Calcs Slab Resists All Sliding I Lateral Sliding Force = 993.9 Ibs ACI Factored Q Heel = 0 psf 76.0 psi 1.59 OK - - Wall Stability Ratios - Footing Design Results 1 -- Toe Heel Factored Pressure = 1.737 0 DSf Mu' : Upward Mu' : Downward Mu: Design Actual 1-Way Shear Allow 1-Way Shear Toe Reinforcing Heel Reinforcing Key Reinforcing - - 0 0 it# = 2,440 17 ft-# - - 5.98 0.00 psi = 76.03 76.03 psi = NoneSpec'd = NoneSpec'd = NoneSpec'd 0 17 ft-# - - - - 8.00 Thickness Rebar Size = #5 Rebar Spacing = 16.00 Rebar Placed at = Edge fbIFB + fa/Fa - 0.678 Total Force Q Section Ibs = 705.0 Moment.. . .Actual ft-#= 1,435.0 Moment.. . ..Allowable = 2,115.9 Shear ..... Actual psi= 12.6 Shear ..... Allowable psi = 38.7 Lap Splice if Above in= 30.00 Lap Splice if Below in= 11.74 - - 78.0 Wall Weight Rebar Depth 'd in = 5.25 Masonry Data Pm psi= 1,500 Fs psi= 24.000 Solid Grouting - Yes Special Inspection - Yes Modular Ratio 'n' = 25.78 Short Term Factor = 1.000 Equiv. Solid Thick. in = 7.60 Masonry Block Type = Medium Weight fc psi = FY psi = Other Acceptable Sizes 8 Spacings Toe: Not req'd, Mu < S Fr Heel: Not req'd, Mu < S Fr Key: No key defined Design Data __ - ___ - - - Concrete Data ~~~- - ~~ - .. . Page: 17L Frame Design Group Title : Toyota Carlsbad 2 Faraday Job# : 01-196 Dsgnr: JEH Date: MAY 14,2002 Irvine, CA Description .... 949495801 5 6'Wall Fax 949695801 8 c This Wall in File: C:\PROGRAM FIlES\RPG\WORK FILES.RI c Cantilevered Retaining Wall Design RetainPro Version 6.0 Build Date : IO-SEP-2001, IC) 1989-2001 - Summary of Overturning & Resisting Forces & Moments I ..... OVERTURNING ..... ..... RESISTING ..... Force Distance Moment Force Distance Moment Item Ibs ft ft-# Ibs ft ft-# Heel Active Pressure = 1,075.6 2.44 2,629.1 Soil Over Heel - 0.2 4.00 0.9 Toe Active Pressure = -81.7 0.78 -63.5 Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = K- Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem = 0.00 e - Load @ Stem Above Soil = - Soil Over Toe - 366.6 1.67 61 1 .O Surcharge Over Toe = - - - 1,858.8 507.0 3.67 c Stem Weight(@ 993.9 O.T.M. = 2,565.6 Earth Q Stem Transitions = - Total - Resisting/Ovetturnlng Ratio = 1.59 .GG Vertical Loads used for Soil Pressure = 1,673.9 Ibs Vertical component of active pressure NOT used for soil pressure ~ - Footing Weighi - 800.0 2.00 1,600.0 Key Weight - - Vert. Component - ~ - - Total = 1,673.9 Ibs R.M.= 4,070.7 P c- c c 3'4 i8 c I77 c c _. - ~ Sliding Restraint 8.in Mas w1#5 @ 16.in olc Solid Grout, Spc lnsp -1 1'-0" f , 8.in Mas w1#5 @ 16.in olc Solid Grout, Spc lnsp -1 h + #O@18.in @Toe Designer select c t e @ ,,&ee Appendix A 9 4'-0" )i 2 314" 2" , 6" 6-6" 6-0" , 4 1'4" ~ December 1 I, 2002 Mr. Bob Wolf Toyata Carlsbad 5424 PaserJ Pci Nme Cerlsbd, CA 92008 mjcct: Subject: Job YO. 01-44 New Parking Structure Tcyota CarIsbad 1040 Auto Center Court Carlshad, California Addendum Numb& @ne of our Report of Geotcchnical Investigation Dared August 24,2001 Dear Mr. WolE for the refmnced projecr. Irs purpose is fo provide resised recommmdations wMch address the sapport of the proposed concrete s:ab-on-pde. To accomplish this. a supplemental investigation was performed to cvaiuatt the density and chckneis of the fd. Subsurface conditions were exptdrd by excavating four sr.aiI diameter bo&@ on December 4.2032. The exp;o:mry bonnss were 8 ixhes in diameter and cxtmded to depths racgng frcm 1 S io 21 feet. Nc: ca\<ng occtxtd h iht excavation walls. Groundwatl;r *.vas not obseved in any cxplomion. The locritiors of the exploratm-y excavations are depicted on the Sire Plan Plate Xo. 1. in the back of this addendum. -_ . The swt'act reccnnaisaict and subbrmrf'c exploratiim were conducted by O?U; aokgy md soil mgjne~riog pcrS9,nnel. The soils iifc described in accodmce with the Urdtd Soif Classification System as illustrated on the attached sixnplif;.ed cbaH (Plate No. 2). In addition, a verb31 zxturd description, the we color. the i:plpparent moisture and the denaty at coonSisrency are presented. The density of granular material is givzn as either very hose, loose, rne&um dense, dense or very dcnsc. The con5istency of silte or clays is given as sither vcry so& soft, medium stiff, stiff, very stiff or hard. The sampb and lo&& of our explorstx>ry . sxcavntions were perfmned llsing standard geotecbicd mcthods. The logs are FrwcQttd on Plate No. 3 through Plate No. 6- Szimptes of typical and reprcsentetive soils were .. . . obtained and ra~rnd to our laboratory for observation and testing. Laboratory tests were psrfonncci in accordance with the American Society for Testing and Materials (ASTAM) test methods or suggested proccdurcs. Test results are shown on Plate No. 7. 5 Findings: Anificial fill mnging hm ? to 15 fzet in vertical thickness was encountered in each of the suppkmental borings (B-5 through B-5). These soils were similar in composXon and color as described in our original referenced report. Stratigaphic descriptions arc presented in the attached boring logs. The estimated consistency ad ddty of The fill rnatcrial was based on Visual obsavation, the notdon of blow counts during sampling and the perfomarm of moiSuru'dtnsiri detnminattions on relntively und:sr:rrbed Mg samples In accordance with MT-M DtS50. The resdts of our !aboratory testing indicate :hot the existing fill at the locations expl3red exhibit a relative compaction that varies hm 90 to 99 pcrcmt of its maximum dry density tia dskrmined by D155 7-9 I. WSTERN SOIL AND FOUNDATION ENGINEWVG, :NC. Toyota Carlsbad New Parking Structure December 1 1,2003 Our Job No. 01 -44 Page 3 Conclusions: Based on the findings of our supp:ernenrd exphdon and rcI3teii laboratory work. it appears thar the existing fill cx~oseri at die locations explorci may be suitable for the support of the proposed slab-on-sade. Ln lieu of the removal depth presented on page 9 ad Table I of &e origirrai report, the existing fill' may be prcpad as rccomrnsnded below. Fkummcndations: Based on ow m<ieW of the foundation plans, the proposed slab-on-grade wiU be construater! '4 to 10 fect below ex;Ag grade. It is expected that a significant portion of the exi- Ell will be removed to attain finish ribgrade elevation. Afk the excav2tion has been cut to finish subgrade, the exposed soil materials shdd be obszrvcd and evaluated by the . Gestcchicd Consultant. Existing fill mztcrid &at exhibks a relative compaction of at least 95 percent of its maximum dry deasity (ASTM D1557-91) may be left in place. Disturbed soil, fill material with a relative compaction at 1666 than 95 parcent, or any otherwise unsuitable soil should be remalieted in accordace with the recommendations presented in tho referenced Report of , Geotechical Investigation. To elbcinate &e cut-fill transition line and to provide Uniform soil conditions directly benee.& the proposed slab, we recommend tht 'hs natura!ly occurring soil be rmovod and ncornpactzd to a depth of at least 2 ~CCK below the bottom of the slab. This over-excavating procedure should extcnd into the fill side ofthe triiition he so that dl areas of the slabsn-grade will be underlair! by no less than 2 feet of propsriy compacted fill. %'it11 the excqptior. of removal depth. all recornpactior- procedures should 5c perfomled in accordance rvith the recommmdaticns provided in our refcrcrctd report. W€STERN SOIL AND FOUNDATION ENGMERING, INC. Toyota Car!sbd Nr~v Parkicg Snuctue December 1 1,1002 Ocr Job No. 01-41 Page 4 If ycu have any questions, plcaso do mi hesitate to contact this 0fEc.e. This opportunity to be of professional senice is sincerely appreciated. Respcc t fu il y submi ttcd, WESTZRV SOIL .WD FOUNDATION EhGN%RXG, IYC. Vincent W. Goby. CEG 1755, Expires 7/31/03 Engintcring Geologist % Dads E. Zimmmnan, C 25676, GE 928, Expires 3/3 1/04 Gmtcchnical Engineer Distribution: (6) Acidresses VWG:DEWErmg W€STEUN SO11 AND FOUNDATION fNGINfERING, INC. SITE PLGW (Plat0 NO. 1) (In Back Pocket) I- \ WSTERN SOIL AND FOUNOATlON €NG1N€€RING, INC. LABORATORY TEST RESULTS Maximum Den sih./Ou- Moisture llriaximum Optimum Moisture Sample Density Content bation Description (PCf) (percent) Dry B-1 @ 4' Orangish-Brown. Fine Grained S& 120.0 13.0 B-4 @ 5' Dark Brown, Siity. Fine to Medim- Grained Sand i31.0 16.0 B-7 @ 10' Dark Or;mgi&-Br~~n, SSghtlY Chw, Silty, Fine G?d& Sand i28.0 9.7 In-Sita Moistare and Densk Dry MoiW Sample Density couttnt Location (pcfj (%> B-5 Q 3' 119.3 5.0 E-5 @ 5' 120.3 8.2 B-5 @ 7' 1 17.3 10.5 B-5 @ 13' 121.8 8.5 B-5 @ 16' 118.5 6.3 3-6 @ 5' 128.8 9.3 B-6 @ 7' 127.1 7.5 B-6 @ 3' 121.9 6.7 Moisture Cantent rn Sample Density Location 0. (%) s B-6 @ 13' 106.5 4.1 B-6 @ 11' 113.8 . 7.2 B-7 a 3' i22.8 6.6 B-7 @ 6' 127.8 8.9 B-7 @ 7' 126.8 9.3 B-7 @ 10' 129.2 8.2 B-8 @ 3' 113.7 6.3 B-8 @ 6' 120.0 7.5 WESTERN SO11 AND FOL'NDATION ENGNEERING. INC. c I IU I e g 1 BORlNGNO. F A ELEVATION f 95 ' 3 3 I METHOD a-IINCH CONTINUOUS FLIGHT AUGER 1 SAMPLINQ Gndes To . \ aA'/ POINT FORMATION - Dark Orange, SQhW St&, Flno Gralned Sandstone, Poorly cemented Omngish-Yellow, Fine Gmined Sandrmne, Very Poerty ComonM BOTTOM Of BORlMO d) 15 FEET I I I I -mP To YOlSt bmP To Moist Moist mmP To Moist bmP To Mdat Mediwn uenoe Ocnse I 113*7 Oenso 1 to.0 Dense DATE LOGGED 12-0402 JOB NUMBER TOYOTA CARLSBAP 01 -44 PARKING STRUCTURE SURFACE EXPLORATORY LOGS 6.3 7.5 - 1-1 LOOGEO BY vwo .- .