Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
1925 PALOMAR OAKS WAY; STRUCT; CB880494; Permit
MISC. CALC·ULATIONS FOR CB880494 1925 PALOMAR OAKS WAY POOR QUALITY ORIGINAL S Vi~ 1. ·1 I I I I I ·1 I I I .I I I I I ,I \ ·1 I -CARLSBAD SPEC OFFICE PROJECT PHASE I CARLSBAD, CA APRIL 15, 1988 I. I TABLE OF CONTENTS I 1. PROJECT DESCRIPTION ,I 2. LOADS ',I 3. LATERAL DESIGN I 4. COLUMNS AND FOOTING I 5. FLOOR FRAMING I 6, ROOF FRAMING I 7. BASEMENT WALLS I 8. DIAPHRAGM DESIGN I 9. CONNECTIONS 10. CHECK 3 (A/ K) I 11. MISCELLANEOUS DETAIL .I 12. COMPUTER PROGRAMS I I I I I 'I I . • OPUS CORPORATION • • DESIGNEHS • BUilDffiS • DEVELOPERS Project . u/ I /i)Q Da~: J / !Ji! ll U I. I I :1 :1 ;1 ~I: r1 ;~1 ,. :1 ll :1 :I :1 ·I: :1 I Offices and Affiliates in Minneapolis · Chicago· Milwaukee· Phoenix· Tampa· Pensacola Sheet / of __ CM~Jriw .t:ipqu. OfflW ~f-OJ~1 c«rz,i~tw ,Cfr ----.... ,.,--••w _, ___ .._. ___ -1> ___ ,,,_____4, _____ ~---~----•~ 0 ~ 716~~ -r I Y!1Sr!AJ\ ~~T (6vffTL~e) " (pyJ,g.s ;_'6S U,t,v. -r ~C CAMM.~AP; , ~ ?-ft1Av ~N(:;:1' 4' , 7'[ $ f6ll'l\ ~ ? St61~ 471'~· fie~ fr1 (flf l u NGle.e-re> f1w~,ey, ~ (_j(f~(?(v 7v!y{0ll't11 l)t}t/fll,,6 ~ ~ ~ of ~ Nf I l,o ~) Gtt,rv o/l~ W-fr{}.,) 0 -ftJlJNO tr1\ orJ t; yr~ pcm·11 NGi s ~ Bi<T gyi-1 csvz... C~l7 l N Gt) , 6 /.,1~ ,t' ~ ~ l ~ r ~ 0 V, J' ~· 1n \.,,_,) I I I I I I I 1r~~- I I I I -I I I,, .. \ ,· I ~ • • OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS PROJECT ________ _ DATE __ /__,0/,.__._\0_/-=--<f/4- BY __ l.fe_' __ _ MINNEAPOLIS • CHICAGO• PHOENIX• MILWl'IUKEE SHEET (, \ OF __ -V u ,, ~ .-. _ -? M1l, Pae{' (1,-0~ }tz_~ ~~. Nl-w~ ? ____ .;o _fnz.,r~ CL~.N .. ~ ---· Mt S.~-_____ .:_ ______ ...... . -·-----:~, ~-lJ.o_ -___ - ·· t>l .. :..=l~ Mfu.~1-t~lr~ Mt~l::t ..... ~-7i-~0 -:;. ----6- ···----~~- 1112 EDiTION TABLE NO. 23-C-MINIMUM ROOF LIVE LOADS 1 METHO~ 1 METHOD2 TRIBUTARY LOADED AREA IN SQUARE FEET FOR ANY RATE OF MAXIMUM STRUCTURAL MEMBER REDUC· REDUC, -UNIFORM TIONr TIONR flOOFSLOH 0to200 201tolOCI 0-IOCI LOAD2 tp-nl) ._" I. Flat or riK less than 4 inc!les per foo1. Arch or domr wi1h 20 16 12 20. .08 40 riK less than . one righth of span ,_, __ ·1:·· ·, ,"! ,->_. ' . '• .~!""°r. ·I '• . . ·I· .,.._· 11· . -·· ·1" : . . . . ' . ---~-: I;_ .... · . ' ~ '. '7 ' . --·-. ••• ·1-;, .. : i _--... ... ...,,, I;',. ' <-' ' __ , -~ . ~1;· ·1 ' J-_.,.;_-.:." ..,..,,. -. ' ·:1~ ~ :1 _: ~-' :1···: .] .•. , '.'.~:f;]f· i;": . ., . : ·1 · --.·J .: :r,r~i . .. ~::ft] V . -.!e OPUS CORPORATION I DESIGNERS • BUILDERS • DEVELOPERS ;---------·, Offices and Affiliates.in-Minneapolis· Cfiicago .'Milwaukee· Phoenix· Tampa· Pensacola I I I f 1· I I I I I I I Project C.AI? 1 S eAD Y Date '2/zz/SS By~ Sheet L • l of __ _ •;,J~ .... ~:.-. --:: -I :~ .. ·, . -..,."'..•, ••: OPUS CORPORATION ~-D~SIGJERS ·BUILDERS· DE.VELOPERS Project'f/A&\....2f?4P Jt. - Date. 4/' LM· I I I I I I I I I I ·I I I I I Ii Offices and· Affiliates· in Mihneai>Dt~:·:Chicago-• Milwaukee· Phoenix· Tampa· Pensacola· By S(a(a Sheet 1--! , I of __ _ : . I . . . ·-·-,------+----·----:..--. -------·--··--~ '6 ' : --: .. JL...~--&E-S~Uet. : __ _; ______ ---. ' . ' · . .,~~ . _ ... _ ' --~--~..... -----h,t---· , .... ,,._, ..,,_.....,,....,,.~-------' '--.. ,1 ,.,,.--~----... ----.... 1 .......... : ' _. : . .: . -' ... ....... -, ..... ,,., __ • , • • t __ .,i_,_ -.,._,. ----,. .... -·. -·-----------,-·-·--· ..,,, •• h..,,,,,,.,,_.,..,..,.d .. -• --->----,.,,,,__ --_,... ' ' ' __ , .... .....,..,,/~---. _, .. ....i' .... ..,...,.,_ l ' . ~ . ,------. .,., __ .,,.. __ , ,_,. --, ---:~-.. , , _..,. -,--~-.,; , ...... -, .. -~ --~~----,_,,.,., ' ' ' . ' l --· ... --~-------~ -..... -,~,,,, -":"·-·-"'""-,,...,,__..,.,...,..,,,d'• --, """"'"""!" -----· ·--·-··---·-· " -_. ______ ---'--··--·--·-.. , __ ', _; ___ . -·' ' ·-·----·-· -· ! . I I I I I I I I I I I I _ ... --·. :~ '.-:-.. _;' . Project CA e.L$$,U> 1t Date. 'Z/Z 2 /g~· • By------ Sheet l-2.. of __ _ 1· I I I I I I I I I I I I I I I Project CARL$C':a4D 1C Date 2. /2 9 Lt,1; By------- Sheet :;L-.~-of __ _ I I I I I I I I I I I I I OPUS CORPORATION DESIGNERS.· BUILDERS • DEVELOPERS Office.s and Affiliates in Minneapolis • Chicago • Milwaukee ·Phoenix· Tampa • Pensacola Project C,4gLSeA,t> Date Z/ /9 / $~ • 1t. By--------- Sheet L -4 of __ _ I I I I I I I I ·I I I I I I I I I OPUS CORPORATION DESIGNERS· BUILDERS· DEVELOPERS Offices and Affiliates, in Minneapolis· Chicago • Milwaukee · Phoenix • Tampa • Pensacola Project l;.;4f21.$5AP lL Date '2/~9 /~~ By------- Sheet L-lz of __ _ L.· ~ OPUS CORPORATION I DESIGNERS • BUILDERS • DEVELOPERS __ .,..__, · Offices and Affiliates in Minneapolis· Chicago • Milwaukee • Phoenix • Tampa • Pensacola Project 6ARLSBAD 1t. Date ..... z=+-12-9L/,-:>I Be:>"""""::;__-, f By-.--:------- Sheet -!L=--__;l;;::__Of __ _ I I I I I I I I I I I I I I I I -1 I I I I .1 I I ~• I I I I I I I I Project l;ARl SB,AD 11 Date ;3/...._~ / e,e, ~ 4 By-,------- Sheet L--7 of __ _ I:-. ":'.\ . . ,~--1 I I I I· I .1 .1 I I I I I I I I Offices and Affiliates in Minneapolis· Chicago • Milwautee · Phoenix • Tampa • Ptnsacola ill] ~ T~ ~ . ' ;;.\ J..-' --1 "' :::: ...9 © 2. -.9 @ '¢" @· ...g I ti) M @ ~ 0 ~ @ 18 ~ \r-, L:::J r-: ~ 0 @ ~ C> . ~ ®-·-OD . N ! _..:. • ""' N @ r G ... ® ® ll',7 o:>' ....:( c- \.I) Project ::.a&L.$ e,4p · tr · Date ~It..{: It S ' By--,-------Sheet L-~ of __ _ LOLl \-$ I ,, \ ~ ' --~ to{\ \ 0-~ rw ~ °' :\': ~~ ~-:r ,, ~ ;-_\. " ~ \. -~· . --. -.;: . . . . , t;.~· ~ ,.,,. =~ -,,,. ~ ., IV\ "" ~ ' j \t' • \._f\ @-----~--~---~_:_·~-~~-~-§_::i __ ~~t_-_\§_---.lt~--• ' r--, rw-, 0,: ---~t~ 1 1 E> ..... ---0 ... tr-- --N"" r--oo-®t------------~J ~l .otroc---,~-E-.Z'-/----'1,r----~E ·z1 ~ _____ ,.._' --- ~t ,~ 1 .o·z1 ~-II' OPUS CO'RPORATION V DESIGNERS • BUILDERS • DEVELOPERS Project 0AI< L:~£¼1) 1I Date 2/29/~'?:, i , I;-~ I I I Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola By------ Sheet L-f! · of __ _ I I I I I I· I- I I I I I I I .i.. R 49 ,'- :t ~ ¢ 13~,4,i ~ ~ ,1 ~ ·z -z't,;; -~ ~ ,, N .... l'2.,0 ~ \J '' ~ 0 4 I'?'-C>" 0 'g.0_6 ITS] ~ t&:x ~r; · W /"7 X ~-7. v.124 )< ~s s.s ,., LOy\5Z tx 89(!) 91=54. tSZe,- 4 s .II:[] ,2 rm " t---..,..-,i,~--+------__,. __ ....,. ____ .,...,__..._~o i.1 .1 •. 0 -Z.I 1,0 4 '1,0 z..-, z;/ ~~. 9 [i]5] ( ti [ill 15 [1<D7;] .._,.. JLJ] 031 ~· 7 II IS 19 3 2.G, n 1,3 "'Z. (\,3 1i 1,3 C. z4. s ~ s@ 1\ @ 14 @ CT@ f.o JJ&l 10 illJ 14 l'b 'l' 2.3 )k 1.1 ·1~ 0$ '! 0." f.Z. I @ 1[] to §5] 13 fill . \ ,I 9 ,_ 'I· 17 -5HEARW.ALL .. .. .. -J,.-· : . , .,i "'"' ~! ~ "' -1. -,,: ~" ., OPUS CORPORATION DESIGNERS· BUILDERS'· DEVELOPERS 1~-1· I I I I I I I I I I I I I \ Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola b ' .0 -~ ' ' C . ~--. fJ': ,q-. -~ )--4-2-'-.-~.,-.. --• .---~~--+-~;........,~--.;&-·-......... -~ ·-r -.9 .,, 0. - ·' -2 ,,--t,-, Z.I ,,-J, ;ZI ,,-p--;Z,/ Projecrl;AIUSESAD U: Date Z /29/S 1> • By------'----Sheet L-fO of __ _ --~. ----.-t\--- ]([ 1 I I I pl I I p -,--I --------, I I I· I I I I l I / / I I I I I .I Fig. Cl.8.1 -- .se·conditions are approximated in actual design. In general, these suggested ues are slightly higher than their theoreti~!lJ ~qµivalel)t{l,_ 1;1ince joint fixity is dom fully realized. · ' ':_ · If the column base in case (f) of Table Cl.8.1 were truly pinned, K would ually exceed 2.0 for a frame such as that 9ictured in Fig. Cl.8.1, because the 1cibility of the horizontal member would prevent realization of full fixity at the , of the column. On the-other hand, it has been shown 14 that the restraining luence of foundations, even where these footings are designed only for vertical d, can be very substantial in the case of flat-ended column base det'ails with Ii nary anchorage. For this condition, a design K -value of 1.5 would generally conservative in case (f). · TABLE Cl.8.1 (a) (b) (c) (d) (e) (f) ' + r.1'1J r!J t l ' ~ ii r!J .L,,.,., p I ' \ I I I I \ I . I I I I I . I I Buckled shape of column I .I I I I I I I I I I I is shown by dashed line I I I I ., I I I I I ' I I I I I I I I I I I \ I I \ I I I I I I 11'! 71 17,rr rr, rr mr 7lr . ·~ t t t Theoret.ical K value 0.5 0.7 1.0 1.0 2.0 2.0 Recommended design value when ideal condi-0.65 0.80 1.2 1.0 2.10 2.0 tions are approximated ~ Rotation fixed and translation fixed End condition code \( Rotation free and translation fixed ""(lA Rotation fixed and translation· free y Rotation free and translation free -~tructura/ Steel fur Hui/dings • 5 · 125 --------·-,.-. \ While ordinarily the existence of masonry walls provides en : lateral 'support for tier building frames to control lateral deflection, the inc, ~.tsing use of light curtain wall construction and wide column spacing, for high-rise structures not provided with a positive system of diagonal bracing, can create a situation where only the bending stiffness of the frame it$elf provides this support. In this case the effective length factor, K, for an unbraced length of column, l, is dependent upon the amount of bending stiffness provided by the othe.r in- plane members entering the joint at each end of the unbraced segment. If the combined stiffness provided by the beams is sufficiently small, relative to that of the unbraced column segments, Kl could exceed two or more ~tory \-l~ights. * Several rational methods are available by means of which the eff e~t~v,~ length of the columns in a laterally unbraced frame can be estimate~ witb.$ufp.~i~nt ac- cm:acy. These range from simple interpolation between the idealize<fc~ shown in Table Cl.8.1 to very complex analytical procedures. One~ t triat~Jection of framing mepibers has been made, the use of the alignment chllrti.n· fi.J,.Cl.8.2 affords a fairly rapid method for determining adequate K -vahies. * Ref. 15, pp. 260-265. GA K ,aai~ rD 10.0 50.0 30.0 5.0 20.0 4.0 3.0 2.0 3.0 ?.O 1.5 1.0 O" ii',,. 'tli!)\~i~}1-& Sidesway Uninhibited 1.0 Ga . . ",-., CXl 100.0 50.0 30.0 20.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 The aubacripta A and R rerer to lhe joints al lhl' two enda or lhe column iteclion hein,r considered. G i.• defined as I:~ G = ~-L_c I:~ Lo in which 2: indiC"ates a summation of all members rigidly connected to lhal joint and lying in lhe plane in which huckling of the column is heing considered. le is lhe moment of inertia and Le the unsupported length of a column section. and 10 is the moment or inertia and Lo the un•upported length of a girder or olher re- otraining member. Ir and lo are taken about axes perpendicular to lhe plane of huckling J?eing considered. For column end• oupported by hut nol rigidly connected to a fooling or foundation, G is lhP.Oretically infinity, hul, unlea, actually deAi1med as a true fric- tion free pin, may h<-taken os "10" for practical desi«wt, If lhe column end is rigidly attached to a properly designed footing, G n1ay be taken a• 1.0. Smaller valu"" may he used if juati~ by analyais. Alignment Chart for Effective Length of Columns in Continuous Frames Fig. Cl.8.2 -· r \ :::t::, t. ! ~ ::,~~ -~: " 'i i 1r!i; ·~, ;1:1 ,. Ii 'I ~ ,,;. 1t ;~, ' /, ' •. /- ,fi . ·li:· 1· ;:, ,,, ·'o:t·-'•1rtm· ,-,. .... ~1·---~-,-------"--, •. --·-· ta··-----. ~ ... u .:,. . _,,_-.. -' __ -. ---·-· ,--, 1 .. -", ,,,,_ . . _, -~ , ·a.a -_, . --• -· DESIGNERS. BUILDERS. DEVELOPERS . Offices 111d Affrh1ies in M1nnupolis · ChlCl90 · Milwaukee · Ptioen,a · Tamp, · Plnsacole· ~ .... .....,,. I I I I I I I· f, I ' I ...J ;'. • '" -t. lli...._.____....,. __ I ' Ji;. ~ " ~ N'S X, ' - I ; I I ' 10 -- I I .... . ~7)}' ' I I +!. 1 -,, I AP.'t!tA '=>· 30 "' ISO ® ~----'t-----1 • (.3J, /I I ;:" )( 70 i-<oo 4-z..~ ,_ 17?1 A)( IDSOO z.+ oao 1ao~i- © .l '"< Z,.-'? ; 7,,:; 7,6 ·Pto·•cr td2t.5§4P· Jb-. J . --.-·-~--D'ate _____ _ By------Sheet L.-\1.-of __ _ © @ 1 I I , ~ LI I 145 4.5 506l 12.~ 4 5 -Gso ::: 30-0 3,1;;,o I 87,S 2~,_0,40_ -·vf.-r_ 9Z,'5 :4t),l (l'07 47,_,; -,1,5: · Z3 -Z: -zc,"i,.; "7-l'J-,3- I ~s 4 7 5-,0 ' 4l? ,t; \ 6·14 -z,;o I I -' I '( :. ??0 Z(o'Z. ~ 4-t;' s c.,M-. Jz. Z.t;tJ I I f ;~'!. :';; :J::'lc'\~'"' ~\;:J,i'i:\'' :y,,1,;r ·.. , " I I I I I -I I I I I I- I I I I I mmxH mrnx· mmx mmx mmx mmx mmx mmx mmx m11x mmx m11x mmx mmx mmx PROJECT: SUBJECT ' -': ..... DATE t'::~ PAGE: L · \'2.,1 ___ _ CARLSBAD II LATERAL ANALYSIS SOIL & SEISMIC LOADS 4/6/88 BY: SGG .. , ;~;...{--------------------------------------------------·- LATERAL & TORSIONAL FORCE DISTRIBUTION FOR RIGID DIAPHRAGMS --------------------------------------------. . DESCRIPTION: LOAD TO CONCRETE SHEARWALLS DIAPHRAGM LEVEL :Level 1 > Literal Shear Force@ CM Actins Alons 'X' Axis= > Lateral Shear Force@ CM Acttn9 AJons 'Y' Axis= 1i"?J7!2l kips 757 kips > \ )-{ '" D I..ST • TC1 C: • M • > ' Y ' DI ST • to C: • M • = DETERMINE CENTER OF RIGIDITY 87.5 ft MAX. 'X' DIM. ~ 45 ft MAX. 'Y' DIM. (U~ed for Min Eccen~ri ---> WALLS/FRAl'IES PARALLEL TO 'V' AXIS --.----------------------------------------------------------·----------------------------------- l W A L L l I.D. : NUMBER > WALL > WALL THICKNESS LENGTH ( in) ( ft) ) WALL > X-DIST. >END TYPE RELATIVE STIFFNESS: HEIGHT FROM FIXED=0 H / L STIFFl'ESS x (ft) DATUl'I CANT=1 WALL/FRAME DISTANCE: -------------------------------·-----------------------------------------------------------------l3/A,2-B 12 19.33 12 55 1 0.621 3.546876888 195.08: :3/C-D.2 12 29.33 12 55 1 0.409 6.663628445 366.33 : :7/A.2-B 12 19.33 1Z 175 1 0.621 3.546876888 620.7/iJ l 17/C-D,2 12 29.33 12 175 1 0.409 6.663628445 1165.61 : l4/.C,9-D.3 12 15 12 85 1 0,800 2.248201438 191.10 l ·------------------------------------------------------------------------------------------------ > WALL HEIGHT (ft) > Y-DIST FROM DATUM >END TYPE FIXED=0 CANT=! RELATIVE STIFFNESS : H / L STIFFNESS x WALL/FRAME DISTANCE l •b·---. -.•· .... ----------------·---------------------------------------------------------- :A/2.6 -6 12 100 10 85 1 0.Hlil 32.89.473684 \ 2796.05 : :D.2/1 -3 12 55 10 5 1 0.182 17.55936675 87.80 l lD.3/3 -4 12 32 10 0 1 0.313 9.437788018 0.00 : lC.9/4 -5 12 28 10 15 1 0.357 T.976744186 119.65: :D/5 -6 12 30 10 10 1 0.333 8.709677419 87.10 : :D/6. -7 12 32 10 5 1 0.313 9.437788018 47.19 : ------------------------------------------------------------------------------------------------- I I I I I I I I I I I I I I I I I mmx rnm:{ rnm>( 111111>: mmx PAGE.: l,.:_. t'Z,1,;.. __ _ PROJECT: CARLSBAD II SUBJECT: LATERAL ANALYSIS SOIL & SEISMlC LOADS ~~_t~··,-. DATE : 4/t./::tl:l BY : ___ SGG :h~~ -"\>~%\,;~. ~,,, .... _ --------------------------------------------------. - X -DISTANCE TO CENTER OF RIGIDITY = Y -DISTANCE TO CENTER Cf RIGIDITY= X -ECC. FROM CENTER OF MASS = Y -ECC. FROM CENTER OF MASS = MIN. ECCENTRICITY =.05 * Max Length= 112.02 ft 36.48 ft 24.52: t't -8.52 t't 8.75 t't DESIGN ECCENTRICITIES (Fro1 Center of Mass} --------------------·--X: ECCENTRICITY = Y: ECCENTRICITY = 'le 24.52 ft 8.75 t't DETERMINE WALL/FRANE FORCES DUE TO SHEAR & TORSION TORSIONS: With Force Acting Along 'Y'. Axis= With Force Acting Along 'X' Axis= 18,565 ft-kips 9,363 ft-kips I 1- 1 I I I I I I I I I I I I I I I I mmx rornN m1u: mmx fflljl}: mmx ffilllX mmx m111x mmx mmx lllll" ,, mmx ffl!IIX rnmx mmx mmx --> WALLS/FRAMES PARALLEL TO 'Y' AXIS ·' -----------------------------------------------------------------------------------------------------------~ l WALL RaATIVE DIST. TO RIGIDITY RIGIDITY --F O R C E S --! T O T A L : UNIT · l : I.D. STIFF. CENTER OF x x l LATERAL TORSIONAL Alternate I FORCE l FORCE I ! NUMBER WALL/FRAME RIGIDITY DISTANCE DISTA2 l FORCE FORCE Tors. Force: (kipsl : (kif> : !3/A.2-B 3.547 -57.02 -202.26 11,534 118.5 18.6 9.4 ! ::3/C-D.2 6.661 -57.02 -379.82 21,659 222.5 34.9 17.6 : !7/A.2-B 3.547 62.98 Z23,37 14,067 118.5 (21.5) 10.4 I :11c-D.-2 6.~61 62.98 419.46 26,416 222.5 (38.6) 19,5 I 14/C.9-D.3 2,248 -27.02 -60.76 1,642 75 • .1 5.6 -------------------------------------------------------------------------------; ... --> WALLS/FRAMES PARALLEL TO 'X' AXIS -----------------------------------------------------------------------------------: WALL RaATIVE DIST. TO RIGIDITY RIGIDITY I.D. STIFFNESS CENTER OF x x I NUMBER WALL/FRAME RIGIDITY DISTANCE .DISTA2 IA/2.6 -6 32.895 48.52 1596.08 77r443 :0.2/1 -3 17.559 -31.48 -552.75 17,400 ID,3/3 -4 9.438 -36.48 -344.28 12,559 --FORCES -- LATERAL TORSIONAL Alternate, FORCE FORCE Tors. Force r 409.2 74.0 146.8 I 218.4 Z5,6 50.8 I 117.4 16.0 31.7 l IC,9/4 -5 7.977 -21.48 -171.33 3,680' 99.2 7.9 15.8 I I lD/5 -6 8.710 -26.48 -230.62 6,107 108.3 10.7 21.2 I :D/6 -7 9,438 -31.48 -297.09 9,352 117.4 13.8 27.3 I 137 .1 I 7.09 I 257.4 I 8.78 118.5 I 6.13 222.5 I 7.59 483.2 l 4,83 I 244.1 I 4.44 ' 133.4 I 4.17 I 107.2 I 3.83 119.0 l 3.97 131.2 I 4.10 --------------------------,------------------------------------------------------------------------------ · ; OPUS CORPORATI-ON, · .• a. I DESIGNERS • BUl~OERS • DEVELOPERS . ~ I I ·1 1· I ·1 I ' I I I I I I I I I Olf1ces and Aff1hates 1n M1nne1pohs · Ch1t1g0 • M1lwautee · Phoenta ·Timpe· P'lllslcola CD t 11, ' v:::;. 70'-~ A-:.1 7' _ ,.. ..,. I ---= ....-r, ... "' .... ,, FR A p;-z..- 1,;i n L l.54 ,Z,,(i, 1 ;;,21 Pro1ect 421;.~~p Ji Date _____ _ By------ Sheet L--13 of __ _ © 0 @ © .-s ---") NORTH- -' e't.:=-4-4,,;...43_5 -;J,e,.,.,ri=,os(s?) = 4:z .. ,' I IJ oPus coRPOIIATJoN· DESIGNERS • BUILDERS· DEVELOPERS Project Cm ~MP ll Date ____ _ l,r·, Ll ,1 I I I I I I L I I I I I I I I 1· Olf1ces 111d Aff1h1tes ,n Mmne1pohs • ChlCIQO · M,twautee · Phoenix • Tampa · Pllnsacola @· -~::. :-z. J @ © "" ~ V ,,. i,. lo • ' r . . . ---rt ... ' -. I © ' ' -· l c.~, I 1 C..tv\'. © -... • ., ' - . ' By----- Sheet L-l 4-of __ © @ © : ""' ~ • ~ , . ; ~ I I ' ® ., ® ~ -IL~ ;-~--® --~ ' ·--. ' ~~ : @ ~ ~ ~ l.1 ' . V \.'l.J . • . .. -(0 ,. -' ,. • -- I, , I ~ 1 NOR.Tt..i. AR.EA '5'< l~SPEc..#ts1~, THE( ilSt..t:,6, IS S.'<MM£1"ft1G-Al.., ,4BoUi 62.tD (ID Tr1us :x -1-1,f~\~Ce,~_ss :s: c, e1~1t>1ry .e'l(==-o ~""Ir'\~ .. cs(,·s,o-)4" t3·~· · . ..,..-_ ~ . 6.,Z FR ~-~1/A j__ A ,~2,9 1,\9 :· 84' P,7.. , 79'2.. \.1lD, 5' -·-,z,A-'1 8, ' I I e-OPUS t0hPOltA1'iotf DESIGNERS • BUILDERS • DEVELOPERS ProJt!CI C,4.g_k S64;t> ,r Date ,-------- By ----- Sheet L -l? of __ 1~:--r', ·1. I I I I I I ,- I 1. I 1· I I 2 3 4 5 It, 1 Offices Ind Atf1h1tes in M1nnell)OltS • ChlClgO • Milwll*ee • Phoenix • Tampa • fl9nslcole ';:;_.,, '©·. © © © © © ' . -,-;; z;. . J ' 1->.~ ·' Ir '1& I I# , .... ~ .,.. .,. .. lll,o io ~ ~~ . I ! .I , ' 10• · 1011 s· 10' l ' .. _.,..: '· I ® -·--f-r ... !!!!*' ...... - cw---.. . -·· r-. ... ' I o,; © .... @ ® ..... I N i i I'. I# '~ ...... . RZ~JI\E ,, .!? fRAn1£. •, t . l ·-T--~ I ~.R, / • I , -:~~ ' ;:-. I ' ~ I ® ' ~ .. '-.J'.i-1r-(Z;) I ,. ! I#© -; " : .;. l'\I -~ 1 '' .... -·-~ ~ .... f (D t>: eb ~ (V) I I.Ii· 9 . .. ,:\i;~o" : !J_ :;,,- ( '$'-o'' , , .$j ·• -~.: 11,::;' -.• 1, .,, / --jN02..1lt ~f , AREA X A")( '{ A'f LIC>,25~ SI;/) = 1059 2.7,G Z~/-ffb'. ~-<o~ \(') I~ (i~. 1.r:;X 40·) -= io,;o 30' 115()<.> 37,'7 39 Z>l~ ( (:i..4,15'l ~5') C ~~ 37,t; 3'Z-4S4--(o:, i:;4 IDCA (75')(120') ~ooo \IS 103~ooc· ~7.'5' 3~7 ?°CC -\~'r,''J... 29,;3·) -: 1011. \ ()'3 -.t~A1f44 4 ?.">' ~-, c,74- (.4'i )(2.,. 1r) :: t I iS IC)~ . z 3463.S -?-..7.t; 444~"' (51; )l\4:.· '31-' ):.,J~;:::~.Ji~~ ,. :·-z-03 i,..\' -1 (oOOZ-1 IS .S:z., ·;~;:}i_975, 1720's07 ._ 6(Q~7I1 ,. •ii' .• : ·~-"I". . ... .. X-= a~ tt~'· ~-:C..-.MASS :. C. R.161DITY ~1N(;e.,. rRAM~S tJN GJett>S@ 4,.G) x A~£. J:QUAL-L'( ~PAU:.t> ff, we:NTlGAl-.", e X :::. 0 '(--AY =-3 ,.b4':;: c.,.. MA$$ -:: -y '{ C,. i>f ~1~1?11'( FRAME !: =-'IA _:.1'..:1.-----k.. '{ A . 0. 9f7' 2A-. -=,=,~- t>,'2. D. <lS'l. ~ _§ -, , i1 · '?;1- e.xm,n~ .o$(zso) .:::~ ~-:: 4~~1 -S7, 14-;: ~I '7 ,D5 ($;)::4,J '( -=: i K '<_ :::. 44-' ~ C.. /Z.161P1"f'"Y y fl(.. -'?i-oPtlScoRP~tr---· << . I DESIGNERS •. BUILDERS • DEVELOPERS ' Date. ____ _ 1~)- ·1 I. :1 I I -1 1. 1· I I I I I I I- I I Offices and Affiliates in Minneapolis· Chicago • Milwaukee · Phoenix • Tampa • Pinslcola By - Sheet L.-d Co of __ ,. ,4":· Q) ··. ~: . .-y~:,_/·'· .. ·• © © © @ 'It,:. ·. W · . V, I to l ~--> . ~Off,;{'t\ . / I . t I ~Ml:.T~ s:: ( 115 +'2.) "2.. + (80+'2.)'2. + (S 1 ) 12.. = 57'5 FT PR.E=A == gz.a..~_,><1-ss)-(boxsD+(Z.G.>.3'.>>< 10'o )+ frz4,33 x17'5)-(:>0•5)) . . I .+ (_r_,,~ x5) t 1s·o + 578(1)::;;137-'l.B Fii.. -~t~,, :·t;t; , ~ ~IP FL-oe, ;·~ --~f·-,:~·.l(;~S~ o )( 1 ;:~) -r {i; X 12 ,33)(57; )I /rooo· ==-I 2.0S . ta.~ 2-) ...... ·.J -,,.,/'· } o~, . . -' "'· ... -· . --~ _,,. { .' .. "'\ -..... _,-'· -,-~~: ... -:.:' -:" ' ---; OPUS CtfRPORAtlON . I DESIGNERS • euiLoERS • DEVELOPERS - ' ' Offices and Affiliates in Minneapolis • Chicago • Milwaukee · Phoenix • Tampa· Pensacola _ ·1 ·1 :1 Q)_' II,, ''th : ' I ' !• I ; --l • ...... p ~. :,i,:' --· • ~ J ® © ,.. V ~ . . ' . -r -. ' - I . © ~ w - . ' ' . I i I P12.EMerEJ2.. = (z. 3o +-85 )-Z..+ ~)q = (o, 8 F, Date ____ _ By ____ _ Sheet L .... t7 of __ © @ © I .. L ~ -l I 1 ,o' ® r; .I I -1 -. c:; .. ' tO -i "' l .. I • -t. © . ~ ~ 9 .. 1:1-i. -· * e;.·11 .. l ~~ .,..---,,. -o;, .:t :l' I I I I I I I I" . Rl?.E:.A = ~1qC).x_-15) -(5f!O'j + ( 6~ 1,i.5 1 ) + -zg10 "ZI+.~) + (1~x.50.foil-t- I I I I I I / I 016 (1) = Iv:, 10-3 FT,z._ rLo~{i-@:rt:i~)(,ro:3) +(:=J(IZ.33)(078~ 1:W=1S45 KIP$ 8~1 ,.J - . 1'' -OPUS CORPORATION' DESIGNERS • BUILDERS • DEVELOPERS Date ____ _ I-<. I I I ·I I .I ·1 I I I I I I I I I I Offices and Affiliates in MinllNPOfis • Chicago • Milwautee · Phoenix • Tampa . ftensacola By ____ _ Sheet L--1~ of __ ' CD t J @ © © 0 @ @ ' ~ ~ V .... ~ .. ! ~ ~ i. "'° I. . ! , ' A ' ® ·--- . .·--. • . - I ' ' ' I ' ' I .. . ---t. ... -~ ·--~ I ,, J t ~ I c ' ' ! -~-® --'-= - l :- : I . f • -.. I . -•1 : --... - ' , ~ " = ~ .. -!.· -~ ti ~ I I I I P~E.lvlE.TE~=. -z.('230 +8<;) + 4(5) = 0so ,,. F5F Ff-PSF , , -K!f; Ft.ca-i..rr: = ~l '5 + 10.x_ 17 t2:5) .,._ ( 1s )(lz.. ?;s X bSD) J ;(000 : Is 7 ~ ..... ~--~. , .... -·" ~ . . .·- • _c~-,.~ a,ostcu1POiAnafi--l DESIGNERS • BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis · Chiclgo · Milwlulree · Phoenix • Tampa · l'lnsacola -Gr-I-~ . © © © . . ;_,;:,;, : ... :z.. J ~-,. , . -' ... ' ~ .. ~ V .,,._ t. ~ .. l ' ' I I ··-Ft'· -, :-. I j i ; . L.. i I f t - -----I I . ____,. . ,: ---! fZ-ctJP I I I I I I I I I I I I I I I I I ~ I I · Ag~ = 1712.'5 -0(1ox6}~l(ot:,'2.6 FT:- Date ____ _ By----- Sheet L-\<i· of __ © @ @ I ~ 'I~ i. - J , ® .;;;;; .. --' I : w I . .. -I ' ~ ® ' - .6 V ... I ,-,. -. ~. :;" -· I:' -- I :· ~- ¼.:-· ·I I I I I I I. ·I I I. I I I I I I .:1 , . .... ~ ·-,---~"..:,:~-it., ----Pfui~;,::_1t~i1tip t-· ---, -~~ Ott,ces and A1fih1tes· 1n Minnupohs • ChttlgO · Milwaukee · Phoen1• • Tampa · Ptnsacola Date 1:L"kl: It 1 By---.----- Sheet ~ of __ _ -~~-~-~ ~!!"i!---~~-__ --,...:~-~-------------L_,.._t..,·_. l ____ _ f~iit~tfjt-:'{'~?---~i~,p:5 ' (j) LOU l~ I ·:t·.f::~. ~ -. '.,,. ··. ~ .. @-----N ...,_ ___ :::::...,'W, ___ ~_l_)(_~_!_c _____ t;;;\ __ tl"...---- &; ® 'e) ~, ~ -~ ~ :..J ~ ... ..J --~ t,'\· < ~ :-,;. IY\ ~ °' ~ -\: ~~ w ,. :r ,, \.'\ ._,_ ~ -~ ~-;N. ->,. ft· ,i'!<. -a,~ . -,,~ '• ~ {• -re ·.1f; ' IV\ e "" ~ '"- ..J ,, ., _, ·" ' I ' W) :, tY) ~ ,, ' ~ 0-« u1 ~ :r :\ -., <.I) ® --·-~t ""'. ;i ·' ~t t'C" .,, ~j ,, ,Sl"Z/ • 'i"E 'Zt f ,f;G"zt .o·z1 1' ' \.!' r-- .. j \t'. \_t\ I I I 1~ I· I I I I I I I I I I I 1. STAAD PLANE FRAME -CARLSBAD II, CA fffffffHfffffffffffffffff-fffHH*fff*:fff****Hfff * * * S T A A D -III * * REVISION 6.03(VERSION 6,LEVEL 3l * * PROPRIETARY PROGRAJII OF * * RESEARCH ENGINEERS,INC. f * DATE= 88/03/08. * * TIME= 10.07.35. * * * -ffff-fffffffff*****HffffffffffHHfffffl 11 f 111 f HH 2. * ,3. * FILE: LOUIS! . 4. * 5. * A TWO-STAGE LATERAL SYSTEM 6, * CONSISTING OF A STEEL MOIENT 7. * RESISTING FRAME ABOVE GRADE 8. * AND CONCRETE SHEARWALLS BELOW 9. * ~ADE. 10. * 11, * LOCATED ON GRIDS 3 7 12. * I\ n.tJ/ 13. UNIT KIP FEET \\ . .vtfo \)ftF 14. INPUT WIDTH 45 .V pv" 15. OUTPUT WIDTH 72 YAV<,I'.! 16. JOIN COORD ~ · 17. 1 29.33 1.2 0 4 29.33 49 · 18. 5 55,66 12 0 8 55.66 9 19. 9 75.00 12 0 12 75.0t{?.)0 20, MEJIIB INCID 21. 1263;4610 6 22. 7 129; 10 5 6 12 23. 13 9 10-15 .. •" 2 4. MEIIIB PR(.l) "" 25, 1 4 TA ST W2:.4}f68 26. 2 5 TA ST W24Xo8. 27. 3 6 TA ST W18X35 28. 7 10 TA ST W21X93 29. 8 ·~ 11 12 14 15 TA ST W21X93 30. 13 TA ST 11121X93 31. UNIT INCH 32. CONSTANTS 33, E 29000 ALL 34. POIS 0.3 ALL 35. SUPPORT 36. 1 5 9 Fil<ED 37. UNITS KIPS FEET \ . I ) I 1~- I I I I I •• I ·-1 I· .1· I I I I I I I j 38. LOADiNG 1 -STIFBf:SS 39. -JOINT LOADi . 40. 4 FX 1H . 41. LOAD 2 -EARTHOOAl<E ON STEB. FRAME 42. JOINT LOAD.--· -~3. 4 FX 16.6'; -12.FX 16.6' 4-4. 3 FX 25.11; 11 FX 25.11 45. 2 FX 12.55; 11 FX 12.55 46. LOADING 3 -DEAD LOAD 47. JOINT LOAD -48 •. 4 FY -11.5 ; 8 FY -3.6 ; 12 FY -3.3 49. 3 FY -59; 2 FY -59 ;1 FY -71 50. 7 FY -56; 6 FY -56 ;5 FY -66 51. 11 FY -25 ; 11 FY -25 ; 9 FY -25 52. MEMS LOAD 53. 3 6 UNI Y -8.6 54. 1 2 !Ml Y -9.75 55. 5 4 !MI Y -,f.75 56. SELF · 57. LOADING 4 -GRAVITY LIVE LOAD 58. JOINT LOADS ·59.'4 FY -6.3; 8 FY -2,2; 12 FY -1.1 6". 3 FY -38 ; 2 FY -38 ;1 FY -4-4 61. 7 FY -36 ;.6 FY -36 ;5 FY -42 62. 11 FY -11; 11 FY -19; 9 FY -11 63. MEMB LOADS ~. 3 6 UNI Y -9.6 65. 2 1 I.MI Y -t.8 - 66. 4 5 UNI Y -t.8 67. LOADING COMB 5 -D + L 68. 4 1 3 1 69. LOAD CONS 6 -<D+L+EQ> STEEL FR. 70. 2 1 5 1,. 71. LOAD COMB 7 -D+L+2.f(EQ) CONC. FR. 72. 2 2.0 5 1. 73. PERFORM ANALYSIS · 74. LOAD LIST 1 75. PRINT JOINT DISPUCBENTS ·-~~: ~£~~-i· - -\.'Z- I I JOINT LOAD 1 2 3 4 5 6 7 8 9 10 11 12 1 1 1 1 1 1 1 1 1 1 1 i . . . :..ROTAN X"'..·,·::· ·<·. :,-~ c·,,;,: "-~,-/·~-.-" ,/-./ ~.:,.;. ~ ,. , ,,.::;;; • ~1*"--~~. ~ -.:t,i·:· . .-,ii,'ftj~: , . ~ .;"412,{f;.,,;-i _f • ·"". , .... 1 .~6 .01478 .HM· .OOIH 1.97481 .01640 .0Hfle .00000 .00000 .00000 .~ .~ .40562 .00564 .HHil .00M 1.08590 .00909 .000H .00000 1.89712 .01007 .00000 .00001 .ooooe .00000 • 00000 .MH .40494 -.01464 .ffM .010H 1.08502 -.0t""J88 .00000 .000ff 1.87593 -.02647 .0N .ooooe Y-ROTAN Z-ROTAN .OOHe .00008 .00000 .00001 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .0000t .00000 ... 00328 -.00433 -~00566 .00000 -.00247 -.00310 -.00440 .00000 -.00313 -.00385 -.00479 I I I I I I I I I. ************** END OF LATEST ANALYSIS RESULT ***ff¼f-fff**** I I I I I I I 76. LOAD LIST 5 6 77. PRINT JOIN DISPLTS --~~:f:_ ~-~ '}. 1-~OINT 1 I 2 I .I I I I 1· 3· 4 5 6 7 8 9 10 11. 12 LOAD 5· 6 5 6 5 _j 5 6 5 6 5 6 5 6 5 6 6 ~ 5 6 5 6 5 6 X-TRANS Y-TRANS-Z-TRANS X-ROTAN Y-ROTAN . '~i~:,:~::: .Miff -~ .00000 -~--:--'·· .0HOO .00000 .-::,• .. ,., 3 .. 1 . .r ,t.-? -~· • i--t~: -.000H ~'f }~~ -·~~ -tfi<~i ,.0SM . -:·m.,-1~-·:f+~.: ~ · -. . eeetf, ,:, -. 000ff .00000 -.00944 -.08402 .OOHt -~ .00000 1.,76562. -.07438 .00000 .0ff00 ,00000 ,000ff .00Hf .HiH .00100 .00000 .00000 .00000 .000H .00000 .0. -.00173, -.05395 .OOIH .00000 .00000 .38960--.05003 .00001· .00000 .00000 -.00848· -.08398 .OOHS ,00000 .00000 .88834· -.07802 .0HH .00000 .00000 -.01879 -.09026 .00000 .00000 .00001- 1.25675,, -.08383 .00000 .00000 .00000 ,0HOO .M00 ,0Hff_. ,.00000 .00000. .01M• .00011 .HM .H000 .OOM -.00105 -.02162 .00100 .00000 ... 0000e .39132 r -.031-H .000ff .00000 .00000 -.00814 -.03397· .tMI .tMe .00001 ,89254.' -.B489f .00008 ,00000 .00000 -;02255 -.83692 .00110 -~ .00000 1,25894 · -.05299 .MH -~-.00000 I· I I I I I I I I ll uu1u1HHH END OF LATESt ANALYSIS RESULT************** 78, PRINT SUPPORT REACTIONS Z-ROTAN .0Mle .00000 -.00026 -.0031-7 -.00018 -.00262 -.00048 -.00271 .00000 .00000 .00616 -.00194 .OOf.116 -.00168 .00028 -.00168 .00000 .00000 .00019 -.00254 -------·-· .,. ·n.l4( ~~;;:- (32\(l'l) (~'1 .00021 -.00210 TAs~uMf.l)-= \.?- .00035 -.00181 \.1.,1" ~~(o7) c,01-" L.. , DO? (4-9Xrz) -=-l, ~ 4-6" I, 904'' L.. 7,, 9 ~ .... ~ ... . . . .. "'"_..:...·. I SUPPORT REACT! ~ . ,·,. ,.., ------------~,.- JOINT LOAD ·o-x l'DI-Y 1 5 .-'i.~:f:!' ~/;J,~/ .. /fi~~~ .H .H .-f~. 6 :iZlt .. ., ... • --~-.00 .00 ., • ~--~· .... • • .... ,r 5 5 -1.82 39~.6' ••• .H .00 6 -44.22 375.64 .H .00 .00 9 5 -2.29 150.68 .01 .H .00 6 ~ 203.18 .H .00 .00 I I I I I I I I I ,1 ************** END OF LATEST ANALYSIS RESlLT ffflUHIHf** I I I I I 79. PRINT MEMBER FORCES . .' :,.~ MOM Z -16.43 278.11 5.80 338.39 7,84 311.39 I MEMBER END FORCES I · ~ ~-;l~;-;;;y- l MEMB LOAD ·1 I I I I 1· I I I I I I I I I ;I 1 2 3 4 5 6 5 6 5 6 5 6 2 6 2 6 3 7 3 7 4 8 4 8· 6- 10 6 10 2.95 -1.55 1.55 -1.78 1.78 9.36 -9.36 8.84 (-8.84 18.73 -18.73 -L70 1.70 -4.32 4.32 5 5 7 -.84 11 .84 6 1 -10.55 11 10.55 6 5 8 4.83 12 -4.83 6 8 -2.82 12 2.82. 7 5 1 267.08 2 -267.08 6 1 235.55 2 -235.55 8 5 6 ·~ 5 3 32.46 4 -32.46 6 3 28.86 4 -28.86 10 5 5 288,62 6 -288.62 --~ _.._ -- 20.45 20.36 7.59 33.22 15.66 C1Ui> 12.06 Ci® ~ ~ • ~ 11' .00 .00 .00 .H .00 .00 .00 .H .H .00 .01 .10 14.67 .01 15.31 .00 -6.56 .00 36.54 .H c:u::w .00 11.34 .H CQ!) .01 17.47 .01 .H .H -·· -,,_, --~-,-.,,. :.8:·84 ' · \,e 8.84 .H -2.13 .H 2.13 .00 1.82 .00 -1.82 .00 .H .H .00 .H .00 .H .H .H .H .H .00 .H .H :00 .ff .H .H .00 .00 .H .H: ,01· .00 .01 .01- .01. .01 ,01 .H .H .01 .H .00 .H .00 .Si .00 .H MOM-Y .00 .00 ,H ,00 .00 .H .00 .H .00 .00 .00 .00 .00 .H .00 .00 .H ,01· .00 .01 ,00 .00 ,00 .00 .00 ,H ,00 .H MOM-Z 80.50 -86.74 -129.15 -273.84 I:;--1-\/t.-\ 85.35 -84.07 -92.32 -245,05 ~ LV I.-2. 64.53} -68~21 12.ec>F- 16,09 -114,49 . 51,29 -44.31 -180,02 ~ LVL-1 -299.46 . 44.32 -50.50 ~LVL'Z- -264, 70· 39.56] -34.51 1<,00F -18~56 -94.81 -16.43 -34.26 278.11 63.68 .00 -46.24: ,00 -40.84 .£10 . 65.47 ,00 l02.46 ,00 .00 .00 .00 .00 .00 -44.50 -64.53 -10.14 '"16.09 . 5.80 16.60 ---~\~ -·~~~ -J "• .... ,.!:- \. I I I I I I I I I I I I I I I I I 11 5 ,6 160.63 7 -160.63 6 6 149.74 7 -149.74 12 5 7 33.60 8 :..33,60 6 7 . 31.08 8 -31.08 13 5 9 115.68 10 -115.68 6 9 168.18 10 -168,18 14 5 10 66.05 11 -66.05 6 10 93.40 11 -93.40 15 5 11 15.74 12 -15.74 6 11 21.87 12 -21.87 3.07 -3.07 @ID -41.45 4.01 -4.01 ~ -21.55 2.29 -2.29 36.56 -36.56 3.99 -3.99 28.33 -28.33 4.83 -4.83 13.78 -13. 78. .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .oo .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 MOM-V .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ************** END OF LATEST ANALYSIS RESULT************** 80. LOAD LIST 7, 81. PRINT SUPPORT REACTIONS MOM-Z 3'38.39 207.03 18.84 18,98 246.83 264.42 20.77 28.65 132.67 133.05 ~ tu'"f 7,84 20.45 311.39 139.57 23.86 25.40 159.90 189.53 25.10 34.51 75.17 94.81 I I I I I I I I I I I I :1 MOM-Y .00 .00 .00 ************** END OF LATEST ANALYSIS RESULT************** 82. UNITS INCIES 83. PARAMETERS 84. UNL 72 MEMB 3 6 85. UNL 12 MEMB 1 2 4 5 86. LY-144 MEMB 3 6 87. LY 120 MEMB 1 2 4 5 88. LZ 12 IEMB 1 2 4 5· 89. KZ 1.85 MEMB 1 90. KZ 1.85 IEl'IB 2 91, KZ 2.4 MEMB 3 92, KZ 1,75 MEMB 4 93. KZ 1.75 MEMB 5 94. KZ 2.2 MEMB 6 95. KZ 1.7 MEMB 7 96. KZ 2,20 MEMB 8 97. KZ 2.40 MEMB 9 98. KZ 1,4 MEMB 10 99, KZ 1.6 MEMB 11 100. KZ 1.8 MEMB 12 101. KZ 1,60 MEMB 13 Hl2. .KZ 1. 90 MEMB 14 103. KZ 2.20 MEMB 15 104. FYLD 50 MEMB 7 TO 15 105. FYLD 36 MEMB 1 TO 6 106; RATIO 1.33333333 ALL 107. LOAD LIST 5 6 Hl8. CHECK CODE ALL . · "' .:· . .:-.."'--· ----~-·; ... :> ,. ,~; .,;t -~ -.,;; ~ MOM Z 572.65 670.98 614.93 ) 1-- ALL UNITS ARE . .-~ STMD-III CODE ctE~ING I ~;*jt{'-~- MEMBER TAB!£--:-:."'.:,,,,-I -: t~~;.\f.;;~ '.· ~··. . -. ' RATIO/ LOADING/ MZ LOCATION · I ----------"------------------------------------------------------·----- I 1 ST W24X68 PASS AISC-1.61B .990 -6 1.55 .H -3286.07 315.96 2 ST W24X68 PASS AISC-1.6-2 .830 6 -9.36 .H -2940.56 315.96 I 3 ST lil18X35 PASS AISC-1.6-lA 1.165 6 -18.73 .H -1373.83 315.96 4 ST W24X68 PASS AISC-1.61B 1.089 6 I 4.32 .H -3593.53 232.08 5 ST W24X68 PASS AISC-1.61B .978 6 10.55 .H -3176.35 232.08 6 ST lil18X35 PASS AISC-1.61B .927 6 I 2.82 .H -1137. 71 232.08 7 ST W21X93 PASS AISC-1.6-lA .985 6 235.55 .08 3337.32 .00 I 8 ST W21X93 PASS AISC-1.6-lA .453 6 -133.45 .08 1229,55 148.00 9 ST lil21X93. PASS AISC-1.6-2 .208 5 I -32.46 .00 -774.32 148.00 10 ST W21X93 PASS AISC-1.6-lA 1.155 6 267.64 .00 4060.70 .00 11 ST W21X93 PASS AISC-1.6-1A .782 6 I -149.74 .00 3173.02 148.00 12 ST W21X93 PASS AISC-1.6-2 .344 6 -31.08 .00 1596.59 148.00 I 13 ST W21X93 PASS AI$C-1.6-1A .908 6 168.18 .08 3736.66 .00 14 ST W21X93 PASS AISC-1.6-lA .533 6 -93.40 .08 2274,34 148.00 I 15 ST W21X93 PASS AISC-1.6-2 .245 6 -21.87 , ... 08 1137.71 148.00 I ******* IGN HIIIIIIIIH*f fi!t._. I 1*'9. FINI ·1. *************** END OF STAAD-III a1111111111tH I i.07.27.LOO,P4,T1000, I i0.07.27.ABF, INPUT ' 0.002KIODB,01. 10,07.27.USER,RAUENTC,,KBU. 10.07.27.ABG, P4. 10,07.29./CHARGE,T0554EN,A7242. I 10.07.29.PURGE,STADOUT/NA. 10.07.29.RETURN,OUTPUT. 10.,07 .29 .DEFINE,STADOOT. · 10~07.30.GE'(,LOO. ,.,--~~us CO~PO~A~ON . I DESIGNERS • BUILDERS·. DEVELOPERS I I I I I I I I I· I I I ·I I I I I ,~ · Offices and-Affilia,tes rn.Mi~ll'.8iJol!~-~Chii:ago •Milwal!kee ·Phoenix· Tampa· Pensacola " .;_ ~-;i.:---·-i. Project 0A fZL 513A P J{. Date .3/9 /$ $ I I By------- Sheet L · ZO of __ _ ~-;"' ~--.c- . .... ~;! ---~ ·fffi'' ·-1---------· ' OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS Offices and Affiliates. in Minneapolis: Chicago·_· Milwaultae • Phoenix · Tampa · Pensacola Project CA,gLQ¥.t:> 1r Date 3/tO/A{o . By------- Sheet L,-Z.l .of __ _ I I I I I I I. I I I I I I I I I l I • l t I I I i ! l ; f 1 --h 1 I l l I I l I ; : i l l ! l ! I t I I I i i i ! I ! -, j ! : ! j ,.. j j I i ., J •. !. 1· ·1 fl I I I • I !,. I l I,. 1' / ! l i ' -.,---,---t--i---t--!--....--i'-' I • i i 1 t 1 i I 1 I I 1 -y--: -·-l ---l--1---...-+----tf--''--!· ,.........+.--+--+---+---+-+--+--!---+---+-+--,.--r---,J.f--..+--+-+--+--1---f-·-1 l ! I ;;.. "'' ~ ' 1 ,. • I ' 1 I 1 ! . ! ! i i i i --1---....--;--;.--,..,,,-.<1---'---+-,-:"'4-4---+--f---+---+--l--+--+---+---t,-+----,---!---;-!-+---+---+--+--?-? ----i ! 1 1 I , l. ' 1 I i 1 i 1 i 1 ! .'P'~ t ,~ r:-,._"_: f ! ! LJ ' ' l ! ! I l ' l i ' I ~ ! ' i l i I i ! r l l l i I ! I l I i l I I I l f ; I i i I i I l ! ' " i · j l f ! ! I I ! l l ' l I t ! ' ! ! ' 1 ' ! t ! I I I I ' ' ! ' ! l : i .. ! ! 1 ! I -i ' I I ! ! I ! ! 1 I l ' ! ! i I ' I i ! I I I l I ' I j i l l l ! ! ' ! ' ! l 1 1 I : I 1 t i I i ! I I I l I I I ! ' l ; ' .l ! ' 1 ., ! I I ! I I ! f L J_j_ __ j -+---+--~1--+--+--+-+--+--+--+-+--+--+----f-+--+-_._!-;l-+-l~l-~i-'.-+-, ' i ; .. :_. I i I . I i l i i [ ! ----i--:----------------------------'--·+---' t -.._,__,....,---1 l f I I ; i! ; I ' I ·, ! ' ; l i i ' ' ~ ' f j +---+·--t---,-__,____., • 1 1 • , l I , 1 . ! : i· , ' : 1: 1· 1· ·1· :' I ' 1 ' . 1 • 1 ' • ' ! ! , ; , : ' l ; ; . ; ! ···"-------;--;----i--i----,.-+--'!--j i ,......:.._ ___ ....) __ ,_.:.__ --~ ___ L_ ~--.. -.J..-. __ , •-,,;--, •-•-r-•-T 1--,...... •··-..... r··· ,. i ! i I J ! i ·, f, i l i ! . ! I : l ' : ·L , : 1 1 ! , i • ~ i ! ~ -~ t .L I l ·--, ·--r-,·--r-1-·;-i·-I , --:--·-;--t-r·r--r·---t--· i -·t· ·-'----·-' , 1 i . i 1 1 • i 1 _1 ! ; I l_...:_ ' 1· !_ ,l __ .;_ ___ _l _J f 1 1 ! -·-t 1· '1 ,:.-! ; ! ; i l l ,i '., ,·, '. l l , I i i ! , , I ! l ! ! i ! ! l. ; ' I i I ···---' .... L. l ' .L ... _,,_. _, I l l ! l ' l ! l l . l I I ' ! ! 1 I l I l ! I I I I I I I I I ·I I I I I I I I Project Date By Sheet £'1.,,'4g L Sfs.~O [_ 3/to/S~ V .- 1...., -z.-'2-of .a:·0.0PUS C~:RPOlfATIOt4~ . ~ . .~: DESIGNERS. BUILDERS ··DEVEL~RS - Project CA'g LS l?:AQ IL Date 3/10/SS> ~ .. I _{ Offices and Affi~i~ in ~inneepoli~ • ~ • Milweuue • Phoenix· Tampa • Plnsacola By----- Sheet L ~ '2.-'; of __ I I I ~1 I ii I I .1 I I· I I I I I I fr<A~~i~~f'::.~ri1~5. -cgj@_ C-0NNECTlONS LvL 3 LvL z ~T '7 LVL Z .. ex>.L-1S .. . . . 'i V =-. Vea; +-v6~ -1l)-04~· Arz_:, ~/~ .. --Li4 &c-rJ : .... ·--:·z.'.V.~ 2.;L5.~\) • . + 7.D~:~A-!--. -.: f4•'3.:i.t2:(6.t</~ U,7), ~ ~ . .Jl~.0 ~-rs ··-· ·-··-·-···· Ut; .. ~'?.'~.I,>5.'_ .. -... ;------.~-----~--: L _· ·-· .... -. -.. ' .... --... ,~... .. ~ --: . : ....... -~-· ...... ~ -·-... _ -.--·-·· ,_,..., ..,.. -~ ~ ' . • -• ~---·---{ .... _,;..,M~--' -: -·: -• s . .s.1 ~ _ : · . ~ .~: .-·. .. . . . . ···:-·ff· .. -.... --~-· ·· ~ ,,· z·,., ····-~·-··:---~-----·-··· -· ..... _ .. _ LAT£ . _ TR.'( .. ,-z.. .. x . .. ........ 1---.. -·-·····---__ i • , : : ... :. ~M-~---·:Z,.3~--·i,,·.-~ : : .. ·;~;K·:···-:···i·fi·;:···· .. : -·--3~·-·;··--~ , .......... LI~ .. ,.·-·-· -(. 1. ---/~9 ··---.-...... ~:ti ... ill ~ . .!f:.< .3 ~ . : . ; ---.. ·· .. : . ; . .. .. . .. -~·-----;--'.--'.. ·--.; ·--~~;1·~1.lf)-z.. ····· .. ·,-... . • J • \ ... _____ ., ___ . __ ..,.. .. -· ---····· .. ·-...... ~--i. ... ,..,, ___ ,,,,_ .. ; -~,----·· -·-... : ···-_,:_ _____ . • : l • ; • • • • l • > -l:t i ,._,,v I ._--_.,.. .. , -OPUS CORPORATION · . DESIGNERS • BUILDERS • DEVELOPERS Project 6AeLSI\At> lI' Date ~/It, /Sf, I (; · Offices and Affiliates in Minneapolis • Chicago • Milwaukee · Phoenix · Tampa • Fensacola voNG&EJE .SHEARVJALLS By----- Sheet l-2..4-of __ · I SE.E. ':'E~C~LG LA'T, f ToRS. foR<:.E DtsT, Fc)R R1&i1 D FRAr,1ES 11 4f.Jt> ~i"AAl> ~UNS LOU 1sj_ For<. SW?Po":T ~~c..,T10NS I I I ·1 I I I I I -I I I I I I I . ~AS1 -w~~l I VALL$ ON 6,:z~[> . j rt<.OYI A.?.. 10·: ~ ( f-\lb~E:1<.. LAiE:rt.H... L,..oAO f f~!,JAL. 62AVIT"( LOA.D To S!MlLAf<... WALL . ON_ GiR.H> 7 f!(:O~ A. 2 To f>) :.@;···· @·· . . ... -.... ~----~-~~~,--~ ---·: ·ri;i/": ·· i' ___ . ··.: ... · ... _·. w~ ~ · .·oi ~i~ (t_6) . · .:. ___ ; ___ '----·~·---P~----~-,~--i, __ .. fA .... ~: .... ' ·--:·---~--_:_JJ __ :_ G.! 25~33' ·.= ... \9#:. .. ~~ '~tf lt.j I ; : • : : • ·'. . -~ •• : ••• ; ---: .... ,.,; •• ~ .... L ____ : .... ~ . . . ..j<.. .. ' :.. .. _,_:.. ... ......j .. .:. •• ~.-----.'-1 .· .... .,.._· .... L--~---~-. __ : ___ .,,._· .. --~·-··-:--···-~------,·.··· .. E __ ..,~-'--~_-___ 391... 37~i. ., . I;;> ) ..• ---·--· ·; ... W--~-.i._ •'T\ ·---· __ ,. ..f.!r ... :.___ r1_Z_ ... : .. -... -_: ____ _: ___ : __ ,_ .. 0 .. + L.. ... . .. ·_ t;>~-+ .. ~t~2J::Q : -· ~--· -; -i : ; . : .. --, . : .... : .. __ ;_ ___ ; ___ f4' .:-:-:-~-L5 L"" ,_ t . zpg~J(._~ .. ---~~,~~~-~--~ .. 1. ·-·~::.~. \~-~~}-.~> :. ;·_·-.. ~-r~-~~:_; __ ~-~'. -... · :··· ·:; ·::·~ ~~~--~-.:_·_ .t \ .. ol~ lrz.X~';Xi1~~I~~~)'~ 4~K ~ • • i . . ' : ; ; ~ . t • ' ... ~ ... : ... : ~-~;-~_~,--~~-·r ... -.L~~:.·:.:_·~:~ .. ~:=~. ~-~------· __ -__ : ----:· ~ ': .. ='.---~-~; .. ]~;~-~~ .t~~i: ~ u'i~ 1( 2i33'}; 30 K . • t • ' · -; : -~ ~:-.·-~:: j ·;=~:-~--:·,~ -: .. :L: ; __ :t~t;T. t3 l1r;I ~ · z-z33~(!,i~ti . . . ' . ' . ' . . ' ' \ ) . ; ; . ; . ! : : ~ ~ ' ~ . '.j .-;:~' ... !-=~-=:~!Ji.-~L ·: ~~: IJ=.L=~jjl:f,(-] ~-~ --~-~:. '. · · V. .· 0.0..kL: J?&£..s.W·flt i , _ .. .. :_ ...... ~-·--L. _ .. : .... ~; .... : .... ; ... : . .. . . . ~ f :~_f J -~ ! ! ' : . . : D I ! ft " . . (7 12_ ~~~~_t4i)1 J~33' :(2Q~1<_f3c~<oK) ~ l4fl ";1 -.· .. ; .: ·---~'. ----~--~---~--~·~:: -~--. ~ '. ~ --~ _) .... ·-· -. . ., ..... ;. ·--; -· _; ____ : .. . . . . .. . . -- RE\l.ER~Ec .-.... tA1;:~.L ... :. ~QIU~: .. : ... : __ : .. . . . . . . .. -~--~-. . .. . _ crBr=-:Jii. 1\L~f f h:,.;i ]"CT~1~t~I~-.1SJl)_; t?J11t {f>-91~ ~:z~~ · · .. ~;-~ .. ~,..-.. ; -~-----~ ._ .. ,. .· .... ~ · . ~ ,: .. · ~ · ~-2--__ : __ ..... -......... L ----.-· _;. __ . t _ _ ~ _ ~ .8 _ ~ : ~:. : > , • • I? A : . . f !2 EG.· ifl.'E.Vl:-RS4 L -~ L ~\4: .. -:: .. -\~-Z'l ... _+ :9·,--~1' ('"~9·----~--41~) ·, :-5000~,j--~~C)~f:~S L p ; . 9 <). '+· 4 \ 8 + . \ 9. + 4 9 + ~6 .. + 7 ; -{o 7-t-K I I ·I I I I I. I I I I I I I I I I . Project 6AeLS.@>At> 11' Date ~/ t t, /Sf, By----- Sheet L -zt; of -- SE.E~'.·:·?f:· '[':L.c L.4;. ~ ToRS. FotZc.E DcsT, Fc,R R1&i1D FR.Ar--,es~ .. ... ·-+· 4f.Jt> · <$· -"'/:·)~· R:U.N·S LOU \SJ_ Fo~ SWPP()JZ.i. ~~A'-1,1or,.1s tl _ · ?OQ'J ..,. -s,0 1· p· -~'l,1,,. INCREASE. FT6t LE:-N611H -ro ·31 ·~4" 4-wit>r/-f To S'·O" _e,0 ~ ,500;0:'7= -.I~ kc.; (r·)(~·'.l(:14')-t1+,"J') : 415~: .. -.-: {o,,9 .. > 31·J~' ~ t;;z:z: . '.:-~ bit.$~+ l7 ~~· . ·. ' __ _ •. . . -. . . M ... R,~ 0:/fl~-+' r~61l_ ~ Psi.A&. t PwAtL. ~._v.) -i1,i~, + 4t,a~((c') + .-99~(7_15,33) . . . . ·. . . : . . ,z . \'i.;,~;.,;-;·:· · : .;t~?!~fiJa). l;,, Cc1' --~ :2:6~ .-r -:zs0iTl = 71r,r:yc,.f4'· . .;:::~.: i;r~ :1;: >., '5 · · · f. ~-,. ;;-·-c-. ;'.i-::cJ,,~. -.It.~ -. J, ~ . · -;-~ ;: -~)(~z,:t~i:~}./:1· :;~ v" $Lt t,tN-~.. OF . ENTIRE... ~1..:p6,:. . F. s_ ~ ,4· ( 350·4~ ·t:· l~C?6Y: ~-·2.-1·. ·-; L'? ~ 77/p, '2-"' if ,-Opus• cri~Poll~TION. ,· >a .• ·.·.•·· ... DESIGNERS • BUILDERS • DEVEtOPERS . . 1.c, Offices and _Affiliates in Minneapolis • Chicago• Milwaukee • Phoenix· Tampa , Pensacola -· \ voNGge:te;:<:We•Jtm~LLs . By _______ _ Sheet '--~ 2:4. of __ I I I I I I I I I I I I I I_ I I· I SE.E. "E:).iijifJ~:l..Ci·· ~AT, ~ ToRS. Fo1<cE l)fsT, FoR R1&i1D FRAr,1ES 11 41--Jt> ~tAA~-·aut-ts LOU \SL Fo~ SUPP~/2,j ~~.4'-1TlO:N:S v ·11-E E:>ASS OF WALL ""f6 $LA~ TC> RESISi $LlPtN6' . .cse.A~v FO~ s_\JilcA~WAU..S l>NL'( Vu-:: (~ ):Q;1, I-~). = 21A )(. 2k~ ft;()(;t:p (-+It..)/ ~7 ~i~~' :··-=· ~ ... ~,: E&r A-t:;, A"t .: •• z.,0 .-"Jj.h,, · ~ Z.tt • ·· : 1i.-.·,t:+ ~l<.. )( ~~LO" (j_· H:~ll 0,.(,;;c~- 1 ( 1-1 ')--¾ /_-Z." ,.. 4'· 4" ...-t 5_'-:,q'' .. . I fTt;r.. ., i?END'&i. @·.Tet ' .. . . . . . -. -i. .. , ~1.u ~ L4-( \ '·) ~-54itc3 -r {4J:>'b') / t ~ f161:' ~.. ~ 1'1,!6t1 "'·· 1 t:{ ) . . I -=. ,.,; ,,. .d -~· ~:ri. !I~~,: . ·r :-:.. f ,....:.:vs· . ~, -· ~ K ·, .. t7 ~ . ~ "~--. :. . ·'f ··: ':CL,/ ·I\, ! . . . (., -~. . _· ,-Anu.'fJf-.~ ~.C,fr; -l~~t:i~\'~L_--AiE~--~~ _/,JD.ft. IN-1.l., ~ft:'1: ___ ::.· l~'1til tni;I, ._ :. ~--. ______ . :".;-.~---r-.;;-/,:4""L . ___ _. __ . -a ·1-. :tt 1i fi.VJ}f._b,t"''·' · : cp_~.r\f ~---; . : .. t~)~~ti!~~1U~. :~ . e l'J ~ 3tn, ~ . . -. t . · · :.: .. -~ . , #1 BA~ 1 ~R) . . .... ·-;;;:>-.•. ...:,.;;t,, ....... ,,_.; ... : .... · .$1'~All.A ~ SrtuR.:l.1i~ffJ.i.L-.. • ,sq· ~ #~ . ·~ · .. 1 ·~ -. -. < • : •• • •• : • , 4 s l . 3 ~.t "' -Vu -=-. L4 ( ){,.J°;?_ks_f }(siX.~ }'}: -~:•.:. . I ¢Ve,_~.·.,&-~-. liY-J.~'-(9.~'')(i~-~} I ~. ?_QJi,~:K ,~ cj> V > ::: _JS ,LJa )( . Z .. ~ ~ Yl£> K!i X-201:V = .. .12 b ~-. i·". 3~'1/~ '> 354 "-oft.. • OPUS CORPORATION . . • DESIGNERS' BUILDERS• DEVELOPERS . Project 6AR:LS.~4,t> Ir Date °!:JI I & / f>f? I (:_ Offices and Affiliates in Minneapolis • Chicago • Milwaukee · Phoenix • Tampa • Pensacola VCNG&E.IE StiEA&WALL5 By----- Sheet l-ZJ of __ I SE.E. 11 E).;1ER.CALG LA-r. ~ TcRS. FoRc.E 1)csT, Ft>R R1&i1D FRAMES~ 4t--lt> 5TAAT.> 12.UNS LOUI.SJ_ Fo~ · St.lPP~/Z.i' ~f=.A"110N$ I I I I I I I I I I I I I I I .'I ./ f 1 ~ (c.oN-r.) . t5e:N1) '~ J_ ro WA LL ~1u "' 1.4-( 11 )(4,,S ks-t)( 6~ ,·r /z .,. s~··1 ~ ft;73 /N,K ~ = 11''. d ~ ii..C:-/ ArvuN = 0, ~0-AR~ :::. 6. S 7 AMIN -:: 4/3 -,4/Z.f;Q ~ 0.703 ,nz/,. 4> ~'\ n = ~,~ '> M ~ A~ = o ~o 111"-/, = ti 7 f:AR @ 9 "' ~-~i -Jd =-34.~1. h l6N~E.C..t 'v.JALL TO Fr~ -SHEAR. TRAN6F'SR 2-t 4 (J /8." o. c.-. s;.t=. fbl L -Z ~ . DEPJl:L =-23. 33' ~ Z,0 > 1: '.:)PAN /2.' ,; St\E.AR. W.ALL1 DESIGN t'c.-~ 3 K~i tr :;:~O ts, 17f:Wt7 1U! . Mu ~ 214"' ~ \7..') ( \7.,"/,) ==-. 40CD0 JNI"- ¼(l-Z" A-AC1 = •• ~PUS CORPORATION DESIGNERS .-BUILD~RS • DEVELOPERS Project WeLS.~Al> Ir Date !>/ I Ct /Sf; I r-__ Offices and Affiliates in Minneapolis• Chicago· Milwaukee· Phoenix· Tampa· Pensacola VONGE;E.T6 .. S.>ff(ARWALLS By----- Sheet l-2,2, of __ I I I I I I I I I I -1 I I I I I I SE.~ · ''·E).;lttCALG LA;, f To~s. Fo1<c.E "'t>f s T, FoR R, &i ID FRA r-,es ~ 4 f-.Jt> oTAAt> RUNS . LOU IS!_ t=-o~ SUPP()~j F!~"-r10NS )t\tAR. V VALL . DErLEC...1101'( A=-P'. b~ 3 Sc. I" + 1.2.. r b _ ::::. o. COl-4 t oi 0631 ~ a.Cl044>-°J A ~ V · . NE.6Llb/f!>L.~ f:: .13Q.i K / 1,2;; • ~~"- . tl. ~ 3\1'~ ks, h"" 144'' A =-3 ~<co 1N-z. t v-~ J:<:-/z u +. 1s) =-I r;,7 kst _ I'--=-.11 ; 951 /)59 ,n4-=-\1'1 .l '7,,·1--2 'f' I 1· VE'.R.IF'C :. Poes til.··noN (,,l<_t\q<. l'. ' ,, .tlf ~ 137.11< ( 144") .. ·_ ()~'LO k Si < < 7~? ~ 3600'-= 0~4 lt ks:,' S /1'1 (..2ziY· . -. l ~ao b SE~ tlON 1)0£.S, . NC>'T c..RtllK . I G --I fOt!i . hw ./ l.w ~ ·1.z.' /~.I.~ 1' -= DJ)'? 3 . ~ . ~ .Vu.~ Z1-*f: ·--... : .. _-:~·:· \/u).v~ ~ Zl4 I(, /ri 11 tz1,<o~')Q~111,)--D.Of;J~::S,' < 8-JIT-:.-0,441Ui :: ' . . . 'eyr.---"- .A> ln1n ~ ·-.'.0:07;17 (I," )uz") ~ D. I~ ,n/1 ~ > J.4. a. ,~,, (), l/. ~A-WAY. IN i'.A. ftlU-- . BR.. . ! t s· (l;,. I 0 11 0, V, Ir ti t lN/..lC UJY£/(. UsE il:;4 s @ ,i-O,l,, \/E.R:r: 1'0 C.QR,~ESfON\) T6 1tfc To ~W6 f<.. ~L,Ag . . I I I .1· I I I I I I I I I I Offices and Affm~~-in.,.,~~}l'~. ~ilwlukee. Phoenix. Tampa. ~s.-r ~ We. 'S,. T Project 6A g u; !!.At> lI' . Date ~/IC,/!$, By SC~61 Sheet L-$.l' of __ . __ UQNG&lit!:;~:-~WJiLLS hl.:,q tJ Sou:t \ l:: . SeE..~--:~'l~i~~~--~A:1", ~ ToR6. Foac.E Dts-r, Fi,R R1&i1D FRAMES'1 4f..lt> :. -~w~~~f>:-RiJN,S LOUI~ 't1(:=!-Fo~ SWPP~[Z.T J<!j:.A'-1i"ION$ . . t It€ C.Ot... . •'TO I :: r ~ ¥ l .. . i ::,.Z.J'' a . 1 _· 131,i i. , (i:tf;"J11,."/, ) . A. -~1_,~, '-2(1,H'))z (-'z,'6 7 ,·n~) f ~ 1., ·\ (1: KS.i ,.. M I N I ~ A t, Pi . . f ::J;. I I I I I I I I I I I I I I I I I ~ OPUS CORPQAATION, . DESIGNERS• Bt/lLD;(l~~~bPP£~$-. .,;~ Offices and Affilj~f~~'{;i.~~'~'Ga@'~·MJlwaukee. ·Phoenix· Tampa· Pensacola _ .,. ~:.?~-~ :~ -*,.~1:;St·~~:~~--::-~-->-~ _-. ~;;r~::~~:~ - •.. '-~fi~- --;__~!t Project CAJZ I $MP TI. Date 4/13 /8~ i ' By 5{;.d2 Sheet L-70,2 of ___ _ ' . . ' { ' 1 ~ i ! ____ ,.__ __ .,._ ... I I I I I I I. I I I I I I I I I. OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS . ~~>. Offices and Affiliates in Minnecll!Q,lis,~ Bhi!=cJQO• Mitwaul<ee:,Phoenix ·Tampa· Pensacola -.:;: . ~: -:.... - .I i ' I ' ! i I J j i l ' ; ; I ! ' ' l ' l ' j ' i ' I : ' l ! i i ! ' \ 1 1 ! ' ! ' I I 1 J l ! I ' ! I ' ! l ' Project ~l?d,,} r.,~p :It-- Date W/87?? By ~/,./:,a r . Sheet L .... -z,9 of_...;___ -----1---, ___ · ..... , . ; i l ! ' ) I l ; ; i j -~-.. II>"•·~ . , ~----~ _;;_ --~ --=.:.~: ··:--. . ,----. ~ . -: OPUS CO'R-PORATION: DESIGNERS • BUILDERS • DEVELOPERS Project WR'..LS.j!,A.t> Ir Date ~/ l t, /Sf? 1--(. --. . 1_ I I I I I I I I I I I I I I I :1 Offices .and Affiliates in Minneapolis· Chicago,• Milwaukee· Phoenix• Tampa· Pensacola By ----- (;oNG@;):J;?f ~~!,.LS Sheet l-2D ,1 SE.E.' ''5·kt·":~:\C-LG LAT, f ToRS. Fo1<c.E l>tsT, Fc)R R1&i1D FRAf"'1ES 11 4t-Jt> cs~Jj. Ruris LOu,sl FoR suPP~,z,T ~~~T10Ns WALL 0~ G,~\1) 3 f·l<'.OM (; -p, i (1-116Hf.R. LATE.RAL LOA'D 4 E.QuAL 6l<AVITY LOAD TO 51MIL4R. WAL!-ON 6Rlt:> 7 fROM C., -V~".l). -- 'l..9,33' s · 1<.1t-. - If~--l" . . -, f f ~ ~ lt5 Ck~r)(Z'(S.:';( SCe;')_ · rs:,L.:; • 11 · ·k_d~ u.<oi~-( i--3~ ~ .1·:: ii y_\;· ~L~8 ~ , 1i; kcl (. 4')(e,, 3b -I· !>'2. f ~ . 4,·, 9 "- 16, 4·}', JI ::i, S ~ II ,,.0 \'\, tJ,'L/1 I I I I I I:! I .1 I I I I I I .. ti ~-t0,4'- p - 3 ~\ ~I ~ b94~· Project 6AIZLS.~At> lI --~~~~,~ -·~ : Date ~/ lC, /Sf? · °' == (rt/ -e) -= 7. (o · CL-·-:=: 1%-·I0,1 = '1, I L ~ (1) = ~'.~k:f . . "::. . .-· .. -.'1,.. ;: " .~ . - --~~Pus ~ORP0MT10N · DESIGNERS • BUILDERS • DEVELOPERS Project C,A!2LS.~A.t> 1! Date ~/t{p /Sf? I ( Offices and Affiliates in Minneapolis·· Chicago· Milwaukee• Phoenix· Tampa· Pensacola -~ oNG-~;~--<'.;.~~:-:.rt-.;-,\:·:::·· .. :-. 1 . By--------- Sheet L-g2,. of __ I SE.E. ,·{;f~:i" ., .. }~~:t,:c;. LA~. ~ ToRS. FoRc.E. 1)1sT, F()R R1&i1D FRAr-1es'1 41-Jt> ~1fti>~ RUN-S LOU l.Sl. t=-of{ SUPP~"-T l<!f=.A"T10N$ I I- I I I I I I I I I I I I I I /f1~ ( .A t.~Q )( 1/3) f;EN~'~ @ TOE M u ~ \ .. + ( v ) ( 7, ~ 3 ks+' ) I' ( z~ Y1 -/ 1. ~ tz.' ~. 1 A,M~: o. '2.t (~),: 0.7..~ IP/1 II it: 7 Gi l~"o.c.. '= 0,40 in'/./, Sl=-E. ?A~E L-2 <G, >HeAR CE. Tb£ Vu ~ _1:4_(:t'' )(7,~3 k1-t')(8'Xz') = 1,71."-< 2t)G,K Ol' UNRE.11'4~ . _$EE 'PAbE: L-'Z(o B.~Nt,'61 l_ iD VA'c.l. J-1u -1.~(rlr)(7,~'t,ksf)(Yf Ji "' CCNN€v1 .WALL. ·10 ftbl . -SHf-A~ if<AN.S. FE-R.. . Vs -.. \y-JALI.. W-r'J__IJ.) I. . ·_ .Vu ~ (zwk. -(l'X ti'X ;1')(,15 K/;p X, ,) ) · z.o ,., ,,, 15,·4 ~· ,.. . -= 7~ '"',. ,e;, <. ~3g ,w,I< I.I lf 7 @ C.," fl, t,, ~Hoe.1.f --~ ~ :fJ ~~ _=-45/ K_ / 2_F"A<..~S (3Z') = (J,'23 ln1/,/rFJlI:- • .J/t 4 ~ '10'1. O,v. Gc~i.i~~1--ro,,._ ~St.A~:~ ... : ... ,~--- . . ·_ , ::¥ttf r.~r·:·~{/,_;~;{ oK_ i:·· ~/--",L:1;.(_t::~Tl.tl>~ 0 4<o s1u.cs. Mlt-L 1NTK ~Ll\5 ttS.~/~-ru1l}:\;-t:t._~--.:~ __ 't/. -. (.Ya' -z-ti,?S3")JC2Jiou:· -= {r;~ .STUDS AlTUill.. ~ 3/4'' . .¢ )(;-If HS@ rz"",v. IZ./i-z, ' Z~C>t<. (z.o) ::;; . Z41 .sru()r £~Q.. ~ Co5 JZ.'' :.. . ~7.o· ST<AP5 Acrufi/---- . J ~-99 t..; Stu o ,Zo I . I I I I I I I I I I I ·1 I I '.I ··: ,.._- - Project (';AR:LS~At> II' Date !>II& /Sf, By£{;,(:;,- Office's.and ~ffjl~ll)~_t.!~fs-•:cGtiicND • Milwaukee· Phoenix· Tampa • Pensacola. O ._:;~f:' >.-' '~";\'.'£,.-·r:.-~:~~-f·:;:,:.,,::;; ·i_ Sheet l-33 of __ _ sie:_-~?:i. :i~i,_'-' LA,. ~ ToRS. Fo1<c.E l)fsT, Fc>R R1C:n1 D FRArtES ~ 4 ~t>'\ _., ___ ~e~~ · .,. -0 ~-·,_: .tliJN.S LOU \SJ. Fo~ SU ppc,";T ~f=..4~TI o N $ \JALL ·oss\6\\l ~-=-r2.11 d· • 2b 1 ~.12'?t :: 3Y<J'' t,e1.1~~ ,,. 2~0~ t 12·)(12"/,) (1.d) l 2 ·) = · 7!i~ "''"' ... At11,N ., ~ A~ai = ~ ( 4-,12,) .,, ;;,.~ ~ :-*I IIARS As" i..o '" 3 · ,. ~EL At..S-4 f6 L ·-Z.7 4'M.n.::::. ,oqlow liol•tc.. )ftgt~·-;~_ ?,.O. ('lfaof<J ': l';,W"' · c "JOO~ ~ IPVn :· SU Pt, [.~~f<: 7. -LA"< ~es ·;;~. -tt~i . _. . •. ,,.-~·· .-. ·:,...,.... IL ---- . : . : 1L-.._ I r ····-. ··-··---------------- I 3--1:4-~11RJ{ur1 _@ -~e~ o,r,. 34-' ~ 'Tor e',AIZS #7 (l i~-fl 6,(,1, ~-----;-:.· \ £t:~~A:'f tt,4-(I j1B'1t .t,,l,, ~A-U,~'(' . . ~A. fACf!: . I ~*-4--OWL @ !::,A. Ve:'ll:f. __ F0-tf7. !!A: ,1-l.D \-\fl PWL--Fe,~ f~-Ut.~-r. ~-r--r. 13AK.S: L,ot-Jb, iF 7 @ I~'' f).(.h f H-Oft1 .Jt-7 @_ ~I/ 0,/.,. 4:-~"':'"'-. . <-. '.· . .-.,~ .. -1~ • OPUS CORPORATIUlf .-. DESIGNERS • BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis • Chicago· Milwaukee · Phoenix • Tampa • Pansacola· I~ ftr~;~~t:::l~_;~(~~lJi~,~~f~' f-~~.... . . Date 2 I 29 l'b'b.. · · · .. ,.; ~ r --~B· By--,----- Sheet L:..;4 of __ _ ··'1'1"<'"' ... \ -' "·-~~ I I I I I Q @ I?'. 0 '' I ,; ~ D ,, ' 1? '... o '' ! ------------,If----· -r·------ ·o ,,;.. ~-· r"·o '-0,0' I I I I 2· I l, 10 I l'l.C ~. 9, _______ ... ______ ...., _____ .,... ____ __,,7 I 5HEA~W.ALL 0 I I I I I POOR QUALITY ORIGINAL S I 1--::-~ I I I_ , I I. .) I\ j I ·; - 1 •. ' -,.,,,:; 1,. I I) I .. 1· I I I S T·A AD - REVIS!~ 6.f· PRCfRiETARY: RESEARCH ENG DATE= 88/0 TI!IE= 10.: CARLSBAD I SYSTEM · A STEB. FRA~ C(KRETE GRADE. ; 7 9 19 9 '.ff 18-15 ~~1' ?t --· u 1g,2r • ALL ; POI': ~ ':~ :;_ z.t I 1.~, I I ) 40. UNHS KIPS FEET 41. LOADING 1 -STIFRESS 42. JOINT LOADS 43 • .f FX 1H' 44. LOADING:,-:-:~ 45. JOINT LOAOf :'\.: ' ._. 46. 4 FX. i6':°i,:r·~ZJ3FX 16.15 47. 3 Fl< 24.4't-·1V:~ 24.-4i 48. 2 FX 11.9 ; f8fFXU.9 -- 49. LOADING 3 -GRAVITY DEA1J LOADS 50. JOINT LOADS 51. 4 FY -1.7; 12 FY -1.7 · 52. 21 FY -1.7; 1 FY -17~ 53. 2 FY -17. ; 3 FY -17. 54. 13 FY -17. ; 17 FY -17. 55. 18 FY -17. 56. l'IEJIIB LOAD 57. 18 UNI Y -f.24; 21 UNI Y -1.24 58. 24 UNI Y -f.24; 27 UNI Y -8.24 59. 16 UNI Y -1.15; 17 UNI Y -1.15 68. 19 UNI Y -1.15; 21 UNI Y -1.15 61, 22 UNI Y -1.15; 23 UNI Y -1.15 62. 25 UNI Y -1.15; 26 UNI Y -1.15 63. SELF· 64. LOAD 4 -GRAVITY LIVE LOADS 65. JOINT LOADS 66. 4 FY -2.1; 12 FY -2.8 67. 21 FY -2,8; 1 FY -15. 68. 2 FY -15-. ; 3 FY -15, 69. 17 FY -15. ; 18 FY -15. 78. 19 FY -15. 71. MEl'IB LOADS 72, 18 UNI Y. -1.13; 21 UNI Y -1.13 73. 24 UNI Y -1.13; 27 UNI Y -8,ll 74, 16 UNI Y -1,f ; 17 UNI Y -1.8 75. 19 LIU V -1.f ; 21 UNI Y -1.f. 76, 22 UNIV -1.8 ; 23 UNI Y -1,1 77. 25 UNI Y -1.1 ; 26 UNI Y -1.1 78. LOADING COMB 5 -DEAD+ LIVE 79. 3 141 80. LOADING COMB 6-: D+L+EQ <STEEL FRAN:> 81. 2 1.08 5 1.ef 82. LOAD COMB. 7. '.'.' 2.f<EQ>-*~"·:_ . _ 83 2 2 I 5' i-:~ .. _,'.. ._-_ ,·,,_' 84: PERFORM i/ii"i/1~:\ --,.,_. -- 85. LOAD LIST ;{12t: - 86. PRINT JOIHt1~Jft': ~:-.. :•'';:-' . . ~ .. ,_ _.:_-:_.~rt.";. :.. ... :-;,_ i :::·..::. ·_ :~--~:-- .. 4-,;; ~ I _ JOJNf DI~; : ~--, ----~--""!;--·--- 1·~\01NT -LOAD-ROTAN Y-ROTAN Z-ROTAN 1 1 . '..HHe .00010 --.OOM· I ... ·t· ~--~ -.00288 2 1 --'," ... "" ..... -:':'-... 3 1 .• 98523 .02571 . ..-,000H .00000 -.00321 4 1 1.66281 .92962 .HtH· .0Hle .0HH -.00323 ~-~-._,:_ .0Hte .HHe .00000 .000H .OOIH I . 5 1 .00000 6 1 .39374 ".',00237 ·:HeH .000fi .~et -.00223 7 1 .98297 -.00372 .HHe .00H0 .00000 -.00223 I 8 1 1.61235 -.08437 . .HM .HHI .00000 -.00202 9 1 .HH( .HM .HiH .Htlte .00Hf .00000 10 1 .39396 ,00297 ... ·-.00M -.00162 11 1 ,97858 .00272 .HM .01010 .HM -~00226 - I 12 1 1..5'7726 .00254 ... .000H .00000 -.00195 13 1 .000fi -~ .000H .00000 .00000 .Mte 14 1 .39355 .001+4 .HM .00fie .01M -.00112 I 15 1 ,97458 .00227 .HIH .00001-· .00000 -.00226 16 1 1,55617 ,00254· .eea ,,eee, .00101 -.00186 17 1 .00000 ..... .HHS .-. .00000 .00M 18 1 .39263 -.91141 .NeH .NeH .MH -.00204 I 19 1 .97?-69 -.02705 ... .00000 .00100 -.00303 20 1 1.54857 -.03032 .00100 .00000 .00000 -.00265 I "***"******* END OF' LATEST ANALYSIS RESULT ***11111111111 I .I I I I I I I I 87. LOAD LIST 5-6 88. PRINT JOIN DISPLACElelNT .r l~.OINT LOAil X-:rRANS . · v .. IRANS: _ z~ TRAHS' X-ROTAN Y-ROTAN . ,-.,., . . -~J' t 5· ~·-... '. --· 6 .NIH .MIi I 2 5 ·.IHH .HIH· --.00ff0. 3 5 .HM .HM I 6 .. ~';00HI: .010H 4 5 .00123 -.05121 ... ... -~ j_ 1,82113 -.03468 • Heft .00100 .Mfi I 5 5 .01100 .IHH .,eNee .0HH .00008 6 .08000 ·-.IHH ,-,, -~ 6 5 .00100 -.12301 • iMB ... .00009 1· 6 .38902 -.02438 .HIH .SfJHfJ .00000 7 5 .00219 -.03551 .HM .BHM .H00e 6 .83011 -_.83787 ... .0Mf .Mfi 8 5 .00042 -.03737 ... .00000 .0fM ·1 6 1.08279· -.03898 .eMI .011H .00000 9 5 .00000 .0HH .8ffte .010N .HefJf 6 .H000· ' • H000 .... ·-.01100 I-.. .10 5 .00138 -.02299 ... .01100 . .fJflfJI 6 . .38819 -.02018-... .00Ht .OOM 11 5 .00169 -.-~94 . ,00fft ... .HM 6 .82490 -.033i8 .eMI ,-,, .fJfHI I. 12 5 -.00026 -.03882 .fJIIH .0HII .0HH ·6 1.07982 -.03609 ·""' .0Me .00000 13 5 .Hfff .000ft .HIH .fJftH .00ff)f I 6 ... .000H ·-.OOM ,-,,· 14 .. 5 .00169 -.82303 .00fff .010H· 00Hj· .. 6 .38881 -.02182 ... ... .0t00f I 15 5 .01125· <03536 .eMeJ .IHH. .IHff 6 .82486 -.03367 .0HIB ·-· .00000· 16 5 -.00101 -.03716 .00010 .000H ,0fef)f' 6 1.08177 -.03539 .000H .00M .H000 I 17 5 .OOHt .. .,, .tMI .IHH .00001 6 .00010 ,0000,· .ffM .00000· .H000· 18 5 .0f208 -.02615 .... ... ,0HH:· I 6 .39081 -.03822 --.HIH ---· 19 5 .Hm· -.83761 .... ·""' ..HeH 6 .83111 -.15481. .... . .... -~ 20 5 .,_.,:·• ... ,MIH I 6 :,_,, .IMI. I IIIIHIIHffff I 89. PRINT SUPPORT REACTIONS I I I Z-ROTAN .Hfft .HS00 -.00626 -.00285 -.00122 -.00194· .00H2 -.00105 .OOHe .oooos .00902 -.00191 .• 0Sfi!-t -.00120 _ .00002 -.01076, .SN· .00HS .00808· -.00141 .~8101 -.00132 .• HH1 _-.00ffi .. HM .00000 -.00103 -.00100 -.M02 -.00138 .00101 -.00078- .00101 ,00000: .WH -.00-1,65 .00126. -.00157 .00i02 -.01106 ..Ji--~ - 44, 1,0C-1\ o. s:;~ P57' 1?4-Z. o,~q1 , ss~ -, 39!_ > ,, 0,'>, , :·frt:.,:jf+:"/~~,- -,!_~ ~s: ~·c ~ 5Z,3 ~;-. ,a;;, ;~• 4'~;f,t'· \·\ 0 9 48,i .k ... 2:-sG 2~-e ~--~-::: . f;t;,< 107~ j',,i;l"c;'.'S. -:: .. ~ ""':.:-~ . -~2 ·; ~~-~ :t~~-!.i::~ :-;;;1-:,-.,, ~4. :'... ' ~:··:',. MEMBER END FORCES I ------------.----" ·:Jl ·-: \ ALL. UNITS A': . ,.,, .. , I· MEMB LOAD -~ION l'IOM-Y 101-Z 1. ·11i{~;::-~f. :~-;;, I 1 5 .00 .00' -5.51 -·~, ""i 2 -100.11 1,50 •• .H· .H -12.97 . ---~ 6 1 70.48 14.58 .H .00 .00 131.38 5-' I 2 -70,48 -14,58 .H .H .H 48.48 ~~ -¼f .. 2 5 2 53.03 -2.67 .H .00 .00 -16.99 3 -53.03 2.67 .00 .H .H -15.89 I 6 2 37.56 7,61 .08 .H. ,00 . 33.59 3 -37.56 -7.61 .H .H .H 60.23. I 3 5 3 6.21 -1.35 .00 .00 .00 -11.72 4 -6.21 1.35 .H .H ,00 -4,90 6 ~ 2.06 2.49 .H. .es .H 2.47 .I 4 -2.06 -2.49 •• .H ,00 28.18- 4 5 5 73,04 : ,23· .H f.00 ,00 1,06 6 -73.04 -.23 .se· .H .00 1.78 I 6 5 77,16 20.07 .01 .01 ,00 151 .• 50 6 -77.16 -20.07 ,01. .H .00· 96.03 I 5. 5 6 39,67 .49 .H .H .,00-.. 2.79 7 -39.67. -.49 .H .H .00 3.25 6 6 41.52 GLiv .H ,If, ,00· .. 95.13 7 -40.52 -17 .1, .H ,H, ·.00 115.74 I 6 5 7 5.92 .22 .00 .00· .. ,00 1.67 8 -5.92 -.22 .01 ',ii( ,01 1.08 I 6 7 6.06 8.74 •• .H .00 . 47.45 8 -6.06 @!) .H ••• .H 60.30 I 7 5 9 .11 ,H· .H .00; ,69 10 -.11 •· ••• • •• .68 . 6 9 22.96 i ... 81-.,e· .00. 162,17 10 -·· •• .H 121.05 ,., I ·8 5 .00 .00 .18 .H .H .24 I 6 .H .00 115.74 .01 .H 118.59 9 5 11 9.14 -.11 ,8fJ; .H .00 -.75 I 12 -9.14 .11 ·" ·"" .H -.63 6 11 9.26 8.17 .00 .00· .00 42,36 12 -9.26 -8.17 .H .00 ,00 58.39 I 10 5 13 73,13 -.06 .H .ff ,00 .12 14 -73,13 .06 .H .01 .00 -.83 I I a-~ ~'j"J'. --;,-~ ..... -.. ~ ,_. -·--':. -~--_,._ ..,~~~-,,..,:_-.., ..... , __ ... _ ----.~,,: I -..: ·_ ....... :_ ---:----.;:'..f..,·_ r ~-_.,_ __ -~: ·::,_· . :-·.-· :~-~~1,. ···-_;, ~~ ;.,.:: 1,.(p I --MEMBER END FORCES. . . ~~· 1· LOAD ,;; TORSION l'IOM-Y l'IOM-Z -: .i:)~: 6 ~ -~:,.~;g/·/1~~:. .00 .00 171.77 I .00 .00 142.68 11 5 14 39.13 -.35 .H .00 .00 -2.34; I 15 -39.13 .35 .00 .00 ,00 -1.97 6 14 37,59 ~-.00 .00 .00 135.27 15 -37.59 -21.04 .00 .00 .·00 124.18 I 12 5 15 5.71 -.24 .00 .00 .00 -1.93 16 -5.71 .24 .H .00 .oo -1.05 6 15 5.46 7.85 .00 .00 .00 39.67 I 16 -5.46 -7.85 .00 .00 ,00 57.18 83,02 13 5 17 1.22 .08 .00 .00 4.96 I 18 -83.02 -1.22 .00 .H ,00 10.03 6 17 121,33 21.79 .H .00 .00 158.29 18 -121.33 -2;1.79 .H .H .H U0.44 I. 14 5 18 36.37 2.49 .01 .00 .00 . 14.14 19 -36.37 -2.49 .H .00 .00 16.58 6 18 52.66 16.36 .SIJ .00 .00 99 .• 83 I 19 -52.66 -16.36 .00 .00 .00 101.91 15 5 19 6.32. 1.48 .00 .00 ,00 . 12.52 I 20 -6.32 -1 .. 48 .08 .e, .00 5.69 6 19 10.45 5.06 .01 .00 .00 23.69 20 -10.45 -5.06 .00 .00 .00 38.68 I 16 5 2 -1.17 15.08 ,ff .00 .00 29.96 6 1.17 17.17 .00 .00 .00 -45.69 6 2 4.92 .92 .01 .ff .00 -82.07 I 6 -4.92 ~ .00 .00 .01 ~~1-VL '2. 17 5 3 1.32 14.82 :?.M. . H .00 27.61 . 7 .00 .00 -47.13 I 6 .00 .00 -62.78 .H .00 -126.66: ~ tVL.. ~ I 18 5 4 ' .. -\-~ .00 .H 4.91' 8 ... ,~-r .00 .00 -8.91 6 4 '/,::1'3\ .00 .H -28.181 ~t>O~ 1· 8 -13,66 .H .00 -38.04 19 5 6 -.91 16.20 .01 .00 .00 41.12 10 .91 16.05 .00 .00 .00 -39.95 I 6 6 1.95 5.31 .ff .00 .00 .@D~-L\il.,'Z. 10 -1.95 26.94 .00 .00 .00 -117 .05 I 20 5 7 1.05 {!.~ .00 .00 .00 42.20 11 -1.05 15.93 .00 .00 .00 -39.30 I ---V .'"·7 -. ~ ~-..... -· I - 7.,,.7 ' ~~~ ,_ MEMBER END FMCES ·,"t,- ' ---_.;~~:(~:*: -~ -~ .. 1,: · ALL UNITS A , -:.,.~ , ' ·- -I IEMB LOAD· 101-Y MOM-I 6 .00 .00 ·36.53 J.,.-L \} L 3 / I .00 .00· -119.81' (YID 21 5 8 1.12 .01 .00 .80 _ 7.83 ·I 12 -1.12 2.67 ,00 .00 .00 -6.24 6 8 4.93 ~-.00 .00 .00 -22,26 } ROOF 12 -4.93 6.68 .00 .00 .oo -36.25 I 22 5 10 -•. 98 15.86 .00 .00 .00 . 39.09 14 .98 16.39 .00 .00 .00 -43.12 6 10 -2.01 -3.86 .00 .00 .00 -119.74 I 14 2.01 36.11 .01 .H .00 -188.02 ~ l,.\j\. 1,- 23 5 11 .91 16.02 ,01 .00 ,00 39.81 I 15 -.91 16.23 .00 .H .00· -41.31· 6 11 ,08 5.17 ,01 .oo .00 -41 •. 14 15 -.08 27.08 .00 .00 .00 -123.25 I_ 24 5 12 1.24 2.77 .08 .08 .00 6,87 16 -1.24 2,78 .00 .00 .oo -6.95 6 12 -3.24 -1.12 .00 .00 .00 -22.H S ~OOF I 16 3.24 6.67 .oo .00 .00--36,21 25 5 14 -1.28 17.60 .oo .00 .00 . 46.28 18 1.28 14.65 .00 .H .00 -24.17 · ,i.,- I_ 6 14 -6.47 -4.42 .00 .00 .oo -97.93 ~1,.<J.,., 18 6.47 36.67 .00 .00 .00 -211.27 I 26 5 15 1.01 17.20 .01 .00 .00 --45.21 19 -1.01 15.05 .00 .00 .00 -29.11 6 15 -13,10 5.84 .01 .00 .00 -40.61 I 19 13.10 27,21 .81 ,00 .00 -125.59 27 5 16 1.48 2.93 ·~----.00 H 8.,01 -· 20 .-.'!_,-,_-1-.,,~.-~ .. .00 .00 -5.69 I 6 16,:;;,,,.;S'-.00 ,0j -20.97 \~F a·:;t. .00 .00 -38.68 _ I ,_ ffffHIIUIIH I 90. PRINT SUPPORT REACTIONS I I I I~ J.OINr LOAD' 1 5 -x MOM-Y ,H .H 6 .H .ff 5 5 .00 .00 6 -21.fr 77.16 .H .H .H 9 5 -.11 73,H ·" .H •• 6 -22.96 64,lffi .H .ff .H 13 5 ,06 90.13 .00 .H ,jf 6 -25.50 86.28 .H .H ~H 17 5 -1.22 115.12 ·" .ff .08 6 ~ 153.33 .ff .H .H I !I UUUUUIIH END OF LATEST ANALYSIS RESlLT HfHHHfHH I I I I I I· I 1. I I I 91, LOAJt LIST 7 92., PRINT SlfPORT REACTICNf · .. · . -"""',:-,-.-_:.::;-.. -: ._--.' ........... j;f;,.;f;L,_,,~ ·-~{·::..:.. . . MOM Z -5.51 131.38 1,06 151.50 .69 162.17 ,12 171,77 4_,96 158.29 I. --. !~ ------------:.. fllOIII-Y 1 7-.H .. 00 5 7 ssJ'r·.,-9 7 -45.82 ••• .00 .00-•• .01 13 7 -51.05 82.43" ••• •• .00 17 7 -42.36 191.63 •• .H . .08 I I 1·. ************** END OF LATEST ANALYSIS RESll.T tffHIHIUiU I I I_ I I I I- I I. I I I .I 93. UNITS INCHES 94. PARA 95. KZ 1.5' MEMB 1 96. KZ 1.70 MEMB 2 97. KZ 1,65 MEMS. 3 98. KZ 1,30 MEMB 4 99. KZ 1,35 MEMB 5 100. KZ 1.35 IIIEMB 6 101. KZ 1.30 MEMB 7 102. KZ 1.30 MEMB 8 103. KZ 1.35 l'IEMB 9 12 104·. KZ 1.30 M9IB 13. 19 21 24 25' 105. KZ 1 .. 50 1EMB 14 16 18 27 116. KZ 1.65 101B' 15, -.. A ... __ 107. KZ 1,25 MEMB 11 108, KZ 1. 30 MEMB· 1t 109. KZ 1,55 MEMB 17 26 110, KZ 1.2 MEMB 22 111. KZ 1.4 MEMB ZS 23- 112. UNL 72 MEl'IB 18 21 24 27 113. UN. 12 MEMB 16 17 19. 28 22 114. UNI.. 12 MEMB 22 23 25 26 115. LY 120 IEMB 16 17-19. ~ ~ 116. LY 120· ., 117. LY 144 -~ 118. LZ 120 119. LZ .120 120, FYLD 3S 121. FvtD 5e,, 122. RATIO t:. 123. LOAD LIST 5 6 124. CHECK CODE ALL ·o· z 268,26 301.95 323.65 343.42 311.61 --~ ;:~:·,-,_..::'='<~:'":f"~\t~~:~fi::0~?-----·:::::" · -"\ --. STMJl.-lII CODE Ct£CKlN6 .... ¼ __ ; I 1 ST W18X55 PASS AISC""1.6-1A .839 6 70.48 ••• 1576.53 .00 2 ST W18X55 PASS AISC-1.6-2 .443 6 -37.56 ~-722..77 148.00 ·1 3 ST W18X55 PASS AISC-1.6-2 .151 6 -2.86 •• 338,19 !AS.ff 4 ST li11'8X55 PASS AISC-1.6-1A .949 6 1· 77.16 .H· 1818.03 .• ' 5 ST W18X55 PASS AISC-1.6-2 .737 6 -40.52 •• 1388.92 148.00 . . -i. I 6 ar w1ax55 PASS AISC-1..6-2: .339 6 -6.86, •• 723.61 148.ff 7 ST W18X55 PASS AISC-1.61B ,:,,. .960· 6 64.~ . H 1946.02 ·"'' . I 8 ST W18X55 PASS AISC-1.6-2 .753 6 -40.97 •• 1423·.11 148.ff 9 ST W18X55 ·PASS AISC-1.6-2 .331 6 1· -9.26 .H· 7H,64 148,ff. 10 ST W18X55 PASS AISC-1.61B· 1.019 6 69.28 •• 2061,19: ••• 11 ST W18X55 PASS AISC-1,6-2 '.826' 6 I 37.59 •• 1m·.u .ff 12 ST W18X55 PASS AISC-1.6-2 .31-l 6 -5.46 .H· 686.22. 148.ff I 13 ST W18X55 PASS· AISC-1.6--lA 1·.147 6 121;33 •• 1899,43 .ee 14 ST W18X55 PASS AISC-1,6-l'A .641~ 6 ·1 -52.66 ••• 1222~.88~ 148.ff 15 ST W18X55 PASS AISC-1.6;.2 .235. 6 --10.45 '.f'. -~ 464.14 148.00 16 ST W16X~?f{t;:,J!. _.-: .931 6 I · -1152.08, 180.tlil ---· :,;."4'· • 17 ST w21x,;, /,~~ .893' 6 -'~;:-' · .:.151-9,96 180.H ,_·,,\_l,, I 18 ST W18X~1( .459 6 . ·-~ -456,43 lei.ff . ~\.,._i/!4£: .iii/.\, 19 ST W16X5fz,?:t<i,s, 9 .738 -6 -1.95 ••• -1~.56 180.H I 20 ST W21X44 PASS AISC-1,6-2 .8'3, 6 -10.92 .es -1437 • .70 180.H 21 ST W18X35 PASS AISC-1.6-2 .363 6 I -4.93 .00 -434,95 180.00 I I . I I ::_: ___ :'.~~:~>,-;~D~i~--·--=~:'. ____ .~;~ I 22 ST W24X68 PASS AISC-1.61B .653 _ 6 I I I t· I I I 2.01 .00 -2160.23 180.00 23 ST W21X44 PASS AISC-1.6-2 .763 6 -.08 .00 -1478.96 180.00 24 ST W18X35 PASS AISC-1.61B .364 6 3.24 .00 -434.53, 180.00 PASS AISC-1.61B .772 6 6.47 .00 -2523.27. 180.00 25 ST W24X68 26 ST W21X44 PASS AISC-1.61B .902 6 13.10 .00 -1507.13 · 180.00 _ 27 ST W18X35 PASS AISC-1.61B .423 6 11.09 .00 -464.14 180.00 ************'** END OF TABULATED RESULT Cf DESIGN ffffffffffffff 125. FINI ***"********** END OF STAAD-111 *************** 10.13.19.LOU,P4,T1~. I. 10.13.19 .ABF , INPUT , 0.002KIODB,01. 10.13.19,USER,RAUENTC,,KBU. 10.13.19,ABG , P4. 10.13.21./CHARGE,T0554EN,A7242. I. 10.13.21.PURGE,STADOUT/NA. 10.13.21.RETURN,OUTPUT. 10.13.21.DEFINE,STADOUT~ I. 10.13.21.GtT,LCJ.t 10 .13.21.BEGIN, ,. 10 .13.22. fffffff'llffffffl I 10.13.22,t EXE ., i!::;:~:: =--. ~ ' 10.G.22.t i ·1 10.13.22.* FOR ~E INFO * 10.13.22.* SEE EXPLAIN,STAAD3 * 10.13.22.************************* I 10.13.22.IFE,FILE(LOU,ASl,DIRECT. 10.13.23.SKIP;TESTl. ~.13.23.ENDIF,TEST1, i0.13.23.FETCH,STAAD3/UN=LIBRARY,M=R. I 10.13.23. FETCH COMPLETE. 10.13.23.STAAD31LOU,STADOUT,9999999. 10.13.25.ABD, STAD I 1111, 13.'38.AEB , 60,288UNTS. 10.13.38. STOP 10,13.38. 337700 MAXIMUM EXECUTION FL. 10.1~-~R. 11.m f':P ~Fr.nNn~ F~F.r.UTJON TTMF.. ~ _,..:5 ·.-4~;: . ii '., ;t,' C ,. -~-- • OPUS CORPORATION . DESIGNERS • BUILDERS• OfVELOPERS · Project 6AeLS.!.At> 1I Date ~/ I<, [!