Loading...
HomeMy WebLinkAbout2100 PALOMAR AIRPORT RD; BLDG 1; PCR05095; Structural Calculations08-15-2005 City of Carlsbad 1635 Faraday Av Carlsbad, CA 92008 Plan Check Revision Permit No:PCR05095 Building Inspection Request Line (760) 602-2725 Job Address: 2100 PALOMAR AIRPORT RD CBAD Permit Type: PCR Parcel No: 2130201800 Lot #: 0 Valuation: $0.00 Construction Type: NEW Reference #: CB043939 Project Title: PALOMAR AIRPORT HANGER BLDG 1 MISC REVISIONS DELTA 5 Applicant: RICHARD AND RICHARD SUITE 100 234 VENTURE ST 92078 Status: Applied: Entered By: Plan Approved: Issued: Inspect Area: Owner: COUNTY OF SAN DIEGO PUBLIC AGENCY 00000 ISSUED 05/24/2005 SB 08/15/2005 08/15/2005 Plan Check Revision Fee Additional Fees $240.00 $0.00 Total Fees:$240.00 Total Payments To Date:$0.00 Balance Due:$240.00 4704 08/15/05 0002 01 02 CGR 240-00 Inspector: FINAL APPROVAL Date:Clearance: NOTICE: Please take NOTICE that approval of your project includes the Imposition* of fees, dedications, reservations, or other exactions hereafter collectively referred to as lees/exactions." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any tees/exactions of which vou have previously been given a NOTICE similar to this, or as to which the statute of limitations has previously otherwise expired. PERMIT APPLICATION CITY OF CARLSBAD BUILDING DEPARTMENT 1635 Faraday Ave., Carlsbad, CA 92008 FOR OFFICE USE PLAN CHECK EST. VAL. 9> Plan Ck. Deposit Validated Date Business Name (at this address)Address (include Bldg/Suite #) , 01 2-3 Name Address City State/Zip Telephone # (Sec. 7031.5 Business and Professions Code: Any City or County which requires a permit to construct, alter, improve, demolish or repair any structure, prior to its issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the provisions of the Contractor's License Law [Chapter 9, commending with Section 7000 of Division 3 of the Business and Professions Code! or that he is exempt therefrom, and the basis for the alleged exemption). A^oy violation of Section 7031.5^by anv applicant for a permit subjects the applicant to a civil penalty of not more than five hundred dollars [$500]).CA Name State License 9 Address License Class City State/Zip City Business License # Telephone Designer Name State License # Address'City State/Zip elephone Workers' Compensation Declaration: I hereby affirm under penalty of perjury one of the following declarations: Q I have and will maintain a certificate of consent to self-insure for workers' compensation as provided by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. Q I have and will maintain workers' compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My worker's compensation insurance carrier and policy number are: Insurance Company Policy No. Expiration Date {THIS SECTION NEED NOT BE COMPLETED IF THE PERMIT IS FOR ONE HUNDRED DOLLARS [$100] OR LESS} Q CERTIFICATE OF EXEMPTION: I certify that in the performance of the work for which this permit is issued, 1 shall not employ any person in any manner so as to become subject to the Workers' Compensation Laws of California. WARNING: Failure to secure workers' compensation coverage Is unlawful, and shall subject an employer to criminal penalties and civil fines up to one hundred thousand dollars ($U)0,OOQ), in addition to the cost of compensation, damages as provided for in Section 3706 of the Labor code, interest and attorney's fees. SIGNATURE V-//Yl//44 fA£/3 DATE I hereby affirm that I am exempt from the Contractor's License Law for the following reason: Q I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). O I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). l~l 1 am exempt under Section Business and Professions Code for this reason: 1. I personally plan to provide the major labor and materials for construction of the proposed property improvement. Q YES QNO 2. I (have / have not) signed an application for a building permit for the proposed work. 3. I have contracted with the following person (firm) to provide the proposed construction (include name / address / phone number / contractors license number): 4. I plan to provide portions of the work, but I have hired the following person to coordinate, supervise and provide the major work (include name / address / phone number / contractors license number): 5. I will provide some of the work, but I have contracted (hired) the following persons to provide the work indicated (include name / address / phone number / type of work): PROPERTY OWNER SIGNATURE DATE IIS SECTION FOR/VOW^S/DeVTWi BUILDING PERMI1 Is the applicant or future building occupant required to submit a business plan, acutely hazardous materials registration form or risk management and prevention program under Sections 25505, 25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? Q YES Q NO Is the applicant or future building occupant required to obtain a permit from the air pollution control district or air quality management district? Q YES Q NO Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? Q YES Q NO IF ANY OF THE ANSWERS ARE YES, A RNAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTION CONTROL DISTRICT. hereby affirm that there is a construction lending agency for the performance of the work for'which this permit is issued (Sec. 3097(i) Civil Code). LENDER'S ADDRESSLENDER'S NAME m I certify that I have read the application and state that the above information is correct and that the information on the plans is accurate. I agree to comply with all City ordinances and State laws relating to building construction. I hereby authorize representatives of the CitV of Carlsbad to enter upon the above mentioned property for inspection purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AGAINST ALL LIABILITIES, JUDGMENTS, COSTS AND EXPENSES WHICH MAY IN ANY WAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT. OSHA: An OSHA permit is required for excavations over 5'0" deep and demolition or construction of structures over 3 stories in height. EXPIRATION: Every permit issued by the building Official under^ the provisions of this Code shall expire by limitation and become null and void if the building or work authorized by such permit is not commenced within 180 days from the date of such permit or if the building or work authorized by such permit is suspended or abandoned at any time after the work is, comrj^nc^Afor a period of 180 days (Section 106.4.4 Uniform Building Code). APPLICANT'S SIGNATURE DATE WHITE: File YELLOW: Applicant PINK: Finance EsGil Corporation In Partnership witK government for Quitting Safety DATE: 8/1O/20O5 a APPLICANT~ JURISDICTION: Carlsbad a PtAffREVlEWER a FILE PLAN CHECK NO.: PCR05-O5095(04-3939) SET: II PROJECT ADDRESS: 210O Palomar Airport Road PROJECT NAME: REV for Hanger No. 1, (5/24/05) The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. The plans transmitted herewith will substantially comply with the jurisdiction's building codes when minor deficiencies identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at Esgil Corporation until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. ; ;o : The applicant's copy of the check list has been sent to: Esgil Corporation staff did not advise the applicant that the plan check has been completed. Esgi! Corporation staff did advise the applicant that the plan check has been completed. Person contacted: Telephone #: Date contacted: (by: ) Fax #: Mail Telephone Fax In Person REMARKS: By: Eric Jensen Enclosures: Esgil Corporation GA MB . EJ D PC 8/8 trnsmtl.dot 9320 Chesapeake Drive, Suite 208 + San Diego, California 92123 + (858)560-1468 + Fax (858) 560-1576 EsGil Corporation /n ffortiwrj/itp witfi government for Quitting Safety DATE: JUNE 6, 2OOS Q APPLICANT JURISDICTION: Carlsbad a PLAN REVIEWER Q FILE PLAN CHECK NO.: PCR05-05095(O4-3939) SET: I PROJECT ADDRESS: 2100 Palomar Airport Road PROJECT NAME: Revision for Hangar Building #lPer Trans Dated 5/24/05 The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. The plans transmitted herewith will substantially comply with the jurisdiction's building codes when minor deficiencies Identified below are resolved and checked by building department staff. The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at Esgil Corporation until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: Derek Kammeyer 2144 Palomar Airport Road, Carlsbad, CA 92008 Esgi! Corporation staff did not advise the applicant that the plan check has been completed. Esgil Corporation staff did advise the applicant that the plan check has been completed. Person contacted: Dere^k Telephone #: (760) 801-1575 Date contacted: r(by; Fax #: Mail (/Telephone j/Fax In Person"~^ REMARKS: By: Bert Domingo Enclosures: Esgil Corporation GA MB • EJ Q PC 5/26/05 trnsmtl.dot 9320 Chesapeake Drive, Suite 208 + San Diego, California 92123 4 (858)560-1468 + Fax (858) 560-1576 Carlsbad PCR05-O5095(04-3939) JUNE 6,, 2005 IPLAN JREVIEW CORRECTION LIST COMMERCIAL PLAN CHECK NO.: PCRO5-05095(04-3939) JURISDICTION: Carlsbad OCCUPANCY: B/S5 USE: Office/Hangars TYPE OF CONSTRUCTION: II ONE HR. ACTUAL AREA: 62172/108328 SQ. FT. ALLOWABLE FLOOR AREA: SPRINKLERS?: YES REMARKS: DATE PLANS RECEIVED BY " JURISDICTION: DATE INITIAL PLAN REVIEW COMPLETED: JUNE 6, 2005 STORIES: TWO HEIGHT: OCCUPANT LOAD: DATE PLANS RECEIVED BY ESGIL CORPORATION: 5/26/05 PLAN REVIEWER: Bert Domingo FOREWORD (PLEASE READ): This plan review is limited to the technical requirements contained in the Uniform Building Code, Uniform Plumbing Code, Uniform Mechanical Code, National Electrical Code and state laws regulating energy conservation, noise attenuation and access for the disabled. This plan review is based on regulations enforced by the Building Department. You may have other corrections based on laws and ordinances enforced by the Planning Department, Engineering Department, Fire Department or other departments. Clearance from those departments may be required prior to the issuance of a building permit. Code sections cited are based on the 1997 UBC. The following items listed need clarification, modification or change. All items must be satisfied before the plans will be in conformance with the cited codes and regulations. Per Sec. 106.4.3, 1997 Uniform Building Code, the approval of the plans does not permit the violation of any state, county or city law. To speed up the recheck process, please note on this list (or a copy) where each correction item has been addressed, i.e.. plan sheet number, specification section, etc. Be sure to enclose the marked up list when you submit the revised plans. Carlsbad PCR05-05O95JO4-3939) JUNE 6, 2O05 • GENERAL) 1. Please make all corrections on the original tracings, as requested in the correction list. Submit three sets of plans for commercial/industrial projects (two sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: 1. Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil Corporation and the Carlsbad Planning, Engineering and Fire Departments. 2. Bring one corrected set of plans and calculations/reports to EsGil Corporation, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil Corporation only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil Corporation is complete. • PLANS 2. All sheets of the plans and the first sheet of the calculations are required to be signed by the California licensed architect or engineer responsible for the plan preparation. Please include the California license number, seal, date of license expiration and the date the plans are signed. Business and Professions Code. This will be checked when all the items below are met. ELECTRICAL CORRECTIONS PLAN REVIEWER: Eric Jensen ELECTRICAL (1999 NATIONAL ELECTRICAL CODE) 1. Include a description for the new transformer grounding electrode to be used. 2. The new secondary panelboard is required to have main protection, only "Main Lugs Only", is specified on the panel schedule. Note: If you have any questions regarding this Electrical, Plumbing, Mechanical, and Energy plan review list please contact Eric Jensen at (858) 560-1468. To speed the review process, note on this list (or a copy) where the corrected items have been addressed on the plans. Carlsbad PCRO5-05095(04-3939) JUNE 6, 2005 VALUATION AND PLAN CHECK FEE JURISDICTION: Carlsbad 3939) PLAN CHECK NO.: PCR05-05095(04- PREPARED BY: Bert Domingo DATE: JUNE 6, 2005 BUILDING ADDRESS: 21OO Palomar Airport Road BUILDING OCCUPANCY: B/S5 TYPE OF CONSTRUCTION: II 1 HR. BUILDING PORTION Air Conditioning Fire Sprinklers TOTAL VALUE Jurisdiction Code AREA ( Sq. Ft.) cb Valuation Multiplier By Ordinance Reg. Mod. VALUE ($) Plan Check Fee by Ordinance $240.00 Type of Review: LH Repetitive FeeRepeats D Complete Review D Other m Hourly Structural Only Hours * Esgll Plan Review Fee $192.00 * Based on hourly rate Comments: Sheet 1 of 1 macvalue.doc PLANNING/ENGINEERING APPROVALS PERMIT NUMBER £B ADDRESS RESIDENTIAL RESIDENTIAL ADDITION MINOR « $10,000.00) TENANT IMPROVEMENT PLAZA CAMINO REAL CARLSBAD COMPANY STORES VILLAGE FAIRE COMPLETE OFFICE BUILDING OTHER PLANNER ENGINEER DATE DATE Docs/Mttronmmannihg engintwina Approvals Carlsbad Fire Department Plan Review Requirements Category: COMMIND , INDUST Date of Report: 06-06-2005 Reviewed by: Name: RICHARD AND RICHARD Address: SUITE 100 234 VENTURE ST SAN MARCOS CA 92078 Permit #: CB043939 Job Name: BUILDING NUMBER 1 Job Address: 2100 PALOMAR AIRPORT RD CBAD INCOMPLETE The item you have submitted for review is incomplete. At this time, this office cannot adequately conduct a review to determine compliance with the applicable codes and/or standards. Please review carefully all comments attached. Please resubmit the necessary plans and/or specifications, with changes "clouded", to this office fo review and approval. Conditions: Cond: BP006 Provide a 'Knox' key-entry method for this project. The fire department will determine the location for the key box(es) and/or gate(s). An authorization to order form may be obtained by calling the Fire Prevention Division at 602-4665. Provide a 'Knox' key operated emergency entry device for gate controlling emergency vehicle access. Provide an 'Opticom1 automated sensor device for all security gate systems controlling vehicular access. Applicant shall contact the Fire Prevention Division for specifications and approvals prior to installation. Entry: 06/06/2005 By: GRyan Action: AP This department approval is subject to revised notes acknowledging security gate requirements. Delta 5 Narrative NOWAK WISEMAN Paloraar Airport Center May 20, 2005 BUILDING 1 2100 PALOMAR AIRPORT CENTER ROAD, CARLSBAD, CA STRUCTURAL SHEET: DESCRIPTION: 1F2.0 Revised the extent of the trench drains in hanger H-01 and H-02. 1F2.0 Modified the ramp and steps on each side of the ramp. 1F2.0 Modified the location of the elevator & pit and pad footing in the southwest corner of the elevator pit. 1F2.0 Modified the location of the lobby stair. 1F2.1 Revised the extent of the trench drains in hangers H-03, H-04 and H-05. REEVES ASSOCIATES Palomar Airport Center 5/20/05 Delta 5 Changes BUILDING #1 2100 Palomar Airport Road Note stair documents to be submitted under separate cover SHEET 1 A2.W1 Elevator size increased Minor relocation Lobby-Ramp revised, Stairs in lobby deleted Clarification of stub wall and column location SHEET 1A2-W2 Elevator size increased minor relocations SHEET 1A2.W3 Added Roof Hatch SHEET 1 A2.W4 Elevator size increased minor relocations SHEET 1AZW5 SHEET 1A4.2 SHEET 1A4.3 SHEET 1A4.5 SHEET 1A5.3 SHEET 1A6.1 SHEET 1A6.2 SHEET 1A7.3 SHEET 1A7.4 Elevator size increased minor relocations Deleted 6" concrete curb at corridor walls Deleted 6" concrete curb at corridor walls Deleted 6" concrete curb at corridor walls Elevator size increased minor relocation. Lobby ramp revised, stairs in lobby deleted Concrete curbs details Concrete curb details Lobby ramp shown Elevator resized, minor relocation COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE • DENVER 5600 S Quebec St, Ste. 150D • Greenwood Village, CO 80111 Phone (303) 662-0665 Fax (303) 662-0667 BUILDING 1 AND 2 SUPPLEMENTALS CALCULATIONS FOR REVISIONS TO DATE SINCE PERMIT SET Structural Calculations: Project: P ALOMAR AIRPORT CENTER Prepared/or: NCI BUILDING SYSTEMS CSD Project No: J044170 MAY 2 3 i>005 BY: COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE. ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. «IOH»il."fQ By Date IT-1frQ*j _ Page *. r I of . 7 C ,'. ok. • r •-_§£ C - i . * C + Poyr COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No.By Date _ U/fU/E*J Page of Motvr f MOIST i"*^ ftoo^ S J U)5*IU / COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project PALCSMJ Job No. JO'4<4nO By Date IZ/iyVb** Page of 7 toe.Mcr«- Z&'-M" 3 - COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERSMILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. JOMMI7D By Dote l/a/OS Page of v < \o c. m f.u>t|*. — > USE 10 C-X CFS Version 4.12 Section: Section 8.set Channel 10x3.5x0.84-12 Gage Rev. Date: 1/3/2005 2:43:00 PM Pagel Member Check - 2001 AISI Specification - US (LRFD) Design Parameters: Lx Kx Cbx Cmx 8.1000 ft 1. 1. 1. 0000 0000 0000 Braced Flange: None Loads : Entered Applied Strength P (k) 0.000 0.000 35.807 Ly Ky Cby Ctny Moment MX (k-in) 150.80 150.80 165.88 Effective section properties at Ae 1. Interaction AISI Eq. AISI Eq. AISI Eq. AISI Eq. C5. C5. C3. C3. 7993 inA2 Equations 2.2-1 (P, 2.2-2 (P, 3.2-1 3.2-1 Ixe Sxe(t) Sxe (b) MX, My) Mx7 My) (Mx, Vy) (My, Vx) 0. 1. 1. 1. 0000 0000 0000 0000 Reduction, vy (k) ft R: 0 1.540 1.540 13.442 lit Kt ex ey .0000 My (k-in) 0.00 0.00 32.36 0. 1. 0. 0. 0. 0.11. oooo oooo oooo oooo VX (k) 000 000 128 ft in in applied loads: 27 5. 5. 0.000 0.000 .131 3847 4683 + 0. + 0. 0. 0. inx4 inA3 inA3 909 + 909 + 826 + 000 + lye Sye(l) Sye(r) 0.000 = 0.000 = 0.013 m 0.000 = 2 2. 1. 0.909 0.909 0.840 0.000 .667 8509 0400 <= 1 <= 1 <= 1 £ = 1 inA inA inA .0 .0 .0 .0 4 3 3 CFS Version 4.12 Section: Section 4.sct Channel 10x3.5x0.84-12 Gage Rev. Date: 1/3/2005 2:57:40 PM Pagel Member Check - 2001 AISI Specification - US (LRFD) Design Lx Kx Cbx Cmx Braced Loads : Entered Applied Parameters : 8 1 1 1 .2000 ft .0000 .0000 .0000 Flange: None Strength P (k) 0.000 0.000 35.784 Ly Ky Cby Cmy Moment MX (k-in) 161.00 161.00 166.04 Effective section properties at Ae 1. Interaction AISI Eq AISI Eq AISI Eg AISI Eq . C5. . C5. . C3. , C3. ,7932 inA2 Equations 2.2-1 (P, 2.2-2 (P, 3.2-1 3.2-1 Ixe Sxe(t) Sxe(b) MX, My) MX, My) (Mx, Vy) (My, Vx) 0. 1. 1. 1. 0000 ft 0000 0000 0000 Reduction, R: 0 Vy (k) 1.900 1.900 13.442 Lt Kt ex ey .0000 My (k-in) 0.00 0.00 32.42 0. 1. 0. 0. 0. 0. 11. 0000 ft 0000 0000 0000 Vx (k)ooo 000 178 in in applied loads: 27 5. 5. 0.000 0.000 .019 inA4 3438 inA3 4654 inA3 + 0.970 + + 0.970 + 0.940 + 0.000 + lye Sye(l) Sye (r) 0.000 = 0.000 = 0.020 = 0.000 = 2 2. 1. 0.970 0.970 0.960 0.000 .626 8357 0200 <= <= <= <= 1 1 1 1 inA inA inA .0 .0 .0 .0 4 3 3 COMPUTERIZED SAFETY POST CONNECTION STRUCTURAL DESGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEUUOOD kip := 1000-lb ksi:= kip-in Evaluate connections for prying action, solve for the allowable bolt tension bolt to a plate. Refer to AISC manual LRFD 3rd edition. 1/3/2005 Bolt tension: Bolt properties: T ~ 2'55kip allowable bolt tensile stress [Table 7-13, p.7-35] bolt diameter a:= if(a> 1.25-b,1.25-b,a) a':= a+-2 Plate Dimensions & Properties: iMS plate thickness plate yeild strength CL bolt hole to edge CL bolt hole to support bolt pitch or tributary PL width bolt hole diameter a = 0.0937ft a1 = 0.125ft b1 := b - b1 = 0.0625ft b1 p:=a' p=0.5 V= P'Fy = 0.9098 ill 8:= 1-hole a' := p) - -1 P:=-a:= if(a <0,0,a) 5 = 0.8438 a1 =* 8.1817 = 21.3725 a =0 Determine prying force, "Q": Q:=B-6-a-p-| - Q=0kip T + Q = 2.55kip Determine the allowable tension in the boits based on the thickness of plate provided: L allowed := if a' > l.B-f -) -(l + S),B.| -1 -(l + 6-a') TaUowed :~ if(Tallowed > B»B'TaUowcd) Tallowed =4.8387kip = 2.55kip OK F:\2004 Projects\J044170\170_Calcs\Building 1\Girts\prying.mcd CSD Project No. J044134 COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303 -662-0665 FAX 303-662-0667 Project Job No. __S- Date Page of HA*. hMB t— * .WH(H* J' ji, ,..,,«..... ^sHa-** rccws.'i < f.»s" * - 1* IB ^PA»0 'MM * 7,91 3.2-1 7' ,57fo .13 r-3 -M4 .13 r ofi. 11 i.sa i.sc. .175" 1-3" <*** \ .01ZM -70 > .007" ,Si" 2) 3) M PER. Pefi^ CFSTC COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No. Date t|/l/0*j Page of COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 - 94 pif Mo e. 18" >** B, 1(0 oic 9 pif 12Ga.26'-0" Design Parameters: Lx Kx Cbx Cmx 26.000 ft 1 1 1 .0000 .0000 .0000 Braced Flange: Bottom Loads : Entered Applied Strength P (k) 0.000 0.000 25.834 Ly Ky Cby Cmy Moment MX (k-in) 95.28 95.28 106.41 26 1. 1. 1. .000 0000 0000 0000 ft Reduction, R: 0 Vy (k) 1.222 1.222 18.075 Itt Kt ex ey .0000 My (k-in) 0.00 0.00 277.01 26.000 1. 0. 0. 0. 0. 5. 0000 0000 0000 Vx (k) 000 000 151 ft in in affective section properties at applied loads: Ae 2. Interaction AISI Eq. AISI Bq. AISI Eq. AISI Bq. C5. C5. C3. C3. ,8830 inA2 Equations 2.1-1 (P, MX 2.1-2 (P, MX 3.1-1 (Mx 3.1-1 (My Ixe Sxe(t) Sxe (b) , My) , My) , Vy) , Vx) 26.75 8.158 5.666 0.000 0.000 + 0. + 0. 0. 0. inA4 inA3 inA3 895 + 895 + 802 + 000 + lye Sye(l) Sye (r) 0.000 - 0.000 » 0.005 • 0.000 « 207.18 19 19 0.895 0.895 0.806 0.000 .010 .010 <- 1 <= 1 <= 1 <- 1 inA inA inA .0 .0 .0 .0 4 3 3 Hat element 2 w/t exceeds 60. Hat element 4 w/t exceeds 60. 18Ga. @13'-0" Member Check -1996 AISI Specification-Supplement 1 (ASD) Design Parameters: Lx Kx Cbx Cxnx 13.000 ft 1.0000 1.0000 1.0000 Braced Flange: Bottom Loads : Entered Applied Strength P (k) 0.0000 0.0000 7.2746 Ly 13.000 ft Ky 1.0000 Cby Gray Moment MX (k-ln) 23.880 23.880 36.671 1. 1. 0000 0000 Reduction, 0 0 2 Vy (k) R: 0 Lt Kt ex ey 13.000 1. 0. 0. 0000 0000 0000 ft in in .0000 My (k-in) .6110 .6110 .0255 0 0 68 .000 .000 .380 Vx (k) 0.0000 0.0000 0.4413 Effective section properties at applied loads: Ae 1.10208 ln"2 Ixe Sxe (t) Sxe (b) 9 2. 2. .847 5463 3826 inA4 in" 3 in"3 lye Sye(l) Sye (r) 88 8. 8. .020 0348 0348 in" in" in" 4 3 3 Interaction Equations AZSI Eq. AISI Eq. AISI Eq. AISI Eq. C5.2.1-1 (P, MX C5.2.1-2 (P, MX C3.3.1-1 (Mx C3.3.1-1 (My / My) , My) , Vy) , Vx) 0.000 0.000 + 0. + 0. 651 + 651 + 0.424 + 0.000 + 0 0 0 0 .000 « .000 • .091 « .000 - 0.651 0.651 0.515 0.000 <• 1 <B 1 <- 1 <« 1 .0 .0 .0 .0 Hat element 2 w/t exceeds 60. Hat element 3 w/t exceeds 200. Hat element 4 w/t exceeds 60. 22 Ga. @ 7'-0" Member Check -1996 AISI Specification-Supplement 1 (ASD) Design Parameters: Lx 7.0000 ft Kx Cbx 1.0000 1.0000 Cmx 1.0000 Braced Flange: Bottom Loads: Entered Applied Strength P (k) 0.0000 0.0000 3.2015 Ly Ky Cby Cmy Moment MX (k-in) 6.910 6.910 14.482 7. 1. 1. 0000 0000 0000 ft 1.0000 Reduction, R: 0 0 0 0 vy (k) lit Kt ex •y .0000 7. 1. 0. 0. My (k-in) .3290 .3290 .4983 0 0 28 Effective section properties at applied loads: Ae 0.68135 inA2 Ixe 6.043 in" 4 Sxe(t) 1.5344 in"3 Sxe(b) 1.4876 in"3 Interaction Equations AISI Bq. C5.2.1-1 (P, MX AISI Bq. C5.2.1-2 (P, MX AISI Eq. C3.3.1-1 (Mx AISI Bq. C3.3.1-1 (My , My) , My) , Vy) , Vx) 0.000 0.000 + 0. + 0. 0. 0. 477 + 477 + 228 + 000 + 0 0 0 0 .000 .000 .892 lye Sye (1) Sye(r) .000 « .000 m .436 B .000 = 0000 0000 0000 0000 VX ft in in 0.0000 0.0000 0.1088 54 5. 5. 0.477 0.477 0.664 0.000 .962 0094 0094 <- 1 <- 1 <« 1 <B 1 in" in" in" .0 .0 .0 .0 4 3 3 Member Check -1996 AIS) Specification-Supplement 1 (ASD) Design Parameters: Lx 5.0000 ft Ly Kx 1.0000 Ky Cbx 1.0000 Cby Cmx 1.0000 Cray 5.0000 ft 1.0000 1.0000 1.0000 Lt Kt ex ey Braced Flange: Bottom Moment Reduction, R: 0.0000 Loads: Entered Applied Strength P . (k) 0.0000 0.0000 3.2342 MX (k-in) 3.890 3.890 14.482 Effective section properties at applied loads: Ae 0.73032 in"2 Ixe 6.746 inA4 lye Sxe(t) 1.8357 inA3 Sye(l) Sxe(b) 1.5597 inA3 Sye(r) Interaction Equations AISI Bq. C5.2.1-1 (P, MX, My) AISI Eq. C5.2.1-2 (P, MX, My) AISI Bq. C3.3.1-1 (Mx, Vy) AISI Bq. C3.3.1-1 (My, Vx) Hat element 1 w/t exceeds 60. Hat element 2 w/t exceeds 60. Hat element 3 w/t exceeds 200. Hat element 4 w/t exceeds 60. Hat element 5 w/t exceeds 60. 5.0000 ft 1.0000 0.0000 in 0.0000 in Vy (k) 0.2350 0.2350 0.4983 My (k-in) 0.000 0.000 28.892 Vx (k) 0.0000 0.0000 0.1088 0.000 + 0.269 + 0.000 0.000 + 0.269 + 0.000 0.072 + 0.222 0.000 + 0.000 56.958 inA4 5.1913 inA3 5.1913 inA3 0.269 <- 1.0 0.269 <m 1.0 0.295 <= 1.0 0.000 <- 1.0 ZS G»* . "0 o . C. Braced Flange: Bottom Moment Reduction, R: 0.0000 Loads : Entered Applied Strength P (k) 0.0000 0.0000 1.5133 MX (k-in) 3.890 3.890 6.740 vy (k) 0.2350 0.2350 0.1457 My (k-in) 0.000 0.000 13.651 Vx (k) 0.0000 0.0000 0.0319 Effective section properties at applied loads: Ae 0.428125 inA2 Ixe 3.619 in"4 lye Sxe(t) 0.8677 inA3 Sye(l) Sxe(b) 0.9451 in"3 Sye(r) Interaction Equations AISI Eq. C5.2.1-1 (P, MX, My) AISI Eq. C5.2.1-2 (P, MX, My) AISI Eq. C3.3.1-1 (Mx, Vy) AISI Eq. C3.3.1-1 (My, Vx) Hat element 1 w/t exceeds 60. Rat element 2 w/t exceeds 60. Hat element 3 w/t exceeds 200. Hat element 4 w/t exceeds 60. Hat element 5 w/t exceeds 60. 0.000 + 0.577 + 0.000 0.000 + 0.577 + 0.000 0.333 + 2.601 0.000 + 0.000 35.323 inA4 3.2167 inA3 3.2167 inA3 0.577 <* 1.0 0.577 <m 1.0 2.934 > 1.0 0.000 <•= 1.0 , & COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project 7/54,0 Date Page of -7/s4,fe JLa:L XX i J-P i* X ft > > ti C/z" " -f ,, SIM.) : «* II = 2 a =2 5 = 3" = t,o& OK. COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. 58O3 Date I By _J^fe Page of \,4* 4- A 4 VA)«i>/8s 98.fo v , A- * tft C o.c S<P»T IOK1 w/S" JOIST COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERSMILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No. UQHHlTP Date 12,/e/O** By Page of CAM boa. LOBBY BEAM DEFLECTIONS DL COLL LL E 50 25 50 100 29000 psf psf psf ksi BEAM SIZE LENGTH Ix [-] [-J [ft] [in*! 1 W3$ri304.' .42. - 0710 t 2 ;;\W33X130: M-'4£ ; ^pf.fcflld -3',- W5|x1§Q!^-?!4*2-i", / -6/710'. -4.! .\£Vy9w^03>*'-.-.^/" - %?3G . & A":W^187^ "42" - ;: 11 1600 '..6 ^ *W#wt5>. y'50V -"16700 • - 7 '< \W36xi3Si r ' 56, % = 7800 ". S^^W^^IQQXV^SQ'-" *• 4470 • ^ ^|o>C14S| * 5Q..33SV 9800 10*. :W4QX149"^§0.333^ ,--"9800 LOAD WDL WCOL WLL [k/ft] [k/ft] [k/ft] 0.84 0.42 0.84 1.21 0.6 1.21 1.42 0.71 1.42 1.42 0.71 3.22 1.97 0.98 3.02 1.76 0.88 1.76 1.02 0.51 1.02 0.69 0.35 0.69 0.75 0.38 1.5 0.75 0.38 1.5 DEFLECTION D n nDL L/COL ULL [in] [in] [in] 0.30 0.15 0.30 0.43 0.22 0.43 0.51 0.25 0.51 0.51 0.25 1.16 0.41 0.20 0.63 0.80 0.40 0.80 0.99 0.50 0.99 1.18 0.59 1.18 0.38 0.19 0.76 0.38 0.19 0.76 TOTAL [in] 0.76 1.09 1.27 1.92 1.24 2.01 2.48 2.94 1.33 1.33 L/"X" DL COL LL ['] [-] [-] 1660 3320 1660 1159 2319 1159 989 1978 989 989 1978 434 1231 2463 803 836 1673 836 677 1354 677 571 1141 571 1585 3170 792 1585 3170 792 TOTAL [-L 664 464 396 262 406 335 271 228 453 453 { 9235} > LIST DISPLACEMENTS JOINTS EXISTING 4314 4317 •RESULTS OF LATEST ANALYSES* PROBLEM - NONE TITLE - NONE GIVEN ACTIVE UNITS INCH KIP DEG DEGFSEC RESULTANT JOINT DISPLACEMENTS SUPPORTS JV/liN J. XAjnj^J-l^VJ f—m-mm- -~ULJ f i-lTVV^Ud.¥i^-*LT J - - •"-" ' XDISP. YDISP. ZDISP. XROT. RESULTANT JOINT DISPLACEMENTS FREE JOINTS rniwTJ\JJJN i 4314 t (0| r/lATUNfi /ujnumu /— XDISP. GLOBAL 1- 1 >-*- 2 U-r- 3 ^ 4317 OL C.0U. •-I-*w U 4 11 12 13 14 15 21 22 23 24 25 26 27 28 GLOBAL 1 2 . 3 - 4 11 12 13 14 15 21 22 23 24 25 26 27 28 0.008 0.004 0.001 0.005 -0.001 0.019 -0.021 -0.002 0.000 0.095 -0.095 -0.003 0.003 -0.001 0.001 0.011 -0.011 0.007 0.004 0.000 0,005 0.000 0.026 -0.025 -0.006 -0.005 0.100 -0.100 -0.003 0.003 0.000 0.000 -0.013 0.013 DISPLACEMENT Y DISP. Z DISP. X ROT. -0.283 -0.160 -0.060 -0.237 0.054 0.017 -0.017 -0.006 -0.001 0.061 -0.061 -0.008 0.008 0.001 -0.001 -0.003 0.003 -0.331 -0.181 -0.053 -0.278 0.049 0.007 -0.008 0,001 -0.013 0.058 -0.058 0.011 -0.011 0.000 0.000 0.005 -0.005 0.001 0.000 0.001 0.000 -0.001 0.010 0.001 0.023 -0.029 0.003 -0.003 0.196 -0.196 -0.004 0.004 -0.029 0.029 0.004 0.002 0.002 0.002 -0.002 0.010 0.001 0.022 -0.029 0.003 -0.003 0.194 -0.194 -0.004 0.004 -0.034 0.034 -0.002 0.000 0.005 -0.005 -0.005 0.022 0.032 0.056 -0.045 -0.007 0.007 0.078 -0.078 0.000 0.000 0.004 -0.004 -0.003 -0.001 0.005 -0.006 -0.005 -0.080 -0.071 0.073 -0.105 -0.007 0.007 0.078 -0.078 0.001 -0.001 0.006 -0.006 YROT. 'I! YROT. 0.000 0.000 0.000 0.000 0.000 -0.012 -0.014 -0.015 0.009 0.001 -0.001 0.000 0.000 0.000 0.000 -0.003 0.003 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000 -0.001 0.000 0.000 0.001 -0.001 0.000 0.000 -0.005 0.005 ZROT. ROTATION ZROT. 0.050 0.027 0.009 0.041 -0.008 -0.005 0.005 0.003 0.001 -0.013 0.013 0.002 -0.002 0.000 0.000 0.001 -0.001 O.OM 0.035 0.010 0,052 -0.010 -0.003 0.003 0.001 0.004 -0.012 0.012 -0.002 0.002 0.000 0.000 -0.001 0.001 COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE. ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No.By Date \l Page of RAMP Pesi6M 29,5 COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOO 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No, Date D,--,,-,Pa9e «*of u»cu> ' 5" FUU.CAPAOT/ /. o>c. Ok. Vtu*1 DA. 5 UL V lot VAJL otc Allowable axial capacity of a single angle with the foad applied to one leg through long, welds or bolts. The angle must have equal legs. The design is per the AISC specification for Allowable Stress Design of Single-Angle Members E:=29000-ksi Fy := 36-ksi L := 3.5-ft Cb := 1.0 Cm := 1. kip:= 1000-lb ksi:= —. 2in p Load is assumed to be applied on the face of the angleAngle size 3X3 X 3/8 ORIGIN := 1 Q:= READPRN("J:/Engineering Data/PRNDOC/SnglangI_2.pm") i:= 101 A:=Qu-in Ix := Qi>4-in rx := Qij6-in y:= Qj,7-in rz:=QU6-in b := Qii23-in t:=QU5-in A=2.11in2 Ix=1.75in4 rx = 0.91in y=0,884in rz = 0.581in b = 3in t = 0.375in isIS^,!.,!*-.00447m |V ift _/F~ U 5.4.* t a, :== 72.289 b 155-Vksi 15500-ksi t fF" ' /i-\2 \amin,amin,aj Q=l Cc:= Fa := if ( 2 "l I ^ ?r2^ z'^c ; -Q-Fy 12-Tt -E ( * 3 ^5 ^^z azi 3 c f ^o'\^r o r-^ c O'LC ^ ' 23-a,2 85900-ksi L b ~CV Q..6.F Fob<Fy)|.55-.l-^).Fob,f.95-.5.|^|-Fv •ob. Fb:=if(Fb>Fbl,FM,Fb) Fb = 23.76 ksi 11/24/2004 Ramp 1-S4.10 Angle single bending, mcd COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE. ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project _ Job No. JOMUnO By Date H/2tt/o4 Page of 4 r ~ zl.:.arf **vi (n\** ^AW 38Hfc( ?64f?^€^<5io) Ut| *6e>.ft*' rrf. COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 EngJewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No, Date t(/tf/0*f Page of f \ V COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No.By Date //yy/?/ Page of ,.u t'k. . * Rev: 5601 00 User: KW-0603269, Ver 5.6.1, 25-Oct-2002(0)1983-2002 ENERCAUC Engineering Software Title : Dsgnr: Description : Scope : Single Span Beam Analysis Job# Date: 5:12PM, 4NOV04 Page 1 | Description Palomar Airport Center Angle Girt @ G.L. 29.1 General Information Center Span 8.00 ft Left Cantilever 0.75 ft Right Cantilever 1.08ft Moment of Inertia Elastic Modulus Beam End Fixity 0.476 in4 29,000 ksi Pin-Pin 1 Uniform Loads | On Center Span... #1 0.166 k/ft Query Values Center Location Moment Shear Deflection On Left Cantilever... #1 0 0.000 ft Left Cant -0.05 k-ft 0.66k 0.00000 in 166 k/ft 0.000 ft 0.00 k-ft 0.00k 0.00000 in On Right Cantilever... # 1 0.166 k/ft l Right Cant 8.000 ft -0.10 k-ft -0.67 k 0.00000 in 1 Summary Moments... Max + @ Center Max - @ Center @ Left Cant @ Right Cant Maximum = m 1.26 k-ft at -0.10 k-ft at -0.05 k-ft -0.10 k-ft 1.26 k-ft Shears... 