~ Plate No. 6 -, I SAVPLINQ METHOD 8-IINCH CONTINUOUS FUGHT AUGEF DESCRIPTION With Lenses of Pale Gray, Ftni Orrlned Sand . Onnglsh.Brawn, Slightly Clayey to SI@, Fine dralned Sand, Sight Otganic Odor BAY PdtNT FORMATION - Dark Orang., SIighUy Silty, Flne Onined Stndedom GmUoa fa I BOTTOM OF WRING @ 16 FEET JOBNUMBEP 1 TOYOTA CARLSBAD OlmO To Moist wit Moitt - Mdrt Damp OATE LOGGED 12-04-01 01-44 1 PARKING STRUCTURE SURFACE EXPLORATORY LOGS 6.6 8.9 9.3 8.2 - LOCGEO BY VWG PI& No. 6 -T NO * B-6 93 ELEVATION diu i , $! SAMPLINQ . METHOD I-ItNCH CONTINUOUS FLiGHT AUGER- OESCRIPTlON 3 I \3% INCHES ASPHALT PAVEMENT/ \ 4 IffCHCS AGGREGATE BA3E/ DarR OranQithBrown. Silty, Fine 1 To 1 8 Damp Dark Onn~lsh-8rown. Silty, Ftne Grained Sand . , Dark Orange, $rightly Silty, Fine Gninod Sand F:SP < 1 .. . , . . . L' k..- sp Faint Gray Mottling ..a ... ~ . ... *t , ,<I I, I BOTTOM OF 80R1N6 8 16 FEET Denam Dense DATE LOGGED 12=04-c2 JOB NUMBER TOYOTA CARCSBAD i Of4 PARKJNG STRUCTURE I SURFACE EXPLORATORY LOGS 6.7 9.3 7.5 - 7s 4.1 - - LOQQEO BY VWG Plate No. 4 .. a- - *- - v- 8-c c t SI SAMPLINO METHOD 1-IINCH CONTINUOUS TLiGHT AUGEI VJi I 21 DESCRIPTION .'IS INCHES ASPHALT PAV p*v FILL - Bmwnlsh~30nncre. SJitv. Fine Grained Sand. with Irol&i Cibblo Dark Orange, Slightly Silty, Fine Gralnsd Sand Black. Slightly Organic, StXy Sand Layer at 9 Feet Grid- To !hk Orange. fine Grained Sandstone, Poofty Cemented BOTTOM OF BORING 21 FEET 11 TOYOTA CARLSBAD PARKING STRUCTURE JOB NL'UBER Of44 Darn p To Moist Moist Moist Damp To Molst Damp I I -i Dtnw i' 12f.8 . i I I i DATE LOGG€D 72-04-02 1 SURFACE EXPLORATORY LOGS LOGGED BY VWG Plate No. 3 SUBSURFACE EXPLORATION LEGEND UNFED SOIL CLASSIFICATION CHART Group Soil Description Symbol TypicaI Sames .. L COARSE GRAINED: More 'hua half of muaial h lpcgst thrn No. 200 siwe rim. Cravdrr More thsur hclf of warsc Won h iarger dw No. 4 3ime si;a but ma1lcr than 5'. CLEANGXAVELS . GW Well gd:d grad, gmx! sld mixtures. tiale or 110 Ana GRAVEL W/FMES \ Sands: More than half of coarse Itactioa is smaller thm No. 4 rim sfie. CLLCJ SANDS SW SP U. FINE CRIINEDi Mom than hdf3imatmd ir e than No. 200 rim size. Si& & Clnym Licuid limit than SO ML CL SUts 6 Clays Liquid 1i.nir than 50 Well gradcd sun& gnvc:ly mdr, liar or IK) JIM. P6o:Iy grid& sands, pvelly om&, !Me or no fines. Silty sands, poorly gritd~ sand and silt mixrurec. Clayey sands. poorly graded sand and clay mixtures. s Inorgru?ic ~lts and very 5ne sziids. mck flour, sandy silt 01 clayey-silt-md m:xrircs with slight plasticiry. hmpnic days of low to incdium pMcity. gravtlty c!qs OrpMic sitIy and oapnic silty :L?yr of low plasticity. lncrganlc s!lu micaceous or d!;uonucmus fine mndy or silty wik, clastic sib. cmdy clay& dlly clay& Im cloys CH h0wi1C Ckp of high plasticity, fJ!. OH PT Organic ;!sp of dium to high piamcity. Pert and orher highly org~nic $oils. Plate No. 2 .- c W€STER# SOIL AND FOUNDATION fNGIN€€RING, iNC. 42AM P2 / FROM : WESTERN SOIL & FOUI4DFITIGN ENG. PHOdE Nfl. : 760 746 4912 Jan. 27 a83 12:48PM PI . W€fl€RN / January 27,2003 Mr. Bob Wolf Toyoh Carlsbad 5424 Paseo Del Norte Cadhd, CA 92008-4496 Project: Job No. 01-44 New Paking Structure Toyota Carkbad 1040 Auto Cater Court Carlsbad, California Subject: Foundation Plan - Second Review Dear Mr. Wolf In accordance with your request, we have reviewed the Foundation Plans (Sheet numbers SI .01 th~ough S6.01.11 sheets, Bated 11-12-02], prepared by lntmational Design, ztic., Architect and Frame Design Group, Stnictural Engineer for the refacnccd project. Specifically, we reviewed the corrections that were recornended our Foundation Plan Review letter dated January 22,2003, It is our opinion thst these plans are in genua1 compliance with our Report of Gmtechnical Inv~Stigati~n, titled Toyota CarIsbad New Parking Structure, dated August 24,2001. * A FEOM : WESTERN SOIL g, FDUMQTION ENG. PHONE pa. : 76~3 746 4912 Jan. 27 BO3 12: 49PM P2 c c I Foundation Plan - Second Rtvicw January 27,2003 Job NO. 0 1-44 Page 2 We appreciate this ~pporrnnity toqmvide you with our profwsional services. You are encouraged to call the undersigned with any questions or comments. Respectfully submitted, WESTERN SOIL AM) FOUNDATION ENGlNEIERING, L Dennis E. Zimmman, C 26676, GE 928, Expires 313 1/04 Geotechnical Engin- Vincent W. Gaby, CEG 1755, Expires 7/31/03 Engheuing Geologist Distribution: (2) Addressee { 1) Frame Design Group (I) Frame Petign Group via fax: (949) 595-80l8 VWG:DEukmg W€ST€RN SOIL AND FOUNDATION ENGIN €€RING, iff C. . + WESTERN January 22,2003 ,. I- M. Bob Wolf Toyota Carlsbad 5124 Pasto Del None Carlsbad, CA 920084496 Project: Job No. 01-44 New Parking Structure Toyota Carlsbad 1040 Auto Center Court Carlsbad, California a Subject: Foundation Plan Review DearMr. Wolf In accordance with your request, we have reviewed the Foundadon Plm (Sheet numbers SI .Or thmugh S6.01, I 1 sheets, dated 11 -12-92), prepared by International Design, Inc., Architect and Frame Design Croup, Structural Engineer for the referd project. It is our opinion that these plans are in general compliance with our Report of Geatechnid investigation, titled Toyota Carlsbad New Parking Structure, dated August 24,2001, With the following corrtctions: 1. Sheet $2.01: Referring to the Footing Schedule, change the depths in thz depth column to show 30 inches &or footing numbcrs F4, FS, F6, F6.5, F7, F8 and EF5 per the table on page 15 of our referenced report. .. e. . . Building Plan Review January 22,2003 Job No. 0144 Page 2 2. Sbcct SJ.01: For detail 8, show pier depth to be embedded 5 fb% miniinurn into firm, undisturbed soil per page 15 of our referenced report. 3. Sheet S4.01: Referring to the column reinfc?rcing schedule, it appears that section 2.6 for C6 and section 2.3 for C11 do not agree with the foundation plan. 4. Sheet $5.03; For sections I, 2,3 and 8, show at least 30 inch depth frum top of subgrade to bottom of retaining wall footing. Final plans should be reviewed by our h for compliance to this letter. We encourage you to calt the undersigned with any qumtions or comments. We appreciate the opportunity to Frovide you with our professional SeTYices. Respectfully submitted, WESW SOIL AND FO~ATIC"NG~ERJKG INC. a #- e@- -A Dennis E. Zhmerman, C 26676, GE 928, Expires 3/3 1/04 Wtechical Engineer g&!--&/)& Vincent W. Gaby, CEG 1755, Expires 7/31/03 Engineering Geologist Distribution: (2) Addrwsee (1) Frame Design Group (1) Frame Dcsign Group via fa: (949) 595-801 S WG:DEZ/kmg . .- W€STERN SOIL AND FOUNDATION ENGINERING, INC. 'FRUtlh WESTERN SOIL R FOUNMTION ENG. PHONE NO. : 760 746 4912 WESERN Soil AND FOUNDATION ENGINE €RING, INC. Dec. 17 2062 la:5:RM Fl Decemba 17,2002 423 HALE AVENUE EScoNDlDO, CALIFORNIA 92025 Mr. Bob Wolf Toyota Carlsbad 5424 Paseo Del Norte Carlsbad, CA 92008 Project: lob No. 01-44 New Parking Structure Toyota Catlsbad 1040 Auto Center Court Carlsbad, California Subject: Differential Settlement Dear Mr. Wolf: The behavior of soil material, both naturally Occurring or artificially placed, is difficult to predict, It would be below the recognized standard of care to recclmmenrf supparting a foundation ~ystem on both compacted fill and naturally occurring materials. There is a high probability that differential settlmmt between the compacted fill and dense formational soil could range fiom one to two inches. Greater settlements would be expected ifsoft or poorly consolidated soils were present mder foundation loads. Foundations should be completely supported by dense formational soils or completely supported by properly compacted and documented fill. Good engineering practice would limit the allowable soiI beaxing value for properly compacted fill to 3,000 pounds per square foot. .' ’ FROF?~: WESTERN SOIL & FOUI.IDFITION ENG. PHONE NO. : 760 746 4912 Dec. 17 2002 LB:51FIM P2 d Toyota Carlsbad Differential Settlement December 17,2002 Our Job No. 01 -44 Page. 2 *’ If you have any questions, please do not hesitate to contact this office. This opportunity to be of professional service is sincerely appretiattd Reepectfblly submitted, WESTERN SOL AND FOUNDATION ENGINEERING, INC. K&&&$- Vincent W. Gaby, CEG 1755, Expires 7/31/03 Engineering Geologist Dennis E. Zimmeman, C 26676, G.E 928, Expires 3131104 Geotechnical Enpincer Distribution: (1) Adhssee (1) Mr. Jack Howard Frame Design via fax: (949) 595-8018 VWG:DEWkmg WE$t€/?N Soil AND f OUNDAflON €NGINE€UiNG, INC. .......... . .,, ....... I_. ........ 6 a3 0- n .... WESTERN Soli AND FOUNDATION ENGINEERING, INC. 423 HALE AVENUE ESCDNDICO. CLIFORNLP 92029 Mr. Bob Wolf Toyota Carlsbad 5424 Pasw, Del Norte Cmlsbad, CA 92008-4496 Project: Job NO. 01-44 Ncw Parking Structure Toyota CarIsbad 1040 Auto Center Court * Carlsbad, California Subject: Foundation Plan - Second Review Dear Mr. Wolf: In accordance with jour request, we have reviewed the Foundation Phs (Sheet numbers Sl.01 though S6.01,ll sheets, dated 11-12-02), prepared by International Design, Inc., Architect and Frame Design Group, Stnictural Engineer for the rcfmced project. Spectfically, we reviewed the corrections that were recornended in our Foundation Plan Review tetter dated January 22,2003. It is our opinion that these plans are in gencral compliance with our Rqort af Geotechnical Investigation, titled Toyota Carisbad New Parking Structurc, dated August 24,2001. FPON : WESTERN SOIL Z FOUbICQTION ZNG. FHOUE NCi. : 760 746 4312 ;at-. 27 2063 12: 45PM P2 e” . .c Foundation Plan - Second Rdcw January 27,2003 Job NO. 01 -44 Page 2 We appreciate this ~pp~rrmnity to provide you with our professional services. You are encouraged to call the undersigned with any questions or comments. Respecthlly submitted, Dennis E. Zimmerman, C 26676, GE 928, Expires 3/3 1/04 Geotcchnid Engineer Vincent W. Gaby, CEC 1755, Expires 713 1/03 Enginwring Gaoloast Distribution: (2) Addressee (1) Frame Design Group {I) Frame Design Group via fax: (949) 595-801 8 ’CWG:DEZ/kTllg L .