£, I { ,-Offices and Affiliates in Mi~is · Qijcago • _Milwtulme · Phoenix· Tampa • ~a -, . . ~ -· . By sc~&, Sheet l-3<a of __ I I I I I I I I I . I .I I I I I I I vo"1Ggf1;,1g·-j··:~ffl.i::M'M'sLLS No&11:!-Sou,\-\ SE.E. 11 E~fi,·AL.G LAT, ~ ToR!>. Fot<c.E !>fs.T, F()R. R1&i1 D FRAr,1es I/ 4f..Jt> '5TAA't> R.UN.S L.ou1!::l2.• Fo~ SWPP~z-r F!~'-1TloNS ' . 'J.O I _ 201 _ I I /'7" 115' .. . . . -·--. ~ ---··- 1 t ... -,,.. . -~ .. . . -· ... ·-.,, . . --" . I -.. _I_ : ___ _; -43· :.K __ -.. -... . . .. --.. ; . . '_ -. -·-' . --: .: . . :· : _ .. ---·31t? . ,. L L I 'f. I 1' • "I I!-·---t Ir-.... -1, L . . • . .•. _J_ __ l'J;:6-~--. -. . .. --· . -_· -.. . .... c-•• .. . : . -: . : • .,.., ~ .. -,v : ; \ ---0 : ., -• ~ u ,,. -,, 0 -, • -" -~ •-• --•• • • •• • _ ... ' ....... , ... .,,. __ ,.. -1 -• ;.1• L I·-:·· .. -~--- ., 1=,f • • • ~ -t- ---~,. t ......... ·-···~4-· ... . ·-: . ; ·'-\/- .. ---~ i.-~·--•, .... ,- . ( . ------~ ----------·r·· -----_ -----------------; ----,-----: . ., .. , -----... -----,--------l--: ! i , . } -. . ' -. . 0 -A·--.,, .. ~--......... 0 •• Oo -----· •'• --T'Y• ---• , ... ·--o• 0 :..... --~ -. ¥.-.;.._. -· ,..., .. '. : : · ; 100' : . --·. ---··---~-.:. 1···· ... -. : . ·:·------; .. ,_ -:··· .... -;-·--. -·-·-~ .... .. .. ~-----.. , ..... ·1· : ~-----:-· -+--?""·--.. ~ftj?_v.t<--E. Lo.Api,___ ._. ; . ·-:· .... ' ... : __ --: .. __ ;_ .... :·:-. _ __ .... __ .. --:-·---· .. _ .. . . · ___ :._ __ : __ _,:, ___ ..D..L,___:t--2.Sr.5.F 1A~"-·::... .-------'....-. .....:--.~--:_ """' ___ .. : _____ .. _ --il).: . . :.fz.i--~-----1 -2i:x~ f A5: _ ==' Z.4/5~----:----~--.. _; .... : _____ · .fw -~ 0f~12:X!~'~-~J~-~-_: . , . . -R , J::j~_ 3 ~~-~ .. ~--~-.3~~ ~~-L-;._ • ___ •.. _ ::~ _ir;°:>=-;~ -r ~= =: ~; _ :_ :r4,s:_ _____ · . .-:-......... · .... : ... 2~------~-, ____ · _______ ; __ -__ ·w~~--~-U,z'X:7'5tZ.~)J::J,2.Kf+' ·. fft.J-~?'.~JII1--:·-:~:-. :-._-~-·.~-~-~~~ ~~-.. . .. --.... --~-_ _i_....:. _ _'. _; ____ ~_5511<. ... . .... . . . .. ... ... . ... . . ... :.~· -.. f~A~-i: .. AN .. f,_ _ F1~---.:C:tQxf?;,Q~J~;?-'?-B~~;~ i4-~~--E~.M-E~_ ---~--.. _ .. : .C.O.kt ___ 1'~. --:1".AKE: F.il.~ .. l..--~~ VJ1Y ___ LQAJ:>.. ..... QE ;.EA,. -~OIL.,_;.. ~J.., ..... : ... ~ .ASSUME. A. 5MALJ.~.c..R.. 1 ~6t-JTINUOU S Fi~, -ro -,~H!~l'-: : __ OV~R.l"UR\\l1 Nbi, . J32_1< (J.4) -~ .12>$k < ·2~K; f4UOWA6£.lt C RS. I l'-1A N.U.t L t .4LI.. : /t,C()6 f Sf ---~,:;:te1:1i;:1t:".--;,.:'!'"-' ~· .__ ~-. -:·:, ·~ ~ -· .. _---. ' .. ---lft o,us cOR,oRAt10N · · I /~ -~- I I I I I I I I I I_ I I I i½f!, . I I I I -~ - DESIGNERS· BUILDERS • DEVELOPERS SE..E; · --~_llt-CAi.i-,. ~A'T, ~ ToRS. foRc.e. DtsT, FC>R R1&i1D ·FRA~es'' 4f-Jt, ~tlih-. ~UJ'{S LOu1~2.,«1 Fo~ SUPP()"-'T ~~'-'TlO'N$ v'f-rb,. Esi1MA11:'.. FT&, WtDTH &!RAvrrY LoAos_ ONLY . w · -=-24,2 ~ 412 ::t: !32 + 75 ± '7o + 90 + \lS + 150 + 12-c = 1.3' : -__ _ ' _ ~~r;kJ~ . ( ICO() "' "' " .. . -. . . ~ . . . _ _ ~--. T RiY. _. 24:~ .X ..I 2" __ : X CONJ.. F.1a _ . -. _ w-r -= 3DJ(.. : ; ' I I 1. I I: I I I I I I I I I 1_ I •"'-"". -- Project W·R:LS.§Al> 11" Date ~/I(, /Sf? Bv SC~QT Sheet l-32;, of __ ----~ " ~~;;:· __ :;;; j I OPUS ci>RPORAri~~ '. '>~, . .. . . . . DESIGNERS • BUILDERS • DEVELOPERS . I -r· . Offices and Affiliates. in MiMIJl)Olis • Chiclgo • Milwaul!le. Phoenix· Tampa • Pinsacota . _,,."),_ ... ,',;__," I I- I I I I I I I ·1 I I I I I .I At:L. Ttt-1~ = (.9)Vl0Ksr~A~ > i¼,'7"-= i.<o i~.,_ /1t>• ;{tJ:?. . ___ __ 4_-*4. _ .Sil~tuf't @ .. 4.". o,r.,,; ~-ttor.~l~ffe -··-··:.;-~~-- ,. I~ I/ ) ~.:-:..:~ '.. " 1 ·:; :.~ .... __ ,. __ ~--. C,QL, . .f'-.;WlT:H.L~-. .. OF. "'t."t>P... ·\jy~~~-~-..,,, . , ::;,.,.~ -. .: .. :-ww~ ~-"." "'' ... ·-·· ~-_.,._ .. __ :_ . -· --:--· ---· ··-_,__,,. -..... , ... -....... . . .. t : ', • .. •• ...,.;..,.. -~ ·----·--· ·-• ...,:._. w ·-· .. ~ ... ·--•• ;-.--:"· -• • •• , 1 i ; : , r(' : ' .. . ··----. ~--,.. --. "'". . . -. . •i . r• : ., , : . . .... . ---~J·;i---l~ -~ ~~:, ;~--C ··;:~:----~ ---------........ ---. :· .... . ., .. . .. . .,, . -. -· ::....... ,., .. ----· .. --... -......... ' ... t··---.-.... -· ___ , .... _·_ ·-·-:-· .. ,. ''"' . ___ .,_ . . ' . : i • • i ·;----·-----·-:-~---i ~ .• ·---··:r····-.-----.................. ., ---J.·-.-f __ ... -i· ,<v-..._,.. ... -~------" • < .. : • . ' . . ' . '. --' . -· --;----;-~------~--; -"-; ; ! : .. _ .. .., .... ---....... I ·1 I I I I· I I I I I I I I I I OPUS CORPORATION DESIGNERS • BUILDERS,• DEVELOPERS. Offices and Affiliates in Mfnneapoli~· Chicago.· Milwaukee· Phoenix· Tampa· Pensacola Proje!:t 0AJ2,,l.5f:4D rr Date <:2/lO/&'o . By Sb& Sheet L-39' of __ _ l l l . • -+--+----,..._..-_..... ____ ...---+-_+--....,...-i,--..-1----;--;----+---'---t--L~--_! ·-·.: -· , ! ! L. . ' =:., 11'11 IIIIPIIIATIII I . DESIGNERS • BUILDERS • DEVElOP.ERS , '""""\ Offices and Affiliates in Minneapolis,• Chicago· MilwaUK88'" Phoenix· Tampa· Pensacola I I I I I I I I I I I I I I Project CAR I ..$\;;,AD lt Date 3/!0/e;/o sv s/c,L; Sheet L -4:? of __ _ I I I I .I I ii I I ·1 I I I I ·I Rooi-, ' f>QL1''2 . · c; \.J --~ · : . :z:. 0.A~ KlfS · -~-V-S · · ~.-· ~-.-~-;r· . --~--··,· ·-----.~-.... ,..,.. Project C:AKL Sf;.At> Date 3/10/SS, sv s7,r, Sheet L-4-) of __ _ I I I I I . I ·I I I I I I I I I I LVL 1- . . <; V ._, ___ -· . . .. . L S, .... ;: _.,._ . , ·: ~ rvr.·-·. i ci1(q_!'.') +-: 31--~~~~-~ 7z.i~ . . ~2.. r::,1 . ' . -~· ..... ----·· ... ---__.:._ --t~.1.·.?--" ·--~-. ---. . -·~ -~·-·-. ' ...... ~--·--•. --~--~r · _ .. ·1i;)-~---i ~-~~: ·._J .. . : i-~1-l -,· -YZji -~-ii;ii,Vt~--(_.iiJ::: -;;· ·7;,;:ij~::---~-. :.~-· ·,., :f~: __ ...... {.b .. L.-?+--ti.-V-~~_.t;~_J_~_ ~~ --~: ~---\wf_.. i.l .. -'-~-·--·· ). ': i ;~----.. : -_.J$:~~1?<--~--~-- •·· -.__fl.m:_ : ~+~j~i : _t._' .... <--~: ___ . : __ --~ .•. + . ·:~·· ··~ . . ~-: j~~~ 1l Gi1L ::_; ti~ ~--;__ ·:~s.Iy.;: /'} .. ~J'.•L ~Qi!,.~-~ .·. ~ ___ : ____ ,_ . --~_.1: Ll:t""_...:. ........ -~--_______ _,; ___ .. _·_ . ..:.. ---~----_: ___ J_ .. . . · , ,; --~ -. ·-----.... · . : _~J~~-··11.F!~~J ·:_~Jii:ttI:~t~C:-~~:=-:·:~·--~ ::_ -• .. : _: i _ }~-i (J~t~_L' : .;__· _'._ :. L: ; ....... _:_:_: ... !_ ··tL· .. ·. i ! f ; : . ' ~ ........ , ... .,,,,_ --~ 1_ , • 1 :... ~ : l f I ,. ~ ........... : .... -• ..,; ..... ,_ -.," __ ,,., ____ ,....;;.,.,, ___ :__. ••••• ~ ••• ,'. ,.v-.-- ; .. i '' : --• ' ' '. ; ·; i. i ; J . . ; : ~ : . : : : . . ·-·-· _ _,_lf ___ \\J~O----~ · · · _ _._ __ '\ ___ :_._____ ~-__ : ____ 1-. ; .. -: -----'---'--'.----~-----: ----: --~ .:. -l~;~; ,_ c:;· L 1 ; • +-1 :-1~. zi L g-fc.: -;--~ " J 1Ztl• · ~-3 (l i.i,-" < 4 /' -~---4~--.'.t. ~----···-. _ -·--:~-----..,--TY--"V,,,__: !-----,:::--~"0---1-,,,. ~"' ; t: ·1: :1 : ; i Cf~-~ : : : '. : · . 1 · d/.' '· ·----~" --·:-----";··1· . .. . ~r·-~-----·.-·· -; .. -f~ -------r----..... --1· . lil 11.A·ir ~7 ... ts. -:,i.-;-,-~:,.--. ~- • : : '!-:~.:.--~\~ ; ~ t _ ; , . • _ / 't-1 ,;; • rr-"vs-' . :"f' . ' ;-· r .. . --·.::;i · ,; , z·4 ;,., ;,_ o,; ; I. ·t:.w'lll ·:·z· ~f---.--··-; '. : : : . ~ ..... .t -.... .-: ... -.:.-. --~ -3 -4--·N""" . ' ; .. -A--4'.-: "------9;·-~~tu . :_J.)_ --;·-_, _!,_ --,c-_ _J,_ --~. . . -~ -< 1 ~ : -~:-.. ..:~ ~ . i :-~-~--ll (<.1 -i ! l: '. : : : : : ; '. . . . t---__ .. "f"., ............ L-\1-~ _=: __ .... =---} __ ~~Wii ..... : .. -..... ~ -~ "' -~--~--.--..... ~-----··· ----~ ~ -.; .. : .. :--·------1-... ~----· ... ---........ , . ,_L. ~f I/ f ,"-tC? iL ~ -~ ~~-1~: .. ~ H~1<Jz 1~:~ ~.l}j l F~A b! ,[_ :_ --. •. -----. .I.:~,~ . _'. __ .. :. . .. . ... .. , ---r-. --:__ _ __ _;_ ··-. : ; .. -· .... , ... .,,... ... I :9 OPUS C0RPi>~~Tr6i' ,< C <:.'?~.;ff+ ; : DESIGNERS • BUILDERS • DEVELOPERS . I (. Offices and Affiliates in .MinnNpolis • 0liclgo · Milwlukle • l'hoeni~· Tempe • flnslcola ·-::\ I I I I I I I I I I I I I I I I I . "'\. .. ; fRAi-,ta~· 11t;~l)f C-0N:N·~':. .tei~gf?-~ ~M ~·~~A,~~ 6b~~: .. L V L. L l (0 NT.) \ffi "'ft'{ 1l. V-i. X i I t -; Ll2"' ll.15) -~ tfu. 5. l(S \ <. !9.b b; ~~ l_b S'') (_ 2 l" ) ii,~. \tsJ"(3"J , :. b,':,1<.Si <<.3/t)IU.i !t-- -:61' lZ 1 '11. -' 4- -W~L-o tv~~ 'l (_'21) F ILE-: L~-HSZ. .--·• o·PtJS COBPOMltQM-. I ' DESIGNERS·· BUILO~RS • 0£VEL~RS ' Offices .and Alf,h1tes in M1nne1pohs·· Chago · Milwlutee · Phoen1~ ·Tampa· fllnsacola I --I 'I I I I .I I ' I I I- I I I I I I I \ @) ' 0 ~ ,._I\ ~ 0 ·' l{I ' 0 ~ ~ c _, .\l' . q 0 , .... ;-. ~- ~ 0 -· .£: "!' ------: ___ ,_, -~ ~ ..... ~ -" '., w. Lou~s 3 !:! -s· f ·" ~ °" -Qoa, i ) ; r-1· rl rJ ~ ' ' r- . r-J . ~ -.3 t·"\ N ,,11-, 2:1 ,,t;ZI r-l ,,,y-,Z/ ti) C t! . : -,:~flr.c>~~! 0A&L S:64,12 -·-=-oate·-i 1i1f1s,·~ -By 5(a,6, Sheet l -44-of __ _ .,, o-:z1 d I I --. I I ) I I. ·) Ii . _,. 1· I I} ffffffffffflllllllllllllllllllllllllllilllllllllll .. .. I S T-A A D -III I .. REVISION 6.83(VERSION 6,LEVa 3) 1 I PRtfRIETARY ~ CF I * RESEARCH EN6UEERS, INC. I I DATE= 88/03/88. I * TIME= 18.27.48. I I I 11111111111111111111111111111111111111111111111111 2. * 3. 1 FILE: LOOIS3 4. 1 FRAME ON GRID D.2 5. 1 A 00-STAGE SYSTBI 6. 1 CCNSISTIN6 CF A STEEL 7. 1 IOENT RESISTING F1WE ABOVE 8, 1 GRADE AND cet«:RETE Sl-£ARWALLS 9. I BELC* GRADE. 10. I 11. 1.MITS KIP FEET 12, ItflUT WIDTH 45 13. OOTPUT WIDTH 72 14. JOIN COORD 15. 1 I 12 I 4 I 49 I 16. 5 1112 I 8 11 49 I 17. 9 25 12 I 12 25 49 I 18. 13 4t 12 I 16 4149 I 19. 17 55 12 I 2J 55 49 I 21. 198 INCID 21. 1 1 2 3 ; 4 5 6 6 ,,., 22. 7-9 11 9_rJ .. : ·i~~~·.·l:Z:·· . : :]£? 23. 13 11 r,.. ·,.f 1-a.~. . _..,~-., 24. 19 6 11·· 2, ~ f;.14-z.4: ·';..;·~-·-' (' !'::..·--:". . 25. 25 14 18: :·;,;:..:: •: · ,i, ··. 26 •. IIIIC'MD ~--'"£'·.-· '. r1U111 rnur-~1:-. ~ 27. 1 4 7 11 13: TA; ST Nlax!I: ·"· 28. 2 3 5 6 8 9 TA ST N18X51 29. 11 12 14 15 TA ST N18X9 31. 16 19 22 25 TA ST W24X68 31. 17 2J 23 26 TA ST N21X44 32. 18 2l 24 27 TA ST N18X35 33. UNITS KIPS INCH 34. CCNSTANTS 35. E 29ffl. ALL 36. POIS IJ.3 AU 37. SUPPORT 38. 159 13 17 FIXED Ii I I I I I 1· _I-t ----... --# •• -" 4 • - 'L-4S-:1 . 3, { ~· '..-,;-' Y. 1_ ..... \ -- 1 I, I 1 ... I; I I I I ·1·· I ·1 :I I; I) 1·; ,\ 39. I.NHS KIPS-FcEET 43; ~,l!OADIN&/ i .. :...: ;·~. Jgss;-. • ':·, :,_'-;r .. ,i:;:-~· ::.-': ·:----~-; ...... 41 'JOINI'!;, ·• · '-42:'·t~f;_,~~~{i?\-· .. 43"' UJA»i-·:z·~~ ..... JOI~ ,,iu&i'·:.,l·:,,:.· .,,.. n,-~~~ -..... ~: - 45 •. l·FX: 1'6.15r2'ffX>t6.15· 46. 3 F)(. 24.41; 19 FX 24.4' 47. 2 FX 11.9 ; 18 FX 11.9 -48. LOADING 3 -GRAVITY DEAD LOADS 49. JOINT LOADS 50. 4 FY -2.1; 12 FY -2.1 51 •. 28 FY -2.t 52. 2 FY -1.2; 3 FY -1.2 53. 1 FY -1.2 S.. 18 FY -1.2; 17 FY -1.2 55. 19 FY -1.2 56. eB LOAD 57~ 18 LNI Y -IJ.23; 21 I.NI Y -1.23 58'. 24 !JU Y -1.23 ; 27 LNI Y -1.23 59. 16 I.NI Y -1.'11; 17 I.NI Y -1.4' 61. 19 I.NI Y -1.4'.; 21 LNI Y -1.-1t· 61. 22 LNI Y -1.4'· ;· 23 I.WI Y -1.4 62. 25 LNI Y -1.4 ; 26 LNI Y -1.4 63. LOADING 4 -LIVE . 64. JOINT LOADS 65. 4 FY -1.7; 12 FY -1.7 66. 21 FY -1.7 67. MEMS LOADS 68. 18 IJII Y -1.12; 21 IJII Y -1.12 69. 24 IJII Y -f.12; 27 LNI Y -1.12 78. 16 IJII Y -1.2 ; 17 IJII Y -1.2 71. 19 IJII Y -1.2 ; 21 IJII Y -1.2 72. 22 lJII Y -1.2 ; 23 LNI Y -1.2 I 73. 25 LNI Y -1.2 ; 26 lJII Y -1.2 74. LOADING COMB 5 -DEAD+ LIVE 75. 3 141 76. LOADING COMB 6 -<D+L+EQ>STEEL FRAIE 77. 2 1.H 5 1.N . 78. LOAD COMB .7 -z.t<EQ)1tl>:tt. ... OX. FRAIE 79 2 2 15 -l-''l'·;'t.:.: .. -: ._.• ·: ·:,:-':, ~. ~ -.1\.:jtf~i.:{i:\-~: --,/t .. ov,· -r1;or ;:· _ ~:,~~_0.~·t:;..~ -. ~· ...... 81 •. LOAD~t::I_ >'c' • .:. • ~ ' ~. ~-:, -. 82. PRINl;.-JQ --·= -.,._; . ~:z_ i • i I I -1 I I I .I I I I I I I JOINT LOAD .ROTAN Y-ROTAN 1 1 ... -~ 2 i .. _\~.-~ .OOM 3 1 ,·n.4 -~141· --·-.-,. .ieM 4 1 1.61273 .85364 .... .... .00Hf 5 1 -~ . HHI ... .HM .ieM 6 1 .37589 -.11313 .MM .... .HHI 1 1 .93371 -.12199 .HIN -~ .lfi00 8 1 1.57933 -.12393 .IMe ..... .MH 9 ·1 .IHH ,-,, .BMI ... .10101· 10 1 .37537 -.8N85 ..... .HM -~ 11 1 . .93211 -.00138 ·""' .NMJ .Nfit 12 1 1,54#1 -.00165 .MSH .Nfit ,HM 13 1 .... ..... ·""' .HHI .HHI 14 1 .37514 • 00235 ... .NM .0NH 15 1. .93138 .H318 ·-.0HH .0Mi 16 1 1,52348 . N348 ... ... .01fft· 17 1 .... .... ... .HBH· .Hfie '' ..... 18 t .37435 -.11'186 .... .eeM 19 1 • 92944 -.82799 .... .NIH .HHI 20 1 1.51572 -.03153 .HM --· .MH -fffflt11111111 END:OF LATEST ANALYSIS RESULT 11111111111111 83. LOAD LIST. 5 4 84. PRINT _JOIN DISPLACE -:-~_~:.it~~,tt:;;::~,,;1\~t~~~=-zit~-':~1'?,k'i:-__ \~-:~t;'-~~ ··:· _ 14 I! "2·,-'2. ,..ec- /, 7 ~t~ ,, -. ,:.. Z-ROTAN .HM -.00118 -.00303 -.00301 .HM -.00104 -.00212 -.00193 .HM -.00107 -.00214 -.SfJ186 .01M -.001'4 -.10210 -.00181 .Hfie· -.00186 -.00292 -.00264 ·I JOINT .::.\, ,, .. - I 1· I I I 1· I I 1 2 3 4 5 6 7 8 9 1tl' 11 12 13 14 15 16 1 17 18 19 LOAD 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 .. ... 'i,;\_"~ --..JW .00337 -.01949 ~ .00968 .00Ht .00Ht .00000 .0008 -.00085 -.024'5 .3T438 -.03249 -.00005 -.03668 .78742 -.04834 .00289 -.0~798 1.04714 -.05027 .0H00 ,-, .00000 .0H01 -.00032 -.03806 .37423 -.03837 -.00044 -.M643 .78481 -.14689 .00137 -.04917 1.04329 . -.04973 .00000 .eMt . 00000 ... .00020 -.02941 ,37538 -.02746 -.00083 -.04488 .78694 -.04252 -.00012 -.04659 1.04444 -.04416 .OOOOB . HB .00000 • 00000 • 00075 -.01576 .37760 -.02792 -.00139 -.02471 .79395_ -••••• ;:·~ff!~-.: t·'.·.,•:,, ... ,. .. ,;..f ·-.~· I I I ·I 85. PRINT SUPPORT .REACTIONS I I I ,_.,. --.HIH. ~~ •• ;~i:r·= ';• -' ' ( ~.;,,,;::., .. ·:•:· ... .0HH --.HHt .HM .HH0 ... .eMf .00001 ·--... • 00000 ... • 0!MII, ... ,-,, .MH ... ... • Htte .... • HeN. .... . HIH· ... . eMf ... .... .... ... -. . .OOIII-·""' • 00880 .... .0HH -~ .0fte0 .MH .ooeee .... .OOM .... ,Sf0H: .Hele· .080H ... .£/Me .0HH. .001e0 .HIM .HM .HIii' .HIM ..... ... .... ... ·-: ... ... , ·• ... Y-ROTAN Z-ROTAN .:.~· .. ~~~f .HM • 0010tl ~ .. :_-~~ . .0Me .00000 .00000 -.00014 " ~- ~00e10 -.00169 --~t! .000H. ..;,00018 -,37? ,, -:,,-;;_" b797-~,, -· ~- .0HH -.00183 (),1.,-Z. ~ ,7 ..... i ::: .0HH -.00009 ,/t;7 ~ .000H -.00116 ,. ' ,·;~ .HM .ff000 F-6-1'-- .000H ,00000 ot,lrf ---.00013 ... -.OOHH· .HHI -.• 00019 .HM -.00131 .• OOBH -.~ .MH -.00085 .... .00000 .00000 .00000 .Ht08 .£!Hill .iJHH -..00095 --.000ff .OOM -.00122 .0NH -.00ff2 .0ffff -.00073 .0N ..• 000£Je .IHH -~ .... .0H£10 ,,,,,,; -.00090 _.NM .00100. -~ -.00123 .0efft: .00104 .HM -.00071-... .0Ml0 --.00000 --~ .,00029 _.,,. -.00137 -·--.00137 ... , .,.,00135 _ .... ,0tl004 ,0fHI; -.00102. • ·.1 I I I 9 13 17 MOM-Y MOM Z .00 -3.32 .00 134,65 .00 . -3.03 .00 147.88 .00 -.03 .00 149.08 .00 .04 .00 150.57 .00 6.12 .00 141.93 ·1 ************** END OF LATEST ANALYSIS RESULT ****ff******** I I I I I I I I I I I I 86. PRINT MEMB FORCES 3,? ~I -.-~--., _, .. -.· .. 1., ..... -::.\ft]i;·. .. ·-i--·· -~'#!f 3.& --;.~· ~~~- ., .. ---~- I MEMBER END FORCES·. ~ -ALL UNITS_ I MEMB LOAD Jr ;.-:-" . ,.,,·:,"TORSION MOM-Y fllOIII-Z --~tG~}t-: fi..1.,,.-i~"~ .:Bf)ii~;l;f' I 1 5 1 ' iz..~1se·:. .00 .00 -3.32 2 -32.16 .84 .H .H .00 -7.01 6 1 -22.45. 18.26 .01 .00 .00 134.65 I 2 22.45 -18.26 .00, .00 .00 90.58 2 5 2 18.87 -1.66 .00 .00 .00 -9.73 3 -18.87 1.66 .00 ·.00 .00 -10.80 I 6 2 -4.73 11.42 .H .00 .00 72,32 3 4.73 -11.42 ,H .00 .00 68.57 I. 3 5 3 5 •. 11 -1,22 .H ,00 ,00 . ..,9,74 4 -5.11 1.22 .00 .00 .00 -6,26 6 3 -.71 2.82 .H .00 .00 8.63 I 4 .71 -2.82 .00 .00 .00 46.10 4 5 5 69.29 ~.77 .00 .01!' .00 -3.03 6 -69.29 .77 .01 .00 .00 -6.44 I 6 5 93.59 21.84 .00 .00 .00 147.88 6 -93.59 -21.84 .00 .00 .00 121.53 I 5 5 6 36.37 -1.66 .00 .00 .00 -9.51 7 -36.37 1.66 .00 .00 .00 -11.00 6 6 45.66 17.26 .H .00 .00 111.17 I 7 -45.66 -H.26 ,H .00 .00 101.65 6 5 7 3.74 -1.29 .H .00 .00 -9.24 8 -3.74 1.29 • 00 .00 .00 -6.68 . I 6 7 5.55 6.94 .H .00 ,00_ . 35.96 8 -5.55 -6.94 .00 .00 .00 49.64 I 7 5 9 86.60 .oo .00 .00 -.03 10 -86.60 .H .00 ,01 .u 6 9 87.48 ·.H .00 .00 149..08 10 .00 .00 124.38 I 8 5 .00 .00 .26 .00 .00 .18 I 6 .00 ·.10 116.12 .00 .00 109.02 I 9 5 11 7.90 .13 .00 .00 .00 .50 12 -7.90 ~ .H .00 .00 -.13 6 11 8.17 .H .00 .00 44.93 12 -8.H -8.31 .00 .00 .00 57.55 I 10 5 13 84.71 .00 .00 .00 .00 .04 14 -84.71 .00 .H .00 .00 -.03 .I I I -1""~""'?• f:"" · ... ·-•_ ... :··--·/ ·:;..-_~ -., ~~ .:~:.--~-~;---~~ -• '>c -... \_ ~~: :-:; . .-_:.,.;._. -.:! ;,_ .._:-'~• ~i ,-~_;.:-.:. ':'. -. ~;. ~ ...,,._:~ ...... "" - ·-~" ..... ,-:: . - 3,7 --·-;..., :,_;_ -=~= fllEMBER END·FOOCES ,_ .. -~ -~-----,:-•--;:.--~:-~~-:!,,"-~-, V -~ ~, > • • ... ~~~-~-r.·~· .,. -· ~~ .... .. ', ALL UNITS-~~" -. ,. '. -~--~,._v;:;:~~": •ft #6 • .J. ''. -' ~---:.-, ~ ·----· I IEMB !-OAD TORSION MOM-Y f!IOM-Z 6 ,00 ,00 150.57 I .00 .00 127.17 11 5 14 44.58 -.10 .H .01 .00 -.64 15 -44.58 .li .H .01 .00 -.65 I 6 14 43,37 18.52 .H .ff .00 118.61 15 -43.37 -18,52 .00 .00 .00 109.79' I. 12 5 15 4.92 .27 .01 .01 _.00 1.06 16 -4.92 -.27 ·"---.01 .H 2,27 6 15 4.73 8.31 .H .H .00 44.34 1-16 -4.73 -8.31 .H .00 .H 58.10 13 5 17 45,39 1.60 .01 .00 .00 6.12 - 18 -45,39 -1.61 .H .01-,01 13 •. 60 I 6 17 ae.43 21.11 .H .ff .01 · _ 141.93 18 -80.43 -21.11 .H ,H ,01 106.H· ,,:'"k• 1' I 14 5 18 25.78 3.40 ,ff .ff .00 19.81 19 -25.78 -3.40 .H .H ,00 22.07 6 18 40.85 15.65 .01 .00 ,It _ 96.-17 .~ 19 -40.85 -15.65 .01 .H ,01 96.82 I 15 5 19 5.68 2.21 .01 .00 .10· 17.,99 20 -5.68. -2.21 ,H. .H ,H. 9.24. I 6 19 9.62 5.93 .H .H .00 32.24 21 -9.62 -5.93 .00 .H .00 40.88 I 16 5 2 -.83 12.09 .00 ·"' .03 16.74 6 .83 13.91 .H .H ·"" -25.80. 6 2 5.06 -18.91 ,H' .ii .00 -162,89"" ~ 1-lfl.-"!, 6 -5.06 -~Ail ,IJi; .H .00 -156,24 _ I 17 5 .• ff .H 19,54 .H .00 -23.99 I 6 .00 -.if -11.2011:.,.,,-\--:r, .H .01. -105.01 I 18 5 ·" .00 6.26 .H .01 .37 6 ·" ·" -26.11} p_oOf .It· .oo -25.52 I 19 5 6 -1.72 19.11 .:00 .01 .01· . 41,74 11 1.72 19.99 ·"'· ,00· .H -49.05 . I 6 6 .47 3.01 .01 .00 .00 -76.46] 1,1/l.. 1- 10 -.47 \~ .H .00 ·"' -170,87 20 5 7 .82 19.18 .00 .00 .00 _ 44.23 I 11 -.82 19.82 .00 .00 .00 -48.95 I I 1· I I I I I- I I I I I I ·I MEMB LOAll 6 21 5 6 5 6 23 5 6 24 5 6 25 5 6 26 5 6 8 12 8 12 10 14 10 14 11 15 11 15 12 16 12 16 14 18 14 18 15 19 15 19 . 2.51 -2.51 6.39 -6.39 -1.69 1.69 -3.44 3.44 .81 -.81 -4.47 4.47 2.48 -2.48 -1.92 1.92 -1-.80· 1.88. - -7.45 7.45 1.19 -1.19 -14.68 14.68 27 5 16 2.21 21-. .,.z~zt. 6 16::ir'' ·~, -· lJir: 87. LOAD LIST 7 2.66 2.59 -1.36 6.61 19.46 19.54 3.88 35 •. 12 19.43 19.57 9.33 29.·,61 ·2.61 2,6-4. -L14 6.39 20.68 . 18.41, ,61 38.39 20.09 18.91 8.97 38.03 88, PRUTT SUPPORT REACTIONS JOOS!~ l'IOM-Y MOM-Z .00 ,00 -32.59 J l V'-:, .00 .00 -126.57 ·" ,00 .• 00 _ 6.32 .H .H .H -5.86 ·" .00 .00 -24.12 3 v.,.t::Pf .H .00 .oo -35.67 .08 .H .00 . 48.68 .fi .00 .00 -49.22 .H .H .00 -69,63] ~V\... "'v .H .00 .H· -164.67 .ff .00 .00 _ 48.28 . H ,00 ,00' -49.35 .. .H .00 ,00 -27.37] 1..vl 3-.00 .fi .H -125.22 .st .00 .00 _ 5.99 .H .H .H -6.24 ·" .00 .00 -21.891p.# .H .H. ,00 -34.63 .00 ,If: .00 _ 49.90 .00. ,00· ,00 -33.4t. .H .08 ,00 -81.12] \.V.\.. 1.. .Be .H .00· -202.17 .01 .00· ,00 -· 48.-94 .H .00 .00 -40.06 .ti· .00 .00 -28-.92 J vi~~ •• ,H. .ti -129.06 ~~· ·" .ee _ 3.-97 ,00' ... -9.24 .H .ff -23.471 p..Fd . 0 .H. .H -40.88 I: : SUPPORT REACT:,;~:.-:~~,:· *lE\ ~ ------------. . I JOINT LOAD 1 7 5 7 9 7 13 7 17 7 73.49 116.68 -x MOM-Y .H _.01 .H .H ·.H· .00 ,H ,H .H .ff' I I I I I I I I I I I I I I I ·1 ************** END OF LATEST ANALYSIS RESlLT fffffltt111111 89, UINTS INCIES 90, PARAMETERS . 91, RATIO 1.333333 ALL 92. FYLD 36 MEMB 16 TO 27 _ 93. FYLD 5i MEMB 1 TO 15 94. KZ 1,3 IEMB 12·69 12 ~3 1a 21 95. KZ 1,3 fllEMB 21 24 96. Ki 1,4 MEMB 3 17 23 . 97. KZ 1,2 MEMB 4 5 7 25 98. KZ 1.25 MEMB 8 1.0 11 9.9. KZ 1.5i MEMB 14 26 100, KZ 1.60 MEMB 15 101. KZ 1,45 MEMB 27 102. KZ 1,15 MEMB 16 19 22 103. Utl. 72 MEMB 18 21 24 27 104. UNL 12 fllEJIIB 16 17 19 20 22 23 105. UNI. 12 MEMB 25 26 106. LY 144 MEMB 18 21 24 27 107. LY 120 MEMB 16 17 19 20 22 23 108, LY 120 MEMB 25 26- 109, LZ 120 MEMB 16 17 19 20 22 110, LZ 120 MEJIIB 23 25 26 111. LOAD LIST 5 6 112, CHECK CODE ALL l'-.•.•. -. --?·· -:~" MOM Z 272,62 298,78 298,20 301.11 277.74 STAAD~III CODE CHECKING I .,·;.;,,.. ,iJl{ JED> I ALL ltl!TS ARE :::· • '-? TABLE. ,:;_f'\ / RATIO/ LOADING/ ·;,·c.<~::.;\.,._,~ .. . MZ LOCATION MEMBER I ----------------------------------------------------------------------- .1 I I I I 1 ST W18X50 2 ST W18X50 3 ST W18X50 4 ST W18X50 5 ST W18X50 6 ST W18X50 7 ST W18X58 8 ST W18X58 9 ST W18X50 10 ST W18X50 11 ST W18X5il 12 ST W18X50 13 ST W18X50 14 ST W18X50 · 15 ST W18X50 16 ST W24X68 PASS -22.45 PASS -4.73 PASS .71 PASS 93.59 PASS 45.66 PASS -5 •. 55 PASS 87.48, PASS 47.61 PASS -8.17 . PASS 79.10 PASS 43.37 PASS -4.73 PASS 80.43 PASS -41.85 PASS -9.62 PASS ~fi-1\\:_~t/ 1.7 ST w21x44~..:··-~:3. :.- 18 ST W18X~::5~~~ ~ ~·~~J ~:~~~~.-. .,. 19 ST W24X68- 20 ST W21X44 21 ST W18X35 .,'{J·":,,~-- ': .• £;~--i~Jy.;, PASS . -5.48 PASS -6.39 AISC-1.618 .H AISC-1.61B .H AISC-1.61B .H AISC-1.6-lA .st AISC-1.61B .H AISC-1.6-2 .00 AISC-1.6-lA .H AISC-1.61B .00 AISC-1.6-2 .H AISC-1.6-lA .H AISC-1.61B .H AISC-1.6-2 .H AISC-1.6-lA .H AISC-1.61B .00 AISC-'1.6-2 -~ .H AISC:.:t.6~2 . " , ' -,,":._ AISC-1.6-2 .H AISC-1.6-2 .H .656 1615.81 .336 867.80 .119 313.19 1.106 1774.54 .735 1334.06 .304 595.68 .. 1.086. 1789.H .767 1393.43 .359 690.65 1.068 1806.87 • 772. 1423.30 .349 697.20 1.024 1703.13 .642 1161.87 .271 490.55 .548 -1954.74 .739 -1260.14 .351 -313.19 .561 -2050.43 .814 -1518.86 .371 -428.02 6 .00 6 .st 6 148.st 6 .00 6 .00 6 148.00. 6 .00 6 .00 6 148.00 ·6 .00 6 .00 6 148.00 6 .00 6 148.00 6 148.~ 6 .00 6 120.00 6 .00 6 180.00 6 180.00 6 180.00 ·~-::·-:·"t,·~{'~ -·-' . . r '\·. -, . _,_ •:·--~.~ ~I I I MEMBER RATIO/ LOADING/ MZ LOCATION ----------------·_:s; t}::· _:,-, .. -._ >1;~,;:--~~-~ .. ~;, ~ " ~,.,J. I 22 ST W24X68 PASS AISC.;. :· · .601 6 3.44 .00 -1975,98 180.00 23 ST frl21X44 PASS AISC-1.61B .868 6 I 4.47 .00 -1502.65 180.00 _ 24 ST W18X35 PASS AISC-1.61B .342 6 1.92 .00 -415.53 180.00 I 25 ST W24X68 PASS AISC-1.61B .745 6 7.45 .le -2426.03 180.00 _ 26 ST W21X44 PASS AISC-1.61B .931 6 14.68 . 00 -1548.72 180.00 . I. 27 ST W18X35 -PASS AISC-1.61B .440 6 10.22 .00 -490.55 180.H I I I_ Hfflfffffffff END OF TABULATED RESULT Cf DESIGN ffffHHIIIIH I 113. FINISH *************** END OF STAAD-III HHfffffffffff 10.27.41.LOU,P4,T1000. 10.27.41.ABF, INPUT , 0.002KIODB,01. 10.27.41.USER,RAUENTC,,KBU. 10.27.41.ABG, P4. 10,27.42,/CHARGE,T0554EN,A7242. 10.27,42.PURGE,STADOUT/NA. 10.27~42,RETURN,OUTPUT. 10.27.42.DEFINE,STAIXlUT. I 10.27 .43.GET ,LOO¥. ,,,·. ', _.;~i .;i,Sf , 10.27,43.BEGIN,r...,. ·-·,~·-~'--,;.~. 10.Zi.44,444'1~ li.27.44.-f I · 10.27.44.f , , 10.27.44,f 10.27.44.f I 10.27.44,* FOR MOOE INFO * 10.27.44,* SEE EXPLAIN,STAAD3 * 10.27.44,fffffffffffffffffllllllll 10.27.44.IFE,FILE(LOU,AS),DIRECT. 10.27.44.SKIP,TESTl. 1.27.44.END.IF, TEST1. 10.27.44.FETC-H,STAAD3/UN=LIBRARY,M=R. 10.27.45. FETCH COMPLETE. 10.27.45.STAAD3,LOU,STADOUT,9999999. 10.27.47.ABD, STAD I 10.28,01.AEB, 53.519UNTS. 10.28.01. STOP 10.28.01. 337700 MAXIMUfll EXECUTION FL. 11il.7~Ul1. Hl.497 r.p SFCT!Nrnl F.l<Fr.tlTtON TTMF~ I I I I I I 1· I I I I I I I I ..:---- --...... -t I· ! t I · ,--,--, ! I , I • ! S=i!i , I I _..-1_-_-<1--1-j--....--rt-l--------..--- 1 , ! i : I ,-: --:--, f i l : f . ! -i ' ~ f ;.___. ~----!,...---t--1-----t-+--t----+----i-+--+---I---.-!-...-.-+--+ --,--'·-·· -'··· __ ,_ . -·· : ; ~ . ' ; l t . t .. ~ ! : • i _! . __ _..__..._......,,..._.~--~----''---'---'--'----->--'---'------'----'----'------ ~-:-,-. ·.f,; .. -;.:, ~ ..... '7" ~-~ I I I I 1· I I I I I I I I I I I' ·1 : OPUS: CORPORATION Project CA!Zt:.-SSAp Date c/Jc/6i By· '$bb . DESIGNERS• BUIUlEf!S),,D~~RS-ec -~ -> ~::-~:_ ::;:s·,i~.;-l!.\~•~.-: .. ~ : r -.-• 40'""--, Offices and Affiliates-ifl:.Mj · · · · ,. • · • • Milwaukee • Phoenix· Tampa • Pensacola .. __ / ~~_.,:·:.":' :;l~·. __ .. _. Sheet L -47 of __ _ ; ,r-_ l L-'"' _:iFW,~/ft:<1--·:·. ,1, A ; 1 l I i ! l : ' ! ; I ' '. i i rrz.!L\ Ml=:-. t~-~ 11;·1::1 ~tr.-. 1 ~ _ 1 1 : , 1 . ! ! i 1 L._L_ L--+-i -1 :!, !r-_f ,, -· •.. , ~. , l I ! l ! ! : ; I i ; i ! ~ I . ; ' 1--i----!Lr ....... ~ .... -i.! j~Wf ~-.1 r 1 1 I ; ! 1 i 1 -i , ; 1 • : 1 ......;, ___ L_..j 1/l I l r, L w..t ! ! l ! ' l ! I I ' I j' ' , : I ' : ' u ~~~ : ~ ~ !' ~-~·~t-~~~ tr-+---1 ; _____ , __ _, ! l l , ! l ! '. I '. ; I j ' ! i i. : ' : . ; t 1 i ~ , t • i ~ 1 --+-'--}--t -i , L_.-f_ ... J_--...4-... ~_.1. _____ ,_: I i l i l I '. I l l ' : I I ! ' i ! : : ' : i i 1· l , I , i I ! I ~ i ·, i • ; = --~--:._ ~ 'l"'l ,.)f""\,..j · 1-i 1 ,. 1 1 1 ; , ,· i 1 ·, r ',· K (JVi-1 i ;_ ! , : j I I i i ! i • -,'-_. _: --~~1-~I J-1~ +~-J~~-~i ~-~~,~~I ~i 1 I I'. Ii I I I I l. '.: iv.t ~ /,1-z.l c-1.J) _µ~f, 1~ :z~ k: L~k '" 1/LJe-.~ ;_ .:~~- l-1 1 .cJ.c., VrJb.) I : -11,S)L V I 1, i 1. ! I ~-·~--P~~£b-;_ .i , 111 1 , 1 -1 1 1 ! , 1-1 1 1 ·r-, i I i : -1 1 J _I ! l1 l I i. 1 i I I · ; I : I i 1 ; 1 i l i ! _ ! I , ! j ! ! [ i f· l -I i i I I ! ___ J l : l I l I J : ' 'll_ ~ 1 I I I I· I , ! 1 1· I ! i Ji J I 1 ' 1 ' 1 ! l ' ' i 'j' i 'I 1 .1 i ! l l l • I i I I l i 1 : -k i --·;;_;} ~r. ii (12,,si;ep)i _g8I,t• J 1t121·i<. <i 1aor+ ~1 Jll1,Lel ~ I \ .. ~sl (w.rJ<i)-L..~l ~13 ,. ! I ! I L -:-i : . ; 1 ; : 1 l l I I ! i ~ ! I f=!rr ~DQ ! L.J __ J__~-+---; ___ ..,....,; _______ -;-_; 1 ; f l f' l( 1---·----r ~lh 4' l t>Ut4+-f i i , 1 1 ! } , t I 1 I ; l ,__ .. r ! l I l I ; 1 , , -------------.;---+--t----t-....-----------4--1 J l I I i· ; 1 ' • f ' l j ! ! ' '' l : ! i I 1 l '. ' ! i I \ l l l l i l ' i ' ! ' I ' ! ; . ·' ! ! ! l I I • l -\YI I ~-~ i I ! l ; I· : : l . ' ; i l j l i ! ' I l I l l I I f:-~ Zf l i I r l I ! l l i i-I l ' ' I f ! f l l i ! I ' I I ; I l ' l ' I I ! ' ' i l i ! i l i ! ! I l ' I I I I ' ! i ! l l ! l l I ! ! i I l l I I j I I ' I ' l ! 1 l \ i I l j ! l I I ! I ' l l I ' I l l I l l ' I i ! ; ! ! ! l : i ! ' l l -~PUS ~11;;~;~~• .. ;" ~;tJ.13,tfJ, .. ':. DESIGNERS • BUILDERS • DEVELOPERS . · ·~ ---AflU~·0;r·~------1 ~- I ·I I I 1· I 1· I I I I I I I I I f ILE. : LOUI ::,3 jJ OPUS Co11P0RATION · · DESIGNERS • BUILDERS • OEVEL~RS I (. , Offices and Affiliates in MinJ!Npolis ·Chicago.· Milwaukee • Phoenix • Tampa • fllnslcola . I I I FRAME..· 6'f :~".ID D,2 Got-JN-e.~fi~o-Ns bM SHEAR 00N~!::C-TIC>N. 5 J-r 16 '3~1'-/JZJ1J/C/6 .... 3 F->4'-T> •. • ~ .. ~,1 • Project. ('.;,AgL Sr;At> [. ···::';: Date 3/10$9> By $(a(a . Sheet L ... 49· of __ I ·1 2lSS\ "") -+ 36 -= 1-14/rz.to (1.,} ~ '5.4 -ry I I I I I I 'I I I I I I \3.1?' I\ .fL.A"ff: 1/,i' X 1..l u ~ V ::. I, S ( tr4 · ) __:_ ::: o? (21) ~b -:::, ·.n4 l!> 2 . ~ ::: ,5 czx)-i. 4 .\li~!) ~y ==---~ 2. l-Z,l 1 '). ~.13 ~ OPUS CORPORATION I DESIGNERS • BUILDERS • DEVELOPERS I .1 I I I I I I I I I I I I I :I I ,.,....-.., Offices and Affiliatesdil Min:iieapcili•, • Chi~ • Milwaukee • Phoenix • Tampa • Pensacola ; ~ .. 'W~R-• -i M i -~ Project lA T< LSJ;,A r, I[ Date 4 / IS /~'p By Sb&.' Sheet L -~ I of __ _ . ,. -~ ---.. t'' I I I I I I I I I ·1 I 1· I I I Project CtA g LS. @>At> Date !,/ [t, /$& sv SC:i~ .. ~:.:::.,:tt l 1! -·, I Sheet l-~-of __ ·--· ... . . .. 7r~,f-~-.----;,i'----~~'--..:....:...~-,I!:.- ••• ·-·--·--.. ! ___ ~ .... _: ·-...... • . ·-·-· _{ 2~J K : l:2B~ri:.:J2'.!2~~~iziZlZ:li£"llfi!--:_ ~ • .. z~ ~, (_ 10-KS f) ... l~Stt-/, '2. . _ ~ ·· w ~: w_( ??.)-;~ s.~_ ~- . i : _...,_ ______ ---=-~-----------,.-~ -~ . : . . . ...: . ~ ~, ' . :--~ . -.. -~ . ·-.. . --~ . , . ' ' '-~--TwYJ~_1_J:,__~i~~-: 1.w~eA~-~t-~-ro_ .~ -_ -___ _ ! I '/· • ,, • ' ' : • l 'A .. . E.,4;,< _ _:CO;L_ ... ~-----..FULL~--~RA.VJrt. _LO~#, __ : · :$_~UME-e.A:-..... : .... ____ . . ---N~&~O~~~-,-~.C.'=?~~J~.LlQU.~-:_::FT.~ .. l.LL~12~~-WAl..~ __ f 0 U.$.1,S:T . . . ~--~-&A~Li!~_:_t~-----S.AlltjQlµ~~---ILOAD.S_; ... -.: ..... '. _ ...:. ..... a ••• ..i, ______ : _____ -__ _; _____ .... _ 1 i ~ i . ~ L .. i • ~ ; : ' 1 • • ., • • :--~ _;o~·t-+;··:~~+~jiL~.: .. ~:-~k~ -1:----:·----·>----:· ... : .. _ ~ .... F, . . . ·. ·--~T i ~: . ; ~-.. "'. ~--.-·-1·----· ..... ·-:··-?.~~~-: -T~--. --··i+) . K. ---,. -~t:1~ _ -~~: -.. 9 .. J .. -, ___ , ...... : .......... · .. (L. xt. X.is. : ~ llo5 • ... --~~+-;~ ,_ -· ,iJ::,Jt~i~ L. •--~ ----, .. · . . . -... -. . -' . --~ .. Jio!-:. -!-------~, . ·• M:...--.--....... -... L. i ---·-:· ·---· · .. -..... r,t~· , 6 l • ' L . . . -.. :f ?; . . __ :=:,_ , . 1 ~... . 4 7 . ~ --_ : .. _ . . -· ... _. ____ '. __ 1 ___ · ..... ~ •. 3,Z:\j(..:t..i .... · .. _'?)15K_'..;l, ·---~--'., .. : ___ . ···--·---· ~+--t; ; ; ho ·sfa·:-.f __ _;_;~,_:-~~ --tk-->' \ -;,-_: i:;'--.4) ", K ___ ->c ... TL:t. __ 5 . x .. _ x I~-.. , ... __ .... A.LL: . 23 .PA r 94 U 4(> . . _/ . . _ ·. __ . .. . . ·. . .. .. ... t_ CR~l ~ . 0,0 Kst JLL.., . SOil tR/4. 11~;:;::;~~-TJON , ' .. <· ,~ ---. ----.. --.. ~-~:::~_.::_~~:__.-~~-:~-" :;_-" --~-,~::~-:;]~ Project 6A, 2-LS t!!At> Ir Date !alt t, /&S, DESIGNERS • BUILDERS·• DMUJPERS: I c: . OffteeS and AffiM "r · · ~~;· Mi1Mulrl1Hhoenix •Tampa• P'lnsacola ~-N6~1f/'}~ ,,.:"\/~·::_ ... -:'::~ o -Sou1H By :$~?a-- Sheet L-J~l)-of __ I ~ ~~~~~---SE.t.::. ·>.-: . i44.:~ ·:_tAT, if ToRS. FoRc.E L)f5T, FcR f<1G.1D FRA,-1.es ~ 41--Jt:>: ·--:ts.~_,.," ._}\'·tt.ff:iS LOu1~2.4-.3 Fo~ SWPP()IZ,j ~~'-1'TtoNS I I I. I I -I I .. I I I I I I ·1 I I . -. ..-.... ..:;_ .-. .,,..:{ v 5o tL f'RE~SUI<.£. ' . . ·-t .. 791< (/2'.~'J -t-82K ( 27/7') ::: i5,3e,-~_K·I- 2. (.z44, 1) a. A-&~,,z,K ~ 0, 29 ,r?; -:= --~ ;f:(1 --!/' tJ,e,,. l&0~}1).BS IAs) C~ )(SS1 lfuB~ ~s,lt -.. ~-~ .,~PU~ CORPORATION ---. ---· - I ~ _ DESIGNERS • BUILDERS • OE'IELOPERS . t ~ 1'<' I ·I I I I I I I I I I I I I I ·1 VA1-L-De-s1btN f·c.. =. :~ k~; ~ = ~o r.s; J; ~ ID'' Mu =-1 't44:-t).( IZ'')(1i-11/.) ~ 10-.,. 300, '"'.,~· -AM JN = · 74-'m' ~ )-" --2,A ,,,-. 11\1>J111JAL--'7 • If 7 BAR> Pit. r:N'I) ~ .. _ -.Vu._~_ 24~.tLi ) ___ i 4$,cil_~~~-~=~~ . ."~ _·. · . : , _, . ~-~Vq ; .. ~~ ~6b~)twi;J('2Sf{i-,I~!--t . :>Ii(.' . . : i ; : . : : -: '.: .ft'nr r. ~ ; i . fO" Q-Z'') . _---__ -;_~~~~,~ ·;-:OfilS.;Mii1i¥-µo"-~'X-".?: ~5@ I?'' a;~. _ 1:A,\1.,r:- -~·--•• --, ,,.,. ~., • : :~ • >. ~ • • • ..... ;. , .. ,_ ; F .. :_., --~-:-1---.;.-.. -~-:•,-,•y _,: _, ' • ~-·. -~· .... i~~;//4~:~ : . : JI J t=' tJ I"" ; A; ~I . ;~ : t I ' : ; C;-~.' t \ 11 ' . ' l • . . L . $i . : ,. . ., . Cl-~-f:-.t:.M-"\l 1 ,-,.1.t-.{ ~-.•.. I\J.C?~M:...!:...~.:_Y.j'..Lf1.+..-WAk~.$..: "HAYJ:~. ,._ ·fc .: .. :., ·_: ... : _:.SHt;A&.;,_ ~~-k... .. ;.Er: .... _JH~.N-1 :nil~ WA~k-(~a:EN.EtkCAL<-.. LA1E!UL/ToRS. ~~~Ak)._j•_._c.91~~-~v~~.LY-£-J...:t-~R..~t~i2.~li .. -f+i.~1~t>r:H.~ .. .?~Ht ... WA.Y ...... · . _- . ; 1-s ;r1' t·s · , 1 11 i.:. • . · 1 , , • . , , ____ · ..... -.. ·--·A----: .n f .... ~-~ ... _V\/.11.,.1.k.--!-.,:.,.... ......... ----.. .:-.............. _~_,. __ ,.1. __ __:_ __ ,.:_ ____ -·-~ __ .. ---· -~ ..... __ --~--,..--..:.... . __ _ · -...... _;_ .... -~ . : .. ' __ : .. f 5: ~ _ J~~~-,.t_:E4:L.~AY-j .(N.; WAL~ .1. ___ ' ·-.'. .. · . ··-_ . : . __________ .. : ~-------~-·t--Q;~-~-t t·:ui._.a.,_.1w.r<L.E-r~ .. @. __ W! .o..-J-11.··:. i \ . · : : : IF ..{f ~\i>. l,. ; rAl·J i,11 ; ; · ~ d . . ------'----.:-· -'-·-·-· . -·. -:Ji ~-l ~I ·~~.k,~ __ J.N1'L' .-1,..AQ ... '. --·----·-· ;4,._j ___ ..,.; .. ~ ...... _ ., ...... --·--.... ~,-;f-'--#--+--..,....-.,.;.--'--'--J,' _...,_____,,_· ·---~ ........ -: .. ,.,,_ 4 -v-... -· ·-. ·---~ -· .. - ; ' ... -¼ -• .,. • ··; -~ • ---.-!.;,':;_-:.. -~ .... ~-;1 · . . . .I I I I I I. I I I I I I I I I I , OPUS CORPORATION- DEs1GNERs • BUILDEF.IS ~DEVELOPERS, -·-' Offices ancl.Affiliates insMinne~lise;-.QhiCjlg(l-··Milwaukee ·Phoenix· Tampa· Pensacola Projl;!ct 6A 2L$.S.A.t> lr Date $/it,/!$? By .$(~Ql Sheet l • ?3 of __ _ . L!CNG&E.IE-'-.. Sf!EAAWALLS No&1 I:\ -Sou-rH i. ! . l i h .i,.,~·: t_"::1: ,·41 ,! ) .ii . l C i ! ; i : : ; : l ; I/ ; . ~l=-=-e.. l i:b~~-<L~-ijcA-1}, ~-Io.~.._l,D.R{:;,.E.-L.l:2tjfil,LE6~gL~~t,1FS"' i . -: ·- l ;:;i_ I .!c..+J\ x,.J t:1·11ilc:'.' ! ; ·· · -, :-z ; dn : 1~.}, ; 1 1 1 ~l. ~~ 1--f\-~..,.:~.~4--~~a::~._. ~~~.2et)~:r: ~Jllq-~~.r-., ! i j : l I I 1 ' I I j ; I . i ,· I 1 : ' 1 '. i ! • :n•: ti,:;, ! ; j ··· .. L ..... .11 ·ii:: ·. , r . -+--,-. ; ; --:-(-r, .... --.-..-·~r .. ·······--·1-r--t-Li _,,. __ -r-----·-·;-·--....... -~ j • t t t f i ~ } , ! t > ' • ' ~-L. £j __ :.~gLf,..!-:1~$.tUiA~JJi,.k_j_ ~~_a, 1~6LL!-~.i,JJ i I : ... _L-+.-·!·---·'--·--· > l t ; j i . : i I i ! . 1 : l I ! t t 1 i • , , l 1 , , 1 1 1 ! 1 , • , I l : . • , , .11 · 1 l FL~it-U~Jci K 1 1 \,~3~3;(1-~QJ ~ -~-~-~~i 4 ~~-~~; :_; ; -r·.~= ~: .. , i ! i I i 1 1 : , .. i 1 I , i 1 ! , 1 , l l' ! 1 ·' I ' I I •\Dt~J __ i i l ! 1 ! ! l : +-J---t--~--i---. - 1 i 1 1 ! i l I i 1 ! l 1 ·l 7 I .h 1-Q .i Mt. -1 · · ,( • I , l j , -. , ,-~:-cthL...i-6.J~d~~L-~--·- I I l I I 1 jt ! I l ! i l I i ~·~~N~ isF;f-tf6J_t..+3~1.- l1 ll I' !! ! I_ I l i i 1 ,l I f . I 1i· I l l ; t i ' l 1 ; i 1 1 i ! ! ; 1 ; ; 1 l . , i , i I L. r i . -·; ' I l I i i ! -i ! I i i : i • i I i i V ! L; L ! i ! I ! i . I I I I f ! 1 · ! l ! l I ! .!. . I i ll 1 ,l i l 1' ! j !l' i l l :i I l j I ·T_ ; I : ,. ; ~ i ; 1 Ir---! , /_L ~ / · , i • t 7 11 I ! i ! l I j ! I I ·; I 1 ,. I I I i l I 1 ! .: __ I 1 ! j 1 1 i -, 1 l 1 : 1 ! 1 , l r 1 1 i ., ... _ ~ 1 1 ! 1 :_1 I I ! l 1 !, i; 1 l , · ! J ,i I ! ; ; ~-.. '. --· -~-~ ! 1 t • I i f [ i l t l l f f ! ~ l ! _j_J__jj ! j l I ) ! I l ·I I I I I ; I I : ; r--r i : i ! 1• l ' 1 1 , I · ' · 1 ! ·1----------,-- ; : 1 I : l 1 , i l ! l 1 l i i ! I , , , i , ' ; ' l I ' f ' ' i \ I . I ' 1 l • ' l ' I ' ' I ! I ! l i ' l I I 1 1 . 1 I i I I ! l 1 1 1 , 1 • 1 • 1 • 1 1 , 1 1 i • I, '1 1 1 j ' I ' ! i ! \ ' i ! : l ' I i i !·-~-1-,--1· I 1 1 1_. : l 1 ! 1 ~-t I j ! I ! I ' l ! I { I I I i i I ' I l : i ' I I I ' I l t I l I l l ! l l ' -: I fi, I 1 1 I .. 1. . I j I I I l '·'; I 1' i ! i L_ .. _ ! j""'-' l ,-I : t I ! j ! i --i---~·-·. l l ! l I : : . l l ! i I ! I i l I i j : ! Ll 1 • ~ : I I I l 1 ; I ; l I l --i -~~ ~i·l ,i i i : :,: ! I Ii :,' . j: I : i i ,,! i \ i .f--T ' _ ! i I -, I , I ; I r i 1 ; I ! I I l l : ! i l l ' I ! I I I ,-·-·r I ! I I I 1 ,l ! 1' if I I! I i ! . ; i ·i r--t--t I 1 ; 1 i , 1, 1 i 1 : • 1 }-'" i ; l l . ! l l . ! l l I ! I I ! i ! l ! L i l I I i j i l ) I -! I LJ. I i I l l I ; i 1 1 ~ ! l 1 I ! I I I ! l ! 1 l \ 1 l l ! ! ; ~ ,-· '. : ; ·t-·-r--; ! ' i 1 ! 1 / ; ! ! -,--·-r ! l -r --; :-r-·-r . :--i· 1 7'· -· i l .. · 1 -i-----4---+· --'· · · • · • • · I ·1· 1· 11 1 . '. l '. 1 i ' 1, ' l ! . r-· . 1 ---;-.--r·-i ---,--+-1 l r i I ~ l !' \ f ! I 1 ; j i I _1' ____ ....... ,_· L. .... ~"·-} ~"'!'-· t , -~ _ __._..._____.___,_.....___,_---''---'---------_,.___,_~___,~.. .. .. ., __ r· --,r .. . .. ~,, -. -,····- ·I··. ---1 ··: . - .I: ~: -1·-.. :' ·-·. -·--' ·-~ .It-; I'-· ._ ' . :· I;_- ~_- --1'.· :_ -. ·-' -- 1,-_:: __ '.'."-· .. ~. ~ ~ -. ___ ,;_-·· - -; --. ,_..., : =-·:. ·:: ' ,-,·-C ·1 ~~-_,_ .. :,.. _: (") 0 r-e:: ::s:: ·:z V, :i::, :z C ""Tl 0 =l .... 2 w) ' 1 1'·-~~!-~~~~:0N .-----.__ Offices and Affilia• in Min11!lll(K!!i~ ·Gfljcago • Milwa!lfcee ·Phoenix·· Tampa· Pensacola -·-.· .. ~ Project _______ _ Date _______ _ By------- Sheet ( ( of ___ _ I .. ...:;. !··. ' -'".::."":. ·--~- I I I I I I I I I I ---..;..-...---'--..;....,..,_,;~~.._._,.j I i ! . : --,---;-----~~--~~ i j i : ...-i~......;.--,..--·r-1·---·~ l I I I I ~~;-:' ..... , .. ~.~~":ff -~ 'I ( 1~. i ; \ .___) ·1 ~1 I -i ~J ~ .I ,..... 3 <l.. SJ \'{) Q n I '------" f ,\ ~l ii 1-_-v"·--~ i· • '·'ltS'.~ ' I-:,~ . = ~ ~ . ,. '-/ '={fo '. X I:() 1~ ~/ ,.,! ,...._ "3 \£' I J v Ill Cl I ' 5 ~ 0 " .:-1 ii ~ I _)~ ._,j !\-G l i~ r--. < Q· 7.. I ~ -.J ...J I 0 .. 0 I l ·--l====i:::::::.1:~~11:1ri--I I C I I I r· I / . -· . ·-a I I .1 I I ·1 I I I I ·1 I ·1 I I I I I , • is 1¢J'. e ~- 19 \.f) \]". lff lg I~ r a. 1g. . \.f.) ·\!) IQ l- I{ ~ . • .. '1: ---- c;9 sea ~8 ~<a- gg c;a sg -Zg ,g '28 ~ ~ "Q- i· I • " "l . ::.~;~:; ; : ~: -~: • ~~~~ ~r-~--:P~Y+-~- 1$ ~~ .. ~<2 "2~ ce--Zg IS . ~ 'Z g. ~~ -. . ;:-._ I (' 1~. ·-I ·-I I I 1· ~ l'a, I I I ca, ci ~ I isl\- I lg () ~ I I I I I I I I I ,g "" Vil I~ I'd, Vi! ~ ,ca· ~\-,~ ~ 1g I g; -tJ8$ 1a i\- 0/8 ts E8 -z.~ ~ ·""""tg ,<a ,~., Zg ,_ . ---r--:,:' ' • ---~ ~~~r.:-~-.:,-:_f;: . . . _,· "" .I IL~ I I I I I I I I I I I I I .I I I I ~.: ~---~ ,._ "·" ~-1.11.--+--+-----:~------4---+--+---4-----() -"'' ' . ' ·--~-\h' ~~·:;:--,-· .. .,.,.n· ·,;.;,· "· ·---1 t -· --------~ I --. -•"' --1--------,. i--,.,.... __ -----. __ _..,......., .... ~-· ;S-fl-,, __ ~~\rill-:~--..... ~~~------....... -~-~.-~'J =~-- @r-:~~ ~ ....,. __ ~~-~-!~~~o~,~-.~:----~~-~i~~~H-,~--~- ,. ~:-~\- i - @ ~·--T, ---.- \SI ;--+---e--~----...... ~~~-ii .. 1----~l(~-.. u~~-~! :ii,.:, P.--- ~r-i\~ _ .................... -1 ...... , :i-... ----,.-.----·----------..... i---.- ' ~ ..., .. --;,,, .. -t·1tt:~~ ..... -~~-~?---c"°r-:.'°'~ 1 ·~---+-r~·f;-:=tt;;--- _ t·: ,::: •, ~'\ ' ' ·-OPUS CORPORATION I _. DESIGNERS· BUILDERS· DEVELOPERS -. Offices· and Affiliates .in-Minneapolis· Chicago: Milwaukee • Phoenix· Tampa • Pensacola ~ -'" • • ,to Project _______ _ Date _______ _ By=--· ----J------- Sheet (i, of __ _ I I I I I I I I I I I I I I I I . . _,,, FILE: ALI DATE: 29-Feb-88 Colu1n load hbulations with I ive load reduc.tions based upon the U.B.C. 185, S.B.C. 185 and. the City of Phoenix Construction Code 186. COLUMN(S)---> C-4 0 41 60 , I I I I I I 1· ROOF LIVE LOAD REDUCTION.---------------> MAX. REDUCTION FROM A SINQ.E FL~-----> MAX-. REDUCTION FOR llfll.TIPLE FLOORS-----> .MAX. REDUCTION IF LL> 10t PSF ---------> 2i NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY I· I I I I I I I I I l'DIBER OF LEVELS-----> ~TED Arn SUM. Level sq. ft, Arn ~ 911 910 3 911· 1820 2 88t 2620 1 8"' 3420 , I I 0 0 0 Fl ,, 8~ -ie •. " 4 <ROOF+ FlOORSl Add 1 I Add.! I REDLICill.E · D.L D.L. LL. LL. r. SUM SUM SUM psf kips 'kips psf Red, P.D. P.L. T.L. -----.-.--~- 28 1 11' 0 0.0·. 19 11 31 75 1 I 81 40.0 88 55 143 75 1 0 81 44,8 149 90 ~:: 75 1 , 81 44.8 2.10 125 0 0 0 , 0.0 0 0 • 0 0 0 0 ,., 0 0 j " .. L,A../Jt., rt"~ ~ ><t~~- 217 362 508 <. '5~~ 0 0 : . . ·~ ;~~~~:if$; __ :;;;:-::- ~""$-. , . "-" l'-• •· I I I I I I I I I I I I I I I I I fl ~ -::.~-~:::;..~_f;:·--~~~:~ _: ... FILE: ALI DATE: 29-Feb-88 Col1111n load h.bulations wi-th I ivt load rtductions bastd upon the U.B.C. '851 S.B.C. '85 and tht City of Phoenix Construction Code 186. COLUMN(S)---> C-6 0 40 60 ROOF LIVE LOAD REDUCTION---------------> MAX. REDUCTION FROM A SINEU FL~-----> MAX. REDUCTION FOR Mll.TIPI..E FLOOOS -----> MAX. REDUCTION IF LL> 1H PSF ---------> 20 NOT .APPl.:.ICABLE TO AREAS OF PUBLIC ASSEMBLY l'UIBER OF LEVELS-----> SUPPORTED Area Leve I sq; ft. ROOF 872 3 840 2 800 1 SH 0 0 0 0 SIJII Arn 872 1712 2512 3312 f 0 4 (R(Kf + Fl~) Add' I AddH D,l:. D.L. L.L. psf kips kips 2f 1 10.5 75 1. 0 75. 1 j 75 1 0 • 0 8 I 0 I REDUCIBLE L.L. X SUM SIJII SIM psf Red. P.D. P.L. T.L. -----( 0 0.0 18 11 29 80 40.0 82 51 133: 80. 44.8 143 86 C13jp· 80. 44.8 204' 122 326 0 0.0 0 0 0 0 0.0 0 0 0 202 347 493 0 0 I 1---~ I I I I I I I I I ~I I I I I I I I ·>r ~rr. FILE: ALI DATE·: 29-Feb-88 Colwnn load tabulations with I ive load reduc.tions based upon the U.B.C. '85, S.B.C. 185 and the City o.t Phoenix Construction Code 186. COLUl'IN{S)---> B-41 el:? --- ROOF LIVE LOAD REDUCTION--------------->· I MAX.· REDUCTION FROM A SIN(l.E FLCXR -----> 4tl- MAX. REDUCTION FOR Mll.TIPLE FL~----->· 60 MAX. REDUCTION IF LL> itHF PSF --------->. 2f NOT APPI..ICABl:.E TO AREAS OF PUBLIC ASSEMBLY NUMBER OF LEVELS-----> 4 <ROOF + FLCXRS)' SUPPORTED Add' I Ad~I REDUCIBLE Area SUM D.L D.L. L.I:.. L.L. i. SUM SIJI. stJII Level sq. ft. Area psf kips ki'ps. psf Red. P.D. P.L. T.L. ROOF 760 760 28 1 9.Z ' 0.0 16 9 25 3 760 1529 75 1 0 81 4tl.t. 74 46· '~ 182' 2 760 228t 75. 1 f, 80: 44.8-132 79 329 1 760 3141 75. 1 I· 81 44.8 191 113 303 458 0 0 0 0 0· I ' 0.8 0 0 0 0 0 ' 0 0 0 1· ' 0.0 0 ,. f 0 1· 1-~ I I I I I I I I I I Fl I .11~1l PROJEC11· .Cl . " l;~~- -..,,'f ..... FILE: ALI -::i DATE: 29-Feb-88 Column load tabulations with I ivt load reductions based upon the U.B.C. '85, S.B.C. '85 and the City of Phoenix Construction Code '86. COLUfllN(S)---> B-2 ROOF LIVE LOAD REDUCTION---------------> 0 MAX. REDUCTION FROM A SINGLE FLOOR-----> 40 MAX. REDUCTION FOR MULTIPLE FL(l(llS -----> 60 MAX. REDUCTION IF LL> 1H PSF ---------> 20 t(lT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY NUMBER OF LEVas -----> 4 (ROOF+ FLOORS> SUPPORTED Add' I Add·"I REDUCIBLE Area. SUM D.L D.L. L.L. L.L. r. SUM SUM SUM Level sq. ft. Area. psf kips kips psf Red. P.D. P.L. T.L. ----- ROOF 275 275 21 1 3.3 0 0.0 7 3 10 3 440 715 75 1 0 as. 23.2 41 30 71' 2 485 1210 75 2 0 80 44.8 79 52 ~ 1 485 1685 75 2 0 as 44.8 117 73__ 1 0 0 0 i 0 0 0 0.0 0 0 " 0 0 0 0 0 0 0 0.0 0 0 0 II It. ,!;. 1?. R JG, C /.qr,). ~ 14- I I I ,I I I I . ( ) 1:,$1' ( ·36 4 :l:'1 h~ ft.~ '"'-,tf5" ~ 7,t/,:;, ,.-z3 :,..,, It/ -f $)(. V., 5'" ~ . " r:,. 4,,. i~ 11 If I " t_{x.14-~ f .. "2- 108 198 289 0 0 _I I~ I I FILE: ALI DATE: 29-Feb-88 Column load tabulations with live load reductions based upon the U.B.C. '85, S.B.C. '85 and the City of Phoenix Construction Code '86. COLUMN(S)---> D.2-7 ROOF LIVE LOAD REDUCTION---------------> 0 JIIAX. REDUCTION FROM-A SINGLE FLOOR-----> 40- MAX. REDUCTION FOR MULTIPLE FLOORS----'"'.> 60· I I I I I I I MAX. REDUCTION IF LL> 10f PSF ---------> 20-NOT APPLICABLE TO AREAS OF PUBLIC Assemt..Y I\UIIBER OF LEVELS-----> SUPPORTED Arn Level sq. ft. ROOF I ft, I I I I. I I I 3 2 1 0 0 400 401 400 75 0 0 SUM Arn 4H ·SN 1200 1275 0 0 4 ( ROCF + FLOOOSl Add' I Add:!-1 D,L D,L. L,L psf kips kips 21_ 3 4~8 75 6 0 75 6 0 75 3 0 0 0 0 0 0 0 REDUCIBLE LL i. SUM SUM. SUM psf Red. P.D. P.L. T,L 0 0.0 11 5 16 80 20.0 47 30 77 80 44.8 83 48 CfID 81 44.8 n 5! 143 0 0.0 0 0 0 0 0.0 0 0 0 117 198 216 0 0 I~ I I ·1 I I I I I I ·1 Fa.. I I I I I I I ... ""_ -,".;._:-._-_'-,.~,----~ ... .:~-"";I;-.;.•~- :-~_.-..i, .- FILE: ALI DATE: 29-Feb-88 Colu•n lo1d t1bul1tions with live loid reductions b1sed upon the U.8.C. '851. S.B.C. '85 1nd the City of Phoenix Construction Code 186. COi.UMN<S>---> B-8 ROOF LIVE LOAD REDUCTION -·--------------> " MAX. REDUCTION FROM A SINGLE FLOOR-----> 4i MAX. REDUCTION FOR IU.TIPLE FLOORS-----> 60 C3 - MAX. REDUCTION IF LL> 1H PSF ---------> 20 NOT APPLICABLE TO AREAS OF PUBLIC ASSEJIIBLY l'UIBER OF LEVELS-----> 4 ( ROOF + FLOORS> 91.fPOOTED Add' I Add1·1 REDUCIBLE Aret SlJM, D.L D.L. L.L. LL. i.' SUM SUM SUM Level sq. ft. Arn psf kips kips psf Red. P.D. P.L. T.L. ----- RfXlF 275 275 21 1 ~-3 0 0.0 7 3 18 3 448 715 75 1 0 88 23.2 41 30 crlb 108 2 481 1195 75 2 e 80 44.8 79 52 198 1 0 I 75 0 " 88 "·' " 0 " 0 0 e 0 0 0 e , 0.0 e 0 e 0 0 0 " 0 0 • 0 '·" " 0 0 0 I\ ....; - I FILE: ALI I DATE: 29-Feb-88 Col1111n l01d t1bul1tions with live lo1d reductions b1sed upon the-U.B.C. '85, S.B.C. '85 ind the City of Phoenix Construction Code 186. I COLl.lfllN(S)---> D.3-4 -----I ROOF LIVE LOAD REDUCTION---------------> 0 MAX, REDUCTION FROM A SINS.EFL~-----> 40 l'IAX. REDUCTION FOR Mll.TIPLE FLCMS -----> 60 I MAX. REDUCTION IF LL > UJf PSF --------->. 20 NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY l'OIBER OF LEVELS-----> 4 ( ROO=' + .. ~0005) I SUPPORTED ,, Ad.d' I Add.I.I REDOCIBlE I Arn SlJI D,l D,L .. L.L. L.L ¾ SlJI SUM SUM Level sq. ft. Arn psf kips kips psf Red. P.D. P.L. T.L. ROOF 515 515 21 3 6.2 j 0.0 13 6 21 I 3 475: 99t 75 6 0 88 26.0 55 34 89· 135 2 25' 124' 75 4 0 88 44.8 78 45 @ 186 1 ' 0 75 0 0 St 0., 0 0 0 0 I 0 t ,, , e 0 0 -0 0.0 0 0 0 0 0 0 0 0 0 0 0 0.0 0-0 0 0 I P.1- I I I I I I .I I I~ I I ·"'-:-:~ • . -·-·-=.-• -... ~. . ~ . .: FILE: ALI DATE: 29-Feb-88 Col.u111n loid hbulitions with I ive loid reducti.ons bued upon the U.B.C. '85, S.B.C. '85 ind the City of Phoenix Construction Code '86, COLIJMN(Sl---> D-8 ROOF LIVE LOAD REDUCTION---------------> f MAX, REDUCTION FROM A SINGL:E FL~-----> 48 MAX. REDUCTION FOR MULTIPLE FLOORS----->. 60 I I I I I I I I MAX, REDUCTION IF LL> 1H PSF ---------> 21 NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY 1 I I I I I I llllMBE:R OF LEVas -----> SUPPORTED Arn SUM Level sq. ,t. Arn ROOF 301 300 3 300 600 2 300 906 1 0 0 0 0 0 0 0 0 F--1.-- 4 (ROCF + Fl~f- Add' I Add!cl" D.L D,L, L.L. pst kips kips 28 2 3.6 75 6 ' 75 6 0 75 0 0 ' 0 ' 0 0 " REDUCIBLE L,L. ¾ SUM SIJII SUM psf Red, P.D. P.L. T.L. 0 0.0 8 4 12 se 12.e 37 25 ~ se 36.J 65 40 se 0,f: 0 0· 0 0 ,~, 0 0 0 0 0,f 0 0 0 • ., ·~ 93 159 0 0 0 .I I~ I I I I I I I I I I I I I I I I I FILE: ALI DATE: 29-Feb-88 Column load tabulations with live !010 reductions based upon the U.B.C. '85, S.B.C. '$5 and the City of Phoenix Construction Code 186. COLUMN<S>---> D.2-6 ROOF LIVE LOAD REDUCTION---------------> 0 MAX. REDUCTION FROM A SINGLE FLOCR -----> 40 MAX. REDUCTION FOR MULTIPLE FLOCRS ---.--> 60 MAX. REDUCTION IF LL> 100 PSF·---------> 20 NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY ltJIIIBER OF LEVELS-----> 4 (ROOF + FLOCRS} SUPPORTED Add' l Add'"! REDUCIBLE Area. St.JIii D.L D,L, LL LL ¾ SUM SUM SUM Level sq. ft. Area. psf kips kips p!if Red. P.D. P.L. T.L. ---~- ROOF 440 440 20 3 5.3 0 0.0 12 5 17 3 220 668 75 3 0 80 5.6 31 22 53 2 400 1060 75 6 0 80 37.6 67 42 (® 1 150 1210 75 0 ii 80 44.8 79 !12 127 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 I 0 0 0.0 ii 0 0 81 165 192 0 0 I 1-. I I I I I I I I I I I .1 .I I I I I -~ . ., _· -~ FILE: ALI DATE: 29-Feb..-88 Column load tabulations with live load reductions based upon the U.B.C. '85, S.B.C. '85 and the C'ity of Phoenix Construction Code '86, COLtmN(Sl---> D.3-6 (2 STORY) 0- 40 60 C2 IJJ Bx 31 BP/ ROOF LIVE LOAD REDUCTION---------------> MAX. REDUCTION FROM A. SINGLE FL(X)R -----> MAX. REDUCTION FOR MULTIPLE FLOORS-----> MAX. REDUCTION IF LL> 10tl PSF ---------> 20 NOT APPLICABLE TO AREAS Cf PUBLIC ASSEMBLY NUMBER OF LEVELS.-----> 4 (ROOF+ FLCXJIB> SUPPORTED Area SI.ti D.L Level sq. ft. Area psf --------------- ROOF 0 0 20 3 257 257 · 75 2 0 0 75 1 0 0 75 0 0 0 I 0 0 0 e P-:: 300 / Add' I Add 1 I REDUCIBLE D.L. L.L. L.L. ¾ SUftl SUM kips kips psf Red. P.D. P.L. ----- 0 0 0 0.0 0 0 3 0 80 8.6 22 19 0 0 80 0.0 0 0 0 0 80 0.0 0 0 0 0 0 0.0 0 0 e 0 0 0.e 0 0 ,.. P::=. 30.0 ( .s~~ Ct @ Getb C-"l) /0, IS-) Pi '==.(!¢)~::. LCJ(p fl z,, ::! ()6 )1.,, 'l:f, ZS II> t;2(3.8) I l ~ l'fx l'-z."' SUM T.L. 0 41 0 0 0 0 63 0 0 0 0 1-- ·1 I I I I I I I I I 1:::3 I I ·I I I I I FILE: ALI DATE: 29-Feb-88 ColU111n load tabulations with 1-ive load reductions bued upon the U.B.C. '85, S.B.C. '85 and the City of Phoenix Construction Code '86. COLUMN(Sl---> D.3-5 -I ·---- 0 41 60 (1' ,JI &40 BPI ROOF LIVE LOAD REDUCTION---------------> MAX. REDUCTION FROM A SINGLE FLOOR-----> MAX •. REDUCTION FOR Mll.TIPLE FLOORS-----> MAX. REDUCTICW IF LL> 1"8· PSF ---------> 20 NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY NJII~ OF LEVELS-----> 4 <RCXF + FL~l SUPPOOTED Add' I AddJI REDUCIBLE Area SlJII n.L D.L. LL. L.L. r. SUM SUM SIJII Lev.el sq. ft. Arn psf kips kips psf Red. P.D. P.L. T.L ROOF 515 515 28 3 6,2 0 1.0 13 6 28 3 515 1039 75 6 0 80 29.2 58 35 ~ 141 2 t j 75 j j 80 ,.-0 ' 0 0 0 1 ' j 75 j ' Sf ,., 0· 0 0 0 0 ' 0 0 0 0 0 8.0 0 0 0 0 0 0 0 0 0 0· 0 0.0 0· 0 0 0 .. I~ . • ..,-J ·- I I I I I I I I I I X I I I I I I I FILE: ALI DATE: 29-Feb-88 Column load hbulati-ons. with livt load rtducti.ons based upon the U.B.C. '85, S.B.C. '85 and tht City· of Phoenix Construction Code 186. COl:.UMN(S}---> C-1.2 0 40 60 -_. ~-.,-: ·:··-:' r ~r~-52~?-i:.\~~:~--'~ ._-----··\1!· (. Ii~'~/:; ROOF LIVE LOAD REDUCTION---------------> MAX. REDUCTION FROM A SINQ.E FL~-----> MAX. REDUCTION FOR MULTIPLE FL~ -----> MAX. REDUCTION. IF LL > 18f PSF ---------> 20 NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY UBER OF LEVELS-----> 4 (ROCF + FL~t SI.FPOOTED Add'• Add>l;l REDUCIBLE Arn St)! D.L D.L .. L.L. L.L. ¾ SUM SIJII SUM Level sq. ft. Arn psf kips kips psf Rtd. P.D. P.L. T.L. ---------- ROCf' 28f 2H 2t 3 2.5 0 0,0 7 3 11 3 ~ 4H 75 3 0 8S 4.0 25 18· db 65 2 282 682 75 4 • 80 26.6 50 34 12i 1 0 0 75 0 0 80_ 0.0 0 0 e: 0· 0 • j j 0 • 0 0.0 0 0 • 0 • 0 0 0 0 ·0 0 0.0 0 0 0 0 I 1-·< I I I I I I. I I FILE: ALI DATE: 29-Feb-88 Coltlffln loa.d .ta.bula.tions with I ive load ·reduc.ti:ons ba.sed upon the U.B.C. '85, S.B.C. '85 a.nd the CJty of Phoenix Constr-uttion Code '86. COLIJMN(S)---> A.2-1.8 j 41 61 ROOF LIVE LOAD REDUCTION---------------> MAX. REDUCTION FROM A SINGLE FL~-----> MAX. REDUCTION FOR IUJIPLE FL~ -----> MAX. REDUCTION IF LL> 1H PSF ---------> 20 OOT APPLICABLE TO AREAS IF PUBLIC ASSEMBLY IUIBER OF LEVELS-----> 4 (ROOf + FL~) SUPPORTED Add' I Add;"'I REDUCIBLE Area. SU!II D.L D.L •. L.I:.. . L.L. r. SUM SUM SUM Level sq. ft •. Area. psf kips kips psf Red. P.D. P.L. T.L. RO!F 257 257 21 3 3 0 0.0 8 3 11 3 170 427 75 6 0 a, 1.6 27 16· 43 2 120 547 75 6 • 80-11.2 42 25 qp 1 120 667 75 6 0· 0 a.0 57 25 0 0 0 0 0 8 0 0.0 0 0 0 0 0 0 0 0 0· 0 0.0 0 0 0 .. ~ 65 101. 122 0 0 I I -- I I I I I I I I I I I FILE: ALI DATE: 29-Feb-88 Column load t1bul1tions with live load reductions based upon the U.B.C. '85, S.B.C. 185 a.nd the City of Phoenix Construction Code 186. Cctl.lMN(Sl---> A-JJ 0 40 60 .-1--:-~.:.... ·~-"' : --- ROOF LIVE LOAD REDUCTION---------------> MAX. REDUCTION FROM-A SINGLE FL~-----> MAX. REDUCTION FOR l'IULTIPLE FLOORS-----> MAX. REDUCTI().I IF LL> 109 PSF ---------> 20 NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY NUMBER OF LEVELS-----> 4 (ROOF+ FLOORS) $UPPORTED Add' I Addl·I REDUCIBLE Area. SUM D,L D.L. · LL. LL . ¾ SUM SUM SUM Level sq. -ft. Area. psf kips kips psf' Red. P.O. P,L. T.L. ROOF 0 0 20 0 0 0 0.0 0 0 " 3 180 180 75 3 0 80 2.4 17 14 31 2 180 360 75 4· 0 80 16.8 34 26 GD 1 150 510 75 0 0 Sf 28.8 45 35 80 0 0 0 0 8 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 -·'; -·:5·,'·{~t{-.:···~-'(;~~- e -i,\ 47 92 122 0 0 I 1-·~ I .. I I I .--~-.. -.:.. -~ -·· ' FlLE: ALI DATE: 29-Feb-88 Column load tabulations with live load reductions based upon the U.B.C. '85, S.B.C. '85 and the City or Phoenix Construction Code '86. COLUl!IN(S)---> D.3-3.3 0 40 60 I I I I I I ROOF LIVE LOAD REDUCHON ---------------> MAX. REDUCTION FRON A SINGLE FL~-----> MAX. REDUCTIDN FOR l'KJLTIPLE FLOORS-----> MAX. REDUCTION IF LL> 108 PSF ---------> 20 NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY NUMBER.OF LEVELS-----> 4 (ROOF+ FLOORS) SUPPORTED Add' I Aod'1 I REDUCIBLE Area SUM D.L D,L LL L.L. ¾ . Leve I sq. rt. Area psr kips . kips psf Red. I r-3-- 1 I I I I I ROOF 3 2 1 0 0 ----------.. 0 0 21 I e 0 0.0 250 250 75 ... 0 at 8,0 250 5e0 75 4 0 80 28,0· 0 0 75 0 0 at 0.t 0 0 0 0 e 0 0.0 0 0 0 0 0 0 0.0· _: • ... ,£.~-. . -,,;-ti:·· _,-~:::~;.~~··--~~:~:-.;>!''~ .... , ..-~.~ l,ZJ (p><, 'l-.0 . ;:; (DI 2 , m-::: 11... -·1S( (pi'Z) r:. '3 L 11-::. 12.,_. a<,ro) i: 3. ~ ,__ II f ,-.><... \ "2., ,< \ , 0 SUM SUM SUM P.D • P,L. T.L. 0 0 e 23 18 41 46 33 @ 0 0 0· 0 0 e 0 0 0 H 63 119 0 0 0 1---. I I I 11 ! I I I I I I I I I .I I :1 I F3. :.::-',I, ';....,: "".:.!i-,.q_ FILE: ALI DATE: 29-Feb-88 Column load tabulations with live load reductions based upon the U.B.C. '85, S.B.C. '85 and the City of Phoenix Construction Code '86, CClUMN!S}---> A-2,6 ROCf" LIVE LOAD REDUCTION---------------> MAX, REDUCTION FROM A SINGLE FL~-----> MAX, REDUCTION FOR MlLTIPLE FLOORS-----> 0 40 60 MAX. REDUCTICN IF LL> 101 PSF ---------> 20 NOT APPL.I.CABLE TO AREAS (f PUBLIC ASSEMBLY NUMBER Cf LEVELS-----> 4 !ROOF+ FLOORS> SUPPORTED Add' I Add11 REDUCIBLE Arn SUM D.L D,L, L.L. L.L. ¾ SUM SUM SUM Level sq; ft. Area psf kips kips psJ Red, p .)). P,L, T.L. RO(f f ii 28 f 0 f 0,f 0 0 0 3 0 0 75 0 0 80 s·.; 0 0 t 2 180 1st 75 6 0 80 2,4 20 14 @_ 1 180 360 75 6 0 80 16.8 39 26 65 0 0 • 0 • 0 0 f.0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 .• ._ " ., - ..,.!;~}.~ 0 51 99 /iJ 0 '~ ".!:.:: ,,--· . . 1-~ I I I I I I I I I I F1 I ·1 I I I .I I FILE: ALI DATE: 29-Feb-88 Column load hbula.tions with live load redijctions based upon the U.B.C. '851 S.B.C. '85 and the City of Phoenix Construction Code '86. C(l.Ultl(S)---> A-6.6 -,,-- 0 4£1 61 R()(f LIVE LOAD REDUCTION---------------> JIIAX. REDUCTION FRE»I A SIN!i.E FL<m -----> MAX. REDUCTION FOR lllTIPLE FLOIJIB -----> MAX. REDUCTIClf IF LL> 101 PSF ---------> 20 NOT APPLICABLE TO AREAS OF PUil.IC ASSEMBLY NUMBER OF LEVELS-----> 4 <ROOF+ FL(XJRS) SLPPORTED Add' I Addl.il REDUCIILE Arn suit I . D.L D.L. LL. L.L. ¾ SUM SUM SUM· Level sq. rt. Arn psf k.ips kips psf Red. P.D. P.L. T.L. ROOF 0 ' 20 ' 0 • 0.1 • 0 ' 3 188 188 . 75 3 0 88 2.4 17 14 31 2 188 361 75 4 ' 80 16.8 34-26 @ 1 0 ' 0 I e 0 0.0 0 0 I ' 0 ' ' • • 0 0.0 0 0 • 0 0 0 e 0 e 0 e.0 0 0 0 ' 47 92 0 0 0 1· 1-.. I I I I I I I I I I I I I I I I I FILE: ALI ·DATE: 29-Feb"'.88 Columri load tabulations with live l01d reductions based upon the U.B.C. '85, S.B.C. '85 and the City of Phoenix Construction Code '86. CCILU~(Sl---> A.2-8.2 0 40 60 ROOF LIVE LOAD REDUCTION---------------> MAX. REDUCTION FR(JII A SINGLE FL~-----> MAX. REDUCTI.ON FOR rtl.TIPLE FLCOOS -----> MAX. REDUCTION IF LL> 1N PSF ---------> 20 NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY NUMBER OF LEVELS-----> 4 (R<Xf' +· FL~>- SUPPORTED Add' I Add!! REDUCIBLE Area 51)1 D.L D.L. L.L. L.L. r. SUM SUM SUM Level sq. tt. Area psf kips kips psf Red. P.D. P.L. T .L. ROOF 257 257 20 3 4 0 0.0 8 4 12 3 170 427 75 6 0 as. 1.6 27 17 44 2 120 547 75 6 0 80 11.2 42 26 ai) 1 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0' 0 0.0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 (fl;;; I 11 K,.. ( C:t,i. ~ Gf-tD C-I) ', L~ .s.-et. I '2.. x.. 1 'Z-- ,~ -• t*-~ ,5, 3~ &, -,,,... t1 • I • ., l),6E. {~l<.1'2->l-D 67 103 ... 0 0 0 ~.1:-. I I. I .I I I I I I I I I I I FILE: ALI DATE: 29-Feb-88 Column load tabulations with live load reductions based upon the U.B,C, '85, S.B.C. '85 and the Ci.ty of Phoenix Construction Code '86. COl,.UMN(S)---> C-8.5 0 40 6i ROOF LIVE LOAD REDUCTION---------------> MAX. REDUCTION FROM A SIN61..E FLOJR -----> MAX. REDUCTION FOR fllULTIPLE FLOORS-----> MAX. REDUCTION IF LL> 100 PSF ---------> 20 NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY NUMBER OF LEVas -----> 4 (ROOF+ FLOORS) SUPPORTED Add' I Add ti REDUCIBLE Area SUM D,L D,L. L.L. L.L. r. SUM SUM SUM Leve I s·q, ft, Area psf kips kips psf Red. P.D. P.L. T.L. ROOF 170 m1 20 3 3 0 0.0 6 3 9 3 200 370 75 3 0 80 4.0 24 18 Cw 2 0 0 75 0 0 80 0.0· 0 0 0 1 0 0 75 0 0 80 0.0 0 0 0 0 0 0 0 0 0 0 0,0 0 0 0 :0 0 0 0 0 0 0 0.0 0 0 0 . •:-· ---;}_• /tlf ··i/··: -..:-~·!<';<-:.~ ... ,, 65 0 0 0 0 I I I I I I I I I I I I I I I I I ,I FILE: ALI DATE: 29-Feb-88· Column loa.d ta.bula.tions with live !oa.d reductions ba.sed upon the U,B,C. '85, S.B.C. '85 and the City of Phoenix Construction Code '86. COLUMN<S>---> D-4 0 4e 60 ROOF LIVE LOAD REDUCTION---------------> MAX. REDUCTION FROM A SINGLE FLOOR-----> MAX. REDUCTION FOR MULTIPLE FLOORS-----> MAX. REDUCTION IF LL> 100 PSF ---------> 20 NOT APPLICABLE TO AREAS OF PUBLIC ASSEMBLY NUMBER OF LEVELS-----> 4 (ROOF+ FLOORS) SUPPORTED Add' I Add!I REDUCIBLE Arn SUM D.L D.L. LL. L.L. r. Sl.ll4 SUM SUM Level sq. ft. Area. psf kips kips psr Red. P.D. P.L. T.L. ROOF 0 0 20 0 0 0 0.0 0 0 0 3 0 0 75 0 0 80 0.0 0 0 0 2 200 200 75 3 0 80 4.0 18 15 Gr) 1 120 320 75 0 0 80 13.6 27 24 51 0 0 0 0 0 0 0 0.0 0 0 0 @ 0 0 0 0 0 0 0.0 0 0 0 rs -~jf\~:- ; ;:::!t». ' ,, . 0 51 78 0 0 .,:~'-:-~:::J:\::,-:',:":~~i~t"/·:·~;:,-:,2:-r:.-~_; ~-> .. _-;,· . 1---. I I I I I I I ·-' .1 -11r1 • I i.J • FILE: ALI DATE: 29-Feb-88 . Colllllln load tabulations.with live load reductions based upon the U.B.C. '85, S.B.C. '85 and the City of Phoenix Construction Code '86. COLUMN(Sl---> D-5 0 4e 60 ROOF LIVE LOAD REDUCTION---------------> MAX; REDUCTION FROM A SINGLE FLOOR-----> MAX. REDUCTION FOR MULTIPLE FLOORS.-----> MAX. REDUCT!~ IF LL> 1H PSF ---------> 20 NOT APPLJCABLE TO AREAS OF PUBLIC ASSEMBLY l'*JIIBER· OF LEVELS·-----> 4 (ROOF.·+ FLOORS> SUPPORTED Add' I Add' I Arn SI)! · D~L D.L. L.L. Level sq. ft. Area psf kips kips ROOF £1 0 28 0 3 0 0 75 0 2 338 338 75 6 1 150 480 75 0 0 0 0 0 0 ·0 £1 0 0 ·0 ·ai, 0 0 0 0 0 0 REDUCIBLE LL pst 0· 80 80 -~ 0 £1 r. Red. 0.0 0.0 14.4 . 26.4 0.0 0.0 SUM P.D. 0 0 31 42 0 0 SUM P.L. 0 0 23 31 0 0 SUM T.L. 0 81 112 0 0 ,, \. • I ., ..... "':-_~. -~.:;· -. ":;;'·: r ·' ., ~• I~ I I I I I I I I I I I I rmx. BY: __ _ DATE: ___ _ S Q U A R E F O O T I N 6 D E S I 6 N DESCRIPTION: fl ALLOWABLE STRESSES > Allowable Soil Pressure = 6,580 psf > Short Tera Soi I Increase = 1.33 > Rebar Cover = 3.5 in Al I ow~ Shear: > Fy: Reinforcing = 60,iif' psi One Way Two Way · = 109.5 psi = 219.1 psi > f't:-Concrete = 3,000 psi DESIGN DATA -----------. > Axial Dead Load = 2HJ k > Nature of SHORT TERM: > Axial Live Load = 125 k Seis1ic = 1 > Axial Short Term Load = 0 k Wind = 2 --> 1 ~-FOOTING THICKNESS = 25 in >Col.Dimension= 16 in PRELIMINARY DESI6N ----·-------------Bearing Area Required = 51.54 ftAt > Trial Diaension = 7.5 ft X 7.5 ft Basic Soil Pressure = 5,956 psf (= 6,500 psf Short Term Pressure = 5,956 psf NA psf Factored Max. Pressure = 9,104 psf ACI ,Equation 9-1 Governs CHECK M-WAY· SHEAR I!>" Cl-ECK 00-WAY SIEAR -----!·---~-0.~·- A II owab" .. Appl iedi,. --·i BENDINEfl;:·. -------=~--·:\. 1~ Moment f Co'f :, Ru -Resis. Mod. = 102.9 psi Area Req'd per foot= 0.6" inA2/ft Total Area Required= 4.52 inA2 ------------------., ,'Aflowable Shear · A-ppl i ed· Shear = 600.6 kips = 418.6 kips _eq'd Reinforcing: '.) Mini1111111 Steel = 0.0018 2H I Fy. = 0.ie33. Per Analysis = 0.0018 --> USE = 0.0123 Reinforcing: 23 -#4 15 -#5 11 -#6 8 -#7 .6 -#8 5 -fi9 :·-DESIGN SUMMARY -----------------------------------------------------: FOOTING SIZE 7 .5 ft x 7.5 ft THICKNESS = 25 in REINFORCE!ENT : USE 8 # 7 Bars Each Way ,--------------------------------·--- I~ I ~x I I I I I I I I I- I DESCRIPTION : Fi. A DESIGN DATA >Allow.Soil Press. = > Short Term Increase= > Ht, of Column Base Above Top of Ft9. = -.. - 6,500 psf 1.33 120 in -. -... _ - PAGE: ___ _ PROJECT: __ _ SUBJECT : ________ _ -----------DATE: ___ BY: __ _ A N A L Y S I S > Soil Density = > Soil Ht 0/ Ft9. = > Column Dimension: Y : Direction = X: Direction = 120 pcf 12 in 16 in 16 in > Nature of Short Teri Load--> l=Seismic 2=Wind 1 1 > Does L.L. Moment & Shear Act in Short.Teri? Y=l N=0: VERTICAL LOADS -----------,--> Axial Dead Load > Axial Live·Load ( Service l > Axial Short Term Load = = = ... 79 kips 52 0 MOMENT & SHEAR LOADING (Pos. Sign= Clockw.ise Rotation) Acting To Rotate About Axis: > Dead Load Moment > Live Load Moment > Short Term Moment Inducing Moment About Axis: > Dead Load Shear > Live Load Shear > Short Teri Shear -FOOTING DI~-:;,,:· ----'!"-~-ftJ;;y:·---~ > Width .f = = = = = = Y-Y AXIS X-X AXIS ---------------------s ft-k 0 0 = 5 ft = 5 ft = 15 in 0 ft-k 0 0 0 kips 0 0 > Heigh·t '"A· .. > Footing: t,J, -x I -SOIL·,,-· ..... fJHH I _ "}, ,' _ ..:. --· --------------------------.. ---: I I I I : Rotating About: Y-Y AXIS: STATIC SHORT TERM .. . Factored Service Factored :----------------:----------------; Allowable. Left Side 6,5ff 4, 723 6,,993 8,645 4,723 5,245 Allowable Top Side Rtght Side 6,343 9,747 psf: 6,343" 7,310 .• I Bottl)m Side X-X AXIS: ---------------------------------------- STATIC 6,5H 5,533 81370 .5,533 8,370 psfl SHORT TERM 8,645 :5,533 6,277 5,533 6,277 11 : :----------------------------------------· ·----------------------------: ~-. liililX ' :1 1--. I mmx mmi: I I I I I I I I I mmx I I I I ·I I I . 1: PAGE:.,._ __ _ PROJECT: ________ _ SUBJECT : ______ _ DATE : ________ BY: ____ _ > f'c ~ Concrete = > Fy : Reinforcing = } Reba.r CL to F.O.C. = 3,010 psi 'm'= Fy /{,85f'c) = 23.53 60,ooe psi Vu-al low=2(f'c)A,5= 109.5 psi 3 in > _Minimum Steel i. = 0.0018 MAXIMUM ONE WAY SHEAR ACTUAL ALLOWABLE -Vu.@ Right Side of Column= Vu@ Left Side of Column = Vu~ Top Side of Column = Vu@ Bottom Side of Column= 64.8 psi 49.2 psi 57.0 psi 57.0 psi MAXIl'IUM MCJll!ENTS (12" strip) Moment R-u Mu@ Left Side = Mu@ Right Side = Mu@ Top Side = Mu@ Bottom Side = 147,8 in-k 189,8 in-k· 168,8 in-k 168,8 in-k 95.04 12Z-,02 108.53 108.53 OVERTURNING STABILITY <Unhctored Service Loads) FACTOR OF SAFETY: X -X AXIS = FACTOR OF SAFETY: Y -Y AXIS = STATIC NA 20.49 109.5 psi " As:Req'd 0.31 " 0.40 in"2 8,36 inA2 0,36 II SHORT TERM NA 20.49 mmx -I I I mmx I I I I I 1· ~ ~ J J _] ] ,.] ' .~I I I PAaE: ----PROJECT: _______ _ SUBJECT: ___________ _ BY :_____ DATE: __ _ DESCRIPTION : W F' Z ALLOWABLE STRESSES > Allowable Soil Pressure = 6,500 psf > Short Term Soil Increase= 1.33 > Fy: Reinforcing = 60,000 psi > f'c: Concrete = 3,fif psi DESIGN DATA -----------> Axial Dead Load > Axial Live Load > Axial Short Term Load = = = 92 k 51 k 0 k > Rebar Cover Al low. Shear: One Way Two Way = 3.5 in = 109.5 psi = 219.1 psi > Nature of SHORT TERM: Seismic = 1 Wind = 2 --> 1 > FOOTING THICKNESS = 15 in >Col.Dimension= 16 in PRELIMINARY DESIGN ------------------Bearing Area Required = > Trial Dimension = 4,83 ft X 4.83 ft Basic Soil Pressure = Short Term Pressure = 6,130 psf 6,130 psf <= 6,500 psf NA psf Factored ·Max. Pressure = 9,237 psf ACI Equation 9-1. Governs CHECK ONE-WAY SHEAR Allowable Shear App I i ed Shear = 62.1 kips = 35.2 kip\ CHECK 00-WAY SIEAR ------------------- A 11 owab I e· Shear App I i ed Shear = 235.6 kips = 167.0 kips BENDING eij~trr· Req'd Reinforcing: --------. ---. --::) Mini11111 Steel = 0.0018 Moment t.Co.:tt~-· ;:·,h.. 200 / Fy = 0.0133 Ru -Resis'f~Mo:cf.; .-.-\.: Per Analysis = 0.0020 . \ _ ·:-:~.~.:; ,,J·i_ \~t<, . c-~~ --> USE = 0.0027 Area Req·'d per foo\.,.=--··1.31'··,wA lff?-· Reinforcing : Total Area Required= 1.80 inA2 9 -#4 6 #5 5 -#6 3 -#7 3 #8 2 -#9 : -DESIGN SUMMARY ------------------------------------------------------: FOOTING SIZE 4.83 ft x 4.83 ft THICKNESS = 15 in REINFORCEMENT : USE 6 # 5 Bars Each Way I -----------------------·-----·' \ ' .;:c..., _....._ .. _,: .. _ ~ ·t C?z. II II II p t:;' ~ O X 5~ D X. IG Df5E- uiifi), I '_'. c•_.:..·::,,,-i--_;,.:,_ ·~: • .-.-.:: -_ .... -.,._..,. ""!-.•• _.- "PAGE: ________ _ I~ I mmx I I I I I 1· I I I I I I ;1 ii 1. I DESCRIPTION : ti F3 ALLOWABLE STRESSES PROJECT: _________ _ SUBJECT: _____ _ BY: __ ,,__ DATE: __ _ > Al Iowa.hie Soi I Pressure = 6,580 p·sr > Short Term Soi I Increase = 1.33 > Rebar Cover Al I ow. Shear: = 3.5 in > Fy: Reinforcing = 60,Ni psi One W'ay = 109.5 psi > f'c: Concrete = 3,000 psi Two Wa.y = 219.1 psi DESIGN DATA --------·--> Axial Dead Load > Axial Live Load > Axial Sh.ort Tera Load > FOOTING THIOOESS PRELIMINARY DESIGN = = = = ->. Nature of SHORT TERM : Seis1ic = 1 Wind = 2 --> 1 12 in > Col. Diiension= 16 in Bea.rini Area Required = 14.31 ftA2 > Trial Dimension Ba.sic Soil Pressure Short Term Pressure = = = 4 ft X 5,813 psf 5,813 psf <= 6,580 psf NA psf Factored Ma.x. Pressure = 8,794 psf ACI Equation 9-1 Governs Cl-ECK M-WAY SI-EAR Allowable Shear Applied Shur Moment:' Ru -Res: ,. , ... :~~ Area. Req·1'drp = 38.0 kips ';/;. = 22., kipS- Tota.I Area. Required= 1.12 inA2 Cf£CK TWO-WAY Sl£AR ------------------- A 11 owab I e Shear App I i ed Shear = 155.1 kips = 104.0 kips· eq'd· Reinforcing: > Mini11111 Steel = 0.0018 2Bf / Fy = B.0133 ,, Per Analysis = 0.0021 .t --> USE = 0.0827 .J·Re i nforc i ng : 6 -#4 4 -#5 3 -#6 2 -#7 2 -#8 2 -#9 l-DESIGN SUMMARY-----------------------------------------------------: FOOTING SIZE 4 ft. x 4 ft THICKNESS = 12 in REINFORCEMENT : USE 4 # 5 Ba.rs Ea.ch Way ------------------------- I I I I I I I I I I I I I I I I DESIGNERS.• B0!£0EffS;_DEVE(OPERS Offices,.andi'ft..l(i!lii,iMf · · · --~i!J~Y.,. _~-·: _;, :_~:' ""·~::: ,<·X:f;_-";.':'1J': ';-,,',,t}t~:<,izts;;:i~- Proiect _______ . .