3.96 ft @ Left 8.00 ft @ R'9ht Maximum Deflections... @ Center @ Left Cant. @ Right Cant 0.66k 0.67 k 0.67k -1.036 in at 0.307 in at 0.434 in at Reactions... @Left @ Right 3.98ft -0.75ft 9.08ft 0.78k 0.85k * • Rev: 560100 User: KW-0603269, Ver 5.6.1 , 25-OCI-2002 (c)1983-2002 ENERCALC Engineering Software Description Palomar Airport Angle Girt @ G. Title : Dsgnr: Description : Scope '. Single Span Beam Analysis Center L 29.1 Job# Date: 5:22PM, 4NOV04 Page 1 I General Information | Center Span 8.00 ft Left Cantilever 0.75ft Right Cantilever 1.08ft Uniform Loads On Center Span... #1 0.166 k/ft Moment of inertia Elastic Modulus Beam End Fixity On Left Cantilever... #1 0 0.972 in4 29,000 ksi Pin-Pin 166 k/ft 1 On Right Cantilever... #1 0.166 k/ft Query Values | Center Location Moment Shear 0.000 ft Left Cant -0.05 k-ft 0.66k Deflection 0.00000 In 0.000 ft 0.00 k-ft 0.00k 0.00000 in Right Cant 8.000 ft -0.10 k-ft -0.67 k 0.00000 in 1 Summary Moments... Max + @ Center Max - @ Center @ Left Cant @ Right Cant Maximum = I • 1.26 k-ft at -0.10 k-ft at -0.05 k-ft -0.10 k-ft 1.26 k-ft Shears... 3.96 ft @ Left 8.00 ft @ R'9ht Maximum Deflections... @ Center @ Left Cant. @ Right Cant 0.66k 0.67 k 0.67 k -0.507 in at 0.150 in at 0.213 in at Reactions... ©Left @ Right 3.98ft -0.75 ft 9.08ft 0.78k 0.85k COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303 -662-0665 FAX 303-662-0667 Project Job No. Date By Page of. 4*. -sre*r COMPUTERIZED STRUCTURAL DESGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWQQD BASE PLATE DESIGN (LRFD) Palomar Airport Center kip=1000-Ib ksi = kip-in"2 plfslb-ft1 psi = lb-in~2 ORIGIN := 1 Q := READPRN(hssprop) Column: HSS8x2x3/16 i ;= 194 wt;= Qu-plf => wt = 11.97plf H:=Qii2-in => H^Sin B := Qii3-in => B=2in Design Force: Ru ;= l"0;:kip Baseplate: M:^= §-M N:= 7-te ; Concrete Strength: f!e |^ ifi6,psi R,, Girt Post Required Area: A] := 4»c-(0-8S-fc) =>= 4.902 in2 m:=0.5-(M-0.95-H) => m = 0.2in n1 := 0.25 -WQ => n' = 1 in < (7-in)-N = 49in^ O.K. n := 0.5-(N - 0.95-B) => n = 2.55 in Pp := 0.85-fc.M-N => $e>Pp = 114.24kip R,,X;=4-H-B => X = 0.056 := min ^c-^LCH+B^J l:=max((m n X-n1)) => l=2.55i 1 + Jl -X 1.0 II => X=0.24 n 2-R,. treq:=I-0.9-Fy-M-N => U, = 0.268 in hssprop = "j:\Engineering Data\Excell TemplateWF Tables\hssprop.prn" 11/5/2004 7:35 AM b aseplt_girt__post.mcd Page 1 of 1 CSD Project No. J044170 HiftiAG FL-9494 Schaan HAP v3.3b Customer No. Phone: Resp.: jhp Anchor fastening design Location; Page:1of2 Quotation: Project: List No.: Date: Project name: Palomar Airport Center J044170 2004-11-05 jhp Anchor fastening design for HIT-HAS + RE500-3/8 As per Hilti USA method Positioning Anchoring plate: lx=7.00 in ly=7.00 in s1 =5.00 in s2=5.00in c4=1.00 in -f- Anchor O Anchor in slotted hole Loads Concrete Shear Load: Vy=-1000 Lbf Compressive strength: 4000 PSI Thickness of base material: 5.50 in ^^^ni^^n^•I^^^L^^^^^^^J HiltiAG FL-9494 Schaan HAP v3.3b Customer No. Phone: Resp.: jhp Anchor fastening design Location: Page: 2 of 2 Quotation: Project: Palomar Airport Center List No.: J044170 Date: 2004-11-05 Project name: jhp Results for HIT-HAS + RE500-3/8 Anchor N [Lbf] VK [Lbf] Vy [Lbf] V™ [Lbf] Res [Lbf] a 'RN 'RV >AN w N« [Lbf] V^ [Lbf] IN Iv 'Res hsct [in] 1 0 0 -250 250 250 90 1.00 1.00 1.00 1.00 1095 1235 - 0.23 0.09 1 3/4 2 0 0 -250 250 250 90 1.00 0.35 1.00 1.00 1095 432 0.00 0.58 0.40 1 3/4 3 0 0 -250 250 250 90 1.00 0.35 1.00 1.00 1095 432 0.00 0.58 0.40 1 3/4 4 0 0 -250 250 250 90 1.00 1.00 1.00 1.00 1095 1235 - 0.23 0.09 1 3/4 COMPUTERIZED STRUCTURAL OESGN, S.C. CONSULTING ENGINEERS MILIfiJAUKEE, EWGLEUUQOD BASE PLATE DESIGN (LRFD) Palomar Airport Center Girt Column kip = 1000-lb ksi s kip-in 2 plf s Ib-ft ' psi = lb-in 2 ORIGIN := 1 Q :^ READPRN(hssprop) Column: HSS8x2xl/4. i •== 193 wt:= Qjj-plf => wt= 15.62plf H:=Qi(2.m => H=8in B := Qij3-in => B=2in Design Force: RU:?= I0-1dp BasePlate: ^i.;«-t-in •&.;= 7-iiv Concrete Strength: f fr :=» 30j0^psi R,, Fy := 36-fei ;* 0.60 Required Area: Aj :==> A! = 6.536 in2 < M-N = 63 in2 O.K. m:= 0.5-(M - 0.95-H) ^> ra = 0.7in n1 := 0.25-VlfB => n' = 1 in X:=4-H-B X = 0.066 1 := max((m n X-n')) ==> 1=2.55 in 2-R, Veq -~ n := 0.5-(N - 0.95-B) => n = 2.55 in c-Pp = 96.39kipPp:= 0.85-fc-M-N => A, := mid 1.0 => X = 0.262 0.9-Fy-M-N = 0.252in ---> hssprop s "j:\EngineeringData\ExcellTemplate\WFTables\hssprop.pm" 11/5/2004 7:35 AM baseplt__hss_conc.mcd Page 1 of 1 CSD Project No. J044170 Hilti AG FL-9494 Schaan HAP v3.3b Customer No. Phone: Resp.: jph Anchor fastening design Location: Page:tof2 Quotation: Project: List No.: Date: Project name: Palomar Airport Center J044170 2004-11-03 jhp Anchor fastening design for HIT-HAS + RE500-1/2 As per Hilti USA method Positioning Anchoring plate: lx=8.00 in ly=9.00 in s1 =5.00 in s2=6.00in c2=3.00 in c4=3.00 in -|- Anchor O Anchor in slotted hole Loads Concrete Shear Load: Vy=6000 Lbf Compressive strength: 3000 PSI Thickness of base material: 12.00 in IE 1 1 *, J1 Hilti AG FL-9494 Schaan HAP v3.3b Customer No. Phone'. Resp.: jph Anchor fastening design Page: 2 of 2 Location: Quotation: Project: Palomar Airport Cen List No.: J044170 Date: 2004-11-03 Project name: jhp Results for HIT-HAS + RE500-1/2 Anchor N [Lbf] Vx [Lbf] Vy [Lbf] V^ [Lbf] Res [Lbf] a fRN ffW fftN fAv Nrec [Lbf] Vrec [Lbf] IN Iv 'Res hacl [in] 1 0 0 1500 1500 1500 90 1.00 0.88 1.00 1.00 1548 1888 - 0.79 0.68 21/4 2 0 0 1500 1500 1500 90 1.00 0.93 1.00 1.00 1548 1995 0.00 0.78 0.65 21/4 3 0 0 1500 1500 1500 90 1.00 0.93 1.00 1.00 1548 1995 0.00 0.78 0.65 21/4 4 0 0 1500 1500 1500 90 1.00 0.88 1,00 1.00 1548 1888 - 0.79 0.68 21/4 COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No. Dcrte__ By 27 JOS Page of . floor : a- 21' -O" Oe£\e.cJr\oc\ of 73<iO J^ .- (2'Wlti -- 252 , 0,7 36>O 3(aC> - /5D) > Aj /. 2 COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project. Job No.By Page £ of 1 A-om '. /. ' a, - a +- A,, = i.(.r * /OK uv\ a, - L -tit&ti jt- ,J,2(7?rfya'-yO « • flcor 0 a (9 '-3") - COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No.By Page 7 Floor J * COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERSMILWAUKEE, ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303 -662-0665 FAX 303-662-0667 Project. Job No. Date . By Page of S&'-O* = 21 i/U. l,2Cs$)ra ' W.Lfi ^.62" /OK i" COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE. ENGLEWOOD 9137 East Mineral Circle, Suite 140 Englewood, Colorado 80112 303-662-0665 FAX 303-662-0667 Project Job No, Date By Page of 7 L e. /* COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, DENVER 5600 S, Quebec St., Ste. 150-D Greenwood Village, CO 80111 303-662-0665 FAX 303-662-0667 Project Job No. JfrHHlTO By Date tj/lta/£>S Page of CAPACITY £> CA*4TH-'R AOM»ftJ* o H <- B" is W-»ff 'A' V 19 Z5,fi»'*H coNMec-rioiJ A* * (ii,s/ze^-= Oc COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, DENVER 5600 S. Quebec St., Ste. 150-D Greenwood Village, CO 80111 303-662-0665 FAX 303-662-0667 Project. Job No.By Date *-f/IL-»/q&.5 Page of , r * /& w. Feaces PeR FO*_UO-^> SC WE*UD 13«12.* U] r- »^-'OH, = ie>7,9^ Project Title UNIFORM FORCE METHOD (AISC Volume II - Connections) Uniform Force Method AISC LRFD Volume II Connections Job No. By B' Connection at Grids 'O-141 and O-17' JOB J044170 Date 4/17/2005 SPECIAL CASE 2 Minimizing Shear in the Beam-to-Column connection for Compressive brace force. Gusset plate is RIGIDLY attached to beam. Gusset Plate Free-Body Diagram He C.L. Column 6c a < > r * 9 Vc + AVb x X X \^x Hb r X ' H / i / 1 * P • ^ / eb c Vb - AVb Loading Information Compressive Diagonal Brace Force (' + ' Compression) Angle of diagonal brace with vertical Geometric Parameters Beam Eccentricity (Distance from work point to face of beam) Column Eccentricity (Distance from work point to face of column) Actual Distance from face of column to centroid of gusset-to-beam connection Actual Distance from face of beam to centroid of gusset-to-column connection Brace Force Components Horizontal Component of Brace Force Vertical Component of Brace Force K = eb tan 6 - ec UNIFORM FORCE METHOD Ideal Distance to Centroid of Gusset-to-Beam Connection Ideal Distance to Centroid of Gusset-to-Column Connection r = [ ( a + ec )2 + ( p + eb ) ] CONNECTION INTERFACE FORCES * General Case Axial Force Vc = O / r ) P Shear Force Vb = ( eb / r ) P 2 ,1/2 Special Case 2 Reduction in Vertical Force Gusset-to-Coluron Connection Vertical Force Vc + AVb Horizontal Force He = ( ec / r) P Moment at Gusset Me = He ( p - p bar) Gusset-to-Beam Connection ' Horizontal Force Hb = ( a / r) P Vertical Force Vb - AVb Moment at Gusset Mb = Vb ( a - a bar) + AVb a bar Sign convention is positive for forces as shown in free-body diagram above, counterclockwise is positive for moments. »' eb Vb - AVb annection jnnection P 6 eb ec « bar Pbar H 112.616 V 76.247 C.L. Beam s 136.00 55.900 12.0000 0.0000 25.0000 15.0000 kips kips kips degrees in. in. in. in. K 17.7239 K' D N/A N/A a 39.8788 p 15.0000 r 48.1593 Vc 42.359 Vb 33.888 AVb 33.888 Vc + AVb 76.247 He 0.000 Me O.QOO Hb 112.616 Vb - AVb 0.000 Vbabar 112.617 in. in. 'n. kips kips kips kips kips kip-ft. kips kips kip-ft. © COPYRIGHT 2001 COMPUTERIZED STRUCTURAL DESIGN, S.C. DOUBLE-ANGLE SHEAR CONNECTION (AISC 3rd Edition LRFD) Project Palomar Title 'B' Connection (LRFD) at 'O-141 and '0-17' Gusset End BEAM Designation Yield Stress Tensile Strength End Reaction on Plans Adjustment Factor Design Shear Force ANGLES Angle Thickness Angle Leg - Welded to Be Yield Stress Connection Fy Fu R Ru t am Web Fy W36X135 50.0 65.0 83.0 1.00 83.0 0.3750 3.5 36.0 ksi ksi kips kips in. in. ksi SUPPORTS Designation Attachment t Yield Stress Tensile Strer BEAM COPE c do top Job No. By JOB G MEMBER o Flange or Web Fy gth Fu N T 6.500 1.750 0.000 J044170 Date W14x61 W 50.0 65.0 (N-No.Y-Yes) (T-Cope Top, or B-Cope in. in. 4/17/05 (ForW) ksi ksi Both) Tensile Strength Fu Vert. Edge Distance Lv Hor. Edge Dist. @ OSL Lho OSL Hole Type (STD or SSL) Min. Weld Metal Strength Fexx BOLTS Bolt Specification (A325 or A490) A325 Bolt type (N,X or SC) SC SC Classification (A, B or C) A Bolt Diameter d bolt 3/4 Bolt Spacing (Typ.) s 3.0 i No. of ROWS of Bolts n 9 Is bolt Deformation a design consideration? Beam Setback dimension n. Hole Height h hole n. Min. Bolt Spacing s Bolt Single Shear <f»r n Y Use bearing EQN J3-2a | 0.75 in. 0.8125 in. 2.000 in. 10.44 kips SUMMARY: Bolted-Welded Double-Angle Shear Connection Connection Design Strength Check Assembling Clearances (See Manua <frRn 187.9 kips O.K. , Part 7, Table 'Entering and Tightening Clearances') RESULTS: Beam Web Side Supporting Member Web Shear Strength ij>Vn 576.7 kips Bolt Shear Strength *Rn Bolt Bearing Strength <|>Rn (Bolt Shear and Bearing is for beam on ON Angle to Support Connection Angle Length L 26.500 in. Bolt Shear Strength <|>Rn Beam web depth or T dimension 32.520 in. Bearing Strength @ OSL ^Rn Max. Angle Length Lmax 31.770 in. Block Shear Str. @ OSL <|>Rn Gross Shear Area Ag 1 9.88 in.2 Net Shear Area An Gross Shear Strength <|>Rn 386.4 kips Net Shear Strength <t»Rn Angle to Beam Web Weld - WELD A Weld Shear Strength <f>Fw 31.50 ksi Min. Fillet Weld wmin AISC Table XXIII a= 0.125 k= 0.094 Coefficient C Req'd. Fillet Weld w req'd. 0.0582 in. Fillet Weld Designed w Min. Web Thickness tmin 0.096 in. Weld Shear Strength Vw Optional Input: Larger Fiflet Weld w to be used BEAM COPED SECTION Block Shear Rupture Strength N/A Flexural Strength Shear Area Av 0.00 in.2 Eccentricity e Tension Area At 0.00 in.2 Coped Section Modulus Sn Block Shear Rupture 4>Rn 0.0 kips Controlling stress <|>Fn Bending Strength <t»Rn 187.9 kips 592.3 kips E Side only) 187.9 kips 286.3 kips 374.0 kips 13.97 in.2 364.6 kips 0.2500 in. 1.682 1/4 in. 356.7 kips 0.000 in. N/A 0.00 in. 0.00 in.3 0.00 ksi 0.0 kips © COPYRIGHT 2003 COMPUTERIZED STRUCTURAL DESIGN, S.C. DOUBLE-ANGLE SHEAR CONNECTION (AISC 3rd Edition LRFD) Project Palomar Title 'B1 Connection (LRFD) at 'O-141 and 'O-171 W24x55 Beam End Connection BEAM Designation W24x55 Yield Stress Fy 50.0 ksi Tensile Strength Fu 65.0 ksi End Reaction on Plans R 22.0 kips Adjustment Factor 1 .00 Design Shear Force Ru 22.0 kips ANGLES Angle Thickness t 0.3750 in. Angle Leg - Welded to Beam Web 3.5 in. Yield Stress Fy 36.0 ksi Tensile Strength Fu 58.0 ksi Vert. Edge Distance Lv 1.250 in. Hor. Edge Dist. @ OSL Lho 1.250 in. OSL Hole Type (STD or SSL) STD Min. Weld Metal Strength Fexx 70 ksi BOLTS Bolt Specification {A325 or A490) A325 Bolt type (N, X or SC) SC SC Classification (A, B or C) A Bolt Diameter d bolt 3/4 in. Bolt Spacing (Typ.) s 3.0 in. No. of ROWS of Bolts n 6 Is bolt Deformation a design consideration? Y SUMMARY: Belted-Welded Double-Angle Shear Connection Job No. By JOB SUPPORTING MEMBER Designation Attachment to Flange or Web Yield Stress Fy Tensile Strength Fu BEAM J044170 Date 4/17/05 W 14x61 W (ForW) 50.0 ksi 65.0 ksi COPE N ( N - No, Y - Yes ) T (T-Cope Top, or B-Cope Both) c 6.500 in. dctop 1.750 in. 0.000 Beam Setback dimension Hole Height h hole Min. Bolt Spacing s Bolt Single Shear <|>rn Use bearing EQN J3-2a 0.75 in. 0.8125 in. 2.000 in. 10.44 kips Connection Design Strength <j»Rn 125.3 kips O.K. Check Assembling Clearances (See Manual. Part 7, Table 'Entering and Tightening Clearances') RESULTS: Beam Web Side Supporting Member Web Shear Strength <|>Vn 251 .7 kips Bolt Shear Strength ij-Rn 125.3 kips Bolt Bearing Strength <J>Rn 394.9 kips (Bolt Shear and Bearing is for beam on ONE Side only) Angle to Support Connection Angle Length L 17.500 in. Bolt Shear Strength ifrRn 125.3 kips Beam web depth or T dimension 21 .380 in. Bearing Strength @ OSL 4>Rn 190.9 kips Max. Angle Length Lmax 20.755 in. Block Shear Str. @ OSL «|>Rn 249.2 kips Gross Shear Area Ag 13.13 in.2 Net Shear Area An 9.19 in.2 Gross Shear Strength $Rn 255.2 kips Net Shear Strength <|vRn 239.8 kips Angle to Beam Web Weld - WELD A Weld Shear Strength $Fw 31.50 ksi Min. Fillet Weld wmtn 0.1875 in. AISC Table XXIII a- 0.184 k= 0.143 CoefficientC 1.800 Req'd. Fillet Weld wreq'd. 0.0218 in. Fillet Weld Designed w 3/16 in. Min. Web Thickness tmin 0.036 in. Weld Shear Strength Vw 189.0 kips Optional Input: Larger Fillet Weld w to be used BEAM COPED SECTION Block Shear Rupture Strength N/A Flaxural Strength Shear Area Av 0.00 in.2 Eccentricity e Tension Area At 0.00 in.2 Coped Section Modulus .Sn Block Shear Rupture $Rn 0.0 kips Controlling stress <JiFn Bending Strength ifiRn 0.000 in. N/A 0.00 in. 0.00 in.3 0.00 ksi 0.0 kips © COPYRIGHT 2003 COMPUTERIZED STRUCTURAL DESIGN, S.C. COMPUTERIZED STRUCTURAL DESGN, S.C. CONSULTING ENGINEERS MILUUAUKEE, ENGLEUUOOD BOLT PRYING DESIGN (LRFD) PALOMAR 21 Prying- '0-14' and '0-17. mcd This Mat he ad template evaluate connections for prying action, solve for the allowable bolt tension for bolt to plate: ( Per AISC LRFD 3rd Edition, page 9-10) 1. Input: Bolt diameter: Yield strength of plate material: Bolt gage in plate: kip := IQOO-lb ksi:= kip-in 2 Actual tension per bolt: rut:^ kip rut = 9.417kip Bolt pitch parallel to stem: p > 3-in => dh= 1.063 in5 .Bolt hole diameter: dh:» d^, + —-in16 Allowable tension per Table 7-14: 2L Properties: Plate width perpendicular to stem: Plate thickness: Stem thickness: <J>4 :« :* 7k 3p'—ia4 ;* |ia Tb := 28kip !„(,--1.13-Tb R = 0.702 = 1 in - = 1.424R 2. Analysis: b := 0.5(gage - tatcm) => b = 2.25 in b' := b - O.Sdbojt ~> b' = 1.875 in a := leg - O.Sgage => a = 0.75 in p := — => p = 1.463 a' t,:= leg := O.SBpi => leg = 3.5 in 5 := 1 -- => 8 = 0.646 P a':= mid a+— ,1.25-b + — => a'=1.281in \ 2 2 ' 4.44-(|>rn-bT ^/^ < ^1 / ^5-U + p)\(*°}2 il1J .=> a1 = 1.938 3. Determine the allowable tension in the bolts based on the thickness of plate provided: a' <0,<|)rn)if =>> rut = 9.417kip O.K. Case-l: Case-ll: Case-Ill: If 0 < a1 < 1, Then bolt failure controls. If a1 > 1, Then material thickness control. If a1 < 0 Then bolt capacity is not reduced for prying. 4/17/2005 11:28 AM Page 1 of 1 CSD Project No. J044170 COMPUTERIZED STRUCTURAL DESIGN, S.C. CONSULTING ENGINEERS MILWAUKEE, DENVER 5600 S. Quebec St., Ste. 150-D Greenwood Village, CO 80111 303-662-0665 FAX 303-662-0667 Project. Job No,By Date £ ~/O ~Page of ' . 22 * ,3 '3 ±~ f $13 4, S,/I'f /-M = Z3 . 7 "/fcr. ff./ NOWAK+WISEMAN STRUCTURAL ENGINEERS RECEIVED MAY 2 3 2005 STRUCTURAL CALCULATIONS FOR Palomar Airport Center Bfdg. 1 NWSE Job #: 03-098 May 2005 9688 Carroll Centre Road 92126 TEL. (858)536-5166 Suite 228 San Diego, CA TABLE OF CONTENTS Project: PALOMAR AIRPORT CENTER Job #: 03-098 Date: 05/18/05 BLDG1 Design Criteria Misc. Criteria M1 NOWAK+WISEMAN STRUCTURAL ENGINEERS - M42 Footing Design Bldg. 1 Grade beams G2 Anchor bolt load comb. A2 Pad footing load comb. P1 Footing capacity table P3 - G153 - A8 - P2 - P3 9888 Carroll Centre Road, Suite 228 Phone: (858) 536-5166 San Diego, California 92126 BSPEER @ NWENGINEERS . COM Fax: (858) 536-5163 URS M April 20, 2004 Mr. Richard Sax, Esq. c/o Mr. Joe Pate Palomar Airport Center LLC 2192 Palomar Airport Road, Second Floor Carlsbad, CA 92008 Subject:Addendum No. 1 to Geotechnical Investigation Proposed Palomar Airport Redevelopment McClellan-Palomar Airport Carlsbad, California URS Project No. 27662028.04000 Dear Mr. Pate: This addendum provides recommendations regarding the design of concrete floor slabs and pavements for the subject project. URS Corporation (URS) previously performed geotechnical investigations for the site. The results of the geotechnical investigations are presented in our report titled "Geotechnical Investigation, Proposed Palomar Airport Redevelopment, McClellan-Palomar Airport, Carlsbad. California," dated February 11. 2004. The project structural engineer, Nowak Wjseman. has requested a modulus of subgrade reaction for use in design of rigid floor slabs and pavements. The shallow subgrade soils encountered below the project site consist of sandy clays and clayey sands. These materials will be scarified and recompacted. or where needed, additional fill soils will be imported. Recommendations for the characteristics of imported fills were provided in Section 4.3.3 of our report. The slabs and pavements should be designed for the condition of the recompacted clays. A subgrade modulus of 150 pounds per square inch/inch may be used for design of the floor slabs and rigid pavements. If you have any questions regarding this letter, please contact us. Please bind this addendum with the February 11, 2004 report. Sincerely, URS CORPORATION Leo D. Handfelt, RjX.E. 373 Principal Geotechnical Engineer LDH:afs cc: Jim Wiseman. Nowak Wiseman URS Corporation 1615 Murray Canyon Road Suite 1000 San Diego, CA 92108 Tel: 619,294.9400 Fax: 619.293.7920 W-\276E202BW«000-<:-l.<loc\20-A[x-0*\SDG HANGAR - AIRCRAFT TYPE LIST The front ramp should be made to accommodate a Boeing 737 BBJ2. Al! hangar floors should be made to accommodate aircraft at their maximum weights. All aircraft listed below represent the largest and heaviest aircraft that specified hangars can accommodate. 174.200lbs. WIDTH LENGTH HEIGHT DOOR Aircraft Types Weight Max Hangar 1 125'-0" 12T-0" 27'-6" 110'-0" Bombardier BD-700 Global Express 96.000 Ibs. Gulfstream Aerospace G-V Gulfstream V 89.000 ibs. Hangar 2 125'-0" 12T-0" 27'-6" 110'-0" Bombardier BD-700 Global Express 96.000 Ibs. Gulfstream Aerospace G-V Gulfstream V 89.000 Ibs. HangarS 125'-0" 121'-0" 27'-6" 110'-0" Bombardier BD-700 Global Express 96.000 Ibs. Gulfstream Aerospace G-V Gulfstream V 89.000 Ibs. <UA£ Hangar4 125'-0" 121'-0" 27'-6" 110'-0" Bombardier BD-700 Global Express 96.000 Ibs. Gulfstream Aerospace G-V Gulfstream V 89.000 ibs. HangarS 125'-0" 121-0" 27'-6" 110'-0" Bombardier BD-700 Global Express 96.000 fbs. Gulfstream Aerospace G-V Gulfstream V 89.000 ibs. Hangar 6 62'-0" 49'-0" 18'-0" 50'-0'Raytheon Beechcraft King Air 90 & 100 11.000 Ibs. Dassault Falcon 100 19.300 ibs. Hangar? 60'-0" 55'-0" 18'-0" 48'-0"Raytheon Beechcraft King Air 90 & 100 11.000 fbs. Bombardier Learet 31.35.36 17.000 Ibs. HangarS 60'-0" 55'-0" 18'-0" 48'-0" Hangar 9 60'-0" 55'-0" 18'-0" 48'-0' Raytheon Beechcraft King Air 90 & 100 11.000 Ibs. Bombardier Learjet 31,35.36 17.000 Ibs. Raytheon Beechcraft King Air 90 & 100 11.000 Ibs. Bombardier Learjet 31.35,36 17.000 Ibs. Hangar 10 60'-0" 62'-4" 18'-0" 48'-0"Bombardier Learjet 55 & 60 Dassault Falcon 100 23.500 Ibs. 19.300 Ibs. Hangar 11 72<-0" 62'-4" 18'-0" 60'-0"Raytheon Hawker 1000 Dassault Falcon 200 31.000 Ibs. 29.000 Ibs. Hangar 12 72'-0" 62'-4" 18'-0" 60'-0"Raytheon Hawker 1000 Dassault Falcon 200 31.000 Ibs. 29.000 Ibs. Hangar 13 72'-0" 62'-4" 18'-0" 60'-0"Raytheon Hawker 1000 Dassault Falcon 200 31.000 Ibs. 29.000 Ibs. Hangar14 72'-0" 56'-4"60'-0" Raytheon Hawker 1000 Dassault Falcon 200 31.000lbs. 29.000 Ibs. Hangar 15 72'-0" 53'-2" 18'-0" 60'-0" Hangar 16 72'-0" 53'-2" 18'-0" 60'-0" Hangar 17 72'-0" 53'-2" 18'-0" 60'-0" Hangar 18 72'-0" 43'-2" 18'-0" 60'-0" Raytheon Beechcraft King Air 90 & 100 11.000 Ibs. Dassault Falcon 100 19.300 Ibs. Raytheon Beechcraft King Air 90 & 100 11,000 Ibs. Dassault Falcon 100 19.300 Ibs. Raytheon Beechcraft King Air 90 & 100 11.000 ibs. Dassault Falcon 100 19.300 Ibs. Raytheon Beechcraft King Air 90 & 100 11.000 ibs. Dassault Falcon 100 19.300 Ibs. Hangar 19 96'-0" 68'-2" 18'-0" 60'-0"Raytheon Hawker 1000 Dassault Falcon 200 31.000 Ibs. 29.000. Ibs. l o£ Io tS MiO ft »o K: w Hi . U_e W Sa. c. "2 «JS J E £3 x If li •rf; g to;irt'<ci'oiw'^" I '! ! jO OUfl Un'o'ai soiO-c* s .wSi U !-S;|0' cfaT'i l.J- .1...J- '-.>'elo (0,6^6>,r*. o.5> £'Q>.«!*I|T- o>'«- §° °lSlffl9iSo alo c O oN.S o 5'rtJ5|K^r'^Iofl^.asir-Irt«i--lr- —'fst iUUiliJ eoe NOWAK + WISEMAN STRUCTURAL ENGINEERS BY ¥DATE &/QH PROJECT ,4. !"Z,0o:Z.-r r 21 SHEETNO. OF JOB NO. 10 100 - ' y 5^5"" / Ti'1-.-: ( a ^ . 7 r ' - " V / ~^ j- 14.1 /f/t r/. - S ^1 s^ / . M /j ooo OXl^(1oo|<b^* . .H\ C ^ Tof OF 6 i_i L APPENDIX A.3 - PORTLAND CEMEW ASSOC., WIRE REINFORCEMENT INSTITUTE, AND CORPS OF ENGINEERS CHARTS 161 0.90 0.50 Figure A.9 Reduction factor used with PC A chans when designing for dual-wheel loads. APPENDIX A.3 - PORTLAND CEMENT ASSOC., WIRE REINFORCEMENT INSTITUTE, AND CORPS Of ENGINEERS CHARTS 159 A. 3 — Port/and Cement Association, Wire Reinforcement Institute, and Corps of Engineers Charts 40- Effective ontactArea, sq. in Figure A.7 Use of a PCA design chart to select slab thickness for single axle loading. o-i. i r~; & Airliners.net: Raytheon Beechcraft King Air 90 & 100 Page 1 of3 •* Please support our sponsor that helps make this site possible: Ad info ^ Change your cursor! Click here - get over 1,000 free cursors! Messa The Raytheon Beechcraft King Air 90 & 100 Country of origin United States of America Photos Click for large version. Photo © Terry Shepherd More photos of Raytheon Beechcraft King Air 90 & 100 Click for large version. Photo © David Carrizo More cockpit photos... Powerplants 90 - Two 373KW (SOOshp) PT6A6 turboprops driving three blade constant speed Hartzell propellers. B100 -Two Type Twin turboprop corporate and utility transport History The Model 90 King Air family is the basis for the largest and most successful family of corporate turboprop twins yet built.' The King Air began life as a turboprop development of the Queen Air designed to meet a US Army requirement for a staff/utility transport. A prototype PT6 powered Queen Air Model 65-80 (later 65-90T) began test flying in 1963 and the type was subsequently ordered by the US Army as the U-21A. The civil equivalent, the model 90 King Air, introduced pressurisation and first flew on January 20 1964. Deliveries of production civil aircraft began in late 1964.\ Development resulted in several civil variants, including the A90 and B90 with PT6A20 engines: the C90 with PT6A21s: the E90 with more powerful PT6A34Bs: and the F90 which introduced the Ttail of the 200 (described separately), four blade props and other mods. The less expensive 90SE Special Edition was http ://www.airliners .net/info/stats .main?id=3 27 4/9/2004 Airiiners.net: Raytheon Beechcraft King Air 90 & 100 Page 2 of3 \\<\ 533kW (715shp) Garrett TPE3316252Bs driving three blade props. C90B - Two 410kW (550shp) PT6A21s driving four blade props. Performance 90 - Max speed 450km/h (243kt). max cruising speed 435km/h (235kt). Initial rate of climb 1900ft/min. Range with reserves 2520km (1360nm). B100 - Max speed 491km/h (265kt). Initial rate of climb 2140ft/min. Range at max cruising speed 2343km (1264nm), at economical cruising speed 2455km (1325nm). C90B - Max cruising speed 457km/h (247kt). Range at economical cruising speed at 24.000ft 2375km (1282nm). Weights 90 - Empty equipped 2412kg (5318!b). max takeoff 4218kg (9300lb). B100- Empty equipped 3212kg (7092ib). max takeoff 5352kg (11 .SOOIb). C90B - Empty 3040kg (6702lb). max takeoff 4580kg (10.10016). Dimensions 90 -Wing span 13.98m (45ft 11in). length 10.32m (35ft 6in). height 4.47m (14ft Sin). Wing area 25.9m2 (279.7sq ft). B100-Wing span 14.00m (45ft 11in). length 12.17m (39ft 11in). height 4.70m (15ft Sin). Wing area 26.0m2 (279.7sq ft). C90B - Wing span 15.32m (50ft Sin), length 10.82m (35ft 6in), height 4.34m (14ft 3in). Wing area 27.3m2 (293.9sq ft). Capacity 90 - Typical seating for six, max seating for eight. 100 - Six to eight in corporate configuration, or max seating for 13. Production Approx 1750 of all variants of the King Air 90 family built (including 226 military orders). Approx 350 King Air 100s built. Back to Aircraft Data & History section. released during 1994. and remains in production alongside the C90B. which was introduced in 1991. The latest variant is the C90B Jaguar Special Edition. Announced in January 1998 it features the Jaguar car company's green and gold corporate colours including the famous leaping cat on the tail and a Connolly leather interior with walnut and boxwood cabinets. The King Air 100 series was announced in May 1969. Compared with the 90 series it was 1.27m (4ft 2in) longer. allowing greater seating capacity, and featured a reduced wing span and larger rudder. The A100 is a military version, while the B100 is powered by 535kW (715shp) Garrett TFE331s. Production of the 100 ceased in 1984. Copyright © Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirliners.net AIRLINE ARTIC Read artich submi your YOU car a differei 2002 Flying th Mighty Lockhee Constelh The Lud Fleet In" World Connie's Comeba In Pursu Happine: Against Capitula* bin Lade "Little Ar Marshall Islands' I Landing Tak The Nati Oldest P Aviation Mechani School - http://www.airliners.net/info/stats.main?id=327 4/9/2004 Airliners.net: Raytheon Beechcraft King Air 90 & 100 Page 3 of 3 f[iO • . 70 The backbone of this section is from the The International Directory of Civil Aircraft -pwo unL by Gerard Frawley and used with permission. To get your own copy of the book Concord click here.Alaska:I the Big F [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register1] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airliners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on This page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=:327 4/9/2004 Airliners.net: Learjet 35, 36 & 31 Page 1 of 3 Please support our sponsor that helps make this site possible: Ad info Messa Country of origin United States of America Photos The Learjet 35, 36 & 31 Type Light corporate jets History Click for large version. Photo© Mario Plate More photos of Learjet 35, 36 & 31 Cltck for large version. Photo© Mario Plate More passenger cabin photos... The Learjet 35 and 36 are larger, turbofan powered developments of the initial Learjet models, the 23. 24 and 25. The availability of the Garrett AiResearch TFE731 turbofan in the late 1960s led to a development of the Learjet 25 that was initially known as the 25BGF {Garrett Fan). A testbed Lear 25 with a TFE731 on its left side flew in May 1971, while the definitive Learjet 35 prototype first flew on August 22 1973. Aside from turbofans. the 35 and longer range 36 differ from the earlier Learjet 25 in having a 0.33m (1ft 1in) fuselage stretch and five windows (instead of four) on the right side of the fuselage. The Learjet 35 has seating for up to eight, but has less fuel than the longer range 36, which can only seat up to six, as both types share the same maximum takeoff weight. The 35 and 36 were certificated in July 1974. Improvements to the two models led to the 35A and 36A from 1976, with higher standard max takeoff weights. Both ven AREYI GET™ THEM FOR YOUR DOL ven http://www. airliners. net/info/stats.main?id=2 65 4/9/2004 Airliners.net: Learjet 35, 36 & 31 Page 2 of3 Click for large version. Photo © Mario Plate More cockpit photos... Powerplants Two 15.6kN (3500lb) Garrett (now AlliedSignal) TFE73122B turbofans. Performance 35A & 36A - Max speed 872km/h (470kt). max cruising speed 352km/h (460kt). economical cruising speed 774km/h (418kt). Service ceiiing 45.000ft. Range with four passengers, max fuel and reserves 4070km (2195nm) for 35A. 4673km (2522nm) for 36A. 31A - Max cruising speed 891km/h (481 kt). typical cruising speed at 45,000ft S32km/h (450kt). Max certificated altitude 51.000ft. Range with two crew, four passengers and !FR reserves 2344km (1266nm). or 2752km (1486nm) for31A/ER. Weights 35A and 36A - Empty equipped 4590kg (10,120lb), max takeoff 8300kg (18,300lb). 31A- Empty 4651kg (10.253lb), operating empty 5035kg max takeoff 7030kg or optionally 7711kg 31A/ER - Max takeoff 7711 kg (15.500lb), (17,000lb). (17,000lb). Dimensions Wing span (over tip tanks) 12.04m (39ft 6in). length 14.83m (48ft Sin), height 3.73m (12ft Sin). Wing area 23.5m2 (253.3sq ft). 31A - Same except for wing span 13.35m (43ft 10in). Wing area models remained in production until 1994. Development of the 35 and 36 range was taken one step further with the Learjet 31. which combines the 35/36's fuselage and powerplants with the more modern wing of the 55 (now also on the 60) and delta fins under the tail. A 31 development aircraft first flew in May 1987 and certification was awarded in August 1988. The improved 31A and 31A/ER are the current production models, the 31A/ER being an extended range variant with a higher maximum takeoff weight and more fuel. A new interior with increased headroom was introduced in 1995. Ccoynght © Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirliners.net Airlirwra.r Click http ://www. airliners.net/info/stats.main?id=265 4/9/2004 Airliners.net: Learjet 35, 36 & 31 Page 3 of 3 ,. „HI? 24.6m2 (264.4sq ft). Capacity Ffightcrew of two. Seating for up to eight in main cabin in 35 and 31, or up to six in 36A. Some aircraft configured as package freighters. Production 675 Learjet 35s and 36s delivered. US Air Force and Air National Guard ordered 84 35As as C21s. More than 160 31s buiit. At late 1998 637 Learjet 35s. 55 36s and 159 31s were in service. Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. [Home] [New Search] [Add Your Photos'] [Aircraft Data & History] [Photo Index] [Aviation News'] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us'] [About Airjiners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcaras] [First Class Login] The informaticn on this page is copyright protected and may not be cocied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=265 4/9/2004 Airliners.net: Dassault Mystere/Falcon 10 & 100 Page 1 of2 •^a^ ^^ Please support our sponsor that helps make this site possible: Ad info^^^H^^B^MM^^^B^HH^^^^_^MHH^^_^MH^^^^^^_^^^_Ha_^^^^^M^ Messa The Dassault Mystere/Falcon 10 & 100 Country of origin Type France Photos Click for large version. Photo © Peter Vercruiisse More photos of Dassault Mystere/Falcon 10 & 100 Powerplants 10 & 100 - Two 14.4kN (3230lb) Garrett TFE7312turbofans. Performance 10 - Max cruising speed 912km/h (492kt). Range with four passengers and reserves 3560km (1920nm). 100 - Max cruising speed same. Range with four passengers and reserves 3480km (1880nm). Weights Light corporate jet History The baby of Dassault's corporate jet lineup, the Falcon 10 and Falcon 100 series (Mystere 10 and Mystere 100 in France) sold in good numbers during a production run that lasted almost two decades. In concept a scaled down Falcon/Mystere 20, the Falcon 10/100 was an all new design except for similar wing high lift devices. Conceived in the late 1960s, the Falcon 10 was the second member of the Dassault Falcon family to be developed. Dassault originally intended the Falcon 10 be powered by two General Electric CJ610 turbojets. and a CJ610 powered prototype first flew on December 1 1970. Flight testing was delayed until May 1971 while changes were made to the wing design, including increasing the wing sweepback angle. The second prototype was the first to be powered by Garrett TFE731 turbofans. and it completed its first flight on October 15 http://www.airliners.net/info/stats.main?id=172 4/9/2004 APPENDIX A.3 - PORTLAND CEMENT ASSOC, WIRE REINFORCEMENT INSTITUTE. AND CORPS OF ENGINEERS CHARTS 159 A.3— Portland Cement Association, Wire Reinforcement Institute, and Corps of Engineers Charts Effective Contact Area, sq. in Figure A.7 f/j« o/fl /*C4 design chart to select slab thickness for single axle loading 0-IH APPENDIX A.3 - PORTLAND CEMENT ASSOC. WIRE REINFORCEMENT INSTITUTE, AND CORPS OF ENGINEERS CHARTS 02***^••** sj 20 10 0.90 71/T7I7 \X\//7 I/!