- L - WESTERN SO11 AND FOUNDATION ENGINEERING, INC. GEOTECHNICAL INVESTIGATION NEW PARKING STRUCTURE TOYOTA CAIUSBAD 1040 AUTO CENTER COURT CARLSBAD, CALIFORNIA JOB NO. 01-44 AUGUST 24,2001 P WESTERN SOIL AND FOUNDATION ENGINEERING INC. GEOTECHNICAL INVESTIGATION NEW PARKING STRUCTURE TOYOTA CARLSBAD 1040 AUTO CENTER COURT CARLSBAD, CALIFORNIA JOB NO. 01-44 AUGUST 24,2001 WESTERN SOIL AND FOUNDA7lON €NGIN€€RING, INC. WESTERN SOIL AND FOUNDATION ENGINEERING, INC. r PHONE: I7601 746-3553 FAX: (760) 746-4912 August 24,2001 Mr. Bob Wolf Toyota Carlsbad 5424 Paseo Del Norte Carlsbad, CA 92008 Project: Job No. 01-44 New Parking Structure Toyota Carlsbad 1040 Auto Center Court Carlsbad, California 423 HALE AVENUE ESCONDIOO. CALIFORNIA 92029 Subject: Report of Geotechnical Investigation DearMr. Wolf: In accordance with your request, we have completed a geotechnical investigation for the proposed project. We are presenting to you, herewith, our findings and recommendations for the development of this site. The findings of this study indicate that the site is suitable for development if the recommendations provided in the attached report are incorporated into the design and construction of this project. Toyota Carlsbad New Parbg Structure August 24,2001 Our Job No. 01-44 Page 2 If you have any questions after reviewing the findings and recommendations contained in the attached report, please do not hesitate to contact this office. . .. This opportunity to be of professional service is sincerely appreciated. Respectfdly submitted, WESTERN SOIL AND FOUNDATION ENGINEERING, INC. Vincent W. Gaby, CEG 1755, Expires 7/31/03 Engineering Geologist Dennis E. Zimmerman, C 26676, GE 928, Expires 3/3 1/04 Geotechnical Engineer Distribution: (8) Addressee VWG:DEUkmg W€ST€RN SOIL AND FOUNDAnON ENGINEERING, INC. GEOTECHNICAL INVESTIGATION NEW PARKING STRUCTURE TOYOTA CARLSBAD 1040 AUTO CENTER COURT CARLSBAD, CALIFORNIA Prepared For: Mr. Bob Wolf Toyota Carlsbad 5424 Paseo Del Norte Carlsbad, CA 92008 JOB NO. 0 1-44 AUGUST 24,2001 WESTERN SOIL AND FOUNDATION ENGINEERING, INC. TABLE OF CONTENTS Page Introduction and Project Description ............................................................................................. 1 Findings .......................................................................................................................................... 3 Project Scope ................................................................................................................................. 2 .. .. Site Descnption .................................................................................................................. 3 Subsurface Conditions ....................................................................................................... 4 Santiago Formation ............................................................................................................ 4 Bay Point Formation .......................................................................................................... 4 Rippability .......................................................................................................................... 5 Groundwater ...................................................................................................................... 6 Artificial Fill ...................................................................................................................... 5 .. Geologic Hazards ........................................................................................................................... 6 Faults and Seismic Hazards ............................................................................................... 6 Liquefaction ....................................................................................................................... 7 Landslides and Slope Stability ........................................................................................... 8 Recommendations and Conclusions .............................................................................................. 8 Site Preparation .................................................................................................................. 8 Existing Structures ............................................................................................................. 8 Existmg Soil ....................................................................................................................... 9 Excavation and Shoring ....................................................................................... 10 Seismicity of Major Faults ................................................................................................. 7 .. Expansive Soil ..................................................................................................... 10 Imported Fill ........................................................................................................ 11 Earthwork ............................................................................................................. 11 Slopes ................................................................................................................... 12 Surface Drainage .................................................................................................. 13 W€STERN SOIL AND FOUNDATION ENGINEERING. INC . TABLE OF CONTENTS . Cont . Page /-- Foundation Recommendations ......................................................................................... 14 Seismic Site Categorization ................................................................................. 14 Footings ................................................................................................................ 14 Drilled Piers ......................................................................................................... 15 Concrete Placement ............................................................................................. 16 Structural Slabs .................................................................................................... 17 Concrete Slabs-On-Grade .................................................................................... 17 Transition Areas ................................................................................................... 18 Lateral Resistance ............................................................................................... -19 Lateral Resistance Values .................................................................................... 19 Footing Observations ........................................................................................... 19 Retaimng Walls ................................................................................................................ 20 Drainage and Waterproofmg ................................................................................ 20 .. Lateral Pressures .................................................................................................. 20 Backfill ................................................................................................................. 21 Field Explorations ........................................................................................................................ 22 Laboratory Testing ....................................................................................................................... 22 Plan Review ................................................................................................................................. 23 Limitations .................................................................................................................................. -23 W€ST€RN SOIL AND FOUNDATION ENGINEERING. INC . ATTACHMENTS PlateNo. 1 Plate No. 2 Plate No. 3 through Plate No. 6 Plate No. 7 and Plate No. 8 Plate No. 9 Plate No. 10 APPENDIX I APPENDIX II Site Plan (In back pocket) Unified Soil Classification Chart Exploratory Excavation Logs Laboratory Test Results Table I: Removal Depths Fill Slope Key Specifications for Construction of Controlled Fills References WESTERN SOIL AND FOUNDATION €NG/N€€RING, INC. GEOTECHNICAL INVESTIGATION NEW PARKING STRUCTURE TOYOTA CARLSBAD 1040 AUTO CENTER COURT CARLSBAD, CALIFORNIA Introduction and Project Description This report presents the results of our geotechnical investigation performed on the above referenced site. The purpose of this investigation was to evaluate the existing surface and subsurface conditions &om a geotechnical perspective and to provide recommendations for grading, foundation design, floor slab support and retaining wall design. The proposed project will be the development of a three-level parkhg structure. As of this date, building pians have not been prepared. However, our client has indicated that the building will 7 be a cast-in-place, concrete structure. Foundations are expected to consist of continuous and pad spread footings with concrete slab-on-grade floors. The earthwork wili consist primarily of excavation for the below grade portion of the structure, and backfill for retaining walls and utility trenches. Based on discussion with Mr. Bob Wolf, maximum cuts may be on the order of 10 feet, if two levels are constructed above grade, or 20 feet if one level is constructed above grade. Retaining walls will be used to support the excavation. The site configuration and the approximate locations of our subsurface explorations are shown on the enclosed Site Plan, Plate No 1. WESTERN SOIL AND FOUNDATION ENGINEERING, INC. Toyota Carlsbad New Parking Structure August 24,2001 Project Scope OW Job NO. 01 -44 Page 2 This investigation consisted of a surface reconnaissance coupled with a subsurface