-·':_· __ " Date _______ _ B1------- Sheet ____ of. __ _ I I • If • -i2- I I I I I I I I I I I I I I I 1- I --.. / Project ______ _ Date _______ _ By-------- Sheet ____ of __ _ --i ~ , -(\) ! ---------,--...,_,_-+-i-:. ___ ..,_ ' _____ J....., __ , __ rP' -·· ··-··---... ~ 1 i • ' ' ~ . i f ; j j ~ ' , , -,---r--1---;'--· +-r· -----· · - ·i--, ______ _... . i : ; c "'; ... -----,. -+---1--,.....-~:----·1-.--.. l--t-~ J ~ ---1.-·-·--·------··-·· ----i-1-----i--i:---+---•-:~ ! ___ ;, __ , ___ r·-~--n-· -~ ~-~-1-~J--;,,--l;,,,' --;1,-.-1---;--...,,----"--· -.....t,-1--i>---''-----<-=-+-++--+-~-+--i 1 : 1 (p · : 'l l I / ,, 1 ;--·--t· ;., 1 r : J-j --'"; --+---'---.!--1'---t----l..JI ______ .J1-<---;°t.-.,.;.;.---,fl!"- --~-<;' .. @_~r,,,, _ _ru : l l : ' j , ' , :ll . : :-.-!t.1-~-IZ-..... y~-~--' '~ w: {,..,.,,_,v.,,._,,,. }\_,.,,...J,,.,.,,.,..._,,,._. . __ .... ,,. ~1 i· ---r= __ , ... ;,-l ---:------·---r1--!--1----;-'--. --, ------ i lit -l l ; '. _....,.._..._. __ -+---_;..--f---+-t-...----4· ' i ' ' ' ! -Le-\ ) 7-7,;.__ ' 'i i ' ' l t ~fl-i 4:~ ' ·: r-' }' \ ! ! i ' "I L l ! ( L-·t-.+--,:..._·~----,·-. . -, . . 1 ~ ... --~~-= -~~ -~-- I I BY: DATE: ___ _ I mmx C O M B I N E D F O O T I N 6 ·D E S I 6 N I DESCRIPTION :F4 I I 1· I I I I I I: I I I I DESIGN DATA ---------- > Allow. Soi I Press.= 65H psf } Short Term Factor= 1.33 > Soil Ht. Over Ftg.= 132 in > Fy : Steel > f'c : Concrete > Weight or Soi I = 60,00tJ psi = 3,000 psi = 120 pcf > Nature of Short Term ·Load--> 1=Seismi~ 2=Wind ? 1 0 > Do LL. Moment & Shea.r Act During Short Term? Y=1 N=0 : COLUMN #1 ---------> AXI~L LOADS.: Dea.d Load Live Load Short Term >MOMENTS: Dead Loa.d Live Load Short Term COLUMN #2 > AXIAL LOADS: > M Dead Load Live Lo -.-,< Short· 'it: i•iJ·(~ k Dead-L~--~·,.-:~. Live toa<f_,~:: = = = = = = = Short· T(t,i) · ·. ": -:>,·~ ,, • t "~~·-: ................ -~: 22 kips 19 0 0 rt-k 0 0 79 kips1 >Equiv.Column Dim. = 16 in > Col Base above TOF = 132 in >SHEARS: Dnd Load = 0 kips Live Load : 0 Short Term -· 0 > Equiv. Co!UD1n Dim. = 16 ill Base above TOF = 132 in = 0 k.ips = 0 = 0 FOOHNG DIMENSIONS -->NOTE: DATUM AT CENTERLINE OF CCtLIMN #1 -· ---.. > Dist. Lett Ot #J = 0.67 t) > Dist. Btwn Cols. = ··--5-rt Tot Footing Length=· 7.50 rt > Footing Width = 7.~ ft >Dist.Rt. of #2 = 1,83 rt > Footing Thickness = 25 ·in > Rebar CL to F.O.C. = 3,5 in :-MAXIMUM SOIL PRESSURE SUMMARY--------------------------------------: ACTUAL MAXIMUM FACTORED PRESSURE ALLOW. PRESSURE ----------------· -------- LEFT SIDE : STATIC = 2,997 6,500 psf 4,406 psfl (Lett of.#1) SHORT TERM = NA 8,645 . NA RIGHT SIDE:. STATIC = 6',298 $,50111 psr . 9,332 psf'l l¼ I I -,x I I I mmx rnmx I 1-· I. I I I I I 1· I mm>: I I I _I 1 I f\1; • 1) ! ir<-. J .:irnir.1 I c;r.1•1 .: 1'41\ 0 I Q'tO I'll\ ( Prnsur,1-!ndudr Foo:t i:nf *" Ovttli!1r:de!):· lile{91il l I, ., . f-------------·----------------. ---.---------------------------------'-} LOCATION OF RESULTANT Distance of Resultant From Left Edge FACTORED UNIT SHEARS --------~----------- ONE-WAY SHEAR: Allowable: 2 * (f'cA,5) Applied : Vu/ .85 Left of Column #1 R·i ght of Co I umn #2 TWO-WAY SHEAR: PAGE: ___ _ BY :_____ _ _ DATE : ___ _ Static Short Ter111 STATIC ----------- = 109.5 psi = 0,0 psi = 0.0·,.psi SHORT TERM ----------- 109.5 psi NA .psi NA psi Factored 4.2111 ft _ NA ft Allowable: 4, (f 1cA~5> = 219.1 psi 3.6 ps·i 32.3 psi 219.1 psi NA psi NA psi Applied At ·Column #1 = At Column #2 = BENDING MOMENTS STATIC MOMENTS (Neg.Values=> STEEL@ TOP OF FOOTING!! -------------- Mu@ COLUMN # 1 = Mu BETWEEN COLUMNS = Mu@ COLUMN # 2 = SHORT TERM MOMENTS Ru:Max . Ast Req'd MOMENT <psi) (per ft) -------- 0.0 ft-k -8.4 ft-k 4.9 t't-k .. 0.0 psi 20.1 psi 11.9 psi NA psi NA psi 0.0 psi ---------- 0,31 inA2 0.31 inA2 0.31 jnA2 NA inA2 _ NA inA2 f,31 jnA2 oints between columns. F4 I I~. I I I I I I I I I I I _·I .I .I .I .I COLUMNS 7 .4.3-Load-moment strengtfl lnt·eraction diagram for R4-60. 75· columns 1D -1--·J:-• I I II .I ' /i ,I -..... "°"'. I I/ .... INTERACTION DIAGRAM ftHA:71 I:-+ '-4-;~ --I ·t--, . r ------:Sf-r+ + ,:-•llli ··.;. .. ;.; : [. ..,_ -+-H,-f, •IOllli I .. : ...... -; I i ; ~ '-re~ 'r •0.75 I "l . -,_ . ·.I ,_i : : ! I • • t • • ·IT I I ... I ' I' 1''...11 1, • • I' /, V I I• II • I • 5.0 4.0 ~-. . "'i,, I V, -~ • . ! • I r...: : j/ I ;ot>: • • • ,J -~ " ---,{ ' " 0.111 I ' i i y , , en . .,~ .07 "I~ : ,_ . ii l , I -' ' V, ; ., I/ ... ~ . , .. ·0.06 r..., '-. ~+ 1--t· I v I : ..o:,; I'• '~ ~·\ ' . > I v: ·:.2:.9s -I'-:-~\,, .... -:·· .. .L -t L,J. L-,.., I y .., Oy I ..,.T.....,. .f""v-1 I l. .. ..... :\ i"' • .·1 I I V. ~ , I Yf!P. I.,., ' ' ~ rvt y I\. I. IA I I y I _;,.,·1 IV· . I ; .... .OJ '-" """• 1, 1\. ;, ~ 'l 0.021 "-l'V' V. ~, ' I( i '• 0.01 0.02 o.o3 o.04 o.os o.06 o.o, o.oa 1-•• ,1 1.00 1.00 1.10 1.20 1.2t 1.34 1.u 1.54 Ht -'-V !\,. !, .,. X "I. 2.0 10_•0.01 ~- ,/ '. .) . ' /, ..,.-....!.-. !4--IA " JC . .., ...... ·'· ,? .... -· ........ --- I ' . ..,._ I : I I } ' I.Ji ,, 7 :\, .. j I : ' .J.--t: -i/ V I'\ I(; \ !.,, I ' ;_ -."'.,.09 -I I • \ X 'II ... ! I ·--'r ........ ' I ;/ 1 .\ Vl\ _...., . 1\. I'. -~ ' I ,_ ..... ' i 1.0 V I/ f. ... : -•f I : 1/ / ./l '/ ~'f" ' 1,• 1, :/ , IF:/ __,, ·:J ~ --: I . , I -~ '/, "-n, : I I IV,,,, ... -r . l\ i "-l X ....... I", ~...[ -,;;.-,, l I . ·1 "II.. L -I ... 0 0.20 0,40 0,10 0.10 1.00 1.20 1.40 1.10 LIO 2.00 tP" .! . fMn ksi A, h AJI' COLUMNS 7 .4.4-Load-moment strength interaction diagram for R4-60.90 columns 4.0 I'- 1.0 1 ./ .,, ./ ---1· 1 , I, , I / V / / ' , • ..,., '. I· ' .. Y v...,.-'_/ -~ J :J I J 'I I • , V, ~ ~ -'Ir ' r,,..; -,._ .__ ~--""-- !!!;: .....--~ ' • \ " I -.,.. I I'.; r--.... 0 0.20 ().40 0.8() 0.10 1.00 1.20 tP" ,.! "tfMn ksi A, h AJ!' For use of these Design Aids, see Columns Examples 1,...9 and 12-17. 1.40 ' : i ; ; 7 -. 7 I ! 1.60 1.80 2.00 • -i C ~-g:,· :Zf. 77 ~~ -~ C 0 L u M· N s ~-~_"1 7.4.3: C 0 L u M N s 7.4.4 Project _______ _ Date _______ _ By. --r~fA~---- Sheet C ·ir of __ _ I I I I I I 1. I I I I I I I I I I I ·1 I I I I I I I I I I I I I I . :· .... _ ..... :.~-:'--:.::-.,. ~· - ~--~ '!"' - OPUS CORPORATION Project _______ _ :: . -.. DESIGNERS • BUILDERS • DEVELOPERS- Date _______ _ Offices and Affiliates in Min_riel!P91if, CIJisagq: Mi~~ • Phoenix· Tampa • Pensacola ~:::. . ...---~ -._ .; ,.·_ - By-------- Sheet l"t'° of __ _ . ._ .. - , __ i __ · . 'l · :5f LJ __ t-! ...,----'------s;---·-------· --·.-------·- ' I _., J l . . ' , t } t -L .-.S-~~-r-.... ~ ... ---... --~-----~__;___'-----si • :-r" i-~~ ?"'· I; f , ! t ' 1 ~ ' < l j ; ' "1 : ___ ; -i---+-;-+-->--.;--,-.,--··--·-··--------- ' . l ' j ._ _____ .....--t--+--'---i--. ---·-----: ~--. -, __ • --< I I I I I I I I I I I I I I I I OPUS CORPORATION Project CA~t5.J?40 DESIGN~RS • BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis ·Ch!~· Milwaukee· Phoenix· Tampa· Pensacola Date By A/1 I Sheet ~\of ., I I I I I I I I I I I I I I I I I I OPUS CORPORATION RS • DEVELOPERS DESIGNERS • BUILDE . k • Phoenix. Tampa • Pensacola . • lis ·-Chicago. M1lwau ee Offices and Affiliates m Mmneapo . ___ ,,_ __ ' .,.:-~-,,, __ . __ :_ :----..-... ~- ;--- ; L __ ' _,_ _____ -L-.. -: --------:- ·--·-··r----.- --,-·-. ' > ------: -----j-,-........ , __ ., _ .. ''""~~- --~--------· l ~ --·,---·------------ Project _____,?;:--*[2-;.--th. l9Err"· - Date -'-+" By-.....,--...!.?...,_ __ _ Sheet (. ~ of __ _ ·,~_;_·~--:-,,._~ .. ---··· ' ' +-~ -----~-~--, . -~,~ - i _____ +-..:..... -.. '----_.;.,,,,,,... -L ........ .,,,,.,..;.,, ...... - ,,..-.. I . ·1· • ·I· ·I ·. ~,., .1:·· ·~ 1· ~' : ·1: .· ·11: ---~~- . 1:·"·~ ·I, . I ~ :I··. . ' ' . 1: ·. ,~ .· . . ,. , .' ,1··.:··,'_ '~; , I·,,: . . ' -f ' •• ,: I • ·~----·. , ,., ... • '!.·, I ·I-'~ ,I I I I .I I I I (. -.... 1---- I .I I ·I .I ·1 I I I -:-:> ~-. ;~ -...,:; :: , r --... .. •• ~ ~ \· ' ) I - I ~ ~ . _, -l.i, '11 t ' @~ ;~ .... \i l ~ .. ,..., l"I ' •• 1-; -···, -, 19 -~ I g . lg l'cl -"' l'cl .... ,,e . . .. 19 ,~ (g ,g 1<§, ------·--41 ----... --1---------, .. --. ... l ; ~-a ---~ ,.._ l \t ---•i--------i t ~ I ~ l'a, ~~-~ ~ .. --ij -C] ~ -Z/B l<a ~g + i. '"-,a. ! • 'I I'd \("\ -~ :/. --' '1 r ~ 0 1¢1 ~ ' . -· .. ~ lo, -' .. _ .'4 .... . -I I~ ~ -e~ ~ ·, ,. ~- ,ca ·-i<a ·~ ,Q I~ = 1;8-i - I I I I I I I ~ --It ) I I I I I I I I I ~---)~ (l IS g ·lea.. Ci . f<a. -~- <a I~ lea, vo,s lg <:) ~ C:g I~ 1 0 g 1g ~g e. - 18 . ,, 9 l 1 I J ,! ,-1 19. I r-.s (g~ ca " ~ ~ ,s: I --Z.Q.. ' • a <(. <q (b -zg. ";Z.. ~-t-t---t._~t:---.~::;;~~,-~ a· ?!>! ~ x-!1.7 . ..._--:.:- .. -~ . ...:-. .'.";.~.:~ _,....,... ...... I 18~-, ,-= "'.;..J I I I I I I I / ,r It I I I I I I I I 1· .._ -~ • l-19. -lg,_ /fl /9 ~ (f) 19, I'S c,I Iii Is ~: ~ C rt \.!) ' ~ ~ (/) ... l _.-g I~ 'cl ,. ~ ·~~ lg __ , \'. (ff ~ :; .. /g ~9 ~· \ ' "' I~ ,a -~ .; -l<a-\.{) ' 99 \ c;g c;,g I -j- ·\9 : fg 98 1 -ze ' • -za 'ZB .,. °Z'd -Zg -.:.-~~--~~~H--~ .. 'Z g -~- "', ... -,.2:~~~t~:¢i~~~~~,~11~, --:_ --,~~ .......... ~ ... -,. -~ • i'!'f-"<" -:'\"'-;_::-~ Prefect _______ _ Date-----~..,,...---- By ----'-----'----- Sheet--. tl!t . ofc.. ,.: . I .... ,-; I I I I _I_ .I' ~- I _.J .I I 1. _I I I I ~' OPUS CDRPORATI.Ort Project _______ _ DESIGNERS • BUil-DEAS • DEVELOPERS Date _______ _ • ~i~ ·Phoenix· Tampa.· Pensacola B Shee:-. -p""'.:r-".('-.. _o_f~~=== I I I I I I / "'). I I I I I I l --------------,---·,·-~· .. I ----<~-~-+-·½----· ---t-~-l~-t"---t--+~--· ·-·-.. I I I I I I I I I I I I I I ·1 I I mmx IIIIIIX mmx mmx mrnx PAGE.: PROJECT: _________ _ : SUBJECT: . --------- BY: ____ DATE : ___ _ -------------------------------- DESCRIPTiON: B1-3 RD LEVEL GENERAL DATA ------------26.33 ftj > F-y = 50,000· psi > BHII Span = F-b = 33,333 psi > Beata Spicing = 10 ft > f'c = 3,000 psi > Bea• Trib Width = 10 ft >Concrete-Wt. = 14-4 pet >Tot.Slab Thick. = 5.5 in n : Strength = 9.29 > Deck Rib Height = 3 in n : Deflectior,= 9.28 > Rib Spacing = 6 in > Beat Location: > Rib Opening Width= 6 in Center=1, Edge=0 I > Ribs: Parll, = 1 Perp. = 0 : . I j > Use Partial Composite > Shear Stud Cap. = 11.5 kips Action? Y=1, N=0 1 CONSTRUCTION LOADS > Slab Weight ( Applied BEFORE 75¾ Curing) = > Misc Dead Loid = Tota! Unit D.L. = 51 psf 0 • 50 psf D.L. x Trib· Width Bn1 Weight = Add,'! Uniforlf·Load· = Total Uniform D.L. = 0.500 kif 0,022 II 0 • t·.522 k.lf LOADS ON COMPOSITE SECTICt4 ( App I ied AFTER 75¾ Curing ) > Unit L'ive Load #1 = > Unit Live Load #2 = Total Unit L.L. = EFFECTIVE FLANGE WIDTH Based on Length = Based on Spacing = Based on Slab Depth= 75 psi L.L. ~ Trib N~dt~ = 1.00& kif_ • H 25 • Add' I Un if or• L01d· = 100 lllt To.hi Unifor11 L.L. : 1.ste kit 79.0 in 120.0 in 93.0 in S--REQUIRED Max. Shear AREA ~Q'D > Effective Width -47,481 inA3 = 20. k·ips : !a" jnA2 = 79 in B\ _1·~ ~ ~¥~~~::~ ~:-~~~~~ ~. ~-:;;'' ~./~~~r: · ~~~ • ~~-~J:~-:.;f~:~~=./~f > mmx I -·::1 .I I I I I I I 1: I I ·1 I I _I I I -- lllllX ~x •x ) mmx mmx mmx PAGE: 2--- ~-PROJECT:_.fil_OR:£.._~ · SUBJECT: _______ _ BY: __ DATE : ___ _ ROLLED SECTION DATA SELECTED STEEL SECTI~ ------>> W14X22 --> DEPTH-CLASS : 14 Section Properties: Translor•ed Properties: I-stee-1 = 199 in"4 29 i n"3 I-tr : ~ff.ectiv.e = 685 in"4 S-steel = S-tr : Top = 219.2 in"3 Section Arn To-p Flanse Dep.th Wt per foot = = = = 6.5 in"2 5,tJt in 13.7 in 22., #/rt S-tr : Botto• = 54.8 "' S-tr : Eflr f Bott.= 48.o • n*Str : Etf. @ To_p = 1·,681 " X-X Axis Fro11·8ottom= 15.4 in V·horiz@ 100 X = -162.3 kipS- :-STRESS EVALUATIIJI --------------------------------------------------: • ~~ > : SHORED & UNSHae : · Servi c.e Lnd Stresses-: @ Bott<111 of Beu @ Top of Concrete I l.lN9JJeED: STRESS CHECK: l'IAX. S.-trinsforud : = 32,659 psi = 989 psi : 33,333 ps:i = Allowable 1,350 psi= Al'lowable (1.35 +.35 * Ml I/Mdf>'1S-s = 59 in"3 Design -S-tr = ,48 in"3 48 Actua·l S-tr Effective = ,. I ,_ I Fb:Botto11 of Be~ = 48,176 psi ·: 44,5N psi =Allowable = .89· Fy I (Mdl/Ss + Mll/Str:Design> Fb:Top of Concrete=· 658 psi CM 11 / (Str: topfn )J 1,351 psi= Allowibl.e = .45-f'c: :i: 18,718 .. ,\t-rcl 33;333 psi = AHow1ble = ,66-Fy l ·--· · , .. · ;tH psi = Al low11ile. = .4f, Fy I Ulti Ulti :------------------------------: =- = 291 ft-k 2.21 SHEAR CONNECTION Parti1+ Coliposite Action: Being Used 1'11x Shear Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2) = 162.3 kips ---> NUMBER OF crMECT~ USED. = 8 PER 1/2 SPAN - V'h= Actual Shear For Studs Used= 92.0 kips <Min.= .25 * Vh) Actual¾ Co1posite Action = 56.70 l~g;rr1~1~J~~~.s<-•~~i0 _ ·. RX, ~ I I mmx. MX I I I I I MX 1r1 I mmx I I I I I I I I -_ 3 PAGE :. . PROJECT:_8 ____ / ___ (.,__p.,__-te._'O_· ..... ~--------: · SUBJECT: BY: _____ DA-TE : __ _ DEFLECTIONS. --->> I-tr:xx is B1sed on• n: Deflection" I-tr:xx of Co1posite-Stction I-EH. : Is:+ CV'li/ Vl\-l",5tHtr-ls)J > LOCATI~ --> X Di,stance fro1 Left Support = 13,165· ft Dela.ult = L/2 ----------------------------------------IaD--LOAD = 8.~-in : L / 1112.. t.978, in : L / 323 LIVE LOAD = 0.S.5 in: L / 58f i.S.5 il'I: L / 58t TOTAL LOAD =-l,8a:11n t. L I 381 1.52$: in : L / 207 REACTIONS. DEAD LOAD. = LlVE LOAD =· TOTAL LOAD= LEFT 6.87 kipl 13.17 • RilifT -------6.87 kips, ,.. __ _ 13.1·7 • ( 1.~ "" ~ u.. er 40;r -·~. ------ 21.M kips I 1-~ C Pr inter aunx I I I I I I I I I I I I I _I . \ lllfflX ·lllfflX mmx ___ mmx 111111X mmx PAGE:. __ _ PAOJECT: SUBJECT~-------------' ------BY: __ DATE : ___ _ COMPOSITE S1Efl BEAM DESIGN DESCRIPTION: GENERAL DATA ------------> F-y = 50,eei psi > Bea Spa.n = 24.33 f't F-b· = 33,333 psi > Bea, Spacing = u, rt > f''c = 3,M. psi > Beam· frib Width = 11 ft . > Concrete Wt .. = 144 pcf >Tot.Slab Thick. = 5,5 in n: Strength = 9.29 > De~k Rib Height = 3 in n.: D.ef.lection= 9.28 > Rib Spacing = 6 in > Bin .Locati.on : > Ri~ Open ins Width= ·_ . 6 in Ctnter=l, £d9e=0 1 > Ribs: Parll. = 1 ... Perp. = 0 . 0 > -Use Pa.rt,al Composite .. > Shear Stud. Cap. = 11.5 kips Action? Y=l, N=0 .. 1 . CONSTRUCTION LOADS ( Applied BEFORt-75¾ Curing) > Slab Weight > Misc Dea.d ·Loa.d = 50 psf = 0 • Total Unit D.1,.. = 50 psf #1 = #2 = 2.6 k X = 14.5 0 k X = 0 D.L. x. Trib Width· -· . 0.500 kif .Beu We i,ght. = 0.026 " Add' I Unif-or11 Load = 0 11 Total Unifor1 D.L. = 0.526 kif 0 k X = 0 ft 8-k X = 0 ft LOADS ON COMPOS! TE SECTI.Clt-< App I i.td AFTER· 75¾ Cur i-ng )· ·-~ -4\:; • > Po i.nf.Loi #1 = . .,,;fs{f. ,2 = 0 k ·x =='" ---· ,-·n · --L.L. x Tr'i'b Width = . ·a1·LUnH.or:m..l.o1d .. = - ta:I: .1Jnifor111 L.L. = 13-=· #4 = .. ... , 0-k X = 0. k X = 1.050 kif 0 H 1.050klf 0 ft 0 ft o,• I I I I I I I I I I I I I I I I I ~I mmx . -~ mmx mmx IIIX j mmx llUIX 1111111 PAGE: ___ _ PROJECT:_ SUBJECT: _________ _ -----·----BY: ___ DATE : ___ _ MOMENTS Dead Load Moment = 52.7 ft-k S-RcQUIRED = 5~,90.7 inA3 Live Load "oment = 105.3 ft-k --------Max. Shear = 24 kips Total Molll!nt = 158.1 ft-'k AREA REQ'D = 1,19 inA2 EFFECTIVE FLANGE WIDTH --------------------- Based on Length = 73.I in Based on Spacing = 120.I in > Effective Width Based on Slab Depth= 93.5 in RCll£D SECTION DATA SELECrED STEEL SECTION ------>> W16X26 --> DEPTH a.ASS: = Section Properties: Transformed Properties: 13 in in I-steel = 301 inA4 I-tr : Effective = 879 inA4 S-steel = 38 inA3 S-tr : Top -244.5 inA3 Section Arn. Top Flange Depth Wt per foot = = = = 7.7 inA2 s-tr : Botto•-= 68.1· • 5.5£1 in 15.7 in 26.0 #/ft s-tr : EU. @ Bo.tt.= 59.4:-11 ntStr: Eff. f Top = 1,682 • X-X Axis Fro• Bottom: 16.5 in V-hori.z @ 110 X = 192.0 kips :-STRESS EVALUATION--------------------------------------------------: : SHORED & UNSHORED : Service Load Stresses: @ Bottom of Beilll @ Top of Concrete = ,31, 942 ps·i = t,128 psi .. J---~--· 33,333·psi = Allowable 1,350 psi = Allowable 59 ,. ' rb:Top of Concrete= 752 psi [Mll/(Str:toptn)l 1,350 psi =Allowable= .45 f'c: Unshored DL Sress = 16,~1 psi : 33,333 psi = A 11 owab I! = .66 Fy I Actual Shear Stress= 61073 psi : ze,000 psi =Allowable= ,40 Fy : ,------------·-----------------------.---------------------------------: ULTIMATE STRENGTH OF COMPOSITE SECTICW Ultimate Moment Capacity of Composite Section = Ultimate Moment/ Max. Service Moment = 361 ft-k 2.28 ~A ~} ol. ~ . ·-· ~-- I I __ IIIIIX I I I I I I I I I I I I I I I I I lllfflX rnrnx mmx mmx ffllllX ,-: .: \_"' SHEAR CONt-f.CTION P1rti1I Composite Action Being Used Mix Sheir Force: Vh Min. < .85 f'c Ac/2 or AsFy/2 ) = 192.IJ' kips ---> NUMBER Of CONNECTORS USED = 8 PER 1/2 SPAN V'h= Actua.l Shear For Studs Used= Actu1! ¼ Cotposite Action = 92.0 kips (Min.= .25 * Vh) 47.92 DEFLECTIONS ---» I-tr:xx is Bised on• n: Deflection 11 I-~: xx of Composite Sec.ti on = 1,137 in"4 I-Eff. : . Is+ CV'h/ Vh>".5tlitr·ls)] > LOCATION --> X Di sh.nee rro11 Left Support = 12.165 ft Defau.l t = L/2 SHCMD UN~. DEAD LOAD· = 0.213 in: L / 1373 0,622 in: L / 470 LIVE LOAD-= e.425-in : L / 687 0,425 in : L, / 681 TOTAL LOAD= 0.638 in: L / REACTIONS LEFT 458 1.046 in : L / 279 RIGHT DEAD LOAD = LIVE LOAD = 7.45 kips 7.95 kips 15,87 M 14 .• 87 • 23.82 kips C>IA -. '...... ..,." ,,__:_-:. ·--- PAGE_: ___ _ 1--~· PROJECT:· ________ , SUBJECT:.-_________ _ -; BY: __ DATE :_ I ··--lllftlX ------------- ·1 I I I ·1 I I I .I .• x mmx )·. mmx I ,) 1 ~I I ll!IIIX DESCRIPTION: BlB GENERAL DATA > Bea Spin = > Ben Spac.i ns = > B1111 Tr i-b IUd.th = > Tot., Slab Thick. = > Deck Rib Ht,i9ht = > Rib Spacing = > R1b. Openi·n3. ,Wldth= > Ribs: Pirll. = 1 Ptrp, = I : > Sht1r· Stud Cap. =. 21 ft 24.33 f't 12. 16 ft 5,5 in 3 in 6 in 6 in 1 11 .5 kips. . BEAM DESIGN > F-y = F-b = .> f''c = > Concrete Wt. = n: Strength = n.: Deflection= > Beam Location: C.enttr=1, E;d9e=0 : 501000 psi 33,333 ps.i 3,SH·psi 144 pcf 9.29 9.28 > Use Parti 11 C011pos-i h A~t.i on? Y=1, N=I : , 1 CONSTRUCTION LOADS < Ap_p I i ed BEF~ 75i. Curi ns > > Slab. Ne.i9ht > Misc Dead Load Toti't Unit D·,L. #1 = t k #2 = 6.25 k = = = X = X = 0 psf I • I psf' 7.5 HJ D.L. x Trib Width = Ben Wei9ht = Add'I Unifori Load= ••• kif 0,026 II 0 • Tohl Unifor1·D.t. = 0 .• 026 kif #3 = 14 = 8.5 k X = 15.5 ft 0 k X. = 0 f't LOADS ON CCM"OSI.TE SECTION < Applied AFTER 75X.Curin9 > > Unit Live Load #1 = > Unit Live Load 12 = 0 psf. L.L. x Trib Width = 0 • Add'I Uniform Load= 0·,0tlkl.t 0 H -------~ · · · ,Joh I Unifor111.L.L. = ,.see kif #3 = f.4 = 1 k X = 15,5 f't lie X= 0ft 818 I-~ •,-f"v(t" I I I I I I I I I I I I I I I I . ' "~-/ MX. IIIIIX IIX IIVIIX •x .I lfflX · PA££ :. ___ _ PROJECT:_.-----·---SUBJECTt.._ ________ _ BY: __ DATE : _____ _ ~------------ Dead Load· Noaent = 37.-4 ft-k S-REQUIRED = 39.483 in"'3· Live. Load Mo11ent · = 72.3 ft-k --------Max. Shur = 12 kips Toh! Moaent = 189 • .7 ft-k AREA REQ'D = 0.60 in"2 EFFECTIVE FLANGE WIDTH ---------------------- Based on Length. = 25.0 in Based on S,atins = U8.5 jn > Effective WJdth = 25 in Based on Sf.ab Depth= 38.1 in ROCLED £CTICJ4 DAT.A --> DEPTH Cl.ASS: in SELECTED STEEL SECTI(Jf-__ ; ___ >> W1-4X26 ~ Sect.ion Propert.i es : I-steel = S-steel = Sedion Arn Top Flan91 D.epth Wt per foot = = = / Transfor1ed Properti1s: 2-45 in"-4 I-tr : Effective = 738 in"-4 35 inA3 S-tr : Top = 125.2. in"'3- 1.1 in"'2 5.13 fn 13.9 in 26.t #/ft S-tr : Bottoa = 56.9 • S-tr : EH,. f Bott,:: 56,0 • ntStr : Eff. t To.p. = 1., 127 • X-X Axis Fro1.Botto1= 13.3 in V-horiz .f 10f ¾ = 175.5 kips I-STRESS EVALUATI~ --------------------------------------------------:-- I 51-llRED & ll6llRED : Service Load Stresses: @ Botto1 of Beu. I f·Top. of Concrete .; UNStDE)· S~. MAX. (f.· = 23,.509 ps.i = .11t67 ps'.i 33,_333. psi = Al-lowable-. I - 1,350 p.s-i = -AH-owa.b:I e ·,nA3 Des-i-9n S-tr = 56 ,nt-3 -~,5H psi= Allowable·= .89 Fy: Fb:Top of Concrete= 769-psi : 1,~-psi·= Al-lowable = .45' f'cl CMll/(Str:toptn)J Unshored DL Sress = 12,722 p.s.i : 33,333 psi = Allowable = .66 Fy I Actual Shear Stress= 3,361 psi : 2B,St8 'psi = All-owa.ble = .40--Fy I :----------------------------------------------------------------------1 LL TIMATE STRENGTH OF CCJIP(SITE SECTION -----------------------------·-------. U 1-t i mate Mount Capac i ty of Coapos i te Sect i on = · Ultimate Mo1ent /Max.Service Moment = 206 ft-k 1.88 ere I 1--• I I I I I I I I I I I I -I .1 .I I J IIIIIX IIIIX fflfflX llllllX ·IIIIIIX PAGE: ----PROJECT: SUBJECT: ________ _ BY:. __ DATE: Max Shear Force: Vh : Min. ( .85 f'c Ac/2 or AsFy/2 -) = 175.5 kips ---> UBER OF COtfECT~ USED = 1-4 PER 1/2 SPAN V'h= Actual Shear For Studs Used.= 161.0 kips-( Min. = .25 t Vh > Ai:,tual X Co1posite Action = 91.74: · DEFLECTIONS ---» I-tnxx is Ba.sed on• n: Deflection• I-tr:xx of Co1posite Section I-EH. : Is + CV'h/ Vh)A,5f(Itr-Is>l : 737 inA4 = 116 in"4 > LOCATICN --> X Dista.nte froa Left Support= 11 £t Def~ult = L/2 DEAD LOAD = 0,108 in: L / 2219 8.316 in: L / 759 LIVE LOAD = I.ZIT in : L / 1158 0.ffl in : L / 1158- TOTAL LOAD = 1.316 in : L / 7&1 ,t.524 in : L / 458 REACTIONS ---------LEFT RIGHT DEAD LOAD = 4.12. kips. 4.15 .kips LIVE LOAD = 7.73 n 7.78 • TOTAL LOAD= 11.85 kips 11.92 kips ~ I I I I I I I I I I I I . ~:1 l ) I 1· mmx IIIIIIX RIIIX mmx mmx mmx PAGE.: ___ _ PROJECT: ______ _ SUBJECT:~·---------- -BY:' . DATE: ___ , DESCRIPTION: B1B GENERAL DATA ------------> F-y = 50,000 psi > Beam Span = 20 ft F-b = 33,333 psi > Bea.m Spacing = 24.33 ft > f'c = 3_,000 psi > Bellll Trib Width = 12.16 ft > Concrete Wt. = 144 pcf >Tot.Slab Thick. = 5.5 in n: Strength = 9.29 > Deck Rib Height = 3 in n: Deflection.: 9.28 > Rib Spacing :;: 6 in > Bea• Location: > Rib Opening Width.: 6 in Center=1, Edge=0 0 > Ribs: Parll • .: 1 Perp. = • 1 > Use Pirtial Co11posite > Shear Stud Cap. : 11.5 kips. Action? Y=1, N=0 1 CONSTRUCTION LOADS < Applied BEFOOE 75X .Curing) > Slab Weight = 0 psf D.L. x Trib Width = 0.ft kif 0,026 II 0· • > Misc Dead Load = 0 " Beaa Weight = --------Add'! Unifor1 Load·= Total Un.it D.L. = t psf #1 = #2 = 6.25 k 1 k X = X = 7.5 10 fohl Unifor11 D.L. = 0,026 kl.I #3 = 14 = 0.5 k X = 15.5 ft 0 k X = 0 ft LOADS ON C{)lll)()SITE SECTION: ( App I i ed. AFTER 75¾ Curi ns ) > Unit Live Load #1 = > Unit Live Load #2 = Total Jlltilt~l~ "'"• ~--i{1; > Poi;fli~i: #1 = , . ,2 =-· :12is~ . . -\~·:/ ·-~-~J/: 0 psf L.L. x Trib Width = 0.000-kif 8 11 Add' I Uniform toad = t " .. \.Total Uni-for11 L.L. = 0.M kl.f #3 = 1 k X = 15.o ft. _14 =_ I k X = 0 ft 5.:::& ~I . ' . . - 8\8 IIIX I I I I· I I ~1 I I :I ,I ~I ·,,I -· _] 1 mmx lftllX mmx IIIIIIX 1 max Dead. Load Moment = Live Lo1d Moment = Total Moment ·- EFFECTIVE FLANGE WIDTH ----------------------Based on Length = Based on Spacing = Based on Sla.b Depth= RClLED SECT!~ DATA ------------------- 37.4 f't-k 72,3 ft-k -------- 189.7 f't-k 25.5 in 148,7 in 38.5 in PAGE: ___ _ PROJECT: ____ __,, __ _ SUBJECT: _________ _ -------B.Y: ___ DATE :_. __ _ S-REQUIRED = 39.483 ih"3 Max. Shear -12 kips AREA REQ'D = 0.60 in"2 > Effective Width = 26 in --> DEPTH a.ASS: in SELECTED STEa SECTION --~--->> W16X26 Section Properties: Transfor11ed Properties: I-steel = 301 inA4 I-tr : El-+'ective = 61f in"4 S-steel = 38 in"3 S-tr : Top = 144.0 in"3 Section Area = 7.7 in"2 S-tr : Bottom = 61.2 • Top Flange. = 5.5' in S-tr : EH.@ Bott.= 50.0 u Depth = 15 .. 7 in ntStr: Eff'.@ Top = ~ II Wt per foot = 26.0 I/ft X-X Axis Fro• Botto1.= 14.9 in. V-horiz @ HJe ¾ = 178.8 kips l-STRESS EVALUATION ---tt:ITE: Overstress Condition!! -------------: : SOORED & UNSl-llRED : ---> > · DESIGN. STRESSES EXCEED. ALLOWABLES • I I Service Loa.d Stressts : @ Botto1 of Beam .@ Top of' Concrete = 26,.338 psi : 33,333 psi = Allowable = 1,541 psi 1,350 ps.i =·AHovabl·e I UNSHORED STRESS ct£CK: ,. I MAX. s-tr;~:nst:or: ( 1.35: +~.i:.; ~. Ac tua1·· ·s",.t ._;. Fb:B6tfda~~f:j' iMdVSf.:i~j ,· . inA3 -Design S-tr = ..'in"3 ·44,5tt psi =Allowable = .89 Fy I Fb:J-0p of Concr-ete = · 1115 psi : 1,350 psi = Al lovable = .45 f'cl EMll/(Str:toptn)l Unshored DL Sress = 11,695 psi : 33,333 psi= Allowable·= .66 Fy: Actual Shear Stress= 3,048 psi : 20,000 psi = Al lovable = .41 Fy I I"------------------------------------------. -. -------------------------: ULTIMATE STRENGTH OF C{N>{)SlTE SECTIC* Ultimate Moment Capacity of C011posite Section = Ultimate Moment / Max. Service Mo1.ent = 238 ft-k 2,17 }3\~ 1----.--4 I I I I I I I I I I I I I I I I I- 1111x· ax IIIIX ., MX mmx PAGE·: ___ _ PROJECT: SUBJECT: __________ ,_ -----------BY: _____ DATE : _____ _ Max Shear Foret : Vh. : Min. ( ,85 f'c Ac/2 or Asfy/2 > = 178,8 kips ---> NUMBER OF CCNECTORS USED = 4 PER 1/2 SPAN -----------·--------V'h= Actual Shear For Studs Used= 46,0 kips <Min.= .25 * Vh l Actutl ¾ Composite Action = 25.72 DEFLECTIONS ---» I-tr:xx is. Based on • n : Deflection." I-tr:xx of -Coaposite.Section I-Eff, : Is + [V'h/ VlllA,5f(Itr-Isrl > LOCArI~---> X Dis.tlnce·froa ltft .Support = 11 ft Default=· L/2 Slt1IE) --------------------DEAD LOAD = 0,138, in : L / 1844 LIVE LOAD = 1.249 in: L / 962 TOTAL LOAD= 1,.380. in : L / 632 REACTIONS ---------LEFT DEAD LOAD = 4,12 kips LIVE LOAD = 7.73 " TOTAL LOAD= 11,85' kips UNSHORED --------------------0,257 in: L / 932 0.249 in : L / 962 0,507 in : l / 473 RIGHT 4,15 kips 7.78 •· 11,92 kips ,·· I ·1 I I 1· I I I I I .1 I I I I IIIIIX PAGt. : ___ _ ··-.. . ,_,, .,_ ;___':~--~.:-: --------·. --· - Pi<OjECT:CARLSBAD SUBJt.CT:~LOOR BEA~S AND GIRDERS BY:SGG DATE: 11/4/86 COMPOSITE STEEL BcA~ DESiGN -------------------------------- DESCRIPTION: B2 GENERAL DATA > Beam S~,arr = > Beam Spacing = > Beam Trib Width = >Tot.Slab Thick, = > Deck Rib Height = > Rib Spacing = > Rib Opening Wi~th= > Ribs: Par!!.= 1 Perp. = 0 > Shear Stud Cap. = I 30 ft 10 ft 10 ft 5.5 in 3 irr 6 in 6 in 0 / 11.5 ki·ps > F-y = F-b = · > f'c = > Concrete Wt. = r, : Streng.th = n : Deflection.= > Beam Location: Center=l, Edge=0 50,000 psi / 33133'3 psi 3,000 psi 144 pcf 9.29 9.28 1 / > Use Partial Composite Action? Y=1, N=0 1 / C.ONSTRUCTION LOADS C Applied BEFORE 75X Curing> > Slab Weight = 50 psf > ,MISC Dead Load = 0 • Total Unit D.L. = 50 ~,sf 11 = #2 = 0 k X = 0 k X = D.L. x irib Width = 0.500 kif Bea11 Weight = 0.026 11 Add' I Ur,iform Load = 0 " Total Unifor11 D.L. = 0.526 kif' #3 = 14 = 0 k X = .ilk X= 0 ft 0 ft LOADS ON COIIIPOSHE SECiION ( AN• I i ed AFTER 75~: Curing ) ) Unit Live Load #1 = > Unit Live Load. ,Z =· 105 psf· · L.L. x Trib Width = 0 .. •--Add' I Unif'orm Loid = .... ~ • !-··--... v-~~~-~-~~r;:-~-~-::.~ . - Total Unit L.L. -~:t::~::?;::115-p}f Toh.I ur~if'orm L.L. = ~·-~Jt:~~.~ ><•- > Point Loads· : #1 = 0 k w-~\.:: t~~~ i::=-: :._ I ft - #2 = £1 k X = 8 ft MOMENTS Dead Load Moment = Live Load Moment = 59.2 ft-k 118.1 H-k #3 = #4 = 0 k X = 0 k X = S-Rt.QUIRED 1.050 k!f 0 II 1.050 kit 0 ft 0 ft Total ~oment = 177.3 ft-I: Max. Shear AREA REQ'D = 24 kips = 1, 18 in"2 EFFECTIVE FLANG: WIDTH Based on Length = Based on Spacing = Based c,r, Slab Depth= 90.0 in WU! ir; 93.5 in > Effective Width = 90 in 8'2 1~lE~. AU:A c SOO Ff" 1,. L,. Ee'.-Q -11, ·'7 ° t,,L. ~ . !>'I> (20) t zo +? L·'-· (Z.6:P. -c 'f15A· r1F -N01 us6-t> - "? '10 COMf. AC."t'lON ~£G .• Us1rJ'-~e:p. t-.t... 'NOUL9 NO'T RE.,;>U'-€. ~M St?.£. s ~ ::s, "~-" (15.+ t 501 ~t. (10? -tSO) 5ie~~ ;q.,~i~ I I --~ '- I I I ·I I I I 1· I ·I I I I I ,I .. ~- R'Jll.ED SECTION DAlA --> DEPTH CLASS: 16 --------------------'~. SE:LECTEI);,, -:SmL Sl:CTJCW . :.:~~'---~'.->> 11116)(26 Section Properties: Tr1nsfor1ed. Properties I-steel = 301 in"'.t I-tr : EHi!ct,ve = S-steei = 38 in"3 S-tr : Top = Sect i or, Area = 7.7 in"2 S-tr : Bottom = To~, FI ange = 5.tif in S-tr : EH. @ Bott.= Depth = 15.7 in ntStr: Err.@ Top = lilt per foot = 26,0 #/H X-X Axis Frct11 Bc,ttom= V-horiz@ 100 1. = Cover Plate f Bottom Fla.n9e: > Width = 0 in I-s w/cover pl1te = > Thickness = fJ in s-s : Top = S-s : Bottom = 1,021 in"4 285.6 in"3 69.8 II 63,9 D 2,220 II 17.0 in 192.0 kips 0 in"4 £1.0 in"3 0.0 II BUILT-UP SECTION (Depth Entry Will Zero-Out Roi led Section Da.t1l --·------------- > De~•th of Bnm = I in I-s : Steel = NA. in"4 > Top Flange Width -. 0 in I-tr : EHective = NA • > Fl1n9e Thickness = 0 in 5-s· : Top NA in"3 > Bot Fla.nge Width = e in S-s : Bottom = NA • > Fl~nge ThJckness = t in S-tr NA II > -Wi!b Thickness· = I in S-tr : EH.@ Bott.= NA • Cross Sec ti on Arn = 0.00 in"2 ntStr : Eff.@ Top = NA II Section Weight = 0.0 1/tt V-horiz f liff:,; = NA kips .. _ STRESS EVALUATION--------------------------------------------------: SHORED & UNSHORED : Service Loa.d Stresses.: @ Bottom of Beam @ Top of Concrete , UNSHORED STRESS CHEC"K: ~A,\~ S-tr1nsformed: = 33,305 psi = 958 psi Cl.35 +,35 * 1111 l/flldl >•S-s = Actuil S-tr EHec.tive = 79 in"3 6.4 jr,A3 --.... "·' :: .• .,,----/~.:;, .;." . 33,333 psi= Allowable 1,3S0 psi = Allowable Design S-tr = 64 Fb:Bottom of Be•f.,::·=-~:4f;;·68t pi:;:)f44,500 psi ""'--. -= Ailowa.bie = ,89 Fy: Old i /Ss + Iii 11~$:tr:rksJan > . . ·- Fb:Tcip or Concretec. = [Ml l/(Str:top-1n).J Unshorea DL Sress = 181492 psi : 33,333 psi = Allowible = .66 Fy: Actual Shur Stress= 6,827 psi : 20,000 psi = Al low1bie = .40 Fy l :---------, ------------------------------------------------------------: ULTIMATE STRENGTH OF C:l)IIPOSHE SECTION --------------------------------------Ultimite ~oment Cipicity of Composite Section. = Ultimate ~oment /Max.Service Moment = 373 ft-k 2.11 SHEAR CCINN£CTION Pirtiil Composite Action Being Used Max Shear Force : Vtr Min. < .85 f'c Ac/2 or Asry/2) = 192,0 kips . ,. -• :--· ·:.~ ~':.~E:~ ~:?:t1f ,· . .-t~"' 52: ~-.. -~ ' . .-.. : ~.:~!.: -~ . . I I I I I I I ---> UBER OF CONNECTORS USED = 11 P!:R 1/2 SPAN -------------------- V'h= Actnl Shnr.:Fof: Studs Und = 126.5 kips ( l'lin. = .25 , Vh > Actual ¾ Comp·os-itt·ktion = 65,89 DEFLECTIONS --->) I-tr:xx· is Bued on II n : Deflection • I-tr:xx ol Composite Section I-EH. : Is+ CV'h/ i/h)"'.5f(Itr-Is)J = 1,189 in"4 : 1,021 I n"4 > LOCATION --> X Distance frcim Left Su~,port = 15 ft Default= L/2 SHORED -------------------- DEAD LOAD = 0.324 LIVE LOAD = 0,646 TOTAL LOAD= 0.970 REACTiONS DEAD LO~D = LIVE LOAD = TOTAL LOAD= in in in . L / 1112 . : L / 557 . L / 371 . LEFT 7,89 kips 15,75 Ii 23,64 kips UNSHORED -------------------- 1.098 in 0.646-in 1.744 in : L / 328 . L / 557 . . L / 206 . RIGHT 7.89 k.ips 15.75 " 23.64 kips I RMIX I I I I I I I I ;,-;~ -~ ~" : •. , I I~ I I .I I I I I I I I I I I I I I I t PAGi: : ___ _ PROjECT: CARLSBAD SUBJECT:~LOOR B~AMS AND GIRDERS BY:SGG 0.AiE : 11/4/86 -------------------------------------- COMPOSITE S°IE!:l BEA!li Di:SIGN D~SCRIPTION: B3 GC:NERAL DAiA > Beim Span = > Beam Spacing = > Beam Trib Width = >Tot.Slab Thick, = > Deck Rib Height = > Rib Spacing = > Rib Opening Width= ·> Ribs: Par! I,= 1 Perp. = 0 > Shear Stud Cap. = CONSTRUCTION LOADS > Siab Weight = > Misc Dead Load = Total Unit D.L. = #1 = #2 = 0 k X = 0 k X = 20 H.; 10 ft 10 f't 5.5 in 3 in 6 in 6 in > F-y = F-b = > f'c = > Concrete Wt. = n: Strength = n : Def i ect ion= } Beam Location : Center=!, Edge=0 50,000 psi 33;333 psi 3,000 psi 144 pcf 9.29 9,28 1 / 0 / > Use Partial Compc,site 11.5 kips Action? Y=1, N=0 1 ( Applied BE~ORE 7b1. Curing i 50 psf 0 u 50 psf 0 0 D.L. x Tri·b Width = Beam Weight = Add'! Unif'Orm Load= 0.500 kit' 0,022 II 0 • Tota! Uniform D.L. = 0,522 kif #3 = #4 = 0 k X = 0 k X = 0 ft 0 ft LOADS ON COMPOSiiE SECTION ( App I i ed AFTffi 75'/. Curing ) > Unit Live Load #1 = > Unit Live Load #2 = > Point Loads: #1 = 0 k X = #2 = 0 k X = MOMENTS Dead Load Moment = Live Load Moment = 105 psf L,L. x Trib Width = 0 • Add' I Uniform Load= 0 f't iltt #3 = #4 = 0 k X = 0 k X = 1.050 kif 0 II 1 ;S,:....£1 k If 3 ft 0 ft 26.1 ft-k S-REQUIRED = 28,296 inA3 52.5 ft-k --------lllax. Shear = 16 kips Total Moment = 78.6 ft-k AREA REQ'D = 0,79 jnA2 EFFECTIVE FLAN6t WIDTH ---------------------- Based c,n Length = 60.0 in Based on Spacing = 120.0 in > Elfective Width = 60 in Based or, SI ab Depth= n.0 in / l-. I... l'-0- -~o"'{ us·•'P. - .-., I 10 s.--'l ~___.-:, I I I I .I I I I ' I I I I _I I I _; I I ROLLED Sl::C.TION DA-TA --> D~PTH CLASS: -------~---------~--c --~ • =f.J r. ~: -:-. --5€1.E&tiiF· -~$TEEt. Sf:CT!ON · ·"'t''.~-~.::-·:.-» w1-.xz2 -.-•?--.,_ .. Section Propertie-s· r·. Transformed Properties: I-steel = 199 inA4 I-tr : EHective = S-steel = 29 jr,A3 S-tr : Top = Section Area = 6,5 iriA2 S-tr : Bottom = Top Flange = 5.00 iri S-tr : Hf. @ Bott.= Depth = 13. 7 ir, n1Str: Eff, -@ Top = Wt per foot = 22.0 #/ft X-X Axis From Bottom= V-hor i z @ 100 i: = Cover Ptate @ Bottc,111 Flange : } Width = 0 in 1-s w/cover pl1te = > Thickness = 0 in S-s : Top = s-s : Bottom = in 516 jnA4 179.0 tnA3 ~.7 II 42.-1 • 1,011 II 14,8 in 162,3 kips 0 jnA4 0.0 irtA3 0.0 • BUILT-111 SECTION (Depth Entry W i ti Zero-Out Ro 11 ed Sec-ti on Data) ----------------> Depth or Bnm = 0 in I-s : Steel = NA inA4 > Top Flange Width =-0 in I-tr : EHective = NA • > Flange Thickness = 0 in S-s : Top NA inA3 > Bot Flange Width = 0 in S-s : Bottom = NA • > Flange Thickness = 0 in s-tr NA • > Web Thickness = e in S-tr : EH.@ Bott.= NA ,, Cross Sect i ciri Area = 0.0!!1 in"'2 n1Str: Eff.@ Top = NA " Section ~eight = j,0 1/tt V-horiz@ 100 i. = NA kips :-ST~SS EVALUATION------------------------------------------------~-: l SHOR~D & UNSHOR~D-: Service Load Stresses: @ Bottom of Beam @ Top of Concrete I UNSHORED STRESS CHECK: MAX. S-transformed: = ZZ,38fl psi = 933 psi 33133"3 psi = Ailowab!e 1,3ti0 psi = Allowable (1.35 +.35 * 111!1/Mdl}+S-s = 60 inA3 Design -s-tr = 42 I ,. Actuil S-tr Ef_+::~f;r,~~ :_ = _,_ 4t inA3 Fb:Bottom of .Bi:""~· -~t~~~-~ psf. :, 44,fM psi = Ailowabie = ,89 Fy: ( llld U$s--t . ~~·i' S!I·>· .. , ·./-f$;:~ ~--t f··l:t. ~ Fb:Top ~f Contr:tl'e .=--:-:· [111! 1/(Str:t'op+-nJj 623 psii,_. ·:: 1,3:5S psi = AHowable = .45 t'cl Unshored DL Sress = 101800 psi : 33,3"33 psi. = Ai I owab I e = .66 Fy I Actual Shear Stress= 4,974 psi _: 26,000 psi = Ai iowabie = .40 Fy l :-----------------------------------------------------.----------------: ULTIMAiE STR'ENGTH OF COMP()SifE SECTION --------------------------------------Ultimate Moment C1p1city of Composite Section = Ultimate fllon1ent / ~ax. Service llloment = 277 ft-k 3.53 SHEAR CONNECiION Partial Composite Action Being Used !liax Shear Fc,rce : Vh Min. ( ,85 f'c Ac/2 or AsFy/2) = 162,3 kips ~ ·c: •.:;:., ;;.. 1.: "-1· I --. ,~-I --... · ·-· I I I I I I I I: I I I I I ·I I I I ---> NI.J.'BtfLQF CCMNECTORS. USED· = 4 Pl:R l/2 SPAN -~~~~~-;,~~~\~-..:~,};::\::~--~~~:~;;-i:,~_ t~ ••• _;~·--~ -------------------- V' h= ·Ar::tuir-·.st{ .Sii.rd.s Usid. = 46.0 kips < l'lin. = .25 * Vh Actual f-to(p-~itf;t1 tf~i -28.30 : . . . . :~t~.;~J:~: ~ DEFLECTIONS ... "::)f,1.'-,tt-':xx i,s Based on II n : Deflection • ---------·-ri' I-tr:xx of CoMposite Sect~on I-EH.,: Is + [V'M Vh)".5*(Itr-ls)J >LOCATION--> X Distance from LeH Support= 10 ft Default= L/2 SHORED -------------------- DEAD LOAD = 0.126 in: L / 1911 LIVE LOAD = 0.253 in: L / 950 TOTAL LOAD= 0.378 in: L. / 6:35 REACTIONS mmx DE.AD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 5.2"2 kips 10.50 H 15.72 kips I.JJSHORED --------------------0.326 in: L / 737 0.253 in : L / 9ft0 0.578 in: L / 415 RIGHT 5.22 kips l!ll.50 II 15.12 kips --~~.;. .. ... "; :;,~. ), "'.:~-.:-·t': . I . . 1-= -,,,_ I I rnmx I I I I I I I I 1m1n: I rnmx I I I .I mmx I inmx I PAGE:. __ _ BY: ______ ·DATE: ______ _ COMPOSITE S1EEL BEAM DESIGN -------------------------------- DESCRIPTION: B5 GEl'ERAL DATA > Beim Spin = > Beam Spacing = > Beam Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening, Width= > Ribs: Parll. = 1 Perp. = 0 > Shear Stud Cap._ = 35 ft,,, 10 ,t..- 10 ft-' 5.5 in" 3 in~ 6 in" 6 in' 0,,, 11.5 kipy > F;.y = 50,000 psi,. F-b = 331333 psi.,. > f'c = 3,000 psi,.. > Concrete Wt. = 1# per,,, n: Strength = 9.29 n : Def! ect ion= 9.28 >Beu.Location: Cenler=r, Edge=0 . 1 ...... . > Use Parti.al Composite Action? Y=1, N=0 1,,. CONSTRUCTION LOADS ( App I i ed BEFORE 75X Curi hg l· > Slab. Weight = 51 psf' D.L •. x. Trib Wi.dth. -· 0~500 kit > Misc Dead Load = 0 R · Bea,: We i.gh.t = 0.031 II ..;, _______ Add~! Uniform Load= 0 " Total Unit D.L. = 50 pst ,,. Total Unitorm D.L. = 0,531 kif LOADS ON COJIIPOSITE SECTI~ ( App I i ed AFTER 75X. Cur·i ng )· > linit Live Load #1 = > Unit Live Load #2 = 68 psJ L.L. x Trib-Width = 0.930 !elf 25· •;i;, Add!'f· Unitor111 Load = 0 " Total Moment -;;.-:.., _____ _ / = 223.7 tt-k EFFECTIVE FLANGE WIDTH Based on length = 105.0 in . t,al Unitor• L.L. = 0.930 kif S-RE~IRED- Max •. Shear AREA Rf;Q ID· = 80.537 in~3 = 26 kips : 1,28 inA2 ....... Based on Spacing = 120.0 in ) Eftectivt Width-= 94 tn ,,, Based on Slab Depth= 93.5 in .I I ~~x I I I I I I I· I I I I I I I I I mmx mmx mmx rrunx •lffiX I mmx PAGE: ___ _ -PROJECT: _______ _ C SUBJECT: ____________ _ ~~i!~ , .. f:,.'-": BY: _____ DATE : ____ _ ----·---------- ROLLED SECTION DATA --> DEPTH CLASS: in SELECTED STEa SECTION ------>> W16X31 Section Properties: I-steel = S-steel = Section Area. fop Flange Depth lilt per foot = = = = 375 in"4 47 in"3 9.1 in"2 5.53 in Transformed Properties: I-tr : Effective = 11329 in"4 S-tr : Top = 312.9 in"3 S-tr : Bottom = 83.2 " S-tr : Eff.@ Bott.= 8f.6 • 15.9 in ntStr: Eff.@ Top = 2,724 • 31.0 #/tt X-X Ax·i s Frc,11 Bottom= 16. 9 in V-horiz@ 100 i. = 228.0 kips l-STRESS EVALUATION _____________________ : ____________________________ ! ! SHORED & UNSHORED : Service Loa.d Stresses: @ Bottom of Bea.1 @ Top of Concrete I UNSHORED STRESS CHECK: MAX. S-tra.nsformed: = 33,324 psi = 986 psi / 33,333 psi = Allowable 1,350 psi = Al lowa.ble ,r (1.35 +,35 * MII/Mdl)*S-s = 93 in"3 Design s-tr = 81 in"3 81 Actual S-tr Effective = Fb:Bottom of Bea.m = 41,884 psi : 44,500 psi =Allowable= .89 Fy I (Mdl/Ss + Mll/Str:Design) Fb:Top or Concrete= [Mll/(Str:top*n)] Unshore,~:_;,~_; Actual--~~( ' : ---------~~;.~;._" -~'··· UL TIMATE-t ·. --------r.: ... , ~ 1·~. . ~-~, U I ti ma. ttMoi. SHEAR CONNECTION Ma.x Shear Force: Vh 627 psi 1,350 psi= Allowable= .45 11cl _333 psi = Allowable = .66 Fy : 000 psi = Al lowa.ble = .40 Fy I -----------------------------: = 438 ft-k 1.96 Partial Composite Action Being Used Min. ( .85 f'c Ac/2 or AsFy/2} = 228.S kips ---> NUMBER OF CONNECTORS USED = ·17 PER 1/2 SPAN V'h= Actual Shear For Studs Used= 195.5 kips (Min.= .25 * Vh) Actual Y. Composite Action = 85.75 I l .. -~rnx I I I I I I 1. I I I I I I I I I I ______________ ..,.... ______________ _ mmx mmx mmx mmx DEFLECTIONS ---»· I -tr: xx is Based on • n : Def I ect ion • I-tr:xx of Composite Section I-EH. : Is+ CV'h/ Vh)11 ,5f(Itr-Is)J 1,406, in114 >LOCATION--> X Dista.nce fro11 Left Support= 17.5 ft Default= L/2 SHORED UNSHORED DEAD LOAD = 0.465 in: L / LIVE LOAD = 0.814 in: L / 903 1,649 in: L / 255 516 0.814 in : L / 516 TOTAL LOAD= 1.280 in: L / 328 2.463 in: L / 171° REACTIONS DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 9.29 kips 16,28 N 25.57 kips RIGHT 9,29 kips 16.28 " 25.57 kips -<~tf Ni- I I I I I I I I I I I I I mmx mmx mmx 1· mmx I I I I mmx ~:.:c.~ ·-·~~:-:.· ·-... ": -; --..~,· ' .. PAGE : ______ _ ·:PROJECT: --------------SUBJECT: ________ _ BY: DATE : ________ _ COMPOSITE STEEL BEAM DESIGN DESCRIPTION: B5A GENERAL DATA > Beam Spa.n = · > Bn.11 Spa.cing = 34.33 ft" 10 ft ., 10 ft' . 5,5 in/ 3 in ,,, 6 in., > Beam Trib Width = >Tot.Slab Thick. = > Dec,k Rib Height = > Rib Spacing = > Ri·b Opening Width;,:;_'.< > Ribs: Par!!.= 1 · 6 in, Perp. = 0 > Shear Stud Cap. = 0 ,,, 11,5 kips > F-y = F-b = > f'c = > Concrete Wt. = n: Strength = n: Deflection= > Beam Location: Center=1, Edge=0 : 50,000 psi .,,. 33,333 psi 3,000 psi 144 pcf · 9.29 9.28. 1 / > Use Partial Composite Action? Y=1, N=0 1 , CONSTRUCTION LOADS. ( Applied BEFORE 75:,: Curing > --. -------------- > Slab Weight = > Misc Dead Load = Total Unit D.L. = n = 4.1 k #2 = 0 k X = 50 psf 0 II 50 psf /" X = 24.33 0 D.L. x Tri.b Wi.dth = 0,500 kif Bea11 Weight = 0.040 11 Add'! Uniform Load= 0 11 Total Uniform D.L. = 0,540 kif ,,,. #3 = #4 = 0 k. X = 0 k X = 0 ft 0 ft LOADS ON COMPOSITE SECTION ,J Applied AFTER 75¾ Curing > -------------------------- > Poi11: #1 = #2 = 0 k X = ,. -L.L. x Trib .Width = 1.050 kl-f .•·1 Uniform Load· = 0 " hi Uniform L.L. = 1.050· kH / ' 0 k X = 0 ft 0k X= 0ft •• :: •. _. j I lfflX ... -... -_.,,.., ~~ I I mmx mmx I I I I fflfflX 1. I I I mmx I I I I .I ·I mmx I PAGE:......., __ _ ----· -BY: DATE: -- l'IOMENTS Dead Load Moment = 101.3 ft-k S-REQUIRED = 106.91 inA3 Live Load Mowient = 195.7 ft-k --------Max. Shear -· 36 kips. Total Moment = 297.0 ft-k AREA REQ'D = 1.78 in"2 EFFECTIVE FLANGE WIDTH -----------.----------Based on Length = 103.0 i-n Based on Spac i 09 = 120.i in > Effective Width Based on Slab Depth= 95.i in ROLLED SECTION DATA·- SELECTED STEEL SECTION ------>> W16X40 --> DEPTH CLASS: = Section Properties: Transfor111ed Properties: 95 in in I-steeJ = 518 in"4 I-tr : Effective. = 1,751 in"4: S-steel Section Area Top Flange Depth = 65 JnA3 S-tr : Top = 345.1 in"3 = = = Wt per foot = 11.8 in"2 S-tr : Bottoni = 1'07.8 " 7.00 in 16,0 in 40.lil #Ht s-tr : EU.@ Bott.= 107.3 11 ntStr : Eff.@ Top = 3,172 • X-X Axis Fro111 Bottom= 16.4. in V-horiz@ 101:,; = 295.0 kips l-STRESS EVALUATION -------------------------------~------------------1 l SHORED & UNSHORED : Service Load Stresses: @ Botto1. of Beu @ ToQl~t "· i;~~~!- 1 UNSHORED'X . MAX. s-/\ (1.35J·: Actual'tS[ -~~·-. 33,333 psi = Allowable 1,350 psi = Allowable· Design S-tr = 107 I ,. Fb:Botto11 of Beilll = 40,686 psi : 44,500 psi= Allowable= .89 Fy l (Mdl/Ss + MII/Str:Design) · Fb:Top of Concrete =-740 psi : 1,350 psi =Allowable= .45 f'cl [Mll/(Str:toptn}l Unshored DL Sress = 18,795-psi : 331333 psi =Allowable= .66 Fy: Actual Shear Stress= 7,306 psi : 20,000 psi =Allowable= .40 Fy l :----------------------------------------------------------------------: ULTIJ!IATE STRENGTH OF COMPOSITE SECTION Ultimate Moment Capac-ity of Co11posite Section = Ultimate Moment/ Max. Service Mo111ent = 544 ft-k 1.83 -·~~ -·~~~~~:~~f:··~~-,~-~-~ :,::~~~5_~~-.·'!-~::'ff-'. ~-,,-, '. ;. ·::. -~~.,~~- _;.=i.,f].._· ·- 5-SA . ?.;·. ~ ...,X, 1·· 1-~7x -' -I I mmx I mmx I I mmx I I I I I mmx I I mmx I I I I I -.:. ,, .... PAGL: ___ _ BY: __ DATE : ___ _ SHEAR CONNECTION Putiil Compos'ite Action Being Used Max Shear Force: Vh Min_, ( .85 f'c Ac/2 or AsFy/2) = 295.0 kips ---> NUMBER OF CONNECTORS USED 25 PER· 1/2 SPAN V'h= Actual Shear For Studs Used= 287.5 kips (Min.= .25 * Vh ) Actual i. Composite Action = 97.46 DEFLECTIONS ---» I-tr:xx is Based on • n·: Deflection 11 I-tr:xx of Composite S~ction I-EH. : Is+ CV'h/ Vh)A,5+(Itr-Is)] = 1,767 in!i4 o/.c : 1,751 inA4 >LOCATION--> X Qistance from Left Support= t7.165 f~ Default= L/2 SHORED UNSHORED DEAD LOAD = 0,423 in: L / LIVE LOAD = 0.818 in: L / 973. 1. 432 i n-: l-J 288 504 0.818 in:· L / 504 TOTAL LOAD = 1.242 in : L / 332 2.256 in· : L. / 183 REACTIONS DEAD LOAD = LIVE LOAD = LEFT 10.46 kips 20.27 .• ~ RIGHT 12.17 Rips 23·i50 • 35,68' k:i ps. -~!'- • ., f2'!:. , ....... .,-_,:v,.. _I C:\POSTEN C>111111x 1-. I _I ;;;----- 1 I- I I I I I I I .I .I I ;I I ·1 mmx. mmx rnmx mmx mmx j COMPOSITE STEEL BEAM DESIGN DESCRIPTION: B6 GENERAL DATA > Beam Span = > Beam Spacing = > Beam Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Width=· > Ribs: Parll. = 1 Perp. = 0 > Shear Stud Cap. = 26.33 ft/ 7.5 ft 7.5 ft 5.5 in 3 in 6 in 6 in 0 / 11.5 kip$ > F-y F-b = = > t''c = > Concrete Wt. = n: Strength = n : Deflection= > Beilll Location: Center=l, Edge=0 36,000 psi,., 24,000 psi' 3,000 psi 144 pct' 9.29 ·~.28 1 / > Use Partial Composite Action? Y=l., N=0 1 / CONSTRUCTION LOADS > Slab Weight ( Applied BEFORE 75¾ Curing) > Misc Dead Load To.hi Unit D.L. = = = 50 psf ' . 54' psf #1 = #2 = 4,42 k X = .21,33 0 k X = 0 D.L. x Trib Width = Bea1 Weight' = Add'! Uniform Load= 0.375· kit' 0..0-44 R 0 R Total Uniform D.LL = 0.419 kif #3 = ~= 0k X= 0 k X = LOADS ON COMPOSITE SECTION ( App I i ed AFTER 75¾ .Curi ns ) > Poi #1 = #2 = 0 k X = L.L. x Trib Width = 0.713 kif ijd' I Unit'or111 Loid = 8 " -: :Qhl Uniform L.L. = 8.713 kit' 13 = #4 = 0 k X = 0 k X = 0 t't 0 t't .. · :~· ~ Sf;;It{-}-;:t· · -. - '-;.>v •• • --_._ .,·:·---. IIIIIX 1-- 'I .1 mmx mmx :1 .I I I ffllX _I I I I mmx I I 1·· ;I .I . I m111x __ J ', .... _, ...... < - MOfl1ENTS Dead Load Moment = Live Load Moment = Toh! Mo11ent = EFFECTIVE FLANGE WIDTH Based on Length = Based on Spac i ng = Based on Slab-Depth= 48.i ft-k 91.1 ft-k -------- 139.3 ft-k 79,0 in 90,0 in 94.5 in ROLLED SECTION -DATA· ---------·--------- S-REQUIRED Max. Shear AREA REQ'D > Effective Width · --> I)EPTH CLASS: : 69,637 inA3 = 27 kips. : 1,88 inA2 = 79 in in SELECTED STEEL SECTION ------>> W21X44 Section Properties: I-steel = S-steel = Section Area Top Flange Depth Wt per foot = = = 843 inA4 82 in"3 13,f inA2 6.51 in 20,7 in 44.0 #/ft Tran~for11ed Properties: I-.tr : EHective. = 2,183 in"4 S-tr : Top = 381 .• 6 in"3 s .. tr : Bottolli = 123.6 • s-tr : EU-. @. Bott.= 121.5 " ntStr: Eff.@ Top = 2,898 • X-X Axis From Bottom= 19.4 in V-horiz@ 1H r. = 234.0 kips l-STRESS EVALUATION --------------------------------------------------1 l SHORED & UNSHORED : Service Load Stresses: @ Bottom of Beu = 1~,755 psi 24 1000 psi= Allowable 1,350 psi = Allowable @ Top. _ot Con.H'~ -: ~:~t),r~.--~¾-~~' : UNSHORED:.; : IIIAX. iJtt. :, ( 1.35;;-e-;: Actuafl~r:"' : ~.,~,t.:~;o.-~1 :~ Fb:Botto• of Bea• = 16,983 psi (l'ld 1/Ss + M 11 /Str :Desi sn > Fb:Top of Concrete= 377 psi (Mll/(Str:top*nl] h"3 Design S-tr = 122 A3. .~ : 32;040 psi =Allowable= .89 Fy l 11350 psi= Allowable= .45 f'cl Unshored DL Sress = 7111188 psi : 241000 psi = Alloliable = .66 Fy l Actual Shear Stress= 31743 psi : 14,400 psi =Allowable= .40 Fy l :----------------------------------------------------------------------: ULTIMATE STRENGTH OF COMPOSITE SECTION Ultimate Mo1ent Capacity of Co1posite Section = Ultimate Moment/ Max. Service Moment = 527 ft-k 3,78 N _ izt·48(,67)-!J z..-------t::l• 1,c; 1,48 -I I .I I I I I mmx mmx. StEAR mtECTict. Pa.rtia.l Co1posite Action Being Used Ma.x Shea.r Force: Vh Min. ( .85 t''c Ac/2 or AsFy/2) = _ 23-4.I kips ---> tf.lllBER OF CONtECTORS USED = 12 PER. 1/2 SPAN V'h= Actual Shear For Studs Used= 138,0 kips ( M'in. = .25 t Vh > Actua.l x· Composite Action = 58.97 DEFL£CJIONS· --->-> I-tr:xx· is Based· on " n : l)eflection • I-tr:xx ot' Coap_osi,te Section I-EH. : Is + CV'h/ Vh)A~5f<Itr--Is>l : 2,183 jnA4 >-·LOCATION--> X Distance t'ro111 Let't Support= 13.165 t't Det'a.ult = L/2 SHORED UNSHORED DEAD LOAD = 0.096 in : L / 3276 0.251 in : L / 1265' LIVE LOAD = l.18i in: L / 1742 0.181 in:. L-/ 1742 TOTAL LOAD = 0.27S-in : L / 1137 0.431 in : L / 733 mtnx REACTIONS mmx DEAD LOAD = LIVE LOAD = LEFT 6.36 kips. 11.39 • ------'lit RIGHT 9.11 kips 17.97 • 27.06 kips. I I I I I I I I I I I I I -1 :1 ' I I l ,:. i -- .. -.,.-, . ·~" . ...--;: ~t.-~i(-!j;'-}}1-{i"~-~~'f}g::/:;:J fl1s:· :~:;~:~-~l,,1111 Project _________ :j -~ Date._______ ,i She~:-Y)--=-.--3--,-\-f"~~~= I 1~ . 1 --. I I llltlX I I I I I I I I 1 mnx IIIIX I RlnX I 1 anx I IIIIIIX I I "·._ --·--r_.~ -' :---• -. PAGE. :_. __ _ PROJECT: ____________ _ SUBJECT: ___ ~--- ---------------BY: __ DATE : __ _ ---------------- COMPOSITt s1m BtAM De.SIGN DESCRIPTION : !Ufll B8 GENERAL DATA > Bum Span = > Bea• Spacing = > Bea• Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Width= > Ribs: Par 11. = 1 Perp. = e. > Shear Stud Cap. = 35 ft 10 ft 10 ft 5.5 in 3 in 6 in 6 in e 11.5 kips . > F-y = 50,060 psi F-b = 33,333 psi > f'c = 3,000 psi > Concrete Wt.,= 1# pcf n: Strength = 9.29 n: Deflection= 9.28 > Beu Location: Center=l, Edge=£! 1 > Use Partial Composite Action? Y=l, N=0 1 CONSlRUClION LOADS ( Applied BEFORE Th¾ Curing> ------------------> Slab Weight = 50 psf D.L. x Trib Width 0.500 kif > Misc Dead Load = 0 • Beu Weight = 0.044 " --------Add' I Uni fora Load = 8 11 Total Unit D.L. = 51 psf ·rota! Unifora-D.L. = e.544 kif fl= 8.55 k X = 5 13 = . 0 k X = 0 ft 12 = i -k X = I 14 = 8 k X = 0 ft LOADS ON mlPOSHE SfCTIC.. < Ael'JHed AFTER 75¾ Curi n9 > -. -----------------:-;.:_~_ !~-:. ,(-~ .. , ... ~ ... ~-_::{ ~? - > Unit Live Load,t~?~1+~~~;2 p.s(\;~L.L. x Trib Width = 0.922 kif > Unit Live Load''2-·,#i}"-;.:}/:f,: .•, -. Ad'd!I Unifor11 Load= 0· N -------. -~~~~:~-fit~--. Total Unit L.L. =-·~-' \92~2. pJf Tp-ia1 Unifor1 L.L. = 8.922 kif .. ·. -. , > Point Loads: 11 = 15.72 k X = 12 = 0 k X = 5 ft • ft 13 = #4 = 0 k X = 0 k X = 0 ft 0 ft ~;d~~Y.71{~~1~: --~ff . --~~ ,,.__.,_ . ' -:,_ .... ,·;· ':~}-?'· ·:;::::~-. .,.·--?·-·· -. -_; -~ ~ .'ii. -:<:~~ . "'-.. ,:-' .... _~ --,. -~~ {( ½-J.ID)-/',V )-.og -=-16 ~o f>f I.,(.., :::-,f\f' (RO)-t1A'-t' s:: '7.-,? 1'-·"°11-1'(/u)[ l~):: l~l !~ 10 ( 't 1/) --:.. 1 I ~ J r,1; ,~ ,~ I I I PAGE : ______ _ PROJECT: ____ ___ SUBJECl: __ __ ---·--------BY: ____ DATE: ______ _ ------------------- I I I I I lm111x MOMENTS Dead Load Mo1ent = 106,0 ft-k S-RcQUIRED = 104,11 in"3 Live Load Moment = 183,2 H-k --------Mu. Shear = 46 kips Tohl Mo1ent = 289.2 ft-k AREA REQ'D = 2,32 jnA2 EFFECTIVE FLANGc WID1H ----------------------Based on Length = lfJ~.0 in Based on S~·ac i ng = 121,0 in > Effective Width = 95 in Based on Slab Depth= 94,5 in ROLLED SECT!~ DATA --> DEPTH CLASS: in saECTED' STEEL SECTION ------>> W21X44 Section Properties: I-steel = S-steel' = = = 843 inA4 82 inA3 13,8 inA2 6.50 in Tnnsfor1ed-Properties: I-tr : Effective = 2,708 inA4 S-tr : Top = 438.1 i nA3 S-tr : Bottom = 135,5 • S-tr : Eff.@ Bott.= 135.5 • Section Arn Top Flange Depth Wt per-foot = = 21,7 in ntStr: Eff.@ Top = 4,'69. • 44.0 #/ft ·X-X Axis Fro1 Bottom= 20,0 in V-horiz@ 101 ¾ = 301.2 kips :-S1RESS EVALUA1ION. --------------------------------------------------1 I SI-MD & I.JNSl-«<ED : Service Load Stresses: @ Botto1 of Beu· . . = 25,6f5·. ps:i : 3"3,333 psi = Allowable @ Top of Concr,te,,,.,;>---· = 853'. psi : 1,350 psi =Allowable . '• ~ ~ - ,~ .. M .... ~~- : UNSHORED STRESS 0£~1} MAX. S-transfor11ed.: -· <1,35 +,35 t Ml 1/Jlldl )tS-s = · Actual S-tr Effective = 16' inA3 llfS i gn 5-tr = 136 inA3 136 Fb:Botto1 of Beu = 31,809 psi : 44,500 psi =Allowable= .89 Fy: (Jlldl./Ss + Ml 1/Str:Design) Fb:Jop of Concrete= 540 psi 1,350 psi =Allowable= ,45 f'·cl 0111/(Str:toptn)l -Unshored DI.. Sress = 15,589 psi : 33,3"33 psi =Allowable= .66 Fy: Actual Shear Stress= 6,425 psi : 20,0ifll psi= Allowable= .40 Fy l :----------------------------------------------------------------------: ULTIMATE STRENGTH OF COWOSITE SECTION Ultimat, Moment Capacity of Co1posite Section = 711 ft-k 1111.· --L.-.,. _____ l. I..... "'--· ·--.,. ____ • I PROJECT: _______________ _ SUBJECT: ________ _ PAGE: ---- I BY: ___ DATE : _____ _ ------------------------------------------------llfflX I MX I I I I I I 1- I I ·1 I I I I IIIIIIX IIIIIX IIIIX SHEAR Wft:CTION -----.--·------- Mix Shear Force: Vh Min. < .85 f'c Ac/2 or AsFy/2 l = 301.2 kips ---> NlttBER OF CONNECTORS USED = 28 PER 1/2 SPAN '---~1.J~ ~b /'J ------------·---------V'h= Actuil Shear For Studs Used= 301.2 kips (Min.= .25 • Vh l Actui.l X Co1posite Action = 109,08 DEFLECTIONS --->> I-tr:xx is Based on• n: Deflection• I-tr:xx of Composite Section I-Eff, : Is+ CV'h/ Vh)A,5f(ltr-Isll >LOCATION--> X Distince from Left Support= 17.5 ft Defiult = L/2 SHORED --------------------DEAD LOAD = 0.3£14 in: L / 1382 LIVE LOAD = 8.525 in: L / 800 TOTAL LOAD= 8.829 in: L / 507 REACTIONS LEFT DEAD LOAD = LIVE LOAD = 16.85 kips 29.61 • TOTAL LOAD = _..).,·~.,~ kipS-.· · OOiORED ------------·-------0.976 in: L / 430 0.525 in : L / 800 1.502 in : L / 280 Rl6HT · 10. 74 kips 18.38 • 29.12 kips \I/~. . . ·J' I I I I I I I I I I I I I I I I I · mmx '\ mmx mtllX ffllllX mmx mtllX PAGE: ___ _ PROJECT: _______ _ . SUBJECT: __________ _ BY: ___ DATE : __ _ DESIGN -------------~~----------------- DESCRIPTillil: B9 GENERAL lrATA > Bea Span > Bea Spacing } Bu11 Trib Width > Tot. Sllb Thick. ) Deck Rib Height > Rib Spacing = 29.33 It = 10 ft = 10 ft = 5.5 in = 3 in = 6 in > R-ib: Open·ing Wi~h= 6-in > Ribs: ParH. = 1 Perp. = i t :"-.. i > Shear Stud Cap. --U.5 kips > F-y = 36,M ps-i F-b = 24,010 psi > f'c = 3,.000 psr >·Concrete Wt. = -144 pd n: Strength = 9.29· n: Deflection= 9.28 > Beu Location: Cent1r=1, Edge=0, 1 > Use Partial Composite Action? -V=l, N=0 ·: 1 CONSTRUCTION LOADS ( Applied BEFORE 75¼ Curing) ------------------> Slab Weis.ht = 51 psf D.L. x Trib Width = 0.500. kif > Misc ·Dt1d·Lo1d = 0 " Ben Weight 0.058· " --------Add' I Un if orlR L<5a.d = 0 u Tot1I Unff·D.L. 59 psf .;. _____ _ Total Uniform D.L. = 0,55f kif 11 = 7.53 k X = 5 13 = i. k X = 'i ft. #2=. 0k X= i #4 = 0 k X = 0 ft LOADS llil C(N)OS'!TE SECTillil ( Applied AFTER 75¼ Cur:-ing ) --------------------------> Unit Live Load 11 = 65-p1f. . L.L. x Trib Widtil = 0.900 kif > Unit Live Load R. = 25 ·r; _ Add' I Unif'or111 Load =-S.-19 11 > Po· #1 = #2 =,-~, hi Uniform LL. = 1.090 kH 13 = #4 = S k X = fJ-k X = ,..;~ ... Wt.I JC ri) . "..'\, ·I--, _ .. ..,_ r I IINIX. I IIIIIIX I I I I IIRIX I I I mmx I I I -I I :1 ;I !MIX. I IIIIIIX · ·· , .,,- 1 • PROJECT: ___ _ ,: SlEJEC'J'.: -------Dead Load Mo1ent = 79.5 ft-k Live Load Mowient = 154.8 ft-k Total Mo1ent = 234.3 ft-k EFFECTIVE FLANGE WIDTH Based on Length-= 88.t in ------------- BY: __ DATE: :,-------------- 5,-RE{l!IRED Max. ·Shear AREA REQ'D = 117.14 in"3 = 42 kips = 2,91 in"2. Based on Spacing =-121.t· in > Effective Width = 88 in Based: on Slab Depth= 94.5. in R(l.LED SECl'.I~ DATA SEL~CTED· ,,,:;°STE'El.. SECTION --~~--)} WZ1X5f --> DEPTH CLASS· : Section Properties: Transformed Properties: in I-steel = 984 in"4 I-tr : Effect-iv, = 2,41-7 in"4 S-steel = Section Arn Top Flange· Depth Wt per foot = = = 95 in"3 14.7 inA2 6.53 in. 2t·.8 in 51,S I/ft S-tr : Top = 432.3 in"3 5-tr : Bottoa = 152.5 • s-tr :· Eff. @· Bott.=· 136.4 11 n1Str : EH; @-Top = 3,144 • X-X Axis-Fro1 Botto11= 19.5 in V-horiz@ 1st 7. = 264.6 kips :~ STRESS EVALUATION --------------------------------------------------1 SHORED & lffiHORED : Service Load S.tresses : @ Botto• of Ben @Topor Concrete = ze,61-3 psi : = 894. ps.i : ~--.-.:: - 24,NI ps:i = Al Iowa.bit 1,.351 psi = Allowable A9 i>tsisn· s-tr = 136 ' I· . ,N psi =Allowable= .89 Fy I Fb:Top of Concrete = 591 Pti : 1,351 ps~ = All-ow1.ble = ,45 f'c: CMll/(Str:top*n)l · Unshored DL Sress = 10,ffl. psi : 24,SSS psi = Allowable = .66 Fy I Actual Shear Stress= 5,295 psi : 14,481 psi= Allowable= .40 Fy I :----------------------------------------------------------------------: ULTIMATE STRENGTH OF CCWOSITE SECTI~ Ulti1ate Mo1ent_Capacity of Co1posite Section = Ultimate Moment 1 Max. Service M~•ent = 598 ft-k 2.55 I -~ 1--' ' \.~;jj~ PAGE: __ _ . PROJECT: -t'· SUBJECT: --------___________ , BY: __ DATE : ___ , I I ---~--,------~-,-~_ m' ·I I I I I I I I I I I I I I I ·mmx mmx IIVRX mmx mmx Mix Sheir Force: Vh : Min. ( .85 f'c Ac/2 or Asfy/2} = 264.6 kips ---> NUMBER c-= CONNECTORS USED = 12 PER 1/2 SPAN V'.h= Actuil Shear For Studs Used = 138.0 kips C Min. = .25 * Vh ) Actual¾ Co111posite Action = 52.15 DEFLECTIONS --->> 1-tr:xx is Based on• n: Deflection a I-tr:xx of Colll)osite Section I-EH. : Is+ CV'h/ Vh)A.5*({tr-ls)l : 2,417 inA,4 ~- >LOCATION--> X Distanct from Left Support=· 5 ft Default= L/2 SI-KlRED ~-------------------DEAD LOAD = LIVE LOAD = 8.099 -in . L / . e.317 in: L / ------ TOTAL LOAD= 0.416 in: L / REACTIONS· DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 14.31 27.61 41.91 3566 1110 847 kips· " kips •.;t UNSHORED -------------------- 0.242 in : L / 1452 0.317 in : L / 1111 t.559 in : L / 629 RIGHT 9.35 kips 18.37 • 27.72' kips • ··-,-=-,_".!;;. 11( t-/, (N-::. 1,64- Mi=-188b = ,bl Mt,-\,6.?C 8$-~+r ·~130 ,~.,,.435 s~ ,s:- "'2-~ l?..[i,44t,Bl-U --4.f I, 4-4--[ I illlix 1-. PAGE: _____ _ I I I I I I 1· -1 I I I I I I I I I llllllX ll!IIIX •· ,1·~ • DESCRIPTION: B9 GErERAL DATA > Beam Span = > B,am Spacing = > Beam Trib Width = > Tot. Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Width= > ·Ribs: Parll. = 1 Perp. = ' . . > Shear Stud Cap, .,, = 29.33 ft 11 ft 11 .ft 5.5 in 3 in 6 in 6 in ' 11.5 kips BY: ____ . DATE: ___ _ > F-y = 36,000 psi F-b = 24,010 psi > f'c = 3,Hf psi > Concrete Wt. = 144 pc.f n: Strength = 9.29 n : Deflect i·on= 9.28 > Beam Loe.it ion· : Center=!, Edge=t . 0 . > Ust P1.rtiil Composite Action? Y=1, N=I . 1 . CONSTRUCT!!)! LOADS (_Applied BEFORE 75¾ Curing> ------------------> Sl1.b Weight = 50 psf > ~isc Dead Load = 0 • -------- Total Unit D.L. = 51 psf #1 = #2 = 7.53 k X = 5 S k X = D.L. x Trib Widt~ = f,500 kif BHII Weight = S.050 II Add'! Unifor1 Lo1.d = 0 u Toti! Unifor1 D.L. = 0~550 kif #3 = #4 = 0 k X = iHt 0 f't e k X = 11111x LOADS !)I COMPOSITE SECTICN (. Appl itd AFTER 75X Curin3 ) mmx > Unit Live Lo1.d #1 = 65 psf L.L. x Trib Widtft = 0.9H kif > Unit Live Loid #2 = ~ ,,,. Add' t Un ifor1 Load = 0.19 11 1,090 klf mmx 13 = 0 k X1= "ft #4 = ' k X = 0 f't mmx e,q. C,u'Z.l ,c.S'O I I I I I I I I I I I I I I I I I -.IIIX· mmx mmx mmx IIIIX IIIIIX PA6E : ____ _ ,. ~t..fl!.t~·-:::i"ii-:'":" ---,c· ~, ,. PROJECT: _______ _ SUBJECT: _____ ,_ ........ ___ _ -. ft Dead Load Moment Live Loa.d l'lowie.nt Total Moment = = = EFFECTIVE FLANGE WIDTH Based on Length = Based on Spacing = Ba.sed on Slab Depth= Rtl.LED SECTION DATA 79.5 f't-k 154.8 ft-k -------- 234.3 H-k 35.9 in 63.3 in 39.5 in BY: __ DATE: _____ _ S-REQUIRED = 117.14 inA3 Max. Shear = 42 kips AREA REQ'D = 2,91 in"2 > Effective Width = 36 in --> DEPTH CLASS :. in SELECTED ·STEEL SECTic»f ------>> W21X50 Section Properties: I-steel = S-steel = Section Arn Top Flange Depth Wt per foot = = = = Transfonaed Properties : 984 inA4 I-tr : Effective = 2,251 in"4 S-tr : Top = 222.8 inA3 $-tr : Bottom = 138 .• 7 • 95 inA3 14,7 jnA2 6.53 in s-tr : Eff.@ Bott.= 138.7 11 20.8 in ntStr: Eff'.@ Top = 2,B69 • 50.i #/ft X-X Axis From Bottom= 16.2 in V-horiz @· 101 X = 114.3 kips :-STRESS EVALUATION ---NOTE: Overstress Condition !! --------,-----: : SHORED & UNSHORED : --->> DESIGN STRESSES EXCEED ALLOlilABI.ES Service Loa.d Stresses : @ Bottom of Bea• .l @ Top of Concrete J UNSHOREll,STBESS- 1 l'IAX. S;_;tr;w-;,. " . - ( 1.35:.11. · Actua.l:ZS:;f~->i/-C~~ Fb :Bo,it~{fr;J (Miif1St + = 20,271 psi = 1.,.359 ps i 24,001 ps.i = Al lowa.ble · 1,B·psi = Allowable A3 Design S-tr = 139 ,~psi= Allowable= .89 Fy: Fb:Top of Concrete = 898 ps·i 1,350 psi =.Allowable= .45 f'c: CMll/(Str:topin)J Unshored DL Sress = 10,.091 psi : 24,i!H psi = Allowable = .66 Fy : Actual Shea.r Stress= 5,295 psi : 14,4H psi= Allowable= .40 Fy I 1----------------------------------------------------------------------r ULTIMATE STRENGTH OF COMPOSITE SECTION Ultimate Moment Capacity of Co1posite Section = Ultim1te Moment/ Max. Service Mo,ent = 447 -rt-k 1.91 -1~ ' . j _,,.. I max I mmx ·1 I llllllX I I I ·1 I mmx I I mmx I I I I I I -_'. =---~:··~'.~ _c,-~-••• -~---.··_..., ~-:\__:"-'.:.:_.,:-.-~ -.... -:_ :_-: f.;_~_~_: ;-.,.·~~: _.::-..;-!;" ~-"' -;.,.~-_,: -----:: -_-= ... ----., .. ··-· ,. -.. -, ._.;. .. :7"': ,· -~ .... PAGE: ___ _ ~~ -• ,,-,%-PROJECT: ___ , ____ _ · tl SUBJECT: ____________ _ t/J.r. .!.<,.-, .... -BY: __ . DATE : ::,, -~;_;- M1x She1r Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2) = 114.3 kips ---> NtJ!BER OF COttECTORS USED = 12 PER 112 SPAN --------------------V'h= Actual Shear For Studs ·Used= 114.3 kips (Min.= .25 t Vh) Actual¾ Coapositt Action = 110.08 DEFLECTI!JS ---» I-tr:xx is Btsed on• n: Def'IMtion 11 I-tr:xx of' co,positt Sectio~ I-EU. : Is+ [V'h/ Vh)A,5f(Itr-!s)J > LOCATI~ --> )( Di.stanct fro• Left Support =-5 ft Dehul.t = L/2 SHORED UNSHORED ----------------------------------------DEAD LOAD = 0,186 in : L / 3321 0,242 in: L / 1452 LIVE LOAD = 0.3-48 in: L / 1034 0.340 in : L / 1134 TOTAi:. LOAD= 0.446 in: L / 789 0.583 in : L / 604 REACTI!JS ---------LEFT RIGHT DEAD .LOAD·= 14.31 kips. 9.35 kips LIVE LOAD = 27.61 • 18.37 • TOTAL LOAD= ·41,91 kips 27.72 kips ·{i' I 111111¼ 1~_-: . .,~ - I mmx I- 1· I 1· I 1- I I --- I- I. I 1~ I I I :I mmx mmx mmx mmx rnmx DESCRIPTION: B9A GENERAL DATA > Bea1 Span = > Beam Spacing = ·> Beam Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Openi~g Width= > Ribs: Par!!.= 1 Perp. = 0 :'. > Shear Stud Cap. = 29.~ ft 10 ft 10 ft 5.5 in 3 in 6 in 6 in 0 11.5 kips > F-y = F-b = > f'c = > Concret~ Wt. = n: Strength = n : Def I ection= > Bea1 Location: PAGE: ___ _ 36,000 psi 24,000 psi 3,000 psi 144 pcf 9.29 9,28 Center=!, Edge=0 __ : . 1 > Use Partial Composite Act.ion? Y=1, N=0 1 CONSTRUCTION LOADS ( Applied BEFORE 75'1. Curing> > Slab Weight -50 psf > Misc Dead Load = 0 ff Total Unit D.L. = 50 psf · #1 = 7 k· X = ,. 5 #2 = 2.9 k X = 19,5 D.L. x Trib Wid~h = 0,500 kif Bea111 Weight = 0.050 ,., Add'! Uniform Load= 0 " Total Uniform D.L. = 0.550 kit #3 = #4 = £1 k X = 0 k X = "ft "ft LOADS ON COMPOSITE SECTION ( Applied AFTER 75¾ Curing ) ---------------------,---- > Unit Live Load .. #1 = > Un i t Li-ve Load; ' ·~ ....... '!, .. - Toh! 65 psf LL x Trib Width = 0.900 kif 11 __ ,.._Add' l Uniform Load = _ £1 11 l;.4-;· .. , otal Uniform LL = _ 0.900 kif #3:: 0 k 0 k ){ = X = -. -1· --- mmx I-~ ., --: t I. I [IIIIIX Jl)IRX I I I I ffllll( 1-- I I_ I mmx I I I I I I mmx I llfflX I -I -~ MOMENTS Dead Load Moment = 90.9 Live Load Moment = 187.9 -------- Toh! Mo11ent = 278.8 EFFECTIVE FLANGE WIDTH- ---·------------------ :.:· .. ', PROJECT: _________ 'PAGE: ___ _ rt-k rt-k rt-k SUBJE-CT: _______ _ BY: _____ DATE: __ _ S-REQUIRED Ka:x. Shear AREA REQ'D : 139,38 inA3 = 43 kips = 3,01 in"'2 Based on Length = 88.i in Based on Spacing = 120.0 in > EUectiv, Width = _ 88. in Based on SI ab Depth= 94.5 i.n ROLLED SECTION DATA --~ DEPTH CLASS: in SELECTED' STEEL SECTION ------>> W21X50 Section Propert i-es : I-steel = S-steel Section Area Top Flange Depth Wt per foot = = = = = Transrormed Properties : 984 inA4 I-tr~ :. Effective-. = 2;834 inA4 _ 95 inA3 14.7 inA2 6.53 in 21.8 in 50.0 #/ft S-tr : Top = 432.3 inA3 S-tr ~ Botto• = __ 152.5-• S-tr· : Ett-;· @ Bott •. = 148.6 " n*Str t EH,. @ Top~ = 3180J. • X-X Axi-s Fro•· Bottom= 19.5 in- V-hori-l @-1H,: = 264.6 kips l-STRESS EVALUATION--------------------------------------------------: : SHORED & UNS~ED : Service Load Stresses: @ Bottom of Beam @Top.of Concrete = 22,515: ps·i 24,M· ps:i = Al I owab I e = ·_ 880_ pS:l :.. 1,358· psi : Allowable A3,-~. DHign S-tr =· 149 I I - -~ ,848,ps.i = A'llowab.le = .89 Fy I I • I I I Fb:Top of Concrete= 593 psi. [Mll/(Str:toptnll 1,358· psi = Allowable = __ .45 f'cl _ Unshored DL Sress = 111544 psi : 24,000 psi =Allowable= .66 Fy: Actual Shear Stress= 51484 psi : 14,498 psi= Allowable= .40 Fy : 1----------------------------------------------------------------------1 ULTIMATE STRENGTH OF COMPOSITE SECTION Ultimate Moment Capacity of Composite Section ... = Ultimate Moment/ Max. Service Moment = 598 ft-k 2.14 . .>: ':·(<;·-:>:;i;i~?~s'J: 1,..c -::.....,~ -I _mmx 1~- I I· mmx .rnmx 1· 1· I. mmx I I I 1· rnmx I· I I • mmx I I I I J PAGE: ----PROJECT: ________ _ SUBJECT: _______ _ BY: DATE: _____ _ SHEAR CONNECTION Partial Composite Action Being Used ----------,-----Max Shear Force: Vh Min. < .85 f'c Ac/2. or AsFy/2 l = 264.6 kips ---> NUMBER OF CONNECTORS USED = 20 PER 1/2 SPAN V'h= Actual Shear For Studs Used= 230.0 kips <Min.= .25 * Vh l Actual i. Composite Action =-. 86.92 ·DEFLECTIONS ---» I-tr:xx is Based on II n : Deflection 11 I-tr:xx of Composite Section I-EH. : Is+ CV'h/ Vhl".5Hitr-IslJ >LOCATION--> X Distance fro• Left Support= . 5 ft. Default= L/2 SHORED UNSHORED DEAD LOAD = 0.095 in: L / 3710 0.273 in: L / 1288 LIVE LOAD = 0.280 in: L / 1255 0.280 in : L /. 