/ Z7T \z K \700 _UTJ- \ N3 Are e Contact sq. in tix 0.65 0.60 0.55 0.50 Figure A.9 Reduction factor used with PCA charts when designing for dual-wheel loads. Airliners.net: Bombardier Learjet 55 & 60 Page 1 of3 ritz- Please support our sponsor that helps make this site possible: Ad info cleaning house Click here :o v.-b'.nib« fiv 'i,*,: 52.90 a week &tr Scat JJork £fcmn Messa The Bombardier Learjet 55 & 60 Country of origin Type United States of America Mid size corporate jets Photos Click for large version. Photo© Paulo Carvalho More photos of Bombardier Learjet 55 &60 Click for large version. Photo © Mario Plate More passenger cabin photos... History The Learjet 55 and its foflcwon successor, the Learjet 60. are the largest members of the Learjet family, and date back to development work undertaken in the late 1970s. in designing the 55. Learjet (or Gates Learjet as the company was then known as) took the wing of the earlier Longhorn 28/29 series and married it to an all new larger 10 seat fuselage. The original Model 55 Longhorn prototype first flew on November 15 1979. The first production aircraft meanwhile flew on August 11 1980. with the first delivered in iate April 1981 (after FAA certification was granted in March that year}. Development of the 55 led to a number of sub variants, including the 55B which introduced a digital flightdeck, modified wings, improved interior, and most importantly, the previous optional higher takeoff weights becoming standard. The 55C introduced 'Delta Fins' which gave a number of performance and handling advantages, the 55C/ER is an extended range version with additional fuel in the http://www.airliners.net/info/stats.main?id=128 4/9/2004 Airliners.net: Bombardier Learjet 55 & 60 Page 2 of3 Click for large version. Photo © Mario Plate More cockpit photos... Powerplants 55 - Two 16.5RN (3700lb) Garrett TFE7313A2B turbofans. 60 - Two 20.5kN (4600lb) Pratt & Whitney Canada PW305A turbofans. Performance 55C - Max speed 884km/h (477kt). max cruising speed 843km/h (455kt). economical cruising speed 778km/h (420kt). Service ceiling 51.000ft. Range with two crew, four passengers and reserves 4442km (2397nm) for 55C/LR. SO - High cruising speed 839km/h (453kt). normal cruising speed 828km/h (447kt). long range cruising speed 778km/h (420kt). Max certificated altitude 51.000ft. Range with two crew, four passengers and IFR reserves 4461km (2409nm). Weights 55C - Empty 5832kg (12,858lb), operating empty 6013kg (13,258lb). max takeoff 9525-9752kg (21.000-21 S500lb). 60 - Empty 6282kg (13,850lb). basic operating empty 6641kg (14.640lb). max takeoff 10.659kg (23,500lb). Dimensions 55 & 60 - Wing span 13.34m (43ft 9in). length 16.79m (55ft 1in). height 4.47m (14ft Sin). Wing area 24.6m2 (264.5sq ft). Capacity 55 - Flightcrew of two. Six different main tail cone (the additional tank can be retrofitted to earlier aircraft), while the 55C/LR introduced more fuel capacity. The improved Learjet 60 first flew in its basic definitive form in June 1991 (the modified Learjet 55 prototype earlier served as a proof of concept aircraft for the 60 with Garrett engines). It differs from the 55 in having a 1.09m (43in) fuselage stretch and new Pratt & Whitney Canada PW305 turbofans. Certification of the 60 was awarded in January 1993. with first deliveries following shortly afterwards. International Directory of Civil Aircraft Copyright © Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage of Airliners.net Send a our pho an eleci postc Surpris frien" apos favorite A free se Airline Click http://www.airliners.net/info/stats.main?id=128 4/9/2004 Airliners.net: Bombardier Learjet 55 & 60 Page 3 of 3 cabin arrangements offered with seating ranging from four to eight. 60 - Flightcrew of two. Optional seating arrangements for six to nine passengers. Production Production of the Model 55 ceased in 1990 after 147 had been built. 141 55s in service at late 1998. Deliveries of Model 60 began in January 1993. with more than 130 delivered by late 1998. Back to Aircraft Data & History section. The backbone of this section is from the The international Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us'] [About Airliners net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=128 4/9/2004 Airliners.net: Dassault Mystere/Falcon 20 & 200 Page 1 of2 Please support our sponsor that helps make this site possible: Ad info Message Alert You •have 1 1•••message M waiting •for HHE3I you. •v Spc Messa The Dassault Mystere/Falcon 20 & 200 Country of origin France Photos Click for large version. Photo © Rob Simmons More photos of Dassault Mystere/Falcon 20 & 200 Powerplants 20 - Two 20.0RN (4500lb) General Electric CF7002D2 turbofans. 200 - Two 23.1kN (5200lb) GarrettATF 36A4Cs. In Falcon 20F-5 Retrofit Two Garret TFE731-5BR-2AC 21.1KN (4750lb) Performance 20 - Max cruising speed 863km/h (466kt). economical cruising speed 750km/h (405kt). Service ceiling 42.000ft. Range with max fuel and reserves 3300km (1780nm). 200 - Max cruising speed 870km/h (470kt). economical cruising speed 780km/h (420kt). Service ceiling 45,000ft. Range http://www.airliners.net/info/stats.main?id=173 Type Mid size corporate jet and muitirole utility transport History The Mystere or Falcon 20 and 200 family remains Dassault's most successful business jet program thus far, with more than 500 built. Development of the original Mystere 20 traces back to a joint collaboration between Sud Aviation (which later merged into Aerospatiale) and Dassault in the late 1950s. Prototype construction began in January 1962. leading to a first flight on May 4 1963. This first prototype shared the production aircraft's overall configuration, but differed in the powerplant. The prototype was initially powered by 14.7kN (3300lb) Pratt & Whitney JT12A8 turbojets, whereas production Mystere 20s (or Falcon 20s outside France) were powered with General Electric CF700s. The first GE powered 20 flew on New Year's Day 1965. Throughout the type's production life Aerospatiale remained responsible for building the tail and rear fuselage. The Falcon 200 is a re-engined development of the 20 which Dassault 4/9/2004 150/5300-13ppendix 12 9/29/89.no no ?i ?! O at o yt at -. n * .a- • - ** -ftrn ~ <n . » .— n •. n — » n . n P« P« « 31 » f«l • x • M . ft . « - w . M . n rt ^ ^4 ^• ^ ^ n *o . PS . N, m •n « Hi 3 91 a n g ' rt So S 92 99 9 *»S3 SS §S n <• « « rfti g • o • q : H. n a n .• >o r»s^ * a — » * - f> •*> ft A s s a w n *i « Floors A12-52. Gates Leatjet Ml9/29/S9 AC 15Q/5300-DAppendix 12li f.5 -f - (•• - * XS *• 5 -3 i 2 o*-3 - n -* - rt -•» 3 3 3* | M ta *•gn n<« ™* •» » -!••• -3| -23 23 23 33 33 | ~9 ~ 9g n* ^g 33 SO -fmm t> <«9 no r»A 3o oo 7 *""* " rf "» N« 3 »^v 33 33 33 33 33 * s A12-23. Avteos Martd Dassault Mystire 20 (Fan Jei Facon) 179 NOWAK + WISEMAN STRUCTURAL ENGINEERS BY. • '/J DATE 3.'^^- PROJECT ^ tO M^fc- X» . C tf a S-' /.^ N"C 1.SHEET NO. ^H OF JOB NO. ^o if ^ - I OOO /* S?J ,1 1 r ; ',0^7^ = ."-I^OlyV1 /JN'/U7 /l?'r" ^^T" /' co r' * 2- 0 o o (V'f Airliners.net: Dassault Mystere/Falcon 10 & 100 Page 2 of2 10 - Empty equipped 4880kg (10.760lb). max takeoff 8500kg (18.740lb). 100- Empty equipped 5055kg (11.145lb). max takeoff 8755kg (19.300lb). Dimensions Wing span 13.08m (42ft 11 in), length 13.86m (45ft Gin), height 4.61m (15ft 2in). Wing area 24.1m2 (259sq ft). Capacity Flightcrew of two on flightdeck. Main cabin is typically configured to seat four in an executive club seating arrangement. Main cabin can seat up to seven in Faicon 10 or eight in Falcon 100 in a high density layout. Can be configured for air ambulance, aerial photography and navaid calibration missions. Production In addition to three prototypes. 226 Falcon 10s and Falcon 100s (including seven military MERs & 31 Falcon 100s). were built between 1973 and 1990. of which 208 were in civil service in late 1998. 1971. Flight testing was completed with the aid of a third prototype, and French and US certification was awarded in September 1973. Deliveries of production aircraft began that November. While almost all Falcon 10 production was for civil customers, the French navy ordered seven, designated the Mystere 10 MER, as multi purpose pilot trainers. Missions include simulation of targets for Super Etendard pilots and instrument training. The improved Falcon 100 replaced the Falcon 10 in production in the mid 1980s. Certificated in December 1986. changes include an optional early EFIS glass cockpit, a higher maximum takeoff weight, a fourth cabin window on the right side and a larger unpressurised rear baggage compartment. Production of the Falcon 100 ceased in 1990 with the last delivered that September. Copyrignt © Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirliners.net Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. AIRLINI PHOTO Seled photos by oui Airport Terminal This is rr favorites for Term Overviev MyFlight Planes I1 on. Special \ GRZ Special \ airlines v not servi anymore Classic \ Coast None My Favo AF&IR The Bes- Airliners. My selec the best this site [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register'] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airfiners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main7id~172 4/9/2004 AC 1505300-13 12 14JCIMM uaoiwVKXGKT 4 Ml US 4 323 Kg 13.32» ia'4- A-100 10.COO LA 4 «Z3 KG 10 MO U 4 77* BB 45* il* 14.00*12. IM 4.47* 15' 4« 4.671 SCATS • 10 A12-20. Beecicrart King Air 1S6 Airliners.net: Dassault Mystere/Falcon 20 & 200 Page 2 of2 with max fuel, eight passengers and reserves 4650km (251 Onm). Falcon 20F-5 High Speed Cruise M.80 Max M.82 Range 2300nm Weights 20 - Empty equipped 7530kg (16.600lb). max takeoff 13.000kg (28.660lb). 200 - Empty equipped 8250kg (18.290lb). max takeoff 14,515kg (32.000lb). Falcon 20F- 5 MTOW 13.800kg (30350lb) Dimensions Wing span 16.32m (53ft 7in). length 17.15m (56ft Sin), height 5.32m (17ft 6in). Wing area 41.0m2 (441.33sq ft). Capacity Flightcrew of two. Typical main cabin seating for between eight and 10 passengers, optionally for as many as 14 in a high density configuration. Production Production ended in 1988 when the last Falcon 200 was delivered, by which time 38 200s and 476 20s (including HU-2Jsi had been delivered. The last 20 was completed in late 1983. first publicly announced at the 1979 Paris Airshow. A converted Falcon 20 served as the prototype, and first flew with the new Garrett ATF 3-6A-4C engines on April 30 1980. French DGAC certification was awarded in June 1981. Apart from the Garrett engines, the Falcon 200 (initially the 20H) introduced greater fuel tankage and much longer range, redesigned wing root fairings and some systems and equipment changes. The 200 remained in production until 1988. The Guardian is a maritime surveillance variant of the Falcon 200 sold the French navy fas the Gardian) and the US Coast Guard (HU-2J). AlliedSignai offers a Falcon 20 re-engine program with its TFE731 turbofan. More than 100 Falcon 20s have now been re- engined with 21.1kN (4750lb) TFE731- 5ARs or-5BRs. Copyright <§ Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirIiners.net Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. Checl these POLLS over the on 1 Airline frontp View My favor three eni jet airline My favor of aircral Type of | ! like the Weirdesl looking 5 Impcrtar aircraft s factor: My nr. 1 for flying Best Ove Major Nc Airline: I'd Rathe Piloting / When fly long hau Favorite Europea [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airliners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=173 4/9/2004 Airliuers.net: Raytheon Hawker 1000 Page 1 of3 -y Please support our sponsor that helps make this site possible: Ad info The Raytheon Hawker 1000 Country of origin Type United Kingdom and USA Mid size corporate jet Photos Click for large version Photo © Lindsay Hockey More photos of Raytheon Hawker 1000 Powerplants Two 23.1 kN (5200lb) Pratt & Whitney Canada PW-305 turbofans. Performance Max cruising speed 867km/h (468kt), economical cruising speed 745km/h (402ktJ. Service ceiling 43.000ft. Range with max payload 5750km (3105nm), range with max fuei and NBAA VFR reserves 6205km (3350nrn). Weights History The Hawker 1000 was the largest member of the DH/HS/BAe-125/Hawker 300 series of corporate jets, The Hawker 1000 was based on the smaller Hawker 800. and until 1997 the two types were in production side by side in the famous de Havilland plant in Hatfield. The 1000 differs from the 800 in a number of respects however and features a stretched fuselage. The 1000 is identifiable via its seven main cabin windows per side, whereas the 800 has six. and the 0.84m (2ft 9in) stretch (achieved by small fuselage plugs in front of and behind the wing) allowing an increase in max seating to 15. However as it is optimised for long range intercontinental work, the typical Hawker 1000 configuration seats one less than the smaller Hawker 800, Other important changes include Pratt & Whitney Canada PW-305 turbofans (in place of the AlliedSignal TFE-731 on the Hawker 800), extra fuel in the extended http://www.airliners.net/info/stats.main?id=332 4/9/2004 Airliners.net: Raytheon Hawker 1000 Page 3 of 3 [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News'] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airliners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=332 4/9/2004 Airliners.net: Raytheon Hawker 1000 Empty 7810kg (17.22016). max takeoff 14.060kg (31.000lb). Dimensions Wing span 15.66m (51ft 4in), length 16.42m (53ft 10in). height 5.21m (17ft 1in). Wing area 34.8m2 (374.0sq ft). Capacity Flightcrew of two. Standard main cabin seating for eight comprising club seating for four at the front of the cabin, a three seat couch and a single seat. Max seating for 15. Production Production ceased after 52 built. Page 2 of3 forward wing fairing, new lightweight systems, revised and more efficient cabin interior with increased headroom. EFIS cockpit and certification to the latest US FAR and European JAR requirements. British Aerospace launched the BAe- 125-1000 program in October 1989. The first BAe-125-1000 development aircraft first flew on June 16 1990, with a second following on November 26 that year. These two were followed by the first production aircraft which participated in an 800 hour flight test development program, culminating in UK certification being granted on October 21 1991 (FAA certification followed on October 31 1991). The first production aircraft was delivered in December 1991. As is the case with the BAe-125-300. the BAe-125-1000 became the Hawker 10CO from mid 1993 when Raytheon purchased British Aerospace's Corporate Jets division. However, the 1000 never enjoyed the popularity of the 800 and production ceased in 1997 with the delivery of the 52nd aircraft. The 1000's largest customer is Executive Jet Aviation (including the NetJets fractional ownership program), which early 2002 has 27 in service (including 13 of the last 14 built). Copyright © Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirliners.net Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. The Airliners Heavy tt in flight: Fun. fui Doesn't Makes Really • Vote V Sugges aviatior poll More http://www.airliners.net/info/stats.main7id-332 4/9/2004 150/5300-13ppendix 12 9/29/895* ?3 ?3a a * • * .•. « no no n — ri M n or* -i *» •a . 4 • f- - r~M .« <• n a no i*. • a. "9 * aia g J a« - -i ;« .4 K :-3 O 3« 9n O *• i. — So a --i 3 -tat M «n " a f- « 25 23 25 3n 33 S3A o rt * 9 -! * O« O* C •• O ^ Of*3 ^ S3 I? 3? §£ S3- SH 3 <N ft rt «i •» s A12-52. Gates Leaijel 9/29/S9 AC 1505300-13Appenda 12li 15 -s -I -s 5s* * * «3| -'23 23 23 33 33 f sis" ii 3s 53 13 is * -^5 33 23 23 33 33 !§! 33 33 33 33 33mm M *. * 33 «3 «** * J s s -= A12-13. Aviooi Marcd Dassault Mjstire 30 (7in Jet Jacon) 179 PI 12-9/29/89 AC 1505300-13Appendix 12 — •» — n ?3 >2S -1! ^5 •V •en e- n - • a • a gft •• e —s as '* as =3 23 23 33 85 83 8C SSrt rt en Km *» r3 c. a < 227 NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE 7/04 PROJECT a Lo £- 4.1 SHEET NO.OF JOB NO. -1 1-"* MS*. 't - APPENDIX A.3 - PORTLAND CEMENT ASSOC., WIRE REINFORCEMENT INSTITUTE, AND CORPS OF ENGINEERS CHARTS 161 0.90 Effective Contact Area, sq. in/y\ / / \\ 0.50 Figure A.9 Reduction factor used with PCA charrs when designing for dual-wheel loads. APPENDIX A.3 - PORTLAND CEMENT ASSOC, WIRE REINFORCEMENT INSTITUTE. AND CORPS OF ENGINEERS CHARTS 159 A. 3 — Portland Cement Association, Wire Reinforcement Institute, and Corps of Engineers Charts Figure A.7 Use of a PCA design chan to select slab thickness for single axle loading. Airliners.net: Gulfstream Aerospace G-V Gulfstream V Page 1 of3 Please support our sponsor that helps make this site possible: Ad info Messa The Gulfstream Aerospace G-V Gulfstream V Country of origin United States of America Photos Click for large version. Photo ©Charles Falk More photos of Gulfstream Aerospace G-V Gulfstream V Click for large version. Photo © Michael Kefaifi More passenger cabin photos... Type Ultra long range large corporate transport History The Gulfstream V is the largest and latest development of the Gulfstream line of corporate transports, designed to fly intercontinental distances. !t competes with Bombardiers Global Express, the Boeing Business Jet and Airbus A319CJ. Gulfstream Aerospace first announced it was studying a stretched ultra long range corporate transport based on the Gulfstream IV at the annual NBAA convention in October 1989, while the program was officially launched at the 1992 Farnborough Airshow. First flight was on November 28 1995. with certification and first deliveries planned for late 1996. Provisional FAA certification was awarded in December 1996, full certification was granted in April 1997. The first customer delivery was on July 1 1997. Underscoring its high speed, long range abilities, by September 1997 the G-V had set no less than 36 world city pair. Add expi to your i for f http://www.airliners.net/info/stats.main?id=239 4/9/2004 Airliners.net: Gulfstream Aerospace G-V Gulfstream V Page 2 of3 m-7 Click for large version. Photo ©Steve Half More cockpit photos... Powerplants Two 65.3kN (14,680lb) BMW Roils- Royce BR-710 turbofans. Performance Max cruising speed 930km/h (501kt). design long range cruising speed 851km/h (459kt) or Mach 0.80 at 41.000ft. Initial rate of climb 4188ft/min. initial cruise altitude 41.000ft. max certificated altitude 51.000ft. Max range with four crew and eight passengers and reserves at design cruising speed 12,045km (650Cnm). flight time for which would be approximately 14hr 28min. Weights Basic operating with four crew 21.228kg (46,800lbj. max takeoff 40.370kg (89.000lb). Dimensions Wing span 28.50m (93ft 4in). length 29.39m (96ft 5in), height 7.87m (25ft 10in). Wing area 105.6m2 (1137.Osq ft). Capacity Flightcrew of two. Typical passenger load of eight but seats 15 to 19. Typically equipped with a crew rest room, a business work station with Satcom, computer and fax, a dining/conference area with seating for four, a three seat couch that converts into a bed. five other reclining seats, two galleys and a restroom fitted with a toilet and shower. class time to climb and altitude records. The Gulfstream V is based on the Gulfstream IV, but features a number of substantial changes to suit its different design objectives. The most obvious change is the stretched fuselage, the G- V is 2.49m (8ft 2in) longer overall than the G-IV. Perhaps the most important changes though are the advanced new wing design and new BMW Rolls-Royce BR- 710 turbofans (the G-V is the first application for the new BR-710 engine). The all new wing is being built by Northrop Grumman, and is optimised for high speed flight. It was developed using Computer Aided Design and NASA developed computational fluid dynamics. The flightdeck is built around a six screen Honeywell EFIS avionics suite Wing manufacturer Vought Aircraft Industries and Japan's ShinMaywa are also risk sharing partners in the GV program. Copyright © Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage ofAirliners.net Welcorr memt Joi Airline you 1 ddbonf United Kin mtkinf United Sta dc1030g United Sta HAVIK7' United Sta Denmark AUAE United Sta ATLGUV United Sta N901FR' United Sta jasonma Australia pjricketts Australia BritPilot? United Kin DavidEI United Sta CapitolS: United Sta http://www.airliners.net/info/stats.main7id-239 4/9/2004 Airliners.net: Gulfstream Aerospace G-V Gulfstream V Page 3 of 3 Production More than 75 G-V orders held, including two ordered by the US Air Force as C- 37s. Over 35 delivered by late 1 998. A Gulfstream V delivered in September 1 997 was the 1 000th Gulfstream built. Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here. [Home] [New Search] [Add Your Photos'] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register1] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us!] [About Airliners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission. http://www.airliners.net/info/stats.main?id=239 4/9/2004 Airliners.net: Bombardier BD-700 Global Express Page 1 of3 •y Please support our sponsor that helps make this site possible: Ad infogo^^ phone THE FLEXIBLE WIRELESS SERVICE THAT PUTS YOU IN CONTROL. NO ANNUAL CONTRACT AT* Wire RESTRICTIONS RPPLV, The Bombardier BD-700 Global Express Country of origin Canada Photos Click for large version. Photo © Henry Jr Godding More photos of Bombardier BD-700 Global Express Click for large version. Photo © Brian Sklarski More passenger cabin photos. Type Ultra long range, high speed, high capacity corporate jet History The Global Express is one of a new class of ultra long range corporate jets, and competes against the Gulfstream V, Boeing 737 BBJ and Airbus A319CJ (ail described separately). Designed to fly long distances at high speed, the Global Express' range is such that it can fly between any two points on the globe and need only one refuelling stop, while it can fly nonstop between intercontinental destinations such as Sydney/Los Angeles, New York/Tokyo and Taipei/Chicago. Bombardier's Canadair division announced development of the Global Express in October 1991 at the annual NBAA conference in the USA. Officially launched on December 20 1993. it flew for the first time on October 13 1996, with Canadian certification awarded on July 31 1998 and US certification following in November that year. First customer deliveries are planned for first Messa Click o favo screen Click Click Click Click Click http://www.airliners.net/info/stats.main?id:=124 4/9/2004 Airliners.net: Bombardier BD-700 Global Express Page 2 of3 quarter of 1999. The Global Express shares the Canadair Regional Jet's fuselage cross section and is similar in length, but despite the size similarities the two aircraft are very different due to the nature of their roles. The Global Express features an advanced all new supercritical wing with a 35° sweep and winglets, plus a new Ttail. The engines are BMW RollsRoyce BR-710s with FADEC. The advanced Powerplants flightdeck features a six screen Two 66.1kN (14.750lb) BMW RollsRoyce H°n?yw?» P^l 2000 XP EFIS suite BR-710A-220 turbofans. and IS offered Wlth °Ptlonal displays. Click for large version. Photo © Steve Muller More cockpit photos... Performance High speed cruise 935km/h (505kt) or Mach 0.88. normal cruising speed 904km/h (488kt) or Mach 0.35. long range cruising speed 850km/h (459kt) or Mach 0.80. Range with eight passengers, four crew and reserves at iong range cruising speed 12.400km i.6700nm). at normal cruising speed 12.040km (6500nm), Range with max payload at normal cruising speed 9860km (5325nm). at long range cruise speed 10.160km (5485km). Weights Operating empty 22.135kg (48.800lb), max takeoff 43,091 kg (95,000lb). optional 43,544kg (96,000!b). Dimensions Span over winglets 28.50m (93ft 6in). length 30.30m (99ft Sin), height 7.57m (24ft 10in). Wing area 94.9m2 (1022sq ft). Capacity Flightcrew of two plus one or two flight attendants. Typical arrangements seat from eight to 18 passengers. Can be fitted with a galley, crew rest station. work stations, a conference/lounge/dining area, a Three Bombardier divisions are involved with the Global Express - Canadair is the Global Express' design leader and manufactures the nose; Shorts is responsible for the design and manufacture of the engine nacelles, horizontal stabiliser and forward fuselage: and de Havilland at Downsview is responsible for final assembly and builds the rear fuselage and vertical tail. In addition. Japan's Mitsubishi Heavy Industries builds the wing and centre fuselage sections in Nagoya. Copyright © Aerospace Publications Related links Back to Aircraft Data & History section. Back to frontpage of Airliners.net Checl these POLLS over th« on t Airline frontp Viev\ My favor three en; jet airline My favor of aircral Type of f I like the Weirdesi looking c Importer aircraft s factor: My nr. 1 for flying Best Ove Major Nc Airline: I'd Rathe Piloting / When fly long hau Favorite Europea http;//www.airliners.net/info/stats,main?id=124 4/9/2004 Airliners.net: Bombardier BD-700 Global Express Page 3 of 3 stateroom with a fold out bed: toilet, shower and wardrobe. High density 30 seat corporate shuttle configuration offered. Production Over 80 firm orders held at late '98. By May 2002. 64 had been delivered to customers. Back to Aircraft Data & History section. The backbone of this section is from the The International Directory of Civil Aircraft by Gerard Frawley and used with permission. To get your own copy of the book click here, [Home] [New Search] [Add Your Photos!] [Aircraft Data & History] [Photo Index] [Aviation News!] [Aviation Forums] [Register!] [Use Photos] [Your Own Search Engine] [Articles] [Sponsor us'] [About Airiiners.net] [Aviation Chat] [WAP] [Contact Us] [Electronic Postcards] [First Class Login] The information on this page is copyright protected and may not be copied or used in any way without proper permission http://www.airliners.net/info/stats.main?id=124 4/9/2004 9/29/89 AC 15CW5300-13Appendtc 12•I H»• . • .» •» * « sa =« :- 1as a 3s 83 Is 22 a. o. Figure A13-5J- Gramzaan GaUstreazn H 10 PAI OMAR AIRPORT BLDG, 1 FOOTING LOAD COMBINATIONS LC1 (12-12) DL+RLL+FLL LC2 (12-13) OL+FLL+W LC3 (12-13) DL+FLL+PE/1.4 LC4 (12-16-1) 0.90+PE/1.4 (COLL is counted as DL) N/S LOADING IS IN 1 E/W LOADING IS IN Per phone conversati< Bldg. 2Rho=1.0 Bldg. 1 Rho=1.5 JOI GRID 1 K-l 1 2 K-2 3 K-3 4 K-4 5 K-5 6 ' K-S 8 K-8 9 K-9 10 • K-10 11 «-11 12 K-12 13 K-13 15 K-15 16 L-16 18 L-1B 19 L-19 20 L-20 21 . L-21 22 L-22 23 L-23 24 ' L-24 25 ' 1-25 26 L-26 27 L-27 28 L-28 29 i L-29 30 1 L-30 31 L-31 32 L-32 33 L.-33 34 L-34 1001 L.1-1 1 1004 ' L.1-4 1007 : L.1-7 1011 ' L-1-11 1014 L.1-14 1017 N-17 1018 N-18 1021 N-21 1025 N-25 1028 N-28 1031 N-31 1034 N-34 2001 M-1.1 2004 : M-4 2007 M-7 2011 M-11 2014 M-14 2017 0-17 2018 P-18 •sort p-21 2025 P-25 2028 P-28 2031 P-31 2034 P-34 3001 O-1.1 3004 O-* 3007 0-7 1 DL X Y 0 23 0 27 0 36 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 -4 -9 10 10 11 0 •a 11 11 13 14 9 5 9 2 t 5 0 0 2 2 1 9 4 0 0 31 30 34 : 22 . 34 ' 57 -4 3 40 , 65 : ' 18 • S9 _'3 61 28 13 23 ' 69 38 i 29 69 17 34 71 , 37 30 29 33 67 80 67 41 35 70 82 87 96 92 53 35 63 69 63 72 103 58 85 aa 87 83 39 30 62 54 ^-2 0 0 0 1 . -4 0 0 0 1 -4 TO 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 COLL X Y 0 12 0 15 0 20 0 28 0 18 0 17. 0 18' 0 14 0 19 0 30 0 18 0 23 o 35: 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 2 5 -5 •s -6 0 -4 -6 -6 11-i— . — 29 14 19 30 -3 16, 0 . 10 . 13 37 '22 - 18 - 34 0 • 13. 0 20 0 39 3 22 -2 191 -3 15 0 18 34 43 j-34 0 0 0 0 23 1 0 19 0 38 44 44 7 | 51 7 J 3 46 28 19 5 32 7 38 32 40 57 32 46- 44 48 42 22 20 ZI**! 3' 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 3 ROOFL X V 0 4 0 22 0 28 0 24' 0 20 - 0 21 0,7 0 : 18 o : 23 1 0 26 -4 0 ; 28 ' 0 28, 0 0 15 0 12. 0 0 22 0 0 21 3 0 23'i - 0 22 -4 0 22' 0 0 12 0 0 20 1 0 0 27 4 Oj_2_ 0 2 2 - 0 ' 191 0 0 15 0 0 29 0 0 | 28 3 0 , 27 0 0 2T -4 0 6 0 2 0 0 2 9 0 0 2 9 0 7 0 8 0 7 0 0 -3 11 •3 4 3 11 2 7 0 0 0 3 0 : 0 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 19 7 10 0 3 -4 (1 11 24 18 0 0 0 0 0 a 0 0 0 0 4 FLOOR L X Y 0 23 0 10 0 14 0 35 -3 0 1B - <S 15 0 0 33 0 0 11 , 3 0 18 7 0 37 ' - 0 12 0 0 21_' 0 o '79! o 0 13 0 43 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 -9 -8 -9 9 17 : 45 • 10 9 8 1 49 1 18 12 55 12 13 , 52 19 11 28 34 67 73 66 13 41 0 -7 : 59 66 10 80 11 11 12 -6 4 9 2 0 87 \ vr 87 45 31 63 70 84 S 88 0 0 1 2 2 2 l 91 56 81 aa 88 87 43 24 49 43 0 0 < 4 -2 0 0 1 0 2 -4 1 "2 0 0 0 2 . -4 ' -2 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 EQS-N X Y 0 0 0 0 0 2 0 1 0 -3 0 0 0 2 0 0 0 0 0 0 0 a 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 -2 1 0 ; 2 ' 0 0 0 -3 : 0 2 0 -2 a 0 0 : -2 0 ' 2 •' 0 0 0 -s , 0 e a 15 I 42 27 26 28 25 a 26 29 32 32 29 25 15 58 78 59 60 11 65 74 60 82 55 58 -41 27 1 -58 26 28 22 0 6 30 -77 -59 -47 -11 -65 -73 2 -60 3 30 5 -SI -55 -58 0 0 •3 1 1 ; , 2 ! o \ a , 0 1 0 0 0 0 0 0 0 -2 -4 1 .; 0 0 0 0 0 0 0 a 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 22 EQN-S X Y 0 0 0 0 r 0 -2 ; 0 . -1 0 3 | 0,0 0 -2 : 0 0 0 -2 0 0 0 0 Q . 0 0 3 0 0 -r "t 0 -2 0 0 , - 0 ' 2 000 0 • 0 0 0 0 2 0 0 j 0 1 0 01-2 0 000 0 0,0 000 052 004 0 ', -6 2 0 0 ' 0 5 -42 0 271-58 0 6 -78 0 8 -59 0 5 -60 0 ; -11 6 -65 9 -74 0 0 0 0 2 -60 0 2 -82 0 9 -55 0 5 -58 Q 5 41 0 7 58 6 77 8 59 22 47 11 6 65 0 73 32 60 3 81 W 55 5 58 0 0 0 0 0 0 0 0 0 0 0 0 0 "tT^o 3 0 LC4 E (N-S)cw X Y 31 5 378 0 *6 1 7 i 70.9 -7 1 49 S -1 l 42.3 0 1 44.7 Q ( 34.5 4 C 47.7, 6 f 76.2. -5 C 44 1 0 C 56.7 0 C 90 0 0 29.3 0 a 792 0 0 333 4 0 468 1 0 81.9 -7 0 37.6 0 0 20,7 0 0 32.4: 0 0 96.6 7.2 0 54 -2. 0 40.2 -6. 0 92.7 0 0 27 0, 0 48.6 0 0 102 934 0 53.1 -3.3 0 39.8 -4.2 4 39.6 0 2 15.8 0 41.6 -2 30.3 0 27.7 0 -8.7 0 0 a 0 0 2 38.6 0 0 27.8 0 k*' •2 KA 0 4Z3 7 sr# 4 [sTS] 2 %S 0 J35 2 118 0 149 jLjii 2 156 _0|J5? I 198 2 183 0 It* ; 79 ~"~3ST _Q45T 0 0 0 0 Q 0 0 0 0 0 a 0 0 0 0 0 0 0 0 5.4 0 5.1 1 0 LC4 E (N-S)ccw X 0 0 0 0 0 0 a Y 315 378 0 504 1 709-0 152-7 42.3 0 447 0 0 345 4 0 0 47.7 8. 762-5 0 44 1 0 0 567 0 0 90 0 0 0 0 0 29.3 0 792 0 29 4 468. -2. 0 86 2 -7. 0 0 0 , 37.8 0 207 0 32.4 0 0 96-5 7.2 0 ' 54 -4. 0 0 0 0 0 0 : 40.2 -6. 92.7 0 27 0 486 0 106 93 S3.. 1-0 0 35.5-42 0 .39.6 92 22.8 &5 B.S 1.5 0 -14 0 15.9 0 ssL? 27.7 a -e.7| o 0 36.8 7.1 5.8 19 6.3 SA 47 1.8 48 T.t 42.8 30.8 27.8 34.1 53.6 48.6 TZ.8 ""28 108 160 :-182 149 .151 0 156 42.3 48.3 505 -T tas 151 188 1B3 206 164 .5 98.8 ° II95.4 85.1 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LC4 E (W-E)CW : x Y 0 315 0 37.8 0 -71 0 74 1 0 162 0 42.3 0 46.8 0 -97 0 44.5 0 211 0 44.1 0 54.8 0 93.2 0 28.2 0 79.2 o • -aa 0 436 0 205 0 37.8 0 20.7 0 • 32.4 0 -17 0 57.2 0 153 0 92.7 0 27 0 '; jB-gj 0 -fl.1! 0 .58.3 0 ! 149[ 0 39.6 1.1 42.7 tO 88 S 16 113 18 ' 98.4 19 57.S 0 50.7 -5.4 90.8 13 109' 15 ' 1151 20 137: 19 12*1 20 82.5' 1.5 51.8 4.7 87.6' 5 94.2' 3!: 78 06 96.7! 0 I 142 9.8! 87.4; 8.3 121: 6.2 1 123, 3.2' 117' 2.6_ 113J .1 45.31 0 i 45. 0 95.4 0 j 81.9J -8 A 0 0 -44 -63 -SO 0 0 0 0 -4 -7 0 0 -42 -a -56 0 0 0 -41 48 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LC4 E (W-E)ccw X Y 0 315 0 0 37.8[ Q 0 . -76] -42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74. 