exploration. Representative samples of soil material were obtained fiom the site and returned to our laboratory for observation and testing. The results of the field and laboratory data collected are presented in this report. Specifically, the intent of this investigation was to: Explore the subsurface conditions to the depths that could be influenced by the proposed construction; Evaluate, by laboratory tests, the pertinent static physical properties of the various soil and rock stratigraphic units which could influence the development of this project; Describe the site geology, including potential geologic hazards and their effect upon the proposed development; Provide recommendations for site preparation and grading; Present recommendations for foundation design, including bearing capacity, estimated settlements, lateral pressures, and expansion potential of the on-site soils; and Furnish soil parameters for retaining wall construction. WESTERN SOIL AND FOUNDATION ENGINEERING, INC. Toyota Carlsbad New Parking Structure August 24,2001 OW Job NO. 01-44 Page 3 This report has been prepared for Mr. Bob Wolf, Toyota Carlsbad and their consultants to be used in the evaluation of the referenced site. This report has not been prepared for use by other parties, and may not contain sufficient information for purposes of other parties or other uses. The information in this report represents professional opinions that have been developed using that degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnicaf consultants practicing in this or similar localities. No other warranty, express or implied, is made as to the professional advice included in this report. Fin dings Site Descrip 7 ion: The project site is located at the west end of Auto Center Court, on the south sir le of Cannon Road and the east side of Paseo Del Norte, in the city of Carlsbad, California. It is bounded to the east, west and south by commercial property. Approximately 535 feet fiont Cannon Road along the north property line. Auto Center Court provides access to the properly from the southeast. The site vicinity can be found in the northeast quarter of grid G-2 and the northwest quarter of grid H-2, page 1 126, of the Thomas Brothers Guide for San Diego County, 1999 edition. The footprint of the proposed structure is irregular in configuration and encompasses approximately 26,432 square feet. It will be situated on a pre-existing graded pad. The terrain varies fiom gently inclined to moderately steep. Elevations range fiom 97 feet above mean sea level (m-s.1.) at the southeast portion of the property to 90 feet (m.s.1.) near the proposed northwest corner of the parking structure. /I WESTERN SOIL AND FOUNDATION ENGINEERING, iNC. Toyota Carlsbad New Parking Structure August 24,2001 Our Job No. 01-44 Page 4 Improvements on the site at the time of our investigation consisted of service bays, miscellaneous offices and a car wash. The proposed location of the parking structure was covered with asphalt pavement. Subsurface Conditions: The subject site is located at the western edge of the second of a series of wave-cut terraces. It is underlain by Quatemary age marine terrace sediments that have been deposited upon Eocene age siltstone. These stratigraphic units have been mapped by Tan and Kennedy (1996), and Weber (1 982) as the Bay Point Formation and the Santiago Formation, respectively. At three of the locations explored, the formational deposits are covered with a variably thick sequence of artificial fill. Each stratigraphic unit is described below fiom oldest to youngest. r Santiago Formation: The Santiago Formation occurs in the vicinity of borings B-2, B-3 and B-4 at depths of 28,29 and 25 feet, respectively; and extends beyond the vertical limits of our explorations. It can be characterized as gray, very sandy siltstone, interbedded with pale gray to pale brownish-gray, very silty, very fine to fine grained sandstone. It is thinly bedded, moderately cemented and well indurated. It should provide adequate support for foundations or new fill. Bay Point Formation: The Bay Point Formation is represented in our exploratory excavations by a slightly silty, fine and fine to medium grained sandstone. Within the sequence occur isolated lenses of pebbles to cobbles and sandy silt. The Bay Point Formation appears to be horizontally bedded, moderately well indurated and poorly to moderately cemented. Its color ranges fiom dark orange to orangish-brown to grayish-yellow. The Bay Point Formation is considered suitable for the support of foundations and fill materials. /c WESTERN SOIL AND FOUNDATION ENGINEERING, INC. Toyota Carlsbad New Parking Structure August 24,2001 Our Job No. 01-44 Page 5 The Bay Point Formation was encountered at depths of 1 to 14 feet, and extended below existing grade 25 to more than 32 feet. Artificial Fill: Artificial fill, approximately 4 feet, 7 feet and 14 feet in thickness, was encountered in borings B-2, B-3 and B-4, respectively. The fill soils consisted of dark brown, silty sand, inter- layered with dark brownish-orange, silty, fine grained sand and black, clayey sand. Minor amounts of debris were present in the form of asphalt and concrete. The black soils exhibited a slight odor of decomposing vegetation. Laboratory test results indicate that the fill soils are moist to very moist and not uniformly compacted. Their apparent consistency varies Erom medium dense to dense. Although the fill materials may be suitable for lightly loaded, wood-framed structures, they should not be relied upon to support the new parking structure. P Recommendations for the removal and recompaction of existing soils are presented within this report. Thicker or poorer quality fill materials may be encountered at locations that were not explored. - Rippability: The exploratory borings were excavated with little to moderate difficulty by a truck- mounted drilling ng. These borings ranged fi-om 3 1 to 41 feet in depth. Based on our field observations, it appears that the majority of the materials to be exposed during grading may be excavated with conventional earthmoving equipment. It is possible, but not likely, that resistant, cemented sediments andor boulders that require blasting or pneumatic chipping may be encountered at locations that were not explored. WESTERN SOIL AND FOUNDATfON ENGINEERlNG, INC. Toyota Carlsbad New Parking Structure August 24,2001 Our Job No. 01-44 Page 6 Groundwater: Free groundwater was not observed in any of our subsurface explorations. The underlying sediments appear to be fiee-draining, and there were no indications of perched water in the form of caliche precipitates or soil mottling. It should be noted that fluctuations of subsurface water will be affected by variations in annual precipitation and local irrigation. This will have an influence on runoff derived from sources located up-slope fkom the project location. Moreover, it has been our experience that periodic events of seepage will occur in areas of significant "cut" or any %elow-grade" structures. Therefore, consideration must be given to appropriate surface and subsurface drainage systems such as wall drains, underdrains and swales as recommended further in this report. Geologic Hazards Faults and Seismic Hazards: The numerous fault zones in southern California include active, potentially active, and inactive faults. Active faults are those which display evidence of movement within Holocene time (fiom the present to approximately 1 1 thousand years). Faults that have ruptured geologic units of Pleistocene age (1 1 thousand to 2 million years) but not Holocene age materials are considered potentially active. Inactive faults are those which exhibit movement that is older than 2 million years. According to available published information, there are no known active or potentially active faults which intercept the project site. The site is not located within an Alquist- Priolo Special Studies Zone. Therefore, the potential for ground rupture at this site is considered low. There are, however, several faults located in close proximity that movement associated with them could cause significant ground motion at the site. - WESTERN SOIL AND fOUNDA7iON ENGINERING, INC. f- Toyota Carlsbad New Parking Structure August 24,2001 OW Job NO. 01-44 Page 7 The table below presents the maximum credible earthquake magnitudes and estimated peak accelerations anticipated at the site. These accelerations are based on the assumption that the maximum credible earthquake occurs on specific faults at the closest point on that particular fault to the site. The maximum credible earthquake is dehed as the maximum earthquake that appears to be reasonably capable of occurring under the conditions of the presently known geologic fiamework. The probability of such an earthquake occurring during the lifetime of this project is considered low. The seventy of ground motion is not anticipated to be any greater at this location than in other areas of San Diego County. Seismicity of Major Faults Maximum Estimated Credible Bedrock Distance Magnitude Acceleration (1) Fault (Miles) Nchter) (g) Coronado Banks Elsinore Rose Canyon San Andreas San Jacinto L = Local Magnitude 22 7.6 L(2) 0.25 24 7-5 L(3) 0.24 6 7.0 L(2) 0.47 75 8.3 L(3) 0.07 49 7-8 L(3) 0.12 (1) Seed and Idriss, 1982 (2) Slemrnons, 1979 (3) Greensfelder, C.D.M.G. Map Sheet 23,1994 Liquefaction: The potential for seismically induced liquefaction is greatest where shallow ground- water and poorly consolidated, well sorted, fine grained sands and silts are present. Liquefaction potential decreases with increasing density, grain size, clay content and gravel