1255 TOTAL LOAD= 0.375 in: L / 938_ 0.554 in: L / 636- REACTIONS DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 14.84 kips 28.57 H 43.41 kips RIGHT 11.19 kips . -23.03 " 34.22_ kips le 21.0 M =ZA-6-= -Be, t-'\tA-~ ~~~' t8 ~\~lo c-,. S"b ~5 _,_1 .z.o~S-61<,758-:] . r-' 2..,:. -----:::-(0. w ,51? I I- I I I I I I I I I I I I I .I I 11111}: mmx 1mx IIIIIX . mmx fflfflY. mmx PAGE: ___ _ PROJECT:carlsbad SUBJECT:iloor design BY: lh COMPOSITE STEEL BEAM DESIGN -------------------------------- DESCRIPTION: BEAM B10 GENERAL DATA ------------> Beam Span = > Beam Spacing = > Beam Trib Width = >Tot.Slab Thick. = > Deck Rib Height = 25 ft 10 rt 10 f't 5.5 in 3 in > F-y F-b = = 50,0£10 psi 33,333 psi 3,000 psi 144 per 9.29 9.28 > Rib Spacing = 6 in > Rib O~,en i ng Width=-· 6 ir, > r•c - > Concrete Wt. = n: Strength = n : Der I ect.i or,= > Beam location: Center=l, Edge=-0 ASSUME t-ED~ f.. S"1~c.e: f:; '-O'' ~OF ~f\17 of' 6 f.At--i· t S .4::~ I! P~ f. COWDl1"lOW1 > Ribs: Parll. = 1 Perp. = 0 > Shear Stud Cap. CONSTRUCTION LOADS = 1(2p, > Use Partial Composite Action? Y=l, N=0 : ( App I i ed BEFORE 75'/. Curing ) . > Slab Weight = 50 psf D.L. x Trjb Width = 0,500 kif > Misc Dead Load = 0 • Beu Weight = 0.026 11 --------Add'! Unifor11 Load= 0 " Total Unit D.L. = 50 psf Toh! Ur,Hor111 D.L. = 0,526 kif #1 = 5.75.R X = 5. #3 = 0 k X = 0 ft #2 = 0 k X = 0 #4 = 0 k X = 0 rt LOADS ON COMPOSITE SECT!~ ( Applied AFTER 75"/. Curing > ------------~-------------> Unit Live Load #1 = UJ5 ps.f L.L. x Trib Width = > Unit Live Load IZ. = e • Add'! Uniform Load= .~· -------- Tcohl Unit L.l. ·, .. ! i 1iJ5 psr Total Uniform L.L. = ,r > Point [.,,_oa~1.:l(• t'JJ' #1 = 13,35 k · X = #2 = -0 k X = 5 rt 0rt #3 = #4 = 0 k X = 0 k X = 1.050 kit 0 II 1.050 kit 0 rt 0 rt "· :,·-"": . ·' >. , :::-· . ·. . . ... .. ~-- IIIX ·1~- I I I I I I I I I I I I I I I I I A .! ' / - mmx mmx MX IIIDX IIIIIX ·:-~::-\·~lr·:? _·,. PAGE: ________ _ :-i:,;,-":-.: .• ~~-....... PROJECT:cirlsbid SUBJECT:f loor des:ign . :~=;~_:!~:::--BY:lh DATE :0.0 MOIENTS Dead Load Moment = Live Load Moment = Total Moment = EFFECTIVE FLANGE WIDTH 56;7 118.8 -------- 175.5 ft-k S-REQUIRED ft-k Max. Shear ft-k AREA REQ1D Based on Length = Based' on Spacing = Based on Slab Depth= 31.5 in 62.8 in 38.5 in > Effective Width RCt.LED SECTION DATA. SELECTED STEa SECTION ------>> W16X26 --> DEPTH CLASS: = 63,180 jnA3 = 35 kips = 1,75 inAZ = 31 in in Section.Properties: Transformed Properties: I-steel = 301 j nA4 I-tr : Effective = 951 i nA4 S-steel = 38 jnA3 S-tr : Top = 160,9 inA3 Section Area = 7.7 inAZ S-tr : Botto11· = 62.3 .. Top Flange = 5.50 in S-tr : EH. f Bott.= 62.3 • Depth = 15.7 in ntStr: Efr. t Top = 1,495 • Wt per foot = 26.0 #/ft X-X Axis From Bottom= 15.3 in V-horiz f 100 r. = 192.f kips :-STRESS EVALUATION ---NOTE: Overstress Condit-ion ! ! -------------: f SHORED & ~ : --->> DESIGN STRESSES EXCEED ALLOWABLES Service Load Stresses: f Bottom of Bea• = --33,.821-psi : @ Top or Concn.te =: t,~: psi _-:._:,: r • .:._~;';,";} • • .-• .::·:;--~• : ~ s· ·¥·-·_:_:.·i1\:~t- MAx. S,.transi: ~.-~ , ·~ _. (1.35 +.~ f; . -s_;;::-. Sf. inA3 Actual· S-tr Ef;'ft.~tf~i . ~ :·.· · · --~ i nA3 •• 1 .. ,•, -· • ,_-..,.-~- 33·,333 psi = Allowable 1,350 psi = Allowable Design S-tr = 62 Fb:Botto111 of Bea = 48,613 psi : 44,500 psi =Allowable= .89 Fy I (Mdl/Ss + MII/Str:Pesign) Fb:Top of Concrete= 954 psi· : 1,350 ps_i =Allowable= .45 f'c: [Mll/(Str:toptn}l Unshored DL Sress = '17,719 psi : 33,333 ps.i =Allowable= .66 Fy : Actuil Sheir Stress= 8,918 psi : 20,000 psi =Allowable= .40 Fy : :----------------------------------------------------------------------; ULTIMATE STRENGTH OF C(NIIPOSITE SECTION Ulti1ate Mo11ent Capacity of Coaposite Section = Ultimate Moment/ Max. Service Moment = 269 ft-k 1.53 I ~x IIIIIIX lll!IIX --.. ,- PAGE : _______ _ PROJECT:cirlsbad SUBJECT:floor design BY:lh DATE :0.0 SHEAR CONtECTION ----------------\ ' !llax Shear Force : Vh :' Min. < ,85 f'c Ac/2 or AsFy/2 l = 192.0 kips ---> NUMBER OF CONNECTORS USED = 17 PER 1/2 SPAN -------·------------V'h= Actual Shear For Studs Used= 192.0 kips (Min.= .25 * Vh} Actual 1. Co1posite Action = 100.00 DEFLECTIONS ---)> I-tr:xx is Based on" n: Deflection ff I-tr:xx of Composite Section I-EH, : Is+ [V'h/ Vh)A,5f(ltr-Is)l : 923 inA4 >LOCATION--> X Distance from Left Support= 12,5 ft Default= L/2 SHORED UNSHORED ---·---------------' DEAD LOAD = 0.241 in :. L / 1243 t.740 in : L / 405 LIVE .LOAD' .: 8,5'4 in: L / 595 0.504 in: L / 595 TOTAL LOAD= 8.745 in: L / 402 1,244 in : L / 241 I I I I I I I I I ·1 anx REACTIONS I I I I I DEAD LOAD = LIVE LOAD = LEFT 11.18 kips Z-3,81 n RIGHT 7.73 kips 15.80 •· 23,52 kips ' I IIIIX I-~ I . : ~:: -----' -. PAGE : ___ _ PROJECT:carlsbad SUBJECT: f I oor de.sign -----------,--DATE :0.0 BY: lh I ~,....x----------~---------------------- COMPOSIT.E STEa BEAi'! DESIGN I I I I I ·I I -I .I ·1 I I DESCRIPTION: BEAM 810 GENERAL DATA ------------> F-y = 50,000 psi > Bnm Span = 25 ft F-b = 33,333 psi > Beilll Spacing = 10 ft > f'c = 3,000 psi > Beam Trib Width = 10 ft > Concrete Wt. = 144 pcf >Tot.Slab Thick. = 5.5 in n : .Strength = 9.29 > Deck Rib Height = 3 in n: Deflection= 9.28 . > Rib Spacing = 6 in > Bea.• Location: > Rib Opening Width=, 6 in Center=1, Edge=0 1 t > Ribs: Par! I.= 1 Perp. = 0 1 > Use 'Partial Composite > Shear Stud Cap. = 11,5 kips Action? V=1, N=0 1 CONSTRUCTION LOADS < Applied BEFORE 75't Curing) > Slab Weight = 50 psf · D.L x Trib Width = 0.500 kif > Misc Dead Load = 0 • Beu Weight = 0.026 II --------Add'I Uniform Load= 0 u Total Unit D,L. 50 psf ------- Total Uniform D.L. = 0.526 kif 1mx #1 = 5. 75 k X = 5 "#3 = 0 k X = 0 ft #2 = 0 k X = 0 #4 = 0 k X = 0 ft inn: LOADS ON COMPOSITE SECTI~ < App I i ed AFTER 75¼ Curing ) nmx IIIIRX > Unit Live Lo.ad.IL = 1l5-~:t L.L. x 1'rib Width = > Unit Live Load· ~i;i~(/lf$}j~i:Add1 I Uniform Load = 1.050 kif 0 u -·: •' t_tf/f~~~~-.;.:~~~ ~: ~:~~=-:i_ ~ - Total Unit: L.l.·,%t?~t; tt5·p:st--' Total Unifor11 L.L. = 1.050 kif ;/: i •;3~;;·: ~'.?c:':r ~: i/;: 13 • t k X • 12 = 0 k X = 0 ft #4 = 0 k X = j ft 0 ft ----z"" ~' I-~ ,..._ • :~. }::-.: :· -A>>I./Me, .:~ . . '?t" ,\0? (lO)(\O)t· .{9(15j >PANP~t:.L ·I · 1---, I I· I I I I I .I: I I I I I I -1 I ~' ffllll){ IIIIIIX 11111>: mmx mmx MOMENTS Dead Load Moment = 56;7 ft-k Live Load Moment = 118.8 ft-k -------- Toti! l'lo1m,t = 175.5 ft-k EFFECTIVE FLANGE WIDTH ---------------------- Based on Length = 75,0 in Based on Spacing = 120,0 in Based on Slab Depth= 93.5 in ROLLED SECTION DATA PAGE:_·--------· PROJECT:carlsbad SUBJECT:floor design BY:lh DATE :0.0 S-REQUIRED = 63.180 in"3 Max. Shear = 35 kips AREA REQ'D = 1.75 in"2 > Effective Width = 75 in --> DEPTH CLASS: 16 SELECTED .STEEL SECTION ------>> W16X26 Section Properties : I-steel = S-steel = Section Area Top Flange Depth Wt per foot = = = transformed Properties : 301 in"4 I-tr : Effective = 1,019 in"4 38 in"3 7.7 in"2 5.50 in 15.7 in 26.0 #/ft s-tr : Top = 266.2 .inA3 S-tr : Bottom = 68.0 • S-tr : Eff.@ Bott.= 63.5 • ntStr: Eff.@ Top = 2,151 • X-X Axis From Bottom= 16.9 in V-horiz f 100· i. 192.0 kips I-STRESS EVALUATION --~-----------------------------------------------1 I SHORED & UNSHORED : I • I Service Load Stresses: @ Bottom of Beu· @ Top of Concrete = 33,162 psi = 97.9 psi : 33,333 psi = Al lowabre 11350 psi = Allowable I UNSHORED STRESS'.~~-:; MA}{. S-transfortt'd':P( (1.35 +.35 +··MltiJMtf:1tS!"s. = -.,88 in"3 -Design S-tr = 64 Actua I S-tr EHettiVec-= 64 i n"3 Fb:Bottom of Bea = 41,167 psi : 44,500 psi = Allowable = .89 Fy l (Mdl/Ss + MII/Str:Design) Fb:Top of Concrete= [Mll/(Str:toptn)J 663 psi 1135ill psi =Allowable= .45 f'cl Unshored DL Sress = 17,719 psi : 33,333 psi = Allowable = .66 Fy _l Actual Shear Stress= .81918 psi : 20,000 psi =Allowable= .40 Fy I :---------------------------------------------.------------------------: ULTIMATE STRENGTH (IF COf!IPOSITE SECTION Ultimate Moment Capacity of Composite Section = Ultimate Moment/ Max. Service Momerit = 363 tt-k z.01 --: ) ·;:· .I llll!IX 1 .. ~ J I I I I I I I I I ·I ·I I I I I I ,. mmx mmx mmx mmx mmx PAGE: _________ _ PROJECT:car I sbad SUBJECT:floor design -·----------BY: lh DATE :0.0 SHEAR CONNECTION Partial Composite Action Being Used Max Shear Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2 l = 192.t kips ---> NUMBER OF CONNECTORS USED = 12 PER 1/2 SPAN --------------------V'h= Actual Shear For Studs Used= 138.0 kips (Min.= .25 * Vh l Actual i. Composite Action = 71.88 DEFLECTIONS ---» I-tr: xx is Based on II n : Def! ecti on • I-tr:xx of Composite Section I-EH. : Is+ CV'h/ Vh)A.5*(Itr-Isll = 1,145 in"4 = 1,016 in"4 > LOCATION --> X Distance fro111 Left Support = 12.5 ·f't Default = L/2 ---------------------------------------- DEAD LOAD = 0.219 in: L / 1369 0.740 in: L / 405 LIVE LOAD = 0.458 in: L / 655 0.458 in: L / 655 TOTAL LOAD= 0.677 in: L / 443 1.198 in: L / 250 REACTIONS ---------LEFT DEAD LOAD = 11.18 kips LIVE LOAD = 23.81 H TOTAL LOAD= 34.98 kips J(.:i·-. . ~ . •' tct .. L< . I '. : ---.rt, . ' ~'.' ' -~~-t;i~ ,, ~~······~7 . . -* ----t 3 1..0 RIGHT 7.73 kips 15.80 • 23.52 kips 1/(.. M6 .,... 155,'1 = .Y!J5 tJ~ ~~ /,(p7 3f? . 11,{!_,b7t•PiP·-tJc 8,S-- fl2. -= . . 01 ~q ·["'~~ Z•:~aZ·S'< ·•' c' · ·-~, · ., ·c, . -·, .. ·:-. _ ..... - '"--·, ~ } 1· . 1--~ .!llllf PAGE : _____ _ PROJECT: ______ __,. __ SUBJECT: _______ _ BY: ______ DATE: ___ _ DESIGN -------------------------------- DESCRIPTION: B10A GENERAL DATA > Beu Span = > Beam Spacing = > Beam Trib Width = >Tot.Slab Thick. = . > Deck Rib Height = > Rib Spacing = > Rih Opening Width= > Ribs: Parll. = 1 Perp. · = I. > Shear Stud. Cap. = CONSTRUCT!~ LOADS, > Slab Jlle:ight = > Misc Dea.d Load = Total Unit D.L. = 24.33 rt 11 ft 10 ft 5.5 in 3 in 6 in. 6 in ~ 0 11.5 kips > F-y F-b = 50,000 psi -. 33,333 psi > f'c = 3,000 psi > Concrete Wt. _ = . 144 pcf n : Strength = 9.29 n : Def! ect ion= ~.28 >Beu-Location: _ Center=!, Edge=f _ : _ 1 > Use Partial Composite Action? 'f=l, N=f 1 ( Applied BEFORE 75"/. ~uring > 51 psf 0 • . 50 psf D.L x Trib Width -0.501 kif Bea•-Weight = __ 0.035. 11 Add'! Unffora Load-= 0. • Toh! Unifor1 D-.L. = 0.535 kH I I I I I I· I I IMIX .• #1 = 5.88 k X = 5 _ #3 = _ 0 k _ X = _ 0 ft ·I I I I .I ·1 ·1 ~ IIIIIX .mmx ·mmx • JIIIIIX .. .#2 = 2.5 k X = 14.5 LOADS ON COMPOSITE SEC:lla. > Unit Live Load #1 = > Uh it Live Lo~d. 12-._ r .... ..,,. . J{. *~,\,_,~~-;-~~ ~ .-;~~ - Tota-6 #4 = 1-~ X = 0 ft ( Applied AFTER 75X Curing> . 116 psf L.L. x Trib Width = ·. ~ _____ Add' I Unifor11 Load = ~-";:~ ... /:,i,i;_ ··ohl Unifor• L.L. = _ 1.051 Hf. . 13 = #4 = 0 k X = 0 ft_ _ I k __ X = _ 0 ft . :I IIIIX" :1~ . . , ·-·.\ -.1 ·~ - J:: rnmx rnmx ~I I I I lllftlY.. I 1· I I tnmx I I I I I· I IIIIIIX ~, llffll( . PAGE : ~ .. :;!-~-·----•:{ PROJECT: . -i,. SUBJECT:. _______ _ ~~i~~t-'~~~ ... . -.~-BY:-_____ DATE : ___ _ ~t~~: Dead. Load Moment = 66.6. rt-k S-REQUIRED = 72.340 in"3 Live Load Moment = 134.4 ft-k --------Mix. Shear = 37 kips Tcrtal Moment = 200.9 ft-k AREA REQ'D. _ 1.83 in"2 EFFECTIVE FLANGE WIDTH ---·-------------. ---- Based on Length = 73.0 in Based on Spacing . = 120.0 in > Effective Width = _ 73. in Based--0n Slab Depth= 94.f in ROLLED SECT!~ DATA --> DEPTH CLASS: SELECTED. STEEL _ SECTION . ------>> N18X35 Section Properties: Transformed Properties: in I-steel = 518 in"4 I-tr. : Effective. = 1,691 in"4 S-steel Section ArH Top· Flange . Depth· Wt per root = = = = = 58 in"3 S-tr : Top = 294.9 in"3 18.3 in"2 _ S-tr : Bottom = _ 97.3 " 6.H in S-tr : EU'. f Bott~= 97.1 •· 17.7 in n*Str :.EH., @·Top_=-2,727_ • 35.8 #/ft X-X Axis Fro• Bottom=· 17.4 in V-horii@ lH ¾ = 232.7 kips :-STRESS EVALUATION----------------------------------------------------: l SHORED & UNSH)REI) : Service Load Stresses: @ Botto11-of Bea• @Topor Concrete MAX. (1. .. Actu ·· · = 24,838 psi = -~ 884. psi ~-: Fb:]ot:t' .·. .. . (Mdl/Ss + MII/Str;Design) : 33,333 psi. = Allowable 1,350' ps·i ::. Allowable_ l Design. s-tr = _ 97 I • I Fb:Top of Concrete= 591 psi i,350 psi = Allowable = ..• 45 r'cl .(Mll/(Str:toptnll I •• I Unshored DL Sress = 13,874 psi : 33,333' psi =Allowable= .66 Fy l Actual Shear Stress= 6,893 psi :. 20,M ps-i = Allowable = .• 40 Fy l :----------------------------------------------------------------------1 ULTIMATE STRENGTH OF COMPOSITE SECTION Ultimite Moment Capicity or Composite Section = Ultimate Moment/ Mix. Service Moment = 497 ft-k 2.47 I. {IJIIIX 1-----.I - I.::: I I 1--rnmx 1· I I I _ mmx I I I I I· I I I mmx PAGE.: ___ _ PROJECT=--------SUBJECT: ________ _ BY: _____ DATE : ___ _ SHEAR CONNECTION P1rtf1l Co1posite Action· Being Used -Mix She1r Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2 > = 232.7 kips ---> NUMBER OF CONNECTORS USED = 20 PER 1/2 SPAN V'h= Actu1l Shnr For Studs Used·= 230.0 kips (Min.= .25 * Vh > Actu1I :t. Composite Action = 98.86 DEFLECTIONS ---» I-tr:xx is Based on" n: Deflection" I-tr:xx of Composite Section I.,.EH. : Is + [V'h/ Vh)A.5fHtr-Is)l > LOCATION --> X Dishnce from Left Support = _ 5 ft_ Dehult = L/2 SHORED UNSHORED ----------------------------------------DEAD LOAD = 0,093 in: L / 3148 0.308 in: L / 949 LIVE LOAD = 0.253 in: L / 1154. 0.253 in : L /_ 1154 ~ TOTAL LOAD= 0.346 in: L / 845_ 0.560 in : L / 521 REACTIONS LEFT DEAD LOAD = 12.19 kips LIVE LOAD = 24.41 11 TOTAL LOAD = .. 36 •. 68. 'kips RIGHT 9.21 kips 18-..49 • 27.69_ kips H. ==-i9!::).1 = .a.1.1--MMA.)( \,.,14._5 I 1J S+< 0\7 /fSc -.,__ -• la(o\ s --s Sc? N N,G,b/)(•&1-Q - ,_-:::. -----t. /0. 6 I 01 (;U-0., ll ---: ....... •• • 1-~ I I I I- I I I I I I I I I I I I I OPUS-CORPORATION DESIGNERS • BUILDERS • DEVELOPERS Offices .and.Affiliates_ Jn. Mim1eapolis_'•. Clli.C!IIIO' Milwaukee • Phoenix • Tampa • Pensacola -~ -· '. .. ~ -. -,•" .,.. ........... . -·=-·:. '• ::\~~ :·:~ . .:,.,~--- ' ' --~, --~ ------,_,.,.,,. -. . -,. . ___ ,_ . --· . ---.. --· ·-"· --------·-----~-:-------,-,--,~----·- ' ' ~,. ,.,,.,,,,.,... ... ,,. ......,,..,..,,,__~,. ., ~ .... , ~---~ ~- Project-~AD f¥IZ: Date 'l.-Z3-RK B~ Shee~ Jl/o \ of __ _ II<- . " ----· _, . ' I Stop -Program ter1fnattd·. 1--C:\ C>111111x I I I flMIX I I I I I I I I IIIIRX mmx I rnmx _I mmx .1 .I mmx ~I ~I PAGE.: ___ _ -, .,,.,,;·:. PROJECT• r1;j, .,.;,-• --------·~·;.;;," SUBJECT: ______ __ 'r r:;{t~ BY:M_ DATE :_ .. ~:;:;-;&& . COMPOSITE ·sTEEL BEAM DESIGN ---------------,---------------- DESCRIPTION: NORTH ENTRY (5A-5B) GENERAL DATA > Beam Span = 24.33 ft > Bn11 Spacing = 10 ft > Beim Trib Width = 5 ft >Tot.Slab Thick. = 5.5 in > Deck Rib Height = 3 in . > Rib Spacing = 6 in > Rib Opening Width= 6 in > Ribs: ParlL. = 1 Perp. = 0 0 > Shear Stud Cap. = 11,5 ki.ps > F-y = 50,000 psi F-b = 33,333 psi > f'c = 3,iH psi > Concre.te Wt. 144 pcf n: Strength = 9.29 n : Deflection= 9.28 > Beu Location: Center=l, Edge=e· 0 > Use Partial Co1posite Action? Y=l, N=0 : 1 CONSTRUCTION LOADS ( App I i ed BEFORE 75¾ Curing >. > Slab Weight = 75 psf D.L. x Trib Width = 0.375 kif > Misc Dead Load = 0 • Beu Weight = 0.035 • --------Add'I Uniform Load= 0 11 Total Unit D,L, = 75 psf #1 = 2.3 k X = 15 #2 = 0 k X = 0 > Point Loads: #1 = 6.1 k X = #2 = 0 k X = 15 ft 0 ft Total Unifor• D.L. =-0.410 kif #3 = i k X = 0 ft #4 = 0 k X = 0 ft Jitd AFTER 75¾ Curing) _•';, ,: .L.L. x Trib Width = 0.750 kH ·44•1 Uniror1 Load= e.19 • ,·· #3 = #4 = 0 k X = e k X = 0,940 kit 0 ft 0ft ---,.:_. - 1-IIIIX PAGE:..._. __ _ ·-· PROJECT: ___ _ :' SUBJEbti~ ,4Jj ~ :~.._I.5 .. !3 f·-, ------=----I I I I ----ffllllX mmx I I lllllll I I ·1 I mmx. I I I I I I mmx I 11111)1 ;};<,~.' MOMENTS Dead Load Moment = 42." ft-k Live Load Mo1ent = 10i.9' ft-k -------- S-RE~IRED Max. Shear AREA REQ'D = 22 kips Total Mo1ent = EFFECTIVE FLANGE WIDTH ----------------------Based on Len9th. = Based on Spacing = Based-on·Slab Depth= RCLLED SECTION DATA 142.9 ft-k 30.3 in 63.0 in 39.j in = 1.08 in"'2 > Effective Width = 30 in -->DEPTH.CLASS·: 18 SELECTED STm SECTION ---~-->> W18X35 Section· Properties: I-steel = s-steel = Section Area Top· Hangt: Depth Wt per -toot = =. = Transfor1ed Properties: 51" inA4 I-tr : Effective = 1,284 inA4 58 inA3 10.3 in"2 6.H in 17.7 in 35,j #/ft S-tr : Top = 152.3· i nA3 S-tr : B'ottoa = 89. 0 ., 5-tr : EU •. f Bott.= 88.2 " nfStr: Eff.@ Top = 1:,393 a X-X Axis From Bottom= 14.6 in V-horiz@ 100 i. = 96.1 kips l-STRESS EVALUATION--------------------------------------------------! l SHORED & UNSl{)REI) : Service Load Stresses: @ Botto• of Beu @ Top of Concr~te = 19,438. psi : 331333 psi = Allowable = ·1 1231 _psi ; 1,351 psi = Allowable A3 Design s-tr =· 88 I ,. ,see psi = All:owable = .89 Fy f Fb:Top of Concrete= 869 psi 1,350 psi= Allowable= .45 f'cl [Ml 1./(Str:topfn)J Unshored DL Sress = 8,756 psi : 33,333 psi =Allowable= .66 Fy I Actual Shear Stress= 4,'68 psi : 2j,0H psi= Allowable= .4" Fy I :------------------------------------------------------------------·---: ULTIMATE STRENGTH OF COMPOSITE SECTION --------------------------------------Ultimate Moment .Capacity of Composite Section = Ultimate Moment/ Max. Service Moment = 33j ft-k 2.31 , .. mmx l~- ·-t . ....,- ·· : '··:,::.!i~~tf:·;~;.;:~ j: ~:\IC::~-,,<· ... , -f '<.-: ·. :._,{~ffl; ~·t PAGE: ___ _ · PROJECT: __________ _ -.. >-.~·-SUBJECT~ .. ·---------;,::_ 1 .·-x-- X 1 I I nvnx I I I I I mmx I I mmx I I I I I I .. osite Action Being Used Max Shear Force: Vh : Min. ( .85 f'c Ac/2 or AsFy/2) = 96.7 kips ---> NUMBER OF ciHECTORS USED = 8 PER 1/2 SPAN V'h= Actual Shear For Studs Used= 92.f kips (Min.= .25 * Vh) Actual r. Coapos-itt Action = 95.16 DEFLECTIONS --->> I-tr:xx is Based on• n: Deflection• i-tr:xx of Coaposite Section I-eEff •. : Is + C.V'h/ Vh)A.5*(1.:tr-IsJl > LOCATI!lf --> ){ Distlnt'.f. fro• Left Supp11rt--= 12.165 ft Default = L/2 DEAD LOAD = LIVE LOAD :. TOTAL LOAD-= REACTIONS --------- DEAD LOAD- LIVE LOAD SltJRED --------------------0.116 in : L / 2517 1.278 in: L / 1852 0.394 in: L / 7:41 LEFT = = 5.87 ki-ps 13.77 • TOTAL LOAD= 19.64 kips ~ --------------------t.293 in: L / 996 0.278 in : L / 1'52 ·0.571 in· : L / 512 RIGHT 6,41 k ipSo 15.29 • 21.60 kips er• ,,:. -iiix: 1--. I I I I I I I I I I I I I ' .I mmx 1111){ lltllX mmx mmx mmx DESCRIPTION: NORTH ENTRY (A4.3-B4.3> GENERAL DATA > Beam Span = 24.33 ft > Beam Spacing = 7.5 ft > Beam Trib Width = 7.5 ft >Tot.Slab Thick. = 5.5 in > Deck Rib Height = 3 in > Rib Spacing = 6 in > Rib Opening Width= 6 in > Ribs: Parll. = 1 Perp. = s 0 > Shear Stud Cap. -. 11.5 kips PAGE:. ____ _ BY:A-\j DATE: "--'L~-8'i --' -------- > F-y = 5",000 psi F-b 33,333 psi. > f 1c = 3,000 ps-i > Concreh Wt. = 144 pcf n: Strength = 9.29 n: Deflec.tion= 9.28 > Beu Location: Center=1, Edge=I 1 ,>-Use Partial Co1posite Action?·Y=1, N=I J CONSTRUCTION LOADS ( Applied BEFOOE 75X Curing> > Slab Weight = 5" psf D.L. x Trib Width = 0.375 kif > Misc Dead Load = S • Beu Weight = 0.026 11 --------Add' I Un it'or11 Load = 0 u Total Unit D.L. = 5" psf Toh! Uni fora O.L. = 0 •. 401 k If #1 = 4.2 k X = 15 13 = 0 k X = 0 ft #2 = 0 k X = S 14 = 0 k X = 0 ft LOADS ON COMPOSITE SECTil»I ( Ap~lied AFTER·75%· Curing} --------------------------> Unit Live Load #1 = 10t· pst L.L •. x Tri.b Width = > Uni t Live Load #2 = 8 • Addq Uni f-ora Load = lcttil Un;f-~ ':;1kt~ > Point.l #1 = . ~t ,2 = ·· · ~r .. ~ 9-bt-Uni.f.or-1-L.L. = ,· I k X =· 8 k X = 0.750 kif ' ff 0.75" kl-f 0 ft 0 ft .-..:.. I !MIX 1- I mmx -1 mmx I I I ffllllX I I I I mmx I I .1 I I I mmx I I IIIIIX PAGE:_. ____ ..:... PROJECT: ______ _ SUBJECT:_.,... ________ _ BY:~-DATE :_!:.:~1-:2, Dead Load Moment = 52.0 ft-k S-REQUIRED = 57,647 inA3 Live Load Moment = 108,1 ft-k --------Max. Shear = 23 kips Total Moment = 161,1 ft-k AREA REQ'D = 1.13 in"2 EFFECTIVE FLANGE WIDTH ----------------------Based on Length = 73.0 in Based on Spacing = 90.0 in > Effective Width = 73 in Based on Slab Depth= 93.5 in RClLED SECTION DATA --> DEPTH CUSS : 16 SELECTED STEEL SECTION ------>> Wl6X26 Section Properties: I-steel = S-steel Section Area T.op Flange Depth Wt per foot = = = = = 301 in"4 38 jnA3 7.7 in"2 5.58 in 15,7 in 26.0 #/ft Tran sf' or11ed Properties :- I-tr : Effective_ = 842 inA4 S-tr : Top = 244.5 inA3 S-tr : Botto• = 68.7 • 5-tr : Eff, f Bott.= 58.0 " ntStr: Eff. f Top = 1,596 • X-X Axis From Bottom= 16.5 in V-horiz@ 109 X = 192.0 kips I-STRESS EVALUATION --------~-----------------------------------------1 I SH_ORED & UNSHORED : Service Load Stresses: @ Bottom of Beu @ Top of Concrete I UNSHORED STRESS Cl-ECK: MAX. S-tr-\ft~~r,,, (1.35;.*- Actua-l·J::: • >, Fb:Bolt, (flldlf Fb:Top of Concrete= [Mll/(Str:toptn)l = 33,ua psi = 1,214 psi : 33,333 psi= Allowable 1,350 ps·t = Allowable Design S-tr = 58. . : ,510 psi ·= Allowable = .89 Fy l .~. I :.£:'~'i··lf·,:l!'t,-. • I ,:..YJ" .. : --~~ _ .. \«.!'~ 813 psi : 1,350 psi = All.owable = .45 f'cl Unshored DL Sress = 16,249 psi : 33,333 psi =Allowable= .66 Fy l Actual Shear Stress= 5,770 psi :· 20,000 psi= Allowable= .40 Fy I :----------------------------------------------------------------------: ULTIMATE STRENGTH OF COMPOSITE SECTION Ultimate Moment Capacity of Coaposite Section = Ultimate Moment/ Max. Service ~oment = 361 ft-k 2.25 t11irt ·-·~~:: I :-"'n\lli<. 1- I mmx I RHIIX I I mmx I I I I I mmx I I nvnx · -1 I I I I I -~-~':.-.-C,.. -"----.. :::-;,·. PAGE: __ PROJECT:___ . _ _ ___ _ SUBJECT: ___ _ BY: A\: DATE :.1.,-t..l ~~8 ~----,.---------------- ,_,; ,,. :,, ·pos i te kt ion Being Used ~~ .4, .. Max Shear Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2 > = 192.i kips ---> NUMBER OF CONNECTORS USED = 7 PER 1/2 SPAN V'h= Actua.l Shear For Studs Used = 8i.5' ki.ps ( Min. = .25 1 Vh ) Actual i. Composite Action = 41.93 DEFLECTIONS ---» 1-tr:xx is Based on • n : Deflection • I-tr:xx -of Co•posite Section · I-EU. : Is+ CV'h/ Vh)A.5f(ltr-Is>J : 1,137 inA4 : 8-42 inA4 >LOCATION--> X Dish.nu fro111 L!ft Support= 12.165 ft .Default= L/2 SHORED --------------------DEAD LOAD = 0.212 in: L / 1378 LIVE LOAD = 0.435 in: L / 672 TOTAL LOAD= 0.646 in: L / 452 REACTIONS LEFT DEAD LOAD = LIVE LOAD = 6.49 kips 12.88 • TOTAL LOAD= 19.37 kips . ., UNSHORED --------------------0.593 in: L / 492 0.435 in: L / 672 1.027 in: L / 284. RIGHT 7.47 kips 15.17 • 22.63 kips -.· .- !> \'t ... ·f ;, :, '.' ,,, . ; . ,& I ·-·-~ - -\ --.. . ' f'" 1--~-inmx I- 1-· PAGE: ___ _ -.·\:::.. PROJECT: ________ _ ~-SUBJECT: ________ _ BY: ______ DATE :~2'r"\~8: DESIGN -------------------------------- DESCRIPTION: B19. GENERAL DATA > Beu Span = .. 29 .33 ft > Beam Spacing = 1i ft > F-y . F-b = 5i,H0 psi = ~ 33,333 psi > f'c = 3,000,psi 1-- .. > Beam Trib Width = . 5 rt > Concreh Wt.> = . 144 pcf I I I I I !IIIIX .... mmx I: .!IIIIIX 'I I mmx I . rnnix I I :1 >Tot.Slab Thick. = 5.5 in n : Strength = 9.29 . > Deck Rib Height = _ 3 in n: Deflection= .. 9.28. > Rib Spacing =-6 in, > Rib -Opening-Width= 6 in > Beam Location: . Center=! , Edge=0.. :_ ·r 0 > Ribs: Parlf. = 1 Perp. = e; e > Use Partial CompQsite > Shear Stud Cap. = 11.5 kips Action? Y=1, N=0 0 CONSTRUCTION LOADS ( Applied BEFORE 75% Curing I > Slab Weight = lei psf D.L. x Trib Wi.dth = 0.5H ktr > Misc Dead Load = 0 • . Beut Weight = _ 0.11.135 11 --------Add' I Un itor1-Load. = 0 -_" Total Unit D.L. = 100 psf Total Unifor• D.L. = 0.535 klf #1 = 2.9 k X = 19.5 -'~ = _ 0 L x·= __ 0 ft #2 = 0 k X = 0 #4 = 0 k X = 0 ft LOADS ON COMPOSITE SECTION l Applied. AFTER 75% Curing> > Unit Live Load.#1 = 1.48. psf· L.L. x Trib Width = 1.050 kif -· 0 ... u > Unit Live Load. #2.. =. __ 9. -~_.-. ...,Add' I UniforM Load = ·,tf i· .t. . Toti-( ,cotal. Uniform L.L. = _ 1.050. kif #3 = 0 k X = 0 ft . _ #4 = • 0 k _ X =. _ l ft . ., . 'Jj;·A<,:··~- .' .. ,..~ .. I : . -_ -~ ---~ -,. ,.~ JntllX mmx I I 1· I. ffllll( I- :1 1. I mmx I I I- I I I-mmx I 11mx _ PAGE : __ -~Jr_...":··.:·. ,·.,i;,,_··_ :-PROJECT:_______ .__,_ __ '":'·t~: SUBJECT: i~ ---------·~!_ -·__... BY: __ DATE: Z. 11' .i'I! Dead Load Moment = 72,6 rt-k S-REQUIRED-= 89,025 inA3 Live Load Moment = 17-4.7 rt-k --------Max. Shea.r --33" kips Total Mo1ent = 2-47.3 rt-k AREA REQ'D = _ 1.63 inA2 EFFECTIVE FLANGE WIDTH . ------·--------------- Based on Length = 35.3 in Based on Spacing ::: 63,0 in > Effective Width Based on S I·ab Depth= 39.0 in ROLLED SECTION DATA -------------------SELECTED·~ STEEL __ SECT!()! -~---->> W18X35 --> DEPTH CLASS : = Sect-ion Properties : Transformed Proper.ties: _35.in in I-steel = 510 inA-4 I-tr ~ Effective = 1,372 inA-4 s-steeJ = 58 inA3 S-tr : Top = 170.2 inA3 Sect-ion Area Top Flange: Depth Wt per foo.t = = = = 11.3 inA2 __ S-tr : Botto• = -~ 90.6 • 6.H in S-tr : EU.@ Bott.= 90.6 " 17.7 in n*5tr : Efh@ Top __ = 1,58l • 35.0 #/ft X-X Axis Fro.-Bottom= i5.1 in V-horiz@ 10t1· ¾ = 112.6 kips I-STRESS EVALUATION ---NOTE : Overstress Condition. ! ! -------------! I SHORED & UNS!-i)RED :. ---> > DESIGN STRESSES EXCEED. ALLONABLES _ Service ·Load Stresses: @ Bottom ot Beaa. .. @ Top o.f Concrete = 32,7-43 psi : 33,333 psi =-Allowable =. r 1,877_ psi-: __ 1,351 psi :. Al I owab I e • nA3. Design_ s-tr = 91 A3 Fb:Top of Concrete = 1326 psi. 1,351 psi= Allowable_ =~,-45 f'cl CMI I/(Str:topfn}J I . I . Unshored Dl Sress = 15,132 psi : 33,333 psi = Allowable = .66 Fy I Actual Shear Stress= 61143 psi :_ 20,001 psi :::= Allowable = __ ,-40 Fy I : ----------------------------------------------------------------------.: ULTIMATE STRENGTH OF COMPOSITE SECTION Ultimate Moment Capacity of Co1posite Section_ = . 371 ft-k Ultimate Moment / Max. Service Moment = 1.50 .. a,, f:., ·1-.;...._~: , __ 1-~ I 1-~ I 1. I- I .mmx . mmx rnmx mmx . .rnmx I I I I I ·1 --~-", .-.. :,.,.~ 'f '-· • ' . ..._.,. ..... ;:--~ -::: -~ --~. PAGE:.,.._ __ _ ------.--- SHEAR' CONNECTIOff . -~ . Max Shear Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2) = 112.6 kips ---> NUMBER OF CONNECTORS USED = 10 PER 1/2 SPAN V'h= Actual Shear For Studs Used= 112.6 kips (Min.= .15 * Vh) Actual Z Conrposih Action = 10.ff DEFLECTIONS --->>. I-tr:xx is Based on• n: Deflection• I-tr:xx of Composite Section . = 1,37Z inA4 I-EH. : Is+ CV'h/ Vh)A,5f.tltr-Is)l = 11372 inA4 >LOCATION--> X Distance fro111 Left Support= 14.665 ft_ Default= L/2 SHORED UNSHORED DEAD LOAD = 0.281 in: L / 1255 0.755" in: L / 466 LIVE LOAD = 0.658 in: L / 535_ 0.658 in: L / -535 TOTAL LOAD= 0.938 in: L / 375_ 1.412 in : L / 249 REACTIONS DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 8.82 kips 19,15 N 27.97 Jips RIGHT 9, IT kips ·_ _ 22.84 • I I.: I I· 1· .. I- .., I 1· I I. 1· I. Jlll!IX . !llllX flfflll( rnmx 1 .. rnmx I .rnmx I BY: __ DATE :~1_14 COMPOSITE STEEL BEAM DESIGN DESCRIPTION: NORTH STAIR GENERAL DATA > Be m Span = > Beam pacing = . > Beam r1 ·dth = > Tot, SI.ab Tl'tick. = > Deck Rib· Heigl'tt = > Rib Spacing = > Rib Opening Width= > Ribs: Parll, = 1 Perp. = 0 > Shear Stud Cap. = _ 20 ft 19,5 ft 9.75 ft 5.5 in 3. in 6 in 6 in 1 11.5· kips = 501000 psi > F-y . F-b = _ 33,333 ps.l ~ > f'c = 3,000 psi > Concrett Wt •.. = . 144 pcf . n: Strength = 9.29 n : Deflection= __ -9.,28 . > Beam Location: . Center=!~-Edge=0_ : _ 0 - > Use Partial Composite Action? Y=l, N=0 1 - CONSTRUCTION LOADS ( App I i ed BEFORE 75'/. Curing ) > SI a.b We.i ght = 0 psf > Misc Dead Load = .. 9J • .. Tota·I Uni-t D.L. = . 0 psf #1 = 4.87 k X = 18. #2 = 0.75 k X = 15 > Point Loads: #L:= 9,75 k X .:= . #2 = 1.25 k . X = 10 ft 15 ft D.L. x Trib Width = 0.000 kit Be~ Weight -0.022 11 Add' I Uniform Load= 0 ." ------- Total Uniform D.L. = 0,022 kif • #3 = . ~· 8 k _ X = •. ~ 0. t t _ #4 = 0 k ·x = 0 ft :I i ect -AFTER.. 751. Cur-i ng ) :-{_; = 0.000 kif 13 = 0·k X = 0 ft _ #4 = _ 0 k • X = __ _ 0. ft ~, .:: . I 1· --1111x _ 1 .. 1- -1 __ · :: 1- 1 .... 1:-. I· . mmx mmx • I • I - PAGE: ___ _ -------...------·-· BY: DATE :..A.:,.l.,c_{L MOMENTS Dead Load Moment = 27.3 ft-k -S-REQUIRED Live Load Moment = _ 81.9 ft-k --------. Max. Shear = 15 kips Total Moment = 109.2 ft-k .. AREA. REQ 1D ___ = ~ l, 75 i nA2 EFFECTIVE FLANGE WIDTH ---------------------- Based on Length = 25.8 in. Based on Spacing .. =. 119.5. in_ > Effect iv~ Width = _ 25. in. Based on Slab Depth= 38.0 in ROLLED SECTION DATA -->-DEPTH CLASS : _ in ----------------·-- SELECTED STEEL .. SECTION .. ------>> W14X22. Section Properties: I-steel = S-steel = Section Area. Top Flange Depth Wt per foot = = = = Transformed Properties: 199 inA4 I-tr. ~ Effective _ = .. 470 inA4 29 inA3 S-tr : Top = 115.1 inA3 6.5 i n>.2 _ S-tr. ; Bottoilt . _ = _ 48.2 " 5.01 in S-tr : EH. @ Bott.= 40.4-11 13.7 in ntStr : Eff_. t Top_ = __ 745_ • 22.0 #/ft X-X Axis Fro1 Bottom= 13.6 in V-hori-z f 100 r. _ = .162.3 kips _ :-STRESS EVALUATION ---NOTE: Overstress Condition·!! -------------: I -· t. : SHORED 8: UNSlmED Servi ce.;:L,Qi(;;.. · @ Bot'tp,j~t_ ---» DESIGN STRESSES EXCEED ALLOWABLES .. I I -;, . -· . . . ',• : ~;p·;i ·= ·-33~333 psi = A!·lowabl:e. : @ Top:.,gl: -,-: ~psi : _ 1,35i psi=:. Allowabl~ I -~ 1 .'I -., Fb:Bottom of Beam = 35,598 psi : 44,500 psi =Allowable= .89 Fy J (Mdl/S.s + Ml 1/Str:Designl ______ I Fb:Top of Concrete= CMll/(Str:toptn)] 1318 psi :.. 1,350 psi =:·Allowable = .. AS f'c I I I- I I I I I- I I I ·-t I -'· I , I I· mmx Unshored DL Sress = 11,307 psi : 33,333 psi =Allowable= .66-Fy I Actua I Shear Stress= 4, 756 psi : 20,000 psi =: A 11 owib I e = .• 40 Fy I 1----------------------------------------------------------------------: . ULTIMATE STRENGTH OF COMPOSITE SECT!~ . Ultimate Moment Cipacity of Coaposite Section.= 197. f~-k -5~~~ ·~·~~0if ,. -~ I ·_. ·1_: JllfflX Jllffll( I 1- I 1· I I I I ·I rnmx lllfflX = 1.8111 .,._ PAGE:_, _____ _ BY: __ DATE : 'l--• ,7 ,.6,G'__ SHEAR CONtEeTION Pirtiil Co1posite Action Being Used Max Shear Force: Vh _. Min. ( _.85 f'c. Ac/2 or AsFy/2 ) = 162.3 kips ---> NUMBER OF CONNECTORS USED = 5 PER 1/2 SPAN --. ----------------- V'h= Actua-1 Shear For Studs Use.d = 57.5 kips ( l'lin. = .25 * Vh ) Actual¾ Co111posite Action .. = __ 35.44 DEFLECTIONS --->> I-tr:xx is Based on" n: Deflection• I-tr:xx of ·Coaposite· Section _ I-Eff ,_: Is+ CV'h/ Vh)A.5f(Itr-Is)J : 461 jnA4 >LOCATION-->· X Distance fro• Left Support= _10: ft_ Default= L/2 DEAD !;.OAJ}: = LIVE LOAD _ SHORED UNSHORED. ---------------------------------------- 0.122 in: L / 1968 0.282 in: L / 851 0,390 in : L / 615_ 0.391 in : L / 615. TOTAL LOAD =_ t.512 in : L / REACTIONS 469 .. 8,673 in :. L / . 357 .. LEFT RIGHT 3·,22. kips -~:-.. _ 15.03_ kips. Ht ·1 ']~ ' ---·-l ~I I I I I I I _1· I I I I I I I I I PAGE : _____ _ PROJECT:CARLSB~D SUBJECT:FLOOR BEAMS· AND ...... .::. -·~ .-. '.-- ..2}}~ . ....:.:· --· -.... : : . ~·-:•r-:--~ GIRDERS BY:SGG DATE.: 11/4/86 -----~ ~ -:~J:~-~~::~:·· ~-------------------- IIIIIX 1mx nimx mmx mmx llll'llX .. ~--:-;ri:··: .. · COMPOSITE STEEL BEAM DESIGN ·------------------------------- DESCRIPTION: GIRDER Gl GENERAL DATA > Beam Span = > Beam Sp~cing = > Beam Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening. Width= > Ribs: Par!!.= 1 Perp. =, } Shear Stud Cap. = 3£1 rt/ 25 H · 25 ft 5,5 in 3 in 6 in 6 in 1 / 11,5 kips > F-y = F-b = > f'c = > Concrete Wt. = n: Strength = n: Defiection= > Beam Location: Center=1, Edge=0 50,000 psi / 33,333 psi 3,fil0 psi 144 pcf 9.29 9.28 1 / > Use Partial Composite Action? Y=l, N=0 1 CONSTRUCTION LOADS ( Applied BEFORE 7bt. Curing) > Slab Weight = 0 psf D.L. x Trib Width = 0.000 kif > .Misc Deao Load = 0 " Bea111 Weight = 0.044 11 ---~----Add'! Uniform Load= 0 P Total Unit D,L. = 0 psf Total Uniform D.L. = 0.044 kif 11 = 13.16 k x = re #3 = 0 k X = 0 ft #2 = 13.16 k X = 20 #4 = 0 k X = 0 ft LOADS ON C:()IPOSITE SECTION ( Applied AFTER 75" Curing> > Unit Live Loid #1 = 0 psf L.L. x Trib Widtti -0.000 kif > Unit Live Load 12 = 0 " Add'I Uniform Load= 0 ° ' -' 1f·f.t 2l'f.,t Total Un1rorm L.L. = #3 = 0 k X = #4= 0k X=· 0.000 kif 0 ft 0 rt -."-~ .. r$f,€ f>I ,.?sic.(-z.)-13,,,K. J,: ~ r .. j I '. I t1.s'· 30}-\~O ).~ ( .Co (So) t ta +J_) 2;( lo)~ fl.'Z.~ ,~ ] ·1,..--. ~ -· l I I I I I ·1 I I I I I I I I ·1 I IIIIIX PAGE: ________ _ PROJECT:C:ARLSBAD SUBJECi:FLOOk BtA~S AND GIRDERS BY:SGG DATE: 11/4/f.6 _ .. :,.:....., ... ----------=-~ ·----------------------mmx mmx ffllllX mmx MOMENTS ------- Dead Load Moment = Live Load Moment Tcital Moment = EFFECTIVE FLANGE WIDTH ----------------------Based on Length = Based on S~,ac i ng = Based on Slab Depth= ROLLED SECTION DATA 136.6 ft-k 182.5 f't-k -------- 319.1 f't-k 90.0 in 300.0 in 94,5 in S-Rl::.QUIRED = 114.85 in..,3 Max. Shear = 32 kips AREA REQ'D = 1.60 in ... , > Effective Width = 90 in --> DEPTH CLASS: SELECTED STEEL SECTION ------>> W21X44 Section Properties: I-steel . = S-steei Se~tion Area Top Flange Depth Wt per foot = : = = = Transtormed Properties: 843 inA4 I-tr : Effective = 2,350 in..,4 82 inA3 S-tr : Top = 440.3 in..,3 13.0 i nAZ-5-tr : Botto111 = 134,5 • 6.50 in S-tr : EH. @ Bott.= 116,1 11 20,7 in nfStr: Eff, f Top = 2,929 a 44.0 #/ft X-X Axis From Bottom= 20,tl ·in V-horiz@ 100 i.. = 325.tl kips :-STRESS EVALUATION ----------------------~---------------------------1 : SHORED & UNSHORED : Service Load Stresses: @ Bottom of Beam @ Top c,f Concrete = 32,987 psi = 1,307 psi 33,333 psi.= Allowable 1,350 psi = Allowable l U'lSHORED STRESS Cl-ECK : . l'IAX. S:-tran-s;t;t!fd,;:.t.,,, ... · _),/fjg,_:,:_. , .. I (1,35: +..~ '"' ··,i,:;it>:~s-·S-:·i.~~tt48 in"3 Design S-tr = 116 Actua,l S'-t ·,lie. · _;;.-~·:· 116 in"3 ,~-:+::?~/'. ;::: , . _q:. .' Fb:BoU-oat_of'.';BiJi.~ =:313,~Ptl : 44,500 psi =Allowable= .89 Fy Old I /Ss + k'ti'tstni>,s.rsn:f · Fb:Top of Concrete= 748 psi (Mll/(Str:top*n)J 1,350 psi= Allowable= .45 f'c Unshored DL Sress = 20,081 psi : 33,333 psi= Allowable= ,66 Fy: Actual Shear Stress= 41435 psi : 201000 psi= Allowable= .40 Fy: :-------------------------------------------·--------------------------: mmx ULTIMATE STRENGTH OF COMPOSITE SECTION mmx --------------------------------------Ultimate Mc,11ent Capacity of Composite Section = Ultimate Moment/ Max. Service Moment = 704 tt-k 2.21 ~t-,, ..... ~ ~1 ... V"\ ' ,,_,_ ~-.... I J __ ~, I I I I I ·1 I I I I I I I I I IIIIIIX PAGE: _____ _ PR(ljECT:CARLSBAD SUBJECT:FLCDJfi BEA~S AND GIRDERS BY:566 DATE :-11/4/86 --" ,--------------------mmx mmx SHEAk CONNECTION Partial Composite Action Being Used ------ll (~ -,) N 'Z.;:. NI Mrrl~)t' --- mmx mmx mmx l'lax Shear Fc,rce : Vh Min, ( .85 f'c Ac/2 or AsFy/2) = 325.0 kips ---> NLIMBE~ Or CONNECTORS USt.D = 12 Pt.R 1/2 SPAN V'h= Actual Shear For Studs Used= 138.0 kips (Min.= .25 * Vh ) Actua-1 i. Co111posite Action = 42.46 DEFLECTIOIIIS --->> I-tr:xx is Based on II n: Deflection 11 ----------- I-tr:xx of Composite Section i-EH. : Is+ CV'h/ Vh)".5*(Itr-IslJ = 2,695 in"4 = 2,~.A in"4 > LOCATION --} X Di stance from Left Suppc,rt = 15 ft Default= L/2 SHORED -------------------- DEAD LOAD : 0.3'd0 in . L / ·,47 . LIVE LOAD = 0.508 in : L / 7l~ TOTAL LOAD= 0.888 in : L / 405 Re.ACTIONS ---------LE.FT DEAD LOAD : 13.82 kips LIVE LOAD : 18.25 " TOTAL LOAD= 32.07 kips UNSHORED ---------·--·------- 0.924 0.508 1.433 in : L / 390 in : L / 708 in : L / 251 RIGHT 13.82 kips 18.25 • ------ ~.07 kips Lo"G. . t6 -\ fl..~ ~"' 1.41to u Sl- M~ :>\~.'? ~\()' ""'\ Ma)t:::. 3[9. I N., ~ l'l. Ni. ~ , 9<1 1'l l ~ JI. t&i ~ 12. ·" I I I I I I I I :1 I I -1 I mmx mrnx mmx mmx I rnmx I I I DESCIUPl ION : Gl GENERAL DATA > Beam Span } Beam Spacing > Beam Trib Width >Tot.Slab Thick. > Deck Rib Height } Rib Spacing PAGE:: ___ _ BY: DATE : ______ _ COJ!IPOSllE STEEL BE:Al'I Dt.SlGN ------------------------------- > F-y = 50,000 psi,,,, = 30 ft,,, F-t, = 33,333 psi = 25.33 ft/ > f'c = 3,000 psi = 25.33 ft,,.. > Concrete Wt. = 144 pcf = 5.o inr n: Strength = 9.29 = 3 in/ n: Deflection= 9.28 = 6 in/ > Beam Location: } Rib Opening Width= 6 in,,.,. Cent.er= 1, Edge=0 1/ } Ribs: Parll. = 1 Perp. = 0 1 / > Use Partial Composite > Shear Stud Cap. = 11.5 kips Action? Y=l, N=0 1 / CONSTRUCllDN LOADS > Slab Weight ( Applied BEFORE 7o¼ Curing l = 0 psf D.L. x Trib Width = 0.00t! kif > Misc Dead Load = 0 " Beanr Weight = 0.045 " --------Add' I Un 1 form Load = 0 ." fotal Unit D.L. = 0 psf #1 = 12.66 k X = 10 #2 = 12,66 k X = 20..,,. Total Uniform D.L = 0.045 kit .,,, #3 = #4 = 0 k X = 0 k X = 0 rt 0 ft LOADS ON COMPOSifE SECHCN i Applied AFTER 75¾ Curing l > Uni t Live L_QJ > Unit Live·a1f Tota I Un'.tifC(i"--• .... ~~-;._· (_"K .. ~ ', • .. · ':·ti.1.., > P,, inf t9jfWJ{: #1 = 18.4 ~;-~"-,r #2 =. 18.4 k X = -~ --~ LL x Trib Width = 0.000 kif ·_i' I Uoitorm Load = QI 11 .. · :,,· · "ta.I Uni for11 LL. = 0 k X = 0 k -X = 0 ft 0 rt ,:, ·.;. G'I I mmx mmx I I I I mmx I I I I mmx I I_ I I I I rnmx I PAGE.: ______ ...,_ ;PROJ£C1': __________ _ -SUBJECT: __________ _ BY: ___ DATE : __________ _ MOME.NlS Dead Load Moment = 131.7 t't-k S-RE.QUIRE.D = 113.63 in"3 Live Load Moment = 184.0 ft-k --------Max. Shear = 32 kips Tota.I Moment = EFFEC1IVE FLANGE WIDTH Based on Length = Based on Spacing = Based on Slab Depth= ROLLED SECTI~ DAT!/ 315.7 H-k 90.0 in S04.0 in 95.0 in ARl:A REQ'D = 1.59 in"2 > Effective Width :: 90 in --> DEPTH CLASS: in SELECTED STEEL SECTION ------>> W16X4o Section. Properties : I-steer = S-stee! = Section Area Top Flange Depth Wt per t'oot = = = = Transformed Properties: I-tr : Effective = 1,869 in"4 S-tr : Top = 400.2 in"3 S-tr : Botto• = 117.5 • 586 in"4 73 in"3 13.3 in"2 7.04 in s,.tr : EH. @ Bott.= 114.4 11 16.1 in ntStr : Eff.@ Top = 3,504 • 45.0 #/rt X-X Axis From Bottom= -16.7 in V-horiz@ 100 X = 332.5 kips :-SlRESS EVALUATION------------------------------------:-------------:- I SHORED & UNSHORED : -, -, Servi·ce Load Stresses : @ Bottom of Beu @ ToP.,; --~ = ~-113,, psi : 33,333 psi = Al !owable · ·· ,. -1, 350 ps.i = A 11 owab I e Design S-tr = 114 Fb:Bottolit of Beam = 41,034 psi : 44,500. psi =Allowable = .89 Fy : (l'ldl/Ss + Ml!/Str:Design) . fb:Top of Concrete= 630 psi 1,350 psi =Allowable= .45 f'cl [Mlt/(Str:top*n>J Unshored DL Sress = 21,732 psi : 331333 psi =Allowable= .66 Fy: Actual Shear Stress= 5,703 psi : 20,11100 psi = Al lowab!e = .40 Fy l :----------------------------------------------------------------------: ULTIMAfE STRENGTH OF COMPOSITE SECTION UI ti mate Moment Capa.t i-ty of Composite Section = Ultimate Moment/ Max. Service Moment = 591 rt-k 1.87 .. , ...... ~:- QI IOIUX ;~l::J:..· :~-:~;l;,.-_:: '. ·,_:_ ~--~-?;;::/:,..::~·;f -~~~~~~ :: } i:~t1 '>:/.::£:, :·':' t,~·:·.:c:~:';:· -:::;_J_-· ' IIIIIIX :1~! .. ~;J I I nvnx nvnx I I ·1 rnmx I I I I I mmx I I mmx I I I I ~I PAGE=-...---'PROJECT: __________ _ BY: __ DATE: ______ _ SH~AR CONNeCTlON Partial Composite· Action Being Used Max Shear ~orce: Vh Min. ( .85 f'·c Ac/2 or AsFy/2 ) = 332.5 kips ---> NUMBER Of-CONNECTORS USED 25 PER 1/2 SPAN V1h= Actual Shear For Studs Used= 287.5 ki.ps ( fl!in. = .25 * Vh } Actual i. Com~osite Action = 86.47 DEFLECTIONS --->> r-tr:xx is Based on• n: Deflection" I-tnxx of Composite Section I-EH. : ,-r ~s + CV1h/ Vh)A,5t<-Itr-Is)l >LOCATION-->){ Distance from Left Support= 15 ft Default= L/2 SHORED -------------------- DEAD LOAD = 0.409 in: L / 881 LIVE LOAD = · 0,572~in : L / 630 TOTAL LOAD= i.981 in : L / 367 REACTIONS LEFT DEAµ LOAD = LIVE LOAD = 13.34 kips 18.48 •. ;,· UNSHORED -------------------- 1.282 in : L / 281 0.572 in: L / 631 1.854 in : L / 19.f RIGHT 13.33 kips 18.4il 11 31.74 krps Q\ I ~--/-,.-- 1· . 1-: I 1· ·I I I I I I I I I I I I I mmx IIDIX mmx !IIIIIX rnmx DESCRIPTION-: 61A GENERAL DATA _ > Beam·Span = > Beam Spacing = .. > Beam Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Width= > Ribs: Parll. = 1 Perp. = 0 :' > Shear Stud Cap. = CONSTRUCTION LOADS \".; \--. : ... -:: ~· ~ .. :1-..:.;,.. :_ -~?= ;;_:: .:' -~~ -. . 30 rt 26.33 rt 13.11 rt 5.5 in 3 i.n 6 in 6 in ' -:':• PAGE: ___ _ BY: __ DATE :~ 1.L-ll_ > F-y F-b = 50,000 psi -. 33,333 psi > f'c = 3,000 ps.i > Concrete. Wt •.. = . 144 pcf n : Strength = 9.29 _ _ n :_ Def! etti on= _ 9.,28 >Beu.Location: . Center=!, Edge=0. 1 > us~, Partial Co111posJte . 11.5 kips Action? Y=l, N=0 1 ( App I i·ed BEFME 75¾ Curing } > Slab Weight = 0 psf D-.L. x Trib Width-= 0,000 kif > Misc Dead Load = 0 • Be11t Weight = __ 0.044." --------Add' .1 Uni form. Load =-0 _" Total Unit D.L. = . 0 psf Total Uniform D,L. = 0.044 kif -#1 = 16.6 k X = 10 _ #3 = __ 0 k _ X = .. _ ~Ut #2 = 6.87 k X = 20 #4 = 0 k i< = 0 rt . LOADS ON COMPOSITE SECT!~ ( App I i ed.. AFTER. 75¾'. ClirJ ng } . > Unit Live Load #1 = --~0 psf L.L. x Trib Width = 0.000 kif > Unit Live Load #2_ =. _ I_ •· __ Ad.d.1 l Unifor111 Load= 0 11 ------- ·ohf Unif'or11 t..L. = _ 0.000 kif 0 k X = 0 ft _ 0-k _ X = __ 0. ft G)P.. I l!IIRX ·1 .. -----~. ;;, ... T-·-: _-i~~ :ti ~~~_;~_.JE~ ~ :;;i; PAGE: ___ _ PROJECT: ___ _ SUBJECT: _________ _ BY: ______ DATE : Z ·I~ . I_J I 1. ~ -~S~it~/5: r_nm_x ___ _,.,__._...,~~~~~~~-~~::-:_:-·"'"'. ;,..~ .... f~----------------- I I I I I I I I 1· - I· I .1 I rnmx ffllllX .mmx mmx mmx MOMENTS ------- Dead Load Moment = Live Load Moment = 136.4 ft-k 194.4 rt-k S-REQUIRED = 34 kips Tot~! Moment = 330.8 rt-k Max. Shear AREA REQ'D = 1.69 in"Z EFFECTIVE FLANGE WIDTH Based on L~ngth = Based on Spacing = Based on Slab Depth= ROLLED SECTION DATA -·----------------- 36.5 in 161.2 in 39.5 in > Effective Width = __ 37. in --> DEPTH CLASS: in ,. SELECTED .. STEEL SECTION ------>> W21X44 Section Properties: Transformed Properties: I-steel = 843 in"4 I-tr : Effective =. 21141. in"4 S-steel = 82 in"3 S-tr : Top = 298.4 inA.3 Section Area = 13.0 in"2 S-tr : Bottom = 123.6 • Top Flange = 6.5' in S-tr : EH.@ Bott.= 1-19.4 •· Depth = 20.7 in nfStr : Eft., @ Top __ = 2,569. H Wt per foot = 44.0 #/ft ){-X Axis Fro• Bottom= 18.5 in V-horiz@ 1st i. . =. 256.0 kips l-STRESS EVALUATION ---NOTE: Overstress Condition !! -------------: l SHORED & UNSHORED : ---» DESIGN STRESSES EXCEED ALLOWABLES ,. 1 Service Load Stresses: @ Bottom or Beam @ Top of Concrete = 331255 psi : 33,333 psi= Allowible = 1,545_ psi 1,351 'psi =: Allowable._ n"3. Design_ S-tr = 119 n"3 I --I . 44,500 psi = Al I.OWible ,.. .89 Fy I Fb:Top of Concrete= 908 psi. 1,35' psi =Allowable = _.45 f'cl . Cfllll/(Str:top*n)l I • I Unshored DL Sress = 20,066 psi : 33,333 psi =Allowable= .66 Fy l Actual Shear Stress=. 4,663 psi :. 20,0t0 psi = Allowable = __ .40· Fy l :· ---------------------------------------------------------------------1 ULTIMATE STRENGTH OF COMPOSITE SECTION Ultimate Moment Capacity of Composite Section = Ultimate Moment/ flla.x. Service Moment = 479 ft-k 1.45 . 61A 1-mmx 1--~- I~ ... ·1 = mmx mmx I I 1-~ jllllll( I I I I mmx I I [llfflX I I I I I I PAGE; ___ _ SHEAR CONNECTION Partial Composite Action Being ·used· Max Shear Force: Vh Min. < .85 f'c Ac/2 or AsFy/2) = 256,1 kips ---> NUMBER OF CONNECTORS USED = ~8 PER 1/2 SPAN V'h= Actual Shear For Studs Used = 217.0 kips ( Min. = .25 * Vh. l Actual,. Composite Action =. 80.87 DEFLECTIONS ---» I-tr:xx is Ba.sed on II n: Deflection• -----------I-tr:xx of Composite Section I-EH. : Is + CV'h/ Vh)A,5*<.Itr-Isll : 2,149 jnA4 >LOCATION--> X Distance fro11 Left Support= __ 15. ft_ Default= L/2 SHORED UNSHORED DEAD LOAD = 0.346 in: L / 1041 0.828 in: L / 435 LIVE LOAD -0.483 in : L / 746 __ 0.483 in : L / 746 TOTAL LOAD= 0.828 in: L / 435. 1.310 in: L / 275 REACTIONS DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 14.02 kips- 19.70 " 33.72 ,kips RIGHT 10,77 kips 14.40.. • 25,17 .. kips :;-:-... 1-. I I I I I I I I· I I I I I I ·I I .I mmx NX llillx mmx mmx millx . .. ,._ . .._,,.;. . ·,;. ~ '-,... '"'·:~ ----'I PAGE::_, __ _ · PROJECT: ..,,,;: SUBJECT:=~SM)-ej.:lt BV:X DATE : Z:-1.:.J .. ~ ----------- DESCRIPTION : GlB ( I~ T FU.::Ol2-, l-'\~ ~ "E.t-4-~'i) GENERAL DATA > Beu Span = > Bn11Spacing = > Be.a11 Trib Width = ) Tot, Slab Thick, = > Deck Rib Height = > Rib Spac.ing = > Rib Opening Width= > Ribs: Partl. = 1 38 ft 17,83 ft 17,83 ft 5,5 in 3 in 6 in 6 in Perp, = I : 1 > Shear Stud Cap. ::._ · U,5 kips > F-y = 51,He psi F-b -· 33,333 ps,i > f'c = 3,He· psi > Concrete Wt. -· 144 pc.f n: Strength = 9.29 n : Deflection= 9.28" > Beilll Location: Centtr=l, Edgt=8 1 > Ust Partial Composite Ac.tion? V=1, N=8 1 CONSTRUCTION LOADS-( Applied BEF~ 75¾ Curing> > Slab Neight = 8 psf D.L. x Trib Width = I.SN kif > Misc Dead. Load = 0 • Beu Weight = 8.050 ff --------Add'I Unifor11 Load= " • Total Unit D.L. = 0 psf Total Unifora D.L. = 0.050 kif #1 = 14,34 k K = 11 13 = 0 k X = 0 ft #2 = 9.2 k X = 21 14. = 0 k X = 0 ft LOADS ON COMPOSITE SECTION < Applied AFTER 75¾ Curing) ) Unit Live Load #1 = 0 psf L.L. x Trib W.idth. = 0.010 kif > Unit Live Load #2 = I ~ Add'I· Unifora Load:= e • > Po,i #1 :,; #2 =· :_ '-:-' --------·~ obi Unifor1. L.L •. = 0.008-klf.· #3 = ~= 0 k X = 8 k X ::. Gre, I I I I I I I I I I I I I I I I ~' mmx. mmx •x ffl!IIX .IIIIIX IIIIIX I· I ----------- Dead Load. Moment = 13f.5 ft-k S-REQUIRED = 135,83 inA3 Liv, Loid Moaent = 246.8 tt~k --------Max. Shear = _38 kips Total Mo1ent = 377.3 ft-k AREA REQ1D = 1,91 inA2 EFFECTIVE FLANGE WIDTH ---------------------~ Based on Length = 9f.l in Based on Spicing ... 214.0 in > Effective Width = 90-in Based on· Slab Depth= 94.5 in RCLLED SECT!()! DATA --> DEPTH·CLASS: 21 _________ " ________ _ SEtECTED STEB. SECTION ---,~--». W21X51 :,, Section Properties: I-steel = S-ste!.I = Section Arn Top Flange Depth = = = Wt per toot ·-= Trinsforaed Properties :. 984 inA4 I-tr : Effective = 2,584 inA4 95 inA3 14,7 inA2 6.53 in 21.8 in · 51.1 I/ft S-tr : Top = 556.7 inA3 s-tr : Bottoa = 151.3 • S-tr : Eff.@ Bott.= 136.3 " nfStr: Etf. f-Top = 4,100 • X-X Axis Froa,.Bottoa= 20,7 in V-horiz f 1H X-= 367.5 kips I-STRESS EVALUATION' --------------------------------------------------1 l SHllE) & UNSl-llRED : Service Load· Stresses: f Botto• of Beu f Top of Concrete l llNSHORED .STRESS-CI-Et:K 1- MAX. S. (1. = 33-,219; psi· = 111" psJ : . .., 33,333. ps'i" = Al l'owable 1,358 psi = AHowable Design S-tr = 136 :,5H psi = Allowable = .89 Fy I Fb:Top, of Concrete = 721. psJ. : 1,351 psi =Allowable = .45 f1cl [Mii /(Str:topfn) l Unshored DL Sress = 16,575 psi : 33,333 psi = Allowable = .66 Fy I Actual Sheir Stress= 4,83f psi : 2i,0ttl psi= Allowable-= .40 Fy I :--------------------------------------. ------------------------------1 ULTIMATE STRENGTH OF CO!f>OSITE SECTION --------------------------------------Ultimate Moaent Cap1city of Co1posite Section = Ultimate Moment/ Max. Service Moment = 779 rt-k 2,06 Git:> I I I I I I I I I I I I I I I I I I --~ --~-..<. ·--·-___ , ;...:--·_., ..... ~~-.·---- PAE£ :. ___ ___ PROJECT: __________ , ..... SUBJECT:. ,,_.,. -------,---- BY: __ DATE·: ___ _ mmx ffllllX SHEA ·.osite Action Beins Used mmx mmx mmx Max Shear Force: Vh : Min. ( .85 f'c Ac/2 or AsFy/2) = 367.5 kips ---> NUl'IBER OF eotf£CTORS USED = 18 PER 1/2 SPAN V'h= Actual Shear For Studs Used = 217.I kips ( Min. = .25 f Vh ) Actua I ¾ Co111pos:i te Action = 56.33 DEFLECTIONS --->> I-tr:xx is Based on• n: Deflection• I -tr: xx of Compos i.te Sett ion I-EH. : Is+ CV'h/ Vh)A.5f(Itr-Is)J >LOCATION--> X Distint• fro1 Left Support~~ 15 ft Defiult = L/2 SHORED --------------------DEAD LOAD = 0.281 in: L / 1283 LIVE-LOAD = 0.526 in: L / 684 TOTAL LOAD= 0.817 in: L / 446 REACTIONS DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 13.38 kips 24.85 • 38.23 kips UNSIMD. --------------------t.715 in: L / 5t4 t.5U in.: L / 684 1.241 in : L / m RIGHT 11.66 kfps. 21.37 • 33.13 kips I I I I I I I I I I I I I I I I I _I flllX IIIIIX PAGE: ___ _ PROJECT: _________ _ SUBJECT: _______ _ --BY: _ __,. DATE : __ -----------------------·--· COMPOSITE STEEL BEAM-DESIGN DESCRIPTION: g2 GENERAL DATA > Beilll Span = > Beam Spacing = > Beu Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Width= > Ribs: Parll. = l Perp. = t > Shear Stud Cap.. = CONSTRUCTION LOADS ------------------> Slab Weight = > Misc Dead Load = Total Uni.t D.L. = #1 = 13.9 k #2 = 13.9 k X = 31 ft 27.66 ft 27.66 ft 5.5 in 3 in 6 in 6 in 1 11.5 kips > F-y = F-b = > f'c = > Concrete Mt. = n: Strength - n : Def! ect ion= > Beu Location: Center=t, Edge=0 50,000 psi 33,333 psi 3,000 psi 144 pcf 9.29 9.28 1, > Use Partial Composite Action? Y=1, N=0 1 ( Applied BEFORE 76¾ Curing l I psf D.L. x Trib Nidt~ = , •• kif ' • Beu Weight = 0.044 H --------Add'! Uniform Load= 0 H 0 psi ------- Total Uniform D.L. = 0.044 kif X = 10 #3 = ,. k X = 0 ft 20 #4 = 0 k X = 0 ft IDIIIX LOADS ~ COMPOSITE SECTICW .• ( App I i ed AFTER 75¾'. Curing ) ------------------·-';' ---mmx :: L.L. x Trib Width = 0.000 kif mmx mmx x = X = 11 ft 20 ft : '.dd' I Uniform Load = 0 " ·"Joh! Unifor1 L.L. = #3 = 0 k X = 14 = I k X = 0.M kit 0 ft 0 ft ·1 _ 1 __ IIIIIIX I I I I I I I I I I I I I I I .I J mmx mmx IIIIIX mmx ,.· -:."!.:~ ' ;fiifi;»tit',.it~ ... ·,(:·tl\~~l,f{ PAGE: ___ _ PROJECT: __ _ SUBJECT: BY:_ DATE : ___ _ - l'(lf!IENTS. Dead Load Mo1ent = 144,0 ft-k S-REQUIRED = 124,90 inA3 Live Load Moment = 203,0 ft-k --------Max. Shear = 35 kips Total Moment = 347,0 ft-k AREA REQ'D = 1,74 jnA2 EFFECTIVE FLANGE WIDTH ----------------------Based on Length = 9.0,0 in Based on Spacing = 331,9 in > Effective Width = 90 in Based on Slab Depth= 94.5 in ROLU:D SECTION DATA --> DEPTH CLASS: 21 -------------------SELECTED STEEL SECTION ------:)) W21X44 ----------Section Properties: Transfor1ed Properties: I-steel = 843 inA4 I-tr : Effective = 2,500 inA4 S-steel = 82 inA3 S-tr : Top :: 520,3 inA-3 Section Area = 13.0 inA2 S-tr : Botto, = 132.7 ft Top Flange = 6.50 in s-tr : EH, f Bott.= 125.6. M Depth = 28.7 in ntStr: Eff, f Top = 4,270 • Wt per foot = 44.0 #/ft X-X Axis From Botto1= ·20.8.ir, V-hori z f 1ff ;,,: = 325,0 kips I-STRESS EVALUATION--------------------------------------------------} : SHORED & UNSHORED : Service Load Stresses: @ Botto1 of Bea.a· @ To(~f c,··' _r,f:,,-:.\_"-:.:,_. : UNSl«JREihST:BE MAX. s-tr,a~i:f (1,35-+.~f .. Actutl s;,,tr-Et. 33,333 psi = Allowable 11358 psi= Allowable Design S-tr = 126 Fb:Bottom of Beam = ~,562 psi : 44,500 psi =Allowable= .89 Fy l (Mdl/Ss +·MII/Str:Design) Fb:Top of·Concrete = 570 psi Hll 1/{Str:toptn)J 1,351 psi= Allowible = .45 f'cl Unshored DL Sress = 21,169 psi : 33,333 psi =Allowable= .66 Fy I Actual Shear Stress= 4,821 psi : 20,000 psi =Allowable= .40 Fy l :----------------------------------------------------------------------: ULTIMATE STRENGTH OF COllfOSITE SECTION Ultimate No1ent Capacity of Coaposite Section = Ultimat~ Moment I Max, Service Mo1ent = 704 ft-k 2.03 ~-~~~ -~~ .;:-,,,b ··-- (} 'Z. I I I I I I I I I I I I I I I .I I IIIIIIX mmx mmx. mmx inmx -:~-,,,,.. -_, ---~- PAGE:_,_ __ _ PROJECT: _______ _ SUBJECT:..,. ___________ _ ·------,----·--BY: ___ DATE :_· ___ _ S1£AR CONNECTION ·Partial Co•posite Action Being Used Max Shear Force: Vh Min •. ( .• 85 f'c Ac/2 or AsFy/2 ) = 325.t kips ---> NUMBER CF COtfECTORS USED = 21 PER 1/2 SP.AN --------------------V;h= Actual Shear For Studs Used= 241,5 kips ( l'lin. = ,25 * Vh) Actual¼ Co1pos.ite Action = 74.31 DEFLECTIONS. ---» I-tr:xx is Ba.std on " n.: Deflection " I-tr:xx of Co1posite.Section I-EU. : Is+ ~V'h/ Vh)A.5f(Itr-Is)l >LOCATION--> X Dist1nce fro1 Left Support= 15 ft Default= L/2 ~D LWGmED ---------------------------------------DEAD· LOAD· : 0.337. in: L / 1169 0.974 in: L / 369 LIVE LOAD · = 8.475 in: L / 758 0.475 in: L / 758 TOTAL LOAD= 0.812 in: L / 443 1.46i in : L / 248 Rf.ACT.IONS ---------LEFT RIGHT ------- DEAD LOAD = 14.56 kips. 14.56 .kips LIVE LOAD = 20.3',.., • 21.30 ·- 34.86 kips .· .. ··, -~- '• ~ ~~ :,t .... _ :.· . ~-~ " ?' *" ~.q..ir.-4" 1£1~ "•.,-. C ~-~ 1.--~ I I I .1 I I I I I I I I I I I I I -.. .i.<"' mmx 111111)( IIIIIX mmx .mmx mmx. PAGE: ______ _ PROJECT: _________ , ___ _ SUBJECT: ________ _ BY: ___ DATE : ____ ; __ __ -·----------· --- ·_):BEAM DESIGN • '>" .i;.-----..,-,.-r .._:,,. "< "::-. 1,;:-:: _ _,. ------------- DESCRIPTION: G3 GENERAL DATA > Beu Span = > Beu Spacins = > Beu· Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib· Opening Width= > Ribs: Parll. = 1 3t ft 26,33 ft 13.17 ft 5.5 in 3 in Perp. = I 1 > Shear. Stud Cap, =· _ · ·11.5 kips = 50,M ps.i > F-y F-b = · 33,333 psi > f'c = 3,M psi > Concrete Wt. = 144 pcf n: Strength = 9.29 n: Deflection= 9.28 > Bea Location i Center=1, Edge=e : f, > Use Partial Co1posite Ac.tion? Y=1, N=i : 1 CONSTRUCT!()! LOADS ( Applied BEFORE 75i..Curing) > Slab We-ight > Misc Dead Load = t psf D,L. x Trib Width = t.000 kif = I • Beu Weight = 0,062 " --------Add•· I Uni fora Load. = t n T.ota.:I Unit, D.L, = 0 psf #1 = 1 k X = 7.5 #'l. = 6.87 k X = 11 Toh I Un ifor11 D.L. = 0.862. k If #3 = 19.17 k X = 20 ft 14 = 0 k X = 0 ft LOADS (Iii C<»IPOSITE. SECTIC*. ( App I i ed AFTER 75X -Curi ns ) > Unit Live. Load #1 = t ps.t' L,L. x Trib. Width = 0.M kif > Unit Live Load· 12 = f:,. • Add' I Unifoni Load = 0 " . > f!" #1 #2. --------· ·- ·'··to.hi Unifor11 L.L. = 0.0H kif #3 = 36.67 k X = 20 ft 14 = 0 ~ X = 0 ft 1-~ -?4-~ I I I I I I I I .I- I I I .I .:1 I I .. -- mmx IIIIIX lilllx mmx IIIIIX I MX ~...,,, -.:_:_--:--_-:·~~-::;~i:~:;:::~ :·:-.-_--_--~ ~~::r;;~ ·-·:..·.:~~~":;':;~-··:>.·:~-:--::· ........ ~ ~l ... ~-~:~z- --·~· PAGE:-__ ...,...._ PROJECT: _________ _ SUBJECT: __________ _ BY: __ DATE· : ___ _ Dead Load_Mo1ent = 157.6 ft-k S-REQUIRED = 161.03-in"3 Live Load Moaent = 289.7 f.t-k --------Max. Shear = 46 kips Tohl Moaint = 447.3 ft-k AREA REQ'D = 2.28 in"2 EFFECTIVE FLANGE WIDTH ----------------------Based on Length-:i: 38.2 in Based on Spacins = 162.1 in > Effective Width = 38 in Based on SI ab Depth=· 41.2 in ROLLED SECTICW DATA --> DEPTH CLASS: in SELECTED STEEL SECTICW -~~--~>> N21X62 Section Properties: I-steel = S-steel Section Aria Top-Flange Dtpth. Wt per foot = = = = 1,338 in"4 127 in"3 18.3 in"Z 8.24 in 21.0 in _ 62.1 #/ft Transfor1ed Properties-: I-tr : Effective = 2,.589 i n"4 S-tr : Top = 364.8 in"3 S-tr : Bottoe = ·177.5 • S-tr : EH. f Bott.= 161-. 7 • ntStr : Eft •. t··Top. = 2,697 • X-X Ax i.s From B.ottom= 17 .8 in V-horiz f '10t X = 268.2 kips !-STRESS EVAlUATittr---t«lTE: Overstress Condition!! -------------: I 91-mD & UNSOOREI> : ---» DESIGN STRESSES EXCEED ALLOWABI..ES. Service Load Stresses: @ Botto• of Beu r f Top of Concrete ! IHHlRED SlRESS CIECK,,.:. MAX •. .; (1 •. =· 33.,214 psi = 1,-9-9-1 p.s i 33,333 psi = Allow1ble. 1,358 psi = Al-1-owable Design s~tr = 162' ,518 psi= Allowable= .89 Fy· I Fb:Top of Concrete= 1289.ps.i : 1,351 psi= Allowable=-.45 f'c: CMll/(Str:toptn)l Unshored DL Sress = 14,893 psi : 33,333 psi =Allowable= .66 Fy I Actual Shear Stress= 5,431 psi : 28,011 psi= Allowable= .48Fy : : -----· --------. -----------------------. -------------------------------: ULTIMATE STRENGTH OF COIPOSITE SECTION Ulti1ate Moment Ca.pa.city of Composite Section = Ultimate Mo1ent /Max.Service Moment = 504 ft-k 1.13 G3 I ·I I I I I I I :1 I .I _I I I I mmx mmx IINIIX mmx mmx PAGE: . ..,.... __ _ PROJECT: ____ , -----SUB;JECT: _________ _ BY: __ DATE .:_' __ _ ---· ----------- positt Action Being Used Max Shear Force: Vh : Min. ( .85 f'c Ac/2 or AsFy/2) = 268.2 kips ---> NlJIIBER OF C(HECT~ USEll. = 11-PER· 1/2 SPAN V'h= Actual Shear. For Studs Used= 126.5 kip~ (Min.= .25 * Vh > Actual¼ Composite Action = 47.17 DEFLECTIONS --->> I-tr:xx is Based on• n: Deflection• I-tr:xx of Composite Section I-EU. : Is+ CV'h/ Vh)A.5f:(Itr-Is)l >LOCATION--> X Distanu.froa Left Support= 15 ft Default= L/2 DEAD LOAD = LIVE LOAD = TOTAL LOAD= REACTIONS. ---------- DEAD LOAD LIVE LOAD SI-ml) -------------------1.332 in: L / 1186 0.685 in: L / 595 8.937 in: L / 384 LEFT = = 12.65 kips 22.51 • TOTAL LOAD= 35.15 kips UNSK:m) --------------------1.686 in: L / 594 t.W.S· in : L / 595 ------ 1.2u in :: L. / 297 RIGHT ---~--- 16.25. kips 29.·.34· • 45.59. kips . -..-.. -.•. I ·I I I I I .I I I I ·I I I I I I I J , PAGE: ___________ _ PROJECT :CARLSBAD . SUBJECT: FLOOR BEAMS BY:SGG DATE : 1/7 /f:7 ---------------------------·---------------mrnx llffll( C:OM1tiSI-TE STEEL BEAi'! DESIGN ------------------·------------- DESCRIPiIOII!: G5 GENERAL DATA > Bellf Span = > Beam Spacing = > Beam Trib Width = > Tot. S!ab Thick. = > Deck Rit Hei~ht = > Rib Spacir,g = > Rib Openinf Width= > Ribs: Par!!. = i 30 ft I 25 ft· 25 ft 5.5 in 3 in 6 i rr 6 in > F-y = F-b = > f'c = > Concrete Wt. = n : Strengtt1 = n : Defiection= > Beam Location : Center=l, Eoge=0 50,000 c,si / 33,333. psi 3,000 DSi 144 pcf 9.2·1 9.28 1 / ' Perp.. = 0 1 I > Use Partial Composite > Shear Stud Ca~,. -11.5 kips Action? Y=l., N=0 CONSTRl!CTIC!!'l LOADS ( Appiied BEFORE 75¾ Curing ) > Siab ~e1ght = 0 psf D.L. x Trib Width = > Misc Dead Load = 0 " Beam Weight = --------Add'I Uniform Load= Tota..! Unit D.L = 0 psf 1 0.~0 k!f 0,050 II 0 II Tota! Uniform D.L. = 0.050 kif #1 = 15.89 k X = 10 #3 = 0 k ){ = 0 ft #2 = 15.89 k X = 20 #4 = 0 k X = 0 ft LOADS ON CO!IIPOSITE SECTION < Applied AFTER 751. Curin~ l >-Unit Live Load #1 = 0 psf L.L. x Trib ~idth = > Unit Live Load #2 = 0 " Add'! Uhiform-Loid = Total Unit L.L. = > Pr.-int Loads :.:.· .c ·:;":"'". #1 = 21. 9 k ·:,ji~.- #2. = 21.9 I: -:x-= e ps.f .. Tota! Unifc.rm LL = #3 = #4 = 0 k 0 k X -- \/ -I\ - 0.000 kif' 0 H 0.000 k If 0 ft 0 ft I I I I I I I ·I I· .I I I I I I _I llllfl( PAGE: ___________ _ PROJECT:CARLSBAD SUBJECT: FLOOR BEAMS BY:SGG DATE : 1/7 /87 ------~------------------------mm" ,. mmx mmx mmx MOMENTS Dead Load Moment = Live Load Moment = Total Moment = EFFECTIVE FLANGE WIDTH Bas~d on Length = Based on Spacing = Based on Slab Depth= ROLLED SECTION DATA 164.5 tt-k 219.0 ft-k -------- 38'3.5 ft-k 90.0 in 300.0 in 94.5 in S-REOUIRED = 138.06 jnA3 Max. St1ear = 39 kips AREA REQ;D = 1.93 ioA2 > Effective Width = 90 in --> DEPTH CLASS: in SELECTED STEEL SECTION ------>> W21X50 Section Properties : I-stee1 = S-steel Section Area Top Flange Depth Wt per fo<•t = = = = = Transformed Properties 984 inA4 I-tr : Effective = 2i670 inA4 95 inA3 S-tr : fop = 556.7 inA3 14. 7 i r.A2 S-tr : Bc,ttom = 150.3 • S-t1· : EH. @ Bott.= 138.6 " n*Str : Eff. @ iop = 4,274 •· 50.0 #/ft X-X Axis From Bottom= 20.7 in 6.53 in 20.8 in V-horiz@ 1"0!11 i. = 367.5 kips ;-STRESS EVALUATION------------------~-------------------------------: : SHOP.ED & UNSHORED : S!ryice Load Stresses: @ Bottom <•f Beam @ Tor, of Concrete I UNSHORED STRESS CIECK: MAX. S-transforud 1 = 33,204 psi = 1,077 psi 33 1333 ?Si = Allowable 1,350 psi.= Allowable (1.35 +.35 * IH:tikHiS=-s = l:72 inA3 Design S-tr = 139 Actual S-tr EHjffeJ.n· = 139 i nA3 "::i!!:-- .Fb:Bottom of B'e~:· = 39,852 psi : 44,!;<00 psi = Ai lowatde = .89 Fy ·(Jlldl/Ss + 11111/Str:Design> Fb:Top of Concrete= 615 psi [Mll/(Str:top*n)J 1, 350 psi = A.! I owab I e = • 45 f ' c I Unshored· DL Sress = 20,89'2 ~si : 33133'3 psi = Al !(lwab!e = .66 Fy Actual Shear StresE= 4,869 psi : 20,000 psi =Allowable= .40 Fy : :----------------------------------------------------------------------: UL TI MATE STRENGTH OF COMPOSITE SECTION Ultimate Merment Capacity c,f ·composite ·section = Ultimate ~oment /Max.Service Moment = 779 ft-k 2.03 PAGE: ___ _ .I--, . . -., PROJEC:T:CARLSBAD SUBJECT: FLOOR BEAMS ... ~ •• -1< .--~ ' ,, _ __,, -·-~:;:.- _~ r ~ ·~ -------------BY:SGG DATE : 117 /87 I -. ;:~iii~::. ____ __,,_,,..._ --------~·--------:- fflffl}! mmx I I I mmi: I I I I~ .. I mrm: I I mmx I I I I. I I SHEA~ CONNE.C.T:;;c:,~}. Pa.rti.a.l Composite Action Being Used Ma.x Shear Force : Vt1 : Min. ( .85 f'c Ac/2 c,r AsFy/2 i = 367.5 kips ---> NUMBER OF CONNECTORS USED = .W PER 1/2 SPAN V'h= Actual Shear For Studs Used = 230.f; kips ( Mi·n. = .25 * Vh ) Actual ¾ Composite Actic,n = f.Z.59 DEFLECTIONS --->> I-tr:xx is Based on II n: Deflection 11 I-tr:xx of Composite Section I-Eff. : Is+ CV'h/ Vh)A,5t(Itr-Is)J = 3,t114 in"4 >LOCATION--> X Distance from Left Support= 15 ft Default= L/2 SHORED --------------------DEAD LOAD = 0.3,e.3 LIVE LOAD = 0.483 TOTAL LOAD= 0.845 REACTIONS DEAD LOAD = LIVE LOAD = TOTAL LOAD= in . L / 993 . in : L / 745 in . L / 426 . LEFT 16.64 ·kips 21.90 u 38.54 kips UNSliORED -------------------- ~.954 0.4B3 1.437 in : L / 377 in . L / 745 . in . L / 251 . RIGHT 16.64 kips 21.90 " 38.54 kips I~~. -·f I I I I I I ..__. lffllX ·_. ~·:=--~ -.: :· _i_:· ~:"i:;Jf;.~~:I ~::iJ~r~·'::;t _;~~~:fJ, f\~'%~.;~J~• PAGE~-- :~: "'·. PROJECT: ______ _ ... '·1: SUBJECT: ____________ _ BY: /If DATE : '2--8 ~- :...------------ DESIGN ·-· , ------------------~------------- DESCRIPTI!l4 : GEl'ERAL DATA > Beam Span = > Bn11 .Sp1ci.n9, .. -. > Beu Trib Width = > Tot .. Shb. Thick. > Deck Rib HfJ9ht = > Rib Spacins; = > Rib Opening Wi.dth= > Ribs: ParH. =--1 · Ptrp.. = t-;\.,,:.;, __ > Shear Stud,Cap. 15 ft/ 21.33 ft • ft 5.5 in 3 i·n 6 in 6 in 1 / 11.5 kips > F-y : F-b = > f'c = > Concrete Wt. = n: Strength = n: Deflection= > Beu-Location : Center=!, Edge=f · '36 IIJJIJ. • ,/ ,,.,_ ps.1 24,fff psi 3,M: psi 144 pJ;.f 9.29 9.28 1 .,, > Us! Parti1-I Co11p.osi.tt Act ion? Y=l, N=f 1 ,. ~ . ...,. ... . ·:.:.: . ~.i ~ ;-.. I CONSTRUCTION LOADS ( Applitd BEFORE 75¾ Curing) I } I I I I I I I ~I I IIIIX IIIIX IARIX mmx mmx > Slab Weis.ht· > Misc Dud:toa;d = I psf D.L. x Trib Width = t.M kif· = t • Beaa Weight = 0.022 " --------Add I I Uni fora Load ; t • Total Uni.t D.L., =-8 pst ------ To.hi Unifora D.L. = 0;122 kif #1 = 10 k X = 5 #3 = I k X = 0 ft #2 = 0 k · X = iJ· 14 = 0 k X = 0 ft LOADS ON. mflOSITE SECTION C Applied AFTER 75% Curing.. .l > Unit Live Load. #1 = > Unit Live Load #Z = f ps.t L.L. X Trib Nidth' = 8 ·t Add'l Unifor•-Load :, -----~-:-:;-~4;•~ ,•,. -~ ... ~.,. · ,t.hl Un ifora L.L. = > Poj' #1 =·: #2:; 13. = "'14= f k X = 'k X' = iJ.Hf kit e II 0,SNkH 0 ft t ft I 1-- 1 IIIIX mmx I mmx I I I I IIIIIX I I I rnmx I I I I I I I mmx I IIIIIX Dead toad Moment Live Load Moment = 33.1 ft-k 58.5 ft-k Total Mo1ent = 91-.6 ft-k EFFECTIVE FLANGE WIDTH Based on Length = Based on Spacing = Based on $lab Depth= ROLLED SECTION DATA 45.0 in 256.0 in 93.0 in PROJECT: ~ SUBJECT: PAGE: -------------BY:..,£1.L DATE : _; -A -8$ ~-----·------ 5-REWIRED Mu. Shear AREA REQ 1D > Effective Width --> DEPTH CLASS: = 45.781 in-'3 = 19 kips = 1.31 in"2 = 45 in in SELECTED .STEEL SECTION -~-~-->> W14X22 Section Properties: Tr1nsfor1ed Properties: I-steel = 199 in"4 I·tr : Effective = 622 in"4 ·s-steel = 29 in"3 S-tr : Top =-161.7 i n"3 Sectfon Area Top Flange Depth Wt per root = = = = 6,5 in"2 5,00 in 13,7 in 22.0 #Ht 5-tr : Bottoa = 51,3 • S-tr : EH,@ Bott.= ·46.1 11 n*Str: EH. f Top = 1,216 • X-X Axis From Bottom= 14,6 in V·horiz f 188 ¾ -116,8 kips l-STRESS EVALUATION--------------------------------------------------! SHORED & UNSHORED : Service Loid Stresses : @ Bottom of Be111 @ Top of Concrete = 23,818 psi = 9t3 psi 24,Hf-pti = Allowable 11351-psi = Allowable Des-ign 5-tr = 46 I I I· I ,~ ,_M psi = A·l lowable = .89 Fy l Fb:Top of Concrete= 577 psi CM!l/(Str:top*n~J 1,351 psi= Allowable.= .45 f'cl Unshored. DL Sress = 13,681 psi : 24,000 psi = Allowable = .66 Fy I Actual Shear Stress= 5,959 psi : 14,400 psi= Allowable= .40 Fy l :----------------------------------------------------------------------, ULTIMATE STRENGTH OF COMPOSITE SECTION Ultimate Moment Capac'ity of Co111posite Section = Ultimate Moment/ Max. Service Moment = 201 ft-k 2.20 ':,_ .~·_;;'fJt:--~~?ffl· G1 ·,:..,,. ..... ,,,.. :_.;&i, ~' . 'I llli'll{ 1---- I mmx I mmx I 1· mmx I I :I I I mmx I I· mmx I I I I I ~I _ .... --::.. ~.: ... o:.-:":.:· -~_..,.: ... ·-:_._·_ ~~ ~-__ • .. ~::-___ -. --, ·.-. ---·-: __ .-·_-.: .. ,._·.' :·_ ··".= -----·-· --:-' .. -~ ---:~·"----::~_ ~ ::-.«: _-~ PAGE: ____ _ -'/;~JikfJi~; :::g;=---------- BY:&.i._ DATE :_~ -&-& i.