1 -8 isai J '42.3J 0~ 46.8' 0 '-104 F'44.5 , 218 •44.1 54.8 93.2 28.2 [79.2 -96 43.6 : 214 |37.8 i 20.7 32.4 : -24 57.2 ' 159 92.7 . 27 : -12 158.3 0 : 153 Q 1.1 10 11 14 12 0 12 17 •,39.6 ,42.7 84.5 1 109 92 < 49 '50.7 '99.3 1161 15 1)7 20 19 20 1.5 4.7 9.2 137| 12* 82.5 51 6' 91.9 964 2.6 1 84.4 34 0 3.3 4.1 6.2 3.2 .6 .1 0 i 0 107 142 78.9 115! 119 117 113 45.3 45 95.4 1•—— -h81.9 -48 -89 ' -5 0 0 0 0 0 •46 -8 -68 L2- 0 0 -46 -95 -60 t'O 0 :-JL_ -41 -90 -55 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LC4 E (E-W)cw x r , 03150 0 37.8' 0 0 177|83 0 69.9 8 D ' *0|45 0 .42.3 0 46.8 0 188 0 50.9 0 -61 0 .44.1 0 58,8 0 86.8 0 24 0 79.2 0 : 163 0 50 o ;--so 0 !37J 0 20.7 0 :32.4 o ; 214 0 50.8 0 -74 0 .92,7 0 27 o :48.e o ; 210 0 49.9 0 ' -65 0 39.6 9.7 i 49.1 15 97.3 16 • 113 14 89.8 19 66.2 0 '48.5 9.7:95.1 13 , 111 15 I191 16 128 19 12* 5.1 63.3 91 1 45.4 0.5 1 79.1 5 [94.2' 2.6 1 36.6 06 94.4 0 : 146 5.5 83. l' 8.3 12) 6.2 119 7.4 1281 2.6 113: 2.9 84.5, 0 45 0 95.4 0 81.9 _JL 0 5_ 65 43 0 0 0 a 0 54_ 84. 43. 0 0 0 60. 87 47. 0 0 0 55.4 792 4!,9 0 0 0 0 0 0 0 a 0 n 0 0 0 n 0 0 0 0 0 0 0 0 0 0 Q a 0 0 LC4 E (E-W)ccw X Y 2 0 31.5 0 37.8 0 170 0 69.9 0 -74 0 42.3 0 46.8 Q 162 0 50.9 0 -55 0 44.1 ' 0 30,8 0 86.8 0 24 0 79.2 _0 154 0 50 0 -41 0 37.8 0 20.7 0 32.4 0 : 208 0 50.8 0 -66 0 ;92.7 0 27 0 '48.6 0 • 206 0 ;4S.B 0 ' -61 0 39.6 ' 9.7 49.1 15 93: 111 109 9.2_,_S3_4[ 12 ,576' 0 46.5 16 104 17 118 IS . 121 16 128 19 124 -5.1 ' 63.3 91 45.4 0.5I 83.4 1 9.2 98.4 6.9 93 34 103 0 , 146 04 ' 74.6 4.11 115 6.2 H5| 7.4 136 2.6 113' 2.9 64,5 0 45 0 95.4 0 81.9 0 0 59 78.6 41.5 0 0 52.7 78.8 39.6 0 0 0 0 0 50.6 75.7 38.3 0 0 0 58.5 81 43 a 0 0 55.4 75 °4t.V 0 0 0 a 0 0 0 0 a 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JO 3011 301* 3018 3021 3025 3028 3031 3034 4001 4008 4015 4018 4023 4029 4034 5001 5008 5015 50'8 5023 5029 5034 6001 6008 6015 6015 €023 6029 6034 7001 7008 7015 7018 7023 7029 7034 B001 8015 8016 8029 8034 9001 9002 9004 9009 9014 9015 9018 9034 8001.3 8006.9 6008.2 B014.1 8016.1 8022.3 8023.1 8028.9 6029.1 8033.8 £0012 9003.9 9004 1 9006.8 9008.1 9010.9 9011.1 9013.8 GRID O-11 O-14 0-18 Q-21 Q-Z5 O-28 Q-31 Q-34 H-1 1 H-8 • M-1S • J-16 J-23 J-29 J-34 F-1.1 F-8 F-15 G-16 G-23 G-29 . G-34 . D-1.1 D-8 D-15 E-16 E-23 i E-29 E-34 B-1.1 5-8 : B-15 C-16 C-23 C-29 • D.I -34 . A.1-1.1 A.1-15 ' X-16 i D.1-29 : C.6-34 O.5-1.1 X. 1-15.4 X.1-15.6 B.9-16 OS-14 A.1-15 ' R-18 R-34 A.1-15 A. 1-6.9 A.i-a.2 A. 1-14.3 B. 9-1 6.5 B.9-229 B.9-23.1 B.9-28.1 B.9-29.1 C.6-33.B 0.5- t.2 O.S-3.9 O.5-4.I O.5-6.8 O.5-8.1 O.5-10.9 O-5-H.1 Q.5-13.8 1 DL X Y 0 62 Q 0 0 Q 0 0 0 1 0 6 3 3 2 0 -2 0 -2 3 3 2 0 -2 -5 -5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 90 34 72 82 78 82 39 0 & 7 0 0 50 0 63 0 13 13 9 3 9 45 47 1 9 10 2 : 4 10 42 1 40 3 S . 5 50 99 84 1 65 0 0 0 0 0 1 o 0 0 0 0 0 0 0 0 , 0 0 0 0 0 0 0 102, 0 49 1 46 : 6 2 14 47 0 0 1 4 4 : 29 27 6 0 0 -6 •3 4 0 0 -2 3 -5 5 0 0 -4 4 0 0 -2 2 0 0 0 0 0 : 0 0 0 0 : -2 3 : 0 0 0 0 0 0 0 -I 0 0 Q 0 0 -2 0 0 0 0 0 0 0 0 D 2 COLL X Y 0 44 0 53 0 49 0 58 0 53 0 58 0 27: 0 2 0 3 3 '27 0 3 i 34: 0 1 , 5 0 5 0 4 0 0 i 0 0 0 0 0^41 0 0 24. 0 0 25 0 2 4 0 4 0 | Jl 0 . 2 0 4 0 _} 0 0 ! 0 . 0 -3 : 23 0 -3 20 0 0 0 Q 0 2 f 0 2 0 0 29 0 0 56 0 46 0 36 . 0 0 0 0 571 0 0 281 0 0 27 0 3 0 1 0 0 1 o 070 0 26 0 0 0 0 0 2 0 2 0 15 0 16 0 3 0 0 0 0 0 -2 0 -3 Q 4 0 1 0 2 0 0 0 2 0 -2 0 2 0 2 ol-s OJ 2 0 4 0 3 0 3 2 3 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0 TV o S ROOFL X Y 0 24 0 20 0 13 0 25 Q 32 0 0 26 0 0 Jg . 0 QUO 2 7 0 Q S 0 21*0 2 19 0 3 13 0 2 11 0 2 . 9 0 ,' 3 -1 8 0 0 0 0 ; 14. 0 3 1 10: 0 2 . 9 0 3 o : s -Z 9 0 . 0 0 0 -2 12 0 -2 11 0 0 . 5 0 4 0 5 0 0 0 a 46 0 0 90 0 0 50' 0 0. 44 1 0 0 94 0 0 45 0 0 42 _0|8_ 0 -1 0 0 0 0 1 0 0 0 '43! 0 o : o 0 0 0 0 J)|0. _0|2_ JLJL o; 3w ~oTo~ 0 -6 0 -2 0 4 0 0 0 . 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Tt^i 0 0 0 0 0 -4 4 0 0 0 I-3 3 V' 0 0 0 0 0 0 0 0 0 4, FLOOR L X Y Z 0 49 0 81 0 0 27 0 0 59 0 0 64 0 0 64 0 0 64 0 0 32 Q 0 0 0 0 0 0 5 «3 0 5 66 0 0 0 0 0 : 0 0 0 0 : 34 -3 ; 36 0 0 0 0 0 : 0 0 ! 0 0 0 -3 30 -3 29 0 ' Q 0 i 0 0 ' 0 . 0 0 0 0 • 0 0 • 0 , 0 i 0 0 0 0 0 0 0 0 • 0 . 0 0,0:0 0 ' 0 0 , 30 0 ! 18 0 ; 0 0 1 0 0 , 0 o , o 0 ' 3 0 )4 0 ' 0 0 0 0 0 0 . 4 0 4 0 27 0 22 0 ' 3 0 | 0 0 0 0 0 0 -1 0 1 0 0 0 0 Q Q 0 0 0 0 0 0 0 0 : 0 0 0 1 o 0 0 0 0 0 0 0 0 -2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 ,0 0 J^J?4JL 0 0 0 __0| 0 0 0) 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 21 EQS-N X Y 0 0 0 -10 . 0 0 0 0 0 0 0 0 0 Q . 0 0 ' -14 -32 -23 : -53 . 0 -27 -51 0 -29 -49 0 -20 -41 0 -20 -46 ' 0 -14 -33 0 -14! 32 0 -41 3 0 -49 4,0 -53 3 0 -3*. 0 '• D -35 0 ' 0 -14 32 i 0 00 0 -24 49 0 -28. 47 0 -30 49 . 0 -20 44 ., 0 -21 44 , 0 0 : 0 0 0 \ 0 0 0 00 0 0.0 0 0 i 0 000 0^0 0 000 0 30 0-5-2 D -82 00:0 000 0 ' 0 ' 0 0 5 ' -2 0 6 ! 2 000 0-50 0 0 ; 0 0 0.0 000 0-30 000 _o_L o o 0 0 0 000 0-30 030 0-30 030 000 a o o 040 0-40 000 000 050 0-50 000 22 EQN-S- X '—f 0 0 _°_I 10__l 0 0 0 0 0 0 0 : 0 - 0 i 0 l 14 32 23. 53 27 51 29 49 20: 47 201 46 14. 33 14. -32 41 -3 49 -4 53 -3 34 0 351 0 14 -32 0 l 0 24 -49 28 1 -47 30 -491 20, -44 21 -44 0 0 0 Q 0 0_ 0 , 0 0 0 0 0 0 i 0 o[jT 0 -3 0 S 1 1 I c c c c 1 0 0 i 0 : o— 1— . 0 0 0 . 0 0 0 0 LC4 E{N-Sfcw X Y a 954 0 0 139 0 0 ' 513 Q 109 Q 0 : 126 0 0 118 0 0 , 126 0 0 59.4 0 13.8 38.1 0 246 &36 0 37 124 0 39 2 140 0 25 66.6 0 24-1 67 S 0 18.9 52.4 0 12.9 -28 0 41.1 8.49 0 52.5' 57.81 0 55 '61.6 0 40.9 117 Q 40.2 '12 6 0 18.9' -38 0 Q 5.4 0 23.9 -38 0 228 8.14 0 ' 0'2t9' 1.5 0 0 22.3. -44 0 i Q 0 0 ' 0 0 , a-1 — 2 0 , B -2 0 0 0 ' 0 0 0 0 -5 : 0 0 0 2 0-6-2 0 0 0 5 o a 0 0 0 0 0 3 0 0 Q i 0 0 0 0 0 Q 1 0 -3 0 3 0 -1 o a 0 0 0 -4 0 4 0 0 0 0 0 -5 0 5 V~~o 0 0 0 J_p_ 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 Q 22.5, -43 0 0 6.3 0 0 71.1 0 0 140 0 0 117 0 0 90.9 0 0 143 0 D 69.3 ' 0 0 65.7 0 0 4.39. 0 0 8.06 2.14 0 25.3. -2.1 0 657 0 0 0:' 0 0 00 0 0.04 0.34 0 • -1 2.36 , Q 39.6'. Q 0 44.1. 0 0 3.1! 0 Q Ol 0 0 Ol 0 0 -4 1 0 3 ' -7.51 0 _? • 9.34 1 -0.9 } 0.9- 0 _) V8i 0 t 1.41 ' 0 i 1.29 ! 0 * -3.11 D ' 3.09 -1.8 ' ' 1.Si 0 t 2.7 0 G -3.9 1 0 0 9.34 0 0 27 0 0 2.7 \ 0 0 -5.4 0 0 9.86 0 2.7 ( 0 LC4 E (N-S)Ccw X Y 0 95* 0 0 139 0 0 5 3 0 0 109 0 0 126 0 0 118 0 0 126 0 0 594 0 IB 46 8 0 246 679 0 37 124 0 39 2 140 0 25 66.8 0 24 1 63 3 0 147 41 7 0 17.1 -37. 0 43.2 8.49: 0 52.5 57.B; 0 55 61.6: 0 40.9 117 0 40.2 126 0 14.7 -27 0 0540 23.9 -*2' 0 22.8 814 0 24.9 VSi 0 22.3 -44 0 225 -39; 0 0 6.3 0 0 71 1 ' 0 0 140 0 0 117' 0 0 9091 0 0 143, 0 0 69.3 1 0 0 65.7 0 0 4.B9 0 0 8.06 2.U 0 25.3 • -2. 1 0 65.7 0 0 1 0 0 0! 0 0 0.04 1 0.34 0 -112.36 0 39.6 Q 0 ' 44. 0 j 8. • Q 0 0 O1 Q 0 0 0 -4 0 ' 0 0 i -3.3 0 0 5.06 -0.9 0 0.9| 0 0 1.8 0 1.41 0 1.29 0 I -3.1 0 0 0 0 0 3,09) -1. S 0 1.8 0 '• 27 0 1 -8.2 0 1 13.6 D , 2.7 0 0 0 0 0 0 ! 2.7l 0 0 : -54 0 1 9.86 0 [ 2.7 0 0 0 LC4 X Y 0 954 Q 0 131 0 05130 0 110 0 0 126 0 0 120 0 0 126 0 0 594 0 -1 2 1.84 0 0 9 0 9.17 70.4 0 703 862 0 36 162 0 1.53 14.1 0 7 16 '23.5. 0 -2.1 8.06: 0 -18 117 0 3.21 1 65.3 0 -2.9:61.6 0 45 117 0 0.56 12.6 0 716 -10 0 0 5.4 Q -1.8 12.8 0 -6 1 55.3 0 -8.3 57.2 0 0 9 . 2.7 0 0 9.51 0 0 6.3 0 0 '71.1 0 0 140 0 0 117' 2.14 0 90.9 0 0 143 0 0 • 69.3 0 0 657 0 0 ^ -66 -11 -5.4 -44! ,17 36 671 -17 0 657I 0 0 ' Ol 0 0 ' Ol Q _S.4j_54.7 .36: -43 Q 196 0 : 387 1 -20 -13 Q 0 0 '3.B1I 0 0 0 0 0 0 66.7 0 -93 0 96.1 0 0.9 0 1.3 0 0 0 o •28 0 0 0 -90! -27 0 924 0 0 -B71 0 0 86.7 0 1.8 0 27 0 -74 0 79 0 27 0 : 2.7 0 -80 0 84.9 _°_L?i •26 0 0 •9.6 •9.6 0 0 -11 •11 0 LC4 E (W-E)CCW X Y 0 95.4 0 0 131 0 05130 0 110 0 0 126 0 0 0 0 120 0 126 0 594 0 -1.2 1.84: 0 0 91 0 15.6 78.9: 0 0.6 77.7 0 3.6 16.2! 0 1 63 14.1 0 7.16:23.5 0 -2 1 3.06 0 -1.8 11.7 0 13.9 1 65.3 0 -16:61.6) 0 4.5 117 0 0.56 12.6: 0 7.16 -10 0 0 5.4 i Q -1.8 12.6 0 0.3 46.7 0 -15 65.8; 0 0.9 0 0 0 0 0 0 0 0 0 0 1. 27 0 9.51 0 6.3 0 71.1 0 140 1 0 117.2.14 90.9 i 0 . 143 0 69.3' 0 657; 0 -66 -11 -10 -4.3 .07 32.8 0 0 0 1.1 -4.3 85.7 0 Ol 0 i 0 I 18.3 0 •7.2 .07 -8. 5)0.21 Q 0 0 0 n 0 0 0 0 0 n 0 0 0 0 0 0 0 o 0 0 o 0 39.6 38.7 1 8.1 0 n 667 -91 94 0.9 18 -an 924 -87 86.7 1 8 27 -7B 833 27 ?7 -fifi 891 27 0 0 0 0 0 0 0 -28 0 D -?7 0 0 -26 0 0 -9.6 •9.8 0 0 -11 -11 0 LC4 E (E-WJcw Q 0 0 0 0 0 0 0 X Y 95.4 0 127 0 51.3 0 10a: o 126 0 ,116 0 126 0 59.4 0 3.04 12.6 0 0 9 0 0.6 597; 0 15.6.96.9' 0 3.6 16.2 0 3.77 18.31 0 -3.6 -0.11 0 2.14' -2.7! 0 -1.8 ' 11.7 0 -14 58.91 0 12.1 68 0 4.S ! 11.7 0 4.84I 12.6: 0 -3.6 13.6 0 0 ; 5.4 0 -1.8 12.6 0 -15 0.3 0.9 0 0 0 0 0 0 0 0 0 0 ' 70.3 0 *2.2 0 : 2.7 o 1 109 0 ; 6.3. 0 : 71.1 0 j_J4J) 0 117 90.9 1 -2.1 ! 0 1431 0 69.3 65.7 82 .07. 15.6 1.1 0 0 (I , 497 B5.7 0 0 : 0 0 10.7 4.29 4.29 0 0 0 .07 1 -7.5 1 3.56 1.1 0 0 0 0 n 0 o 0 0 D 0 0 3 0 0 0 0 0 0 0 0 n 0 19.3 396 38.7 8.1 8.79 Q 0 0 O.1 0 0 -flt HO.3 •HO 09 1 B BR1 -a* 741 -74 lit 77 743 -69 77 77 84H -ao 271 n 0 0 259 0 0 7Bfl 0 0 220 n n 964 964 0 0 107 107 0 LC4 E (E-W)ccw X Y Z 0 0 0 0 0 0 0 0 95.4 0 127 0 513 0 . ioa o 126 0 I us! o ', 126. 0 ; 59.4 o 3.04, 12.6 0 0 9 0 7.03 68.2. 0 9.17 '88.4 0 3.6 16.2, 0 3771 18.3 0 •3.6 -0. 1 ' 0 2 14! -2.7' 0 -1.8 1171 0 -3.2 58.9! 0 -0.7 68' 0 45 i 117; 0 4.84 12.6. 0 -3.6! 13.6 0 Q -1.8 -8.3 -6.1 0.9 0 0 0 0 0 0 0 0 0 0 •i.36 5.4 0 0 0 .36 -5.4 0 0 n 12.6 : 0 61.7 0 50.8' Q 2.7l 0 3.09 0 T ' ~6.3. 0 71.1. 0 140; 0 117 | 90.9 ^_143 69.3 fi57 S2 -29 65.7 ' -2.1 Q : 0 : o 107• 17.1 171 0 Ol 0 0 0 -44 16.4 536 396 387 21.6 a a o 12.4! o 0 n 0 o 0 0 0 n 0 0 0 -81 B?5 -82 09 1H 86.11 — 0 I 74.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.9 0 0 3B.8 0 D -74 1 22.3 1 fl 77 70 -65 2.7 77 804 -76 27 0 0 9.64 9.64 a 107 0 9018.1 R-1B 1 9020 9 R-20.9 9021.1 fl-21.1 9024 9 R-24 9 9025 1 fi-25 1 9027.9 (3-27.9 90281 fl-28 1 90291 C8-29.1 903O9 CS-30.9 9031.1 C.8-31-1 9033.9 C.8-33.8 1 0 0 0 0 0 0 0 0 0 0 0 DC 0 0 S 0 -* 0 0 0 a o 11 2 .10 2 2 , 0 o • o 0 0 0 0 2 COLL 040 08 0 000 040 040 0 It 2 0-50 0 1 4 0 040 040 040 3 ROOFLL 000 0 50 0-50 000 000 0 8 1 0 -S 1 o! 3 ; o 0 I 0 0 000 00 0 4 FLOOR LL 0 0 0 3 0 -3 0 0 0 0 0 5 0 -5 0 i 0 0 ' 0 0 0 0 0 : n 0 0 0 0 0 0 0 0 0 0 21 EQS-N 000 092 0 . -9 2 0 ' 0 0 000 0 : 16 2 0 ' -15 2 0.0 0 000 a ' a o 0 ' 0 0 22 EQN-5 o j -9 . -; 0.9 -: IC4 X V ; 0 . 3.6 0 -9-4-HjJLi o o ' o..° ,-l!_^' o' o a.-°— iUL 0 1 -16 .2_£__HU! 0) 15 -2 0 | 0 i 0 o : o : o 0_[0.43. -0.3 0 ! 5.4! 0 ao a . ° _ iiL°— o i o o ° ' 36< 0 1* 3.6 0 LC4 X Y i 0 3.8 0 o o.at -2.1 0 639 -2.1 0360 0380 0 051 1.46 0 4.71 -0.3 0 5-4' 0 o 30: a 0 3.6 0 0 36 0 LC4 x Y ; 0 3.6' 0 0 -50: -8.6 0 55.7 -8.6 0 36 0 0 3.6 0 0-42-5 0 47.81 -«.8 0 ' 54l 0 0 3.6 0 0 3.6. 0 0 3.6. 0 LC4 X Y 4 0 0 0 0 0 0 0 0 0 0 0 3.6 0 -50 -8B 55.7 -8.6 36 0 3.6 0 -42 -5 47.8, -8.8 54 0 3.6 0 3.81 0 3.6 0 LC4 X Y Z 0 3.6 0 0 74.7 8.57 0 . -66 8.57 0 360 0 360 0 81.9i 12.2 0 , -75' 10.4 o ; 5.4: o 0 i 3.B 0 0 i 3.6, 0 0 3.6: 0 LC4 X Y J 0 3.6 0 0 '74.7.857 0 ' -66 857 0 3.6 0 0 3.6 0 0 ' 81.9 122 0 -75 104 0 540 0 ! 3.6 0 0^36. 0 0 380 NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE PROJECT SHEET NO. OF JOB NO. w/t w/e t|w MUJ aw ow t/u ciu ^7.1 &7-4 1 fc1 • NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K9 JOB NO: 03-098 10/7/04 09:46:41 - SE3:DL+FLL+Seismic (W-E cw) . -L.OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 37 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Facton= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 55 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 254 67.8 -62 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0, ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 160 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 -^.OADNO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 )A i^t PTOT= MOT= MR= e= U6= 473.41 K 680.00 FT.K 7172.67 FT.K 13.79 FT. 9.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 10.55 SOIL PRESSURE= 3.54 KSF O.K. Maximum Shear= 209.30 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 706.74 k-ft f c= 4500 psi fy= 60 ksi # bot. bars 12 Bar size #7 dbar 0.88 Abar 0.60 Asm in 5.48 Asbot 7.21585 a 1.45 OMn 1131.20 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L K9 JOB NO: 03-098 10/7/04 09:46:24! •~ SE3:DL+FLL+Seismic (W-E ccw) . ...OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 37 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 55 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 259 67.8 -87 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING \2%tif Ho. "- LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 f flff '- LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 164 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 \* \ PTOT= MOT= MR= e= L/6= 453.41 K 697.00 FT.K 6067.67 FT.K 15.65 FT. 9.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 8.71 SOIL PRESSURE= 3.93 KSF O.K. Maximum Shear= 231.88 kip Moment, Mu= fiVc= 311.33 kip fc= (Assumes d=Thick. - 4") fy= 788.96 k-ft 4500 psi 60 ksi # bot. bars 12 Bar size #7 dbar 0.88 Abar 0.60 Asmin 5.48 Asbot 7.21585 a 1.45 OMn 1131.20 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G,L K9 JOB NO: 03-098 10/7/04 09:46:04 -^ SE3:DL+FLL+Seismic (E-W cw) _LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY {FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5- LENGTH OF FRAME 37 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 55 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 173 74.2 -4.8 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 184.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e— U6= 456.01 K 784.55 FT.K 9250.87 FT.K 8.93 FT. 9.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 11.79 SOIL PRESSURE= 2.52 KSF O.K. Maximum Shear= 140.47 kip fi Vc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 469.58 k-ft f c= 4500 psi fy= 60 ksi # bot. bars 12 Bar size #7 dbar 0.88 Abar 0.60 Asm in 5.48 Asbot 7.21585 a 1.45 OMn 1131.20 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) ^SE3:DL+FLL+Seismic (E-W ccw) _,_OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bfdg. 1 along G.L. K9 JOB NO: 03-098 10/7/04 09:45:36 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 37 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 55 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 168 74.2 -0.5 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 180.4 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 •-~".OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= 455.31 K 766.70 FT.K 9403.67 FT.K 8.53 FT. 9.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 12.27 SOIL PRESSURE= 2.46 KSF O.K. Maximum Shear= 135.96 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 454.67 k-fl fc= 4500 psi fy= 60 ksi # bot. bars 12 Bar size #7 dbar 0.88 Abar 0.60 Asmin 5.48 Asbot 7.21585 a 1.45 OMn 1131.20 O.K. NOWAK+WiSEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K9 JOB NO: 03-098 10/7/04 09:49:55 -^SE4:0.9DL+Seismic (W-E cw) _LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 37 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor3 LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 55 3.88 18.5 FT. BF. COL # 1 2 3 4 5 LC React. (K) 208 44.5 -95 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING Pt.Jt.lr- -~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 166 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 U /Vj' 12 V 1 PTOT= MOT= MR= e= U6= 371.11 K 705.50 FT.K 4599.92 FT.K 17.01 FT. 9.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 6.52 SOIL PRESSURE= 3.63 KSF O.K. Maximum Shear= 205.66 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 706.53 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 12 Bar size #7 dbar 0.88 Abar 0.60 Asmin 5.48 Asbot 7.21585 a 1.45 OMn 1131.20 O.K. NOWAK+WISEMAN Structural Engineers »- BRACED FRAME G.B. == Version 1.3 (12/99) ___ PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K9 JOB NO: 03-098 10/7/04 09:47:36 SE4:0.9DL+Seismic (W-E ccw) ..LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 37 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.} 1.00 1.00 55 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React, (K) 212 44.5 -99 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 170 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 H PTOT= MOT= MR= e= U6= 371.11 K 722.50 FT.K 4451.92 FT.K 17.45 FT. 9.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 6.16 SOIL PRESSURE= 3.79 KSF O.K. Maximum Shear= 214.96 kip fi Vc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 740.55 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 12 Bar size #7 dbar 0.88 Abar 0.60 Asmin 5.48 Asbot 7.21585 a 1.45 OMn 1131.20 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K9 JOB NO: 03-098 10/7/04 09:47:16 ^SE4:0.9DL+Seismic (E-W cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 37 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 55 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 160 84.3 -52 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 UAlX ADDITIONAL LOADING '"-' OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 'At/ LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 145.7 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 405.91 K 619.23 FT.K 7240.42 FT.K 11.19 FT. 9.17 FT. OVERALL STABILITY= 11.69 REINFORCING CAPACITY SOIL PRESSURE= Maximum Shear= 140.87 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") 2.55 KSF O.K. Moment, Mu= 473.38 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 12 Bar size #7 dbar 0.88 Abar 0.60 Asmin 5.48 Asbot 7.21585 a 1.45 OMn 1131.20 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K9 JOB NO: 03-098 10/7/04 09:46:59! ~3E4:0.9DL+Seismic (E-W ccw) <_OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 37 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factor? TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 55 3.88 18.5 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 156 80.1 -47 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 145.7 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 P^ :'t'*Jr .-~" OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 I- -114*' PTOT= MOT= MR= e= U6= 402.71 K 619.23 FT.K 7318.92 FT.K 10.86 FT. 9.17 FT. REINFORCING CAPACITY OVERALL STABILITY= 11.82 SOIL PRESSURED 2.48 KSF O.K. Maximum Shear= 136.06 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 456.98 k-n fc= 4500 psi fy= 60 ksi # bot. bars 12 Bar size #7 dbar 0.88 Abar 0.60 Asmin 5.48 Asbot 7.21585 a 1.45 OMn 1131.20 O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE PROJECT . £)(*[SHEET NO. £)* OF JOB NO. $ A 4 4 W/G, cu; X -41 NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) __ PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K JOB NO: 03-098 10/7/04 17:24:27 "^ SE3:DL+FLL+Seismic (W-E cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 42 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 58.5 2.80 21 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 182 118 -47 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -"LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 Q 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 n .<V/ LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 183 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 4 137' PTOT= MOT= MR= e= U6= 416.80 K 732.00 FT.K 7382.40 FT.K 13.29 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 10.09 SOIL PRESSURE= 3.48 KSF O.K. Maximum Shear= 151.47 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") Moment, Mu= 463.31 k-ft f c= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.89 Asbot 3.97608 a 1.04 OMn 574.44 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K JOB NO: 03-098 10/7/04 17:34:10 ~\SE3:DL+FLL+Seismic (W-E ccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FFIAME 42 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL {KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 58.5 2.80 21 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 186 118 -51 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 183 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 — LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 416.80 K 732.00 FT.K 7214.40 FT.K 13.70 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABIL!TY= 9.86 SOIL PRESSURE= 3.57 KSF O.K. Maximum Shear= 155.77 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") Moment, Mu= 476.88 k-ft fc= 4500 psi fy- 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.89 Asbot 3.97608 a 1.04 OMn 574.44 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K JOB NO: 03-098 10/7/04 17:23:41 SE3:DL+FLL+Seismic (E-W cw) .LOWABLE SOIL PRESSURE: ^STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 42 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factors LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 58.5 2.80 21 FT. BF. COL # 1 2 3 4 5 LC React. (K) 193 112 35.5 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING r~ '.OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 > \.&/> LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 184.4 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 504.30 K 737.60 FT.K 11443.28 FT.K 8.02 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 15.51 SOIL PRESSURE= 3.14 KSF O.K. Maximum Shear= 136.34 kip fiVc= 218.96 kip {Assumes d=Thick. - 4") Moment, Mu= 414.29 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.89 Asbot 3.97608 a 1.04 OMn 574.44 O.K. NOWAK+WISEMAN Structural Engineers — BRACED FRAME G.B. == Version 1.3 (12/99) ____ PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K JOB NO: 03-098 10/7/04 17:23:04 SE3:DL+FLL+Seismic (E-W ccw) .LOWABLE SOIL PRESSURE: ^STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 42 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 58.5 2.80 21 FT. BF. COL # 1 2 3 4 5 LC React. (K) 189 112 -50 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 180.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 ^~ .OAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 1- PTOT= MOT= MR= e= L/6= 414.80 K 720.80 FT.K 7113.90 FT.K 13.84 FT. 9.75 FT. gEJNFORCING CAPACITY OVERALL STABILITY= 9.87 SOIL PRESSURE= 3.59 KSF O.K. Maximum Shear= 156.40 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") Moment, Mu= 478.99 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asm in 3.89 Asbot 3.97608 a 1.04 OMn 574.44 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K JOB NO: 03-098 10/7/04 17:26:06 SE4:0.9DL+Seismic (W-E cw) .LOWABLE SOIL PRESSURE: ..STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 42 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor* LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 58.5 2.80 21 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 189 75.2 -67 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 180 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 "" '.OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 361.00 K 720.00 FT.K 5183.25 FT.K 16.89 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 7.20 SOIL PRESSURE= 3.89 KSF O.K. Maximum Shear= 167.49 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") Moment, Mu= 518.04 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.89 Asbot 3.97608 a 1.04 OMn 574.44 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K JOB NO: 03-098 10/7/04 17:25:38 SE4:0.9DL+Seismic (W-E ccw) .LOWABLE SOIL PRESSURE: iSTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 42 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= {INCL. SOIL ABOVE G.B.) 1.00 1.00 58.5 2.80 21 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 163 75.2 -72 0 0 LC React. (K) 0 0 0 0 0 LC React. iKl 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 185 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 "~'.OADNO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 330.00 K 740.00 FT.K 4717.50 FT.K 17.20 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 6.38 SOIL PRESSURE= 3.65 KSF O.K. Maximum Shear= 154.43 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") Moment, Mu= 478.63 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asm in 3.89 Asbot 3.97608 a 1.04 OMn 574.44 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K JOB NO: 03-098 10/7/04 17:25:14 SE4:0.9DL+Seismic (E-W cw) XOWABLE SOIL PRESSURE: ,iSTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 42 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 58.5 2.80 21 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 173 68.8 -77 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 187.3 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 ^"'.OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K> 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 328.60 K 749.20 FT.K 4361.55 FT.K 18.26 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY 5.82 SOIL PRESSURE= 3.99 KSF O.K. Maximum Shear= 169.03 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") Moment, Mu= 526.32 k-ft fc= 4500 psi fy* 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asm in 3.89 Asbot 3.97608 a 1.04 OMn 574.44 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. — Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. K JOB NO: 03-098 10/7/04 17:34:47 \SE4:0.9DL+Seismic (E-W ccw) .LOWABLE SOIL PRESSURE: .STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 5 LENGTH OF FRAME 42 GB. EXT. EA. END 8.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 58.5 2.80 21 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 168 68.8 -73 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DfST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 183.1 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 n.44'11 to' PTOT= MOT= MR= e= L/6= 327.60 K 732.40 FT.K 4521.30 FT.K 17.68 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 6.17 SOIL PRESSURE= 3.78 KSF O.K. Maximum Shear= 159.84 kip fiVc= 218.96 kip (Assumes d=Thick. - 4") Moment, Mu= 496.41 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.89 Asbot 3.97608 a 1.04 OMn 574.44 O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS DATE PROJECT SHEET NO. &?.3» QF JOB NO. -f- W/fc 4 W/fc (*//& t/w ft.^l ^ ^ NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Versionl .3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 0.5 JOB NO: 03-098 10/7/04 20:16:44 3E3:DL+FLL+Seismic (W-E cw) -M.OWABLE SOIL PRESSURE: JTANCE BWN. F.F. & T.O,GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 8.83 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor5 TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= (INCL SOIL ABOVE G.B. 1.00 1.00 26.83 2.24 8.83 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 67.3 -61 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING u_OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 17.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 66.40 K 68.80 FT.K 324.30 FT.K 9.57 FT. 4.47 FT. CAPACITY OVERALL STABILfTY= 4.71 SOIL PRESSURE= 2.88 KSF O.K. Maximum Shear= 60.22 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asmin 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 254.11 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 0.5 JOB NO: 03-098 10/7/04 20:16:18, SE3:DL+FLL+Seismic (W-E ccw) .LOWABLE SOIL PRESSURE: 3TANCE BWN. F.F. & T.O.GB.* GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 8.83 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 26.83 2.24 (INCL. SOIL ABOVE G.B.) 8.83 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 69.4 -63 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING L _OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 17.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 66.50 K 68.80 FT.K 307.54 FT.K 9.82 FT. 4.47 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.47 SOIL PRESSURE= 3.09 KSF O.K. Maximum Shear= 62.36 kip ftVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asm in 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 270.09 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) ____ PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 0.5 JOB NO: 03-098 10/7/04 20:15:48 SE3:DL+FLL+Seismic (E-W cw) -,LOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 8.83 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor^ TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 26.83 2.24 8.83 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 69.4 -63 0 0 0 LC React. {K} 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ' .OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 17.14 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 66.50 K 68.56 FT.K 307.54 FT.K 9.82 FT. 4.47 FT. OVERALL STABILITY= 4.49 SOIL PRESSURE= 3.08 KSF O.K. Maximum Shear= 62.33 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asmin 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 269.87 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L 0.5 JOB NO: 03-098 10/7/04 20:14:25 >E3:DL+FLL+Setsmic (E-W ccw) •_LOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 8.83 GB. EXT. EA. END 9 VERTICAL LOADING DL Reduction Factor= LL Reduction Factor^ TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 26.83 2.24 TYPICAL DISTANCE BTW. BF. COLUMNS=8.83 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 67.3 -61 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING *^~~ .OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 17.14 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= 66.40 MOT= 68.56 MR= 324.30 e= 9.56 L/6= 4.47 K FT.K FT.K FT. OVERALL STABILITY= SOIL PRESSURE= FT. Maximum Shean= fiVc= 60.19 kip 175.16 kip (Assumes d=Thick. - 4") ^INFORCING CAPACITY # bot. bars At 7 ar dbar 0.44 0.75 Asm in As 3.11 4.73 2.87 KSF Moment, Mu= fc= fy= bot a 3.08 1.01 O.K. 253.90 4500 60 OMn 445.21 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 0.5 JOB NO: 03-098 10/7/04 20:18:49 3E4:0.9DL+Seismic (W-E cw) .L.OWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 8.83 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor5 LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL <KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 26.83 2.24 8.83 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 68.8 -63 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING '^~ OAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 17.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 65.90 K 68.80 FT.K 302.14 FT.K 9.87 FT. 4.47 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.39 SOIL PRESSURED 3.10 KSF O.K. Maximum Shear= 61.88 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asmin 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 269.86 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) SE4:Q.9DL+Seismic (W-E ccw) _LOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 0.5 JOB NO: 03-098 10/7/04 20:18:26 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 8.83 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factors TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 26.83 2.24 8.83 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 70.9 -66 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 17.