content. Conversely, liquefaction potential increases as the ground acceleration and duration of seismic shaking increase. F WfSTERN SOIL AND FOUNDATION ENGINEERING, INC. Toyota Carlsbad New Parking Structure August 24,2001 Our Job No. 01-44 Page 8 Groundwater was not observed within our explorations, and the site is underlain by welldrained, moderately indurated sediments with isolated cobble lenses. N-Values recorded using standard penetration tests ranged from 23 to 86. Based on the consistency of the underlying materials and the lack of shallow groundwater, the potential for generalized liquefaction in the event of a strong to moderate earthquake on nearby faults is considered low. Landslides and Slope Stability: No evidence indicating the presence of deep-seated landslides was observed on or in the immediate vicinity of the site. The formational materials observed in our exploratory excavations consisted primarily of moderately well indurated sandstones. Clay seams or fracture zones were not exposed in the samplers. It is therefore our opinion that the potential for deep- seated slope failure is low. However, during the grading procedures, isolated fracture zones may be exposed that could result in minor rock wedge "pull outs". The Engineering Geologist should observe the excavations during and after the earth moving operations. /I It is our understanding that un-retained, permanent, constructed embankments are not proposed for this project. Therefore, the potential for slope failure on this project is considered low. Recommendations and Conclusions Site Preparation Existing Structures: After demolition of any existing pavement or structures and prior to backfilling, all concrete, reinforcing steel, plumbing materials and any other debris or organic matter shall be removed and legally disposed of off-site. Any fill, colluvium or otherwise incompetent (highly expansive, soft or wet) soil material existing upon the formational soils shall also be removed and replaced as recommended below under the heading "Existing Soil". r WESTERN SOIL AND FOUNDATION ENGINEERING, INC. /c Toyota Carlsbad New Parking Structure August 24,2001 Our Job No. 01-44 Page 9 Existing Soil: At the locations explored, formational materials were encountered at depths ranging from 1 to 14 feet beneath the existing ground surface. The dense formational sediments may be used for foundation support. The fill soils encountered at the boring locations are not uniformly compacted and are not considered suitable for foundation and floor slab support. To provide more uniform support for the proposed improvements, we recommend that the foundations for the parking structure be extended through the existing fill material and embedded at least 2% feet into competent undisturbed formational soil. Any existing fill, colluvium, low density or otherwise unsuitable soil material that occurs beneath the proposed slabs-on-grade should be removed to firm undisturbed natural ground. The slabs-on-grade may be entirely supported on compacted, non- expansive fill soils or undisturbed natural ground. Xthe proposed structur5 is constructed one *- complete floor below grade, a significant portion of the existing fill will be removed. To reduce the potential for differential settlement between the slab-on-grade supported by fill and the foundations embedded into natural ground, we recommend that the soil material placed under the slab be compacted to no less than 95% relative compaction (ASTM 01557-91). The on-site soils minus any debris, oversized rock, detrimentally expansive soil or organic material may be used as controlled fill. All fill shall be compacted to at least 95% of its maximum dry density as determined by ASTM Dl557-91. All debris, organic matter or oversized materials (greater than 6 inches in maximum dimension) encountered must be removed and legally disposed of at a licensed disposal site. WESTERN SOIL AND FOUNDATION ENGINEERING, INC. *I Toyota Carlsbad New Parking Structure August 24,2001 Our Job No. 01-44 Page 10 If groundwater is encountered during the removal and recompaction of the soil, or if difficulty is experienced in achieving the minimum of 95% relative compaction (MTM D1557-91), then this office shall be consulted for further recommendations. As an alternative to recompacting existing soil materials, the first level floor may be designed as a structural slab supported by the deeper foundations. Expansive Soil: Detrimentally expansive soils (Expansion Index of 21 or greater) were not observed in our subsurface explorations. These materials generally consisted of silty sands. The geotechnical consultant should be notified if suspected expansive soils are encountered during earthwork or construction. Potentially expansive material should not be placed within 4 feet of finish grade for any building pad or slab-on-grade. Expansive soils should not be used as wall backfill, within 4 feet of finish subgrade beneath concrete pavements, or within 15 feet (horizontally) of the face of any constructed slope that is greater than 5 feet in height. F Excavation and Shoring: Temporary cuts slopes shall meet minimum OSHA requirements. Maximum slope gradients shall be 1 : 1 (horizonta1:vertical) for fill soil and %:l (horizonta1:vertical) for formational soils to a maximum height of 20 feet, including foundation excavations. Slopes greater than 20 feet high shall be re-evaluated by the Soil Engineer. If the above requirements are exceeded, then shoring may be required. The toe of the temporary cuts sloes may be cut vertical to a maximum height of 3'-6". W€ST€RN SOIL AND FOUNDATION ENGINEERING, INC. .- Toyota Carlsbad New Parking Structure August 24,2001 Our Job NO. 01-44 Page 11 As currently proposed, improvements may occur within 5 feet of existing on-site structures. Removal depths adjacent to existing off site structures should be evaluated during construction by the Soil Engineer or Engineering Geologist. Depending on the soil conditions encountered, shoring of the removal excavation may be required. Imported Fill: Imported fill, if required at this site, shall be approved by our office prior to importing. The Soils Engineer should be provided ample notification so that sampling and testing of potential soils may be performed prior to importing. Approximately 3 to 5 working days may be necessary to sample and evaluate potential import soils. Imported fill material shall have an Expansion Index of 20 or less with not more than 25 percent passing the No. 200 U.S. standard sieve. r Earthwork: All earthwork performed on-site must be accomplished in accordance with the attached Specifications for Construction of Controlled Fills (Appendix 1). All special site preparation recommendations presented in the sections above will supersede those in the Standard Specifications for Construction of Controlled Fills. All embankments, structural fill, and utility trench backfill shall be compacted to no less than 95% of its maximum dry density. The moisture content of the granular fill soils should be within 2% of optimum moisture content at the time of compaction. The moisture content of the clayey soil materials should be maintained between 2% and 4% over optimum moisture content. The maximum dry density of each soil type shall be determined in accordance with ASTM Test Method D1557-91. WESTERN SON AND FOUNDATION ENGINEERING, INC. cc Toyota Carlsbad New Parking Structure August 24,2001 OW Job NO. 01-44 Page 12 Prior to commencement of the brushing operation, a pre-gradmg meeting shall be held at the site. The Developer, Surveyor, Grading Contractor, and Soil Engineer should attend. Our fm should be given at least 3 days notice of the meeting the and date. Slopes: It is our understanding that significant slopes are not proposed for this project. If slopes greater than 3 feet in vertical height are intended for this project, we should be consulted for additional recommendations. Proposed cut slopes that occur in fill, alluvium, adversely fiactured bedrock materials, or any proposed slopes cut into incompetent soil material shall be evaluated by the Soils Engineer or Engineering Geologist. Fill slopes shall be keyed into dense natural ground. The key shall extend through all /c incompetent soil and be established at least 2 feet into dense competent material. The key shall be a minimurn of 2 feet deep at the toe of slope and fall with 5% grade toward the interior of the proposed fill areas. The bottom of the key shall have a width of at least 15 feet (Plate No. 10). All keys must be inspected by the Soil Engineer, Engineering Geologist or their representative in the field. If feasible, soil material placed within the outer 15 feet of any fill slope, as measured inward horizontally fiom the face of the slope, shall consist of on-site or imported granular, non-expansive soil material (Expansion Index of 20 or less). Fill slopes constructed with clayey or expansive soils may experience creep andlor surficial failure. W€ST€RN SOIL AND FOUNDATlON €NG/NEH?