--t-~·. ·;·:,i~l:(•posite Action Being Used Max Shear Force: Vh : Min. ( .85 f'c Ac/2 or AsFy/2) = 116.8 kips ---> NUMBER OF CONNECTORS USED = 6 PER 1/2 SPAN --------------------V'h= Actual Shear For Studs Used= 69.0 kips ( Min, = .25 t Vh 1 Ac~ua.l i. Composite Action = 59,07 DEFLECTIONS --->> I-tr:xx is Based on" n: Deflection• I-tr:xx of Composite Section I-EH, : ls+ CV'h/ Vh)A,5f(itr-Is)J >LOCATION--> X Dista.nct· fro1 Left Supportc= 7.5 ft -Dtfault = L/2 SHORED --------------------· DEAD LOAD = 0,059 in: L / 3038 LIVE LOAD = 0,1&4 in: L / 1729 TOTAL LOAD= 0.1'63. in : L / 1102 REACTIONS LEFT DEAD LOAD = LIVE LOAD = 6.83 kips .12.01 " TOTAL LOAD= 18.83 kips -~ UNSHORED --------------------0,184 in: L / 980 0.104 in : L / 1729 0.288 in: L f 625 RIGHT 3.50 -kips 6.88 ...• , 9.50 kips ...... ,, -, ,1 ~·· .... .. 1, I ·-- . -- I~~-: .~x I 1·:·_ .. I·-· - I: ... - I I-· .. - I . fflll!X PAGE: ___ _ PROJECT: ________ _ SUBJECT: _______ _ BY: DATE: ___ _ -COMPOSITE STEEL BEAM .DESIGN DESCRIPTION: GS GENERAL DATA _ > Beam Span = > Beam Spacing = _ .. > Beam Trib Width = >Tot.Slab Thick. = > Deck Rib Height.= > Rib Spaci~g . = >Rib. Opening ,Width= > Ribs: Par! I. = 1 : _ Perp. =. f _ : > Shear Stud Cap. = 25_ ft 24.33 ft _ 12. 16_ ft 5.5 in 3 in 6 in _ 6_ in -L 11.5 kips > F-y = 50,000 psi . F-b = _ 33,333 psi _ > f'c = 3,M·psi > Concreh.: Wt,_ = . 144 pcf .. n: Strength = 9,29 _ n : Deflection= .. _ 9.,28_ > Bei.111 Location; __ Center=l, Edge=0_ : _ _ 0 _ ) Use Partial Compos.it'-,. . _ Action? Y=1, N=0 0 CONSTRUCTION LOADS < Applied BEFORE 75¾ Curing) ----·------------- > S.!ab Weight = 0 psf > Misc Dead Load = 0 • _ Total Unit D.L. = _ 0 psf #1 = #2 = 11 k X = 32 k X = -5 15 D.L. x Trib Width = .. 0,000 kif .. Bea111 Wei 9.ht. .,.. = _ 0 .JOO __ " . _ Add' I Unif-or111 Load = 0 ." Total Uniform D.L. = 0,100 kif _#:3 = #4 .= _ 0 k __ X = __ -0_ ft _ 0 k X = 0 ft_ 1· mmx __ LOADS ON COMPOSITE. SECTION . ( App'[ied. AFTER 75¼. Cur.ing L _ . __ ___ RHIIK. I I----·--~·~ I -_rnmx I I I -----------·-------------- . > Unit _Live...Load....#1 = _ > Unit Liv~ Loa~#2_ 7,. , .. ,,.., •• .-t:.,_ •• h ':._., ·~~;-;.! Tobi: ·Un:i't<t.; ., ~ . -.~ • .l. ~ ·"',:,::~ .. - > Poi ifi'fi/ · ... #12: -:t•h){.._ -#2 = ·: 5t5'~k-;:;._,.' ~_j psf L.L, x Trib Width .= 0,000 kif • ., __ Add' l Unifor111 Load = _ 0._ • ... ·,0 Total Unifor111 L.L~ = _ 0,0ft kit' .. #3 = -#4 = 0 k X = 0 ft . _ t k _ X = . -· 0~ ft YJ Iv"-lOO Gr,.k SlJ U-nsho~d . -·. ~ mmx _ ,. I~-- • ·-:"~')II--' --.. -·. PAGE; ___ _ ----L .. -· -· PROJECT: ________ _ 1--___ - I ·-_!llfflX --.JIIIJIX Dead Load Moment = 221.5 ft-k Live Load Moment = _ 337.8 ft-k SUBJECT: BY·: __ DATE : ___ _ S-REQUIRED = 201.34 in"3 Max. She~r = 56 kips l- 1· ___ Total Moaent _ = _ 559.3 ... ft-k .. AREA REQ'D _ ·--_ 2..,82 in"2 . , I ·----. ' ... I-~fflffll:.. I -.. --- EFFECTIVE FLANGE WIDTH _ Based on Length = 35.4 in __ Based on. Spacing. . = 151.2. in Based on Slab Depth= 43.4 in __ ROLLED SECTION DATA _, --------.------- >. Effective Width _ = _ -->.. DEPTH CLASS : . SELECTED·_ STEEL_ SECTION .. ~-~ ------>> W16X10t -~35. i·n .... __ in __ __ Section Properties· : Transformed Properties: I-steel = 1,490 in"4 .. I-tr_ : Effective_ =-3,B88 in"4 .. = 175 in"3 S-tr : Top = 331.8 Jn"3 . -I ; · .. -·· S-steel _ _ . _ . Sect-ion Arn _ Top• Flange = _ 29.4 in"2 _ S-tr. : Botto• . __ = ... 234.6. • = I . --· . _ .. Depth Wt per foot 11.43 in S-tr : Eff'; @ Botl.= 234.6 _u . .. 17 ,0. in ... nfStr : EH~ @ Top_ =:... 3,B82.. " 10t.f #/ft X-X Ax-i-s From Botto11= 13.2 in .. = = _ V-horit (!_1ff ¾ ___ = 248 •. 4 kips._ I-STRESS. EVALUATION ---t«lTE : Overstress. Cond-itfon ! ! -------------1 I . -~ ·-. . . . ---...,. . --·-1 ... -~l(-I. I SHORED & UNSHORED. : ---» DESIGN STRESSES EXCEED-ALLOWABLES. _ : . I.. Service Load Stresses ·: .. . _ .. _ .. __ _ -__ __ _ .. __ I ... I . @ Bottom of Beu = 28,618 ps-i : 33,333 psi = Allowable -. -I . " ' ,,. ... .. I .. . I I ..... J • . " - __ @ Top of Concrete _ ~ 2,118_ psi : _ 1,.351. psJ ~ Allowable.... I ... Fb:Top of Concrete= [Mll/(Str:toptn)J . in"3 _ Design.. s-tr = ... 235 in"3 I I • I J -· ·- ' I I -I - 44,SH· psi-= Al l_owab.le = .89 Fy J I ---1 ___ -- 1315 psi_: .. 1,351 psi ~ Allowabl.t =_.45 f'cl . I I • I -~ -* • .... -I ·- Unshored DL Sr~s = 15,189 psi : 33,333 psi = Allowable = .66 Fy : ._ Actua.l Shear Stress=~ 5,684 psi. :. 20,i!N psi =: Al lowa.ble = ...• 40. Fy I __ l- 1· 1-------------------------------------------------·--------------------: lllftlX fflllX ULTIMATE STRENGTH. OF COMPOSITE. SECTION -------------------------------------- Ultimate Moment Capa.c i ty of Co11pos i h Section __ = Ultimate Moment/ Max. Service Moment = (280ltt-k -0.50 G~ -WI <.o.>< IOO G-r-~GO ~ ~~ l c:i~? .. _-(l~i:'::,~t~:;:f~!~?f~;:t:l'-;tf{l>if5?: •. -jllftX · .. _' - ,., ,~_-'_.. - PAGE: ___ _ PROJECT: ______________ _ . ,,. : .. _ _., ..,. ... _ .....,_ .. SUBJECT: ________ _ ....:._ .... I -~ ~ - I JMIX ---JlllllX I ... I··_·_:-~ 1--~ -~x av: __ DATE : _____ _ SHEAR CONECTION Max Shear Force: Vh . .. Min, ( .85 f'c Ac/2 or. AsFy/2 ) = 248.4 kips __ ---> NUMBER Of CONNECTORS USED = 22 .PER 1/2 SPAN --------------------V'h= Actual Shear·For Studs Used= 248.4 kips (Min.= .25 * Vh) _ Actua L ¼ Co1posHt. Action.. .. _ = 100.,00 . . __ .. _ _ . DEFLECTIONS· ---» I-tr:xx is Based on ." n : Deflection " ---------·- I ._ _ I-tr:xx.of Comp0-site Section • _ .. .. _ _ !,-EU ... _ . _ _ . . Is t CV' h/ Vh)"'.6f.Htr-IsJ J = 2,838· i n"'4 . = 2,838 i.n"'4 I·· .. I I-.. -.. · - ..• Jllffl.X I. -·. -· . .. ---- 1 · ··--_· I I I I I I JIIIIIX > LOCATION.--> X Distance fro• Left Support = _ 12.5.. ft__ Dehult = L/2 .. SHORED UNSHORED· ----------------------------------------DEAD LOAD = 0.260 in : L / 1154 0.495 in .: -L / 606 Li-VE LOAD.. = _ 0.388 in : L / . 773_ 0.388_ in ; L / .. 773 .. . . TOTAL LOAD =_ 0.648 in : L / 463~ 0.883_ in :. 1.../. 340 ..... REACT-IONS ---------LEFT RIGHT ___ ""! __ _ DEAD LOAD = 22.85 kips 22.65-_kips- LIVE LOAD. = .. 32 .• 12 . • _ -· 33,78 _ ~ . __ TOTAL LOAD. = ____ 54. m_ kips _ __ _ 56:.-43c. k_i ps . .. Gg Wl<o)( 1e,o G(O..k, 50 LLM.sho~ -&~c..fuA- ,o' z. -z-{~ ~4--x .a,.q -0 -< O .34-- -~-· -" .. ,~'\. ~.: ,.-, I lll!IIX I-'.·~ .. -'· -. - I-~ 1-!IIIIIX I- I· 1- 1· I I I. 1-mmx I IIIIIX mmx I· I~--~-~ I lmlX I I .I PAGE: ___ _ ·; P-ROJECT: ----------SUBJECT: ________ _ BY: ___ DATE : ___ _ COMPOSITE STEEL BEAM. DESIGN DESCRIPTION: S61 GENERAL DATA > Beam Span = > Beam Spacing = > Beam Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Width=_ > Ribs: Parll. = 1 Perp. = i : _ > Shear Stud Cap. = 30 ft 24.33 ft 12.1-7 ft 5.5 in. 3 in 6 in 6 in 1 11.5 kips > F-y = 36,101 psi . F-b = _ 24,M psi. ) t'' C = 3,000 psi > Concrete. Wt. = . 144 pcf n : Strens.th = 9.29 . n ~ Deflection= 9,28 . > Be~,Location: _ Centtr=t,. Edge=0_ :. 0 . >· Ust Partial Co1posite Action? Y=1, N:i 1 CONSTRUCTION LOADS ( Applied BEFOOE 75i. Curing) > Slab Weight > Misc Dead Load 0 psf i • -------- Tota!. Unit D.L. =· __ 0 ps.f #1 = 6.35 k X = _ 11.-. #2 = 6.35 k X = ZJ D,L, x Tri~ Width· = 0,0H kif Belt We·ight = .. , 0.045 11 Add~I Unifor• Load= 0 u Tohl Uniform-D,L. = 0,045 kif __ #3-= _ 0 k _ X = _ 0 f't ~ = 0 k X = 0 ft LOADS ON COJl!POSITE SECTlllf ( Appl-i td_ AFTER 75i. Cur.i.ng ) > Unit Live Loa4.#1 = ·:-f ps_f L.L. x Tr·ib Nidth = . 0.006. kl·f > Unit Live .. Lo.a c~_ij 't Un if or• Load = .. 0 .19 H· ,ohLUniJor1 LL=--0.190 kif + 13-= I k X = 0 t't _lk •. X= __ 0_ft ·1 lllfflX 1.-7 • I~ - I mmx rnmx I I I I I I I I I I I. I I I I IAIIX mmx mmx fflftl)( MOMENTS Dead Load Moment = Live Load Moment = Total Moment = EFFECTIVE FLANGE WIDTH Based on Length = Based on Spacing = Based on Slab Depth= ROLLED SECTION DATA 68.6 ft-k 132.4 ft-k 201.9 tt-k 37.0 in 149.5 in 40.0 in PAGE: ----PROJECT: ---------SUBJECT: __________ _ BY: _____ DATE: ___ _ S-REQUIRED Max. Shea.r AREA REQ'D >. Effective Width --}: DEPTH CLASS: = 21 kips : 1_.46 inA2 = _37_ iri in SELECTED· STEa SECTION .. ------>> W16X45 Section Properties: I-steel = S-steel = Section Area. Top Flange Depth Wt per foot = = = = Transformed Properties:. 586 inA4 1-tr. : Effective = 1,589 inA4 73 inA3 S-tr : Top = 2~5.6 inA3 13.3 inA2. S-tr : Botto• = 108.8 • 7.04 in S-tr : Eff.@ Bott.= 108.1 " 16,1 in n*Str: Eff,.@ To~ = 2,158 • 45.0 #/ft X-X Axis From· Bottom=· 14,8 in V-horiz@ 1H ¾ = 239.4 kips l-STRESS EVALUATION --------------------------------------------------1 l SHORED & UNSI-ORED : I Service Load Stresses: @ Bottom of Beu @ Top of Concret~ = 22,313 ps.i =-··1,111. psi 24,000 ps.i = Al lowabl.e 1,350 psi ~-Al Iowa.bl e .. I ~~ ~_.,.:".,._•:;,"'1-,,-_ ,.,--~~ : UNSHORB): . . • MAX. S-:ff' ( 1.35~~ · Design. S-tr = 108 Actual .. s;;'. -~ ·,·nA3 I ;"'!(o/ ;l -~-,,; •"1.t-.. ·' ..... ; ,. • .-. .::;.. . . -l Fb:B<itfb11~~f-'B~air-= 2i;f1-r··ps-i ~ ':: ·32,040 psi = Allowable = .89· Fy I (Mdl/Ss + MII/Str:Design) Fb:Top of Concrete= 736 psi. 11350 psi :: Al Iowa.bl e = ..• 45 f' cl [Mll/(Str:topfn)J Unshored DL Sress = 11,31.7 psi : 24,0£10 psi = Al Iowa.bl~= .66 Fy I Actual Shear Stress= 31769 psi : 141400 psi= Allowable =_.40 Fy l :----------------------------------------------------------------------: ULTIMATE STRENGTH OF COMPOSITE SECTION -~ ---.--------------------------------Ulti111ate Mo11ent Ca.pacity of Co1posite Section = Ultimate Moment/ Max. Service Moment = 339 ft-k . 1.69 --~~ ... ' ,.;1.,.;.:. ~ .... "':! '';-.. -.. ";'~--.•:-·1 -JIIRIX '-~ ,~ 1--rnmx . .rnmx I I I .. rnmx I I I 1 · .. I-_ rnmx - .I ·I rnmx I I I I ~I SHEAR CONNECTION Partial Composite Action.Being Used Max Shear Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2) = 239.4 kips ---> NUMBER OF CONNECTORS USED = 20 PER 1/2 SPAN V'h= Actual Shear For Studs Used= 230.0 kips <Min.= .25 f Vh) Actual i. Composite Action = 96.07 DEFLECTIONS ---» I-tr:xx is Based on n n : Deflection 11 I-tr:xx or Composite Section I-EH. : Is+ CV'h/ Vh)A.5f(Itr-ls)l = 1,526 in"4 • 1,5f7 inA4 > LOCATION --> X Dis~ance from Left Support = _ 15 ft Default = L/2 SHORED UNSHORED DEAD LOAD. = 0.259 in: L / 1388 0.667 in: -L / 540 LIVE LOAD = 0.580 in: L / 720. 0.501 in : L / 728 TOTAL LOAD= 0.759 in: L / 474 1.167 in: .L / 309 REACTIONS DEAD LOAD - LIVE LOAD = TOTAL LOAD= LEFT 7.02 bps 13,95 H RIGHT 7.02 kips 13.95.~ ~ 29.97_ kips· -~,:/!l~"-.·· ',· ~ <. -:. .... '".:t N ~ ~ 1,o Li· 4(5 x. L ctb -!_] -==-\9 , I 0 48 1-.. -.. If.-. I..,, IIIIX I I ·:'"" :;_~\-.. :! ~:; -· • ' ~"".i : • PAGE: ___ _ PROJECT~------SUBJECT: ______ _ BY:_AJ,.:._ DATE : 'Z.: -'l-48 ------------·1 I I I I I I I I I I I I I nnx IIIIIIX fflllX mmx mmx • ·mmx DESCRIPTION :-561 GENERAL DATA . ------------ > Btu Spin > BHI, SplC i ng > Be11 Trib Width > Tot-.. Slab Thick. > Deck Rib Height > Rib Spacing COMPOSITE STEEL BEAM DESIGtf -----·-------------------------- = 3' ft -· 24.33 ft cF ,24.33-ft ' 5.5 in = 3 in = 6 in I > F-y = F.-b-= > f 1c - > Contrete Wt. = n: Strength = n: Deflection= > Be11 Location: 36,018, ps-i / 24,M psi 3,080 pst 1# pcf 9.29 9.28 > Rib-Opening Width= 6 in Center=1, Edge=t 0 / > Ribs: P1rll, = 1 Perp. = ' 1 I > Use P1rti1.I Co11posi.te· > Shur· Stud Cap •. = 11.5 k.ips Action? Y=t.,-. N=f-1 / CONSTRUCTilJI-LOADS. _ ( Applied BEFORE 75"~ Curing) > 511.b Weight = 0 psf D.L. x Trib Width -0.066 kif > Misc Dead Load = 8 • Beu Weight = 0.055 " --------Add'I Unifora Load= 8 " Total Unit D.L. = I psf #1 = #2 = LO > Unit Total Unit L.L. = > Point Loads: #1 = 11.1 k X = #2 = 11.1 k X = Total Unifor11-D~L •. = 0.155 k:lf #3 = I k' X = 0 ft #4-= Bk x=-en Jed AFTER75X Curing> ·._ L.L. x Trib "idth = I.HI kif dd'I Unifor1 Lo1d = t.19 " f psf Tohl Unifor1 L.L. = 0.190 Hf 11J ft 20 ft #3 = #4 = f k X = I k X = ,. ft 0 ft I I I ax I I IIIIIIX I IIIIIIX I I I IIIIIX I I I I mmx I I I I I I IIIIIX PAGE: ___ _ PROJECT: ______ _ SUBJECT: _______ _ IOIENTS Dead Load Moment = 74.9 ft-k S-REQUIRED = 103.63 inA3 Live Load M011ent = 132.4 ft-k --------Max. Shear = 22 kips Tohl Mount = EFFECTIVE FLANGE WIDTH Based on Length = Based on Spacing = Based on Slab Depth= ROLLED SECTICN DATA 207.3 ft-k 37.f in 149.5 in 41.i in AREA REQ'D = 1.5f inA2 > Effective Width = 37 in --> DEPTH CLASS : in SELECTED STEEL SECTION ------>> W24X55 Section Properties: I-steel = S-steel Section Area Top Flange Depth Wt per foot = = = = = Trlllsfored Properties: I-tr : Effective = 3,347 inA4 S-tr : Top = 377.8 inA3 S-tr : Bottom = 167.5 • 1,35f inA4 114 inA3 16.2 inAZ 7.01 in S-tr : Eff. f Bott.= 166.8 • 23.6 in nfStr: Eff. f Top = 3,478 • 55.0 #/ft X-X Axis Froa Bottom= 20.1 in V-horiz f 1ft X = 259.5 kips :-STRESS EVALUATI(lf _________ ;;;. _____________________________________ --: IIIAX. S-transfor1ed: (1.35 +.35 * MII/Mdl)tS-s = Actual S-tr Effective = 24,Nf psi = Allowable 1,358 psi= Allowable 224 inA3 Design S-tr = 167 inA3 167 Fb:Bottom of Be111 = 17,417 psi : 32,04e psi =Allowable= .89 Fy: (Mdl/Ss + Ml 1/Str:Designl Fb:Top of Concrete= 457 psi 1,350 psi= Allowable= .45 f'c: [11111/(Str:toptn)J Unshored DL Sress = 7,883 psi : 24,000 psi =Allowable= .66 Fy: Actual Shear Stress= 2,325 psi : 14,401 psi= Allowable= .40 Fy: :----------------------------------------------------------------------: ULTIMATE STRENGTH OF CCMPOSITE SECTION MX' I-~ . -.. I mmx. I ·1 mmx I mmx I I IIIIIIX I I ·I I I mmx I I mmx I I I I ·; :::,,:'.::1,f,:.;;t,;~ PROJECT:_ SllBJECT:_ PAGE: sv·:JJ.L DATE·:_t-w;_JI. SHEAR CONNECTION Partial Co1posite Action Being Used Max Shear Force: Vh : Min. ( .85 f'c Ac/2 or AsFy/2) = 259.5 kips ---> MJMBER OF CONNECTORS USED .,. . 22 PER 1/2 SPAN V'h= Actua:I Shear For Studs Uud = 253.f k.ips (· Min. = .25 t Vh ) Ac.tual i. Coaposite Action = 97.51 ¥, DEFLECTIONS ---» I-tnxx is Based on• n: Deflection·• I-tr:xx of Composite Section I-EH. : is.+ CV'h/ Vh)A.5*(ltr-ls)J >LOCATION--> X Distance rro1 Left Support= 15 ft De.h.u It = L/2 SHORED --------------------DEAD LOAD = 0,138 in: L / 261.6 LIVE LOAD = 0.243 in: L / 1483 TOTAL LOAD= 0.381 in: L / 946 REACTIONS lNilmD --------------------0.316 in.: L / U39 I.Z-43 in: L / 1483 f;e59· in :· L / 6-44 RI~ 7.-7i· k<ips 13.95 • 21.65 kips I •x 1-- .I I I I I I I I I I I I I I I I I mmx IIIIIIX IIIIIX mmx mmx mmx PAGE: ___ _ ~-.·<1A::';.-: PROJECT: ___________ _ ~f~ Sll3JECT: _________ _ BY; ___ DATE : ___ _ -------·----------------.------ DESCRIPTION: 562 GENERAL DATA ------------> F-y = 50,SH psi > Beam Span = 31 ft F-b = 33,333 psi > Bea Spac i_ng = 19.33 rt > f'c = 3,SH psi > Bea Trib Width = f ft > Concrete Wt. = 144 pcf >Tot.SI.ab Thick. = 5.5 in n: Strength = 9.29· > Deck Rib Hei9ht = 3 in n: Deflection= 9.28 > Rib Spacing_ = 6 in > Beu Location: - > ·Rib Openins Width= 6 in Center=1, Ed9e=8 . e . > Ribst Parll. = 1 Perp. = I :. ~ 1 > Ust Partial Co111posite > Shear ·Stud Cap. = 11.5 kips Action? Y=1, N=0 1 CONSTRUCTION LOADS < Applied BEFORE 75X Curing) ------------------> Slab Weight = e psf > Misc Dead Load = 0 • -------- Tota.+ Unit D.L. = e psf #1 = 5.22 k X = #2 = 5.22 k X = 10 20 D.L. x Trib Width = 0.fft. kif Beam Weight = t.044 u Add' I Uniform Load = 0 " Total Unifor111 D.L. = 0.044 kif #3 = #4 = 8 k X = 0 k X = 0-ft f ft LOADS ON CO!f>OSITE SECTION ( Applied AFTER 75X Curing> > Unit Live Load #1 = > Unit Live Load #2 = Total· e pst L.L. x. Trib Width = e.SH kit t JI Add'I Unifor1 Load= t.19' • ------- ohl Unifor1 L.L. = 0.t.91 kl-f f k X = t k X = e ft 8ft -_-.,. .... , I I I I I I I .I I 1· I I I I I I nnx mmx lllilx mmx 11mx IWX Dead load Moment = 57.2 ft-k Live Load Moment = 111.4 ft-k Total Moaent = 168.5 ft-k EFFECTIVE FLANGE WIDTH -------· -------------- Based on Length = 36.5 in ------------BY:_ DATE : ___ _ S-REQUIRED Max. Shear AREA REQ'D : 68 .. 669 inA3 = 18 kips : 0,89 inA2 Based on Spacing = 119.2 in > Effective Width = 37 in Based on Slab Depth= 39.5 in ROLLED SECTION DATA --> IEPTH CLASS: 21 SELECTED .srea SECTICN ------>> lil21X44 Section Properties :. I-steel = S-steel Sect.ion Area Top Flange Depth Wt per foot = = = = = 843 inA4 82 inA3 13.f jnA2 6.51 in 21.7 in 44.0 I/ft Transfor1ed Properties: I-tr : Etfective = 1,708 inA4 S-tr : Top = 298.4 inA3 S-tr : Botto• = 123.6 •· s-tr : Eff. t·Bott.= 116.8 " n*Str: Eft. f Top = 1,965 • X-X Axis Fro• Bo.tto1= 18.5 in V-horiz f 1H ¾ = 256.t kips : -STRESS EVALUATION --.------------------------------------------------1 : SHORED & UNSl-«lRED : Service Load Stresses: @ Bottom of Beu @ Top of Concrete ~SH(JlED S~SS, MAX. S_~ ( 1.35., = 18,93? psi = 1,829 psi 33,333 ps,i = Allowable 1,351 psi = Al'lowab.le A3 Design S-tr = 107 A3 . ,5H psi =Allowable= .89 Fy l ,.'t:.. Fb:Top of Concrete = 688 ps.i. 1,359 psi = AI.IQwable = .45 f'cl (1'111/(Str:toptn)J Unshored DL Sress ·= 8,414 psi : 337333 psi= Allowable= .66 Fy: Actual Shear Stress= 2,452 psi : 20,08 psi= Allowable= .40 Fy l 1----------------------------------------------------------------------: ULTIMATE STRENGTH OF COMPOSITE SECTION Ulti1ate Moment Capacity of C011posite Section = Ultimate Moment/ Max. Service Moment = 479 rt-k 2.84 . ·::--... SG'2... .,_ . ·, 1~{tf r·,-,.~,:~;;1;0 "':R f°~;;,· c;;,c::; .. '... .,, -; -,/:'=-:_, <: \f ;,;·-.< -·~ --~, , , -,z-~ •. '#fli, cJ S~2. . .i,i ~. ( :~ -~, ~~/ I MX I IIU I I IIIIIIX I I I 1-\ . I 11111,r I I mmx I .1 I I .. I I PAGE: ___ _ BY: __ DATE : ___ _ ---------------- Max Shear Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2 ) = 256.1 kips ---> rDIBER OF CCHECT~ USED = 8 PER 1/2 SPAN. V'h= Actual She.ar For Studs Used = 92.0 kips ( Min. = .25 1 Vh ) Actual¾ C011posite Action-= 35.94 DEFLECTICXE----» I-tr:xx. is Bued-on • n : Deflection • ---·-------l-tr:xx of' Composite Sec ti on. L-EH. :, Is+ [V'h/ Vh)A,5f(Itr-Is>-l : 2,149 jnA,4 : 1,626 jnA,4 ,· -,.,. > LOCATICW --> X Distinct f.roa Left Support = · 15 ft Dthult = L12· DEAD LOAD = 0.2# in : L / 1797 8.386 in :· L / 93Z LIVE LOAD = t.399 in : L /. 924 8,398 in : L / 92-4 TOTAL LOAD=· f.59f··in : L / 618 0.776 in : L:/ 46-4' -- REACTICXE DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 5.88 kips 11.85 • 17.73 k.i·pf:. -~ . ' RIGHT 5.88· kips 11.85 • 17.73 kips -. P? 'I ffllllll{ ---, --, .... -i-",·'-l I PAGE: ______ _ PROJECT: _________ _ SUBJECT: _____________ _ I nn·x---- BY: __ DATE : ______ _ 1 I. I I I I I I mmx I. •x I mmx I mrilx I mmx I I 1· COMPOSITE STEEL BEAM DESIGN DESCRIPTION: SG6 GENERAL DATA > Bea11 Spin = > Beam Spicing = > Be111 Trib Width = >Tot.Slab Thick. = > Deck Rib He.ight = > Rib Spacing = > Rib Openi·ng Width=--:_~ > Ribs: Parll. = 1 Perp. = 0 > Shear Stud Cap. = 30 ft,, 34.33 ft,,. 17,17 fY 5.5 ilr 3 j:r{' 6',,,. 10 . · 6 irv 1 / 11,5 kips > F-y = F-b = > f'c = > Concrete Wt, = n: Strength = n: Deflection= > Beu Locition: Center=l, Edge=0 36,000 psi,... 24,001 psi· . 3,000 psi 144 pcf 9.29 9.28 0 ,... > Use Pirtial Composite Action? Y=1, N=0 1 / CONSTRUCT!~ LOADS < App I i ed BEFORE 75"/. Curing l > SI ab. We i-ght-. > Misc Dead Load = ·i psf 0 H Total Unit D.L. = 0 psf #1 = 9.36 k X = #2 = 9.36 k X = 1f,,, 21· ,,. D.L. x Tr ib lil.i.dth ... = Beil Weight = Add' I Uni for1, Load = 0,000 kit 0,057 II 0 II Total Uniform D.L. = 0.057 kif,,,. #3 = #4 = 0 I: X = 0 ft 0 k X = 0 ft LOADS ON roiiPOSITE SECT!~· .J App I i ed AFTER 75% Curing l -----------------------,.,.,,_ ~ ,.,."'! *:t.h. x·Trib lili:dth = 0.000 kif 'I Untt.orm Load = 0.19 11 Tobi al Uniform L.L. = 0.190 kif > Poi. #1 = 0 k ){ = 0 ft #2 = X = 20 ft· __, 0 k X = 0 ft / -~--t·::~--:--~~. . ... -.~ . ,.~- 1 ___ 1111X ,,.,_\ I I I I I I· I I I .._...- mmx rnmx IIIIIX I ~x I I I I I I mmx I MOMENTS ------- Dead Load Moment = Live Load Moment = Tota!" Moment = EFFECTIVE FLANGE WIDTH Based on Length = Based on Spacing = Based on Slab Depth= -- 100., ft-k 161.4 ft-k -------- 261.4 ft-k 37.1 in 209.5 in 40 •. 1 in ROLLED SECTION DAU· , PAGE: ___ _ _;PROJECT: ____ , ___ _ SUBJECT: ______ , ____ _ BY: ___ DATE : _______ _ S-REQUIRED = 130,69 inA3 Max. Shear = 27 kips AREA REQ'D = 1.88 inAZ > Effective Width = 37 in -->· DEPTH CLASS: in SELECTED STEEL SECTION ------>> W16X57 / Section. Properties: I-steel = S-steel = Section Area = Top Flange = Depth = Wt per foot = Transfor111ed Properties: 758 in"'4 I-tr : Effective = 1,.941 i:nA4 92 inA3 16.8 inA2 7.12 in 16.4 in 57.i #/ft S-tr.: :, Top, -= 261.1 inA3 S-tr : Bottom = 135.7 • S-tr : EU.@ Bott,= 135.1 " n*Str :-Ett. @ Top = 2,403 11 X-X Axfs From-Bottom= 14.4 in V-horiz@ 10f r. = 268.3 kips I-STRESS EVALUATION--------------------------------------------------: I SHORED & UNSHORED : Service Load Stresses: @ Bottom of Beu @ Tot.~~ .-~11n't' ~:/{~~~ , : UNSHORED" _ .,., MAX •. S-f~-- : (1.3!5 of:·.} '6~"' ~ Actual··~ __ 24',IMJ· psi-= Allowable :. ·J:: 1',350 psi = Allowable Design S-tr = 135 Fb:B,)ttom of Beam = 27,351 psi : 32,141 ps-i = Allowable = .89 Fy I (Mdl/Ss + Ml 1/Str:Design) Fb:Top of Concrete= 806 psi · 1,350· psi= Allowable= .45 f'cl [Mll/(Str:topfn}l Unshor.ed DL Sress = 13,017 psi : 24,000 psi = Allowable = .66 Fy : Actual Shear Stress= 3,831 psi : 14,400 psi =Allowable= .40 Fy I }·-----------------------------. ----------------------------------------: ULTIMATE STRENGTH OF Ct11POSITE SECTION Ultimate Moment Capicity of Co1posite Section = Ultimate Moment / Max. Service Moment. = 369 ,ft-k 1.41 mmx I I I mmx I I I I I mmx: I I mmx I I I ·1 I SHEAR CONNECTION Partial Composite Action Being Used Max Shear Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2) = 260.3 kips ·---> NUMBER OF CONNECTORS USED = 22 PER 1/2 SPAN ---------------·----V'h= Actual Shear For Studs Used= 253.0 kips (Min.= .25 * Vh) Actual i. Composite Action = 97.19 DEFLECTIONS --->> I-tr:xx is Based on II n: Deflection" I-tr:xx of Composite S~ction I-EH. : Is+ CV'h/ Vh)A,5t(Itr-IslJ : 1,818 jnA4 >LOCATION--> X Distance fro1 Left Support= 15 ft Default= L/2 SHORED --------------------DEAD LOAD = 0,314 in: L / 1147 LIVE LOAD = 0.506 in: L / 712 TOTAL LOAD= 0.819 in: L / 439 REACTIONS LEFT DEAD LOAD = LIVE LOAD = 10.22 kips 16.85 ; UNSHORED --------------------0.752 in : L.I 478 0.506 in : L / 712 1.258 in : L / 286 RIGHT 10.22 kips 16.85 · " 27.06 kips -~, ~":l"'":.~~~-' . -~..... . -.-..-·c.. ~· .. :·~ ,,--;: .. '-1 l +':"''.:· .. ;;.._ I~ l ..,_-""-:·. ,. " ,., ··- ., ," ---~ + PA6E: PROJECT: ___________ _ SUBJECT: _____ . ____ _ BY: ____ DATE : ___ _ I. ·--------::-------·----..,..., ---· - 1 I I I I fflllX DESCRIPTION: ·S67 GENERAL DATA > Beam Span = >Beam.Spacing = > Beam Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib SpuJng = > Rib Opening Width= > Ribs: Pa.rll. = 1 .Perp. = i > Shear Stud Cap. = / 25 ft 34.33 ft 34.33 ft 5.5 in 3 in 6 in 6 in 1 I 11.5 kips DESIGN > F-.y = 50,iH psi F-b = 331333 psi > f'c = 3,iH psi > Concrete Wt. = 144 pcf n: Strength = 9.29 n: Deflection= 9.28 > Beam Location: I Center=1, Edge=0 : j > Use Partial Coaposite Action? Y=l, N=0 1. I I CONSTRUCTION LOADS < App I i ed BEF~E 75¾ Curing > I ·I I I I I I I I I IDIIIX IDIIX mmx mmx mmx > Sla.b Weight = I psf D.L. x Trib Width = ,.000 kif > Misc Dead Load = ' • BHI Weight = ,.0« II II --------Add'! Uniform Load= 0 Total Unit D.L. = 0 psf Total Uniform D.L. = 1.044 ldf #1 = 9.36 k X = 5 #3 = I k X = 0 rt #2 = 9.36 k X = 15 #4 = 0 k X = 0 ft LOADS ON COMPOSITE SECTI()i ! Applied AFTER 75X Curing) > Unit Live Load #1 = > Unit Live Load #2 = Total I psr L.L. x Trib Width-= ,.000 kif t ~ Add' I Uniform Load ::. t.19 " 1 hi Uniform L.L. = l,19t kif #3 = #4 = 0 k X = 8 k X = 0 ft iJ ft ,• ..... ~, -. &>·II( .J~.' ·~ .,. ...... / I IIIIIX I nnx I I I I I I I I I I I I I I ·1 l'IIIX ) IIHIIX -IIIIIX IIIIX PAGE: __ _ PROJECT: ____ , ____ _ ·: SUBJECT:._, ___ , _____ _ ----------. --BY: __ DATE : ___ _ Dead Load Moment = 78.2 rt-k S-REQUIRED = 76.474 inA3 Live Load Moment = 134.3 rt-k --------Mu. Shur = 32 l<ips Total Mo1ent = 212.4 ft-k AREA REQ'D = 1.61 i nAZ EFFECTIVE FLANGE WIDTH ------------·---------Based on Length = 31.5 in Based on Spicing = 209.2 in > Effective Nidth = 32 in Based on Slab Depth= 39.5 in ROLLED SECTION-DATA --> DEPTH CLASS : -in SELECTED :STEEL SECTION --.---->> W21X4'4 Section Properties: Tr1nsfor1ed Properties: I-steel = $43 inA4 I-tr : Effective = 2,143 inA4 s-steel = 82 rnA3 s-tr : Top = 27J.9 inA3 Section Arn = 13.0 inA2 S-tr : Botto, = 122.0 • TopFlinse = 6.5' in S-tr : EH. f Bott.=-117.3 H Depth· = 20.7 in n*Str: Eff. t Top =· 2,312· • Wt per foot = 44.0 #/ft X-X Axis Fro1 Bottom= 18.0 in V-horiz f 101¾ = 221:.9 kips I-STRESS EVALUATION-------------------------------~------------------: I SHORED & UNSOORED : Service Load Stresses: @-Botto• of Beu f Top of Concrete = 21,73f psi = 1,11~ psi 33,333 psi = AJlowib·le 113fl psi = Al:lowtble ,;.· , ..._3 Desi gn s-tr = 117 151£1 ps.i = A 11 owtbl e = .89 Fy I Fb:Top of Concret! = 697 p~i, : 1,B psi = AHowtble = .45 i'cl [11111/(Str:topfn)l Unshored DL Sress = 11,497 psi : 33,333 psi =Allowable= .66.Fy I Actual Shear Stress= 4,447 psi : 20,0ft psi= Allowable= .40 Fy l :----------------------------------------------------------------------: ULTIMATE STRENGTH OF COMPOSITE SECTION Ultimate Moment Capacity of Co1posite Section = Ultimate Moment/ Mix. Service Moment = 419 ft-k 1,97 ·_;:.t 11 -) ~ ~-~ ,::_. IC• -z,tJ.'Jb ,z.4,'$b ~" , Z.34 ,:; '-~--.1 . I I I I I I I I I I I I I I _I IIIIIX' INU mmx llllllll -~. :-~-~c:.,~::tS';·¾i;-~~$f:~lrt~t..)t'~l~":C·~if~-~~~' -~ :_ ";~cti~ i -0 ,., ,.,, -,~~t PA6E : ___ _ .. ,_. _ PROJECT.: ________ _ •: SUBJECT: __________ _ ---· -------BY: ___ DATE: ~ osite Act.ion Being Used Max Shear Force: Vh : Min. ( .85 f1c Ac/2 or AsFy/2 l = 228.9 kips ---> NUIIBER OF COtfECTORS USED = 15 PER 1/2 SPAN V1h=-Actual Shear For Studs Used= 172.5 kips (Min.= .25 * Vh l Actual r.·coapos.ite·Action = 78.09 DEFLECTIIJS----» I-tr:xx is Based on u n : Deflection • I-tr.:xx of Co1positt Section I-Eff. : Is.+ CV 1hl Vh)A.5f(ltr-Isll . ; . ! > LOCATttw· --> X Distant~ froa Left Support= 12.5 ft Default= L/2 DEAD LOAD = 0.158-in : L / 2H6 t.341 in : L / 879 LIVE LOAD -. t.ffll in : L / 1161 e.258 in-: L / 1161 TOTAL tOAD -=· t .. ,418· in : L / 735 8.6H in : L / 5ff DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 11.78 kips 21.38 • 32.16 kips· . ., RIGHT 8.14 kips 14.38 . • ZZ-.41' ki.J)'S f""""'· I~ ·?-' 1 I mmx I I I I I I I I IIIIIIX I mmx I mmx I mmx I mmx I I J :I I DESCRIPTION: SGS GENERAL DATA > Beam Span --. 15 ft/ > Beu Spacing = 26:33 ft > Beu Trib Width = 13,166 ft > Tot. S.lab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Width= > Ribs: Parlla = 1 Perp. = t > Shear Stud Cap. -. 5,5 in 3 in 6 in 6 in: 1 / 11.5 kips · PAGE: ___ _ . BY: ,4t · DATE :_...!..:..!£.:.i'i° DESIGN > F-y = F-b· = > f 1c = >· Concrete lilt. n : Strens.th = . n : Dtf1 ec.t ion= > Beu Location: Center=l, Ed9e=0 36,100 psi "" 241000 psi 3,80 psi 144 pcf 9.29 9.28 I / > Use Partial Co111posite Ac\i on-? Y=1,. N=e : 1 CONSTRUCTION LOADS < Applied BEFORE 75X-Curing } > Slab Weight . > Misc Dead Load = I psf = ' • Total Unit D.L. = I psf #1 = #2 = 7 k X = 0 k X = 11 0 D.L. x Trib Width· = 8,110 kif Beu Nei9ht = s.022 " Add'I Unifor1-Loa:d = e " · To.tar ·Urrrf.o-ra:· JhL.-:, 1.122 kif #3 = #4 = tlk )(: t k X = 0 ft 0 ft LOADS ON rof>OSIJE SECTic»I t Appl i ed AFTER n;x· Cur i·ns } --------------------.-----> Unit Live Load 11 = > Unit Live Load #2 = f. psf L.L. x Tri& Width = 0.100 Hf I • Ai.it" I llnrfor• Load = 1.19 u / ~ . ..._ ,::. --------·fi #2 = cf · · o..hl UnHora L.L. = 0.190-kif #3;= ·14' =- e ft e rt .... ·-· . .,,. --f·. I I ·- I -ffllRX IIIIRX I ·1 I I mmx I I I I mmx I I I I I I illlX I I IIIIIX .,,:-:·· ~ Deid Loid Moment = Live Loid Mollt!nt = Total Moaent EFFECTIVE FLANGE WIDTH B1sed on Length = Based on Spacing = Based on.Slab Depth= ROLLED SECTION DATA ~:-. .;-· ·~;~ 23.3 rt-k 53.6 ,t-k 21.I in 16&.5 in 39·.1 in PAGE·: ___ _ PROJECT: ______ _ SUBJECT: _______ _ BY: ,4J,· -. DATE : t.-.1D4YY, ,---------------- S-REQUIRED Mix. Shur AREA REQ'D > Effective Width --> DEPTH CLASS: = 16 kips = 1.13 inAZ = 20 in in SELECTED STEEL SECTION ------>> W14X22 Section Properties : I-steel = S-steet Section Arn Top Flange Depth Wt per hot = = = = ---------- Transfor1ed Properties: 199 inA4 I-tr : Erfective = 614 inA4 Z9 inA3 6.5 in"2 5.H in 13.7 in 22., #/ft S-tr : Top = liJe.2 inA3 S-tr : Botto• = 47.1 • S-tr : Efr.@ Bott.= 47.0 • n*Str : EH. t Top = 926 "· X-X, Axis From Botto11: 13.1 i'n· V-horiz@ 100 i. = 116.8 kips :-STRESS EVALUATION --------------------------~-----------------------1 I SHORED. 3: UNSHORED : Service Load Stresses: @ Botto1 or Bea1 l @ Top of Concrete l UNSHORED STRESS Cl-ECK: MAX. S-tr:1nsfo (1.. >·> .. = 19,641 psi = 991 psi 24,Hf psi. = Al low1ble 1,351 psi =Allowable Design S-tr = 47 ,141 psi =Allowable= .89 Fy I . Fb:Top of Concrete= 695 psi 1,3!:f psi = Allowable = .45 r•·c l t CMll/(Str:top*nll Unshored DL Sress = 9,647 psi : 24,100 psi =Allowable= .66 Fy: Actual Shear Stress= 5,144 psi : 14,4H psi= Allowable= .41 Fy: :---------------------------------------------------------------------•: llTIMATE STRENGTH OF CCWOSITE SECTION Ultimate Moment Capacity of Coaposite Section = Ultimate Moment/ Max. Service Moment = 152 ft-k 1.97 -~~...,_ ... ,;:,-';,::-~ ;-• __ _._ --~.c,:~J.,,-~ ,-. ~ ;{. 1--, I mmx fflfflX I I I IIIIRX. I I I I I mmx ·1 I mmx I I I I ·1 .I PASE: ___ _ PROJECT: ______ _ SUBJECT: .... · __________ _ BY: i/.l· DATE : 2.-/c,f}l , posite Action Being Used Max Shear Force: Vh Min. ( ,85 f'c Ac/2 or AsFy/2 > = 116.8 kips .:. •. > NUMBER OF CONNECTOOS USED = 11 PER 1/2 SPAN --------------------V'h= Actual Shear For Studs Used= 115.0 kips <Min.= .25 * Vh )· Actual i. C0111posite Action = 98.~ DEFLECTIONS --->> I-tr:xx is Based on• n: Deflection• I-tr:xx or· Co1posite Section I-EH. : Is+ CV'h/ Vh)A.5f(itr-Is)l > LOCATI~ --> X Dista~ce from Left Support,,= 10 ft Default= L/2 Sl-(JREI)' --------------,-----DEAD LOAD = 0.040 in: L / 4513 LIVE LOAD = 8.095 in: L / 1890 TOTAL LOAD= 0.135 in : L / 1332 REACTIONS ·--------LEFT DEAD LOAD = LIVE LOAD = 2.51 kips 6.43 u TOTAL LOAD= 8.92 kips I.J6IDREn --------------------0.120 in: L / 1497 0.095 in: L / 1890 0.215 in t L / 835- RIGHT ------"!" 4.83 kips 11..~3 • 16.26 kips .,·-~-\ilt ~~.c::~ .. , I I I I I I I I I ·1 I I I I I I nax j IIIIX MX DESCRIPTION : S68 GENERAL DATA ------------ > Be~ Span = 15 ft > Be~ Spac'ing =· 21.33 ft > Bei!II Trib Midth = I ft >Tot.Slab Thick. =-5.5 in > Dei:k Rib"-Height = 3 in > Rib-Sp-1c.ing = & in > Rib Openin9 Width= 6 in > Ribs.: Par I I. = 1 Perp. = I .. :··.--. 1 > Shear Stud Cap. ~· · i1.5 kips PAGE: ___ _ -~:::. PROJECT: ______ _ '· · SUBJECT: . -------...---- BY: -.4L'-DA~~~~ . -----. --. --- > F-y = F-b = > t''c = > Concrete Wt. = n: Strength = n: Deflection= > Beu Location: Center=!, Edge=0 36,000 ps.i 24,M psi 3,000 ps·i 144 p,t 9.29 9.28 > Ust Parti~I Co1posite Action? Y=1, N=S 1 CONSTRUCTION LOADS ( Applied.BEFORE 75¾ Curing) ------------------> Slab Weight -e pst' D.L. x Trib Width -0.Nf kit' > Misc De1d Load = ' • Bn1 Weight = f.026 , .. --------Add'! Unifor1 Load= e • Total Unft-D·.L·. --e pst' Total Uniform D,L, = f.026 kif 11 = 6 k X = 5 #3 = f k X = S-ft 12 = s k x = , #4 = e. k x = e ft LOADS ON COlfl'OSlTE SECTION (. App I i td AFTER 75X Curing ) m111x > Unit Live load #1 = I pst: L.L. x Trib Width. = 0,HI· kl.f > Unit Live Load -n. = t ·-'!-. Add' I Unifor1 Load.= · t.19 " mmx #3' = e k X = 8 ft #4= ' k X = irt IIIIIIX ' ..-, ., -. •:' "-·~.:; -~ ~\\7 -~ -.,!S . ~. ,~ ' --.::~--- f ::i/ · ~: 0:-:::~,;iri;:::; 4;-:;;;::\?' ~ ;: : ·· ;,;:e:':".: · · ,, .. "'".A""""~!'"~': ~;~1'1~ ::,,~ ,:~:, · ::: p,1fl 1,c~ · . ... '-.. ~ l- I I I I I I .I. 1· I I I I I I I I 1· .__.. mx MX 111111)1 !MIX IIIIIIX IIIIIX PAGE.: ___ _ PROJECT: _______ _ SUBJECT: __________ _ BY:El.Ji.._ DATE : z. :a::'i'j ------- Dead Load M011tnt ;: 28.2 f't-k S-RE~IRED ;: 36.889 inA3 Live Load Moaent = 53.6 ft-k --------Max. Shear = 16 kips Toh! Mottnt = 73.8 ft-k AREA REQ'D = 1.08 inA2 EFFECTIVE FLANGE. WIDTH ----------------------Based· on Len9t~ = 28.5 in Based on Spacins = 138.7 in > Eff'tctivt Nidth -21 in Basen on Slab Depth=· 38.5 in RCUED· SECT-ICW DATA --> DEPTH CLASS: i·n SELECTED • STEe.. SECr.ICW · -~.;.---}> N16X26 Sect i:on Propert its : I-steel = S-steel = Section Area. Top· Flange Depth Wt per foot = = :: = 3"1 in"4 38 in"3 7.7 in"2 5.58. in 15.7 in 26.1 I/ft Transfor1ed Properties: I-tr : Effective = 757 inA4 s-tr : Top = 125.4 inA3 s-tr : Botto• = 61.f • S-tr : Eff. @ Bott •. =-· 56.i • ntStr : Eft-., f Top = 1,i16 -•, X-X Axis Fro1 Botto•= 14.3 in V-horiz t 1st ,: = 138.2 kips · I-STRESS EVALUATION --------------------------------------------------l I SHORED & UNSOORED : ,. I Service Load Stresses : @ Botto1 of Beu· @ Top of Concntt = 15,.SH psi = 87Z psi : 24,Hl'psi =·Allowable. I 1,.351· psi = A 1-1 ovab l·e '·43 Dtsi gn-S-tr = ·1,3 56 .. I I ,. ,M psi =Allowable= .89 Fy l Fb:Top of Concrete = 633 p~l 1,351 psi = Allowable = .45 f'cl [Ml 1/(Str:topfn)J I· I I I Unshored DL Sress = 6,312 psi : 24,eH psi = Al.lowab·le = .66 Fy l Actual Shear Stress= 3,982, psi : 14,4H ps.i = Allowable-= .4" Fy l :----------------------------------------------------------------------:-ULTIMATE STRENGTH OF OOFOOITE SECTION Ultimate Moment Capacity of Composite Section = ·ultimate Moment / Max. Service Mo1111nt = 186 ft-k 2.52 SG~ 2,l ~. I I I I I I 1:· I I I I I I I I I mmx ffllllX mmx _•,c., -.. -,._ PAE£: ___ _ ""'', . "',.::, PROJECT:_...---------....--i: Sll3JECT: _________ _ BV:J1.:li._ DATE. :_ l.. -& ~6_ :-,...-~------------- ~-:otilt Action Being Used . . Max Shur Force : Vh :. Min. ( .85 t''c Ac/2 or Asfy/2 > = 138.2 ki'ps ---> NUMBER OF CotlECT~ USED = 8 PER 1/2 SPAN V'h= Actual Shur For Studs Used = 92-.f kips.-( Min •. = .25 * Vh l Actual X C011posite Action • 66,55, DEFLECTIONS ---» I.-tr:xx is Basid, on.• n : Dtflection " ----------- 1-tr:xx of Coapositt Section I-EH. : Is+ CV'h/ Vh}A.5f(Itr-Is~J ·.. -~ > LOCATION--> X Disttnct frott Left Support"=· 7.5 ft DthuJt = L/2 SJQE) --------------------DEAD LOAD = 0.i30 in : L / 5912 LIVE LOAD = e.183 in : L / 2171 TOTAL LOAD =· 1.11-3 in REACTIONS· DEAD LOAD = LIVE LOAD TOTAL LOAD= :· L / 1587 LEFT 4.21 kips 11,43 • 15.62 kips: -~ , .. ~- --------------------l,ffl, i.n : L / 2415: 1.183 in : L / 2171 f·,1!17· in : 'l .. I· -1143· RIGHT 2,21 kips $.·4i: . 1 ------ 8.62 kips J· DESCRIPTION1 : 569· GENERAL DATA _ ~1-.. ___ > Beu. Spa_~, . ._ = .. ,,.. _ , . ......_, > Beu, Sp~Jf'" ..... ;. \~'.· > F-y : 51,000 psi :1.;~-.--F-b = ~ 33,333 psi __ ';: :;1,t?J,J'c: = 31000· psi _ _ ._ _ .. >.. Bea tr· rt > Tot. Sl ,." . ~:~.:,.Concrete. Wt, .. = _ 144 pcf . . 1--~,_. -,~ '., ... .,.· . . 11111)( 1·. > Deck Rii~e-t\ > Rib Spae-il9;r~.C: ' R . 0 ~ .%-;~.:. .:,,.r ~ .. .. ~ , h pen+ngt,11111'.dt •. --··· > Ribsi Par!!.= 1 Perp. = 0 g.;~·-~:.n : Strength = 9-.29 _ , -:-:;{ e_; n :. Def I ect ion= . _ 9-.,28 _ )f.:t'Beu Location : _ . .:}:' .•• ,':{.:·€enter=1, Edge=0_ : _ 0 > Shear Stud Cap. = 11.5 kips > Use Partial Composite Action? Y=l, N=0 1 CONSTRUCTION LOADS f Applied BEFORE 75'/. Curing} --------------·---> Slab Weight > Misc Dead Load Total Unit D.L = = = 0 psf -0 • --~----- _ 0 psf _ #1 = 4. 75 k X. = __ 5 #2 = 6.35 k X = 15 D.L. x Trib Width = 0.000 kif .. Bea11. Weight. • _ = __ 0.026 __ 11 _ Add' I Uniform Load = 0 " .. - Total Uniform D,L. = 0.026 kif • ,~ = •. 0 k _ x_ = ___ ~-rt __ #4-= 0 k X 7 0 ft --IIIIIX. .•. .. LOADS ON COMPOSITE SECTION . ( App I i ed. AFTER 757. Curi ns t I . .rnmx . ,·.·- . ·. rnmx I I I I lmmx 1- ·I. F!lllllX • X > Unit.Live.J.oad #1 = ·-0 psf LL x Trib Width = 0.000 kif· > Unit Live Load. #2 = .. 0 " _ Add' I_ Uniform Load := __ 0.19. n. _ ~ Total Unit L.L. = _ 0 psf __ Tota.I. Uriiform L.L. = _ 0.198 kif . > Point Loads: __ #1...;= 8.6 k X := 5 ft #3 = 0 k X = 0 ft .. #2 = 11.5 k X = . 15 ft .. #4 = ... 0 k _ X = . _ l ft _ PAGE: . PROJECT: SUBJECT: BY: DATE: ----- MOMENTS Dead Load Moment = 49.6 ft-k S-REQUIRED = . 54 inA3 ·J·· . --.., .. :tx- ··1· . - 1· · 1.-- Based on Length- -BiSed.. 011 SP.l · Based on· . Section Properties: I-steel = S-steel Section Arn Top Flange Depth lilt per foot = = = · . -,lect.ivt Width . = ~- Transformed Properties: _ 31_in _in .. 301 in"4 I-tr. : Effective_ = . 751 in"4. 38 in"3 S-tr : Top = 160.9 in"3 . 7.7 in"2 .• S-tr. :. Bottom = .•. 62.3 • 5.50 in S-tr : EH.@ Bott.= 54.9 ." 15.7_ in ntStr : EH.t @ Top_ =. 1,J45. • 26.0 #/It X-X Axis Fro•-Botto11= 15.3 in . .. _ V-horiz @ 108 Y. = 192.0 kips rnmx :-STRESS EVALUATION ---NOTE i Overstress Condition !! ~------------: ·.,--I I . . . . . -; • SHORED & UNSHORED : ---» DESIGN STRESSES EXCEED ALLOWABLES _._ . . -'- .. t . Service Load Stresses :_ . __ .. __ . . -· ; l @ Bottom of· Beam = 32,.773 psi. : 33,333 psi = Al lowab.le -~1 :~ J ... @ Top of Concrete = 1,573_ psi : _ 11351 psi =_ Allowable_ ; . . l UNSHORED STRESS CHECK : ___ . _ . ~-l _ _ _ l MAX. S-transformed : I -. l . (1.35 +.35 t Ml 1/MdDtS-s = _ 79_ i n"3 _ Design_ s-tr = _ _ 55 _ l 55 in"3 _ .. _ l Actual S-tr EHective = I I •. ·-J. • -........ -1,. l. Fb:Botto1 of Beil.Ill = 37,431 psi : 44,500 psi = Allowable = .89 Fy l _ _ (Mdl/Si + I'll 1/Str:Design} . . _ .. _______ : Fb:Top of Concrete= [M 11 / ( Str: toptnB 1053 ps·i_ ~-1,351 psi=: Allowable = __ ,45 f'cl .. -ur;shored DL Sress ~ 15,484 psi : 33~333 psi = Ai I owab-1 e ··=.··.66 Fy l I . l Attua.l Shear Stress=. 5,231. psi ;__20,M psi = Allowable = __ .40 Fy l- . mx :----uLTIMATE-srRENGTH_OF_c~iTE~icririi--~---------~~-~--~--:-:-~--: ·1 · .. ··1-- I- Ultimate-Moment Capacity of Compositt Section.=-. 269.. f.t .. k -· 1.79 Ultimate Moment/ Max. Service M011ent = ~ PAGE : . _______ _ .. PROJECT: _______ _ SUBJECT: ________ _ BY: __ DATE : ___ _ . SHEAR CONNECTION Partial Composite Action Being Used ---------------- Max Shear Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2 l = 192,0 kips ---> NUMBER OF CONNECTORS USED = '8 PER 1/2 SPAN V'h= Actua1·shear For Studs Used= 92.0 kios <Min.= .25 t Vh l ;i:~;i¾ffi~~~~-t:L~:-·~t~~· ·c· ~\ :~ :~~~· ~-~~~~-:_ 7 ~-.::.;~;:,~~::~.7.--;~: -- ~c:nONS'.' -,-->) I.-tr:xi rs-Jased on:~-n :· De-tl'.ecti.on°.•·- I-tr:xx 0£ Coap.osite Section ·1 ·1·-E111.· .. · • · : -· --I;T;~ fi-~ . . ·: . . . .. . , ... -. __..,,__ . . :• .. .:\ . .·. ·'. ,. . . . ... ./ > tOCATION·C 1· = 923 in"4 ~ = _ 12.5. FL Dehult = .LIZ ... _ llNSHORED _ · in : L / -.I - .L~ 1·- 605.:., 1.496.. in 1 L. / 512 605 .. .lmx· I I I I I .I I I I .I I I _ TOTAL LOAD =-f:.737_ in : L / · ~ 1 .• '82. in t L /. 277 _ REACTIONS ---------- DEAD LOAD =· LIVE LOAD.= TOTAL LOAD= LEFT 6.67 kips 13.86 • _____ ..,. .. 21.52 kips RIGHT -.... 5.09 kips _ 11.00. • . -· _ 16.08_ kips_ .. ., ... ,: II .. \I ol ". ,· ~ t? ;.)v· . ovv I~- I mmx I IIIIIIX I I I IIIIIIX I I I I ffl!IIX I I I I I I I IIIIIIX I IIIIIIX ------- Dead Load Moment = 47.6 ft-k Live Load Mo111ent = 111.3 ft-k Total Mo111ent = 157.9 ft-k EFFECTIVE FLANGE WIDTH Based on Length = 31.0 in PAGE: ____ _ , PROJECT: ________ _ . SUBJECT: _______ , BY:_~ DATE :_?.. -_j_:_!l S-REQUIRED Max. Shear AREA REQ'D : 56.835 inA3 = 22. kips : 1.'8 inA2 Based on Spacing = 149.t in > EUectin Width = 31 in Based on Slab Depth= 39.I in Rel.LED SECTION DATA --> DEPTH CLASS: ·_ ----------------- SELECTED.-~: STEEL SECTICN ------>> N18X35 Section Properties: I-steel = S-steeJ Section Area Top Flange Depth· Wt per foot = = = =-. = Transfor1ed Properties: 511 inA4 I-tr : Effective = 1,136 inA4 58 inA3 11.3 in,.2 6.00· in 17.7 in 35.S #/ft s~tr : Top -218.7 inA3 S-tr : Botto• = 88.7 • S-tr : EH.@ Bott'.= 15.1 • ntS.tr : EU-. @· Top = 't,326 • X-X Axis· Fro• Bottom= 16.3 i.n V-horiz @ 18 r. = 217.4 kips :-STRESS EVALUATION ---NOTE: Overstress Condition !! -------------1 I SHORED & UNSOORED : ---» DESIGN STRESSES EX~· Alt.OWABI..ES Service Load Stresses: @ Bottom of Beu @ Top of Concrete = 25,219' ps.i = 1,429· psi 33,333 psi= Mlowable 1,,358 psi = Al I owabf e .•. MAX. ( 1. ' ·A3 Design S-tr = A3 75 . ,511 psi =Allowable= .89 Fy: Fb:Top of Concrete = 998 p~i. 1,3fAJ psi = Allowable = .45 f'cl CMll/(Str:toptnll Unshored DL Sress = 91922 psi : 33,333 psi =Allowable= .66 Fy: Actual Shear Stress= 4,171 psi : 21,108 psi= Allowable= .41 Fy: :----------------------------------------------------------------------: ULTIMATE STRENGTH OF COMPOSITE SECTION ____________ , ________________________ _ Ulti111ate Moment Capacity of Composite Section = Ulti111ate Moment/ Ma.x. Service Moment = 336 ft-k 2.13 14,, I M _ 157:Cf is' ~ -1] 1,1.6bid/s·-1, ~z.. -::c yJ, L MM.AX = ""\ / !3 .. \ c3 r-.Jo-r N ~DeD ~ 5 , I~ .... PAGE: . .__ __ _ l'ROJECl: ___________ _ SUBJECT: _______ _ ., .. BY: ___ DATE : ___ _ I ______ ...; mmx I •x I I I I I I I I I I I I ,1 I .I mmx fflllll{ mmx os}tt Action Being Used Max Shear Force: Vh : Min. ( .85 f 1c Ac/2 or AsFy/2 > = 217..4 kips ---> NUMBER OF CONNECTOOS USED = 6 PER 1/2 SPAN V'h= Actual Shear For Studs Ustd = 69.0 kips. ( Min. = .25 * Vh ) Actual X Co111pos:ite Action = 31.74 DEFLECTIONS ---» I-tr:xx is Based, on• n: Deflection• I-tr:xx of Co1posite Section I-EH. : Is + CV1h/ Vh)".5f(ltr-Is>l = 1,378' in"-4 ~ ~ >LOCATION--> X Distinct fro1 Left Support'= 12.5 ft Default~ L/2 ----------------------------------------DEAD LOAD = 0.170 ln: L / 1762 0.333 in.: L / 990 LIVE LOAD· = 0.398 in: L / 753 f.398 in : L / 753 ------ TOTAL LOAD-= 0.568 in: ·L / 528-. 8,732· in: Lt 418 REACTIONS --------- DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT RIGHT 6.44 kips 15.18 11 21.61 k-ips 4~94 kips 1:f.98 • 16.9-l kips ,',, '•''-- 1-.l<'. :1~ 1· I I I- I I I· I I I I mmx \ ' IIIIX 1118X JMIX I. mmx I I I I I !MIX J ··1,.-.:-. .• - -• PA6E·: ___ _ PROJECT: __ ~--SUBJECT:. ____________ _ BY: ___ DATE : ·a • It • r-r DESCRIPTION: SG1t GENERAL DATA , ___________ > F-y = 5e,BH psi/ > Beam Span = 21 ft.·' F-b = 33,333 psi > Beu Spacing = 24.33 ft > f'c = 3,BH ps.i > Beilll Trib Width = 24.33 ft' > Concrete lilt. = 144· pcf > Tot.. Slab Thick, = 5.5 in n: Strength = 9.29 > Deck Rib Height = 3 in n: Deflection= 9.,28 > Rib Spacing = 6 in > Beu Location: > Rib Opening Width= 6 in Center=!, ·Edge=t t / > Ribs: Parll, = 1 Perp. = ' 1 / > Use Partial Co1posite > Shear Stud Cap,. -. 11,5 kips Ac.ti on? Y=1, N=f-1 / CONSTRUCTION LOADS ( Applied BEFORE 75X Curing) > Slab Weight = 9 psf D,L, x Trib fllidth = :i,8H kif > Misc Dead Load = I • Be111 Weight = _ t.122. 11 --------Add 1! Unifor.1 Lo1q· =. I • Total Unit D.L, = _ 8 psf Total Unifor1 D0,L, = 0.022· klf #1 = 6.87 k X = 10 #3 = . 8 k _ X = .. 0. ft #2= ik X= I #4 = t k X = t ft LOADS ON CO!f>OSITE SECTION ( Applied AFTER 75X Cur:.ing) > Unit Live Load #1 = > Unit Live Load #2 = . · 0-psf L.L. x Trib Width t.BH kif . 8 • Add'! Unifora ~oad = _ f.19 • --------,::t Johl Unifor1 L.L. = _ 8.199 kl'f t k X = t ft I k .. X = _ 0. ft S/110 I I I 1· I I I I I I I I .. I I I Ml! llllll! -Ml! ffllX Dead Loid Moaent Live Load Moment = = 35-.5 ft-k 75.4 ft-k Toh! Moaent = 111.8 ft-k EFFECTIVE FLANGE WIDTH ----------------------Based on Length = 25.8 in- Based on Spacing.= 148.5 in Based on Slab Depth= 38.t in Rt'l.LED SECTI~ DATA :: ·-~-- .PAGE :. _____ _ PROJECT:________ ._ . __ SUBJECT:~------ BY: __ DATE : a. .. ,~_4'{ S-REQl,IIRED Max. Shear AREA REQ'D > Effective Width --> DEPTH CLASS: : 39.888 inA3 = = = 12 kips 0.61 jnA2 _ 26 in .. i·n SELECTED STEEL SECTic»f. --~~-->> W14X22 Section Properties :. I-steel = S-steel Section Area Top Flange. Depth Wt per foot = = = = = 199 jnA4 29 inA3 6.5 foA2 5.H in 13.7 in 22., #/ft Transfor1ed Propertits: I-tr : Effective = 618 inA4 S-tr : Top = 1i5.1 inA3 S-tr : Bottoa = _ 48.2 • S-tr : Eff. t Bott.= 46.1 • n*Str : Eff. f Top_ = t,H7 • X-X Axis Fro1 Botto•= 13.6 in V-horiz f 1H ¾ . = 162'.3 kips I-STRESS EVALUATION --------------------------------------------------1 I SHORED & 0NS00RED · : · I Service Load Stresses: @ Bottom of Be~ . @ Top of Concrete = 28,451 psi = 1,321_. psi 33,333 pd = Allowable : . 1,351 ps-i =:. A 11 owa.bl e l ~SOORED. STRESS CIECK . : MAX. S:-:tr: -:<ft··--(1.3a' Actua.: ': •3 Du i gn· S-tr = A3 47 : ,5H psi = Allowable = .89 Fy l I •• I Fb:Top of Concrete-= 898 psi_ : 1,351 psi= Allowable= .• 45 f'cl [Mll/(Str:toptn)J Unshored PL Sress = 14,669 psi : 33,333 ps·i = Allowable = .66 Fy : Actual Shear Stress= 3,842 psi : 20,001 psi= A·llowable =_.40 Fy l :----------------------------------------------------------------------: ULTIMATE STRENGTH OF ct:»FOSITE SECT!~ Ulti1~te Moment Capacity of Composite Section. = Ultimate Moment/ Max. Service Moment = 197 ft-k 1,78 -~~ ~\) \,;_ .. J: (~. -~~~{ sc. ,o I<. 20 Jt=./, .,z. PAGE. :· ____ _ 1--,. PROJECT.:_, _______ _ SUBJECT: _______ _ . -· -.. ...... ~ __________ ,_ 1-, I. I I . - I. 1· I_· I I- I I- I I I I ·1 I IIIIX .IIIIIX IIIIIIX _mmx JIIIIX ; BY:./_•_ DATE : a.. ,-,: . I'. I .,,------------- g osite_ Action Being Used ... Max Shear Force: Vh Min. ( .85 f'c Ac/2 or AsFy/2 l = 162.3 kips ---> Nl.WIER OF mf£CTORS USED = 12 PER 1/2 SPAN ----------· ------- V'h= Actutl Shear For Studs Uud.= 138.t kips <'Min.= .25 * Vh l Actut'I ¾ Coaposih Action = .. 85.85 ~CTIONS ---» I-tnxx is Based on • n : Deflection. • I-tnn of Composite Section I-EH •. : ls +-CV-'h/ VIH".5*(Itr-Is-ll > LO.CATI~ --> X Distmu {roa Left Suppor~= _ lt ft. Defiul-t = L/2_ DEAD LOAD = t.117 in: L / 2146 t.357 in: t / 613 LIVE LOAD = t.255 in: L / 941:. i.255 in: L / 94' TOTAL LOAD= t.373 in: L / 644_ 0.612. in: L / 392 REACTIONS ---·----- DEAD LOAD = LIVE· LOAD = TOTAL LOAD= LEFT 3.66 kips, ~ 8.-49 • 12.14 kips. RISIT 3.66 kips 8.49 • 12.-14 k.ip.s Project _______ _ Date ... -_______ _ By --.... r--·---- Sheet y~Yi of __ I I I I I I- I I I I I I I I I I I I I I I I I I I I I .I I I . -?~T}~i~~~~i:::~-~~ -· -..:~-~-~~- Project _______ _ Date-----------. By:---,-,.~,...........---- Sheet "1,~f-'_.__ -'---y--~, -,-:, ""· .. I_ ·1- I I I I I I I I ; ~:....:-~ nax IIIRX '!IX I RHDX I I I I I I I I mmx 'fflX ' .. -------------------------------- DESCRIPTION : SG11 > Beaa·-· > Bea.a > Bnin; > Tot. S:l:i ;.,,. > Deck R,~~ffef"'., · > Rib Spacing = > Rib Opening Width= > Ribs: Pa.rll. = 1 Perp. = 0 > Shear Stud Ca.p. = = = )}It::) r • c = }i?'.~> _ Concrete Wt. = :.;4; \~-; n : Strength = ="iii , ..... n : Def! ect ion= 6 in. > Beilll Location : 6 in Center=!, Edge=0 56,011 psi 33,m psi 3,000 psi 144 pct 9.29 9.28 1 > Use Pa.rtia.l Co1posite 11,5 kips Action? Y=l, N=I 1 CONSTRUCTION LOADS ( App:! i ed BEFORE 75¼ Curing > ------------------> Sla.b Weight = 0 psr D.L. x Trib Width = , •• kit > Misc Dea.d Loa.d = 0 • Beam Weight = 0.084'-" --------Add'! Unitor11 Load= 1· 11 Tota.I Unit D.L. = 0 pst Tota.I Uniform D,L. =-0.084 kit 11 = 44.-5 k X :: · 11 #3 = 0 k X = 0 rt #2 = 10.6 k X = 20 14 = e k x·= , rt LOADS ON COMPOSITE SECTICW ( App I i ed AFTER 75X Curi n9 > > Unit Live Load #1 = 0 psr L.L. x Trib Width = 0.000 kit ' . > Unit Live Load #2 = 0 • Add'! Unifora Load= TotiJ UnLt L.L. = > Point Loads: #1 = 66.3 k X = #2 = 14.6 k X = 0 pst Tota.I Unifor1 L.L. = 0.011· kif 10 rt 20 rt #3 = #4 = 0 k X = I k X = 'ft 0 ft PAGE: ___ _ PROJECT:______________ _ SUBJECT: _____________ _ BY: ___ DATE : ___ _ SGi It 1-~ ·1 I ·1 :1 I I I I I I JIIIIIX MX IIIRX IIIIIX nx ., I ----":" ,-.:..~ Detd Lotd Moaent = 294.5 ft-k Live Lotd Moaent = 427.i ft-k S-REQUIRED Max. Shear AREA REQ'D : 259.74 inA3 ------~· = Tott! . ;i~tt = 1r--.....: :::r-~-: -. Effective Width = ROLLED SECTION DATA --> DEPTH CLASS : 73 kips 3,63 inA2 35 in in SELECTED STEEL SECTION ------>> W27X84 Section Properties: I-steel = S-steel = Section Area Top Fl1n9e Depth Wt per foot = = = = 2,851 inA4 213 fnA3, 24.8 inA2 9,96 in 26.7 in 84.t #/ft Tr1nsfor1ed Properties: I-tr : Effective = 4,891 inA4 S-tr : Top = 5i5.6 inA3 S-tr : Botto• = 281.8 • S-tr. : EH. @ Bott.= 261,1 11 ntStr: Eff. f Top = 3,840 • X-X Axis Fro• Bottom= 21,7 in V-horiz t 101 r. = 245.2 kips l-STRESS EVALUATION: • .__ NOTE : Overstress Condi.ti on ! ! -------------1 SHORED & UNSl{)REI) : ---» DESIGN STRESSES EXCEED ALLOWABLES Service Load Stresses: @ Bottom of Beu @ Top of Concrete = 33,283 psr : 33,333 psi = Allow1ble = 2,255 ps·i : 1,350 p·si = Al lovable UNSHORED STRESS CHECK: MAX. S-transforaed: (1.35 +,35 * MII/Mdl)tS-s = Actual S-tr Effective = 396 inA3 Design s-tr = 261 inA3 260 Fb:Bottom of Beu = 36,289 psi : 44,500 psi. = Allowable = .89 Fy : lMdl/Ss + MII/Str:Design) Fb:Top of Concrete= [Mll/(Str:toptn)l Unshort.it.Db Actui'l~:~~-•f ---------..__ :;f• : - 11. nMAVa:s:: UI t intei~.f ---~ N·· Ulti11te Mo1ent f'lfix. 1334 psi 1,350 psi = Allowtble = .45 f'cl · ._,,, .• ~333 psi = Allow1ble = .66 Fy I '\HI psi = Al t.owabl'e = .40 Fy I .------------------------------: = 511 ft-k 0-.71 PAGE: ____ _ PROJECT: _________ _ SUBJECT: _______ _ BY: _____ DATE : ______ _ j'e-·*:~~-!-"'. Pir'i,;}~~~;;-ii;~~~~~ .. " ·.·'. '1 --~.,, •4,IJ• 1... IL' IIIIIIX 'I II I I I IIIIIX :I I IIIIIIX I I I I I I I ftlX I I Max. Shear·Forre: Vh : Min·. <-.85 f ·~ Ac/Z. or AsFy/2 ) = 245.2 kips . ·-:"~· 11 PER 1/2 SPAN. ··.ii,r~";.~ -------------------- (Min.= .25 * Vh) 'n • n : Def'lec.tion • ----------- I-tr:xx of Composite Section I-EH. : -Is + CV 1h/ Vh)A.5*(-Itr-Is)l >LOCATION--> X Distance from Left Support= 12.5 ft Default= L/2 DEAD LOAD = 0.211 in: L / 1425 LI-VE LOAD = 1.312 in: L / 992 TOTAL LOAD= 1,.513 i-n : L / 585, REACTIONS DEAD LOAD = LIVE LOAD = .29.87 kips 42.71 " TOTAL LOAD= 72.57 kips t.336 in: L / l.'382 in : L / 8.638 in: L / 893 992' RIGHT 27.33 kfps 38.20 • 65.53 k'ips PAGE: ___ _ PROJECT: _______________ _ SUBJECT: ____ _ ·----------BY:_ DATE : ___ _ ~\-z..._ ,.. "'-· -l ·__, I~ -d· . ~ .... ~, - I 'I !IIIIIX I I I-- 1- IIIX IIIX -·..s-"'-?i>{'i!;·~'f.,;;'i'~~I~f·tf~::-( :5~,--;Ji,·:,. ::-t< · -· ·: ,.J;i;';lr: l\·li··?? PAGE. r ___ _ . PROJECT: ______ _ ~·h··;,;r. SUBJECT: __________ _ :'.:J---__ , ____ _. ___ _ BY: __ DATE : ___ _ DESCRIPTitw: 5612 s tiit'Z- GEtERAl DATA -"------. ---> F-y = 36,HS psi > Beu Span = 35 ft F-b = 24,SM psi > Beu Spacing = 19.$3 ft > f'c = ~,He psi > Beu Trib Width = 9.66 ft > Concrete Wt. = 144 pcf >Tot.Slab Thick. = 5.5 in n: Strength = 9.29 > Deck Rib Height = 3 in n : Detl ect i on= 9.28 > Rib. Spac.~ng = 6 in > Bea1 Location: > Rib Opening l11i.dth= 6 in Center=!, Ed9e=0 0 > Ribs-: Parll. = 1 Perp. = f 1 > Ust Partial Co11pos.ite > Shear Stud Cap •. _?_. -i1.!5 kips Ac.ti on? Y=1, N=I· I CONSTRUCTitw LOADS ( Applied BEFOOE 75X Curing) > Slab Weight = I psf D.L. x Trib Width = 0.M kif > Mis~ Dead Load = 8 • Beu Weight = _ i.050 " --------Add' I Unifor1 Load = 8.19 • TohL Uni.t D.L. = _ 0 psf Tota.I Unifor1 O.L. = 8.24'. kif #1' =-· 5 k X = 18 #3 = 3.6 k __ X = _ 3" ft #2 = 5 k X = 28 . #4 = 0 k X = I ft LOADS ON COfifOSITE SECTIC* .( App I i ed AFTER 75X CurJ n9 > I I I mmx > Uni;t: Live:Lo~d #1 = f psf L.L. x Trib Width = I.He kif > Un.it Live Load: #2 = .. I • Add' I Uni.fora Load = 8 • ________ .,... Total T:otll Unifor• L.L = ~ 0.0ft kif I_ ffllllX > Pot #1 = #3-= 6.15' k X = 3f ft I #2 = _ 14 = I k • X = _ 0 ft IIIIIIX I ·.1 --- I I l?AEIE : ___ _ I-~--- PROJECT: __________ _ · -. ~Eon ________ _ -_ ___,,, · 1 nwn·-x----------..,;..~ BY: __ DATE : __ , __ _ I_ 1- 1 I· 1· ,-. 1- 1· I 1- I 1- I- I ', I I (RIIIX IIIX IIIIIIX 111111X IIIIIX .. . . Dead Load Moment = 11,., ft-k S.-IQJIRED. = 122.19 j nA3 · Live Load Moment = 1~.2 ft-k --------Mn •. Shur = 25 kips Total Moaent = 2-44.2 f"t-k AREA REQ'D = . 1.74 inA2 EFFECTIVE FLANGE WIDTH ----------------------Based on Length-= 41.5 in Based on Spacing = 119.2 in > E'ffect'ive-lilidth . = _ 40.. in Based on Slab Depth= 39.5-in Rel.LED SECTION DATA -:-->. DEP-TH Cl.ASS : in SELECTED . STEEL . SECTIC*-------» N219 ~ - Section Properties: I-steel = s-steel 'Section Arn Top Flange Depth Wt per foot = = = = = Trandora1d. Properties :· 984 inA4 I-tr : Etftc.tive = 2,688 inA4 95 inA3 s-tr : Top = 333-._1 inA3 14. 7 inA2 . s-tr t Bott• . = _ 141.I • 6.53 in S-tr : EU. t Bott •. = 1-•U.0 • 28.8 in nf5tr : EH, f Top"'" = 3,194_ • 51.I #/ft X-X'Axls Froa Botto•= 18.5 in V;-hort: f. 1H.-X, . = 264.6 kips I-STRESS EVALUATION -----------~-----------------=----------------------l l SHORED & UNSl{)REI) : Service Load Stresses: @ Botto• of Beu. = 21-,:788:. ps:f :. 2.•,Hf pfr = Al lovable _ @ Top of Concrete = 9i4r 'pii ·:: 1,3&f ps:i =: Allowable. I UNSHORED STRESS CIECK : -Jl'- i'IAX. 5 .. ~,, (1. · s~tr. = 141, _ ,.f4t. psi = Allowable = .89 Fy Fb:Top of Concrete = 52t psi L 1,351--pi·-i -= AMowable = _.45 f'c, [Mll/(Str:top•n>l Unshored DL Sress· = 13,972 psi : 2~,111 psi = Allowable = .66 Fy l Actual Shear Stress= 3,167 psi : 14,4H 1si = Allowable =_.41 Fy l :-----------------------------------------"·---~----------~------------1 ULTIMATE STRENGTH Cf CCWOSITE. SECT!~ Ulti1ate Mo1ent ·Capacity of Co1posite Section_= Ultimate Moment/ Max. Service Moment = 471 ft-k 1.93 ·-;'!: .·. ··-x:-· I ·-. . . ,f'" -"""? . ~ . ., ., ~ -. PAGE . : ______ __ I·--'· PROJECT: ___ ,,,__ ____ _ SUBJECT:_, ______ _ l_-~7-- BY: ____ DATE: ___ _ 1 I ffllllX I nwnx I. I I· I- I- I I I I I I ·1 ·1 mmx mmx Max Shear Force: Vh : Min. ( .85 f'c Ac/2 or AsFy/2) = 26-4.6 kips ---} OBER OF C(NECTORS USED 24 PER 1/2 SPAN V'h= Actual Shear For Studs Used.= 26-4.6 kips (Min.= .25 l Vh) Actual¾ Composite Action = 180.00 DEFLECTIONS · ---» I-tr: xx is Based on ° n : Def I ect ion • ---------.- I-tr:xx of Composite Section I-EH. : Is+ [V'h/ Vh)".5f(Itr-Is>J = 2,438 in"4 = 2,438 in"4 >LOCATION--> X Distance froa Left Support?= . 17.5. ft Default= L/2 DEAD LOAD = 0.337 in: L / 1247 0.834 in: L / 5'3 LIVE hOAD = 0.402 in: L / 1144_ i.412 in; L. /. 1M4 TOTAL LOAD=. 0.739 in: L / 568 1.237 in : L / 341- REACTIONS ---------LEFT RIGHT ------- DEAD LOAD = 11.43 k'i:ps 11.57 kips LIVE LOAD = 11.25 • 13.5'. I TOTAL LOAD= 21.68 kips 25.17 kips- _-;. '~-·- --~;_ 1-.. PA'GE :.· ____ _ PROJECT:. SUBJECT: __ _ -------- ,.-BY: ___ DATE : 2. • I 2-,:-1'·~ 1 · -------,. , .. I I I_ 1· I- I I I mmx 1111)( IIIIIX 1-mmx I I I I I I mmx mmx ,I½." ''"'""'""'---·-·-----~:~- I>ESCRIPTION·: S612 GEl'ERAL DATA > Bea1 Span > Beill Spacing = = = > Beam Trib Width >Tot.Stab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Width= > Ribs: Parll, = 1 Perp. = i > Shear Stud Cap. =· 35 111 19.33 ft 9.66 ft r 5,5 in. 3 in 6 in 6 in 1 / 11..5 kips > F-y F-b = = > f'c = > Concrete Wt. = n: Strength = n : Deft ect ion= > Beam Location: Center=l, Edge=i 36,000 psi / 24,0H psi 3·,Hf psi . 1-44 pcf 9.29 9.28 / -0 > Use Partii'I Co11posite Act·i on? Y=l, N=tl / CONSTRUCTION LOADS ( Applied BEFOOE 75X Curing.) ------------------> Slab Weight = 0 psf D.L. x Trib Width = tl,010· kif > !Ilise Dead Load = e • Beu Weight = _ t.058. 11 --------Add I I Un if ort Loa:d = 0 • Tota:! Unit D.L. = ti psf #1 = #2 = 5 k X = 19 5 k X = 20 Toh! Unif"or11 D,L. = 0.6 Hf . #3 = 3.6 k X = -30. ft ~ = 0 k X = 0 ft LOAl)S ON COMPOSITE SECTION ~l App I i ed AFTER 75%. Curing ) > Unit Live .Load #1 = 0 psf LL. x Tri b-Width'-= I.Ht k If · > Unit Live Load #2 = f • Add.1 I Unitor1 Load = _ f.19 • / Total -> Poi'.n_ #1 = - 12·= ;if ~~"\):-~t·~? _______ _:;,. · -~otll Uniform L.L. = _ t.191 kif #3 = -,.,..~ = 6,75 k X = 30:ft __ 0 k _ X = -· l ft PAGE: ___ _ PROJECT: ·-----___ _ SUBJECT: ___________ _ 1--· __ _ _ ffllllX· _ BY: __ ._ DATE :~.-/'Z-11 1_~ ax I I I·- MX 1· I- I I ffllllX I .I 1· I- .I- I MX .I I. NX Dead Load Mo1ent Livt Load No1ent Tohl Mo1ent = -. = EFFECTIVE FLANGE WIDTH Based on Length = Based on Spacins = Bastd on Slab Depth= ROU.ED SECT-ION D~T-A 81.6 ft-k 162.6 ft-k -------- 2«.2 ft-k 41.5 in 11-9,2 in 39.5 in S-REQUIRED = 122.00 in"3 Max. Shear = 25 kips AREA REQ 1D = 1.74 in"2 > Effective Width = _40. in --> DEPTH CLASS :· . SELECTED STEEL SECTION -1 . .,a.-->.> W21~· Section. Properties : I-stet I = s~steel = Sectlon. Arn !op .F+-.n9_e, Dtpth Wt· ptr foot = = = = Tn.nsf.or1ed Proptrtits: 984 in"4 I-tr : Effecti.vt = 2,608 in"4 95 in"3 S-tr : Top = 333.1 in"3 14,7 in"2 _ S-tr : Bottoa = 141,8 • 6.53 in s-tr : Eff. @ Bott.= 14-1.1 11· 21,8 in n*5tr : EU .• t Top_ = 3,~4. .. • 58.8 #/ft X-X Axis Fro• Botto1F 18.5 in V-horiz t 1H ¼. -264.6 kips :-STRESS.-'EVALUATION --------------------------------------------------: : SHORED. & t.lNSIGED : Service ·Load $tresses: @ Bottoa-of Bua @ Top of Concrete = 28-, 18-1 ps i = 941_ psi I ,. : 24,Ht p.fr= Allowabl·e 1,358 psi =. Allowable_ r : UNSIOE). STRESS 0£CK· ·: • I I· MAX, S;-; (1'. "3 Desisn S-tr = 141 f.3 ,. I . ,,.., psi = Allowable = .89 Fy I Fb:Top of Concrete = 631 ps-i. r 1,351 psi =: Al lowab·le =._,45 f 1cl CIUl/(Stntoptn) l I • I Unshored DL Sress = 11,368 psi : 24,Hf psi= Allowable= .66 Fy I Actual Shear Stress= 3,167 psi : 14,4H psi =Allowable= .,4t Fy: ;----------------------------------------------------------------------: ll.TIMATE STRENGTH OFCO!f)()SITE SECTION Ultiiate Mo1ent Capacity of Co1posite Section = Ulti1ate Mo1ent /Max.Service Mo1ent = 470 tt-k 1.93 S~J'Z. ,.,~ £;~-,~-~_.,,.,···:~-5,~,~;;~~'.:'·?f'f:: ';~::·,r~,if~'~)( .··.··~·~:::::'°Yi~~~~~-~:-:~:':.~ ';~i{~ ' ' ' .,.,,v, •. 1--~-..,,. ........... -1- JIIIIIX • . 1· -IIIIIIX' I 1· IIIIIIX . I· - .1· I· I I JIIIIIX ·1 I IIIIIIX I I ·I I I I ' .. PAGE:_____ ,' --O• ·:-"--.. PROJECT: __ ., ·, ·'.· sue.JECT: .f --------- ------------ Max Shtar Foret:-Vh : Min, ( .85 t•c Ac/2 or AsFy/2 ) = 26'4,6 kips ---> NIMBER OF C<HECT!Ri USED = 24 PER 1/2 SPAN V-1h.= Actual Shnr For Studs Used = 26'4,6 kips ( Min, = ,25 * Vh-> Actual i. CoaposJtt Action _ = 188,H DEFLECTIONS ---» I-tt:xx is Based on" n: Deflection• -----------I-tr:xx of Co1posJtt Section I-Eff, : Is + EV1h/ Yh)A,5f(ltr-Isn : 2,438 inA4 > LOCATIC* --> X Di stJ,;.t1.· froa Left Supporb= 1_7 .5 ft. Dehul t =-L/2 ----------------------·-----------------DEAD LOAD = S.246 in: L / 1788 f.619 in: L / LlVE LOAD = t.493 in: L / 852_ t.493 in; L / 689 852 ,,._- TOTAL LOAD--= 8.739 in: L / 568 1,1'82 in: L / 381 REACTiONs DEAD LOAD = UYE LOAD = TOTAL LOAD-= LEFT 7.11 kips 14.58 • 21.68 k:ips, RIGHT 8.25 kips _ 1'6,83. M 25.fL k.ips _..,.r"-,j ,-_ I-- I I I I. :1 mrnx I --- mmx :_· .. '., --_ ~. ~"'---~;,; :,£~;-;t;~:~~?;~f;t-;~;~tt;i;~~-i ·,:~::~-~:;;;:::µ~ ~r' __ DESCRIPTION: SG12A GENERAL DATA > Beim Span = > Beam Spacing = > Beam Trib Width = >Tot.Slab· Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Wi4th= > Ribs: Parll. = 1 . Perp, = 0 : ·. > Shear Stud Cap. -· 25 ft 19.33 ft. 9.66 f't 5.5 in 3 in 6. in 6 in 1 11.5 kips ·-.,_. _ _ PAGE :________ . ,~EC'F: ___ _ -:SUBJECT: --------- BY:_· _ DATE :;..;-Ii:-!$ > F-y F-b _ = 50,000 psi = _ 33,333 psi > f'c = 3,Hf· psi > C_oncrete Wt._ = 144 pd n: Strength· =-9.29 n ·:. Deflection;: 9.28 > Btu,.Loc.at ion. : Center=!, Edgt=i_ :. > Usf Parti a I Collf)o_s i tt Adion? Y=t, N=f 1 CONSTRUCTION LOAps ( App.Ii ed BEFORE m Curing } > Slab Weight = t psf > Misc Deid Load = 0 • Tohl Uni't D.L. = t psf #1 = 5 k X = 11 2t #2 = 3.6 k X = D,L. x Trib Wfdth. = 0.M kif Beu-lilt ight . = .. 0.026_ " Add!+ UnHor1·-Loa.d = ll • ------- Totd Unifor1, D.L. = 0-.026 kl-f .. -#3 = 14 = _ik_X= _irt f, k X = 0 rt I I_ mmx . LOADS ON COMPOSITE SECTIGI ( Ap.p.l itd.: Af.TER, 75r.-Curing ) {11111X _I I mmx _I· ·ffll1IX _I I ., > Unit Live Load. #1 = > Unit Live Lo.~d "2-.. =-... ~1:~t:~- Total .. t.L.-x Tr-ib Width = 0.0H kl-f' ,j-q_ Uni-ton1 Load = . t.19. u t· k X = 0 ft __ i k _ X = _ i, f't . ·1l • ____ :;.?_"' J"',,.-•• I IIIRX. I ... I I: mmx mmx I I I I ,ax ·I I I I mmx ·I I I _I - I _I mmx ~, m111x •• ·-T, ·:.· :---··-: .. -----• . ----=-·::.. --.: P'GE •• ______ _ -.:'tf::'iI. I\ ,: -PROJECT: _ _ >-SUBJECT: -_._ .. _ ·---------BY: ___ DATE :_'!--I'S-88 --------------- MOMENTS Dead Load Moment = 39.2. ft-k S-REQUIRED = 43.524 in"3 Live Load Moment = 81.8 _ tt-k --------Max. Shear = 17 kips Total Mo1ent = 120.9 ft-k AREA REQ'D = __ 0,83 in"2 EFFECTIVE FLANGE WIDTH --------------· -------Based on_ Length = 30.5 in Based on Spacing = 118,7 in > Effective Width = 31_ in . Based on Slab Depth= 38.5 in ROLLED SECTION DATA --> DEPTH CLASS: in -------------------SELECTED STEEL. SECTION ------>> W16X26 Section Properties: I-steel = S-steel, Section Area Top Flange Depth Wt per t'ocot = = = = = Transformed Properties: 311 in"4 I-tr : Effective = 751 in"4 38 in"3 7.7 in"2 5.51 in 15,7 in 26.0 #/ft s-tr : Top = 160-,9 -i n"3 s-tr : Bottom = _ 62,3 • s-tr : Eff.@ Bott.= 54,9 • nfStr : Eff,@ Top = 1,145 • X-X Axis From Botto111= 15.3 in V-horiz@ 100 i. _ = 192.t kips l-STRESS EVALUATION---------------------------------~----------------! i SHORED & UNSHORED : Service Load Stresses: @ Bottom of Beam @ Top of Concrete = 26,415. psi. :- = ~l ,267-p.s i 33,333 ~si = Allowable 1,350 psi = Allowable_ "3 Design_ S-tr = _ 55 "3 I I I I • ~,500 psi =Allowable= .89 Fy l Fb:Top of Concrete= 857 psi [11111/(Str:toptn)] 1,35ill psi = Allowable =_.45 t''c: Unshored DL Sress = 12,234 psi : 33,333 psi =Allowable= .66 Fy l Actual Shear Stress= 4,227 psi : 20,000 psi = Allowable =_.40 Fy l :----------------------------------------------------------------------; ULTIMATE STRENGTH OF COfllPOSITE SECTION Ultimate Moment Cipacity of Co1posite Section = Ultimate Moment/ Max. Service Moment = 269 ft-k 2.23 SG/'2..A M , If,!_ . IS:::-IZ.0.8 _; ----------~( 1,44-I :1. -- 1·· 1_~ l.lllllX mmx I I I.~ mmx 1- I 1· 1- mmx I -- ·1 I mmx I I I I I PAGE: ___ _ ; PROJECT:_ SUBJECT-: _____ _ BY: ___ DATE :_-z.-IS--88 SHEAR CONNECTICtt Pa.rtiil Co•posite Action Being Used Mix She1r Force : Vh . Min. ( .85 f'c Ac/2 or AsFy/2) = 192.8 kips -'"-> NUl'IBER OF CONNECTORS USED = 8 PER 1/2 SPAN --------~-----------V'h~ Actual She1r For Studs Used= 92.0 kips (Min.= .25 •·Vh) Actu1J ¾ Co1posite Action =. 47.92 DEFLECTIONS ---» I-tr: xx is Ba.sed on • n : Def I ec ti on. • I-tr:xx of Composite Section- I-EU. : Is + CV 1h/ Vh)A.5*,(-I:tr-Is>J : 732 inA,4 >LOCATION-->· X Distance froa Left Support= 12.5 ft Default= L/2 SHORED UNSHORED DEAD LOAD = 0.190 in: L / 1578 0.462 in: L / 649 LIVE LOAD = 0.406 in: L / 740_ 0.406 in : L / 740 TOTAL LOAD= 0.596 in: L / 5M_ 0.868 in: L / 346 REACT!ONS DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 4.05 kips- 9.13 " ------ 13.17. _'\ips RIGHT 5.21 kips. 11.38-• 16.58 kips 1 ··· --_·· ~--PROJECT: ---------,. SUBJECT: --------- PAGE': ___ _ .~....._~~: 1-~----~ BY: ____ . ·DATE :'Z.-(6-~g I I I 1·· I I I I 1- 1 I I I I I . ~ u .F mmx DESIGN DESCRIPTION : SG13 GENERAL DATA > F-y = 36,000 psi > Beam Span = 38 ft F-b = 24,010 psi > Bea Spa_c i ng = 19.5 rt > f'c = 3,_000 psi > Beam Trib Width = 9.75· ft > Concreh Wt. = 144 pd >Tot.Slab· Thick. = 5.5 in n: Strength = 9.29 > Deck Rib Height = 3 in n : Def! ect ion= _ 9.,28 > Rib. Spacipg -· 6 in > Beam Location: > Rib Opentng Width= 6 in Center=!, Edge=i. : __ 0 > Rfbs: Pa~tl~ = 1 ... Perp. = i • "! -1 > Use Partial Composite Action? Y=l, N=i :. 1 > Shear Stud Cap. -· 11.5 kips CONSTRUCTION LOADS ( Applied BEFORE 75¾ Curing) ------------------> Slab Weight = 0 psf D.L. x Trib Width = i.000 kif > Misc Dead·Load = 0 • Bei.ll Weight = 0.050 " --------Add'I Unifor1 Load::: 0 11 Tobi Unit D;L. = .. 0 .psf Total Uniform D.L. = 0.050· kif #1 = 9.11 k X = 11 ... #3 = . 0 k _ X = __ 0. rt #2 =· 4.87 k X = 20 14 = · 0 k X = 0 rt .. mmx LOADS ON COMPOSITE SECTION (Applied.AFTER 75i. Curing) .rnmx llllllX JIHIIX > Unit Live Load. #1 = > Unit. Li.ve Load #Z. = _ I psf L.L. x Trib Width = 0·.008· kJf _ e.:~ ~ Add.' I Unit'or111 Load = _ 0.,19 u . ,{.,. hi Uniform LL. = 0.190 kH ., - #3 = 0 k X = 0 rt_ 14 = _ 0 k __ X = _ __ l ft 1--. . .. ~....;.i '--:~ .. I _ rnmx t-· Jllllll! I I I 1-mmx I-· I 1 .. rnmx I I I I I I I mmx 1· -... - ffll!IX . -~~: .,_:·.~ ~ ~7 .