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 '_OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 65.00 K 68.80 FT.K 267.55 FT.K 10.36 FT. 4.47 FT. BEINFORCING CAPACITY OVERALL STABILITY* 3.89 SOIL PRESSURE= 3.54 KSF O.K. Maximum Shear= 62.74 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asm in 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 295.52 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 0.5 JOB NO: 03-098 10/7/04 20:17:56 SE4:0.9DL+Seismic (E-W cw) eLOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 8.83 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS^ DL Reduction Factor* LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 26.83 2.24 8.83 FT. BF. COL # 1 2 3 4 5 LC React. (K) 67.3 -62 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LLOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 17.14 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 65.40 K 68.56 FT.K 306.47 FT.K 9.78 FT. 4.47 FT. REINFORCING CAPACITY OVERALL STABILITY* 4.47 SOIL PRESSURE* 3,00 KSF O.K. Maximum Shear= 60.52 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asmin 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 261.24 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+W1SEMAN Structural Engineers =* BRACED FRAME G.B. -= Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 0.5 JOB NO: 03-098 10/7/04 20:17:09 ;E4:0,9DL+Seismic (E-W ccw) ALLOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 8.83 GB. EXT. EA. END 9 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor* LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)« (INCL. SOIL ABOVE G.B. 1.00 1.00 26.83 2.24 8.83 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 65.2 -60 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 17.14 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 65.30 K 68.56 FT.K 323.23 FT.K 9,51 FT. 4.47 FT. .ENFORCING CAPACITY OVERALL STABILITY= 4.71 SOIL PRESSURE= 2.79 KSF O.K. Maximum Shear= 58.33 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asm in 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 245.43 k-ft fc= 4500 psi fy= 60 ksi O.K. NOVAK + WISEMAN STRUCTURAL ENGINEERS DATE PROJECT & SHEET NO. Gfil- OF JOB NO. LJ h-L 4 4 MA; CW &M) A -z, -57 x t ^426.9% X NOWAK+WISEMAN Structural Engineers » BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 15 JOB NO: 03-098 10/11/04 10:56:46 ^VSE3:DL+FLL+Seismic (S-Ncw) .LOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 3 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 62.66 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 146 101 49.5 0 0 LC React. (K) 0 0 0 0 Q LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 107 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 401.77 K 428.00 FT.K 9853.57 FT.K 7.87 FT. 10.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 23.02 SOIL PRESSURE= 3.75 KSF O.K. Maximum Shear= 39.04 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 42.23 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 15 JOB NO: 03-098 10/11/04 10:56:33 " SE3:DL+FLL+Seismic (S-NcCw) .LOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 3 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 62.66 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 146 101 49.5 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING "~ LOAD NO. 1 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 107 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 401.77 K 428.00 FT.K 9853.57 FT.K 7.87 FT. 10.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 23.02 SOIL PRESSURE* 3.75 KSF O.K. Maximum Shear= 39.04 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 42.23 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 15 JOB NO: 03-098 10/11/04 10:56:16 SE3:DL+FLL+Seismic (N-S cw) LOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 3 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factors LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 62.66 1.68 (INCL SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 154 101 43.6 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 109.2 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 403.87 K 436.80 FT.K 9525.58 FT.K 8.83 FT. 10.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 21.81 SOIL.PRESSURE= 3.96 KSF O.K. Maximum Shear= 41.70 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 45.10 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L 15 JOB NO: 03-098 10/11/04 10:55:57, - SE3:DL+FLL+Seismic (N-S ccw) -OWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 3 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= (INCL SOIL ABOVE G.B. 1.00 1.00 62.66 1.68 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 154 101 43.6 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING r— '.OAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 109.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 403.87 K 436.80 FT.K 9525.58 FT.K 8.83 FT. 10.44 FT. OVERALL STABILITY= 21.81 SOIL PRESSURE= 3.96 KSF O.K. REINFORCING CAPACITY Maximum Shear= 41.70 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") Moment, Mu= 45.10 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. -= Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 15 JOB NO: 03-098 10/11/04 10:57:48 '4SE4:0.9DL+Seismic (S-N cw) -LOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 3 DL Reduction Factor= LL Reduction Factor^ TOTAL G.B. LENGTH (FT.)* GRADE BEAM DL (KLF)= 1.00 1.00 62.66 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 110 62.1 9.6 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K> 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 107 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 286.97 K 428.00 FT.K 6146.40 FT.K 11.40 FT. 10.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 14.36 SOIL PRESSURED 3.20 KSF O.K. Maximum Shear* 32.26 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 34.92 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) ^SE4:0.9DL+Seismic {S-N ccw) .LOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 15 JOB NO: 03-098 10/11/04 10:57:34, 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 3 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 62.66 1.68 (INCL. SOIL ABOVE G.B.) 28,33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 110 62.1 9.6 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING L~ LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 107 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 286.97 K 428.00 FT.K 6146.40 FT.K 11.40 FT. 10.44 FT. REINFORCING CAPACITY OVERALL STAB!LITY= 14.36 SOIL PRESSURE= 3.20 KSF O.K. Maximum Shear= 32.26 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 34.92 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 15 JOB NO: 03-098 10/11/04 10:57:18 *ASE4:0.9DL+Seismic (N-S cw) .i-LOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 3 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 62.66 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 115 62.1 7.07 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 109.1 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 289.44 K 436.40 FT.K 6010.46 FT.K 12.07 FT. 10.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 13.77 SOIL PRESSURE= 3.34 KSF O.K. Maximum Shear= 33.93 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 36.75 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 15 JOB NO: 03-098 10/11/04 10:57:03 ~\SE4:0.9DL+Seismic (N-S ccw) i-LOWABLE SOIL PRESSURE: STANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 3 DL Reduction Factor5 LL Reduction Factor^ TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL {KLF)= 1.00 1.00 62.66 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 115 62.1 7.07 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 109.1 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 289.44 K 436.40 FT.K 6010.46 FT.K 12.07 FT. 10.44 FT. REINFORCING CAPACITY OVERALL STABILITY^ 13.77 SOIL PRESSURED 3.34 KSF O.K. Maximum Shear= 33.93 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 36.75 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY _£&£?_ DATE PROJECT %Kl1feg.SHEET NO. OF JOB NO. &.l ft * NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 8 JOB NO: 03-098 10/11/04 11:00:57 - 'SE3:DL+FLL+Seismic(S-Ncw) _LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor^ TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 68.66 1.68 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 70.7 16.2 -50 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 105 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L76= 152.25 K 420.00 FT.K 1807.27 FT.K 25.22 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.30 SOIL PRESSURE= 3.71 KSF O.K. Maximum Shear= 69.19 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 155.60 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == __ Version 1.3 (12/99) ASE3:DL+FLL+Seismic (S-Nccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O,GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 8 JOB NO: 03-098 10/11/04 11:00:42 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 68.66 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL # 1 2 3 4 5 LC React. (K) 66.4 16.2 -46 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — • LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 105 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 151.95 K 420.00 FT.K 2032.11 FT.K 23.72 FT. OVERALL STABILITY= 4.84 SOIL PRESSURE= 3.18 KSF O.K. L/6= 11.44 FT.Maximum Shear= fiVc= 58.53 131.37 kip kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars £, Abar dbar 0.31 0.625 Asm in 2.33 Asbot 1.24 Moment, Mu= fc= fy= a 0.54 130.82 4500 60 OMn 180.89 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 8 JOB NO: 03-098 10/11/04 11:00:27 — SE3:DL+FLL+Seismic (N-Scw) .<_OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 68.66 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 65.7 9.79 -36 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — '.OAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 92,6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 154.84 K 370.40 FT.K 2434.46 FT.K 21.00 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 6.57 SOIL PRESSURE= 2.58 KSF O.K. Maximum Shear= 46.06 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 102.18 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 8 JOB NO: 03-098 10/11/04 11:00:12 ASE3:DL+FLL+Seismic (N-Sccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor^ LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 68.66 1.68 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 70 9.79 -41 0 0 LC React. (K) 0 0 0 0 0 LC React. {K} 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL{K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 92.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 154.14 K 370.40 FT.K 2146.96 FT.K 22.80 FT. 11.44 FT. REINFORCING CAPACITY Maximum OVERALL STABILITY= SOIL PRESSURE= Shear= 54.28 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") 5.80 2.97 KSF O.K. # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 120.96 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 8 JOB NO: 03-098 10/11/04 11:01:59 —ASE4:0.9DL+Seismic (S-N cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 DL Reduction Factor* LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 68.66 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL # 1 2 3 4 5 LC React. (K) 69.2 14.9 -51 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 i-L(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 105 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 148.45 K 420.00 FT.K 1690.98 FT.K 25.77 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.03 SOIL PRESSURE= 3.85 KSF O.K. Maximum Shear= 71.64 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 161.62 k-ft fc= 4500 psi fy= 60 kst O.K. NOWAK+WISEMAN Structural Engineers ™ BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 8 JOB NO: 03-098 10/11/04 11:01:45 -ASE4:0.9DL+Seismic (S-N ccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)~ 1.00 1.00 68.66 1.68 (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 64.9 14.9 -47 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 105 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 148.15 K 420.00 FT.K 1915.82 FT.K 24.23 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.56 SOIL PRESSURE* 3.26 KSF O.K. Maximum Shear= 59.92 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 134.21 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. " Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 8 JOB NO: 03-098 10/11/04 11:01:30! ,- ASE4:0.9DL+Seismic (N-S cw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 68.66 1.68 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 64.7 8.49 -38 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 93.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 150.54 K 372.80 FT.K 2258.51 FT.K 21.80 FT. 11.44 FT. REINFORCING CAPACITY Maximum OVERALL STABILITY= SOIL PRESSURE= Shear= 47.81 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") 6.06 2.67 KSF O.K. # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 106.30 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Btdg. 1 along G.L. 8 JOB NO: 03-098 10/11/04 11:01:12 —.>SE4:0.9DL+Seismic (N-S ccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.QQ 1.00 68.66 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 69 8.49 -42 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 93.2 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 150.84 K 372.80 FT.K 2033.67 FT.K 23.32 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 5.46 SOIL PRESSURE= 3.04 KSF O.K. Maximum Shear= 55.64 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 124.20 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY fe£*> DATE PROJECT A\#fW SHEET NO. OF JOB NO. VWCtfa |2?pH'a X 4 -14 — i 4 J 4-4 NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L 1.1 JOB NO: 03-098 10/11/04 11:04:56 ,— \SE3:DL+FLL+Seismic (S-Ncw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF {INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 28.33 GB. EXT. EA. END 6.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factors LL Reduction Factors TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 40.83 1.68 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 37.4 -26 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 30 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 79.99 K 120.00 FT.K 735.02 FT.K 12.73 FT. 6.81 FT. 'EINFORCING CAPACITY OVERALL STABILITY= 6.13 SOIL PRESSURE= 2.31 KSF O.K. Maximum Shear= 37.77 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 90.43 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. « Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 1.1 JOB NO: 03-098 10/11/04 11:04:44, — .SE3:DL+FLL+Seismic (S-Nccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 28.33 GB. EXT. EA. END 6.25 DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 40.83 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 28.8 -18 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 21.8 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 79.39 K 87.20 FT.K 957.91 FT.K 9.45 FT. 6.81 FT. '^INFORCING CAPACITY OVERALL STABILITY* 10.99 SOIL PRESSURE= 1.61 KSF O.K. Maximum Shear= 23.52 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asm in 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 55.48 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) SE3:DL+FLL+Seismic (N-S ccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 1.1 JOB NO: 03-098 10/11/04 11:04:31 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 28.33 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 40.33 1.68 28.33 FT. BF. COL # 1 2 3 4 5 LC React. (K) 46.4 -33 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 34.2 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 81.15 K 136.80 FT.K 511.78 FT.K 15.54 FT. 6.72 FT. "EINFORCING CAPACITY OVERALL STABILITY= 3.74 SOIL PRESSURE= 3.90 KSF O.K. Maximum Shear= 62.96 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 150.12 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 1.1 JOB NO: 03-098 10/11/04 11:04:19 — SE3:DL+FLL+Seismic {N-S cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.* GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 28.33 GB. EXT. EA. END 6.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Facton= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= (INCL. SOIL ABOVE G.B.) 1.00 1.00 40.83 1.68 28.33 FT. BF. COL # 1 2 3 4 5 LC React. (K) 37.9 -25 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 25.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 81.49 K 102.40 FT.K 772.73 FT.K 12.19 FT. 6.81 FT. "PINFORCING CAPACITY OVERALL STABILITY* 7.55 SOIL PRESSURE= 2.20 KSF O.K. Maximum Shear= 35.78 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 85.30 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. " Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L 1.1 JOB NO: 03-098 10/11/04 11:05:49 _ \SE4:0.9DL+Seismic (S-N cw) tLOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 28.33 GB. EXT. EA. END 6.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 40.83 1.68 (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 37.2 -27 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 30 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= 78.79 MOT= 120.00 MR= 699.19 e= 13.06 U6= 6.81 K FT.K FT.K FT. OVERALL STABILITY= SOIL PRESSURE= FT. Maximum Shear= fiVc= 38.97 kip 131.37 kip (Assumes d=Thick. - 4") DEINFORCING CAPACITY ••"" # bot. bars At 4 ar dbar 0.31 0.625 Asm in As 2.33 5.83 2.38 KSF Moment, Mu= fc= fy= bot a 1.24 0.54 O.K. 93.58 4500 60 OMn 180.89 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) ___ PROJECT'. Palomar Airport Center LOCATION: Bldg. 1 along G.L. 1.1 JOB NO; 03-098 10/11/04 11:05:361 __ ,SE4:0.9DL+Seismic (S-N ccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 28.33 GB. EXT. EA. END 6.25 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= 1.00 1.00 40.83 1.68 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL # 1 2 3 4 5 LC React. (K) 28.6 -19 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _ LOAD NO. 1 2 3 4 5 DtST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 22 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 78.19 K 88.00 FT.K 922.08 FT.K 9-75 FT. 6.81 FT. °p|NFORCING CAPACITY OVERALL STABILITY= 10.48 SOIL PRESSURE* 1.63 KSF O.K. Maximum Shear= 23.89 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 56.42 k-tt fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers = BRACED FRAME G.B. =« Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 1.1 JOB NO: 03-098 10/11/04 11:05:25 - \SE4:0.9DL+Seismic (N-S cw) _LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 28.33 GB. EXT. EA. END 6.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 40.83 1.68 (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 36.9 -25 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 25.4 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 80.49 K 101.60 FT.K 766.48 FT.K 12.16 FT. 6.81 FT. °P|NFORCING CAPACITY OVERALL STABILITY= 7.54 SOIL PRESSURE= 2.17 KSF O.K. Maximum Shear= 34.98 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 3 0.54 OMn 180.89 Moment, Mu= 83.41 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 1.1 JOB NO: 03-098 10/11/04 11:05:12 — \SE4:0.9DL+Seismic (N-S ccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 3 LENGTH OF FRAME 28.33 GB. EXT. EA. END 6.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 40.83 1.68 (INCL SOIL ABOVE G.B.) 28.33 FT. BF. COL # 1 2 3 4 5 LC React. (K) 45.4 -34 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 34 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 79.99 K 136.00 FT.K 508.38 FT.K 15.76 FT. 6.81 FT. REINFORCING CAPACITY OVERALL STABILITY= 3.74 SOU PRESSURE= 3.82 KSF O.K. Maximum Shear= 63.11 kip fiVc= 131.37 kip (Assumes d=Thick. - 4") # bot. bars 4 Abar 0.31 dbar 0.625 Asmin 2.33 Asbot 1.24 a 0.54 OMn 180.89 Moment, Mu= 157.56 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY fi6]t> DATE 1/^f PROJECT folffrMfg SHEET NO. fi^| OF JOB NO. fa A 4 4 4 Ll N/^ — CIV ±x NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 28 JOB NO: 03-098 10/8/04 19:46:47 _7ASE3:DL+FLL+Seismic (S-Ncw) .LOWABLE SOIL PRESSURE: ulSTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 23 GB. EXT. EA. END 8.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH {FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 40 3.36 23 FT. BF. COL. # 1 2 3 4 5 LC React. {«) 317 139 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 72.4 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 590.40 K 289.60 FT.K 9761.00 FT.K 3.96 FT. 6.67 FT. REINFORCING CAPACITY OVERALL STABILITY= 33.71 SOIL PRESSURE= 3.92 KSF O.K. Maximum Shear= 210.19 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") Moment, Mu= 668.17 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 11 Abar 0.44 dbar 0.625 Asmin 4.67 Asbot 4.84 a 1.05 OMn 700.45 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 28 JOB NO: 03-098 10/8/04 19:46:26 -ZASE3:DL+FLL+Seismic (S-Nccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 23 GB. EXT. EA. END 8.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 40 3.36 23 FT. BF. COL # 1 2 3 4 5 LC React. (K) 321 135 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 72.4 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 590.40 K 289.60 FT.K 9669.00 FT.K 4.11 FT. 6.67 FT. REINFORCING CAPACITY OVERALL STABILITY= 33.39 SOIL PRESSURE= 3.98 KSF O.K. Maximum Shear= 213.86 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") # bot. bars 11 Abar 0.44 dbar 0.625 Asmin 4.67 Asbot 4.84 a 1.05 OMn 700.45 Moment, Mu= 679.75 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 28 JOB NO: 03-098 10/8/04 19:46:01 JlASE3:DL+FLL+Seismic (N-Scw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 23 GB. EXT. EA. END 8.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 40 3.36 23 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 315 141 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^_LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 68.76 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 590.40 K 275.04 FT.K 9807.00 FT.K 3.86 FT. 6.67 FT. REINFORCING CAPACITY OVERALL STAB!LITY= 35.66 SOIL PRESSURE= 3.88 KSF O.K. Maximum Shean= 207.77 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") # bot. bars 11 Abar 0.44 dbar 0.625 Asmin 4.67 Asbot 4.84 a 1.05 OMn 700.45 Moment, Mu= 660.55 k-ft fc- 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 28 JOB NO: 03-098 10/8/04 19:45:13, _T ASE3:DL+FLL+Seismic (N-Sccw) .LOWABLE SOIL PRESSURE: UISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 23 GB. EXT. EA. END 8.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 40 3.36 23 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 311 145 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _ LOAD NO. 1 2 3 4 5 D1ST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 68.76 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 590.40 K 275.04 FT.K 9899.00 FT.K 3.70 FT. 6.67 FT. REINFORCING CAPACITY OVERALL STABILITY* 35.99 SOIL PRESSURE= 3.83 KSF O.K. Maximum Shear= 204.11 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") # bot. bars 11 Abar 0.44 dbar 0.625 Asmin 4.67 Asbot 4.84 a 1.05 OMn 700.45 Moment, Mu= 648.97 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 28 JOB NO: 03-098 10/8/04 19:48:04; ^ASE4:0.9DL+Seismic (S-Ncw) LOWABLE SOIL PRESSURE: ulSTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 23 GB. EXT. EA. END 8.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 40 3.36 23 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 215 37.6 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _ LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW {K} 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 72 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 387.00 K 288.00 FT.K 5699.90 FT.K 6.02 FT. 6.67 FT. REINFORCING CAPACITY OVERALL STABILITY* 19.79 SOIL PRESSURE= 3.07 KSF O.K. Maximum Shear= 155.77 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") # bot. bars 11 Abar 0.44 dbar 0.625 Asmin 4.67 Asbot 4.84 a 1.05 OMn 700.45 Moment, Mu= 496.42 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 28 JOB NO: 03-098 10/8/04 19:47:45! ^ASE4:0.9DL+Seismic (S-Nccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB .= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 23 GB. EXT. EA. END 8.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 40 3.36 23 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 220 33.3 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 72 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= 387.70 MOT= 288.00 MR= 5606.95 e= 6.28 U6= 6.67 K FT.K FT.K FT. OVERALL STABILlTY= 19.47 SOIL PRESSURE* FT. Maximum Shear= fiVc= 160.22 kip 262.75 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY •" # bot. bars At 11 >ar dbar 0.44 0.625 Asm in As 4.67 3.14 KSF Moment, Mu= fc= fy= bot a 4.84 1.05 O.K. 510.47 4500 60 OMn 700.45 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) I^SE4:0.9DL+Seismic (N-S cw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L 28 JOB NO: 03-098 10/8/04 19:47:30 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 23 GB. EXT. EA. END 8.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT>)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 40 3.36 23 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 213 39.6 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _ LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 69 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 387.00 K 276.00 FT.K 5745.90 FT.K 5.87 FT. 6.67 FT. REINFORCING CAPACITY OVERALL STABILlTY= 20.82 SOIL PRESSURE= 3.03 KSF O.K. Maximum Shean= 153.46 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") # bot. bars 11 Abar 0.44 dbar 0.625 Asm in 4.67 Asbot 4.84 a 1.05 OMn 700.45 Moment, Mu= 489.12 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 28 JOB NO: 03-098 10/8/04 19:47:05 ^ASE4:0.9DL+Seismic (N-S ccw) OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 23 GB. EXT. EA. END 8.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factors LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 40 3.36 23 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 209 43.9 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING AOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 69 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 387.30 K 276.00 FT.K 5847.35 FT.K 5.61 FT. 6.67 FT. REINFORCING CAPACITY OVERALL STABILITY= 21.19 SOIL PRESSURE= 2.97 KSF O.K. Maximum Shean= 149.73 kip Moment, Mu= fi Vc= 262.75 kip fc= (Assumes d=Thick. - 4") fy= # bot. bars 11 Abar 0.44 dbar 0.625 Asmin 4.67 As bot 4.84 a 1.05 OMn 700.45 477.35 k-ft 4500 psi 60 ksi O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY /n^ DATE PROJECT £pUt&g.SHEET NO. t^tfD OF JOB NO. fa'C^b Ll 1 4 x . 4f 115 A- NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L, 7 JOB NO: 03-098 10/8/04 20:22:09 ^ASE3:DL+FLL+Seismic (S-Ncw) ^OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 20 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 36 3.36 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 285 89.4 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 58 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 ,^- LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 495.36 K 232.00 FT.K 6960.48 FT.K 4.42 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY= 30.00 SOIL PRESSURE= 3.98 KSF O.K. Maximum Shear= 200.20 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") # bot. bars 10 Abar 0.44 dbar 0.625 Asm in 4.67 Asbot 4.4 a 0.96 OMn 637.72 Moment, Mu= 600.32 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 7 JOB NO: 03-098 10/8/04 20:21:56i ^\SE3:DL+FLL+Seismic (S-Nccw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 20 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 36 3.36 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 278 95.9 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 49.71 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= !•*•• L/6= 494.86 K 198.84 FT.K 7086.48 FT.K 4.08 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY= 35.64 SOIL PRESSURE= 3.85 KSF O.K. Maximum Shear= 192.31 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") # bot. bars 10 Abar 0.44 dbar 0.625 Asmin 4.67 Asbot 4.4 a 0.96 OMn 637.72 Moment, Mu= 576.84 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 7 JOB NO: 03-098 10/8/04 20:21:41 ^-ASE3:DL+FLL+Seismic (N-Scw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 20 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 36 3.36 20 FT. BF. COL # 1 2 3 4 5 LC React. (K) 250 122 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^_ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 51.99 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 492.96 K 207.96 FT.K 7593.28 FT.K 3.02 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY= 36.51 SOIL PRESSURE= 3.43 KSF O.K. Maximum Shear= 167.27 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") Moment, Mu= 502.32 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 10 Abar 0.44 dbar 0.625 Asmin 4.67 Asbot 4.4 a 0.96 OMn 637.72 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 7 JOB NO: 03-098 10/8/04 20:21:13 ,~<VSE3:DL+FLL+Seismic (N-Sccw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 20 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 36 3.36 20 FT. BF. COL # 1 2 3 4 5 LC React. (K) 257 115 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 62 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 492.96 K 248.00 FT.K 7453.28 FT.K 3.38 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY= 30.05 SOIL PRESSURE= 3.57 KSF O.K. Maximum Shear= 175.57 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") # bot. bars 10 Abar 0.44 dbar 0.625 Asm in 4.67 Asbot 4.4 a 0.96 OMn 637.72 Moment, Mu= 527.01 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 7 JOB NO: 03-098 10/8/04 20:22:59i -ASE4:0.9DL+Seismic (S-Ncw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 20 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)- (INCL SOIL ABOVE G.B.) 1.00 1.00 36 3.36 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 197 10.9 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 60 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 328.86 K 240.00 FT.K 4058.48 FT.K 6.39 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY= 16.91 SOIL PRESSURE= 3.15 KSF O.K. Maximum Shear= 149.56 kip fi Vc= 26275 kip (Assumes d=Thick. - 4") # bot. bars 10 Abar 0.44 dbar 0.625 Asmin 4.67 As bot 4.4 a 0.96 OMn 637.72 Moment, Mu= 450.44 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) t\SE4:0.9DL+Seismic (S-Nccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 7 JOB NO: 03-098 10/8/04 20:22:44, 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 20 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 36 3.36 20 FT. BF. COL # 1 2 3 4 5 LC React. (K) 191 17.4 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _ LOAD NO. 1 2 3 4 5 D1ST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 51 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 329.36 K 204.00 FT.K 4192.48 FT.K 5.89 FT. OVERALL STABILlTY= 20.55 SOIL PRESSURE= 3.02 KSF O.K. L/6= 6.00 FT.Maximum Shear= fiVc= 142.87 262.75 kip kip (Assumes d=Thick. - 4") REINFORCING CAPACITY ^~- # bot. bars 1C Abar dbar 0.44 0.625 Asm in 4.67 Asbot 4.4 Moment, Mu= fc= fy= a 0.96 429.68 4500 60 OMn 637.72 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. » Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 7 JOB NO: 03-098 10/8/04 20:22:32 ASE4:0.9DL+Seismic (N-Scw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 20 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 36 3.36 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 172 34.3 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING _LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 51.4 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 327.26 K 205.60 FT.K 4513.68 FT.K 4.84 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY- 21.95 SOIL PRESSURE= 2.74 KSF O.K. Maximum Shear= 125.81 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") # bot. bars 10 Abar 0.44 dbar 0.625 Asm in 4.67 As bot 4.4 a 0.96 OMn 637.72 Moment, Mu= 378.92 k-ft f c= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 7 JOB NO: 03-098 10/8/04 20:22:20 \SE4:0.9DL+Seismic (N-Sccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 20 GB. EXT. EA. END 8 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 36 3.36 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 178 27.9 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 90 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 326.86 K 360.00 FT.K 4382.48 FT.K 5.69 FT. 6.00 FT. REINFORCING CAPACITY OVERALL STABILITY= 12.17 SOIL PRESSURE= 2.95 KSF O.K. Maximum Shear= 138.53 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") # bot. bars 10 Abar 0.44 dbar 0.625 Asmin 4.67 Asbot 4.4 a 0.96 OMn 637.72 Moment, Mu= 416.78 k-ft fc= 4500 psi fy= 60 ksi O.K. BY DATE NOWAK + WISEMAN STRUCTURAL ENGINEERS PROJECT.SHEET NO. / OF JOB NO. aw OUJ W/D -<,, X NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L25 JOB NO: 03-098 10/8/04 21:03:23 -^ASE3:DL+FLL+Seismic (W-E cw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 48 GB. EXT. EA. END 7.