/NG, INC. F Toyota Carlsbad New Parkhg Structure August 24,2001 OW Job NO. 01-44 Page 13 We recommend that slopes be compacted by backrolling with a loaded sheepsfoot roller at vertical intervals not to exceed 4 feet and should be track walked at the completion of each slope. The face of the slopes should be compacted to no less than 95 % relative compaction (MTM D1557-91). This can best be accomplished by over building the slope at least 4 feet and trimming to design finish slope grade. Surface Drainage: Surface drainage shall be directed away from structures and paved areas. The ponding of water or saturation of soils should not be allowed adjacent to any of the foundations. We recommend that planters be provided with drains and low flow irrigation systems. Gutter, roof drains and other drainage devices shall discharge water away from the structure into surface drains and storm sewers. c Surface water must not be allowed to drain in an uncontrolled manner over the top of any slope or excavation. The exterior grades should be sloped to drain away from the structures to minimize ponding of water adjacent to the foundations. Minimum site gradients of at least 2% in the landscaped areas and of 1 % in the hardscaped areas are recommended in the areas surrounding buildings. These gradients should extend at least 10 feet from the edge of the structure. WESTERN SOlf AND FOUNDATION ENGINEERING, INC. /c Toyota Carlsbad New Parking Structure August 24,2001 OW Job NO. 01-44 Page 14 To reduce the potential for erosion, the slopes shall be planted as soon as possible after grading. Slope erosion, including sloughing, rilling, and slumping of surface soils may be anticipated if the slopes are left unplanted for a long period of time, especially during rainy seasons. Swales or earth berms are recommended at the top of all permanent slopes to prevent surface water runoff fiom overtopping the slopes. Animal burrows should be controlled or eliminated since they can serve to collect normal sheet flow on slopes, resulting in rapid and destructive erosion. Erosion controI and drainage devices must be installed in compliance with the requirements of the controlling agencies. Foundation Recommendations Seismic Site Categorization: The following seismic site categorization parameters may be used for foundation design. These design parameters are based on the information provided in Chapter 16 of the 1997 Uniform Building Code. /I Soil Profile Type = sc Near Source Factor Na = 1.0 Near Source Factor N, = 1.2 Seismic Source Type =B Footings: The on-site overburden soil is not considered suitable for foundation or floor slab support. To provide more uniform support, we recommend that the proposed structure be supported by foundations that are entirely embedded into dense formational sediments. Footings shall be designed with the minimum dimensions and allowable dead plus live load soil bearing values given in the following table: /" WESTERN SOIL AND FOUNDATION ENGINEERING, INC. /-- Toyota Carlsbad New Parking Structure August 24,2001 Our Job No. 01-44 Page 15 Footinm Established on Bedrock Minimum MinimUIIl Allowable Footing Depth Width Soil Bearing Type (inches) (inches) Value (p.s.f.) Continuous 30 30 5,000 Square 30 48 6,000 Square 30 60 6,400 Square 30 72 6,800 The minimum depth given shall be below lowest adjacent finish subgrade. If foundations are proposed adjacent to the top of any slope, we recommend that the footings be deepened to provide a horizontal distance of 10 feet between the outer edge of the footing and the adjacent slope face. The soil load bearing values presented above may be increased by one-third for short term loads, including wind or seismic. The soil load bearing values of square pad footings may be increased 800 psf for each additional foot of depth below 30 inches. All foundations shall be reinforced in accordance with recommendations provided by a Structural Engineer. Settlements under building loads are expected to be within tolerable limits for the proposed structure. Drilled Piers: Foundations may consist of end-bearing, reinforced cast-in-place concrete drilled piers carried through the overburden soils, and established no less than 5 feet into the firm undisturbed formational materials. Drilled piers should extend at least 10 feet below proposed top of slab-on- grade. Deeper embedment depths may be required by the Structural Engineer. WESTEUN SOIL AND FOUNDATION ENGINEERING, INC. Toyota Carlsbad New Parking Structure August 24,2001 Om Job NO. 01-44 Page 16 Excavation of drilled piers should be continuously observed by a representative of Western Soil and Foundation Engineering, Inc. to determine that soil conditions are as anticipated. A bearing value of 12,000 pounds per square foot may be used for drilled piers extending into the dense to very dense formational materials. This bearing may be increased by 800 psf for each additional foot of depth below the recommended minimum embedment up to a maximum value of 14,400 psf. Drilled piers should have a minimum diameter of 30 inches. The recommended bearing values are net values. Therefore, the weight of the concrete in the piers may be assumed to be 50 pounds per cubic foot. The weight of the soil backfill over footings may be neglected when determining the downward load on the footings. A one-third increase in the bearing values may be used for short term wind or seismic loads. All continuous footings shall be rhforced in accordance with recommendations provided r by a Structural Engineer. Concrete Placement: The concrete used in drilled piers should have a slump ranging hm five to six inches to permit the filling of voids in the shaft wall. Therefore, the mix should be designed using a slump of 5 to 6 inches for the specified 28day compressive strength. Unless the shafts are wide enough that falling concrete will not hit the walls or the reinforcing steel, free falls of concrete should not exceed six feet. Any casing required for drilling should be pulled back as the concrete is being placed. At least a five-foot head of concrete should be maintained in the casing while it is being pulled out. WESTERN SOIL AND FOUNDAT/ON €NG/N€fRING, INC. Toyota Carlsbad New Parking Structure August 24,2001 Our Job NO. 01 -44 Page 17 Structural Slabs: If the existing soil materials are not removed.and recompacted in accordance with pages 8 through 10 of this report, then the first leveyon-grade floors should be designed and constructed as structural slabs. The structural slabs should be supported on foundations that are embedded into dense formational materials. These slabs should be designed by a Structural Engineer registered in the State of California. Concrete Slabs-On-Grade: Ifthe soils are prepared as recommended in this report, concrete slabs- on-grade may be supported entirely on compacted fill. Soil material placed within 4 feet of finish floor should have an expansion index of 20 or less. No cutlfill transitions should be allowed to occur beneath the structure. r To provide protection against vapor or water transmission through the building and floor slabs, we recommend that the slabs-on-grade be underlain by a 4-inch layer of Caltrans Class 2 permeable material or gravel. A suggested gradation for the gravel layer is as follows: Sieve Size Percent Passing 314" 90- 100 No. 4 0-1 0 No. 100 0-3 If the slab-on-grade is underlain by at least 3 feet of granular compacted fill, the gravel layer may be replaced by 4 inches of clean sand. An impermeable membrane as described below should be placed at the midpoint of the sand layer. WESTERN SOIL AND FOUNDATION ENGINEERING, INC. Toyota Carlsbad New Parking Structure August 24,2001 Our Job No. 01-44 Page 18 In areas where vinyl or other moisture-sensitive floor coverings are planned or where moisture may be detrimental to the structure's contents, we recommend that the 4-inch-thick gravel layer be overlain by a 10-mil-thick impermeable plastic membrane to provide additional protection against water vapor transmission through the slab. The vapor barrier should be installed in accordance with the manufactureis instructions. We recommend that the edges be sealed. To protect the membrane during later concrete work, to facilitate curing of the concrete, and to reduce slab curling, a 2-inch-thick layer of clean sand shall be placed over the membrane. If sand bedding is used, care should be taken during concrete placement to prevent displacement of the sand. A low-slump concrete (4-inch maximum slump) should be used to further minimize possible curling of the slabs. The concrete slabs should be allowed to cure properly before placing vinyl or other moisture-sensitive floor covering. F Slab reinforcing and thickness shall be designed in accordance with the anticipated use and loadings on the slab and as recommended by the Structural Engineer. Construction and weakened plane joint spacing and placement shall be provided by the Structural Engineer. Transition Areas: Any proposed structures should not be allowed to straddle a cut-fill transition line. Footings and floor slabs should be entirely supported on cut or entirely on fill. Ethe foundation system consists of one where footings are embedded into naturally occurring materid and the slab is supported on fill, the fill should then be compacted to no less than 95% relative compaction. The tendency of cut and fill soils to compress differently can fiequently result in differential settlement, cracking to portions of the structure and in severe cases structural damage. To reduce the potential for damage due to differential settlement in transition areas, we recommend that cut areas beneath slabs-on-grade be over- excavated to a depth of at least 4 feet below the bottom of the slab and replaced with non-expansive soil material compacted to at least 95% of its maximum dry density (ASTM D1557-91 Reapproved 1998). - W€ST€UN SOIL AND FOUNDATION ENGINEERING, INC. Toyota Carlsbad New Parking Structure August 24,2001 r OW Job NO. 01-44 Page 19 Lateral Resistance: Resistance to lateral loads may be provided by friction at the base of the footings and floor slabs and by the passive resistance of the supporting soils. Allowable values of frictional and passive resistance are presented for the fill soils in the table below. The fiictional resistance and the passive resistance of the materials may be combined without reduction in determining the total lateral resistance. Lateral Resistance Values Allowable Coefficient Passive Pressure Soil Type of Friction (psflft of depth) r Compacted Fill 0.35 250 Formational Sandstone 0.39 350 Footing Observations: Prior to the placement of reinforcing steel and concrete all foundation excavations should be observed by the Soil Engineer, Engineering Geologist or their representative. Footing excavations shall be cleaned of any loosened soil and debris before placing steel or concrete. Footing excavations should be observed and probed for soft areas. Any soft or disturbed soils shall be over-excavated prior to placement of steel and concrete. Over-excavation of soils should not be performed in locations that were undercut for transition areas. This would compromise the thickness of the soil supporting the footings. In undercut transition areas loose soils should be recompacted. WESTERN SOIL AND FOUNDATION ENGINEERING, INC. r Toyota Carlsbad New Parking Structure August 24,2001 Our Job No. 01-44 Page 20 Retaining Walls Lateral Pressures: Retaining/restrahhg walls are proposed for development on this site. Specific wall heights and design have not been provided to us. Our analysis anticipated that retaining walls up to 20 feet in height may be constructed. These recommendations should be reviewed and updated if walls greater than 20 feet in height are to be installed. For the design of cantilevered retaining walls where the backfill is well drained, the equivalent fluid pressures for both active and at-rest conditions are presented below. Backfill Active Pressure At-Rest Pressure Inclination (p.c.f.) (p.c.f.) Level 42 60 2:l slope 60 78 Wherever walls are subject to surcharge loads, they should be designed for an additional uniform lateral pressure equal to one-third the anticipated surcharge pressure, in case of unrestrained walls, and one-half the anticipated surcharge, in case of restraining walls. Drainage and Waterproofing: Ifthe backfill is placed and compacted as recommended herein and good surface drainage is provided, the infiltration of water into the wall backfill may be reduced. Adequate drainage of adjacent planters should likewise be provided to reduce water infiltration into wall backfills, WESTRN SOIL AND FOUNDAT/ON ENGINEERING, INC. Toyota Carlsbad New Parking Structure August 24,2001 OW Job NO. 01-44 Page 21 To limit the entrapment of water in the backfill behind the proposed walls, backdrains or other drainage measures should be installed. Drainage should consist of vertical gravel drains approximately 18 inches wide connected to a 4-inch-diameter perforated pipe. The pipe shall be ABS schedule 40 (ASTM-D1527) or SDR 23.5 (ASTM-D2751) or approved equal. The perforated pipe should be placed with the perforations down and should be surrounded by at least 1 !4 feet of filter gravel or uniformly graded gravel or CaItrans Class 2 permeable material wrapped in a non-woven filter fabric, such as Mirafi 140N, Amoco 4547 or an approved equivalent. Care should be taken to select a filter fabric compatible with the backfill materials as clogging of the filter material may occur. The drainpipe should be located near the base of the wall and should discharge into a storm drain or onto a surface draining away fiom the structure. As an alternative to the vertical gravel drains, a drainage geocomposite such as Miradrain, or an approved equivalent, may be used with a 4-inch in diameter, perforated pipe collector drain. Backfill: The exterior grades should be sloped to drain away from the structures to minimize ponding of water adjacent to the foundations and retaining walls. Compaction of the backfill as recommended herein will be necessary to reduce settlement of the backfill and associated settlement of the overlying walks, paving, and utilities. Soil material used for wall backfil1 should have an expansion index of 20 or less. All backfill should be compacted to at least 95% of the maximum dry density (ASTM D1557-9 1, reapproved 1998). Some settlement of the backfill should be anticipated; and any utilities supported therein should be designed to accept differential settlement, particularly at points of entry into buildings. ,r SOIL AND FOUNDATION ENGINEERING, INC. c Toyota Carlsbad New Parking Structure August 24,2001 ,- OW Job NO. 01-44 Page 22 Field Explorations Subsurface conditions were explored by excavating four small diameter borings on July 24, 2001. The exploratory borings were 8 inches in diameter and extended to depths ranging hm 3 1 to 41 feet. No caving occurred in the excavafion walls. Groundwater was not observed in any exploration. The locations of the exploratory excavations are depicted on the Site Plan, Plate No. 1, in the back of this report. The surface reconnaissance and subsurface exploration were conducted by our geology and soil engineering personnel. The soils are described in accordance with the Unified Soil Classification System as illustrated on the attached simplified chart (Plate No. 2). In addition, a verbal textural description, the wet color, the apparent moisture and the density or consistency are presented. The density of granular material is given as either very loose, loose, medim dense, dense or very dense. The consistency of silts or clays is given as either very soft, soft, medium stiff, stiff, very stiff or hard. The sampling and logging of our exploratory excavations were performed using standard geotechnical methods. The logs are presented on Plate No. 3 through Plate No. 6. Samples of typical and representative soils were obtained and returned to our laboratory for observation and testing. /c Laboratory Testing Laboratory tests were performed in accordance with the American Society for Testing and Materials (ASTM) test methods or suggested procedures. Test results are shown on Piate No. 7 and Plate No. 8. ,I' WESTERN SOIL AND FOUNDATION ENGINEERING, INC. Toyota Carlsbad New Parking Structure August 24,2001 OW Job No. 01-44 Page 23 Plan Review Western Soil and Foundation Engineering, Inc. should review the final grading and building plans for this project. Limitations The recommendations and opinions expressed in this report reflect our best estimate of the project requirements based on an evaluation of the subsurface soil conditions encountered at the subsurface exploration locations and the assumption that the soil conditions do not deviate appreciably fbm those encountered. It should be recognized that the performance of the foundations, pavements and constructed slopes may be influenced by undisclosed or unforeseen variations in the soil conditions that may occur in the intermediate and unexplored areas. Any unusual conditions not covered in this report that are encountered during site development should be brought to the attention of the geotechnical consultant so that modifications can be made, if necessary. .c It is recommended that western Soil and Foundation Engineering, Inc. be retained to provide continuous geotechnical engineering services during the earthwork operations. This is to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ fiom those anticipated prior to start of construction, Western Soil and Foundation Engineering, Inc. andor our consultants, will not be held responsible for earthwork of any kind performed without our observation, inspection and testing. W€ST€i?N SOIL AND FOUNDATION ENGINEERING, INC. rc Toyota Carlsbad New Parking Structure August 24,2001 Our Job NO. 01-44 Page 24 This office should be advised of any changes in the project scope so that it may be determined if the recommendations contained herein are appropriate. This should be verified in writing or modified by a written addendum. The findings of this report are valid as of this date. Changes in the condition of a property can, however, occur with the passage of time, whether they be due to natural processes or the work of man on this or adjacent properties. In addition, changes in the State-of-the-Art andor Government Codes may occur. Due to such changes, the findings of the report may be invalidated wholly or in part by changes beyond our control. Therefore, this report should not be relied upon after a period of one year without a review by us verifying the suitability of the conclusions and recommendations. We will be responsible for our data, interpretations, and recommendations, but shall not be responsible for the interpretations by others of the information developed. Our services consist of professional consultation and observation only, and no warranty of any kind whatsoever, express or implied, is made or intended in connection with the work performed or to be performed by us, or by our proposal for consulting or other services, or by our furnishing of oral or written reports or findings. P WESTERN SOIL AND fOUNDAT/ON ENGINERING, INC. ATTACHMENTS W€ST€RN SOIL AND FOUNDATION ENGINEERING, INC. SITE PLAN (PlateNo. 1) In Back Pocket W€ST€RN SOIL AND FOUNDATION ENGINE€RING, INC. SUBSURFACE EXPLORATION LEGEND UNIFIED SOIL CLASSIFICATION CHART Group Soil Description Symbol Typical Names I. COARSE GRAINED More than half of material ish than No. 200 sieve size. Gravels: More than half of coarse fraction is larger than No. 4 sieve size but smaller than 3". CLEAN GRAVELS GW GP GRAVEL W/FINEiS GM GC Sands: More than half of coarse fraction is smaller than No. 4 sieve size. CLEAN SANDS sw SP SM sc SANDS WFINES 11. FINE GRAINED: More than half of material is smaller than No. 200 sieve size. Silts & Clays: Liquid limit less than 50 Silts & Clays: Liquid limit greater than 50 HIGHLY ORGANIC SOILS ML CL OL MH CH OH PT Plate No. 2 Well graded gravels, gravel sand mixtures, little or no fines. Poorly graded gravels, gravel sand mixtures, little or no fines. Silty gravels, poorly graded gravel-sand-silt mixtures. Clayey gravels, poorly graded gravel-sand, clay mixtures. Well graded sand, gravelly sands, little or no fines. Poorly graded sands, gravelly sands, little or no fines. Silty sands, poorly graded sand and silt mixtures. Clayey sands, poorly graded sand and clay mixtures. Inorganic silts and very fin? sands, rock flour, sandy silt or clayey-silt-sand mixtures with slight plasticity. Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays. Organic silty and organic silty clays of low plasticity. Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts. Inorganic clays of high plasticity, fat. Organic clays of medium to high plasticity. Peat and other highly organic soils. WESTERN SOIL AND FOUNDATION ENGINEERING, INC. JOB NUMBER 01 -44 TOYOTA CARLSBAD PARKING STRUCTURE Medium Dense Moist Moist Moist Damp Medium Dense To Dense Dense Dense Sandstone, Poorly Cemented .- ._. ~ C.. . -_ -. -. .. ._ . -_* . . ... . . ._. . .. . __ -. .- _.. .-- -. ..- . . . ,. -. ~ . ._-. -. . - . ... _- . * . . . .. I-. SP : -- _. 1:: _. . * _.. - -. .. -_ -. . . -. . . _- -. . Grades To 105.6 108.6 4.0 3.3 Yellowish-Orange, Very Fine To Fine Grained Sandstone, Very Poorly Cemented - .. -. ~ . * ._ .. : - _. - ~ .. .. . . . .. . -. .. :. ._: -.- . ' .. . -. - -- * ~ ... ... . , . .-. . .-.-- -. .. ~ -.. -- ~ . . .- .. .. .I - .. --. SP . . - .- * ~ .. - - . .. -- ... -. . . -.- ._-. e. . . .. -- .. Grayisharange, Fine Grained Sandstone, Very Poorly Cemented Pebble to Cobble Lense Q 24 to 25 Feet B - R - SPT 4416 - - CAL 5013 SPT 5015 - SANTIAGO FORMATION - Gray, Very Sandy Siltstone, Thinly Bedded, Moderately Cemented Moist Moist very Stiff very Dense 101.8 11.7 Grades To Pale Gray, Very Silty, Very Fine Grained Sandstone BOTTOM OF BORING Q 41 FEET - I1 I DATE LOGGED 07-24-0 1 LOGGED B'L V.G. ~ ~~~ Plate No. 4 SURFACE EXPLORATORY LOGS LABORATORY TEST RESULTS - Cont, Mechanical Sieve Analvsis Sample Location #4 #10 ##IO #lo0 #200 Percent Passing U.S. Standard Sieve B-1 @4' 100 99.9 77.6 23.9 18.2 B-1 @ 15' 1 00 100 94.7 45.9 22.5 B-l@20' 100 100 95.8 68.3 43.2 B-3 @ 13' 100 100 89.1 22.0 19.4 B-4 @ 30' 100 100 98.0 70.8 33.4 In-Situ Moisture and Density Moisture Dry Sample Density Content Location 0 (YO) B-1 @ 5' 108.4 3.1 B-1 @ 15' 107.8 13.0 B-2 @ 10' 105.6 4.0 B-2 @ 20' 108.6 3.3 B-2 @ 30' 101.8 11.7 B-3 @ 7' 119.2 8.7 B-3 @ 15' 109.2 5.8 B-4 @ 4' 127.9 8.7 B-4 @ 11' 129.2 9.3 B-4 @ 16' 113.1 6.5 B-4 @ 25' 105.1 12.4 Plate No. 8 WSTERN SOIL AND FOUNDATION ENGlNEERlNG, INC. TABLE 1 Depth of Soil Trench Removal Below Number Existing Grade (fi.) B- 1 4 B-2 4 B-3 7 B-4 14 NOTE: It should be recognized that variations in soil conditions may occur between exploratory excavations that will require additional removal. In areas where fill slope toe keys are proposed, add a minimum of 2 feet to removal depths presented above. ExpIoratory excavations encountered in the removal process should be recompacted an additional 2 feet below the depths shown in the above table. Plate No. 9 W€ST€RN SOIL AND FOUNDATION ENGINEERING, INC. FILL SLOPE KEY ee e) 8' MINIMUM BENCH /T TOYOTA CARLSBAD I NEW PARKING STRUCTURE I I JOBNO.: 01-44 I DATE: 08-24-01 Plate No. 10 WESTERN SO11 AND FOUNDATION ENGINEERING, INC. APPENDIX I W€ST€RN SOIL AND FOUNDATION ENGINEERING, INC. f- (8) Expansive soils may require special compaction specifications as directed in the report of geotechnical investigation by the soil engineer. (9) The cut portions of building pads may require excavation and recompaction for density compatibility with the fill as directed by the soil engineer. Materials: The fill soils shall consist of select materials graded so that at least 40 percent of the material passes the No. 4 sieve. The material may be obtained from the excavation, a borrow pit, or by mixing soils fiom one or more sources. The material used shall be fiee from vegetable matter, and other deleterious substances, and shall not contain rocks or lumps greater than 6 inches in diameter. If excessive vegetation, rocks, or soils with unacceptable physical characteristics are encountered, these materials shall be disposed of in waste areas designated on the plans or as directed by the soil engineer. If soils are encountered during the grading operation which were not reported in the report of geotechnical investigation, further testing will be required to ascertain their engineering properties. Any special treatment recommended in the preliminary or subsequent soil reports not covered herein shall become an addendum to these specifications. No material of perishable, spongy, or otherwise unstable nature shall be used in the fills. Placing, Spreading And Compacting Fill Material: The selected fill material shall be placed in layers which shall not exceed six inches (6") when compacted. Each layer shall be spread evenly and shall be thoroughly blade-mixed during the spreading to insure uniformity of material and moisture in each layer. When the moisture content of the fill material is below that specified by the soil engineer, water shall be added until the moisture content is near optimum as determined by the soil engineer to assure thorough bonding during the compacting process. When the moisture content of the fill material is above that specified by the soil engineer, the fill material shall be aerated by blading and scarifjmg, or other satisfactory methods until the moisture content is near optimum as determined by the soils engineer. WESTERN SOIL AND FOUNDATION fNGIN€€RING, INC. Mer each layer has been placed, mixed and spread evenly, it shall be thoroughly compacted to not less than the specified maximum density in accordance with ASTM D1557-91. Compaction shall be by means of tamping or sheepsfoot rollers, multiple-wheel pneumatic-tired rollers, or other types of rollers. Rollers shall be of such design that they will be able to compact the fill to the specified density. Rolling of each layer shall be continuous over its entire area and the roller shall make sufficient passes to obtain the desired density. The entire area to be filled shall be compacted to the specified density. Fill slopes shall be compacted by means of sheepsfoot rollers or other suitable equipment. Compacting operations shall be continued until the slopes are stable and until there is no appreciable amount of loose soil on the slopes. Compacting of the slopes shall be accomplished by backrolling the slopes in increments of 3 to 5 feet in elevation gain or by other methods producing satisfactory results. Field density tests shall be made by the soil engineer for approximately each foot in elevation gain after compaction, but not to exceed two feet in vertical height between tests. The location of the tests in plan shall be spaced to give the best possible coverage and shall be taken no farther than 100 feet apart. Tests shall be taken on comer and terrace lots for each two feet in elevation again. The soil engineer may take additional tests as considered necessary to check on the uniformity of compaction. Where sheepsfoot rollers are used, the tests shall be taken in the compacted material below the disturbed surface. No additional layers of fill shall be spread until the field density tests indicate that the specified density has been obtained. The fill operation shall be continued in six inch (6") compacted layers, as specified above, mtil the fill has been brought to the finshed slopes and grades as shown on the accepted plans. Supervision: Supervision by the soil engineer shall be made during the filling and compacting operations so that he/she can certify that the fill was made in accordance with accepted specifications. The specifications and soil testing of subgrade, subbase, and base materials for roads, or other public property shall be done in accordance with specifications of the governing agency. Seasonal Limits: No fill material shall be placed, spread, or rolled during unfavorable weather conditions. When the work is interrupted by heavy rain, grading shall not be resumed until field tests by the soil engineer indicate that the moisture content and density of he fill are as previously specified. In the event that, in the opinion of the engineer, soils unsatisfactory as foundation material are encountered, they shall not be incorporated in the grading, and disposition will be made at the engineer's discretion. W€ST€UN SOIL AND FOUNDATION ENGINEERING, INC. APPENDIX I1 WESTERN SOIL AND FOUNDATION ENGINEERING, INC. REFERENCES CITED Greensfelder, R.W., 1974, Maximum Credible Rock Accelerations from Earthquakes in California: CDMG Map Sheet 23. Kennedy, M. P., 1975 Geology of The San Diego Metropolitan Area, California: California Division of Mines and Geology, Bulletin 200. Seed, H.B. and Idriss, I.M., 1982, Ground Motions and Soil Liquefaction During Earthquakes, EERI Monograph Series. Slemmons, D.B., 1979, "Evaluation of Geomorphic Features of Active Faults for Engineering Design and Siting Studies", Association of Engineering Geologists Short Course. Tan, S. and Kennedy, M.P., 1996, Geologic Maps of the Northwestern Part of San Diego County, California: CDMG Open-File Report 96-02. Vaughn, P. and Rockwell, T., 1986, Alluvial Stratigraphy and Neotectonics of the Elsinore Fault Zone at Agua Tibia Mountain, southern California. Weber, Harold F. Jr., 1982, Recent Slope Failures, Ancient Landslides, and Related Geology of The North-Central Coastal Area, San Diego County, California: CDMG Report 82-12, W€ST€RN SOIL AND FOUNDATION ENGINEERING, INC.