·:::~~.q~;;2;:·;~2.;'%~--~ :i.:;>.::: ~-<;, ft·~··, PAGE =---'-----. . -,· ·:tr"' PROJECT: ________ _ . ~,-SUBJECT: _______ _ BY: __ DATE :_~.:.1:.:i"-=i.a.. Dead Load Moment = 81.4 ft-k S-REQUIRED = 129,58 in"3 Live Load Moment = 177.~ ft-k --------Ma.x. Shear = i.7 kips Total Moment = 259.2 ft-k AREA REQ'D = 1,89 inA2 EFFECTIVE FLANGE WIDTH ----------------------Based on Length = 36.5 in Based on Spacing -· 121.3 in > Efrective Width = _ 37_ in Ba.sed on Sla.b Depth: 39.5 in ROLLED·SECTION DATA --~ DEPTH CLASS·: _in . SELECTED i. STEEL SECTION . _ t ------>> W21X50 ·section Properties : I-steel = S-stee+ = Section Area. Top Flange Depth · Wt per foot = = = = Transformed Properties: 984 in"4 I-tr : Erfective . =_ 2;231 inA4 95 in"3 s-tr : Top = 316.4 inA3 14.7 in"2 S-tr : Botto, = 140.0 • 6.53 in 21.8 in 50.i ·1.fft S-tr : EH. @ Bott.= 130.6 1• ntStr : EH~ @ Top_ =. 2,512. • X-X Ax.is .. Fro• Bottom= 18.3 in. V-horii@ 1.0£1 i. . =. 256.2 kips. :-STRESS EVALUATION--------------------------------------------------: I SHORED & UNSHORED, : Service Loa.d Stresses: @ Bottom of B.ea.m __ @ Top of Concrete: Fb:Top of Concrete= CMll/(Str:toptn)J = 23,819· ps:i 24,090 ps~ = Allowable 1,350 psi =: Allowable. l . = 1,238_ psi : '1i- ... 3. Desig~_ s-tr = 131 n"3 I I, ., I I. I . r'41 psi =Allowable= .89 Fy I "f,,.._ I -I 849 psi. : 1,35t11 psi ~ Allowable = ..• 45 r'tl .. I --I Unshored Di. Sress = 11,334 psi : 24,000 .psi =Allowable= ,66 Fy I . Actua.l Shea.r Stress=. 3,447 psi :. 14,4H psi ':' Allowable = ..• 40 Fy I :----------------------------------------------------------------------: ULTIMATE STRENGTH OF COMPOSITE SECTION Ultimate Moment Ca.pa.city of Composite Section.= Ulti1ate Moment/ Ma.x. Service Moment· = .. 451 H-k . 1.74. I .. rnmx -Jllllll( :1·- 1._ -... I-~ ~mmx I I .I I I I I ~1 .1 I I I . _ .mini$ mmx . ' - PAGE: ___ _ BY: ______ DATE: 'Z~ t~J-1..J --~~it{J~l;J~~' Pa.rt-rd Co1pos.ite Action Being Used Ma.x Shea.r Force: Vh : Min. ( .85 f'c Ac/2 or AsFy/2} = 256.2 kips ---> NUMBER OF CONNECTORS USEJ1 = 14 PER 1/2 SPAN V'h= Actua.l Shea.r For Studs Used= 161.0 kips (Min.= .25 * Vh} Ac tua. I i. Composite Action = _ 6Z,,85 DEFLECTIONS ---» 1-tr:xx is Ba.sed on· n n : De.Hec.tion • ·----------I~tr:xx of Composite Section I-EH. : = 2,387" i n"4· . : 2,f9r jnA4 Is + IV'h/ Vh)".51:(Itr-Is)l > LOCATION --> X Di sh.nee from Left Support = ~ 15 ft_ Defa.ul t = L/2 SHORED DEAD LOAD = 0,205 in : L / 1753 0,438 in.: L / 823 LIVE LOAD = 0.45f in: L / . 800_ 0,45" in: L / 80f TOTAL LOAD = 0.655. in : L / 549.. 0.888 in : L / 406 REACTIONS DEAD LOAD = LIVE LOAD = TOTAL LOAD= ·, •,. -~· ::,,:~:\~~t,:f ,-: -;.: 'LEFT RIGHT 8.45 k.ip.s 7.13 kips ·- 18.84 II _ 15., 72 • _ 27.29-.,k.ips -22. 75_ kips . /Jo. {, ~ /,3 75" q-5" 14f!:. ,1s-x • ii, -!l"#f - .. :. .. ~:f--:-;;,~--l'"~.;~--~ ""~.; ,"._ ::;;~ I-~t\POSTEN' C>11111x I -.. -· -·--- ------"'!'< ' ---,._. -~ -· -· - .I~ -~~ -~-~, ·1 I- I 1- DESCRIPTION: SB1f GENERAL DATA . > Beam Span = > Beam Spacing = > Beam Trib Width = >Tot.Slab Thick. = ~ Deck Rib Height = > Rib Spacing = _ > Rib_ Opening Width= > Ribs: Parll, = 1 _ .. Perp. =_ 0 > Shear Stud Cap. = 26.33 ft 10 ft 5 ft 5,5 in 3 •. in 6 in __ 6_ in_ • 11.5 kips . ---------BY: __ DATE : ___ _ DESIGN > F-y = F-b __ = ) t 1C = . > Concrett wt. __ =. n: Strength = _ n :. Deflection= > Beu Location: 36,He ps·i _ 24,IH ps·i .. 3,018 psi t-44 pcf _ 9, .29 ,. _ 2:.20 __ . Center=l., Edge=S__ =. _ f _ .. > Use-Part i a I Co11pos i te ___ . _ Action? Y=1, N=I l I-~-~:-- 1 · -.... ---.. -- CONSTRUCTION LOADS ( App I i ed BEFORE 75¾ Curing } _ , > SI.ab Weight = 5f psi D.L. x Trib Width .. = 1,251 kif 1 .. .' ~ IT mmx .. ) Misc. Dead Load = 0 • . Beq__Neight . -=~ t.026_" _. I . .mmx .I- I· I- .. I lljmx _ I :1 Add'! Unifora Load,= I ." . Total Unit D.L. = _ 51 psf Total Unif'or• D.L. = 0.276 kif LOADS ON COMPOSITE SECTic»I ( App I i ed AFTER. 75% Curing_ > . _ .. . . __ .. _ > .Unit Liv,_Load..#1 = > Unit Live Load. #2_ = Total. Uni~ L.L = MOMENTS Based on Length = _ Based on Spacing = Based on Slab Depth= 115 psf L.L. x Trib Width = tl.~25 k·f.f 0 " _ Add' L Unifor1 Load = _ 1 .• 19~. • _ .. , 105 psf Tota-.L Un if or• L.L._ = _ 0. 715 kH __ _ 31.8 in 62.8 in 38.5 in S-REQI.JIRED Mix. Shur · _ AREA REQ'D = 13 kips_ : _ 0.91. jnA2,_ . ~ Effective Width .. = _3Z. in_ S81 .. ,-;-~.--... PAGE: --,-.,---.,.. ·------·----,,.-~ ,,,. ... - :1··_-___,; BY: ___ DA.TE:..;...,... ___ _ .• .!MIX ,.-.:~x I----,~ ~-_· I: __ -- IIIX 1--. I-·- 1. 1~ .I-- I_ - I' JMIX I -flllllX I -___ -- I· flllllX I SELECTED STEa SECTI~ ------» _ W16X26. _ __ ,---------- 16 Section Properties: .. Transfor1ed Properties:_ I-steel = 311 inA4 I-tr : Effective = 708 inA4. .. S-steel Section Area Top Flange Depth = 38 inA3 .. S-tr ·= Top _ = 131.i inA3 _ = 7.7 inA2 S-tr : Botto• = 63.7 " = 5.51 in S-tr : EU. @ Bott.= _ 55.-t •. = 15.7 in ntStr : EH. @ Top .=· 929 N _ Wt per foot = 26.1 #/ft X-X Axis Fro1 Bottom= __ 1-4.i_ in _ V-horiz @ 110 ¼ _ = 101.5 kips . :: STRESS EVALUATION--------------------------------------------------: L SOORED & ~D. :. . Service Load StressH : . @ Botto• of Beu ·@ Top of Concrete I UNSHORED STRESS Cl-ECK: MAX. S-transforu4:. = 18,596_ psi:_ 24,M psi? Allowable = 1,119 psi : 1,351 psi= Allowable (1.35 +.35 t MII/Mdl)tS-s = _ Actual. s-tr Effective_ .. 87 inA3 Design s-tr = 55 _ 55 j nA3 . _ . _ .. _ -· _ _ I I -• Fb:Bottoll o{ Beil. =_ 20,891 psi_ t 32,041 psi = Allowable =_.8'l Fy l ... (Mdl/Ss + MII/Str:Designl Fb:Top of Concrete= SH psi [Ml I/ (Str:toptnl J I .. ---' -1,351 psi =Allowable= .45 f'c: I ---1 - Unshored DL Sress = .. 7,474 psi_ :. 24,Ml psi = Allowable =_.66_ Fy I.. Actual Shear Stress= 3,326 p1i : 14,-48 ps·i = Allowable = .40 Fy I :---------, -· ------------. --... --; '---. .::· .;,t·" --------------------------------: ULT ·ON~ Section = 229· ft-k. .. 2.67 ... _ )osi te Action Be_i ng Used -----------------Max Shear Force _: Vh Min. ( .85 f'c Ac/2 or AsFy/2:>. = .. 101.5 kips_ ---> OBER-OF CONNECTORS USED = 4 PER 1/2 SPAN V'h= Actual Shear For Studs Used= 46.f kips (Min.= .25 t Vh > Actual i. Composite Action =_ 45.34 . -:-..... -_,. . SBI 1~--=--.. ;-' -- . -_ PROJEC'r: ________ _ " SUBJECT: ----------- PASE:·..,. __ _ 1~'.~-:~ -__ __ I • • __ ---------BY: __ DATE ::.. __ _ -~ JIIIIX 1-.. -~~ -DEFLEC~'iONS:· --->> r-tr:xx is B1std on~ n : Deflection " I --.. . -. -I· 1---- r I. . -~ - --- .... -~ 1-~-~- I .. ----~- I ... 1 · JMIX I .I I I ,I I .I I I-tr:xx of Co1posite Section· . I-EU. : Is-+ CV'h/ Vh)A.5f(Itr-Is)J . > LOCATIIJf --> X Dish.nee fro1 Let't Support =-13.165.. t'C Default = L/2 ____ _ DEAD LOAn = 0.145 in : L / 2174 f.342 in; L / 924' LIVE LQAD. = .. t.376. in : L / 839:.. 8.376. in : L / ... 839 ... . TOTAL LOAQ =. t.5tt_ in : L / _ 615_ 0.718 in : L /.. 441 __ _ REACTIONS _________ , DEAD LOAD = . .• LIVE LOAD _ = . TOTAL LOAD. = LEFT 3.63 kips. .. 9 .41 _ • _ 13.05 kips RIGHT 3.63 kips .. . --9.41. • . 13.85_ k.ips __ 'j~*-,,,-'~!~t'J11t~";f;2;'5"':"'f'.!;?-0-c,V iift ~; / :' '*;'_'5idf-7t-lP:;-i'J',S',?~r,"'e,tr;;~j_&4'f5: .. ;i; _ . PA6E :____ -Jf; I . . PROJECT:______ __ _-·;.~ ~ _ . · . SUBJECT:. '::· _:..:.,_.,.. ---------,1-. __ BY: __ DATE : t .,.-.-.. lcl • !IIIIIX ·1· I 1-, I. 1·. ·1·- I I IIIX I !MIX . I mmx I· I I I 'IIIX :I .I DESCRIPTrot' :: SB2 GEtERAL DATA > BHI Span = > Beu Spat i n9; = > Beu Trib Ni.dth · = >Tot.Slab Thi'ck. = > Detk Rib HtJ9ht :. >· Rilt-Spacins =· > ,Rib-Optnin, Nidth= > Ribt: PirllL = 1 Perp., = 1: : > Shur Stud Cap. . ·:;-:{ I 24.33 ft - 5 ft 2;5 ft / 5~5 in 3 in 6 in 6 ilr t / U..5 kips = = > f'c = > Concrete Wt •. = n: Strength = n: Deflection= > Beu Loe at i·on : 36,HI J)S.i / 24,M psi . 3,M·pst 144 pd 9.29 -· 9,.28· Center=1, Edse=I. : _ I 1 > Use Partial Coaposite Action? Y=1, N=f CONSTRUCTIIJI LOADS < Appl i ed, BEF!H 75X Cur i n9 > . -----------------> Slab NtJ9ht = 51 psf D.L. x Trib Width = 1.125 kif > Misc Dead-Lo1d = -• • . BHI Nti9ht = _ 8.114. n Add' I Unifor1 Load = I • Total·_ Un-i,t. D •. L. __ = .. 58 p.sf Total Uniform D.L = t.139-kif LOADS' (Jf roflOSITE SECT:IIJf < App I i td AFTER 75X Curing > > Unit Live: Load. it = 81' psf L.L. x Trib Nidth = i.263 kl_f > Uni,t Li-ve:Load 12 = 25 • Add 1 I Unifor1.Load = .. 1.19·_ n I' Tota.I Unit L.L • = 1~-psf _ To.hi· Unihr1 L.L. = ·-· 0~453. kl'f Dnd··· Live Total: ---------------------.' Based· on Leng-th = 28.3 in: · ·S·REWIREO MJx. Shur AREA REQ'D : 21.883 jnA3: = 7 kips = _ t.51 in"2: Based on Spa.cins = 32.t· in > Effective Nidth = _ 28. in Based on Slab Depth= 37.f· in sea. PAGE : _____ _ I~---- PROJECT: _____ _ SUBJECT: ________ _ 'j.· ~· ' ·~- I ~ .-x-----,-....,;.; ...--------------- mmx I I. -- MX 1 · - I I- I 1- I- mmx I_ 1, IIIIIIX I' I 1· mmx 1, SELECTED : .. · STEEL. SECTI(J( ------>> . W12X14 . -> DEPTH CUSS: Section Properties: Tr1nsfor11d Properties: in I-steel = 89 in."4 I-tr : Effective = 388 in"-t S-steel = 15 in"3 s-tr. : Top = • 78.2 i!l"3 Section Arn Top Flange Depth Wt per foot = = = 4.2 i n"2 S-tr :. Bo.ttoa. = 31.2 • 3.97 in : s-tr. : Eff.. t Bott.= _ 3f.2_ • 11.9 in n*Stt : EH. t Top = 726 " U.I I/ft X-X Ax-i-s, Froa Bottoa= 12.6~ in V·horiz t 18 X. -74.9-kips 1-STRESS EVALUATION -------------------------------------------------1 I SHORED & ltSiORED . : . ·: Serv,i c e Lotd-Stresses-:. t Botto• of Bea · @ Top of Concrete l l.JNSl,l)RED STRESS Cl£CI( :- MAX. S-transfor1ed: ) "l = 17,371_ l)cSi i .. 24,M psi ;Allow1ble = 723 psi.·:. 1,351-psi = Allowable (1.35 +,35 t MII/Md,1)*5-s = 37 i n"3 Dit.i.g_n s-tr. = Actual s~tr Effective = 3f in"3, I I. Fb:Botto1 of Beu = 21,572 psi :. 32,141 p,s-i =. Allow1bl·e = .• 89. Fy l (Mdl-/Ss + Ml 1/Str:Design·) l I • I' Fb:Top of Concrete = 553 psi : 1-,S psi= AUow1ble = .. 45 f'cl CMll/(Str:toptn)l Unshored DL Sress = 8,~ psi-. : 24,•-ps-i =-AH~_ble = .66. Fy I I. Actual Shear Stress= 3,821 psi :. 14;,~ p.sl = AHowable = .-48 Fy I t----~-------------------------r7--:-~-------------------------------f _ Sld'iOri = 117 ft-k = _ 2.67 Max Shear Force: Vh t. Min. ( .85 f'c Ac/2 or AsFy/2_ ), = 7-4 .. 9 kips . ---> NUMBER OF CONNECTORS USED = 7 PER 1/2 SPAN -----------.-----. -V'h= Actual Shear For Studs Use.d = 74.9 kips (_ Min. = .25 t Vh > Actual r. Co1posite Action = 118.N . S-BZ. {. -~ _ ... _ I ·1--~ 1· mmx lfflX I- I I ·1- I j!IIIIX 1·· I mmx I I I I I I -I .J I _I -,:.-·. ~;,;: '}...,·;:-"_v~ _;_ .,-• ,,,,--::-p-.•J_ • •: N-::_:;/;' .. . .:5.., .. --- PAGE:-____ _ PROJECT: -----· SUBJECT: _________ _ BY: ___ DATE : _;_ .• ,.z,. t:f. ~: .;_~-~?~]:~~· , ,-rr·Btseif' on II n : Def I ect ion n I-tr:xx or Composite Sectio~ I-EH. : Is+ CV'h/ Vh)A,5f(Itr-Is)l >LOCATION--> X Distance rro• Left Support= 12.165 rt Default= L/2 DEAD LOAD = 0.100 in: L / LIVE LOAD = 0.324 in: L / TOTAL LOAD= 0,424 in: L / REACTIONS LEFT 2933 0.427 in: L / 685 981 .. ~ 689_ 0.751 in : L / 389 RIGHT DEAD LOAD = LIVE LOAD = 1.69 kips 5,58 A 1.69 k_ips 5.50 1 ------ TOTAL LOAD= 7.21 kips 7,2''. kips .,_ . -:--~--' -·---.. ~ =.;; ,,:,·:. S82- ..,. .. ----.: .. ~ ' ... PAGE: __ _ ·1,-------.. -~ • ,r PROJECT: ________ _ SUBJECT: ___________ _ -----,-. -----.-:1 nn_x __ ...........,""""' I ·;;~;;X. "--,- BY: ___ DATE : ___ , I I I I I I i 1· I I ~, I I I I max mmx mmx lftlllX DESCRIPTION: SBj GENE;RAL DATA ------~-----> Beam Span - > Beam Spacing = > Bea11 Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Width= > Ribs: Parll. = 1 Perp. = t > Shear Stud Cap. = · 29.33 It J 10 ft 5 ft 5.5 in 3 in 6 in 6 in 0 11.5 kips > F-y = 36,M psi F-b = 2~,010 psi > f'c = 3,000 psi > Concrete Wt. = 144 pcf n: Strength = 9,29 n: Deflection= 9.28· > Be1• Loc1tion: Center=t, Edge=i eJ > Use Partiil Composite Action? Y=l, N=0 0 CONSTRUCTION LOADS ( Applied BEFORE 75¾ Curing> > Slab Weight = 50 psf D,L x Trib Width = 0.250 kif > Misc Dead Load = 0 • Beu Weight = 0.031 " --------Add' I Uni for1 Load = 0 • Total Unit D.L. = 50 psf Total Unifor11 D.L. = 0,281 kH LOADS ON roi!POSITE SEeTiON ( App I i ed AFTER 75X Curi n9 ) · --------------·-----------> Unit Live Load #1 = 105 psf L.L. x Trib Width = 0,525 kif > Unit Live Load #2 = 0 • Add' I Unifor1 Load = 0,19 " Total Unit L.L. = MOMENTS ----------------------Based on Length = Based on Spacing = Based on Slab Depth= 105 psf Total Unifoni L.L. = 0.710 kif .,.. 34.9 in 62.8 in 38.5 in 5-REQUIRED !'lax. Shear AREA REQ'D > Effective Width = 15 kips : 1,01 jnA2 = 35 in S63 . ' 1---. ,,,.., I -~ I mmx mmx I 1· I I mmx I I I .I I I mnlX I I mmx I I I mmx I PAGE: ..... __ _ PROJECT: ____ , SUBJECT: _______ _ BY-:_ DATE : ___ _ -------------· --- ------~:,t-:,.,:,, ' : "< ~ SELECTED, STEEL SECTitlf ---.,.--» W16X31 -> DEPTH CLASS : in Section Properties: Tt1nsfor1ed Properties: I-steel = 375 jnA,4 47 jnA3 I-tr : Effective = 1,175 inA4 s-stetl = S-tr : Top = 148.2 i nA3 Section Area. Top ~lang, Depth Wt per foot = = = = 9,1 inA2 5.53 in 15.9 in 31.0 I/ft 5-tr : Bottom = 76.2. • 5-tr : Elf. f Bott.= 76.2 • ntStr : EU,@ Top = 1,376 " X-X Axis Fro1 Botto•= 1-4,.1 in V-horiz @ 100 ¾ = 111.-1 kips 1.-STRESS.EVALUATION, --------------------------------------------------1 I SHOOED & llNSlilRED : Service Load Strtssts~: ., . @ BQtta of B111 ·: ,- @· Top of Concrete UNSHORED STRESS CfECK: MAX~ S-transfor1ed: = 16,875 psi = 934 psi 24,M psi =. Al·lowable 1,350 psi = A-1 lowib I e (1.35 +.35 * MII-/Mdl )*5-s = Attual S-tr Effective = 186 inA3 Design s-tr = 7.6 inA3 76 I 'I . Fb:Botto1 of Beil = 19,796 psi : 32,s-.e-psi= Allowable= .89 Fy I (Mdl·/Ss + MI-I/Str:Des-ign) Fb:Top of Concrete= 670 ps,i 11350 psi = Al'lowable = .45 f'c: [M 11/ ( Stn toptn )J Unshored DL Sress = 7,682 psi· : 24,0ee psi = A•llowible = .66 Fy : Actuil Shear Stress= 3,345 ps.i :. 14r41f psi = A·! lowable = .41 Fy : :------------------------------~-------------------------------------: ,· ~-- U1ti Secti.on = = ______ _:~ ,, Mix She~; Force :: Vh : Min. ( .85 f'c Ac/2 or AsFy/2). = 111.1 kips 267 ft-k 2.49 ---> tUIBER OF cotfECTORS USED = Hl PER 1/2 SPAN V'h= Actuil Shear For Studs Used.= 111,l kips (Min.= .25 * Vh) Actual¾ Co1posite Action = 180.ff S8.3 ~-:~t·~-~ •i-.1<~-~~~*~~i:~~~~t1~,~~J!~~,t~;-:-iJ-: -- ,:-' 6- ---€-:: ,.;· \)\~, ;,f PROJECT: ________ _ ·;-·t,: Sl&IECT: ________ _ ,:- PAGE": ___ _ -I EX ----- BY:_ DATE : ___ _ ---------- MIX- I I I I I •x I I' mmx I I I I I .I I I I -----------I-tr:xx or Composite Siction I-EH, : Is + CV'h/ Vh)".5*<Itr-Isfl :;on • n : De.f lection • > LOCATION:--> X Distance iroa Left Support= 14.665 ft Default= L/2 StaeD --------------------DEAD-LOAD = f,150 in-: L / 2346. ·LIVE LOAD = 0.382" in : L / 922 TOT AL LOAD =-t.532· in : L / 662. REACT!~: DEAD LOAD = LIVE LOAD = TOTAL LOAD· =- LEFT 4.12 kips 10.49 • U,61 kips ~ --------------------1.430 t.,382 ------ t.812 in : L / 818 in : L / 922 in : L / 434 RIGHT 4.12 kips, 10.49 • 14.61 kips I~. -_, __ \ '~ ....:_. 1- .!IIIIX I -1- I 1- 1· I--_ _I -, l 1· IIIIIIX 1-IIIIIIX I mmx 1-· _fflllX 1- I I ,. I IIIIIX I DESCRIPTION: SB4 GENERAL DATA _ > Beu Span = _ 21.33 ft i > Bea• Spacing = 1, ft > Beilli Trib Width >Tot.Slab Thick. = 5 ft I = 5.5 in > Deck Rib Height - > Rib Spac.ing = > Rib Opening Width= > Ribs.: Parll. = 1 Perp. = 0 > Shear Stud Cap. -= ~ 3 in 6 in 6 in -- I I 11.5 kips PA6Ei-___ _ BY: __ DATE. :_i. rz-.-11' DESIGN > F-y F-b = 36,HS psi/ = _ 24,118 psi > f't = 3,He-psi > Concrete. Wt... = 144 pcf n: Strength. = 9.29 n-: De'tltction= _ 9..28 > Btu Lofatton. : _ Centtr=l, Edgt=t_ : . _ 8 / > Ust Pvt i a:I C011pos i te Ac,iion'?" Y=l, N=8. 1 / CtN3TRUCTI()I LOADS ( App I i ed BEF~ 75X-Curi ns· ~ ------------------> Slab Weight = 58 psf D.L. x Trib-Width = t.25f kif > Misc Dead Load = t • Be111 Jilttght. _ =· -f.822. N --------Add' 1-UnifM'I Load. = 0 • Total Unit D.L. = 58 psf Tottrunfi.or1 1).L. =-8,272 kl:f . LOADS ON COfifOSITE SECTI()I ( Applied. AFTER 75X Curirrg ) > Unit Live Load #1 = > Unit Live Load #2 = Total Unit L.L. = 1'15 psf· L.L. x Trib Width-= 8~525 kit 8 • . Add' I Unitora· Load.= _ 1.19 N ./ 105 psf-Tota:[ Unif.ora, L.L. = _ t.115 kif ,.-~:= ._ -.... - , . ....,. :·. ' f k X = 0-ft. tk. __ X= __ t,t't · S--REWI8Ell' = 37,9"2 inA3 ---------Mix. Shear· = 16 kips Tohl Mo•ent = 75.8 tt-k -ARE,\-REQ!D =-1-.1-1 inA2 EFFECTIVE FLANGE WIDTH -----------~----------Based on Length = 26.3 in Based on Spacing = 62.5 in > Effictivt Width = _ 26. in Based on Slab Depth= 38.0 in . ., -....,_ ' ( , I-:. I .I- I I- I I 1·. -I. ·1 I I I I I I IIIIIX IIIIX IIIIIX mmx mmx ,: -.. -:.,:::--.. \Ji,,--~;..;:. .... --· T ~-~ .,..4- PA6E: ----PROJECT: __ _ SUBJECT: ________ _ BY: __ DATE :~•lt-,t in SELECTED STEEL SECTICtil· ------>> W14X22 Section Properties: I-steel = s~steel = Section Arei Top Flange Depth Wt per foot = = = = 199 jnA4 29 inA3 6.5 inAZ 5.H in 13.7 in 22., #/ft Tr1n~for1ed Properties: . I-tr : Effective = 517 inA4 S-tr : Top = _ 95,6 inA3 S-tr : Bottom = 49.5 " . s-tr : EU. t Bott.= __ 44,2. • ntStr: EH.@ Top = 728 " X-X Axis From Bottom=_ 12,1 in V-horiz@ 181 X = 83,9 kips I-STRESS EYALUATICtil ----------------------~---------------------------1 I Sf«)REI) & llNSHCm> : I ., Service Lo1d Stresses:: @ Botto• of Beu @ Top of Concrete = 21,576. psi = 1,251 psi " I ·24,SfJI psi =: Allow1ble .. I 1,351 psi = Al low1ble : UNSHORED. STRESS Cl£CK : I ,I I -I MAX~ S-trinsforaed: (1.35 +.~ t·MII/Mdl)tS-s = .Actuil S-tr Effective = 79 inA3 Design S-tr = 44 jnA3 Fb:Bottoli of Beu = 22,778 psi : 321041 psi = Allowable ;_,89 Fy I (Mifl/Ss + Ml 1/Str:Design} Fb:Top of Concrete= tMI 1/(Str:toptn)J 995 psi 1,351 psi = Allow1ble = ,45 f'cl Unshored DL Sress = 6,481 psi : 24,HI psi ~-Hlowable = .66 Fy I Actual Shear Stress= 5,151 psi : 14,481 psi= Allowable~ .48 Fy I i--------------------------------t-------------------------------------1 Ulti1il Ultiaat ·section = 173-ft-k = _ 2_.28, rv'te, _ &fr. Lh,"'.f M ~ 1-Sob WI flJfl ~It,';' w __ , 11'- :1""··-- I 1- IIIIIIX .-.. , ·1 I -. !MIX I. .I ., .I I ;1- il- I I I I lll!IIX mmx . ., -_I ~I -~~~:~--\~;}:\:~ -.. , ·- PA6E: ----PROJECT: ______ _ ,. SUBJECT: _______ .,._ BY:_ DATE. :Z • It ... ff ,..-,---·-----·----- .._.;,.;, osite Action Be-ing Used, Max Shear Force: Vh : Min. ( .85 f'c Ac/2 or AsFy/2 > = . 83.9 kips ---> NIJIBER OF cotfECTORS USED = 4 PER 1/2 SPAN V'h= Actual Shear For Studs Used= 46.I kips (Min.= .25 * Vh > Actual r. Co1posite Action = 5-t.81 DEFLECTlONs --->> I-tr:xx is Based on• n: Deflection n I-tr:xx of Composite Section I-EH. : Is + CV'h/ Vh)".5f<ltr-Is>l = 628 in"4 = 517 in"4 > LOCATION --> X Dist~nce fro• Left Support~=. 11.665 ft. Default = L/2 -------------·--------------------------DEAD LOAD = 0,085 in: L / 3i27 0.221 in: L / U66 LlVE LOAD = 0.330 in: L / 775_ t.330 in: L / 775 TOTAL LOAD= 0.415 in: L / 617 1.551 in: L / 466 REACTIONS ---------LEFT RIGHT DEAD LOAD = 2.9t kips 2.9t-kips LIVE LOAD = 9.29 • 13.16-• TOTAL LOAD= 12.19 kips 15 .. 96~ l<,ips 'lh- -"::.---_;..,._ -• ._,.-.<l>-<:::-~·';f.'." .. :,;!' ''.._.;;,~ ~~~ 1--·:·. _ _,, .,- .• X I :I I I ,~ ·1- I :1·· 111111)! 1-mmx ·1 )IIIIIX ,- mmx 1- I :I :1· ffllllX ii DESCRIPTION: SB5 GEtERAL D'HA > Beu.Spill = > Bea1,Spa!inJ = } Bn1 Trib N/dth = > Tot •. Slab Thick. = > Deck Rib Height = > Rrb Spacing· = >-Rib: Opening Nidth•· > Ribst Parll. = 1 . Perp. = I > Shear Stud Cap. =-,· 24.33 ft j 10 rt 5 ft ./ 5.5 in 3 in 6 in 6 in • I ~1.5 kips P'A6E. :-_____ _ PROJECT: ______ _ SUBJECT: . -------------------------BY: __ DATE : -! • l!t,•rt. ~--------------- DESIGN > F-y = 36,He psi/ F-b -24,HI psi > f'c = 3,ffe psi > Concrete Nt. = 144 ptr n: Strength = 9.29 n: Deflection= 9.28 > Beu Location: Center=1, Ed9e=S -, I > Use Partial Co1posite Action? Y=l, N=S 1 J CONsTRUCTI~ LOADS ( Applied BEFORE. 75¾ Curing) >-Slab Neight = 5f psf D.L. x Trib Width = 0.25fJ kif > Misc Dea~-Load = t • Bea11 Wt i ght =· _ 0.026 u --------Add'! Uniform Load.= f • _ Total Unit D.L. = 5f psf Total Uniform D.L. = S.276 kif LOADS"·cw ctJIIPOSITE SECTICW ( App If ed_ AFTER' 757. Curing > > Un.it Live L01d 11 = 195 psf LL. x Trib Nidth. = t.525 kif > Unit Live Load. #2 = t " Add' I Uni fora Load = ~ f.19 ".; Tobi Unit L.L = > Point Loads: #1 = #2 = Tota-I Moatnt = EFFECTIVE FLANGE WIDTH ----------------------Based.on. Length = Based on Spacing _ = Based on Slab Depth= 115 psf Total. Uniform LL. = _ 0.115 Hf --------· 81.1 ft-k- 29.8 in 62.8 in 38.5 in 13 = A= 0 k X = f.ft t k X = _ 0; ft S-REOOIRED = 4f.535 i.nA3 Max. Shear = 14 kips AREA REQ'D . -· 1.H inA2 > Effective Nidth = 30 in 'I ~ ",_0 , "-='~t:;' 0?~t= "';\ ;; '_j>' '"\8 · ~'\'. ;'' · . , ·· _ , ~·:cft:~J~ =: --;~'"'"'"-~ ,,, .. ·" ·. ai :~ , . PAGE : . (I\,: 1-~--. • ":-i,..-.., -. I. IIIIIX (IIIX 1- I 1- I-IIIIX .I 1- I- I 1· I rnmx I- .I-llll!IX I I ) ;1 I PROJECT::,_ SlllJEC.T: ·--------· --------BY': __ DATE : & .. rt....-CS· ---------------- '._--> DEPTH CLASS : · · SEt.Ecra,-. · · ~stm · ·SE:ctial~ 16- ------>> . W16X26 Section Propert·i es : I-steel = s-steel = SectJon Arn Top Fl1n9e Depth wt per foot = = = = Tr1nsfor1ed Properties : 381 inA4 I-tr : Effective 654 inA4 38 inA3 S-tr : Top = 123.8 inA3 7.7 inAZ S-tr : Botto• = 63.2 " 5.st in _ s-tr : Eff. f Bott.=_ 53.3 • 15. 7 in ntStr : Eff. _@ Top-= 834· • 26.8 #/ft X-X Axis From Botto11= 14..t in V-horiz t 1# X = 95.1 ki.ps : -STRESS EVAI.IJATICW ------------------------------------------------;..; l SH(fE) &-llEIGQ-: I 1, Service Loid Stress1J.: @ Botto• of Beu. ·, @ Top of Concrete ? = 18,237. psi : 2-4,Ht psf = Al low1ble = 1,166 psi : 1,351 psi= Allow1ble : UNSHORED STRESSOECK: MAX •. S-tr1nsfor11d : < 1.35-+.35 • MIJ/Md.lJtS-s = Adutl' S-tr Effective = 9Z inA3 D1si9n S-tr = 53. inA3 53 -I I Fb:Botto1 of Beu = 21,825 psi : 32,N psi= Allow1ble = .• 89-' Fy I OldlJSs, + Ml-1/Str:Dts-ign) Fb: Top of Concrete = 872 ps·i 1,358 psi = Allow1bl1 = .45 f'cl [11111/:CStr:toptn-H Unshored Dl. Sr1ss = 6,382 ps-i : 24,Ht psi = A'llow1ble ::. __ .66 Fy I Actua-1 Shur Stress= 3,681 psi : 14,48 psi = Allowable = ~48 Fy r :~-------------------~---------~:------------------------------------: .Section = 224-rt-k = _ 2 .• 76 '·-, .~A ·' 1.- mmx 1·· mmx- I I lllllll( I I ·1. -1·· 1. mmx .I I mmx I I I I I I PAGE. :. ___ _ .. PROJECT: .... ·.,_ __ .,...... ___ _ .. SI..IJECT:: _______ _ BY: __ DATE ::~..:.t.r:.J.f . 'f.. " -OS·i tt-Act i·on Being Used Max Shear Force: Vh Min. ( .85 f 1c Ac/2 or AsFy/2 ) = 95.t 'kips ---> NUMBER OF CCNECT~ USED = 3 PER 1/2 SPAN V1h= Actual Shear For Studs Used·= 34.5 lips (Min.= .25· * Vh > Actual ¾ Co1posite Action = _ 36.28 .. DEFLECTI!lE ---» I-tr:xx is Based on • n : Dtf l.ection " I-tr:xx of Co1poiite Section I-Eff. : Is + CV 1hf Vh)A.5¼(ltr-Is>J : 887 jnA,4 > LOCATION -.,.> X Dist1~h: froa Left Supporti}-:: 12.165 ft Dehult = L/2. st«:IREI).· lNllJE)· ----------------------------------------DEAD LOAD = 0.115 in : L / 2544 l'.249 i:n : L / 1171 LIVE LOAD = 8.345 in : L / 846. t .. 345: i·n. : L.t 846, TOTAL LOAD = 8.468 in :_L / REACTIONS 635 1.594-Ln:· :. l / 49L .. , ~ -' • 'I, .,. ... DEAD LOAD = LIVE LOAD = TOTAL LOAD= LEFT 3.36 kips. 9.31 . • 12,67 Ups- ·~ .. ~-., ~· :-'-... RIGHT ------- 3.36. kips u,_,e,, • ---~--- 14,4*·. kips -·-="':'::- •'~i(i ..::: :••91- ~!. l I ,I ,. 'ilNMOC 1-----. ' I . '.I I :I. :I· ·1 . ' I I I I· 1· I I I I 1· -I mmx fflllll( .rnmx rnmx mmx mmx "-·;_:'! ... ;;., .. - PAGE : ~:-~~1.-i.t~-- . 't:f~M DESIGN . ~-:.!t..=.:~~~~j§ ________ ~----- DESCRIPTION: SB6 GENERAL DATA > Beam Span - > Beam Spacing = > Beam Trib Width = >Tot.Slab Thick. = > Deck Rib Height = > Rib Spacing = > Rib Opening Width= > Ribs: Parll. = 1 19.33 ft 10 ft 5 ft 5.5 in 3 in 6 in· 6 in > F-y = F-b = > f'c = > Concrete Wt. = n: Strength = n : Dell ect ion= >Beil-Location: Center=!, Edge=S 36,000 psi 24,0£Ji psi 3,0£Ji psi 144 pd 9.29 9.28 0 Perp. = 0 0 > Use Partial Composite > Shear Stud Cap. = -11.5 kips A~\ion? Y=1, N=0 1 CONSTRUCTION LOADS C Applied BEF~. 75X Curing) > Slab Weight = 5£1 psf D,L. x Trib Width. = 0.258 kl-f > Misc Dead Load = 0 • Beu Weight = _ 0.014. 11 --------Add'! Uniform Load·= 0 " Total Unit !).L. = 50 psf Total Uniform D.,L, = 0.264 kH-- LOADS ON COMPOSITE SECT!()! ( Applied, AFTER~ Curing_) --------------------------> Unit Live Load #1 = > Unit Live Load #2 = Total Unit L.L. = > Point Loads: #1 = z. IZ = ,;;fi;: /:4;i: ~rs:~:~:;~ ~i!f,~ Dead ~;ti,~i,; Live b.oid--Mtitent-· · Total Mo1ent = EFFECTIVE FLANGE WIDTH Based on Length = Based on Spacing = Based on Slab Depth= 105 psf L,L, x Trib Width = 8.525· k~f 0 K Add' l Unffor1 Load = _ 8,19 • _ 105 psf 51.6 ft-k 23.3 in 62,0 in 37.0 in Total Unifora L.L. = _ 0.715· kif #3 = ::. #4 = 0 k X = 0 ft S k X = ., i ft S-REQUIRED Max. Shear AREA REQ'D > Effective Width = 25,787 in43 = 11-kips =-_ 0.77 inAZ = _ 23 in 1"~-·. I~ I 1-· _I I ~1-· :1 ii ·1 I· ·1- mmx mmx MX I mmx I .. nvnx -I I I I PAGE:-__ _ _ PROJECT: __________ _ ~ SUBJECT: ________ _ BY: ___ DATE : __ _ -~~«\. 12 ---------... ----4 SELECTED STEE. SECTic»f ------>> W12X14 Section Properties: I-steel S-steel Section Area Top Flange Depth Wt per foot = = = = = 89 jnA4 .15 inA3 4.2 inAZ 3.97 in 11.9 in 14.fJ #/ft Transforaed Properties: I-tr : Effective = 311 inA4 S-tr ·: Top = _ 67 .3 i nA3 S-tr : Bottom = 29.6 11 S-tr : Eff, t Bott.= __ 26.5_ • ntStr: EH.@ Top = 521 11 X-X Axis. Fro11 Botto•= _ 12·.1 in. V-horiz @ 100 i. = 74.3 kips· l-STRESS EVALUATic»f --------------------------------------------------1 l SHOOED & llNSI-De : Service Load Stress,~·: @ B~tto1 of Beu @ Top of Concrete l UNSI-WJRED STRESS MCK: MAX. S-transfored: = 23,377. psi = 1,187 psi 24,HfJ psi ::: Allowable 1,358 psi = Al.low.able · (1.35 +.35 * 11111/Mdl )fS-s = 37 inA3 Design 5-tr = 26 jnA3 26 Actual S-tr Effective = I-I Fb:Bottom of Beam = 27,718 psi : 32,~ psi = Allowable = .• 89 Fy : (Mdl/Ss + MII/Str:Design) I • • I Fb:Top of Concrete= 983 psi : 1,358 psi =Allowable= .45 f'cl [Mll/(Str:top*nll Unshored Ill Sress = 9,931 psi :_ 24,B psi = Al-lowable = .64 Fy l r Actua.l Shear Stress= 4,673' psi : u,• psi = Allowable = .41 Fy l : ----------' ____________________ .. _~i!'III __________ --------------------" _____ ,, tSection = 112 ft-k = .. 2.16 .·:}, ---.:-' .. I M = 4-30+ I +-;s' M ------5/,(:;; Mp..-,.- ~~ Zh,5" -.:...1-f h~ tS- . ~ -~~ j,,\-,_ ~ 4-[,0(-~'/-)-~ c'2,,, •1la~ -~~0 : ::~lt:E';G:-;f ,;~ ,~::(;::; I' -i ~ ::~ ~,' -: """l"':,:: :gt_.. :> ". -'"' . .-,--.. ~" -~~ PAGE :_. _ __,. f:\b . ..if PROJECT: ____________ _ ., '"<.! SUBJECT: ________ _ 1--· --~ . ',J . --------- ,-. __ . -x---..,.. BY.: __ DATE : ___ _ :.------------ __ _ IIIIIX J_ I I~-~ ). - I I I I I .I- I -1 .. I :I .I jllfflX !llfflX _osite Action Being Used -.----• .. ,-o: ~ •• ,. Max Shear Force·: Vh-: • Min. ( .85 f'c Ac/2.or AsFy/2) = 74.3 kips ---> NUMBER OF CCNECT-005 USED = 4· PER 1/2 SPAN V'h= kctual Shear For Studs Used= 46.t·kips {Min.= .25. f Vh > Actual. :t. Co1posite. Action = 61.94 DEFLECTIONS. ---» t-tr:xx is Based-on " n :. Deflection 11 -----------I-tr:-xx of Co1posite Section r-Ef.f. : _ Is_+ tV'hl Vh)A.5f(Itr-Isn = 311 inA4 > l.OCATi~ --> X Dist~ce troa Left Support_= 9.665 ft De.fault = L/2 ... SfOE> IMSHORED --------------------------------. ------ DEAD LOAD = t.195 i·n. : L / 2439 1.323 in : L / 719 LIVE L.OAD =. 0.315 in: L / 761 8.315 in : L / 761 ------ TOTAL LOAD = 8.-49f in : L / 581_ 8.628 in : L / 36i REACTIONS --------- DEAD LOAD = LIVE LOAD - TOTAL LOAD= LEFT 2.55. kips- 7.49-II RIQIT 2.55 kips 8.58 • 11.13_ kips I·.·. 7,/:c::: :~c.: ' ·. 1.·.-:·: :.>::,.,,,. __ • -~ · ~,-; :~.~~':.-'j-~~ \~·:~;:: '. \> _3: , .:~~· ~:~·.:-~~re;;-. -~~~~-;~:-.-_-~·--~-::~ ·,::~~z ::-.:tr:-.-.:.:_ ...... ::;:~i~~ '9~" •x I~~ ~J ~I I ;;. !I I I I I ~, 1· PAGE: ___ _ BY: ____ , DATE :. ___ _ CM'OSITE STEl:l BEAi'! Dl:SIGN DESCRIPTION: .55{ GEN€RAL DATA > Bea.11 Span = > Bea1 Spacing_ = > Bea fri.b Wi·dth = >Tot.Slab Thick. = > Deck Rib H1i9ht = > ~ib Spa.cins = >· Rib Opening WUth=. > Ribs: Pa.rll. = 1 Perp. = 0 > Shear Stud Ca.p. = 19.33 ft 5 ft 2 .. 5 ft 5.5 in 3 in 6 in 6 in I 11.5 lc-ips > F-y F-lt > f'c = = = > Concr1te Wt. n: Stren9th = n : Def I ect.i on= > Beam Location: Cent1r=1,·Ed91=t 36,~00 psi 24,0£10 psi 3,008 p,si 144 pc! 9.29 9.28 0 > Ust Partia.l Coi1posit1 Action? Y=t,. N=f 1 CONSTRUCTION. LOADS. ( Applied BE:FORE 7~¾ Curin9 > ------------------- > Sla.b Wei.ght = > Misc Dead load .-' Toti.I Uni.t D.L •. = 58 psf ' . 58 psf D.L. x Tri~ Ni.dth. ::. 81111-*isht = Add' I Uni fora Load = 0. 12tl k If 0.012 II ·0 • Total Unifora D.L. = .0,137 kif I I I .I llfflX LOADS ON CO!IIPOSifE SECtION ( App I i ed AFTER f5X Curi 119 ) .I I :I mmx > Unit Live Loa.d #1 = 115 p.sf L,L. x. Trib Nidth = 1·.263 kif' mmx mtX > Unit Liv:e Load #2 = (I. • Add'·I Unihr• Load = 0.19 '' EFFECTIVE FLANGE WIDTH Based on Length = Ba.sed on Spicing = Based on Slab Dtpth= 23.3 in 32.I in 37.0 in Tob·l UnH'or11 L.L. = IJ.453 kH Ma.x. Shear AR£A Rl:Q'D > Effe.c.tive Ni·dth = 13.766-in"3 = 6 kips = 0.41 in"2 = 23 in S67 I . ..---... . ' -~--1- 1· .I I I I I ·I I I I I I I I I fflllX ffllllX IIIIX mmx mmx IIIIIX . ·- PAGE : ______ _ BY: DATE: -------- ROLLED SECTltJ.l DATA -->· DE£PTH euss: in SELECTED SlEa · SECTION ------>> W10X12 Section Properties: I-steel = S-steel Section Area Top Fl·a.nse Depth Wt per foot = = = = = 54 inA,t 1l in"3 3,5 il'IA2 3.96 in 9.9 in 12.0 #/ft Tr1nsfor1id-Properties: 1-tr : Effective = 224 in,.4 S-tr : Ttp = 55.5 inA3 S-tr : Bottom = 23.5 • S-tr : Eff.@ Bott.= 21.6 " ntStr: EH. t Top = 4M 11 x:.x-Aic is Fro• Bottom= 11J.8 in V-horiz@ 110 X = 63.7 kips l-STRESS EVALUATION;. ______________ .:, ________________________________ : . . ~ : SHOOED & UNSHMD : Service Load Stresses: @ Bottoa of B_eilR @ Top of Concrete l ~D STRESS CHECK: I ~AX. s-transforud: = 10,312 psi = 728 psi : 241000 psi = Allow~ble 1,350 psi = Allowable (1.35 +.35 t MII/Mdl)tS-s = 27 i nA3 Des i:s_n· S-tr = Actual S-tr Effective = 22 in"'3 Fb:Bottoa ot' 8e11 = 18,798 psi : 32,Mf psi = Al I owab i e = .89 Fy : (Md!/Ss + MII/Str:Desi9n) Fb:Top of Concrete = ~9 ps-i (Ml 1/(Str:toptn)] 1~351 psi =Allowable= .4o f'cl ; ·:z •. , .• ,ps:i = Al Iowa.Me = .66 Fy I .. ~;:-· p$.i' = A'l'lowabl!! = .40 Fy : -----------------------------:, Section - = 88 t't--k 3,21 SH~Af< COtff:CTION Partial Co11posrt• Action-Being Used ----------------Max Shear ~orce: Vh Min. ( .85 t''c Ac/2 or AsFy/2) = 63.7 kips ---> NU'!Bc.R OF CONNECTORS USED :: -4 PER 112· SPAN V'h= Actual Shear For Studs Used= 46.f kips (Min.=.~* Vh) Actua.l ¾ Co1posite Action = 72.19 .SB1 ------ I ;I I I I I I I .I I I I I I I I llfflX ffllllX 111mx 1111\X mmx DEFLECTIONS --->> I-tr:xx is Bised on• n: Deflection• ----------- 1-tr:xx of CoMposite Section I-Eff. : Is + [V'h/ Vh)".5f(Itr-IsJl = 224 in"4 > LOCATION --> X .Di sta.nce from Left Support = 9~665 ft Dehul t = L/2 ---------------------------------------- DEAD. LOAD = 0.066 in : L / 3494 0.276 in. : L / 841 LIVE LOAD = 0.219 in: L / 1158 0.219 in: L / 1158 TOTAL LOAD= 0.286 in: L / 812 0.495 in: L / 469 REACTIONS DEAD LOAD = LIVE LOAD = TOTAL LOAD= LHT 1.32 kips 4.37 • 5.70 kips ... RIGHT 1.32 kips 4.37 • 5 • .70 kips -----~ .... --_.;,,. ,.-,·.,..~-- Project _______ _ Date _______ _ She:: --:-ti..,· _f-klg+_ ·'Z"·. ;-of-._-_-_-_-~- I I .I I ia.coF .- I I I :I ' ;--- I I I I I .I -~ I I I _I ·-·-- :I I I I I •' :I i I I I I I I I I I I .I :I I I I I I ~tz~~:~~~?5~~~~:~~~Yf~~J~:1:);~T;-'~~'.·'it;' ~:(~~~---'?5:~f'~:::~=;~~(~ ;,~ '::~:::: ,:(!J.?~e;;~§f~?'.f3:~;,~f1~~~~r~~~t-~<:· ; OPUS" CORPOfATION. Project -· ·. g:~, Date _______ _ She~:-tl\-· +{1-.111,r-:--::-o_f ___ _ I l. ". ..;;":-:" .... _ . ,;;;.~ •• ,, '~; Printer nuix. ,-¼. I.:-) I I !MIX 1· I I I I ·1 1 I ;I I ·I :1 I ·1 I- mmx m111x mmx mmx RIIIX fflJJECT:. ___ SUBJl:.CT: t'AGf : .. ____ _ ---------- . BV: __ DA1l : ___ _ •ShAM Dt:SlGN ______________________ . ___ \ __ _ DtSCf<lPllON: SB14 61:Ni:AAL .OA f-A > Be~m Span = > Beant Spa.c i·ns = .> Beam frib Width = > lot .. Sla.b lhick. .. > Deck Rib Height = > Hib Spa.cing -· > Rib · Openir,g Wi.dth= > Ribs: Pa.rl I.= 1 26.3:3 ft 11 f.t 5 ft o.o in 3 i.n 6 in 6 i.n > 1--y_ = 36,He psi F•b = 24,M psi > f."c = 3,He psi > Concrete Wt. = 144 pd n: Strength = 9.29 n: .Qeflec!ion= 9..28 > Bna Locat.ion : Cen.t:er= 1-, E11ge=0 8 Perp. = i1 : · > Shear S.tud Cap. = 0 > Us, ~artial Coaposite CONSTf<UClION-LOADS > Slab Weight > Mi SC Dea.d Load fohl Unit D.L. 11.0 kips Action? Y=t, N=0, 1 c App I i ed BE:FOF(E. 75¾ Curi ns > = oil psf D.L. x lrib Width = 0.2oe kif = 0 " St.all Wti·gbt = t~IH0 11 --------Add.' I Uni fora Load· = 0 " = ?:it pst' Tota.t. lfni't'ora D.L. = 0,290 kif #1 = #2 = 7.4 k X = 21.33 13 = ~= , 0·k X = 0 rt 0 ft 0 k X = 0 0 k X = LOADS ON COMPOSI fE Sc:CiION ( ·Appl i.ed AFTER· 7tiX. C.ur·ing. l > Unit Live Load #1 = 1r.i psf~ l.L x Trib Wtdth = 0.525 kif. >UnitLiveLoadtl = B -. Add 1I.U1rH.orI·Load= 8.19 11 far :l:lftHorI LL. = 0. 715. kif 8 k. X = ii k X = S'Ot4 I 1-- I I I I I .I I :I. ·1 I I I I I I I I IIIIX· IIIIIIX mmx mmx mmx --., -,_ ---{. .-A6l-: .. _ ------P~i:Cf : __ , ________ _ SUBJcCl: ___ , ______ _ ·--------BY: __ DATE:. : ___ _ Dead Load MoMent = 41.I ft-k S-kt:QUlkt.D = 77,868 inA3 live Load Moment = 108,( ft-k --------Max. Shear = 3Z kips rota! Moment = 100. l ft-k ARl:A RfQ'D = 2,24 inA2 EFFE:Cl IVE:. FLANGE: WlDlH ---------------------- Based.on Length = 33.3 in Based on Spacing = 63,5 in > £ffective Width = 33 in Based on Slab Depth= 40,0 in ROLLED St:CfION DATA --} Dt::PTH CLASS: in -------------------- SEL£CTED-· SfEEL StCTI~ ~ ------>> W16X40 Section Properties: I-steel = S-steel = Section Aru Top Flange . Depth Wt per foot = = = = Transformed Properties: 518 inA4 !-tr : Effective = · 1,296 inA4 6b inA3 s-tr : lop = 157.8 inA3. 11,8 inA2 s-tr : Bottom = 97.o • 7.00 in s-tr : EH.@ Bott.= 97.o " 16,0 in n*Str : EH. @ fop = 1,466 • 40.0 #/ft X-X Axis From Bottom= 13.3 in V-horiz f 1H r. = 106.2 kips l-SlRE:SS EVALUAllON---------------------------------------------------l : SHORED & UNSHMD : Service Load Btresses: @ Bottom of Bea11 @ fop of Concrete : UNSHORFJl-.SJ • i'IAX. S'.it .: - (1.3!5~t.-, Actual. ,$.l ': ... \;'.;... = 19,174 psi = 1,275 psi .. :. 24,000 psi = Al lowabl.e 113ti9 ps-i = Al lowib-te Design S-tr = 9/ = Allowable = .89 Fy. I Fb:fop o~ Concrete= 898 psi 1-,3!5f psi = Al lowible = .45 f'cl lMl!/(Str:top*n}J Unshored Dt Sress = 8,722 psi : 241000 psi = A 11 owabl e = .66 Fy :- Actual Shear Stress= 6,608 psi : 14,400 psi = Al l.owab'lt = .-41 Fy : :-----· ----------------------------------------------------------------1. mmx ULTIMATE SfR£NGfH OF COMPOSHE SfCHON llftX Ultimate Mo1ent Capacity of Co1posite Section = Ultimate l'loment /Max.Service fl!ol!lent = :301 rt-k 1.93 $5l4 I fflll!X I~. I I mmx nmrn I I I mmx I I I I ffl!IIX I I rnmx I I I I I I Max Shear rorce: Vh Min. ( .86 f'c Ac/2 or Asfy/2) = 186.2 kip~ ---> NUl'f&f< OF CONt£CTOOS USt.D = 10. f'ef< 1/2 Sf'AN V'h= Actual Shear ~or Studs Used.= HJ6.2. kips < l'lin, = ,25 * Vh ) Actual¾ Composite Action = 100,00 DEFLECTIONS ---» I-tr: xx is Based on " n : Def! ect ion • --------· -- I-tr: xx ,,f Composite Sec ti.on I-1:H.: Is + lV'h/ Vh)A,b+(.Itr-Isll = 1,296 in~4 > LOCATION --> X Di stance trOIII Left Support = 13,1 ft Dehul t = L/2 SHORED DcAD LOAD = 0.1b.3 in: L / ·2059 0.3$4 in: L / 823 LIVE LOAD = 0.~ in: L / 882 i.368 in: L / 882 fOTAL LOAD = 0.512 in. : L / 618 e. 742 in : L / 426 RcACllONS --------- DEAD LOAD = UVE LOAD = fOfAL LOAD = LEFT o.22 kips 12.47 " 17.69. ,kip.$ s:: f<lGHT 9.81 kips 22.46 " l2.27 kips N?.. _. __ -,--___ _ -B,4- 55J4 ., ,~,,,s;~l"'.~~"-~;'f:;'.OC''f:CS 1~ .,;. I I PROJECT: SUBJECT: ____ , _______ _ .PAGE: 1-BY: __ DATE : '2....-f2-'t3 ____________ , ___________ _ IIIIIX -1- 1· I I I _) I I I llfflX I IIIIX ·1 JMIX I IIIIIX I . .. I _ mmx I C(MIOSITE STEEL: BEAM DESIGN, DESCRIPTION: SB15 GEtERAL DATA > Bea.a Spa.n _ =· 29.33 ft > Beu. Spicing -· ., 11 ft _ ~-Ben; Trib Width .,---. 5 ft > Tot. Sla.b Thick. = 5.5 in > Deck Rib Htight = 3 in > Rib Spa.cing = 6 in . > Rib Opening Width= 6 in > Ribs: Pa.ti I.= 1 Perp. = e : . 0 > F-y F-b = 50,Hf ps.i. = __ 33;333 psi > f'~ = 3,Ne· psi > Concrete Wt •. = 1# pcf n: Strength = 9.29 n :_ Deflection= 9.28 > Beu Loca.tion: Center=!, Edge=0_ :_ 8 > Use Part i a.·I Coapos i te } Shear Stud Cap.. -=· 11 .5 kips Action? V=1, N=I-r 1 CONSTRUCTION LOADS (. App I i ed BEF~ 75¾ Cur i ng ) > Sla.b Weight = 51 psf. D.L. x Trib Width = 8.258 kl.f > Misc Dea.d, Loa.d = I • Beu Weight .. = _ t.035_ 11 --------Add' I Un if'or:•· Load.=· 8.19 " Tota.I Unit D.L. = 51 psf Total Unilor• D.L, = 0.475 kif .,. ! .1 -,., '" _ 13 = _ £1 k __ X = __ 1. ft '.-1-4 = 0 k X = 0 ft · ed AFTER 75i. Curi ns· > ~. L.L. x Tri b Width· = 8.525 k If , ... ~,' d' L Uniform Loa.cl = 0 11 Tota.l Onit L.L. = 195 psf . Tota.l Unitor11 L.L. = _ t.525 k If > Point Loa.ds: #1 = 11,1 k X = 24.33 ft #2 = 0 k X = 8 ft #3 = .. #4 = 0 k X = 0 ft 0 k __ X = _ 0 ft I~. 1--mmx ftllllX I I 1· I . ax I ~ I 1- I 1· I- I 1· 1-IMIX . . "·':.: ~-·;-': ''.2''*1!?.:'Jt'.'g '.~;!!'~~;; ~ .... PAGE: ___ _ : PROJECT: --,,::-. SUBJECT: ___ _ BY: ___ DATE : z__ 11--PJ> IOIENTS Dead Load Mo1ent = 59.8 ft-k S-REQUIRED = 53.SI! inA3. Live Load Mo1ent = 87.6 ft-k --------Ma:x. Shear = 27 k.ipi-· Total Moaent = 147 •. 4 ft-k AREA REQ'D = 1.33. inA2 EFFECTIVE FLANGE WIDTH Ba.set on-Lenst~ = 35.3 in Based on Spacing . ~-63.t in Ba.sed on Slab Depth.1'· 39.1 in RCl.LED SECT!~ DATA > Efhftive Width = ~ 35 in --> DEPT!i. CLASS : _ 18_ SELECTED STEEL SECTill' . ---~-->> W18X35 Sett ion Properties -: " TraMfor1ed Properti.e-s : I-steel. = s-stee-i- Section Arn Top Flange Depth Wt per foot :, = = = 511 inA-4 I-tr : Effective = 1-,239 in"4 · 58 in."3 S-tr : Top = 171.2 in.43 10.3 in"2 _ s-tr : Botto• = 99 .• 6 • 6.H in S-tr : EH. f Bot~.= 85.5. • 17 .7 in nfStr : Ef-f, t· Top_ = 1,-419 • 35.1.#lft X-X Axis Froa.Botto•=· 15.1 in V-horiz f 1N X = 112 .• 6, kip-s I-STRESS·EVAl;UATII* ------------------------------------------~-------1 I I.If MAX. ~ .. ,:',. _;:t'!{• C. • ••• ( 1.35 +.35' * KH/ 49:..5 :z Actual S-tr Effective. = 1:i : 33,333 psi =. Allowabte0 si : 1,350 psi ~ Allowable D1si9n_ s-tr = _ 86 Fb:Botto1 of Beil = 24,752 psi : ~,510 psi= Allowable= .89 Fy · (Mdl/Ss + MII/Str:Desi9n) Fb:Top of Concrete = 741 psi : 1,350 psi = Allowable =_.45 f'c [Mll/(Str:toptn)l Un.shored DL Sress = 12,460 psi : 33,333 psi = Allowable = .66 Fy I Actua.l Shea.r Stress= 5,021 psi : 20,HI psi = Allowable = .48 Fy I 1----------------------------------------------------------------------: lLTIMATE STRENGTH CF CQllfOSITE SECT!~ -------------------------------------- w,1 . It:: n~Al(-==-1.4-1. 4 - M -= IZO,~ M -= .52., Mf,\AA \..~ /2 'S I 8.5,S ,I' 1~ -,1,r--:::--:: \ .A1 "t- -~~ 58 N .. :. i ~A.,4,,,.. ·82. -Qe3 • 414 I~ 1· ,- 1 I 1· I I I_ 1- I I I I I ' - I I IIIIIX IIIIIIX !IIIX mmx mmx PAGE: ___ _ PROJECT:.___ _______ _ SU8JECT:-___ ...,... ___ _ ------BY:. __ DATE :.2=-lktl SHEAR CONNECTION P1rti1I Co11positt Action Being Used -Mix Shear Force: Vh Min. ( .85 f'~ Ac/2 or AsFy/2. > _ = 112.6 kips ---> OBER OF CCHECT~ USE» :s. 7 PER 1/2 SPAN V1h= Actu11 Shnr For Studs Used= 88.5 kips. (Min,= ,25* Vh > Ac.tual r. Composite Action =-Il.-48 DEFLECT!~ ---» I-tr:xx is. Based. on-• n, : Deflection • I-tr:xx of Co1posit1 St~tion I-Eff, : . Is+ CV'h/ Vh)A,5f(ftr-Is>l : 1,37J; j nA,4 : 1,239 jnA.f > LOCATION --> X Dish.nee froa Ltft Support = 1-4,665 ft-_ Default = L/2 -----------------------------------~--~ DEAD LOAD = 0.262. in· : L /-13-44 ·--~ in·r I:."'/ 553 LIVE LOAD = tl.381 in : L / 923 •. 1.-381 i.n : ~ / 923 _ TOTAL LOAD = tl.643 in : L / 54-7 1.-117 in : L / 3~L REACTIONS -DEAD LOAD = LIVE LOAD = LEFT 7.54-kips 9,'1 •+"' , "-~-.; Ril{F. ----~-- 9-. 15' .k-ips: -· .. -16 •. 91 • Z6,64. -Id ps . I I --- 1mx 1 I I I I I I I I I I I I I I I I mmx IIIIIX mmx mmx lllllX mmx PAGE: ___ _ eROJECT:_ SUBJE:.CT: __________ _ ----------BY: ___ DATE : ___ _ --------...-- COll!flOSlTE:. STEEL BE:.A,t D1:-Sl~ -------------------------------- DE.SCRlPllON: SB16 GENERAL DAfA ------------> F-y = 50,000 psi > Beil! Span = 24.33 ft F-b = 33,3".33 psi > Beam Spacing = 10 ft > f 1c = 3,M psi > Beam frib Width = 5 ft > Concrete Wt. = 144 pcf > lot. Slab Thi ck. = 5.5 in n: Strength = 9.29 > Deck Rib Height -3 in n : Deflection= 9.28 > i<ib Spacing = 6 in > Bea.11 Locatton: > Rib Opening Width= 6 in Center=l, Edge=0 ti > Ribs: Paril. = 1 Perp. = j • > Use Partial Composite > Shear Stud Cap. = 11.5 kips Action? Y=l, N=0 1 CONSTF<UClION LOADS < Applied BEFM 75¼-Curing) > Slab Weight > Misc Dead Load fotll Unit D.L #1 = #2 = 3.7 k 0 k = 51 psi : e H = l:i0 psf X = 19.33 X = -0 D.L. x 1rib Width = j,2!)0 kif BeuiWeight = 0.126 11 Add' I Uni fora Load = 0 • Total Unifor1 D.L. = 0.276 kH #3 ·= 14 = 0 k X = 0 k X = j ft 0 ft LOADS ON COMPOSif£ SECTION (Applied.AFTER 75¼ Curing l > Unit Live Load #1 = 1~ psf. L.L_.. x Trib Width = 8.525 klf > Unit Live Load #2_':'~t"-·ii .. } _• _ Add' I UnHorrn.Load = tl.19 11 · ,ota I Uni fpr11 L.L. = 0 k. X = · 0k X= 0. 715 kit 0 ft 0 ft 1-~; I I mmx IIIIIIX I I I I IIIIIX I I I I mmx I I I I I I mmx I 111111>: --·-=+*· ... ;,_ ... PAGE: ___ _ PROJECT: __ _ SUBJECT: _______ _ BY: __ DATE : ___ _ ------- Dead :Load Moment = 30.7 ft-k 5-REQUlRl:.D = 38,087 inA3 Live Load Moment = 75.1 ft-k --------Max. Shear = 21 kips. Total Moaent = EFFECTIVE FLAN6~ WIDTH ----------------------Based on Length = Ba~ed ori Spa:cing = Ba.se.d on Slab Depth= ROI..Ll:D SECTION DATA 105.8 ft-k 29,8 in 62,8 in 38.5 in AREA Rt::Q'·D = 1.07 inA2 > Effective Width = 38 in --> DEPTH CLASS: in SELECTED : sra:1. SECTICW ., ------>> W16X26 Section Properties: I-s.teeJ = S-steel = Section Area lop Flange Depth Wt per t'oot = = = = Transfor111ed Proper ti es. : 311 inA4 I-tr : -Effective = 877 inA4 38 in"3. S-tr : Top = 123.8 inA3 7,7 in"2 5.50 in 10,7 in 26,0 #/ft s-tr : Bottom = 63.2 • 5-tr : EH,@ Bott.= 62,8 11 nfStr : Eff,@ fop = 11137 • X-X Axis Fro11. Bottom= 14.0 in V-hor iz @ let i. = %.1 Hps :-SlR~SS EVALUAT-ION --------------------------------------------------: : SHffi~D & UNSHOf<ED : Service Load Stresses: @ Bottom of Bea1 · f Top of Concrete l UNSHORa);,SlJJt;~ MAX. Sitr.til" .. ~ ::. ~flt: ... (1.35~~f '• ··'~, Actua-Li~t~f • _--:i,~ ..... = 21,215 psi :- = _1,117 ps.t : 33,333 pst = Allowable l,.350 psi = Al.lovable DHi9n S-tr = 63 '1-, ;, .... ':l:-_ fb:Bo-ttoijrot .... " . (Md'I/Ss + 'i1frl7/St'r::Ot~i9fr)'~· -·44,5i0 psi =Allowable= .89 FY. l Fb:Top or Concrete = 793 psi : 1,350 psi-= Allowable = ,45 f'cl [Mll/(Str:toptn}J Unshored DL Sress = 9,o96 p.si : 33,333 psi = Al i'owa.ble = .66 Fy l Actual Shear Stress= 5,463 psi : 20,0ff psi = AHowabl_e = ,40 Fy : :-----------------------------------.. ----------------------------------: UL Til'lfATE STRENGTH OF CC:WOSITE SECTION Ultimate Moment Capacity of Composite Section = Ultimate Moment/ Max. Service Moment = 265 ft-k 2.51 I I ·1 1. I- I I I I ,I I I I I I I I I IIIIIIX l!IIIX. IIIIIIX· IIIIIX IIIIIX . --·· --:-.. :. . :,..:... .,., ' . . .·-· . ..... -·., .......... -~~~ . -.. -_£,.-:,_ '...l;i.. ~· ... 'L '!' PAGE : ----PROJECT: ________ _ SUBJECT: _______ _ BY: __ DATE : ___ _ 1;;;J1i;:~;;:~; .... :"4?:~irff.it~oapositt Action Being. Used Max Shear ~orce: Vh : Min. ( .85 f 1c Ac/2 or AsFy/2) .= 9'S.1 kips ---> tU&R Or CCHt:.ClOf<S USE1l = 8 PER 1/2 Sf'AN. V'h= Actual Shear For Studs Ustd = 92.0. kips ( Min. = .20 t Vh ) Actual¼ C.Oiposite Action = 96.76 DEFLECTIONS---->> I-tr:xx is Based on" n t Dtfl1ction • ·I-tnxx of Co1posite Section I-t.ft •. :. Is + [V1h/ VhlA.51:<Itr-Is>l . : 877 jnA4 > LOCATION --> X Di-.stinct fro• Left Support = 19.33 ft Default = L/2 mm» -------------------DEAD LOAD = 0,084 in: L / 3469 LlVE. LOA!) = ·f.292 in : L / HJH . TOTA!. l:.OAD = f.376 in-= L / 776 REACTIONS. ---------LEFT Dl:AD LOAD = 4.12 kips LIV£ LOAD = lt.36 • TOTAL LOAD= 14.48 kJps. . .,, IJNSH(ft1) -------------------1,245 in: L / 119.t 0.292 in: L / jt0fj 0.537 in: L / 543 RIGHT 6.30 kips 15,13 • 21,,43 kips ~~i . ::_: ... ~ I'·. : .-', ' . ,_ I .. . . ' ' ··-,-· . \.::,..,.,... : , ,;1··. ,,___,..~--. --~ ~ -., I·. ' ' ' .. ..,;;7"""-.-- :1: ,-... ,' -. -_, _,I,_. ' .· -. • I --~- II. '_.,...,. __ ~--- ·1·' ' .. ~ ~--. I .. ; ,,.· .. ·1· •• ,.,.< I·, '' ' -' ,' . l -.: I._.- ,-. . -- 1· :. ' ' ' . ' ,,,,,.: ~ ·1· . ,, .,_. ,·-:, __ _ ' 'i ,-: ' -' , ..,...,.~ I ii I I. I I I I I -I I I I I I I I I/ I V\ al .. ... -'-- -v,JvL-:~ ....,l1r.,_ ---w ---·------• - --------@ L @ ~ . (£):,; ". I .' ~"'''-'J4.('-/~ I r l'<I l 1,;'f 1lo 1' '70 'f l ~ @) ~ @ " . _ _ ~II, Y'Ud. 3.4' j' ~ _ ' L"",'.''.' >,;') I 'l,o ~ .,0 f i;,'f 10 ~ 1oi • ~ ... I . . '2,r.fc:-J • W\'? vJ°t ::~ I I ~ I ----. ----c'ii., _,.... w1'2-)(\9 -= "' ' , , "'""" • .. ' ' . ,,,,,, µ) l'Z.X -~ .. _' ' • -Z0><.1 _ I' J:. t :.=i --• , ~ ;., · I IP (t) .. ~ . 7 le; •.. ;,;;;..,:1<'51~ _---- ------... -~r ~ ~., ~ ,_,., ~1 Jr"' I , I, .... 7 I. 'V -... rl ~ :, ' ~ ......, ff) ~ 1VtWl6 U?(<-4- zof:::.4- ,q :c' .# ~1 I _. t ~1-I . I '2/ ~ ~~ : --:-f I • ... ~ . -... -----f'{)' ~ '-. ~ If'-~ ~ :z -,. I -~~ -t I I -1; t-~ ~ ~ -..,,. ,.~ ~~Dj../~ ~, . H X . 3 i 1 I .J)t 1 t :;1~ --t-1 ---+---~ N ---.-+---I ,.. 7K 11.J... X ~ ~. V _s 'I:)-~ ~ .ll ~1 -3 Jf ~---_ ti ';;:_ ~ ~I 3 ~ . QI ,J-f-~~ ~ ~' ~ • t91 -l --:;/_ ,....., _ ...... z.o 1,::..4,. ---:..j&) 1..olC,.4-~ H'I. 2..0 ~4-~ -z._Q_~A,--~ ----· --I ~ ,--. t-'!"ll -::,.) ~ c() ..::.c.. en ,1, -1· yJIZ.X lq____ ~ - ~14-X -z .. :? .. f¼_) ----.-~~ ](, __ I (() -,....... .. .\~ e,, -ty) ii I t .S) ,,.... :r-\tt ...... ~ * ~ 0) ,I/ ii t -I )k s .a,;: ~ .,_ ~~ vJ )'2..)( ,-q \AJVLXI~ ~ -~ · ll w_,J->< 2z. ( ¼.) ~ VJl4-x ~z.. ( ¾} Wl4X.2"2.(:!_" (P I'M( 2-'l. ( l )- ~I ;i rtjl~Mtlt'~) (.pj,, .t..:i, ~ ' fLEr f(lfrMINt71_ ([\ ~ 11 ._ I I I I I I I ·1 I I I I I I I I I I OPUS CORPORATION Project Ct/et.? BA-0 . '-4 , ffl:U: Date -:2--1/-8,f DESIGNERS • BUILDERS • DEVELOPERS Offices and Affilic!tes in Minneapolis· Chicago·· Milwaukee· Phoenix· Tampa· Pensacola By A I,· Sheet t>ly of __ _ iY?IL.AL- TYPl,::AL Mb..12-\<.. :STh~ ' J4' IO :n vs ~1-'2-0 '1~ 1-15. J4 ~o :ss 3S O ;:;St 6 1-1 ; -= t.9i__ 7 ,, ( 01--i t.:...t-) psr= = 1.0 ... 1..0 = 40 A-\.1..:.Clv.). U.h&fpJ.-JOIST C.~t...) 1550 !Oki 4-~4-1-ZK \ (?44-) 30~ I (J; K-1- ~ ti~). "ZOK3 ?.. 7 &;, -i..o t<4 (/0/) "2. 7 4-, '20k7 (/5') we~ 10 '1.1,"" '. 1> . ·-/J,.:;. !':':: - \)J!:J.:c-tO 6.., l,o -?:J ~ r ' ..l.-"' -• .t>J,,itd.-4 !/vlc,x;/4-L =-.-1 .0 -::-· ·~oc ~- ~1 zx· ·+, i::,-==f,:s _) r-=-~::i,-:-JJ:: '&,p i,l, -... { Wl2-xl9 t. _,... ..:1, -,r.-,• r= ::..'.) ,L'.) . ,/ Lr-300 •• •• I I I I I I I I I I I I I I I I I OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS Project C-A.e~8.AD, e-A Pl-I.IC Date ~-Jt-$8 Offices and Affiliates in Minneapolis· Chicago·· Milwaukee· Phoenix· Tampa , Pensacola By ,4/i' Sheet t:::A of __ _ "Crf Root= · G::,l/c.OEJ2_ ~P.AN-01<;E,t,. t,,.JT. = IOD Pi..,F SeG/ R.c:6P-P5r PL.= "Z-o +-Bfvl PSF R.e{), l.. L = I CfJ 'SPAHD."-; == ~ b 0~ (REOLJG,) .6_ ( 3/2, '' .\..L ltJ:: IO I,"""' r:::::...---iq-=--· 3=---~- , w=30 f-io) +31-= 38/ ~/, p _1_j~<. z. ~-tt/, "'o-~, W ~¥('to)=-Z:&o 1:::.,_=~.0 I O O $-/, __ _ ;At' 101 ,I-= 'Re;, -:::3,C/ ~t.. I .. g K. • R = 10 'T"O, R. = c:;-. 7 1'"Df' /5, ,r t..1.-oi..11,.,'r ~ • 3 I I Ir l ) $~=19_ 4- -=~=·=72=6?='Z:;:=:!11ai===~=1<-=(q=· =J l ~AD:::.: i.t -,. , I ::::: , 31 ( C> + L-) / IK. M-::: 14-,, .$f'AH = I uf -4- VJ 1~x /4 M~ ?72)4 8 3<e I...OAD // /::.. .1:::... ., I I I I .I I I· I I I I I I I I I I I· OPUS CORPORATION DESIGNERS ·BUILDERS· DEVELOPERS Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola Project C,L)f( /...S 8ftD , eJ PU:. Z · · Date 2--II-61!; By At,· Sheet g,;'. of __ _ SPAN_;_ 3S 1 LOAD.' , ('Sr WAIi 51"( We,= eo:,.;: rz.o) + 1 oo +-?-0 ~ , ci~ 'Pu- , f'.sr t0L-,,., I.J~u ( 2-o) = lD CtJ. ~ fGF M ==-w1-7-. -( ,er 1. + Gia ,6) (3s) ,._ 40 ,i::. 6-@, ==- 1)J l LJ) ~ ?.,. (.p ,, I ,, lfc... 6. ,74-M::::10.G:::i ==' :D II OEFL., Gov~s ,A,._ = • z.t..o ------------------------------------- w tf-';(.1-'t~ -. T ... ~ : , I .SPA"1-= '2..S '2.. "?,-.;, It:. • ~=-~ ~-P;_ ,= +.-er i ,.-z. f!P cu.Ml L..o.AD '. Wo<.. -3,5(-ZO)-+-100 uui-l.. -J.s ('Z.o) -= 07 /3M + t4 -- ~- ,i 'I ,(p' II '9.11 A ==-. 4 i;, -r-At:. = ~ . + -4..b, -== \ • D-r <-. // C::::.,0, fYI Be..e. -=-¥0 ·i,::.. 1<, (D) -:::.~ J .. ~ 'F<, (L)-;; .. .\-oO' !,.:f II ., I I I I I I .I I I I I I I I I I I I OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS Offices and-Affiliates in Minneapolis· Chicago· Milwaukee· Phoenix· Tampa • Pensacola ROOP 5R. 1:34- I SPAN-= 16 1-0AD: 0 J:., rPL-.... 3,1 }t:: P. -/. B 1,-(,.. - ProjectCAl~L58A01 eA 1 ( PH-"Jt, Date 2,.,.. If J 83 By Af,· Sheet gt& of __ _ o' p I -, _ , P5F J//,4/1 . ~M. · pL,F tl)o -3(..Z...0) -t 100 + "ZlP -::::: !f3:J(o W~= 3'(!LP) = -+6 Pif \.ZJ \ '"2... X 14 (M = 3.d~) I -SPAN ::;:: 30 - 1.-c, AO (( Au_=. ot l!!-fS_' l<o == 1'2.t. = Rm,-= 4 , P.sr tVAI( Wo·= 3.6(-z·a ) + /00 + PsF= p~r=- UJu... ~ 3.S('ZO) = lo '/2.u.;== ,. 0 'Rot...= 4- 12.u..-1-0 IK f<{ = M0 -r M = 17.'5+ 7.1.='ZS TOT I- ., ..... ,,:-.. f<o= . 301 E\.- I, ,~ 'R =-4 1<., t<:>r -ISM if -Z.'Z--1'7'2- •e I I· I I I I. I I I I I I I I I I I I OPUS CORPORATION Project _____ _ DESIGNERS • BUILDERS • DEVELOPERS Date _____ _ Offices and Affiliates in Minneapolis· Chicago· Milwaukee· Phoenix· Tampa· Pensacola By------ Sheet ~ of __ -I ,_, S'PA N ==-"30 -D --- LCIAO; u . '.) ; fsi-" Pt.F 61Yl ,,---'PLF Wo-= @·x.(zo) -4-'oo +IC\.-:~ --zso u°@(lffo~· ~S fLP w,_ = . .J.Jce-J ..... SC? 2. tic:. M ~ wc;8 =-(-3-1'.z.:·~ 1gsx_~o)/8 ~.£=2. 5 4'2..4 6-D ~ S(-"312X3o)4-(!7U>) -z-,, 4-'' ( {') ~B4-C "2.tlet:c X!, "30). l/ ~ u..·--., -z._ OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS I I I Offices and Affiliates in Minneapolis· Chicago·· Milwaukee· Phoenix· Tampa· Pensacola R:.001= C:::r_ IR o e R S -.' I I I I I 1- _I I I e~-B -1 I I I I I I ~A t:-,1. . U)~ I 1/ Zu_4 II I t, 29_4- I 'I 3 4--lf- ' ,, -Z..4--4- Lo~/, 1.0~ 1, l,O ·J,::-1 • t:;; /4 Mrcr . lk (£;5 t41,4 ·JIG. 14 A5o ,~ i>-1 J 4 X. '2/Z ... Project C~/,,68.4lJ 64, (#I, Jr) Date -t. -I I -fj S By ,4\; Sheet ~ of __ _ '" 10(.0 ti I // ,.,-z.0(14) ~-;: ·8~'· !IC.. ·80 /IL 80 ·-OPUS CORPORATION I DESIGNERS· BUILDERS· DEVELOPERS Projecta4£L58.4.0 ~ /JI fl Date 2--1 ( -88 I I I I I I I I I I I I ·1 I I ·1 I Offices and Affiliates in ·Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola By A-t,· Sheet ~\ of __ _ k, k:--------,,{ I II Sf'.AN,::,. 'Z...l.o _ 4-- LoAD / (see 6ff!.S 4-) _.,. RIE.D. RD ::7.1 ~ 1..= 4-. 0 I /1 / .,, 8 ___ 1_0_-_4-___,,;<:----10_-_o--+~·3, ~ ~. ~L = 4 Pw-r-= 11 ~7 P10.~ 11.6 K, ~-: ,75(!;0)-=-,.,z.~· 1 P5F ·1 P5F e/1'1 pr.,F uJ0 = ;_? (1-o) + ~(zo) +3/ = 48/ fif . I 19.SF ftf Wc-t-= ~ (rl) + 1~ (1-z... .) =-'2 7 0 t'5F pg:: w0 -= ¥-(w) -i-¾{w)t-3/ =-35\ ~F -w'-'--=-'§.2:.{/'2-) + ~;;·v) =-.-z... io ru-z. 'Z.--1...!. CJ::.~OE.--ED (M = \a\o.) 6..'Tr::IT-:::: 6.. 0 'T' A.,_ =- Q. ,~, I I/ ~ " · 8 +-, .37 ,=-I· 11 ·c i1 .. < %9:)1 5.P.AN = "2.. er _ 4- W !Cox 31 <:::;RADl:: .... 50 · 1K l:1.===130 . LOAD ! I. F.sF f?JtYl Pt....~ W0 = 3o(2o) + 46= 0 40 1 ( ) 'PLF ( 12-BD) !Uu, .. = 3. D 12-=-3 bO . lfC:.. M~::,,t'x"\o +Mu..=17~1 + 31.:.. 1\1 /::a {,l, -=-• $( f 04-0) llc= LI,, ( ¾e-o) 0.t< I I I .I I I I 1· I I I I I I I I I I I 1,c,C: .,!J.[+-,-:c,:-= I.:. ,q-.8 'kA-, I -=- OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS .-:1--1-. 9 ), ' - ;j.-I -----; . Offices and Affiliates in Minneapolis· Chicago· Milwaukee· Phoenix· Tampa· Pensacola Project ______ _ Date ______ _ By------- Sheet '0\ O of __ _ ' " 1:>L =-W :L.L..~~ ac>Nr'. 7-.&,. r e' I If 14-l.P l I 4,a· fSF -- SP A'l-L-=-301 I\ r-J \. ,, /' / ,!"-_.._ = i T --.9 ~ \' ~ ·I.D/OXl"Z-j I J--------~ V . (/.J /.(:) )( ;'1., 0,G. I :1-, '.~--.... . ·1: ·. -1, -. ·:1; :11-. ,·,;,, I ·:. ·1-. ·, " -. . :1:·--· I·- .,' :1 .. , 1:._·. ,,:, I , ' ·. • I I I I I I I I .I I I I I I. I I OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa , Pensacola r . I . lb,0 - -r I ·1 •.. . I 11 .. l · f-~t,~ ~ (~ ~-~r.2;1 "_ .. __ .f ~. ~-4 l~?)v . /·., . : 'I;. . ~,:, .l ~~ 1 t>. ~J1' _-:: ,_i' '/~·(,?; Project j Da~ :fj1 L.J' Sheet y "\ of __ -I ·1 I· I I I I I I I I I I I I ·I I OPUS CORPORATION DESIGNERS • BUILDERS· DEVELOPERS Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola (jJM·I feorl('ft.f] ,, ---·· .. _ ___. v1.t -4\?? lc.r LA, ,. . L0, "? /'t· L,'(lt' l _,. , [tz.S ")( \I" t; ,, Project ~/7 Date By Sheet 'f 1.-of . 7 "·DI 14-/t ------... ·---· --- ' \'"'' , .. ' ,' ... ,. '\ I I I I l- ·1 I I I I I I I I I I I OPUS CORPORATION . DESIGNERS· BUILDERS· DEVELOPERS Offices and Affiliates in Minneapolis· Chicago· Milwaukee· Phoenix· Tampa· Pensacola ' ' f\li : W 1 l -~l ·, \ {Jv lfJ J .:; . I l'?.,P'-+)( II -:: ~.,~, (/J1,, ~ , I~ t< I l -:. (·Jib W17 _::__!,1<5'7<-1; ~ 7 --l 117 "'I --<--!--~- 1 i ~ 1 . \If,. -'\r -:: 't \h 7 ")( 7 ,½ '1"" i.~?'/1 tf ,.oi ;... uvb s {r ~ Lff)~ /4110 -,;, l v5t, crf' ' Project 'f/? Date By ~ Sheet f-07 of ~'b~\1,,t/£ _....:..'-----'' ,.. "2.,,- 1,½ I ' ow ... OPUS C;~PORATION 1• DESIGNERS • BUILDERS • DEVELOPERS 1 : LJ. I I I 1- 1 I I I I .1 I I I I I I I Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola Project ____ _ Date ____ _ By----- Sheet -ft-of __ '• . I, OPUS CORPORATION I DESIGNERS : BUILDERS. DEVELOPERS Offices and Affiliates in Minneapolis· Chicago· Milwaukee· Phoenix· Tampa · Pensacola I I I I I I I· I I I I I I I I I I ---4 : j I---•. I~---: ---. •t . .- ; J ~ r, __ ___y ~---,......_.,. ~· --- Project ____ _ Date ____ _ By -v----- Sheet ~ of __ ,. OPUS CORPORATION · I. • DESIGNERS • BUILDERS· DEVELOPERS ll r11 l1 ~ I I I .I· I I I. I I 1- ·I I I I Offices and Affiliates in Minneapolis ·Chicago· Milwaukee· Phoenix· Tampa · Pensacola t,-,---W.~~-: :-½ ">? \ ~ l If. 'V) .,.. "f 4' i, • 11J)Y. f 2< I ? • \'1AJ )( 1:, ~? ',G.,( 1'7 , tB>< ~ ~ '·"'~tt ~ /Loo, ~ l ,4,f,, ~ l'tlf!f to l 7 f/1 ~ ~ iM (L. ~ "~ ( ~/115) 't.+: I Ii 7 ( th 1/222 ~ ,,:.1-i_'~/i ' . ~ b I M~ ::: ± t,l ~ q [~.; bO,~ . \ !'- Md, ::: ~I lS {f,1 () 4-1:217 )( ~-~ ::: ~\ ~ 7,f ~ ~'1/>ff,'-\' :;. 1,11 o'f-. · Project ---q;t---1---,,,---- D~: ===Cif':=:~~=== Sheet 1(1.t> of __ I I I I I :I I I I I I ·1 I I I I I OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis· Chicago· Milwaukee· Phoenix· Tampa· Pensacola ,, ~tN6} ,, f'B1'rlvel ~~\f~ ~ ,b11'-r \,~l + 1-½ ~'~ -== 1.,,t~ -z.. I '1 ,, ,:;,. ~ . LL-'1_, \+/1 . ~v\;,&YJ ~ ~-&l ,i, t -t_~, l 7 .;; . \ v. $, f ~ 5,'?t ~ l \ ~ . 0 'f I s"~11 Project --;----n' T--- Date ~--:-1--=--'(_~"---- '-tf By----- Sheet ¥,,-""" of ( I I e ~ 1/f'. l.\' -q I ~-~ 'b I ½ • \Otj 0~. ~ OPUS CORPORATION I DESIGNERS • BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis • Chicago· Milwaukee· Phoenix· Tampa· Pensacola Project ____ _ Date ____ _ By----- Sheet ~of __ rt&,:v~ t ]~v CD . ).. I~ Mvt ~ ~ ,,v") ( t) /~ ~ l? 1 !) d\~ iri-,S I '.l-.. I?. ~ 'v / 0 e/,R_ ~~ '/cO 1 ('.2.,,/j ' (JO f ~ -~1'7 ~ ,v, ~'/,Cfaqt[,'> 1'-Vl-1~\<'l'Z.,-:::-,~1:] .:t:): c;~l1;q cl ,v . Ci\~-tLS r~ y-t\1fu\r""' ,y ,11 f. ... ,.. . 6tl--i, I I I ·I I I I I I I I I I I I I I I. j.& ~ rJ' Q l . .J . ~ ·:~--;,-, ~-i,\'J( /,7--fl 15 ~ (1-~I~ v 1 Ii I \? < t ~ • ' . I ! i ~.,(PJl 1(,)117_ ~ i..61/ 'fr;. U : 2., t -. ' ' I . , l ________ -.J -· -· ' I I I I I I I I I I I I I I ·I I I OPUS CORPORATION Project ______ _ Date ______ _ DESIGNERS· BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis· Chicago· Milwaukee· Phoenix· Tampa · Pensacola By------- Sheet f".'.4 of __ f \ f) ~ ' u vL,.---4{ b e 0 0"'L~ I© lt1 /' 9J H 12..i.. / /· \ ~ -------·-·--· ·-----f ! I {t~e cz/1 {> ,,.---k I • G ·~ Q ' 1f'' I ! .... \ I l '-·· r-. I.. . . •• OPUS CORPORATION I DESIGNERS • BUILDERS. DEVELOPERS Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola I I I I I I I I I I I I I I I ·I I I --' ··-----~..-~ .............. ""-""""~---~ ---~. --1 t,z,,11 ---,'Ir--" --..--,i~+>, . -------, ~ ,_ ·:·~ ~}~x}_:_· ~-i -. ' --,._,. ' -.,,., , ~--_, ... V .. -" ' ., • > ' . ~-. ,. ,--.,,-·- -' ' , • , --N •', ~,,.~ ..,.,,,, , -~0«, . " ~«' --~ ,., .. ., - Project _____ _ Date _____ _ By------ Sheet ~of ~ OPUS CORPORATION I . DESIGNERS • BUILDERS. DEVELOPERS I I I I I Offices and Affiliates in Minneapolis· Chicago· Milwaukee· Phoenix· Tampa• Pensacola Project ____ _ Date ____ _ By----- Sheet v(.D \ of __ \ \ \ ' . • . • 't., . fl.I.-~ -s ·17.v: l, I 'I-'Z -kfi3 . . -l,., q:: ~ l i -L,-, f ~ 4 L _\ !I ~ ~-. 1_,-rt:(j,:ri-_,, ,6 ,i f~ ,(/1.)) I I I I I I I I I .. . ..... . 117 . __ .. _ ~~ • ~, -{. t, 11; :x ·1--r 1' 11,, ----• p; ' I I I 11f0 d~ it ~ OPUS CORPORATION I DESIGNERS • BUILDERS • DEVELOPERS I I I I ·I I I I ·I I I I I I .I I I Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola .. J {t ,\'2) . " -. ~- +· ~ ~-:r ___ , (fD-v~" vi l~-~;\f x_ ( 'L ~-~ ·., .. " :. ___ ... ;. _. '" •'••,• '·1· . : ~t e, ~~ -t·---'--------_..,.:..--· .,;------.,:;-.---,:" . . . . -·. r -.. .. ---~ -. :_ ~-~ s-. \(;) ., .L.,z=:===::::::::::::::.----,......-1,-.. ' --·-·-" . , . -' -~ . Project _____ _ Date _____ _ By------ Sheet V,,"" , of __ _ I( ,v 1, DIAPHRAGM DESIGN ..... ·i.-;i; ,'f I >' ' ' • '1A,~ ."'~:: ' , ' .,,,_r t ·-1 .. 1 ',liillir. ~Y ·-r ...,-·----1 -' --•• __ j .. , ... ,Y ~-; -----,-. -.... """.lti.:·~-~f~!'.. ... __ . ·•) -... -.:. ---, . ____ -_ ." _\ ___ --·,-_·. -----, -··· ..... •.Lr:.-.:::7 .. j.,.,.. _: ____ }_.-~: :.,,·:·:''', _j _!_ -_ J_ , __ '~>·•, ~ r ~ ~ 1 I ' ,, I I l j I . ' .I ! Offices and Affiliates in Minneapolis • Chicago· Milwc1ukee ·Phoenix· Tampa • Pensacola Project , Date . ~Tt \ By---- Sheet f,,. \ of __ &\ V\ s f~ L.,,')< (u~ -n,--4) ~ w~ ;._,.,'t.,, l Y\ . t-\ ~v ~---"" ~~ ,~ ~)rl F1-fNt ,1~--~-·~--- 11, I ,;q 1 / '*'f&/_ '*~/,. i , 5""/ 1 Utjil/ @) r"7, 1 i w, ~ / \\'1 1 ( t~,c/ • \r11-/\ 11.tr/ f/JJn1 8 / 11 "i I I I -z-] ~/ I 1s41-l~lfv i I 81i Ii ;st/) @ ; t/ I,~ 1/1~771 I I I I I l I I I I I I I I I. I ·I I I I I Offices and Alf1h1tes 1n Minneapahs ·Chicago· Milwaukee • PhoeniJ • Tampa • Ptnsacola G) 2,. J © It 'th. i. ~ d ' 1; . IV . --I : ' i IQ -i 1, ~H~.:: -----. '-. I I -· .. J .... \ 'PS. © .I Pro1ect UR,LSE'.AP :JL Date ____ _ By----- Sheet ~-jk of __ © @ © , , I ff;\ .~ .. Q . ., 1 Pl~~fv\ INIW ~ 1iW 10 1/~t-JffvV) IN ~'06\t\Mf ~ • Yj,tt ~ 1/4~, J" "\L a.1u 1~. ( m fu, L,. 11';? ) o ~ir1& w~~&' ~-0W' ri, (A t-JNt,vf)1 dh-1 .-r, f1UltJ Ypmtt-'11~ ~ ~ ---(o wkY\AS· ;_ I \\ -7 ::ff~@ l}-O,u ~-!,I { ... _ -J ... ~ _ .. -' -~ -1-- t'iJ' I . e OPUS CORPORATION I DESIGNERS • BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis· Chicago· Milwaukee· Phoenix· Tampa· Pensacola I I . I I I I I I I I I I -1 I I I I • ~ 0&1.Q; A , ~~ J---, '-3 v {,43 -~S-Vbo~ ,{t, Project ____ _ Date ____ _ By----- Sheet b,.]? of __ " OPUS CORPORATION I OESIGNfRS. BUILOfRS. DEVELOPERS . Otf,ces and Att,liates in Minneapolis · Chicago · M,lwain:ee · Phoen,~ ·Tampa· Pensacola ·1r I. I- I I I I I I I I I I ·1 I I I I -· Cu z. :. 'th i, I : ! ' -,__ i I I .__ ' -z_H.2. -- J @ © t,,o '>,c "11 - r ·~--. I ' ~ I .. I ' -- ~ -· . Date _____ _ By-----,.------ Sheet ~ of __ _ © 0 @ © if ~ lo ~ I. ~ . l I , ,o' I c; ~® . -"l c::.; I, ,o _, ' -~ . l • { I ' -w© ~ V • " I, . .. e:. , • . 1- 1.· I I I I. I I I I I I I I I I I I Otf,ces Ind Aff1h1tes in Minneapolis · ChfCIOO · M1lwauli:ee · Phoem~ · lampa -i.isacola Ci) z. J ® © '1h I, i,o ,w, "'° ~ ' l . ,,,rt\ --\. ! '/{01~·"" ' t ~ -.. ~. ' l1 io s~ . I i -..... - : /{(, ,~f ' I ' . -::--.... , .... " --~ I . -I ~f.,i> Date ____ _ By -f=. Sheet ~ ff of __ © © @ © 111,o ~ ~ .. ~ -, ~ J '"""' ® . ' 14 ~ i-. --· ,, I f /lt?1(t I !-v& ,Lf" I i::,7 .... -I,.® V, t.i_'r' \ ~® • ' .J , Date ____ _ Offices and Aff1h1tes m Minneapolis • Clucago · M1lwa~ee · Phoenix · Tampa · Ptnsacola I'.-She~: _,..k'A_<flp....,..,.,,.....]-ot-- G) z. J ® © © © @ © I '1h ! I# ! ~ .,,., J,o ~ ) 11,o "" ~r'> lo .. A l ,I I ~ _ _# A_, i. "IJ'I I.I , ' 1 1 .I .. ...;.f--r II"'---=-~ -. ® --~--I ~· I 7 " ,1'-I ; -'JI I ( ! I l ~--+- ' I i. J_ i t , ..... ~ I ,: l i .__. t >71,/ f I I ' 7,,b, t ' 1 I /2,; I I© -l . ---l-----! ~ ,1.11"" ~ -'f. <~ . i, 9 r::; 0, ~ I • ~t: ' \I -·· ------~ -----~ I W3 FORMLOK NORMAL WEIGHT CONCRETE (145 pcf) ~Er~l .-· I::.··· . · .. ·. :·.· ..... · .. · .. ·_:·-·-... ·7:_. 01 i GALVANIZED DEPTH 3"! .• • ••• • • ' : • • I ALLOWABLE SUPERIMPOSED LOADS (Lbs./Sq. Ft.), DIAPHRAGM SHEAR VALUES (q} (Lbs./L.F.) AND FLEXIBILITY FACTORS (F) I NUMBER SPAN I I I I I I I I I I I I I I I I I 14 :OTAL SLAB DEPTH & CONCRETE WT. psi 5" 42.3 5½" 48.4 6" 54.4 DECK GAGE & WT. psf 22 1.9 21 2.1 20 2.3 19 2.7 18 2.9 16 3.5 22 1.9 21 2.1 20 2.3 19 2.7 18 2.9 16 3.5 22 1.9 . 21 2.1 20 2.3 19 2.7 18 2.9 16 3.5 OF SPANS q F 1 2 3 q F 1 2 3 ~ 1 2 3 ~ 1 2 3 ~ 1 2 3 q F 1 2 3 q F 1 2 3 q F 1 2 3 q F 1 2 3 q F l 2 3 q F 1 2 3 r 1 2 3 q F 1 2 3 ~ 1 2 3 ~ 1 2 3 ~ 1 2 3 ~ 1 2 3 ~ 1 2 3 q F 8'·0 • 8'·6" .9'·0" 9'·6 • 10'-0 • 10'-6 • 11 '·0 • 11 '-6 " 12'·0 246 .. lD;.. ~,,.JM. .""-145: 130-117 105. 9S 86 246 223 202 185 -J30 117 105 95 86 246 223 202 185 170 117 105 -9§: •. 86-1710 1690 1670 1655 1640 1625 1610 1600 1590 .49 .so .50 .51 .51 .52 .52 .53 .53 273 247 224 1115' . .,:._ f48 13-t 121 109 gg 273 247 224 205 188 134 121 109 99 273 247 224 205 188 174 161 109 99 1740 1715 1690 1675 1660 1640. 1620 1610 1600 .45 .46 .46 .47 .47 .48 .48 49 .49 286 259 235 209 15Z . ~ 142 128 116 106 286 259 235 215· 197 182 128~ .. 116 106 286 259 235 215 197 182 168 153 106 1760 1735 1710 1690 1670 1650 1630 1620 1610 .43 .44 .45 .46 .46 .47 .47 .47 .47 331 299 272 249 228 197 15&. _ 141. 128 331 299 272 249 228 211 195 181 128 331 299 272 249 228 211 195 181 169 1820 1790 1760 1735 1710 1690 1670 1655 1640 .38 . 39 .39 40 .41 .42 . .42 .42 .42 363 328 298 273 250 231 199 169 • 144 363 328 298 273 250 231 213 198 185 363 328 298 273 250 231 213 198 185 1870 1835 1800 1775 1750 1725 1700 1680 1660 .35 .36 .36 .37 .38 .39 .39 .39 .39 400 395 359 320 285 255 228 206 186 400 395 359 320 285 255 228 206 186 400 395 359 320 285 255 228 206 186 2000 1955 1910 1875 1840 1810 1780 , 1760 1740 .29 .30 .31 .32 .32 .33 .33 .34 .34 270 .. 199 .. 1.iL 151'· "'t41 -127 f1.f 102· 92 270 244 222 1st., .;. 14} 127 114 102 92 270 244 222 203 186 127 114 102.... 18:-1950 1!m 1910 1895 1880 ~-iasT 1850 1840 .43 .44 .44 .44 .45 .45 .45 .46 .46 299 270 itUlf..~ i-,~--1:,~16J;· . 145 131 · 11s · . 107' 299 270 246 225 206 . 145. 131 118 107 299 270 246 225 206 190 ··1~U .. 118 -107 1980 1955 1930 1915 1900 1880 · 1850 1840 .40 .41 .41 .41 ,u..._ .42 .42 .43 .43 313 283 257 190 . 170 154 139 126 114 313 283 257 235 216 199 .l~. . 126 114 313 283 257 235 216 199 184 rJ~-~-114. 2000 1975 1950 1930 1910 1890 1870 -1840' .38 .39 .39 .40 .40 .41 .. 41 .41 .41 362 327 297 272 l4::I 184 .. 161 ~~ 138 362 327 297 272 249 230 213 138_ . 362 327 297 272 249 230 213 197 184 2060 2030 2000 1975 1950 1930 1910 1895 1880 .34 .35 .35 .36 .36 .36 .36 .37 .37 395 357 325 297 273 251 211 176 155 395 357 325 297 273 251 233 216 201 395 357 325 297 273 251 233 216 201 2110 2075 2040 2015 1990 1965 1940 1920 1900 · .. 31 .32 .32 .33 .33 .34 .. 34 .35 .35 400 400 389 356 327 301 279 259 222 400 400 389 356 327 301 279 259 241 400 400 389 356 327 301 279 259 241 2240 2195 2150 2115 2080 2050 2020 2000 1980 .26' .27 .27 .28 .28' .29 29 .30 30 296 217_ 192 171 153 137 123 111 100 296 267 243 171 • 153 137 123 111 100 296 267 243 222 204 137 123 111 100 2190 2170 2150 2130 2115 2100 2085 2075 2065 1l! 1Q _1q 39 .40 .40 .40 .4ff .41 327 295 218 195 175 157 141 128 116 327 295 269 245 175 • 157 141 128 116 327 295 269 245 225 208 141 128 116 2220 2195 2170 2150 2130 2115 . 