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 63 3.36 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 172 79.2 42.4 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 201 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 I \} PTOT= MOT= MR= e= L/6= 505.28 K 804.00 FT.K 12805.92 FT.K 7.75 FT. 10.50 FT. REINFORCING CAPACITY OVERALL STABILITY= 15.93 SOIL PRESSURE= 2.32 KSF O.K. Maximum Shear= 102.36 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") Moment, Mu= 281.94 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asm in 4.67 Asbot 3.97608 a 0.87 OMn 575.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L25 JOB NO: 03-098 10/8/04 21:03:10 - <VSE3:DL+FLL+Seismic (W-E ccw) _LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 48 GB. EXT. EA. END 7.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor^ LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 63 3.36 24 FT. BF. COL # 1 2 3 4 5 LC React. (K) 179 79.2 36 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 %>b /' ,&.*£1' Ml*!' LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 217 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 -I PTOT= MOT= MR= e= U6= 505.88 K 868.00 FT.K 12503.22 FT.K 8.50 FT. 10.50 FT. REINFORCING CAPACITY OVERALL STABILITY^ 14.40 SOIL PRESSURE= 2.42 KSF O.K. Maximum Shear= 108.21 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") Moment, Mu= 297.95 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asmin 4.67 Asbot 3.97608 a 0.87 OMn 575.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) -*ASE3:DL+FLL+Seismic {E-W cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L25 JOB NO: 03-098 10/8/04 21:02:54 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 48 GB. EXT. EA. END 7.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factors TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 63 3.36 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 276 72.8 -57 0 0 LC React. (Kl 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 200.9 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 \, — LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW {K} 0 0 0 0 0 7.$' V PTOT= MOT= MR= e= L/6= 503.48 K 803.60 FT.K 7867.62 FT.K 17.47 FT. 10.50 FT. REINFORCING CAPACITY OVERALL STABILITY 9.79 SOIL PRESSURE= 3.99 KSF O.K. Maximum Shear= 193.54 kip fi Vc= 262.75 kip {Assumes d=Thtck. - 4") Moment, Mu= 538.38 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asmin 4.67 Asbot 3.97608 a 0.87 OMn 575.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) -*ASE3:DL+FLL+Seismic (E-W ccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY {FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L25 JOB NO: 03-098 10/8/04 21:02:32 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 48 GB. EXT. EA. END 7.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 63 3.36 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 270 72.8 -50 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 185.9 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K> 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 7$ PTOT= MOT= MR= e= L/6= 504.48 K 743.60 FT.K 8211.12 FT.K 16.70 FT. 10.50 FT. REINFORCING CAPACITY OVERALL STABILITY^ 11.04 SOIL PRESSURE= 3.79 KSF O.K. Maximum Shear= 183.14 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") Moment, Mu= 508.54 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asm in 4.67 Asbot 3.97608 a 0.87 OMn 575.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L25 JOB NO: 03-098 10/8/04 21:04:13 ^*SE4:0.9DL+Seismic (W-E cw) _OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 48 GB. EXT. EA. END 7.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 63 3.36 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 156 55.4 -18 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 197 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 --LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= **•• L/6= 405.08 K 788.00 FT.K 8584.02 FT.K 12.25 FT. 10.50 FT. REINFORCING CAPACITY OVERALL STABILITY= 10.89 SOIL PRESSURE= 2.34 KSF O.K. Maximum Shear= 102.49 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") Moment, Mu= 283.06 k-n fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asm in 4.67 Asbot 3.97608 a 0.87 OMn 575.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L25 JOB NO: 03-098 10/8/04 21:03:59 -^SE4:0.9DL+Seismic (W-E ccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 48 GB. EXT. EA. END 7.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 63 3.36 24 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 162 55.4 -25 0 0 LC React, (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 213 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 ,— LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= j-n"* L/6= 404.08 K 852.00 FT.K 8240.52 FT.K 13.22 FT. 10.50 FT. REINFORCING CAPACITY OVERALL STABILITY= 9.67 SOIL PRESSURE= 2.46 KSF O.K. Maximum Shear= 108.84 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") Moment, Mu= 300.98 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asm in 4.67 Asbot 3.97608 a 0.87 OMn 575.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L25 JOB NO: 03-098 10/8/04 21:03:45 —ASE4:0.9DL+Seismic (E-W cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 48 GB. EXT. EA. END 7.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 63 3.36 24 FT. BF. COL # 1 2 3 4 5 LC React. (K) 215 49 -74 0 0 LC React. (K) 0 0 0 0 0 LC React. {K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 205.3 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 ,~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 401.68 K 821.20 FT.K 5716.92 FT.K 19.31 FT. 10.50 FT. REINFORCING CAPACITY OVERALL STABILITY= 6.96 SOIL PRESSURED 3.66 KSF O.K. Maximum Shear= 171.76 kip fi Vc= 262.75 kip (Assumes d=Thick. - 4") Moment, Mu= 481.19 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asmin 4.67 Asbot 3.97608 a 0.87 OMn 575.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. -= Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L25 JOB NO: 03-098 10/8/04 21:03:32, '*VSE4:0.9DL+Seismic (E-W ccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 6 LENGTH OF FRAME 48 GB. EXT. EA. END 7.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 63 3.36 24 FT. BF. COL. # 1 2 3 4 5 LC React. {K) 209 49 -67 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 190.3 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 *~ LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL{K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 r PTOT= MOT= MR= e= U6= 402.68 K 761.20 FT.K 6060.42 FT.K 18.34 FT. 10.50 FT. REINFORCING CAPACITY OVERALL STABILITY= 7.96 SOIL PRESSURE= 3.40 KSF O.K. Maximum Shear= 158.57 kip fi Vc= 214.53 kip (Assumes d=Thick. - 4") Moment, Mu= 442.90 k-ft fc= 3000 psi fy= 60 ksi # bot. bars 9 Bar size #6 dbar 0.75 Abar 0.44 Asm in 4.67 Asbot 3.97608 a 1.30 OMn 572.11 O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY %fr^ DATE PROJECT gajflac.SHEET NO. ^00 OF JOB NO. Cl .Ml W/£. 4 (./U.Tfe J'** NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L19 JOB NO: 03-098 10/8/04 22:16:39 — \SE3:DL+FLL+Seismic (W-E cw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 40 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 58.5 3.88 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 263 65.9 -76 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 169 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 f'/'-ix PTOT= MOT= MR= e= L/6= 480.10 K 718.25 FT.K 7262.91 FT.K 15.62 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 10.11 SOIL PRESSURE= 3.61 KSF O.K. Maximum Shear= 219.38 kip Moment, Mu= fiVc= 311.33 kip fc= (Assumes d=Thick. - 4") fy= 762.59 k-ft 4500 psi 60 ksi # bot. bars 13 Bar size #6 dbar 0.75 Abar 0.44 Asm in 5.48 Asbot 5.74322 a 1.15 OMn 905.79 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. ~ Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L19 JOB NO: 03-098 10/8/04 22:16:261 - \SE3:DL+FLL+Seismic (W-E ccw) i-LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRAPE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 40 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 58.5 3.88 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 274 65.9 -87 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 194 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 — LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= n"m L/6= 480.10 K 824.50 FT.K 6822.91 FT.K 16.76 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 8.28 SOIL PRESSURE= 3.94 KSF O.K. Maximum Shear= 240.52 kip fi Vc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 839.64 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 13 Bar size #6 dbar 0.75 Abar 0.44 Asmin 5.48 Asbot 5.74322 a 1.15 OMn 905.79 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L19 JOB NO: 03-098 10/8/04 22:16:09 ^ SE3:DL+FLL+Seismic (E-W cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 40 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor^ LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 58.5 3.88 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 181 70.1 1.93 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 199.1 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 "~ LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 /" &>> PTOT= MOT= MR= e= U6= 480.23 K 846.18 FT.K 10465.31 FT.K 9.22 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 12.37 SOIL PRESSURE= 2.46 KSF O.K. Maximum Shear= 140.19 kip fiVc= 311.33 kip {Assumes d=Thick. - 4") Moment, Mu= 481.12 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 13 Bar size #6 dbar 0.75 Abar 0.44 Asm in 5.48 Asbot 5.74322 a 1.15 OMn 905.79 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) __ PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L19 JOB NO: 03-098 10/8/04 22:11:38 ^\SE3:DL+FLL+Seismic (E-W ccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 40 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 58.5 3.88 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 170 70.1 12.6 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 175.4 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 4 — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K> 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 479.90 K 745.45 FT.K 10889.06 FT.K 8.11 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY* 14.61 SOIL PRESSURED 2.31 KSF O.K. Maximum Shear* 128.95 kip fi Vc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 442.94 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 13 Bar size #6 dbar 0.75 Abar 0.44 Asm in 5.48 Asbot 5.74322 a 1.15 OMn 905.79 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. ~- Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L19 JOB NO: 03-098 10/8/04 22:17:33 ^-VSE4:0.9DL+Seismic (W-E cw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 40 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL <KLF)= (INCL SOIL ABOVE G.B.) 1.00 1.00 58.5 3.88 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 209 43.8 -90 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 173 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 — LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MRs e= L/6= 390.00 K 735.25 FT.K 5427.48 FT.K 17.22 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 7.38 SOIL PRESSURE= 3.32 KSF O.K. Maximum Shear= 193.70 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 679.38 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 13 Bar size #6 dbar 0.75 Abar 0.44 Asm in 5.48 Asbot 5.74322 a 1.15 OMn 905.79 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L19 JOB NO: 03-098 10/8/04 22:17:20 \SE4:0.9DL+Seismic (W-E ccw) 1.LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 40 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)* GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 58.5 3.88 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 220 43.8 -101 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 197 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 — LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 !.frf "20' 4.%' PTOT= MOT= MR= f>n* L/6= 390.00 K 837.25 FT.K 4987.48 FT.K 18.61 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 5.96 SOIL PRESSURE= 3.76 KSF O.K. Maximum Shear= 220.27 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 778.14 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 13 Bar size #6 dbar 0.75 Abar 0.44 Asmin 5.48 Asbot 5.74322 a 1.15 OMn 905.79 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. ™ Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L19 JOB NO: 03-098 10/8/04 22:17:06i SE4:0.9DL+Seismic (E-W cw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 40 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS^ DL Reduction Factor= LL Reduction Factor^ TOTAL G.B. LENGTH (FT.)* GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 58.5 3.88 20 FT. BF. COL # 1 2 3 4 5 LC React. (K) 167 48 -52 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING •^ LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 K LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 195.2 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 390.20 K 829.60 FT.K 7033.33 FT.K 13.35 FT. 9.75 FT. REINFORCING CAPACITY Maximum OVERALL STABILITY= SOIL PRESSURE= Shear= 141.04 kip fi Vc= 311.33 kip (Assumes d=Thick. - 4") O.K. Moment, Mu= 488.57 k-tt fc= 4500 psi fy= 60 ksi # bot. bars 13 Bar size #6 dbar 0.75 Abar 0.44 Asmin 5.48 Asbot 5.74322 a 1.15 OMn 905.79 O.K. NOWAK+W1SEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. L19 JOB NO: 03-098 10/8/04 22:16:50 ~'VSE4:0.9DL+Seismic {E-W ccw) .^LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3.25 WIDTH 6.5 LENGTH OF FRAME 40 GB. EXT. EA. END 9.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factors TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B.) 1.00 1.00 58.5 3.88 20 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 157 48 -42 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING *hd\ LOADS 1 2 3 4 5 LAT. FORCE 171.5 0 Q 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 I \W f PTOT* MOT= MR= e= L/6- 390.20 K 728.88 FT.K 7433.33 FT.K 12.07 FT. 9.75 FT. REINFORCING CAPACITY OVERALL STABILITY= 10.20 SOIL PRESSURE= 2.33 KSF O.K. Maximum Shear= 128.17 kip fiVc= 311.33 kip (Assumes d=Thick. - 4") Moment, Mu= 442.80 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 13 Bar size #6 dbar 0.75 Abar 0.44 Asm in 5.48 Asbot 5.74322 a 1.15 OMn 905.79 O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY fr^fcj DATE PROJECT . GflGSHEET NO. OF JOB NO. AM* h 4 4 fc/w -n -2 t:,M <— * 4, * — * NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. B.9 JOB NO: 03-098 10/9/04 20:47:41 -~^5E3:DL+FLL+Seismic (E-W cw) . -OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10.25 DL Reduction Factor= LL Reduction Factors TOTAL G.B. LENGTH {FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 31.17 2.24 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL SOIL ABOVE G.B.) 10.67 FT. BF. COL # 1 2 3 4 5 LC React. (K) 75.7 -73 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24.1 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 .*-* OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 72.52 K 96.40 FT.K 336.92 FT.K 12.27 FT. 5.20 FT. REINFORCING CAPACITY OVERALL STABILITY 3.50 SOIL PRESSURE= 3.64 KSF O.K. Maximum Shear= 69.29 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 Asbot 3.09251 a 1.01 OMn 446.99 Moment, Mu= 385.14 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. B.9 JOB NO: 03-098 10/9/04 20:47:24i ^*SE3:DL+FLL+Seismic (E-W ccw) -OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factors TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 31.17 2.24 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 75.7 -73 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24.1 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= 72.52 K 96.40 FT.K 336.92 FT.K 12.27 FT. OVERALL STABILITY= 3.50 SOIL PRESSURE= 3.64 KSF O.K. L/6= 5.20 FT.Maximum Shear= fiVc= 69.29 175.16 kip kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars Bar 7 size dbar Abar #6 0.75 0.44 Asmin 3.11 Asbot 3.09251 Moment, Mu= fc= fy= a 1.01 385.14 4500 60 OMn 446.99 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. B.9 JOB NO: 03-098 10/9/04 20:48:09 —^SE3:DL+FLL+Seismic (W-E cw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 31.17 2.24 (INCL SOIL ABOVE G.B.) 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 68.7 -66 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING s~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24.64 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 72.52 K 98.56 FT.K 411.61 FT.K 11.27 FT. 5.20 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.18 SOIL PRESSURED 2.80 KSF O.K. Maximum Shear= 64.97 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 Asbot 3.09251 a 1.01 OMn 446.99 Moment, Mu= 315.45 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. -= Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. B.9 JOB NO: 03-098 10/9/04 20:47:54 \SE3:DL+FLL+Seismic (W-E ccw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10.25 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 31.17 2.24 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* (INCL. SOIL ABOVE G.B.) 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 68.7 -66 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -~ LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24.64 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 72.52 K 98.56 FT.K 411.61 FT.K 11.27 FT. 5.20 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.18 SOIL PRESSURE= 2.80 KSF O.K. Maximum Shear= 64.97 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") Moment, Mu= 315.45 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 As bot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. B.9 JOB NO: 03-098 10/9/04 20:49:02 •—*SE4:.09DL+Seismic (E-W cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= 1.00 1.00 31.17 2.24 (INCL. SOIL ABOVE G.B.} 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 75.4 -73 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ,— LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24.1 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 72.22 K 96.40 FT.K 333.85 FT.K 12.30 FT. OVERALL STABILITY= 3.46 SOIL PRESSURE= 3.66 KSF O.K. L/6= 5.20 FT.Maximum Shear= fiVc= 68.81 175.16 kip kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars Bar 7 size dbar Abar #6 0.75 0.44 Asmin 3.11 Asbot 3.09251 Moment, Mu= fc- fy= a 1.01 385.13 4500 60 OMn 446.99 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. mm ___ Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. B.9 JOB NO: 03-098 10/9/04 20:48:50 -^ASE4:.09DL+Seismic (E-W ccw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 31.17 2.24 10.67 FT. BF. COL # 1 2 3 4 5 LC React. (K) 75.2 -73 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING s~- LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24.1 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 72.02 K 96.40 FT.K 331.80 FT.K 12.32 FT. OVERALL STABILITY^ 3.44 SOIL PRESSURED 3.67 KSF O.K. L/6=5.20 FT.Maximum Shear= fi Vc= 68.48 175.16 kip kip Moment, Mu= fc= (Assumes d=Thick. - 4") fy= 385.12 4500 60 k-ft psi ksi REINFORCING CAPACITY # bot. bars Bar size 7 #e dbar Abar 0.75 0.44 Asm in 3.11 Asbot 3.09251 a 1.01 OMn 446.99 O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. B.9 JOB NO: 03-098 10/9/04 20:49:29 ^SE4:.09DL+Seismic (W-E cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 31.17 2.24 10.67 FT. BF. COL # 1 2 3 4 5 LC React. (K) 68.9 -66 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24.64 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 72.72 K 98.56 FT.K 413.66 FT.K 11.25 FT. 5.20 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.20 SOIL PRESSURE= 2.80 KSF O.K. Maximum Shear= 65.11 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 Asbot 3.09251 a 1.01 OMn 446.99 Moment, Mu= 315.60 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers ~ BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. B.9 JOB NO: 03-098 10/9/04 20:49:15 ^-ASE4:.09DL+Seismic (W-E ccw) _OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 31.17 2.24 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 68.9 -66 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ,~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24.64 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 72.72 K 98.56 FT.K 413.66 FT.K 11.25 FT. 5.20 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.20 SOIL PRESSURE= 2.80 KSF O.K. Maximum Shear= 65.11 kip Moment, Mu= fiVc= 175.16 kip fc= (Assumes d=Thick. - 4") fy= # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 Asbot 3.09251 a 1.01 OMn 446.99 315.60 k-ft 4500 psi 60 ksi O.K. BY t, DATE NOWAK + WISEMAN STRUCTURAL ENGINEERS PROJECT SHEET NO. Mt^H OF JOB NO. fa' 4 4 4 I ..... I NOWAK+WISEMAN Structural Engineers — BRACED FRAME G.B. -= Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 16 JOB NO: 03-098 10/9/04 21:30:46 C|lo<5 — ^SE3:DL+FLL+Seismic (S-Ncw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL <KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 68.66 2.24 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 150 110 66.4 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING <~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 114 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 480.20 K 456.00 FT.K 14116.82 FT.K 5.88 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 30.96 SOIL PRESSURE= 2.65 KSF O.K. Maximum Shear= 66.24 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asmin 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 144.72 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) SE3:DL+FLL+Seismic (S-Nccw) xOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 16 JOB NO: 03-098 10/9/04 21:30:24 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 DL Reduction Factor* LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 68.66 2.24 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 150 110 66.4 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING x~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 114 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= U6= 480.20 K 456.00 FT.K 14116.82 FT.K 5.88 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 30.96 SOIL PRESSURE= 2.65 KSF O.K. Maximum Shear= 66.24 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asm in 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 144.72 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 16 JOB NO: 03-098 10/9/04 21:29:45i ^\SE3:DL+FLL+Seismic (N-S cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 68.66 2.24 (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 174 110 45.5 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING —LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 113.6 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 483.30 K 454.40 FT.K 12951.23 FT.K 8.47 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 28.50 SOIL PRESSURE= 3.06 KSF O.K. Maximum Shear= 79.59 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asm in 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 173.77 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) _ PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 16 JOB NO: 03-098 10/9/04 21:28:59 "~SE3:DL+FLL+Seismic (N-S ccw) i-OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= 1.00 1.00 68.66 2.24 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 174 110 45.5 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -~ .OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 113.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 483.30 K 454.40 FT.K 12951.23 FT.K 8.47 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 28.50 SOIL PRESSURE= 3.06 KSF O.K. Maximum Shear= 79.59 kip fiVc= 175.16 kip (Assumes d=Thick. -4") # bot. bars 7 Abar 0.44 dbar 0.75 Asmin 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 173.77 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 16 JOB NO: 03-098 10/9/04 ^^E4:0.9DL+Seismic (S-N cw) OWABLE SOIL PRESSURE: DISTANCE BWN, F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 21:32:20 VERTICAL LOADING DL Reduction Factor* LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 68.66 2.24 TYPICAL DISTANCE BTW. BF. COLUMNS*28.33 FT. BF. COL # 1 2 3 4 5 LC React. (K) 114 67.5 19.3 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING *~~ OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 114 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= 354.60 MOT= 456.00 MR= 9490.51 e= 8.85 U6= 11.44 K FT.K FT.K FT. OVERALL STABIL!TY= 20.81 SOIL PRESSURE= FT. Maximum Shear= fi Vc= 54.76 kip 175.16 kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars At 7 ar dbar 0.44 0.75 Asm in As 3.11 2.29 KSF Moment, Mu= fc= fy= bot a 3.08 1.01 O.K. 119.75 4500 60 OMn 445.21 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Btdg. 1 along G.L. 16 JOB NO: 03-098 10/9/04 21:31:58 ^ASE4:0.9DL+Seismic (S-N ccw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 68.66 2.24 (INCL SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 114 67.5 19.3 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 114 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 354.60 K 456.00 FT.K 9490.51 FT.K 8.85 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 20.81 SOIL PRESSURE= 2.29 KSF O.K. Maximum Shear= 54.76 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asmin 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 119.75 k-tt fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 16 JOB NO: 03-098 10/9/04 21:31:36; .—\SE4:0.9DL+Seismic (N-S cw) LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 68.66 2.24 28.33 FT. BF. COL # 1 2 3 4 5 LC React. {K) 126 67.5 8.7 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^-LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 112.7 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 356.00 K 450.80 FT.K 8898.32 FT.K 10.60 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STAB!LITY= 19.74 SOIL PRESSURE= 2.50 KSF O.K. Maximum Shear= 61.42 kip fi Vc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asm in 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 134.23 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. « Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 16 JOB NO: 03-098 10/9/04 21:31:12 — 'VSE4:0.9DL+Seisniic (N-S ccw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 56.66 GB. EXT. EA. END 6 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH {FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 68.66 2.24 (INCL SOIL ABOVE G.B.) 28.33 FT. BF. COL # 1 2 3 4 5 LC React. (K) 126 67.5 8.7 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ,— LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 112.7 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= n""f U6= 356.00 K 450.80 FT.K 8898.32 FT.K 10.60 FT. 11.44 FT. REINFORCING CAPACITY OVERALL STABILITY= 19.74 SOIL PRESSURE= 2.50 KSF O.K. Maximum Shear= 61.42 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Abar 0.44 dbar 0.75 Asmin 3.11 Asbot 3.08 a 1.01 OMn 445.21 Moment, Mu= 134.23 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY Vrkh DATE PROJECT SHEET NO. OF JOB NO. &.1 A 4 4 4 CM CMJ CM t--lo it, \t,. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 34 JOB NO: 03-098 10/9/04 21:36:42 ~\SE3:DL+FLL+Seismic (S-N cw) -LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 28.33 GB. EXT. EA. END 5.5 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 39.33 2.24 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL SOIL ABOVE G.B.) 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 34.8 -20 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -^~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 102.90 K 96.00 FT.K 1247.27 FT.K 8.48 FT. 6.56 FT. REINFORCING CAPACITY OVERALL STABILITY= 12.99 SOIL PRESSURE= 1.53 KSF O.K. Maximum Shear= 26.10 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asm in 3.11 Asbot 3.09251 a 1.01 OMn 446.99 Moment, Mu= 53.79 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B, mm Version 1.3(12/99) ^SE3:DL+FLL+Seismic(S-N ccw) _LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 34 JOB NO: 03-098 10/9/04 21:36:23 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 28.33 GB. EXT. EA. END 5.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL <KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 39.33 2.24 28.33 FT. BF. COL# 1 2 3 4 5 1C React. (K) 45.5 -30 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING -~'.OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 32 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 103.60 K 128.00 FT.K 967.82 FT.K 11.56 FT. 6.56 FT. REINFORCING CAPACITY OVERALL STABILITY= 7.56 SOIL PRESSURE= 2.13 KSF O.K. Maximum Shear= 40.94 kip Moment, Mu= fiVc= 175.16 kip fc= (Assumes d=Thick. - 4") fy= 85.27 k-ft 4500 psi 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 Asbot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. « Version-! .3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 34 JOB NO: 03-098 10/9/04 21:36:05 SE3:DL+FLL+Seismic (N-S cw) .-^LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB .= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 28.33 GB. EXT. EA. END 5.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 39.33 2.24 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 44.5 -29 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 32.2 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 103.60 K 128.80 FT.K 996.15 FT.K 11.29 FT. 6.56 FT. fPINFORCING CAPACITY OVERALL STABILITY= 7.73 SOIL PRESSURE= 2.06 KSF O.K. Maximum Shear= 39.32 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") Moment, Mu= 81.79 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 Asbot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 34 JOB NO: 03-098 10/9/04 21:35:42 SE3:DL+FLL+Seismic (N-S ccw) ^LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 28.33 GB. EXT. EA. END 5.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 39.33 2.24 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 33.8 -19 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING '^"•.OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 23.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 102.90 K 94.40 FT.K 1275.60 FT.K 8.19 FT. OVERALL STABILITY^ 13.51 SOIL PRESSURE= 1.49 KSF O.K. L/6= 6.56 FT.Maximum Shear= fi Vc= 25.09 175.16 kip kip (Assumes d=Thick. - 4") ENFORCING CAPACITY # bot. bars Bar 7 size dbar Abar #6 0.75 0.44 Asm in 3.11 Asbot 3.09251 Moment, Mu= fc= fy= a 1.01 51.69 4500 60 OMn 446.99 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 34 JOB NO: 03-098 10/9/04 21:38:00 SE4:0.9DL+Seismic (S-N cw) . .^LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 28.33 GB. EXT. EA. END 5.25 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 38.83 2.24 (INCL. SOIL ABOVE G.B.) 28.33 FT. BF. COL # 1 2 3 4 5 LC React. (K) 34 -20 0 0 0 LC React, (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^'_OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 100.98 K 96.00 FT.K 1195.60 FT.K 8.53 FT. OVERALL STABILlTY= 12.45 SOIL PRESSURE= 1.55 KSF O.K. U6=6.47 FT.Maximum Shear= fi Vc= 25.32 175.16 (Assumes d=Thick. - 4" kip kip Moment, Mu= fc= fy= 49.76 4500 60 k-ft psi ksi REINFORCING CAPACITY # bot. bars Bar size 7 #e dbar Abar 0.75 0.44 Asmin 3.11 Asbot 3.09251 a 1.01 OMn 446.99 O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) ___ PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 34 JOB NO: 03-098 10/9/04 21:37:39 ASE4:0.9DL+Seismic {S-N ccw) . ._LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 28.33 GB. EXT. EA. END 5.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 39.33 2.24 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 44.7 -31 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING '""LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 32 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 101.80 K 128.00 FT.K 929.59 FT.K 11.79 FT. 6.56 FT. DEINFORCING CAPACITY Maximum OVERALL STABILITY* SOIL PRESSURE= Shear= 41.39 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") 7.26 2.15 KSF O.K. Moment, Mu= 86.36 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 As bot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. « Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 34 JOB NO: 03-098 10/9/04 21:37:20 ,SE4:0.9DL+Seismic (N-S cw) . .L.LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 28.33 GB. EXT. EA. END 5.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH {FT.)= GRADE BEAM DL (KLF)= (INCL. SOIL ABOVE G.B. 1.00 1.00 39.33 2.24 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 43.8 -30 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING '^~ LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 Q 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 32.2 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 101.90 K 128.80 FT.K 958.47 FT.K 11.52 FT. 6.56 FT. pglNFORCING CAPACITY OVERALL STABILITY* 7.44 SOIL PRESSURE* 2.09 KSF O.K. Maximum Shear= 39.76 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") Moment, Mu= 82.84 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 Asbot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) _____ PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. 34 JOB NO: 03-098 10/9/04 21:37:01 SE4:0.9DL+Seismic (N-S ccw) ..^LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 28.33 GB. EXT. EA. END 5.5 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= (INCL SOIL ABOVE G.B. 1.00 1.00 39.33 2.24 28.33 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 33.1 -20 0 0 0 LC React. (K) 0 0 0 0 0 LC React. {K} 0 0 0 0 0 ADDITIONAL LOADING ^".OADNO. 1 2 3 4 5 DtST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 23.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 101.20 K 94.40 FT.K 1237.92 FT.K 8.37 FT. 6.56 FT. OVERALL STABILITY= 13.11 SOIL PRESSURE= 1.49 KSF O.K. Maximum Shear= 25.00 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") Moment, Mu= 51.54 k-tt fc= 4500 psi fy= 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asm in 3.11 Asbot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY £>£*; DATE PROJECT SHEET NO. , OF JOB NO. Mw W|t 4 NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) \SE3:DL+FLL+Seismic (W-E cw) . ALLOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. A.1 JOB NO: 03-098 10/9/04 21:42:231 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10 DL Reduction Factor* LL Reduction Factor* TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= 1.00 1.00 30.67 2.24 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS* (INCL SOIL ABOVE G.B.) 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 76.9 -72 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 I LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 *t> PTOT= MOT= MR= e= L/6= 73.60 K 96.00 FT.K 334.29 FT.K 12.10 FT. 5.11 FT. REINFORCING CAPACITY OVERALL STABILITY= 3.48 SOIL PRESSURE= 3.79 KSF O.K. Maximum Shear= 71.59 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") Moment, Mu= 385.72 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asm in 3.11 Asbot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. -- Version 1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. A.1 JOB NO: 03-098 10/9/04 21:42:10 ^-SE3:DL+FLL+Seismic (W-E cCw) .OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 30.67 2.24 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 10.67 FT. BF. COL # 1 2 3 4 5 LC React. (K) 70.5 -65 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING <-* OAD NO. 1 2 3 4 5 D1ST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 74.20 K 96.00 FT.K 414.98 FT.K 11.04 FT. OVERALL STABILITY= 4.32 SOIL PRESSURE= 2.88 KSF O.K. L/6= 5.11 FT.Maximum Shear= fiVc= 67.28 175.16 kip kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars Bar 7 size dbar Abar #6 0.75 0.44 Asmin 3.11 Asbot 3.09251 Moment, Mu= fc= fy= a 1.01 314.65 4500 60 OMn 446.99 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) __ PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. A.1 JOB NO: 03-098 10/9/04 21:41:57 SE3:DL+FLL+Seismic (E-W cw) . ,-LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor* LL Reduction Factor= TOTAL G.B. LENGTH (FT.)* GRADE BEAM DL (KLF}= (INCL. SOIL ABOVE G.B. 1.00 1.00 30.67 2.24 10.67 FT. BF. COL# 1 2 3 4 5 LC React. (K) 69.5 -64 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING "~'.OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 23.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 74.20 K 94.40 FT.K 425.65 FT.K 10.87 FT. 5.11 FT. "EINFORCING CAPACITY OVERALL STABILITY= 4.51 SOIL PRESSURE= 2.77 KSF O.K. Maximum Shear= 65.86 kip fiVc= 175.16 kip {Assumes d=Thick. - 4") Moment, Mu= 304.15 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 As bot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. A.1 JOB NO: 03-098 10/9/04 21:41:43 ^SE3:DL+FLL+Seismic (E-W ccw) . ,_LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)~ {INCL. SOIL ABOVE G.B.) 1.00 1.00 30.67 2.24 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 75.9 -71 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING "~ LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 23.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 73.60 K 94.40 FT.K 344.96 FT.K 11.93 FT. 5.11 FT. OEINFORCING CAPACITY OVERALL STABILITY= 3.65 SOIL PRESSURE= 3.60 KSF O.K. Maximum Shear= 71.64 kip fiVc= 175.16 kip (Assumes d=Thick. - 4") # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 Asbot 3.09251 a 1.01 OMn 446.99 Moment, Mu= 373.45 k-ft fc= 4500 psi fy= 60 ksi O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3 (12/99) PROJECT: Patomar Airport Center LOCATION: Bldg. 1 along G.L A.1 JOB NO: 03-098 10/9/04 21:43:19 ASE4:0.9DL+Seismic (W-E cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)- 1.00 1.00 30.67 2.24 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL SOIL ABOVE G.B.) 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 76.6 -72 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING ^-'_OAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= 73.30 K 96.00 FT.K 331.29 FT.K 12.13 FT. OVERALL STABILITY= 3.45 SOIL PRESSURE= 3.81 KSF O.K. L/6= 5.11 FT.Maximum Shear= fiVc= 71.11 175.16 kip kip (Assumes d=Thick. - 4") REINFORCING CAPACITY # bot. bars Bar 7 size dbar Abar #6 0.75 0.44 Asm in 3.11 Asbot 3.09251 Moment, Mu= fc= fy= a 1.01 385.71 4500 60 OMn 446.99 k-ft psi ksi O.K NOWAK+WISEMAN Structural Engineers «= BRACED FRAME G.B. ~~ Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. A.1 JOB NO: 03-098 10/9/04 21:43:03! ^SE4:0.9DL+Seismic (W-E ccw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= DL Reduction Factors LL Reduction Factors TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 30.67 2.24 (INCL SOIL ABOVE G.B.) 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 70.2 -66 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING •^ LOAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 24 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 72.90 K 96.00 FT.K 391.31 FT.K 11.28 FT. 5.11 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.08 SOIL PRESSURE* 3.00 KSF O.K. Maximum Shear= 67.50 kip fi Vc- 175.16 kip (Assumes d=Thick. - 4") Moment, Mu= 323.34 k-ft f c= 4500 psi fy= 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asm in 3.11 Asbot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version1.3 (12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.I. A.1 JOB NO: 03-098 10/9/04 21:42:51 ^\SE4:0.9DL+Seismic (E-W cw) .LOWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF)= 1.00 1.00 30.67 2.24 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 69.3 -65 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING — LOAD NO. 1 2 3 4 5 DIST. FROM END C1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOAD# 1 2 3 4 5 LAT. FORCE 23.6 0 0 0 0 HT. A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= L/6= 73.00 K 94.40 FT.K 402.98 FT.K 11.11 FT. 5.11 FT. REINFORCING CAPACITY OVERALL STABILITY= 4.27 SOIL PRESSURE* 2.88 KSF O.K. Maximum Shear= 66.27 kip fiVc= 175.16 kip (Assumes d=Thtck. - 4") Moment, Mu= 312.35 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asm in 3.11 Asbot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK+WISEMAN Structural Engineers == BRACED FRAME G.B. == Version 1.3(12/99) PROJECT: Palomar Airport Center LOCATION: Bldg. 1 along G.L. A.1 JOB NO: 03-098 10/9/04 21:42:36 .*—*SE4:0.9DL+Seismic (E-W ccw) ^OWABLE SOIL PRESSURE: DISTANCE BWN. F.F. & T.O.GB.= GRADE BEAM GEOMETRY (FT.) 4 KSF (INCLUDES INCREASE) 1 FT THICKNESS 3 WIDTH 4 LENGTH OF FRAME 10.67 GB. EXT. EA. END 10 DL Reduction Factor= LL Reduction Factor= TOTAL G.B. LENGTH (FT.)= GRADE BEAM DL (KLF}= 1.00 1.00 30.67 2.24 VERTICAL LOADING TYPICAL DISTANCE BTW. BF. COLUMNS= (INCL. SOIL ABOVE G.B.) 10.67 FT. BF. COL. # 1 2 3 4 5 LC React. (K) 75.7 -71 0 0 0 LC React. (K) 0 0 0 0 0 LC React. (K) 0 0 0 0 0 ADDITIONAL LOADING •— -'.OAD NO. 1 2 3 4 5 DIST. FROM ENDC1 (FT.) 0 0 0 0 0 DL(K) 0 0 0 0 0 LL(K) 0 0 0 0 0 SNOW (K) 0 0 0 0 0 LATERAL LOADING LOADS 1 2 3 4 5 LAT. FORCE 23.6 0 0 0 0 HT.A.F.F. (FT.) 0 0 0 0 0 PTOT= MOT= MR= e= U6= 73.40 K 94.40 FT.K 342.96 FT.K 11.95 FT. 5.11 FT. REINFORCING CAPACITY OVERALL STABILITY= 3.63 SOIL PRESSURE= 3.61 KSF O.K. Maximum Shear= 71.38 kip fi Vc= 175.16 kip (Assumes d=Thick. - 4") Moment, Mu= 373.45 k-ft fc= 4500 psi fy= 60 ksi # bot. bars 7 Bar size #6 dbar 0.75 Abar 0.44 Asmin 3.11 As bot 3.09251 a 1.01 OMn 446.99 O.K. NOWAK + WISEMAN STRUCTURAL ENGINEERS BY DATE PROJECT SHEET NO. C3T-M OF JOB NO. -h -1 '• X -i* x 6/KJ -333.59k A A A /|f|i(!3 A A A A A A A A A A A A A 20.52k/R LC 2, 3SNccw esulls tor LC 2, SSNccw Nowak-Meulmester & Ass.Bldg.1 GB along 28 (P-N) Barry Speer 02-085 Octobers, 2004 8:11 PM frame28.r2d „ — loc o "~"~ "*« g_ — — • — -86.6 175.8 1 INS _-— —^""^ -157.7 • Results for LC 2, 3SNccw Member Shear Forces (k) ! Nowak-Meulmester & Ass... , Barry Speer ! 02-085 Bldg.1 GB along 28 (P-N)October 8, 2004 8:10 PM frame28.r2d 3533" -1282 -692.7 • Results for LC 2, SSNccw lember Bending Moments (k-ft) Nowak-Meuimester & Ass... Barry Speer 02-085 Bldg.1 GB along 28 (P-N)October 8, 2004 8:10 PM frame28,r2d iL,/ f£> -296.6k -77.8k 20.52k/ft Loads: LC 1, SSNcw Results for LC1,3SNcw Nowak-Meulmester & Ass.Bldg.1 GBalong7(M-L1) Barry Speer 02-085 October 8, 2004 8:49 PM FRAME7.R2D -57.5 150.3 -146.3 Results for LC1.3SNcw Member Shear Forces (k) Nowak-Meulmester & Ass.Bldg.1 GBalong7(M-L1)October 8, 2004 Barry Speer 02-085 8:49 PM FRAME7.R2D 202.1 "IS?.! -610 Results for LC I.SSNcw lember Bending Moments (k-ft) Nowak-Meulmester & Ass.Bldg.1 GBalong7(M-L1) Barry Speer 02-085 October 8, 2004 8:49 PM FRAME7.R2D Company Designer Job Number Nowak-Meulmester & Associates Barry Speer 02-085 Bldg.1 GB along K (3-5) October 11, 2004 12:21 PM Checked By: Basic Load Case Data BLC No.Basic Load Case Description Category Code Category Description Gravity X Y Load Type Totals Joint Point Direct Dist. 1 2 3 4 5 6 7 8 9 SWEcw SWEccw 3EWcw SEWccw 4WEcw 4WEccw 4EWcw 4EWccw GBDL None None None None None None None None None 8 8 8 8 8 8 8 8 3 3 4 3 3 3 3 3 4 Boundary Conditions Joint Label X Translation Y Translation Rotation (k/in) (k/in) (k-ft/rad) N1 N5 Reaction Reaction Reaction Steel Design / NDS Parameters Member Section Length Lb out Lb in L_comp Cb Sway Label Set le out le in le bend K out K in CH Cm B out in R (ft) (ft) (ft) (ft) M1 M2 M3 M4 SEC1 SEC1 SEC1 SEC1 8.25 20 22 8.25 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. Member Direct Distributed Loads. Category: None. BLC 1: 3WEcw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (k/ft, F) (ft or %) (ft or %) M2 M3 Y Y M4 j Y 0 6.41 14.4 6.41 14.4 17.4 2.37 0 0 0 0 0 Member Direct Distributed Loads. Category: None. BLC 2 : SWEccw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (k/ft, F) (ft or %) (ft or %) M2 M3 M4 Y Y Y 0 6.28 14.69 6.28 14.69 17.85 3.6 0 0 0 0 I 0 Member Direct Distributed Loads, Category: None, BLC 3 : 3EWcw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (km, F) (ft or %) (ft or %) M1 M2 M3 M4 Y Y Y Y 15.7 13.7 8.86 3.53 13.7 8.86 3.53 1.53 0 0 0 0 0 0 0 0 Member Direct Distributed Loads. Category: None. BLC 4 : SEWccw Member Label M1 M2 M3 Direction Y Y Start Magnitude (k/ft. F) 17.95 14.75 6.98 End Magnitude (k/ft, F) 14.75 6.98 0 Start Location (ft or %) 0 0 0 End Location (ft or %) 0 0 17.98 RISA-2D Version 5.5b [E:\PROJECTS\03-098--1\BLDG1G-1\FRAMEK-1\FRAMEK-1.R2D]Page 1 Company Designer Job Number Nowak-Meulmester & Associates Barry Speer 02-085 Bldg.1 GB along K (3-5) October 11, 2004 12:21 PM Checked By: Member Direct Distributed Loads. Category: None. BLC 5: 4WEcw Member Label Direction Start Magnitude End Magnitude Start Location End Location (km. F) (kffl, F) (ftor%> (ftor%> M2 M3 M4 Y Y Y 0 3.58 15.12 3.58 15.12 19.45 13.17 0 0 0 0 0 Member Direct Distributed Lo^ds^Categorvj_Nonef_BLC6: 4WEccw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (k/ft, F) (ft or %) (ft or %) M2 M3 M4 Y Y Y 0 2.98 14.09 2.98 14.09 18.25 14.1 0 0 0 0 0 Member_Direct Distributed Loads. Category: None. BLC 7: 4EWcw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (k/ft, F) (ft or %) (ft or %) M1 M2 M3 Y Y Y 19.95 14.96 2.86 14.96 2.86 0 0 0 0 0 0 4.72 Member Direct Distributed LoacteLCafeoorvjjyoneL_BLC_8 ; 4EWccw Member Label Direction Start Magnitude End Magnitude Start Location End Location (k/ft, F) (k/ft, F) (ft or %) (ft or %) M1 M2 M3 Y Y Y 18.9 14.41 3.52 14.41 3.52 0 0 0 0 6 0 6.46 Member Direct Distributed Loads, Category: None. BLC 9 : GB PL Member Label Direction Start Magnitude End Magnitude Start Location End Location (km, F) (k/ft, F) (ft or %) (ft or %) M1 M2 M3 M4 Y Y Y Y -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 0 0 0 0 0 0 0 0 Joint Loads/Enforced Displacements. Category: None. BLC 1: 3WEcw Joint Label [L}oad,[M]ass,or, jpjisplacement Direction Magnitude fk. k-ft, in. rad. k*sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y 47 -118 -182 32 82 69 17.43 -17.43 Joint Loads/Enforced Displacements, Category: None, BLC 2 : 3WEccw Joint Label [L]oad,[M]ass,or, Direction Magnitude [DJisplacement (k, k-ft, in, rad, k*sA2/ft) N2 N3 N4 N2 N3 N4 L L L L L L Y Y 51 -118 Y I -186 X X X 32 87 69 RISA-2D Version 5.5b [E:\PROJECTS\03-098~1\BLDG1G~1\FRAMEK-1\FRAMEK~1.R2D]Page 2 Company : Nowak-Meulmester & Associates Designer : Barry Speer Job Number : 02-085 Bldg.1 GB along K (3-5) o October 11, 2004 12:21 PM Checked By: Joint Loads/Enforced Displacements, Category: None. BLC 2 (continued) Joint Label [L]oad,[M]ass,or, Direction Magnitude [Displacement (k, k-ft. in, rad, k*sA2/ft) N2 N4 L L Y Y 17.43 -17.43 Joint Loads/Enforced Displacements. Category: None. BLC 3 ; 3EWcw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude (k. k-ft. in, rad. k*sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y -193 -112 54 -66.3 -82.6 -35.5 -17.56 17.56 Joint Loads/Enforced Displacements. Category: None. BLC 4 : 3EWccw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude (k, k-ft. in, rad. k'sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y -189 -112 50 -66.3 -78.4 -35.5 -17.16 17.16 Joint Loads/Enforced Displacements. Category: None. BLC 5 : 4WEcw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude (k, k-ft, in. rad, k'sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y 67 -75.2 -159 38 80 62 17.14 -17.14 Joint Loads/Enforced Displacements, Category: None. BLC 6: 4WEccw Joint Label [L]oad,[M]ass,or, [Displacement Direction Magnitude fk, k-n, in, rad. k*sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L Li L L L Y Y Y X X X Y Y 72 -75.2 -163 38 85 62 17.62 -17.62 Joint Loads/Enforced Displacements. Category: None. BLC 7: 4EWcw Joint Label [L]oad,[M]ass,or, [D]is placement Direction Magnitude (k. k-ft. in. rad, k'sA2/fl) N2 N3 L L Y Y -173 -68.8 RISA-2D Version 5.5b [E:\PROJECTS\03-098~1\BLDG1G-1\FRAMEK~1\FRAMEK~1.R2D]PageS Company : Nowak-Meulmester & Associates Designer : Barry Speer Job Number: 02-085 Bldg.1 GB along K (3-5) October 11, 2004 12:21 PM Checked By: Joint Loads/Enforced Displacements. Category: None. BLC7 (continued) Joint Label [L]oad,[M]ass,or, [D] is placement Direction Magnitude (k. k-ft, in. rad. k'sA2/ft) N4 N2 N3 N4 N2 N4 L L L L L L Y X X X Y Y 77 -60.1 -84.6 -42.6 -17.84 17.84 Joint Loads/Enforced Displacements. Category: None. BLC 8 : 4EWccw Joint Label [L]oad,[M]ass,or [Displacement Direction Magnitude (k. k-ft. in. rad, k'sA2/ft) N2 N3 N4 N2 N3 N4 N2 N4 L L L L L L L L Y Y Y X X X Y Y -168 -68.8 73 -60.1 -80.4 -42.6 -17.44 17.44 Load Combinations Num Description Env WS PD SRSS CD BLC Factor BLC Factor BLC Factor BLC Factor 1 3WEcw V 1 2 SWEccw | y 1 3 3EWcw V 1 4 3EWccw V 1 5 4WEcw V 1 6 4WEccw V 1 7 4EWcw V 1 8 4EWccw Y 1 9 1 1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 Envelope Member Section Forces Member Label M1 M2 Sectio 1 2 3 4 5 1 2 i max min max mm max min max mm max mm max mm max Axial (k) 187.3 -188 187.3 -188 187.3 -188 187.3 -188 187.3 -188 127.2 -156 127.2 Lc 7 2 7 2 7 2 7 2 7 2 7 2 7 Shear (k) 2.122 -10.496 34.969 -8.588 66.481 -14.363 95.421 -20.138 121.787 -25.913 67.824 -122.881 53.824 Lc 2 3 7 5 7 5 ^ o 7 5 6 3 6 Moment (k) 0 0 11.757 -37.415 35.424 -142.478 71.003 -309.881 118.492 -534.319 118.492 -534.319 153.467 Lc 1 1 5 7 5 7 5 7 5 7 5 7 3 RISA-2D Version 5.5b [E:\PROJECTS\03-098-1\BLDG1G~1\FRAMEK-1\FRAMEK-1.R2D]Page 4 Company Designer Job Number Nowak-Meulmester & Associates Barry Speer 02-085 Bldg.1 GB along K (3-5) October 11, 2004 12:21 PM Checked By: Envelope Member Section Forces, (continued) Member Label M3 M4 Section Axial Lc Shear Lc Moment Lc (k) (k) (k) 3 4 5 1 2 3 4 5 1 2 3 4 5 mm max mm max mm max mm max mm max mm max min max min max mm max mm max mm max mm max mm max mm -156 127.2 -156 127.2 -156 127.2 -156 42.6 -69 42.6 -69 42.6 -69 42.6 -69 2 7 2 7 2 7 2 8 1 8 1 8 1 8 1 42.6 8 -69 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 -71.406 39.824 -25.981 45.285 13.394 68.714 14.453 -15.653 -75.052 -20.088 -50.131 -12.454 -39.703 34.866 -55.103 94.018 -70.503 80.969 -109.412 81.959 -84.677 81.918 -58.174 80.846 -29.526 78.742 1.237 3 6 3 7 3 4 5 7 2 8 2 1 7 1 7 2 7 3 2 3 6 3 6 3 6 3 7 -328.451 394.41 1 -453.71 423.355 -617.892 270.549 -778.598 270.549 -778.598 544.652 -676.661 675.749 -500.643 704.147 -239.926 670.154 -468.136 670.154 -468.136 501 .956 -268.002 332.78 -120.319 164.752 -29.51 0 0 7 3 6 3 6 3 7 3 7 3 7 3 7 3 7 3 6 3 6 3 6 3 6 3 6 1 1 R1SA-2D Version 5.5b [E:\PROJECTS\03-098-1\BLDG1G~1\FRAMEK~1\FRAMEK~1.R2D]PageS -2.24k/ft -2.24km -85.9k -2.24 15.16k/ft 81k -Loads LC 1, 3WEcw asultsforLC 1.3WEcw Nowak-Meulmester & Ass. Barry Speer Bldg.1 GB along A.1 (6.9-8.4) 02-085 October 9, 2004 9:52 PM frameA.1.r2d ^^ &r — 121.8 -25.9 ^^-— '""'"^ 68.7 ^-"^ ^ 8Z1 5 -75.1 -109.4 -Solution. Envelope lember Shear Forces (k) Nowak-Meulmester & Ass.Bldg.1 GB along K (3-5) Barry Speer 02-085 October 11, 2004 12:23PM FRAMEK-1.R2D 704.8 ~435T4 - TJ3" -534.3 -468.1 -778.6 .Solution: Envelope 'em&er Bending Moments (k-ft) Nowak-Meulmester & Ass.Bldg.1 GB along K (3-5) Barry Speer 02-085 October 11, 2004 12:24 PM FRAMEK-1.R2D -22.4 -53.5 ^Results for LC 1, SWEcw 'ember Shear Forces (k) Nowak-Meulmester & Ass.Bldg.1 GB along A.1 (6.9-8.4) Barry Speer 02-085 October 9, 2004 9:52 PM frameA.1.r2d in.* -385.8 1, SWEcw 'ember Bending Moments (k-ft) Nowak-Meulmester & Ass... Barry Speer 02-085 Bldg.1 GB along A.1 (6.9-8.4)October 9, 2004 9:52 PM frameA.1.r2d ^ .- /! > -7 -84.94k -2.24k/ft -rr^&gffgr T^&^'vfowfH-rTTT-^JS^-^-i-I-U ' 14.56k/ft 82.24k , Loads: LC 1,3WEcw Results for I_C 1.3WECW Nowak-Meulmester & Ass.Bldg.1 GB along B.9 (22.9-23.1)October 9, 2004 Barry Speer 02-085 9:03 PM FRAMEB9.R2D Ik, jJ2 -23 -52 1. 3WEcw ember Shear Forces (k) Nowak-Meulmester & Ass.Bldg.1 GB along B.9 (22.9-23.1) Barry Speer 02-085 October 9, 2004 9:03 PM FRAMEB9.R2D 133- -3B6.4 . Results for LCl,3WEcw Member Bending Moments (k-tt) Nowak-Meulmester & Ass.Bldg.1 GB along B.9 (22.9-23.1) Barry Speer 02-085 October 9, 2004 9:04 PM FRAMEB9.R2D -78,69k 1'5' -2.24k/ft 24k/ft Sk/ft 11.92km 73.79k -Loads; LC 6, 4WEccw 'esutts for LC 6. 4WEccw Nowak-Meulmester & Ass. Barry Speer 02-085 Bldg.1 GB along 0.5 (10.9-11.1)October 7, 2004 8:38 PM FRAMEO-1.R2D S57 — __ '2 -20.1 -46.1 s—Resutts for LC 6. 4WEccw 'ember Shear Forces (k) Nowak-Meulmester & Ass.Bldg.1 GB along 0.5 (10.9-11.1) Barry Speer 02-085 October 7, 2004 8:39 PM FRAMEO-1.R2D -296 >—Results for LC 6. 4WEccw 'ember Bending Moments (k-ft) Nowak-Meulmester & Ass.Bldg.1 GB along 0.5 (10.9-11.1) Barry Speer 02-085 October 7, 2004 8:39 PM FRAMEO-1.R2D < IV- I-s! O ™ O O O O W O'O'QlQ O;O *? ' K* *?O O O'O OO O. O CM< O O O O f"JOOQOO o oJ^" *7 ^ o oiolo-^lojoo o o.o o o o'o oOOOOOOO'O'OO O fM CM »- O O O'O OcMO^OOOO OfO O OOIO O O O.O O O ! O O O OlOOIOlOiOlO O|O O O'O O • o! O . O O ; O OlO-O oo ff ry *7 o oo o ; Q . o . o o o o o cv oio o o' o ^ o rN o o o o O fy\O C-JlO.O.O O Ol O O OOO O'O OO O OlCN'CV O *? *V Ol O ; CM O ™ OlO'O O.OIO O;OiO O O O.O.O O O O.O OIO O O'O O'OiO OiO O O'OiO'O 'J.o'o o o;"7.o o o o o CM o o^o o-oro o o o O o o o o o.o'o O o to *£> ra o o'o;O;O o o o o o o o!o o o'o o o o:o o ! o ' o! o ' o o o o oio o o ' o ' o o!o v'r^'TT'O O:O!iR|(DiL?j|O;o O S £l •? OiO o'OJO.O O O O . . I i I ' , I ' " " I • • I • " I I ! itN <M'f^ O'O'O O!f*3 Q ^ ^ Ol^ rtiS'O'T ^ O o o.o o 0.0,0 o oio o o;o:o o'o o o o o ol Q'O OO O Ofl1 CMO^'^OCMO' f rj tN • o o.oio o a o!o o o o. « O: o o o]o o o,L.OOOO O O O O O O O O'O O O O OO O'O OlO|O'O'O •O O i O O O O O OlO;O T o fti.o o,o:*> oto OIO O O O O O O O Q o O *- ' O O O1 -^ O O O O O'O:O O O O O O!O'O Q O O.O'O O|O Oi O O O o o v o -- ' o _ .;o o ^ o *- O'OOOOOJOlOOQ i O O O O O'O o o O O o 0,0 o oio,f? O;o:o o o o o o|o o;0|o o|o ojo rt o P? o o o|(D 0^70 !?,^ Si^r1^ n ^ 'o.o o.o o o,o!o]o;o o.o'o.o o> OOOOO OOOOOOOO'OOOOOOOOOO'OO'OOO.OOOOOOMO'-OO C^ o o O;O o O f*t T *^OO OOOO ! £ t S °! o> a>j g £ ^. o.o o oo o o o'o OOOOOOO'OO o oooooo oooooooo'oo OOO'OOOO O OOOOOO O^O^OO OOO OOOOOOOOOOOlO OO'OO OO OOO O O'O OO ooooooooooooooooooooooooooo ^ . ^ * S£ X CM CN i CM CM S S r>' e*> «OOOOOOOO OOOO O OlO O o o o o o o o o o o o o o o o 0*0o fi o! o o' o ' oo!o.o'o'o o o o o> o, o ' o | o • o ! o I o o i o! o o oO O|o!oo!ohO^O O OlO'O'o O: O- O Oolo.O'OiO O O OJO O OIO O|O 0,0 o o o o o o o; o oO ! O I O i O O ™ <? •?oooo O O ^ 1*3 O O I O ooooO ! O O O O o ty ff o PB| oi o OOOO o o;" IN' o o o o o- oO O O O.OIO O I O I O O I O O O O O|O O Ol olOlO'O O O O'O O O' o: <N (o 5;! ;. ^'O I O O O O'O O O O O' O O O| O I O : O OIO o o o ' o : o: O O O Ol Ol D OlO — > O O| O O O O O< ^ ' v= < CO CO i CM; O OIOO1 O o. o; *o. o o o o y o o O' o o o o o 01o olo 'OiOlOlO'O OOOO o o OiO'o 0,0 o;o o O O O O; O O o; ci i o o o •7 <=O'O-cM *o ;r 0,0 o o,OiO'o o o o o o o • — ^-.^ O olOjO]O O olo OlO O| ^' O O; O| O O IN i ^ O!O O • O : Oi CV Ol O O O'O OiO|O O OO'OO'O O OiO O OlO O OlO O O, O'OlO O O O ' O • O I O ' O OO.O O|OiOlO|O O|O O1 o: O Olo oloiO O;O o o I o fy olo o i N •« o to • o 0:0 N : o j o ' <n o. •»W (M Oi O £1 oi o o f> o **-' o oio]o'o'o,o o o o o (N o <7 ' CM] o CM to I cji o to! ^ o' oi <9O O * [N ooo O O[O O; O O.O O O O • O I O o oi o o o o; o o O O|O|O!O.OO O O O O;O OIO O OiOjO'O OlOl T ^ *?' o oifsi ^ oi(o]o o o O|*-!o rg o CM o o'^'o ^1^ o!1^'^ ^ o cv ^ o o™ o'oiU?iinlo'nio Oio!?7 olo ^ o o OiOiOio o ! o o o o 0,0.0 o 'O O O O O O O|O O O O O O O O O O'O O O OiO OlO O O O'O O OlOl O O O'O O OO'Ol o •» . >o rg IT -- ;o ! .- • o o o o OlO O OlO O I O , O ' O (SI 01 }, Oi O OlO, o o o o • o! o!ooooooo^-iuj «,«••- o O'O O n 01 OiO'O'O.O'O O O O O n O O.O O O Olo O O O (M W O'O O O lo.OiO o r^ltfvoo oio:o r^-colo. O O O, O n.pi rt in.cMOjniPi'fsiiOio o O I O O O O O O|O O OiCD OIlDCM.P^lin Ui;o o!O|*- O.O' O O O O O <? O'O ^i^'T o o o *?•*? c'-o o o ^ O O O O V ^ O o, •» o m o o o'olo o 0,0 o o o o "? •" (Vi"7ll?ifT o i m o| o o'o o'o, i i i——J ... ; O'O O.O O V O| O O ojo o o i"? •? o'o o Oi O O O Ol oo o PI *7 O'O.o:o|o ^.o o o o «,v o o O O O C*J *9 O O OlO Ol olo o oi ID <v : ID Tl 0| O 2 ffi — — «! r- ', o> PJ| (o co o m fj . tpi 03. o 01 O I f*> i O O O O O O | O O ^:, _ _ oi o. o1 o 010 iCBjOO.0.0 OlOl O O n ^ O'OlO O O O «•*? O'O'OiOlOitD."? O O O O O iOltC^lo O o o . o o. o; oi .- ' r-' •-,oioio'o o 5'o i o o a o, o1 -- -- o o OIO O O OIO!>O OiO O O'OlO O OOlOlO'O O O O O O O O|O OiO O.O'OiolO O O IO O O O|0|0:0|O OlO O'l'OOOOOOOOOOO cVcr(?OOO(slo CM — OOOOOOO. O.O.OOio OOOOOO'O O O.O OiO O O O O O O OO'O OOiOOiOOjOOO'OOjOO'O OOOO;OO OO. O O %' % O O O o!o pj|3 o o'o.O O'g.^ = ° ° 0\0 5 t'O• 01' m r^ 03 ^~ ooooooooooo Oi O O O O ooooooooo oooooooooooo o o o - P) 01 , O < n' in (N ID (v •« OOOINOM(MOOOOOOO!OOOC1OOOO ooorJoonooo'V(*(;'o-7OOoooo ooooooooooooooooooooo s oooooooooooooo S,,CMCM-9g3S<="«S:SS -rcoiD<o<£r).o ooooo'O o o o o o o .oooooojoooov^o^o^^ooo oooooooooooooooo ^oi»^in(M(oojinm»<cicoiioino oooooooo "^P?rtm^-L(sifT»in O O O O.O O O o O O S S « o.'«>'S ffi r- S S « o o o o o o QlQOOoobodaaat^x-i-i eo —oj no o o o o pp 3 o o o o!oo 5 5;o.oo o o oo o o •-•-'<-=1=1= ^ s s " " ° °'^IT"OO'Oo olooooo oo o o o o S •& p- — - - -iftiSiniioiB1® s ot- ;~ a " 0 in ( * L « £ IDn Z «- U> LU 5 "V ? D 5 V ' c § 2 S Q 5_ £ 3 ^ d * $jj -. " o oooooo o o o o o o o o o >- 0 o N * ° "* o o " «K = o * °K = o N ° " °\x o o o . N O * 0 X O > 5 X O o EttCM o o ~f o _ o cf- f- oo=>ooooo o o o o o = « = o o o o o. o: o o n. 0' o *• o: o ' n oi 0: n oi O O i f? o o o o o 3 3 o N ' 3 C 3 e D C t • - -i < \ I-. f o to« t0«0 U?^o Mo oo , o o ; o O I O 0 , O o o ID • ™ s s .9 S 05 in o <7 o n o o 0 «? o T o o c*) r*> o o •? -f T " o •> 0 O « n •7 o, D O ' D O =• O ^ ^ 3 " D O D O n ^ D O •> o *J CM 5 O 3 ^ 3 O C in i S 5 e3 00 0 (Din«*<O£CMO = O o o o « 8 •7 2 K « ^: « o CM; •9 O i ". <? rN T' -o ' CM CM CM n •? O o 0 o •N. 3 = 3. C =>': 3 . C 3 C 3 | 3 C 3 C 3 C i S 3 O- C";,! oo<=°oo<=>o o o o o o ° o = o . o • o =>' o o. °; o ; o <=, o °. o o • O I = o o =• 31 3. 3>-1. 3 3 3 3 3. e c« 3 c 3 C 5 = 3 e a c c * u(. IS oo--oooo o o o o o = o = o o o ° o •= = o o ° o o = O I O 1 o = =• 3 • 3 ' zt 3 3 3 3 3 3. J 3 3 3 • 3 C * U C T: ] oo°ooooo o o o o o ° o •= o o o ° o ° e o o <= o o = o o ° =; o o o o o => o o z> a, 3 3 3 3 ' 3 ' 3 3_ 1i - i «1-<?2CNoo = o o o 2 •? •^ * s f n t o cp - o •* <? o T » * « ° CN ° ° = O O ' o o • °? o o o' z> 2> "3 2 O D IT W *n «>:T«?sCMO O o o o o " f T S ' •7 •P o « 0 o •» - CM •7 9 "'. o ' o CM. °, -. T o o o o <9 O' o o' o 3 3 3 3 ^ =;ss g °«!•O-CMO° 0 O o o 0 o o o T o o <= o o o o o CM O o. ° o . o <?! » °, ° » o o o' 0 t D = 2 3. = C n e 3 < 3 C 3 C 3 (£ i =>CMO-«?°0 o o o o o o T o o * o o o o o o o o ° o o CM o. O1 o' =>, "M! =>; o 3 3 •i- 3 3 3 t 3 i » : 3 e s e 3 C acS --o0-»oo o o o o o o o o = o : o o O] o =• o i « « o = o CM. O' o r*i ' = i o n 3 3 nr- 3 3 C D 1 3 C 3 C - e- r 3 e 3 C J C f ^»-S =«*o»°ooo o o o o o o o o ° o o fl- o o T = o! ° o o ° o o=1 3 ±1 3 3 3 3 3 • R 3 3 3 3 1 \ 1' C * If J *<=O"°ooo o o = <= o CM O o * o o o o o 0 o o = o o °. o o ; o o . ° o » o< •?• o o «5 o. 2 "1 = 3 • f 3 3 3 C 1 , 1 U 5 <a »°o<=«ooo o o = o o •7 O o n o o o o o o o o o: o o ° o Oj o o ® o o o ^ 3 . 3 £ 2 3 N 3 3 - 3 3 3 C D C a U =<=o°°o0 o o o o o o ° o o = o o o o o o o o o - o <= - o o o ° o. «? O' o o o o [3 3, D 3 3 3 3 3 3 C t C 3 T- p;; g o oi o°\*t «O Oi Oo'o oO CM ' ^7O.O Oo' o ; oooo o'o o ooo o'o o ooo ooo n 9 <£>0 « 10 ooo ooo _ aj tO0 S "? ooo ooo eon ooo ooo 0 O CM o o'o ooo o 2 2 0 O.CM ooo 0 - T O O ' CM o o. o 0 n f O' O' CM o! n <9 ooo o -a <V ooo ooo ooo ooo 3 o o O ^ CM' 31 O 0 3 O O 3 « 0 D O O D O O lft fr I O O i8Q <CO C o o<? 0o[ o01 0!";°' 0 0j 0' 0 °! ° °j° °io °i ° 0; 0 Sio , O 0 0 CM O S'o 0 O 0 0 <? o 0 0 0 O (M 0 0. 0. vi° «?'o' ' i ' : Sio *!°: C^jCM, (O ! 0 **••*• f\f. <o i o i O i O • o o ' o o o o o o o o D O d o D O 3 0 3 O C O O C DOC 3 0 C § » 2Bo cCO CE Oooo°ooo o o o o o o o o o o o <= o o o o CM o = o <=• <= CM * ° CM o => o o 3 ' 3 ' 3 ' 3 3 3' 3 3 M C >, e 3 C 5 r 3 C - r a fc-S oooooooo o o o o 5 e o 5 s o o CM o o f o to 2 <? 9 " ^ « CM CM °. o; =• o - 3 D = 3 3 ( 3 C 3 < 3 C 3 C 3 e 3 C 3 C Q ff- § ooooooo° o o o o CM <92> o; CM1 § o o •V o . o : N: o i o "i ^ o 2. *i\ ° CM CM o o o => 3 C 3 t 3 t 3 e 3 C N e 3 C 3 C 4 C 3 e 3 e > c g cv ca oc*ctc oooooooo o o o o o s o o <9? o o 0. o o «* o o ^^ o ^ 3 •M s 3 ' 3 3 3! 3' 3 = 1 s 3 . C C c 1: ii i oooooooo o o o o 2 £ o o> o o o * o o CJ o » T •? •9 ? «? o c^ CM. <= <=;« o1 o' O' o' o 3 N • 2 3 3 c 3 t 3 < M C 3 C - Q M r i, U D (. =-.£3 ( OOoooooo o o o o o o o o o o o o o o o • o ; = : o ' •= f •=; O V. O o <? =>; ° o. o d 2 =1 3 3 3 3 3 N r 3 t 3 C. 3 C 3 C «- ^S OOoooooo o o o o o o o o o o o o o o o o - o « o • = o , o. o o =. o' o, 3 = . 3 3 3 ' 3 3 3 3 •J C 3 e. 3 C > " 1 f •1 C \ " f OToo-ooo o o o o " s o •? ID o o T o o, *. o ' .N 0 -• <? 2 -; ° -f o ° cy fV o CN' 3 3 • 3 3 3 C 3 t 3 e M * 3 C 3 e ' P 3 C ft - i a 5 C 2 § 0 0i•-' oo!oO' O•7- o0 OO 0 0 0 0 0 O 0 0 0 0 0 = 0 s> 0' 0 "? o £ o 0 O O 0 •» 0 O 0 "To 0' 0 2' 0 -.- CM -- £ o O O I « o o o: N 0 T:«*. 3 O "^ o • 3 O 3 0 3 0 3 0 3 0 O O ' 3 0 3 0 3 O C 3 O o e 0 t CD - in u O' '9 Sa; a O O'Oo; *7 ' —oooooooj-.Vooooooo ! o o ooo ooo ooo ooo 0»« 0 ' E S O'O 0 o «. » O to CD ooo ooo o ^n if) ooo 000 o « -9 ooo o 2 ° - - - o "7 " = T - o! *7 = o: «? m o' o o = ;o 0 O. O O CM rN CM O i O O O CM ™ 3 O 0 3 O O 3 CM ff 3 O O 3 O O 3 « CN 3 O O 3 O O 3 O O 3 O O ; fy tM c 3 O O C '• d - r ~> d 6 c S s ! •W [ oooooooo o o o o 0 o o ° = o o o o = o o « o ; <= T ° 0: o o o ° o o O' o D' 3 3 • o 3 3 3 C 3 C 1 •. 3 e 3 <. 3 C 3 C t ••• ccg oooooooo o o o o ° o o ° o o o o o o o o = o - o, o - o o o °, •V 3 3 3 3 C 3 • 3 C 3 C 3 0 3 e 3 C- r a 3 C 3 e h- c a c c ^.fs § ooooooo•J- o o CM o - s o r n o ^ o oi N £ o n - - f f - s . 3 3 N 3 a e 3 C » ' 3 C 3 . C 3 " 3 C. C C -- 1^ c ••- c* a J o<=ooooo CM O o CM O . " o •P s o ^ Ol o CM 9 O < n ^ - •? »' - 3; •) 3 3 t V 3 ri . 3 3 : 3 3 1 J . C C c c c r ifr oooooooo o o o o o 0 o - o o o o o « ° o o. <= o. o ° o : o. o o = o , o o o 3 C 3 C 3 e 2 e 3 C 3 C 3 C 3 C *• ^ 3 e 3 C 3 C 3 C ri — -1 C*c c fc oooooooo o o o o o ° o ° o o o o o = ° o » o o s: ?>' 3 3 3 3 3 3 3 3 3 3 J C J. II C f C c e *>. c a r t>S ooooooo o o CM o r^ £ o T in o •V S o n £j O • 0 2 - f <? - O1 in o ° c V 3 . n 3 3 » 3 3 C 3 C <l C D r 3 ' e 3 » r- c -f^ Q ffc*§ ooooooo CM O o CM O CD ? O CO s o •7 £ o n s o r, to - ^ « - o m o - ? "^ 3 ' fl 3 3 D J n 3 3 3 C - C c c f- oc*§ oooooooo o o o o o o o o ° o o o o 0 o o o. o <? o = V °i o CM °, o o o D ' 3 3 5 3 3 3 3 3 M 3 3 3 3 •1 3 PALOMAR AIRPORT ANCHOR BOLT LOAD COMBINATIONS Ap =(3.1415926*e"2H64"e)+192 bfooting e Ap Tcap Vcap 36 14 1704 297.2 27.4 WboltxB = 219.0631 48 20 2729 475.9 55 26 3980 694.1 JOI 1 2 3 4 5 6 QUID K-1.1 K-2 K-3 K-4 K-5 K-6 B K-8 9 10 11 12 13 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1001 1004 1007 1011 1014 1 1017 1018 < 1021 1025 1028 1031 ' 1034 2001 2004 2007 2011 201 4_ 2017 2018 2021 2025 2028 2031 2034 3001 3004 3007 3011 3014 3018 3021 3025 K-B K-10 K-11 K-12 K-13 K-15 L-16 L-16 L-19 L-20 L-21 L-22 L-23 L-24 L-25 L-26 1-27 L-2B L-29 L-30 L-31 L-32 L-33 L-34 L.1-1.1 L.1-4 L1-7 L1-11 L.1-14 N-17 N-1B N-21 N-25 M-28 N-31 N-34 M-1.1 M-t M-7 M-11 M-14 0-17 P-18 P-21 P-25 P-2B P-31 P-34 O-1 1 CM O-7 O-11 O-14 0-1 B 0-25~ MIN. COL LOAD X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 0 0 o • :6p_ -94 -84 -84 -82 0 -75 -89 -96 100 -B6 ,53 -43 •60 -45 -49 Y 27.6 -5. 105 0 -196 -88 434-16 -198 -12 16.3 0 39 , 0 -234 -95 20.4 -13 -195 -100 11.6 0 22.9: 0 71.8 0 7.9 0 51 9 0 -215 -90 19.5 -15 -171 -105 10.5 0 6.4 : 0 9 0 -136 -94 21.5 -18 -184 -11 693 0 8.8 0 13.5 0 -121 -92 20.6 -174 -172 -108 34.4 -5.2 -77 -3.9 -63 0 -68 ' 0 -39 0 -74 0 24.4 0 •46 0 -49 i 0 •14 ' 0 -44 0 86.0 -17 -3.9 -72 -3 9 -69 0 -80 0 -44 0 J1 -2.6 0 7.8 -43 50 54 57 45 28 120 0 -62 . -2.6 -43 0 13 0 52 0 69 0 35 .3.9 0 33.3 -2.6 0 66.6 0 0 59.8 0 0 66.8 0 65 105 0 0 37 -2.6 0 80.3 0 0 87 0 MAX. COL LOAD X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45.2 60 48.1 48.1 39.7 0 46.4, 48.5 55.1 52.4 36.1 20.4 62.2 939 90.4' 34 60.5 7.8 1.4 93.1 98 Y 80.8 90.6 321 164 310 97.5 119 315 109 396 106 131 254 61.6 185 298 108 385 90.6 51.3 79.2 383 124 289 221 66 118 376 124 280 101 201 309 362 284 ' 229 163 306 354 i 333 396, 315 210 201 300 339 281 347 279 358 334 99 380 80 299 3.2 0 185 04 0 218 0 187 0 218 65 311 5.2 0 11 16 95. 0 0 10 160 87 0 0 0 0 0 102 156 87. 0 0 0 112 170 94.9 0 0 0 110 160 927 5.2 39 0 0 0 0 0 0 0 0 0 0 3.9 3.9 0 0 0 0 0 2.6 0 0 0 0 39 26 0 0 0 0 0 _ 118_ 26 0 252 0 0 286 0 MAX TENS 0 0 196 0 197. 0 0 233. 0 194.5 0 0 0 0 0 215.3 0 171.1 0 0 0 1356 0 184.3 0 0 0 121 0 171 5 0 77.3 63.1 67.5 38.9 744 0 458 494 14.1 43.7 0 173 724 68.5 797 44.3 26 0 62 42.7 13.2 523 0 353 0 0 0 0 0 0 0 0 MAX SHEAR 52 0 1154 168.9 122.3 0 0 106.5 159.5 100.1 0 0 0 0 0 101.6 156.2 105.2 0 0 0 111 8 180.6 110.6 0 0 0 109.6 174.2 108.4 52 60.3 939 836 64.1 81.9 0 75.1 89.2 963 99.9 862 52.8 62.2 93.9 90.4 83.4 605 78 81 4 931 98 99 80 432 2.6 0 0 0 65 26 0 0 COMBINED STRESS y WIDE FOOTING T 0.00 0.00 0.50 0.00 0.51 0.00 0.00 0.67 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.58 0.00 0.40 0.00 0.00 0.00 0.27 . 0.00 0.45 0.00 0.00 0.00 ; 0.22 ; 0.00 . 0.40 : 0.00 0.11 • O.OB 0.08 0.03 0.10 •• 0.00 I 0.04 i 0.05 ! 0.01 0.04 0.00 0.01 0.10 0.09 0.11 0.04 0.00 0.00 0.07 0.04 0.01 0.06 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00"o.bb " 0.00 V 0.00 0.00 0.34 0.65 0.38 0.00 0.00 0.30 0.59 0.27 0.00 0.00 0.00 0.00 0.00 0.28 0.57 0.29 0.00 0.00 0.00 0.33 0.72 0.32 0.00 0.00 0.00 0.32 0.68 0.31 , 0.00 0.12 0.24 ! 0.20 0.20 0.19 0.00 , 0.17 : 0.22 0.25 | 0.27 0.21 0.09 0.12 0.24 0.23 i 0.20 0.12 0.00 0.19 0.24 0.26 0.27 0.19 0.07 0.00 0.00 0.00 0.00 0.00 0.00 o.bb" 0.00 Total 0.00 0.00 0.84 0.65 0.89 0.00 0.00 0.97 0.59 0.76 0.00 0.00 0.00 0.00 0.00 0.86 0.57 0.69 0.00 0.00 0.00 0.60 0.72 0.77 0.00 0.00 0.00 0.54 0.68 0.71 0.00 0.22 0.32 0.29 0.24 0.29 0.00 0.21 0.27 0.26 0.31 0.21 0.10 0.22 0.33 0.34 0.24 0.12 0.00 0.27 0.28 0.27 0.32 0.19 0.10 0.00 0.00 0.00 0.00 0.00 0.00 o.bo "o.ob COMBINED STRESS 4' WIDE FOOTING T 0.00 0.00 0.23 0.00 0.23 0.00 0.00 0.31 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.18 0.00 0.00 0.00 0.12 0.00 0.21 0.00 0.00 0.00 0.10 0.00 0.18 i 0.00 ! 0.05 i r~~b.b3 f 0.04 0.02 0.05 0.00 0.02 ! 0.02 | 0.00 j 0.02 '• o.bo *~ 0.00 0.04 0.04 0.05 ; 0.02 0.00 0.00 0.03 0.02 0.00 0.03 000 0.01 0.00 0.00 0.00 0.00 0.00 0.00 000 000 V 0.00 0.00 0.34 0.65 0.38 0.00 0.00 0.30 0.59 0.27 0.00 0.00 0.00 0.00 0.00 j 0.28 0.57 0.29 0.00 0.00 0.00 0.33 0.72 ^ 0.32 0.00 0.00 0.00 0.32 0.68 0.31 0.00 0.12 0.24 0.20 0.20 0.19 0.00 0.17 0.22 i 0.25 i 0.27 I 0.21 : 0.09 0.12 0.24 0.23 0.20 0.12 0.00 0.19 0.24 0.26 0.27 0.19 ' 0.07 0.00 . 0.00 0.00 0.00 0.00 000 0.00 "o.oo " Total 0.00 0.00 0.57 0.65 0.61 0.00 0.00 0.61 0.59 0.50 0.00 0.00 0.00 0.00 0.00 O.S4 0.57 0.48 0.00 0.00 0.00 0.45 0.72 0.53 0.00 0.00 0.00 0.42 0.68 0.49 0.00 0.16 0.28 0.24 0.22 0.24 0.00 0.19 0.25 0.26 0.29 0.21 0.10 0.17 0.28 0.28 0.22 0.12 0.00 0.23 0.26 0.26 0.29 0.19 0.08 0.00 0.00 0.00 0.00 0.00 0.00o.ob " b.ocf COMBINED STRESS 5' WIDE FOOTING T 0.00 0.00 0.12 0.00 0.12 0.00 0.00 0.16 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.14 0.00 _, 0.10 0.00 0.00 0.00 0.07 0.00 0.11 : 0.00 ' 0.00 0.00 0.05 o.oo : 0.10 . 0.00 0.03 , 0.02 0.02 i 0.01 0.02 0.00 0.01 0.01 0.00 : 0.01 0.00 : 0.00 0.02 0.02 0.03 0.01 0.00 0.00 i 0.02 . 0.01 0.00 0.01 0.00 0.01 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.ob" V Total 0.00 0.00 0.00 0.00 0.34 0.47 0.65 : 0.65 0.38 0.50 0.00 0.00 0.00 0.00 0.30 0.46 0.59 i 0.59 0.27 0.39 0.00 i 0.00 0.00 : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.42 0.57 0.57 0.29 0.39 0.00 0.00 0.00 0.00 0.00 . 0.00 0.33 0.39 0.72 0.72 0.32 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.37 0.68 . 0.68 0.31 0.41 0.00 0.00 0.12 0.14 0.24 0.26 0.20 0.22 0.20 0.21 0.19 0.22 0.00 0.00 0.17 . 0.18 0.22 0.24 0.25 0.26 0.27 0.28 0.21 ' 0.21 0.09 0.10 0.12 0.15 0.24 0.26 0.23 0.26 0.20 0.21 0.12 0.12 0.00 0.00 0.19 0.21 0.24 0.25 0.26 0.26 0.27 0.28 0.19 0.19 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00" o'.ob "o.oo""o'.oo" " ""o'oo " Page 1 of 2 JOI 3028 3031 3034 4001 4008 4015 4016 4023 4029 4034 5001 5008 5015 5016 5023 5029 5034 6001 6008 6015 6016 6023 6029 6034 7001 700B 7015 7016 7023 7029 7034 8001 B015 8016 8029 8034 9001 9002 GRID 0-28 Q-31 Q-34 H-1.1 H-8 H-15 J-16 J-23 J-29 J-34 F-1.1 F-8 F-15 G-16 G-23 G-29 G-34 D-1.1 D-B D-15 E-16 E-23 E-29 E-34 B-1 1 B-8 B-15 C-16 C-23 C-29 D.1-34 A 1-1. A.1-15 X-16 D1-29 C.6-34 O5-1. X.1-15 9004 X1-15.f 9009 | 9014 ! 9015 ! 9018 9034 8001 3 B006.9| 8008.2! B.9-16 O.5-14 A.1-15 R-18 R-34 A1-1.5 A.1-69 A.1-B2 8014. HA 1-14.3 6016.116.9-16.5 6022.9 'B9-22.S 8023.1 iB.9-23.1 802B.9 1 B. 9-28.1 8029.1 1 B 9-29 1 8033.8 IC.6-33.E 9001.2' O 5-1.2 9003.9 O.S-39 9004.1 O 5-4.1 9006B.OS-68 90081 O.5-81 9010.9 O 5-10 £ 9011.1 O5-11 1 9013.8 05-13t 9016.1^ 9020.9 R-1B.1 R-20.9 9021.1' R-21 1 9024 9^ R-24.9 9025.1 R-251 9027.9 R-279 90281 R-2B.1 90291 C 6-29.1 9030.9. C.6-30.S 9031 1 C 6-31 1 9033 9 C 6-33 E MIN. COL LOAD X 0 0 0 -34 -51 -51 -56 -40 -41 -25 •35 -95 -108 -121 -70 -74 -25 0 -55 -73 -77 -43 -46 0 0 0 0 0 0 0 0 0 -11 -11 0 0 0 -11 -11 0 0 0 0 0 0 2.6 Y 66.7 87 438 -74 -112 -43 -21 -87 -81 -50 -79 2.6 47 8 49.2 1 3 2.2 -58J 0.2 -100 -45 -54 -94 -86 1 1 191 36.8 59.8 41.5 37.B 173 17.6 -144 -94 -80 16.3 0 0 -96 -94 37 27.7 -07. 0 0 -161 188 2.6 -175 0 0 2.6 0.9 ' 1.8 : 183 2.6 -176 2.6 -173, 2.6 -159 0 0 1.8 ' 2.7 ' 26 -150 2.6 -140 0 0 27 2.7 2.6 -165. 26 -161 0 2.6 27 3.6 2.6 -115 26 -134' 0 0 26 - 26_- 2.6 36 36 108 146 0 0 -2 -9 0 0 0 0 0 -9. -9. 0 0 0 0 0 -9. -9. 0 0 0 0 0 -9. -5.2 0 -1.4 0 0 0 -3.9 -22 -35 -35 0 0 0 -41 -31 -2.6 0 0 0 0 0 0 -56 -2.6 -2.6 -55 0 0 -53 -2.6 -1.3 -20 -20 0 0 -22 -22 1.3 0 -18 18 0 0 14 16 28 ' -1.3 0 3.6 0 _ 3_6__ .3 36 0 0 0 MAX. COL LOAD X 0 0 0 36.4 50.6 72.7 y 273 286 137 91 133 226 77.1 1 257 48.8 1 125 47.6 26.6 3S.2 90.6 118 0 0 2. 9. 0 0 0 0 0 77.2. 9. 85 28.4 108 144 115 80.B BO? 28.8 151 31 6 31.2 61 8 9. 0 0 0 0 0 9.1 0 15.2 9.1 51 54^ 58.8 45.2 46.2 0 0 0 0 0 0 : 0 0 0 11 11 0 0 0 11 11 0 0 0 0 0 0 2.6 2.6 0 • 0 26 2.6 2.6 : 2.6 . 0 0 2.6 2.6 0 0 , 2.6 , 2.6 0 • 2.6 129 196 1S4 100 101 16.4 168 330 | 251 201 341 164 155 ' 163 102 156 0 0 • 110 108 i 97 90.8 ; 21.1 | o : 0 145 ' 175 I 0 0 0 0 0 9.1 5.2 0 4.4 0 0 q 3.9 22 35. 35. 0 0 0 35. 42.7 2.6 0 0 0 0 0 0 193 ' 54.1 1.2 ' 2.4 ! 179; 186 159 ! 2.6 2.6 55 0 0 173 48.8 2.4 3.6 26 1.3 146 19.8 157 19.8 3.6 3.6 66 71 36 0 0 22 22 1 3 4.8 0 .6 ' 146 176 .6 : 120 17.6 0 . 4.8 0 4.8 0 0 .6 157 224 6 112 .6 12 0 . 4.8 0 48 .3 4.8 20 .3 0 0 0 MAX TEN 0 0 0 74.2 112 42.9 20.5 87.2 80.6 49.9 78.7 0 0 0 0 0 57.6 0 99.6 44.9 53.8 94.1 86.1 0 0 0 0 0 0 0 0 143.7 94.1 80.1 0 0 0 95.8 93.6 0 0 07 0 0 161.4 188.1 1754 0 0 182.B 175.9 73.4 58.7 0 0 49.8 40.3 0 0 165 60S 0 0 115 341 0 0 078 459 0 0 0 0 MAX SHEA 0 0 2.6 36.4 50.6 72.7 77.1 4B.B 47.6 28.8 35.2 94.8 107.fi 120.5 80.8 80.6 28.8 9.1 55.2 72.7 77.1 45.2 46.2 9.1 5.2 0 44 0 0 0 3.9 22 35.2 35.2 0 0 0 40.8 42.7 2.6 0 0 0 0 0 2.6 56.2 2.6 26 55 26 2.6 53 26 1.3 198 19.8 0 0 22 22 1 3 26 176 176 0 0 22.4 20 2.6 0 0 1.3 COMBINED STRESS 3' WIDE FOOTING T V ' Total 0.00 0.00 : 0.00 0.00 0.00 i 0.00 0.00 0.00 0.00 0.10 0.05 s 0.15 0.20 0.09 • 0.28 0.04 0.16 ' 0.20 0.01 0.18 ; 0.19 0.13 0.08 0.21 0.11 0.08 0.19 0.05 ' 0.03 0.09 0.11 , 0.05 0.16 0.00 i 0.25 0.25 0.00 • 0.31 0.31 0.00 0.37 0.37 0.00 ' 0.19 0.19 0.00 0.19 0.19 0.06 ' 0.03 0.10 0.00 0.00 0.00 0.16 0.10 0.26 0.04 ' 0.16 0.20 0.06 0.18 0.23 0.15 0.07 0.22 0.13 0.07 0.20 o.oo : o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.02 0.32 0.15 0.05 0.19 0.11 . 0.05 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.06 0.21 0.15 0.07 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.36 0.47 •• 0.00 0.47 0.42 i 0.10 0.52 0.00 0.00 0.00 0.00 000 0.00 0.44 0.10 054 0.42 0.00 0.42 0.41 0.00 0.41 0.35 0.09 : 0.45 0.00 0.00 0.00 0.00 0.00 ' 0.00 0.32 i 0.02 i 0.34 0.29 0.02 0.30 0.00 0.00 0.00 0.00 0.00 0 00 0.38 0.02 0.40 0.36 0.02 0.38 0.00 0.00 0.00 0.00 0.00 ; 0.00 0.21 0.01 0.22 0.27 : 0.01 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.02 . 0.21 0.31 0.02 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 "o.oo o"oo o.oo COMBINED STRESS 4' WIDE FOOTING T I V 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.09 0.09 0.02 0.16 0.01 0.18 0.06 0.08 0.05 0.08 0.02 • 0.03 0.05 0.05 0.00 0.25 0.00 0.31 _J 0.00 0.37 0.00 0.19 0.00 0.19 0.03 0.03 0.00 0.00 0.07 : 0.10 0.02 0.16 0.03 0.18 0.07 , 0.07 0.06 j 0.07 0.00 0.00 0.00 ' 0.00 0.00 . 0.00 0.00 , 0.00 0.00 : 0.00 0.00 , 0.00 0.00 , 0.00 0.00 0.00 0.14 0.02 0.07 0.05 0.05 0.05 0.00 ' 0.00 0.00 0.00 0.00 0.00 0.07 ; 0.06 0.07 0.07 0.00 0.00 0.00 0.00 o.oo . o.oo o.oo . o.oo 0.00 . 0.00 0.16 ' 0.00 0.21 0.00 0.19 0.10 0.00 0.00 0 00 0.00 0.20 0.10 0.19 0.00 0.19 0.00 0.16 0.09 : 0.00 0.00 i 0.00 0.00 , 0.15 0.02 0.13 0.02 0.00 0.00 0.00 0.00 . 0.17 0.02 . 0.16 0.02 0 00 0.00 0.00 0.00 0.09 0.01 0.12 0.01 0 00 0.00 0.00 0.00 0 08 0.02 0.14 0.02 0.00 0.00 0.00 0.00 0.00 0.00 boo" " b~.oo~" Totil 0.00 U °-00 0.00 0.10 0.18 0.18 0.18 0.14 0.13 0.06 0.10 0.25 0.31 0.37 0.19 0.19 0.06 0.00 0.17 0.18 0.20 0.14 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.11 0.10 0.00 0.00 0.00 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.16 0.21 0.29 0.00 0.00 0.30 0.19 0.19 0.25 0.00 0.00 0.16 0.15 0.00 0.00 0.19 0.19 0.00 0.00 0.11 0.14 0.00 000 0.11 0.16 0.00 0.00 0.00 "o.oo" COMBINED STRESS 51 WIDE FOOTING T o.oo 0.00 0.00 0.02 0.05 0.01 0.00 0.03 0.03 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.04 0.01 0.01 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.04 0.03 0.00 0.00 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.09 0.11 0.10 0.00 0.00 0.11 0.10 0.10 0.09 . 0.00 0.00 0.08 0.07 0.00 0.00 0.09 0.09 0.00 0.00 005 0.06 0.00 0.00 0.04 0.07 0.00 0.00 0.00 0.00 V - Total 0.00 : 0.00 0.00 . 0.00 0.00 0.00 0.05 0.07 0.09 0.13 0.16 • 0.17 0.18 . 0.18 0.08 : 0.11 0.08 : 0.11 0.03 ' 0.05 0.05 0.07 0.25 ' 0.25 0.31 i 0.31 0.37 0.37 0.19 0.19 0.19 0.19 0.03 0.05 0.00 0.00 0.10 0.14 0.16 0.17 0.18 0.19 0.07 : 0.11 0.07 i 0.11 0.00 ' 0.00 0.00 , 0.00 0.00 . 0.00 0.00 . 0.00 0.00 , 0.00 0.00 0.00 0.00 0.00 0.00 ' 0.00 0.02 . 0.09 0.05 0.08 0.05 0.07 0.00 0.00 0.00 0.00 0.00 . 0.00 0.06 ' 0.10 0.07 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.11 0.10 ' 0.20 0.00 : 0.00 0.00 , 0.00 0.10 ' 0.21 0.00 0.10 0.00 0.10 0.09 i 0.18 0.00 ' 0.00 0.00 • 0.00 0.02 ' 0.10 0.02 0.09 0.00 ; 0.00 0.00 ' 0.00 0.02 0.11 0.02 0.11 0.00 0.00 0.00 0.00 0.01 0.06 0.01 ' 0.08 0.00 000 0.00 0.00 0.02 0.07 0.02 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Page 2 of 2 6uxi — - JOt GRID 3026 0-28 3031 Q-31 3034 0-34 4001 H-1. 4008 H-8 4015 H-1 5 4016 : J-16 4023 J-23 4029 J-W 4034 J-34 5001 F-1.1 5008 F-8 5015 F-15 5016 G-16 5023 G-23 5029 G-29 5034 G-34 6001 D-1.1 6008 ' D-8 6015 : D-15 6016 : E-16 6023 E-23 6029 , E-29 6034 E-34 7001 . B-1.1 7008 B-8 7015 B-15 7016 C-16 7023 C-23 7029 C-29 7034 D.1-34 8001 : A.M. 8015 ' A 1-15 801 6 _]_ X-16 —*129 : D.1-29 14 ' C6-34 •J01 I 0.5-1.1 9002 1X1-15.4 9004 :X1-15.f 9005 i X-15 1 9006 X-15.6 9009 B.9-16 9014 O5-14 9015 A 1-15 9016 B-16 9018 R-1B 9034 R-34 8001 3 A 1-1 .5 8006.9 A. 1-6.9 BO08.2 A. 1-8.2 8014.1, A 1-14.3 B016.1IB.9-16.5 8022 9 B 9-22.S 80231 B.9-231 802B.9 B. 9-28.1 80291 69-291 8033.B C.6-33.S 9001.2 O 5-1.2 9003. 9 O5-3.9 90041 O.5-4.1 90O6.B O5-6.B 90081 O5-81 9010 9 O 5-10. E 9011 1 O 5-11.1 90138_O.5-13.l 90181 R-181 90209 R-20.9 9021.1 R-21.1 90249 R-249 9025.1 R-25.1 90279 R-279 90281 R-281 t 1 C 6-29 1 MIN. COL LOAD X 0 0 0 •31 -55 -51 •54 -37 -42 -24 -33 -94 -103 •111 -69 •75 -24 0 -61 -71 -74 -42 ' -46 0 0 0 0 0 0 0 0 0 -11 -11 0 o : 0 -13 -13 : o ; 0 0 , 0 ' 0 0 2.6 0 0 , 2.6 26 Y 867 B7 43.8 -66 -114 •46 -37 •81 -81 -49 -71 26 47.8 51.9 1.3 2.2 -48 0.2 -101 -47 -47 -90 -77 1.1 19.1 37.2 43.1 417, 37 .8 17.3 17.6 -81 -123 -110 16.8 0 0 -134 -133 19 19 22.3 41.6 46 10.5: 0 0 -98 150 i 149 0 0.9 o i I i.a"7 2.9 | -148 26 -141 2.6 -130 2.6 -126! 0 ; 0 18 27 2.6 -122 26 2.6' 26: 115 0 0 -2 -9 0 0 0 0 0 -9 -9 0 0 0 0 0 -9. -9. 0 0 0 0 0 -9. -5. 0 -4.4 0 0 0 -3.9 -13 -43 -40 0 0 0 -44 -42 0 0 -2.6 0 0 0 0 0 0 0 -48 •2.6 -2.6 -46 -44 0 -42 -26 -1.3 -18 -18 27~~Tr3" 2.6 -131 26' 0 2.6 128' -18 -18 2.7 , -1.3 36 : 2.6-107 26 -132 0 0 3.6 3.6 ' 2.6 -109 2.6 • 2.6 0 14 17 0 0 14 131 -17 B 0 MAX. COL LOAD X Y 0 < 273 0 ' 286 0 . 137 0 0 2. 35.4 86.8 9. 55 ! 135 72.2 | 207 74.9. 227 47.8: 118 41 .81 108 24.2 , 63.4 33 . 75 87.5 28.4 103 : 141 109 154 82 131.6 74.8131.2 24.2 64.6 0 0 0 0 0 9. 9. 0 0 0 0 0 9. 0 i 15.2 ; 9. 54.5 132 52.2, 199 53.5 204 46.4: 96 42.2 102 0 0 0 0 0 0 . 16.4 ' 9.1 0 • 168 0 327, 0 . 221 , 0 214 0 341 0 164 0 155: 0 97.6 11 109. 11 ! 115 : 0 160! 0 0 0 0 i 13.2 114: 13.2 107 0 58.4 0 584 0 654 0 163 0 18.3 0 41 4! 2.6 0 : 0 0 i 0 : 808I 2.6 154 i 5.2 0 44 0 0 0 3.9 13. 37. 40. 0 0 0 44 41.8 0 0 2.6 0 0 0 0 0 0 0 2.6 155 48.4 0 1.2 0 . 2.4 2.6 2.6 2.6 I 143 ,46.2 2.6 ! 151 2.6 ! 126 ' 4.4 0 2.6 ! 130 41.8 0 2.4 0 i 3.6 26 1.3 26 120 17.6 2.6 I 129 17.6 2.6 3.6 2.6 3.6 .3 .3 2.6 134 17.6 26 137 17.6 0 3.6 .6 4.B .3 0 6 142 178 6 111 188 0 48 0 48 0 0 .6 144 178 6 111 1B.8 .6 24 0 MAX TEN 0 0 0 65.8 114 45.7 37.1 80.6 80.7 48.7 70.8 0 0 0 0 0 47.8 0 100. 47.1 46.6 89.7 77.2 0 0 0 0 0 0 0 0 80.8 122.6 110.4 0 0 0 1336 132.8 0 0 0 0 0 0 0 0 97.6 150 149.1 0 0 147.6 140.7 130 25.8 0 0 22.2 14.7 0 0 31.1 27.5 0 0 066 31.6 0 0 08.8 31 1 0 MAX SHEAF 0 0 2.6 35.4 55 72.2 74.9 47.B 41.8 24.2 33 93.8 103.4 111.2 62 74.8 24.2 9.1 60.8 71 74.4 46.4 46.4 9.1 5.2 0 4.4 0 0 0 3.9 13.2 43 406 0 0 0 44 41.8 0 0 2.6 0 0 0 2.6 0 0 26 48.4 2.6 26 46.2 44 2.6 41.8 26 1.3 17.6 17.6 2.6 2.6 176 17.6 1.3 2.6 17.8 1B8 0 0 178 188 26 COMBINED STRESS 3 T 0.00 0.00 0.00 0.16 0.40 0.09 0.06 0.23 0.23 0.10 0.18 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.33 0.09 0.09 0.27 0.21 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.23 0.45 0.38 0.00 000 0.00 0.52 0.52 ^0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.64 , 0.63 0.00 0.00 : 0.62 0.57 0.50 i 0.47 0.00 0.00 0.45 0.41 0.00 0.00 0.51 0.49 0.00 0.00 0.36 0.51 0.00 0.00 0.37 0.51 0.00 WIDE FOOTING V 0.00 0.00 0.00 0.05 0.10 0.16 0.17 0.08 0.06 0.03 0.04 0.24 0.29 0.32 0.19 0.17 0.03 0.00 0.12 0.15 0.17 0.08 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.06 0.00 0.00 0.00 0.07 0.06 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.07 0.00 0.00 0.06 0.00 0.00 0.01 0.01 0.00 ' 0.00 0.01 0.01 o.oo . 0.00 0.02 i 0.02 ' 0.00 0.00 0.02 0.02 0.00 Total _, 0.00 0.00 0.00 0.21 0.50 0.25 0.23 0.31 • 0.29 ! 0.12 : 0.22 i 0.24 0.29 i 0.32 s 0.19 ' 0.17 : 0.12 : 0.00 0.45 . 0.25 , 0.26 0.35 0.29 ± 0.00 0.00 0-00 0.00 0-00 0.00 0.00 0.00 0.24 0.52 0.44 0-00 0.00 0-00 0.59 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.64 0.71 0.00 0.00 0.69 0.57 0.50 0.54 0.00 0.00 047 0.42 0.00 0.00 0.52 0.50 0.00 0.00 0.38 0.53 0.00 0.00 0.39 0.53 0.00 COMBINED STRESS 4' WIDE FOOTING T V 0.00 : 0.00 0.00 0.00 0.00 0.00 0.06 0.05 0.16 i 0.10 0.03 , 0.16 0.02 i 0.17 0.09 ! 0.08 0.09 : 0.06 0,04 0.03 0.07 . 0.04 0.00 0.24 0.00 0.29 0.00 0.32 0.00 0.19 0.00 0.17 0.04 0.03 0.00 0.00 0.13 : 0.12 0.04 0.15 0.04 0.17 0.11 ' 0.08 0.08 0.08 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 0.00 0.09 0.01 0.18 0.07 i 0.15 0.06 0.00 0.00 . 0.00 0.00 0.00 0.00 ' 0.21 0.07 ! 0.21 0.06 0-00 0.00 : 0.00 0.00 ! 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 0.00o.oo o.oo . 0.12 0.00 ' 0.25 0.00 , 0.25 0.08 : 0.00 0.00 : 0.00 0.00 ' 0.25 i 0.07 0.23 i 0.00 0.20 ' 0.00 0.19 0.06 0.00 0.00 0.00 ' 0.00 0.18 0.01 0.16 0.01 0.00 0.00 0.00 0.00 0.20 0.01 0.19 0.01 0.00 0.00 i 0.00 0.00 0.14 0.02 0-20 0.02 0.00 0.00 0.00 0.00 0.15 0.02 0.20 0.02 0.00 0.00 Total 0.00 0-00 0-00 0.11 0.26 0.19 0.19 0.17 0.15 0.06 0.12 0.24 0.29 0.32 0.19 0-17 0.06 0.00 0.25 0.19 0.20 0.18 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.25 0.21 0.00 0.00 0.00 0.28 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.25 0.33 0.00 0.00 0.32 0.23 0.20 0.25 0.00 0.00 0.19 0.18 0.00 0.00 0.22 0.21 0.00 0.00 0.16 0.22 0.00 0.00 0.16 0.22 0.00 COMBINED STRESS 5' T 0.00 0.00 0.00 0.03 0.08 0.02 j 0.01 0.04 0.04 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.06 0.02 0.02 0-05 0.04 0.00 ' 0.00 0.00 : 0.00 . 0.00 < o.oo : 0.00 , 0.00 ; 0.04 i 0.09 ! 0.07 : 0.00 i 0.00 0.00 0.10 ! 0.10 : 0.00 ' 0.00 0.00 , 0.00 0.00 0.00 • 0.00 0.00 0.06 0.12 0.12 0.00 0.00 0.12 0.11 0.10 0.09 0.00o.oo . 0.09 0.08 0.00 i 0.00 • 0.10 0.09 0.00 0.00 0.07 0.10 0.00 0.00 0.07 0.10 0.00 WIDE FOOTING v 0.00 0.00 0.00 0.05 0.10 0.16 0.17 0.08 0.06 0.03 0.04 , 0.24 0.29 0-32 0.19 0.17 0.03 0-00 0.12 0.15 0-17 0.08 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.06 0.00 0.00 0.00 0.07 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 i 0.00 0.00 0.08 0.00 0.00 0.07 0.00 0.00 0.06 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.02 0.00 Total 0.00 0.00 0.00 l_ °-oe 0.18 0.17 0.18 0-12 0.11 0.04 0.08 0-24 0.29 0.32 0.19 0.17 0.04 0-00 0.18 0.17 0.18 0.13 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.15 0.13 0.00 0.00 0.00 0.17 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.12 0.20 0.00 0.00 0.19 0.11 0.10 0.16 0.00 0.00 0.10 0.09 0.00 0.00 0.11 0.11 0.00 0.00 0.09 0.12 0.00 000 0.09 0.12 0.00 T Page 2 of 2 .^-"ALOMAR AIRPORT ANCHOR BOLT LOAD COMBINATIONS Ap = bfooting e Ap Tcap Vcap 36 14 1128 196.7 27.4 k/boftx8 = 48 20 1961 342.0 55 26 3020 526.7 219.0631 JOI 1 2 3 4 5 8 8 10 11 13~~ 15 16 18 19 20 21 22 23 GRID K-1.1 K-2 K-3 K-4 K-5 K-6 K.8 K-9 K-10 K-11 K-12 K-13 K-15 L-16 L-18 L-19 L-20 L-21 L-22 L-23 J— -y ' L_24 J— 27 28 29 30 31 32 33 34 1001 1004 : 1007 1011 _1014 1017 1016 1021 1025 1028 1031 1034 200l" 2004 2007 2011 2014 2017 2018 20J1 2025 2028 2031 2034"" 3001 3004 3007 1 a 3018 3021 30J5 L-25 L-26 L-27 L-28 L-29 L-30 L-31 L-32 L-33 L-34 L.1-1.1 L1-4 L1-7 L1-11 L1-14 N-17 N-1B N-21 N-25 N-28 N-34 M-1.1 M-4 U-7 M-11 M-14 0-17 P-18 P-21 P-25 P-2B P-31 P-34 O-11 CM O-7 O-11 O-14 O-18 Q-21 Q-25 MIN. COL LOAD X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.2 -5-f 0 -60 -95 •85 -80 -75 0 . -81 • -92 101 101 -82 -49 -43 • •62 -47 -46 -36 L 6.5' 58 60 57 Y 27.6 10.5 -192 43.4 .194 16.3 381 -227 20.4 -182 11.6 27.2 56.7 54.5 55 -220 18.6 -174 10.5 6.4 9 -138 19.7 -185 69.3 8.8 13.5 -118 20.6_ •171 34V -72 -51 -61 -23 -34 14.5 -70i -48 ! -14 -46~^ 18.5 -27 -70 -59 -77 -31 '_ -1.5 114 -80 i -42 ' -13 -53 -42 14.9 23 • -3 0 -90 f^iee -12 0 0 -99 .14 -10 0 0 0 0 0 -95 -15 •10 0 0 0 -10 -193 •11 0 0 0 -92 -173 -108 -5.2 -3.9 0 0 0 0 0 0 0 0 0 0 -3.9 -3.9 0 0 0 0 0 2.6 0 0 0 0 -30 -3.9 0 33.3 ; -2.6 0 66.8 0 59.8 0 66.8 5.2 851 0 0 0 0 0 37 -26 0 803 0 87 0 0 MAX. COL LOAD X 0 0 0 0 0 0 0 0 0 0 _0_^ 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 2.2 0 0 45,2 59.1 47.2 43.7; 40.2' 0 57 53.8 59.5 "ssT1" 38.8 23.1 "915" 86.3. 7.3 0.7. 65 844 3.6. 01 98.5 83.1 4.6 0 Y 80.6 90.6 317 164 304 98 118 303 109 388 106 130 180 187 201 302 105 392 90.6 51.3 _79.2 385 122 294 221 66 118 377 123 275 101 . 198 299 361 270: 283 129 272 351 333 392 i 304 I 203 200 ! 286 332 258 261 449 260! 359' 334 384 300 197 04 0 218 0 87 0 218 .2 309 0 11B 0 251 0 286 3. 0 11 1R. 97 0 0 11 162 89. 0 0 0 0 0 106 163 89. 0 0 0 116 180 99. 0 0 0 110 161 927 5.2 3.9 0 0 0 0 0 0 0 0 0 0 3.9 3.9 0 0 0 0 0 2.6 0 0 0 0 39 26 0 0 0 0 26 0 0 MAX TEN 0 0 191. 0 t94. 0 0 226. 0 181.7 0 0 0 0 0 219.7 0 173.7 0 0 0 1378 0 1847 0 0 0 117.9 0 171.1 0 72 51.2 61.3 22.6 34.1 0 69.6 48.1 141 46.4 0 26.7 702 59.3 77.1 307 1.5 0 79.9 41.8 527 0 303 0 0 0 0 0 0 0 0 MAX SHEAR 3.9 0 118.1 166 124 0 0 1104 161.7 107.4 0 0 0 0 0 106 162.8 107.4 0 0 0 118.4 192.8 115 0 0 0 109.6 173 1084 5.2 59.8 951 85.3 79,7 75.1 0 81 92.4 100.7 100.9 82.1 49.2 62.2 91.5 86.3 77.3 70.7 65 844 93.6 1007 98,5 83.1 44.6 2.6 0 0 0 5.2 2.6 0 0 COMBINED STRESS 3 T 0.00 0.00 0.96 0.00 0.98 0.00 0,00 1.27 0.00 0.88 0.00 0.00 0.00 0.00 0.00 1.20 0.00 0.81 0.00 0.00 0.00 0.55 0.00 0.90 0.00 0.00 0,00 0.43 0.00 0.79 0.00 0.19 0.11 • 0.14 i 0.03 : 0.05 I 0.00 0.18 0.10 i 0.01 0.09 0.00 : 0.04 0.18 : 0.14 0.21 0.05 0.00 0.00 0.22 0,08 0.01 0.11 0.00 0.04 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 WIDE FOOTING V 0.00 0.00 0.36 0.63 Total 0.00 0.00 1.31 0.63 0.39 O.37,-- 0.00 0.00 0.32 0.60 0.30 0.00 0.00 0.00 0.00 0.00 0.30 0.61 0.30 0.00 0.00 0.00 0.36 0.81 0.34 0.00 0.00 0.00 0.32 0.67 0.31 0.00 0.11 0.25 0.21 0.19 0.17 0.00 0.19 0.24 0.27 . 0.27 0.19 0.08 0.12 0.23 0.21 0.18 0.15 o.oo : 0.20 0.24 ; 0.27 0.26 0.20 0.07 0.00 0.00 0.00 0.00 0,00 0,00 0.00 0.00 0.00 0.00 1.59 0.60 1.18 0.00 0.00 0.00 0.00o.,<xr 1.50. "0.6-U 1.12 TJ.OO 0.00 0.00 0.91 0,&1_ 1.24 0.00 0.00 0.00 0.74 0.6.7 1.10 0.00 / 0.30 0.36 0.35 0.21 0.22 0.00 0.37 0.33 0.29 0.36 0,19 0.12 0.30 0.37 0.42 0.22 0.15 000 0,43 0.32 0,28 0.38 0.20 0.11 0,00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 COMBINED STRESS 4 T 0.00 0.00 0.38/- o.oo 0.39 0.00 0.00 0.50 0.00 0.35 0.00 0,00 0.00 0,00X>.oo •" o>*tf /O.OO ' 0.32 0.00 0.00 0.00 0-22 ,'0.00 ' 0.36 0.00 0.00 0.00 S 0.17' ft'OO /0.32 0.00 0.07 0.04 0.06 i 0,01 i 0,02 0.00 0.07 0.04 0.00 0.04 0.00 0,01 0.07 0.05 0.08 ' 0.02 0.00 . 0.00 , 0.09 : 0.03 0.00 0.04 0.00 0.02 0.00 0,00 0,00 0.00~b.oo " 0.00 0.00 0.00 WIDE FOOTING V 0.00 0.00 0.36 0.63 0.39 0.00 0.00 0.32 0.60 0.30 0.00 0.00 0.00 0.00 0.00 0.30 0.61 0,30 0.00 0.00 0.00 0.36 0.81 0.34 0.00 0.00 0.00 0,32 0.67 0,31 0.00 0.11 0.25 0.21 0,19 L 0.17 0.00 0.19 0.24 0.27 0.27 0,19 0.08 0.12 0.23 0.21 0.18 0.15 0,00 ! 0.20 0.24 0.27 0.26 0.20 0.07 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 Total 0.00 , o.oo 0.74 0.63 0.78 0.00 0.00 0.82 0.60 0.65 0.00 0.00 0.00 0.00 0.00 0.78 0,61 0.63 0.00 0.00 0.00 0.58 0.81 0.70 0.00 0.00 0,00 0.48 0.67 0.62 0.00 0.19 0.29 0.26 0.20 0.19 0.00 0.26 0.28 0.28 0.31 0.19 0.10 0.19 0.29 0.30 0.19 0.15 0.00 0,29 0.27 0.28 0.31 0.20 0.09 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 COMBINED STRESS S T 0.00 0.00 0.19 0.00 0.19 0.00 0.00 0.25 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.16 0.00 0.00 0.00 0.11 0.00 0.17 0.00 0.00 0.00 0.08 0.00 0,15 0.00 0.04 ! 0.02 : 0.03 0.01 0.01 0.00 0.03 i 0.02 | 0.00 0.02 : 0.00 ' 0.01 0.03 0.03 0.04 : 0.01 ; 0.00 0.00 0.04 0.01 0.00 0.02 0.00 0.01 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 WIDE FOOTING V 0.00 0.00 0.36 0.63 0.39 0.00 o.oo 0.32 0.60 0.30 0.00 0.00 0.00 0.00 0.00 0.30 0.61 0.30 0.00 0.00 0,00 0.36 0.81 0,34 0.00 0.00 0.00 0.32 0,67 0.31 0.00 0.11 0.25 0.21 0.19 . 0.17 : 0.00 0.19 0.24 0.27 0.27 0.19 0.08 0.12 • 0.23 . 0.21 i 0.18 0.15 0.00 0.20 : 0.24 0.27 ' 0.26 , 0.20 ' 0.07 0.00 0.00 i 0.00 0.00 0.00 ' 0.00 0.00 0.00 Total 0.00 0.00 0.54 0.63 0.58 0.00 0.00 0.56 0.60 0.47 0.00 0.00 0.00 0.00 0.00 0.53 0.61 0.46 0.00 0.00 0.00 0.47 0.81 0.52 0.00 0.00 0.00 0.40 0.67 0.46 0.00 0,15 0.27 0.24 0.19 0.18 0.00 0.22 0.26 0.28 0.29 0.19 0.09 0,16 0.26 0.25 0.18 0.15 0.00 0.25 0.26 0,28 0.29 0.20 0.08 0.00 0.00 0,00 0.00 0,00 0.00 0.00 0.00 Page 1 of2 PALQMAR AIRPORT BLDG. 1&2 FOOTING LOAD COMBINATIONS PI LC1 (12-12) LC2 (12-13) DL+RLL+FLL DL+FLL+W (COLL is counted as DL) <:z r- Y(down) BLDG 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2 2 1 2 2 2 1 2 2 2 1 2 2 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 JOI 8034 9001 9018 9034 9014 8014. 8016. 8033. 9029. 9001.2 9006.8 9008. 90138 4008 9018. 9024.9 9025.1 9030.9 9031.1 9033.9 4004.9 4005.1 4007.9 90109 9011.1 9013.9 40021 6001 6034 9.9 4014 9015 4001 3001 9008.1 9016 2001 1001 9 23 13.2 13 9009 29 1 24 14 2 22 34 6 3001 3002 3014 12 6 1017 GRID C.6-34 O.5-1. R-18 R-34 A-14 A.1-14 B.9-16. C.6-33. C.6-29. 0.5-1.2 0. 5-6.8 0. 5-8.1 0.5-13. E.3-8.1 R-18.1 R-24.9 R-25.1 R-30.9 R-31.1 R-33.9 E 3-4.9 E.3-5.1 E.3-7.9 A-10.9 A-11.1 A-13.9 E.3-2 1 D-1 1 E-34 E.3-9.9 F-14 A.1-15 E.3-1.1 A-1.1 A-8.2 B-16 C-1 1 D-1.1 El-9 L-23 E 3-1 3.2 E.3-13 B9-16 L-29 K-1.1 L-24 E.3-14 K-2 L-22 L-34 K-6 O-l 1 A-2 B-14 K-12 K-8 N-17 1 DL X Y Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JL. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ! o o 0 0 0 : 0 0 ; o o ; o i 0 • 0 '00 0 • 0 '0,0 . 0 , 0 0 0 : 0 0 00 ' 0 0 0 0 0 0 . 0 0 : o o . 4 0 4 0 ; 4 o 4 0 4 0 4 0 6 0 4 0 5 0 4 0 5 : 0 6 0 9 0 10 ; o 13 0 12 0 13 0 14 0 10 ' 0 13 0 17 0 13 . 0 21 0 17 0 23 0 23 0 24 0 27 0 26 0 29 0 30 0 30 0 32 0 30 0 31 0 33 0 35 0 2 COLL X Y Z 0 0 o : o o 000 0 ' 0 0 000 0 1 0:2 o 020 02 0 03 0 030 030 030 000 040 0 4:0 040 040 0 4!0 0 4 i 0 000 0 0:0 o 0:0 000 000 000 020 020 020 020 030 040 0 50 060 0 . 5 : 0 0 7.0 080 0.8 0 0 10 0 0 10 0 090 0 15 0 0110 0 13 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 15 0 0 17 0 0 20 0 0 18 0 0 20 0 0 18 0 0 18 0 0 19 0 3 ROOFL X Y 0 0 0 0 0 : 0 0 : 0 o i o o i o 0 ' 0 0 000 000 000 000 000 0 0:0 000 000 0 00 000 000 000 000 0 0 ' 0 000 0 0 : 0 0 00 0 00 0 0 : 0 0 0 ' 0 o 5:0 0 5.0 000 0 00 030 020 020 000 020 040 040 060 0 12 0 000 0 15 0 060 0 15 0 040 0 20 0 030 0 22 0 0 22 0 060 0 21 0 0110 040 0110 0 26 0 070 070 4 FLOOR X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o • 0 0 0 0 0 o ; 0 0 0 0 : 0 0 , 0 0 0 0 0 0 ; 0 : 0 0 ' 0 0 0 0 0 0 0 Y 0 0 0 0 0 0 0 0 0 0 0 ' 0 0 0 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 7 0 5 0 3 0 10 ' 0 9 0 9 i 0 11 0 11 0 13 0 12 0 9 0 20 0 9 0 15 0 12 0 23 0 8 0 25 0 10 0 10 0 0 28 0 0 16 0 0 24 0 0 31 0 0 24 0 0 12 0 0 33 0 59 0 LC1 X Y - 0 0 Q 0 0 1 2 2 2 3 3 3 3 0 4 - - - ' 4 - * : - 4 - - 10 - - 11 . - 12 - - • 13 - - 13 - 16 - 26 - - 27 - - 27 - - 32 - - 36 - - 39 - - 40 - - 44' - - 46 • - 52 - 53 ^ - 57 - - 62 - 64 66 74 74 - 78 - 84 85 85 85 — 87 - 91 - 95 . LC2 VWUPLIFT X Y 0 - ' 0 0 0 - , 0 - • 1 . ' 2 - i 2^ • : 2 3: - • 3: • , 3 - . 3 4 - 4 - - • 10 - 2 - 3 - 13 - 13. 10 22 ™ - 23 - - 27! - - 28 - - 29 - - 321 • 24' - - 21 - - 46 - • 23 - 42 - - 28 - - 55 - - 26 - 59 - 31 31 68 43 - 65 78 64 36 78 87 - LC2 W (S-N) X Y 0; - ! oi - 1 o; - i 0 - i O1 -1 r - ' 2 - ! 2 - • 2 - 1 3! - ; 31 - - ! 3 - - ' 3 - 41 - .4 4 - - 10 6 - - 7. - - 13 - - 13 - - 13 - - 24i - - 25 - - , 27 • - ! 30' - - ' 32 - - i 35 - - 32 - 32 - 46. - - 37 - 47. - 42 - 58. - 44 . 63 • 52 - 52 - 72 - 63 - 74 . 61 - 74 - 61 84 92 - LC2 w(N-s; X Y 0 o' o; 0' o; r - ! 2' - 2| - • 2j - • 3i • '• 3: - 3' - - \ 3j - 4, - 4, - - 10 - 6 - 7. - - 13 - - 13 - - 13 - - 24' - - 25 - - 27 - - 30 - 32 - - i 35 - - i 32 - - , 32 - • • 46 - - 37 - - i 47 - - • 42 - - • 58 - 44' • 63 - . 52 - : 52 • i 72 - 63 - 74 - 81 - 74 - 61 - 84 - 88 - LC2 WfW-E X Y 0' 0! o. - 0' 0. 1' 2 2 2 3 3' - - < 3. - 3. . 4 - 4 - 10; - 6: - 7 - - 13 - - 13' - - 13 • - 24 - - 25 - - 27 - 30 - 32 - • 35 - - 32 - - 32 - - 46 - - 37 • - ' 47 - - : 42 - 58 - 44 - 63 - 52 - • 52 - 72 - 63 - 74 - . 81 - 74 - 61 - 84 - 90 • LC2 W(E-W) X Y 0 - ! 0 0 - . 0 0 - ' 1l 2 2 2 3 3 3 3 41 - 4 - - 10 - 6 - 7, - 131 - 13' 13! ^_ - : 24 i - - 25. - - 27! - - , 30 - - 32 - 35 - 32 - - 32 - - 46 - - 37 . 47. - - 42 58, 441 - 63 - 52 - 52 72: 63 - 74 81 • 74 - 61 - 84 - 88 UPLIFT (k - - - - - - - - - - - - - -3 - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MAX Grav.(k) t ( 4 4 4 4 4 4 4 < i t i t 10 11 12 13 13 16 26 27 27 32 36 39 40 44 46 52 53 57 62 64 66 74 74 78 84 85 85 85 87 91 95 Page 1 of 2 P2 BLDG 2 1 1 2 2 1 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 JOI 5010 30 3018 5013.2 7010 3034 13 6013.2 7034 7013.2 8029 3005 9014 6010 7029 7001 2 3008 15 16 8 3007 18 3011 7016 28 7015 3004 3011 5 3021 3028 3025 3031 3014 GRID F-10 L-30 0-18 F-13.2 H-10 Q-34 K-13 G-13.2 D.1-34 H-13.2 D.1-29 A-5 0.5-14 G-10 C-29 B-1 1 E-2 B-8 K-15 L-16 E-8 0-7 L-1B B-11 C-16 L-26 B-1 5 O-4 0-11 E-5 Q-21 Q-28 0-25 Q-31 O-14 7008 B-8 7023 C-23 2017 0-17 1 DL X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 0 Y Z 36 34 0 0 34 0 39 40 39 40 45 46 41 48 46 36 46 49 50 40 50 65 49 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 61 0 58 0 65 0 69 0 84 0 62 0 62 0 59 0 72 0 78 0 82 : 0 82 0 76 0 98 I 0 102 0 99 ; 0 2 COLL X 0 0 0 0 0 0 Y 20 20 23 20 26 27 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 27 28 27 25 20 25 28 29 26 31 35 26 30 37 29 39 36 34 46 44 44 40 49 53 ' 58 . 58 46 56 ' 57 55 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 ROOF LL X 0 0 0 0 0 0 Y Z 5 i 0 29 13 2 12 14 0 ; 24 0 0 0 0 0 0 0 0 0 0 0 o1 o : 0 ! 0 i 0 . 0 : 0 0 0 0 : 0 , 0 ' 0 0 o ! 0 0 i o 0 ! 0 2 42 15 44 4 6 5 45 46 12 13 15 11 13 18 22 20 44 19 50 24 24 : 20 25 . 26— r32 32 ' 22 89 94 ! 19 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 FLOOR X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 0 0 i 0 0 : 0 0 0 : Y 34 13 27 38 33 32 27 44 0 33 0 44 56 44 0 0 47 44 79 57 54 43 51 47 18 55 30 49 49 ' 67 | 58 64 ': 64 64 ' 95 0 i 0 159 Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LC1 X Y Z - 95' - - 96 - - 97j. 99, - • 111J - - : 112: - - : 113' - - 114! - - 115! - • : 1171 - - ' 119' - - ' 119: - - ; 120' - • 120; - - 122' • - ' 125' - • : 125; - - 138: - - 140- - - 143 - - 145i - - 152: • - ' 163' - • 164 - - 172 - - 177 - - 178 - - 179 - - 179; - • . 186' - - 204 - - 221 - - 236 - - 236 - - 239; - - 243 - - 253i - - 332 - LC2 W/UPLIFT X Y Z . 66 - - 40 - 73 - 97 - 88 - - - - - 86 - • 67 - 110 - 36 - 86 - 36 - 112 - 108 - 112 - - - - - - . - - 37 - • 39l - - 103 - - 115 - - 119 - - 122 - - 122 - - 117J - - 121 - - 126 - - 82 - - 140: - - : 85 - - . 133: - - 133: - - 146 - - . 157 - - 171 - - 174 - - 174' - - 198 - - . 76. - - 78 - . 296' - LC2 W (S-N) X Y Z - - . - - - . - - - - - - - - - - - - - - - . 90j - 67' . 84' - 97 - 99, - ge; - eg; - 1121 . 73j- 102! - 75' - 115i - 114! - 115: - 77; - 79? - 1131 - 125;. 128 - 132; - 130' . 134' - 141 - - 144 - • 124 - - 158. . - 128 - - 155 - - 155 . - 166. - - 179 - - 195 - -204, - - : 204 - - . 214 . - • 154' - - 159' - . 311' - LC2 W(N-S) X Y Z - 90 - 67 - 84 - 97 - 99 - 98 - 89 - 112 - 73 - 102 - I 75 - 115 - 114 - 115 - 77 - 79 - 113 - 125 - 128 - - - - - - - - - - - - - - - - . - - - ; 132 - - 134 - . : 134 - : 141 - 144 - - - - 124 • - 158 - - 128 • - , 155 - - i 155 - - : 166 - - 179 - 195 - I 204 - - - 204 • - 220 - 154 - i 159 - 315 - - . - LC2 W (W-E) X Y Z - - - - - . - . - - - . . - - - - . . - - - - - - 90 - 67j - 84 - 97 - 99 - 98 i - 89 112 73 102 75 115 114 115 77 79 - 113 - 125 - 128 - 132 - 134J - 134 - 141 - 144 124 • - 158 - - - - - - - - 128 — 155 - 155 - 166 - 179 - 195 - 204 - 204 - - 217 - - - 154 - 159 - - 313 - LC2 W (E-W) X Y Z - - - . - - - - - - 90 67 84 97 99 98 69 112 73 102 75 115 114 115 77 79 113 - 125 - - - - - - - - - - - - - - - - - 128 - - 132 - - 134 - - 134 - - • 141 - - 144' - - : 124 - • 158 - - 129. - • 155' - - 155 - - 166. - - i 179 - - ! 195 - - 204 - - 204 - - 217 - - 154 - • ; 159 - - 315 - UPLIFT (k) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MAX Grav.(k) 95 96 97 99 111 112 113 114 115 117 119 119 120 120 122 125 125 138 140 143 145 152 163 164 172 177 178 179 179 186 204 221 236 236 239 243 253 332 ^122 \Z Page 2 of 2 o ~TOO.XLJJ tO f S I "§,E -D CNo joCD to coCL O o H CD iiII Ul-JCQ %Zs*E O "S3 "82o III j3IS I CQ O t- ^OOOOCO (DCMO ^tOh-OCMin O) i 1L 1 •E 5 «Q. y —.M TO O)O •*- to £ g> "5 !S £ '0 *B i*-OQ. o o £g §^ ro -<cr M C oco (0 Q. C + -1O — —tn COD. ^C Oo oin CD in£ II II _O) I »5 = 13 S cto o«° (tt n "c 5°UJS^ ..5°Ul uj 2z — O o Q. C O " S « (O e TO OOOOOOOOOOOOOOOOOOOOOO COOOCOCOOIOSO)^'^' CNJ CM CN CM CO rO CO CNCMCMCMCMCMCMCOCO LLLLLL LLLLLL Sit] <£ CO ^ >< Lils tr Oo Oa:< otra <oo:<xoD: *gf2 D- -i V^-• \u,s VJ s- *vT £ <U v* - ^ ^i(^% SI\1 ^{ •%<n$1 tr k~ u-"w ^r*NJ ^>- ^r;^ ^•^ ^ tT'•^3 ^•0 14^ i MJn^.-- o<: <z- ^o "^7 "S^ -, ^ ^ ^o ^00