2100 2085 2075 .35 .36 .36 .36 . 37 .37 . .3Z .38 .38 342 309 281 206 185 157 150 136 123 342 309 281 257 236 -167 150 136 123 342 309 281 257 236 217 200 136 123 2235 2210 2185 2160 2145 2125 2110 2095 2080 .34 .34 .35 .35 .36 .36 .36 .36 .37 394 357 324 296 272 251 181 164 149 394 357. 324 . 296 272 251 232 164. 149 394 357 324 296 272 251 232 215 200 2295 2265 2235 2210 2185 2165 2145 2130 2115 30 .31 .31 .31 .32 .32 .32 .33 .33 400 390 354 32~ 297 274 253 1k-1158 400 390 354 324 297 274 253 235 168 400 390 354 324 297 274 253 235 219 . 2345 2310 2275 2250 2220 2200 2175 2155 2140 28 28 .29 .29 .30 30 .30 .30. .31 400 400 400 387 355 327 303 281 262 400 400 400 387 355 327 . 303 281 262 400 I 400 400 387 355 327 303 281 262 2470 j 2425 2385 2345 2315 2285 2260 2235 2210 24 I 24 .25 25 .25 26 .26 26 27 . VERc:o· • 12'-6 " 13'·0 " 13'-6 " 14'·0 77 70 63 77 70 63 _ .. 77 70 63. -. 1580 1570 1560 .53 .53 .54 90 82 74 68 90 82 74 68 90 82 74 68 1590 1580 1570 1560 .50 .50 .50 50 -96 87 80 73 96 87 80 73 96 87 -1sffl-73 1595 "T5l!1i. ·1550 .48 .48 .49 .49 117 107 98 90 .m 107 98 90 153 107 98 90 1625 1610 1595 1580 .43 43 .44 .44 . 131 121 111 102 173 12.t. 111 102 173 157 140 102 1645 1630 1620 1610 .40 .40 .41 .41 168 152 138· 1215 168 152 138 126 .. 168 152 138 126 1720 1700 1680 1660 .35 •. 35 .35 .35 83 75 68 83 75 68 -83_ 75 68 . 1820 1810 1800 .46 .46 .46 97 88 80 72 97 88 80 72 97. 88 80 72 1830 1820 1810 1800 .43 .43 .44 .44 103 94 85 78 103 94 85 78 103. 94 85 78 1830 1820 1810 1800 .42 .42 .42 .42 126 115 105 97 . . 126_ 115 105 97 166 115 105 97 1865 1850 1835 1820 .38 .38 .38 .38 142 130 119 110 . _142 130 119 110 188 172 119 110 1885 1870 1855' 1840 .35 .35 .36 .36 179 164. . 152 140 225 211 198 140 225 211 198 186 1960 1940 1920 1900 .30 .30 .31 31 90 81 73 90 81 73 90 81 73 2055 2045 2035 .41 41 41 105 95 86 105 95 86 105 95 86 2065 2050 2045 .38 .38 .38 112 101 92 84 112 101 92 84 112 101 92 84 2070 2060 2050 2040 .37 37 .37 .37 136 124 114 104 136 124 114 104 136 124 114 104 2100 2085 2070 2060 .33 .33 .34 .34 153 140 129 118 15a. 140 129 118 205 183 129 118 2125 2110 2095 2080 .31 .31 .31 .32 193 17T ll!a 151 245 229 163 151 245 229 215 200 2190 2175 2155 2140 27 27 .27 27 e 4 WELDS " 14'·6 " 15'·0" 62 56 62 56 62 56 1550 1540 .50 .50 66 60 66 60 66 60 1550 1540 .49 .49 83 76 83 76 83 76 1570 1560 .44 .44 94 87 94 87 · 94 15:~-1595· . .42 .42 115 105 115 105 115 105 1645 1630 .36 .36 . 66 l!O 66 60 66 60 1790 1780 44 .44 71 64 71 64 71 64 1790 1780 .43 .43 88 81 88 81 88 81 1810 1800 .39 .39 101 93 101 93 101 93 .. 1830 1820 .36 .36 129 120 129 120 166 120 1885 1870 .31 .31 76 69 76 69 76 69 2030 2020 38 38 95 87 95 87 95 87 2050 2040 .34 .34 108 100 . · 108 100 108 100 2070 2055 .32 .32 139 129 139 129 139 129 2125, 2110 28 28 I Type HS8'-36 I DIAPHRAGM SHEAR VALUES (q) (Lbs/L.F.) AND FLEXIBILITY FACTORS (F) --------------....-,,------------------. ~,2.-4-~ Spari I "ro~· s·-o· I s.:_s·-o·_ 'P_. i __ 5'·.7'.·?~ . .,. _ _.,:_,:.,-.!tt_to.-~ i~ .. :;,:.~ti:..-r.:'tf·,···~ .. ,,~~ ...... , _ . . . . 5 . ;::_ Z ii-. L. • • ~ - Jage ! Side Lap i Connection i PRIME PAINTED OR GALVANIZED I BP @24" etc q F q F q F q F_ 5.5+ 5.0+ 6.9+ 6.1+ ' 8.4+ 7.5+ 10.3+ 9.3+ 12.4+ 11.4+ ,'.1 260 430 240 · 400 l. 240_ . 3~0. ..,. 23!) 37Q_,._ 2~9.. 1t. 340 --· . .,_,t,_ -.d 155.9R 56.:1R 130R 46.SR ! 111R 40:1R 97.4R 35.1A _86.6R .. 31.2A .-, .... ---·;--_,,, I I I I I I I I I I I I I I BP@ 12" c/c ; 22 TSW@ 24" c/c ! l TSW@ 12'~ctc J fl ~iBP@24"c/c I 20 18 BP@ 12" etc r TSW @24" etc I TSW@ 12 .. c/c I BP@24" etc I BP@ 12" c/c ' I ! i TSW @24" c/c i I SSW@ 2~" c/c j TSW@ 12" c/c j :ssw@12" c/c; i ! i IBP @24" c/c I I ' '-~----'' I jBP@ 12" G/C I TSW @24" etc I 16 1 '.SSW @24" etc 310 480 300 460 I 300 440 290· 430 290 400 • ___ · 1 5.0+ 4.7+ 6.0+ 5.7+ i 7.3+ 6.9+ 8.7+ 8.4+ 110.4+ Hl.1+ · 155.9A 56.1A, 130R 46.8R ' 111R 40.1A 97.4R ! 35.1R ; 86.6R · 31.2A 1 I 490 620 43!) 530 j 420 500 420 490 j 410 490. _ [_ I 5.8 + 5.3 + _6.3+ 5.8+ i 6.5+ 6.2+ 6.6+ 6.5+ ; 6.6+ 6.8+ i' l 155.9R 56.1 R 130R 46.8A i 111 R 40.1A 97.4A 35.1 R I 86.6R 31.2R , 1 600 690 600 680 1. 630 680 _670 700 1-690 740 __ . _ ·r _ -I ~~2 ~ 5.1 + 5.3+ 5.2+ . s.3+ 5.4+ 5.2+ 5.4+ , s.1 + 5.4+ --· cc, Hl 1'>nD "'an' 111A 40.1A 97.4R , 35.1A , 86.6R 31.2R l 1 390 670 360. 610 ,1 360 530 350 I 470 l 320 420 1 , 1 s.7+ 4.5+ 6.6+ 5.7+ j1 0.2+ 1.2+ 10.2+ 9.o+ j 12.5+ 11.2+ : I q F I 90.0R 32.4A 75R 27A !~ 64.31! _ 23.2R . 56.3R l _20.3f!t _SOR_.--~ 1~~-i ... ,=-·~-:y-··a,--:-:1l __ . q -~~. 1 _450 ....,,l3l.._ 440-.. Jll,! _43Q,, • ..,.._~"' ___ .42!L~,. 53.0,. · 38CL= ... ~..1..:.""~--.. ~- F I 5.3 + 4.8 + 5.9+ 5.4+ 7.2+ 6.7+ 8.8+ I 8.3+ 110.7+ 10.1+ i . ! 90. 0 R 32.4R 75R 27R 64.3R 23 .. 2R 56.3R 20.3R j 50R 18R Q --· F 620 79(i 540 680 . 52Q -~ 631( . 520 610 [' 540 1 610 ---.:._~.=-:::3 5.4+ 4.9+ 5.9+ 5.4+ 6.2+ 5.9+ 6.3+ 6.2+ ; 6.3+ 6.4+ 90.0R 32.4R · 75R 27A 64.3R 23.2R 56.3R 20.3R ! SOR 18A · : -~--,.~ 4.~tf ~:4_!'!-~ /95:' ~i~! ,~-{ff:;~~~ ~~4~fL s·~~f~4~-~~~=~~~ .~,-: ... 90.0R 32.4R 75R 27R ' 64.3A 23.2R 56.3R. 20.3R ! SOR 18R 750 1050 640 860. ~-550 _7 4.Q. :__ 4~-. _ 650 J_ 44(L --· S,!IQ.:...... ~~ ~J~ 5.3 + 4.5+ 6._2+ 5.3+ 7.9+ 6.8+ 10.0+ j 8.7 + I 12.5+ 10.9+ 15.3+ 13.6+ 38.2R 13.7R 31.8R . 11.4R 27.3R ~-9,8.!L,._2_3.8B_!_ 8,6~. I, 21.2~ ,·,: 7.§!L 19~1.!L~ Q:-.§, 830 . tjJO ~-na _Q30. ~-6:tQ .•. , 8()0, . 5§Q_.. 710. f·-· 5.QIL .-.641-. ~-~ §5A. ~--51W.1 5.0+: 4.4+ 5.7+ 5.0+ 7.2+ 6.4+ I 9.0+ 8.1+ 1 11.1+-10.2+ 13.6+ 12.6+ q F 38.2R I 13.7R . 31.8R -11.4R . .27-f;} ·-J.8R t2_3:,8~ .,,__ . 8.~R L,,21/~-6.;,-.?·.~R ... }~: 1,!! ____ ~.:.~R 880. ,. 1120. ,. 760 95Cl ,. . , . .!180 .. · _;,.2Q. , ... 840'.f.,r., .. 30 .. j,L.._830,, _,,.._ 7~0.b a.iii F 4.9+ 4.3 + 5.5+ 4.9+ 5.8+ 5.4+ 6.0+ 5.8+ I 6.0+ 6.1 + 6.0+ 6.3+ 38.2R 13.1R 31.8R 11.4R 21.3R I 9.~R __ 23.8R _ a.6R 1~21.2R •. _1..~13. ___ rn,1.B.--6~9R Q q ..... 1020 :. 1310~1010 -1200 __ 920.~Jos11. .• ·-~.ae.o. ___ 99.o.L a10. .. ~.931l..;.,. .. Jli~c.·~-8:i.i 6.7+ 6.1 + 6.1 + 5.3+ 5.9+ 5.2+ 5.7+ 5.1 + ll 5.5+ 4.9+ 5.4+ ! 4.8+ F q F q F q F q F q F q F 38.2R 13.7R 31.4R 11.3A 26.9R 9.7~_ 23.5R 8.5R . _20.9~ . _7.5.B , 18.~~-L.?·_8R 1050 . 1250 1010 . 1160 1040 114.0: _ 1090 1150 .1160 .119Q_ .1250 j ... Ji&i 4.4+ 4.1 + 4.5+ 4.4+ 4.5+ 4.6+ 4.5+ 4.7+ 4.4+ 4.7+ 4.3+ I 4.7+ 38.2R 13.7R 3UR 11.4R 27.3R 9.8R 23.8R 1 8.6R 21.2R 7.6R 19.1R. 6.9R 1510 1810 __ 1410 1660 13$0 ~-15~0.. _ _1330 ... 1460 __ ..1280 ·1390 .... 1i-1il.::ia40] 5.4+ 5.1+ 4.7+ 4.5+ 4.5+ 4.4+ 4.3+ 4.2+ 4.2+ 4.1+ 4.0+ 4.0+ 38.2R 13. 7R 31.4R 11.3R i 26.9R 9. 7R 23.5R 8.5R 20.9R 7.5R 18.8R 6.8R 1000 1350 . 820 1110. 700 950 620 84Q 550 750 50Q --&811,g 5.4 + 4.5 + 6.0+ 5.0+ 7.8+ 6.5+ 9.9+ 8.5+ 12.5+ 10.8+ 15.5+ 13.5+ 19.5 R 7.0 R 16.2R 5.8R 13.9R 5.0R 12.2R 4.4R 10.8A 3.9R 9. 7R 3.5R 1080 1400 900 1170 780 1010 680 890 ! 610 800 560 72~ 5.1+, 4.4+ 5.5+ 4.8+ 7.2+ 6.2+ 9.1+ 8.0+ ! 11.4+ 10.2+ 14.1+ I 12.8+ 19.5R i 7.0R 16.2R 5.8R 13.9,R 5.0R 12.iR 4.4R I 10.BR 3.9R 9.7R ! 3.SR 1130 1440 970 1220 920 1120 900 1070 J 910 . 1040 930 10403 5.o + 4.4 + 5.2+ 4.6+ 5.6+ 5.1+ 5.8+ 5.5+ I s.9+ 5.9+ 6.o+ 6.1 + 19.5R 7 .OR 16.2R 5.8R 13.9R 5.0R 12.2R 4.4R i 10.8R 3.9R 9. 7R 3.5R 1480 1890 1420 1780 1 1310 1630 1240 1520 I 1180 1440 1140 1370~ 4.9 + 1 4.4 + 4.3 + I 4.0 + 4.2 + 3.9 + 4.0 + ! 3.8 + . 3.9 + 3.8 + 3.8 + ; 3. 7 + ! 19.SR 7.0R 16.1R I 5.8R 13.8R 5.0R 12.1R I 4.3R: 10.7R 3.9R 9.7R i 3.SR 1330 1s90 1280 1460 1290 1420 1350 1430 I 1420 1410 1520 I · 1s4q;4 TSW@ 12" c/c 1' F 4.5 + 4.1 + 4.3+ 4.1 + 4.4+ 4.3+ 4.3+ 4.5+ i 4.3+ 4.6 + 4.2+ l 4.6+ 19.5R 7.0R 16.2R 5.8A 13.9R 5.0R 12.2R 4.4R 10.BR 3.9R 9.7R 3.SR q f q 2150 2420 2020 .2410 1930 2270 1860 · 2180 1810 2110 ·-1780 206~ I ·1 SSW@ 12" c/c l 3 a 3 3 2 3 2 3 · ,_ __ ...._ ____ · __,_i ___ F __ _._...:.::.:.· ::.:.+~-3:..:.. 7::.:.+~_;..6;.;.+__.__..;.3.;..;;4 .;..;.+...._...;;3.""5 ""+-'-...;;3.;.;.;3~+----3-.3.;.;.+__,_---'3._2 ""'+_._ __ · ""'+"-'-....a.;.. "'"+"-'-_3 __ .;..;.1 +__._ __ · ..... 1 +__, i 19.5R 7.0R 16.1R 5.8R 13.BR 5.0R 12.1R 4.3R 10.7R 3.9R 9.7R 3.5R WELD PATTERN TO SUPPORTS I 5 7 4 VERCO MANUFACTURING CO, 0 I • OPUS CORPORATION 1 • DESIGNERS • BUILDERS • DEVELOPERS . Offices and Affiliates in Minneapolis· Chicago· Milwaukee ·Phoenix· Tampa • Pensacola Project -~....+-'.--- Date ½/t. V By \ff I I I I I I I I I ,I •1 ' I I I I I I Sheet bi, ). f) of __ -----_u 1.: • ~ ~1~,j&J . • @, w1r'l1L ~ / C -o i'"v • t'op~fN l Tu) VIry; fl--'70( t-z-, C:J; (. o/J-0 ) -i,r.r - 7 -¼(~.GX .6D\ ; --lb?;,'~ .,. -~(¾0)( ,oOl ·) ... to3,,; 'J,, , .,,.. 2>1) (42'.CJ J ,obl ) -t4"?,), ,.. 1/M,(., .-·t~( t )U\.t~X¼) ::; 0), If 14'01 -• l i; (t-,'lh)( ,4 .~ XB) -;, [O~tl S-o'Z,,,S "° ,. fltu,,ftoJ\/trl; ~ '7 r~ (~~~~~) ,,_ ~Zr. ~61L6N L) /o-W~~ 1o (c&l~ t~-zr. <A~. o/t~_ ~unoN ~Nf- iUo ~ .Wv/.A.; ff(dvtlv6 tw~ ~ri1nvv6' C") 0' 2 2 m C") ,;...i I ...... ' 0' 2' (/) I .,.. ', I_'. I-I I I I I I I I I I I .I I I I 1· .. V • ~ t.a ., -0 "'' '"\l' ~ 0 ~ @ ~ -® ~ ©- t - ~ ~ - ~ - + • :1---- ~ • i t\ • It\ ~ ... C) -~ .. 0 -- - ---------· --~--._ -.no I .i. --~-I ----.__ . -.. ... -----·· --H .. ... ---11 .. -----' .. .__ l .. is ill .. -... 1 ,, ~ _s, I r-~ ~ \ !:'; ~-l· IS 18 ... 0 ~ ,a I r-'9 ;i. ~ -z~ ,-.: (f: s·,-z l, '£.-Z =· =,1r>1 • •• ~-. I q • • rz.. 1g 12 ~ '-~ ~ ,1, g_i!'Z &\ N..---· [) I .. t<a -,g ~ i9 ·-" I ·~ I~ ~ 19 ~ r-(', . A(f'} -1n -~-z. ,.,__ . .. ,. '"loz 1,s 1'r1z' " ~ Y1<a ~ -.~ ~ J i,..-. -~ l<q. £ca-I -~. -I -I 1,: (I 0 i -z1g ~ ,ca E'2 I ~ i .,__ ~-fc ,g, fl. n. 19. TZ,\J? IZ . rz• ' I i ~ "i8 I . ! i I ,e I'd \[' -s,ca_ ; -~ -QJ )/(:1)1(1 ;.,-z! '~ lg, : Vl c;g ' --I I l . i ' ~-I '. ·" .. ,I, -.. , ',f ,1 g, -z.Q ra, r ~ t ~ 'l.i.5£ -I~ --.s o,s_ ~~ . .,s• cr .. ~· "' ,<l -~ £0 I~ ~ -z.<a ~ $l ~ • --1 :s-'lia6' i 51 I~ .J;,T ~ g) ,~ '?.fl • ' ~ ~----'-... --C9 L 9>.£ I~ '~ ~ ,.;_ ~, /9¢'' 1 ·.s·~--ta .s· ~? --' /J) 7 J '::-'-d .s r,.:.;, _LI' .. la i. ~ \1' u-· ,lo, I, -. . ·-• . ' ,,.;,.-bJ • ,ri--'Yl tfy-Jo} • . I ~ ~ I.:-. .,£ ~ -~ ·Sl pa. t::: ~ ~ --------I ~tr I,'-. I -i 9 ~ .l 3 ·1 1<a ·I 'ci 1§ I IS --. j_ I ~ -~ rg I Q ~ I~ I ·:t 1at--i 0 - I f rr lg <::i '<2 \l) C). ;.:s l -t '3 I g . -e. 1 0 -\) . ',.,, i ·1 lg s ~ I t ,s l I ' • ~ ·I ~g I -z~. I ";;z. .~ I ~ . -·--· -- I ~ ~ --------\V 2 I H1 r-.I ~ ·1-I ! l'B 19 l&i,.. I 1<2L fJj -~ \II -I ~ ~ lg ~ I ~ <J) \-9 I~ ~ I g ~ ~ I I'S. e * lg I Jg I~ I • lg I Ii Jg ,,~ ' "' I Si 9g ~~ I I i~ IS. gg ~ I ~ Jg. lg. c;,a * j )l i -\!] IE"<IJ rS I N I le 1g gg "2g • ·1 • 'E8. I '.. ,9 I "" $2 ,§ '28 eg ~ I ~g ~ J.. "tf!I 1> -zg I ~- ·1 \~ -------... I •• OPUS CORPORATION . Project _____ _ Date _____ _ I • DESIGNERS • BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola By -i=ki,;+-+----,--- I I I ·1 I I I I I I. I I I I I I I BF-A l<J t<IA'RK.. - w\21 Wl4 61 1Wl/4>,. W.18 . -e:6A. W!'Z.l i W24 -s~, .. W IO cp... r.£:5$, . .. Wt.z. oeie~ W 14 :,<.:Z-z.. W I (o)<.100 1----.1'1~)( 3'5 i,...1'2-13<'.SO J,,J 24-,>c .. :6 S Bl QB ~lOA 59A SGI ~EACPl"i- K. 1.0 !<- ~(D !( • 'Z..-Z. It' 1<. ! Sheet ~of __ _ .<-.1u=1.:D ~ ~25-N t L WELD .'¾!a,BOLTS 34, " ~(a 3'' ,~o 3---~ 3k, I ll ?J;;t:p-4u 1-0 . 4--%,<$· ~6 ,1_c,· 19v,--. 5 .. ¾" tf>. , . '¼' TT '.2 -. r 4' . ~-o'-6 '?/i0 .. 4- . . .. ' • i WELD -. ~ ... -· ..,._, ..,_..,.....,. . -" ....... ·-·-"'"'~ ~ ' '~ .. ~--. ' -. ., . "'' ' ' ' ~--' ; .. -~ , , -. ' .. ., . . , • ;• -~ -,,.-'< ' V • • • ' ;• > • >' "1 •• • I I I I I I I I I I I I I -1 I I I I OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis • Chicago • Milwaukee · Phoenix • Tampa • Pensacola 'c-. ---, ' p!;lt. ----9 · 3-· x ·· L 4-· · -- ~L-=-. U.o · 3-. X I b 7 -. '21. 7 .. ----. ·----- . ~t-L ~. '?-5. 0 ,. Yt.X. =·. ao .. 1s M I I\ 2 <t, )(. c, -(D _ s.r/Jo:s 4- _-· ·_ .... ---~-: ·1c.. •-. . l t:::.H.S 10~ __ ;. .'Pc, = 8Lx---40oo_ ::::7-'2.. 45 ..... : .. · . . , sooo , ' Project ______ _ Date ______ _ By _\R"".,....._~,,,, ___ _ Sheet ;;; of __ _ e .. "' ,, • , -, -· • • V __ , -~ i , • -; s.\A EA;iz. .. <t> V c.. ,_ 4 (19 )-"'" 7 (D I<-• . .v c:. .,.__. 7 to: . ·= 8 q . 4 K, · . t':,S • > + -+ , .. ~rr ~/~{~~}£a~t:f:~~~HJ=¾;e 0 4 (LO o,k. . ' ~ -,..~~,' i -• ,. ;• , • "•--,~ __,,_.,:--,.. I-,,, Jf,., ..,._,-+ ---~---;-,._,.. ~---...,.....,,.,. '") ..,,,.,,,,i, , , ,,,,. !,-J.:;5.€....L-¥B--><-_.L6:-~---L~ 2:-.. lf:-~-.(_E£1,E>,EO@. ll-,l. > • C.O.t-:IYe.e:.TE.) . . A , ,_A, .O• -v-• -.·-· J _..,..,.,.....,....,_0_,,,,.... ~-,..,._. _ .-i ... ~--; ·---.~ y -~ ·-: _ _,,,_,/ ,,-., • ""'" :.:$.k.LE-b."R,-.. ·" ~ti,..-t:g_;_ __ t)e.$.L~-f-...i. .: ... ( 'SJ;::g_; ... ~~},1''\ : .. 10 ... C-.QL;._. __ Co-r-1.H. 1A'::L,'i:9 • J : • , ! ~ ' ; '. ~ • ' • I ' ' • l l ; $ i ~~,·-~. ----..-l _,.,..._ _ ............. ~ -~,--............. ,,,, ... ~ ..... f ,,, ~ . -":'. .. -: . ~ I ',.,_ "t'---. ~--'..,.,,,.,,,.,..,, ..._, _ _,.,.._ -., .... • < . ' . • ,a_,.-, ... , VW, ,..,..,.. ,,_, .. N ... > ' ~ ' ( • , OPUS CORPORATION . DESIGNERS • BUILDERS • DEVELOPERS I Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola I I I 1,...J~LC): E.lOx:,c... 86L.. r : 3 114' ( A3'2...C$-~) s,~ ,4- fl II lr-- t"\ Ot/\~\ ='21,LJI x 3 =-(.p,LEJ Project _____ _ Date _____ _ By------ Sheet \X[.fl of __ _ coN.tJ.ea1DN : 1· + + + I I I I I I I I I I I I I . ~ = M --6, (L1),z__ 04.8 F:, (0 = •1«,30) 11 L,z __ &>(64-,<?) 'C --= )4,4--. "2...1 A,~ ~36) ~ -1:, L, = .-z, I, (R l 4-. 4-----t, ~ = /.5' l-1 == {, L,'-= 0!_:;:;.. C/, ~ -L, L-, /1~ t..16c:. I z M WtU) 6i=c.E.! ~ ,AeLc--.XI)(.. AL5<:-, I wtr,,p . U6E.. ¾, 1:::1u.e,1te:o-wi oOe:-6 : ., I- I I I ~ I I I I I ·1 I I I I I I OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola zl-0 FLCOR.. WEL..0 : E. "70X')II... B01.-r : o"c$ (A:i'2..CS-l--f) s,~ 4- CONNE.cn:)I-J Pe. . -Ao lP " L 8J=AM : l.(/'2-()(5"t"'-~ ~-==~k 4=zo.B 1 Ge.t>Dc 50 . Col...UMf,.f: vJ 8 >< -z.4-11 1 f J 7 " G~~e so t-;.--i~ •=itJ:z. ::= Te, · Project Date By Sheet ½1 of CoN.W.eCT10N 0 .• 1· A + + + d 4/'i' \;ff LJ:sf; '?-¾,t~T$ ---f:,L1 = z. 30 1-0l, ,, li6'E:. -:(-~ ~ j ., / ,, UJE.(..[) -8 RSE..! . · 1 )( 41/2-)( I -!i SE;.E; -r.A&...c..--.XIY... AL~, .... _.. ________ _ 4~" I( I - • OPUS CORPORATION I • DESIGNERS • BUILDERS. DEVELOPERS . Project _____ _ Date _____ _ I I I fG:tCo Offices and Affiliates in Minneapolis· Chicago· Milwaukee· Phoeni~ ·Tampa· Pensacola 1,-..JELQ : E..10X')(.. BoL.-T: ="¢ (A3'2...~-~) ::;,~ 3+:EA'R. 4 ~E.Cfl::)t-,1 ~--A '3CP ,, L BEAM : v.}/(px. 40 i ,, b= 1 4-= I (o,OI Ge.P-Dc 50 -::•;> ' "" GIRDER,:\)} 1 ~ x.9-~,, ~-7,Vl. H (:;Te.POE; 50 1t• ,. ~ J-= I(!. 43 . /-<., 1:: E,AU-\Q ~ = 3 c..o ~ C>F %'4> E,oc...TS- ,, MOM"E-N.1 = 3(£> x 3 =-\ DB By-.......,.---- Sheet \A1) of __ _ WI& f tJJJe, W-Z.-1 ' W-z---j h· 13:.) 13". 1 T:::-'13~ C$) 5'" /T~138 l ,, U6f;. 4-¾-cp 5DLT ~ ==-M --t, (Lr)-z... F,b -c.o == to6 •1t;{3G:,) Av=-L =--f L _ .3(J) •<3--(3b) I I - ./:, L,z: G~~6) = 24- --i, LI = 2.. s- l 4-. 4-- t..., = {, L,'-=~ ::= 9. (.o t. I_.. -z.,5 I I _-t, =-+, L1 = Z-.S" ::: • i1 L1 12 V UJE.W -8 l=t:.E-! :¾ )( 4,1/-z. ')( I 1 -0 ., 5EE:. 1.A&...c--XI)(,. AL.s-;. , ------------~ D= 'R = 3(o == -z,,f . C C 1 )( L ') /. 1 0(/ z) t, u.Jet..D ucE-1 .F ,u ... e:r· eow. ::..c,e:.=:. : I Lt> 'f..;;lOC..k'.. S!-18\-1?..,; if \\ \, l 1· I I I I I I I I I I I TAeU::. \E K./f3ot~-r II I(_ k, • -e:: ti3. s 1-('3 K 4) ~ s2 > --:s Le o,r-. •• 1• I I I t31 I I I I I I .I I I I I I I OPUS CORPORATION DESIGNERS ·BUILDERS· DEVELOPERS Offices and Affiliates in Minneapolis • Chicago • Milwaukee· Phoenix· Tampa • Pensacola hli=.LO : E. lOX)(.. Bot... T : ? "t15 ( A.~ "2..':>-µ) S ,~ 3+:EA'R. 4- COf-4..1 Ec....T b t,-...1 ~ • - Bl=Af"'\ i vJ 14 X 2-"l- G,e:. .D-Dc 5 0 " L b=6 4d3,75 -tw,,..,-z.-3'' GIRDER: w z.l°>--44--11 " • ,, G_e._µ0_· e.;._....--=5"-""0'-------~-=_fJ,5 cCio.v~ fw ~.35 1:'.. EA u-m N = 'f O ~. ~ OF ¾'cp E.o<-T'S- 0 fl MOME-\\-1.i = ~ x 3 =-00 ~ = M ---t, (L1)-z_ ~b. . Fb I' ..... === ---. ~ •16(3Co) Project _____ _ Date _____ _ By------ Sheet \-V'\, of __ l f' L,z =-f.t> ( 6 0) = 1..1 A,; ~ L ')I, -f L -z..o •4{_3b) I I=-. 11--.4---.i, ~ = 1, 39 . ~, ·{, L,'-= \'3.3 = 9.u ,, 11 < 1'= ii.'' = U6"E:.. IZ--.rte -L., L-, \. 39 ~ +,=-+,L1 \. 3Gt = 0 I\ 3/6' -----use :it?. L, 11-- UJEW {5 1-t,E, I SEE. ,A& .. :E--.XI)(-. ALs,;:,, 1< D-=---C (1)(L) 1..0 = -~ 1, 3t.. (I,?. ~(l''Z) . BIO(.)( SfleA,e : CJ," . , • OPUS CORPORATION .. • DESIGNERS· BUILDERS· DEVELOPERS · Project _____ _ Date _____ _ ·I Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola By ...... ----- Sheet I Y'\ 0 of __ _ tn I I I I I I I ·I I I I .I I I I I J...J~L() : E. tOX)(. 8c)t..T" : 0"41 (A:i"2...'5-,-.f) SI~ 3-a'R.: 4- COf...lf..l.ECf 1::)1-,,l Pa. . -Ao CJ? ©=AM : w ;Bx o 6 _1 ~/1 b~ (o . Ge..AOt= 50 3to"' 1 L ~~ /1,1 I Cd.-UMN:\lJ' t3><24--l ~ " ~-&!. d /? Ge.~e 50 ,,_ tf -' -'2-= 6 ~IN.~ ~~EAR.. -e. ~~ N d ~" + I 4Ji' I l f t#1' i I ff 1 4/2.. I 11 L,z__ ti> (84-) 7 trJ ~ -c ----= 18.fo "2..l • I &:J ·-Z. 1/V WE..(_.[) 6~1 I\ ~ ,-A&.E,.-Xl)C..., AL~ I ~-_____________ ___, D...-. 'R . C(1)(L) .SE-~""f"li:::D ~ 4 1S.+iP~. re,. 1G. /:-• . R.,EA:G1JON,-:::.3(p.{p . <; f<. :ac. 52 !J.lc-. L.1//f;;roe.M 14P~ ts+JF'F ~ l_. 4-tw(6M) = I. 4-( 'Dy-=-o4Z.." U.::E-tsm = /z.. 11 t ,, I 1,1 TA,eLE. Vfil. : lJ' = 4-z: ,, 'U;FE.l-D = _ i::s-h~ = • 'Z.-5 /J5E. ~4 II II • ~-tc 't.J(ol,)::: • b1(,z__4-5), ,(04-< ½"""'" e. b I h )( 4 k. ... o'-8,, t " Mtt--\. ~G,nl e,,= VJ'i:.\..t:> -GH-~ ~d::e-:-•-Z..>Cl,-=,Z( 6 ) =-/. 0 1., OPUS cORPORATION . DESIGNERS • BUILDERS • DEVELOPERS ' ti , Offices and Affiliates in Minneapolis • Chicago • Milwaukee · Phoenix· Tampa • Pensacola r;.I I I I G.8 I -~1t Wl(.f)f..d-0 I J,..J f='.LO : E. 10 x )(. 8c)~T : 3"c$ (A52..CS-~) s,~ ~ 4- ~Eabhl ~ .-A '5lP L I_( " I• B!=AM -;v.Jf({)x IOOj.,,i;-tfJ=.=10.4-4=17 I Ge.ADE" 50 i,, Cc:t..UMt-J: \lf f3 K Z.4-.L 1 11 I _ , !_ I 7 (b-12,.~E 50 J;"': * , ·-LP -z_ 4:= I 8, ';,IN.G,l,..E ~I-IE.AR. "e. ,::;;551~ N 'ee,A.CT\Q ~ -3 2- .\4::-cF ¾,"4' B.ct.:rs-~ ~ =-3. 4-4- MQM~1" === ~--z_ x -~/ =-9 (,() USE, ~ = M --t, (L,),z_ q lD ~ (p == ---. •76(3(o) Al) : K_ =-i L '3'2.. •d-{36) I I=:-. . l 4--. 4- Project _____ _ Date _____ _ By---.---- Sheet \1' \ \ of __ _ 1·, + + + rJ 4Yi' ~rf 4fz." 4_L~~ 4- .I I I I I ...1 L.'-?-::> II ti '-, -= '-I I = 2/. ~;;, =-°-\ • t_o {.)6c;.. l"7,.. .rte I I f8 I ti ~, , z.., 'L"2- '3. ,, ~- P'1Ll61 e:o"t-H soe:.5 : \j,JE,t.D ~ i I ' OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS Project _____ _ Date _____ _ I --· Offices and Affiliates in Minneapolis • Chicago · Milwaukee · Phoenix • Tampa • Fansacola By------ Sheet \ ~ \~--- ·1 I I I I I I I I I I- I I I I I I z'-IO FLCOR.. "'-lE=:L.0 : E. ,ox:,:. 80l-T" : o"~ (A3'2..~-~) s1~ 4- ~E.Cfbhl ~--A'3C.P 8J:AM : vJ \4)(.'2.--°Z, -I • I~ b-: tJ' Ge.OOe 50 "" ~UMf-J: vJ f::; X 2-4---J 1 Ge.~e 50 _ "t.J# ,21!5 •= ';;ilN.Gil.E ~t-lEAR.. -e. P€5'SIG N ~- "eeAQ"\O~ -20 ~ OF ¾ct>~~ ;,~ -. 'Z • l0 " f,/ I<.. MOM~,-= 20 x '3 =-6 0 d + + + 4 1 I( ~ ~= ~ --t,(t): _._ f' L,2= &> c e:, o ) = i-a. 2=> 1-1 ---t, L, = I . 32:, l-, = {, Li'-,, ~ 'r= tz_ -==-q .. u, tJ6'E:.. '"2.. .rte el,~. i, L., t-_ i-,L1 1~38 =-.·,\ ~lb ~. .,--= use L, I~ WE..(..[) 6i=t:,E,t ~ r n % _ )( 41/-z.. )(._ I '-o SEE. -:r.A&..l::.--Xl-'1---A1~, .,__ ________ _ •• OPUS CORPORATION . I • DESIGNERS· BUILDERS• DEVELOPERS I I I I I I I I I I I I I I 1• l 1 Offices and Affiliates in Minneapolis • Ch;cago. ·Milwaukee· Phoenix· Tampa • Pensacola ,V; (Q" ; r E(Y)8~0 ~ . AT 6 IR..DE.R.. G\ IS · I<,, "-· 'Po = 1 (p. (o. x l. 4-= 'Z3, ZS . Q /<-, 1fl. ..,,, "'2..1 · I x I . I = "3 / , 'Z '5 0 11,k 'MIA.:::. fo0,5" X 3 11 18/.5 I 8/, 5" P<A-:::: -·-· ~ 30. -ZS (o ? C.. I D E.::.,t G N t\AN 'D 1:x:C>t.... t~ =-a.oco ps., 4--¾·cp-" x d-0" ~. sruo s / l{:_ = 7 w = B9.4-K-. .. 8S TENSIO~; 11:Q;;Q J<.. ·,pc..,=-81 ><-Sex:(] = 7Z,45- '.f)c_'L ~ 4) r~ [h< Z.).( t-y r0 -Pe--(oh) -t~hj .._ . / Project _____ _ Date _____ _ By...------- Sheet \:r l '7 of __ _ -- ·1" · ---: ' ._ . ~ . - ' " . I-:,, ' . '~ ,_ · .. 1··. -- ---~.,..,·- ,_;-.., --,:~,. . ,' --~ ' :_ . :1:·" 1-·. •--·-A•' _:,· 1- :1:_ =-· ::1,·-- , ·~ -1.·' ·.1,-· ' ' - :1:.' ! --f-,--l ; . ,,.-~~ ·,' ' '~ . r -~~';,,/~ ·, ' - \ ' ~· ,• ' - I -:.,: • rl "I_:~-._::: - , ';: ' .. ~ .,·:::;:.·_., -._, .,: :, ' C") :c JTI ' C") ' ;:,<:' -w' •• OPUS CORPORATION DESIGNERS ·BUILDERS· DEVELOPERS l ~-Offices and Affiliates in Minneapolis· Chicago· Milwaukee· Phoenix· Tampa· Pensacola I I I I I I I I I I I I I I I I I . .. - ' . ... , '' ~ ... ' .. ,,,--...__..........._ ~-, . ' \· ' .J :;,· -~ S°) .s,~ ~ '-..) '-..) ~-, 4i t· :t . ' ' .s .. A' i -~- ~. ~--~~- ~ ~ ~ ~---~ ! = \ ~-i. -~ -~ --.;;.....,. <l & ~--}' 0 _Qr, I " I ! 1 ' l 1 . . ,. l .. ~--n ., ~i~ -~ t ')(._ l ' ~ -~' C 3.· ~-- -)'.. ~ \4 ·O ;j--' y..'' " . qo )(. -3-~-~ 3-' __, ---~ 4..P ,, ,,,,.... ~ . ~ ~-- - .. . .. ., ' ~ ~--· cC°' ~- ~ '--, V) L-, I· ,-+ \ .. . .. '' <--r-r-,..._ ~ ,::::J ..,., '-:2 - -~· . -· -" -~ ---, ' .. ' c:::, "' a c:,· 'i:::) c-c-r-'t . T" .-¥,-,, \ . , :k~r ::L. •. ' =:.~~ .. I~ ~ \ .... -1-' \ . . . . . =7" -=-~ V-, -\~ ,, '' ',,,--:-, r::::. ~~ .... .,.,,. '"'t-~ -~" -___, ..__, ~ .c:A -~ ... .. -~ . .. . ?5\ ~-:,..., ~~ :/ ~~ -' Project _____ _ Date _____ _ By------Sheet j \ I of __ _ . l l ---2 .. 1 \.::. <. ~ f <ll. ..6 ~ l! ~ " ., -~ ,, .... "" $" s· : .. ~ Cl () z ' -=-1,,--<.) ·-¼ 0 . .,, " ~ ~ .. ~ j i ' -~ ~ ~ -=-\.. -- '' I . . -OPUS CORPORATION I --DESIGNERS. BUILDERS. DEVELOPERS I I I I I I I I I I I I I I 1·- 1 I Offices and Affiliates in Minneapolis • Chicago • Milwaukee · Phoenix • Tampa • Pensacola ' ·:~ ·:-.. ~-. t ?· ~lss _ · ~-~ .. ~f.f,i; ' ' < -, .., , ,._,' ,_. • "'"'• W-"" ..,_ ._, • v~--' ""' , -~¥ , ~,_ __ • ~A _,.._, •"' --" ' l "' , ~ ,. ~ ,-...,...,., . -' , , --' .~ ., --.,,..., " ... ~-- '' -.,,,.. ... -.,,· _.., . ..,, ,_ _,_ -. ·----____ : , , Project ____ _ Date ____ _ By----- Sheet :j V of __ v.,.. -:: );.,,~ Yi ~ t(Df (;),lo 1rit- .. OPUS CORPORATION . •• DESIGNERMUILDERS • DEVELOPERS I 1· ·1· I 1· I I I I I I I I I I I _I Offices and Affiliates in Minneapolis • Chicago • Milwaukee • Phoenix • Tampa • Pensacola c~,(~ ~'f ~~-___ \l'f /4.p}~ _l, ,bVl fw ~ ~ (o~jv)::, ?JO ~ ~ lr1;~7"r; :; s \11 t&. /_\0_-~ /~-~--I 4 ,o ~ + , 'lf(.S-,7}) . . "-" ,'J 1. ( I • '~ )! J,,J) -, ,, , , , -? ti'}./ ~ -s ~,I? 5-x -c-v?S .s'i -z-_ 4 l 117 '{:--{ril~ 8--· ltt'.18/ ;') ~1 'L >i I( ... /'v._O c.., '% Project ___ _ Date ___ _ By---- Sheet 3?'2 of __ v"f. ::. ~"'+7 y '1 ';:. '2.,1. 0 -z. ~~ '?;(), ),'2, f ~ ~ '/$, r;7 -~-;. if ~,; ,1S {ro)~~7,, -~ -~ 1~/tf ,1/7 ,:: ~I/_ r -·1'·; --- C..l: , ... -. I' . ' , -' ' '. . ,: : ~ -.~, 1,,-, ' ,_;.... .. _ ... _ ' .. ::-....;::.·-· _, ·--·~--; l l::S: l H 1 (/) lg i := i. ~ : rn 0 C (/) c:, rn ;;! -~~-' I /' ·1 ( . -. ·I ·I I I I I 11 I I I :1 '\!.. ;I . I :.1 -1 (~; ·1 I OPUS CORPORATION PROJECT--~- DATE ----,..-~~ DESIGNERS • BUILDERS • DEVELOPERS _ BY 'f MINNEAPOLIS• CHICAGO• PHOENIX• MILWAUKEE ~ ' . SHEET ___ QF __ .ff ::: .. -::,: ~ _c r _w~f-~--·---·--"2.' . )\ ---. --. ·. ~ ·--ts ~:_ ___ -. . -.... -···--· I ~ • ~o r0-·B .. 1-~-11~ M V~l1 joi-J ~ 0 '.1J a ,c. ~ -·--. · JH ·r .J: :=--)~-·tr·-?_• '2 ~--·--... . . ~ ·_ -·-. . . . --· /\z,!.911. Wp p. UJ f. -=-. 1~.(~X ::·1\)_;-__ J,i;,i ~ ---~ ___________ ~-F-r ' -·---· lcrtrl' ····----· ..... --. . -·-·-·-···· ; U { ." ----"'-... ) ·-.:. 1J.. 1-r . . i _ __;JH --. f-f' ,:;: J [ . .J( • ? t\ , °l~ -1 o? _. ---·-_. . _ . _ _ _ y.11 w .. ,ct ,s ~1r:nc1 >i) t ;-t '1/, ~ 1~~;,; ; °I fr~~p-)-~N'flVI., .. , ¼ I? lUJ71 871N . ~=:-:: .. --J ~ . -------~--------------. -·--· -. -----·-· --·-.. -4--VI-= 1it-w ______ ....-.A.__IL_ -. II --. -7z,;;. . i _ . ~~~~N.. WM~~ff4/~110· .. ---___ : -· . --.L .. 1 ~:41 I'- .. . '1 ~~----~J~---.. -·------· -~-. ---~ ~ JI • II I . ' l I . (:"t2. --· -fii0.~-·-·,;·--~'TI< G __ $-b ~.C, ~----·:·:-·:· _-.. : ~ ----·. ---· -. . ., . I ?,;, I\ .~'(JV t-_ ~ q.-~ vJ(· -. . . -----------~-------·fv -·. -~ -N~ .. -------------. ~ .. --· -·· _· ~--.... :7~_t_. ,y ··,-r .... ·: .(ffi~-~~~~"'-~ -~-?.) ______ : ______ ·_=-~-~~-~ ----~~J;::_~----·--- f V\ -, _____ C4(~~~rt)~J.ii~. -------~-__ · · · _______ -__________ . · · ------------· · . . . .. S ·.,: tz.,-,~J·;;.·1,·1/_~------. -· -.. ----· · --· -----------·--- .. ------.... I\ -~~ . ---~'-rv;. ·-·· . . -... , -·. . ., . .. ----·----·---------·-· -. ~. :~~~o_}l_~ -· -·;·~-ii,~---~~-----·· --'t ~ rp~; ·-···· ,. ,\~ ') .. · ··--: ·· -· --"-------·-· ---~ ' ~ ·--·---. -. ~. . .. --~-_.r. ___ .J__ ---;·----·-•· . .. - . . b, .. ~c.e-·· ~ i ~ '-tt . _----------tr>t:/ ::::-·t:· ·t ~-I, .,. -----·· ... -____ -~-6 ·-----------_ _1-b ... .-:r~-____ 1.o. ___ \. ~-~--:+-e~_··t7) ___ . . --······· -· --·--·. . . "'l'. . i--·----··-·· . -. -~-f -~ . ' . .. . ..... ~ ... _f!A-c,._~ __ 2,~,_'t~ -:. (b-1. ··*-~. ~ 'f,._ l1_ -. -__ · . . ---~-~---·_- .. -. . . --. ---.. . ~--$-l.0 .. ~~--1 :: ..... - . 71~-... ~-~-~~-~ ( 'i:'1~~-¥,-~--~: (.r~ '?,~}=----=---~ -~~~---~----~-=:: ~~-~~~-~---..... .:. -.. -=~ -··-·-~---· ~~0~ N -(IP ) ~ ·:-. -----·· . , __ _; ________________ _ -.Y'. ·-·. ~--=:_ o____ .. ·-,{' -VS-· ----~-~~I -~ ~¢:1~.M-t,Dwr 1.N!3MVN'T . -.. -. -·· ··-;··--···------·---· .. .. . -. ·-.. -. _________ .....,_____ _______ ...... ---. j I Nelson~ I r :embedment properties of headed studs I I ·I I I I I I I I I I .I I I I I Ancbor Sin ¼ X 211/1& ¼ X 41/a 3/a X 41/a 3/a X 61/a ½ X 21/a ½ X 31/a ½ X 41/a ½ x 5o/1e · ½ X 61/a ½ X 81/a o/a X 21½e 5/a x6,.,8 5/a X 83/,s 3/4 X 33/1& ¾ X 311/19 ¾ X 43/,e ¾ X 53/is ¾ X 63/,e · ¾ X 73/,e ¾ X 83/1& 7/a x31½8 ¾ X ~3/ie 3/a X 53/,e 3/a X 63/ie 7/a X 73/,e 3/a X 83/,e Table 6. Spacing For Full Tension Capacity Development Of Stock Size Headed Anchors AnchorSpaclng(R)lnlnches Normal Weight Concrete Sand Ughtwelght Concrete All Lightweight Concrete ~-~-~-~-~~~~~~~~~-1.535 in. 1.535 2.305 2.305 2.188 3.188 3.070 3.070 3.070 3.070 2.813 3.843 3.843 3.250 3.750 4.250 5.250 4.610 4.610 4.610 3.813 4.313 5.313 5.377 5.377 5.377 1.330 in. 1.330 1.997 1.997 2.188 3.188 2.661 2.661 2.661 2.661 2.813 3.327 3.327 3.250 3.750 4.250 3.992 3.992 3.992 3.992 3.813 4.313 5.313 4.657 4.657 4.657 1.190in. 1.190 1.786 1.786 2.188 3.188 2.380 2.380 2.380 2.380 2.813 2.976 2.976 3.250 3.750 4.250 3.571 3.571 3.571 3.571 3.813 4.313 5.313 4.167 4.167 4.167 1.808 in. 1.808 2.712 2.712 2.188 3.188 3.613 3.613 3.613 3.613 2.813 4.520 4.520 3.250 3.750 4.250 5.250 5.424 5.424 5.424 3.813 4.313 5.313 6.313 6.326 6.326 1.566 in. 1.566 2.348 2.348 2.188 3.188 3.131 3.131 3.131 3.131 2.813 3.914 3.914 3.250 3.750 4.250 5.250· 4.697 4.697 4.697 3.813 4.313 5.313 6.313 5.479 5.479 1.401 in. 1.401 2.100 2.100 2.188 3.188 2.800 2.800 2.800 2.800 2.813 3.500 3.500 3:250 3.750 4.250 5.250 4.201 4.201 4.201 3.813 4.313. 5.313 4.901 4:901 4.901 2.047 in. 2.047 3.073 3.073 2.188 3.188 4.096 4.096 4.o9a 4.096 2.813 5.122 5.122 3.250 3.750 4.250 5.250 6.147 6.147 6.147 3.813 4.313 5.313 6.313 7.169 7.169 1.774 in. 1.774 2.662 2.662 2.188 3.188 3.548 3.548 3.548 3.548 2.813 4.436 4.436 3.250 3.750 4.250 5.250 5.323 5.323 5.323 3.813 4.313 5.313 6.313 6.210 6.210 1.587 in. 1.587 2.381 2.381 2.188 3.188 3.174 3.174 3.174 3.174 2.813 3.968 3.968 ·3.250 3.750 4.250 5.250 4.761 4.761 4.761 3.813 4.313 5.313 6.313 5.555 5.555 2R 2R Minimum spacing for single anchor a 2R Minimum spacing between anchors a 2R 12 - Minimum spacing, center of anchor to free edge a 1 R 0 0 I Table· 9. Single. Reduction Values For Various Edge Distances In 3000 Psi Normal Weight Concrete la,. Reduction To Tension Capacity (Kips) (Q, Tention Distance From Center Of AJK:hor To FrH Edge (Inches) Anchor flaclus Capaclty12•1 De Sin N.w.c.1,., Kips Ate 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 I ¼ x211/,, 1.535 in. 2.65 14.2 1.18 .73 .24 0 0 0 0 0 0 0 '¼ X 41/a 1.535 2.65 14.2 1.18 .73 .24 0 0 0 0 0 0 0 3/a X 41/a 2.305 5.96 32.0 3.02 2.32 1.65 .92 0 0 0 0 0 0 I 3/ex6Ya 2.305 5.96 32.0 3.02 2.32 1.65 .92 0 0 0 0 0 0 ½ x21/a 2.188 3.75 20.1 -1.58 1.05 .46 0 0 0 0 0 0 ½ X 31/a 3.188 8.20 44.0 4.02 3.30 2.52 1.68 .78 0 0 0 0 ½ X 41/a 3.070 10.60 56.9 4.72 3.85 2.94 1.97 .96 0 0 0 0 I ½ X So/,& 3.070 10.60 56.9 4.72 3.85 2.94 1.97 .96 0 0 0 0 ½ x6Ya 3.070 10.60 56.9 4.72 3.85 2.94 1.97 .96 0 0 0 0 ½ X 81/1 3.070 10.60 56.9 4.72 3.85 2.94 1.97 .96 0 0 0 0 5/e X 211/16 2.813 6.22 33.3 2.95 2.31 1.60 .69 0 0 0 0 0 I 5/a X 63/16 3.843 16.56 88.9 7.89 6.82· 5.72 4.57 3.38 2.13 0 0 0 o/e X 83/16 3.843 16.56 88.9 7.89 6.82 5.72 4.57 3.38 2.13 0 0 0 ¾ X 33/16 3.250 8.41 45.2 3.47 2.69 1.84 .92 0 0 0 0 3/4 X 311/1& 3.750 11.31 60.7 5.01 4.14 3.19 2.19 1.12 0 0 0 I 3/• X 43/1& 4.250 14.62 78.5 6.81 5.84 4.81 3.71 2.55 1.33 0 0 ¾ X 53/1& 5.250 22.48 120.6 11.14 9:98 8.76 7.48 6.13 4.72 3.25 1.72 3/• X 63/16 4.610 23.86 128.1 10.61 9.32 7.99 6.61 5.17 3.69 2.15 0 3/• X 73/16 4.610 23.86 128.1 10.61 9.32 7.99 6.61 5.17 3.69 2.15 0 I 3/• X 83/1& 4.610 23.86 128.1 10.61 9.32 7.99 6.61 5.17 3.69 2.15 0 7/ex311/16 3.813 11.63 62.4 5.24 4.36 3.40 2.40 1.31 0 0 0 7/e X 43/1& 4.313 15.00 80.5 7.07 6.09 5.05 3.94 2.77 1.55 0 0 7/a x.53/16 5.313 22.96 123.2 11.48 10.32 9.09 7.80 6.44 5.04 3.56 2.02 I 7/a X 63/11 5.377 32.47 174.4 15.18 13.70 12.18 10.61 9.00 7.33 5.62 3.84·· 7/a X 73/16 5.377 32.47 174.4 15.18 13.70 12.18 10.61 9.00 7.33 5.62 3.84 7/a X 83/11 5.377 32.47 174.4 15.18 13.70 12.18 10.61 9.00 7.33 5.62 3.84 Notes: (.1.) Radius Or A From Table6., Section 4.6 . I . '""tt. (2.) Tension Capacity Puc Or Pue From Table 4., Section 4.5. Table 10. Single Reduction Values For Various Edge Distances In 4000 Psi Normal Weight Concrete I Reduction To Tension Capacity (Kips) Tension Distance From Center Of Anchor To Free Edge (Inches) Anchor Radius Capac1ty12.1 De I Size N.W.c.n.1 Kips Afc 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1/. X 211/1& 1.330 in. 2.65 12.3 1.15 .65 0 0 0 0 0 0 0 0 1/• X 41/a 1.330 2.65 12.3 1.15 .65 0 0 ·o 0 o· 0 0 0 3/e X 41/a 1.997 5.96 27.7 2.92 2.22 1.47 0 0 0 0 0 0 0 I 3/a X 61/a 1.997 5.96 27.7 2.92 2.22 1.47 0 0 0 0 0 0 0 ½ X 21/a 2.188 4.33 20.1 1.82 1.22 .53 0 0 0 0 0 0 ½ X 31/a 3.188 9.46 44:0. 4.64 3.81 2.91 1.94 .89 o· 0 0 0 ½ X 41/a 2.661 10.60 49.3 4.59 3.63 2.62 1.55 0 0 0 0 0 I ½ X So/11 2.661 10.60 49.3 4.59 3.63 2.62 1.55 0 0 0 0 0 ½x61/a 2.661 10.60 49.3 4.59 3.63 2.62 1.55 0 0 0 0 0 ½ X 81/a 2.661 10.60 49.3 '4.59 3.63 2.62 1.55 0 0 0 0 0 • o/a X 211/1& 2;813 7.18 33.3 3.41 2.66 1.85 .80 0 0 0 0 0 I % x6'11& 3.327 16.56 77.0 7.75 6.58 5.36 4.09 2.76 0 0 0 0 5/a X 83/1& 3.327 16.56 77.0 7.75 6.68 5.36 4.09 2.76 0 0 0 0 ¾·x 33/,a 3.250 9.71 45.2 4.00 3.10 2.12 1.06 0 0 0 0 3/• X 31½6 3.750 13.05 60.7 5.78 4.77 3.68 2.52 1.29 0 0 0 I ¾ X 43/16 4.250 16.87 78.5 7.85 6.73 5.54 4.28 2.94 1.52 0 0 3/• X 53/1& 3.992 23.86 111.0 10.35 8:92 7.44 5.91 4.33 0 0 0 3/• X 63/11 3.992 23.86 · 111.0 10.35 8.92 7.44 5.91 4.33 0 0 0 3/. X 73/,g 3.992 23.86 111.0 10.35 8.92 7.44 5.91 4.33 0 0 0 I ¾ x83/,a 3.992 23.86 1-11.0 10.35 8.92 7.44 5.91 4.33 0 0 0 7/a X 311/1& 3.813 13.43 62.4 6.04 5.02 3.92 2.76 1.51 0 0 0 . ""' -1/a x43/,e 4.313 17.30 80.5 --8.15 7.03 5.83 4.54 3.20 1.79 0 0 7/a x 53/,e 5.313 26.49 123.2 13.24 11.90 10.49 8.139 7.43 5.81 4.10 2.32 I-''-. 7/a X 63/1& 4.657 32.47 151.0 -,-14.88 13.24 11.55 9.82 8.03 6.19 4:29 0 7/a X 73/1& 4.657 32.47 151.0 14.88 13.24 11.55 9.82 8.03 6.19 4.29 0 7/a X 83/1& 4.657 32.47 151.0 14.88 13.24 11.55 9.82 8.03 6.19 4.29 0 Notes: (1.) Radius Or A From Table 6., Section 4.6. I (2.) Tension Capacity Puc or Pue From Table 4., Section 4.5. I 17 I I I I I I I I I I I I I I I I I I Table 15~ Full Embedment Shear Capacities Of Headed Anchors Andlor (1,) -'/, x:2,11,, 1/• X 4'4 ¾ ., ... ¾•6•,. 'l,x2½ 'f, X 3'4 ','z X 4',. 'f, X 5¥,, 'I, x6'fa 11, x8',. 'JI, X 2"/11 ¾ X 6,.,, 'ii, X 81/11 1,,. X 3J.,6 1., X 311 ,6 1., X 4lrl6 1/• X 53/,1 1/4 X 61/,1 ¾ X 71/11 ¾ X 81/11 ,,. x3'1/11 ,,. X 41/,o \I, X 51/11. ,,. X 61/11 ~ X 71/11 1~ X 81/,1 A.W. (2.) lMltth . (Ill:) 2,-;, ,. 4 6 2 3 4 s:y,, 6 8 2½ 6¾ 8 3 3½ 4 5 6 7 8 3½ 4 5 6 7 8 NOTES (1 ) Stock Anchor Sizes H/Dt (No. oU>la.) 10.25 18.00 10.67 16.00 4:00 6.00 8.00 1037 12.00 16.00 ·4.00 10.20 12.80 400 4.67 5.33 667 8.00 9.33 10.67 4.00 4.57 5.71 686 800 9.14 (2.) A.W Leng1h--Length Alter Welding Ille (:I.) (Klpe) 2.65 2.85 5.98 5.98 10.90 10.60 10.60 1060 10.60 10.60 18.se 16.56 16.56 23.86 23.86 23.86 23.86 23.86 23.86 23.86 32.47 32.47 32.47 32.47 32.47 32.47 5.2 Spacing For Development Of Full Shear Capacity. There are two basic failure modes for studs subject to pure shear forces. In the first, the concrete capacity exceeds the anchor ca- pacity and failure occurs in the anchor. The second failure mode occurs when the anchor capacity exceeds the concrete capacity. From the Ollgaard, Slutter and Fisher investiga- tion19-1, failure occurs in a wedge shaped section pulled from the concrete and is pre- ceeded by localized crushing ahead of the stud, bending in the stud and cracking ex- tending at an angle from under the stud head behind the stud to the concrete - steel interface. This failure is .somewhat different from the large conical type failures that occur in tension loading, and is relatively unaffected by stud length or stud spacing as compared with tension loading. CIMrwll..., c:a,eclty (luc:)""' Normal Concm• (145 pclJ ug11twetghl Concme 1110 pcl) re = 3000 JIii r·e = 4000 JIii re = 5000 JIii re , 3QOO pli re = 4000 ptl re = 5000 pt1 2.22 2.22 4.911 4 911 8.87 8.87 887 887 8.87 8.87 13.89 13.89 13.89 1999 19.99 1999 19.99 19.99 19.99 19.99 27.19 27.19 2719 27.19 27.19 27.19 22 2.59 2.59 5.79 ·s.79 10.33 1033 10.33 1033 10.33 10.33 16.19 16.19 16.19 23 3 23.3 23.3 23.3 23.3 233 23.3 31.69 3169 31.69 31.69 31.69 3169 285 2.65 5.98 596 10.60 10.60 10.60 10.60 10.60 10.60 1656 16.56 · 16.56 23 86 23 86 23.86 23.86 23.86 23.86 23.86 32.47 32.47· 32.47 32.47 32.47 32.47 1 85 1.85 4.14 4.14 7.39 7 39 7 39 7.39 7 39 739 11 57 11.57 11 57 16.67 16.67 16.67 16.67 16.67 16.67 16.67 22.66 22.66 22.66 22.66 2266 22.66 2.111 2.18 4.83 4.83 8.61 8.51 861 861 861 861 1349 13.49 13.49 1942 19.42 19.42 1942 1942 19.42 19.42 26.41 26.41 26.41 2641 26.41 26.41 (3.) Sue = Ultimate Slud Embedded Shear Strength Sue= .9 A5fs, where Sue> Sue. Sue Controls 2.41 2.41 541 5.41 9.64 9.64 9.64 9.64 964 964 15.10 15.10 1·s.10 21.73 21.73 21 73 21 73 21.73 2173 21.73 29.55 29.55 2955 2955 2955 29.55 Spacing to develop full shear capacity is influenced by the following factors with Case B. assuming higher relative importance. A. Spacing between anchors in a group or with regard to boundary conditions on anchors without a free edge in the direc- tion of the shear force. B . .Spacing between anchors and distance from a free edge of anchors at an edge subject to shear force. As long as the anchor has no free edge in the directron of the shear force, Case A. applies, and spacings are governed by the H/Ds ratio. A spacing equal to the ratio of 4.0 is satisfactory to develop the full poten- tial shear capacity of a headed anchor. Table 16., which follows, shows the full spacing requirements. Free edge conditions in the direction of the shear force are covered in Section 5.3.2. 0 Q I 1,,1' I I ·1 I I I I I "· I I I I I I I I I Anchor 8111t 1/, X 211/,e 1/,x4¼ o/a X 41/a 3/ax6¼ 1f2 X 21/e 1f2 .X 31/a 1f2 X 4¼ ½ x5!'y18 ½ x61/a ½XS¼ % X 211/11 %x6o/,9 % X 83/11 3/4 X 33/11 3/4 X 311/11 ¾ x43/16 3/, X 53/,e 3/4 X 63/,e ¾ X 73/,a ¾ X 83/,e ¾x31½, ¾x43/,9 ¾ x53/11 . ¾x63/,a ¾ X 73/ie ¾ x83/11 Table 23. Distance From A Free Edge In The Direction Of A Shear Force Required For Full Shear Capacity Development (Dn) D11tance from Center of Anchor to Free Edge Concrete Type and Strength Anchor Shank 3000 psi 4000 psi 5000 psi 3000 psi 4000 psi 5000 psi Diam. (DI.) NWT NWT NWT LWT LWT LWT ¼"Diam. 3.58in. 3.24 in. 3.00 in. 4.44 in. 3.98 in. 3.67 in. 3/e"Diam. 4.87 4.36 4.00 6.16 5.47 5.00 ½"Diam. 6.16 5.48 5.00 7.88 6.96 6.33 %"Diam. 7.45 6.60 6.00 9.60 8.45 7.67 3/.'' Diam. 8.74 7.72 7.00 11.42 9.94 9.00 1;8" Diam. 10.03 8.84 8.00 13.04 11.43 10.33 Table 24. Reduction Values To Shear Capacity For Various Edge Distances For Anchors Subject to Free Edge Shear Force · f'c = 3000, Normal Weight Concrete Shear,,., Reduction to Shear capacity (Klp1) capacity D11tance from Center of Anchor To Free Edge (Des) In Inches l(lps 1.5 , 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 · 2.22 1.79 1.37 0.94 0.51 .09 2.22 1.79 1.37 0.94 0.51 .09 4.98 4.34 3.73 3.05 2.41 1.76 1.12 0.48 4.98 4.34 3.73 3.05 2.41 1.76 1.12 0.48 7.48 6.76 6.03 5.31 4.58 3.86 3.13 2.41 1.68 0.96 0.23 8.87 8.01 7.15 6.30 5.43 '4.57 3.71 2.86 2.00 1.14 0.28 8.87 8.01 7.15 6.30 5.43 4.57 3.71 2.86 2.00 1.14 0:28 8.87 8.01 7.15 6.30 5.43 4.57 3.71 2.86 2.00 1.14 0.28 8.87 8.01 7.15 6.30 5.43 4.57 3.71 2.86 2.00 1.14 0.28 8.87 8:01 7.15 6.30 5.43 4.57 3.71 2.86 2.00 1.14 0.28 12.15 1121 10.27 9.33 8.38 7.45 6.50 5.56 4.62 3.68 2.73 1.79 0.85 13.89 12.81 11.74 10.66 9.58 8.51 7.43 6.35 5.28 4.20 3.13 2.05 0.97 13.89 12.81 11.74 10.66 9.58 8.51 7.43 8.35 5.28 4.20 3.13 2.05 0.97 17.41 16.29 15.16 14.04 12.91 11.79 10.66 9.54 8.41 7.29. 6.17 5.04 3.92 2.79 1.67 0.54 19.99 18.70 17.41 16.12 14.83 13.53 12.24 10.95 6.66 8.37 7.08 5.79 4.50 3.21 1.92 0.63 19.99 18.70 17.41 16.12 14.83 13.53 12.24 10.95 6.66 8.37 7.08 5.79 4.50 3.21 1.92 0.63 19.99 18.70 17.41 16.12 14.83 13.53 12.24 10.95 6.66 8.37 7.08 5.79 4.50 3.21 1.92 0.63 19.99 18.70 17.41 16.12 14.83 13.53 12.24 10.95 6.66 8.37 7.08 5.79 4.50 3.21 1.92 0.63 19.99 18.70 17.41 16.12 14.83 13.53 12.24 10.95 6.66 8.37 7.08 5.79 4.50 3.21 1.92 0.63 19.99 18.70 17.41 16.12 14.83 13.53 12.24 10.95 6.66 8.37 7.08 5.79 4.50 3.21 1.92 0.63 24.27 22.93 21.59 20.24 18.90 17.56 16.2~ 14.87 13.52 12.18 10.83 9.49 8.11 6.80 5.46 4.12 2.77 1.43 27.19 25.68 24.18 ~2.67 21.17 19.66 18.16 16.69 15.15 13.64 12.14 10.63 9.13 7.62 6.12 4.61 3.11 1.60 27.19 25.68 24.18 22.67 21.17 19.66 18.16 16.69 15.15 13.64 12.14 12.14 9.13 7.62 6.12 4.61 3.11 1.60 27.19 25.68 24.18 22.67 21.17 19.66 18.16 16.89 15.15 '13.64 12;14 12.14 9.13 7.62 6.12 4.61 3.11 1.60 27.19 25.68 24.18 22.67 21.17 19.66 18.18 18.69 15.15 13.64 12.14 12.14 9.13 7.62 6.12 4.61 3.11 1.60 27.19 25.68 24.18 22.67 21.17 19.66 18.16 18.69 15.15 13.64 12.1-4 12.14 9.13 7:62 6.12 4.61 3.11 1.60 1. Shear Capacity (Sue) from Table 15., Section 5.1; where Sue> Sue, Sue Controls 10.0 0.09 0.10 0.10 0.10 0.10 0.10 Example: Reduced Shear capacity of a 3/a x 6¼" Headed Anchor 3.0" from a shear edge in 3000 psi NWT Concrete= 4.98-2.41 = 2.57 Kips 29 I I ·I I .·I I I I I I ·1 I I I I 1· I~~- I I II • . . . OPUS CORPORATION DESIGNERS• BUILDERS • DEVELOPERS MINNEAPOLIS •CHICAGO• PHOENIX• MILWi>.UKEE . ·-------··-·· -------··-· -. . . ·-·----- PROJECT ____ _ DATE_~--- BY [jJ-, SHEET (2 (o·OF __ . '"---_·_cJf.t;c~~ltt~~ : _:_~ --~--~----· · ___ -. . ··------· ------- ·· · · " ··-.. · 7 f( q7;Tf ·· ', 1..,,?J. _II!': · · · ···-------~------·------· .. ____________ l:_:J/1.~_ . .l~·?_.L~ . .OJ!J\'-f'.)~ ..... ~1:____ ---1----· -....... _, _______ _ ' '-' 1' . ,--------···-·--: . _·_ ---~~-=-____ l~ ~ _ ~ I. =: l -~---~--_-----_---_-~-__ _ --~ :,, -~~ ,--r : i.c~~~~ -~--P. ~ . .---~ ~-~ ---------. ·--· --···------·-/~'/, ~\-':; . -___ .:..) _____ t_ --. ----. . -------. --([--1--0·-c y··-. --'J • • ~ •.• ------~,--------------- ---------:~_s _ _:: __ ,L ~ .P.g__ ~ h ~' -~ -~ ~ ~-":::l'f ) ' s t -.. · __ ----.. --'-·---------- . --------·-. ------·-·· -----·------------------------------- . -----------·· ----r· ----. -------· --------------· --------·-. --J._ ---------------- . ---,.. -···-·------------______ -__ : ···-----. ----· ·------------------------ ------------J.----.-------------. --.. ---------------------- ---------------· . -0·i~·----_ . _ -------~~-~ -----~~~--~~~~~=~-·:·-· _ --... _ 1 _ _ _ _ -·--·-----·--·· ---·--------·-·-···-------~--· ... . : :' . :. ----:---··-·-·-.--::.· '-rn· -6r :.:~~_§i_~)~ ~~lr!_i{0.J~~~~ _J;_~ __ : _____ ~ ___ ; __ . :-~~---. · . -_· -:. ~:. 1 -r-__ -.·_ .. -· -~--~--~ rt.~°)!~~---~-~-~-___ ;_~_; __ ..;---~~:·---:---------- ~ ~.Lf"" ,.. . --"------------·-· .... ~---~-~...G . -~~ --' ' _______ .,_ _____ ---··--,--:.. ... --.+ __ · -----.+-----,.....=,=,J.--------'---- ·-·· -~~.J.-----i-_____ _;_ ____ .. _;_ ~) ·-·r/·;;r--1\t'-. _·_ ~--·----:. ____ lo2;1 '_: _____ , --------.. --:~ -.M ~-'=-~1~~-.::-."!0-> _____ ~~-i ... _ ... _ . ?fl . _______________________ _ ··---------.. s. ;-··-(~:) ~ 1; --,;,. : • __ !!_ __ : t---. o wr··-·--·--·--· · -· ---· ---- ___ . -. -~ • .. _ --~~~-. -~~---~t~ --~~~~~~-~~~ ~;-· --~'F• ; T 1 • ·-·------ , ......... : ... &---~---L~~~1t? __ ~_j_L~b-~-~-~'J--~ : • i ~ ; ; --' 1.::0 I +--,-,--. . --'----~ , , • -----------~ -----~---~~~~--r·b~ (;~.-~~}---~:~·-;G:c~'l<;J.c~;,<9,~ =-~1sl---~-~~~--~/--·~ ; ; __ . . .. -------__ : -· _f£,1--: .... . ------,---~~~ .x ~....o:lL1) --: .. _ _ .;. . . _.: --' ____ _:_ __ . . -. -. . --.. -... -·--------·-·--· -. ----. . . . . ---------------'----------· ... ' . .. ' ---------------· ,.._ .. ----.. .. .. .. ·--------'--------..... -. ·-·------- ' .. ·----~ ---:·------.. --------~----: -----.,.-.. ---. -------. ------ ->-------------~ ~. ------- . . . -----------··-·-· . --. --~- I • I " opu·s CORPORATION PROJECT ___ ___ DATE --'----+--'-'·~- BY ut , , .. ·1 I I I· I I I /-t . I I I .1 I I I IL I I DESIGNERS • BUILDERS • DEVELOPERS MINNEAPOLIS • CHICAGO • PHOENIX • MILWAUKEE SHEET & 1 OF __ [~)~ f?.&Th{(OIJ ~ g ~ 1,{,~(Lo,~; ; ~ o5/I~. B-1r ~~ (.01n) ).. 'l. ~ ..,_ ~ M Q '= \ ~ K ( l Ot c;) -; \ ),, 7 II 6 ~ -z(~V"Ct>:Xro1n) ·-· J-1, = ,o-r,i.(r,s 1:: ,i1 1 • ·_-·--- . TTLLl ~&v0 ________ ,,. ----. "--~~-:__----- ·t;;,t ~ ~1.A;f --.. ·-1.tf). f _-..:_~---~ I . . ~ _· 7J.b ___ .. __ ~ L$t11j,_ ~-0 -~ ~ l,~ : __( (h_V) · -··--· · --~l ~ 10 V()N[° ''t . --. -. i' . -r~_ ::.-lt'.1v, ! .. ---···-·r·r;·x~-i~~--:-r··L.lAt) . -· ,J),,, t-i ----··· ---... t -.. . ·-.. . . -l..,. . . ~} th \. . -. ·--· -------. _.-- -• ••~ • -·-----·---·----¥----~--··--•v •- =::=l!::==I ........ _. -·----... . , -~ . ~~----~Rrfl.~. iv -__ 6,l}r0) ·.~:. . .. ·---·-_ ·-·--:· .. ··:~-.. - /J. ,,; ft.? ~ · , ~-t; (to~t;)_? _.. -· 11 · --·-------~-· • -· ----· h ~ -?).(21tlllDX1Ai/-. ~~--: -_= : -{_~J il fr .iJls'" /f IL . . r, . ~ _ -~ ~ ,~t;(2'10)~ ~--.. , 1 . . ·---· : -·'-19··--· 1. -. ------'f ··-·---···-. ···-. : -. -··-···-. . 2. II I S. ~ ot"' _-·--to,~, 'i1' : .. o · · -· -----·-· --·----·---· -... -. /~ -. L _. -. ----. -. . .. -.... -. . -? . . . -. . -.... --.. ·-------·. --- f\,,: .,.-L, ..., ·'11( -~' -··· ----, .(U:'O . ~ ... t:t -·· -----·· to '.L --, n Z .... 6.~~-cn:.i~(;') ~ -, o? -·6 .~. ~ :J Q1/rm7> ){• I) -. --. ------.! . .. . --.. --.. 1· Ir. I I I I I I I I,· I I I I I I I ·1 I PROJECT------- OPUS CORPORATION DESIGNERS • BUILDERS • DEVELOPERS MINNEAPOLIS • CHICAGO • PHOENIX • MILWAUKEE DATE ____ _ BY -'fr= SHEE OF __ . ~ ::::!.t:=Z;-=!~=. -~ (,a~ x {t t-r , 1 x (<1 J 1, i )(,.(./,I) ~ ~1 ~ I, It'-~ MIA ~ ~ 1 )', 0~~ 4, '2. ~ ~,;. !;'V~y '--z.~ ::: , bl;r .. > f?, CJ'"lt 1 ~.,. r~; \"' ~ ~ , o lt:f' I ( 2;,) I,') ~ , ? b1 ~ ~ .:¢' G ~ 5 <1, (2.!\, .. C,. ;·"I_·_\-.~--- \;,:, : ·<· it _.'...:-.J. . . ·,-. ,-' : -.,.-- [:I::·._. l ·---~ r.,·-·._. f'.', ' ·~,- ,1~----: ' ; ;',. -;.;v-: .-:,-_ . . ' . ~½'· ···:. '• .• ' -~I ._,,1··-,._ . ', ' . ;-- ' :.......-(' .. ' ' ., .. ·.· .. ' . . :_,.~ ; - ·--.·1·' · .. ·· • ~ • > ' ~";,.~ _·- '. -."' - ·1: . . ~ .~ ··1··.:·: ,._ -. . . ~j ' ~-· . . ·-=-~-. -1•':'.· -! >. ' ··A: ,,,. < ~ ' .:_,._; ' -~: - ' ' t:.. ?·· r... ~;,-. _.; b ·~.-r • ~ ii'/1 l~?:·-:~::· (") 0 I 3: -c, ' c:: '--1 J'T1 I ;;,c ,' -C, I ;;,c 0' G') : ;;,c ):,, ' ~I /1 I .I .I I I I STAAD-111 .I STructural Analysis And Design .I 1· I I I I I I I II .I_ RESEARCH ENGINEERS, INC. P.O. Box 2706 Cherry HW, NJ 08034 (609) 983-~ ST AAD-III (STructural Analysis And Design) is a proprietary computer program of Research Engineers, Inc (RE) of Cherry Hill, NJ. Although every effort has been made to ensure the accuracy of this program, RE will not accept responsibllity for any mistake, error, or misrepresen- tation in or as a result of the usage of this program. ,,lntNI In U.S.A. REVISION 7 c Copyright 1915 by R....,ch Engineers, Inc. Publbhed J..-1915 11 .1 I I I I I I I I I I I I I I I I I -1 I I I I I I I I I 1· I I I I I I I ,I I . ..;,,: PREFACE . ST AAD-111 (STructural Analysis And Design) is known to be one of the most comprehensive computer programs for solvii:,g problems in structural engineering. ST AAD-III is also a language with which an engineer can describe a problem, its solution procedures, and ask for results. STAAD-III is also known to be a s·TRUqL (originally developed by MIT) look-alike program, because of their extreme similarity in the commands and input style. However, ST AAD-III utilizes much more efficient, specially-developed techniques for preparing and solving structural equation systems which result in more economical program execution time. As a large and extensive system, STAAD-III has developed over a long period of time and continues to expand and improve beyond its present capabilities. Some of these capabillties are summarized as follows - All the inputs to ST AA[?-111 are simple-English type free format style. The in- put data are separated by commas or blank spaces, thus making the input ex- tremely simple and flexible. Built-In Units The program has a built-in system encompassing all FPS and METRIC units. The user has the choice of any combination of these units. Also the units can be changed any number of times during input. Analysis The program has the full abUtty to analyze any type of two or three dimension- al structural system. A wide range of structural applications include trusses, frames with or without shear wall stiffening, plate and shell systems,elastlcally supported ·beams and plates, etc. iii --~ Bandwkllt, Reductlan Since ST AAD-111 takes advantage of the bandwidth of a structure, it ls very im- portant to have least bandwidth to reduce the computer time during solut.lon. With user's option, STAAD-111 can rearrange the Joint numbering system inter- nally to get a reduced bandwidth. This feature means the user does not have to be careful in numbering his Joints. A1SC s,-a T_.. STAAD-111 contains the complete steel tables from the AISC-80 manual. Just referring to the table designations (e.g., W8X31, C8X11, etc) the program internally picks up the required properties to do analysis and design. The built-In tables include wide flanges, S M HP shapes, channels, double channeh, angles, double angles (long or short legs back to back), tees, tubes, pipes, composite sections, beams with cover plates. Design of all these sections can - also be performed. Gararatlan Of Joints & Members I I. I I I I I II I I Joints and members of the structure can be generated with extremely simple I input. I Members, not concurrent to the Incident Joints, can be specified in STAAD-111 I program. Secondary forces created due to eccentricities, are taken into QC- count during analysis. I I Supports having spring constant in any translational or . rotational direction can be specified. I I I I I I I I I I I I I I I I I I I _I Loada The program accepts any kind of joint loads (uniform, concentrated and linear), area load, fixed end member loads, support displacement load and pres tress load. Temperature loads to the members can also be input directly. Also, with very simple command, the program calculates the selfweight of the structure and uses that as analysis load in any desirable direction. Load Combination Any kind of combination of loads including combination of combinations are per- missible. Pararnet•s For Steel Design The pr-ogram contains a great number of design parameters (like K, Fy, Cb, etc) for which certain preassumed values are set. To suit different design require- ments, the user can change these parameter values. The program has the capability for complete code checking of the members based on the AISC-78 Steel Code, including all addenda to 1983. Member Selection Besides code checking, if the engineer· desires, STAAD-III can select the most economical member section from AISC steel tables. This capability can dramati- cally reduce the time and expense in design work. Save/Restan Feature STAAD can save the latest results of a run in any desired file names. In a later. run the same files can be. restored for continuous usage, thus avoiding the expense to rerun the whole job. ·Concrete Deslt1,1 Besides steel design, ST AAD-III does complete calculations of reinforcing steel for concrete members based on ACI-83 code. V I TJIB..E a: CDffl:N1'S I _-:,,.;: sa:n<N PN:E ..,,.._ I 1 Tt-EUErlOL AFFRllOt 1. 1 M:ltr ix Olsplacernmt Mtthod 1. 1 1. 1.2 Assu,,:,tions of the Analysis 1. 1 1.3 Basic Equation 1.2 I 1.4 Mtthod to Solve OisplacaT11nts 1.3 1.5 Conslder~tlon of BandNidth 1. 3 I 1. 6 P-Oelta Analysis 1.3 2 CBSW. CESOUPrl<N I ... 2.1 Coordinate System 2. 1 I 2.1.1 Global Coordinates 2, 1 2. 1.2 Local Coordinates 2.2 I 2.1.3 Re lat lonshtp between Global & local Coordinates 2.2 \ 2.2 Types of Structures 2.4 2.3 Mlnt,er Properties 2.5 I ' 2.3.1 Prlsrratlc Properties 2.5 2.3.2 A.I.S.C. Steel Table 2.6 I 2.3.3 User Provided Steel Table ?• 10 2.4 M!rrber Release t 11 I ' l 2.S Truss Mlrrt,ers ~, 11 2.6 Mnber Offset i. 11 I 2.7 Mnber or ElSl'llnt Constants i. 12 2.8 Supports 2. 13 ' I 2.9 Bandwidth Reduction ~-13 2.10 Loads 2.14 2.10.1 Joint Load ~-14 I 2. 10.2 Mlrrber Load 2.15 2.10.3 Area Load 2. 16 I 2. 10.4 Fixed End M!rrber Load 2. 18 2.10.5 Prestress Msrber Load · 2. 18 I vl 1· I I I I I I I I I I I I I I I I 1- 1 I I SB:TI~ 3 2. 10.6 2.10.7 2. 11 2.12 2. 13 2. 14 2. 15 2. 16 2. 17 2. 18 2. 19 TJ&.E CF CDll&n'$ (Continued) Teri'peroture Load Support Olsplacerrent Load · I nae t i ve M!rri:>e rs Merrber End Forces M!rrber Forces qt lnterrrediate Sections Gearetry Plotting Natural Frequency Msri>er Stresses Save/ Restore Force Envelo~s Finite Elerrent Infom-ation S1&L IESl<N 3. 1 Design Operations 3.2 Al lowables per AlSC C.Ode 3.3 Design Parareters 3.4 C.Ode O,ecki ng 3.5 Merrber Selection 3.6 Trus$ Merrbers 3.7 U,s)ffll'l!tric Sections 3.8 Tabulated Results of Steel Design 3.9 Weld Design ClHH:TE CESl<N 4. 1 Design Operations 4.2 Design Para-reters 4.3 Slenderness Effects and Analysis C.Onsideration 4.4 Merrber DlrT'ens'ions 4.5 Beem Design 4.6 C.Olum Design Vii 2. 18 2. 19 2. 19 2. 19 2.20 2.20 2.21 2.21 2.22 2.23 2.23 3. 1 3. 1 3.4 3.4 3.7 3.8 3.8 3.8 3.9 4. 1 4. 1 4. 1 4. 2 4.4 4.6 I :,,-: TM!.£ a= CXNIIH'S (Cont lnued) I sa:noa P,t(E I , CDMltO UNlJIICE #0 CDM:Nl'l<NS 5. 1 Elements of the Ccnwn:Jnds 5. 1 I s.2 Omrand FoDTGt s 5.2 I I 6 STND-111 CDMIN:S #0 MJI' INS1R.Cl"l<NS 6.1 I 7 IN1RD.CRRf FRIIJM 7 .1 8 E><#IR.E~ I 8.1 Exarple Problan No. 1 Plane Freme with Design 8. 1 I 8.2 Exarple Problan No. 2 Floor Structure Design with Area Load 8.26 8.3 Exarple Problan No. 3 Frara with Spring Support 8.36 I 8.4 Exarple ProblanNo. 4 Truss Structure with Tension Bracings 8.39 I a., Exarple Problan No. 5 Support Olsplacsrent in Space FraT11 8.46 8.6 Exarple Problan No. 6 Prestress Load in the I Structure 8.49 8.7 Exarple Problan No. 7 Structure with Offset I MITbers 8.53 8.8 Exarple Problan No. 8 Exarple to Save a Run 8.57 8.9 Exarple Problan No. 9 Exarple to Restore I Previous Save Run 8.61 8.10 Exarple Problem No. 10 c.oncrete 0.dgn Exarple 8.6,3 8.11 Exarple Pr~ltm_No. 11 Finite Ele'TWlt Analysis 8.69 I \tRIFICATIOI PIH EMS A.1 I STND-111 / W-IV INl&IWE B. 1 I STND-111 / GWHICS c. 1 vi ii I I ,. I I I I I I I I I I 1· I I I ·1 I I I SECTION 1 THEORETICAL APPROACH 1.1 MATRIX DISPLACEMENT METHOD In the matrix analysis of complex structures by the displacement method, ·-,..., -.-the structure is first idealized into an assembly of discrete structural elements. Each element has an assumed form of displacement and the ele- ments are connected together by discrete joints. The solution is ob- tained by combining these individual displacements in a manner which sa- tisfies the force equilibrium and displacement compatibility at the joints. 1.2 Such a discrete element analysis of structures, having elements which are continuously attached to one another, resolves to element forces at nodal points. This _ idealized solution has no physical counterpart in the actual structure. These forces must therefore, 1:?e considered as a set of equivalent discrete forces replacing the continuously varying stress-f leld. Displacem~ts of the joints, however, can be interpreted as the actual displacements of the corresponding joints _ on the structure and linear relationships with element forces are established. Since the element forces are introduced only at nodal points, any exter- nal loading must be applied or converted at these points as concentrated fo,_rces and moments. ASSUM.OTIONS OF THE ANALYSIS For a complete analysis of the structure, · the necessary matrices are generated on the basts of the following assumptions: 1) The structure is idealized into an assembly of beam and plate type elements joined together at their vertices (nodes). The assemblage is loaded and reacted· by concentrated loads acting at the nodes. These loads may be j)oth forces and moments which may act in any _specified direction. 1.1 1.3 -::,,,: 2) A beam member is a longitudinal structural member having a constant, doubly symmetric or near-doubly symmetric cross section along its length. Beam members always carry axial forces. They may also be subjected to shear and. bending in two arbitrary perpendicular planes, and they may also be subjected to torsion. From this point these beam members will be refered to as "members". 3) A plate element is a three or four noded element having constant thickness. From this point these plate elements will be refered to as "elements". 4) Internal and external loads acting on each node are in equilibdum. If torsional or bending properties are defined for any member, six degrHs of freedom are cansldered at each node (I.e. three transla-- tlonal and thrff rotational) ln the generation of relevant matrices. If the member ls defined as truss member (I.e. carrying only axial forces) then only the three degrees ( translational) of freedom are considered at each node. .5) Two types of coordinate systems are used in the generation of the required matrices and are referred to as local and global syst~ms. Local coordinate axes are assigned to each individual element an~ are oriented such that computing effort for element stiffness matrid4'S are generali&ed and mlnlmtzed. Global coordinate axes are a commoh datum estcmllshed for all idealized elements so that element forces and dis- placements may· be related to a common frame of reference. BASIC EQUATION The complete stiffness matrix of the structure ls obtained by syst~mati- cally summing the contributions of the various meml:,er and element· stiff- ness. The external loads on the structure are represented as dis~rete concentrated loads acting only at the nodal points of the structvre. 1.2 I I I I I I I I I I I I I I I I I I I. I I I I I- I I I I I I I I ·1 I I I I 1.A 1.5 1.6 "f.fte stiffness matrix relates these loads to the displacements of the nodes by the equation: Aj = aj + Sj x Dj This formulation includes all the joints of the structure, whether they are fr.ee to displace or are restrained by supports. Those components of joint displacements that are free to move are called degrees of freedom. The total number of degrees of freedom represent the number of unknowns in the analysis. METHOD TO SOLVE DISPLACEMENTS There are mcr,y methods to solve the unknowns from a series of simultane- ous equations. An approach which is particularly suited for structural analysis is called the method of decomposition. This method has been selected for use in ST AAD-III. Since the stiffness matrices of all linearly elastic structures are always symmetric, an especially effic- ient form of the decomposition called modified CHOLESKY'S method may be applied to these problems. This method is very accurate and cost eff- ective and well suited for the Gaussian elimination process in solving the simultcr,eous equations. CX>NSIDERATION OF BANDW1DTH The method of decomposition is particularly efficient when applied to a symmetrically· banded matrix. For this type of matrix fewer calculations are required due to the fact that elements outside the band are all equal to zero. STAAO-III takes full advantage of this bandwidth during solution, thus it is important to have the least bcr,dwidth to obtain the most efficient solution. For this purpose, ST AAD-111 offers features by which the pro- gram can internally rearrange the joint numbers to provide a better bandwidth. P -DELTA Analpis Method ST AAD-III offers the capability to perform second order ·s.tability ana- 1.3 lyses, commonly· known as P -Delta analyses. This type analysis is re- quired for concrete design by the ACI codes in place of moment magnifi- cation. A simplified method has been adopted to perform this P -DEL TA analysis. This method includes the following steps: 1) First the deflections and member forces are calculated based on the external loading. 2f Deflections, coupled with member forces, create an additional load vector. This new load vector ls calculated and added to the user provided loadings. 3) This new load vector is run through the stiffness matrix (by back substitution) to calculate new and revised deflections. Note a that new stiffness matrix is not generated for each load case. This is due to the fact that the change of the stiffness matrix is negllgl- ble since the deflections are usually small in ccmparison to the t~ tal structural dlmenslons. ~any tests, some w 1th fairly large de- flections, made with indep.,dent nonlinear programs justify this as-· sumptlon. 4) Member forces and support reactions are calculated from these new deflections. 1.4 I I I I I I I I I I I I I I I I I I I I I I I 1· I I I I I I I I I I I I I I I SECTION 2 . GENERAL. DESCRIPTION 2.1 COOAOINATE SYSTEM· In order to define a structure and its loading · pattern, two types of coordinate systems are adopte~ in STAAD-III program. · These systems are global and local coordinates. 2.1.1 GLOBAL COQROINA TES The global coordinate system is an arbitr:-ary system in space (X, Y, Z ), which follows the orthogonal right handed rule. This coordinate system is used to define the joint locations and also to provide loading direc- tions. Fig. 2. 1 shows a suggested global coordinate system with direc- tions of displacements. U5 U2 U1 z Global coordinate system with directions of displacements Figure 2.1 2.1 / 11 I 2.1.2 LOCAL COORDINATES I A local coordinate system is associated with each member. Each of these local coordinate systems also follow the orthogonal right handed rule. 1 Fig 2.2 shows a beam member from joint 'i' to the longitudinal axis of the beam in a direction positive from joint 'i' to joint 'j'. The local y and z-axes coincide with the axes of the two principal moments of inertia. y X z Local coordinates drawn ln global frame · 2.1.3 RELATKJNS.,.» BETWEEN GLOBAL & LOCAL COORDINATES Since the Input for member loads can be provldad ln the local coordlr,ate system and the output for member-end-force~ ls printed in the local coordinate system, it ls Important to know the relationship between the local and global coordinate systems. This relationship ls def lned by Qn angle measured in the following specified way. This angle will be de- fined as beta (8) angle. 2.2 I I I I I I I I I I I I I I I I I I I .1. I I I I I I I 1· 1· '~ I I I I I y X X /J•Oo 7f I f:J .. 90° t / J-.-z y. / 1 y /~ .. oo ;r /i-z90° ... z~ y ;i z l 'I X Relationship between Global and Local axis Figure 2.3 2.2 Wh~ the local x-axis is parallel to the global Y-axis, as in the case of a column in a structure, the beta angle is the angle through which the local z-axis is rotated about the local x-axis to be parallel to and in the same positive direction as the global Z-axis. When the local x-axis is not parallel to the global Y-axis, the beta an- gle is the angle through which the loc:al coordinate system is rotated about the loc:al x-axis to place the loc:al z-axis parallel to the global X-Z plane and the loc:c;d y-axis in the same positive direction as the global Y-axis. Figure 2.3 details the positions for beta equals O degrees or 90 de- grees. When providing member loads in the loc:al member axis, it is helpful to refer to this figure for a quick idea of the loc:al axis. An alternate way to provide the member orientation, is to · input the - coordinates of an arbitrary reference point located in the member x-y plane but not on the axis of the member. From the location of the reference point, the program automatically calculates the orientation o.f the member x-y plane. TYPES OF STRUCTURES Almost any type of framed structure can be analyzed by STAAD-111. Most general is the SPACE structure, which ls a three dimensional ftamed structure with loads applied in any plane. A PLANE structure is bound by global X-Y coordinate system with loads in the same plane. A Tt;USS structure consllts of truss members which CCl"l only have axial m~mber forces and no bending ln the members. A FLOOR structure is a two or three dimensional. structure having no horizontal (global X or Z) applied loads or any load which may cause any horizontal movement of the struc- ture. The floor framing (ln global X-Z plane) of a . building is an iqeal example of a FLOOR structure. Columns can also be modeled with the floor in a FLOOR structure as long as the structure has no horizo.ntal loading. If there is any horizontal load, it must be analyzed as a SPACE structure. 2.4 I I I I I ·1 I I I I I 1. I I I I I- I I I I I I I ·,, I I I I I I I I I I I I I =-By specifying the correct structure type, the program will be able to . retfuce the number of equations during problem solving and will result in a tremendous cost saving for the user. 2.3. MEMBER PROPERTIES Member properties in the program can b·e provided giving prismatic pro- perties directly or calling AISC steel table names. Since the program has built-in AISC steel tables, the required properties are selected aut- omatically when the tables are called. · 2.3.1 PRISMATIC PROPERTIES The prismatic properties consist of AX (cross sectional area), IZ (mo- ment of inertia around z-axis), IY (moment of inertia around y-axis) and IX (tor.sional constant). Also, if desired, AY (effective shear area in y-axis), AZ (effective _shear area in z-axis)~ YD (depth in local y-axis) and ZD (depth in local z-axis) may be included within the prismatic pro- perties. If the shear areas are i"put, the program will automatically- consider shear deformations in th• analysis, and if they are left out, shear deformation will be ignored. In a frame structure, the ratio of shear deflection to bending deflection is so small that, in most case.s, it can be ignored. The depths in the two major directions (YD and ZD) are used in the program to calculate the section moduli. These are needed only to c_alculate member stresses or to perform concrete design. The user can omit the YD & ZD values if stresses or design of these members are of no interest. The default value is 10 inches for YD and ZD. All the prismatic properties are input in the local member coordi- nates. To define concrete member, the user must not provide AX, but instead, just provide YD and ZD for a rectangular section. For a circular sec- tion just provide YD. If shear deformation is to be considered, A Y and AZ can also be provided along with YD and z;o. Table 2.1 is .offered to a,~i1t the user in specifying_ the necessary sec- tion values. It lists, by structural type, the required section proper- 2.5 ti~Lfor any analysis. For the PLANE or FLOOR type analyses, the choice of the required moment of inertia depends upon the beta angle. The first value holds for beta equals to zero. Table 2.1 Required properties Structural TJPlt Requlrell Propert• TRUSS structure AX PLANE structure AX,IZ or IY FLOOR structure IX, IZ or IY SPACE structure AX,IX,lY,IZ 2.3.2 A.LS.C SIEEL TAa..E This ls an Important feature of the program since the program will recid section properties of a steel member directly from the latest AISC steel tables (as published in AISC-80). These properties are stored in merpor-y corresponding to the section designation (e.g. W8X18, etc.). If call,d for, the properties are also used for member design. Since the ~liear areas are built in to these tables, shear deformation ls always c;on- sidered for these members. Almost all AISC itNl tables are available for lnpu.t. Following are the descriptions of all the types of sections available: WIDE FLANGES (W ...., All wide flange sections as listed In AISC-80 are avaUable the way they are written there, e.g. W10X49, W21X50, etc. 20 TO 30 TA ST WlOX-49 33 36 TA ST W18X86 2.6 I I I I I ,I I I I I 1· I I I I I I I I I I I I I I I I I I I I I I I I I I I, y y y ,:.l ST 1 1 IA y y y y - y '' ....._-++-_.,.z le ZI nt t-WT -t Local axis foi-different AISC steel tables NOTE:-The local x-axis of .the above sections are going into the paper. Figure 2A 2.7 C, MC, s, M, 1-P SNlpH All these shapes are available as listed in AISC-80 _(M shapes are from the 1973 tables), except decimal points are not used. For exa- mple C8X11.5 will be input as C8X11 and S15X42.9 will be input as S 15X42 leaving the decimal weights off. 10 TO 20 BY 2 TA ST ClSX-4-0 1 Z TA ST MC8X20 Bock to back double channels, with or without spacing between them, are available. The letter D in front of the section name will specify a double channel, e.g. D C15X33, D MC1ZX35. 21 22 24 TA D MC9X25 55 TO 60 TA D C8X18 Angles are specified little differently than as they are listed in AISC manual. The following example with explanations will be. help- ful in understanding the input: 10 tlmes length of one leg in inch 2.8 = L-4x3 1/2 x 3/1 Thickness in 1 /16th lnch 10 times length o.f other leg in inch I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ·.-=:-:-similarly, LSOS010 = LSxSxS/8 and L.904016 = L9x4x1 At present there is no standard way to define the local y and z- axes for an angle section. To make the transition from the AlSC Manual to the program ·data easy; the standard section for an angle is specified: 51 52 53 TA ST L40356 This specification has the local z-axis (i.e., the minor axis) corresponding to the Z-Z axis specified in the steel tables. Many engineers are familiar with a convention used by some other pro- grams in which the local y-axis is the minor axis. ST AAD-III pro- vides for this convention by accepting the command: 5-4 SS 56 TA RA L40356 The RA meaning reverse angle. / ooua.E ANQ.ES Short leg back to back or long leg back to ·back double angles can be specified by inputing the word SD or LD, respectively, in front of the angle si%e. In case of an equal angle either LD or SD will serve the purpose. 1-4 TO 20 TA LD LJS30'4-SP O.S Long leg back to back L,.3-1/2xlx 1/4 with 0.5 space 23 27 TA SO L90-4012 Short leg back to bac:k L9x4x3/4 Tees are not input by their actual names, as they are listed in the AISC manual, but in.,tead by designating the beam shapes (W and S) from which they are cut. For example, 2.9 1 2 5 8 TA T W8X24 67 68 TA T W36X300 PFES tee cut from W8X24 which is WT4X 12 is a WT18X150 Since present industries use so many different sizes of. pipe, it is almost impossible to call them with any designated names. For this reason, in ST AAD-111, pipes are input by their outside and inside diameters. For example, 1 TO 9 TA ST PIPE OD 2.0 ID 1.875 will mean a pipe with O.D. of 2.0 and 1.0. of 1.875 in current input units. Note that only code checking can be performed on PIPE sections and no member selection. A rod is specified by IO:0.0. TUES Tubes, like pipes, can only be input by their dimensions (Height, Width and Thickness) and not by any table designations. 6 TA ST TUBE OT 8.0 WT 6.0 TH 0.5 is a tube that has a height of 8, a width of 6, and a wall thickness of 0.5. Note that only code checking and no member selection is performed for TUBE sections. 2.3.3. USER PROVIDED SI EB. TABLE The user can provide his own steel table with designated names and prop- er corresponding properties. The program then can find member proper- ties from those tables. Member selection may also be performed with the program selecting members from the provided tables only. 2.10 I I I I I I I I I I I I I' I I I I I I I I .I I I I I I .I I I I I ·1 I I I I I I I 2..4 2.5 2.6 ._.;:" . These tables can be provided as a part of a ST AAD-III input or as separately created files from which the program ca, read the properties. The user who does not use standard AISC shapes or who uses a limited number of specific shapes may create permanent member property files. Analysis and design can be limited to the sections in these files. MEMBER RELEASE One or both ends of a member can be released. Members are assumed to be rigidly framed into joints in acc~rdance to the structural type speci- fied. When this full rigidity is not applicable, individual force com- ponents at either end of the member' can be set to zero with member release statements. By specifying release components individual degrees of freedom are removed from the analysis. Release components are given in the local coordina_te system for each member. For members which carry axial loads only, it is more efficient to use one of the TRUSS commands (Section 2 • .5) than to release all of the appropriate end forces. TRUSS MEMBERS For analyses which involve members which carry axial loads only, i.e. truss members, there ate two methods for specifying this condition. When all the members in the structure are truss members, the type of analysis is input as TRUSS. For any other type of structure (like PLANE, SPACE, or FLOOR), when only some of the members are truss me- mbers (like bracings of a building), the MEMBER TRUSS command is used. this command,· these members can be identified separately. MEMBER OFFSET Some members of a structure may not be concurrent to the incident joints. This means that the actual connecting point of the member in the real structure is offset to a distance from the specified incident joints of that member. This offset distance is specified in terms of the global coordinate system (i.e. global X, Y & Z distance) from the incident joint. 2.11 2.7 Secondary forces induced, due to this offset connection, are taken into account in analyzing the structure and also to calculate the individual member forces. ~The new off set centroid of the member can be at the start or end incident and the new working point will also be the new start or end of the member. Therefore, any reference from the start or end of that member will always be from the new offset points. Figure 2.5 shows an example of member off set. r 1" 6 II I ~=::=:::!!:====~I .. 1 ~1 MEMBER OFFSET 1 START 7.0 1 END -6.0 2 END -6.0 -9.0 Figure 2.5 MEMBER ar ELEMENT CONST ANTS The member constants are: modulus of elasticity (E); weight density (OEN); Poisson's ratio (POISS); co-efficient of thermal expansion (AL- PHA), and beta angle (BET A) or coordinates for any reference (REF) point. 2.12 I I I I I I I I I I I I I I I I I I I I I ·1 I I I I I I I I I I I I I I ·1 I 2.1 . 2.9 E value for members must be provided or the analysis will not be per- formed. Weight density (DEN) is used only when selfweight of the struc- ture is to be taken into account'. Poisson's ratio (POISS) is used to calculate the shear modulus (commonly known as· G) by the formula, G = 0.5 x E/(1 + POISS) If Poisson's ratio is not provided G will be 1/2 E. C:oefflclent of thermal expansion (ALPHA) is used to calculate the expan- sion of the members if temperature loads are applied. The temperature unit for temperature load and ALPHA has to be same. BET A. angle and REFerence point are discussed in Sec 2.1.3 a.nd are input as part of the member .constants. SU'PCIITS Supports are specified as PINNED, FIXED, or FIXED with different releases. A pinned support has restraints against all translational movement and none against rotational movement. In other words, a pinned support will have reactions ·for all forces but will resist no moments. A fixed support has restraintJ against all directions of movement. The restraints of a fixed support ca, also be released in any desired direction as specified ln section 6. Translational and rotational springs can also be specified. The springs are represented In terms of their spring constants. A translational spring constant ls defined as the force to displace a support joint one length unit ln the speclfled global direction. Similarly, a rotational spring constant ls defined as the force to rotate the support joint one degree around the specified global direction. BAN:>WIDTH REOUCTION A bandwidth ls commonly defined as the numerical difference of the in- cidences of the member. Since the matrices outside this band are all -2.13 zer~it is efficient not to consider off-band matrices during solution. Making the bandwidth a minimum results in the fas test solu.tion time. A good band-reduction routine is very important, since any reduction of bandwidth is direct savings in the run time during solution. It should be noted that the run time for the band-reduction routine should justify the savings during solution. For small strucrures, it is more efficient for the user to take care in the joint numbering when setting up the analysis model than to request the program to reduce the bandwidth. The STAA0-111 band-reduction routine is very fast and is guaranteed not to yield a bandwidth worse than the original. However, like any other band-reduction routine, ST AAO-III can not guarantee a mathematically best possible bandwidth every time. 2.10 LOADS Loads In a structure can be specified as joint load, member load, tem-_ perature load and fixed-end member load. ST AA0-111 can also generate the self-weight of the structure and use it as uniformly distributed member loads In analysts. Any fraction of this self-weight can also be applled In any desired direction. 2.10.1 JOINT LOAD Joint loads, both forces and moments, may be applled to any free joint of a structure. These loads act in the global coordinate system of the structure. Positive forces act in the positive coardlnate directions. Any number of loads may be appll•d on a single joint, in which case the loads will be additive on that joint. Fig. 2.6 ls provided to exhibit the joint load designations and their directions. 2.14 I I I I I I I I I I I I I I I 1· I I I I I I I I I ·I I I I I I I I I I I I I z 2.10.2 MEMBER LOAD y my ·ty fx mx Designations and directions of Joint Loads Figure 2.& X Three types of member loads may be applied direetly to a member of a structure. These loads are uniform~y distributed loads, concentrated loads, and Unearly varying loads. Uniform loads act on the full length or on a partial length of a member. Coneentrated loads act at any in- termediate, specified point. Linearly varying loads act over the full length of a member. Any number of loads may be specified to act upon a member in · any in- dependent loading condition. Member loads can · be specified in the member coordinate system or the global coordinate system with the excep- 2.15 tion of linear load, whic:h must be provided in the member coordinate systeri't.""'" Uniformly distributed member loads provided in the global coor- dinate system act along the length of the member and not along the pro- jected length. Refer to Fig. 2.3 to Hnd the relation of the member to the global coordinate systems for specifying member loads. Positive forces act in the positive coordinate directions, local or global, as the case may be. p w l ' I I I I I l oJ I • 0 i IO I I I .. dl .... ... d1 1-,c ~ d2 y. • Uniform Load Concentrated t.oad 71r--------11~ ·: .. l-------•t2 2.10.3 ME.A LOAD t.inear Loads Member Load Configurations Figure 2:/ I I I I I I I I I I I I I I I Many times a floor (bound by X-Z plane) ls subjected to a uniformly dis- tributed load. It could require a lot of work to calculate the member I load for each individual member in that floor. However, -with the AREA LOAD command, the user can specify the area loads (unit load per unit I 2.16 I I I I I I I I I I I I I I I I I I I I I sqtrQre area) for members. The program will calculate the tributary area for these members and will provide the pr~per member loads. The follow- ing assumptions are made while transferring the area load to member load: a) The member load is assumed to be a linearly varying load for which the start and the end. values may be of different magnitude. b) Tributary area of a member with an area load is calculated based on half the distance to the nearest approximately parallel members on both sides. If this distance is more that the length of the member, th~ area load will be ignored. Figure 2.8 shows a floor structure with area load specification of 0.1 Kip/sq. ft. f• 6' .. ,. 4' •I• S' .. , .. s' •I I 0 0 © 05 :[ .... X 0 0 I @ :I ..,. s' z Figure 2.8 2.17 Member I will have a linear load of 0.3 at one end and 0.2 at other end. Members 2 and 4 will have a uniform load of 0.5 through the full length. Member 3 will have a linear load of 0.45 and 0.55 at two ends. Member 5 will have a uniform load of 0.25. The rest of the members, 6 through 13, will have no contributory area load since the nearest parallel members are more then each of the member lengths apart. However, the reactions from the members to the girder will be considered. 2.10A FIXED EN> MEMBER LOAD Load effects on a member may also be specified in terms of its fixed end loads. These loads are given in terms of the member coordinate system and the directions are opposite to the actual load on the member. Each end of a member will have six forces: axial; shear y; shear z; torsion; moment y, and moment z. 2.10.5 PRESTRESS MEMBER LOAD Members in a structure may be subjected to prestress load for which the load dlstrlbutton in the structure may· be investigated. The prestress- ing load in a member may be applied at the center llne or may be eccen-· t-rtc. The eccentricities can be provided at the start joint, at the middle, and at the end joint. These eccentricities are only in the lo- cal y-axis. A positive ec~entricity will be in the positive local y- direction. Since eccentricities are only provided in the local y-axis, care should be taken when providing prismatic properties or in specify- ing the correct BET A angle when rotating the member coordinates, if necessary. 2.10.6 TEMPERATURE LOAD Temperature difference through the length of a member may also be speci- fied. The program calculates the axial strain due to the temperature difference. From this it calculates the induced forces in the member and the analysis is done accordingly. 2.18 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1· I I I I I I 2.10.7 St.FPCRT DISPLACEMENT LOAD Loads can be applled to the structure in terms of the displacement of the supports. Displacement can be translational or rotational. Trans- lational displacements are provided in the specified length while the rotational displacements are always in degrees. Note that displacements can be specified only in directions in which the support is restrained and not in directions in which it is released. 2.11 INACTIVE MEMBERS With the INACTIVE command members can be made inactive. These inactive members will not be considered in the stiffness analysis or in any prin- touts. The members made inactive by the INACTIVE commarid are made ac- tive again with the CHANGE command. This can be useful in an analysis where tension-only bracing is desired, so a set of members should be inactive for certain load cases. This can be accomplished by: a) making the desired members inactive; b) providing the proper load cases· for which the members are meant to be inactive; c) performing the analysis; d) using the CHANGE command to set all the inactive members active, e) and making the other set of members inCJCtive and providing the prop- er load cases for which the members are meant to be inactive, per- forming the analysis and repeating the procedure as necessary. 2.12 MEMIER EN> FCRCES Member end forces are the forces and moments in the member resulting from a load applied to the structure. These forces are in the local member coordinate system. Fig. 2.9 shows the member end actions with their directions. 2.19 Direction of member end actions Figure 2.f 2.13 MEMBER FORCES AT INTERMEDIATE SECTIONS With the SECTION command, the user may choose any intermediate sections of a member where forces and moments need to be calculated. These forces and moma,t1 may also be used in design of the members. The max- imum number of sections specified may not exceed five, including one at the start and one at the end of a member. If no intermediate s11ctions are requested, the program will consider the start and end member forces for design. 2.1-4 GEOMETRY PLOTTING STAAD-III can produce a printer plot of the ·geometry of a structure. Plotting is done at the printing terminal, therefore no special plotting 2.20 I I I I I I I I I I I I I I I I I I 1· I I I I I I I I I I I I I I I I I I ·1 _,_;:- device is required~ If any special device is used, refer to Appendlx-C of this user's manual for proper input. Plotting can only. be done in the global planes (XY, XZ or YZ). Several different plots may be re- quested in one run. The X axis is always plotted as the horizontal axis, except when plotting in the Y Z plane where Z is the horizontal axis. Since a printing terminal is limited to 132 characters, the plotting width can not be more than 132. The default value is 60 characters and the minimum width is 40 characters. The vertical length is automatical- ly scaled from the actual dimension. However, the scale of the vertical direction cc:11 be altered to get a reasonable picture. For example, a plane · structure drawn in the XY plane and having a maximum X dimension Qf 200 ft. and Y dimension of 7 ft. will yield an unrecognizable plot on a normal scaling. In this case, the vertical scale can be increased to produce a decent plot. 2.15 NATlRAL _ FREQUENCY As·suming a particular load case to be in a state of vibration, ST AAD-III cc:11 calculate the natural frequency of the structure in terms of Rayleigh's Quotient. Rayleigh's method of c<Jlc_ulation provides suffi- cient accuracy in obtaining the lowest (natural) frequency of vibration of a building or any framed type of structure. Joint loads and member loads can be combined in a load case for which the natural frequency is requested. Member loads are converted internally to equivalent joint loads. 2.1, MEMBER STRESSES Member stresses_ can be printed at specified intermediate sections as well as at the start and end joints. These stresse.s include: a) axial stress, which is calculqted by dividing the axial -force by the cr.oss section area, 2.21 b) _b.,nding-y stress, which is calculated by dividing the moment in loc:al-y direction by the section modulus in the same direction, c) bending-z stress, which is same as above except in local-z direc- tion, d) and combined stress, which is the additive of axial, .bending-y and bending-z stresses. All the stresses are calculated as the absolute value and do not consid- er the plus or minus sign (i.e. tension or compression). 2.17 SAVE/RESTORE The save/restore feature enables the users to save all the data and results associated with a problem and to reactivate (restore) the prob- lem and resume processing at a later time. This is normally used for two different runs analyzing the same structure. This feature is useful, since after restoring a run f Ue, the user can continue to add more loads or perform additional analyses and designs.· If additional loads are to be provided in a restored run, the user must provide the maximum number of load cases in the save-run. The save/restore feature can save a tremendous amount of computer time for a large structure since the full stiffness analysis and other generation of data are not repeated. However, for a small structure, the savings may be insignificant or ev.en may be more expensive than to rerun the whole job. The use of save/restore requires that two permanent data files be main- tained from run to run. The user can input the names of the files ( twelve characters or less) where the results and the data wlll ~ stored. In most of the · time sharing networks where STAAD.-III is offered; the save/restore of files ls done automatically by STAAD-111. For IBM com- puters the user has to provide additional job control language (JCL) to accomplish the save/restore feature. Units 11 and 19 are used by the pro- 2.22 I I I I I I I I I I I I I I I I I I 1· I I I I I I I I I I I I I I I I I I I .~;,,-::- gram to write to the files to be saved. Users unfamiliar with JCL sel- dom make effec:tive use of save/ restore unless assistance from network cons!,Jltants is readily available. A saved file can be destroyed by another STAAD-111 run with the DESTROY command. The saved files may also be destroyed with a system level command. 2.18 FORCE ENVELOPES Force envelopes of the member forces FX (axial force), FY (Shear-y), and MZ (moment around loc:al z-axis, i.e. strong axis) can be printed for any number of intermediate sections. The force values include maximum and minimum numbers representing maximum positive and maximum negative values. The following is the sign convention for the maximum and minimum values: FX A positive value is compression, and negative tension. FY -A positive value is shear in the positive y-direc:tion, and negative in the negative y-dir_ection, MZ -A positive moment will mean a moment causing tension at the top of the member. Conversely, a negative moment will cause tension at the bottom of the member. The top of a member is defined as the side towards positive local y-axis. There are several restrictions on the force envelope command. First, it may not be used with uniform member loads which extend over only part of a member. Uniform loads must extend the full length of a member to be included in the force envelope output. The sec:ond restriction is the force envelope c:ommand may not be used in the sameanalysis as a concrete design. 2.1,-FNTE ELEMENT N=ORMATION The finite element c:an be used to model "surface structures" such as walls, slabs, . plates and shells. It has an in-plane (membrane) stiff-. 2.23 ness as well as an out-of-plane (plate) stiffness. The element may be either triangular or quadrilateral, depending on whether 3 or 4 nodes are specified. If 4 nodes ore defined, they do not hove to l'ie on a common plane, i.e., a warped surface can be described by the element, such as a segment of a hyperbolic paraboloid (HP) shell. The program automatically generates a fifth node 11 0" (Fig. 2.10) at the element center. This fifth node is derived from the element stiffness, before it is added into the structure stiffness. When assigning nodes to on element in the· input data, it is essential that the nodes _be specified either clockwise or counterclockwise (Fig. 2.11 ). For better efficiency, similar elements should be numbered sequentially (Fig. 2.16). When laying out a finite element mesh, the user should observe a few rules ·regarding individual element shapes. Element aspect ratios should not be excessive. They should be on the order of 1:1, and preferably less than 5: 1. Individual elements should not be distorted, i.e., an- gles should not be much larger than 90 and never larger than 180, (Fig.· 2.12 & 2.13). Force output for an element consists of three membrane stress resultants and three bending moments, at the element c·enter node 0. The membrane forces F x' F y' and F xy are printed in units force per unit length per unit thickness (e.g. lb/inch/inch). The bending moments M , M , M are X y xy printed in the units force times length per unit length (e.g. ft- lb/ft). These forces and moments are given in the local coordinate sys- tem. This coordinate system is dependent upon the shape of the element and the manner -in which the element nodes were numbered (Fig. 2.14). The precise orientation of local coordinates is determioned as follows; 1) Designate the midpoints of the four (or three element edges _IJ, JK, KL, LI by M, N, 0, P respectively. 2.24 I I I' I I I I I I I I I I I I I I I I I I .=,.: I I· I ,., .... I( L ,, / ...... o.," ~ ... I -' I _,_-' ... ...., J I Generated Node I fiy. 2.10 ·1 ·1 1· 1: ] 1: ~I I I Correct numbering I I L J L I I J I I Incorrect numbering I fig. 2.11 I I 2.25 I I -I ] I l I I I I. Good Elements I Fig. 2.12 I I ·1 I I I I I Bad Elements Fig. 2.13 I 2.26, I I I ... I n •• I I x 1 it I 4:1 I I Fig. 2.14 I I I X I I I iM1y 1 ·. ~# I I My I Fig. 2.15 I 2.27 I ® © G) @ Efficient Element numbering Inefficient Element numbering f'ig. 2.16 2) The vector pointing from P to N ls def lned to be the local x- axls. (In a triangle, this ls always parallel to IJ). 3) The vector cross-product of vectors PN and MO ( for a triangle, ON and MK) defines the local z-axls, i.e., z = PN x MO. 4) The vector cross-product of vectors x and z def Ines the local y-axis, i.e., y = x x z. The sign convention of output force and mcment resultants is illustrated in Fig. 2.1.5. 2.28 I I I , I I I I I I I I I I I I I I ·,I I J I I I I I I I I I I I I I I I I I I I -;.-· Please note the following few restrictions in using the finite element portion of ST AAD-111: 1) Both frame members and finite elements can be used together in a STAAD-111 analysis. In that case, MEMBER INCIDENCES must be provided prior to the ELEMENT INCIDENCES. It is preferable for the ELEMENT INCIDENCES command to directly follow the MEMBER INCIDENCES input. 2) The selfweight of the finite elements is converted to joint loads at the connected nodes and is not used as an element pressure load. · 3) Element forces are printed at the centroid and not along any edge. 2.29 I lo ·-1 I I I. I I I • :J Structural I . • • • Eng1neer1ng : Template • .Library I - I. .-. ---7 ") • I -- I. COPYRIGHT 1984 ALL RIGHTS RESERVED 160 Newport Center Drive, Suite 125 Newport Beach, CA 92660 I I I .I I I I I I I I I I I I I I I I Composite Steel Beam Design & Analysis • OVERVIEW This program designs and analyzes simple span beams of composite steel and concrete construction. Either a full depth concrete slab or formed steel deck may be used, and either center or edge condition specified. The program automatically selects the lightest' W section for loading condition (max. depth may be limited though), and can also evaluate the adequacy of any W, S, or H section (with optional cover plate) or built-up section. For non-complex loading conditions an analysis sectfon is built into the program to determine moments, shears & reactions. For complex loadings, the design moment & shear may be entered. Checks are made for both shored and unshared conditions. Deflections for dead load prior to composite action and for DL + LL for full composite action are given. Partial comp- osite design is included, and shear connector requirements based on allowable stud capacity is given. The program setermines deflections for bot shored and unshared conditions. Also, the user may specify different different concrete properties for use in determining section proper- ties for deflection calculations in addition to transformed section properties for strength analysis. • BASIC USAGE This program has three basic uses : I -Determine the adequacy of a composite beam/slab with loading known, II-For a given loading and concrete slab, select the lightest " W " section, or the lightest " W " section for a given depth class, III-For given loading and concrete slab, desig~/analyze a built-up steel section. IV-For an existing composite steel· beam, strengthen the beam by adding a II cover plate II to the bottom beam flange. There are 13 sections in this program : 1 -Design Data : User enters data on beam data·, slab data, metal deck data, allowable stresses, partial action and shear connector data. S -61 Colilposite Steel Beam I STEEL 1 ================= en en Ill z ill: u :i: ... m C .J II) S -62 ~ I • r .. I .. ~ ... :c C, iii :c m ii: ill: u Ill Q JI RIB SPACING _, ..... RII OPENING WIDTH 1 : l 'i' ~ ' .. .. . •' I ' ,· • I ' . ~ ~·. I "\__ RIBS SHOWN PARALLEL 2 C Ill II a: Ill ... z Ill u l ! BEAM TRIBUTARY WIDTH l '1 ~ BEAM SPACING X -DISTANCE POINT LOADI ( 4 MAX ) &sssssssssssssssssssssssssssssfui;1,~"~~~~°s\\;A~dsssssssss 1 I . r ~ TOP WIDTH~ l 1 I • I I It BOTTOM WIDTH if BUil T-UP SECTION • . •. "'a .. , •.•••.. ' ~ ••• ~ ,. '• ~ i ...... ·~ ..... .. .. -; . • ..•• ·~ ...... . BEAM SPAN PLATE WIDTH • • Ill z ¥ u :c ... ~ ADDED COVER PLATE ;; .) ' . -- I l 'I '° : Q C 0 .., Ill > ::; z C ~ CD Ill .., ~ 2 ; 2 C Ill • Ill C, Q Ill I I I I ·I I I I I I I I I I I I I .1 I I I I I I I I I I I 1· I STEEL I Composite Steel Beam 2 -Simple Span Dead Loads : User enters dead load of slab and any miscellaneous loads to be considered dead loads and up to four point dead loads. The uniform loads will be multi- plied by the tributary width for use in analysis. 3 -Simple Span Live Loads : User enters up to two uniform loads and four point loa~s which will be considered live loads. The uniform loads will be multiplied by " Beam Trib- utary Width II to determine uniform live load on beam. 4 -Moments: From above specified loaqing, dead and live load moments are calculated for design/analysis. If the user has Specific moments to be used in analysis, they can be entered here without any entry in the above two sections. 5 -Design Summary : This provides the user with final analysis data for both shored and unshared configurations. 6 -Rolled Section Data : For the rolled section the user selects or the program selects, all pertinent data is listed here. This section zero's out when any value other that zero (0) _ is entered for II Total Depth : Built-Up Section 11 ( but are still stored off screen). A steel section can be specified for analysis by using the II USE IT! " selection from the "Help Menu", of by pressing " ALT T" from II Ready 11 mode. 7 -Built-Up Section: The user specifies built-up section data in this section. Area, weight and properties are calculated by the program. 8 -Shored Construction : Stresses are listed when the beam is shored during construction. 9 -U nshored Construction : Section modulus and stresses are listed when the beam is urtshored during construction. 10-Ultimate Strength of Composite Section : The ultimate strength of the section is found by Ultimate Strength concepts of concrete design. · 11-Shear Connection : From the user specified shear connector and load capacity, capacity reduction based on metal deck data is calculated and if partial composite action is specified, reduced requirements are listed. · 12-Deflections : Based on effective moment of inertia, dead and live load deflections are calculated for both shored ~nd unshared construction. 13-Reactions : Left and right reaction are listed for loading specified. S -63 Composite Steel Beam I STEEL ===================================== • PART I : CHECK STEEL SECTION This mode is used when a known beam, slab and loading condition is present, and adequacy must be checked. The procedure follows : -Enter Design Data. . Enter Fy, L.D.F., Unbraced Flange Length and answer Beam Wt. question. Please read " Detailed Item Summary ti for clear understanding of ti Unbraced Length". -Enter Simple Span dead and live loads. -Steel section data is loaded : Now that stresses, span and loading data are entered, the beam data must be recalled. The user also may specify a " Cover Plate " to be welded on the bottom flange of the steel beam. There are three methods for retrieving steel section data. I: Press " ALT T II while in " Ready " mode. We use II T " to stand for " Try n· a section. 2: Choose " USE IT! " from the " Help Menu". This wi_ll display a list of choices : " Automatic Selection ", "Specify a Section ", "Built Up Sect- ion". You will want to choose " Specify a Section 11• 3: Press " ALT U " while in " Ready Mode ti. This will display the same menu which would be displayed had you chosen " USE IT! " from the " Help Menu t1, " Automatic Selection ", "Specify a Section ", "Built Up Section". You will want to choose " Specify a Section ". You will want to choose " Specify a Section ". After making any of these selections, a prompt will appear asking you to enter the section designation. Enter the section name as it would appear in the AISC manual, and PLEASE be sure to use ALL CAPITAL LETTERS! (see example problem). LOTUS 1-2-3 is a little limited and can't handle upper & lower case in this instance! If you are trying to specify .a steel section other than " W ", a second prompt will appear asking you to" INSERT THE AISC SECTION TABLE" disk. Only " W ti sections are stored within the program itself, and other section data must be read from the disk file. Please insert the AISC section table disk in the current logged drive and press <ENTER> . The data will appear shortly. If you ARE specifying a " W ti section and get this message, press " ESC II a few times and start over. You might not have entered it in all capitals. For users with Hard-Disk systems, you have presumably ·loaded all the " AISC " section data on the hard disk, and all you ne·ed to when the prompt " Insert AISC SECTION Disk ..... ", simply press <ENTER>, and the section data will be retrieved. I I I I I I I I I I 1· I I. I I I I I =================1 I. s -64 I I I I -1 I I I I I I I I I -I I I ,, I I STEEL I Composite Steel Beam • PART II : SELECT A STEEL SECTION This mode is used when the user has a known steel beam-, loading and slab, and must design a lightest beam section. · 1 -Enter Design Data. 2 -Enter Simple Span dead and live loads. 3 -Invoke the " SELECT " option : To instruct the program to search for the lightest " W " section to satisfy the loading and stability criteria entered, use one of the following methods. There are three methods for starting the automatic selection process. 1: 2: Press " ALT S " while in " Ready ti mode. We use ti S " to stand for " Select " a section. Choose " USE IT! " from the ti Help Menu". This will display a list of choices : " Automatic Selection ", "Specify a Section ", "Built Up Sect- ion". You will want to choose " Automatic Selection ". - 3: Press " ALT U II while in " Ready Mode ". This will display the same menu which would be displayed had you chosen " USE IT! " from the " Help Menu ", " Automatic Selection ", 11 Specify a Section", " Built Up Section". You will want to choose " Automatic Selection ". You will want to choose II Automatic Selection ". The program goes· through a series of selections and recalculations until it has the correct steel section. When lateral buckling criteria governs allowable stresses, calculated allowable stresses can vary widely from section to section. If this is the case, the program might NOT pick the lightest section. If this happens, be sure to observe the sections as they appear on the screen while the program is working. If the section finally selected DOES NOT LOOK OPTIMUM, you may TRY a section ( ALT T ) to check if it works better. Another option ; If you wish selection confined to a depth class, enter depth class in the space provided. 4 -Analysis now complete : After the section is selected, final calculation is automatically performed. You can now review the allowable stresses to see how flange and web slenderness, and lateral buckling criteria have effected allowable stresses. Review the " SUMMARY" section for final check. . S -65 Composite Steel Beam. I STEEL . ===================================== S -66 • PART III : SPECIFY A BUILT-UP STEEL SECTION · This mode is used when the user has a known loading and slab condition, and wishes to design a built-up steel section. 1 -Enter Design Data. 2 -Enter Simple Span dead and live loads. ·3 -User invokes" BUILT-UP" option: User can either enter the built-up section data by choosing o~e of the following methods. There are three methods for starting the automatic selection process. 1: Press " ALT B " while in" Ready" mode. We use " B " to stand for" Build-Up " a section. 2: Choose" USE IT! "from the "Help Menu". This will display a list of choices : " Automatic ·selection ", "Specify a Section ", "Built Up Sect-: ion". You will want to choose " Built-Up ". ·· 3: Press " ALT U " while in " Ready Mode ". This will display the same menu which would be displayed had you chosen " USE IT! " from the " Help Menu", "Automatic Selection", "Specify a Section", " Built Up Section". You will want to choose" Automatic Selection". You will want to choose" Built-Up". This ALT function will adjust the screen and prompt the user for section data. When using " ALT B ", the screen is automatically modified to show only the Built-Up Section data and the Summary. This way, the user is free to modify section data, recalculate, and review results without moving all over the worksheet. The screen will return to it's unmodified appearance after the data entry is complete. 4 -Refine Built-Up section design : Continue modifying the built-up section data and recalculate until you obtain a design which suits your criteria. After the section is refined, review entire calculation. Review the " SUMMARY " section for final check of stresses. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1· I I I I STEEL I Composite Steel Beam • PART IV : REINFORCE AN EXISTING COMPOSITE aEAM Here we will follow essentially the same procedure as for ANALYZING a beam, except we will specify the exact number of shear studs and then modify a cover plate size until design stresses are met. I -Enter Design Data. i -Enter Simple Span dead and live loads. 3 -Steel section data is loaded : In this case, we have a known steel section which heeds to be recalled from the data tables. We will use the " TRY II function. There are three methods for retrieving steel section data. l: Press " ALT T " while in " Ready II mode. We use II T " to stand for " Try " a section. 2: Choose " USE IT! " from the " Help Menu". This will display a list of choices : " Automatic Selection ", "Specify a Section ", "Built Up Sect- ion". You will want to choose " Specify a Section ". 3: Press " ALT U " while in " Ready Mode ''. This will display the same menu which would be displayed had you chosen " USE IT! " from the " Help Menu ",." Automatic Selection ", "Specify a Section ", "Built Up Section". You will want to choose " Specify a Section ". You will want to choose " Specify a Section ". After making any of these selections, a prompt will appear asking you to enter the section designation. Enter t}:ie ·section name as it would appear in the AISC manual, and PLEASE be sure to use ALL CAPITAL LETTERS ! (see example problem). LOTUS 1-2-3 is a little limited and can't handle upper & lower case in this instance! If you are trying to specify ·a steel section other than " W ", a second prompt will appear asking you to" INSERT THE AISC SECTION TABLE" disk. Only" W" sections are stored within the program itself, and other section data must be read from the disk file. Please insert the AISC section table disk in the current logged drive and press <ENTER> . The data will appear shortly. S -67 Composite Steel Beam I STEEL S -68 If you ARE specifying a " W " section and get this message, press " ESC " a few times and start over. You might not have entered it in all capitals. For users with Hard-Disk systems, you have presumably loaded all the " AISC 11 section data on the hard disk, and all you need to when the prompt II Insert AISC SECTION Disk ..... ", simply press <ENTER>, and the section data will be retrieved. At this time, enter the number of shear studs EXISTING on the beam per 1/2 span. Any entry in the " NUMBER OF SHEAR STUDS " cell will overwrite the formula in that cell, and t~e entire program will use THAT number of shear studs for analysis. Also at this time, enter in some trial cover plate dimensions. I I I I I I, I I! . .. I I· I : I I I I I I I I I I I I I I I I . I I I I I I I I I I I STEEL I Composite Steel Beam -Review the calculation : Now that the section data is loaded and calculation done, review the worksheet and modify cover plate size as necessary. When either option is completed : -Press " ALT P " to begin hardcopy printout. -Press " ALT R " to reset all values to zero (0). -Press " ALT A II to return to the Access Menu • UNIQUE FEATURES -User may have the program automatically select the lightest section from the AISC Lightest Section Table, and optionally add a cover plate to be welded to the bottom flange of the beam. -The program allows the use of lightweight concrete. Different II n II values are calculated to determine section properties for strength design and for deflection calculations . -User may specify a rolled section to be loaded from the steel table to be analyzed. -User may enter the dimensions of a Built-Up girder to be analyzed. • ASSUMPTIONS AND LIMITATIONS -When metal deck is used ( indicated by .using the " Ribs " spaces), only the concrete area above the " Deck Rib Height II is used for design when ribs are perpendicular to the beam. -Tributary Width is multiplied by Slab and Misc load, and then added to beam weight to produce the uniform dead load per lineal foot acting on the beam. -When " Simple Span Live Loads" are identified, the maximum moment will be calculated, and used as service load applied after 75% curing. -Simple Span Dead Loads will be applied at all times. -If Pre-Caiculated moments are used, leave all the Simple Span Dead & Live loading sections blank, and enter these moments next to the Dead or Live description in the MOMENT SUMMARY section. These moments will then be used for subsequent design. B~am Weight moment will NOT be added. -All AISC design procedures are followed to determine the correct section and stresses. -If the loading condition includes a concentrated dead load, precalculated dead load moment must be entered. S -· 69 ·. Composite Steel Beam I STEEL I ============· S -70 -Ultimate strength of composite section is calculated using standard concrete design procedures, using Fy as the yield strength of the beam, and no loads factors are applied to the indicated value. -Deflections are calculated only when Simple Span Dead and/or Live Load sections are used for analysis. -The ultimate strength of the composite beam is calculated according to Ultimate Strength Design methods for reinforced concrete design. -Both Shored and Un-Shored conditions are examined and the state of stress disp- layed. Also, the allowable stress for Unshored construction is listed per AISC formulas. I I I I I I I I I 1· I I I' I I I I •1 I I I I I I I I I I I I I I _I I I I I ,., STEEL I Composite Steel Beam DETAILED ITEM SUMMARY BEAM SPAN : INPUT Indicates the span of the beam. Used for 1) determination of effective flange width, 2) span in simple span live load beam analysis, and 3) deflections. BEAM SPACING : INPUT Used only to determine effective width of slab. This item and " Beam Trib. Width " are separated just in case a uniform load doesn't cover over the entire beam spacing. BEAM TRIB WIDTH : INPUT Indicates the tributary width of dead loads for determination of dead load per lineal foot on beam. SLAB THICKNESS INPUT Indicates the total slab thickness; i.e. from the top flange of the beam to the top surface of the slab. If metal decking is used, ;,Rib Height" will be used to deduct area out of the overall thickness. DECK RIB HEIGHT : INPUT The rib height is the total depth of the decking only, and represents the distance from the top flange of the beam to the top of the decking. Used along with "Rib Spacing" and "Rib Width" to determine the net concrete area for composite action. This input is optional. RIB SPACING : INPUT Center to center spacing of the ribs in the metal deck. Optional and should be used only when metal deck is used. Used with "Rib Height" and "Rib Width" to determine the net concrete area for composite action. RIB OPENING WIDTH : INPUT When viewed from above the decking, this represents the width of the CONCA VE section of the metal deck which will be filled with concrete. Used with "Rib Height" and "Rib Spacing" to determine the net concrete area for composite action. This input is optional and only used when metal decking is used. RIBS: PARALLEL OR PERPENDICULAR : INPUT Use a zero or one to indicate the orientation of the metal deck ribs to the longi- tudinal axis of the beam to be designed. NOTE FOR USE OF METAL DECK : When metal decking is used, the program automatically makes decisions on what concrete area is to be used. When deck is oriented parallel to the beam, the total actual concrete area based on the rib dimensions specified and effective flange width is used for calculations. The center of area is adjusted for the area distribution as it occurs (since it varies due to ribs). When ribs are perpendicular to the beam, only the concrete area between the top of slab and top of ribs is used. i.e.: if slab thickness = 5" and rib height = 3", only 2" of concrete is considered effective, with the centroid being 4" above the top flange of the beam. S -83 Composite Steel Beam I STEEL S -84 SHEAR STUD CAPACITY: INPUT The user input the capacity for an individual connector. If certain reduction factors apply because of connector spacing, embedment, or effects of metal decking, this must be examined and only the resulting capacity entered. · Fy: STEEL YIELD STRENGTH : INPUT Indicates yield strength of structural steel to be used. For unshored construction, .89 Fy is used as a maximum allowable steel stress for service loading conditions. F-b: ALLOW ABLE BENDING STRESS : INPUT The allowable bending stress for the beam. This stress is used to determine the overall S-transformed required for shored beams. For Unshored beams, .89 Fy is the ultimate working stress allowed. For unshored conditions, user should evaluate the allowable stress in the unshored beam based upon lateral torsional buckling criteria. f'c: CONCRETE STRENGTH : INPUT Indicates 28 day design strength of concrete to be· used. Program has no allowance for lightweight concrete. Allowable compressive stress for design at top of slab is limited to .45 f'c. CONCRETE WEIGHT Unit weight of concrete to be used. This figure is used to determine the modular ratio and slab weight if none is directly input. Also, it is used to determine the " n " ratio to be used in calculation of transformed moment of inertia to be used in deflection calculations. INPUT n STRENGTH : CALCULATED Ratio of modulus of elasticity of steel divided by that of concrete. This " n " value is used to determine transformed section properties for use in. determining strength. The. formula used is : n ·• 29,000,000 / ( 33 • w"l.5 • f'c".5 ) n DEFLECTION : CALCULATED Ratio of modulus of elasticity of steel divided by that of concrete. This " n " value is used to determine transformed section properties for use in determining strength. The formula used is : n • 29,000,000 / ( 57,000 • f'c" .5 ) LOCATION CENTER OR EDGE : INPUT This specifies whether the beam is an interior beam with slab extending a distance of (Trib Width)/2 on each side of the beam. If beam to be designed will have slab on only one side, entry of " 0 " in this section will indicate this. SHOULD PARTIAL ACTION BE USED : INPUT Designer may choose whether or not to use a reduced shear force if transformed section modulus supplled is greater than that required. If user does not use partial action, shear force calculated from AISC equations 1.11-3 & 1.11-4 is used to deter- mine connector requirements. I I I I I I I' I I I I I I I. I I I I I I ·I· I I I I I I I I I I I I I I I I I I I I STEEL I Composite Steel Beam • SIMPLE SPAN DEAD LOADS All loads applied to the beam before the concrete ha~ attained 75% of its 28 day compr- essive strength are considered dead loads, such as from slab weight, forms, metal decking and &c. · · Slab weight, along with optional inclusion of a misc load, will be multiplied by the "Trib Width" to determine DL x Trib". Beam weight, when selected, is entered, and total dead load per foot is found. Steel section weight per foot will be entered by program after either a rolled or built-up section has been specified. The user is also allowed four point dead loads to be applied anywhere on the span. • SIMPLE SPAN LIVE LOADS This program is designed to evaluate a simple span composite beam with a combination of live and dead loads. Live loads are defined as loads which will be imposed on the beam after the concrete has obtained 75% of its 28 day compressive strength. User is allowed two variable length distributed loads and four point loads. X-Left and X-Right define the left and right positions, with respect to the left support, of the dist- ributed load. The resulting maximum moment will be listed and combined with the dead load moment to determine the maximum moment to be used for design. MOMENTS CALCULATED Maximum moments from the specified loadfog are determined. If the user has a specified dead and/or live load to be used in the analysis, these may be entered here, overwriting the formulas in the cells. Program must be reset to restore these form- ulas. . S REQUIRED : CALCULATED Total Moment is divided by "Fb" to determine the section modulus required. MAXIMUM SHEAR : CALCULATED The calculated maximum shear due to· both dead and live load acting on the beam is shown here. Automatic beam selection includes a check that this shear stress is OK. AREA REQUIRED : CALCULATED From the maximum shear force above, the required web equals the shear force divided by an allowable shear stress of .4 Fy. • EFFECTIVE FLANGE WIDTH BASED ON LENGTH : CALCULATED For conditions of interior spans, eff ectiy,e width equals span divided by 4, for edge conditions, effective width equals span divided by 12 plus top flange width of beam. S -85 Composite Steel Beam I STEEL ===================================== BASED ON BEAM SPACING: CALCULATED For interior spans, effective width equals the beam spacing which has been input as "Trib Width". For edge conditions, effective width equals the "Trib Width" plus beam flange width, the sum divided by 2. BASED ON SLAB DEPTH : CALCULATED For interior conditions, equals the beam flange width plus 16 times the slab thickness. For edge conditions, equals the beam flange width plus 6 times the slab thickness. • ROLLED SECTION DATA S -86 When the user specifies a section using the " TRY " facility, or when one is selected using the " SELECT " feature, all pertinent data items are displayed here, provided a zero depth has been specified for the built-\lP section. I-STEEL: COMPUTER ENTERED Moment of inertia of steel section about X-X Ax~s . S-STEEL : COMPUTER ENTERED Section Modulus of steel section about X-X Axis. SECTION AREA : COMPUTER ENTE~ED Cross sectional area of section. If a cover plate is used, the cover plate area will be not be included in this value. However, all calculations needing the to~al section area will include both this cross section area and the added area of the cover plate. TOP FLANGE : COMPUTER ENTERED Width of the top flange of the section, pulled from table. Used in finding effective flange width DEPTH : COMPUTER ENTERED Total depth of the section, pulled from table. WT PER FOOT : . COMPUTER ENTERED Weight of beam section per foot. Pulled from table. Does not include added weight of cover plate, but all other calculations such as beam weight for added moment will use the correct total section weight. I-TRANSFORMED : . CALCULATED Transformed moment of inertia of the section when concrete slab and optional cover plate are added. Used to determine the transformed section modulus and for live load deflection calculation. S-TRANSFORMED BOTTOM CALCULATED Transformed section modulus including concrete area and optional cover plate. Equals transformed moment of inertia divided by distance from bottom of beam to neutral axis. Used to compute Service Load stress for shored conditions, Actual supplied S-tr for Unshored condition, and Service load stress at bottom of beam for unshored conditions. Also used to determine partial shear force when S-tr required is less than S-tr supplied for calculation of required number of shear connectors. 1· 1, I I I I I I I I I I I I I I I I I I I I I I I I_ I I I I I I I I I I I I STEEL I Composite Steel Beam S-TRANSFORMED -TOP : CALCULATED Transformed section modulus at top of steel beam. This number is not used in the calculation. · N * S-tr Top : CALCULATED Modular ratio " N " times the transformed section modulus at the top of the comp- osite section, i.e. at the top of the slab. Used to determine the service load concrete stress, which should be less than .45 f'c. X-X AXIS BOTTOM : CALCULATED Distance from the bottom of the steel section,· not bottom of the optional cover plate, to the neutral axis of the transformed section. Used only to determine transformed section modulus of steel section without cover plate, and listed only for reference. V-HORIZ @ 100% : CALCULATED Horizontal shear, calculated as the minimum of AISC equations 1.11-3 and 1.11-4., i.e. 0.85 f'c Ac/2 or As Fy /2. Used to calculate required shear connectors unless partial composite action is allowed. • COVER, PLATE AT BOTTOM OF FLANGE Note that the Cover plate is added only to the bottom of the rolled steel section. WIDTH : INPUT Width of cover plate attached to bottom of section flange. THICKNESS : INPUT Thickness of added cover plate, measured downwards from bottom of beam flange. I-s W/COVER PLATE : CALCULATED Moment of inertia of steel section with added cover plate, but not including concrete area. Used to determine dead load deflection of unshored beam when beam· is used with. a cover plate. S-STEEL -TOP : CALCULATED Section modulus of steel section with added cover plate but not including concrete area. Used to check "DL Stress for Unshored Beam" in subsequent section. S-STEEL -BOTTOM : CALCULATED Section modulus is steel section with added cover plate but not including concrete area. Checked against S-tr max for unshored conditions, and to determine service lo.ad bending stress due to dead loads for unshored beams. • BUILT-UP SECTION User may input dimensions of web and flanges for a built up steel section. If any number except "0" appears in the "Depth" area of this section, all values in the "Rolled Section Constants" section will be listed as -0-. This ·-provides an easy way to compare a rolled section with a built up section without changing a lot of data. S -87 Composite Steel Beam I STEEL ., ~I DEPTH OF BEAM : INPUT Indicates tbe total depth of the built-up section, from outside of flanges, the same as rolled sections are measured. I TOP FLANGE WIDTH : INPUT _Width of top flange. Will be used to determine effective width when applicable. I FLANGE THICKNESS : INPUT Thickness of Top flange specified above. I BOTTOM FLANGE WIDTH INPUT Width of bottom flange. FLANGE THICKNESS : INPUT I Thickness of bottom flange. CROSS SECTION AREA : CALCULATED I I Cross sectional area of input built-up section. SECTION WEIGHT : CALCULATED I Weight of built-up member based on cross sectional area. - I-STEEL : CALCULATED Moment of inertia of specified built-up section. I I-TRANSFORMED : CALCULATED Transformed moment of inertia of built up-section including effect of concrete slab. I I S-STEEL TOP : CALCULATED Section modulus of transformed section. Equals the transformed moment of inertia divided by the distance from the bottQm of beam to neutral axis. I S-STEEL -TOP : CALCULATED Section modulus of transformed section. Equals the transformed moment of inertia I divided by the distance from the top of beam to neutral axis. Used to check "DL Stress for Unshared Beam" in subsequent section. I S-TR -BOTTOM : CALCULATED Transformed section modulus including concrete area. Equals transformed moment of inertia divided by distance from bottom of beam to neutral axis. Used to compute Service load stress for shored conditions, Actual supplied S-tr for Unshared .condition, I and Service load stress at bottom of beam for unshared conditions. Also used to determine partial shear force when S-tr required is less than S-tr supplied for calculation of required number of shear connectors. I N • S-tr Top : CALCULATED Modular ratio " N " times the transformed section modulus at the top of the comp- osite section, i.e. at the top of the slab. Used to determine the service load concrete 1· stress, which should be less than .45 f'c. I I S -88 I J I I I I I I I I -1 I I I I I I I I I I STEEL I Composite Steel Beam V-HORIZ @ 100% : CALCULATED · Horizontal shear, calculated as the minimum of AISC equations 1.11-3 and 1.11-4., i.e. 0.85 f'c Ac/2 or AsFy /2. Used to calculate required shear connectors unless partial composite action is allowed. • SHORED CONSTRUCTION When shored construction is used, all loads, both dead and live, are applied to the full composite section after it has attained 75% of its 28 day compressive strength. Resulting stresses equal the maximum moment divided by the transformed section modulus for the top and bottom flange. @ BOTTOM OF BEAM : CALCULATED Unit stress at the bottom flange of the beam. Equals total moment divided by the S-transformed for the bottom of the beam. This stress is compared to the "Fb" entered at the beginning of the program. @ TOP OF CONCRETE: CALCULATED Unit stress at the top of the composite section, i.e. at the top of the concrete. Equals the total moment divided by "n" times the transformed section modulus for the top of the beam. This stress is compared to the allowable stress of 0.45 f'c. • UNSHORED CONSTRUCTION . MAX S-TRANSFORMED : CALCULATED For unshored construction, the maximum allowable S-transformed shall be less than that given from AISC Formula 1. 11-2 : Str max <= 1.35 + (.35* Mll/Mdl). The maximum allowable S-transformed is listed and compared with the actual, provided S-trans- formed. If the actual is more than the allowable, the beam must be shored, UNSHORED DEAD LOAD STRESS : CALCULATED Indicates the maximum bending stress in the steel beam under dead loads only. The section modulus for the steel beam only is used. For either rolled steel section with cov_er plates or unsymmetrical built-up sections, the minimum section modulus is used. This should be checked by the designer ag_ainst the allowable bending stress based upon compactness and lateral-torsional buckling criteria. • ~AX. SERVICE LOAD STRESSES @ BOTTOM OF BEAM : CALCULATED · For this unshared section, the service load stress for the bottom fiber of the steel beam equals the dead load moment divided by the section modulus of the beam for the bottom fiber plus the live load moment divided by the transformed section modulus for the entire section. This stress value is compared and should be less than .89 Fy. @ TOP OF CONCRETE: CALCULATED The service load stress for the top fib~r of the steel beam equals the live load moment divided by the transformed section modulus. This stress value is compared and should be less than .45 f'c. · S -89 Composite Steel Beam I STEEL S -90 ULTIMATE STRENGTH -OF COMPOSITE SECTION : CALCULATED Since all composite design is based upon ultimate strength research, the ultimate moment capacity of the composite section is given simply as a reference, and no beam selection is based upon it. It is listed only when the slab is adequate to carry the As * Fy force. If the slab is inadequate, "NA" is printed. • SHEAR CONNECTION This section determines the force which the shear connectors must resist. If partial shear action is chosen, the adjusted shear force is listed. MAX SHEAR FORCE : CALCULATED This is a restatement of the shear force calculated from AISC Formulas 1.11-3 & 1.11-4 earlier. V'h -ADJUSTED SHEAR : CALCULATED If the designer chooses to base connector design on partial composite action, the adjusted shear force is calculated per AISC formula 1.11.2.2 : V'h•Vh*[(Sreq'd-Sste- el)/(Str-Ssteel)] 2. CONNECTORS REQUIRED : CALCULATED The shear force is divided by the individual connector capacity to determine the number of connectors required between the point of maximum shear and zero shear. If partial action has been chosen, the adjusted shear force is used, otherwise the result of AISC formula 1.11-3 & 1.11-4 is used. If concentrated loads are present, the designer should anaiyze the required connector locations and spacings further from his references. • DEFLECTIONS Deflections for both shored and unshored conditions are listed. The deflections are listed for the loading input earlier, and the beam is treated as simple span. The deflection is calculated for midspan only, and may be greater elsewhere, but the difference is minimal. • SHORED The transformed section properties are calculated separately from the properties listed for strength criteria. This transf armed moment of inertia is calculated using " n : Deflection " instead of " n : Strength ". - Ixx OF COMPOSITE SECTION : CALCULATED For the rolled or built-up section specified, this is the moment of inertia of the full steel/concrete composite. Remember, the entry in the Beam Depth location for a built-up section determines which one will be used. I-EFFECTIVE : CALCULATED If partial composite action has been specified under "Shear Connection" ,the I-Comp- osite is adjusted for the effect of partial composite action per : I I I I I I I I I- I I I. I. I I 1·.-STEEL I Composite Steel Beam I Ieff =Is+ [(ltr-Is) • (V'h/Vh)".2] If partial action has not been specified, the full value of I-composite is listed. I DL I & LL DEFLECTION : CALCULATE The dead load deflection resulting from the dead loads and beam weight is given at the mid-span for both shored and unshored conditions. - I I I I I' I 1· 1· I 1- I I I I .I S -91 Co~posite Steer Beam I STEEL . I_ I I I. I· 11 ' I I --'.I THIS PAGE INTENTIONALLY LEFI' BLANK :1 ·1 I ! I ·1 I I I I S -92 I: