Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
2173 SALK AVE; STRUCT CALCS; CB060217; Structural Calculations (2)
Chavez-Grieves consulting engineers, inc. 4700 Lincoln Rd. NE, Suite 102, Albuquerque, NM 87109 Phone (505) 344^080 Fax (505) 343-8759 Project Ventana Real Revised Structural Calculations Client Architect - Nadal Architects Developer - Newport National ENGINEER: David Grieves DATE: 3/13/1 Chavez-Grieves Consulting Engineers, Inc. Rev. 11/14/05 G:\A2 The Engineering Firm of Choice... la Office 2A\DOCUMENT\Calc Cover Sheetdoc oo o eno roo W cu ort o OS (0c •• fO >i -P S-lc o (U -P> OT 0) <U (/) -Hm >mm c 4J (0 (D iH Q CU L i•• } |> D i > Z9X9UA ZZXHM ZZXHM ZZXHM ZZXHM ZZXHM ZZXHM ZZXHM 29X91M ZZXHM ZZXHM ZZXHM ZZXHM ZZXHM ZZXHM ZZXHM 9ZX9I-M 9ZX91-M ZZXHM ZZXHM ZZXHM ZZXHM Z9X91M 9ZX91M •c O s o i • i S 1 S c X 5 8X1 s¥§ ZX9UW1 9frX9Wl ' X ZZXHM ZZXHM ZZXHM ZZXHM ZZXHM ZZXHM ZX9M1 SCX9WI ZZXHM ZZXHM ZZXHM ZZXHM " s X 5 8X 5 ZZXHM 61XZLM ZZXHM ' ZZXHM ^IXZiH Ot-XZtM ZZXHM 61XZ1.M 61XZ1M 61XZIM — ||IZX9IM' 5^X9 IM ZZXHM S B B 5 sXir 9fX9W\ 9I.XZIM 1 91XZIM 91.XZIM 91XZIM § 9I.XZIM 91XZI-M 9I.XZIM 91XZI-M 9I.XZIM 91XZI-M 91XZIM 1 ! gixztM g 9VXZI-M 91-XZtM L 91.XZI.M 91-XZIM 1 L HXZl-M HXZW HXZIM HXZIM HXZIM 9I.X21M COXC(C .. T Z2XHA/ZZX^IM ZZX^IM o X ZZXHM 1 ZZXHM ZZXHM ZZXHM GO 5? ZZXHM g ZZXHM ZZXHM 3 ZZXHM i ZZXHM g ZZXVIM ZZXHM ZZXHM X ZZXHM g ZZXHM ZZXHM ZZXHM X ZZXHM g ZZXHM L ZZXHM ZZXHM >< ZZXHM g ZZXHM 9tXZLM 91XZI-M 9tXZlM 91XZIM 91-XZtM 91XZIM 9I.XZIM 9I.XZIM 91XZIM 5 CO SX91A/91XZIM 91XZIM xi91.XZIM oaAi.uv, Z9XIZM ' OfrX9tM ' ' EZXIZM V SHEET NO -- OF JOB _Chavez-Grieves consulting engineers, inc. CUENT JOB NQ SUBJECT 5639Jefferson Street NE, Suite I • Albuquerque, NM 87109 py NTAC: DATE Phone: 505.344.4080 • Fax: 505.343.8759 CHECKED BY DATE 2 A rom nr-i r- rH o cr>o roo (Xl <D rt!S >wPS I CM rH >, <y oDi -Pton3C •• -P MG O (U -P > CO <1J OJCO -H CQto c4-i mtO .-HQ Cu o_. xo —— T - - \ s:0 ^ r—H--H- rwy -r—H= -ej C& II r — H- -H- -H- -H- o r H . . f» —,_, 1" roro C m•H o M (1)01 0)•a co -H w W >•H Wwo PC; H Um cuI o 0) mcm 4-)cQ) <D «j Q) (0 M S-) CO fo tO CQtr> ro ' "O COJP pi JoOS —M3 "OlO O-'o- CO^rx Ov — •*Io os— Oioo 00,0 o;o —!•t 00ex CKJ d d CM co co tx !co rx; ix in v> S3: — CM•— <— oo coico oo; o r — !O OiO O O O'— '-'.— — O O CK ;.S3 Ixj CM CM O CK; — id d!d d':— d;— — ;O O C£ V) O LU < 03 2 So (5 D) O)C C "5 "5 CM CM "O "DC CD O <D (D E ED O LJ_ |l ii u1/3>UJct: <Z O C£0 UJ O < u tt:<LU I Va:0 to LUO^.< u ty !Y SHEAto TJCCN CO "nOcz c.CM £ *o 0 T>LCM C^ "oOQi •D CM •D CO 'c S3 S3 •^•^ CO S3rx CK PO00CM CK OCMCM CO S3 CM CMS3 CO CM CK CMS3 •q- S3TCM CM Tt00 O CM CO S3 00 5 in•<tIX COIXrN CO S3 CM to -^ 'O CMS3 CO S3 CKrx>o IX $CN O •^hN. a-r-v o •o•^r•^r CO -0^. o COs CK OCMCM CO S3 00 S3S3 CO CKCM T COS3 *O CKtnC\ rx c<CK •t CO 00 S3 CO •5 IO•^1 00rxC\l CO S3 CM UO T CK CM•O IX IOCM u: S3 §CN C\ rx'00 u- o- S3 00 •^O CM IXT CK CO CM 10 CN tx CK iO S3 CK S IX 8CM S3 CKIX OS3 3 V) f-^O O"s? u-> CK CM T •o>o o- co 'O r^ mCM m CO~o §CM t^CO CO CO S o* CO CN CMiO O- -OCMCM 00oS3 O CM IT) •O>O S r^•o f cr UOCM r^CK t^~-o CM •« 00 X> 00•^•>o 00 CM f<i ys i^ 00 -T COg T-sr CO Kd(^ •<? CO~oCM u:P t^ o CO •o 00 CM-<r CO -o CKSCM S3 -^J- R 00 — 00f>>o •^•r^-q- •q-'"O COKIOCM •O O -q- U1 1OCO tx "»cx "O S IS. 5 CM £CM "3 S N. S *<f inp -<r S3i^ LO SCO CO ? ^t S3 -<r — 10 o lO CMS3 CK CO Ri UO S3S3 IO CM IO ^3-S3 d0- l/)S3 doCM S3 IT IO IOs> oo CM•0 o •o ODS3 •«r ?5rs S3 S3 IX S> °9 CO IT) N. Csrx 00 S T CKCOCM M3toS3 00 0 CO S3 IO IOCM •^ COS3 CM O"O O- 2 ~^-<2 |^iO r^ <N 55 CK 00COCM OO 00 CK lO >o -<r 3 •<t"0 CM IO ? ->r COix^t Cv(X s: 00\r. CO § ir ^O S3 00 CO S3 CK % 00 TS3 S3CM X,8 00 TT -^S3S3 S3 % IX T'S3 rx 8 COu: rx •^ S3 •^• CO 8 •^ S3•^r CO-<j-CK CM X•*r -^f S3 CK •5- TJo rx•<r CO CNCK -<t fxIO rx•t \ CN^•e i«^ c^v^ 0 -s^ ~< "^ >- ?-^ rf^ ^4 £— CNCO^ftO^Oh^CO O CM O ro ooo o COo ro o W 03 M-l <U O PS O rtrtSc ••n3 >i4-> i-iC O(U 4->> CO 0) 0) CO -rHm > CQ 03 C 4-> 05 03 rH Q CU fl I'll H- -w —!: -H--H- s-^r- ui ^a -H H--« rH- CM O 00 O oo O oo O .(00 0) Oofi -pen m 0) -P> en Q) (B CO -Hm >mm c-u m(0 tMQ cu 9 ^ -£vr. Vf o 023608060303Ventana Real_REV_6Story: story2ViewDataBasePlanf 1 *l ["Tin"*J- UL> Cs •t — H-= s H- o-o -r — Hr -M- II H— : L. r g iV" o H- eft TV- H--H H- O Frame Story Shears RAM Frame vl0.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real REV 6 03/03/06 08:36:02 Ignore Effects At Face of Joint CRITERIA: Rigid End Zones: Member Force Output: P-Delta: No Diaphragm: Rigid Ground Level: Base Wall Mesh Criteria: Max. Allowed Distance between Nodes (ft): 8.00 Frame #1 Load Case: El Level Roof story3 story2 Seismic EQ_UBC97_X_+E_F Shear-X kips 76.28 220.87 283.87 Change-X kips 76.28 144.58 63.00 Shear-Y kips -0.01 0.00 0.10 Change-Y kips -0.01 0.01 0.10 Load Case: E2 Level Roof story3 story2 Seismic EQ_UBC97_X_-E_F Shear-X kips 74.47 216.29 278.12 Change-X kips 74.47 141.82 61.83 Shear-Y kips 0.00 0.00 0.06 Change-Y kips 0.00 0.00 0.06 Load Case: E3 Level Roof story3 story2 Seismic EQ_UBC97_Y_+E_F Shear-X Change-X Shear-Y Change-Y kips kips kips kips -0.67 -0.67 -0.08 -0.08 -7.28 -6.61 0.14 0.22 -8.12 -0.84 0.52 0.38 Load Case: E4 Level Roof story3 story2 Seismic EQ_UBC97_Y_-E_F Shear-X Change-X Shear-Y Change-Y kips kips kips kips 4.88 4.88 -0.09 -0.09 6.35 1.47 0.16 0.25 9.07 2.71 0.65 0.49 Frame #2 Load Case: El Level Seismic EQJJBC97 X_+E_F Shear-X Change-X Shear-Y Change-Y Frame Story Shears m IV RAMFi RAM ^argare NTBIN«ICNAL| DptaRas Roof story3 story2 Load Case: E2 Level Roof storyS story2 Load Case: E3 Level Roof story3 story2 Load Case: E4 Level Roof story3 story2 Frame #3 Load Case: El Level Roof storyS story2 Load Case: E2 Level Roof story3 story2 ame vlO.O t Coffey, PE; C-G Eng e: Ventana Real REV kips 76.28 220.87 283.87 ineering 6 kips 76.28 144.58 63.00 Seismic EQ_UBC97_X_-E_F Shear-X Change-X kips kips 74.47 74.47 216.29 278.12 141.82 61.83 Seismic EQ_UBC97_Y_+E_F Shear-X Change-X kips kips -0.67 -0.67 -7.28 -8.12 -6.61 -0.84 Seismic EQJJBC97 Y_-E_F Shear-X Change-X kips kips 4.88 4.88 6.35 9.07 1.47 2.71 Seismic EQ_UBC97_X +E_F Shear-X Change-X kips kips . 47.20 47.20 152.05 213.92 104.85 61.87 Seismic EQ_UBC97_X_-E_F Shear-X Change-X kips kips 48.92 48.92 156.42 219.49 107.51 63.07 kips 0.01 -0.02 -0.03 Shear-Y kips 0.00 -0.01 -0.01 Shear-Y kips -0.13 0.22 0.57 Shear-Y kips -0.12 0.19 0.54 Shear-Y kips -0.02 0.06 -0.04 Shear-Y kips -0.01 0.02 -0.01 Page 2/6 03/03/06 08:36:02 kips 0.01 -0.03 -0.01 Change-Y kips 0.00 -0.01 -0.01 Change-Y kips -0.13 0.35 0.35 Change-Y kips -0.12 0.31 0.35 Change-Y kips -0.02 0.08 -0.09 Change-Y kips -0.01 0.03 -0.04 BfVI Frame Story Shears Ml V RAM Frame vl 0.0 RAM Mar§aret Coffey> pE; C-G Engineering NURNAncNw! DataBase Vr.ntana Real RF.V 6 Load Case: E3 Level Roof story3 stoiy2 Load Case: E4 Level . Roof . story3 story2 Frame #4 Load Case: El Level Roof story3 story2 Load Case: E2 Level Roof story 3 story2 Load Case: E3 Level Roof story3 story2 Load Case: E4 Level Roof story3 story2 — — Seismic EQ_UBC97_Y_+E_F Shear-X Change-X kips kips 0.57 0.57 7.01 6.44 7.86 0.85 Seismic EQ_UBC97_Y_-E_F Shear-X Change-X kips kips -4.69 -4.69 -6.01 . -1.32 -8.79 -2.79 Seismic EQ_UBC97_X_+E_F Shear-X Change-X kips kips 52.86 52.86 166.78 113.92 226.86 60.08 Seismic EQJJBC97_X_-E_F Shear-X Change-X kips kips 54.77 54.77 171.59 116.81 232.79 61.20 Seismic EQJJBC97_Y_+E_F Shear-X Change-X kips kips 0.74 0.74 7.61 6.87 8.37 0.76 Seismic EQ_UBC97_Y_-E_F Shear-X Change-X kips kips -5.08 -5.08 -6.69 -1.60 -9.34 -2.65 Shear-Y kips -0.11 0.33 -0.20 Shear-Y kips -0.14 0.43 -0.26 Shear-Y kips 0.01 -0.02 0.01 Shear-Y kips 0.00 -0.01 0.00 Shear-Y kips -0.17 0.45 -0.25 Shear-Y kips -0.16 0.43 -0.24 Page 3/6 03/03/06 08:36:02 Change-Y kips -0.11 0.44 -0.53 Change-Y kips -0.14 0.57 -0.69 Change-Y kips 0.01 -0.02 0.02 Change-Y kips 0.00 -0.01 0.01 Change-Y kips -0.17 0.62 -0.70 Change-Y kips -0.16 0.58 -0.67 Frame Story Shears RAM Frame v 10.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real REV 6 Page 4/6 03/03/06 08:36:02 Frame #5 Load Case: El Level Roof story3 story2 Seismic EQJJBC97 X_+E_F Shear-X Change-X Shear-Y Change-Y kips kips kips kips -0.18 -0.18 14.27 14.27 0.39 0.57 48.42 34.15 -0.19 -0.58 67.06 18.64 Load Case: .E2 Level Roof story3 story2 Seismic EQJUBC97 X_-E_F Shear-X Change-X kips -0.17 0.37 -0.18 kips -0.17 0.54 -0.55 Shear-Y kips 7.22 23.65 34.30 Change-Y kips 7.22 16.43 10.65 Load Case: E3 Level Roof story3 story2 Seismic EQ_UBC97_Y_+E_F Shear-X kips 0.02 -0.04 0.02 Change-X kips 0.02 -0.07 0.06 Shear-Y kips 61.82 204.55 265.87 Change-Y kips 61.82 142.73 61.32 Load Case: E4 Level Roof story3 story2 Seismic EQ_UBC97_Y_-E_F Shear-X kips 0.01 0.00 -0.01 Change-X kips 0.01 -0.01 -0.01 Shear-Y kips 83.49 278.18 363.71 Change-Y kips 83.49 194.69 85.53 Frame #6 Load Case: El Level Roof story3 story2 Seismic EQ_UBC97_X_+E_F Shear-X Change-X kips -0.16 0.34 -0.16 kips -0.16 0.50 -0.50 Shear-Y kips 3.98 6.63 10.68 Change-Y kips 3.98 2.65 4.05 Load Case: E2 Level Roof Seismic EQJUBC97 X_-E_F Shear-X Change-X Shear-Y Change-Y kips kips kips kips -0.16 -0.16 2.00 2.00 Bf^l| Frame Story Shears m IV RAM Frame vl 0.0 RAMi Margaret Coffey, PE; C-G Engineering - iNTERNAnaNAil DataRagp- Vp.ntflna Rpal RF.V (\ story3 story2 Load Case: E3 Level Roof story3 story2 Load Case: E4 Level Roof story3 story2 Frame #7 4^ Load Case: El ^^ Level Roof story3 story2 Load Case: E2 Level Roof story3 story2 Load Case: E3 Level Roof story3 story2 • ' Load Case: E4 Level Roof — — 0.34 0.49 -0.16 -0.50 Seismic EQ_UBC97_Y_+E_F Shear-X Change-X kips kips 0.00 0.00 -0.01 -0.01 0.00 0.01 Seismic EQ_UBC97_Y_-E_F Shear-X Change-X kips kips 0.00 0.00 0.00 0.00 0.00 0.00 Seismic EQ_UBC97_X +E_F Shear-X Change-X kips kips -0.16 -0.16 0.34 0.50 -0.16 -0.50 Seismic EQ_UBC97_X_-E_F Shear-X Change-X kips kips -0.16 -0.16 0.34 0.49 -0.16 -0.50 Seismic EQ_UBC97_Y_+E_F Shear-X Change-X kips kips 0.00 0.00 -0.01 -0.01 0.00 0.01 Seismic EQ UBC97 Y_-E_F Shear-X Change-X kips kips 0.00 0.00 3.21 5.49 Shear-Y kips 62.54 166.48 223.91 Shear-Y kips 68.57 176.62 239.42 Shear-Y kips -6.11 -19.97 -27.57 Shear-Y kips -3.09 -9.75 -14.10 Shear-Y kips 63.36 188.90 250.18 Shear-Y kips 54.08 Page 5/6 03/03/06 08:36:02 1.21 '2.27 Change-Y kips 62.54 103.94 57.43 Change-Y kips 68.57 108.05 62.80 Change-Y kips -6.11 -13.86 -7.60 Change-Y kips -3.09 -6.66 -4.36 Change-Y kips 63.36 125.54 61.28 Change-Y kips 54.08 Frame Story Shears RAM Frame v 10.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real REV 6 Page 6/6 03/03/06 08:36:02 story3 story2 0.00 0.00 0.00 0.00 158.53 209.97 104.44 51.44 Frame #8 Load Case: El Level Roof story3 story2 Seismic EQ_UBC97_X_+E_F Shear-X Change-X kips -0.11 0.11 0.61 kips -0.11 0.22 0.50 Shear-Y kips -12.13 -35.11 -50.21 Change-Y kips -12.13 -22.98 -15.10 Load Case: E2 Level Roof story3 story2 Seismic EQ_UBC97_X_-E_F Shear-X kips -0.11 0.11 0.60 Change-X kips -0.11 0.22 0.49 Shear-Y kips -6.13 -17.12 -25.71 Change-Y kips -6.13 -10.99 -8.59 Load Case: E3 Level Roof story3 story2 Seismic EQ_UBC97_Y_+E_F Shear-X Change-X Shear-Y Change-Y kips kips kips kips 0.00 0.00 64.79 64.79 0.00 0.00 200.66 135.87 0.00 0.00 268.01 67.35 Load Case: E4 Level Roof story3 story2 Seismic EQJJBC97 Y_-E_F Shear-X Change-X Shear-Y Change-Y kips kips kips kips 0.00 0.00 46.39 46.39 0.00 0.00 147.20 100.82 0.01 0.01 194.84 47.63 SHEET NO OF SUBJECTChavez-Grieves consulting engineers, inc. CLJENT JOB NO. 5639 Jefferson Street NE, Suite I •Albuquerque, NM 87109 oy 1f*lAt^ nATF-?/0 Phone: 505.344.4080 • Fax: 505.343.8759 ~f CHECKED BY . DATE 5" C^K- (Vim SHEET NO OF Chavez-Grieves consulting engineers, inc. CUENT " ^ ,,nR NQ SUBJECT 5639 Jefferson Street NE, Suite I • Albuquerque, NM 87109 QV Afafs HATF Phone: 505.344.4080 • Fax: 505.343.8759 CHECKED BY DATE UA u g^feHf1 2 7» UA 64^e^sc 0^v€ C^6$ ^ U DeltaGrip™ System B-36 and DGBF-36 • 22 Gage llowable Diaphragm Shears (q.,) (In Pounds per Lineal Fool), and flexibility factor (F) for DeltaGrip™ Seam Attachment ASD Puddle DGSeam welds Attachment Span 4'0"5'O"TO"8'0"9»0»11W 12-0" 7 1 5 4 . 4" O.C. 6" O.C 8" O.C 12" O.C 18" O.C 24" O.C 4" O.C 6" O.C 8" O.C 12'' O.C 18" O.C 24" O.C' 4" O.C • 6" O.C 8" O.C 12" O.C 18" O.C 24" O.C F F F. .F F F F - F F F F F F F F F F F 1277 8.3+1 1R 1118 9.3+1 0.6R 1042 10.1+103R 987. 11.4+9.5R 876 12.7+8.7R ,818 13.6+8R 1122 3.8+68.1 R 1007 4.9+67.7R 948 5.8+67.4R 905 7.3+66.6R 804 8.9+65.6R 752 10+64.9R 97V 1 7+96.7R 871 2.9+96.3R 814 3.9+96R 764 5.6+952R '667 7.5+94.1 R 615 9+93 2R 1207 8.6+8.8R ' 1032 9.7+8.4R 945' ( 874- 12.1+73R 752 - 13.8+63R 687 14.9+5.5R 1074 .5+54.5R 942 62+54.1 R 871 7.3+53.7R 811 9+52.9R 704 1 0.9+51 :9R . 649 12.3+51 R 940 33+773R 826 4.6+77R 759 5.7+76.6R 695 7.7+75.9R 592 10+74.7R 533 11.7+73.7R 1159 8.8+7.3R 973 878 794 12.7+5.8R .665 14.6+4.7R 600 16+3.8R 1040 5.8+45.4R 896 7.1+45R 817 8.2+44.7R 745 10.1+43.9R 633 12.3+42.8R 568 14+41.8R 91.8 . 4.4+64.4R 794 5.8+64.1 R 720 7+63.8R 647 9.1+63R 536 11.7+61.9R 472 13.7+60.8R 1123 8.9+62R 929 , 10.2+5.9R* 830 1 1 3+5.5R 732 132+47R 602 15.3+3.6R 538 1 6.9+2 .6R 1014 6.4+38.9R 861 7.7+38.6R '.776 8.9+382 R 696 11+37.4R .575 13.4+36.3R 5.10 15.3+352R 902 52+55.2R 771 6.6+54.9R .692 7.9+54.6R 611 10-1+53.9R 492 12.9+52.7R 428 1 52+51. 6R 1095 9+ilR •1&3+54R 792 11.5+4.8R 685 135+4R 555 15.9+2.8R 491 1 7.7+1 .8R 994 6.8+34R 835 82+33.7R 745 9.5+33.4R 659 11.6+32.6R 531 143+31. 5R 467 16.4+3Q.3R 5.&J483R -V-3" 72+48 1R 670 85+47.8R 584 10.9+47R 459 13.9+45.9R 394. 16.4+44.7R 1074 9.1+4.8R 870 10.5+4.5R 763 11.7+42R 648 13.8+3.4R 519 16.4+2.3R. 454 1 8.4+1 2R - ^869 . 72+30 2R 814 8.6+29.9R 721 9.9+29.6R 627 122+28.9R 498 15+27.7R 433 173+26.6R «^«L 4 -^n 7.7+42 7R 91+424R 562 1.1,6+41 7R 433 14.7+40.6R 369 17.4+39.4R 938, , 92+43R 849 1 0.6+4.1 R 739 11.8+3.7R 619 14.1+3R 490 1 6.8+1 .8R 425 19+0.7R 704^* 7,4+272R 704 , 701 02+26.6R 600 12.6+25.9R 471 15.6+24.8R 406 18.1+23.6R '" HI?* 81+384R ^ J *\v469 ^*^flr 9.5+382R, ' 469"^ 12-1+37 5R 413 15.4+36.4R 348 182+352R 93+3 9R1' **- <!• 718 1.2+3.4R 595 143+2.6R 466 17.1+1.5R 401 19.5+03R 17+24/R' 9^+24 5R 105+242R 578 13+23.5R 448 16.1+22.4R 384 1 8.7+21. 2R 84+349R 48+34JR 125+34.1R 388 -159+33R 331 1 8.9+31 .8R ^652" ^^' 93+liSR^ 121+3R.'"* 575 14.5+23R 446. 1 7.5+1 2R 381 19.9+OR 7^4 10.7+222^ 13 3+its^ -T 430 16.5+20.4R 365 1.9.3+1 92R Ifin •f-u iff £-'£- ~ "' 164+3'tflR' *; 317 19.5+29R 1) Deck end laps to be 2 inches minimum over supports.- : ' • . 2) Diaphragm Shear values based'on a consen^tive 3 or more span condition- . 3) For qa the safety factor for allowable stress design; Q, has been applied to the tabulated values. 4) Allowable shear, q^, is for diaphragms subjected to load combinations that include earthquake loads for non-shaded areas. Shaded areas indicate bucking mode of failure governs. Adjustment may be made for load combinations subject to wind loads per AISI Section D5. . . 4 DeltaGrip™ System April 2003 au_ DC o w< o •"> CO COun CD co un t LT>I—I1 C\Jt—I co A C3 LO CTi CT> CTl CDoo oo OI/) o O C3 £_ U3 03 H— ~Ocu o s-rv- o o-i i-v T3 03 >-> -M • CO C3a; 4-5 i LO==> oo <D a> QJ ^=|- 03 > <LJ CD O O3 C CU ^f-t-> 03 ~a03 i— O C3 Q Q_ C_3 V Criteria. Mass and Exposure Data RAM Frame v9.0 Jeff Hanks DataBase: Ventana Real REV 3 12-15-05 01/16/06 09:55:16 CRITERIA: Rigid End Zones: Member Force Output: P-Delta: No Diaphragm: Rigid Ground Level: Base DIAPHRAGM DATA: Ignore Effects At Face of Joint Elev Overrun Rigid Roof Rigid storyS Rigid story2 ._ Rigid Disconnect Internal Nodes of Beams: Disconnect Nodes outside Slab Boundary: STORY MASS DATA: Calculated Values: Level Weight Mass Elev Overrun Roof storyS story! Values Used: Level Roof storyS story2 kips 16.3 820.5 2530.4 2435.0 Weight kips 836.8 2530.4 2435.0 k-s2/ft 0.51 25.48 78.59 75.62 Mass k-s2/ft 25.99 78.59 75.62 Yes Yes MMI ft-k-s2 17 217225 643448 654973 MMI ft-k-s2 217297 643448 654973 Xm ft 147.49 143.91 141.73 145.16 Xm ft 143.98 141.73 145.16 Ym ft 36.41 46.30 45.05 45.62 Ym ft 46.11 45.05 45.62 EccX 0. 17. 17. 18. ft 67 35 92 55 EccX 17. 17. 18. ft 35 92 55 EccY 1 5 6 6 ft .35 .62 .10 .10 Lump Below None None None EccY 5 6 6 ft .62 .10 .10 WIND EXPOSURE DATA: Calculated Values: Level Elev Overrun Roof storyS story2 Building Extents (ft) MinX 141.50 -0.58 -10.07 -10.07 MaxX 152.67 288.58 288.58 299.08 MinY 25.50 -0.58 -8.50 -8.50 MaxY 48.08 93.08 93.08 93.08 Expose Full Full Full Full Parapet ft 0.00 0.00 0.00 0.00 Loads and Applied Forces RAM Frame v9.0 Jeff Hanks DataBase: Ventana Real REV 3 12-15-05 01/16/06 09:55:16 LOAD CASE: Wind Wind UBC 97 Exposure: C Basic Wind Speed (mph): 70.0 Importance Factor: 1.000 Method 1 (Normal Force) Mean Roof Height (ft): Top Story Height + Parapet = 45.00 Ground Level: Base WIND PRESSURES: CeLeeward = 1.340 CqWindward = 0.8 CqLeeward = 0.5 qs = 12.60 psf Height CeWindward Pressure ft 45.00 41.00 27.00 13.50 0.00 APPLIED STORY FORCES: Type: Wind_UBC97_l_X Level Elev Overrun Roof story3 story2 1.340 1.316 1.206 1.060 1.060 psf 21.949 '. 21.707 20.598 19.127 19.127 Ht ft 45.00 41.00 27.00 13.50 Fx kips 0.00 15.96 27.54 26.57 Fy kips 0.00 0.00 0.00 0.00 X ft 0.00 0.00 0.00 0.00 Y ft 36.79 45.08 44.27 42.29 70.07 0.00 Type: Wind_UBC97_l_Y Level Elev Overrun Roof story3 story2 Ht ft 45.00 41.00 27.00 13.50 Fx kips 0.00 0.00 0.00 0.00 Fy kips 0.00 44.17 82.98 79.46 X ft 147.08 144.07 141.68 141.89 Y ft 0.00 0.00 0.00 0.00 0.00 206.61 MCE Ground Motion - Conterminous 48 States Zip Code - 92008 Central Latitude = 33.15116 Central Longitude =-117.305221 Period MCE Sa (sec) (%g) 0.2 124.4 MCE Value of Ss, Site Class B 1.0 045.8 MCE Value of S1, Site Class B Spectral Parameters for Site Class D 0.2 124.4 Sa = FaSs, Fa =1.00 ^ 1.0 070.5 Sa = FvS1, Fv =1.54 MCE Ground Motion - Conterminous 48 States Zip Code - 92009 Central Latitude = 33.101431 Central Longitude = -117.263542 Period MCE Sa (sec) (%g) 0.2 122.1 MCE Value of Ss, Site Class B 1.0 044.5 MCE Value of S1, Site Class B Spectral Parameters for Site Class D 0.2 123.3 Sa = FaSs, Fa =1.01 1.0 069.4 Sa = FvS1, Fv =1.56 Loads and Applied Forces RAM Frame v9.0 Jeff Hanks DataBase: Ventana Real REV 3 12-15-05 Page 2/3 01/16/06 09:55:16 LOAD CASE: Seismic Seismic UBC 97 Static Force Procedure Zone: 4 Importance Factor: 1.000 Na: 1.000 Nv: 1.000 Provisions for: Force Ground Level: Base Dir Eccent R X + And - 6.4 Y + And - 6.4 Ta Equation Std,Ct=0.020 Std,Ct=0.020 Dir Ta T T-used Cv Ca X 0.347 0.426 Y 0.347 0.449 Total Building Weight (kips) APPLIED STORY FORCES: Type: EQ_UBC97_X_+E_F Level Elev Overrun Roof story3 story2 Type: EQ_UBC97_X_-E_F Level Elev Overrun Roof story3 story2 Type: EQ_UBC97_Y_+E_F Level Elev Overrun Roof story3 story2 0.426 0.64 0.44 0.449 0.64 0.44 = 5802.27 Ht Fx ft kips 45.00 0.00 41.00 252.51 27.00 502.83 13.50 241.93 997.27 Ht Fx ft kips 45.00 0.00 41.00 252.51 27.00 502.83 13.50 241.93 997.27 Ht Fx ft kips 45.00 0.00 41.00 0.00 27.00 0.00 13.50 0.00 Soil Type: SD Building Period-T Method B Calculated Method B Calculated .llCal 0.048 0.048 .8ZNvI/R 0.050 0.050 0.00 Fy kips 0.00 0.00 0.00 0.00 OLOO Fy kips 0.00 0.00 0.00 0.00 000 Fy kips 0.00 252.51 502.83 241.93 997.27 2.5CaI/R CvI/RT 0.172 0.235 0.172 0.222 Ft 0.00 0.00 X ft 147.49 143.98 141.73 145.16 X ft 147.49 143.98 141.73 145.16 X ft 148.16 161.33 159.65 163.71 Y ft 37.76 51.73 51.15 51.72 Y ft 35.05 40.49 38.95 39.53 Y ft 36.41 46.11 45.05 45.62 Type: EQ_UBC97_Y_-E_F Loads and Applied Forces RAM Frame v9.0 Jeff Hanks Page 3/3 NTERNAJDNAI DataRaSfv Vftntana Real RFV 3 1?-lS-ftS Level Elev Overrun Roof story3 story2 — — — Ht ft 45.00 41.00 27.00 13.50 Fx kips 0.00 0.00 0.00 0.00 . Fy kips 0.00 252.51 502.83 241.93 01/16/06 09:55:16 X ft 146.82 126.63 123.81 126.61 Y ft 36.41 46.11 45.05 45.62 0.00 997.27 NTERNAnONAL Building Story Shears RAM Frame v9.0 Jeff Hanks DataBase: Ventana Real REV 3 12-15-05 01/16/06 09:55:16 CRITERIA: Rigid End Zones: Member Force Output: P-Delta: No Diaphragm: Rigid Ground Level: Base Ignore Effects At Face of Joint Load Case: D Level Roof storyS story2 DeadLoad RAMUSER Shear-X kips 0.00 0.00 0.00 Change-X kips 0.00 0.00 0.00 Shear-Y kips 0.00 0.00 0.00 Change-Y kips 0.00 0.00 0.00 Load Case: Lp Level Roof storyS story2 PosLiveLoad RAMUSER Shear-X kips 0.00 -0.05 0.08 Change-X kips 0.00 -0.05 0.13 Shear-Y kips 0.00 0.11 -0.18 Change-Y kips 0.00 0.11 -0.29 Load Case: Ln Level Roof story3 story2 NegLiveLoad RAMUSER Shear-X kips 0.00 0.00 0.00 Change-X kips 0.00 0.00 0.00 Shear-Y kips 0.00 0.00 0.00 Change-Y kips 0.00 0.00 0.00 Load Case: Sp Level Roof story3 story2 PosRoofLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.00 0.00 0.00 0.00 Shear-Y kips 0.00 0.00 0.00 Change-Y kips 0.00 0.00 0.00 Load Case: Wl Level Roof storyS story2 Wind Wind_UBC97_l_X Shear-X Change-X Shear-Y Change-Y kips kips kips kips 15.96 15.96 0.00 0.00 43.50 27.54 0.00 0.00 70.07 26.57 0.00 0.00 OiliFl V RAM Frame v9.0 RAM JeffHanks NTERNffloNwl DataBase- V^ntana Load Case: W2 Wind Level Roof story3 story2 Load Case: El Seismic Level Roof story3 story2 Load Case: E2 Seismic Level Roof storyS story2 Load Case: E3 Seismic Level Roof storyS story2 Load Case: E4 Seismic Level Roof storyS story2 Building Story Shears Real REV 3 12-15-05 Wind_UBC97_l_Y Shear-X Change-X kips kips 0.00 0.00 0.00 0.00 0.00 0.00 EQ_UBC97_X_+E_F Shear-X Change-X kips kips 252.51 ' 252.51 755.34 502.83 997.27 241.93 EQ_UBC97_X_-E_F Shear-X Change-X kips kips 252.51 252.51 755.34 502.83 997.27 241.93 EQ_UBC97_Y_+E_F Shear-X Change-X kips kips 0.00 0.00 0.00 0.00 0.00 0.00 EQ_UBC97_Y_-E_F Shear-X Change-X kips kips .0.00- 0.00 0.00 0.00 0.00 0.00 Shear-Y kips 44.17 127.15 206.61 Shear-Y kips 0.00 0.00 0.00 Shear-Y kips 0.00 0.00 0.00 Shear-Y kips 252.51 755.34 997.27 Shear-Y kips 252.51 755.34 997.27 *~fff S Page 2/2 01/16/06 09:55:16 Change-Y kips 44.17 82.98 79.46 Change-Y kips 0.00 0.00 0.00 Change-Y kips 0.00 0.00 0.00 Change-Y kips 252.51 502.83 241.93 Change-Y kips 252.51 502.83 241.93 Frame Story Shears X> £>C/?'4 RAM Frame v9.0 Jeff Hanks DataBase: Ventana Real REV 3 12-15-05 01/16/06 09:55:16 CRITERIA: Rigid End Zones: Member Force Output: P-Delta: No Diaphragm: Rigid Ground Level: Base Ignore Effects At Face of Joint Frame #1 Load Case: D Level Roof storyS story2 DeadLoad RAMUSER Shear-X Change-X Shear-Y Change-Y kips kips " kips kips -4.20 -4.20 0.00 0.00 -6.40 -2.21 -0.01 -0.01 -1.04 5.36 0.01 0.02 Load Case: Lp Level Roof story3 story2 PosLiveLoad RAMUSER Shear-X kips -2.93 -4.49 -0.72 Change-X kips -2.93 -1.56 3.77 Shear-Y kips 0.00 -0.01 0.00 Change-Y kips 0.00 -0.01 0.01 Load Case: Ln Level Roof story3 story2 NegLiveLoad RAMUSER ar-X kips 0.01 0.01 0.00 Change-X kips 0.01 0.00 -0.01 Shear-Y kips 0.00 0.00 0.00 Change-Y kips 0.00 0.00 0.00 Load Case: Sp Level Roof story3 story2 PosRoofLiveLoad RAMUSER Shear-X Change-X kips -0.37 -0.54 -0.08 kips -0.37 -0.17 0.46 Shear-Y kips 0.00 0.00 0.00 Change-Y kips 0.00 0.00 0.00 Load Case: Wl Level Roof story3 story2 Wind Wind UBC97 1 X Shear-X kips 3.79 10.28 16.88 Change-X kips 3.79 6.49 6.60 Shear-Y kips 0.00 0.00 0.00 Change-Y kips 0.00 0.00 0.00 Bil 51 IV RAM Frame v9.0 RAM Jeff Hanks NTEBNWiONAil FJataRasfv Vfinta™ Load Case: W2 Wind Level Roof storyS story2 Load Case: El Seismic Level Roof storyS story2 Load Case: E2 Seismic Level Roof storyS story2 Load Case: E3 Seismic Level Roof storyS story2 Load Case: E4 Seismic Level Roof storyS story2 Frame #2 Frame Storv Shears ^ 7 i Real REV 3 12-15-05 Wind_UBC97_l_Y Shear-X Change-X kips kips 4.03 4.03 4.96 0.94 2.28 -2.68 EQ_UBC97_X_+E_F Shear-X Change-X kips kips 62.94 62.94 184.15 121.22 '246.42 62.27 EQ_UBC97_X_-E_F Shear-X Change-X kips kips 57.87 57.87 174.20 116.33 236.67 62.46 EQ_UBC97_Y_+E_F Shear-X Change-X kips kips 15.56 15.56 14.78 -0.78 -4.28 -19.06 EQ_UBC97_Y_-E_F Shear-X Change-X kips kips 31.00 31.00 44.56 13.56 25.01 -19.55 Shear-Y kips 0.00 0.00 0.00 Shear-Y kips 0.01 -0.05 0.04 Shear-Y kips 0.01 -0.06 0.04 Shear-Y kips -0.03 0.12 -0.07 Shear-Y kips -0.04 0.13 -0.08 Page 2/14 01/16/06 09:55:16 Change-Y kips 0.00 0.00 0.00 Change-Y kips 0.01 -0.06 0.09 Change-Y kips 0.01 -0.07 0.10 Change-Y kips -0.03 0.15 -0.19 Change-Y kips -0.04 0.17 -0.22 Load Case: D DeadLoad RAMUSER Level Roof storyS story2 Shear-X Change-X kips kips 4.95 4.95 7.52 2.57 1.38 -6.14 Shear-Y kips 0.01 -0.07 0.05 Change-Y kips 0.01 -0.08 0.12 m IV RAMFrRAM JeffHan NTERNATDNMl PataJRaS Load Case: Lp Level Roof story3 story2 Load Case: Ln Level Roof story3 story2 Load Case: Sp Level Roof story3 story2 Load Case: Wl Level Roof story3 story2 Load Case: W2 Level Roof story3 story2 Load Case: El Level Roof storyS story2 Frame Story Shears ame v9.0 ks e: Ventana Real REV 3 12-15-05 PosLiveLoad RAMUSER Shear-X Change-X kips kips 3.36 3.36 5.08 1.72 0.97 -4.11 NegLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.00 . 0.00 0.00 0.00 PosRoofLiveLoad RAMUSER Shear-X Change-X kips kips 0.60 0.60 0.94 0.34 0.18 -0.76 Wind Wind_UBC97_l_X Shear-X Change-X kips kips 3.93 3.93 10.95 7.02 17.77 6.82 Wind Wind_UBC97_l_Y Shear-X Change-X kips kips -0.93 -0.93 -2.62 -1.68 1.04 3.66 Seismic EQ_UBC97_X_+E_F Shear-X Change-X kips kips 63.44 63.44 192.70 129.26 259.54 66.84 Shear-Y kips 0.01 -0.03 0.01 Shear-Y kips 0.00 0.00 0.00 Shear-Y kips 0.00 -0.01 0.01 Shear-Y kips 0.00 0.00 0.00 Shear-Y kips -0.01 0.02 -0.01 Shear-Y kips 0.01 -0.05 0.03 Page 3/14 01/16/06 09:55:16 Change-Y kips 0.01 -0.04 0.05 Change-Y kips 0.00 0.00 0.00 Change-Y kips 0.00 -0.01 0.02 Change-Y kips 0.00 0.00 0.00 Change-Y kips -0.01 0.03 -0.04 Change-Y kips 0.01 -0.06 0.08 INL.M|j™ Load Case: E2 Level Roof storyS story2 Load Case: E3 Level Roof storyS • story2 Load Case: E4 Level Roof storyS k story2 Frame #3 Load Case: D Level Roof storyS story2 Load Case: Lp Level Roof storyS story2 Load Case: Ln Level) Roof storyS story2 Frame Storv Shears ^W/ •ame v9.0 tks e:VentanaReal REV 3 12-15-05 Seismic EQ_UBC97_X_-E_F Shear-X Change-X kips kips 61.45 61.45 187.17 125.73 250.10 62.93 Seismic EQ_UBC97_Y_+E_F Shear-X Change-X kips kips -8.69 -8.69 -22.64 -13.95 -11.13 11.51 Seismic EQ_UBC97_Y_-E_F Shear-X Change-X kips kips -2.48 -2.48 -6.19 -3.71 17.19 23.38 DeadLoad RAMUSER Shear-X Change-X kips kips 0.76 0.76 1.07 0.31 0.19 -0.88 PosLiveLoad RAMUSER Shear-X Change-X kips kips 0.38 0.38 0.51 0.14 0.10 -0.41 NegLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.00 0.00 0.00 0.00 Shear-Y kips 0.00 -0.03 0.03 Shear-Y kips -0.14 0.39 -0.23 Shear-Y kips -0.12 0.35 -0.21 Shear-Y kips 0.00 -0.02 0.02 Shear-Y kips 0.00 -0.02 0.01 Shear-Y kips 0.00 0.00 0.00 Page 4/14 01/16/06 09:55:16 Change-Y kips 0.00 -0.03 0.06 Change-Y kips -0.14 0.53 -0.62 Change-Y kips -0.12 0.47 -0.56 Change-Y kips 0.00 -0.02 0.04 Change-Y kips 0.00 -0.02 0.03 Change-Y kips 0.00 0.00 0.00 Ktii] Frame Story Shears !f| V RAM Frame v9.0HAM jcfnianks i NIHNWCNAI DataBase Vpritana R«a1 1TRV ^ 17-1<UV> Load Case: Sp Level Roof story3 story2 Load Case: Wl Level Roof story3 story2 Load Case: W2 Level Roof storyS story2 Load Case: El Level Roof storyS story2 Load Case: E2 Level Roof storyS story2 Load Case: E3 Level Roof storyS story2 — — — PosRoofLiveLoad RAMUSER Shear-X Change-X kips kips -0.05 -0.05 -0.11 -0.06 -0.03 0.09 Wind Wind_UBC97_l_X Shear-X Change-X kips kips 3.92 3.92 10.57 6.65 17.22 6.65 Wind Wind_UBC97_l_Y Shear-X Change-X kips kips -1.50 -1.50 -1.07 0.42 -1.63 -0.55 Seismic EQ_UBC97_X_+E_F Shear-X Change-X kips kips 59.98 59.98 179.64 119.67 238.73 59.09 Seismic EQ_UBC97_X_-E_F Shear-X Change-X kips kips 63.34 63.34 187.01 123.67 248.04 61.03 Seismic EQ_UBC97_Y_+E_F Shear-X Change-X kips kips -3.39 -3.39 3.93 7.33 7.42 3.49 Shear-Y kips 0.00 0.00 0.00 Shear-Y kips 0.00 -0.01 o.oo' Shear-Y kips 0.00 -0.01 0.00 Shear-Y kips 0.02 -0.11 0.07 Shear-Y kips 0.03 -0.12 0.08 Shear-Y kips -0.06 0.22 -0.14 './/-<'£ Page 5/14 01/16/06 09:55:16 Change-Y kips 0.00 0.00 0.00 Change-Y kips 0.00 -0.01 0.01 Change-Y kips 0.00 -0.01 0.01 Change-Y kips 0.02 -0.13 0.18 Change-Y kips 0.03 -0.15 0.21 Change-Y kips -0.06 0.28 -0.35 BfVil Frame Story Shears m 1 V RAM Frame v9.0 RAM Jeff Hanks NTERNAnowl DataRasfV Vftntana Rfial RF.V 3 17-1^-ftS Load Case: E4 Level Roof story3 story2 Frame #4 Load Case: D Level Roof story3 story2 Load Case: Lp Level Roof storyS story2 Load Case: Ln Level Roof storyS story2 Load Case: Sp Level Roof storyS story2 Load Case: Wl Level Roof storyS story2 — — — Seismic EQ_UBC97_Y_-E_F Shear-X Change-X kips kips -13.70 -13.70 -18.05 -4.35 -20.52 -2.47 DeadLoad RAMUSER Shear-X Change-X kips kips -1.49 -1.49 -2.33 -0.84 -0.42 1.90 PosLiveLoad RAMUSER Shear-X Change-X kips kips -0.78 -0.78 -1.24 -0.46 -0.21 1.03 NegLiveLoad RAMUSER Shear-X Change-X kips kips -0.01 -0.01 -0.02 -0.00 0.00 0.02 PosRoofLiveLoad RAMUSER Shear-X Change-X kips kips -0.17 -0.17 -0.29 -0.12 -0.06 0.23 Wind Wind_UBC97_l_X Shear-X Change-X kips kips 4.35 4.35 11.65 7.30 18.22 6.57 Shear-Y kips -0.08 0.26 -0.16 Shear-Y kips 0.01 -0.07 0.05 Shear-Y kips 0.01 -0.04 0.02 Shear-Y kips 0.00 0.00 0.00 Shear-Y kips 0.00 -0.01 0.01 Shear-Y kips 0.00 0.00 0.00 Page 6/14 01/16/06 09:55:16 Change-Y kips -0.08 0.34 -0.43 Change-Y kips 0.01 -0.08 0.12 Change-Y kips 0.01 -0.05 0.06 Change-Y kips 0.00 0.00 0.00 Change-Y kips 0.00 -0.01 0.02 Change-Y kips 0.00 0.00 0.00 m IV RAMFiRA||™ Load Case: W2 Level Roof storyS story2 Load Case: El Level Roof storyS story2 Load Case: E2 Level Roof storyS story2 Load Case: E3 Level Roof storyS story2 Load Case: E4 Level Roof storyS story2 Frame #5 Load Case: D Level Roof storyS story2 Frame Story Shears •ame v9.0 >ks ,e: Ventana Real_REV_3 _12-15-05 Wind Wind_UBC97_l_Y Shear-X Change-X kips kips -1.61 -1.61 -1.22 0.39 -1.73 -0.51 Seismic EQ_UBC97_X_+E_F Shear-X Change-X kips kips 66.98 66.98 196.98 130.01 253.49 56.51 Seismic EQ_UBC97_X_-E_F Shear-X Change-X kips kips 70.68 70.68 205.08 134.40 263.39 58.31 Seismic EQ_UBC97_Y_+E_F Shear-X Change-X kips kips -3.54 -3.54 4.19 7.73 7.80 3.61 Seismic EQ_UBC97_Y_-E_F Shear-X Change-X kips kips -14.89 -14.89 -19.99 -5.10 -21.91 -1.92 DeadLoad RAMUSER Shear-X Change-X kips kips -0.01 -0.01 0.07 0.08 -0.05 -0.12 Shear-Y kips -0.01 0.02 -0.01 Shear-Y kips 0.01 -0.05 0.03 Shear-Y kips 0.00 -0.03 0.03 Shear-Y kips -0.14 0.39 -0.23 Shear-Y kips -0.12 0.35 -0.21 Shear-Y kips -1.31 -2.09 -0.63 Page 7/14 01/16/06 09:55:16 Change-Y kips -0.01 0.03 -0.04 Change-Y kips 0.01 -0.06 0.08 Change-Y kips 0.00 -0.03 0.06 Change-Y kips -0.14 0.53 -0.62 Change-Y kips -0.12 0.47 -0.56 Change-Y kips -1.31 -0.79 1.47 CV7' Kn|| Frame Story Shears Y\ RAM Frame v9.0 RAM Jeff Hanks NTERNAnoNAil DataBase Vftntana Real RF.V 1 17-1^-OS Load Case: Lp Level Roof storyS story2 Load Case: Ln Level Roof storyS story2 Load Case: Sp Level Roof storyS story2 Load Case: Wl Level Roof storyS story2 Load Case: W2 Level Roof story3 story2 Load Case: El Level Roof storyS story2 — — — PosLiveLoad RAMUSER Shear-X Change-X kips kips -0.01 -0.01 0.05 0.06 -0.03 -0.08 NegLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.00 0.00 0.00 0.00 PosRoofLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.01 0.01 -0.01 -0.01 Wind Wind_UBC97_l_X Shear-X Change-X kips kips -0.01 -0.01 0.02 0.03 -0.01 -0.03 Wind Wind_UBC97_l_Y Shear-X Change-X kips kips 0.01 0.01 -0.03 -0.04 0.02 0.05 Seismic EQ_UBC97_X_+E_F Shear-X Change-X kips kips -0.32 -0.32 0.72 1.03 -0.35 -1.06 Shear-Y kips -0.80 -1.27 -0.40 Shear-Y kips 0.02 0.04 0.01 Shear-Y kips -0.59 -0.96 -0.25 Shear-Y kips 0.28 0.33 -0.38 Shear-Y kips 11.24 41.44 63.60 Shear-Y kips 9.12 20.99 17.04 Page 8/14 01/16/06 09:55:16 Change-Y kips -0.80 -0.47 0.87 Change-Y kips 0.02 0.01 -0.03 Change-Y kips -0.59 -0.38 0.71 Change-Y kips 0.28 0.05 -0.71 Change-Y kips 11.24 30.21 22.16 Change-Y kips 9.12 11.87 -3.95 tilm J^rameStonr Shears 51 1 V RAM Frame v9.0 RAM Jeff Hanks NTE8N*noNAi| DataRasp- Ventana fcpal RFV ^ 19-15-ft^ Load Case: E2 Level Roof storyS story2 Load Case: E3 Level Roof storyS story2 Load Case: E4 Level Roof storyS story2 Frame #6 Load Case: D Level Roof story3 story2 Load Case: Lp Level Roof story3 story2 Load Case: Ln Level Roof storyS story2 — — — Seismic EQ_UBC97_X_-E_F Shear-X Change-X kips kips -0.31 -0.31 0.71 1.02 -0.35 -1.06 Seismic EQ_UBC97_Y_+E_F Shear-X Change-X kips kips 0.05 0.05 -0.18 -0.23 0.11 0.28 Seismic EQ_UBC97_Y_-E_F Shear-X Change-X kips kips 0.04 0.04 -0.16 -0.21 0.10 0.27 DeadLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.02 0.02 -0.02 -0.04 PosLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.01 0.01 -0.01 -0.02 NegLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.00 0.00 0.00 0.00 Shear-Y kips 1.90 -5.87 -17.35 Shear-Y kips 54.05 201.54 257.30 Shear-Y kips 76.38 281.78 360.47 Shear-Y kips 0.57 1.15 0.40 Shear-Y kips 0.33 0.69 0.21 Shear-Y kips -0.05 -0.08 -0.02 Page 9/14 01/16/06 09:55:16 Change-Y kips 1.90 -7.76 -11.48 Change-Y kips 54.05 147.49." 55.77 Change-Y kips 76.38 205.40 78.70 Change-Y kips 0.57 0.57 -0.75 t Change-Y kips 0.33 0.37 -0.48 Change-Y kips -0.05 -0.03 0.06 nim *rameStoni Shears VI V RAM Frame v9.0 RAM Jeff Hanks iNTEiwioNwl DataRase- Ventarm Real RF.V 1 12-H-ftS Load Case: Sp Level Roof storyS story2 Load Case: Wl Level Roof storyS story2 Load Case: W2 Level Roof story3 story2 Load Case: El Level Roof storyS story2 Load Case: E2 Level Roof stoiy3 story2 Load Case: E3 Level Roof storyS story2 — — — PosRoofLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.00 0.00 0.00 0.00 Wind Wind_UBC97_l_X Shear-X Change-X kips kips -0.01 -0.01 0.01 0.02 -0.01 -0.02 Wind Wind_UBC97_l_Y Shear-X Change-X kips kips 0.00 0.00 -0.01 -0.01 0.01 0.01 Seismic EQ_UBC97_X_+E_F Shear-X Change-X kips kips -0.17 -0.17 0.39 0.56 -0.20 -0.59 Seismic EQ_UBC97_X_-E_F Shear-X Change-X kips kips -0.17 -0.17 0.40 0.57 -0.20 -0.60 Seismic EQ_UBC97_Y_+E_F Shear-X Change-X kips kips 0.00 0.00 -0.03 -0.03 0.02 0.05 Shear-Y kips 0.58 0.99 0.25 Shear-Y kips -0.42 -0.68L -0.27 Shear-Y kips 12.04 26.04 48.72 Shear-Y kips -6.00 -10.22 0.13 Shear-Y kips -7.88 -12.90 -6.29 Shear-Y kips 65.01 155.60 220.12 Page 10/14 01/16/06 09:55:16 Change-Y kips 0.58 0.40 -0.73 Change-Y kips -0.42 -0.26 0.42 Change-Y kips 12.04 14.00 22.67 Change-Y kips -6.00 -4.22 10.35 Change-Y kips -7.88 . -5.02 6.61 Change-Y kips 65.01 90.59 64.52 Frame Story Shears RAM Frame v9.0 Jeff Hanks DataBase: Ventana Real REV 3 12-15-05 Page 11/14 01/16/06 09:55:16 Load Case: E4 Level Roof storyS story! Seismic EQ_UBC97_Y_-E_F Shear-X Change-X kips 0.01 -0.05 0.04 kips 0.01 -0.06 0.09 Shear-Y kips 70.84 163.55 239.41 Change-Y kips 70.84 92.71 75.86 Frame #7 Load Case: D Level Roof story3 story2 Dead Load RAMUSER Shear-X Change-X - Shear-Y Change-Y kips kips' kips kips 0.00 0.00 3.21 3.21 0.02 0.02 5.04 1.83 -0.02 -0.04 1.03 -4.01 Load Case: Lp Level Roof story3 story2 PosLiveLoad RAMUSER Shear-X C kips 0.00 0.01 -0.01 ige-X kips 0.00 0.01 -0.02 Shear-Y kips 2.08 3.30 0.62 Change-Y kips 2.08 1.22 -2.68 Load Case: Ln Level Roof story3 story2 NegLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.00 0.00 0.00 0.00 Shear-Y kips 0.01 0.02 0.00 Change-Y kips 0.01 0.01 -0.02 Load Case: Sp Level Roof storyS story2 PosRoofLiveLoad RAMUSER Shear-X Change-X kips 0.00 0.00 0.00 kips 0.00 0.00 0.00 Shear-Y kips 0.72 1.13 0.26 Change-Y kips 0.72 0.41 -0.87 Load Case: Wl Level Roof story3 story2 Wind Wind UBC97 1 X ;ar-X kips -0.01 0.01 -0.01 Change-X kips -0.01 0.02 -0.02 Shear-Y kips -0.03 -0.02 0.16 Change-Y kips -0.03 0.01 0.19 •RlMl Frame Story Shears Vl V RAM Frame v9.0 RAMl Jeff Hanks Load Case: W2 Wind Level Roof storyS story2 Load Case: El Seismic Level Roof storyS story2 Load Case: E2 Seismic Level Roof storyS story2 Load Case: E3 Seismic Level Roof storyS story2 Load Case: E4 Seismic Level Roof storyS story2 Frame #8 tReal REV 3 12-15-05 Wind_UBC97_l_Y Shear-X Change-X kips kips 0.00 0.00 -0.01 -0.01 0.01 0.01 EQ_UBC97_X_+E_F Shear-X Change-X kips kips -0.17 -0-17 0.39 0.56 -0.20 -0.59 EQ_UBC97_X_-E_F Shear-X Change-X kips kips -0.17 -0.17 0.40 0.57 -0.20 -0.60 EQ_UBC97_Y_+E_F Shear-X Change-X kips kips 0.00 0.00 -0.03 -0.03 0.02 0.05 EQ_UBC97_Y_-E_F Shear-X Change-X kips kips 0.01 0.01 . -0.05 -0.06 0.04 0.09 Shear-Y kips 11.27 27.58 45.72 Shear-Y kips -2.65 -5.98 -6.52 Shear-Y kips 0.73 4.17 6.84 Shear-Y kips 69.09 181.83 238.85 Shear-Y kips 58.63 151.54 198.75 Page 12/14 01/16/06 09:55:16 Change-Y kips 11.27 16.30 18.14 Change-Y kips -2.65 . -3.33 -0.54 Change-Y kips 0.73 3.44 2.67 Change-Y kips 69.09 112.74 57.02 Change-Y kips 58.63 92.91 47.21 Load Case: D DeadLoad RAMUSER Level Roof storyS story2 Shear-X Change-X kips kips 0.00 0.00 0.02 0.02 -0.02 -0.04 Shear-Y kips -2.51 -3.92 -0.93 Change-Y kips -2.51 -1.41 2.98 HfVJl Frame Story Shears MI V RAM Frame v9.0 RAM JeffHanks NTEiMAnoNAil DataBase.- VpntanaRpal RF.V ^ 17-IS-ftS Load Case: Lp Level Roof storyS story2 Load Case: Ln Level Roof story3 story2 Load Case: Sp Level Roof storyS story2 Load Case: Wl Level Roof storyS story2 Load Case: W2 Level Roof story3 story! Load Case: El Level Roof storyS story2 — — — PosLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.02 0.02 -0.01 -0.03 NegLiveLoad RAMUSER Shear-X Change-X kips kips o.oo • o.oo 0.00 0.00 0.00 0.00 PosRoofLiveLoad RAMUSER Shear-X Change-X kips kips 0.00 0.00 0.00 0.00 0.00 0.00 Wind Wind_UBC97_l_X Shear-X Change-X kips kips -0.01 -0.01 0.01 0.01 0.00 -0.01 Wind Wind_UBC97_l_Y Shear-X Change-X kips kips 0.00 . 0.00 -0.01 -0.01 0.01 0.01 Seismic EQ_UBC97_X_+E_F Shear-X Change-X kips kips -0.16 -0.16 0.35 0.52 -0.18 -0.54 Shear-Y kips -1.63 -2.51 -0.66 Shear-Y kips 0.01 .0.02 0.01 Shear-Y kips -0.72 -1.13 -0.29 Shear-Y kips 0.17 0.39 0.47 Shear-Y kips 9.63 32.04 48.59 Shear-Y kips -0.52 -4.54 -10.83 Cs?-?6 Page 13/14 01/16/06 09:55:16 Change-Y kips -1.63 -0.88 1.85 Change-Y kips 0.01 0.01 -0.01 Change-Y kips -0.72 -0.41 0.85 Change-Y kips 0.17 0.22 0.08 Change-Y kips 9.63 22.42 16.55 Change-Y kips -0.52 -4.02 -6.29 illMlV RAM Frame v9.0 RAM JeffHanks INTERNATIONAL! DataRasp- Vpntan? ^P Load Case: E2 Seismic Level Roof story3 story2 Load Case: E3 Seismic Level Roof .. story3 story2 Load Case: E4 Seismic Level Roof storyS ^^ story2 Frame Storv Shears "' i Real REV 3 12-15-05 EQ_UBC97_X_-E_F Shear-X Change-X kips kips -0.16 -0.16 0.36 0.52 -0.19 -0.55 EQ_UBC97_Y_+E_F Shear-X Change-X kips kips 0.00 0.00 -0.03 . -0.03 0.03 0.06 EQ_UBC97_Y_-E_F Shear-X Change-X kips kips 0.01 0.01 -0.05 -0.06 0.05 0.10 Shear-Y kips 5.20 14.84 16.62 Shear-Y kips 64.73 215.25 281.65 Shear-Y kips 47.03 157.36 199.29 Page 14/14 01/16/06 09:55:16 Change-Y kips 5.20 9.64 1.78 Change-Y kips 64.73 150.51 66.40 Change-Y kips 47.03 110.34 41.92 q II IIroO \I I&.a nmum5CaIwDXmu1.0CaIwg, Pi £ !R j o vq vo f~-VO — i co 00en •/•) en <N r- <^ CN cs.--^o-cs >o o p II<D •t 0 II(0O I | 1W a 1 Q ,8 S 1 I •f Q •8 1 g o 1 1o* f*« | 'S •ssz .0 g a 1 &0. 1£ 11 I «iH 13 < < 1 BT sf _, oJ ___ 1 ^ •g 1" g M!jj> Q § 1W i5 t,5 K_c U5 "j£ VIc c15 si"a! cN ^ *^> O 1 &£ O ON » H 1 CN CN CN (N <M o* ^— r*l O ^- in v% •* »n m S r?j m ON tN CN Vi vo NO m — ; oo oo" o ON0 *-« 0CN fN CN TJ- r^ ONfN m in O i/"iCH Ttf- m O VN(N Tf jn SS3 ON »n rn ON -*J- 0 (N en O in vi m o o" o ON >n rO r-- •— • fO CN rn 0 Sg - <N m £ £2 r- r~- oo oo — < en — i^ oo " " m — oo o min oo « M ri K R K 8 5 « rO CN f^ O ••»• ro m ro CN •— •CN CN CN CN CN oo NO m r^ ON •<± oo oo r- NO ** CN oo r4 rs"-* ON ON ON ** CN 13 f^ f^i'"' ON O\ ON r~ ^ oo " r-- O NO" O ON -^ o NO o oo r*r- r- r- m -* o — • o ~- c- r- -^r v» ON i^-NO in NO 'O NO oo o oo r- NO O O 0 O O o NO o oo r~ o •-• o --• r- •* m NO r^ oo OtN § v> )j mJ5 Q1 *~*d ™ fO en o<*> ON . ro3 0CS O fSON Tf Om fN 1•n o CN O fN Jo °^*n ^ NO m fN ^ O 00 fN O DC 8 . " « "^ S £ « o o(N fN CN NO »n r^ — » (N oo•-* t^ «n •* o — rO l"» I*-^ 0 CNfN fN (N OO ^- ^1 NO 5 S? ON ON 2 Tt- OO m•-• >— ' m\o oo oom >n vi 0 O O CN CN CN O <=> O NO ^ NO" o NO r* ^t n *n . m m <^-CN CN tn rn « 0 ON ON OCN *-i m 00 t-- — ' o" o o oo oo o f^ \O O fN ON g- cN m -^r — NO ^O o CN « CN OO ^ I oa oa ON S R „. 5 NO O oCN VI •n O >nfN fN ^^ fN ^ ON •n ON q O O\ *f M M m — m tf — t~i OO -r,N m ON *O S """ * O CN r^ i— " o00 ON ON CN CN CN fN CN CN 00 fN O Sfsg 00 ON X fN fN 2 NO *"* *° 0 ^ SON ^3 |lj tn NO en o o o" i2 1C IQ r^i NO oo m ON w-j ^- w~i — — « •— fN CN 1 \o t— oo E 1 o o — • ^rCN fN CN <N vi NO »n Tt »N ^^ os r* 0 cN ON Som tn cs es m m fN vo fN NO ^- ONO r- NO oo(N CN CN CN m P- o NOm NO i— < viS 5§5 NO 00 fN NOt^ NO NO ON O O O O Tt NO •** 'NOCN tN CN CN q q q q Tf NO" -^t NO"CN IN fN (N Jjj m oo ON oif^ co r^- •** ON^2322 •n ON q fi CN CN — • OONO NO NO m fN OO — ; V) CN NO O\ NO'NO NO *n >n ON CN ON fN 0 O O 0 *O O OO f1! fN CN CN fN NO ON oo m CN CN fN (N U ^ — CN fn •*£ *n »n o r- ON oo ^ NO O O\ OS •-» OO \O t^> (Sfi co CN| en r-t — VN — . S in rt ov> »n O ON -^ o ri vi ON 1--' -tf•^ m v> NOc*- — — * m ON O\ «n fNNO O r* co•n r- oo eor- t* m NO q in m <n CN CN fN iM q m «n in ro -4 .— I ^CN CN CN CN ^^ P^ rn Os r- NO CN •<» r- co m ON od vi r-^ —•r- r* -* -t oo v> *— -v v> •* r-' NO"m NO «n NO fN OO OO NO O O O O NO en O"i ONm fN — • — •< r~ o «J ^-«m IN fi ooCN fN CN CN <n NO r~ oo 1 I __ i _._ *t//er^ /^t/srcj /* * s0 X o . Preformed Metal Roof Deck DeltaGrip™ System ASCSTEEL DECK DGB-36 • 22 Gage Allowable Diaphragm Shears (cjg) (In Rounds per Lineal Foot), and flexibility factor (F) for DeltaGrip™ Seam Attachment Puddle welds DGSeam Attachment Span SIT 6V 7V 8V 10V 11V 12V 4" O.C 1277 8.3+11R 1207 8.6+8.8R 1159 8.8+7.3R 1123 8.9+6.2R 1095 9+5.4R 1074 9.1+4.8R 6" O.C 1118 93+10.6R 1032 9.7+8.4R 973 1ff?fe9ft 896 103+5.1 R 870 10.5+4.5R 849 10.6+4.1 R 8" O.C 1042 10.1+103R 945 10.6+8R 792 11.5+4.8R 763 11.7+4.2R 739 11.8+3.7R 718 12+3.4R 12" O.C 987 11.4+95R 874 12.1+73R 12.7+5.8R 685 13.5+4R 648 13.8+3.4R 619 14.1+3R 595 143+2.6R 575 14.5+2.3R 18" O.C 876 12.7+8.7R 752 13.8+6.3R 665 14.6+4.7R 602 15.3+3.6R 555 15.9+2.8R 519 16.4+2.3R 490 466 16.8+1.8R 17.1+1.5R 446 17.5+12R 24" O.C 818 13.6+8R 687 14.9+5.5R 600 16+3.8R 538 16.9+2.6R 491 17.7+1.8R 454 18.4+12R 425 19+0.7R 401 19.5+0.3R 381 19.9+OR 4" O.C 1122 3.8+68.1 R 1074 5+54.5R 1040 5.8+45.4R 1014 6.4+38.9R 994 6.8+34R 6" O.C 1007 4.9+67.7R 942 62+54.1 R 896 7.1+45R 861 7.7+38.6R 835 8.2+33.7R 814 8.6+29.9R W ~^ ~ « 1 8" O.C 948 5.8+67.4R 871 73+53.7R 817 8J2+44.7R 776 8.9+38.2R 745 9.5+33.4R 721 9.9+29.6R 701 02+26.6R 12" O.C 905 73+66.6R 811 9+52.9R 745 10.1+43.9R 696 11+37.4R 659 11.6+32.6R 627 12.2+28.9R 600 12.6+25.9R 578 13+23.5R 18" O.C 804 8.9+65.6R 704 10.9+51.9R 633 123+42.8R 575 13.4+363R 531 14.3+31.5R 498 15+27.7R 471 15.6+24.8R 448 16.1+22.4R 430 16.5+20.4R 24" O.C 752 10+64.9R 649 123+51R 568 14+41.8R 510 15.3+35.2R 467 16.4+303R 433 17.3+26.6R 406 18.1+23.6R 384 18.7+212R 365 193+19.2R 4" O.C 24" O.C 615 9+932R 533 11.7+73.7R 472 428 13.7+60.8R 152+51.6R 394 16.4+44.7R 369 17.4+39.4R 348 18.2+35.2R 331 18.9+31.8R 317 19.5+29R 1) Deck end laps to be 2 inches minimum over supports. 2) Diaphragm Shear values based on a conservative 3 or more span condition. 3) For qj, the safety factor for allowable stress design, fi, has been applied to the tabulated values. 4) Allowable shear, o^, is for diaphragms subjected to load combinations that include earthquake loads for non-shaded areas. Shaded areas indicate buckling mode of failure governs. Adjustment may be made for load combinations subject to wind loads per AIS1 Section D5. 3 Chavez-Grieves consulting engineers, inc. 5639 Jefferson Street NE, Suite I • Albuquerque, NM 87109 Phone: 505.344.4080 • Fax: 505.343.8759 SHEET, NO. JOB OF <r*ng*Hr CLIENT BY JOB NO. CHECKED BY fiATF DATE A -b B e - 4-7. t ic - 52 flrr 36 2 -1 l-efl- CHAVEZ-GRIEVES CONSULTING ENGINEERS, INC. Margaret Coffey, P.E. Chavez Grieves Engineers 4700 Lincoln NE Albuquerque NM 87109 Title: Dsgnr: Description : Scope: Job* Date: 4:58PM, 9 MAR 06 Rev: S80008User KW-0600823, Ver 5.8.0.1-Dec-2003 (c)1983-2003 ENERCAIC Engineering Software Steel Column Page 1 miscellaneous ecwVentana Real Description Frame 1 Collector General information Steel Section Column Height End Fixity Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 | W18X40 32.000 ft Pin-Pin Live & Short Term Loads Combined Fy Duration Factor Elastic Modulus X-X Unbraced Y-Y Unbraced 50.00 ksi 1.330 29,000.00 ksi 1.000ft 32.000 ft X-X Sidesway : Restrained Y-Y Sidesway : Restrained Kxx 1.000 Kyy 1.000 Loads | Axial Load- Dead Load Live Load Short.Term Load Distributed lateral Loads.. Along Y-Y Along X-X k k 35.00 k DL Ecc. for X-X Axis Moments Ecc. for Y-Y Axis Moments 0.000 in 0.000 in LL 1.000 ST k/ft k/ft End 32.000 ft ft Summary Column Design OK Section :W18X40, Height = 32.00ft, Axial Loads: DL= 0.00, LL= 0.00, ST = 35.00k, Ecc. == O.OOOin Unbraced Lengths: X-X= 32.00ft, Y-Y= 1.00ft Combined Stress Ratios Dead Live DL + LL DL + ST + (LL if Chosen) AISC Formula H1 -1 AISC Formula H1 - 2 AISC Formula H1 - 3 0.6805 0.6805 0.6053 XX Axis : Fa calc'd per Eq. E2-1, K*L/r < Cc XX Axis: I Beam Passes Table B5.1, Fb per Eq. F1-1, Fb = 0.66 Fv YY Axis: Fa calc'd per Eq. E2-1, K*Ur < Cc YY Axis : I Beam. Minor Axis. Passes Table B5.1. Fb = 0.75 Fv per Eg. F2-1 Stresses Allowable & Actual Stresses _ Fa : Allowable fa : Actual Fb:xx:Allow[F1-6] Fb:xx:Allow[F1-7J&[F1-8J ft> : xx Actual Fb:yy:Allow[F1-6] Fb:yy:Allow[F1-7]&[F1-8] to : yy Actual Analysis Values F'ex : DL+LL 52,524 psi F'ey : DL+LL 1 ,678,572 psi F'ex : DL+LL+ST 69,857 psi F'ey : DL+LL+ST 2,232,501 psi Max X-X Axis Deflection -1 .329 in Dead 23.82 ksi 0.00 ksi 33.00 ksi 33.00 ksi 0.00 ksi 37.50 ksi 37.50 ksi 0.00 ksi Cm:x Cm:y Cm:x Cm:y Live 23.82 ksi 0.00 ksi 33.00 ksi 33.00 ksi 22.46 ksi 37.50 ksi 37.50 ksi 0.00 ksi DL+LL DL+LL DL+LL+ST DL+LL+ST at 16.000ft Max Y-Y Axis DL + LL DL + Short 23.82 ksi 0.00 ksi 33.00 ksi 33.00 ksi 22.46 ksi 37.50 ksi 37.50 ksi 0.00 ksi 1.00 Cb:x DL+LL 0.60 Cb:y DL+LL 1.00 Cb:x DL+LL+ST 0.60 Cb:y DL+LL+ST Deflection 0.000 in at 31.69 ksi 2.97 ksi 43.89 ksi 43.89 ksi 22.46 ksi 49.88 ksi 49.88 ksi 0.00 ksi 1.00 1.00 1.00 1.00 0.000 ft i I CHAVEZ • GRIEVES CONSULTING ENGINEERS, INC. Margaret Coffey, P.E. Chavez Grieves Engineers 4700 Lincoln NE Albuquerque NM 87109 Title : Dsgnr: Description: Scope: Job# Date: 4:58PM, 9 MAR 06 Rev: 58000BUser KW-0600823, Ver 5.8.0. 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software Steel Column Page 2 miscellaneous.ecw:Ventana Real Description Frame 1 Collector Section Properties W18X40 I Depth Web Thick Width Flange Thick Area Rt 17.900 in 0.315 in 6.015 in 0.525 in 11.80in2 1.520 in Weight Ixx lyy Sxx Syy Rxx Ryy 40.08 #/ft 612.000 in4 19.100 in4 68.400 in3 6.350 in3 7.210 in 1.270 in Values for J Cw Zx zy K LRFD Design.... 0.810 Jn4 1, 440.00 in6 78.400 in3 9.950 in3 0.927 in Section Type = W CHAVEZ-GRIEVESCONSULTING ENGINEERS, INC. Margaret Coffey, P.E. Chavez Grieves Engineers 4700 Lincoln NE Albuquerque NM 87109 Title: Dsgnr: Description: Scope: Job* Date: 4:58PM, 9 MAR 06 Rev: 580008 User KW-0600823, VeT 5.8.0,1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software Steel Column Page 1 miscellaneous ecw:Ventana Real Description Frame 2 Collector Code Ref: AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 |General Information Steel Section Column Height End Fixity Live & Short Term Loads W18X40 32.000 ft Pin-Pin Loads Combined Fy Duration Factor Elastic Modulus X-X Unbraced Y-Y Unbraced 50.00 ksi 1.330 29,000.00 ksi 1.000ft 32.000 ft X-X Sidesway : Y-Y Sidesway : Kxx Kyy Restrained Restrained 1.000 1.000 J Axial Load... Dead Load k Live Load k Short Term Load 46.00 k Distributed lateral Loads... PL Along Y-Y Along X-X Ecc. for X-X Axis Moments Ecc. for Y-Y Axis Mome'nts 0.000 in 0.000 in LL _SJ_ 1.000 k/ft k/ft Summary Column Design OK Section :W18X40, Height = 32.00ft, Axial Loads: DL= 0.00, LL= 0.00, ST= 46.00k, Ecc. = O.OOOin Unbraced Lengths: X-X= 32.00ft, Y-Y = 1.00ft Combined Stress Ratios Dead Live DL+LL PL + ST + (LL if Chosen) AISC Formula H1 - 1 AISC Formula H1 - 2 AISC Formula H1 - 3 0.6805 0.6805 0.6347 XX Axis : Fa calc'd per Eq. E2-1, K*L/r < Cc XX Axis : I Beam Passes Table B5.1, Fb per Eq. F1-1, Fb = 0.66 FY YY Axis : Fa calc'd per Eq. E2-1, K*L/r < Cc YY Axis : I Beam. Minor Axis. Passes Table B5.1. Fb = 0.75 Fv per Eg. F2-1 Stresses Allowable & Actual Stresses Fa : Allowable fa : Actual Fb:xx: Allow (F1-6J Fb:xx:Allow[F1-7]&[F1-8] fb : xx Actual Fb:yy:Allow[F1-6] Fb:yy:Allow[F1-7]&[F1-8] fb : yy Actual Dead 23.82 0.00 33.00 33.00 0.00 37.50 37.50 0.00 ksi ksi ksi ksi ksi ksi ksi ksi Live 23.82 0.00 33.00 33.00 22.46 37.50 37.50 0.00 ksi ksi ksi ksi ksi ksi ksi ksi DL + LL 23.82 ksi 0.00 ksi 33.00 ksi 33.00 ksi 22.46 ksi 37.50 ksi 37.50 ksi 0.00 ksi DL + Short 31.69 3.90 43.89 43.89 22.46 49.88 '49.88 0.00 ksi ksi ksi ksi ksi ksi ks ksi I Analysis Values | F'ex : DL+LL 52,524 psi F'ey: DL+LL 1,678,572 psi F'ex : DL+LL+ST 69,857 psi F'ey : DL+LL+ST 2,232,501 psi Max X-X Axis Deflection -1 .329 in Cm:x Cm:y Cm:x Cm:y DL+LL DL+LL DL+LL+ST DL+LL+ST at 16.000ft Max Y-Y Axis 1.00 Cb:x 0.60 Cb:y 1.00 Cb:x 0.60 Cb:y DL+LL DL+LL DL+LL+ST DL+LL+ST 1. 1 1 1 00 00 00 00 Deflection O.OOOin at 0.000ft Margaret Coffey, P.E. Chavez Grieves Engineers 4700 Lincoln NE Albuquerque NM 87109 Title: Dsgnr: Description: Scope: Job* Date: 4:58PM, 9 MAR 06 | CONSULTING KNlilNEEKS, INC. *—•—*«Rev. 580008 User. KW-0600823, Ver 5.8.0, 1-Dec-2003 (c)1 983-2003 ENERCALC Engineering Software Steel Column Page 2 \ misceltaneous.ecwtVentana Real | Description Frame 2 Collector Section Properties W18X40 Depth Web Thick Width Flange Thick Area Rt 17.900 in 0.31 5 in 6.01 5 in 0.525 in 11.80in2 1.520 in Weight Ixx lyy Sxx Syy Rxx Ryy 40.08 #/ft 61 2.000 in4 19.100 in4 68.400 Jn3 6.350 in3 7.210 in 1.270 in Values for LRFD J Cw Zx Zy K ii Design.... 0.810 in4 1,440.00 in6 78.400 in3 9.950 in3 0.927 in Section Type = W DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC ' Page: 1 Beam Connection to Column Flange Column: W10X68-A992 Left Side Beam: W21X68 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 61.3 kips Right Side Beam: W16X50 - A992 Moment: 0 k-ft Shear. 10 kips Axial Force: 61.3 kips ********** All Welds Are E70XX ********** Right Side Beam Shear Connection Using Clip Anqle(s): Clip Angles: 2L4X4X5/8 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts 1"0 A490-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.38 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 61.3 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (61.3 )A2)A0.5 = 62.11 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.3875 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.6125 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*4* 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) *m = 44.375 kips Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.3875 in. b = 2.3in. dh= 1.0625 in. b' = 1.8in. a'= 1.8875 in. p = 3in. tc = (4.44 * (1/FS)rn * b1 / (p * Fy))A0.5 = (4.44 * 44.375 * 1.8/(3 * 36))A0.5 = 1.8121 in. delta = 1 - dh/p = 1 - 1.0625/3 = 0.6458 ro = b'/a1 = 1.8/1.8875 = 0.9536 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)'i = ((1.8121/0.625)A2 - 1) / (0.6458 * (1 + 0.9536)) = 5.87 (1/FS)Tn = (1/FS)m * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.8121)A2*(1 + 0.6458) = 8.6879 kips Allowable' Tension Strength per Tributary Area for Each Exterior Bolt: a =1.3875 in. b = 2.3in. dh = 1.0625 in. b' = 1.8in. a' = 1.8875 in. p = 3 in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1.8/(3 * 36))A0.5 = 1.8121 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.8/1.8875 = 0.9536 Alfa1 = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.8121/0.625)A2 -1) / (0.6458 * (1 + 0.9536)) = 5.87 (1/FS)Tn = (1/FS)m * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.8121)A2*(1 + 0.6458) = 8.6879 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1)] = max(0; (1 / 0.6458) * (8.6879 / 44.375 * (1.8121 / 0.625)A2 -1)) = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.9536 * (0.625 / 1.8121)A2 = 3.2511 kips/bolt . Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 8.6879 + (4 - 2) * 8.6879) / 4 = 8.6879 kips Desigm Tension Strength: = 2*n*((1/FS)rn) = 2*4* 8.6879 = 69.503 > 61.3 kips (OK) Bolt Bearing on Anqle(s): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe -t- Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 -1)) * 0.625 = 295. > 10 kips (OK) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 * 4 * 0.77 = 465.5 > 10 kips (OK) Beam Side Bolts: 4 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)m) = 2*4 * 23.562 = 188.5 > 62.11 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 -1)) * 0.625 = 295. > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc* Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 4 * 0.38 = 114.9 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*4*0.625 = 168.6 > 61.3 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 4 * 0.38 = 87.067 > 61.3 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh-t- .0625))*tw*(1/2) *0.6*Fu = (16.26 - 4 * 1.125) * 0.38 * (1/2) *0.6 * 65 = 87.142 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6*50*6.1788 = 185.4 kips (1/FS)Vn = (1/1.5) *185.4 = 123.6 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 87.142 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 +1 * 65 * 5.625)) * 0.38 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0 *(1 -1) - 1.125 * (1 - 0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 -H * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.38 = 34.494 kips = 90.772 > 61.3 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(1.5 + 0 *(1 -1) - 1.125 * (1 - 0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1 -1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.625 = 76.377 kips For two angles, (1/FS)Rn = 2*122.2 DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 3 = 244.4 > 61.3 kips (OK) Allowable Shear Strength of Anqle(s): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 12 * 0.625 = 7.5 inA2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag*Fy = 2 * (1/1.5) "0.6*7.5*36 = 216 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (12 - 4 * (1.0625+ .0625))* 0.625 = 4.6875 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (12 - 4 * (1.0625+ .062.5))* 0.625 = 4.6875 inA2._ An = Min(An1,An2)= 4.6875 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 4.6875 * 58 = 163,1 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 - 1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)* 3+ 1.5 = 10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 6.5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5+1 * 58 * 0.9375)) * 0.625 = 87.867 > 5 kips (OK) Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.3875 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.3875 -1.125 / 2 = 0.825 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)*3 + 1.5 = 10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy*Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 * 6.5625 ; 36 * 10.5 + 1 * 58 * 0.825) * 0.625 = 85.828 > 5 kips (OK) Column flange local bending was not checked! Left Side Beam Shear Connection Using Clip Anqle(s): Clip Angles: 2L4X4X5/8 X 15 in. Angle Material: A36 Support Side Connection: 10 Bolts 1"0 A490-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 5 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.43 in. Beam Web Height: 18.375 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V= 10 kips Axial Load, H = 61.3 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (61.3 )A2)A0.5 = 62.11 kips Check Clearances: Beam Web Clear Height = 18.375 > 15 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.465 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.535 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*5* 23.562 = 235.6 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) *m = 44.375 kips Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.465 in. b = 2.2225 in. dh= 1.0625 in. b'= 1.7225 in. a' = 1.965 in. p = 3 in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1.7225/(3 * 36))A0.5 = 1.7727 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.7225/1.965 = 0.8766 Alfa1 = ((tc /t)A2 - 1) / (delta * (1 + ro)) = ((1.7727/0.625)A2 -1) / (0.6458 * (1 + 0.8766)) = 5.8124 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 /1.7727)A2*(1 + 0.6458) = 9.0788 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Allowable Tension Strength per Tributary Area for Each Exterior Bolt: a = 1.465 in. b = 2.2225 in. dh= 1.0625 in. b'= 1.7225 in. a'= 1.965 in. p = 3in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1.72257(3 * 36))A0.5 = 1.7727 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.7225/1.965 = 0.8766 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.7727/0.625)A2 -1) / (0.6458 * (1 + 0.8766)) = 5.8124 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 /1.7727)A2*(1 + 0.6458) = 9.0788 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1 /FS)Rn * (tc / t)A2 -1)] = max(0; (1 / 0.6458) * (9.0788 / 44.375 * (1.7727 / 0.625)A2 -D) = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.8766 * (0.625 / 1.7727)A2 = 3.1229 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 9.0788 + (5 - 2) * 9.0788) / 5 = 9.0788 kips Design Tension Strength: = 2*n*((1/FS)m) = 2*5* 9.0788 = 90.788 > 61.3 kips (OK) Bolt Bearing on Angle(s): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (5 -1)) * 0.625 = 379.3 > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 * 5 * 0.77 = 581.8 > 10 kips (OK) Beam Side Bolts: 5 Bolts - 1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5 > 1.25 in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)m) = 2*5 * 23.562 = 235.6 > 62.11 kips (OK) Bolt Bearing on Angles: FbeBearing Strength/Bolt/Thickness Using Bolt Edge Distance Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (5 - 1)) * 0.625 = 379.3 > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 5 * 0.43 = 162.5 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*5*0.625 = 210.7 > 61.3 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 5 * 0.43 = 123.2 > 61.3 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))*tw*(1/2) *0.6*Fu = (21.13 - 5 * 1.125) * 0.43 * (1/2) *0.6 * 65 = 130 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6 * 50 * 9.0859 = 272.6 kips (1/FS)Vn = (*272.6 = 181.7kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 130 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65 DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 5 * 7.5)) * 0.43 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0 *(1 -1) -1.125 * (1 - 0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (5-1)* (3 -1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (5-1)*3 =-12 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65 * 7.5)) * 0.43 = 55.435 kips = 128.9 > 61.3 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 * 7.5)) * 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(1.5 + 0 *(1 -1) - 1.125 * (1 - 0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (5-1)* (3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (5-1)*3 = 12 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t . = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 * 7.5)) * 0.625 = 97.617 kips For two angles, (1/FS)Rn = 2*156.2 = 312.4 > 61.3 kips (OK) Allowable Shear Strength of Anqle(s): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 15 * 0.625 = 9.375 inA2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag*Fy = 2 * (1/1.5) *0.6 * 9.375 * 36 = 270 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (15 - 5 * (1.0625+ .0625))* 0.625 = 5.8594 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (15 - 5 * (1.0625+ .0625))* 0.625 = 5.8594 inA2 An = Min(An1,An2)= 5.8594 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 5.8594 * 58 = 203.9 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625X2 = 1.5 - 1.125/2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n - 1)*s + Lv = (5-1)*3 + 1.5 = 13.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs*Fu*Lnt))*t = (1/2)* Min((0.6 * 58 * 8.4375 + 1 * 58 * 0.9375); (0.6 * 36 * 13.5 + 1 * 58 * 0.9375)) * 0.625 = 108.1 > 5 kips (OK) Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.465 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.465 - 1.125 / 2 = 0.9025 in. Gross Length with Shear resistance, Lgv = (n - 1)*s + Lv = (5-1)*3 + 1.5 = 13.5in. Net Length with Shear resistance, Lnv = Lgv- (n - 0.5)*(dv+ .0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy*Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 * 8.4375 ; 36 * 13.5 + 1 * 58 * 0.9025) * 0.625 = 107.5 > 5 kips (OK) Column flange local bending was not checkedl DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 6 Note: All Welds E70XX 1 1/2|1/2» 4@3=1'-0"' >f 10 Bolts 1"0A490-N-STD/ 4 V0A490-N-STD Gage = 2.5 in. 3@3=9" W|6X50-A992 - ' = 0.5 in. j2L4X4X5/8X15in.-A36 j j' W10X68-A992)'' ^ fe-4" 1"0A4 Gage = 2.5 in. 2L4X4X5/8X12in.-A36£T 1 1/^»1/2" ±=J^JL r <P3@3=9" 8 Bolts \1"0A490-N-STD Scale: 1/4" = 1' DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Xoa^ ^/- Page: 1 Beam Connection to Column Flange Column: W10X60 -A992 Left Side Beam: W16X50 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 30.3 kips Right Side Beam: W14X30 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 30.3 kips *"""*" All Welds Are E70XX ********** Right Side Beam Shear Connection Using Clip Angle(s): Clip Angles: 2L4X4X1/2 X 9 in. Angle Material: A36 Support Side Connection: 6 Bolts 1"0 A490-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horjz. Effective Thickness of Support Material: 0.68 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 3 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.27 in. Beam Web Height: 11.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 30.3 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (30.3 )A2)A0.5 = 31.908 kips Check Clearances: Beam Web Clear Height = 11.625 > 9 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.3775 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.6225 > 2 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*3* 23.562 = 141.4 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) *rn = 44.375 kips Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.3775 in. b = 2.3725 in. dh = 1.0625 in. b' = 1.8725 in. a'=1.8775 in. p = 3 in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1.8725/(3 * 36))A0.5 = 1.8482 in. delta ='l-dh/p = 1-1.0625/3 = 0.6458 ro = b'/a1 = 1.8725/1.8775 = 0.9973 Alfa1 = ((to / 1^2 - 1) / (delta * (1 + ro)) = ((1.8482/0.5^2 - 1) / (0.6458 * (1 + 0.9973)) = 9.8175 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.5 / 1 .8482)A2*(1 + 0.6458) = 5.345 kips Allowable Tension Strength per Tributary Area for Each Exterior Bolt: a = 1.3775 in. b = 2.3725 in. dh = 1 .0625 in. b' = 1 .8725 in. a1 = 1.8775 in. p = 3in. tc = (4.44 * (1/FS)rn * b1 / (p * Fy))A0.5 = (4.44 * 44.375 * 1 .8725/(3 * 36))A0.5 = 1.8482 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a1 = 1.8725/1.8775 = 0.9973 Alfa1 = ((tc / t)A2 - 1) / (delta * (1 + ro)'i = ((1.8482/0.5)A2 - 1) / (0.6458 * (1 = 9.8175 0.9973)) (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.5 / 1 .8482)A2*(1 + 0.6458) = 5.345 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1)] = max(0; (1 / 0.6458) * (5.345 / 44.375 * (1 .8482 / 0.5)A2 - 1)) = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.9973 * (0.5 / 1.8482)A2 = 2.091 Skips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 5.345 + (3 - 2) * 5.345) / 3 = 5.345 kips Desigm Tension Strength: = 2*n*((1/FS)rn) = 2*3* 5.345 = 32.07 > 30.3 kips (OK) Bolt Bearing on Anqle(s): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 in. = (1/2) * 1 .2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1 .0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1 .2 * 1 .9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (3 - 1)) * 0.5 = 1 68.6 > 10 kips (OK) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 * 3 * 0.68 = 308.3 > 10 kips (OK) Beam Side Bolts: 3 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 1.875 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)m) = 2*3 * 23.562 = 141.4 > 31.908 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (3 - 1)) * 0.5 = 168.6 > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 3 * 0.27 = 61.206 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*3*0.5 = 101.1 > 30.3 kips (OK) On Beam Web: Bearing Strength/Boll/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 3 * 0.27 = 46.398 > 30.3 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))*tw*(1/2) *0.6*Fu = (13.84 - 3 * 1.125) * 0.27 * (1/2) *0.6 * 65 ' 55.098 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6 * 50 * 3.7368 = 112.1 kips (1/FS)Vn = (1/1.5) *112.1 = 74.736 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 55.098 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 3.75); (0.6 * 50 * 4 + 1 * 65 * 3.75)) * 0.27 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0 *(1 -1) - 1.125 * (1 - 0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (3-1)* (3-1.125) = 3.75 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (3-1)*3 = 6 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 3.75); (0.6 * 50 * 4 + 1 * 65 * 3.75)) * 0.27 = 12.972 kips = 48.043 > 30.3 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 +1 * 58 * 3.75); (0.6 * 36 * 3 + 1 * 58 * 3.75)) * 0.5 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(1.5 + 0*(1-1)-1.125*(1 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1 )*(sv - (dv+ .0625)) = (3-1)* (3-1.125) = 3.75 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (3-1)*3 = 6 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 3.75); (0.6 * 36 * 3 + 1 * 58 * 3.75)) * 0.5 = 35.288 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 3 For two angles, (1/FS)Rn = 2*70.575 = 141.2 > 30.3 kips (OK) Allowable Shear Strength of Anale(s): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 9 * 0.5 = 4.5 inA2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag*Fy = 2 * (1/1.5) *0.6*4.5*36 = 129.6 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (9 - 3 * (1.0625+ .0625))* 0.5 = 2.8125 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (9 - 3 * (1.0625+ .0625))* 0.5 = 2.8125 inA2 An = Min(An1 An2)= 2.8125 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 2.8125 * 58 = 97.875 > 10 kips (OK) Block Shear Strength of Beamside Lea of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 - 1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (3-1)*3 +1.5 = 7.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 7.5-(3-0.5)*1.125) = 4.6875 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 4.6875 + 1 * 58 * 0.9375); (0.6 * 36 * 7.5 + 1 * 58 * 0.9375)) * 0.5 = 54.094 > 5 kips (OK) Shear Connection Using Clip Angle(s): Clip Angles: 2L4X4X1/2 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts 1"0 A490-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.68 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.38 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V= 10 kips Axial Load, H = 30.3 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (30.3 )A2)A0.5 = 31.908 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.4025 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.5975 > 2 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*4* 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)m = (1/2) *m = 44.375 kips Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.3775 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.3775 -1.125 / 2 = 0.815 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (3-1)*3+1.5 = 7.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 7.5-(3-0.5)*1.125) = 4.6875 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy*Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 * 4.6875 ; 36 * 7.5 + 1 * 58 * 0.815) * 0.5 = 52.318 > 5 kips (OK) Column flange local bending was not checked! Left Side Beam Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.4025 in. b = 2.3475 in. dh = 1.0625 in. b1 = 1.8475 in. a' = 1.9025 in. p = 3 in. tc = (4.44 * (1/FS)m * b1 / (p * Fy))A0.5 = (4.44 * 44.375 * 1.8475/(3 * 36))A0.5 = 1.8359 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a1 = 1.8475/1.9025 = 0.9711 Alfa' = ((tc / t)A2 - 1) / (delta * (1 + ro)) = ((1.8359/0.5)A2 -1) / (0.6458 * (1 + 0.9711)) = 9.8049 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.5 / 1.8359)A2*(1 + 0.6458) = 5.4173 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 4 Allowable Tension Strength per Tributary Area for Each Exterior Bolt: a =1.4025 in. b = 2.3475 in. dh= 1.0625 in. b' = 1.8475 in. a'=1.9025 in. p = 3in. tc = (4.44 * (1/FS)rn * b1 / (p * Fy))A0.5 = (4.44 * 44.375 * 1.8475/(3 * 36))A0.5 = 1.8359 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.8475/1.9025 = 0.9711 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.8359/0.5)A2 - 1)/(0.6458 * (1 + 0.9711)) = 9.8049 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.5 / 1.8359)A2*(1 + 0.6458) = 5.4173 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 -1)] = max(0; (1 / 0.6458) * (5.4173 / 44.375 * (1.8359 / 0.5)A2 - D) = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.9711 * (0.5 /1.8359)A2 = 2.0643 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 5.4173 + (4 - 2) * 5.4173) / 4 = 5.4173 kips Desigm Tension Strength: = 2*n*((1/FS)rn) = 2*4* 5.4173 = 43.338 > 30.3 kips (OK) Bolt Bearing on Anqle(s): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 -1)) * 0.5 = 236. > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 * 4 * 0.68 = 411 > 10 kips (OK) Beam Side Bolts: 4 Bolts - 1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 1.875 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)rn) = 2*4 * 23.562 = 188.5 > 31.908 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67,425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 -1))' 0.5 = 236. > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 4 * 0.38 = 114.9 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*4*0.5 = 134.9 > 30.3 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 4 * 0.38 = 87.067 > 30.3 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))*tw*(1/2) "0.6*Fu = (16.26 - 4 * 1.125) * 0.38 * (1/2) *0.6 * 65 = 87.142 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6*50*6.1788 = 185.4 kips (1/FS)Vn = (1/1.5) *185.4 = 123.6 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 87.142 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 5 = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.38 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0*(1-1)-1.125*(1 -0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)'(3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.38 = 34.494 kips = 90.772 > 30.3 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.5 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(1.5 + 0*(1-1)-1.125*(1 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.5 = 48.881 kips For two angles, (1/FS)Rn = 2*97.763 = 195.5 > 30.3 kips (OK) Allowable Shear Strength of Anqle(s): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 12 * 0.5 = 6 inA2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag*Fy = 2 * (1/1.5) *0.6*6*36 = 172.8 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (12 - 4 * (1.0625+ .0625))* 0.5 = 3.75 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (12 - 4 * (1.0625+ .0625))* 0.5 = 3.75 inA2 An = Min(An1,An2)= 3.75 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 3.75 * 58 = 130.5 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance!, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)*3 + 1.5=10.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 6.5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5 + 1 * 58 * 0.9375)) * 0.5 = 70.294 > 5 kips (OK) Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.4025 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.4025 - 1.125 / 2 = 0.84 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)* 3 +1.5 =10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv; Fy*Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 * 6.5625 ; 36 * 10.5 + 1 * 58 * 0.84) * 0.5 = 68.88 > 5 kips (OK) Column flange local bending was not checked! DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 6 1 iq-i1/2. —•jt--T-3@3=9" 8 Bolts ,r® A4J^N :STD/ 5 1/2"-: Note: All Welds E70XX 3@3=9' W16X50-A992F EndOffset.=,0^in.-^DltS—--•i*-Bol 1"0A490-N-STD = 2.5 in. 1-0A490-N-STD '2L4X4X1_/_2 XJ2in..r_A36 4>_^ W10X60-A992/' Scale: 1/4" = 1' && co^ &09* <&* &a.a& DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC C/j,<fa —*~—' Page: 1 Beam Connection to Column Flange Column: W10X68-A992 Left Side Beam: W16X36 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 29.8 kips Right Side Beam: W21X68 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 29.8 kips •*****•«*All Welds Are E70XX * Right Side Beam Shear Connection Using Clip Anglefs): Clip Angles: 2L4X4X1/2 X 15 in. Angle Material: A36 Support Side Connection: 10 Bolts 1"0 A490-N -STD " Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 5 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.43 in. Beam Web Height: 18.375 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 29.8 kips Resultant, R = (VA2 + HA2)A0.5 = ({10 )A2 + (29.8 )A2)A0.5 = 31.433 kips Check Clearances: Beam Web Clear Height = 18.375 > 15 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.465 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.535 > 2 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*5* 23.562 = 235.6 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) *rn = 44.375 kips Allowable Tension Strength per Tributajy Area for Each Interior Bolt: a = 1.465 in. b = 2.285 in. dh = 1.0625 in. b' = 1.785 in. a' = 1.965 in. p = 3 in, tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1 J85/(3 * 36))A0.5 = 1.8045 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.785/1.965 = 0.9084 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.8045/0.5)A2 - 1) / (0.6458 * (1 + 0.9084)) = 9.757 (1/FS)Tn = (1/FS)m * (t / tc)*2 * (1 + delta) = 44.375 * (0.5 / 1.8045)A2*(1 + 0.6458) = 5.607 kips Allowable Tension Strength per Tributary Area forJEach Exterior Bolt: a = 1.465 in. b = 2.285 in. dh= 1.0625 in. b'= 1.785 in. a' = 1.965 in. p = 3in. tc = (4,44 " (1/FS)rn * b' I (p * Fy))A0.5 = (4.44 * 44.375 * 1.785/(3 * 36))A0.5 = 1.8045 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.785/1.965 = 0.9084 Alfa1 = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.8045/0.5)A2 - 1) / (0.6458 * (1 + 0.9084)) = 9.757 (1/FS)Tn = (1/FS)rn * (t /tc)*2 * (1 + delta) = 44.375 * (0.5 / 1.8045)A2*(1 + 0.6458) = 5.607 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 -1)] = max(0; (1 / 0.6458) * (5.607 / 44.375 * (1.8045 / 0.5^2 - 1» = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.90B4 * (0.5 / 1.8045)A2 = 1.9987 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)TnJnt) / N =(2 * 5.607 + (5 - 2) ' 5.607) / 5 = 5.607 kips Desigm Tension Strength: = 2*n'«1/FS)rn) = 2 * 5 - 5.607 = 56.07 > 29.8 kips (OK) Bolt Bearing on Anglefs): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc'Fu < (1/2) * 2.4 * d * Fu - 69.6 kips/in. = (1/2) * t .2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2)*1.2'Lc*Fu < (1/2) *2.4*d*Fu~ 69.6 kips/in. = (1/2) * 1.2 ' 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))"t = 2"(33.713 + 67.425 * (5 - 1)) * 0.5 = 303.4 > 10 kips (OK) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < 0/2) * 2.4 * d * Fu = 78 kips/in. = (1/2)* 1.2 * 1.9375 ' 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 * 5 * 0.77 = 581.8 > 10 kips (OK) Beam Side Bolts: 5 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5>1.B75in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)rn) = 2*5 * 23.562 = 235.6 > 31.433 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)* 1.2 * Lc ' Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing - 3 in., Hole Size = 1.0625 in. = <1/2)*1.2*Lc*Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (112) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (5 - 1)) " 0.5 = 303.4*10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/BoltTThickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 • 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563*5*0.43 = 162.5 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist, = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in, = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713-5*0.5 = 168.6 > 29.8 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) • 1.2 * 1 -4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 5 * 0.43 = 123.2 > 29.8 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))*tw*(1/2) *0.6*Fu = (21.13-5*1.125) * 0.43 * (1/2) *0.6 * 65 = 130 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6 * 50 * 9.0859 - 272.6 kips (1/FS)Vn = (1/1.5) *272,6 = 181.7 kips Beam Allowables hear Strength = Min((1/FS)Rn; (1/FS)Vn) = 130 > 10 kips (OK) (1/FS)Rn = (1/2) * Min({0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65 * 7.5)) * 0.43 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0*(1-1)-1.125* (1-0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sn*(nh-1)) = 2*(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv- 1)*(sv-(dv+.0625)) = (5-1)* (3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (5-1)*3 = 12 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65 * 7.5)) * 0.43 = 55.435 kips = 128.9 > 29.8 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 5S * 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 * 7.5)) * 0.5 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv= 2*(Lh+sn*(nh-1)-(dh+ .0625)'(nh-0.5)) = 2*(1.5 + 0'(1 -1)-1.125* (1-0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1» = 3 in. Tension Area Length (net), Lnt = (nv -1 )*(sv - (dv+ .0625)) = (5-1) *(3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = {5-1)*3 = 12 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 " 58 * 7.5)) ' 0.5 = 62.475 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC c*. N_ Page: 3 For two angles, {1/FSJRn = 2*125. = 249.9 > 29.8 kips (OK) Allowable Shear Strength of Anglefsj: Shear Yielding Allowablejtrenqth: Gross Area, Ag = L*t = 15 * 0.5 = 7.5 inA2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag*Fy = 2 *(1/1.5) *0,6*7.5*36 = 216 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Ost, An1: = (L-n*(dh+ .0625))*! - (15 - 5 * (1 -0625+ .0625)}* 0.5 = 4.6875 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (15 - 5 * (1.0625+ .0625))* 0.5 '= 4.6875 inA2 An = Min(An1,An2>= 4.6875 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 4.6875 * 58 - 163.1 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (5-1)*3+1,5 = 13.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu ' Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 8.4375 + 1 * 58 * 0.9375); (0.6 * 36 * 13.5+1 * 58 * 0.9375)) * 0.5 = 86.494 > 5 kips (OK) Shear Connection Using Clip Anqle(s): Clip Angles: 2L4X4X1/2 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts 1"0 A490-N -STP Bott Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 In. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N -5TD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. BoltHoteson Angles: 1.0625 in. Vert. X 1.X25 in. Horiz. Beam Web Thickness: 0.295 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 29.8 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (29.8 )A2)A0.5 = 31.433 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.3975 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.6025 > 2 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*4* 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab - 113 * 0.7854 ~ 88.75 kips Allowable Strength per Bolt, (1/FS)m = (1/2) *rn = 44.375 kips Block Shear Strength ofSupportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.465 in- Net Length with Tension resistance, Lnt = Lgt- (dh+ .0625)/2 = 1.465 -1.125 / 2 = 0.9025 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (5-1)*3+1.5 = 13.5in. Net Length with Shear resistance, Lnv - Lgv - (n - 0.5)*(dv+.0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy'Lgv] + Fu*Lnt)"t = (1/2) *(0.6* Min(58 * 8.4375 ; 36 * 13.5 + 1 * 58 * 0.9025) 0.5 = 85.986 > 5 kips (OK) Column flange local bending was not checked! Left Side Beam Allowable Tension Strength per Tributary Areajor Each Interior Bolt: a = 1.3975 in. b = 2.3525 in. dh= 1.0625 in. b' = 1.8525 in. a' = 1.8975 in. p = 3in. tc = (4.44 * (1/FS)rn " b' / (p * Fy))A0.5 = (4,44 * 44.375 * 1.8525/(3 * 36))A0.5 = 1.8383 in. defta = 1 - dh/p = 1 -1.0625/3 = 0.6458 ro = b'/a' = 1.8525/1.8975 = 0.9763 Alfa' = ((tc /1)*2 - 1) / (delta * (t + ro)) = {(1.8383/0.5)A2 - 1) / (0.6458 * (1 + 0.9763)) = 9.8077 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.5 / 1.8383)A2*(1 + 0.6458) = 5.4027 kips ^ DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 4 Allowable Tension Strength perTributar^Area for Each Exterior Bolt: a = 1.3975 in. b = 2.3525 in. dh= 1.0625 in. b' = 1.8525 in. a'= 1.8975 in. p = 3in. te = (4.44 * (t/FS)m * b' / (p * l=y))*Q.S = (4.44 * 44.375 ' 1.8525/(3 * 36))A0.5 = 1 .8383 in. delta = 1 -dh/p = 1-1 .0625/3 = 0.6458 ro = b'/a' = 1.8525/1.8975 = 0.9763 Alfa' = ((tc / t)A2 - 1) / (delta " (1 + ro)) = ((1 .8383/0.5)A2 - 1) / (0.6458 * (1 = 9.8077 0.9763)) (1/FS)Tn - (1/FS)m * (t / tc)A2 ' (1 + delta) = 44.375 * (0.5 / 1 .8383)*2*(1 + 0.6458) = 5.4027 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / 1)*2 - 1 )] = max(0; (1 / 0.6458) * (5.4027 / 44.375 * (1 .8383 / 0.5)A2 - D) = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 " 0.9763 * (0.5 / 1.8383)A2 = 2.0698 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) ' (1/FS)Tn Int) / N =(2 * 5.4027 + (4 - 2) * 5.4027) / 4 = 5.4027 kips Desigm Tension Strength: = 2*n*((1/FS)rn) = 2 * 4 * 5.4027 = 43.221 > 29.8 kips (OK) Bolt Bearing on Armlets): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1 .5 in. , Hole Size = 1 .0625 in. = (1/2) ' 1.2 * Lc • Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) ' 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Note Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2) *2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 - 1)) * 0.5 = 236. > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in, , Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)*2.4*d'Fu = 78 kips/in. = (1/2) * 1 .2 * 1 .9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563*4*0.77 = 465.5 > 10 kips (OK) Beam Side Bolts: 4 Bolts - 1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1. 5 > 1.25 in. (OK) Distance to Vertical Edge, eh: = 1.5 > 1.25 in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 1.875 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)rn) = 2*4 * 23.562 = 188.5 > 31.433 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bott/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu <(1/2)*2.4 *d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/In. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 - 1)) * 0.5 = 236. > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 ' 4 * 0.295 = 89.164 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bott/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2)* 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*4*0.5 = 134.9 > 29.8 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)*2.4*d*Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength ~ Fbe*n*t = 57.281*4*0.295 = 67.592 > 29.8 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*{dh+ .0625))*tw*(1/2) *0.6*Fu = (15.86 - 4 * 1.125) * 0.295 * (1/2) *0.6 * 65 = 65.348 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6*50*4.6787 = 140.4 kips (1/FS)Vn = (1/1.5) -140.4 = 93.574 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 65,348 > 10 kips (OK) (1/FS)Rn = (1/2) * MJn((0.6 * Fu * Lnv + Ubs * Fu ' Lnt); (0.6 * Fy * Lgv + Ubs * Fu ' Lnt)) * t DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 5 = (1/2)' Min((0.6 * 65 ' 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) ' 0.295 Beam WebJUocf^ghearjjnder Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh-(nh-1)-(dh+ .0625)*{nh-0,5» = 2.875 in. Shear Area Length (gross), Lgv= 2*(Lh+sh*(nh-1)) = 2*(2 + 0*{1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)*(3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 - Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy ' Lgv + Ubs ' Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 " 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.295 = 20.788 kips = 70.468 > 29.8 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs ' Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) M = (1/2)* Min((0.6 * 58 * 1 .875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.5 Angle Block Shear under AxiaLLoad: Shear Area Length (net), Lnv = 2*(Lh+sh'(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(1.5 + 0 *(1 -1) - 1 .125 ' (1 - 0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1}) = 2-(1 .5 + 0*(1 -1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)"(sv - (dv+ .0625)) = (4-1) '(3- 1-125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu • Lnt); (0.6 * Fy * Lgv + Ubs ' Fu * Lnt)) * t - " = (1/2)' Min((0.6 - 58 * 1 .875 + 1 * 58 * 5.625); (0.6 '36 "3 + 1 * 58 * 5.625)) * 0.5 = 48.881 kips For two angles, (1/FS)Rn = 2*97.763 - 1 95.5 > 29.8 kips (OK) Allowable Shear Strength of Anqlefs): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 12 * 0.5 - 6 in*2 (1/FS)Rn = 2*(1/1.5) *0.6'Ag*Fy = 2 * (1/1.5) *0.6 * 6 * 36 = 172.8>10klps(OK) Shear Rupture Allowable Strength: Net Area on Osl, An 1 : = (L-n*(dh+ .0625))*t = (12 - 4 * (1.0625+ .0625))* 0.5 = 3.75 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (12 - 4 ' (1.0625+ .0625))* 0.5 - 3.75 inA2 An = Min(An1,An2)= 3.75 jn A2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 ' 3.75 * 58 = 130.5 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = t.5 - 1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)* 3+1.5 =10.5 in. Net Length with Shear resistance, Lnv - Lgv - (n - 0.5)*(dv+.0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy - Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 6.5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5 + 1-58* 0.9375))* 0.5 = 70.294 > 5 kips (OK) Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.3975 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625X2 = 1.3975 -1.125 / 2 = 0.835 in. Gross Length with Shear resistance, Lgv -(n-1)*s + Lv = (4-1)* 3+ 1.5 =10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+.0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy'Lgv] + Fu*Lnt)*t = (1/2) '(0.6* Min(58 * 6.5625 ; 36 * 10.5 + 1 * 58 * 0.835) * 0.5 = 68.808 i 5 kips (OK) Column flange local bendingjyas not checked! DesconWtn6-ASD Licensed tcr. Desert Eagle Engineering LLC Page: 6 Note: AH Welds E70XX 8 Bolts 1"0 A490-N-STD/ 5 1/2" 1/2" 1"0A490-N-STD Gage = 2.5 in. / J2L4X4X1/2X12tn.-A36 W10X68-A992 1 1/2" 3" vS £SL - Ga9§A2AMi 2UX4X1/2X15in.-A36, 10 Bi }"^M ' 1/2" 4@3=1'-0M [N -STD 6-5 1/2" Scale: 1/4" = 1' \ DesconWin6-ASD Licensed to; Desert Eagle Engineering LLC Page: 1 Beam Connection to Column Flange Column: W10X68-A992 Left Side Beam: W21X68 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 6t.9 kips Right Side Beam: W16X50 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 61.9 kips **AIIWetdsAreE70XX = (4.44 * 44.375 * 1.8/(3 * 36))A0.5 = 1.8121 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.8/1.8875 = 0,9536 Alfa1 = ((tc / t)A2 - 1) / (delta * (1 + ro)) = ((1.8121A>.625)*2 - 1) / (0.6458 * (1 + 0.9536)) = 5.87 Right Side Beam Shear Connection Using Clip Anqlefs): Clip Angles: 2L4X4X5/8 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts 1"0A490-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.38 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 61.9 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (61.9 )A2)A0.5 = 62.703 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.3875 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.6125 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n'((1/FS)rn) = 2 * 4 * 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn - (1/2) *rn = 44.375 kips Allowable Tension Strength per Tributary Areafor Each Interior Bolt: a = 1.3875 in. b = 2.3in. dh = 1.0625 in. b'=1.8in. a'= 1.8875 in. p = 3 in. tc = (4.44 " (1/FS)m * b1 / (p * Fy))A0.5 (1/FS)Tn = (1/FS)rn " (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.8121)A2*(1 + 0.6458) = 8.6879 kips Allowable Tension Strength per Tributary Area for Each Exterior Bolt: a = 1.3875 in. b = 2.3in. dh = 1.0625 in. b1 = 1.8 in. a'= 1.8875 in. p = 3 in. tc = (4.44 * (1/FS)rn * b1 / (p * Fy))A0.5 = (4.44 * 44.375 * 1 .8/(3 * 36))A0.5 = 1.8121 in. delta = 1 - dh/p = 1 - 1.0625/3 = 0.6458 ro = b'/a1 = 1.8/1.8875 = 0.9536 Alfa1 = ((tc / ()A2 - 1 ) / (delta * (1 + ro)) = ((1 .8121/0.625)A2 - 1) / (0.6458 * (1 = 5.87 0.9536)) (1/FS)Tn = (1/FS)rn * (t / tc)A2 " (1 + delta) ~ 44.375 * (0.625 / 1.8121)A2-(1 + 0.6458) = 8.6879 kips Prying Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1 )] - max(0; (1 / 0.6458) * (8.6879/44.375 * (1.8121 / 0.625)A2 - 1)) = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.9536 * (0.625 / 1.8121)A2 = 3.2511 kips/bolt Average (1/FS)Tn: = (2*0/FS)Tn Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 8.6879 + (4 - 2) * 8.6879) / 4 = 8.6879 kips Desigm Tension Strength: = 2'n*((1/FS)m) = 2*4* 8.6879 = 69.503 > 61.9 kips (OK) Bolt Bearing on Anqlefs): Bearing Strength/BolfThickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 in. = (1/2)M.2*Lc'Fu c(1/2) *2.4*d'Fu = 69.6 kips/in. - (1/2) ' 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2) * 1 .2 * Lc * Fu < (1/2) ' 2.4 * d ' FIJ = 69.6 kips/in. = (1/2) * 1 .2 ' 1 .9375 ' 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*{33.713 + 67.425 * (4 - 1)) * 0.625 = 295. > 10 kips (OK) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Soft Spacing = 3 in., Hole Size - 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)*2.4*d*Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 * 4 * 0.77 = 465.5 > 10 kips (OK) Beam Side Bolts: 4 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: - 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2-N*((1/FS)rn) = 2*4 * 23.562 = 188.5 > 62.703 kips (OK) Bolt Bearinqjm Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc'Fu < (1/2) ' 2.4 'd*Fu = 69.6 kips/in. = (1/2)-1.2* 0.9688* 58-33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc'Fu < (1/2) *2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 - 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 - 1)) * 0.625 = 295. > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bott Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 - Lc * Fu < (1/2) * 2.4 * d " Fu = 78 kips/in. = (1/2) * 1.2 * 1,9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563*4*0.38 - 114.9 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc - Fu < (1/2) - 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*4*0.625 = 168.6>61.9kips(OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) " 1.2 * Lc * Fu < (1/2) * 2.4 ' d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 *4*0.3S = 87.067 > 61.9 kips (OK) Allowable jihear Strengthio1Lthe Beam: Shear Rupture Strength, (VFS)Rn = (d - n'(dh+ .0625))*tw*(1/2) *0.6*Fu = (16.26 - 4 ' 1.125) ' 0.38 ' (1/2) *0.6 * 65 = 87.142 kips AllowableiShea_r_Yie Id Stre nqth: Vn = 0.6*Fy*A = 0.6-50*6.1788 = 185.4 kips (1/FS)Vn = (1/1.5) '185.4 = 123.6 kips Beam AllowabteShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 87.142 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)- Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 ' 4 -f t * 65 * 5.625)) * 0.38 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0 *(1 -1) - 1.125 * (1 - 0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2-(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)'(3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)-3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 - Fu * Lnv + Ubs * Fu - Lnt); (0.6 * Fy - Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 " 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) - 0.38 = 34.494 kips = 90.772 > 61.9 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu ' Lnt))' t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) - 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2-(Lh+sh'(nh-1)-(dh+ ,0625)*(nh-0.5)) = 2*(1.5 -t- 0 -(1 -1) -1.125 " (1 - 0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2-(1.5 + 0*(1 -1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1) "(3-1.125} = 5.625 in. Tension Area Length (gross), Lgt = (nv -1 )*sv = (4-1)-3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 ' Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)" Min((0.6 - 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 - 5.625)) * 0.625 * 76.377 kips DesconWtnfr-ASD Licensed to: Desert Eagle Engineering LLC Page: 3 For two angles, (1/FS)Rn = 2*122.2 = 244.4 > 61.9 kips (OK) Allowable Shear Strength oLAnplefs): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 12 * 0.625 = 7.5 inA2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag'Fy = 2 ' (1/1.5) '0.6 * 7.5 * 36 = 216 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Osl, An1: = {L-n*{dh+ .0625))*! - (12 - 4 * (1.0625+ ,0625))* 0.625 = 4.6875 JnA2 Net Area on Beam Side Leg, An2: = (L-n'dh)'t = (12 - 4 * (1.0625+ .0625))* 0.625 = 4.6875 inA2 An = Min(An1,An2)= 4.6875 inA2 (1/FS)Rn = 2*(1/2) *0.6*An'Fu = 2* (1/2) *0.6 ' 4.6875 * 58 = 163.1 > 10 kips (OK) Block Shear Strength of Beamslde Leo of One Angle: Gross Length with Tension resistance, Lgt = Lh - 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)'s + Lv = (4-1)*3+ 1.5 = 10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((0.6 " Fu * Lnv + Ubs * Fu - Lnt); (0.6 * Fy * Lgv + Ubs ' Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 6.5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5 + 1 - 58 ' 0.9375)) ' 0.625 = 87.867 > 5 kips (OK) Left Side Beam ShearConnection Using Clip Angles: 2L4X4X5/8 X 15 in. Angle Material: A36 Support SicteConnectipn: 10 Bolts 1"0 A49Q-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: S Bolts 1"0 A490-N -STP Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.43 in. Beam Web Height: 18.375 in. Beam Setback: 0.5 in. Uoadinp: Vertical Shear, V = 10 kips Axial Load, H = 61. 9 kips Resultant, R = (VA2 + HA2)A0,5 = ((10 )A2 + (61.9 )A2)A0.5 = 62.703 kips Check Clearances: Beam Web Clear Height = 1 8.375 > 1 5 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.465 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.535 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2 * 5 * 23.562 = 235.6 > 10 kips (OK) Nominal Strength per Bolt = m = Ft ' Ab = 1 13 ' 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)m = (1/2) *rn = 44.375 kips Stock Shear_S_trenqth_of Sugportside Lea of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.3875 in. Net Length with Tension resistance, Lnt = Lgt- (dh+ .0625)/2 = 1.3875 - 1.125 12 = 0.825 in. Gross Length with Shear resistance, Lgv = (n-1)*s+Lv = (4-1)*3+1.5 = 10.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)'1.125) = 6.5625 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy'Lgv] + Fu*Lnt)*t = (1/2) '(0.6* Min(58 * 6.5625 ; 36 * 10.5 + 1 • 58 * 0.825) 0.625 = 85.828 > 5 kips (OK) Column flange local bending was not checked! Allowable Tension Strength per Tributary Area for^Each Interior Bolt: a = 1.465 in. b = 2.2225 in. dh= 1.0625 in. b'= 1.7225 in. a'=1.965 in. p = 3in. tc = (4.44 * (1/FS)rn * b1 / (p * Fy))A0.5 = (4.44 * 44.375 * 1.7225/(3 * 36))A0.5 = 1.7727 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.7225/1.965 = 0.8766 Alfa' = ((tc / t)A2 -1) / (delta ' (1 + ro)) = ((1.7727/0.625)A2 - 1) / (0.6458 * (1 + 0.8766)) = 5.8124 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.7727)A2*(1 + 0.6458) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 4 - 9.0788 kips Allowable Tension Strength per Tributary Areafor Each Exterior Bolt: a = 1.465 in. b = 2.2225 in. dh= 1.0625 in. b' = 1.7225 in. a' = 1.965 in. p = 3in. tc = (4.44 * (1/FS)rn • b' / <p * Fy))A0.5 = (4.44 ' 44.375 * 1 .72257(3 * 36))A0.5 = 1.7727 In. delta = 1 - dh/p = 1 -1.0625/3 = 0.6458 ro = b'/a1 = 1.7225/1.965 = 0.8766 Alfa' = ((tc I t)A2 - 1) / (delta * (1 + ro)) = ((1.7727/0.625)A2 - 1) / (0.6458 * (1 = 5.8124 0.8766}) (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1 .7727)A2*(1 +• 0.6458) = 9.0788 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc/ t)A2 - 1)] = max(0; (1 / 0.6458) ' (9.0788 / 44.375 * (1 .7727 / 0.625)A2 -D)= 1 qu = (1/FS)Rn - Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0,8766 * (0.625 / 1.7727)A2 = 3.1 229 kips/bolt Average(1/FS)Tn: = (2 " (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 9.0788 + (5 - 2) * 9.0788) / 5 - 9.0788 kips Desigm Tension Strength: = 2*n'((1/FS)rn) = 2 " 5 ' 9.0788 = 90.788 > 61 .9 kips (OK) Bolt Bearing on Angle(s): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 En. = (1/2)M.2*Lc'Fu < (1/2) *2.4'd*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (t/2) ' 1.2 * Lc * Fu < (1/2) * 2.4 * d " Fu = 69.6 kips/in. = (1/2) * 1 .2 * 1 .9375 * 58 = 67.425 kips/in. Bearing Strength = 2'(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (5 - 1)) ' 0.625 = 379.3 > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Boll Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2) * 1 .2 * Lc * Fu < (1/2) * 2.4 ' d * Fu = 78 kips/in. = (1/2) * 1 .2 ' 1 .9375 ' 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t - 2-75.563 * 5 * 0.77 = 581 .8 > 10 kips (OK) Beam Side Bolts: 5 Bolts - 1"0 A490-H -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) = 1.5 > 1.25 in. (OK) Distance to Vertical Edge, eh; = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2'N*({1/FS)rn) = 2'5 * 23.562 = 235.6 > 62.703 kips (OK) Bolt Bearing on Angles: Bearing Strength/BolUThickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc'Fu <(1/2)'2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 ' 58 - 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) M .2 * Lc * Fu < (1/2) ' 2.4 ' d * Fu = 69.6 kips/in. =- (1/2) * 1.2 * 1.9375 * 58 = 67.425 'kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t ~ 2*(33.713 + 67.425 * (5 - 1)) * 0.625 = 379.3 > 10 kips (OK) Bolt Bearing on BeamJJVeb; Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc ' Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 ~ 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 5 * 0.43 = 162.5 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bott/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc'Fu < (1/2) *2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*5*0.625 = 210.7>61.9kips(OK) On Beam Web: Bearing Strength/Bott/Thickness Using Bott Edge Distance = Fbe Edge Dist. - 2 in., Hole Size = 1,0625 in. = (1/2) ' 1.2 • Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*f = 57.281 * 5 * 0.43 = 123.2 > 61.9 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh-«- .0625))*tw'(1/2) *0.6*Fu = (21.13 - 5 ' 1.125) * 0.43 * (1/2) *0.6 * 65 = 130 kips Allowable Shear Yield Strength: Vn s 0.6'Fy'A - 0.6 ' 50 * 9.0859 - 272.6 kips (1/FS)Vn = (1/1.5) -272.6 = 181.7 kips Beam AllowableShear Strength - Min((1/FS)Rn; (1/FS)Vn) = 130 > 10 kips (OK) Distance to Horizontal Edge, ev:(1/FS)Rn = (1/2) * Min((0.6 ' Fu * Lnv * Ubs * Fu * Lnt); (0.6 * Fy • Lgv DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page; 5 + Ubs * Fu * Lnt» * t = (1/2)* Min((0.6 ' 65 ' 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65 " 7.5)} * 0.43 Beam_Weib_Btod(_Shearjjnder_Axia{.Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 +0*(1-1)-1.125* (1-0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+srV(nh-1}) = 2*(2 +0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (5-1) '(3 -1.125) - 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (5-1)*3 = 12 in. (1/FS)Rn - (1/2) ' Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65* 7.5))-0.43 = 55.435 kips = 128.9 > 61.9 kips (OK) AnateTear out Under BeamAxialLpadi (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 - Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)' Min((0.6 * 58 * 1.875 -t-1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 * 7.5)) * 0.625 Ang|e_Btock_Shea^ under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1 )-(dh+ ,0625)*(nh-0.5)) -2*(1.5 + 0*(1 -1)-1.125*(1 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*{Ln+sh*(nn-1)) = 2*(1.5 + 0*(1 -1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (5-1)* (3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (5-1)*3 = 12 in. (1/FS)Rn = (1/2) - Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0,6 * Fy * Lgv + Ubs * Fu ' Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 " 3 + 1 * 58 * 7.5)) * 0.625 = 97.617 kips For two angles, (1/FS)Rn = 2*156.2 = 312.4 > 61.9 kips (OK) Allowable Shear Strength o^Anqlefs): Shear Yielding Allowable Strength^ Gross Area, Ag = L*t = 15 * 0.625 = 9.375 inA2 (1/FS)Rn = 2*(1/1.5) *0.6'Ag*Fy = 2 * (1/1.5) *0.6 * 9.375 * 36 = 270 > 10 kips (OK) Net Area on Osl, An1: = (L-n*(dh+ .0625))'t = (15 - 5 * (1.0625+ .0625))* 0.625 = 5.8594 inA2 Net Area on Beam Side Leg, An2: = (L-n'dh)*t = (15 - 5 * (1.0625+ .0625))* 0.625 = 5.8594 inA2 An = Min(An1,An2)= 5.8594 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 5.8594 * 58 = 203.9 > 10 kips (OK) Block Shear Strength of Beamside Leg of One_Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ ,0625)/2 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv " = (5-1)'3 + 1.5'=13.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 13.5-(5-0.5)'1.125) = 8.4375 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 8.4375 + 1 * 58 * 0.9375); (0.6 * 36 * 13.5 + 1 * 58 * 0.9375)) * 0.625 = 108.1 > 5 kips (OK) Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.465 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625J/2 = 1.465 - 1.125 / 2 = 0.9025 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (5-1)'3+1.5=13.5in. Net Length with Shear resistance, Lnv - Lgv - {n - 0.5)*(dv+ .0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv; Fy*Lgv] + Fu*Lnt)*t = (t/2) *(0.6* Min(58 * 8.4375 ; 36 * 13.5 + 1 * 58 * 0.9025) 0.625 = 107.5 > 5 kips (OK) Column flange locaf bending was not checked! Shear Rupture Allowable Strength: DesconWin6-ASD Licensed to; Desert Eagle Engineering LLC Page: 6 Note: AH Welds E70XX = =1'-(r '* • - •! f 4@3 10 Bolts 1"0 A490-N -STD/ 3". 1 1/2" 4@3=1'-6" f W21X68-A9S2( \" 1"0A490-N-STD Gage = 2.5 in. N2L4X4X5/8 X 15in. - A36 W10X68- 1 1/2" 3" - A992 ^4'„ ? L4X_4X5/8_X 12i n: - A3§fc 8 Bolts \1"0A490-N-STD "e-5 1/2" Scale: 1/4" = V DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 1 Beam Connection to Column Web Column: W10X68-A992 Left Side Beam: W16X50 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 30.9 kips Right Side Beam: W14X30 - A992 Moment: 0 k-ft Shear: 10 kips Axiaf Force: 30.9 kips All Welds Are E70XX Right Side Beam Shear Connection Using Clip Analefs): Clip Angles: 2L4X4X1/2 X 8.5 in. Angle Material: A36 Support Side Connection: 4 Bolts 1"0 A490-N -STD Bolt Holes on Support: 0 in. Vert. X 0 in. Horiz. Effective Thickness of Support Material: 0.235 in. Bolt Holes on Angles: 0 in. Vert. X 0 in. Horiz. Beam Side Connection: 3 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.27 in. Beam Web Height: 11.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 30.9 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (30.9 )A2)A0.5 = 32.478 kips Check Clearances: Beam Web Clear Height = 11.625 > 8.5 in. (OK) Column Web = 7.5 < 8.27 in. NG Support Side Bolts Spacing, s = 3 >_ Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 2.75 > 1.25 in. (OK) Distance to Vertical Edge, eh: = 1.385 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.615 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2 * 2 * 23.562 - 94.248 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 - 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) *rn = 44.375 kips AllowableTension Strength per Tributary Area for Each Bolt: a= 1.385 in. b = 2.365 in. dh = 0 in. b'= 1.865 in. a'= 1.885 in. p = 4.25 in. tc = (4.44 ' (1/FS)m * b1 / <p * Fy))A0.5 = (4.44 * 44.375 * 1.865/(4.25 * 36))A0.5 = 1.5497 in. delta = 1 - dh/p = 1 - 0/4.25 = 1 ro = b'/a' = 1.865/1.885 = 0.9894 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.5497/0.5)A2 -1) / (1 " (1 + 0.9894)) = 4.3262 (1/FS)Tn = (1/FS)rn * (t / tc)A2 ' (1 + delta) = 44.375 * (0.5 /1.5497)A2*(1 + 1) = 9.2385 kips Prying Force: Alfa =-max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 -1)] = max(0; (1 /1) • (9.2385/44.375 * (1.5497/0.5)rt2 -1)) = 01. qu = (1/FS)Rn * Delta * alfa ' ro * (t / tc)A2 = 44.375 * 1 * 01. • 0.9894 * (0.5 / 1.5497)A2 = 4.5702 kips/bolt Desigm Tension Strength: = 2*n*((1/FS)rn) = 2 * 2 * 9.2385 = 36.954 > 30.9 kips (OK) Bolt Bearing on Angte(s): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2.75 in., Hole Size = 0 in. = (1/2)' 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 2.75 * 58 = 95.7 kips/in. Use: Fbe = 69.6 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 0 in. = (1/2)*1.2*Lc*Fu < (1/2) *2.4*d*Fu = 69.6 kips/in. - (1/2) * 1.2 * 3 * 58 = 104.4 kips/in. Use: Fbs = 69.6 kips/in. Bearing Strength = 2"(Fbe + Fbs*(n-1))*t = 2*(69.6 +69.6* (2-1))* 0.5 = 139.2 > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Soft Spacing = 3 in., Hole Size = 0 in. = (1/2) * 1.2 ' Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) "1.2*3*65 =117. kips/in. Use: Fbs = 78 kips/in. Bearing Strength = 2*Fbs*n*t = 2*78 " 2 * 0.235 = 73.32 > 10 kips (OK) Beam Side Bolts: 3 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.25>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 1.875 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)rn) = 2*3 * 23.562 = 141.4 > 32.478 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 Edge Dist. = 1.25 in., Hole Size = 1,0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2)* 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.7188 * 58 = 25.013 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc - Fu < (1/2) ' 2.4 • d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs"(n-1)}"t = 2*(25.013 + 67.425 * (3 - 1)) * 0.5 = 159.9 > 10 kips (OK) Bolt Bearing on Beam Web; Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)*2.4*d*Fu = 78 kips/in. = (1/2) * 1.2 * 1-9375 ' 65 - 75.563 kips/in. Bearing Strength = Fbs * n * t - 75.563 ' 3 * 0.27 = 61.206 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size =- 1.0625 in. - (1/2)' 1.2 * Lc * Fu < (1/2)' 2.4 * d * Fu = 69.6 kips/in. = (1/2) " 1.2 * 0.9688 ' 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*3-0.5 = 101.1 > 30.9 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc • Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 ' 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 ' 3 * 0.27 = 46.398 > 30.9 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))*tw*(1/2) *0.6*Fu = (13.84 - 3 ' 1.125) ' 0.27 * (1/2) '0.6 * 65 = 55.098 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6 ' 50 * 3.7368 = 112.1 kips (1/FS)Vn = (1/1.5) M 12.1 = 74.736 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) - 55.098 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)' Min((0.6 * 65 * 2,875 + 1 * 65 * 3.75); (0,6 * 50 ' 4 + 1 ' 65 * 3.75)) * 0.27 BearrLWeb Block jiheai: under Axial Load; Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1Mdh+ .0625}*(nh-0.5)) = 2*(2 + 0*(1 -1)-1.125*(1 -0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nfM}) = 2*(2 +0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (3-1)*(3-1.125) = 3.75 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (3-1)*3 = 6 in. (1/FS)Rn = (1/2) * Min((0.6 ' Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 3.75); (0.6 * 50 * 4 + 1 * 65 * 3.75)) * 0.27 = 12.972 kips = 48.043 > 30.9 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu • Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1 .875 + 1 * 58 * 3.75); (0.6 * 36 * 3 + 1 * 58 * 3.75)) * 0.5 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv - 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2'(1.5 + 0*(1 -1)- 1.125*0 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*0-1)) = Sin. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (3-1)*(3-1.125) = 3.75 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (3-1)* 3 = 6 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu " Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs - Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1 .875 + 1 * 58 * 3.75); (0.6 * 36 * 3 + 1 * 58 * 3.75)) * 0.5 = 35.288 kips For two angles, (1/FS)Rn = 2*70.575 * 141 .2 > 30.9 kips (OK) Allowable Shear Strength of Anglefs): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 8.5 * 0.5 = 4.25 in"2 (1/FS)Rn = 2*<1/1.5) *0.6*Ag*Fy = 2*(f/1.5) "0.6 * 4.25 * 36= 122.4 > 10 kips (OK) S_hear_Rupture Allgwable_Strength; Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (8.5 - 2 * (0+ .0625))* 0.5 = 4.1875 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (8.5 - 3 * (1 .0625+ .0625))" 0.5 = 2.5625 inA2 An = Min(An1,An2)= 2.5625 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 2.5625 * 58 = 89.175 > 10 kips (OK) Block Shear Strength of Beamside Leg Gross Length with Tension resistance, Lgt = Lh = 1.5 in. DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page; 3 Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)72 = 1.5 - 0.0625 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n - 1)*s + Lv = (3-1)* 3+ 1.25 = 7.25 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)'(dv+ .0625) = 7.25-(3-0.5)*1.125) = 4.4375 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu • Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)' Min((0.6 * 58 * 4.4375 + 1 * 58 * 0.9375); (0.6 * 36 * 7.25 + 1 * 58 * 0.9375)) - 0.5 = 52.2 > 5 kips (OK) Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.44>1.25in. (OK) Gage on OSL: Angle Gage = 2.56 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2"n*((1/FS)rn) = 2*3' 23.562 = 141.4 > 10 kips (OK) Nominal Strength per Bolt = m = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) *m = 44.375 kips Block Sheaijitrength of S'upportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.385 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)72 = 1.385 - 0.0625 / 2 = 1.3537 in. Gross Length with Shear resistance, Lgv = (n - 1)*s + Lv = (2-1)* 3+ 2.75 = 5.75 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 5.75 - (2 - 0.5r0.0625) = 5.6563 in. (1/FS)Rn = (1/2) '(0.6* Min[Fu * Lnv; Fy*Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 * 5.6563 ; 36 * 5.75 + 1 * 58 * 1.3537) 0.5 = 50.679 > 5 kips (OK) Column Web local bending was not checked! Left Side Beam Shear Connection Using Clip Angle(s): Clip Angles: 2L4X4X1/2 X 9 in. Angle Material: A36 Support Side Connection: 6 Bolts 1"BLA49Q^N -SID Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.235 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 3_Bolts_V|_0 A_49p-_N_j>TD_ Bott Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in, Horiz. Beam Web Thickness: 0.38 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V - 10 kips Axial Load, H = 30.9 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (30.9 )A2)A0.5 = 32.478 kips Check Clearances: Beam Web Clear Height = 13.625 > 9 in. (OK) Column Web = 7.5 < 8.38 in. NG Support Side Bolts Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.44 in. b = 2.31 in. dh= 1.0625 in. b' = 1.81 in. a'=1,94 in. p = 3in. tc = (4.44 - (1/FS)m * b1 / (p * Fy))*0.5 = (4.44 * 44.375 * 1.81/(3 * 36))A0.5 = 1.8171 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1,81/1.94 = 0.933 Atfa1 = ((tc / t)A2 -1) / (delta * (1 + ro)) - ((1.8171/0.5)A2 -1) / (0.6458 * (1 + 0.933)) = 9.779 (1/FS)Tn = (1/FS)rn - (t / tc)*2 * (1 + delta) = 44.375 * (0.5 /1.8171 )A2*(1 + 0.6458) = 5.5295 kips Allowable Tensjon Strengthjjer Tributary Area for Each Exterior Bolt: a = 1.44 in. b = 2.31 in. dh = 1.0625 in. b' = 1.81 in. a'= 1.94 in. p = 3 in. tc = (4.44 * (1/FS)rn * b1 / (p * FyJ^O.S = (4.44 * 44.375 * 1.81/(3 * 36))A0.5 = 1.8171 in. delta = 1 - dh/p = 1 -1.0625/3 = 0,6458 ro = b'/a' = 1.81/1.94 = 0.933 Alfa' = ((tc /1^2 -1) / (delta * (1 + ro)) = ((1.8171/0.5)A2 - 1) / (0.6458 * (1 + 0.933)) = 9.779 (1/FS)Tn = (1/FS)rn * (t/ tc)A2 * (1 + delta)= 44.375*<0-5M-8171)A2*(1 + rj.6458) = 5.5295 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 -1)] DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 4 = max(0; (1 / 0.6458) * (5.5295 / 44.375 = 1 (1.8171/0.5)A2-1)) qu - (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.933 ' (0.5 / 1.8171)*2 = 2.0244 kips/bott Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 5.5295 + (3 - 2) * 5.5295) / 3 = 5.5295 kips Desigm Tension Strength: = 2*n'((1/FS)rn) = 2 * 3 ' 5.5295 = 33.177 > 30.9 kips (OK) Bolt Bearing on Anple(s): Bearing Strength/BolVThickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in,, Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 ' 58 = 33.713 kips/tn. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d ' Fu = 69.6 kips/in. = (1/2) * 1.2 ' 1.9375 * 58 = 67.425 ktps/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (3 - 1)} ' 0.5 = 168.6 > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563*3*0.235 = 106.5 > 10 kips (OK) Beam Side Bolts: 3 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: - 2.5 > 1.875 in. (OK) Allowable Shear Strength of Bolts: = 2'N*((1/FS)rn) = 2*3 * 23.562 = 141.4 > 32.478 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (112) * 1.2 * Lc * Fu < (1/2) * 2.4 ' d * Fu = 69.6 kips/in. = (1/2) * 1.2 ' 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = <1/2)*1.2*Lc*Fu < (1/2) *2.4'd*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (3 - 1)} - 0.5 = 168.6 > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size ~ 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 3 * 0.38 = 86.141 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) ' 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 " 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*3*0.5 = 101.1 > 30.9 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu <<1/2)*2.4*d*Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t - 57.281 * 3 * 0.38 = 65.301 > 30.9 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))*tw*(1/2) *0,6*Fu = (16.26 - 3 * 1.125) * 0.38 * (1/2) *0.6 * 65 = 95.478 kips Allowable Shear Yfekj_ Strength: Vn = 0.6*Fy'A = 0.6*50'6.1788 = 185.4 kips (1/FS)Vn-(1/1.5) *185.4= 123.6 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 95.478 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 3.75); (0.6 * 50 * 4 + 1 * 65 * 3.75)) * 0.38 Beam Web Block Shear under AxiaLLoad; Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2'(2 + 0 *(1 -1) - 1.125 * (1 - 0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nb-1)) = 2*(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (3-1)* (3-1.125) = 3.75 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (3-1)* 3 = 6 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs " Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 3.75); (0.6 * 50 * 4 + 1 - 65 * 3.75)) * 0.38 = 25.694 kips = 67.616 > 30.9 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 - Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 5 = (1/2)* Min((0.6 * 58 • 1.875 + 1 * 58 * 3.75); (0.6 * 36 * 3 + 1 * 58 * 3.75)) * 0.5 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2'(1.5 + 0*(1-1)-1.125 '(1 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2"(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (3-1)*(3-1.125) = 3.75 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (3-1) *3 = 6 in. (1/FS)Rn = (1/2) * Min«0.6 * Fu * Lnv -f Ubs " Fu * Lnt); (0.6 * Fy * Lgv + Ubs - Fu * Lnt)) * t - (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 3.75); (0.6 * 36 * 3 + 1 * 58 * 3.75)) * 0.5 = 35.288 kips For two angles, (1/FS)Rn = 2'70.575 = 141.2 > 30.9 kips (OK) Allowable Shear Strength of Angle(s): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 9 * 0.5 = 4.5 inA2 (1/FS)Rn = 2'(1/1.5) *0.6*Ag*Fy = 2*(1/1,5) '0.6*4.5*36 = 129.6 > 10 kips (OK) Shear Rupture Allowable ..Strength; Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (9 - 3 * (1.0625+ .0625))* 0.5 = 2.8125 inA2 Net Area on Beam Side Leg, An2: = (L-n-dh)*t = (9 - 3 * (1.0625+ .0625))* 0.5 = 2.8125 inA2 An = Min(An1,An2)= 2.8125 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 2.8125 * 58 = 97,875 > 10 kips (OK) Block Shearjgtrenqth of Beamside_Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 - 1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)'s + Lv = (3-1)* 3+1.5 = 7.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 7.5-(3-0.5)*1.125) = 4.6875 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 4.6875 + 1 * 58 * 0.9375); (0.6 * 36 * 7.5+1 * 58 * 0.9375)) * 0.5 = 54.094 > 5 kips (OK) Block Shear Strength of Supportsjdg Leg gfjpne Angle: Gross Length with Tension resistance, Lgt = Lh = 1.44 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 * 1.44 -1.125 / 2 - 0.8775 in. Gross Length with Shear resistance, Lgv = (n-1)'s + Lv = (3-1)* 3+1.5 = 7.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 7.5-(3-0.5)*1.125) = 4.6875 in. (1/FS)Rn = (1/2) *(0.6* MinfFu * Lnv ; Fy*Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 ' 4.6875 ; 36 * 7.5 + 1 * 58 * 0.8775) * 0.5 = 53.224 > 5 kips (OK) Column Web local bending was not checked! DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 6 Note: All Welds E70XX 2@3=6" 3"i. 1 1/2"V_k 6 Bolts r0A4JOJ4j«TD/ 5 1/2"- V0A490-N-STD Ga.ge_f_2.5Jn. _____ / 4 Bolts 1"0 t^-51/2" 2L4X4X1/2X8.5in.-A36|' W10X68-A992 Scale: 1/4" = 1' <?1D-9 £9 *4 DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 1 Beam Connection to Column Flange Column: W10X68-A992 Left Side Beam: Wt6X36 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 35.2 kips Right Side Beam: W21X68 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 35.2 kips **********AH Welds Are E70XX ********** Right Side Beam Shear Connection Using Cljp Angj_efsl:_ Clip Angles: 2L4X4X1/2 X 15 in. Angle Material: A36 Support Side Connection: 10 Bolts 1"0 A490-N -STD Bott Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 5 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.43 in. Beam Web Height: 18.375 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 35.2 kips Resultant, R = (VA2 + HA2)A0.5 - ((10 )A2 + (35.2 )A2)A0.5 = 36.593 kips Check Clearances: Beam Web Clear Height - 18.375 > 15 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.465*1.25 in. (OK) Gage on OSL: Angle Gage = 2.535 > 2 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)m) = 2*5* 23.562 = 235.6 > 10 kips (OK) Nominal Strength per Bolt = m = Ft* Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)m == (1/2) Tn = 44.375 kips Allowable TensionJStrength per Tributary Area for Eachjnterior Bolt a = 1.465 in. b= 2.285 in. dh = 1.0625 in. b'= 1.785 in. a' = 1.965 in. p = 3 in. tc = (4.44 * (1/FS)rn * b' / (p * Fy})A0.5 = (4.44 * 44.375 * 1.785/(3 * 36))A0.5 = 1.8045 in. delta = 1 - dh/p = 1-1 .0625/3 = 0.6458 ro = b'/a' = 1.785/1.965 = 0.9084 Alfa' = ((tc / t)A2 - 1) / (delta * (1 + ro)) = ((1.8045/0.5)A2 - 1) / (0.6458 - (1 = 9.757 0.9084)) (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.5 / 1 .8045)A2*(1 + 0.6458) ~ 5.607 kips Allowable Tgnsion^ Strength per Tributary Area fgj^Each Exterior Bolt: a =1.465 in. b = 2.285 in. dh = 1.0625 in. b'- 1.785 in. a' =1.965 in. p = 3in. tc = (4.44 * (1/FS)rn * b1 / (p * Fy))A0.5 = (4.44 * 44.375 * 1.785/(3 * 36))A0.5 = 1.8045 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.785/1.965 = 0.9084 Alfa' = ((tc / t)A2 - 1 ) / (delta * (1 + ro)) = ((1 .8045/0.5)A2 - 1) / (0.6458 * (1 + 0.9084)) = 9.757 (1/FS)Tn = (1/FS)m * (t / tc)A2 * (1 + delta) = 44.375 * (0.5 / 1 .8045)A2*(1 + 0.6458) = 5.607 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn - (tc / t)A2 - 1)] = max(0; (1 / 0.6458) * (5.607 / 44.375 * (1 .8045 / 0.5)A2 - 1 )) = 1 qu = (1/FS)Rn * Delta - alfa * ro ' (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.9084 * (0.5 / 1.8045)A2 = 1.9987 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)TnJnt) / N =(2 * 5.607 + (5 - 2) * 5.607) / 5 = 5.607 kips Destgm Tension Strength: = 2*n*((1/FS)rn) = 2*5' 5.607 = 56.07 > 35.2 kips (OK) Bolt Bearing on Anqlefs): Bearing Strength/BolUThickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 in. = (1/2) * 1 .2 * Lc - Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 ' 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1 .0625 in. = (1/2)*1.2'Lc*Fu < (1/2) " 2.4 * d * Fu = 69.6 kips/in. = (1/2) M .2 * 1 .9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1»*t - 2*(33.713 + 67.425 * (5 - 1)) * d.5 = 303.4 > 10 kips (OK) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)*2.4*d*Fu = 78 kips/in. = (1/2)* 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 ' 5 * 0.77 = 581.8>10kips(OK) Beam Side Bolts: S Bolts - 1"0 A4&0-N -STP Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: .= 2.5 > 1.875 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)rn) = 2*5 * 23.562 = 235.6 > 36.593 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2) *2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 - 58 = 33,713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2)* 2.4 * d * Fu = 69.6 kips/in. - (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength - 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (5 - 1)) * 0.5 = 303.4 > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/BoltThickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 ' 5 * 0.43 = 162.5 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 ' Lc * Fu < (1/2) * 2.4 ' d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/tn. Bearing Strength = 2*Fbe*n*t = 2*33.713*5*0.5 = 168.6> 35.2 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance - Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 5 * 0.43 = 123.2 > 35.2 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))*tw*(1/2) *0.6*Fu = (21.13 - 5 * 1.125) * 0.43 * (1/2) '0.6 ' 65 = 130 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6 * 50 * 9.0859 = 272.6 kips (1/FS)Vn = (1/1.5) *272.6 = 181.7 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 130 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6*65 *2.875 + 1 *65*7.5); (0.6* 50 * 4 + 1 * 65 * 7.5)) * 0.43 BearnJ/Veb Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0*<1 -1)-1.125* (1-0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (5-1)* (3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv -1 )*sv = (5-1)*3 = 12 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65 * 7.5)) * 0.43 = 55.435 kips = 128.9 > 35.2 kips (OK) Angle^Tear outUnder Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 * 7.5)) * 0.5 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv= 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) -2*(1.5 + 0*(1 -1)-1.125*(1 -0.5)) -1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (5-1)*(3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv -1 )*sv = (5-1) *3 = 12 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 • 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 * 7.5)) * 0.5 = 62.475 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 3 For two angles, (1/FS)Rn = 2M25. = 249.9 > 35.2 kips (OK) Allowable Shear Strength of Angle(s): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 15 * 0.5 = 7.5 inA2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag*Fy = 2* (1/1-5) *0.6'7.5*36 = 216 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Os!, Ant: = (L-n*(dh+ .0625))*t = (15 - 5 * (1.0625* .0625))* 0.5 = 4.6875 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (15 - 5 * (1.0625+ .0625))' 0.5 = 4.6875 inA2 An = Min(An1,An2)= 4.6875 inA2 (1/FS)Rn - 2*(1/2) '0.6*An*Fu = 2* (1/2) *0.6 • 4.6875 * 58 = 163,1 > 10 kips (OK) Block Sheajjjtrength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)'s + Lv = (5-1)'3+1.5=13.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu ' Lnt); (0,6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)' Min((0.6 * 58 * 8.4375 + 1 * 58' 0.9375); (0.6 * 36 * 13.5+1 * 58 * 0.9375)) * 0.5 = 86.494 > 5 kips (OK) Shear Connection Using Clip Anglefsl: Clip Angles: 2L4X4X1/2 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts l"gLA490-N -STP Bolt Hotes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N -STD Bolt Hotes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.295 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips- - Axial Load, H = 35.2 kips -• Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (35.2 )A2)A0.5 = 36.593 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1,25in. (OK) Distance to Vertical Edge, eh: = 1.375 > 1.25 in. (OK) Gage on OSL: Angle Gage - 2.625 > 2 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2"n'((1/FS)m) = 2*4" 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn - (1/2) *rn = 44.375 kips Block ShearJStrength of Supportside Leg of One Angle; Gross Length with Tension resistance, Lgt = Lh = 1.465 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.465 - 1.125 / 2 = 0.9025 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (5-1)*3+1.5 = 13.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)"(dv+ .0625) = 13.5-(5-0.5)'1.125) = 8.4375 in. (1/FS)Rn = (1/2) '(0.6- Min[Fu * Lnv ; Fy*Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 * 8.4375 ; 36 * 13.5 + 1 * 58 * 0.9025) 0.5 = 85.986 > 5 kips (OK) Column flange local bending was not checked! Left Side Beam Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.375 in. b = 2.375 in. dh = 1.0625 in. b'-1.875 in. a' = 1.875 in. p = 3in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1.8757(3 * 36))A0.5 = 1.8495 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.875/1.875 = 1 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.8495/0.5)A2-1)/ (0.6458 * (1 + 1)) = 9.8185 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.5 / 1.8495)A2*(1 + 0.6458) = 5.3378 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 4 Allowable Tension Strength per Tributary Area for Each Exterior BoK: a = 1.375 in. b = 2.375 in. dh = 1.0625 in. b'= 1.875 in. a' = 1.875 in. p = 3 in. tc = (4.44 * (1/FS)rn * b1 / (p * Fy))A0,5 = (4.44 * 44.375 * 1.875/(3 * 36))*0.5 = 1.8495 in. delta = 1 - dh/p = 1 -1.0625/3 = 0.6458 ro = b'/a' = 1.875/1.875 = 1 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.8495/0.5)A2 - 1) / {0.6458 * (1 + 1)) = 9.8185 (1/FS)Tn = (1/FS)rn * (t /tc)A2 * (1 + delta) = 44.375 * (0.5 / 1.8495)A2*(1 +• 0.6458) = 5.3378 kips Prying Force; Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn ' (tc / t)A2 -1)] = max(0; (1 / 0.6458} * {5.3378 / 44.375 * (1.8495 / 0.5)A2 - 1)) = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 1 * (0.5 / 1.8495)A2 = 2.0946 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 5.3378 -*- (4 - 2) " 5.3378) / 4 - 5.3378 kips Desigm Tension Strength: = 2*n'((1/FS)m) = 2*4* 5.3378 = 42.703 > 35.2 kips (OK) Bolt Bearing on Angle(s): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bott Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc ' Fu < (1/2) ' 2.4 * d * Fu = 69.6 kips/in. = (1/2) ' 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*{Fbe + Fbs*(n-1))*t = 2-(33.713 + 67.425 * (4 - 1)) * 0.5 = 236. > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc-Fu <(1/2)*2.4*d*Fu = 78 kips/in. = (112) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength - 2*Fbs*n*t = 2*75.563 * 4 * 0.77 = 465.5 > 10 kips (OK) Beam Side Bolts: 4 Bolts - 1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5> 1.25 in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 1.875 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)m) = 2*4 * 23.562 = 188.5 > 36.593 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Boft Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69,6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing StrengtrVBoft/Thickness Using Bott Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2)* 2,4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 - 1)) * 0.5 = 236. > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Boft/Thidcness Using Bolt Spacing - Fbs Boft Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563*4*0.295 = 89.164 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*4*0.5 = 134.9 > 35.2 kips (OK) On Beam Web: Bearing Strength/BoltTThickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 ' d * Fu = 78 kips/in. = (1/2) '1.2*1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281*4*0.295 = 67.592 > 35.2 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))*tw-(1/2) *0.6Tu = (15.86 - 4 * 1.125) * 0.295 * (1/2) *0.6 * 65 = 65.348 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6 * 50 * 4.6787 = 140.4 kips (1/FS)Vn = (1/1.5) -140.4 = 93.574 kips Beam Allowables hear Strength = Min((1/FS)Rn; (1/FS)Vn) = 65.348 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 - Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 5 = (1/2)' Min((0.6 * 65 * 2.875 + 1 * 65 - 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) • 0.295 Beam Web Block ShearJJnderAxJajLoad: Shear Area Length (net). Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 +0*(1-1)- 1.125 '(1-0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*<2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (rw - 1)*(sv - (dv+ .0625)) = (4-1)* (3 -1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs " Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.295 = 20.788 kips = 70.468 > 35.2 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.5 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1 )-<dh+ .0625)*(nh-0.5)) = 2*{1.5 + 0*(1 -1)-1-125*(1 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5+ 0-(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) - 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)} * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 • 58 " 5.625)) * 0.5 = 48.881 kips For two angles, (1/FS)Rn = 2*97.763 = 195.5 > 35.2 kips (OK) Allowable Shear Strength of Anqle(s): Shear Yielding Allowable Strength; Gross Area, Ag = L*t = 12 * 0.5 = 6 inA2 (1/FS)Rn = 2*0/1.5) *0.6'Ag"Fy = 2 * (1/1.5) '0.6*6*36 = 172.8 > 10 kips (OK) Shear Rupture Allowable Strength; Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (12 - 4 * (1.0625+ .0625))' 0.5 = 3.75 inA2 Net Area on Beam Side Leg, An2: - (L-n*dh)*t = (12 - 4 ' (1.0625+ .0625))* 0.5 = 3.75 inA2 An = Min(An1,An2)= 3.75 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2' (1/2) *0.6 * 3.75 * 58 = 130.5 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh =1.5 in. Net Length with Tension resistance, Lnt = Lgt- (dh+ .0525)12 = 1.5-1.125/2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)* 3+ 1.5 = 10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt}) * t - (1/2)* Min((0.6 * 58 * 6.5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5 + 1 * 58 * 0.9375)) * 0.5 = 70.294 > 5 kips (OK) Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.375 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.375 -1.125 / 2 = 0.8125 in. Gross Length with Shear resistance, Lgv = (n- 1)*s + Lv = (4-1)*3+1.5 = 10.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)'1.125) = 6.5625 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy*Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 * 6.5625 ; 36 * 10.5 + 1 * 58 * 0.8125) * 0.5 = 68.481 > 5 kips (OK) Column flange local bending was not checkedl DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 1 Note: AHWelds 1 iJi — JllI £|L- -4$ E7.QXX / 8 Bolts 1!0_.A4^N_-STD/ 5 1/2"- V16X36- 1"0A490-N-STD / Gage = 2.5 in. / I2L4X4X1/2 X 12|n.^A36 WlbX68-A992 4@3=1'-0" 'T'" 2L4X4X1/2X -4"51/2" Scale: 1/4" = 1' Jl Ps II DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 1 Beam Connection to Column Flange Column: W10X68-A992 Left Side Beam: W21X62 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 82.4 kips Right Side Beam: W21X62 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 62.4 kips ' All Welds Are E70XX ********** Right Side Beam Shear Connection Using Clip Anglels): Clip Angles: 2L4X4X5/8 X 15 in. Angle Material: A36 Support Side Connection: 10 Bolts 1"0 A490-r^L-STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material; 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 5 Bolts 1"0 A49Q-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.4 in. Beam Web Height: 18.375 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 82.4 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (82.4 )A2)*0.5 = 83.005 kips Check Clearances: Beam Web Clear Height = 18.375 > 15 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.45 > 1.25 in. (OK) Gage on OSL: Angle Gage - 2.55 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2 • 5 * 23.562 = 235.6 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft " Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) 'rn = 44.375 kips Allowable Tension Strength per Tributary Area for Each Intejjor golt: a= 1.45 in. b = 2.2375 in. dh = 1.0625 in. b' = 1.7375 in. a' = 1.95 in. p - 3 in. tc = (4.44 ' (1/FS)rn " b1 / (p * Fy))A0.5 = (4.44 * 44.375 * 1 J375/(3 * 36)^0.5 = 1.7804 in. delta = 1 - dh/p = 1-10625/3 = 0.6458 ro = b'/a1 = 1.7375/1.95 = 0.891 Alfa1 = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.7804/0.625)A2 - 1) / (0.6458 * (1 + 0.891)) = 5.8254 (1/FS)Tn = (1/FS)rn * (t / tc)*2 * (1 + delta) = 44.375 * (0.625 /1.7804)A2*(1 + 0.6458) = 9.0004 kips ANowabtejrension Strength per Tributary Area for Each Exterior Bojfc a = 1.45 in. b = 2.2375 in. dh= 1.0625 in. b'= 1.7375 in. a'=1.95 in. p = 3in. tc = (4.44 * (1/FS)m ' b1 / (p * Fy))A0.5 = (4.44 • 44.375 * 1.7375/(3 * 36))A0.5 = 1.7804 in. delta = 1 - dh/p - 1 -1.0625/3 = 0.6458 ro = b'/a1 = 1.7375/1.95 = 0.891 Affa' = ((tc / t)A2 - 1) / (delta * (1 + ro)) = ((1.7804/0.625)A2 - 1) / (0.6458 " (1 = 5.8254 0.891)) (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.7804)A2*(1 + 0.6458) = 9.0004 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1)] = max(0; (1 / 0.6458) * (9.0004 / 44.375 * (1 .7804 / 0.625)A2 - 1)) = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.891 * (0.625 / 1.7804)A2 = 3. 1469 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 9.0004 + (5 - 2) * 9.0004) / 5 = 9.0004 kips Desigm Tension Strength: = 2*n'((1/FS)m) = 2*5' 9.0004 = 90.004 > 82.4 kips (OK) Bolt Bearing on Anglefsi: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 in. -0/2)M.2*Lc*Fu < (1 12) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) ' 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2) *2.4'd*Fu = 69.6 kips/in. = (1/2) * 1 .2 * 1 .9375 * 58 = 67.425 kips/in. Beating Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 ' (5 - 1)) * 0.625 = 379.3 > 10 kips (OK) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 Bolt Bearing on Support: Bearing Strength/Bott/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2} * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) • 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 ' 5 * 0.77 = 581.8>10kips(OK) Beam Side Bolts: 5 Bolts -1"0 A490-N -STD Spacing, s =- 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1,5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2*N*«1/FS)m) = 2*5" 23.562 = 235.6 > 83.005 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2) * 2.4 *d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size =- 1.0625 in. - (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d ' Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (5 -1)) * 0.625 = 379.3 > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) ' 2.4 * d - Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563'5*0.4 = 151.1 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. - 1.5 in., Hole Size ~ 1.0625 in. = (1/2)M.2*Lc*Fu < (1/2) * 2.4 *d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*5*0.625 = 210.7 > 82.4 kips (OK) On Beam Web: Bearing Strength/Bott/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) ' 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe"n*t = 57.281 '5'0.4 = 114.6 > 82.4 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ ,0625))*tw*(1/2) *0.6*Fu = (20.99 - 5 * 1.125) * 0.4 * (1/2) *0.6 " 65 = 119.8 kips Allowable Shear Yieid Strength: Vn = 0.6*Fy*A = 0.6 * 50 * 8.396 = 251.9 kips (1/FS)Vn = (1/1.5) *251.9 = 167.9kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 119.8 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 ' Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65 * 7.5)) * 0.4 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0 '(1 -1) -1.125 * (1 - 0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(2 + 0*(1 -1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (5-1)* (3-1.125) = 7,5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (5-1)*3 = 12 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)' Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65 * 7.5)) * 0.4 = 47.97 kips = 119.9>82.4kips(OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu » Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu • Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 " 3 + 1 * 58 * 7.5)) * 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ ,0625)*(nh-0.5)) = 2*(1.5 + 0 •(! -1) - 1.125 * (1 - 0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)} = (5-1)* (3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (5-1)*3 = 12 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy - Lgv + Ubs * Fu * Lnt}) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 * 7.5)) * 0.625 = 97.617 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering. LLC Page: For two angles, (1/FS)Rn = 2*156.2 - 312.4 > 82.4 kips (OK) Allowable Shear Strength of AnglefsV. S hearYield ing_Altowabte_Strength: Gross Area, Ag - LT = 15 * 0.625 = 9.375 inA2 (1/FS)Rn = 2*0/1.5) *0.6*Ag*Fy* 2*0/1-5) *0.6 * 9.375 * 36 = 270 > 10 kips (OK) Shear Rupturei.Allowabte_Strerigth: Net Area on Osl, An1: - (L-n*(dh+ .0625))*t = (15-5*0 0625+ .0625))* 0.625 = 5.8594 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (15 - 5 * (1.0625+ .0625))" 0.625 = 5.8594 inA2 An = Min(An1 ,An2)= 5.8594 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 5.8594 * 58 = 203.9 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt- (dh+ .0625)/2 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (5-1)* 3+1.5= 13.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+. 0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 8.4375 + 1 * 58 * 0.9375); (0.6 * 36 * 13.5 + 1 * 58 * 0.9375)) * 0.625 = 108.1 > 5 kips (OK) Left Side Beam Shear Connection Using Clip Anale(s): Clip Angles: 2L4X4X5/8 X 15 in. Angle Material: A36 Support Side Connection: 10 Bolts 1"0 A490-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles; 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 5 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.4 in. Beam Web Height: 18.375 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 82.4 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (82.4 )A2)A0.5 = 83.005 kips Check Clearances: Beam Web Clear Height = 18.375 > 15 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5 > 1.25 in. (OK) Distance to Vertical Edge, eh: = 1.45>1.25in. (OK) Gage on OSL: AngleGage = 2.55>2.125in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*5* 23.562 = 235.6 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) *rn = 44.375 kips Block Shear Strength of Supportside Leg of jjne Angle; Gross Length with Tension resistance, Lgt = Ln = 1.45 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625J/2 = 1.45 -1.125 / 2 = 0.8875 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (5-1)*3+1.5=13.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+. 0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy*Lgv] + Fu'Lnt)*t = (1/2) *(0.6* Min(58 * 8.4375 ; 36 * 13.5 + 1 * 58 * 0.8875) 0.625 = 107.2 > 5 kips (OK) Column flange local bending was not checked! Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.45 in. b = 2.2375 in. dh= 1.0625 in. b' = 1.7375 in. a'= 1.95 in. p = 3 in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1.7375/(3 * 36))A0.5 = 1.7804 in. delta = 1 - dh/p = 1 -1.0625/3 = 0.6458 ro = b'/a' = 1.7375/1.95 = 0.891 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.7804/0.625)A2 - 1) / (0.6458 * (1 + 0.891)) = 5.8254 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.7804)A2*(1 +• 0.6458) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 4 = 9.0004 kips Allowable Tension Strength per Tributary Area for Each^Exterior Bolt: a = 1.45 in. b = 2.2375 in. dh = 1.0625 in. b'= 1.7375 in. a1 = 1.95 in. p = 3in. tc = (4.44 * (1/FS)rn ' b' / (p * Fy))A0.5 « (4.44 * 44.375 * 1.7375/(3 * 36))A0.5 = 1.7804 in. delta = 1 - dn/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.7375/1.95 = 0.891 Alfa1 = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.7804/0.625)A2 - 1} / (0.6458 " (1 + 0.891)) = 5.8254 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.7804)A2'(1 + 0.6458) = 9.0004 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 -1)] = max(0; (1 / 0.6458) * (9.0004 / 44.375 * (1.7804 / 0.625)A2 -D) = 1 qu = (1/FS)Rn * Delta * alfa * ro " (t / tc)*2 = 44.375 * 0.6458 * 1 * 0.891 * (0.625 / 1 J8Q4)A2 = 3.1469 kips/bott Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 9.0004 + (5 - 2) * 9.0004) / 5 = 9.0004 kips Desigm Tension Strength: = 2*n*((1/FS)rn) = 2 * 5 * 9.0004 = 90.004 > 82.4 kips (OK) Bolt Bearing on Anole(s): Bearing Strength/Bott/Tbickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bott Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 " Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs'(n-1))*t = 2'{33.713 + 67.425 * (5 - 1)) * 0.625 - 379.3 > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2"Lc*Fu <(1/2)'2.4'd*Fu = 78 kips/in. ~ (1/2) * 1.2 * 1.9375 *~65 - 75.563 kips/in. Bearing Strength = 2*Fbs*n*t - 2*75.563 * 5 * 0.77 = 581.8 > 10 kips (OK) Beam Side Bolts: 5 Bolts -1"0 A490-N -STD Spacing, s = 3> Minimum Spacing = 2.6667 in. (OK) = 1.5> 1.25 in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2'N*((1/FS)rn) = 2*5 * 23.562 = 235.6 > 83.005 kips (OK) Bolt Bearing on Angles: Bearing StrerrgthyBoltfTrtickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in,, Hole Size = 1.0625 in. = (1/2)M.2*Lc'Fu < (1/2)' 2.4 * d ' Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) ' 1.2 " Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2'(33.713 + 67.425 * (5 - 1}) * 0.625 = 379.3 > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2'Lc*Fu <(1/2)*2.4-d*Fu = 78 kips/in. = (1/2) • 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 5 * 0.4 = 151.1 > 10 kips (OK) Bolt Bearing Under Beam Axiat Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) M .2 * Lc * Fu < (1/2) - 2.4 * d * Fu = 69.6 kips/in. = (1/2)' 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2-33.713 •5-0.625 = 210.7 > 82.4 kips (OK) On Beam Web: Bearing Strength/Boft/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) - 1.2 * Lc * Fu < (1/2) * 2.4 - d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 5 * 0.4 = 114.6 > 82.4 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ ,0625))'tw*(1/2) -0.6*Fu = {20.99 - 5 * 1.125) - 0.4 * (1/2) -0.6 * 65 = 119.8 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6 ' 50 - 8.396 = 251.9 kips (1/FS)Vn = (1/1.5) -251.9 = 167.9 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 119.8 > 10 kips (OK) Distance to Horizontal Edge, ev:(1/FS)Rn = (1/2) - Min((0.6 * Fu ' Lnv + Ubs * Fu - Lnt); (0.6 * Fy * Lgv DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 5 + Ubs * Fu " Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65 * 7.5)) * 0.4 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0*(1-1)-f.125*(1-0.5)) = 2.875 in. Shear Area Length (gross), Lgv - 2*(Lh+sh*(nh-1)) = 2*(2+ 0'(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1}*(sv - (dv+ .0625)) = (5-1) '(3 -1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = <5-1)*3 = 12 in. (1/FS)Rn = (1/2) * Min{{0.6 * Fu * Lriv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65* 7.5))* 0.4 = 47.97 kips = 119.9 > 82.4 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs ' Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 - 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 ' 7.5)) * 0.625 Anole Block Shear under Axial Load; Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1 )-(dh+ .0625)*(nh-0.5)) = 2*(1.5 + 0*(1 -1)-1.125 *(1-0.5» = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh"(nh-1)) = 2*0.5 + 0 *(1-1)} = 3 in. Tension Area Length (net), Lnt = (nv - 1)'{sv - (dv+ .0625)) = (5-1)*(3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = <5-1)*3 = 12 in. (1/FS)Rn - (1/2) - Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min«0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 ' 36 * 3 + 1 * 58 * 7.5)) * 0.625 = 97.617 kips For two angles, (1/FS)Rn = 2*156.2 = 312.4 > 82.4 kips (OK) Allowable Shear Strength of Anqle(s): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 15 * 0.625 = 9-375 inA2 (1/FS)Rn = 2'(1/1.5) '0.6*Ag*Fy = 2 * (1/1.5) *0.6 * 9.375 * 36 = 270 > 10 kips (OK) Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (15 - 5 * (1.0625+ .0625))* 0.625 = 5.8594 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (15 - 5 * (1.0625+ .0625))* 0.625 = 5.8594 inA2 An = Min(An1,An2)= 5.8594 in*2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 5.8594 * 58 = 203.9 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angle; Gross Length with Tension resistance, Lgt - Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625X2 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (5-1)'3+ 1.5 = 13.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 8.4375 + 1 * 58 * 0.9375); (0.6 * 36 * 13.5 + 1 " 58 * 0.9375)) * 0.625 = 108.1 > 5 kips (OK) Block Shear Strength of Supportside Leo of One Angle: Gross Length with Tension resistance, Lgt = Lh =s 1.45 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)12 = 1.45 -1.125 / 2 = 0.8875 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (5-1)*3 + 1.5=13.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy*Lgv] + Fu"Lnt)*t = (1/2) '(0.6* Min(58 * 8.4375 ; 36 * 13.5 + 1 * 58 * 0.8875) 0.625 = 107.2 > 5 kips (OK) Column flange local bending was not checked! Shear Rupture Allowable Strength: DesconW'in6-ASD Licensed to: Desert Eagle Engineering LLC Page: 6 Note: All Welds E70XX <~ 1 1/2f'[1/2» $'• A4@3=1'-0" ! • '•0 Bolts / 1"0 A490-N -STD/ — i — • IT»m\ rf=Li 1 i-"->51/r-H |- 3" 1 1/2" * '' "L $ W21X62 - A992|,, \ ^ tna UTTset^g^n^A /' i 1"0A490-N-STD / \ Gaqe = 2.5 in."\^L4X4X5/8 X 15in. - A36 W10X68-Afe — '^T / ~7- /-^. 1 1/2" 3" -t ;1i -t\ /t -' /i/ffi^-11 n"t T®'3 ' u ^ 5 Rote/ w^iA^-Aayz ^ 1-0 1 Mte**^?1 - ab In- \Gage = 2.5 in. \ i ^_4» 2L4X4X5/8 X 15in. - A36^ B— ' '1 1 ^ I f 1 1^1/2" -'.' jL .! — - — ( 1_ 1_ ^\ 10 Bolts \1"0A490-N-ST L -^5 1/2" Scale: 1/4" = 1' DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 1 Beam Connection to Column Flange Column: W10X33-A992 Lett Side Beam: W21X62 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 64.4 kips Right Side Beam: W16X40 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 64.4 kips """**** All Welds Are E70XX = (4.44 * 27.059 * 1 .84757(3 * 36))A0.5 = 1 .4336 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.8475/1.6675 = 1.1079 Alfa1 = ((to / t)A2 - 1 ) / (delta * (1 + ro)) = ((1.4336/0.625)A2 - 1) / (0.6458 * (1 = 3.1302 1.1079)) Right Side Beam Shear Connection Using Clip Analefs): Clip Angles: 2L4X4X5/8 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts 1"0 A490-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.435 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1,0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.305 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 64.4 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (64.4 )A2)A0.5 = 65.172 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.3333 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.4025 > 1.125 in. (OK) Gage on OSL: Angle Gage - 2.5975 > 2 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*4* 14.432 = 115.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 90 * 0.6013 = 54.119 kips Allowable Strength per Bolt, (1/F$)m = (1/2) *rn = 27.059 kips Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.23 in. b = 2.285 in. dh = 1.0625 in. b' = 1.8475 in. a'=1.6675 in. p = 3 in. tc = (4.44 * (1/FS)rn * b1 / (p * Fy))A0.5 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 27.059 * (0.625 / 1.4336)A2*(1 + 0.6458) = 8.4645 kips Allowable Tension Strength per Tributary Area for Each Exterior Bolt: a = 1.23 in. b = 2.285 in. dh = 1.0625 in. b' = 1.8475 in. a' = 1.6675 in. p = 3 tn. tc = (4.44 * (1/FS)rn * b' / (p * Fy))*0.5 = (4.44 * 27.059 * 1.8475/(3 * 36))A0.5 = 1.4336 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.8475/1.6675 = 1.1079 Alfa' = ((tc / t)A2 - 1 ) / (delta * (1 + ro)) = ((1.4336/0.625)A2 - 1) / {0.6458 * (1 + 1.1079)) = 3.1302 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 27.059 * (0.625 / 1 .4336)A2'(1 + 0.6458) = 8.4645 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1)] = max(0; (1 / 0.6458) * (8.4645 / 27.059 * (1 .4336 / 0.625)A2 - 1)) = 1 qu = (1/FS)Rn ' Delta * atfa * ro * (t / tc)A2 = 27.059 * 0.6458 * 1 * 1.1079 * (0.625 / 1.4336)A2 = 3.6801 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + <N - 2) * (1/FS)Tn_lnt) / N =(2 ' 8.4645 + (4 - 2) * 8.4645) / 4 = 8.4645 kips Desigm Tension Strength: = 2*n*((1/FS)m) = 2*4* 8.4645 = 67.71 6 > 64.4 kips (OK) Bolt Bearing on Anglefs): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu <(1/2)*2.4'd*Fu = 60.9 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1 .0625 in. = (1/2) ' 1 .2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 60.9 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Use: Fbs = 60.9 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2'(33.713 + 60.9 * {4 - 1)) * 0.625 DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 - 270.5 > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) ' 2.4 * d * Fu = 68.25 kips/in. = (1/2) * 1.2 ' 1.9375 ' 65 = 75.563 kips/in. Use: Fbs = 68.25 kips/in. Bearing Strength = 2*Fbs*n*t = 2*68.25 * 4 ' 0.435 = 237.5 > 10 Wps(OK) Beam Side Bolts: 4 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.3333 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5 > 1.125 in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 1.875 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)m) = 2*4 * 14.432 = 115.5 > 65.172 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 • Lc * Fu < (1/2) * 2.4 * d * Fu = 60.9 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 60.9 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Use: Fbs = 60.9 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 60.9 * (4 - 1)) * 0.625 = 270.5 > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)' 1.2*Lc*Fu < (1/2) -2.4 * d ' Fu = 68.25 kips/in. = (1/2) " 1.2 * 1.9375 * 65 = 75.563 kips/in. Use: Fbs = 68.25 kips/in. Bearing Strength = Fbs * n * t = 68.25 ' 4 " 0.305 = 83.265 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thtckness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 60.9 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*4*0.625 = 147.5 > 64.4 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2-4 * d * Fu = 68.25 kips/in. = (1/2)* 1.2*1.4688*65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 4* 0.305 - 69.883 > 64.4 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))'tw*(1/2) *0.6*Fu = (16.01 - 4 * 1.125) * 0.305 * (1/2) *0.6 * 65 = 68.456 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6*50*4.883 = 146.5 kips (1/FS)Vn = (1/1.5) *146.5 = 97,661 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 68.456 >'TO kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy ' Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.305 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0'(1-1)-1.125* (1-0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)} = 2*(2 + 0'(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv -1 )*(sv - (dv+ .0625)) = (4-1)'(3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)' Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65'5.625))* 0.305 = 22.221 kips = 72.857 > 64.4 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs • Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 *.58 * 1:875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2"(1.5 + 0*(1 -1)-1.125 *(1 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)*(3-1.125) = 5.625 in. Tension Area Length (gross). Lgt = {nv - 1)*sv = (4-1) *3 = 9 in. DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 3 (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625))' 0.625 = 76.377 kips For two angles, (1/FS)Rn = 2*122.2 = 244.4 > 64.4 kips (OK) Allowable Shear Strength of Anglefs): Shear Yielding Aitowabj^Strength: Gross Area, Ag = L*t = 12 * 0.625 = 7.5 inA2 <1/FS)Rn = 2*(1/1.5) *0.6*Ag*Fy = 2*{1/1.5) '0.6*7.5*36 = 216 > 10 kips (OK) Shear Rupture AllowableJ3trength: Net Area on Ost, An1: = (L-n*(dh+ ,0625))*t - (12 - 4 * (1.0625+ .0625))* 0.625 = 4.6875 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (12 - 4 * (1.0625+ .0625))* 0.625 - 4.6875 inA2 An = Min(An1,An2)= 4.6875 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 4.6875 * 58 = 163.1 > 10 kips (OK) Block ShejiLStrength of Beamside Lea of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)12 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)'3 + 1.5=10.5 in. Net Length with Shear resistance, Lnv = Lgv-(n-0.5)*(dv+.0625) = 10.5-<4-0.5)'1.125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 6.5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5+1 * 58 * 0.9375)) ' 0.625 = 87.867 > 5 kips (OK) = (1/2) *(0.6* Min(58 * 6.5625 ; 36 * 10.5 + 1 * 58 * 0.84) * 0.625 = 86.1 > 5 kips (OK) Column flange local bending was not checked] Left Side Beam Shear Connection Using Clip Anqle(s): Clip Angles: 2L4X4X5/8 X 15 in. Angle Material: A36 Support Side Connection: 10 Bolts 1"0 A490-N -STD Boft Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.435 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 5 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in". Vert. X 1.0625 in. Horiz. Boft Hotes on Angles: 1,0625 in. Vert. X t .0625 in. Horiz. Beam Web Thickness: 0.4 in. Beam Web Height: 18.375 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 64.4 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (64.4 )A2)A0.5 = 65.172 kips Check Clearances: Beam Web Clear Height = 18.375 > 15 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing - 2.3333 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.45>1.125in. (OK) Gage on OSL: Angle Gage = 2.55 > 2 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*5* 14.432 = 144.3 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 90 * 0.6013 = 54.119 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) *rn = 27.059 kips Block Shear Strength of jupportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.4025 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.4025 - 1.125/2 = 0.84 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)'3+1.5=10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)"(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy*Lgv] + Fu*Lnt)*t Allowable Tension Strength per TributarMArea for Each Interior Bolt: a = 1.23 in. b = 2.2375 in. dh= 1.0625 in. b' = 1.8in. a'= 1.6675 in. p = 3 in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 27.059 * 1 -B/(3 * 36)^0.5 = 1.4151 in. delta = 1 - dh/p = 1 -1.0625/3 = 0.6458 ro = b'/a' = 1.8/1.6675 DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 4 = 1 .0795 Alfa1 = ((tc / t)A2 - 1 ) / (delta * (1 + ro)) = <(1.4151/0.625)A2 - 1) / (0.6458 * (1 + 1.0795)) - 3.0724 (1/FS)Tn = (1/FS)m * (t / tc)A2 * (1 + delta) = 27.059 * (0.625 / 1.4151)A2*(1 -t- 0.6458) = 8.6879 kips Allowable Tension Strength per Tributaa_Area for Each Exterior Bolt: a =1.23 in. b = 2.2375 in. dh- 1.0625 In. b' = 1.8in. a' =1.6675 in. p = 3in. tc - (4.44 * (1/FS)rn * b1 / (p * Fy))A0.5 = (4.44 * 27.059 * 1.8/(3 * 36))*0.5 = 1.4151 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.8/1.6675 = 1.0795 Alfa1 = ((tc / t)A2 - 1) / (delta * (1 + ro)) = ((1 .41 51/0.625)A2 - 1 ) / (0.6458 * (1 + 1 .0795)) = 3.0724 (1/FS)Tn = (1/FS)rn * (t/ tc)A2 * (1 + delta) = 27.059 * (0.625 / 1.4151)A2*(1 + 0.6458) = 8.6879 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1 )] = max(0; (1 / 0.6458) * (8.6879 / 27.059 * (1 .41 51 / 0.625)A2 -D)= 1 qu = (1/FS)Rn * Delta * atfa * ro * (t / tc)A2 = 27.059 * 0.6458 ' 1 * 1.0795 * (0.625 / 1. = 3.6801 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 8.6879 + (5 - 2) * 8.6879) / 5 = 8.6879 kips Desigm Tension Strength: = 2*n*((1/FS)rn) = 2*5* 8.6879 = 86.879 > 64.4 kips (OK) Bolt Bearing on Anglefs): Bearing Strength/Boltfi~hickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2) * 2.4 * d * Fu = 60.9 kips/in. = (1/2) ' 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2) * 1 .2 * Lc ' Fu < (1/2) ' 2.4 * d * Fu = 60.9 kips/in. = (1/2) * 1 .2 ' 1 .9375 ' 58 = 67.425 kips/in. Use: Fbs = 60.9 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 60.9 * (5 - 1)) * 0.625 = 346.6 > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) ' 2.4 * d * Fu = 68.25 kips/in. = (1/2)" 1.2 * 1.9375 * 65 = 75.563 kips/in. Use: Fbs = 68.25 kips/in. Bearing Strength = 2*Fbs*n*t = 2*68.25 * 5 * 0.435 = 296.9 > 10 kips (OK) Beam Side Bolts: 5 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.3333 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5> 1.125 in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 1.875 in. (OK) Allowable Shear.Strength of Bolts: = 2*N*((1/FS)rn) = 2*5 * 14.432 = 144.3 > 65.172 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc'Fu < (1/2)' 2.4 *d'Fu = 60.9 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bott Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 60.9 kips/in. = (1/2) * 1.2 * 1.9375 ' 58 = 67.425 kips/in. Use: Fbs = 60.9 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 60.9 * (5 - 1)) * 0.625 = 346.6 > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bott Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 ' Lc * Fu < (1/2) ' 2.4 * d * Fu = 68.25 kips/in. = (1/2)' 1.2 * 1.9375 * 65 = 75.563 kips/in. Use: Fbs = 68.25 kips/in. Bearing Strength = Fbs * n * t = 68.25 * 5 * 0.4 = 136.5> 10kips(OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 60.9 kips/in. = (1/2) * 1.2 ' 0.9688 • 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*5* 0.625 = 184.4 > 64.4 kips (OK) On Beam Web: Bearing Strength/Bott/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 68.25 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n"t = 57.281 * 5 * 0.4 = 114.6>64.4kips(OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))*tw'(1/2) *0.6*Fu = (20.99 - 5 * 1.125) * 0.4 * (1/2) *0.6 * 65 = 119.8 kips DesconWin6-ASD Licensed to: Desert Eaqje Enqineerinq LLC Allowable Shear Yield Strength: Vn = 0.6'Fy'A = 0.6 * 50 ' 8.396 = 251.9 kips (1/FS)Vn = (1/1.5) '251.9 =167.9 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 119.8 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu " Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt))" t - (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1 * 65 * 7.5)) * 0.4 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)>. = 2*(2 + 0 *(1 -1) -1.125 * (1 - 0.5)) = 2.875 m. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (5-1)*(3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv -1 )*sv = (5-1)-3 = 12 in. (1/FS)Rn = (1/2)' Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 ' 65 * 2.875 + 1 * 65 * 7.5); (0.6 * 50 * 4 + 1*65* 7.5))* 0.4 = 47.97 kips = 119.9 > 64.4 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 * 7.5)) * 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2'(1.5 + 0*(1 -1)-1.125*(1 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5+ 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv -1 )*(sv - (dv+ .0625)) = (5-1)* (3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (5-1)*3 = 12 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu ' Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 * 7.5)) * 0.625 = 97.617 kips = 312.4 > 64.4 kips (OK) Allowable Shear Strength of Anale(s): Shear Yielding Allowable Strength: Gross Area, Ag = L't = 15 * 0.625 = 9.375 inA2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag*Fy = 2 * (1/1.5) *0.6 * 9.375 * 36 = 270 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (15 - 5 * (1.0625+ .0625))* 0.625 = 5.8594 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (15 - 5 * (1.0625+ .0625))* 0.625 = 5.8594 inA2 An = Min(An1,An2)= 5.8594 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 5.8594 * 58 = 203.9 > 10 kips (OK) Block Shear; Strength of BeamsideiLeg ofiQne Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (5-1)* 3+1.5= 13.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+.0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 8.4375 + 1 * 58 * 0.9375); (0.6 * 36 * 13.5 + 1 * 58 * 0.9375)) * 0.625 = 108.1 > 5 kips (OK) Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.45 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625J/2 = 1.45 -1.125 / 2 = 0.8875 in. Gross Length with Shear resistance, Lgv = <n-1)*s + Lv = (5-1)* 3+ 1.5 = 13.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+.0625) = 13.5-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu ' Lnv ; Fy'Lgv] + Fu'Lnt)*t = (1/2) *(0.6* Min(58 * 8.4375 ; 36 * 13.5 + 1 * 58 * 0.8875) * 0.625 = 107.2 > 5 kips (OK) Column flange local bending was not checkedl For two angles, (1/FS)Rn = 2*156.2 DesconWin6-ASD Licensed to: Desert Eagte Engineering LLC Page: 6 Note: At! Welds E70XX 1 1/V2i . 4@3=r-cf • : A490-N -STD/ 5 1/2"^- -— r" r •M i 31 • 1 1/2" : 4@3=r-H * ij I T "" \ 1"0A490-N-STD / 1 1 Gage = 2.5 in. / •^214X4X5/8 X 15in. - A36 _ <? 1 1/2" 3" -I ^ r 3@3=9" :j i wifijMO Ann? i \ A pKHfcnd Offset = u.t> n \Gage = 2.5 in. 1 2L4X4X5/8 X 12m. - A3§: — 4 1 i i •- ^ ; ^f : ^ 13@3=9" -•-. s- <nS 1/2" 8 Bolts 1"0 A490-N -STC Scale: 1/4" = V DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 1 Beam Connection to Column Flange Column: W10X33-A992 Left Side Beam: W16X40 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 40.6 kips Right Side Beam: W21X73 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 40.6 kips AH Welds Are E70XX Right Side Beam Shear Connection Using Clip Angle(s): Clip Angles: 2L4X4X1/2 X 15 in. Angle Material: A36 Support Side ConnectibniJOJ3otts 1"0 A490-N -STP Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.435 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 5 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.455 in. Beam Web Height: 18.375 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 40.6 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (40.6 )A2)A0.5 = 41.813 kips Check Clearances: Beam Web Clear Height = 18.375 > 15 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.4775 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.5225 > 2 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2 * 5 * 23.562 = 235.6 > 10 kips (OK) Nominal Strength per Bolt = m = Ft * Ab = 113 ' 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) "m = 44.375 kips Allowable Tension Strength per Tributary Area for Eacri Interior Bolt: a = 1.23 in. b = 2.2725 in. dh = 1.0625 in. b' = 1.7725 in. a'= 1.73 in. p = 3in. tc = (4.44 ' (1/FS)rn * b' / (p ' Fy))A0.5 = (4.44 * 44.375 * 1.7725/(3 * 36))A0.5 = 1.7982 in. delta = 1 - dh/p = 1-1.0625/3 - 0.6458 ro = b7a' = 1.7725/1.73 = 1.0246 Alfa' = ((tc / t)A2 - 1) / (delta * (1 + ro)) = ((1.7982/0.5)A2 - 1) / (0.6458 * (1 + 1.0246)) = 9.1274 (1/FS)Tn = (1/FS)m • (t / tc)A2 • (1 + detta) = 44.375 * (0.5 / 1 .7982)A2*(1 + 0.6458) = 5.6465 kips Allowable Tension Strength per Tributary Area for Each Exterior Bolt: a = 1.23 in. b = 2.2725 in. dh = 1.0625 in. b'= 1.7725 in. a'= 1.73 in. p = 3 in. tc = (4.44 * (1/FS)m * b1 / (p * Fy))A0.5 = (4.44 * 44.375 * 1 .77251(3 * 36))A0.5 = 1.7982 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.7725/1.73 = 1.0246 Alfa1 = ((tc / t)A2 - 1) / (delta * (1 + ro)) = ((1.7982/0.5)A2 - 1) / (0.6458 * (1 = 9.1274 1.0246)) (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 ' (0.5 / 1 ,7982)A2*(1 + 0.6458) = 5.6465 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1)] = max(0; (1 / 0.6458) * (5.6465 / 44.375 * (1 .7982 / 0.5)A2 - 1 )) = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 ' 0.6458 * 1 * 1.0246 * (0.5 / 1.7982)A2 = 2.2702 kips/bolt Average (1/FS)Tn: = (2 ' (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 • 5.6465 + (5 - 2) * 5.6465) / 5 = 5.6465 kips Desigm Tension Strength: = 2*n*«1/FS)rn) = 2 ' 5 " 5.6465 = 56.465 > 40.6 kips (OK) Bolt Bearing on Anqle(s): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1 .0625 in. = (1/2) * 1.2 ' Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bott/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2) * 1.2 ' Lc * Fu < (1/2) * 2.4 * d " Fu = 69.6 kips/in. = (1/2) ' 1.2 * 1.9375 ' 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))'t = 2*(33.713 + 67.425 * (5 - 1)) * 0.5 = 303.4 > 10 kips (OK) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Boll Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)-1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 * 5 * 0.435 = 328.7 > 10 kips (OK) Beam Side Bolts: 5 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: • = 2.5 > 1.875 in. (OK) Allowable Shear Strength of Bolts: = 2'N'((1/FS)rn) = 2*5 * 23.562 = 235.6 > 41.813 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. -1.5 in., Hole Size - 1.0625 in. = (1/2)M.2*Lc*Fu < (1/2) * 2.4 *d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2)* 2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (5 - 1)) * 0.5 = 303.4 > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)' 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. - (1/2) • 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 5 * 0.455 = 171.9> 10kips(OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bottfiliickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2)* 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2"Fbe*n*t = 2-33.713*5*0.5 = 168.6 > 40.6 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc-Fu <(1/2)*2.4*d*Fu = 78 kips/in. = (1/2) '1.2*1.4688 - 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 " 5 * 0.455 = 130.3 > 40.6 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))'tw*(1/2) *0.6*Fu = (21.24 - 5 - 1.125) * 0.455 " (1/2) *0.6 * 65 - 138.5 kips Allowable Shear Yield Strength: Vn = 0.6'Fy-A = 0.6 * 50 * 9.6642 = 289.9 kips (1/FS)Vn = (1/1.5) *289.9 = 193.3 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 138.5 > 10 kips (OK) (1/FS)Rn = (1/2) - Min((0.6 * Fu ' Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 - 2.875 + 1 * 65 * 7.5); (0.6 ' 50 * 4 + 1 * 65 * 7.5)) * 0.455 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2'(Lh+sh*(nh-1 )-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0 *(1 -1) -1.125 * (1 - 0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(2 + 0*(1 -1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (5-1)* (3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (5-1)*3 = 12 in. (1/FS)Rn = (1/2) * Min((0.6 ' Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 ' 65 * 2.875 + 1 ' 65 « 7.5); (0.6 * 50 * 4 + 1 * 65 * 7.5)) * 0.455 = 62.069 kips = 136.4 > 40.6 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy - Lgv + Ubs * Fu - Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 * 58 * 7.5)) * 0.5 Angle Block Shear under Axial Load; Shear Area Length (net), Lnv = 2*(Lh+sh-(nh-1)-(dh+ .0625)*(nh-0.5)) = 2-(1.5 + 0-(1-1)-1.125 *(1 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2"(Lh+sh*(nh-1)) = 2-(1.5 + 0*(1 -1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (5-1)'(3-1.125) = 7.5 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (5-1)* 3 = 12 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu ' Lnv + Ubs * Fu * Lnt); (0.6 - Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)' Min((0.6 * 58 * 1.875 + 1 * 58 * 7.5); (0.6 * 36 * 3 + 1 • 58 * 7.5)) * 0.5 = 62.475 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 3 For two angles, (1/FS)Rn = 2*125. = 249.9 > 40.6 kips (OK) Allowable Shear Strength of Anqlefs): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 15 * 0.5 = 7.5 inA2 (1/FS)Rn = 2*{1/1.5) *0.6*Ag*Fy = 2 * (1/1.5) *0.6*7.5*36 = 216 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Osl, An1: = (L-n*(dh+ .0625))*! = (15 - 5 * (1.0625+ .0625))* 0.5 = 4.6875 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (15 - 5 * (1.0625+ .0625))* 0.5 = 4.6875 inA2 An = Min(Ani,An2)= 4.6875 inA2 (1/FS)Rn = 2>(l/2) *0,6*An*Fu = 2* (1/2) *0,6 * 4,6875 * 58 = 163.1 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Anole: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 -1.12512 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n- 1)*s + Lv = (5-1)*3+1.5=13.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 13.5-(5-0.5)*1.125) - 8.4375 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy - Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 8.4375 + 1 * 58 * 0.9375); (0.6 * 36 * 13.5 + 1-58* 0.9375)) * 0.5 = 86.494 > 5 kips (OK) Shear Connection Using Clip Anglefs): C/ip Angles: 2L4X4X1/2 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts 1"0 A490-N -STD_ Boll Holes on Support: 1,0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.435 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N^-STJP_ Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.305 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 40.6 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (40.6 )A2)*0.5 = 41.813 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 ^ Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25irt. (OK) Distance to Vertical Edge, eh: = 1.4025 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.5975 > 2 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)m) = 2*4- 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)m= (1/2) 'rn = 44.375 kips Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.4775 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)12 = 1.4775 -1.125/2 = 0.915 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (5-1)*3+1.5=13.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 13.S-(5-0.5)*1.125) = 8.4375 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy'Lgv] + Fu*Lnt)*t - (1/2) *(0.6* Min(58 * 8.4375 ; 36 * 13.5 + 1 * 58 * 0.915) * 0.5 = 86.167 > 5 kips (OK) Column flanoe local bending was not checked! Left Side Beam Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.23 in. b = 2.3475 in. dh = 1.0625 in. b' = 1.8475 in. a'= 1.73 in. p = 3in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 " 1.8475/(3 * 36))A0.5 = 1.8359 in. delta = 1 - dh/p = 1 -1.0625/3 = 0.6458 ro = b'/a' = 1.8475/1.73 = 1.0679 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.8359/0.5)A2 - 1) / (0.6458 * (1 + 1.0679)) = 9.3458 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.5 / 1.8359)A2*(1 + 0.6458) = 5.4173 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC f Page: 4 Allowable Tension Strength per Tributary Area for Each Exterior Bolt: a = 1.23 in. b- 2.3475 in. dh = 1.0625 in. b' = 1.8475 in, a' = 1.73 in. p = 3in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))*0.5 = (4.44 ' 44.375 * 1 .8475/(3 * 36))A0.5 = 1.8359 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.8475/1.73 = 1.0679 Alfa' = ((tc / t)A2 - 1) / (delta * (1 + ro)) = ((1.8359/0.5)A2 - 1)/ (0.6458 * (1 + j.0679)) = 9.3458 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.5 / 1 .8359)A2*(1 + 0.6458) = 5.41 73 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1)] = rnax(0; (1 / 0.6458) * (5.4173 / 44.375 * (1 .8359 / 0.5)A2 - qu = (1/FS)Rn * Delta * atfe * ro ' (t / tc)A2 = 44.375 * 0.6458 * 1 * 1.0679 * (0.5 / 1.8359)A2 = 2.2702 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 5.4173 + (4 - 2) * 5.4173) / 4 = 5.4173 kips Desigm Tension Strength: = 2'n*((1/FS)rn) = 2*4* 5.4173 = 43.338 > 40.6 kips (OK) Bolt Bearing on Analets): Bearing Strength/Bott/Thickness Using Bolt Edge Distance = Fbe Edge DJst. = 1.5 in. , Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1 .2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2) '2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1 .2 M .9375 * 58 - 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 - 1)) * 0.5 = 236. > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2) * 1 .2 ' Lc * Fu < (1/2) * 2.4 * d • Fu = 78 kips/in. = (1/2) * 1 .2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n"t = 2*75.563 * 4 * 0.435 = 263. > 10 kips (OK) Beam Side Bolts: 4 Bolts - 1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 1.875 in. (OK) Allowable Shear Strength of Bolts: = 2*N*«1/FS)rn) = 2'4 * 23.562 = 188.5 > 41.813 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 ' 58 = 67.425 kips/in. Bearing Strength = 2*{Fbe + Fbs*(n-1))'t = 2*(33.713 + 67.425 * (4 - 1)) * 0.5 = 236. > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = t .0625 in. = (1/2) * 1.2 ' Lc * Fu < (1/2) * 2.4 ' d ' Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 4 * 0.305 = 92.186 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)M.2'Lc*Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*4'0.5 = 134.9 > 40.6 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 *4* 0.305 = 69.883 > 40.6 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625)rtw'(1/2) *0.6*Fu = (16.01 - 4 * 1.125) * 0.305 * (1/2) *0.6 * 65 = 68.456 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6*50*4.883 = 146.5 kips (1/FS)Vn = (1/1.5) *146.5 = 97.661 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 68.456 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 5 = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 ' 4 + 1 * 65 * 5.625)) * 0.305 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)'(nh-0.5)) = 2*(2 + 0'(1 -1)-1.125*(1 -0-5)) - 2.875 in. Shear Area Length (gross), Lgv = 2*<Lh+sh*(nh-1)} = 2*(2 + 0*(1 -1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) = 5,625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4 ~ 1) * 3 = 9 in. (1/FS)Rn = (1/2) " Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt))* t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.305 - 22.221 kips = 72.857 > 40.6 kips (OK) Angle T&ar out Under Beam Axial Load: (1/FS)Rn - (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.5 Angle BlockJSrieaf under AxjaLLoad: Shear Area Length (net), Lnv = 2'(Lh+sh*(nn-1Mdn+ .0625)*(nh-0.5)) = 2*0.5 + 0*0 -1)-1.125*0 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)'(3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = {4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy ' Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.5 = 48.881 kips For two angles, (1/FS)Rn = 2*97.763 = 195.5 > 40.6 kips (OK) Allowable Shear Strength of Anale(s): Shear_Yie|ding Allowable Strength: Gross Area, Ag = L*t = 12 * 0.5 = 6 inA2 (1/FS)Rn = 2*0/1.5) *0.6*Ag*Fy = 2 * (1/1.5) '0.6*6*36 = 172.8>10kips(OK) Shear Rupture Allowable Strength: Net Area onOs!, An1: = (L-n*{dh+ ,0625))'t = (12 - 4 * (1.0625+ .0625))* 0.5 = 3.75 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (12 - 4 ' (1.0625+ .0625))* 0.5 = 3.75 inA2 An = Min(An1 ,An2)= 3.75 inA2 (1/FS)Rn = 2'(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 3.75 * 58 = 130.5 > 10 fcips (OK) Block Shear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625J/2 - 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n - 1)*s + Lv = (4-1)*3+1.5=10.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+. 0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((D.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 6.5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5 + 1 ' 58 * 0.9375)) * 0.5 = 70.294 > 5 kips (OK) Block Shear Strength of SupportsideLLeg_gf One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.4025 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625J/2 = 1.4025 - 1.125 / 2 = 0.84 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1) *3+1.5 = 10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy*Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 * 6.5625 ; 36 * 10.5 + 1 * 58 * 0.84) * 0.5 = 68.88 > 5 kips (OK) Column flange local bending was not checked! DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 6 Note: W\IT ] \U ll/J- ......T.... a'- -—"ft—•!—=9^^3@3=9' 8 Bolts / 1"0A490-N-STD/ 5 1/2" 3" 11/2" 16X40^9 hd Offs41BpBs5 h. T 1"0 A490-N -STD .gL4X4X1/2X12in.-A36 j W10X33-A992 1 1/2" .3" -5-Botts- i\ T'0A41 J=1'-0"P3 - A992 = 0.5 in. 2L4X4X1/2X15in.-A36 Scale: 1/4" = 1' ^<^7 / Sr DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 1 Beam Connection to Column Ftanoe Column: W10X68-A992 Left Side Beam: W16X45 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 23.8 kips Right Side Beam: W16X45 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 23.8 kips ** All Welds Are E70XX *** " Right Side Beam Shear Connection Using Clip Analefsl: Clip Angles: 2L4X4X5/8 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts 1"0 A490-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N-STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1,0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.345 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 23.8 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (23.8 )A2)A0.5 = 25.815 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5 > 1.25 in. (OK) Distance to Vertical Edge, eh: = 1.4225 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.5775 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)m) = 2 * 4 * 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft ' Ab = 113 ' 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)m = (1/2) *rn = 44.375 kips Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.4225 in. b = 2.265 in. dh= 1.0625 in. b'= 1.765 in. a'= 1.9225 in. p=3in. tc = (4,44 * (1/FS)rn * b1 / (p * Fy))AD.5 = (4.44 * 44.375 * 1.765/(3 * 36))A0.5 = 1.7944 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a1 = 1.765/1.9225 = 0.9181 Alfa' = ((tc /1)*2 -1) / (delta " (1 + ro)) = ((1.7944/0.625)A2 -1) / (0.6458 * (1 + 0.9181)) - 5.8469 (1/FS)Tn = (1/FS)m * <t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.7944)A2*(1 + 0.6458) = 8.8602 kips Allowable Tension Strength per Tributary Are'a foLEach Exterior Bolt: a = 1.4225m. b = 2.265 in. dh = 1.0625 in. b' = 1.765 in. a'= 1.9225 in. p=3in. tc = (4.44' (1/FS)rn ' b' / (p * Fy))A0.5 = (4.44 ' 44.375 * 1,765/(3 * 36))A0.5 = 1.7944 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.76571,9225 = 0.9181 Alfa' = ({tc / t)A2 -1) / (delta * (1 + ro)) = ((1.7944/0.625)A2 - 1) / (0.6458 * (1 + 0.9181)) = 5.8469 (1/FS)Tn = (1/FS)rn - (t / tc)A2 - (1 * delta) = 44.375 * (0.625 / 1.7944)A2'(1 + 0.6458) = 8.8602 kips Prying Force: Alfa = maxtO; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1)] = max(0; (1 / 0.6458) * (8.8602 / 44.375 * (1.7944 / 0.625)A2 -1)) = 1 qu = (1/FS)Rn * Delta * alfa * ro * (t / tc)A2 = 44.375 ' 0.6458 ' 1 * 0.9181 " (0.625 / 1.7944)A2 = 3.1919 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 8.8602 + (4 - 2) * 8.8602) / 4 = 8.8602 kips Desigm Tension Strength: = 2*n'((1/FS)rn) = 2*4* 8.8602 = 70.881 > 23.8 kips (OK) Bolt Bearing on Anqlefs): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. - (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 • 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Soft Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu < (1/2) * 2.4 *d'Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 ' 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))'t = 2*(33.713 + 67.425 * (4 - 1)) * 0.625 = 295. > 10 kips (OK) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 ' Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1,9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563*4*0.77 = 465.5 > 10 kips (OK) Beam Side Bolls: 4 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: - 2*N*((1/FS)rn) = 2*4 * 23.562 = 188.5 > 25.815 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2) *2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Boltfi"hickrtess Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 - 1)) * 0.625 - 295. > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)*2.4*d*Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75,563*4-0.345 = 104.3 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist = 1.5 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2) * 2.4 *d*Fu = 69,6 kips/in. = (1/2) * 1.2 ' 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*4*0.625 = 168.6 > 23.8 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance - Fbe Edge Dist. = 2 in. , Hole Size = 1.0625 in. = (1/2)*1.2'Lc*Fu <(1/2)*2.4*d*Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 4 * 0.345 = 79.048 > 23.8 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625})*tw*(1/2) *0.6*Fu = (16.13 - 4 * 1.125) * 0.345 * (1/2) *0.6 * 65 = 78.241 kips Allowable Shear Yield Strength: Vn = 0.6T/A = 0.6 * 50 * 5.5648 = 166.9 kips (1/FS)Vn = (1/1.5) *166.9 = 111.3kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 78.241 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs - Fu * Lnt); (0.6 ' Fy * Lgv + Ubs*Fu*Lnt))*t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.345 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0 *(1 -1) -1.125 * (1 - 0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(2+ 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.345 = 28.432 kips = 82.412 > 23.8 kips (OK) Angle Tear out Under Beam AxjaJJ-oad: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dhi- .0625)*(nh-0.5)) = 2*(1.5 + 0*(1-1)-1.125*(1 -0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ ,0625)) = (4-1) *(3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.625 = 76.377 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 3 For two angles, (1/FS)Rn = 2'122.2 = 244.4 •> 23.8 kips (OK) Allowable Shear Strength of Anqle(s): ShearYieldinoAllowable Strength: Gross Area, Ag = L*t = 12 * 0.625 = 7.5 inA2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag'Fy = 2 * (1/1.5) '0.6 * 7.5 * 36 = 216 > 10 kips (OK) Shear RuptureAHowable Strength: Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (12 - 4 * (1.0625+ .0625))' 0.625 = 4.6875 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (12 - 4 * (1.0625+ .0625)}* 0.625 = 4.6875 inA2 An = Min(An1,An2)= 4.6875 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 4.6875 * 58 = 163.1 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 -1.125 / 2 - 0.9375 in. Gross Length with Shear resistance, Lgv = (n - 1)*s + Lv = (4-1)* 3+1.5= 10.5m. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2)' Min((0.6 * Fu " Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs ' Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 6.5625 + 1 " 58 * 0.9375); (0.6 * 36 * 10.5+ 1*58* 0.9375))* 0.625 = 87.867 > 5 kips (OK) Left Side Beam Shear Connection Usinp Clip Anglefs): Clip Angles: 2L4X4X5/8 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts 1"0 A490-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.345 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H * 23.8 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (23.8 )*2)*0.5 = 25.815 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.4225 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.5775 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: - 2*n*«1/FS)m) = 2 * 4 * 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft* Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) *rn = 44,375 kips Block Shear Strength_p_f SupBPrtside_Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.4225 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625J/2 = 1.4225 -1.125 / 2 = 0.86 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)*3+ 1.5 =10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy'Lgv] + Fu*Lnt)*t = (1/2) *(0.6" Min(58 ' 6.5625 ; 36 ' 10.5 + 1 * 58 * 0.86) 0.625 = 86.463 > 5 kips (OK) Column flanqe local bending was not checked! Allowable Tension Strength per Tributary Area for Each Interior Bolt: a =1.4225 in. b = 2.265 in. dh= 1.0625 in. b'= 1.765 in. a' = 1.9225 in. p = 3in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1.7657(3 * 36))A0.5 = 1.7944 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.765/1.9225 = 0.9181 Alfa' = ((tc /1)*2 -1) / (delta * (1 + ro)) = ((1.7944/0.625)A2 -1) / (0.6458 * (1 + 0.9181)) = 5.8469 (l/FS)Tn = (1/FS)rn * (t / tc)*2 * (1 + defta) = 44.375 * (0.625 / 1.7944)A2*(1 + 0.6458) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 4 = 8.8602 kips Allowable Tension Strength per Tributary Area for Each Exterior Bolt: a =1.4225 in. b = 2.265 in. dh= 1.0625 in. b'= 1.765 in. a' = 1.9225 in. p = 3 in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1.765/(3 * 36))*0.5 = 1.7944 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a1 = 1.765/1.9225 =.0-9181 Alfa' = «tc / t)A2 -1) / (delta * (1 + ro)) = ((1.7944/0.625)A2 - 1) / (0.6458 * (1 + 0.9181)) = 5.8469 (1/FS)Tn = (1/FS)rn * (t / tc)A2 ' (1 + delta) = 44.375 * (0.625 / 1.7944)A2*(1 + 0.6458) = 8.8602 kips Frying Force: Alfa = max[0; (1 / Delta)* (rut / (1/FS)Rn * (tc / t)A2 -1)] = max(0; (1 / 0.6458) * (8.8602 / 44.375 * (1.7944 / 0.625)A2 -D>= 1 qu = (1/FS)Rn * Delta ' alfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.9181 * (0.625 / 1.7944)A2 = 3.1919 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 8.8602 + (4 - 2) " 8.8602) / 4 = 8.8602 kips Desigm Tension Strength: = 2*n*((1/FS)rn) = 2*4' 8.8602 = 70.881 > 23.8 kips (OK) Bolt Bearing on Anglefsl: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 In. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2)' 1.2 * 0.9688 ' 58 = 33.713 kips/in. Bearing Strength/Bott/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2)' 2.4 * d * Fu = 69.6 laps/in. = (1/2) * 1.2 - 1.9375 ' 58 =67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 - 1)) * 0.625 = 295. > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/BoltTThickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu <(1/2)-2.4*d"Fu = 78 kips/in. = (1/2) ' 1.2 * 1.9375 " 65 = 75.563 kips/in. Bearing Strength = 2'Fbs-n-t = 2*75.563 * 4 " 0.77 = 465.5 > 10 kips (OK) Beam Side Bolts: 4 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2*N"((1/FS)m) - 2*4 * 23.562 = 188.5 > 25.815 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bott/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = {1/2)M.2-Lc'Fu <(1/2)-2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bott/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc'Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 - 1)) ' 0.625 = 295. > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing - 3 in., Hole Size = 1.0625 in. = <1/2)*1.2*Lc-Fu <(1/2)*2.4*d*Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 ' 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563*4'0.345 = 104.3 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angtes: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 • d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 '"58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n't = 2*33.713-4*0.625 = 168.6 > 23.8 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2)' 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281*4*0.345 = 79.048 > 23.8 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))-tw*(1/2) '0.6'Fu = (16.13 - 4 * 1.125) * 0.345 - (1/2) '0.6 * 65 = 78.241 kips Allowable ShearYield Strength: Vn = 0.6*Fy'A = 0.6 ' 50 * 5.5648 = 166.9 kips (1/FS)Vn = (1/1.5) '166.9 =111.3 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 78.241 > 10 kips (OK) Distance to Horizontal Edge, ev:(1/FS)Rn = (1/2) ' Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 5 + Ubs ' Fu ' Lnt))* t = (1/2)* Min({0.6 - 65 * 2.875 + 1 * 65 * 5.625); (0.6 " 50 * 4 + 1 * 65 ' 5.625)) * 0.345 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2'(2 + 0*(1 -1)-1.125 '(1-0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2'(Lh+sh*(nh-1)) = 2*(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)'(3- t.t25) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. {1/FS)Rn = (1/2) ' Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 ' 65 * 5.625)) ' 0,345 = 28.432 kips - 82.412 > 23.8 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) ' Min((0.6 * Fu * Lnv + Ubs * Fu " Lnt); (0.6 * Fy * Lgv + Ubs ' Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(1.5 + 0 *(1 -1) -1.125 * (1 - 0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv- 1)*(sv- (dv+ .0625)) = (4-1)'(3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn =.(1/2) * Min((0.6 * Fu " Lnv + Ubs * Fu * Lnt); (0.6 " Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) ' 0.625 ~ 76.377 kips For two angles, (1/FS)Rn = 2*122.2 - 244.4 > 23.8 kips (OK) Allowable Shear Strength of Angle(s): Shear Yielding Allowable Strength: Gross Area, Ag = L*t = 12 * 0.625 = 7.5 in"2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag*Fy = 2 • (1/1.5) *0.6*7.5'36 = 216 > 10 kips (OK) Net Area on Osl, An1: = (L-n'(dh+ .0625))*! = (12 - 4 * (1.0625+ .0625))* 0.625 = 4.6875 inA2 Net Area on Beam Side Leg, An2: = (L-n-dhH = (12 - 4 ' (1.0625+ .0625))" 0.625 = 4.6875 inA2 An = Min(An1,An2)= 4.6875 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu ~ 2* (1/2) *0.6 * 4.6875 * 58 = 163.1 > 10 kips (OK) BlockShear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s+Lv = (4-1)* 3+ 1.5 = 10.5 In. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1,125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt))' ( = (1/2)* Min((0.6 * 58 * 6,5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5 + 1 * 58 * 0.9375)) * 0.625 = 87.867 > 5 kips (OK) Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.4225 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.4225 -1.125 / 2 = 0.86 in. Gross Length with Shear resistance, Lgv = (n - 1)*s + Lv = (4-1)*3+1.5*10.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) *(0.6* Mtn[Fu * Lnv ; Fy*Lgv] + Fu'Lnt)*t = (1/2) '(0.6* Min(58 * 6.5625 ; 36 * 10.5 + 1 * 58 * 0.86) * 0.625 = 86.463 > 5 kips (OK) Column flange local bending was not checkedl Shear Rupture Allowable Strength: DesconWin6-ASD Licensed to: Desert Eagte Engineering LLC Page: 6 Note: All Welds E70XX 3" 16X45- 8 Bolts 1"0A49Q-N-STD/1"0A490-N-STD Gage = 2.5 in. [2L4X4X5/8X12in.-A36 W10X68- BX-46X45 - A992 = 0.5ir! Gage = 2.5 in. 2L4X4X5/8X12in.-A36T j3@3=9" 8 Bolts 1"0A490-N-STD «-5 1/2" Scale: 1/4"= 1' DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 1 Beam Connection to Column Flange Column: W10X68-A992 Left Side Beam: W16X45 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 51 kips Right Side Beam: W16X26 - A992 Moment: 0 k-ft Shear. 10 kips Axial Force: 51 kips «*•****** All Welds Are E70XX *—****** Right Side Beam Shear Connection Using Clip Anqlefs): Clip Angles: 2L4X4X5/8 X 12 in. Angle Material: A36 Support Side Connection: 6 Bolts 1"0 A490-N -STEL Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A49Q-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.25 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 51 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (51 )*2)A0.5 - 51.971 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 3>1.25in. (OK) Distance to Vertical Edge, eh: = 1.375 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.625 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn} = 2*3" 23.562 = 141.4 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 ' 0.7854 = 88.75 kips Allowable Strength per Bott, (1/FS)m = (1/2) *rn = 44.375 kips Allowable Tension Strength per Tributary Area for Each Interior Bolt: a= 1.375 in. b= 2.3125 in. dh= 1.0625 in. b' = 1.8125 in. a' = 1.875 in. p = 3in. tc = (4.44 * (1/FS)m * b' / (p " Fy))A0.5 = (4.44 * 44.375 * 1.8125/(3 * 36))A0.5 = 1.8184 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.8125/1.875 = 0.9667 Alfa1 = ((tc / t)A2 - 1) / (delta * (1 + ro)) = ((1.8184/0.625)A2 - 1) / (0.6458 * (1 + 0.9667)) = 5.8771 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.8184)A2*(1 + 0.6458) = 8.628 kips Allowable Tension Strength per Tributary Area for Each Exterior Bolt: a =1.375 in. b = 2.3125 in. dh = 1.0625 in. b' = 1.8125in. a'= 1.875 in. p = 3 in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1.8125/(3 * 36))A0.5 = 1.8184 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a1 = 1.8125/1.875 = 0.9667 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.8184/0.625)A2- 1)/(0.6458 = 5.8771 (1 + 0.9667)) (1/FS)Tn = (1/FS)m * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.8184)A2*(1 + 0.6458) = 8.628 kips PryinjLForce: Alfa = max[0; (1 / Delta) ' (rut / (1/FS)Rn * (tc / t)A2 -1)1 = max(0; (1 / 0.6458) * (8.628 / 44.375 * (1.8184 / 0.625)A2 - 1)) = 1 qu = (1/FS)Rn * Delta * atfa * ro * (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.9667 * (0.625 / 1.8184)A2 = 3.2728 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 * 8.628 + (3 - 2) * 8.628) / 3 = 8.628 kips Desigm Tension Strength: = 2*n*((1/FS)rn) = 2*3* 8.628 = 51.768 > 51 kips (OK) Bolt Bearing on Angle(s): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu 5 (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 2.4688 * 58 = 85.913 kips/in. Use: Fbe = 69.6 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 ' Lc * Fu < (1/2) * 2.4 ' d * Fu = 69.6 kips/in. = (1/2) * 1.2 M.9375 * 58 = 67.425 kips/in. Bearing Strength = 2'(Fbe + Fbs*(n-1))*t = 2*(69.6 + 67.425 * (3 - 1)) * 0.625 DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 = 255.6 > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Boll Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2)' 2.4 ' d * Fu = 78 kips/in. = (1/2) "1.2*1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 * 3 * 0.77 = 349 > 10 kips (OK) Beam Side Bolts: 4 Bolts - 1"0 A490-N -5TD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: « 1.5 > 1.25 in. (OK) Distance to Vertical Edge, eh: = 1.5 > 1.25 in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 0.625 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)m) = 2*4 * 23.562 = 188.5 > 51.971 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc«Fu < (1/2) * 2.4 *d*Fu = 69.6 kips/in. = (1/2) ' 1.2 * 0.9688 • 58 = 33.713 kips/in. Bearing Strength/BoltAThickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2)*2.4*d'Fu = 69.6 kips/in. = (1/2) M.2*1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2'(Fbe + Fbs*(n-1))*t - 2*(33.713 + 67.425 * (4 - 1)) * 0.625 = 295. > 10 kips (OK) Bolt Bearinqjm Beam Web; Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)'2.4*d*Fu = 78 kips/in. = (1/2)M.2'1.9375*65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 4 * 0.25 = 75.563 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/BolfcThickness Using Boll Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2"Fbe*n*t = 2*33.713*4*0.625 = 168.6 > 51 kips (OK) OD Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in. , Hole Size = 1.0625 in. = (1/2)*1.2'Lc*Fu <<1/2)*2.4*d*Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 *4*0.25 = 57.281 > 51 kips (OK) Allowable Shear StrengthLQf the Beam: Shear Rupture Strength, (t/FS)Rn - (d - n*(dh+ .0625))*tw*(1/2) *0.6"Fu = (15.69 - 4 * 1.125) * 0.25 * (1/2) *0.6 * 65 = 54.551 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6 * 50 * 3.9225 -117.7 kips (1/FS)Vn = (1/1.5) *117.7 = 78.45 kips Beam AllowableShear Strength - Min((1/FS)Rn; (1/FS)Vn) = 54.551 > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv +• Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.25 Beam Web BJock Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2"(2 + 0 *(1 -1) -1.125 * (1 - 0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2"(2+ 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)"sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu " Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.25 = 14.93 kips = 59.719 > 51 kips (OK) Angle^Jear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt))' t = (M2}' Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.625 Anqle^Block JShear under AxialLoad: Shear Area Length (net), Lnv = 2lr(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2-(1.5 + 0 *(1 -1) -1.125 * (1 - 0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2'(t.5 + 0'(1-1}) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1}*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy ' Lgv + Ubs ' Fu * Lnt)) * t = (1/2)" Min((O.S * 58 ' 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 ' 58 ' 5.625)) ' 0.625 = 76.377 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 3 For two angles, (1/FS)Rn = 2*122.2 = 244.4 > 51 kips (OK). Allowable Shear Strength of Analefs): Shear Yielding Allowable Strengfe Gross Area, Ag = L*t = 12 * 0.625 « 7.5 inA2 (1/FS)Rn = 2*(1/1.5) *0.6"Ag*Fy = 2 * (1/1.5) *0.6*7.5*36 = 216 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (12 - 3 * (1.0625+ .0625))' 0.625 = 5.3906 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (12 - 4 * (1.0625+ .0625))* 0.625 = 4.6875 inA2 An = Min(An1,An2)= 4.6875 inA2 (1/FS)Rn = 2*(1/2) '0.6'An'Fu = 2* (1/2) *0.6 * 4.6875 * 58 = 163.1 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)72 = 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)'s + Lv = (4-1)* 3+1.5= 10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs ' Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 6.5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5 +1*58* 0.9375)) '0.625 - 87.867 > 5 kips (OK) Block Shear Strength of Supportside Leg of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.375 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.375 -1.123 / 2 - 0.8125 in. Gross Length with Shear resistance, Lgv = (n- 1)*s + Lv = (3-1)*3 + 1.5 = 7.5in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 7.5-(3-0.5)*1.125) = 4.6875 in. (1/FS)Rn - (1/2) *(0.6* Min[Fu * Lnv; Fy'Lgv] + Fu'Lnt)*t = (1/2) '(0.6* Min(58 * 4.6875 ; 36 * 7.5 + 1 * 58 * 0.8125) * 0.625 - 65.352 > 5 kips (OK) Column flange local bendinawas not checked! Left Side Beam Shear Connection Using Clip Anglefs): Clip Angles: 2L4X4X5/8 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts 1"0 A490-N -5TD Bott Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.77 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.345 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 51 kips Resultant, R = (VA2 + HA2)AD.5 = ((10 )A2 + (51 )A2)A0.5 = 51.971 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.4225 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.5775 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: - 2'n*((1/FS)rn) = 2*4* 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, (1/FS)rn = (1/2) *rn = 44.375 kips AKowablejrensionStrength per Tributary Area_fpr EachJnterior Bott: a =1.4225 in. b = 2.265 in. dh = 1.0625 in. b'= 1.765 in. a1 = 1.9225 in. p = 3in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1.765/(3 * 36))A0.5 = 1.7944 in. delta = 1 - dh/p = 1 - 1.0625/3 = 0.6458 ro = b'/a' = 1.765/1.9225 = 0.9181 Alfa' = ((tc /t)A2 -1) / (delta * (1 + ro)) = ((1.7944/0.625)A2 - 1) / (0.6458 * (1 + 0.9181)) = 5.8469 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.7944)A2*(1 + 0.6458) DesconWm6-ASD Licensed to: Desert Eagle Engineering LLC Page: 4 = 8.8602 kips Allowable Tension Strength per Tributary Area for Each Exterior Bolt: a = 1.4225 in. b = 2.265 in. dh = 1.0625 in. b1 = 1.765 in. a' =1.9225 in. p = 3in. tc = (4.44 * (1/FS)rn * b' / (p " Fy))A0.5 - (4.44 • 44.375 * 1 .765/(3 ' 36)}A0.5 = 1.7944 in. delta = 1 - dh/p = 1-1 .0625/3 = 0.6458 ro = b'/a1 = 1.765/1.9225 = 0.9181 Alfa1 = ((tc/ t)A2 - 1) / (delta * (1 + ro)) = {(1.7944/0.625)A2 - 1) / (0.6458 * (1 + 0.9181)) = 5.8469 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1 .7944)A2*(1 +• 0.6458) = 8.8602 kips Prying Force: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1)] * max(0; (1 / 0.6458) * (8.8602 / 44.375 * (1 .7944 / 0.625)A2 -D) qu = (1/FS)Rn * Delta * alfa * ro ' (t / tc)A2 = 44.375 * 0.6458 * 1 * 0.9181 * (0.625 / 1 .7944)A2 -3.1919 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) - (1/FS)Tn_lnt) / N =(2 * 8.8602 + (4 - 2) * 8.8602) / 4 = 8.8602 kips Desigm Tension Strength: = 2*n*((1/FS)rn) = 2*4' 8.8602 = 70.881 > 51 kips (OK) Bolt Bearing on Applets): Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1 ,5 in. . Hole Size = 1 .0625 in. = (1/2) " 1 .2 * Lc - Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 ' 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2) - 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 - 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 - t)) '0.625 = 295. > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/BolVThickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. = (1/2) - 1 .2 * Lc * Fu < (1/2) " 2.4 * d * Fu = 78 kips/in. = (1/2) • 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563*4*0.77 = 465.5 > 10 kips (OK) Beam Side Bolts: 4 Bolts • 1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing - 2.6667 in. (OK) = 1.5>1.25in. (OK) Distance to Vertical Edge, eh; = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2*N'((1/FS)rn) = 2*4 * 23.562 = 188.5 > 51.971 kips (OK) Bolt Bearing on Angles: Bearing Strengtn/Bolt/Thtckness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1,0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. - (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bott Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. ~ (1/2) * 1.2 • Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1 ))*t = 2*(33.713 + 67.425 * (4 - 1)) * 0.625 = 295. > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bott Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc ' Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 4 * 0.345 = 104.3 > 10 kips (OK) Bott Bearing Under Beam Axiaf Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2)' 1.2 * Lc * Fu < (1/2) * 2.4 - d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 - 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2-33.713*4*0.625 = 168.6 > 51 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu <(1/2)*2.4'd*Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 4 * 0.345 = 79.048 > 51 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))'tw*(1/2) *0.6*Fu = (16.13 - 4 * 1.125) * 0.345 * (1/2) *0.6 * 65 = 78.241 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6*50*5.5648 = 166.9 kips (1/FS)Vn = (1/1.5) *166.9 = 111.3 kips Beam AllowabteShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 78.241 > 10 kips (OK) Distance to Horizontal Edge, ev:(1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv DesconWin6-ASQ Licensed to: Desert Eagle Engineering LLC Page: 5 + Ubs ' Fu * Lnt)) * t = (1/2)' Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.345 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + Q*(1 -1)-1.125*(1 -0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2'(Lh+sh*(nh-1)) = 2*(2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) * (4-1) "(3-1.125) - 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = <4-1)*3 = 9 in. (1/FS)Rn = (1/2) ' Min((0.6 * Fu ' Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)' Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) * 0.345 = 28.432 kips = 82.412 > 51 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) ' Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1 .875 + 1 * 58 * 5.625); (0.6 * 36 * 3 -t- 1 * 58 * 5.625)) ' 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(1.5 + 0*(1 -1)- 1.125* (1-0.5)) = 1.875 in, Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1 -1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1) '(3-1.125) «= 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)* 3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu " Lnt)) * t = (1/2)* Min«0.6 ' 58 * 1.875 +1 * 58 * 5.625); (0.6 * 36 ' 3 + 1 * 58 * 5.625)) * 0.625 = 76.377 kips For two angles, (1/FS)Rn = 2*122.2 = 244.4 > 51 kips (OK) Allowable Shear Strength of Anglejs): Shea^ Yielding Allowable Strength: Gross Area, Ag = L*t = 12 * 0.625 = 7.5 inA2 Net Area on Osl, An1: = (L-n*(dh+ .0625))*t = (12 - 4 * (1.0625+ .0625))* 0.625 = 4.6875 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)*t = (1 2 - 4 * (1 .0625+ .0625))' 0.625 = 4.6875 inA2 An = Min(An1,An2)= 4.6875 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2* (1/2) *0.6 * 4.6875 * 58 = 163.1 > 10 kips (OK) Block Shear Strength of Beamside Le_q Gross Length with Tension resistance, Lgt = Lh = 1 .5 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625X2 = 1.5 - 1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)* 3 +1.5 =10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.5-(4-Q.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 6.5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5 + 1 * 58 * 0.9375)) * 0.625 - 87.867 > 5 kips (OK) Block Shear Strength of Supportside Leg of One Anple: Gross Length with Tension resistance, Lgt = Lh = 1.4225 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625J/2 = 1.4225 -1.125 / 2 = 0.86 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv -(4-1)* 3+1.5 = 10.5 in. Net Length with Shear resistance, Lnv = Lgv - {n - 0.5)*(dv+ .0625) = 10.5-(4-0.5)*1.125) - 6.5625 in. (1/FS)Rn = (1/2) *{0.6* Min[Fu * Lnv ; Fy*LgvJ + Fu*Lnt)"t = (1/2) '(0.6* Min(58 * 6.5625 ; 36 * 10.5 + 1 * 58 * 0.86) * 0.625 = 86.463 > 5 kips (OK) Column flange local bending was not checkedl (1/FS)Rn = 2'(1/1.5 216 ^10 kips (OK) *0.6 * 7.5 • 36 = Shear Rupture Allowable Strength; DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Note: All Welds E70XX \ 1"0A490-N-STD = 2.5 in. 1 1/2"2@3=6" 6 Bolts l!0A49CtN^STD £T H-51/2"2L4X4X5/8X12in.-A36(' ! Scale: 1/4" = 1' DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 1 Beam Connection to Column Flange Column: W10X33-A992 Left Side Beam: W16X45 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 40.7 kips Right Side Beam: W16X67 - A992 Moment: 0 k-ft Shear: 10 kips Axial Force: 40.7 kips **********All Welds Are E70XX Right Side Beam Shear Connection Using Clip Anqlefs): Clip Angles: 2L4X4X5/8 X 11.5 in, Angle Material: A36 Support Side Connection: 8 Bolts 1"0 A490-N -STD Bolt Holes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material: 0.435 in. Bolt Holes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A490-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz. Bolt Holes on Angles; 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Web Thickness: 0.395 in. Beam Web Height: 13.25 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 40.7 kips Resultant, R = (VA2 + HA2)A0.5 = ((10 )A2 + (40.7 )A2)A0.5 = 41.911 kips Check Clearances: Beam Web Clear Height = 13.25 > 11.5 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.25>1.25in. (OK) Distance to Vertical Edge, eh: = 1.4475 > 1.25 in. (OK) Gage on OSL: Angle Gage - 2.5525 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: = 2*n"((1/FS)rn) =2*4* 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn = Ft * Ab = 113 * 0.7854 = 88,75 kips Allowable Strength per Bolt. (1/FS)rn = (1/2) "rn = 44.375 kips Allowable Tension Strength per Tributary Area for Each Interior Bojt: a = 1.23 in. b = 2.24 in. dh= 1.0625 in. b'=1.74in. a1 =1.73 in. p = 3in. tc = (4.44 ' (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 ' 44.375 * 1.74/(3 * 36))A0.5 = 1.781 7 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a1 = 1.74/1.73 = 1 .0058 Alfa' = ((tc / 0*2 - 1) / (delta * (1 + ro)) = ((1.7817/0.625)A2 - 1) / (0.6458 * (1 = 5.501 1 1.0058)) (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.7817)A2'(1 + 0.6458) = 8.9875 kips Allowable Tension Strength per Tributary AreaJor Each Exterior Bolt: a = 1.23 in. b = 2.24 in. dh = 1.0625 in. b' = 1.74in. a' = 1.73 in. p = 2.75 in. tc = (4.44 * (1/FS)rn * b' / (p * Fy))A0.5 = (4.44 * 44.375 * 1 .74/(2.75 * 36))A0.5 = 1.8609 in. delta = 1 - dh/p = 1-1.0625/2.75 = 0.6136 ro = b'/a' = 1.74/1.73 = 1.0058 Alfa' = ((tc / t)*2 - 1) / (delta * (1 + ro)) = ((1.8609/0.625)A2 - 1) / (0,6136 * (1 +1.0058)) = 6.39 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.8609)A2*(1I + 0.6136) = 8.0773 kips Prying Force: Alfa = maxfO; (1 / Delta) * (rut / (1/FS)Rn • (tc / t)A2 - 1 )] = max(0; (1 / 0.6136) * (8.0773 / 44.375 * (1 .8609 / 0.625)A2 - 1)) = 1 qu = (1/FS)Rn * Delta - atfa * ro * (t / tc)A2 = 44.375 * 0.6136 * 1 * 1.0058 ' (0.625 / 1.8609)A2 = 3.0894 kips/bolt Average (1/FS)Tn: = (2 * (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn_lnt) / N =(2 ' 8.0773 + (4 - 2) * 8.9875) 1 4 = 8.5324 kips Desigm Tension Strength: = 2*n*((1/FS)rn) = 2*4' 8.5324 = 68.259 > 40.7 kips (OK) Bolt Bearing on Anglefs); Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist = 1.25 in. , Hole Size = 1.0625 in. = (1/2)M.2*Lc'Fu <(1/2)*2.4'd*Fu = 69.6 kips/in. = (1/2) ' 1 .2 * 0.71 88 * 58 = 25.01 3 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1 .0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1 .2 * 1 .9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe +• Fbs*(n-1))*t = 2*(25.013 + 67.425 * (4 - 1)) * 0.625 = 284.1 > 10 kips (OK) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 2 Bolt Bearing on Support: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (t/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375'65 = 75.563 kips/in. Bearing Strength = 2*Fbs*n*t = 2*75.563 * 4 * 0.435 - 263. > 10 kips (OK) Beam Side Bolts: 4 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: -1.25>1.25in. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web:.. = 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2*N*((1/FS)m) = 2*4 * 23.562 = 188.5 > 41.911 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.25 in., Hole Size = 1.0625 in. = (1/2)*1.2'Lc'Fu <(1/2) *2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.7188 * 58 = 25.013 kips/in. Bearing Strength/Boft/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. - (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1-9375 * 58 = 67.425 kips/in. Bearing Strength = 2"(Fbe + Fbs*(n-1))*t = 2'(25.013 + 67.425 * (4 - 1)) * 0.625 = 284.1 > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 ' 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 * 4 * 0.395 = 119.4 > 10 kips (OK) Bolt Bearing Under Beam Axial Load: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d ' Fu = 69.6 'kips/in. = (1/2) * 1.2 * 0.9688 * 53 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*4*0.625 = 168.6 > 40.7 kips (OK) On Beam Web: Bearing Strength/Boft/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in. , Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 *4*0.395 = 90.504 > 40.7 kips (OK) Allowable Shear Strength of the Beam: Shear Rupture Strength, (1/FS)Rn = (d - n'(dh+ .0625))*tw*(1/2) *0.6*Fu = (16.33 - 4 * 1.125) * 0.395 * (1/2) *0.6 * 65 = 91.121 kips Allowable Shear Yield Strength: Vn = 0.6*Fy*A = 0.6 * 50 * 6.4504 - 193.5 kips (1/FS)Vn = (1/1.5) *193.5= 129 kips Beam AflowabteShearStrength = Min((1/FS)Rn; (1/FS)Vn) =91.t2t > 10 kips (OK) (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 ' 65 * 5.625)) * 0.395 BeamWekBlockShearjmdejAxialj.oad: Shear Area Length (net), tnv - 2*(Ln+sh*(nn-1Mdn+ -0625)*(nh-0.5)> = 2*(2 + 0'(1 -1)-1.125*(1 -0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Ln+sh*(nh-1)) = 2*(2 + 0"(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) - 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 -M * 65* 5.625))* 0.395 = 37.27 kips = 94.356 > 40.7 kips (OK) Angle Tear out Under Beam Axial Load: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 • 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(1.5 + 0*(1 ~1)-1.125*(1 -0.5)) = 1.975 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5 + 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv -1 )*sv = (4-1) *3 = 9 in. (1/FS)Rn = (1/2) * Min((0,6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 ' 58 • 1.875 + 1 * 58 * 5.625); (0.6 * 36 " 3 + 1 * 58 * 5.625)) * 0.625 = 76.377 kips DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 3 For two angles, (1/FS)Rn = 2*122.2 = 244.4 > 40.7 kips (OK) Allowable Shear Strength of Angfefst: Shear Yielding AHowabJe^Strength: Gross Area, Ag = L*t = 11.5 * 0.625 = 7.1875 inA2 (1/FS)Rn = 2*(1/1.5) *0.6*Ag*Fy = 2 * (1/1-5) '0.6*7.1875*36 = 207 > 10 kips (OK) Shear Rupture Allowable Strength: Net Area on Osl, An1: = (L-n'(dh+ .0625))'t = (11.5 - 4 * (1.0625+ .0625))' 0.625 = 4.375 inA2 Net Area on Beam Side Leg, An2: = (L-TY*dhn = (11.5 - 4 ' (1.0625+ .0625))* 0.625 = 4.375 inA2- An = Min(An1,An2)= 4.375 inA2 (1/FS)Rn = 2*(1/2) *0.6*An*Fu = 2' (1/2) *0.6 * 4.375 * 58 = 152.3 > 10 kips (OK) Block Shear Strength of Beamsjde Lea of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt - Lgt - (dh+ .0625)/2 - 1.5 -1.125 / 2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)*3+1.25=10.25in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.25-(4-0.5)*1.125) = 6.3125 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 6.3125 + 1 * 58 * 0.9375); (0.6 * 36 * 10.25+1 * 58 * 0,9375)) * 0.625 = 85.641 > 5 kips (OK) Left Side Beam Shear Connection Using Clip Anqlefs): Clip Angles: 2L4X4X5/8 X 12 in. Angle Material: A36 Support Side Connection: 8 Bolts 1' 0 A490-N -STD Bolt Hotes on Support: 1.0625 in. Vert. X 1.0625 in. Horiz. Effective Thickness of Support Material; 0.435 in. Bolt Hotes on Angles: 1.0625 in. Vert. X 1.0625 in. Horiz. Beam Side Connection: 4 Bolts 1"0 A49Q-N -STD Bolt Holes on Beam Web: 1.0625 in. Vert. X 1.0625 in. Horiz, Boft Holes on Angles: 1.0625 in. Vert. X 1,0625 in. Horiz. Beam Web Thickness: 0.345 in. Beam Web Height: 13.625 in. Beam Setback: 0.5 in. Loading: Vertical Shear, V = 10 kips Axial Load, H = 40.7 kips Resultant, R - (VA2 + HA2)A0.5 = ((10 )A2 + (40.7 )A2)A0.5 = 41.911 kips Check Clearances: Beam Web Clear Height = 13.625 > 12 in. (OK) Support Side Bolts Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) Distance to Horizontal Edge, ev: = 1.5>1.25in. (OK) Distance to Vertical Edge, eh: = 1.4225 > 1.25 in. (OK) Gage on OSL: Angle Gage = 2.5775 > 2.125 in. (OK) Column Gage = 5.5 in. Allowable Shear Strength of Bolts: - 2*n*((1/FS)rn) = 2*4* 23.562 = 188.5 > 10 kips (OK) Nominal Strength per Bolt = rn - Ft * Ab = 113 * 0.7854 = 88.75 kips Allowable Strength per Bolt, {1/FS)rn = (1/2) *m = 44.375 kips BiockJShear Strength of Supportside Leg_of One Angle: Gross Length with Tension resistance, Lgt = Lh = 1.4475 in. Net Length with Tension resistance, Lnt = Lgt - (dh+ .0625)/2 = 1.4475 - 1.125 / 2 = 0.885 in. Gross Length with Shear resistance, Lgv = (n- 1)*s + Lv = (4-1)* 3+1.25= 10.25 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+ .0625) = 10.25-(4-0.5)*1.125) = 6.3125 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu - Lnv ; Fy'Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 * 6.3125 ; 36 * 10.25 + 1 * 58 * 0.885) 0.625 = 84.689 > 5 kips (OK) Column flange local bending was not checked! Allowable Tension Strength per Tributary Area for Each Interior Bolt: a = 1.23 in. b = 2.265 in. dh = 1.0625 in. b'= 1.765 in. a'=1.73 in. p = 3 in. tc = (4.44 * (1/FS)rn * b' / (p * Fy^O.S = (4.44 * 44.375 " 1.765/(3 * 36))A0.5 = 1.7944 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a' = 1.765/1.73 = 1.0202 Alfa' = ((tc / t)A2 -1) / (delta * (1 + ro)) = ((1.7944/0.625)A2 - 1) / (0.6458 * (1 + 1.0202)) = 5.5513 (1/FS)Tn = (1/FS)rn * (t / tc)A2 * (1 + delta) = 44.375 * (0.625 / 1.7944)"2*(1 + 0.6458) DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 4 = 8.8602 kips Allowable Tension Strength per Tributary Area for Each^Exterior Bolt: a = 1.23 in. b = 2.265 in. dh = 1.0625 in. b'= 1.765 in. a'=1.73 in. p~3in. tc = (4.44 * (1/FS)rn * b1 / (p * Fy))A0.5 * {4.44 • 44.375 * 1.765/(3 * 36))A0.5 = 1.7944 in. delta = 1 - dh/p = 1-1.0625/3 = 0.6458 ro = b'/a1 = 1.765/1.73 = 1.0202 Alfa1 = ((tc / t)A2 -1} / (delta * (1 + ro)) " » ((1.7944/0.625^2 - 1) / (0.6458 * (1 + 1-0202)) = 5.5513 (1/FS)Tn = <1/FS)rn * (t / tc)A2 * (1 + delta) * 44.375 * (0.625 / 1.7944)A2*(1 + 0.6458) * 8.8602 kips Prving^orce: Alfa = max[0; (1 / Delta) * (rut / (1/FS)Rn * (tc / t)A2 - 1)] * max(0; (1 / 0.6458) * (8.8602 / 44.375 * (1.7944 / 0.625)A2 -D)= 1 qu = (1/FS)Rn * Delta ' alfa * ro * (t / tc)A2 * 44.375 * 0.6458 * 1 * 1.0202 * (0.625 / 1.7944)A2 = 3.5471 kips/bolt Average(1/FS)Tn: = (2 - (1/FS)Tn_Ext + (N - 2) * (1/FS)Tn Int) / N =(2 ' 8.8602 + (4 - 2) * 8.8602) / 4 = 8.8602 kips Desigm Tension Strength: = 2*n*((1/FS)m) - 2 * 4 * 8.8602 = 70.881 > 40.7 kips (OK) Bolt Bearing on Anglef s): Bearing Strength/BortAThickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu 5 (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/BolUThickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size - 1.0625 in. . . -(1/2)M.2*Lc'Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 " 1.9375 ' 58 = 67.425 kips/in. Bearing Strength - 2*(Fbe + Fbs*(n-1))*t = 2*(33.713 + 67.425 * (4 - 1)) * 0.625 = 295. > 10 kips (OK) Bolt Bearing on Support: Bearing Strength/Bott/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) • 1.2 ' Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) • 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength - 2*Fbs*n*t = 2*75.563' 4*0.435 = 263. > 10 kips (OK) Beam Side Bolts: 4 Bolts -1"0 A490-N -STD Spacing, s = 3 > Minimum Spacing = 2.6667 in. (OK) = 1.5>1.25tn. (OK) Distance to Vertical Edge, eh: = 1.5>1.25in. (OK) Gage on Angle Leg in Beam Web: = 2.5 > 2 in. (OK) Allowable Shear Strength of Bolts: = 2'N*((1/FS)m> = 2*4 '23.562 = 188.5 > 41 .911 kips (OK) Bolt Bearing on Angles: Bearing Strength/Bott/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu < (1/2) * 2.4 *d'Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1.0625 in. - (1/2) M .2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Strength = 2*(Fbe + Fbs*(n-1 ))*t = 2*(33.713 + 67.425 " (4 - 1)) * 0.625 = 295. > 10 kips (OK) Bolt Bearing on Beam Web: Bearing Strength/Boft/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in. , Hole Size = 1 .0625 in. = (1/2)"1.2'Lc*Fu <(1/2)*2.4*d*Fu = 78 kips/in. = (1/2) ' 1.2 * 1.9375 * 65 = 75.563 kips/in. Bearing Strength = Fbs * n * t = 75.563 '4* 0.345 = 104.3 > 10 kips (OK) Bolt Bearing Under BeanLAxjalj-ojLd: On Angles: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.5 in. , Hole Size = 1.0(525 in. = (1/2)*1.2*Lc*Fu < (1/2)* 2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 0.9688 * 58 = 33.713 kips/in. Bearing Strength = 2*Fbe*n*t = 2*33.713*4*0.625 = 1 68.6 > 40.7 kips (OK) On Beam Web: Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 2 in. , Hole Size = 1.0625 in. = (1/2) * 1 .2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in, = (1/2) * 1.2 * 1.4688 * 65 = 57.281 kips/in. Bearing Strength = Fbe*n*t = 57.281 * 4 * 0.345 = 79.048 > 40.7 kips (OK) Allowable Shear Strength pftbe Shear Rupture Strength, (1/FS)Rn = (d - n*(dh+ .0625))*tw'(1/2) "0.6*Fu = (16.13 - 4 * 1.125) * 0.345 * (1/2) *0.6 * 65 = 78.241 kips AjJswablejShear Yield^ Strength: Vn = 0.6*Fy*A = 0.6 * 50 * 5.5648 = 166.9 kips (1/FS)Vn = (1/1.5) *166.9= 111.3 kips Beam AllowableShear Strength = Min((1/FS)Rn; (1/FS)Vn) = 78.241 > 10 kips (OK) Distance to Horizontal Edge, ev:(1/FS)Rn = (1/2) * Min((0.6 * Fu ' Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 5 + Ubs*Fu'Lnt))*t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50' 4 + 1 * 65* 5.625))* 0.345 Beam Web Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(2 + 0'(1 -1)-1.125* (1-0.5)) = 2.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*{2 + 0*(1-1)) = 4 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1) "(3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1}*sv = (4-1)*3 = 9 in. (1/FS)Rn = (1/2) * Min{(0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy ' Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 65 * 2.875 + 1 * 65 * 5.625); (0.6 * 50 * 4 + 1 * 65 * 5.625)) ' 0.345 = 28.432 kips = 82.412 > 40.7 kips (OK) AngteTgar out Under Beam Axial jLpad: (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 * 58 * 5.625); (0.6 * 36 * 3 + 1 • 58 ' 5.625)) ' 0.625 Angle Block Shear under Axial Load: Shear Area Length (net), Lnv = 2*(Lh+sh*(nh-1)-(dh+ .0625)*(nh-0.5)) = 2*(1.5 + 0 *(1 -1) -1.125 * (1 - 0.5)) = 1.875 in. Shear Area Length (gross), Lgv = 2*(Lh+sh*(nh-1)) = 2*(1.5+ 0*(1-1)) = 3 in. Tension Area Length (net), Lnt = (nv - 1)*(sv - (dv+ .0625)) = (4-1)* (3-1.125) = 5.625 in. Tension Area Length (gross), Lgt = (nv - 1)*sv = {4-1>*3 = 9 in. <1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 • Fy * Lgv + Ubs * Fu * Lnt)) * t = (1/2)* Min((0.6 * 58 * 1.875 + 1 " 58 * 5.625); (0.6 * 36 * 3 + 1 * 58 * 5.625)) * 0.625 = 76.377 kips For two angles, (1/FS)Rn = 2*122.2 = 244.4 > 40.7 kips (OK) Allowable Shear Strength of Anqlefs): ShearYieldinQ Allowable Strength: Gross Area, Ag = L*t = 12 * 0.625 = 7.5 inA2 (1/FS)Rn = 2*(1/1.5) *0.6'Ag*Fy = 2 * (1/1.5) *0.6"7.5*36 = 216 > 10 kips (OK) Net Area on Osl, Ant: = (L-n*(dh+ .0625))-t = (12 - 4 * (1.0625+ .0625))* 0.625 = 4.6875 inA2 Net Area on Beam Side Leg, An2: = (L-n*dh)"t = (12 - 4 * (1.0625+ .0625))* 0.625 = 4.6875 inA2 An = Min(An1,An2)= 4.6875 inA2 (t/FS)Rn = 2*(f/2) *0.6*An'Fu = 2* (1/2) *0.6 * 4.6875 * 58 = 163.1 > 10 kips (OK) Block Shear Strength of Beamside Leg of One Angje: Gross Length with Tension resistance, Lgt = Lh = 1.5 in. Net Length with Tension resistance, Lnt = Lgt- (dh+ .0625)/2 = 1.5-1.125/2 = 0.9375 in. Gross Length with Shear resistance, Lgv = (n - 1)'s •*• Lv = (4-1)* 3+ 1.5 =10.5 in. Net Length with Shear resistance, Lnv = Lgv - (n - 0.5)*(dv+.0625) = 10.5-(4-0.5)*1.125) = 6.5625 in. (1/FS)Rn = (1/2) * Min((0.6 * Fu * Lnv + Ubs * Fu * Lnt); (0.6 * Fy * Lgv + Ubs*Fu*Lnt))*t = (1/2)* Min((0.6 * 58 * 6.5625 + 1 * 58 * 0.9375); (0.6 * 36 * 10.5 + 1 * 58 * 0.9375)) * 0.625 = 87.867 > 5 kips (OK) Block Shear ^Strength of Supportside Lea of One Angle; Gross Length with Tension resistances, Lgt - Lh - 1.4225 in. Net Length with Tension resistance, Lnt = Lgt- (dh+ .0625)/2 = 1.4225 -1.125 / 2 = 0.86 in. Gross Length with Shear resistance, Lgv = (n-1)*s + Lv = (4-1)*3+ 1.5 =10.5 in. Net Length with Shear resistance, Lnv = Lgv-(n-0.5)*(dv+.0625) = 10.5-(4-0.5)-1.125) = 6.5625 in. (1/FS)Rn = (1/2) *(0.6* Min[Fu * Lnv ; Fy*Lgv] + Fu*Lnt)*t = (1/2) *(0.6* Min(58 * 6.5625 ; 36 * 10.5 + 1 * 58 * 0.66) * 0.625 = 86.463 > 5 kips (OK) Column flange local bending was not checked! Shear Rupture Allowable Strength; DesconWin6-ASD Licensed to: Desert Eagle Engineering LLC Page: 6 Note: All Welds E70XX 8 Bolts 1"0 A490-N-STD/ 5 1/2"^t'.. 1"0A490-N-STD Gage = 2.5 in. / 2L4X4X5/8 X 12in.-A36 W10X33-A$9l ~"3T~£f \Gage = 2.5 in. 42L4X4X5/8X11.5in.- i3/4" 8 Bolts V1"0A49Q-N-STD 1/2" Scale: 1/4" = 1' 4 o_J £« "5 0> CO •*-•CO CD OOCM 00l_ CO o 2ot3 "oO <D CO CD-CO CM O CNI QOJ CC oO T~ 0> so O CO-CO Company : Chavez/Grieves Designer : JH Job Number :Frame 1 Collectors Mar 8, 2006 8:26 AM Checked By: Joint Coordinates and Temperatures Label JUfil -ZJflL Temp [R Detach From Diap. N1 0 N4 48 N2 12 Member Primary Data Label Joint J Joint K Joint Rotatefdecrt Section/Shape Design List Type Material Design Rules Member Advanced Data Label Release J Release IQffsetfinl JOffsetTin] T/COnly Physical TOM Inactive BenPIN Yesm Hot Rolled Steel Section Sets Label Shape Jjesign List Type Material Design Rules A[in2]lyy [jn4] Izz .{in4]_Jfin41 B1 W21X68 Wide Flange Beam A992 Typical 20 64.7 1480 2.45 B3 W14X30 Wide Flange Beam A992 Typical 8.85 19.6 291 .38 Hot Rolled Steel Design Parameters Label Shape LengthL. Lbyyfft] Lbzz[ft] Lcomptop...Lcojnr^bot... Kyy Kzz Cm-w Cm-zz Cb yswayzsway M2 B2 24 1 M1 B1 12 Joint Boundary Conditions Joint Label Xfk/inl Y tk/inl Z fk/inl X RoUk-ft/rad] Y Rot.fk-ft/rad1 Z RoL[k-ft/radl footing N1 Reaction Reaction Reaction Reaction Reaction H:H *£,-lf ?s».,N3I N4 Reaction Reaction Fixed Fixed Fixed N2 Reaction Reaction Reaction Member Distributed Loads (BLC 1: DEAD LOAD) Member Label Direction Start Maanitude[k/ft.d.-£nd MaQnitudefk/ft.d... Start Locat(onfft.%] End Location[ft.%l M2 -.565 -.565 0 0 -.565 M1 -.565 -.565 R1SA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 1 Col lectors. r3d]Pagel Company Designer Job Number Chavez/Grieves JH Frame 1 Collectors Mar 8, 2006 8:26 AM Checked By: Member Distributed Loads (BLC 2: LIVE LOAD) Member Label Direction Start Magnitudefk/ft.d..End Maanitudefk/ftd... Start Locationfft.%1 End Location[ft.%] M2 ~-37 -.37 0 0 M1 -.37 -37 Member Distributed Loads (BLC 3: SEISMIC) Member Label Direction Start Macinituderk/ft.d End MagnitudeFk/ft.d.. Start Locationfft.%1 End Locationrft.%1 M2 -.878 -.878 0 0 M1 x 'y fyl^tj -.878 -.878 /.oarf Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area fMe... Surface f. DEAD LOAD DL '«"" *m«"t:f, * ~*&?<^g<. SEISMIC EL Load Combinations Description SolvePD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1.2D+0.5L+2.Yes Y 1 1.2 .5 2.2 Joint Reactions (By Combination) LC Joint Label -XBL MX Ik-ftl MY fk-ftT MZ Tk-ftl N1 2.55 0 0 0 Ji:w N4 K N2 46.358 21.866 14.17 NC NC NC COGjfft).X: 35.866 Y:0 Z:0 N3 13.627 NC NC NC Totals:-46.358 66.404 NC Member Sect/on Forces (By Combination) LC Member Label Sec A»al(k]y_Shear[k] zShear[k] Torque[k-ft] y-y Mgment[k-,.z^z _Moment[k-.. 1 1 M2 1 92.717 11.076 0 0 0 0 69.538 -66.458 46.358 -11.076 0 34.769 5.395 0 -48.553 11.59 -5.395 0 0 -48.553 RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 1 Collectors.rSd]Page 2 Company Designer Job Number Chavez/Grieves JH Frame 1 Collectors Mar 8, 2006 8:26 AM Checked By: Member Section Forces (By Combination) (Continued) LC Member Label Sec Axiairkl vSheartkl3EES z Shearlkl Torguefk-f B y-v Momentfk-z-z Momentfk-V""1* " *' •-<'-•'i-'ji-f011M192.717 5.952 0 13 81.127 .284 -18.706 15 69.538 -5.384 -3.403 17 17.384 5.952 15.305 '•35 19 5.795 .284 -3.4 21 M2 -92.717 11.076 23 -69.538 -66.458 25 -46.358 -11.076 0 j™jS_L 27 -34.769 5.395 0 -48.553:o 29 -11.59 -5.395 0 -48.553 31 M1 -92717 2.55 0 33 -81.127 -3.118 1.702 35 -69.538 -8.786 37.411 0. 37 -17.384 2.55 -15.305 39 -5.795 -3.118 -13.604 -5.952.JL. Member Section Stresses 1C .Member Label Sec Axialfksil vShearfksH zShear{ksi1 y top Bendin.. y bot'Bendin...ztoD Bendin...2 botBendin... 1 1 M2 1 6.307 1.793 0 0 0 0 0 4.73 9.839 -9.839 3.154 -1.793 0 3.929 1.444 13.855 -13.855 IB 1.31 -1.444 13.855 -13.855 11 M1 4.636 .655 13 4.056 .031 0 1.602 -1.602 15 3.477 -.593 0 .292 -.292 17 .869 .655 -1.311 1.311 ?£..&_••...^ 19 .29 .031 .291 -.291 *.£<&**;FTP?> *-f *««ftfc* * . r'.l....-?U. A. ' 21 M2 -6.307 1.793 RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 1 Collectors.r3d]Page 3 Company Designer Job Number Chavez/Grieves JH Frame 1 Collectors Mar 8, 2006 8:26 AM Checked By: Member Section Stresses {Continued) LC MemberLabel Sec Axialfksi) yShearfksi] zShearfksi] ytoo Bendin. .v hot Bendin.. ztop Bendin. z botBendin. Member AISC LRFD Steel Code Checks LC Member UC Max Loc[ft] Shear UC Loc[ft1 Dirphi*Pnctk1 phi'Pntfkl phi*Mnw..phi*Mnzz. Cb Egn 1 M2 W16X50 .984 3.5 .066 0 95.692 661.5 59.194 345 1.136 H1-1a M1 W21X68 .108 5.125 .024 531.957 900 88.014 600 1.124 H1-1b M2 W16X50 .246 11.5 .066 95,692 661.5 59,194 345 1.136 H1-1b M1 W21X68 .101 12 .036 12 531.957 900 88.014 600 2.3 HMbraooi RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 1 Cotfectors.rSd]Page 4 4 • Beam: M1 Shape: W21X68 ^Material: A992 •-ength: 12ft rl Joint: N3 J Joint: N2 LC1: 1.2D+0.5L+2.2E i Code Check: 0.108 (bending) Report Based On 97 Sections Max: 92.71 7 at Oft ^|A •^H^HIHI k Min: 69.538 at 12 ft Max: 4.636 at Oft HBBaiHafc^ •j^^^^HH H^^^^^Hinlll^Himfa ^HI^^B^^^BB ksi Min: 3.477 at 12 ft V / \ / Min: -.012 at 6.125 ft Max: 5.952 at 0 ft Min: -5.384 at 12 ft Max: 0 at 0 ft Min: -18.747 at 6.25 ft Max: 1.606 at 6.25 ft itid^Afe, fc jflHHHhi ksj uz - in W r- ft — HH^H_«H||^n__«.g.B [(gj^•^BHRflP^^^^^ Min: -1.606 at 6.25 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.108 Max Shear Check 0.024 (y) Location 5.125 ft Location 0 ft Equation H1-1b Max Defl Ratio L/10000 Compact Fy SOksi Y-Y Z-Z phi*Pnc 531.957k Lb 12ft 12ft phi*Pnt 900k KL/r 80.062 16.74 phi*Mny 88.014 k-ft Sway No No P!^nZ SSSS,, LComp Flange 1ftphi'Vny 245.319 k Toraue Lenqth NC phPVnz 305.907 k q 9 Cb 1.124 t Beam: M1 Shape: W21X68 Material: A992 Length: 12 ft I Joint: N3 J Joint: N2 LC2:1.2D+0.5L-2.2E Code Check: 0.101 (bending) Report Based On 97 Sections Max: -69.538 at 12 ft Win: -92.71 7 at Oft k-ft Max: -3.477 at 12 ft Min: -4.636 at Oft Max: .005 at 8.625 ft Max: 2.55 at 0 ft Vy Min:-8.786 at 12 ft Max: 37.411 at 12 ft Min: -3.442 at 2.75 ft Max: 3.205 at 12 ft fc ksi Dz in Vz My k-ft Min: -3.205 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.101 Location 12ft Equation H1-1b Compact Fy 50 ksi Max Shear Check 0.036 (y) Location 12ft Max Defl Ratio U10000 phi'Pnc 531.957 k phi*Pnt 900k phi*Mny 88.014 k-ft oo.phi'Vny 245.319 k phi*Vnz 305.907 k Cb 2.3 Y-Y Z-Z Lb 12 ft 12 ft KL/r 80.062 16.74 Sway No No LComp Flange 12ft Tornue Lenqth NC' ° que Leng NO Beam: M1A Shape: W21X68 Material: A992 Length: 12 ft I Joint: N2 J Joint: N1 LC1:1.2D+0.5L+2.2E Code Check; 0.084 (bending) Report Based On 97 Sections Max: .005 at 3.375 ft Dz in Max: 23.179 at Oft Max: 8.786 at 0 ft Vy Vz Min:-2.55 at 12 ft Max: 37.411 at Oft k-ft My k-ft Mz Min:-3.442 at 9.25 ft Max: 3.205 at 0 ft Max: 1.159 at Oft Min:-3.205 at Oft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.084 Location 0 ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 531.957k phi*Pnt 900 k phi*Mny 88.014 k-ft phi*Mnz 600 k-ft phi*Vny 245.319k phi*Vnz 305,907 k Cb 2.3 Max Shear Check 0.036 (y) Location 0 ft Max Defl Ratio . LJ10000 Lb KUr Sway Y-Y 12ft 80.062 No Z-Z 12ft 16.74 No L Comp Flange Torque Length 12ft NC 4 Beam: M1A Shape: W21X68 Material: A992 Length: 12ft I Joint: N2 J Joint: N1 LC2:1.2D+0.5L-2.2E Code Check: 0.038 (bending) Report Based On 97 Sections Min:-.012 at 5.875 ft Dz in Max: 5.384 at 0 ft Vy Vz Min:-5.952 at 12 ft Min:-23.179 at Oft Max: 0 at 12 ft Mz k-ft My k-ft Min:-18.747 at 5.75 ft Max: 1.606 at 5.75 ft Min:-1.159 at Oft Min:-1.606 at 5.75 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.038 Location 5 ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 531.957k phi*Pnt 900 k phi*Mny 88.014 k-ft phi*Mnz 600 k-ft phi'Vny 245.319 k phi*Vnz 305.907 k Cb 1.124 Max Shear Check 0.024 (y) Location 12 ft Max Defl Ratio L/10000 Lb KL/r Sway Y-Y 12 ft 80.062 No Z-Z 12ft 16.74 No L Comp Flange Torque Length 1ft NC Beam: M2 Shape: W16X50 Material: A992 Length: 24 ft Joint: N3 J Joint: N4 LC1:1.2D+0.5L+2.2E Code Check: 0.984 (bending) Report Based On 97 Sections in Mini-.361 at 12 ft Dz in Max: 92.717 at Oft Max: 11.076 at Oft Vy Vz Min:-11.076 at 24 ft Min: 46.358 at 24 ft Max: 0 at 0 ft Mz k-ft My k-ft Min:-66.458 at 12 ft Max: 9.839 at 12 ft Max: 6.307 at 0 ft Min: 3.154 at 24 ft Min:-9.839 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.984 Location 3.5 ft Equation H1-1a Compact Fy 50 ksi phrPnc 95.692 k phi*Pnt 661.5k phrMny 59.194 k-ft phi*Mnz 345 k-ft phi*Vny 166.828 k phi*Vnz 240.521 k Cb 1.136 Max Shear Check 0.066 (y) Location 0 ft Max Deft Ratio L/799 Lb KL/r Sway Y-Y 24ft 181.042 No Z-Z 24ft 43.014 No L Comp Flange Torque Length 1ft NC Beam: M2 Shape: W16X50 Material: A992 Length: 24 ft ! Joint: N3 J Joint: N4 LC2: 1.2D+0.5L-2.2E Code Check: 0.246 (bending) Report Based On 97 Sections Min:-.361 at 12 ft Dz in Max:-46.358 at 24 ft A Max: 11.076 at Oft vy Min:-11.076 at 24 ft Vz Min:-92.717 at Oft Max: 0 at 0 ft Mz k-ft • My k-ft Min: -66.458 at 12 ft Max: 9.839 at 12 ft Max: -3.154 at 24 ft fa Min:-6.307 at on fc ksi Min:-9.839 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.246 Location 11.5ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 95.692 k phi*Pnt 661.5k phi*Mny 59.194 k-ft phi*Mnz 345 k-ft phi*Vny 166.828k phi*Vnz 240.521 k Cb 1.136 Max Shear Check 0.066 (y) Location 0 ft Max Defl Ratio U799 Lb KL/r Sway Y-Y 24ft 181.042 No Z-Z 24ft 43.014 No L Comp Flange Torque Length 1ft NC Beam:M3 Shape; W14X30 Material: A992 (Length: 24ft Joint: N4 J Joint: N5 LC1: 1.2D+0.5L+2.2E Code Check: 0.947 (bending) Report Based On 97 Sections Min:-.795 at 12 ft Dz in Max: 46.358 at 0 ft Max: 10.79 at Oft Vy Vz Min:-10.79 at 24 ft Min: 0 at 24 ft Max: 0 at 0 ft Mz k-ft My k-ft Min:-64.738 at 12 ft Max: 18.474 at 12 ft Max: 5.238 at 0 ft fa Min: Oat24ft ksi Min:-18.474 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.947 Location 3.5 ft Equation H1-1a Compact Max Shear Check 0.107 (y) Location 0 ft Max Defl Ratio L/362 Fy phi*Pnc phi*Pnt phi*Mny phi*Mnz phi*Vny phi*Vnz Cb 50 ksi 50.418 k 398.25 k 32.764 k-ft 177.375 k-ft 100.894 k 139.917k 1.136 Lb KL/r Sway Y-Y 24ft 193.525 No Z-Z 24ft 50.225 No L Comp Flange Torque Length 1ft NC Beam: M3 4Shape: W14X30 Material: A992 Length: 24 ft I Joint: N4 J Joint: N5 LC2: 1.2D+Q.5L-2.2E Code Check: 0.395 (bending) Report Based On 97 Sections in Min:-.795at12fi Dz in Max: 0 at 24 ft A Max: 10.79 at Oft Vy Vz Min:-10.79 at 24 ft Min:-46.358 at Oft Max: 0 at 0 ft Mz k-ft My k-ft Min:-64.738 at 12 ft Max: 18.474 at 12 ft Max: 0 at 24 ft fa Min:-5.238 at Oft Min:-18.474 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.395 Location 11.5ft Equation H1-1b . . • Compact Fy 50 ksi phi*Pnc 50.418 k phi*Pnt 398,25 k phi*Mny 32.764 k-ft phi*Mnz 177.375 k-ft phrVny 100.894k phi*Vnz 139.917k Cb 1.136 Max Shear Check 0.107 (y) Location 0 ft Max Defl Ratio L/362 Lb KL/r Sway Y-Y 24ft 193.525 No Z-Z 24ft 50.225 No L Comp Flange Torque Length 1ft NC 4 4 00 >-*-CO CDOOCN CO1_CD o•6_o>__ O CM 0) 2Li. 2to O CM O CN) O §1 •^-O £2 ~o O OJ 0> 2LL 01 (06 Company Designer Job Number Chavez/Grieves JH Frame 2 Collectors Mar 8, 2006 9:57 AM Checked By: Joint Coordinates and Temperatures Label Temp [F]Detach From Diap. 0 N5 -35 Member Primary Data Label I Joint J Joint K Joint Rotatefdeg) Section/Shape Design List MaterialDesignRules M3 82 yVideFlanqe Beam A992 Typical B1 Wide_Fjange Beam A992 Joint Boundary Conditions Joint Label X [k/in]Y[k/in]Z [k/inl X Rot.tk-ft/rad)Y Rot.[k-ft/rad] _ Z Rot.[k-ft/rad1 Footing N1 Reaction Reaction Reaction N3 Reaction Reaction Fixed Fixed Fixed N5 Reaction Reaction Fixed Fixed Fixed Hot Rolled Steel Section Sets Label J>hap_e__DesignList_-Type Material Design Rules A [in2]lyy [in4]Izz [in4]J fin4] B1 W21X68 Wide Flange Beam A992 '7^9921- Typical 20 64.7 148031 2.45 &S41 B3 W16X36 Wide Flange Beam A992 Typical 10.6 24.5 448 .54 Hot Rolled Steel Design Parameters Label Shape LenqthL. _L_byy[ffl_ Lbzz[ft] LcompJop..LcompLbpt. Kyy Kzz Cm-yy Cm-zz: Cb ysway z^way M3 24 1 M2 B1 13 Member Advanced Data Label Release J Release Offsettinl JQffsetfin] T/C Only Physical TOM Inactive BenPIN Yes Yes Yes //o^ Rolled Steel Properties Label E [ksi]G[ksi1 Nu Therm fMEJLF) Density[k/ftA3]Yield[ksi] A36 Gr.36 29000 11154 .65 .49 36 A992 29000 11154 .65 .49 50 3 ^ ; , s""f'f1 ^ f . RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 2 ColIectors.rSd]Page 1 Company Designer Job Number Chavez/Grieves JH Frame 2 Collectors Mar 8, 2006 9:57 AM Checked By: Hot Rolled Steel Properties (Continued} Label E rkstl G Fksil Nu Therm (VIES R Densitvfk/ftA31 Yieldlksil 5 A500 Gr.46 29000 11154 .3 .65 .49 46 Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area (Me,.. Surface ( DEAD LOAD DL -1 SEISMIC EL Load Combinations Description SolvePD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor Member Distributed Loads (BLC 1: DEAD LOAD} Member Labgl Direction Start Maqnitudefk/ft.d. End Magnitude[k/ft.d... Start Locationfft.%T End Locationfft.%1 Member Distributed Loads (BLC 2: LIVE LOAD} Member Label Direction Start Magniludefk/ftd £nd Maanitude[k/ft.d. Start Locationfft.%1 End Locationm.%1 Member Distributed Loads (BLC 3: SEISMIC} Member Label Direction Start Maanitudefk/fld End Magnitude[k/ft.d... Start l.ocation[ft.%T End Locationfft.%1 M1 -.878 -.878 0 0 M2 -.878 -.878 0B$£5#r*0* Joint Loads and Enforced Displacements (BLC 3: SEISMIC) Joint Label LD.M JJirecliop Maonitudetk.k-ft in.rad k*s*2/ft] N5 -2.9 Joint Reactions Joint Label _Z[kL MX [k-ft]MY [k-ft]_MZ [k-ft] 1 1 N1 16.623 15.351 0 0 0 N3 N5 rr? 10.875 9.969 NC NC NC NC NC NC COG (ft!X: 1.023 Y:0 Z:0 RISA-3D Version 5.5 [P:\Chavez Grfeves\006. Ventana Real\Ca!cs\Frame 2 Collectors.r3d]Page 2 Company Designer Job Number Chavez/Grieves JH Frame 2 Collectors Mar 8, 2006 9:57 AM Checked By: Joint Reactions (Continued} LC Joint Label MX [k-ft]MY MZ [k-ft] 14.918 NC NC NC 11 N4 15.137 NC NC NC 13 Totals:-16.623 66.25 Member Section Forces LC Member Label .Sec Axialfkl y Shearfkj z Shearfk]Tprque[k-ftJ y-yMpmen_t[k-...z-zMoment[k- 1 M3 52.738 10.875 0 0 0 0 6.38 -10.875 71.571 4.042 -5.488 59.016 -2.098 -11.807 11 M2 61.226 8.238 27.274 13 48.671 2.098 -6.319 15 36.115 -4.042 Ms- 17 25.491 4.985 -41.123 19 4.244 -4.985 -41.123 21 M3 -52.738 10.875 23 -29.559 -65.252 25 -6.38 -10.875 27 -71.571 5.168 5.488 29 -59.016 -.972 -8.149 31 M2 -61.226 7.113 12.638s 33 -48.671 .972 -13.637 35 -36.115 -5.168 37 -25.491 4.985 -41.123 39 -4.244 -4.985 -41.123 40 Member Section Stresses LC Member Label Sec Axial[ksi] yShearfksi] zShear[ksi] viop Bendin...ybol B.endin. ztop BendirL..z bot Bendin 1 1 M3 1 4.975 2.324 0 0 0 0 0 2^V, "' tMi.. . *"*>«•** ^* S "* °"-j'"rt &~: '•'6'* y^*.>b.AkM...«l!S.-ir^^J.f...£g..^'g......^iLl_l --.a RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Rea(\Calcs\Frame 2 Coflectors.r3d]Page3 Company Designer Job Number Chavez/Grieves JH Frame 2 Collectors Mar 8, 2006 9:57 AM Checked By: Member Section Stresses {Continued) J-C Member Label Sec _Axial[ksi]_v Shear[ksi]y top Bendin..y bot Bendin..z lop Bendin.z bot Bendin... 2.789 0 13.86 -1386 0 o .602 -2.324 A*L^T.l 3.579 .445 .47 -.47 2.951 -.231 1.011 -1.011 11 M2 3.061 .907 -2.336 2.336 13 2.434 .231 .541 -.541 15 1.806 -.445 17 _2.405 1.065 8.735 .-8735 19 -1.065 8.735 -8.735 21 M3 -4.975 2.324 23 -2.789 13.86 -13.86 25 -.602 -2.324 27 -3.579 .569 -.47 .47 29 -2.951 -.107 .698 -.698tag.„£ 31 M2 -3.061 .783 -1.083 1.083 33 -2.434 .107 1.168 -1.168 35 -1.806 -.569 0 121 37 -2.405 ffff. .isrt.WjQ.j-... 1.065 8.735 -8.735 39 -.4 -1.065 8.735 -8.735 •r Member AISC LRFD Steel Code Checks LC Member Shape UCMax Locfffl ShearUC Locjft] pirDhi'Pnclkl phi'Pntfkl phi*Mnw...phi*Mn22... Cb Eqn 1 M3 W16X36 .851 2.75 .086 0 63.023 477 39.46 240 1.136 H1-1a M2 W21X68 .108 .034 490.387"900 88.014 600 2.3 H1-1b M3 W16X36 :303 11.5 .086 63.023 477 39.46 240 1.136 H1-1b M2 W21X68 .055 0 .029 490.387 900 88.014 600 1.246 H1-1b ^542 ^.079.. -i-"/47ff RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 2 Collectors.r3d]Page 4 Beam: Shape: W21X68 Material: A992 \ Length: 13ft Joint: N1 J Joint: N2 LC1:1.2D+0.5L+2.2E Code Check: 0.100 (bending) Report Based On 97 Sections Min: -.009 at 7.042 ft m Max: 77.849 at 0 ft Min: 52.738 at 13 ft Max: 7.113 at Oft Vy Min:-5.168 at 13 ft Max: 12.638 at Oft k-ft My k-ft Min: -14.136 at 7.583 ft Max: 3.892 at 0 ft Min: 2.637 at 13 ft Max: 1.211 at 7.583 ft fc Min: -1.211 at 7,583 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.100 Location 0 ft Equation H1-1fa Compact Fy phi'Pnc 490.387 k Lb phi*Pnt 900 k KL/r phi*Mny 88.014 k-ft Sway h-*wphi*Vny Cb SOksi 490.387 k 900 k 88.014 k-ft 522 5«,,245.319 k 305.907 k 1.246 Max Shear Check Location Max Defl Ratio 0.029 (y) Oft L/10000 Y-Y 13 ft 86.734 No Z-Z 13 ft 18.135 No LComp FlangeT^™,D i anJhTorque Length 13ft i . > > l> Beam; M1 Shape: W21X68 Material: A992 Length: 13ft Joint: N1 J Joint: N2 LC2:1.2D+0.5L-2,2E Code Check: 0.089 (bending) Report Based On 97 Sections Max: -52.738 at 13 ft Min: -77.849 at Oft Max: -2.637 at 13 ft Min: -3.892 at 0 ft Max: Oat 1.49 ft Min: -.003 at 8.396 ft Max: 8.238 at 0 ft Vy ' ' '""-"-^iMii k Min: -4.042 at 13 ft Max: 27.274 at 0 ft Min: -8.647 at 8.667 ft Max: 2.336 at 0 ft TC KSI wz i. Min: -2.336 at Oft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.089 Max Shear Check 0.034 (y) Location 0 ft Location 0 ft Equation H1-1b Max Defl Ratio L/10000 Compact Fy 50 ksi Y-Y Z-Z phi*Pnc 490.387 k Lb 13 ft 13 ft phi*Pnt 900k KL/r 86.734 18.135 phi*Mny 88.01 4 k-ft Sway No No Ph'*VnZ 245 319 k L C°mp Flan9e 13 ft Cb 2.3 Beam: M2 Shape: W21X68 Material: A992 (Length: 13 ft Joint: N1 J Joint: N4 LC1:1.2D+0.5L+2.2E Code Check: 0.108 (bending) Report Based On 97 Sections ft Min: -.003 at 8.396 ft Dz in Max: 61.226 at On Max: 8.238 at 0 ft Vy Min:-4.042 at 13 ft Vz Min: 36.115 at 13 ft Max: 27.274 at 0 ft k-ft My k-ft Min:-8.648 at 8.667 ft Max: 3.061 at 0 ft Max: 2.336 at 0 ft Min: 1.806 at 13 ft Min:-2.336 at Oft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.108 Location 0 ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 490.387 k phi'Pnt 900 k phi*Mny 88.014 k-ft phi*Mnz 600 k-ft phi*Vny 245.319 k phi*Vnz 305.907 k Cb 2.3 Max Shear Check 0.034 (y) Location 0 ft Max Defl Ratio L/10DOO Lb KL/r Sway Y-Y 13ft 86.734 No Z-Z 13ft 18.135 No L Comp Ftange Torque Length 13ft NC Beam: M2 Shape: W21X68 Material: A992 Length: 13ft Joint: N1 J Joint: N4 LC2:1.2D+0.5L-2.2E Code Check: 0.055 (bending) Report Based On 97 Sections Min:-.009 at 7.042 ft Dz in Max: -36.115 at 13 ft A Max: 7,113 at Oft vy Min:-5.168 at 13 ft Vz Min:-61.226 at Oft Max: 12.638 at Oft k-ft My k-ft Min:-14.136 at 7.583 ft Max:-1.806 at 13 ft fa Max: 1.211 at 7.583 ft ft Min: -1.211 at 7.583 ft ksi Min:-3.061 at Oft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.055 Location 0 ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 490.387 k phi*Pnt 900 k phi*Mny 88.014 k-ft phi'Mnz 600 k-ft phi'Vny 245.319 k phi'Vnz 305.907 k Cb 1.246 Max Shear Check 0.029 (y) Location 0 ft Max Defl Ratio L/10000 Lb KL/r Sway Y-Y 13ft 86.734 No Z-Z 13ft 18.135 No L Comp Flange Torque Length 13ft NC Beam: M3 Shape: W16X36 Material: A992 Length: Joint: J Joint: 24ft N2 N3 LC1:1.2D+0.5L+2.2E Code Check: 0.851 (bending) Report Based On 97 Sections in Min:-.521 at 12 ft Dz in Max: 52.738 at 0 ft Max: 10.875 at Oft Vy Min:-10.875 at 24 ft Vz Min: 6.38 at 24 ft Max: 0 at 0 ft Mz k-ft k-ft My k-ft Min: -65.252 at 12 ft Max: 13.86 at 12 ft Max: 4.975 at 0 ft fa Min: .602 at 24 ft ksi Min:-13.86 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.851 Location 2.75 ft Equation . . H1-1a Compact Fy 50 ksi phi*Pnc 63.023 k phi*Pnt 477 k phi*Mny 39.46 k-ft phi*Mnz 240 k-ft phi*Vny 126.325k phi*Vnz 162.192k Cb 1.136 Max Shear Check 0.086 (y) Location 0 ft Max Defl Ratio U553 Lb KL/r Sway Y-Y 24ft 189.436 No z-z 24ft 44.3 No L Comp Flange Torque Length 1ft NC Beam: M3 Shape: Material: Length: Joint: J Joint: W16X36 A992 24 ft N2 N3 LC2:1.2D+0.5L-2.2E Code Check: 0.303 (bending) Report Based On 97 Sections Min:-.521 at 12 ft Dz in Max: -6.38 at 24 ft A Max: 10.875 at Oft Vy Vz Min:-10.875 at 24 ft Min:-52.738 at Oft Max: 0 at 24 ft Mz k-ft k-ft My k-ft Min:-65.252 at 12 ft Max: 13.86 at 12 ft Max:-.602 at 24 ft fa Min: -4.975 at Oft Min:-13.86 at 12 ft AISC LRFD 3rd Ed, Code Check Max Bending Check 0.303 Location 11.5 ft Equation H1-1b Compact Max Shear Check 0.086 (y) Location o ft Max Defl .Ratio L/553 Fy phi*Pnc phi*Pnt phi*Mny phi*Mnz pht*Vny phi*Vnz Cb SOksi 63.023 k 477k 39.46 k-ft 240 k-ft 126.325k 162.192k 1.136 Lb KL/r Sway Y-Y 24ft 189.436 No Z-Z 24ft 44.3 No L Comp Flange Torque Length 1ft NC Beam: M4 Shape: W16X36 .Material: A992 .ength: Joint: J Joint: 22 ft N4 N5 i,C1:1.2D+0.5L+2.2E Code Check: 0.500 (bending) Report Based On 97 Sections Min:-.368 at 11 ft Dz in Max: 36.115 at Oft Max: 9.969 at 0 ft Vy Vz Min:-9.969 at 22 ft Min:-6.38 at 22 ft k-ft k-ft My k-ft Min:-54.83 at 11 ft Max: 11.647 at 11 ft Max: 3.407 at 0 ft fa Min: -.602 at 22 ft ksi Min:-11.647 at 11 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.500 Location 3.438 ft Equation H1-1a Compact Max Shear Check 0.079 (y) Location 0 ft Max Defl Ratio L/718 Fy phi*Pnc phi*Pnt phi*Mny phi*Mnz phi*Vny phi*Vnz Cb 50 ksi 75.002 k 477k 39.46 k-ft 240 k-ft 126,325 k 162.192k 1.136 Lb KL/r Sway Y-Y 22ft 173.65 No Z-Z 22ft 40.609 No L Comp Flange Torque Length 1ft NC Beam: M4 Shape: W16X36 Material: A992 (Length: 22 ft Joint: N4 J Joint: N5 LC2: 1.2D+0.5L-2.2E Code Check: 0.245 (bending) Report Based On 97 Sections Min:-.368 at 11 ft Dz m Max: 6.38 at 22 ft A Vz Min: -9.969 at 22 ft Min: -36.115 at Oft k-ft f> k-ft My k-ft Min:-54.83 at 11 ft Max: 11.647 at 11 ft Max: .602 at 22 ft fa Min: -3.407 at Oft Min:-11.647 at 11 ft AISCLRFD 3rd Ed. Code Check Max Bending Check 0.245 Location 10.542ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 75.002 k phi*Pnt 477 k phi*Mny 39.46 k-ft phi*Mnz 240 k-ft phi*Vny 126.325k phi*Vnz 162.192k Cb 1.136 Max Shear Check 0.079 (y) Location 0 ft Max Defl Ratio U718 Lb KL/r Sway Y-Y 22ft 173.65 No Z-Z 22ft 40.609 No L Comp Flange Torque Length 1ft NC •*->CD CDOOCM COL_ CO e "oO CO CD 2LJ_ UU O LUCNJ (N O.O COIJ> "oO CO CD CD Company Designer Job Number Chavez/Grieves JH Frame 3 Collectors Mar 8, 2006 8:48 AM Checked By: Joint Coordinates and Temperatures Label Temp [F]Detach From Diap. N1 0 N4 48 N2 12 Member Primary Data Label Joint J Joint K Joint Rotate(deg) Section/Shape Design List Type Material Design Rules N3 N4 B2 WideFlanqe Beam A992 Joint Boundary Conditions Joint Label X [k/in]Y[k/in]Z [k/in] X Rot.[k-ft/rad1 Y Rot.[k-ft/radl Z RoUk-ft/rad]Footing N1 Reaction Reaction Reaction Reaction Reaction N4 Reaction Reaction Fixed Fixed Fixed N2 Reaction Reaction Reaction Member Advanced Data Label Release J Release I Offsetlinl J Offsetfinl T/C Only Physical TOM Inactive M3 BenPIN Yes Yes Yes Yes Hot Rolled Steel Properties Label E[ksi]G tksil Therm A1E5F1 PensitvTk/ftft31 Yield fksil Hot Rolled Steel Design Parameters Label Shape Length[.. Lbwfftl Lbzz[ft1 Lcomp top.. Lcomp bot... Kyy Kzz Cm-yy Cm-g Cb v^wayzsway M3 B2 24 1 M1 B1 12 ssr Hot Roiled Steel Section Sets Label Shape Design List -Tyoe_Material Design Rules A [in2]Iyy[in4] Izz [In4] J pn4] 81 W21X68 Wide Flange Beam A992 Typjca 20 64.7 1480 2.45 Sat #7.2:. RISA-3D Version 5,5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 3 Collectors.r3d]Page 1 Company Designer Job Number Chavez/Grieves JH Frame 3 Collectors Mar 8, 2006 8:48 AM Checked By: Hot Rolled Steel Section Sets (Continued) Label Shaoe Desian List Tvoe Material Desian Rules A Fin21 Iw fin41 Izz Eir>41 J fin41 3 B3 W 14X30 Wide Flange Beam A992 Typical 8.85~19.6 291 .38 Member Distributed Loads (BLC 1: DEAD LOAD) Member Label Direction Start Maonitudefk/ftd. End Magnitudefk/ft.d... Start Locationfft.%1 End Locationfft.%1 M1 -.455 -.455 0 0 M4 -.455 -.455 Member Distributed Loads (BLC 2: LIVE LOAD) Member Label Direction Start Magnituderk/ft.d..£nd Maonitudelk/ftd. Start Location[ft.%] End Locationfft.%1 M1 -.26 -.26 0 0 M4 -.26 -.26 Member Distributed Loads (BLC 3: SEISMIC) MemberJ-abel Direction Start Maanituderk/ft.d..£nd MaQnitudefk/ft.d... Start Locationfft.%1 End Location[ft.%1 Ml -.878 -.878 0 0 M4 -.878 -.878 Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area (Me... Surface ( DEAD LOAD DL SEISMIC EL Load Combinations Description SolvePD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1.2D+0.5L+2.Y6S Y 1 2.2 Joint Reactions LC Joint Label JUKI MX [k-ftl MYfk-ffl MZ fk-ftl N1 -1.692 0 0 C). N4 17.378 NC NC NC ... •-*K&jTw N2 139.075 11.365 0 coGjm X: 37.374 Y:0 2:0 3H N3 7.14 NC NC NC 23 11 N5 8.546 NC NC NC 13 Totals:-139.075 52.94 RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 3 Collectors.r3d]Page 2 Company Designer Job Number Chavez/Grieves JH Frame 3 Collectors Mar 8, 2006 8:48 AM Checked By: Member Section Forces LC Member Label Sec Axial [k]y Shearfkl z Shearfkl _Tgrque[kjt]. M3 1 92.717 8.832 0 0 4.4f& 69.538 -52.994 46.358 -8.832 34.769 4.273 0 -38.455 11.59 -4.273 0•"S-—jrv;-38.455 11 M1 0 -1.692 13 -11.59BH -6.238 23.792 15 -23.179 -10.784 74.86 17 110.101 -1.692 0 -45.917 19 98.512 -6.238 0 -22.125 21 M3 , -92717 8.832 M6* :*• 23 -69.538 -52.994 £ 25 -46.358 -8.832 27 -34.769 4.273 -38.455 29 -11.59 0 -38.455 in. 31 M1 8.511 0 ».'\ a 33 11.59 3.965 -37.43 W7'fjff1- 35 23.179 -.581 -47.584 37 -110.101 ^1041306-' 8.511 0 45,917 ft OSS y 39 -98.512 3.965 0 8.487 J2: Member Sect/on Stresses LC Member Label -Sec Axial[ksi] yShear[ksi] zShear[ksi] vtopBendin...ybotBendin...ztopBendin...zbotBendin... 1 M3 1 6.307 1.429 0 0 0 0 0 4.73 7.845 -7.845 •4'; 3.154 -1.429 0 ."^.238 v 3.929 1.143 10.974 -10.974 0 2.51Q 1.31 -1.143 10.974 -10.974 11 M1 -.186 0 32:-St. S •k .Hilly)Oj RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 3 Collectors.rSd]Page3 Company Designer Job Number Chavez/Grieves JH Frame 3 Collectors Mar 8, 2006 8:48 AM Checked By: Member Section Stresses {Continued) LC Member Label Sec Axia)[ksi] vShearfksil zShearfksi] vtopBendin.y botBendin...2 top Bendin.. z bot Bendin 13 -.579 -.687 0 -2.038 2.038 0 0 15 -1.159 -1.187 -6.413 6.413 0 17 5.505 -.186 3.933 -3.933 19 4.926 -.687 1.895 -1.895 Lfl 21 M3 -6.307 1.429 23 -4.73 7.845 -7.845 25 27 -3.154 -3.929 -1.429 1.143 10.974 -10.974 29 -1.31 -1.143 10.974 -10.974 31 M1 .937 0 33 35 .579 1.159 .436 -.064 0 3.206 4.076 -3.206 -4.076 37 -5.505 .937 -3.933 3.933 39 -4.926 .436 '..?..'. vflvQy -.727 727 Member AISC LRFD Steel Code Checks 1C Member Shape UCMax Locfftj ShearUC Locfftl Dir phi'Pnc[kl phi*PntfkI phi*Mnw...phi*Mnzz... Cb Eqn 1 M3 W16X50 .971 1.25 .053 0 95.692 661.5 59.194 345 1.136 H1-1a M1 W21X68 .138 12 .044 12 531.957 900 88.014 600 2.1 H1-1b I6QC M3 W16X50 .207 11.25 .053 95.692 661.5 59.194 345 H1-1b ISl M1 W21X68 .101Hi 12 .035 531.957-900 88.014 600 1.262 H1-1b RISA-3D Version 5.5 (P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 3 Col lectors. r3d]Page 4 Beam: M1 Shape: W21X68 Material: A992 ^Length: 12ft Joint: N1 J Joint: N2 LC1:1.2D+0.5L+2.2E Code Check: 0.138 (bending) Report Based On 97 Sections Max: .02 at 7.375 ft Dz in Max: -1.692 at Oft Vy Vz Min: -10.784 at 12 ft Min:-23.179 at 12 ft Max: 74.86 at 12 ft k-ft My k-ft Mz Min: Oat Oft Max: 6.413 at 12 ft fa Min:-1.159 at 12 ft ksi Min:-6.413 at 12 ft AfSC LRFD 3rd Ed. Code Check Max Bending Check 0.138 Location 12ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 531.957k phi*Pnt 900 k phi'Mny 88.014 k-ft phi*Mnz 600 k-ft phi*Vny 245.319k phi*Vnz 305.907 k Cb 2.1 Max Shear Check 0.044 (y) Location 12ft Max Defl Ratio U7221 Lb KL/r Sway Y-Y 12ft 80.062 No Z-Z 12ft 16.74 No L Comp Flange Torque Length 12ft NC Beam: 4Shape: W21X68 Material: A992 Length: 12 ft I Joint: N1 J Joint: N2 LC2:1.2D+0.5L-2.2E Code Check: 0.101 (bending) Report Based On 97 Sections Min: -.026 at 6.625 ft Dz m Max: 23.179 at 12 ft Max: 8.511 at Oft Vz « k Min: -.581 at 12 ft Max: 0 at 0 ft Mz k-ft My k-ft Min:-47.806 at 11.25 ft Max: 4.095 at 11.25 ft Min: -4.095 at 11.25 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.101 Location 12ft Equation H1-1b Compact Max Shear Check 0.035 (y) Location 0 ft Max Defl Ratio L/5587 phi*Pnc phi*Pnt phi*Mny phi*Mnz phi*Vny phi*Vnz Cb 50ksi 531.957k 900k 88.014 k-ft 600 k-ft 245.319 k 305.907 k 1.262 Lb KL/r Sway Y-Y 12ft 80.062 No Z-Z 12ft 16.74 No L Comp Flange Torque Length 1ft NC Beam:M2 Shape: W21X68 Material: A992 Length: Joint: onape. 4Materia Length: I Joint: J Joint; 12ft N2 N3 LC1:1.2D+0.5L+2.2E Code Check: 0.288 (bending) Report Based On 97 Sections Min:-.026 at 5.375 ft Dz in Max: 115.896 at On Max: .581 at 0 ft Vy Min:-8.511 at 12 ft Vz Min: 92.717 at 12 ft Max: Oat 12ft Mz k-ft My k-tt Min:-47.807 at .75 ft Max: 5.795 at 0 ft Max; 4.095 at .75 ft Min: -4.095 at .75 ft Min: 4.636 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.288 Location 0 ft Equation H1-1a Compact Max Shear Check 0.035 (y) Location 12ft Max Defl Ratio L/5587 Fy phrPnc phi*Pnt phi*Mny phi*Mnz phi*Vny phi*Vnz Cb SOksi 531.957k 900k 88.014 k-tt 600 k-ft 245.319 k 305.907 k 1.262 Lb KL/r Sway Y-Y 12ft 80.062 No Z-Z 12ft 16.74 No L Comp Flange Torque Length 1ft NC Beam: M2 VJ * Shape: W21X68 Material: A992 ength: 12ft Joint: N2 J Joint: N3 LC2:1.2D+0.5L-2.2E Code Check: 0.189 (bending) Report Based On 97 Sections Max: .02 at 4.625 ft Dz in Max:-92.717 at 12 ft A Max: 10.784 at Oft Vy Min: 1.692 at 12 ft Vz Min:-115.896 at Oft Max: 74.86 at 0 ft k-ft My k-ft Mz Min: Oat 12ft Max:-4.636 at 12 ft fa Max: 6.413 at Oft Min: -5.795 at 0 ft Min:-6.413 at Oft A/SC LRFD 3rd Ed. Code Check Max Bending Check 0.189 Location 0 ft Equation H1-1b Compact Max Shear Check 0.044 (y) Location 0 ft Max Defl Ratio U7221 Fy phi*Pnc phi*Pnt phi*Mny phi*Mnz phi*Vny phi*Vnz Cb 50ksi 531.957k 900k 88.014 k-ft 600 k-ft 245.319 k 305.907 k 2.1 Lb KL/r Sway Y-Y 12ft 80.062 No Z-Z 12ft 16.74 No L Comp Flange Torque Length 12ft NC 4 Beam: M3 Shape: W16X50 Material: A992 Length: 24 ft I Joint: N3 J Joint; N4 LC1: 1.2D+0.5U2.2E Code Check: 0.971 (bending) Report Based On 97 Sections Min:-.287 at 12 ft Dz in Max: 92.717 at Oft Max: 8.832 at 0 ft Vy Vz Min: -8.832 at 24 ft Min: 46.358 at 24 ft Max: 0 at 0 ft Mz k-ft k-ft My k-ft Min:-52.994 at 12 ft Max: 6.307 at 0 ft Max: 7.845 at 12 ft Min: 3.154 at 24 ft Min:-7.845 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.971 Location 1.25ft Equation H1-1a Compact Fy 50 ksi phi*Pnc 95.692 k phi*Pnt 661.5k phi*Mny 59.194 k-ft phi*Mnz 345 k-ft phi*Vny 166.828k phi*Vnz 240.521 k Cb 1.136 Max Shear Check 0.053 (y) Location 0 ft Max Defl Ratio L/1002 Lb KL/r Sway Y-Y 24ft 181.042 No Z-Z 24ft 43.014 No L Comp Flange Torque Length 1ft NC Beam: M3 Shape: W16X50 Material: A992 Length: 24 ft I Joint: N3 J Joint: N4 LC2-.1.2D+0.5L-2.2E Code Check: 0.207 (bending) Report Based On 97 Sections Min:-.287 at 12 ft Dz in Max: -46.358 at 24 ft A Max: 8.832 at 0 ft Vy Vz Min:-8.832 at 24 ft Min:-92.717 at Oft Max: 0 at 0 ft Mz k-ft k-ft My k-ft Min:-52.994 at 12 ft Max: -3,154 at 24 ft fa Max: 7.845 at 12 ft Min:-6.307 at Oft Min:-7.845 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.207 Location 11.25 ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 95.692 k phi*Pnt 661.5 k phi*Mny 59.194 k-ft phi*Mnz 345 k-ft phi*Vny 166.828k phi*Vnz 240.521 k Cb 1.136 Max Shear Check 0.053 (y) Location 0 ft Max Defl Ratio L/1002 Lb KL/r Sway Y-Y 24ft 181,042 No Z-2 24ft 43.014 No L Comp Flange Torque Length 1ft NC 4 Beam: M4 Shape: W14X30 Material: A992 Length: 24 ft I Joint: N4 J Joint: N5 LC1:1.2D+0.5L+2.2E Code Check: 0.922 (bending) Report Based On 97 Sections in Min: -.63 at 12 ft Dz in Max: 46.358 at Oft Max: 8.546 at 0 ft Vy Vz Min: -8.546 at 24 ft Min: 0 at 24.ft Max: 0 at 24 ft k-ft My k-ft Min: -51 .274 at 12 ft Max: 14.632 at 12 ft Max: 5.238 at 0 ft fa Min: 0 at 24 ft Min: -14.632 at 1,2 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.922 Location 1.25 ft Equation H1-1a Compact Max Shear Check Location Max Defl Ratio 0.085 (y) 0 ft L/457 Fy phi'Pnc phi*Pnt phi*Mny Cb SOksi 50.418 k 398.25k 32.764 k-ft 'ft Lb KL/r Sway Y-Y 24 ft 193.525 No Z-Z 24 ft 50.225 No LComp Flange Torque Length i ft NC 1.136 Beam: M4 Shape: Material: ength: Joint: J Joint: W14X30 A992 24ft N4 N5 LC2:1.2D-t-0.5L-2.2E Code Check: 0.319 (bending) Report Based On 97 Sections Win:-.63 at 12 ft Dz in Max: Oat24ft A Max: 8.546 at 0 ft Vy Vz Min:-8.546 at 24 ft Min: -46.358 at 0 ft Max: 0 at 0 ft Mz k-ft k-ft My k-ft Min:-51.274 at 12 ft Max: 14.632 at 12 ft Max: 0 at 24 ft fa Min:-5.238 at Oft Min:-14.632 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.319 Location 11.5 ft Equation H1-1b Compact Fy 50 ksi phi'Pnc 50.418k phi*Pnt 398.25 k phi*Mny 32.764 k-ft phi*Mnz 177.375 k-ft phi*Vny 100.894k phi*Vnz 139.917 k Cb 1.136 Max Shear Check 0.085 (y) Location 0 ft Max Defl Ratio L/457 Lb KL/r Sway Y-Y 24ft 193.525 No Z-Z 24ft 50.225 No L Comp Flange Torque Length 1ft NC < 00 O) "to CDOOeg CO CO "oO 2LL COQ) .0)"i_O 13ID CDj: O LU o Q CM _II O)IO CO CD OOCM 00i—CD "5O Company : Chavez/Grieves Designer : JH Job Number :Frame 4 Collectors Mar 8, 2006 9:51 AM Checked By: Joint Coord/nates and Temperatures Label Temp [F|Detach From Diap. N1 0 N3 37 N5 -35 Member Primary Data Label tJoint JJoint KJoint Rotate(dea) Section/Shape PesignList Type Material DesignRules Hot Rolled Steel Design Parameters Label Shape LengthL Lbvytft] Lbzz[ft] Lcomptop...Lcompbot... Kyy Kgz Cm-yy Cm-zz Cb yswavzsway B2 24 1 13 'ot Rolled Steel Properties Label Efksil Grksil Nu Therm A1E5F1 DensiMk/ft*31 Yield Eksil A36 Gr.36 29000 11154 .65 .49 36 A992 2900Q 11154 .65 .49 50 A500 Gr.46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Section Sets Label Shape Design List Type Material Design Rules A [in2] . - Iyypn4] Izz[in4) J[ln4] Member Advanced Data Label Release J Release Offsetfinl J OffseUin]T/COnlv Physical TOM Inactive M3 BenPIN BenPIN Yes Yes M2 BenPIN Yes Yes Joint Boundary Conditions Joint Label X Ik/inl Y [k/in]Z Ik/inl X Rot.[k-ft/rad1 Y RQt.(k-ft/rad) Z Rot.fk-ft/rad1 Footing N1 Reaction Reaction jR^ictioR Reaction N3 Reaction Reaction Fixed Fixed Fixed Reaction 3 RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 4 Collectors.r3d]Page 1 Company Designer Job Number Chavez/Grieves JH Frame 4 Collectors Mar 8, 2006 9:51 AM Checked By: Joint Boundary Conditions (Continued) Joint Label Xlk/inl Ytk/inl Zfk/inl X RoUk-ft/radl Y RoUMt/radl Z RoUk-ft/radl Footira 5 1 N5 Reaction Reaction 1 Fixed 1 Fixed Fixed Member Distributed Loads (BLC 1: DEAD LOAD) Member Labet Dfrection Start MaQnitudefk/ft.d..£nd Magnitude[k/ft.d... Start Locationfft.%) End Locationfft.%] Member Distributed Loads (BLC 2: LIVE LOAD) Member Label Direction Start Maqnitudefk/ft.d. End Magnitude[k/ft.d... Start Locationfft.%] End Locationfft.%] Member Distributed Loads (BLC 3 : SEISMIC) Direction Start Magnitude[k/ft.d..£nd Magnitude[k/ft.d... Start Location[ft.%] End Location[ft.%} M1 -.878 -.878 0 0 -.878 -.878 Joint Loads and Enforced Displacements (BLC 3 : SEISMIC) Joint Label LD.M Direction Maanituderk.k-ft in.rad k*sA2/ft1 N5 X -2.9 Basic Load Cases BLC Description J^ategory X Gravity Y Gravity Z Gravity. Joint Point Distributed Area (Me... Surface (. DEAD LOAD DL -1 SEISMIC EL Load Combinations Description SolvePD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1.2D+0.5L+2.Yes 1 1.2 2.2 Joint Reactions LC Joint Label JOIO.MX [k-ffl MY [k-ftl MZ [k-ft] 1 1 N1 16.623 12.312 0 0 0 N3 8.631 NC NC NC N5 7.912 NC NC NC COG (ft):X: 1.029 Y:0 Z:0 ?£&> o^:, RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 4 Col!ectors.r3d]Page 2 Company Designer Job Number Chavez/Grieves JH Frame 4 Collectors Mar 8, 2006 9:51 AM Checked By: Joint Reactions (Continued) LC Joint Label JOS..ZJKL MX fk-ft)MY [k-ft]MZ [k-fl) N2 11.762 NC NC NCtotQi 11 N4 12.169 NC NC 13 Totals:-16.623 52,786 Member Section Forces LC Member Label Sec Axialfk]y ShearrkT z Shearfkl Torque[k-ft]y-y Moment[k-...z-z Momentfk- 1 52.738M3 6.38 -8.631 71.571 3.131 -5,488 59.016 -1.794 -9.832 11 61.226 6.719 23.323 13 48.671 1.794 -4.344 15 36.115 -3.131 17 25.491 3.956 0•"^SfcSsST -32.637 19 4.244 -3.956 0 -32.637 _20> 21 M3 -52.738 8.631 0 23 -29.559 -51.788 25 -6.38 -8.631 27 -71,571 4.257 5.488 29 31 M2 -59.016 -61.226 -.668 5.593 -6.173 8.688 '32? 33 -48.671 .668 0 -11.662 35 -36.115 -4.257 0 37 -25.491 3.956 -32.637 39 -4.244 -3.956 -32.637 Member Section Stresses 1 C. Member Label SRT. Axialfksil v Shearlksil z SheaiTksil v too Bendin...v bot Bendin.. z too Bendin.. z bot Bendin.. 1 1 k'2 1 •*'PH M3 ™ -v ,*- ?^rf^. J *2. C^', 1 1^ ^^ ^**i.'^»li ii4<* 4.975 S>3^8^^ 1.845 , ^A?^2^J 0 i€.^fflW^ 0 fe, "B^^ *. 0 tj& ?8.25lS ., 0 '-5s» OrS»4i 0 » '-^EL^.; R1SA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 4 Collectors.r3d]Pages Company Designer Job Number Chavez/Grieves JH Frame 4 Collectors Mar 8, 2006 9:51 AM Checked By: Member Section Stresses (Continued) LC Member Label Sec Axialfksi] y Shear[ksi]2 Shearjksi]..ytopBendin....y_bot_Bsndin...z top Bendin zj>pt Bendig.. 2.789 0 0 11 -11 0 0 .602 -1.845 *fL*"ras 3,579 .345 .47 -.47 2.951 -.197 .842 -.842 11 M2 3.061 .739 -L998 1.998 13 2.434 .197 .372 -.372 15 17 1.806 2.405 -.345 .846 .6.933 -6.933 JJBE. 19 -.846 6.933 -6.933 21 M3 -4.975 1.845 ..A a: 23 -2.789 11 -11 25 -.602 -1.845 27 -3.579 .468 -.47 .47 29 -2.951 -.074 .529 -.529 31 M2 -3.061 .616 -.744 ,744 33 -2.434 .074 .999 -.999"•'•">—*j-™ .A^".. &i. 35 -1.806 -.468 A691 37 -2.405 .846 6.933 -6.933 39 -A -.846 6.933 -G.933 Member AISC LRFD Steel Code Checks LC Member .Shape.UCMax Loc[ftl Shear UC Locin] pif phi*Pnctkl phi*Pnt[R1 phi'Mnyv...phi*Mnzz... Cb 1 M3 W16X36 .837 .068 0 63.023 477 39.46 240 1.136 H1-1a .1023' M2 W21X68 .101 .027 490.387 900 88.014 600 2.3 H1-1b L41 M3 W16X36 .247 11.25 .068 63.023 477 39.46 240 1.136 H1-1b M2 W21X68 .049 .023 490.387 900 88.014 598.049 1.22 H1-1b '8*. RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 4 Collectors.rSd]Page 4 Beam: Shape: W21X68 Material: A992 Length: 13ft I Joint: N1 J Joint: N2 LC1:1.2D+0.5L+2.2E Code Check: 0.094 (bending) Report Based On 97 Sections Min: -.008 at 6.906 ft Dz in Max: 77.849 at 0 ft Max: 5.593 at 0 ft \l\i iMakySiffltewr- ii.. Min:-4.257 at 13 ft Min: 52.738 at 13 ft Max: 8.688 at 0 ft k-ft k-ft Min: -11. 955 at 7.448 ft Max: 3.892 at 0 ft Max: 1.024 at 7.448 ft fc ksi ft Min: -1.024 at 7.448 ft ksi Min: 2.637 at 13 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.094 Location 0 ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 490.387 k phi*Pnt 900 k phi*Mny 88.014 k-ft phi*Mnz 598.048 k-ft Max Shear Check 0.023 (y) Location Oft Max Defl Ratio- U10000 Y-Y Lb 13 ft KL/r 86.734 Sway No , f^nmn CionfmL oomp Flange Z-Z 13 ft 18.135 No nft NC Cb 1.22 Beam: M1 Shape: W21X68 Material: A992 Length: 13ft I Joint: N1 J Joint: N2 LC2:1.2D+0.5L-2.2E Code Check: 0.082 (bending) Report Based On 97 Sections Max: .001 at 1.76 ft Min: -.002 at 8.667 ft m Max: -52.738 at 13 ft Max: 6.71 9 at Oft Min: -3.131 at 13 ft Vz Min: -77.849 at Oft Max: 23.323 at 0 ft k-ft My k-ft k-ft Min: -6.467 at 8.802 ft Max:-2.637 at 13 ft fa Max: 1.998 at Oft KS I ft Min: -1.998 at On Min: -3.892 at Oft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.082 Location 0 ft Equation Hl-1b Compact Fy 50 ksi phi*Pnc 490.387 k phi*Pnt 900 k phi*Mny 88.014 k-ft phi*Mnz 600 k-ft phi*Vny 245.319k phi*Vnz 305.907 k Cb 2.3 Max Shear Check Location Max Defi Ratio 0.027 (y) Oft U10000 Lb KL/r Sway Y-Y 13ft 86.734 No Z-Z 13ft 18.135 No LComp Flange Toraue' °rque 13ft NCN° Beam: M2 Shape: W21X68 Material: A992 Length: I Joint: bnape: ^^ Material ^•L^ngth: ^T I Joint: J Joint: 13ft N1 N4 LC1:1.2D+0.5L+2,2E Code Check: 0.101 (bending) Report Based On 97 Sections Max: .001 at 1.76 ft Min: -.002 at 8.667 ft Dz in Max: 61 .226 at Oft Max: 6.71 9 at Oft Vy Min:-3.131 at 13 ft Min: 36.115 at 13 ft Max: 23.323 at 0 ft k-ft i> My k-ft Min: -6.467 at 8.802 ft k-ft Max: 3.061 at 0 ft Max: 1.998 at Oft fc ksi Min: -1.998 at Oft Min: 1.806 at 13 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.101 Location 0 ft Equation H1-1b Compact Fy phi*Pnc phrPnt phi*Mny Max Shear Check 0.027 (y) Location 0 ft Max Defl Ratio L/10000 SOksi 490.387 k 900k 88.014 k-ft Y-Y Z-Z Lb 13 ft 13 ft KL/r 86.734 18.135 Sway No No LComp Flange 13ftNC Cb 2.3 Beam: M2 Shape: Material ength: I Joint: J Joint: W21X68 A992 13ft N1 N4 LC2:1.2D+0.5L-2.2E Code Check: 0,049 (bending) Report Based On 97 Sections Min: -.008 at 6.906 Dz in Max: -36.1 15 at 13 ft Max: 5.593 at Oft Vy Min: -4.257 at 13 ft Min: -61 .226 at Oft Max: 8.688 at 0 ft k-ft • My k-ft Min: -11.955 at 7.448 ft Max: -1.806 at 13 ft Max: 1.024 at 7.448 ft Min: -1.024 at 7.448 ft Min: -3.061 at Oft A/SC LRFD 3rd Ed. Code Check Max Bending Check 0.049 Location Oft Equation H1-1b Compact Fy SOksi phi*Pnc 490.387k pni*Pnt 900k phi*Mny 88.014 k-ft phi*Mnz 598.049 k-ft nhi*Vn\/ 941; •»•! Q ITphi vny 245.319 k phi*Vnz 305.907 k Cb 1.22 Max Shear Check 0.023 (y) Location Oft Max Defl Ratio L/10000 Y-Y Z-Z Lb 13ft 13ft KL/r 86.734 18.135 Sway No No . r Rannp nftL oomP ^fange i j n Toraue Lenath NC' °rque 9 NO Beam: M3 Shape: W16X36 Material: A992 Length: 24 ft i Joint: N2 J Joint: N3 LC1:1.2D+0.5L+2.2E Code Check: 0.837 (bending) Report Based On 97 Sections Min: -.413 at 12 ft Dz in Max: 52.738 at Oft Max: 8.631 at 0 ft Vy Vz Min: -8.631 at 24 ft Min: 6.38 at 24 ft Max: 0 at 0 ft Mz k-ft My k-ft Min: -51 .788 at 12 ft Max: 11 at 12 ft Max: 4.975 at 0 ft Min: .602 at 24 ft fc Min: -11 at 12ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.837 Location .5 ft Equation H1-1a Compact Max Shear Check Location Max Defl Ratio 0.068 (y) Oft L/697 Fy phi*Pnc phi*Pnt phi'Mny 50 ksi 63.023k 477 k 39.46 k-ft Lb KUr Sway Y-Y 24ft 189.436 No 2-Z 24ft 44.3 No Kphi*Vny phi^Vnz Cb 162.192k 1.136 LComp Flange TV««. ,o i annthTorque Length 1ft '£> ^>J Beam: M3 Shape: W16X36 Material: A992 Length: 24 ft Joint: N2 J Joint: N3 LC2:1.2D+0.5L-2,2E Code Check: 0.247 (bending) Report Based On 97 Sections Min:-.413 at 12 ft Dz in Max: -6.38 at 24 ft A Max: 8.631 at 0 ft Vy Vz Min:-8.631 at 24 ft Min:-52.738 at Oft Max: 0 at 24 ft Mz k-ft k-ft My k-ft Min:-51.788 at 12 ft Max: 11 at 12 ft Max: -.602 at 24 ft fa Min:-4.975 at Oft Min:-11 at 12 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.247 Location 11.25 ft Equation H1-1b - Compact phi*Pnc phi*Pnt phi*Mny phi*Mnz phi*Vny phi*Vnz Cb SOksi 63.023 k 477k 39.46 k-ft 240 k-ft 126.325 k 162.192k 1.136 Lb KUr Sway Max Shear Check 0.068 (y) Location 0 ft Max Defl Ratio L/697 Y-Y 24ft 189.436 No L Comp Flange Torque Length 1ft NC Z-Z 24ft 44.3 No Beam; Shape: W16X36 Material: A992 Length: 22 ft. Joint: N4 J Joint: N5 LC1:1.2D+0.5L+2.2E Code Check: 0.484 (bending) Report Based On 97 Sections Min:-.292 at 11 ft Dz in Max: 36.115 at Oft Max: 7.912 at Oft Vy Vz Min:-7.912 at 22 ft Min: -6.38 at 22 ft k-ft My k-ft Min:-43.517 at 11 ft Max: 9.243 at 11 ft Max: 3.407 at 0 ft fa Min: -.602 at 22 ft ksi Min:-9.243 at 11 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.484 Location 1.375ft Equation H1-1a Compact Max Shear Check 0.063 (y) Location o ft Max Defl Ratio IJ905 Fy phPPnc phi*Pnt phi*Mny phi*Mnz phi*Vny phi*Vnz Cb 50 ksi 75.002 k 477k 39.46 k-ft 240 k-ft 126.325 k 162.192k 1.136 Lb KL/r Sway Y-Y 22ft 173.65 No Z-Z 22ft 40.609 No L Comp Flange Torque Length 1ft NC Beam: M4 4Shape: W16X36 Material: A992 Length: 22 ft Joint: N4 J Joint: N5 LC2:1.2D-KX5L-2.2E Code Check: 0.198 (bending) Report Based On 97 Sections Min: -.292 at 11 ft Dz in Max: 6.38 at 22 ft Min: -36.115 at Oft Max: 7.91 2 at Oft Vy Vz Min; -7,912 at 22 ft 4 k-ft My k-ft Min: -43.517 at 11 ft Max: .602 at 22 ft fa Min: -3.407 at Oft Max: 9.243 at 11 ft ksi Min: -9.243 at 11 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.198 Location 10.313ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 75.002 k Lb phi*Pnt 477 k KL/r phi*Mny 39.46 k-ft Sway Max Shear Check Location Max Defl Ratio 0.063 (y) 0 ft L/905 uphi*Vny phi'Vnz Cb bk 162.192k 1.136 Y-Y 22ft 173.65 No LComp Flange T«r«..«Ti onJhTorque Length Z-Z 22ft 40.609 No 1ftwrNC • o (Abts_0) "oO IO CD 2LL CO6 eg 00, Q O.p "oo in <D 2u_ Company : Chavez/Grieves Designer : JH Job Number :Frame 5 Collectors Mar 8, 2006 10:56 AM Checked By: Joint Coordinates and Temperatures Label Detach From Diap. Member Primary Data Label Joint J Joint K Joint Rotatefdeo? Section/Shape Design List. Type Material Design Rules Hot Rolled Steel Section Sets Label Shape ,-Design_Ljst Type Material Design Rules A [in21 Ivyfin4] J2z[in4] J [Jn4] Hot Rolled Steel Properties Label E [ksil G [ksil Nu Therm ME5R Density[k/nA3]Yieldlksi] A36 Gr.36 29000 11154 .3 .65 .49 36 A992 29000 11154 .3 .65 .49 50 A500 Gr.46 29000 11154 .3 .65 .49 46 Hot Rolled Steel Design Parameters Labe{_ __Shape_ Length[.....J.byy[ft] Lbzz{ft) Lcomp top..Lcompbot.. Kyy Kzz Cm-yy Cm-zz Cb yswayzsway Member Advanced Data Label I Release J Release Offsetfinl J Offsetfinl T/C Only Physical TOM Inactive M3 BenPIN BenPIN Yes Yes M4 BenPIN BenPIN Yes Yes M1 BenPIN Yes Yes RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 5 Collectors.r3d]Page 1 Company : Chavez/Grieves Designer : JH Job Number :Frame 5 Collectors Mar 8, 2006 10:56 AM Checked By: Joint Boundary Conditions Joint Label X fk/ln]Y [k/in]Z (k/inl X Rot.[k-ft/radl Y RoUk-ft/rad] Z Rot.(k-ft/rad]Footing N2 N4 Reaction Reaction Reaction Reaction Reaction Fixed .Fixed Fixed Nt Reaction Reaction Fixed Fixed Fixed Member Distributed Loads (BLC 1: DEAD LOAD) Member Label Direction Start MagnitudeEk/ft.d...End Magnitudefk/n.d... Start Locationtft.%1 End LocationTft.%1 Member Distributed Loads(BLC2: LIVE LOAD) Member Label Direction Start Magnitude[k/ft.d. End Maanitudefk/ft.d... Start Locationfft.%] End Locationlft.%] Member Distributed Loads (BLC 3 : SEISMIC) Member Label Direction Start Magnitude[k/ft.d..£nd Magnitude[k/ft.d Start LocationEft.%1 End Locationfft.%1 M3 -.878 -.878 0 0 M4 -.878 -.878 M1 -.878 -.878 Member Point Loads (BLC 1: DEAD LOAD) Member Label Direction Maanitudelk.k-ftl Locationfft.%1 1 M5 Z -8.885 26 Member Point Loads (BLC 2: LIVE LOAD) Member Label Direction Maanitudelk.k-ftl Locationtft.%1 1 M5 Z -8.325 26 Basic Load Cases BLC Description^Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area (Me... Surface ( DEAD LOAD DL -1 1 1 SEISMIC Load Combinations Description SolvePD... SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1 1.2D*0.5L+2...Yes Y 1 1.2 2 3 2.2 RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Ca(cs\Frame 5 Collectors.r3d]Page 2 Company Designer Job Number Chavez/Grieves JH Frame 5 Collectors Mar 8,2006 10:56 AM Checked By: Joint Reactions LC Joint Label MY [k-ft]MZ [k-ft] Member Section Forces LC Member Label Sec Axial[k]yShearfk] zShear[k) Torquetk-ft] y-y Moment[k-...z-z Moment[k-... RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 5 Col lectors. r3d]Pages Company : Chavez/Grieves Designer : JH Job Number:Frame 5 Collectors Mar 8, 2006 10:56 AM Checked By: Member Section Forces f Continued) Torque[k-ft] y-y Moment[k_-J..z-z Moment[k- Member Section Stresses LC Member Label Sec Axial[ksi] yShear[ksi] zSriear[ksi] ytop Bendin...y:MlBendin...ztopBendin..-zbotBendin.. 1 1 M3 1 -5.911 .342 0 0 0 0 0 -6.65 -7.389 .953 -.953 -.342 -7.692 -.743 -1.538 1.538 -8.299 -1.025 -5.579 5.579 SIS 11 M4 -6.139 .728 13 -7.653 3.048 -3.048 15 -9.167 -.728 17 -.842 .882 7.845 -7.845 19 21 M1 -2.527 1.214 -1.475 -.462 12.125 6.796 -12,125 -6.796 23 .607 -.743 4.041 -4.041 25 -1.025 27 6.28 .171 .715 -.715 29 7.019 -.171 .715 -.715 31 M2 7.389 1.025 33 7.996 .743 4.041 -4.041 218 35 8.602 .462 6.796 -6.796 37 6.896 .364 2.286 -2.286 31! 39 8.41 -.364 0 2.286 -2.286 0 RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 5 Collectors.r3d]Page 4 Company Designer Job Number Chavez/Grieves JH Frame 5 Collectors Mar 8, 2006 10:56 AM Checked By: Member Section Stresses /Continued) LC StearlksnvtopBe^ Member AISC LRFD Steel Code Checks LC Member Shape UCMax Loclfq ShearUC Loctft) Dir phi'Pncrkl phi'Pntfklphi*Mnw...Phi*Mnzz... Cb RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Ca!cs\Frame 5 Col lectors. r3d]PageS JU3 Beam: M1 Shape: W21X62 Material: A992 Length: 11.5ft Joint: N2 J Joint: N1 LC1:1.2D+0.5L+2.2E Code Check: 0.155 (bending) Report Based On 97 Sections Min:-.031 at 5.031 ft Dz in Max: 22.213 at Oft Max: -3.879 at 0 ft Vy Vz Min: -8.602 at 11.5 ft Min: Oat 11.5ft Max: Oat 11.5ft Mz k-ft My k-ft Min:-71.765 at Oft Max: 6.796 at 0 ft Max: 1.214 at Oft fa ksi Min:-6.796 at Oft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.155 Location 0 ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 499.319k phi*Pnt 823.5 k phi*Mny 78.504 k-ft phi*Mnz 540 k-ft phi*Vny 226.692 k phrVnz 273.65 k Cb 1.505 Max Shear Check 0.038 (y) Location 11.5ft Max Defl Ratio L/4400 Lb KL/r Sway Y-Y 11.5ft 77.852 No Z-Z 11.5ft 16.187 No L Comp Flange Torque Length 1ft NC Beam: 4 Shape: W21X62 Material: A992 Length: 11.5ft I Joint: N2 J Joint: N1 LC2:1.2D+0,5L-2.2E Code Check: 0.172 (bending) Report Based On 97 Sections Max: .028 at 4.672 ft Dz in Max: Oat 11.5ft A Min:-22.213 at Oft Max: 9.783 at 0 ft Vz Min: 5.06 at 11.5 ft Max: 85.344 at 0 ft k-ft My k-ft Mz Min: Oat 11.5ft Min:-1.214 at Oft Max: 8.081 at 0 ft Min: -8.081 at 0 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.172 Location 0 ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 499.319k phi*Pnt 823.5 k phi*Mny 78.504 k-ft phi*Mnz 540 k-ft phi*Vny 226.692 k phi*Vnz 273.65 k Cb 1.832 Max Shear Check 0.043 (y) Location 0 ft Max Defl Ratio U4862 Y-Y Lb 11.5ft KUr 77.852 Sway No L Comp Flange Torque Length Z-Z 11.5ft 16.187 No 11.5ft NC Beam: M2 Shape: W21X62 Material: A992 Length: 11.5ft I Joint: N3 J Joint: N2 LC1:1.2D+0.5U2.2E Code Check: 0.254 (bending) Report Based On 97 Sections Max: .028 at 6.828 ft Dz in Max:-135.212 at Oft A Max: -5.06 at 0 ft Min: -9.783 at 11.5 ft Vz Min: -157.425 at 11.5 ft Max: 85.344 at 11.5 ft k-ft My k-tt Mz Min: Oat Oft k-ft Max: -7.389 at 0 ft fa Max: 8.081 at 11.5 ft Min: -8.602 at 11.5 ft Min:-8.081 at 11.5 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.254 Location 11.5ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 499.319k phi*Pnt 823.5 k phi*Mny 78.504 k-ft phi*Mnz 540 k-ft phi*Vny 226.692 k phi*Vnz 273.65 k Cb 1,832 Max Shear Check 0.043 (y) Location 11.5ft Max Defl Ratio L/4862 Lb KL/r Sway Y-Y 11.5ft 77.852 No Z-Z 11.5ft 16.187 No L Comp Flange Torque Length 11.5ft NC Beam: M2 •J Shape: W21X62 Material: A992 ength: 11.5ft Joint: N3 J Joint: N2 LC2:1.2D+0.5L-2.2E Code Check: 0.433 (bending) Report Based On 97 Sections Min:-.031 at 6.469 ft Dz in Max: 157,425 at 11.5 ft Max: 8.602 at 0 ft Vy Min: 3.879 at 11.5 ft 53 k Vz Min: 135.212 at Oft Max: 0 at 0 ft Mz k-ft My k-ft Min:-71.765 at 11.5 ft Max: 6.796 at 11.5 ft Min: 7.389 at 0 ft Min:-6.796 at 11.5 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.433 Location 11.5ft Equation H1-1a Compact Fy 50 ksi phi*Pnc 499.319k phi*Pnt 823.5 k phi*Mny 78.504 k-ft phi*Mnz 540 k-ft phi*Vny 226.692 k phi*Vnz 273.65 k Cb 1.505 Max Shear Check 0,038 (y) Location 0 ft Max Defl Ratio U4400 Lb KL/r Sway Y-Y 11.5ft 77.852 No Z-Z 11.5ft 16.187 No L Comp Flange Torque Length 1ft NC Beam: Shape: W21X62 Material: A992 ength: 14ft Joint: N4 J Joint: N3 LC1:1.2D+0.5L+2.2E Code Check: 0.093 (bending) Report Based On 97 Sections in Min: -.009 at 7 ft Dz in Max: -108.17 at Oft Max: 2.875 at 0 ft vy Min: -2.875 at 14 ft Vz Min: -135.212 at 14 ft Max: 0 at 0 ft k-ft * My Min: -10.063 at 7 ft Max: -5.911 at Oft Max: .953 at 7 ft Min: -.953 at 7 ft Min: -7.389 at 14 ft k-ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.093 Location 8.604 ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 403.276 k phi*Pnt 823.5 k phi*Mny 78.504 k-ft Max Shear Check 0.01 3 (y) Location 0 ft Max Defl Ratio U10000 Y-Y Z-Z Lb 14ft 14ft KL/r 94.777 19.706 Sway No No LComp Flange 1ft Cb 1.136 4 - Beam: M3 Shape: W21X62 Material: A992 \ Length: 14 ft W\ Joint: N4 J Joint: N3 LC2: 1.2D+0.5L-2.2E Code Check: 0.335 (bending) Report Based On 97 Sections • Max: 135.212 at 14 ftfli Min: 108.17 at Oft Max: 7.389 at 14 ft ^fl Min: 5.911 at Oft Min: -.009 at 7 ft Max: 2.875 at 0 ft Vy ' ••• •"" -i — * K Min: -2.875 at 14 ft •• Max: 0 at 0 ft Min: -10.063 at 7 ft Max: .953 at 7 ft VZ K Min: -.953 at 7 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.335 Max Shear Check 0.013 (y) Location 14ft Location Oft Equation H1-1a Max Defl Ratio . L/10000 Compact Fy 50ksi Y-Y 2-Z phi*Pnc 403.276k Lb 14ft 14ft phi*Pnt 823.5k KL/r 94.777 19.706 phi*Mny 78.504 k-ft Sway No No phi Mnz 479.187 !*~ft L Comp Flange 14ftDni Vnv 22fi 692 k • Cb 1.136 i Beam: Shape: W16X40 Material: A992 Length: 18.5ft Joint: N5 J Joint: N4 LC1: 1.2D+0.5L+2.2E Code Check: 0.211 (bending) Report Based On 97 Sections Min:-.067 at 9.25 ft Dz in Max:-72.435 at Oft A Max: 3.554 at 0 ft Vy Min:-3.554 at 18.5 ft Vz Min:-108.17 at 18.5 ft Max: Oat 18.5ft Mz k-ft f> My k-ft Min:-16.436 at 9.25 ft Max: -6.139 at Oft fa Max: 3.048 at 9.25 ft Min: -3.048 at 9.25 ft Min:-9.167 at 18.5 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.211 Location 17.536ft Equation H1-1a Compact Fy 50 ksi phTPnc 125.115k phi*Pnt 531 k phi*Mny 46.48 k-ft phi*Mnz 273.375 k-ft phi*Vny 131.842k phi*Vnz 190.754k Cb 1.136 Max Shear Check 0.027 (y) Location 0 ft Max Defl Ratio L/3294 Lb Kl_/r Sway Y-Y 18.5ft 141.855 No Z-Z 18.5ft 33.507 No L Comp Flange Torque Length 1ft NC 0$ Beam: M4 Shape: W16X40 Material: A992 Length: Joint: J Joint: 18.5ft N5 N4 LC2:1.2D+Q.5L-2.2E Code Check: 0.865 (bending) Report Based On 97 Sections Min: -.067 at 9.25 ft Dz in Max: 108.17 at 18.5 ft Max: 3.554 at 0 ft Vy Min:-3.554 at 18.5 ft Vz Min: 72.435 at 0 ft Max: Oat 18.5ft Mz k-ft My k-ft Min: -16.436 at 9.25 ft Max: 9.1 67 at 18.5 ft Max: 3.048 at 9.25 ft Min: -3.048 at 9.25 ft Min: 6.139 at Oft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.865 Location 18.5ft Equation H1-1a Compact Fy 50 ksi phi*Pnc 125.115k phi*Pnt 531 k phi*Mny 46.48 k-ft Max Shear Check Location Max Defl Ratio 0.027 (y) Oft L/3294 Y-Y 18.5ft 141.855 No Lb KL/r Sway LComp Range 18.5ftNC Z-Z 18.5ft 33.507 No Cb 1.136 IDS 73 Beam: MS Shape: W21X73 Material: A992 Length: 37.5 ft Joint: N6 J Joint: N5 LC1:1.2D+0.5L+2.2E Code Check: 0.307 (bending) Report Based On 97 Sections Min: -.898 at 19.922 ft Dz in Max: 12.492 at Oft Vy Vz Min:-18.224 at 37.5 ft Min:-72.435 at 37.5 ft Max: 0 at 0 ft Mz k-ft k-tt My k-ft Min:-181.225 at 25.781 ft Max: 14.435 at 25.781 ft fa Min:-3.369 at 37.5 ft ksi Min: -14.435 at 25.781 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.307 Location 25.781 ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 74.387 k phi'Pnt 967.5 k phi*Mny 95.75 k-ft phi*Mnz 645 k-ft phi*Vny 260.933 k phi*Vnz 331.468k Cb 1.228 Max Shear Check Location Max Defl Ratio 0.070 (y) 37.5 ft U501 Lb KL/r Sway Y-Y 37.5 ft 248.33 No Z-Z 37.5 ft 52.164 No L Comp Flange Torque Length 1ft NC Beam:MS Shape: W21X73 Material: A992 Length: Joint: J Joint: 37.5 ft N6 N5 LC2:1.2D+0.5L-2.2E Code Check: 0.974 (bending) Report Based On 97 Sections Win: -.898 at 19.922 ft Dz in Max: 72.435 at 37.5 ft Max: 12.492 at Oft Vy Vz Min:-18.224 at 37.5 ft Max: Oat37.5ft Mz k-ft k-ft My k-ft Min:-181.225 at 25.781 ft Max: 14.435 at 25.781 ft Max: 3.369 at 37.5 ft fa Min:-14.435 at 25.781 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.974 Location 37.5 ft Equation H1-1a Compact Fy 50 ksi phi'Pnc 74.387 k phi*Pnt 967.5 k phi*Mny 95.75 k-ft phi*Mnz 193.39 k-ft phi*Vny 260.933 k phi*Vnz 331.468k Cb 1.228 Max Shear Check 0.070 (y) Location 37.5 ft Max Defl Ratio L/501 Lb KL7r Sway Y-Y 37.5ft 248.33 No Z-Z 37.5 ft 52.164 No L Comp Flange Torque Length 37.5 ft NC "oO CO 08 KCD CD 2U- sCO^o Company Designer Job Number Chavez/Grieves JH Frame 6,7,& 8 Collectors Mar 8, 2006 11:46 AM Checked By: Joint Coordinates and Temperatures Label X Temp [F]Detach From Diap. N2 37 0_or N4 55.75 N6 92.5 Member Primary Data .Label Uoint J Joint K Joint Rotate{deg) Section/Shape Design List Type. Material Design Rules Member Advanced Data Label I Release J Release Offset[in] J Offsetfinl T/C Only Physical TOM Inactive M3 BenPIN Yes Yes M4 BenPIN Yes Yes M1 BenPIN BenPIN Yes Yes Hot Rolled Steel Properties label E[ksi]GrksH Nu Therm {\1E5R Densitvfk/ftA31 Yieldfksil A36 Gr.36 29000 11154 .3 .65 .49 36 A992 A5QO Gr.46 29000 29000 11154 11154 .3 .3 .65 .65 .49 .49 50 46 Hot Rolled Steel Design Parameters Ubel Shape Lenothf... Lbvyftt]Lbzz[ft] Lcomp top...Lcomp bot. Kyy Kzz Cm-yy Cm-zz Cb y sway z sway M3 B3 10.75 1 M4 B3 10.75 M1 B1 37 Hot Ro/fed Steel Section Sets Label Shape Design List Type Material Design Rules A [in21 Izz [in4]Jfln41 .61 W16X67 Wide Flange Beam A992 Typical 19.7 119 954 2.39 .83 W16X45 Wide Flange Beam A992 Typical 13.3 32.8 586 1.11 RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 6,7,&8 Col lectors. r3d]Pagel Company Designer Job Number Chavez/Grieves JH Frame 6,7,& 8 Collectors Mar 8,2006 11:46 AM Checked By: Joint Boundary Conditions Joint Label X fk/in]Y [k/in]Z [k/inl X Rot.[k-ft/rad1 Y Rot.[k-ft/rad) Z RoUk-ft/radl Fooling N2 Reaction Reaction Fixed Fixed Fixed Fixed N4 Reaction Reaction Reaction Fixed! N1 Reaction Reaction Fixed Fixed Fixed MemberDistributedLoadsfBLC 1; DEADLOAD) Member Label Direction Start Maanitude[k/ft.d..£nd Maonituderk/ft.d.. Start Locationfft.%1 End Locationtft.%1 M1 -.12 -.12 0 0 M3 M5 -.12 -.12 -.12 -.12 Member Distributed Loads (BLC 2 : LIVE LOAD} Member Label Direction Start Maanituderk/ft.d..£nd Magnitiide[km.d. Start Location[n.%1 End Locationlft.%1 -.12 -.12 0 0 M3 -12 -.12 M5 -.12 -.12 Member Distributed Loads {BLC 3: SEISMIC) Member Label Direction Start Magnitude[k/ft.d.End Magnitudefk/fLd.Start Locationlft.%1 End Locationlft.%1 M3 -.878 -.878 0 0 M4 -.878 -.878 M1 -.878 -.878 Basic Load Cases BLC Description Category XGravity Y Gravity T Z Gravity^ Joint Point Distributed Area (Ma Surface ( DEAD LOAD DL -1 1 SEISMIC EL Load Combinations Description Solve PD...SR... BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor BLC Factor 1.2D+0.5L+2.,Yes Y 1 1.2 2.2 c/o/V;^ Reactions LC Joint Label X Fkl Y Ikl 2 Ikl MX tk-ftl MY [k-ftl MZ Fk-ftl 1 V$ 3 •4$, 5 1 7lF 1 .i-jp: 1 N2 '. 1* ^fSL^;^** N4"",f- r *& ,p*' N1 0 ' ,.p4or ; -178.673 ^•"-kOi ; 0 0<.jro #:• •'* 0^,; o;.1-: 0 6.204 rMj r,568 hv4 3.471* *t -i',nofl>f- I-Z^vtff I i i oo , J 5.262 NC o^fcfe-** -• 0 ..'->*M6">1 ' NC NC~ *» ."Ncyv v 0 < vfMC' *'*x NC NC %*& 0 ^ "' NC R1SA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Reat\Calcs\Frame 6,7,&8 Collectors.r3d]Page 2 Company Designer Job Number Chavez/Grieves JH Frame 6,7,& 8 Collectors Mar 8, 2006 11:46 AM Checked By: Joint Reactions {Continued) LC Member Section Forces LC Member Label Sec Axialfkl v Shear[k1 z Shearfkl Torque[k-ft] y-y Momentfk-...z-2 Moment[k-.. 1 1 M3 107.687 -3.85 0 0 0 -56.31 97.304 -5.238 0 -31.886a.i13 86.922 -6.627 83.059 .471 -1.412 75.332 -.471 -1.412 11 M4 -50.222 -4.544 0 13 -60.604 -5.932 0 28.155 o.-r i*. 15 -70.986 -7.321 63.773 17 -12.555 1.679 -16.37 19 -37.666 -1.679 -16.37 21 M1 71.469 5.262 0^•! 23 35.735 -48.675 25 -5.262 27 -102.496 6.627 45.031 HIMl 29 -92.113 5.238 13.145 31 M2 -86.922 .941 0 33 -79.196 0 -1.883 35 -71.469 -.941 50.222 6B27-_v. 0' 37 55.413 5.932 -16.876 "..S.23& .\ 39 65.795 4.544 -45.031 7S.986 41 M5 0 3.358 RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 6,7,&8 Collectors.r3d]PageS Company Designer Job Number Chavez/Grieves JH Frame 6,7,& 8 Collectors Mar 8,2006 11:46 AM Checked By: Member Section Forces {Continued) _c Member Label Sec Axialfkl y Shear[k]2 Shearfkl Tbrque[k-ft] y-y Moment[k-...z-^Moment[k- 43 25.111 0 0 0 0 -21.827 45 50.222 -3.358 0 0 0 47 -53.602 2.631 0 -36.506 49 -17.867 -2.631 0 -36.506 Member Section Stresses LC Member Label Sec Axial[ksj^ y Shear[ksi] zSheartesi] y top-Bendin,..y bot Bendin...z toe Bendin...z bot Bendin... 1 1 M3 1 8.097 7.316 -.692 -.941 0 9.3 5.266 -9.3 -5.266 0 0 6.535 -1.191 10.815 .12 .442 -.442 9.809 -.12 .442 .442m -3.776 -.817 13 -4.557 -1.066 -4.65 4.65 -14 i o 15 -5.337 -1.316 -10.532 10.532 17 -.944 .302 2.704 -2.704 19 -2.832 -.302 2.704 -2.704aor 21 M1 3.628 .816 0 23 1.814 4.999 -4.999 25 -.816 0 27 -7.706 1.191 -7.437 7.437 29 -6.926 .941 -2.171 2.171 31 M2 -11.318 .24 0 33 -10.312 0 .589 -.589 35 -9.306 -.24 37 4.166 1,066 2.787 -2.787 39 4.947 .817 7.437 -7.437 41 M5 .603 42! 43 1.888 3.605 -3.605 = 302 2'.704 45 3.776 -.603 0 0 0 0 0 RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Real\Calcs\Frame 6,7,&8 Collectors.rSd]Page 4 Company Designer Job Number Chavez/Grieves JH Frame 6,7,& 8 Collectors Mar 8, 2006 11:46 AM Checked By: Member Section Stresses (Continued) Sec Axtglfteil ySheartksil zjShearjksil y topJ3endin y'botBendin Member AISC LRFD Steel Code Checks LC Member Shape UCMax Loc[ft1 Shear DC Lodftl Dir ohi'Pncfkl phPPntfk] phi*Mnw...phi*Mnzz... Cb 1 M3 W16X45 .474 0 .044 10.75 345.12 598.5 52.452 308.625 1.55 M4 W16X45 .266 10.75 .049 10.75 345.12 598.5 52.452 308.625 M1 W16X67 .555 .030 128.794 886.5 130.801 216.232 M2 W16X26 .252 .009 190.277 345.6 19.616 152.105 M5 W16X45 .699 26 .022 71.892 598.5 52.452 113.013 RISA-3D Version 5.5 [P:\Chavez Grieves\006. Ventana Reat\Calcs\Frame 6,7,&8 Collectors.rSd]Page 5 4 Beam: MS Shape: W16X45 Material: A992 Length: 26 ft I Joint: N6 J Joint: N5 LC1: 1.2D+0.5L+2.2E Code Check: 0.093 (bending) Report Based On 97 Sections Min:-.156 at 13 ft Dz in Max: 3.358 at Oft \f\i pK.W;fefe.;)ii k-.^_ Min: -3.358 at 26 ft Vz Min:-50.222 at 26 ft Max: 0 at 0 ft Mz k-ft k-ft My k-ft Min:-21.827 at 13 ft Max: 3.605 at 13 ft Min:-3.776 at 26 ft Min: -3.605 at 13 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.093 Location 14.896ft Equation H1-1b Compact Max Shear Check 0.022 (y) Location 0 ft Max Defl Ratio U1996 phi*Pnc phi'Pnt phi*Mny phi*Mnz phi*Vny phi*Vnz Cb SOksi 71.892k 598.5 k 52.452 k-ft 308.625 k-ft 150,251 k 214.638 k 1.136 Lb KL/r Sway Y-Y 26ft 198.675 No Z-2 26ft 47.004 No L Comp Flange Torque Length 1 ft NC Beam: Shape: W16X45 Material: A992 .Length: 26ft "l Joint: N6 J Joint: N5 LC2;1,2D-K).5L-2.2E Code Check: 0.699 (bending) Report Based On 97 Sections Min:-.156 at 13 ft Dz in Max: 50.222 at 26 ft Max: 3.358 at 0 ft \f\l |Sl!iBt»«tMa>P-m^—. Min: -3.358 at 26 ft Vz Max: 0 at 0 ft Mz k-ft i> My k-ft Min: -21.827 at 13 ft Max: 3.776 at 26 ft Max: 3.605 at 13 ft Min:-3.605 at 13 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.699 Location 26 ft Equation H1-1a Compact Fy 50 ksi phi*Pnc 71.892k phi*Pnt 598.5 k phi*Mny 52.452 k-ft phi*Mnz 113.013 k-ft phi*Vny 150.251 k phi*Vnz 214.638k Cb 1.136 Lb Kl_/r Sway Max Shear Check 0.022 (y) Location 0 ft Max Defi Ratio L/1996 Y-Y 26ft 198.675 No Z-Z 26ft 47.004 No L Comp Flange Torque Length 26ft NC Beam: 4Shape: W16X45 Material: A992 Length: 10.75ft [Joint: . N5 J Joint: N4 LC1:1.2D+0.5L+2.2E Code Check: 0.266 (bending) Report Based On 97 Sections Max: .044 at 6.271 ft Dz in Max: -50.222 at 0 ft A Max: -4.544 at 0 ft Vy Min:-7.321 at 10.75 ft Vz Min: -70.986 at 10.75 ft Max: 63.773 at 10.75 ft k-ft My k-ft Mz Min: 0 at 0 ft Max: 10.532 at 10.75 ft Max: -3.776 at 0 ft fa Min:-5.337 at 10.75 ft Min:-10.532 at 10.75 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.266 Location 10.75ft Max Shear Check 0.049 (y) Location 10.75ft Equation Compact Fy phi*Pnc phi*Pnt phi*Mny phi*Mnz phi*Vny phi*Vnz Cb > H1-1b SOkst 345.12k 598.5 k 52.452 k-ft 308.625 k-ft 150.251 k 214.638 k 1.785 Max Defl Ratio L/2955 Y-Y Lb 10.75ft KUr 82.145 Sway No L Comp Flange Torque Length Z-Z 10.75ft 19.434 No 10.75ft NC ( Beam: M4 Shape: W16X45 Material: A992 Length: 10.75ft I Joint: N5 J Joint: N4 LC2:1.2D+0.5L-2.2E Code Check: 0.368 (bending) Report Based On 97 Sections Min:-.047 at 6.159 ft Dz in Max: 70.986 at 10.75 ft Max: 6.627 at 0 ft Vy Min: 3.85 at 10.75 ft Vz Min: 50.222 at 0 ft Max: 0 at 0 ft Mz k-ft My k-ft Min:-56.31 at 10.75 ft Max: 9.3 at 10.75 ft Max: 5.337 at 10.75 ft Min: 3.776 at 0 ft Min: -9.3 at 10.75 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.368 Location 10.75ft Equation H1-1a Compact Fy 50 ksi phi*Pnc 345.12 k phi*Pnt 598.5 k phi*Mny 52.452 k-ft phi*Mnz 308.625 k-ft phi*Vny 150.251 k phi*Vnz 214.638k Cb 1.55 Lb KL/r Sway Max Shear Check 0.044 (y) Location 0 ft Max Def! Ratio L/2751 Y-Y 10.75ft 82.145 No L Comp Flange Torque Length 1ft NC Z-Z 10.75ft 19.434 No J.J 4 Beam: M3 Shape: W16X45 Material: A992 Length: 10.75ft I Joint: N4 J Joint: N3 LC1:1.2D+0.5L+2.2E Code Check: 0.474 (bending) Report Based On 97 Sections Min:-.047 at 4.591 ft Dz in Max: 107.687 at Oft Max: -3.85 at 0 ft Vy—M Min:-6.627 at 10.75 ft Vz Min: 86.922 at 10.75 ft Max: Oat 10.75ft Mz k-ft k-ft My k-ft Min:-56.31 at Oft Max: 8.097 at 0 ft Max: 9.3 at 0 ft Min: 6.535 at 10.75 ft Min:-9.3 at Oft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.474 Location 0 ft Equation H1-1a Compact Fy 50 ksi phi*Pnc 345.12k phi*Pnt 598.5 k phi'Mny 52.452 k-ft phi*Mnz 308.625 k-ft phi*Vny 150.251 k phi*Vnz 214.638k Cb 1.55 Lb KL/r Sway Max Shear Check 0.044 (y) Location 10.75ft Max Defl Ratio L/2751 Y-Y 10.75ft 82.145 No L Comp Flange Torque Length 1ft NC Z-Z 10.75ft 19.434 No Beam:M3 4Shape: W16X45 Material: A992 Length: 10.75ft I Joint: N4 J Joint: N3 LC2:1.2D+0.5L-2.2E Code Check: 0.297 (bending) Report Based On 97 Sections Max: .044 at 4.479 ft Dz in Max: -86.922 at 10.75 ft A Max: 7.321 at 0 ft Vy Min: 4.544 at 10.75 ft Vz Min: -107.687 at Oft Max: 63.773 at 0 ft k-ft My k-ft Mz Min: Oat 10.75ft Max:-6.535 at 10.75 ft fa Max: 10,532 at 0 ft Min: -8.097 at 0 ft Min:-10.532 at Oft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.297 Location 0 ft Equation . H1-1b Compact Fy 50 ksi phi*Pnc 345.12 k phi*Pnt 598.5 k phi*Mny 52.452 k-ft phi*Mnz 308.625 k-ft phi*Vny 150.251 k phi*Vnz 214.638k Cb 1.785 Lb KL/r Sway Max Shear Check 0.049 (y) Location 0 ft Max Defl Ratio U2955 Y-Y 10.75ft 82.145 No L Comp Flange Torque Length Z-Z 10.75ft 19.434 No 10.75 ft NC E >j i. >' Beam: M2 Shape: W16X26 Material: A992 _ength: 8 ft Joint: N3 J Joint: N2 _C1:1.2D+0.5L+2.2E 3ode Check: 0.457 (bending) Report Based On 97 Sections Max: 86.922 at 0 ft Min: 71 .469 at 8 ft K-Tl Max: 11.318 at Oft Min: 9.306 at 8 ft uy i / Min: -.002 at 4 ft Max: .941 at 0 ft Vy — — K Min: -.941 at 8 ft Max: 0 at 0 ft Min: -1.883 at 4 ft Max: .589 at 4 ft Min: -.589 at 4 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.457 Max Shear Check 0.009 (y) Location 0 ft Location 0 ft Equation H1-1a Max Oefl Ratio L/10000 NonCompact Fy 50 ksi Y-Y Z-Z phi*Pnc 190.277k Lb 8ft 8ft phi*Pnt 345.6k KL/r 85.91 15.334 phi*Mny 19.61 6 k-ft Sway No No PuCwnz *«?'!! ?i!!*~ft LComp Flange 8ftph. Vny 104.149 k Torque Length NC phi*Vnz 102.465k M Cb 1.136 « Beam: M2 Shape: W16X26 Material: A992 Length: 8 ft I Joint: N3 J Joint: N2 LC2:1.2D+0.5L-2.2E Code Check: 0.252 (bending) Report Based On 97 Sections Min: -.002 at 4 ft Dz in Max: -71 .469 at 8 ft Min: -86.922 at Oft Max: .941 at 0 ft Vy Min:-.941 at 8 ft Vz f> Max: 0 at 0 ft k-ft My k-ft Min: -1.883 at 4 ft Max: -9.306 at 8 ft Min: -11.318 at Oft Max: .589 at 4 ft fc —^«^»ksi ft ksi Min: -.589 at 4 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.252 Location 0 ft Equation H1-1a Compact Fy 50 ksi Y-Y phi*Pnc 190.277k Lb 8ft phi'Pnt 345.6k KL/r 85.91 phi*Mny 19.616 k-ft Sway No PnZ ft L Comp Cb Max Shear Check 0.009 (y) Location 0 ft Max Defl Ratio U10000 Z-Z 8ft 15.334 No 8ft NC 1.136 Beam: M1 Shape: W16X67 Material: A992 Length: 37 ft I Joint: N2 J Joint: N1 LC1:1.2D+0.5L+2.2E Code Check: 0.555 (bending) Report Based On 97 Sections Min:-.434 at 18,5 ft Dz in Max: 71.469 at Oft Max: 5.262 at 0 ft Vy Vz Min: -5.262 at 37 ft Min: 0 at 37 ft Max: 0 at 0 ft Mz k-ft My k-ft Min:-48.675 at 18.5 ft Max: 4.999 at 18.5 ft Max: 3.628 at Oft fa Min: 0 at 37 ft Min: -4.999 at 18.5 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.555 Location 0 ft Equation H1-1a Compact Fy 50 ksi phi*Pnc 128.794k phi*Pnt 886.5 k phi*Mny 130.801 k-ft phi*Mnz 216.232 k-ft phi*Vny 174.159k phi*Vnz 367.539 k Cb 1.136 Max Shear Check 0.030 (y) Location 0 ft Max Deft Ratio L/1024 Lb KL/r Sway Y-Y 37ft 180.652 No Z-Z 37ft 63.803 No L Comp Flange Torque Length 37ft NC 4 Beam: M1 Shape: W16X67 Material: A992 Length: 37 ft I Joint: N2 J Joint: N1 LC2: 1.2D+0.5L-2.2E Code Check: 0.121 (bending) Report Based On 97 Sections Min: -.434 at 18.5 ft Dz in Max: 0 at 37 ft A Max: 5.262 at 0 ft Vy Vz Min:-5.262 at 37 ft Min:-71.469 at Oft Max: 0 at 37 ft Mz k-ft k-ft My k-ft Min:-48.675 at 18.5 ft Max: 4.999 at 18.5 ft Max: 0 at 37 ft fa Min:-3.628 at Oft Min: -4.999 at 18.5 ft AISC LRFD 3rd Ed. Code Check Max Bending Check 0.121 Location 16.573ft Equation H1-1b Compact Fy 50 ksi phi*Pnc 128.794k phi*Pnt 886.5 k phi*Mny 130.801 k-ft phi*Mnz 487.5 k-ft phi*Vny 174,159k phi*Vnz 367.539 k Cb 1.136 Max Shear Check 0.030 (y) Location 0 ft Max Defl Ratio U1024 Lb KL/r Sway Y-Y 37ft 180.652 No Z-Z 37ft 63.803 No L Comp Flange Torque Length 1ft NC U. Xt- LU to 00 CO 00 c CM U_ Q UJ to CO CO 25 O 5 O X o2:UJ CO CM CM CO co 01CM UJ D QUJ I O CO o o UJ X CD UJ CM CM CM CO in CM CM o>CM •tCM TJ0) O CO LU O D LL CM CM CM CM 0) 9.O COO CN UJ CO 0) oCOa> CD UJ ££LU_ QUJ O CD 01 CO CM CD u_ TJCDOra COCDa: COc: CD-*->C0) -J QLU X O</> <N -J2LUo COx o LU_J m Q LU5 CO ^T 1- _lQ. < X 1— CDz:LU_l < Q LU 5 Z Ot?oo UJ <01 Q O CCOJ TCD CN ^r CMCM CO CO LU 0 CO < CMto CO ^ CM COCM CM t— O LU CO COCO CN CMCM CO CO LJJ ?>CO< rM <<3- CO CO Lf) ^ CO CM CM O LU CO r\ •* CD CD T~ ^ CO CM CM t— LU 0CO< m oN- CDr— T— ^ a> CM CM O LU CO m oCD CM k CMCM CO CO LU ODJ < CO h- (( COm CO T— ^~ ^ COCM CM O LU CO CO h- co O W CM 'rotE>Q COo CN O) T3Q) ^O03 0 CO TJ0)OCO CO ro0)K rocro•«-•co UJ_J QJJI J CO-J ^UJ Q Q 111 £ Q 1— 0m D LU O O Q LU O ^0CD C) LU CDZ CD X1—(0J> LU CDa in£ CO XH Q- X C u O a CATIONC UJ enu_ QIIO nrrr tr *- co CM X _J CO CM X | N- CM CO CO v CO CO -CD in a:LUD_ D- co in r- CM X § O)CN IN t— V CO CMCN CO U 0 CD IS CO CO X53 T to <N £ X _J OCM rM T- 00(*- CO CO in E£UJCLa. ^J- CN CO CO CD COin 3 oCO CM T- a> f- CMCN m CO u 0 | CO in CO CO inX | _j CO CO ^J. COX X rsi CD iri V C) T~ m CO a: UJ 0-Q. UJ CD ""• cn ^. COX § COCO CD cfi = COCM CM a:UJ 0 CD lf> CD COinX«Xin T in CO ifiX lxin_j inrNi CO r- ?a- co CO 00 CO a: LU Q- 0. min > c.o in 00 CO O) minX COX -1 o CO rn ; COCM CM" U. 0 ^• T~ CD fN X CO u5 m CM ^§ DO 00in = CO CD in a: LU CLQ. h- CD CO CO CO 00mX X _J CM CO iS ; CMCM CO CO U 0 O UJ o UJa:(ft 01 UJz LULL.LL COmLU LU HI lii J- O TI0) O CO "a. J2x CDO t-i-cv •o0) oCO 0) ECD CD 030)a: COCCO*•> <D CD LU CO LJJ OJ in CD CQ CO (O CO 10 CO oo (D CO CM 10 CM CD in <u o (O Q._cn X, CDO r^c-t CO 0)E5u. 5 CQ I VENTANA REAL BRACING MEMBER FORCES (ASD) USED FOR CONNECTIONS LRFD NOMINAL ASD NOMINAL MEMBER SIZE HSS1 0x1 0x5/8 HSS8x8x5/8 HSS7x7x1/2 HSS6x6x3/8 Ag (in2) 21.0 16.4 11.6 7.58 Fy (ksi) 46 46 46 46 Ry TENSILE STRENGTH (kips) 1.3 1.3 1.3 1.3 1255.8 980.7 693.7 453.3 TENSILE STR (kips) 738.7 576.9 408.0 266.6 Notes: 1 Nominal Tensile Strength = Ry Fy Ag (for LRFD SCBF) {Section 13.3.a.a) 2 ASD Nominal Strength = LRFD Nominal Strength /1.7 (Section 4.2a) Sections are referenced from the AISC Seismic Provisions for Structural Steel Buildings, 1997. Frame V9.0 - Analysis Mode Jeff Hanks D' Base: Ventana Real REV 3 12-15-05 01/16/06 09:55:16 RAM Frame V9.0 - Analysis Mode Jeff Hanks ? -iBase: Ventana Real REV 3 12-15-05 01/16/06 09:55:16 W21X68 RAM Frame V9.0 - Analysis Mode Jeff Hanks T -iBase: Ventana Real REV 3 12-15-05 01/16/06 09:55:16 W21X68 RAM Frame V9.0 - Analysis Mode Jeff Hanks P ^Base: Ventana Real REV 3 12-15-05 01/16/06 09:55:16 Toft. W21X68 RAM Frame V9.0 - Analysis Mode Jeff Hanks D Base: Ventana Real REV 3 12-15-05 01/16/06 09:55:16 RAM Frame V9.0 - Analysis Mode Jeff Hanks D Base; Ventana Real REV 3 12-15-05 01/16/06 09:55:16 RAM Frame V9.0 - Analysis Mode Jeff Hanks D Base: 'Ventana RealREV3 2-15-05 01/16/06 09:55:16 7 RAM Frame V9.0 - Analysis Mode Jeff Hanks D Base: Ventana Real REV 3 12-15-05- 01/16/06 09:55:16 JC DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC-- Page: 1 Ventana Real @ Base PI (Frames 1 & 3) (N-S) (2-25-06) BASIC DESIGN DATA Column: Size: W1 0X88 Material: A992 Orientation: Web In Plane Axial Force: 0 kips Shear Force: 0 kips Base Plate: Length: 42.972 in. Thickness: 2 in. Material: A36 Design of the Baseplate and Jts connection to the column is beyond the scope of Descon Brace. Upper Right Brace: Size: HSS8X8X5/8 Material: A500-B-46 - Axial Force; 576.9 kips Work Point X: 0 in. Work Point Y: 1 in. Rise/Run: i.25fl Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 34 in. Base Plate Side Length: 27.632 in. Brace Side Length: 1 1 in. Column Side Free Edge: x= 25.488 in., y= 13.164 in. Base Plate Side Free Edge: x= 6.4461 in., y= 40.293 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -24 in. Upper Right Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length -4X24 in. Weld Size = 1/2 > Minimum Weld Size - 1/4 in. (OK) Weld Allowable Strength: 11/FSlRn * RM*[1/2)*0.6*Fexx*0.707'w*L = 1-4*(1/2)*0.6-70*0,707-0.4375*24 = 623.6 > 576.9 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSlRn * 4*(1/1.51 * 0.6'Fv*t*L = 4"(1/1.5) * 0.6*46 * 0.581 * 24 - 1 026 > 576.9 kips (OK) Check Upper Right Brace Tension Yjelding_of the Brace: (1/FS>Rn = (1/1.67) *Fv*Ag = (1/1 .67) M6 -16.4 = 451 .7 < 576.9 kips Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 16.4 - 2*(1.25 + 0.0625 )* 0.581 = 14.875 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H» = (82 + 2' 8 ' 8)/(4*(8 + 8)) = 3 in. U=1-(x/L)<0.9 - 1 - (3 / 24) < 0.9 - 0.875 Ae = U*An - 0.875 * 14.875 = 13.016 in2 f1/FSlRn-W2l'Fu*Ae = (1/2) '58* 13.016 = 377,4 < 576.9 kips (NG)C>*C i J A //« '«• Upper Right Brace Gusset Dimensions: Column Side, Lgc = 34 in. Base Plate Side, Lgb = 27.632 in. Base Plate Side Free Edge, Lvfic = 6.4461 in. Base Plate Side Free Edge, Lvfy = 40.293 in. Column Side Free Edge, Lhfx = 25.488 in. Column Side Free Edge, Lhfy = 13.164 in. Upper Rkiht. Brace Gusset Edge Forces: Gusset edge moments carried by: Base Plate and Column interfaces Theta = 38.66 Degrees, eb = 0 in. ec = 5,42 in. Beta = 20.736 in. BetaBar= 17.25 in. AlphaBar= 14.066 in. Alpha = (Beta + eb)Tan(Theta) - ec = (20.736 + 0)*Tan(38.66) - 5.42 = 11. 169 in. r = Fx / ((Alpha + ec)2 + (beta + eb)2 )as = 576.9 / {(11.169 + 5.42)2 + (20.736 + O)2)05 = 21. 725 kips/in. Hb = Alpha * r = 1 1 .169 * 21 .725 = 242.6 kips Hc = ec'r= 5.42 '21.725 = 117.7 kips Vb = eb'r = 0' 21.725 = 0 kips Vc = beta * r = 20.736 * 21 .725 = 450.5 kips Mb = 0 Me = |Hc ' (Beta - BetaBar)| = |117.7* (20.736 -17.25)1 = 410.5k-in. Upper Right Brace Gusset Thickness Try t = 1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*FuTL = 2*0.5*0,6*65-1.25*24 = 1 170 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2-L-t = 2*24*1 .25 = 60 in2 Agt = Ant = d't = 8-1.25 = 10 in2 (1/FSlRn = (1/21 * (0.6 ' Min(Fu * Anv: Fv * Aovl + Ubs ' Fu * Ant) = 0.5 * (0,6*Min(65 " 60; 50 " 60) + 1 - 65 * 10) = 1 225 > 576.9 kips (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real (3) Base PI I Frames 1 & 3) <N-S) (2-25-06) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d » 1.1547*24 + 8 = 35.713 in. Lwo - 1.6588 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 34.054 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwbtwb + Lwctwc) = 576.9/(34.054 * 1.25 + 0 * 0 + 0 * 0.605) = 13.553 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(34.054 * 1.25 * 50 + 0 " 0* 36 + 0 * 0.605" 50) = 1274 > 576.9 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 19.958 in. - Kl/r= Lcr/(t/12°-5) = 19,958/(1.25/3.464) ~ 55.308 Fe = pi2 -E/(kL/r)2 =3.142 "290.X102 / 55.3082 = 93.567 > 0.44*Fy - 0.44'50 = 22 ksi Fy/Fe = 50 / 93.567 = 0.5344 Fcr = Q.6580-5344 * Fy = 0.6580'5344 * 50 = 39.979 ksi Buckling Strength = (1/1.67) *Fcr = 23.94 > 13.553 ksi OK Upper Right Brace Gusset to Column Connection Weld Size =11/16 in. Weld Length on Each Side of Gusset Plate, L = 33.5 in. Horizontal Force on Wetds, H = 117.7 kips Vertical Force on Welds, V = 450.5 kips Moment on Welds, M = 410.5 k-in.' Max. Force on Welds per Unit Length = f = ((H/L+6M/L2 )2 +(V/L)2)° 5 ((117.7/33.5+6M10.5/33.52 )2 +(450.5/33.5)2)0.5 = 14.609 kips/in. Average Force on Welds per Unit Length - fraverage = ((H/L+3M/L2)2+(V/L)2)05 ((117.7/33.5*3*410.5/33.52)2+(450.5/33.5) 2)°-5 = 14.216 kips/in. Maximum useful weld size = 0.707 * Min(Fug * tg; 2*Fuc*tf) / Fexx = 0.707 * Min(65 * 1.25; 2*65 * 0.99J/70 = 0.8206 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(fr, Rf*fraverage)/«1/2)*0.6*1.414*Fexx) = max(14.609, 1.4 * 14.216)/((1/2)*0,6*1.414 * 70) = 0.6703 in. Try 11/16 in. weld Minimum Wetd size = 0.3125 < 0.6875 in. (OK) Effective sup. thick.: tse = tf=0.99in. Useful weld size: wu = Min((1/2)'0.6 * tg * Fup; 2 * (1/2ro.6 * tse ' Fuc) / (2*0.707*(1/2)*0.6 * Fexx) = Min{(1/2)*0.6 * 1.25 * 65; 2 * (1/2)*0.6 * 0.99 * 65) / (2*0.707*(1/2)*0.6 * 70) . = 0,8209 > w_required = 0.6703 in. (OK) Plate and column develop the required weld capacity. (OK) Column Local Stresses forUpper Right Brace ColumnWebJ^ocaLYieldina: Force from Gusset, RColumn - ((H+3*M/N)2 + (1.73*V)2 )°-5 = ((117.7+3*4l0.5/34)2 + (1.73M50.5)2)0-5 =788.2 kips Required Web Thickness = RColumn / ((1/1.5) * Fy * (N+5*k)) = 788.2 / ((1/1.5) " 50 * (34 +5*1.49)) = 0.5705 in. <0.605 in. (OK) ColumiiWebCrippJinq: Force from Gusset, RColumn = H+3*M/N = 117.7 kips Allowable Strength, (1/FS)Rn: = (1/2)*0.4' E°-5 * tw2 *(1+4*(N/d)*(tw/tf)1-5 )*(Fy'tf/tw)°-5 = (1/2)*0.4 * 170.3 ' 0.6052 *(1+4*{34/10.84) *(Q.605/0.99)15)*(50*0.99/0.605)05 = 788.6 kips > 117.7 kips (OK) Upper Right Brace Gusset to Base Plate Connection Weld Size = 7/16 in. Horizontal Force on Welds, Hb = 242.6 kips Vertical Force on Welds, Vbm = 0 kips Moment on Welds, M = 0 k-in. Weld Length on Each Side of Gusset Plate, L = 27.132 in. Average Force on Welds per Unit Length - fraverage = {(V/L+3M/(L2 ))2 +(H/L)2)°-!i = ((0/27.132+ 3* 0/(27.1322))2 + (242.6/27.132)2)0-5 = 8.943 kips/in. fr = fraverage Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072*65*1.25/70 = 0.8209 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w= Max(Rrf_avrg;fj>eak)/((1/2r0.6*1.41*Fe»c) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real @ Base PI (Frames 1 & 3) (N-S) (2-25-06) _^______^___ = 12.52/((1/2)*0.6*1.4r?0) = 0.4216 < 0.4216 in. (OK) Minimum Weld size = 0.3125 < 0.4216 in. (OK) Weld Size = 7/16 in. (OK) Design is inconriDlete or not satisfactofv^-^. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real @ Base PI (Frames 1 & 3) (N-S) (2-25-06) \r 2'-3 5/8" (Slotted) Slope: 1.25/1 fe Plate: 2" in. PL 3'- 7" in. Long - A36 (Design of the Base Plate and its connection to the column is beyond the scope of Descon Brace.) Scale: 3/8" =V DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ Base Pi (Frames 2 & 4) (N-S) (2-25-06) BASIC DESIGN DATA Column: Size: W1 0X77 Material: A992 Orientation: Web In Plane Axial Force: 0 kips Shear Force: 0 kips Base Plate: Length: 46.171 in. Thickness: 2 in. Material: Design of the Base Plate and itsj:onnection to the column is beypndjhe scope oLDescon Brace. Upper Right Brace: Size: HSS8X8X5/8 Material: A500-B-46 Axial Force: 576.9 kips Work Point X:0 in. Work Point Y: 1 in. Rise/Run: 1.154/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 37.75 in. Base Plate Side Length: 31.071 in. Brace Side Length: 1 1 in. Column Side Free Edge: x= 23.627 in., y= 9.6843 in. Base Plate Side Free Edge: x= 5.8688 in., y= 40.231 in. Thickness: 1 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -24 in. Upper Right Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 24 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: HJFSlRn = a'4*(1f2l*0.6'Fexx*0.707'w*L = 1*4*(1/2)'0.6*70*0.707*0.4375*24 = 623.6 > 576.9 kips (OK) Maximum Weld Force Brace Can Develop: (1/FS)Rn s 4*f1/1.5) * 0.6*Fv*t*L = 4'(1/1. 5)* 0.6*46 '0.581 '24 = 1026 > 576.9 kips (OK) Check Upper Right Brace Tension Yielding of the Brace: (1/FSlRn = (1/1.67)* Fv * Aq = (1/1 .67) '46*16.4= 451.7 < 576.9 kips (^ Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 16,4-2*(1 +0.0625)* 0.581 = 15.165 in2 x = ((B or H)2 + 2*B*H)/(4'(B + H)) = (82 + 2* 8 * 8)/(4*(8 + 8)) = 3 in. U=1-(x/L)<0.9 = 1-(3/24)<0.9 = 0.875 Ae = U*An = 0.875 * 15.165 - 13.27 in2 f1/FS)Rn = (1/21 * Fu * Ae = (1/2)'58* 13.27 . = 384.8 < 576.9 kips (NG) o£ *» Upper Right Brace Gusset Dimensions: Column Side, Lgc = 37.75 in. Base Plate Side, Lgb = 31.071 in. Base Plate Side Free Edge, Lvfx = 5.8688 in. Base Plate Side Free Edge, Lvfy = 40,231 in. Column Side Free Edge, Lhfx = 28.627 in. Column Side Free Edge, Lhfy = 9.6843 in. Upper Right Brace Gusset Edge Forces: Gusset edge moments carried by: Base Plate and Column interfaces Theta = 40.911 Degrees, eb = 0 in. ec = 5.3 in. Beta = 21.855 in. BetaBar= 19.125 in. AiphaBar = 15.785 in. Alpha = (Beta + eb)Tan(Theta) - ec = (21.855 + 0)*Tan{40.911) - 5.3 = 13.639 in. r - Fx / ((Alpha + ec)2 + (beta + eb)2 )°-5 = 576.9 / ((13.639 + 5.3)2 + (21.855 + O)2 )° 5 = 19.948 kips/in. Hb = Alpha * r - 13.639 * 19.948 = 272 kips Hc = ec*r= 5.3* 19.948 = 105.7 kips Vb-eb*r*0* 19.948 = 0 kips Vc = beta * r = 21.855 * 19.948 = 436. kips Mb = 0 Me = [He * (Beta - BetaBar)| = |105.7 "(21.855-19.125)| = 288.7 k-in. Upper Right Brace Gusset Thickness Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*FuTL = 2*0.5 * 0.6*65 * 1 * 24 = 936 > 576.9 kips (OK) Btoc_k_Shear ojGusset at Brace: Agv = Anv = 2*L*t = 2*24*1 = 48 in2 Agt = Ant = d*t = 8*1 = 8 in2 f1/FS)Rn = (1/2) * (0.6 * Min(Fu * Anv: Fv * Aavl -t- Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 48; 50 * 48) + 1 * 65 * 8) = 980 > 576.9 kips (OK) Check jVhitmore Section: Width, Lw = 1.1547*Lweld + d = 1.1547*24 + 8 = 35.713 in. Width of Whitmore Section inside gusset boundaries, Lwg = 35.713 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc'twc) = 576.9/(35.713 * 1 + 0 * 0 + 0 * 0.53) = 16.154 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(35.713 * 1 * 50 + 0 * 0' 36 + 0 * 0.53* 50) = 1 069 > 576.9 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 21 .83 in. Kl/r = Lcr/(t/12°-5 ) = 21.83/(1/3.464) = 75.618 Fe = pi2 *E/(kl_/r)2 = 3.142 *290.x102 / 75.81 82 = 50.055 > Q.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50 / 50.055 = 0.9989 Fcr = 0.658° 9989 * Fy = 0.6580-9989 * 50 = 32.915 ksi Buckling Strength = (1/1 .67) "Fcr = 19.71 > 16.1 54 ksi OK Upper Right Brace Gusset to Column Connection Weld Size = 5/8 in. Weld Length on Each Side of Gusset Plate, L = 37.25 in. Horizontal Force on Welds, H = 1 05.7 kips Vertical Force on Welds, V = 436. kips Moment on Welds, M = 288.7 k-in. Max. Force on Welds per Unit Length = f = ((H/L+6M/L2>2+(V/L)2)0-5 ((105.7/37.25+6*288.7/37.252)2+{436./37. 5)2)0.5 = 12.397 kips/in. Average Force on Welds per Unit Length = fraverage = ((H/L+3M/L2 )2 DESCONBRACE-ASP Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real (3) Base PI (Frames 2 & 41 (N-S1 (2-25-061 __^^____^__^__ = 0.6565 In. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(fr, Rf*fraverage)/((1/2)*0.6*1.414*Fexx) = max(12.397, 1.4 * 12.206)/((1/2)*0.6*1.414 * 70) = 0.5755 in. Try 5/8 in. weld Minimum Weld size = 0.3125 < 0.625 in. (OK) Effective sup. thick.: tse = tf=0.87in. Useful weld size: wu = Min((1/2)*0.6 * tg * Fup; 2 * (1/2)*0.6 * tse * Fuc) / (2*0.707*(1/2)*0.6 * Fexx) = Min((1/2)*0.6 * 1 * 65; 2 * (1/2)"0.6 * 0.87 * 65) / (2*0.707*(1/2}*0.6 * 70) = 0.6567 > w_required = 0.5755 in. (OK) Plate and oolumn develop the required weld capacity. (OK) ((105.7/37.25+3*288.7/37.252 )2 +(436./37. 5)2}0.5 = 12.206 kips/in. Maximum useful weld size = 0.707 * Min(Fug * tg; 2*Fuc*tf) / Fexx = 0.707 * Min(65 ' 1; 2*65 * 0.87)/70 Column Local Stresses for Upper Right Brace Column Web Local Yielding: Force from Gusset, RColumn - ((H+3WN)2 + (1.73*V)2)05 = ((105.7+3*288.7/37.75)2 + (1.73M36.)2 )°-5 =761.6 kips Required Web Thickness = RColumn / ((1/1.5) ' Fy * (N+5*k)) = 761.67 ((1/1.5) * 50 * (37.75 +5*1.37)) = 0.5123 in. < 0.53 in. (OK) Column Web Crippling: Force from Gusset, RColumn = H+3*M/N = 105.7 kips Allowable Strength, (1/FS)Rn: = (1/2)*0.4 * E° 5 ' tw2 -(1+4*(H/d)*(tw/tf)1-5 )*(Fy*tf/tw)°-5 = (1/2)*0.4 * 170.3 * 0.532 '(1+4*(37.75/10.6) '(0.53/0.87)1-5)*(50*0.87/0.53)0-^ = 673.7 kips > 105.7 kips (OK) Upper Right Brace Gusset to Base Plate Connection Weld Size = 7/16 in. Horizontal Force on Welds, Hb = 272 kips Vertical Force on Welds, Vbm = 0 kips Moment on Welds, M = 0 k-in. Weld Length on Each Side of Gusset Plate, L = 30.571 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/(L2 ))2 + (H/L)2 jas = ((0/30.571 +3*0/(30.5712)):- + (272/30.571)2)0-5 = 8.8998 kips/in. fr = fraverage Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072*65*1/70 = 0.6567 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rf*f avrg;f peak)/((1/2)*0,6M.41*Fexx) = 12.46/((1/2)*0.6M.41*70) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real @ Base PI (Frames 2 & 4) (N-S) (2-25-06) _ = 0.41 95 in. Use 7/16 in. Weld Design is incomplete or not *-*-*_*_*-*.*-*-*.*.*- P M n-*-*-*-*,*.*-*-*.*.*-* IU DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real @ Base PI (Frames 2 & 4) (N-S) (2-25-06) 2'-7 1/16" (Slotted) Slope: 1,154/1 Plate: 2" in. PL 3'-10 3/16" in. Long - (Design of the Base Plate and its connection to the column is beyond the scope of Descon Brace.) 3'-1 3/4" Scale: 3/8" = r DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC~ Page: 1 Ventana Real ® Base PI (Frame 5) (E-W) (2-25-06) BASIC DESIGN DATA Column: Size: W10X88 Material: A992 Orientation: Web In Plane Axial Force: 0 kips Shear Force: 0 kips Baseplate; Length: 47.855 in. Thickness: 2 in. Material: A572-50 Design of the Base Plate and its connection tojhe column is bevoncHhe scope of Descon Brace. Upper Right Brace: Size: HSS10X10X5/8 Material: A500-B^6 Axial Force: 738.7 kips Work Point X: 0 in. Work Point Y: 1 in. Rise/Run; 1.304/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 47.25 in. Baseplate Side Length: 36.515 in. Brace Side Length: 13 in. Column Side Free Edge: x= 33.356 in., y= 13.839 in. Base Plate Side Free Edge: x= 7.1577 in., y= 53.179 in. Thickness: 1.25 in. Setback from Column: 0 in. Bott Edge Distance: 1.5 in. Gusset-Brace Gap: -29 in. Upper Right Brace to Gusset Connection Brace Force = 738.7 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 29 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: M/FSIRn = R*4*M/21'0.6*Fexx*Q.707*w*L = 1*4*(1/2)*0.6*70*0.707*0.4375*29 = 753.5 > 738.7 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSlRn = 4-M/1.51 * 0.6*Fv*t*L = 4*(1/1.5)* 0.6*46* 0.581 * 29 = 1240 > 738.7 kips (OK) Check Upper Right Brace TensiojLYielding of the Brace: x = ((B or H)2 + 2*B*H)/(4*(B + H)) s (10* + 2' 10 * 10)/(4*(10 + 10)) = 3.75 in. U = 1 - (x/L) < 0.9 = 1-(3.75/29)<0.9 = 0.8707 Ae = U*An = 0.8707 " 19.475 = 16.957 in2 (1/FSiRn = (1/2) * Fu * Ae * (1/2) "58 "16.957 = 491 .7 < 738.7 kips = (1/1.67)-46*21 , = 578.4 < 738.7 kips (NG) fTension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 21 - 2"(1.25 * 0.0625 )* 0.581 = 19.475 in2 ,' Upper Right Brace Gusset Dimensions: Column Side, Lgc = 47.25 in. Base Plate Side, Lgb = 36.515 in. Base Plate Side Free Edge, Lvfx = 7.11577 in. Base Plate Side Free Edge, Lvfy = 53.179 in. Column Side Free Edge, Lhfx = 33.3.56 in. Column Side Free Edge, Lhfy = 13.839 in. Upper Right Brace Gusset Edoe Forces: Gusset edge moments carried by: Base Plate and Column interfaces Theta = 37.484 Degrees, eb = 0 in. ec = 5.42 in. Beta = 27.499 in. BetaBar = 23.875 in. AlphaBar = 18.507 in. Alpha - (Beta +• eb)*Tan(Theta) - ec = (27.499 + 0)*Tan(37.484) - 5.42 = 15.668 in. r = Fx / ((Alpha + ec)2 + (beta + eb)2 )° 5 = 738.7 / ((1 5.668 + 5.42)2 + (27.499 + O)2 )°-5 = 21. 31 7 kips/in. Hb = Alpha * r = 15.668 * 21.317 = 334. kips Hc=ec*r = 5.42*21.317 = 115.5 kips Vb-eb*r=0*21.317 = 0 kips Vc - beta * r = 27.499 * 21.317 = 586.2 kips Mb = 0 Me = |Hc * (Beta - BetaBar)j = J115.5*(27.499-23.875)| = 418.7 k-in. Upper Right Brace Gusset Thickness Trvt=1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*FuYL = 2*0.5*0.6'65*1.25*29 = 1414 > 738.7 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2"L"t = 2*29*1.25 = 72.5 in2 Agt = Ant = d*t = 10*1.25 = 12.5 in2 f1/FSmn = d/2i * (0.6 * MintFu * Anv: Fv * Aqv) + Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 72.5; 50 ' 72.5) +1 * 65 * 12.5) = 1 494 > 738.7 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d = 1.1547*29+10 = 43.486 in. Width of Whitmore Section inside gusset boundaries, Lwg = 43.486 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwc'twc) = 738.7/(43.486 * 1.25 + 0 * 0 + 0 * 0.605) = 13.59 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(LwgTFyg + Lwb*twb*Fyb + Lwc*twc*Fyc) - (1/1.67)*(43.486 " 1.25 ' 50 + 0 * 0* 36 + 0 ' 0.605* 50) = 1627 > 738.7 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 28.815 in. Kl/r = Lcr/(t/12°-5) = 28.8157(1.25/3.464) = 79.853 Fe = pi2 *E/(kL*r)2 =3.142 *290.x102 / 79.B532 = 44.887 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe=50/44.887=1.1139 Fcr=0.6581-1139 * Fy = 0.65S11139 *50 = 31.368 ksi Buckling Strength = (1/1.67) *Fcr = 18.783 > 13.59 ksi OK Upper Right Brace Gusset to Column Connection Weld Size = 5/8 in. Weld Length on Each Side of Gusset Plate, L = 46.75 in. Horizontal Force on Welds, H = 115.5 kips Vertical Force on Wetds, V = 586.2 kips Moment on Welds, M = 418.7 k-in. Max. Force on Welds per Unit Length = f - ((H/L+6M/L2 ¥ +(V/L)2 )°-5 ((115.5/46.75+6*418.7/46.752 )2 +(586.2/46 75)2 }° 5 = 13,051 kips/in. Average Force on Welds per Unit Length = fraverage = ((H/L+3M/L2 )2 +(V/L)2)° 5 ((115.5/46.75+3*41 S.7/46.752 )2 +(586.2/46 75)2)°-5 = 12.903 kips/in. Maximum useful weld size = 0.707 * Min(Fug * tg; 2*Fuc*tf) / Fexx = 0.707 * Min(65 * 1.25; 2*65 * 0.99)770 DESCONBRACE-ASP JJcensed to: Desert _Eagte_Eqgineerinq LLC- Pape: 2 Ventana Real @ Base PI (Frame 51 (E-W1 (2-25-06) = 0.8206 in. Use Richard Factor, Rf = 1.4 Required Wetd Size, w = maxffr, Rf fraverage)/((1/2)*0.6*1.414*Fexx) = max(13.051, 1.4 * 12.9Q3)/((1/2)*0.6*1.414 * 70) = 0.6084 in. Try 5/8 in. weld Minimum Weld size = 0.3125 < 0.625 in. (OK) Effective sup. thick.: tse = tf=0.99in. Useful weld size: wu = Min((1/2)"0.6 * tg * Fup; 2 * (1/2}*0.6 * tse * Fuc) / (2*0.707*(1/2)*0.6'Fexx) = Min«1/2)*0.6 * 1.25 * 65; 2 * (172)*0.6 * 0.99 * 65) 7 (2*0.707*(1/2)*0.6* 70) = 0.8209 > w_required = 0.6084 in. (OK) Plate and column develop the required weld capacity. (OK) Column Local Stresses for Upper Right Brace Column Web Local Yielding: Gusset, RColumn = ((H+3*M/N)2 + (1.73*V)2 )c 15.5+3*418.7/47.25)2 + (1.73*586.2)2)0-5 =102 Force from Gusset, RColumn = ((H+3*M/N)2 + (1.73*V)2 )°-5 = ((115.5+3*418.7/47.25)2 + (1.73*586.2)2)0-5 =1021 kips Required Web Thickness = RColumn / ((1/1.5) * Fy * (N+5*k)) = 1021 / ((1/1.5) * 50 * (47.25 +5*1.49)) = 0.5598 in. < 0.605 in. (OK) Column Web Crippling; Force from Gusset, RColumn = H+3*M/N = 115.5 kips Allowable Strength, (1/FS)Rn: = (1/2)*0.4 * E6-5 * tw2 *(1+4'(N/d)*(tw/tf)1 5)*(Fy*tf/tw)°-5 = (1/2)*0.4 ' 170.3 * 0.6052*(1+4*(47.25/10.84) •(0.605/0.99)1 5 )*(50*0,99/0.605)°-5 = 1052 kips > 115.5 kips (OK) Upper Right Brace Gusset to Base Plate Connection Weld Size = 7/16 in. Horizontal Force on Welds, Hb = 334. kips Vertical Force on Wetds, Vbm = 0 kips Moment on Welds, M = 0 k-in. Weld Length on Each Side of Gusset Plate, L = 36.015 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/(L2))2 +(H/L)2)0'5 = ((0/36.015 + 3* 0/(36.0152))'? + (334./36.015)2)05 = 9.2737 kips/in. fr = fraverage Maximum useful weld size = 0.7072 " Fu* 17 Fexx = 0.7072*65*1.25/70 = 0.8209 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rf*f_;avrg;f_peak)/((1/2)"0.6*1.41*Fexx) = 12.983/((1/2)*0.6*1.41*70) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real @ Base PI (Frame 5) (E-W) (2-25-06) = 0.4372 in. Use 7/16 in. Weld Design is incomplete or not satisfactory^T~ --*.*.-.*.*.'.*,*-*.--END-*-*-*-*-*-*-*-*-*-*-* DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ Base PI (Frame 5) (E-W) (2-25-06) : 1-304/1 3'-11 1/4 Plate: 2" in. PL 3'-11 7/8" in. Long - A572-50 {Design of the Base Plate and its connection to the column is beyond the scope of Descon Brace.) Scale: 3/8" = 1' DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ Base PI (Frame 5) (E-W) (2-25-06) Gusset PL on Web BASIC DESIGN DATA Column: Size: W1 0X77 Material: A992 Orientation: Web Out of Plane Axial Force: 0 kips Shear Force: 0 kips Baseplate: Length: 55.559 in. Thickness: 2 in, Material: A572-50 Design of the Base Plate and its connection to the column is beyond the scope of Descon Brace. Upper Right Brace: Size: HSS1 0X1 0X5/8 Material: A500-B-46 • Axial Force: 738.7 kips Work Point X: 0 in. Work Point Y: 1 in. Rise/Run: 1.304/1 Bolt Edge Distance: 1.5 in, Gusset Plate: Material: A572-50 Column Side Length: 41.25 in. Base Plate Side Length: 41.716 in. Brace Side Length: 13 in. Column Side Free Edge: x= 33.523 in., y= 13.491 in. Base Plate Side Free Edge; x= 2.1227 in., y= 46.83 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -28 in. Upper Right Brace to Gusset Connection Brace Force = 738.7 kips Brace to Gusset Weld Size = 5/8 in. (Use 0.5625 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 28 in. Weld Size = 5/8 > Minimum Weld Size - 1/4 in. (OK) Weld Allowable Strength: (1/FSmn = R*4*M/21*0.6*Fexx*0.707*w*L = 1*4*(1/2)*0.6*70*0,707*Q.5625*28 = 935.4 > 738.7 kips (OK) Maximum Weld Force Brace Can Develop: ft/FS)Rn = 4*11/1.5) * 0.6*Fv*t*L - 4*(1/1 .5) * 0.6*46 * 0.581 * 28 = 1 197 > 738.7 kips (OK) Check Upper Right Brace Tension Yielding ofjhe Brace: CUFSlRn = (1/1.67)* Fv * Ad = {1/1. 67)* 46* 21 . = 578.4 < 738.7 kips (NG) />/CU Tension Rupture of the Brace: - 19.475 in2 x = ((B or H)2 + 2'B*H)/(4*(B + H)) = (102 + 2* 10 * 10)/(4*(10 + 10}) = 3.75 in. U = 1 - (x/L) < 0.9 = 1 - (3.75 / 28) < 0.9 = 0.8661 Ae = U*An = 0.8661 * 19.475 = 16.867 in2 t1/FSmn-(1/2l'Fu*Ae = {1/2)* 58* 16.867 *489.1< 738.7 kips Upper Right Brace Gusset Dimensions: Column Side, Lgc = 41.25 in. Base Plate Side, Lgb = 41.716 in. Base Plate Side Free Edge, Lvfx = 2.1227 in. Base Plate Side Free Edge, Lvfy = 46.83 in. Column SkJe Free Edge, Lhfx = 33.523 in. Column Side Free Edge, Lhfy = 13.491 in. Upper Right Brace rGuggetiE_dae_gp_rces: Special case: 1 Theta = 37.484 Degrees, eb = 0 in. ec = 0 in. Beta = 23.066 in. BetaBar = 20.875 In. AlpnaBar ~ 20.422 in. Alpha = (Beta + eb)*Tan(Theta) - ec = (23.066 + 0)*Tan(37.484) - 0 = 17.688 in. r = Fx / ((Alpha + ec)2 + (beta + eb)2 )° 5 = 738.7 / ((17.688 + O)2 + (23.066 + O)2)05 = 25.414 kips/in. Hb = Alpha * r = 17.688 * 25.414 = 449.5 kips He = ec*r= 0*25.414 = 0 kips = 0 kips Vc = beta * r = 23.066 * 25.414 = 586.2 kips Mb = 0 Mc = 0 Upper Right Brace Gusset Thickness Try t = 1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5*0.6*65*1.25*28 = 1 365 > 738.7 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*28*1.25 = 70 in2 Agf = Ant = d*t = 1 0*1 .25 = 1 2,5 in2 {1/FS)Rn = M/2) ' fO.6 * MinfFu * Anv: Fv * Aavi t Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 70; 50 * 70) + 1 * 65 * 12.5) = 1456 > 738.7 kips (OK) = 21 - 2*(1 .25 + 0.0625 )* 0.581 DESCONBRACE-ASP Licensed to: Desert Eaale Engineering LLC- Paae: 2 Ventana Real @ Base PI (Frame 5) (E-W1 (2-25-061 Gusset PL on Web Check Whttmore Section: Width, Lw = 1.1547*Lweld + d = 1.1547*28+10 = 42.332 in. Width of Whitmore Section inside gusset boundaries, Lwg = 42.332 in. Whitmore Section Stress; fa - Fx/(Lwg*t + Lwb'twb) = 738.7/(42.332* 1.25 +O'O) = 13.96ksi Whitmore Section Yielding: = (1/1.67}-(Lwg*t*Fyg + Lwb*twb*Fyb) = (1/1.67)*(42.332 * 1.25 *50 + 0 * 0* 36) = 1584 > 738.7 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 25.429 in. Kl/r - Lcr/(t/12° 5} = 25.429/(1.25/3.464) = 70.468 Fe = pi2 *E/(kL/r)2 =3.142 *290.x102 / 70.4682 = 57.639 > 0.44"Fy = 0.44*50 = 22 ksi Fy/Fe = 50 / 57.639 = 0.8675 Fcr= 0.658° 8675 *Fy = 0.6580-8675 *50 = 34.777 ksi Buckling Strength = (1/1.67) *Fcr = 20.824 > 13.96 ksi OK Upper Right Brace Gusset to Column Connection Weld Size =11/16 in. Weld Length on Each Side of Gusset Plate, L = 40.75 in. Horizontal Force on Welds, H = 0 kfps Vertical Force on Welds, V = 586.2 kips Moment on Welds, M = 0 k-in. Max. Force on Welds per Unit Length = f = ((H/L+6M/L2)*+(V/L)2)0-5 {(0/40.75+6-0/40.752 )2 +(586.2/40.75)2)° 5 = 14.385 kips/in. Average Force on Welds per Unit Length = fraverage = ((H/L+3M/L2 )2 +(V/L)2 )°-5 ((0/40.75+3-0/40.752 )2 +(586.2/40.75)2)° 5 = 14.385 kips/in. = max(14.385, 1.4 * 14.385)/((1/2)*0.6*1.414 * 70) = 0.6782 in. Try 11/16 in. weld Minimum Weld size = 0.25 < 0.6875 in. (OK) Effective sup. thick.: tse = tw=0.53in. Useful weld size: wu = Min((1/2)*0.6 Mg * Fup; 2 * (1/2)*0.6 * tse * Fuc) / (2*0.707*(1/2)*0.6 * Fexx) = M!n((1/2)"0.6 * 1.25 * 65; 2 * (1/2)*0.6 * 0.53 * 65) / (2*0.707*(1/2)*0.6 * 70) - 0.6961 > w_requlred = 0.6782 in. (OK) Plate and column develop the required weld capacity. (OK) Column Local Stresses for Upper Right Brace /;<£ 5'Tlff' & Column Web Bending and out of Plane Shear: (Warning: In the following calculations the left and right side effects are considered independently. These calculations are provided for information only. JJsjng the parameters in these calculations, the user should evaluate the combination of the.._teft_and. right side effects.) Upper Right Brace Gusset to Base Plate Connection Weld Size = 9/16 in. Horizontal Force on Welds, Hb = 449.5 kips Vertical Force on Welds, Vbm = 0 kips Moment on Welds, M = 0 k-in. Weld Length on Each Side of Gusset Plate, L = 41.216 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/(L2 ))2 + (H/L)2)0-5 = ((0/41.216 + 3*0/(41.2162))2 + (449.5/41.216)2)0'5 = 10.906 kips/in. fr = fraverage Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072*65*1.25/70 = 0.8209 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rf*f avrg;f_peak)/((1/2)*0.6*1.41*Fexx) = 15.269/((1/2)*0.6*1.41'70) = 0.5141 in. Use 9/16 in. Weld Design is incomplete or not satisfactory. Use Richard Factor, Rf = 1.4 Required Weld Size, w =* max(fr, Rffraverage)/((1/2)*0.6*1.414-Fexx) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real @ Base PI (Frame 5) (E-W) (2-25-06) Gusset PL on Web 3'-5 11/16" ge Plate: 2" in. PL 4'-7 9/16" in. Long-_ A572-50 (besign of the Base Plate and its connection to the column is beyond the scope of Descon Brace.) : 1.304/1 3'-5 1/4" Scale: 3/8" = V DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ Base PI (Frames 6, 7 & 8) (E-W) (2-25-06) BASIC DESIGN DATA Column: Size: W1 0X77 Material: A992 Orientation: Web In Plane Axial Force: 0 kips Shear Force: 0 kips Base Plate: Length: 31. 647 in. Thickness: 2 in. Material: A572-50 Design of the Base Plate and its connection to the column is beyond the scope of Descon Brace, Upper Right Brace: Size: HSS8X8X5/8 Material: A500-B-46 Axial Force: 576.9 kips Work Point X:0 in. Work Point Y: 1 in. Rise/Run: t.395/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 42 in. Baseplate Side Length: 28.619 in. Brace Side Length: 11 in. Column Side Free Edge: x= 26.935 in., y= 12.408 in. Base Plate Side Free Edge: x= 7.2562 in., y= 47.999 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -23 in. Upper Right Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length - 4 X 23 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: (1/FS)Rn « R*4*f1/2i*0.6*Fexx*0.707'w*L = 1*4-(1/2)*0.6-70*0.707*0.4375*23 = 597.6 > 576.9 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSlRn = 4*11/1.5) * 0.6*Fv*t*L = 4*(1/1. 5) '0.6-46* 0.581 * 23 = 983.5 > 576.9 kips (OK) Check Upper Right Brace Tension Yielding of the Brace: = f1/1.67l*Fv*Aq = (1/1.67) '46M6.4 * = 451 .7 < 576.9 kips (NG) ///C C , *-y PotTension Rupture of the Brace: , ./* * O r** An = Ag - 2*(Tg+0.0625 )"Tb = 16.4 - 2*(1.25 + 0.0625 )* 0.581 = 14.875 in2 x = ((B or H)2 + 2*B*H)/(4'(B + H» = (82 + 2* 8 * 8)/(4'(8 + 8)) = 3 in. U = 1-(x/L)<0.9 = 1-(3/23)<0.9 = 0.8696 Ae = U*An = 0.8696 * 14.875 = 12.935 in2 f1/FS)Rn = (1/2) * Fu * Ae -(1/2)* 58* 12.935 , = 375.K 576.9 kips (tyfi) Ol£''<> Upper Right Bj^e Gusset Dimensions: Column Side, Lgc = 42 in, Base Plate Side, Lgb = 28.61 9 in. Base Plate Side Free Edge, Lvfx = 7.2562 in. Base Plate Side Free Edge, Lvfy = 47.999 in. Column Side Free Edge, Lhfx = 26.935 in. Column Side Free Edge, Lhfy = 12.408 in. Upper Right Brace Gusset Edge Forces: Gusset edge moments carried by: Base Plate and Column interfaces Theta = 35.635 Degrees, eb = 0 in. ec = 5.3 in. Beta = 20.891 in. BetaBar = 21.25 in. AlphaBar = 9.5736 in. Alpha = (Beta + eb)*Tan(Theta) - ec = (20.891 + 0)-Tan(35.635) - 5.3 = 9.6754 in. 2 ° 5 r = Fx / ((Alpha + ec)2 + (beta + eb)2 )°-5 = 576.9 / ((9.6754 + 5.3)2 + (20.891 + O) = 22.444 kips/in. Hb = Alpha * r = 9.6754 * 22.444 = 217.2 kips He = ec*r= 5.3 '22.444 = 119. kips Vb = eb * r = 0 * 22.444 = 0 kips Vc = beta * r = 20.891 * 22.444 = 468.9 kips Mb = 0 Me = |Hc * (Beta - BetaBar)| = |1 19. * (20.891 -21.25)| = 42.749 k-in. Upper Right Brace Gusset Thickness Trvt=1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2'O.S * 0.6"Fu*t*L = 2'0.5* 0.6*65 -1.25 -23 = 1121 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2'L't = 2'23*1 .25 = 57.5 in2 Agt = Ant = d"t = 8*1 .25 = 10 in2 M/FS)Rn = (1/21 ' (0.6 * Mint Fu * Anv: Fv * Aav) + Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 57.5; 50 - 57.5) +1 * 65 * 10) = 1188 > 576.9 kips (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real @ Base PI (Frames 6. 7 & 8) (E-W) (2-25-061 Check Whitmore Section: Width, Lw= 1.1547*Lweld + d = 1.1547*23 +8 = 34.558 in. Lwo = 0.0407 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 34.517 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwc*twc) = 576.97(34.517 * 1.25 + 0*0 + 0' 0.53) = 13.371 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)"(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(34.517 * 1.25 * 50 + 0 * 0* 36 + 0 • 0.53* 50) = 1292 > 576.9 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 28.541 in. Kl/r - Lcr/(t/1205) = 28.541/(1.25/3.464) = 79.094 Fe = pi2 *E / (kUr)2 - 3.142 *290.x102 / 79.0942 = 45.752 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/45.752 =1.0929 Fcr = 0.6581-0929 * Fy = 0.6581'0929 * 50 = 31.646 ksi Buckling Strength = (1/1.67) *Fcr = 18.95 > 13.371 ksi OK Upper Right Brace Gusset to Column Connection Weld Size = 9/16 in. Weld Length on Each Side of Gusset Plate, L = 41.5 in. Horizontal Force on Welds, H - 119. kips Vertical Force on Welds, V = 468.9 kips Moment on Welds, M = 42.749 k-in. Max. Force on Wekls per Unit Length = f = <(H/L+6M/L2)2+(V/L)2)0-5 ((119./41.5+6*42.749/41.52 )2 +(468.9/41.5) 2)°-5 = 11.694 kips/in. Average Force on Welds per Unit Length = fraverage = ((H/L+3M/L2 )2 +(V/L)2 )°-5 ((119./41.5+3*42,749/41.52 )2 +(468.9/41.5) 2)0.5 = 11.675 kips/in. Maximum useful weld size = 0,707 * Min(Fug * tg; 2*Fuc*tf) / Fexx = 0.707 * Min(65 * 1.25; 2*65 * 0.87)/70 = 0.8206 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(fr, Rf*fraverage)/((1/2)*0.6*1.414*Fexx) = max(11.694, 1.4*11.675)/((1/2)*0.6*1.414 * 70) = 0.5504 in. Try 9/16 in. weld Minimum Weld size = 0.3125 < 0.5625 in. (OK) Effective sup. thick.: tse = tf=0.87in. Useful weld size: wu = Min((1/2)*0.6 * tg * Fup; 2 * (1/2)*0.6 * tse * Fuc) / (2*0.707*(1/2)*0.6 * Fexx) = Min((1/2)*0.6 * 1.25 * 65; 2 * (l/2)"0.6 * 0.87 * 65}/ (2*0.707*(1/2)*0.6 * 70) = 0.8209 > w_required = 0.5504 in. (OK) Plate and column develop the required weld capacity. (OK) Column Local Stresses for Upper Right Brace Column Web Local Yielding: Force from Gusset, RColumn = ((H+3*M/N)2 + (1.73*V)2 )°-5 = ((119.+3*42.749/42)2 + (1.73M68.9)2)0-5 =819.8 kips Required Web Thickness = RColumn / ((1/1.5) * Fy * (N+5*k)) = 819.8 / ((1/1.5) * 50 * (42 +5M.37)) = 0.5035 in. < 0.53 in. (OK) Column Web Crippling: Force from Gusset, RColumn = H+3*M/N = 119. kips Allowable Strength, (1/FS)Rn: = (1/2)*0.4 * E6-5 * tw2 '(1+4-(N/d)*(tw/tf)1 5 )*(Fy*tf/tw)°-5 = (1/2)*0.4 * 170.3 * 0.532 *{1+4*(42/10.6) -(0.53/0.87)1-5)-(50*0.87/0.53)0'5 = 739.8 kips > 119. kips (OK) Upper Right Brace Gusset to Base Plate Connection Weld Size = 5/8 in. Horizontal Force on Welds, Hb = 217.2 kips Vertical Force on Welds, Vbm = 0 kips Moment on Welds, M = 0 k-in. Weld Length on Each Side of Gusset Plate, L= 18.147 in. Average Force on Welds per Unit Length = fraverage = {(WL+3M/0-2 ))2 + (H/L)2 )°-5 = ((0/18.147 +3* 0/(18.1472))2 + (217.2/18.147)2)05 -11.966 kips/in. fr = fraverage Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072*65*1.25/70 = 0.8209 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rff_avrg;f_peak)/((1/2)*0.6*1.41*Fexx) 35CT DESCONBRACE-ASD Licensed to: Desert Eagte Engineering LLC- Page: 3 Ventana Real @ Base PI (Frames 6. 7 & 8) (E-W) (2-25-06) = 16.753/((1/2)*0.6*1.41'70) = 0.5641 in. Use 5/8 in. Weld Design is incomplete or not satisfactojiT t, I DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real @ Base PI (Frames 6, 7 & 8) (E-W) (2-25-06) - 2'-4 5/8" .-K-46 (Slotted) Slope: 1.395/1 jse Plate: 2" in. PL 2'- 7 5/8" in. Long - A572-50 (Design of the Base Plate and its connection to the column is beyond the scope of Descon Brace.) 3'- 6" Scale: 3/8" = V L DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real - @ 2nd Fir (Frames 1 & 3) (N-S) (2-26-06) BASIC DESIGN DATA Beam: Size: W21X68 Material: A992 Upper Right Brace: Size: HSS7X7X1/2 Material: A500-B-46 Axial Force: -408 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.125/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 32.617 in. Beam Side Length: 31.512 in. Brace Side Length: 10 in. Column Side Free Edge: x= 31.695 in., y= 0 in. Beam Side Free Edge: x= 7.6568 in., y= 25.974 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22 in. Lower Right Brace: Size: HSS8X8X5/8 Material: A500-B-46 Axial Force: -576.9 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.25/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Rise/Run: 1.25/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 33.759 in. Beam Side Length: 30.195 in. Brace Side Length: 11 in. Column Side Free Edge: x= 28.416 in., y= 0 in. Beam Side Free Edge: x= 6.8105 in., y= 26.887 in. Thickness: 1.5 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22.25 in. Upper Left Brace: Size: HSS7X7X1/2 Material: A500-B-46 Axial Force: 408 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.125/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 32.618 in. Beam Side Length: 31.512 in. Brace Side Length: 10 in. Column Side Free Edge: x= 31.695 in., y= 0 in. Beam Side Free Edge: x= 7.6568 in., y= 25.974 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22 in. Lower Left Brace: Size: HSS8X8X5/8 Material: A500-B-46 Axial Force: 576.9 kips Work Point X: 0 in. Work Point Y: 0 in. Material: A572-50 Column Side Length: 33.759 in. Beam Side Length: 30.195 in. Brace Side Length: 11 in. Column Side Free Edge: x= 28.416 in., y= 0 in. Beam Side Free Edge: x= 6.8105 in., y= 26.887 in. Thickness: 1.5 in. Setback from Column: 0 in. Bott Edge Distance: 1.75 in. Gusset-Brace Gap: -22.25 in. Upper Right Brace to Gusset Connection Brace Force = 408 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FS)Rn = R*4*(1/2l*0.6*Fexx*0.707*w*L = 1*4*<1/2)*0.6*70*0.707'0.3125*22 = 408.3 > 408 kips (OK) Maximum Weld Force Brace Can Develop: f 1/FS)Rn = 4*(1/1.51 * 0.6'Fv*t*L = 4*(1/1.5) * 0.6*46 * 0.465 * 22 = 752.9 > 408 kips (OK) Check Upper Right Brace Tension Yielding of the Brace: (1/FS)Rn = (1/1.67) *Fv*Ag = (1/1.67)*46M1.6 = 319.5 < 408 kips (N^) A/C-l, ly- / 3 -" Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 11.6 - 2*(1.25 + 0.0625 )* 0.465 = 10.379 in2 x = ((B or H)2 + 2'B'H)/(4*(B + H)) = (72 + 2* 7 * 7)/(4*(7 + 7)) = 2.625 in. U = 1 -(x/L)<0.9 = 1-(2.625/22)<0.9 = 0.8807 Ae = U'An = 0.8807 * 10.379 = 9.1409 in2 M/FSlRn = (1/2) * Fu * Ae = (1/2)* 58* 9.1409 = 265 < 408 kips Upper Right Brace Gusset Dimensions: (See Sketch) Upper Right Brace Gusset Edge Forces: Theta = 41.634 Degrees Vb = P*Cos(Theta) = (-408) * 0.7474 = (-304.9) kips Hb = P*Sin(Theta) = (-408) * 0.6644 = (-271) kips (See below for combination of left and right side brace forces.) Upper Right Brace Gusset Thickness DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC~ Page: 2 Ventana Real - @ 2nd Fir (Frames 1 & 3) (N-S) (2-26-06) Trvt=1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2-0.5' 0.6-Fu*t'L = 2*0.5' Q.6'65' 1.25*22 = 1073 > 408 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22*1.25 = 55 in2 Agt = Ant = d*t = 7*1.25 = 8.75 in2 M/FSlRn = f1/2)' <0.6 * MinfFu * Anv: Fv ' Aqvl + Ubs*Fu*AnO = 0.5 * (0.6*Min(65 * 55; 50 * 55) + 1 * 65 * 8.75) = 1109 > 408 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d = 1.1547*22 +7 = 32.403 in. Lwo = 0.8452 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 31.558 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc*twc) = 408/(31.558 * 1.25 + 0 * 0.43 + 0*0) = 10.343 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg't*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*<31.558 * 1.25 * 50 + 0 * 0.43* 50 + 0 * 0* 0) = 1181 > 408 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2). Lcr = 20.636 in. Kl/r = Lcr/(t/1205 ) = 20.636/(1.25/3.464) = 57.185 Fe = pi2 *E/(kl_/r)2 =3.142 *290.x102 / 57.1852 = 87.525 >0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/87.525 = 0.5713 Fcr = 0.658° 5713 * Fy = 0.65805713 * 50 = 39.367 ksi Buckling Strength = (1/1.67) *Fcr = 23.573 > 10.343 ksi OK Lower Right Brace to Gusset Connection Brace Force - 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22.25 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: f1/FS)Rn - S'4*n/21*0.6*Fexx'0.707*w*L = 1'4*(1/2)-0.6*70*0.707'0.4375*22.25 = 578.1 > 576.9 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSlRn = 4*(1/1.S) * 0.6*Fv*t*L = 4*(1/1.5)* 0.6*46* 0.581 * 22.25 = 951 .4 > 576.9 kips (OK) Check Lower Right Brace Tensjon^yjeldinq of the_Brace: (1/FSlRn = (1/1.67l'Fv'Aa = (1/1 .67) M6 '16.4 = 451.7<576.9kipsJMG) WCl. Tenston Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )Tb.. = 16.4 - 2*(1 .5 + 0.0625 )* 0.581 = 14.584 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (82 + 2* 8 * 8)/(4*(8 + 8)) = 3 in. U=1 -(x/L)<0.9 = 1-(3/ 22.25) <0.9 = 0.8652 Ae = U*An = 0.8652 * 14.584 = 12.618 in2 f1/FSlRn = (1/2) ' Fu * Ae = (1/2) •58*12.618 f = 365.9 < 576.9 kips (ytif OX <** •io' Lower Right Brace Gusset Dimensions: (See Sketch) Lower Right Brace Gusset Edge Forces: Theta = 38.66 Degrees Vb = P'Cos(Theta) = (-576.9) * 0.7809 = (-450.5) kips Hb = P*Sin(Theta) = (-576.9) " 0.6247 = (-360.4) kips (See below for combination of left and right side brace forces.) Lower Right Brace Gusset Thickness Trvt=1 1/2" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5-0.6-65-1.5-22.25 - . • = 1 302 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22.25*1.5 = 66.75 in2 Agt = Ant = d*t=8-1.5 = 12in2 f1/FS)Rn = (1/2) * (0.6 * MinfFu * Any; Fv ' Aqvl + Ubs * Fu * Anti = 0.5 * (0.6-Min(65 * 66.75; 50 * 66.75) + 1 * 65 * 12) = 1391 > 576.9 kips (OK) Check Whitmore Section; Width, Lw= 1.1547*Lwe1d + d = 1.1547*22.25 + 8 = 33.692 in. Lwo = 1.2314 in. of Lw is outside the gusset free edge. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real - @ 2nd Fir (Frames 1 & 3) (N-S) (2-26-06) ' Width of Whitmore Section inside gusset boundaries, Lwg = 32.461 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc'twc) = 576.97(32.461 * 1.5 + 0 * 0.43 + 0*0) = 11. 848 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1 .67)*(32.461 * 1 .5 * 50 + 0 * 0.43* 50 + 0 * 0' 0) = 1458 > 576.9 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 19.899 in. Kl/r= Lcr/(t/12°-5) = 19.899/(1. 5/3.464) = 45.954 Fe = pi2 *E / (kUr)2 = 3.142 *290.x102 / 45.9S42 = 1 35.5 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50 / 135.5 = 0.3689 Fcr = 0.6580-3689 * Fy = 0.658° 3689 " 50 = 42.846 ksi Buckling Strength = (1/1.67) *Fcr = 25.656 > 11. 848 ksi OK Upper Left Brace to Gusset Connection Brace Force = 408 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FSlRn = ft*4*MJ2P0.6*Fexx*0.70rWL = 1M*(1/2)*0.6*70*0.707*0.3125*22 = 408.3 > 408 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSmn = 4*11/1.5) * 0.6*Fv*t*L - 4*(1/1.5) * 0.6*46 * 0.465 * 22 = 752.9 > 408 kips (OK) Check Upper Left Brace Tension Yielding of the Brace: -[1/1.67)*46M1.6 ,= 319.5 < 408 kips (N^ Tension Rupture of the Brace: An = Ag - 2*{Tg+0.0625 )*Tb = 1 1 .6 - 2*(1 .25 + 0.0625 )' 0.465 = 10.379 in2 x = ((B or H)2 + 2*B*H)/(4*(B + HJ) = (72 + 2' 7 * 7)/(4*(7 + 7)) = 2.625 in. U=1-(x/L)<0.9 = 1 - (2.625 / 22) < 0.9 = 0.8807 Ae = U*An = 0.8807 * 10.379 = 9.1409 in2 (1/FS)Rn = (1/21 * Fu * Ae = (1/2) • 58 * 9.1409 f = 265 < 408 kips ($) OlC v Upper Left Brace Gusset Dimensions: (See Sketch) Upper Left Brace Gusset Edge Forces: Theta = 41.634 Degrees Vb = P*Cos(Theta) = 408 * 0.7474 = 304.9 kips Hb = P*Sin(Theta) = 408* 0.6644 = 271 kips Combined Forces: H = HbRight - HbLeft = (-271) - 271 = (-542.1) kips V = VbRight + VbLeft = (-304.9) + 304.9 = 0 kips M = eLeft * VbLeft + eRight * VbRight = (-9.3911)*304.9 + 9.3911 * (-304.9) - (-5728) k-in. Upper Left Brace Gusset Thickness Trvt=1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5*0.6*65*1.25*22 = 1 073 > 408 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22*1 .25 = 55 in2 Agt = Ant = d*t = 7*1 .25 = 8.75 in2 (1/FS)Rn = (1/2) * (0.6 * MinfFu * Anv: Fv * Aavi * Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 55; 50 * 55) + 1 * 65 * 8.75) = 1 109 > 408 kips (OK) Check jjVhitmore Section: Width, Lw = 1.1547*Lweld + d = 1.1 547*22 + 7 = 32.403 in. Lwo = 0.8452 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 31 .558 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + LwcTwc) = 408/(31,558 * 1.25 + 0 * 0.43 +0*0) = 10.343 ksi Whitmore Section Yielding: Allowable Strength - (1/1.67)'(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1 .67)*(31 .558 * 1 .25 * 50 + 0 ' 0.43* 50 + 0 * 0* 0) = 1181 > 408 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 20.636 in. Kl/r = Lcr/(t/12° 5 ) = 20.636/(1 .25/3.464) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real - @ 2nd Fir (Frames 1 & 3) (N-S) (2-26-06) ^____________ = 57.185 Fe = pi2 -E / (kL/r)2 = 3.142 *290.x102 / 57.1852 = 87.524 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/87.524 = 0.5713 Fcr = 0.6580-5713 * Fy - 0.65805713 * 50 = 39.367 ksi Buckling Strength = (1/1.67) *Fcr = 23.573 > 10.343 ksi OK Fe = pi2 *E / (kUr)2 = 3.142 *290.x102 / 169.62 = 9.9448 < 0.44*Fy = 0.44*50 = 22 ksi Fcr - 0.877 * Fe - 0.877 * 9.9448 = 8.7216 ksi Additional Checks for V-Brace Gusset: Gusset Stresses at Horizontal Section at End of Brace: (Section is at 10.527 in. from beam face.) Normal Stress: Moment, M = | eLeffVbLeft - eRight*VbRight + H*ev| = [9.3911 • 304.9 - 9.3911 * (-304.9) + 542.1 * 10.527 [ = 1l4.3x102 k-in. Stress = V/A+6*M/(L12*t) = 0/(69.231 ' l^ + FM^ 1.25) = 11.452 < 0.9Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 69.231*1.25 ~ 86.538 in2 Vn = 0.6 ' Fy * Ag = 0.6 * 50 * 86.538 = 2596 kips (1/FS)Rn = (1/1.srVn = 1731 > 542.1 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 32.617 in.) Vertical Shear, Vi = VbLett - V/2 = 304.9 kips Horizontal Force, Hi = HbLeft - H/2 = 0 kips Moment, Mi = VbLett*eLeft + Hi*(LW2) - M/2- V*L / 8) = (-0.0008) k-in. Normal Stress: = Hi/A + 6*Mi/(Lv2 *t) = 0/(32.617* 1.25) + 6*0.0008/(32.6172 M.25) = 0<0.6Fy = 29.94ksiOK Shear Yielding: Ag - h*t = 32.617*1.25 = 40.772 in2 Vn = 0.6 ' Fy * Ag = 0.6 * 50 * 40.772 = 1223 kips (1/FS>Rn = M/1.Sl*Vn - 815.4 > 304.9 kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 51.016 in. UseK=1.2 Fe = pi2 *E / (kUr)2 = 3.142 *290.x102 / 169.62 = 9.9448 < 0.44'Fy = 0.44*50 = 22 ksi Fcr = 0,877 * Fe = 0.877 * 9.9448 = 8.7216 ksi (1/FS)Fcr = M/1.671*0 * 5.2225 > 0 ksi OK User turned off gusset edge buckling criteria. Upper Gusset to Beam Connection Horizontal Force on Welds, H = 542.1 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M - \ eLefTVIett - eRight*Vright I = Abs(9.391 1 * 304.9 - 9.391 1 * (-304.9)) = 5728 k-in. Length of Welds, L = 63.024 in. Max. Force on Welds per Unit Length = f - ((V/L+6M/L2 )2 +(H/L)2 )° 5 = ((0/63.024+6-5728/63.0242 )2 +(542.1/63.024)2 )° 5 • = 12,2 kips/in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/L2 )2 +(H/L)2 )° 5 = ((0/63.024+3*5728/63.0242)2 +(542.1/63.024)2)05 = 9.6283 kips/in. Maximum useful weld size = (1/2)*0.6 * Fu * t / ((1/2)*0.6*1,414*Fexx) = (1/2)*0.6 * Min(1.25 * 65; 2 * 0.685 * 58) / ((1/2)*0.6*1.414 * 70) = 0.8028 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w - max(Rf *fav, f)/((1/2)'0.6*1 .41 4*Fexx) = 13.48/((1/2)*0.6*1.414'70) - 0.454 in. Minimum Weld Size = 1/4 in. Use 1/2 in. Weld Beam j/Veb Local Yielding: Force from Gusset, R = ((1 .73*H)2 + (V+3M/L)2 )° 5 = ((1.73*542.1)2 + (0+3*5728/63.024)2)65 = 976.7 kips Required Web Thickness = R / ((1/1 .5) * Fy * L) = 976.7 / ((1/1 .5) * 50 * 63.024) = 0.4649 > 0.43 in. (MJ3) Beam Web Crippling: Force from Gusset,R = V+3M/L = 0+3*5728/63.024 = 272.6 kips (1/FSjRn = (1/2)' 0.8 * E^- = (1/2) *0.8* 170.3 -0.432*(1+3*(63.024/21.13n0.43/0.685)1'5)*(50-0.685/0.43)0 5 = 612.7 > 272.6 kips (OK) Lower Left Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld Size = 1/2 in (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22.25 in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 5 Ventana Real - @ 2nd Fir (Frames 1 & 3) (N-S) (2-26-06) Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: f1/FS)Rn = BM*f1/2)*0.6*Fexx'0.707*w*L = 1*4*(1/2)*0.6*70*0.707'0.4375*22.25 = 578.1 > 576.9 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSlRn = 4*(1/1.51 ' 0.6*Fv*t*L = 4'(1/1.5) ' 0.6*46 * 0.581 * 22.25 = 951. 4 > 576.9 kips (OK) Check Lower Left Brace Tension Yielding of the Brace: = (1/1.67)* 46* 16.4 = 451 .7 < 576.9 kips Tension Rupture of the Brace: . An = Ag - 2*09+0.0625 )*Tb = 16.4 - 2*(1 .5 + 0.0625 )* 0.581 - 14.584 in2 x = ((B or H)2 + 2*B*H)/(4'(B + H)) = (82 + 2* 8 * 8)/(4*(8 + 8)) = 3 in. U=1-(x/L)<0.9 M - (3 / 22.25) < 0.9 * 0.8652 Ae = U-An = 0.8652 * 14.584 = 12.618 in2 (1/2)* 58* 12.618 365.9 < 576.9 kips (tjfS) Lower Left Brace Gusset Dimensions: (See Sketch) Lower Left Brace Gusset Edge Forces: Theta = 38.66 Degrees Vb = P'Cos(Theta) = 576.9 * 0.7809 = 450.5 kips Hb = P*Sin(Theta) - 576.9 - 0.6247 = 360.4 kips Combined Forces: H = HbRight - HbLeft = (-360.4) - 360.4 = (-720.8) kips V = VbRight + VbLeft = (-450.5) + 450.5 = 0 kips M = eLeft * VbLeft + eRight * VbRight ' = (-8.452)* 450.5 + 8.452 * (-450.5) = (-7615) k-in. Lower Left Brace Gusset Thickness Trvt=* 1 1/2" Maximum Brace Weld Force Gusset Can Develop: *= 2*0.5 * 0.6"Fu*t*L = 2*0.5*0.6*65*1.5*22.25 = 1 302 > 576.9 kips (OK) Block Shear of Gusselat jiracg: Agv = Anv = 2*L"t = 2*22.25*1.5 = 66.75 in2 Agt = Ant = d*t = 8*1 .5 - 1 2 in2 H/FSlRn = f1/2> * (0.6 * MinfFu * Anv: Fv ' Agvl + Ubs ' Fu ' Ant) = 0.5 * (0.6*Min(65 * 66.75; 50 * 66.75) + 1 * 65 * 12) = 1391 > 576.9 kips (OK) Checjc Whijmore Section: Width, Lw = 1.1547*Lweld + d = 1.1547*22.25+ 8 = 33.692 in. Lwo= 1.2314 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 32.461 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwctwc) = 576.9/(32.461 * 1.5 + 0 * 0.43 + 0*0) = 11.848 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = {1/1.67)*(32.461 * 1.5 * 50 + 0 * 0.43* 50 +. 0 * 0* 0) = 1458 > 576.9 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 19.899 in. Kl/r= Lcr/(t/1205) = 19.899/(1.5/3.464) = 45.954 Fe = pi2 *E/(kL/r)2 =3.142 *290.x102 /45.9S42 = 135.5 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe= 50/135.5 = 0.3689 Fcr = 0.6580'3689 * Fy = 0.6580-3689 * 50 = 42.846 ksi Buckling Strength = (1/1.67) *Fcr = 25.656 > 11.848 ksi OK Fe = pi2 *E/(kL/r)2 =3.142 *290.x102 /125.52 = 18.182 < 0.44-Fy = 0.44*50 - 22 ksi Fcr= 0.877*Fe = 0.877* 18.182 = 15.946 ksi Additional Checks for V-Brace Gusset: Gusset Stresses at Horizontal Section atj-nd of Brace: (Section is at 10.45 in. from beam face.) Normal Stress: Moment, M = | eLefTVbLeft - eRight*VbRight + H'ev | = |8.452 ' 450.5 - 8.452 * (-450.5) + 720.8 * 10.45 | = 151.5x102 k-in. Stress = V/A + 6*M/(L12*t) = 0/(65.684 * 1.5) + 6*151.5x102/(65.6842 * 1.5) = 14.043 < 0.9Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 65.684*1.5 = 98.526 in2 Vn = 0.6 * Fy * Ag = 0.6 * 50 * 98.526 = 2956 kips (1/FStRn = f1/1.srVn = 1971 > 720.8 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 33.759 in.) Vertical Shear, Vi = VbLeft - V/2 = 450.5 kips Horizontal Force, Hi = HbLeft - H/2 = (-0) kips Moment, Mi = VbLefTeLeft + Hi*(Lv/2) - M/2- V*L / 8) = 0.0058 k-in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 6 Ventana Real - @ 2nd Fir (Frames 1 & 3) (N-S) (2-26-06) Normal Stress: = Hi/A + 6*Mi/(Lv2 1) = 0/(33.759 * 1 .5) + e-O.OOSS/fSS.TSS2 * 1 .5) = 0 < 0.6Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 33.759'1 .5 = 50.639 in2 Vn = 0.6 * Fy * Ag = 0.6*50*50.639=1519 kips (1/FSlRn = M/1.51*Vn = 1013 > 450.5 kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 45.275 in. UseK=1.2 Fe=pi2 *E/(kUr)2 =3.142 *290.x102 / 125.52 = 18.182<0.44*Fy = 0.44*50 = 22 ksi Fcr= 0.877 *Fe = 0.877 '18.182 = 15.946 ksi (1/FSlFcr = M/1.671'0 - 9.5484 > 0 ksi OK User turned off gusset edge buckling criteria. Lower Gusset to Beam Connection Horizontal Force on Welds, H = 720.8 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M = | eLeft*Vleft - eRighfVright | = Abs(8.452 * 450.5 - 8.452 * (-450.5)) = 7615k-in. Length of Welds, L = 60.39 in. Max. Force on Welds per Unit Length = f = ((V/L+6M/L2 )2 +(H/L)2 )° 5 ((0/60.39+6-761 5/60.392 )2 +(720.8 /60.39)2)0-5 = 17.303 kips/in. Average Force on Welds per Unit Length = fraverage = ((WL+3M/L2)2+(H/L)2)05 ((0/60.39+3*7615/60.392 )2 +(720.8 /60.39)2)0-5 = 13.479 kips/in. Maximum useful weld size = (1/2)*0.6* Fu * t/ ((1/2)*0.6*1.414*Fexx) = {1/2)*0.6 * Min(1 .5 * 65; 2 * 0.685 * 58) / ((1/2)'0.6*1.414*70) = 0.8028 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(Rf *fav, f)/((1/2)*0.6*1.414*Fexx) =* 18.871/((1/2)*0.6*1.414*70)s 0.6355 in. Minimum Weld Size = 1/4 in, Use 11/16 in. Weld Beam Web Local Yielding: Force from Gusset, R = ((1.73'H)2 + (V+3M/L)2 )°-5 = ((1.73-720.8)2 + (0+3*7615/60.39)2)°'5 = 1303 kips Required Web Thickness = R / {(1/1 .5) * Fy * L) = 1303/((1/1.5}*50*60.39) - 0.6473 > 0.43 in. (Nfi) &£. u fa iff. Beam Web .Criepffng: Force from Gusset.R = V+3M/L = 0+3*7615/60.39 = 378.3 kips (1/FSmn • (1/21* 0.8 * E^- *tw^-*f 1 +3*f = (1/2) *O.B' 170.3 -0.432 *(1 +3*(60.39/21 . 1 3)*(0.43/0.685)1 5 )* (50*0.685/0.43)° , = 591. 7 > 378.3 kips (OK) Design is incomplete or nett satisfactory.^~ -.•_*.*_«_*-*-*-*-*-*-END-*-*-*-*-*-*-*-*-*-*-* DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 7 Ventana Real - @ 2nd Fir (Frames 1 & 3) (N-S) (2-26-06) HSS7X7X1/2 - A500-&46 (Started) Slope: 1.1 ""y^lfeftWfe -'1^{?6-46 (Sotted) Slope; 1.125/1 HSSSXBX5/S - A500«46 (SloH :aXBX5/B - AMO-B-46 (Slotted) Slope: 1.25/1 A5TZ-40 Scale: 1/4" = 1' DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real - @ 2nd Fir (Frames 2 & 4) (N-S) (2-26-06) BASIC DESIGN DATA Beam: Size:W21X68 Material: A992 Upper Right Brace: Size: HSS7X7X1/2 Material: A500-B-46 Axial Force: -408 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1,039/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 32.288 in. Beam Side Length: 33.243 in. Brace Side Length: 10 in. Column Side Free Edge: x= 34.305 in., y= 0 in. Beam Side Free Edge: x= 8.2669 in., y= 25.354 in. Thickness: 1 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22 in. Lower Right Brace: Size: HSS8X8X5/8 Material: A500-B-46 Axial Force: -576.9 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.154/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 33.548 in. Beam Side Length: 31.87 in. Brace Side Length: 11 in. Column Side Free Edge: x= 30.949 in., y= 0 in. Beam Side Free Edge: x= 7.3914 in., y= 26.345 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22.25 in. Uboer Left Brace: Size: HSS7X7X1/2 Material: A500-B-46 Axial Force: 408 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.039/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-5Q Column Side Length: 32.288 in. Beam Side Length: 33.243 in. Brace Side Length: 10 in. Column Side Free Edge: x= 34.305 in., y= 0 in. Beam Side Free Edge: x= 8.2669 in., y= 25.354 in. Thickness: 1 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22 in. Lower Left Brace: Size: HSS8X8X5/8 Material: A500-B^46 Axial Force: 576.9 kips Work Point X:0 in. Work Point Y: 0 in. Rise/Run: 1.154/1 Bolt Edge Distance: 1 .5 in. Gusset Plate: Material: A572-50 Column Side Length: 33.548 in. Beam Side Length: 31.87 in. Brace Side Length: 11 in. Column Side Free Edge: x= 30.949 in., y= 0 in. Beam Side Free Edge: x= 7.3914 in., y= 26.345 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1 .75 in. Gusset-Brace Gap: -22.25 in. Upper Right Brace to Gusset Connection Brace Force = 408 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) - . Brace to Gusset Weld Length = 4 X 22 in... Weld Size = 3/8 > Minimum Weld Size = 3/1 6 in. (OK) Weld Allowable Strength: M/FSmn = B*4*(1/2l*0.6'Fexx*0.707*w*L = 1*4'(1/2)*0.6*70*0.707*0.3125*22 = 408.3 > 408 kips (OK) Maximum Weld Force Brace Can Develop: f1/FS)Rn = 4*f1/1.5) * 0.6*Fv*t*L = 4*(1/1.5) * 0.6*46 * 0.465 * 22 = 752.9 > 408 kips (OK) Check Upper Right Brace Tension Yielding of the Brace: M/FSlRn = (1/1.671 *Fv* Ad = (1/1 .67) -46 -11. 6 = 319.5 < 408 kips Tension Rupture of the Brace: An = Ag - 2'(Tg+0.0625 )*Tb = 1 1.6- 2*(1 + 0.0625)* 0.465 = 10.612 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (72 + 2* 7 ' 7)/(4*(7 + 7)) - 2.625 in. U=1-(x/L)<0.9 = 1 - (2.625 / 22) < 0.9 - 0.8807 Ae = U*An = 0.8807 * 10.612 = 9.3457 in2 OIL = (1/2) ' 58 * 9.3457 = 271 < 408 kips Upper Right Brace Gusset Dimensions: (See Sketch) Upper RightBrace Gusset Edge Forces: Theta = 43.904 Degrees Vb = P*Cos(Theta) = (-408) * 0.7205 = (-294.) kips Hb = P*Sin(Theta) = (-408) * 0.6935 = (-282.9) kips (See below for combination of left and right side brace forces.) Upper Right Brace Gusset Thickness DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real - @ 2nd Fir (Frames 2 & 4) (N-S) (2-26-06) Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t"L - 2*0.5 * 0.6*65 * 1 * 22 = 858 > 408 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22*1 = 44 in2 Agt = Ant = d*t = 7*1 = 7 in2 (1/FSlRn - (1/21 * (0.6 * MinfFu ' Anv: Fv * Aqvl + Ubs * Fu ' Ant> = 0.5 * (0.6*Min(65 * 44; 50 * 44) + 1 * 65 * 7) = 887.5 > 408 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lwetd +,d = 1.1547*22 + 7 = 32.4b3in. Lwo = 0.5452 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg - 31.858 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwc'twc) = 408/(31.858 * 1 + 0 * 0.43 + 0*0) = 12.807 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(LwgTFyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(31.858 * 1 * 50 + 0 * 0.43* 50 + 0 *0*0) = 953.8 > 408 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 21.602 in. Kl/r = Lcr/(t/12°-5) = 21.602/( 1/3.464) = 74.828 Fe = pi2 *E/(kUr)2 =3.142 *290.x102 / 74.S282 = 51.118>0.44*Fy=0.44*50 = 22 ksi Fy/Fe = 50/51.118 = 0.9781 Fcr= 0,658° 9781 ' Fy = 0.658° 9781 *50 = 33.203 ksi Buckling Strength = (1/1.67) *Fcr = 19.882 > 12.807 ksi OK Lower Right Brace to Gusset Connection Brace Force - 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Wetd Length = 4 X 22.25 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: (1/FSlRn = B'4*<1/2)*0.6*Fexx*0.707'w'L ~ 1 *4*(1/2)*0.6*70*0.707*0.4375*22.25 = 578.1 > 576.9 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSmn - 4*(1/1.S1 ' 0.6'Fv*t*L = 4*(1/1.5) • 0.6*46 '0.581 * 22,25 = 951 .4 > 576.9 kips (OK) Check Lower Right Brace Tension Yielding of the Brace: = (1/1.67) M6* 16.4 . = 451.7 < 576.9 kips (tjG) frfC Tension Rupture of the Brace: An = Ag - 2*<Tg+0.0625 )*Tb = 16.4 - 2*(1.25 + 0.0625 )* 0.581 = 14.875 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (82 + 2* 8 * 8)/(4*(8 + 8)) = 3 in. U = 1-(x/L)<0.9 = 1-(3/22.25)<0.9 = 0.8652 Ae = U*An = 0.8652 * 14.875 = 12.869 in2 f1/FSlRnsf1/2l'Fu'Ae = (1/2) * 58 * 12.869 / , ^ '/,* 6\ I ' <> = 373.2 < 576.9 kips (NG) Q£ &/&.&'' Kf Lower Right Brace Gusset Dimensions: (See Sketch) Lower Right Brace Gusset Edge Forces: Theta = 40.91 1 Degrees Vb = P'CosfTheta) = (-576.9) * 0.7557 = (-436.) kips Hb = P*Sin(Theta) = (-576.9) * 0.6549 = (-377.8) kips (See below for combination of left and right side brace forces.) Lower Right Brace Gusset Thickness Trvt=1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5*0.6*65*1.25*22.25 = 1 085 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22.25*1 .25 = 55.625 in2 Agt = Ant = d*t = 8*1 .25=10 in2 (1/FSlRn = (1/2) ' fQ.6 ' MinfFu * Anv: Fv * Aavl + Ubs ' Fu * Ant) = 0.5 * (0.6*Min{65 * 55.625; 50 * 55.625) + 1 * 65 * 10) = 1159> 576.9 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d = 1.1547'22.25 + 8 = 33.692 in. Lwo = 0.8578 in. of Lw is outside the gusset free edge. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real - @ 2nd Fir (Frames 2 & 4) (N-S) (2-26-06) Width of Whitmore Section inside gusset boundaries, Lwg = 32.834 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc*twc) = 576.9/(32.834 * 1 .25 + 0 * 0.43 + 0*0) = 14.056 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg't'Fyg + Lwb*twb*Fyb + Lwc*hvc*Fyc) = (1/1 .67>*(32.834 " 1 .25 * 50 + 0 * 0.43* 50 + 0 * 0* 0) = 1 229 > 576.9 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1 .2), Lcr = 20.851 in. Kl/r = Lcr/(t/12°-5 ) = 20.851/(1.25/3.464) = 57.782 Fe = pi2 *E / (kL/r)2 - 3.142 *290.x102 / 57.7B22 = 85.725 > 0.44'Fy =- 0.44*50 = 22 ksi Fy/Fe = 50 785.725 = 0.5833 For = 0.658° S833 * Fy = 0.6580-5833 * 50 = 39.17 ksi Buckling Strength = (1/1 .67} *Fcr = 23.455 > 14.056 ksi OK Upper Left Brace to Gusset Connection Brace Force = 408 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22 in. Weld Size = 3/8 > Minimum Weld Size - 3/16 in. (OK) Weld Allowable Strength: (1/FS)Rn = B'4*f1/2)*0.6*Fexx*0.707*w*L = 1*4*{1/2)*0.6*7Q*0.707'0.3125*22 = 408.3 > 408 kips (OK) Maximum Weld Force Brace Can Develop: f1/FSlRn = 4'(1/1.5) * 0.6*Fv't*L = 4*(1/1.5) * 0.6*46 • 0.465 * 22 = 752,9 > 408 kips (OK) Check Upper Left Brace Tension Yielding of the Brace: (1/FSlRn = (1/1.67) ' Fv * Aq = (1/1 .67)* 46* 11. 6 , = 319.5 < 408 kips (hfG) Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 11.6-2*(1 + 0.0625 )* 0.465 = 10.612 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (72 + 2* 7 * 7)/(4*(7 + 7)) = 2.625 in. U=1 -(x/L)<0.9 = 1 -(2.625 / 22) <0.9 = 0.8807 Ae = U*An = 0.8807 * 10.612 = 9.3457 in2 (1/FSlRn = (1/2) ' Fu * Ae = 0/2)* 58* 9.3457 = 271 <408 kips Upper Left Brace Gusset Dimensions: (See Sketch) Upper Left Brace Gusset Edge Forcgs: Theta = 43.904 Degrees Vb = P*CosfTheta) = 408 * 0.7205 = 294. kips Hb = P*Sin(Theta) - 408 * 0.6935 = 282,9 kips Combined Forces; H = HbRight - HbLen = (-282.9) - 282.9 = (-565.9) kips V = VbRight + VbLett = (-294.) + 294. = 0 kips M = eLeft * VbLeft + eRight * VbRight = (-10.168)* 294. + 10.168* (-294.) = (-5978) Mn. Upper Left Brace Gusset Thickness Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5 * 0.6*65 * 1 ' 22 = 858 > 408 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22*1 = 44 in2 Agt = Ant = d*t = 7*1 = 7 in2 (1/FSlRn = (1/2) * (0.6 * Mini Fu * Any; Fv ' Aqvl + Ubs ' Fu * Ann = 0.5 ' (0.6*Min(65 * 44; 50 * 44) + 1 * 65 * 7} = 887.5 > 408 kips (OK) Check Wh'rtmore Section: Width, Lw = 1.1547*Lwe!d + d = 1.1547*22 + 7 = 32.403in. Lwo = 0.5452 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 31.858 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwc'twc) = 408/(31 .858 * 1 + 0 * 0.43 + 0*0) = 12.807 ksi Whitmore Section Yielding: Allowable Strength = (1/1 .67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(31.858 * 1 * 50 + 0 * 0.43* 50 + 0 * 0* 0) = 953.8 > 408 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1 .2), Lcr = 21 .601 in. Kl/r = Lcr/(t/12°-5 ) = 21.601/0/3.464) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real - @ 2nd Fir (Frames 2 & 4) (N-S) (2-26-06) • . . = 74.828 Fe = pi2 -E/(kL/r)2 =3.142 *290.x102 / 74.S282 = 51.118>0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/51.118 = 0.9781 Fcr = 0.658° 9781 * Fy = 0.6580-9781 *50 = 33.203 ksi Buckling Strength = (1/1.67) *Fcr = 19.882 > 12.807 ksi OK Fe = pi2 -E/(kUr)2 =3.142 *290.x102 / 230.82 = 5.3747 < 0,44*Fy = 0.44*50 = 22 ksi Fcr = 0.877 * Fe = 0.877 * 5.3747 = 4.7136 ksi Additional Checks for V-Brace Gusset: Gusset Stresses at Horizontal Section at End of Brace: (Section is at 10.543 in. from beam face.) Normal Stress: Moment, M = | eLefTVbLeft - eRight*VbRight + H*ev[ = (10.168 • 294. - 10.168 * (-294.) +• 565.9 " 10.543J = 119.4x102 k-in. Stress = V/A + 6'M/(L12*t) = 0/(73.361 * 1) + 6*119.4x102/(73.3612 * 1) = 13.316 <0.9Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 73.361*1 = 73.361 in2 Vn = 0.6 * Fy * Ag = 0.6 * 50 * 73.361 = 2201 kips (1/FS)Rn = ft/1.5rVn = 1467 > 565.9 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 32.288 in.) Vertical Shear, Vi = VbLeft - V/2 = 294. kips Horizontal Force, Hi = HbLeft - H/2 = 0 kips Moment, Mi = VbLefTeLeft + Hi*(Lv/2) - M/2- V*L / 8) - 0.0016 k-in. Normal Stress: = Hi/A + 6'Mi/(Lv2*t) = 0/(32.288 * 1) + 6'0.0016/(32.2882 * 1) - 0 < 0.6Fy = 29.94 ksi OK Shear Yielding: Ag = h't = 32,288'! = 32.288 in2 Vn = 0.6 * Fy * Ag = 0.6 * 50 * 32.288 = 968.6 kips f1/FS)Rn = (1/1.SrVn = 645.8 > 294. kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh - 55.515 in. Use K=1.2 Fe = pi2 'E/(kl_/r)2 =3.142 *290.x102 / 230.82 = 5.3747 < 0.44*Fy = 0.44*50 = 22 ksi Fcr = 0.877 * Fe = 0.877 * 5.3747 = 4.7136 ksi (1/F5)Fcr = (1/1 .671*0 = 2.8225 > 0 ksi OK User turned off gusset edge buckling criteria. Upper Gusset to Beam Connection Horizontal Force on Welds, H = 565.9 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M = | eLeft*Vleft - eRight*Vright | = Abs(10.168 * 294. - 10.168 * (-294.)} = 5978 k-in. Length of Welds, L = 66.486 in. Max. Force on Welds per Unit Length = f = ((V/L+6M/L2)2+(H/L)2)05 = ((0/66.486+6*5978/66.4862 )2 +(565.9/66.486)2 )° 5 = 11.759 kips/in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/L2 )2 +(H/L)2 )° 5 = ((0/66.486+3*5978/66.4862 )2 +(565.9/66.486)2 )°-5 = 9.4285 kips/in. Maximum useful weld size = (1/2)*0.6 * Fu * t / ((1/2)"0.6*1.414'Fexx) = (1/2)*0.6 * Min(1 * 65; 2 * 0.685 * 58) / ((1/2}*0.6*1.414 * 70) = 0.6567 in. Use Richard Factor, Rf = 1 .4 Required Weld Size, w = max(Rf *fav, f)/((1/2)*0.6*1 .414'Fexx) = 13.2/((1/2)*0.6*1.414*70) = 0.4445 in. Minimum Weld Size = 1/4 in. Use 1/2 in. Weld Beam Web Local Yielding: Force from Gusset, R = ((1 .73'H)2 + (V+3M/L)2 )a5 = ((1.73*565.9)2 + (0+3*5978/66.486)2 )°'5 = 1015 kips Required Web Thickness = R / ((1/1 .5) * Fy * L) = 1015 / ((1/1 .5)* 50* 66.486) = 0.4582 > 0.43 in. (NG) Beam Web Crippling: Force from Gusset,R = V+3M/L = 0+3*5978/66.486 = 269.8 kips H/FSIRn " (1/2)* 0.8 * E- -'f 1 +3*f L/d = (1/2) *0.8' 170.3 •0.432*(1+3>(66.486/21.13)*(0.43/0.685)1-5)*(50"0.685/0.43)° 5 = 640.1 > 269.8 kips (OK) Lower Left Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22.25 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 5 Ventana Real - @ 2nd Fir (Frames 2 & 4) (N-S) (2-26-06) Weld Allowable Strength: M/FSjRn = B*4*t1/2)*Q.6*Fexx*0.707*w*L = 1*4*(1/2)*0.6*70*0.707*0.4375*22.25 = 578. 1> 576.9 kips (OK) Maximum Weld Force Brace Can Develop: M/FSIRn - 4*11/1.5) * 0.6*Fv't*L = 4*(1/1.5> * 0.6*46 * 0.581 * 22.25 = 951. 4 > 576.9 kips (OK) Check Lower Left Brace Tension Yielding of the Brace: M/FSlRn = M/1.67)'Fv'Aa = (1/1-67)*46*16.4 - 451 .7 < 576.9 kips Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb - = 16.4 - 2*(1.25 + 0.0625 )* 0.581 = 14.875 in2 x = <(B or H)2 + 2*B*H)/(4*(B + H)) = (82 + 2* 8 * 8)/(4*(8 + 8)) = 3 in. U = 1-(x/L)<0.9 = 1 -(3/22.25)< 0.9 = 0.8652 Ae = U*An = 0.8652 * 14.875 - 12.869 in2 = (1/2) '58*12.869 - 373.2 < 578.9 kips Lower Left Brace Gusset Dimensions: (See Sketch) Lower Left Brace Gusset Edge Forces: Theta = 40.91 1 Degrees Vb = P*Cos(Theta) = 576.9 * 0.7557 = 436. kips Hb = P'SinfTheta) = 576.9 * 0.6549 = 377.8 kips Combined Forces: H = HbRight - HbLeft = (-377.8) - 377.8 = (-755.6) kips V = VbRight + VbLeft = (-436.) + 436. = 0 kips M = eLett * VbLeft + eRight * VbRight = (-9.1551)* 436. + 9.1551* (-436.) = (-7983) k-tn. Lower Left Brace Gusset Thickness Try t = 1 1/4" Maximum Brace Weld Force Gusset Can Develop: - 2-0.5 * 0.6*Fu*t*L - 2*0.5 * 0.6*65 * 1 .25 * 22.25 = 1085 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22.25*1.25 = 55.625 in2 Agt = Ant = d*t = 8*1.25 = 10 in2 l1/FS>Rn = d/2) * (0.6 * MinfFu * Anv: Fv ' Aqv) + Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 55.625; 50 * 55.625) + 1 -65*10) -o = 1159>576.9Wps(OK) Check Whitmore Section: Width, Lw = 1. t547*Lwe(d + d = 1.1547*22.25 + 8 = 33.692 in. Lwo = 0.8578 in. of Lw is outside the gusset free edge. Width of Wn'rtmore Section inside gusset boundaries, Lwg = 32.834 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + LwcTwc) = 576.9/(32.834 * 1.25 + 0 * 0.4-1 + 0*0) = 14.056 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) - (1/1.67)*(32.834 * 1.25 * 50 + 0 * 0.43* 50 + 0 * 0* 0) = 1229 > 576.9 Rips (OK) Buckling Check: Effective Length of Whitmore Section (K*1.2). Lcr = 20.851 in. Kl/r = Lcr/(t/12°-5) = 20.851/0.25/3.464) = 57.782 Fe = pi2 *E/{kL/r)2 =3.142 '290.X102 /57.7B22 = 85.725 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50 / 85.725 = 0.5833 Fcr = 0.6580-5833 * Fy = 0.6580-5833 * 50 = 39.17 ksi Buckling Strength = (1/1.67) *Fcr = 23.455 > 14.056 ksi OK Fe = pi2 *E / (kL/r)2 = 3.142 *290.x102 /164.92 = 10.523 < 0.44*Fy = 0.44*50 = 22 ksi Fcr= 0.877 *Fe = 0.877* 10.523 = 9.2288 ksi Additjpnal Checks for V-Brace Gusset: Gusset Stresses at Horizontal Section at End of Brace: (Section is at 10.512 in. from beam face.) Normal Stress: Moment, M = | eLeft*VbLeft - eRight'VbRight + H*ev | = |9.1551 * 436. - 9.1551 * (-436.) H- 755.6 * 10.512 | = 159.3x102 h-in. Stress = V/A + 6*M/(L12*t) = 0/(69.64 * 1,25) + 6*159.3x102 /(69.642 * 1.25) = 15.763 < 0.9Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 69.64*1.25 = 87.049 in2 Vn = 0.6 * Fy * Ag = 0.6*50*87.049 = 2611 kips (1/FSmn = (1/1.5l*Vn = 1741 > 755.6 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 33.548 in.) Vertical Shear, Vi = VbLeft - V/2 = 436. kips Horizontal Force, Hi = HbLeft - H/2 = (-0) kips Moment, Mi = VbLeft'eLeft + Hi'(Lv/2) - M/2- V'L / 8) = 0.0026 k-in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 6 Ventana Real - @ 2nd Fir (Frames 2 & 4) (N-S) (2-26-06) Normal Stress: = Hi/A + 6*Mi/(Lv2 *t) = 0/(33.548 * 1.25) + 6*0.0026/(33.5482 * 1.25) = 0 < 0.6Fy = 29.94 ksi OK Shear Yielding: Ag = n't = 33.548*1.25 = 41.935 in2 Vn = 0.6*Fy*Ag = 0.6*50*41.935 = 1258 kips f1/FS)Rn = M/1.5)*Vn = 838.7 > 436. kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 49.594 in. UseK=1,2 Fe = pi2 *E/(kl_/r)2 = 3.142 *290.x102 / 164.92 = 10.523 < 0.44*Fy = 0.44'50 = 22 ksi Fcr = 0.877 * Fe = 0.877 * 10.523 = 9.2288 ksi f1/FS)Fcr = M/1.671*0 - 5.5262 > 0 ksi OK User turned off gusset edge buckling criteria. Lower Gusset to Beam Connection Horizontal Force on Welds, H = 755.6 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M = | eLeft*Vleft - eRight*Vright ] = Abs(9.1551 * 436.-9.1551 * (-436.)) = 7983 k-in. Length of Welds, L = 63.741 in. Max. Force on Welds per Unit Length = f = ((V/L+6M/L2 )2 +(H/L)2)° 5 ((0/B3.741+6*7983/B3.7412)2 +(755.6/63.7 1)2)0-5 = 16.718 kips/in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/L2)2+(H/L)2)0-5 ((0/63.74H-3*7983/63.7412 )2+(755.6/63.7 1)2)0.5 = 13.239 kips/in. Maximum useful weld size = (1/2)*0.6 * Fu * t / ((1/2)*0.6*1.414*Fexx) = (1/2)'0.6 * Min(1.25 * 65; 2 * 0.685 * 58) / ((1/2)*0.6*1.414"70) = 0.8028 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(Rf *fav, f)/((1/2)'0.6*1.4l4*Fexx) = 18.534/((1/2)*0.6'1.414 * 70) = 0.6242 in. Minimum Weld Size = 1/4 in. Use 5/8 in. Weld Beam Web Local Yielding: Force from Gusset, R = ((1 .73*H)2 + (V+3M/L)2 )° 5 = ((1.73-755.6)2 + (0+3*7983/63.741)2)65 = 1 360 kips Required Web Thickness = R / ((1/1 .5) * Fy * L) = 1360/((1/1.5)'50*63.741) = 0.6401 > 0.43 in. BearjnWeb Cripplinci: Force from Gusset,R = V+3M/L = 0+3*7983/63.741 = 375.7 kips (1/FSmn = (1/2r 0.8 " E£ *tw3-*(1 +3*f - (1/2) *0.8' 170.3 -0.432*(1+3*(63.741/21.13)*(0.43/0.685)1-5)*(50*0.685/0.43)° 5 = 61 8.3 > 375.7 kips (OK) ( Design is incomplete or not satisfactory. *-*-*_*_*-*-*-*-*-*-*-E|>j 0-*-*-*-*-*-*-*-*-* -*-* DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page; 7 Ventana Real - @ 2nd Fir (Frames 2 & 4) (N-S) (2-26-06? HSS7WX1/Z - A5M-&4B (Slotted) Stopa: 1.039H-C HSS8XBX5/8 - A500-B-W (Slofled) Stops: 1.154/1 fl Slope; 1.03WI A500-B-4S (Slotted) Slop*: 1.154/1 A572-50 V Scale: 1/4" =1' DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real - @ 2nd Fir (Frame 5) (E-W) (2-26-06) __^ BASIC DESIGN DATA Beam: Size:W21X62 Material: A992 Upper Right Brace: Size; HSS8X8X5/8 Material: A500-B-46 Axial Force: -576.9 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.174/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 33.517 in. Beam Side Length: 31.444 in. Brace Side Length: 11 in. Column Side Free Edge: x= 30.264 in., y= 0 in. Beam Side Free Edge: x= 7.1939 in., y= 26.384 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1,75 in. Gusset-Brace Gap: -22.25 in. Lower Right Brace: Size: HSS10X10X5/8 Material: A500-8-46 Axial Force: -738.7 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.304/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 41.255 in. Beam Side Length: 34.35 in. Brace Side Length: 13 in. Column Side Free Edge: x= 31.495 in., y= 0 in. Beam Side Free Edge: x= 7.4609 in., y= 33.345 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -28.5 in. Upper Left Brace: Size: HSS8X8X5/8 Material: A500-B-46 Axial Force: 576.9 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.174/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 33.517 in. Beam Side Length: 31.444 in. Brace Side Length: 11 in. Column Side Free Edge: x= 30.264 in., y= 0 in. Beam Side Free Edge: x= 7.1939 in., y= 26.384 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22.25 in. Lower Left Brace: Size: HSS10X10X5/8 Material: A500-B-46 Axial Force: 738.7 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.304/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 41.255 in. Beam Side Length: 34.35 in. Brace Side Length: 13 in. Column Side Free Edge: x= 31.495 in., y= 0 in. Beam Side Free Edge: x= 7.4609 in., y= 33.345 in. Thickness: 1.25 in. Setback from Column; 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -28.5 in. Upper Right Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22.25 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: (1/FS)Rn = g'4*(1/2)-0.6*Fexx'0.707'w*L = 1*4<(1/2)*0.6*70*0.707-0.4375*22.25 = 578.1> 576.9 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSlRn - 4*11/1.5) * 0.6*Fy*t*L = 4'(1/1.5) * 0.6*46 * 0.581 * 22.25 = 951.4 > 576.9 kips (OK) Check Upper Right Brace Tension Yielding of the Brace: (1/FSlRn = (1/1.67) *Fv*Ag = (1/1.67)* 46* 16.4 = 451.7 < 576.9 kips (N& A' f- ^ Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 16.4 - 2*(1.25 + 0.0625 )* 0.581 = 14.875 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (82 + 2* 8 ' 8)/(4'(8 + 8)) = 3 in. U = 1 - (x/L) < 0.9 = 1 - (3 / 22.25) < 0.9 = 0.8652 Ae = U*An = 0.8652 * 14.875 = 12.869 in2 f1/FS)Rn = H/2) * Fu * Ae = 373.2 < 576.9 kips (N^) O)L Upper Right Brace Gusset Dimensions: (See Sketch) Upper Right Brace Gusset Edge Forces: Theta = 40.424 Degrees Vb = P"Cos(Theta) = (-576.9) * 0.7613 = (-439.2) kips Hb = P*Sin(Theta) = (-576.9) * 0.6484 = (-374) kips (See below for combination of left and right side brace forces.) Upper Right Brace Gusset Thickness DESCONBRACE-ASD Licensed to; Desert Eagle Engineering LLC-- Page: 2 Ventana Real - @ 2nd Fir (Frame 5) (E-W) (2-26-06) __^__ * Trvt=1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 ' 0.6*Fu*t*L = 2*0.5 * 0.6*65 * 1.25 * 22.25 = 1085 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22.25*1.25 = 55.625 in2 Agt = Ant = d*t = 8*1.25 = 10 in2 M/FSlRn = (1/2) * tO.6 ' MintFu * Anv: Fy * Agv) + Ubs * Fu * Anti - 0,5 * (0.6*Min(65 * 55,625; 50 * 55.625) + 1 *65MO) = 1159*576.9 kips (OK) Check Whitmore Section: Width, Lw =' 1.1547*Lweld + d = 1.1547*22.25 + 8 = 33.692 in. Lwo = 0.8892 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 32.803 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwc*twc) = 576.9/(32.803 * 1.25 + 0 * 0.4 + 0 ' 0) = 14.069 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) - (1/1.67)*{32.803 * 1.25 * 50 + 0 ' 0.4* 50 + 0 * 0* 0) = 1228 > 576.9 kips (OK) Buckling Check: Effective Length of Whitmore Section (K-1.2), Lcr = 20.511 in. Kl/r - Lcr/(t/12°-5) = 20.511/(1.25/3.464) = 56.841 Fe = pi2 *E / (kL/r)2 = 3.142 *290.x102 / 56.8412 = 88.589 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50 / 88.589 = 0.5644 Fcr = 0.6580-5644 * Fy = 0.6580-5644 * 50 = 39.48 ksi Buckling Strength = (1/1.67} *Fcr = 23.641 > 14.069 ksi OK Lower Right Brace to Gusset Connection Brace Force = 738.7 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 28.5 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: (1/FS)Rn = R*4*f1/2r0.6*Fexx*0.70rw*L = 1*4*(1/2)'0.6*70*0,707*0.4375*28.5 = 740.5 > 738.7 kips (OK) Maximum Weld Force Brace Can Develop: (1/FS)Rn = 4*<1/1.S) * 0.6*Fv*t*L = 4*{1/1.5) * 0.6*46 ' 0.581 * 28.5 = 1219 >738.7 kips (OK) Check Lower Right Brace Tension Yieldingjjf thejjtrace: (1/FS)Rn = H/1.671 * Fv * Ao = (1/1 .67)* 46* 21 = 578.4 < 738.7 kips Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 21 - 2*(1.25 + 0.0625-)* 0.581 = 19.475 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (10^ + 2* 10 * 10)/(4*(10 + 10)) = 3.75 in. U = 1 - (x/L) < 0.9 = 1 -(3. 75/28.5) < 0.9 = 0.8684 Ae = U*An = 0.8684 * 19.475 - 16.912 in2 (1/FS>Rn = (M2\ ' Fu * Ae = (1/2)* 58 -16.912 . = 490.5 < 738.7 kips (tyG) Q}L Lower Right Brace Gusset Dimensions: (See Sketch) Lower Right Brace Gusset Edge Forces: Theta = 37.484 Degrees Vb = P*Cos(Theta) = (-738.7) * 0.7935 = (-586.2) kips Hb = P-Sin(Theta) = (-738.7) * 0.6085 = (-449.5) kips (See below for combination of left and right side brace forces.) Lower Right Brace Gusset Thickness Trvt=1 1/4" Maximum Brace Weld Force Gusset Can Develop: - 2*0.5 * 0.6*Fu*t*L = 2*0.5 '0.6*65* 1.25* 28.5 = 1 389 > 738.7 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*28.5*1 .25 = 71 .25 in2 Agt = Ant = d*t= 10*1.25= 12.5 in2 t1/FS)Rn = 11/2) * (0.6 * Mint Fu ' Anv: Fv ' Aqvt + Ubs * Fu * Antt = 0.5 * (0.6*Min(65 * 71.25; 50* 71.25}+ 1 *65* 12.5) = 1475 > 738.7 kips (OK) Check Whitmore Section: Width, Lw = 1 .1 547*Lweld + d = 1 .1 547*28.5 +10 = 42.909 in. Lwo = 1.7425 in. of Lw is outside the gusset free edge. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LUC- Page: 3 Ventana Real - @ 2nd Fir (Frame 5) (E-W) (2-26-06) - . . Width of Whitmore Section inside gusset boundaries, Lwg = 41.166 in. Whitmore Section Stress: fa = Fx/(Lwg"t + Lwb'twb + Lwc'twc) = 738.7/(41.166 * 1.25 + 0 * 0.4 + 0 * 0} = 14.355 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc'twc'Fyc) = (1/1.67)*(41.166 * 1.25 * 50 + 0 * 0.4* 50 + 0*0*0) = 1541 > 738.7 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 22.206 in. Kl/r = Lcr/(f12a5} = 22.206/(1.25/3.464) = 61.538 Fe = pi2 -E / (kL/r)2 = 3.142 '290.X102 / 61.5382 = 75,58 > 0,44*Fy = 0,44*50 = 22 ksi Fy/Fe = 50/75.58 = 0.6615 Fcr = 0.658a6615 * Fy = 0.6580-6615 * 50 = 37.907 ksi Buckling Strength = (1/1.67) -Fcr = 22.699 > 14.355 ksi OK Upper Left Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22.25 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: fl/FSIRn = 6*4*f1/2l*0.6*Fexx*0.707*w'L = 1*4-(1/2)*0.6-70*0.707*0.4375*22.25 = 578.1 > 576.9 kips (OK) Maximum Weld Force Brace Can Develop: f1/FS)Rn = 4V1/1.5) * 0.6*Fv*t*L = 4*(1/1.5)* 0.6*46-0.581 * 22.25 = 951.4 > 576.9 kips (OK) Check Upper Left Brace TensionJYjeldingjjf theJiracg: (1/FStRn = (1/1.671 * Fv ' Ag = (1/1 .67)* 46* 16.4 = 4S1.7< 576.9 kips (r^ Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 16.4-2*(1 .25 + 0.0625)* 0.581 = 14.875 in2 x = ({B or H)2 + 2*B*H)/(4*(B + H)) = (82 + 2* 8 * 8)/(4*(8 + 8» = 3 in. U = 1-(xyL)<0.9 = 1-(3/ 22.25) <0.9 = 0.8652 Ae = U*An = 0.8652 * 14.875 = 12.869 in2 H/FSlRn«n/21'Fu'Ae = (10-58*12.868 = 373.2 < 576.9 kips Upper Left _Brace_Gusset Dinvenslons: (See Sketch) Upper Left Brace Gusset Edge Forces: Theta = 40.424 Degrees Vb = P*Cos(Theta) = 576.9 * 0.7613 =•• 439.2 kips Hb = P'Sin(Theta) = 576.9 * 0.6484 = 374 kips Combined Forces: H = HbRight - HbLeft = (-374) - 374 ••= (-748.2) kips V = VbRlght * VbLeft = (-439.2) + 439.2 = 0 kips M = eLeft * VbLeft +• eRight * VbRight = (-8.9395) * 439.2 + 8.9395 * (-439.2) = (-7852) k-in. Upper Left Brace Gusset Thickness Tryt=1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 *0.6*Fu*t*L = 2*0.5 '0.6*65-1. 25 '22.25 = 1085 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22.25*1 .25 = 55.625 in2 Agt = Ant = d't = 8*1.25 = 10 in2 f 1/FSlRn = M/2) * (0.6 * MinfFu ' Anv: Fv * Aqvl + Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 55.625; 50 * 55.625) + 1 * 65 * 10) = 1159 > 576.9 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d = 1 .1 547*22.25 + 8 = 33.692 in. Lwo = 0.8891 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 32.803 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc'twc) = 576.9/(32.803 " 1 .25 + 0 * 04 + 0*0) = 14.069 ksi Whitmore Section Yielding: Allowable Strength = (1/1 .67)*(Lwgn*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1 .67)*(32.803 * 1 .25 * 50 + 0 * 0.4* 50 + 0 * 0* 0) = 1228 > 576.9 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1 .2), Lcr = 20.51 1 in. Kl/r = Lcr/(t/12as) = 20.51 1/(1. 25/3.464) AJ" !J DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC~ Page: 4 Ventana Real - @ 2nd Fir (Frame 5) (E-W) (2-26-06) " = 56.841 Fe = pr2 *E/(kL/r)2 = 3.142 *290.x102 / 56.841 2 - 88.589 > 0.44'Fy = 0.44*50 = 22 ksi Fy/Fe = 50 / 88.589 = 0.5644 Fcr = 0.658a5644 * Fy = 0.6580-5644 '50 = 39.48 ksi Buckling Strength = (1/1 .67) *Fcr - 23.641 > 14.069 ksi OK Fe = pi2 *E/(kL/r)2 = 3.142 *290.x102 / 160.92 = 1 1 .056 < 0.44*Fy = 0.44*50 = 22 ksi Fcr= 0.877 *Fe = 0.877 -11. 056 = 9.6962 ksi Additional Checks for V-Brace Gusset: Gusset Stresses at Horizontal Section at End of Brace: (Section is at 10.418 in. from beam face.) Normal Stress: Moment, M = | eUft*VbLeft - eRight*VbRight + H'ev| = J8.9395 * 439.2 - 8.9395 * (-439.2) + 748.2 * 10.418| = 1 56.5x1 02 k-in. Stress = V/A + 6*M/(L12*t) = 0/(68.569 ' 1.25) + 6*156.5x102/(68.5692 * 1.25) = 1 5.974 < 0.9Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 68.569*1 .25 = 85.71 1 in2 Vn = 0.6*Fy*Ag = 0.6*50*85.711 =2571 kips (1/FS>Rn = (1/1.5rVn = 1714 > 748.2 kips (OK) Gusset Stresses at Vertical Mid-Section; (Section width, Lv = 33.517 in.) Vertical Shear, Vi = VbLeft - V/2 = 439.2 kips Horizontal Force, Hi = HbLeft - H/2 = 0 kips Moment, Mi = VbLeft*eLeft + Hi*(LW2) - M/2- VL / 8) - 0.0003 k-in. Normal Stress: = 0/(33.517 * 1.25) + 6*O.OOQ3/(33.5172 * 1.25) - 0 < 0.6Fy = 29.94 ksi OK Shear Yielding: Ag = h"t = 33.517*1.25 = 41.896 in2 Vn = 0.6 * Fy " Ag = 0.6*50*41.896=1257 kips (1/FS)Rn = (1/1.5l*Vn = 837.9 > 439.2 kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 48.384 in. Use K=1 .2 Fe = pi2 *E / (kL/r)2 = 3.142 *290.x102 / 160.92 = 1 1 .056 < 0.44*Fy = 0.44*50 = 22 ksi Fcr = 0.877 * Fe = 0.877 * 11.056 - 9.6962 ksi M/FS)Fcr = (1/1.671*0 = 5.8061 > 0 ksi OK User turned off gusset edge buckling criteria. Upper Gusset to Beam Connection Horizontal Force on Welds, H = 748.2 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M = [ eLefTVIeft - eRight*Vright ] = Abs(8.9395 * 439.2 - 8.9395 * (-439.2)) = 7852 k-in. Length of Welds, L = 62.888 in. Max Force on Welds per Unit Length == f = ((V/L+6M/L2 )2 +(H/L)2 )° 5 = ((0/62. 888+6*7852/62. 8882 }2 +(748. 2/62. 888)2 )°-5 = 16.836 kips/in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/L2 )2 +(H/L)2 )°-5 = ((0/62.888+3*7852/62.8882 )2 +(748. 2/62. 888)2 )a5 = 13.305 kips/in. Maximum useful weld size = (1/2)*0.6 * Fu * t / ((1/2)*0.6*1 .414*Fexx) = (1/2)*0.6 * Min(1.25 *65; 2 * 0.615 * 58} / ((1/2)*0.6M.414 ' 70) = 0.7208 in. Use Richard Factor, Rf = 1 .4 Required Weld Size, w = max(Rf *fav, f)/((1/2)*0.6*1 .414*Fexx) ~ 18.626/((1/2)*0.6*1.414 * 70) = 0.6273 in. Minimum Weld Size = 1/4 in. Use 11/16 in. Weld Beam Web Local Yjeldino^ Force from Gusset, R = ((1 J3*H)2 + (V+3M/L)2) = ((1.73-748.2)2 + (0+3V852/62.888)2 )" = 1347 kips Required Web Thickness = R / ((1/1.5) * Fy * L) = 1347 / ((1/1 .5) * 50 * 62.888) . = 0.6428 > 0.4 in. (rjG) Qtf. »J/ BearnWeb Crippling: Force from Gusset.R = V+3M/L = 0+3*7852/62.888 = 374.6 kips (1/FS)Rn = (1/21*0.8 * E&5. 2as = (1/2) -0.8 '170.3 *0.42 *(1+3'(62.888/20.99)*(0.4y0.615)1-5 )*(50*0.615AJ.4)°-5 = 546 > 374.6 kips (OK) Lower Left Brace to Gusset Connection Brace Force = 738.7 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 28.5 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 5 Ventana Real - @ 2nd Fir (Frame 5) (E-W) (2-26-06) Weld Allowable Strength; l1/FS)Rn a B*4'(1/21"0.6*Fexx*0.707*w*L = 1*4*(1/2}*Q.6*70*0.707*0. 4375*28.5 = 740.5 > 738.7 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSlRn = 4*(1/1.S) * 0.6*Fv*t*L = 4*(1/1 .5) ' 0.6M6 * 0.581 " 28.5 = 1219 > 738.7 kips (OK) Check Lower Left Brace Tension^ielding of thejfrace: f1/FS)Rn=M1/1.67l*Fv*Ag = (1/1 .67)* 46* 21 = 578.4 < 738.7 kips ( Tension Rupture of the Brace: An = Ag - 2*(Tg+Q.0625 )*Tb = 21 -2*(1.25+0.0625)* 0.581 = 19.475 in2 x = ((B or H)2 + 2-B*H)/(4*(B + H)) = (102 + 2MO * 10)/(4*(10 + 10)) = 3.75 in. U = 1 -(x/L)<0.9 = 1 -{3.75/28.5)< 0.9 = 0.8684 Ae = U'An = 0.8684 * 19.475 = 16.912 in2 (1/FS)Rn = (1/2) * Fu * Ae = (1/2) *58'16.912 - 490.5 < 738.7 kips ( Lower Left Brace G.us_set_Dime_n_sions_: (See Sketch) Lower Left Brace Gusset Edge Forces: Theta = 37.484 Degrees Vb = P*Cos(Theta) = 738.7 * 0.7935 = 586.2 kips Hb = P*Sin(Theta) = 738.7 - 0.6085 - 449.5 kips Combined Forces: H - HbRight - HbLeft = (-449.5) - 449.5 = (-899) kips V = VbRight + VbLeft = (-586.2) + 586.2 = 0 kips M = eLett * VbLeft + eRight * VbRight = (-8.0483) ' 586.2 + 8.0483 * (-566.2) = (-9436) k-in. Lower Left Brace Gusset Thickness Try t = 1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6-FuTL = 2-0.5 *0.6*65M.25'28.5 = 1389 > 738.7 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L't = 2*28.5*1.25 = 71.25 in2 Agt = Ant - d*t = 10*1.25 = 12.5 in2 (1/FSlRn = (1/2)' fO.6 * MintFu * Anv: Fv' Agv) + Ubs ' Fu * Antl = 0.5 * (0.6*Min(65 * 71.25; 50 * 71.25) + 1 * 65 * 12.5) = 1475 > 738.7 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d -1.1547*28.5+10 = 42.909 in. Lwo = 1.7425 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 41.166 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwc*twc) = 738.7/(41.166 * 1.25 + 0 ' 0.4 + 0*0) = 14.355 ksi Whitmore Section Yielding: Allowable Strength = {1/1,67)*{Lwg*t*Fyg + Lwb'twb'F^b + Lwc*twc*Fyc) = (1/1.67)-(41.166 * 1.25 * 50 + 0 * 0.4* 50 + 0 * 0* 0) = 1541 > 738.7 tops (OK) Buchtinq Check: Effective Length of Whitmore Section (K=1.2), Lcr = 22.206 in. Kl/r ~ Lcr/(t/12°-5) = 22.206/(1.25/3.464) = 61.538 Fe = pi2 *E/(kL/r)2 =3.142 *290.*102 /61.5382 = 75.58 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/75.58 = 0.6615 j-*X/-0 Fcr = 0.658oe615 * Fy = 0.6580-6615 * 50 = 37.907 ksi Buckling Strength = (1/1.67) *Fcr = 22.699 > 14.355 ksi OK Fe-pt2 -E/(kUr)2 =3.142 '290.X102 /159.72 = 11.221 < 0.44*Fy = 0.44*50 = 22 ksi Fcr = 0.877 * Fe = 0.877 " 11.221 = 9.8409 ksi Additional Checks for V-Brace Gusset: Gusset Stresses at Horizontal Section at End of Brace: (Section is at 11.642 in. from beam face.) Normal Stress: Moment, M = | eLeft*VbLeft - eRight*VbRight + H*ev | - |8.0483 ' 586.2 - 8.0483 * (-586.2) + 899 * 11.642 | = 199.x102 k-4n. Stress = V/A + 6*M/(L12*t) = 0/(73.909 * 1.25) + 6*199.x102/(73.9092 - t.25) = 17.488 < 0.9Fy = 29.94 ksi OK Shear Yielding: Ag - h*t = 73.909*1.25 = 92.386 in2 Vn = 0.6*Fy*Ag = 0.6 ' 50 " 92.386 = 2772 kips (1/FS)Rn = 11/1 .SrVn = 1848 > 899 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 41.255 in.) Vertical Shear, Vi = VbLeft - V/2 = 586.2 kips Horizontal Force, Hi = HbLeft - H/2 = 0 kips Moment, Mi - VbLeft*eLeft + Hi*(Lu/2) - M/2- V'L / 8) = 0.001 k-in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 6 Ventana Real - @ 2nd Fir (Frame 5) (E-W) (2-26-06) Normal Stress: = Hi/A + GtM\l(Lv2 *t) = 0/(41.255 * 1.25) + 6*D.001/(41.2552 * 1.25) = 0 < 0.6Fy - 29.94 ksi OK Shear Yielding: Ag = h*t = 41.255*1.25 = 51.569 in2 Vn = 0.6'Fy*Ag -0.6*50*51.569 = 1547 kips M/FSIRn = f1/1.5)*Vn - 1031 > 586.2 kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 48.027 in. UseK=1.2 Fe= pi2 *E/(kUr)2 = 3.142 *290.x102 / 159.72 - 11.221 < 0.44*Fy - 0.44*50 = 22 ksi Fcr = 0.877 * Fe = 0,877 * 11.221 = 9.6409 ksi (1/FSlFcr = (1/-I.67VO = 5.8927 > 0 ksi OK User turned off gusset edge buckling criteria. Lower Gusset to Beam Connection Horizontal Force on Welds, H = 899 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M = | eLeft*Vleft - eRight*Vright | = Abs(8.0483 * 586.2 - 8.0483 * (-586.2)) - 9436 k-in. Length of Welds, L = 68.699 in. Max. Force on Welds per Unit Length = f = ((V/L+6M/L2 )2 +(H/L)2)° 5 ((Q/68.699+6'9436/68.6992 )2 +(899/68.6992\0.5 = 17.752 kips/in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/L2 )2 +(H/L)2 )°-5 ((0/68.699+3*9436/68.6992 )2 +(899/68.6992\0.5 = 14.396 kips/in. Maximum useful weld si2e = (1/2)*0.6 * Fu * t / ((1/2)'0.6*1.414*Fexx) = (1/2)*0.6 * Min(1.25 * 65; 2 * 0.615 * 58) / ((1/2)*0.6'1.414*70) = 0.7208 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w= max(Rf *fav, f)/((1/2)*0.6*1.414*Fexx) = 20.154/((1/2)*0.6*1.414 * 70) = 0.6787 in. Minimum Weld Size = 1/4 in. Use 11/16 in. Weld Beam Web Local Yielding; Force from Gusset, R = ((1 .73*H)2 + (V+3M/L)2 )°-5 = ((1 .73*899)2 + (0+3*9436/68.699)2 p = 1609 kips Required Web Thickness = R / ((1/1.5) * Fy * L) = 1609 / ((1/1 .5) ' 50 * 68.699) = 0.7026 > 0.4 in. (l^) OK- Beam Web^rippjinq: Force from Gusset.R = V+3M/L = 0+3*9436/68.699 = 412 kips (1/FSlRn = (M2V 0.8 * E- = (1/2) *0.8* 170.3 -0.42*(1+3*(68.699/20.99r(0.4/0.615)1-5)*(50*0.615/0.4)0'5 = 587.7 > 412 kips (OK) Design is incomplete or ruft satisfactory.ruft s DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real - @ 2nd Fir (Frame 5) (E-W) (2-26-06) HSSBXSX5/B • A500-B-46 (Slotted) Stops: 1,17 PLATE-A572-5QHssexaxsra - ASOO-B-W (Stoned) slope: 1,174/1 HSS1QX10X5/B • A50G-B-46 (Slotted) Slope; 1.304/1 ISS1CX1QXWS-A50Q-&4S (StoBed) Stop*: 1.3M/J iE-AS72-SO Scale: 1/4"= 1' DESCONBRACE-ASD Licensed to: Desert Eagte Engineering LLC- Page: 1 Ventana Real - @ 2nd Fir (Frames 6 & 7 & 8) (E-W) (2-26-06) BASIC DESIGN DATA Beam: Size: W21X68 Material: A992 Upper Right Brace: Size: HSS7X7X1/2 Material: A500-B-46 Axial Force: -408 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.256/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 32.431 in. Beam Side Length: 29.24 in. Brace Side Length: 10 in. Column Side Free Edge: x= 27.841 in., y= 0 in. Beam Side Free Edge: x= 6.4242 in., y= 26.202 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22 in. Lower RJaht Brace: Size: HSS8X8X5/8 Material: A500-B-46 Axial Force: -576.9 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.395/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 33.002 in. Beam Side Length: 28.021 in. Brace Side Length: 11 in. Column Side Free Edge: x= 24.464 in., y= 0 in. Beam Side Free Edge: x= 5.3832 in., y= 26.593 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22.25 in. Upper Left Brace: Size: HSS7X7X1/2 Material: A500-B-46 Axial Force: 408 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.256/1 Bolt Edge Distance: 1.5 in. Gusset Pjate; Material: A572-50 Column Side Length: 32.431 in. Beam Side Length: 29.24 in. Brace Side Length: 10 in. Column Side Free Edge: x= 27.841 in., y= 0 in. Beam Side Free Edge: x= 6.4242 in., y= 26.202 in. Thickness: 1.25 in. Setback from Column: 0 in. Bolt Edge Distance; 1.75 in. Gusset-Brace Gap: -22 in. Lower Left Brace: Size: HSS8X8X5/8 Material: A500-B-46 Axial Force: 576.9 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1 .395/1 Bolt Edge Distance: 1.5 in. J3usset Plate: Material: A572-50 Column Side Length: 33.002 in. Beam Side Length; 28.021 in. Brace Side Length: 11 in. Column Side Free Edge: x= 24.464 in., y= 0 in. Beam Side Free Edge: x= 5.3833 in., y= 26.593 in. Thickness: 1 .25 in. Setback from Column: 0 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22.25 in. Upper Right Brace to Gusset Connection Brace Force = 408 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4X22 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FS)Rn = B*4*f1/2r0.6*Fexx*0.707'w*L = 1*4*(1/2)*0.6'70'0.707*0.3125*22 = 408.3 > 408 kips (OK) Maximum Weld Force Brace Can Develop: (1/FS)Rn = 4*(1/1.5) * 0.6*Fv*t*L = 4*(1/1 .5) ' 0.6M6 - 0.465 * 22 = 752.9 > 408 kips (OK) Check Upper Right Brace Tension Yielding of the Brace: = (1/1 .67)* 46* 11. 6 > = 319.5 < 408 kips (NG) /-/ C-t- * Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 1 1 .6 - 2*(1 .25 •*• 0.0625 )* 0.465 = 10.379 in2 x = ({B or H)2 + 2*B*H)/(4'(B + H)) = (72 + 2' 7 * 7)/(4*(7 + 7)) = 2.625 in. U = 1 - (x/L) < 0.9 = 1-{2.625/22)<0.9 = 0.8807 Ae = U*An = 0.8807 * 10.379 = 9.1409 in2 = (1/2) '58* 9.1409 , V* y 5"*/ = 265 < 408 kips (N|3) D £.*•/<£€*'• ^ /Z" Upper Right Brace Gusset Dimensions: (See Sketch) Upper Right Brace Jiusset Edae Forces: Theta = 38.526 Degrees Vb = P*Cos(Theta) = (-408) * 0.7823 = (-319.2) kips Hb = P"Sin(Theta) = (-408) * 0.6229 = (-254.1) kips (See below for combination of left and right side brace forces.) Upper Right Brace Gusset Thickness JU DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real - @ 2nd Fir (Frames 6 & 7 & 8) (E-W) (2-26-06) • . . Trvt = 1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 • 0.6*Fu*t*L = 2*0.5 "0,6-65* 1.25* 22 = 1073 > 408 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2'22*1.25 - 55 in2 Agt = Ant = d"t - 7*1.25 = 8.75 in2 (1/FSlRn *(1/21' (0.6 * Min(Fu * Anv: Fv ' Aavl j^Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 55; 50 ' 55) + 1 * 65 * 8.75) = 1109 > 408 kips (OK) Check Whitmore Section: Width, Lw = 1.1547tweld + d = 1.1547*22 + 7 = 32.403 in. Lwo = 1.0595 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 31.344 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb •*• Lwc*twc) = 408/(31.344 * 1.25 + 0 * 0.43 + 0*0) = 10.414 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twtTFyb +• Lwc*twc*Fyc) = (1/1.67)*(31.344 * 1.25 * 50 + 0 ' 0.43* 50 + 0 * 0* 0) = 1173 > 408 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 18.568 in. Kl/r= Lcr/(t/12°-5) = 18.568/(1.25/3.464) = 51.456 Fe = pi2 *E/(kL/r)2 =3.142 *290.x102 / 51.4562 = 108 > 0.44*Fy = 0.44*50. = 22 ksi Fy/Fe = 50/108 = 0.4625 Fcr = 0.658° 462S * Fy = 0.6580-4625 * 50 = 41.2 ksi Buckling Strength = (1/1.67) 'Fcr = 24.67 > 10.414 ksi OK Lower Right Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22.25 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: (1/FS)Rn = R'4*f1/2ro.6*Fexx*0.707"w*L = 1M*(1/2)*0.6*70*0.707*0.4375*22.25 = 578.1 > 576.9 kips (OK) Maximum Wefd Force Brace Can Develop: <1/FS)Rn = 4*(1/1.51 * 0.6*Fv*t*L = 4*(1/1 .5) * 0.6*46 * 0.581 * 22.25 = 951 .4 > 576.9 kips (OK) Check Lower Right Brace Tension Yielding of the Brace: x /'- °" = (1/1.67)* 46* 16.4 / = 451.7 < 576.9 kips (NG) Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 16.4 - 2*(1.25 + 0.0625 )* 0.531 = 14.875 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (82 + 2* 8 * 8)/(4*(8 + 8)) = 3 in. U = 1 - (x/L) < 0.9 = 1 - (3 / 22.25) < 0.9 = 0.8652 Ae = U'An = 0.8652 * 14.875 = 12.869 in2 (1/FSlRn = (112) * Fu * Ae = (1/2) *58* 12.869 = 373.2 < 576.9 kips (NG) 0£ Lower Right Brace Gusset Dimensions: (See Sketch) Lower Right Brace Gusset Edge Forces: Theta = 35.635 Degrees Vb = P*Cos(Theta) = (-576.9) * 0.8127 = (-468.9) kips Hb = P*Sin(Theta) = (-576.9) * 0.5826 = (-336.1) kips (See below for combination of left and right side brace forces.) Lower Right Brace Gusset Thickness Trvt=1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 ' 0.6'Fu*t*L = 2*0.5 * 0.6*65 * 1.25 * 22.25 = 1085 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22.25*1.25 = 55.625 in2 Agt = Ant = d*t = 8*1.25 = 10 in2 (1/FSlRn = (1/2) * (0.6 * MinfFu * Anv: Fv ' Aavl + Ubs ' Fu ' Antl = 0.5 * (0.6*Min(65 * 55.625; 50 * 55.625) + 1 * 65 * 10) = 1159 > 576.9 kips (OK) Check Whitmore Section: Width, Lw= 1.1547*Lweld + d - 1.1547*22.25 + 8 = 33.692 in. Lwo = 1.3507 in. of Lw is outside the gusset free edge. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real - @ 2nd Fir (Frames 6 & 7 & 8) (E-W) (2-26-06) Width of Whitmore Section inside gusset boundaries, Lwg = 32.341 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwc'twc) = 576.97(32.341 * 1.25 + 0 * 0.43 + 0*0) = 14.27 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*hvc*Fyc) = (1/1 .67)*(32.341 * 1 .25 * 50 + 0 * 0.43* 50 + 0 * 0* 0) = 1210>576.9kips(OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 17.295 in. Kl/r = Lcr/(t/l2°-5) = 17.295/(1 .25/3.464) = 47.929 Fe = pi2 *E/(kl_/r)2 =3.142 *290.x102 / 47.9292 = 124.6 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/1 24.6 = 0.401 3 Fcr = 0.658° *>13 * Fy = 0.6580-4013 * 50 = 42.269 ksi Buckling Strength = (1/1.67) *Fcr= 25.311 > 14.27 ksi OK Upper Left Brace to Gusset Connection Brace Force = 408 kips Brace to Gusset Weld Size - 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: M/FSIRn = IV4*M/21'0.6*Fexx*0.707'w*L = 1*4*(1/2)*0.6*70*0.707*0.3125*22 = 408.3 > 408 kips (OK) Maximum Weld Force Brace Can Develop: (1/FS)Rn = 4*11/1.5) * 0.6*Fv*t'L - 4*(1/1.5} * 0.6*46 * 0.465 * 22 = 752.9 > 408 kips (OK) Check Upper Left Brace Tension Yielding of the grace: {1/FSlRn = H/1.671 ' Fv * Aa = (1/167)* 46 *11.6 / = 319.5 < 408 kips (NjS) Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 1 1 .6 - 2*(1 .25 + 0.0625 )* 0.465 = 10.379 in2 x = ((B or H)2 + 2*B'H)/(4*(B + H)) = (72 -i- 2* 7 * 7)/(4*(7 + 7)) - . -!'•> " = 2.625 in. U = 1-(x/L)<0.9 = 1 -(2.6257 22) < 0.9 = 0.8807 Ae = U*An = 0.8807 * 10.379 = 9.1409 in2 M/FSlRn = (1/21' Fu ' Ae = (1/2)* 58* 9.1409 = 265 < 408 kips (^G) OIL Upper Left Brace Gusset Dimensions: (See Sketch) Upper Left Brace Gusset Edge Forces: Theta - 38.526 Degrees Vb = P*Cos(Theta) = 408 * 0.7823 = 319.2 kips Hb = P*Sin(Theta) = 408 * 0.6229 = 254.1 kips Combined Forces: H = HbRight - HbLeft = (-254.1) - 254.1 - (-506.3) kips V = VbRight + VbLeft = (-319.2) + 319.2 = 0 kips M = eLeft * VbLett + eRight * VbRight = (-8.4116) * 319.2 + 8.4116 * (-319.2) = (-5370) k-in. Upper Left Brace Gusset Thickness Trvt=1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5*0.6*65*1.25*22 = 1073 > 408 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22*1.25 = 55 in2 Agt = Ant = d*t = 7*1.25 = 8.75 in2 (1/FSlRn = (1/2J * (0.6 * MinCFu * Anv: Fv * Aav) * Ubs * Fu * Antl = 0.5 * (0.6*Min(65 * 55; 50 * 55) + 1 * 65 * 8.75) - 1109 > 408 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d = 1.1547*22 + 7 = 32.403 in. Lwo = 1.0595 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 31.344 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwc*twc) = 408/(31.344 * 1.25 + 0 * 0.43 + 0*0) = 10.414 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(31.344 * 1.25 * 50 + 0 * 0.43* 50 + 0 * 0* 0) = 1173 > 408 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 18.568 in. Kl/r = Lcr/(t/12°-5 ) = 18.568/0.25/3.464) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real - @ 2nd Fir (Frames 6 & 7 & 8) (E-W) (2-26-06) = 51.456 Fe = pi2 *E/(kL/r)2 =3.142 *290.x102 / 51.4562 = 108 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/108 = 0.4625 Fcr = 0.658° 4625 * Fy - 0.6580-4625 * 50 = 41.2 ksi Buckling Strength = (1/1.67) -Fcr = 24.67 > 10.414 ksi OK Fe = pi2 *E/(kl_/r)2 =3.142 *290.x102 / 147.42 = 13.173 < 0.44*Fy = 0.44*50 = 22 ksi Fcr= 0.877*Fe = 0.877*13.173 = 11.553 ksi Additional Checks for V-Brace Gusset: Gusset Stresses at Horizontal Section at End of Brace; (Section is at 9.9252 in. from beam face.) Normal Stress: Moment, M = | eLeft*VbLeft - eRight*VbRight + H*ev| = [8.4116 * 319.2 - 8.4116 * (-319.2) + 508.3 * 9.9252 | = 104.1x102 k-in. Stress = V/A + 6*M/(L12 *t) = 0/(63.347 * 1.25) + 6*104.1x102/(63.3472 * 1.25) = 12.457 < 0.9Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 63.347-1.25 = 79.184 in2 Vn = 0.6 * Fy * Ag = 0.6*50-79.184 = 2376 kips <1/FSlRn = (1/1.5l*Vn = 1584 > 508.3 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 32.431 in.) Vertical Shear, Vi = VbLeft - V/2 = 319.2 kips Horizontal Force, Hi = HbLeft - H/2 = 0 kips Moment, Mi = VbLeft*eLeft + Hi*(Lv/2) - M/2- V'L / 8) = 0.0008 k-in. Normal Stress: - Hi/A + 6*Mi/(Lv2 *t) = 0/(32.431 * 1.25) + 6*0.0008/(32.4312 * 1.25) = 0 < 0.6Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 32.431-1.25 = 40.539 in2 Vn = 0.6 ' Fy ' Ag = 0.6-50*40.539 = 1216 kips n/FSIRn a (1/1.5l*Vn = 810.8 > 319.3 kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 44.326 in. UseK=1.2 Fe = pi2 *E/(kL/r)2 =3,142 *290.x102 / 147.42 = 1 3. 1 73 < 0.44*Fy = 0.44*50 - 22 ksi Fcr = 0,877 -Fe = 0.877 '13.173 = 11.553 ksi <1/FSiFcr = (1/1.67J-0 = 6.9177 > 0 ksi OK User turned off gusset edge buckling criteria. Upper Gusset to Beam Connection Horizontal Force on Welds, H = 508.3 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M = | eLeft-Vleft - eRight*Vright [ = Abs(8.41 16 * 319.2 - 8.41 16 * (-319.2)) = 5370 k-in. Length of Welds, L = 58.48 in. Max. Force on Welds per Unit Length = f = ((V/L+6M/L2 )2 +(H/L)2 )as- - = ((0/58.48+6'5370/58.482 )?.+(508.3/58.48)2 )°-5 = 12.817 kips/in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/L2 )2 +(H/L)2 )°'5 = ((0/58.48+3-5370/58.482 )2 +(508.3/58. 48)2 )° 5 = 9.8856 kips/in. Maximum useful weld size = (1/2)-0.6 * Fu * t / ((1/2)'0.6'1 .414*Fexx) = (1/2)*0.6 * Min(1.25 * 65; 2 * 0.685 * 58) / ((1/2)*0.6*1 .414 * 70) = 0.8028 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(Rf *fav, f)/((1/2)*0.6*1 .414*Fexx) = 13.84/((1/2r0.6-1.414 * 70) = 0.4661 in. Minimum Weld Size = 1/4 in. Use 1/2 in. Weld Beam Web Local Yielding: Force from Gusset, R = ((1.73*H)2 H- (V+3M/L)2 )°-5 = ((1.73*508.3)2 + (0+3-537Q/58.48)2 )afe = 921.4 kips Required Web Thickness = R / ((1/1 .5} ' Fy * L) = 921.4/((1/1.5)-50*58.48) = 0.4727 > 0.43 in. Beam Web Crippling: Force from Gusset.R = V+3M/L = 0+3*5370/58.48 = 275.5 kips f1/FSlRn = f 1/2)* 0.8 * E- = (1/2) *0.8* 170.3 *0.43**(1+3*(58.48/21.13n0.43/0.685)1-5 )*(50*0. 685/0.43)° . = 576.6 > 275.5 kips (OK) Lower Left Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22.25 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 5 Ventana Real - @ 2nd Fir (Frames 6 & 7 & 8) (E-W) (2-26-06) __ ________ Weld Allowable Strength: <1/FSlRn = R*4*f1/2)'0.6'Fexx*0.707*w*L = 1*4*(1/2)*0.6'70*0.707*0.4375*22.25 = 578.1 > 576.9 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSlRn = 4*f1fl.5l * 0.6*Fv*t*L = 4*(1/1.5) * 0.6*46 * 0.581 * 22.25 = 951 .4 > 576.9 kips (OK) Check Lower Left Brace Tension Yielding of the Brace:- La - <1/FSmn-f1M.67>'Fv*Aa — ' M 14 C7\ * Afi * 1 ft A = 451.7 < 576.9 kips Tension Rupture of the Brace: An = Aa - ?1= 14.875 in2 A'C-U >' 0.581 y = fin _.. 1J\2 = (82 + 2* 8 * 8)/(4*(8 + 8)) *- ^ in U=1-(x/L)<0.9 = 0 Ae = U*An = 0.8652 " 14.875 = 12.869 In2 * Fu * Ae =(1/2)-58M2.86 - 373.2 < 576 . , .9 kips (N/) Lower Left Brace Gusset Edqe Forces: 576.9 ' 0.8127 = 468.9 kips Hb = P*Sin(Theta) = 576.9* 0.5826 = 336.1 kips* ' r Combined Forces: H = HbRight - HbLeft = (-336.1) - 336.1 = (-672.2) \/ -/koi«M a. \/w «ft - / AKO a^AKBQ-n vin*V = VbRight + VbLen = (-468.9) + 468.9 = 0 kips M = eLeft * VbLefH- eRight * VbRight = (-7.5735) '468.9 + 7.5735* (-468.9) = (-7102) k-fn. . fcr, ^ tTW. .Lower Left Brace Gusset Thickness Tryt = 1 1/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 -0.6*FuTL = 2*0.5 * 0.6*65 * 1 .25 * 22.25 = 1085 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22.25*1 .25 = 55.625 in2 Q/FS)Rn = (1/2) * (0.6 * Min(Fii * Anv; Fy * Agvj + Ubs * Fu * Ant) = 0.5 * (0.6-Min(65 * 55.625; 50 * 55.625) + 1 -65*10) , * = 1 159 > 576.9 kips (OK) Check Whitmore Section: Width, Lw= 1.1547*Lweld + d = 1.1 547*22.25 + 8 = 33.692 in. Lwo = 1 .3507 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 32.341 in. Whitmore Section Stress: fa = Fx/(Lwgt + Lwb'twb + Lwc'twc) = 576.9/(32.341 * 1.25 + 0 * 0.43 + 0*0) = 14'27 ksi Whitmore Section Yielding: Allowable Strength = (1/1 .67)*(Lwg't*Fyg + LWb*twb*Fyb + Lwc*twc*Fyc) = <1/1 -67)*(32.341 * 1 .25 * 50 + 0 * 0.43' 50 + 0 * 0" 0) = «W > 576.9 kips (OK) D ... ^ .Buckling Check: Effective Length of Whitmore Section (K=1. 2), Lcr= 17.295 in. Kl/r = Lcr/(t/1 2°-5 ) = 17.295/(1 .25/3.464) =47-929 Fe = Pj2 *E / <kUr)2 = 3.142 *290.x102 / 47.9292 = 124.6 > 0.44*Fy = 0.44-50 = 22 ksi fn t fftA * n in^= 50 ' 124'6 = °'4013 Fcr = O^-n ^ Fy = 0.658^13 . 50 = 42.269 ksi Buckling Strength = (1/1-67) *Fcr = 25.311 > 14.27 ksi OK Fe = pi2 -E / (kUr)2 = 3.142 -290.x102 / 127.72 Fcr= 0.877 ' Fe- 0.877 * 17.55= 15.392 ksi Additional Cheeks for V-Brace Gusset: ^ ._. ... . . , . „ ..- . I0Gusset Stresses at Horizontal Section at End of Brace: <Section is at 9'3835 in' from beam fece^ Normai Stress: Moment, M = I eLeft*VbLeft - eRighfVbRight + H*ev I• . ' . y a ' --in. = 0/(59.84' 1.25) + 6'134,1x102/(59.842 -1.25) = 17 975 < „ 9F;= 29 94 ksi OK Shear yielding: Aq = n*t _ 5g 34*1 25 = 74 8 in2 Vn = 0 6 * Fy * Ag = 0 6 * 50 - 74 8 = 2244 kips (1/FSlRn = (1/1.5l*Vn = 1496 > 672.2 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 33.002 in.) Vertical Shear, Vi = VbLeft - V/2 = 468.9 kips Horizontal Force, Hi = HbLeft - H/2 = (-0) kips Moment, Mi = VbLefTeLeft + Hi*(Lv/2) - M/2- V*L / 8) = 0.0066 k-in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 6 Ventana Real - @ 2nd Fir (Frames 6 & 7 & 8) (E-W) (2-26-06) Normal Stress; = Hi/A + 6*Mi/(Lv2 *t) = 0/(33.002 * 1.25) + 6*0.0066/(33.0022 * 1.25) = 0 < 0.6Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 33.002*1.25 = 41.253 in2 Vn = 0.6 * Fy * Ag = 0.6* 50'41.253 =1238 kips M/FS)Rn a H/1.5l*Vn = 825 > 468.9 kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 38.402 in. UseK=1.2 Fe = pi* *E / (kUr)2 = 3.142 *290.x102 / 127.72 = 17.55 < 0.44*Fy = 0.44*50 = 22 ksi Fcr = 0.877 * Fe = 0.877 - 17.55 = 15.392 ksi 11/FSlPcr » (1/1.671*0 = 9.2165 > 0 ksi OK User turned off gusset edge buckling criteria. Lower Gusset to Beam Connection Horizontal Force on WeWs, H = 672.2 kips Vertical Force on Welds, V - 0 kips Moment on Welds, M = | eLeft*Vleft - eRight*Vright | = Abs(7.5735 * 468.9 - 7.5735 * (-468.9)) = 7102k-in. Length of Welds, L = 56,041 in. Max. Force on Welds per Unit Length = f *((V/L+6M/L2)2+(H/L)2)0-5 • ((0/56.041+6*7102/56.0412)2 +(672.2/56.0 -1)2)0.5 =118.11 kips/in. Average Force on Welds per Unit Length = fraverage *((V/L+3M/L2)2+(H/L)2)05 =: ((0/56.041+3*7102/56.0412)2 +(672.2/56.0 1)2)0.5 == 13.781 kips/in. Maximum useful weld size = (1/2)*0.6 * Fu * t / ((1/2)*0.6*1.414*Fexx) * (1/2)*0.6 ' Min(1.25 * 65; 2 * 0.685 * 58) / {(1/2)*0.6*1.414*70) = 0.8028 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(Rf *fav, f)/((1/2)*0.6*1.414*Fexx) ^19.293/((1/2)*0.6*1.414*70) B 0.6497 in. Minimum WekJ Size = 1/4 in. Use 11/16 in. Weld Beam Web Local Yielding; Force from Gusset, R = ({1 .73*H)2 + (V+3M/L)2 )°-5 = ({1.73*672.2)2 + (0+3*7102/56.041)2 )6'5 = 1224 kips Required Web Thickness = R / ((1/1.5) * Fy * L) = 1224 / ((1/1.5)* 50* 56.041) = 0.655 > 0.43 in. ( OA1 Beam Web Crippling: Force from Gusset,R = V+3M/L = 0+3*7102/56.041 = 380.2 kips M/FSJRn = (1/2)' 0.8 * E^ = (1/2) *0.8* 170.3 *0.432*(1+3l(56.041/21.13)*(0.43/0.685)t-5)*(50*0.685/0.43)° 5 = 557.2 > 380.2 kips (OK) Design is incomplete or not satisfactory. *_»_•_*_*_*_*_*_*_*_* c M rv.*_«_«_*_*_*_*_*_*,.*.* DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 7 Ventana Real - @ 2nd Fir (Frames 6 & 7 & 8) (E-W) (2-26-06) . H5S7XTX1/2 - A500-B-46 (gutted) Slope: 1.2! HS58X8X5/B-A500-B-«(gotled)Stop*:1.M5/1^'/ , - A50CMW6 (Slotted) Slope: 1.395/1 JE - A572-50 Scale: 1/4" =1' BASIC DESIGN DATA Column: Size:W10X68 Material: A992 Orientation: Web In Plane Axial Force: 0 kips Shear Force: 0 kips Right Side Beam: Size: W21X68 Material: A992 Axial Force: -94 kips Shear Force: 34.4 kips Work Point X: 0 in. Work Point Y: 0 in. Clip Angles: Length: 18.5 in. OSL: 4 in. Material: A36 Bolts: V0A490-N -ST.D Bolt Spacing: 3 in. Bolt Edge Distance: 175 in. Upper Right Brace: Size: HSS6X6X3/8 Material: A500-B-46 Axial Force: -266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.125/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 28.666 in. Beam Side Length: 26.049 in. Brace Side Length: 9 in. Column Side Free Edge: x= 23.151 in., y= 0 in. Beam Side Free Edge: x= 3.8289 in., y= 22.687 in. Thickness: 0.75 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -18 in. Clio Angles: Length: 18.5 in. OSL 4 in. Material: A36 Bolts: 1"0A490-N-STD Bolt Spacing: 3 in. Bolt Edge Distance: 1.75 in. Lower Right Brace: Siie:HSS7X7X1/2 Material: A500-B-46 Axial Force: 408 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.125/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 33.312 in. Beam Side Length: 28.716 in. Brace Side Length: 10 in. Column Side Free Edge: x= 26.612 in., y= 0 in. Beam Side Free Edge: x= 5.3704 in., y= 26.668 in. Thickness: 0.75 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22 in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ 3rd Fir (Frames 1&3) (N-S)(2-27-06) Clip Angles: Length: 21.5 in. OSL: 4 in. Material: A36 Bolts: 1"0 A490-N-STD Bolt Spacing: 3 in. Bolt Edge Distance: 1.75 in. Upper Right Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 5/16 in. (Use 0.25 in. for capacity calculation) Brace to Gusset Weld Length = 4X18 in. Weld Size = 5/16 > Minimum Weld Size = 3/16 in. (OK) Wefd Allowable Strength: (1/FSlRn =» B*4*(1/2)*0.6*Fexx*0.707''w*L = 1*4*(1/2)*0.6*70*0.707*0.25'18 = 267.2 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: M/FS>Rn = 4*<1/1.51 * 0.6*Fv*t*L = 4*0/1.5) * 0.6*46 * 0.349 * 18 = 462.4 > 266.6 kips (OK) Check Upper Right Brace Tension Yielding of the Brace: = {1/1.67l'Fv*Ag = (1/1.67) *46* 7.58 = 208.8 < 266.6 Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 - 2*(0.75 + 0.0625 )* 0.349 = 7.0129 in2 x = ((B or H)2 + 2'B*H)/(4*(B + H)) = (62 + 2* 6 * 6)/(4"(6 + 6)) = 2.25 in. U = 1 - (x/L) < 0.9 = 1-(2.25/18)<0.9 = 0.875 Ae = U*An = 0.875 * 7.0129 = 6.1363 in2 = (1/2)* 58* 6.1363 = 178;< 266.6 kips Upper Right Brace Gusset Dimensions: Column Side, Lgc = 28.666 in. Beam Side, Lgb = 26.049 in. Beam Side Free Edge, Lvfx = 3.8289 in. Beam Side Free Edge, Lvfy = 22.687 in. Column Side Free Edge, Lhfx= 23.151 in. Column Side Free Edge, Lhfy = 0 in Upper Right Brace Gusset Edge Forces: Special case: 2 Gusset edge moments carried by: Beam interface Theta = 41 .634 Degrees, eb = 10.565 in. ec = 5.2 in. Beta = 10.5 in. BetaBar= 10.5 in. AtphaBar= 13.524 in. Alpha = (Beta + eb)*Tan(Theta) - ec DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real @ 3rd Fir (Frames 1&3) (N-S)(2-27-06) _^ - {10,5 + 10.565)*Tan(41.634) - 5.2 = 13.524 in. r = Fx / ((Alpha + ec)2 + (beta + eb)2 )°-5 = (-266.6) / ((13.524+ 5.2)2 +(10.5 + 10.565)2)°S = (-9.4593) kips/in. Hb = Alpha ' r = 13.524 * (-9.4593) = (-127.9) kips He = ec*r = 5.2 *(-9.4593) = (-49.188) kips Vb = (-69.259) kips (Adjusted by user) Vc = (-130) kips (Adjusted by user) Mb = [Alpha *(eb*r-Vb)| = [13.524 * (10.565 " (-9.4593) - (-69.259)] = 414.9 k-in. Mc=0 Upper Right Brace Gusset Thickness Trv t = 3/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2"0.5*0.6*65* 0.75 "18 = 526,5 > 266.6 kips (OK) Block Shear of Gusset_at Brace: Agv = Anv = 2'L't = 2*18*0.75 - 27 in2 Agt = Ant = d*t = 6*0.75 = 4.5 in2 (1/FSlRn = (1/2) * (0.6 * MlnfFu * Anv: Fv * Aavl + Ubs * Fu * Antt = 0.5 * (0.6*Min(65 * 27; 50 * 27) + 1 * 65 * 4.5) = 551.3 > 266.6 kips (OK) Check Whitmore Section: Width, Lw = 1.1547'Lweld + d = 1.1547*18+ 6 = 26.785 in. Width of Whitmore Section inside gusset boundaries, Lwg = 26.785 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwclwc) = 266.6/{26.785 * 0.75 + 0 * 0-43 + 0 * 0.47) = 13.271 ksi Whitmore Section Yielding: Allowable Strength = <1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(26.785 * 0.75 * 50 + 0 * 0.43* 50 + 0*0.47*50} = 601.5 > 266.6 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 12.039 in. Kl/r = Lcr/C/12° 5) = 12.039/(0.75/3.464) = 55.606 Fe = pi2 *E / (kUr)2 = 3.142 *290.x102 / 55.6062 = 92.566 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50 / 92.566 = 0.5402 Fcr = 0.658° 5402 * Fy = 0.6580-5402 * 50 = 39.883 ksi Buckling Strength = (1/1.67} *Fcr = 23.662 > 13.271 ksi OK Upper Right Brace Gusset to Column Connection Vertical force on clip angles = (-130) kips Horizontal force on clip angles = (-49.188) kips Vertical Force on Each Clip Angle, V - 65 kips Horizontal Force on Each Clip Angle, T = (-24.594) kips Angle-to-Column Bolts: <6)1"0A490-N-STD Bolts/Angle Allowable Shear Strength of Bolts: = 2*n*((1/FS)m) = 2*6* 23.56:> = 282.7 > 130 kips (OK) Number of Botts Required = n = V/((1/2)*Fv*Ab) = 65/((1/2)*60* 0.7854) = 2.7587, Use 6 Bolts Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 * 65 / (6 * 0.7854)) ' 0.7854 < 88.75 = 88.37 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 44.185 kips Design Upper Right Brace Clip Angles Minimum Length of Clip Angle = 14.333 in. Maximum Length of Clip Angle = 26.666 in. Trv2L4X4X7/16 Bolt Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in., Hole Size = 1.0625 in. - (1/2) ' 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 " 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 " Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 *'58 = 67.425 kips/in. Bearing Capacity = BrCap = 2 * (Fbe + Fbs * (n -1)) * t = 2 * (42.413 + 67.425 * (6 - 1)) * 0.4375 = 332 kips > 130 kips (OK) Shear Yielding of Angles: Clip Angle Length = Lc = (n-1)*s + 2'e = (6-1)'3+2*1.75 = 18.5 in. Ag = Lc * t = 18.5 * 0.4375 = 8.0938 in2 (1/FSlRn = M/1.51 * 2 * Aa * 0.6 * Fv = (1/1,5)*2*8.0938*0.6*3I3 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real @ 3rd Fir (Frames 1&3) (N-S)(2-27-06) = 233.1 > 130 kips (OK) Shear Rupture of Angles: Anv - {Lc - n*(dh+0.0625))'t = (18.5 - 6 *(1.0625 +• 0.0625)) ' 0.4375 = 5.1406 in2 (1/FS)Rn a (1/2) * 2 * Anv * 0.6 * Fu = (1/2)* 2 '5.1406-0.6*58 = 178.9 > 130 kips (OK) Block Shear Rupture: Agv = (Lc - et)'t = (18.5-1.75)-0.4375 = 7.3281 in2 Anv = Agv - (N - 0.5)'(dh + 0.0625)*t = 7,3281 - (6 - 0.5)*(1.0625 + 0.0625)*0.4375 = 4.6211 in5 Agt = et * t = 1.75 * 0.4375 = 0.7656 in2 Ant = Agt - 0.5*(dh + 0.0625)*t = 0.7656 - 0.5*(1.0625 +• 0.0625)'0.4375 = 0.5195 in2 (1/FS)Rn = <1/21 * (0.6 * MintFu ' Anv: Fy * Aovl + Ubs * Fu * Antl = 0.5 * (0.6'Min(58 * 4.6211; 36 * 7.3281) + 1*58-0.5195) = 94.21 > 65 kips (OK) Angle SSL Tension jStrenqth: Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2-t/2 = (5.5-0.75)72-0.2188 = 2.1563 in. Bolt Distance to Edge = e = osl -1/2 - b = 4-0.4375/2-2.1563 = 1.625 in. Allowable tensile load on clip angles per tributary area for each bolt: dh= 1.0625 in. b'= 1.6563 in. a = Min(e;1.25*b)= 1.625 in. a' = 2.125 in. p = 3.0833 in. tc=(4.44*B*b'/(p-Fy))°-5 = (4.44 * 44.185 ' 1.6563/(3.0833 * 36))°-5 = 1.7109 in. delta = 1 - dh/p = 1 -1.0625/3.0833 = 0.6554 ro = b'/a' = 1.6563/2.125 = 0.7794 Alpha' = ((tc /1)2 -1) / (delta * (1 + ro)) = ((1.7109/0.4375)2 - 1) / (0.6554 - (1 + 0.7794)) = 12.256 = 44.185 * (0.4375 / 1.7109)2 '(1 + 0.6554) = 4.7827 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Atfowable Tension Strength: (1/FS)Rn = 2*n'Ta-Tm = 2*6*4.7827-0 = 57.393 > 49.188 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072-65*0.75/70 = 0.4925 in. k=(wh-gap)/L = (4-0.5)/18.5 = 0.1892 a=wh/L-k2/(1+2k) = 4/18.5-0.18922/(1+2*0.1892) = 0.1902 0=Arctan(HA/) = Arctan(49.18S/130) = 20.725 Degrees k = 0.1892, a = 0.1902, Theta = 20.725 C = 1.325 Tryw=3/16in. weld Maximum weld size for angle thickness = 0.375^0.1875 in. (OK) Minimum weld size = 0,1875 < 0.1875 in. (OK) Weld Allowable Strength = C'L'C1*16w = 1.325*18.5*1*16*0.1875 = 73.539 kips Resultant Load, R = 0.5*(H2 + V2)0-5 = 0.5-((49.188)2 +(130)2)06 = 69.497 kips < 73.539 kips (OK) Gusset Tear-out: Combined Tension_and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goet, Engineering Joumal,3rd Q 1986, AISC), Load Angle, 0 = Atn(H/V) = 20.725 Degees A = Sin(0) = 0.3539 B = Cos(0) = 0.9353 Ag = 21.499 in2 An = 21.499 in2 Rupture: M/FSIRn = (1/2)* 0.18 * (A/ Bi * (-1 + ft + IB / A)2- / 0.09^) ' An * Fu/B = (1/2) * 0.18 * (0.3539 / 0.9353) * (-1 + (1 + (0.9353 / 0.3539)2 / 0.09)0-5 ) ' 21.499 - 65 / 0.9353 = 400.2 > 139. kips (OK) Ta = B * (t / tc)2 ' (1 + delta) DESCONBRACE-ASP Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real IS) 3rd Fir (Frames 1&31 lN-SU2-27-06> _^____ \ (1/FSlRn = <1/1.5V2- * 0.18 * (A / B)2- * f-1 / (1/1.67) •*• fl / «1/1.67^-> + (B / AJ3-/ fO.09 *\2 \\Q.5 \*Aq*Fv/A = (1/1.5)z * 0.18 "(0.3539/0.9353}2 *(-1 / (1/1.67) + (1 / ((1/1.67)2) + (0.9353 / 0.3539)2 / (0.09 * (1/1.5)2 ))°-5) * 21.499 * 50/0.3539 = 405.3 > 139. kips (OK) Block Shear of_Gusset: Vertical (Anl.FH) and Horizontal (An2,Ft2) Sections: Ag1 = 14.812 in2 An1 = 14.812 in2 Ag2 - 2.625 in2 An2 = 2.625 in2 Pattern 1: Adjusted Allowabfe Stress: ft1 = (1/2)*0.18 * (A / B)2 * (-1 + (1+ (B / A)2 / 0.09r5)*Fu = (1/2)*0.18* (0.3539 / 0.9353)2 * (-1 + (1 + (0.9353 / 0.3539)2 / 0.09)0-5) * 65 - 6.5881 ksi Fv1 = ft1 * B / A = 6.5881 * 0.9353 / 0.3539 = 17.412 ksi ft2 = (1/2)*0.18*(B/A)2 *(-1+(1+(A/B)2 / 0.09)°5)*Fu = (1/2)'0.18* (0.9353 /0.3539)2 * (-1 + (1 + (0.3539 / 0.9353)2 / 0.09)0-5) * 65 = 24.908 ksi Fv2 = ft2 * A / B = 24.908 - 0.3539 / 0.9353 = 9.4246 ksi t1/FS!Rn = (Fv1 * An1 + Ft2 * An2VB = (17.412 * 14.812 + 24.908 * 2.625)/0.9353 = 345.7 > 139. kips (OK) Pattern 2: Ag1 = 13.875 in2 An1 =13.875 in2 Ag2 = 5.25 in2 An2 = 5.25 in2 Adjusted Allowable Stress: (Same as Above) f1/FSiRn = (Pvt * An1 + Ft2 * An2l/B = (17.412 * 13.875 + 24.908 * 5.25)/0.9353 = 398.1 > 139. kips (OK) Use2L4X4X7/16 Column Loca| Stresses for Upper Right Brace Bolt Bearing on Column: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)'1.2*Lc*Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2)' 1.2 * 1.9375 * 58 = 67.425 kips/in. Vertical force per bolt = 10.833 kips Allowable Bearing Strength = Fbs*tc = 67.425 * 0.77 = 51.917 kips > 10.833 kips (OK) Column Flange Bending; Force, H' = (H+3*M/L)/2 = (49.188 + 3*0/21)/2 = 24.594 kips Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 * 65 / (6 * 0.7854)) * 0.7854 < 88.75 = 88.37 kips Allowable Strength per Bolt, (1/FS)rn == (1/2)'rn = 44.185 kips Force per Bolt, T = HVn = 4.099 kips/Bolt b = 2.515 in., a = 1.625 in., b' = 2.015 in., a1 = 2.125 in., ro = 0.9482 p = 3, d' = 1.0625, delta = (1-d'/p) = 0.6458 Beta = (B/T - 1)/ro = (44.185 / 4.099 -1) / 0.9482 = 10.313 Alpha' = 1 Required Flange Thickness for Bending, treg'd = = (4.44T-bV(p*Fy*(t+delta-Alpha')))D * = (4.44*4.099 * 2.015/(3*50'(1+0.6458*1)))05 = 0.3854 < 0.77 in. (OK) Column Flange Shear: Required Flange Thickness for Shear = thShear = T / Min[((1/1.5) * 0.6 * p * Fy),((1/2)*0.6*(p - (d1 + 0.0625)rFu}] = 4.099 /Min[((1/1.5) * 0.6 * 3 * 50),((1/2)*0.6*(3 - (1.0625 + 0.0625))'65)] = 0.1121 < 0.77 in. (OK) Column Web Local Yielding: Force from Gusset, RColumn = ((H+3*M/N)2 + (1.73-V)2 )a5 = ((49.188+3*0/15)2 +(1.73*13D)2)0-5 =230.2 kips Required Web Thickness = RColumn / ((1/1.5) * Fy * (N+5*k)) = 230.2 / ((1/1.5) * 50 * (15 +5*1.27)) = 0.3235 in. < 0.47 in. (OK) Column Web Crippling: Force from Gusset, RColumn = H+3*M/N = 49.188 kips Allowable Strength, (1/FS)Rn: = (1/2)'0.8 * E6-5 * tw2 *(1+3*(M/d)*(tw/tf)1-5 r(Fy*tf/tw)°-5 = (1/2)*0.8 * 170.3 * 0.472 "(1+3*(15/10.4) *(0.47/0.77)1 5 )*(50*0.77/0.47)°-5 = 417.2 kips > 49.188 kips (OK) Upper Right Brace Gusset to Beam Connection Weld Size = 3/8 in. Horizontal Force on Wetds, Hb = 127.9 kips Vertical Force on Wefds, Vbm = 69.259 kips Moment on Welds, M = 414.9 k-in. Weld Length on Each Side of Gusset Plate, L = 26.049 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/(L2 ))2 + (H/L)2 )°-5 = ((69.259/26.049 + 3* 414.9/(26.0492 ))2 + (127.9/26.049)2)0'5 = 6.6565 kips/in. Max. Force on Welds per Unit Length = fr = ((V/L+6M/(L2 ))2 + (H/L)2 r5 = ((69.259/26.049 + 6* 414.9/(26.0492 ))2 + (127.9/26.049)2)0'5 = 8.0099 kips/in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 5 Ventana Real @ 3rd Fir (Frames 1&3) (N-S)(2-27-06) _^___^^____ Maximum useful weld size = 0. 7072 * Fu* t / Fexx = 0.7072 * 65 * 0.75/70 = 0.4925 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rf-f_avrg;f_peak)/((1/2)*0.6*1.41*Fexx) * 9.3191/((1/2)*0.6*1.41* 70) * 0.3138 in. Use 3/8 in. Weld Lower Right Brace to Gusset Connection Brace Force = 408 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset WekJ Length - 4 X 22 in. We!d Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FSiRn = IV4'M/2)*0.6*Fexx*0.707*w*L = r4*(1/2)*0.6*70'0.707*0.3125*22 = 408.3 > 408 kips (OK) Maximum Weld Force Brace Can Develop: M/FSlRn = 4*f1/1.5) * 0.6'Fv*t*L = 4*<1/1 .5) * 0.6*46 * 0.465 * 22 = 752.9 > 408 kips (OK) Check Lower Right Brace Tension Yielding of the Brace: M/FSlRn = 11/1.671* Fv'Aa = (1/1.67) M6M1.6 = 319.5 < 408 kips Tension Rupture of the Brace: A/Cd An = Ag - 2*(Tg+0.0625 )*Tb = 1 1 .6 - 2*(0.75 + 0.0625 )* 0.465 = 10.844 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (72 + 2* 7 * 7)/(4*(7 + 7)) = 2.625 in. U = 1 - (x/L) < 0.9 = 1 - (2.625 / 22) < 0.9 - 0.8807 Ae = U*An = 0.8807 * 10.844 = 9.5504 in2 f1/FSmn«M/21*Fu*Ae = (1/2) '58 "9.5504 = 277. < 408 kips (N Lower Right Brace Gusset Dimensions: Column Side, Lgc - 33.312 in. Beam Side, Lgb - 28.716 in. Beam Side Free Edge, Lvfx = 5.3704 in. Beam Side Free Edge, Lvfy = 26.668 in. Column Side Free Edge, Lhfx = 26.612 in. Column Side Free Edge, Lhfy = 0 in. "*A/ Lower Right Brace Gusset Edge Forces: Special case: 2 Gusset edge moments carried by; Beam interface Theta = 41.634 Degrees, eb = 10.565 in. ec = 5.2 in. Beta = 12. in. BetaBar = 12. in. AlphaBar= 14.858 in. Alpha = (Beta +• eb)*TanCTheta) - ec = (12. + 10.565)*Tan(41.634) - 5.2 = 14.858 in. r = Fx / ((Alpha -f ec)2 + (beta + eb)2 )°-5 = 408 / ({14.858 + 5.2)2 + (12. + 10.565)2 )°-5 = 13.514 kips/in. Hb = Alpha * r = 14.858 * 13.514 = 200.8 kips Hc = ec*r=5.2*13.514 = 70.273 kips Vb = 64.9 kips (Adjusted by user) Vc = 240 kips (Adjusted by user) Mb = |Alpha * (eb " r - Vb)| = 114.858 * (10/565 * 13.514 - 64.9J = 1157k-in. Mc=0 Lower Right Brace Gusset Thickness Try t = 3/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5*0.6*65*0.75*22 = 643.5 > 408 kips (OK) Block Shear of Gusset at Brace: Agv = Anv - 2'L*t = 2*22*0.75 = 33 in2 Agt = Ant = d't = 7'0.75 = 5.25 in2 (1/FSlRn = (1/21 * fO.6 * MinCFu * Anv: Fv * Aavl + Ubs * Fu * Antt = 0.5 * (0.6*Min(65 * 33; 50 * 33) + 1 * 65 * 5.25) = 665.6 > 408 kips (OK) Check Whitmore Section: Width, Lw= 1.1547*Lweld + d = 1.1547*22+ 7 = 32.403 in. Width of Whttmore Section inside gusset boundaries, Lwg = 32.403 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb •*• Lwc'twc) = 408/(32.403 * 0.75 + 0 * 0.43 + 0 * 0.47) = 16.788 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg't*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(32.403 * 0.75 • 50 + 0 * 0.43* 50 + 0 * 0.47* 50) = 727.6 > 408 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr - 11.902 in. Kl/r = Lcr/(t/12° 5) = 11.9021(0.75/3.464) = 54.973 TFT DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 6 Ventana Real @ 3rd Fir (Frames 1&3) (N-S)(2-27-06) . Fe = pi2 *E/(kL/r)2 = 3.142 *290.x102 / 54,9732 = 94.712 >0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/94.712 = 0.5279 For = 0.658° 5279 * Fy = 0.6580-5279 * 50 = 40,087 ksi Buckling Strength = (1/1.67) *Fcr = 24.004 > 16.788 ksi OK Lower Right Brace Gusset to Column Connection Vertical force on clip angles = 240 kips Horizontal force on clip angles = 70.273 kips Vertical Force on Each Clip Angle, V = 120 kips Horizontal Force on Each Clip Angle, T = 35.136 kips Anqle-to-Column Bolts: (7) 1"0 A490-N-STD Bolts/Angle Allowable Shear Strength of Bolts: = 2*n'((1/FS)rn) = 2*7* 23.562 = 329.9 > 240 kips (OK) Number of Bolts Required = n = V/((1/2)'Fv*Ab) = 120/((1/2)*60* 0.7854) = 5.093, Use 7 Bolts Nominal Tension Strength per Bolt = rn = (a-b*V/(N'Ab))'Ab < Ft'Ab = (147 - 2.5 * 120 / (7 * 0.7854)) " 0.7854 < 88.75 = 72.596 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 36.298 kips Design Lower Right Brace Clip Angles Minimum Length of Clip Angle = 16.656 in. Maximum Length of Clip Angle = 31.312 in. Try 2L4X4X5/8 Bolt Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist = 1.75 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu <(1/2)*2.4*d*Fu - 69.6 kips/in. = (1/2) * 1.2 * 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc'Fu <(1/2)*2.4*d'Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2*(Fbe + Fbs*(n-1))"t = 2 * (42.413 + 67.425 * (7 - 1)) * 0.625 = 558.7 kips > 240 kips (OK) Shear Yielding of Angles: Clip Angle Length = Lc = (n-1)*s + 2*e = (7-1)* 3+2'1.75 = 21.5 in. Ag = Lc * t = 21.5 * 0.625 = 13.438 in2 M/FSIRn = M/1.S1 * 2 * Ag * 0.6 * Fv = (1/1.5) "2* 13.438* 0.6* 36 = 387 > 240 kips (OK) Shea r Rupture of Anq les: Anv = (Lc - n*(dh+0.0625))*t = (21.5 - 7 *(1.0625 + 0.0625)) * 0.625 = 8.5156 in2 HfFSlRn = (1/21 * 2 * Anv ' 0.6 * Fu = (1/2)*2*8.5156'0.6*58 = 296.3 > 240 kips (OK) Block Shear Rupture: Agv = (Lc - el)*t = (21.5 -1.75)* 0.625 = 12.344 in2 Anv = Agv - (N - 0.5)*(dh + 0.0625)*t = 12.344 - (7 - 0.5)*(1.0625 + 0.0625)'0.625 = 7.7734 in2 Agt = et * t = 1.75 * 0.625 = 1.0938 in2 Ant ~ Agt - 0.5*(dh + 0.0625)*t = 1.0938 - 0.5*(1.0625 + 0.0625)*0.625 = 0.7422 in2 (1/FSlRn = (1/21 * fO.6 * MintFu * Anv: Fv * Agv) + Ubs * Fu * Ant) = 0.5 * (0.6*Min(58 * 7.7734; 36 * 12.344) + 1 * 58 ' 0.7422) = 154.8 > 120 kips (OK) Angle OSL Tension Strength: Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2 -1/2 = (5.5-0.75)/2-0.3125 = 2.0625 in. Bolt Distance to Edge = e = osl -1/2 - b = 4 - 0.625/2 - 2.0625 = 1.625 in. Allowable tensile load on clip angles per tributary areajpr each bolt; dh = 1.0625 in. b' = 1.5625 in. a = Min(e;1.25*b)= 1.625 in. a' = 2.125 in. p = 3.0714 in. tc=(4.44'B*b'/(p*Fy))a5 = (4.44 * 36.298 * 1.5625/(3.0714 * 36))05 = 1.5091 in. delta = 1 - dh/p = 1-1.0625/3.0714 = 0.6541 ro = b'/a' = 1.5625/2.125 UUUL- DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 7 Ventana Real @ 3rd Fir (Frames 1&3) (N-S)(2-27-06> = 0.7353 Alpha1 = ((to / 1)2 - 1 ) / (delta * (1 + ro)) = ((1.5091/0.625)2 - 1} / (0.6541 • (1 + 0.7353)) = 4.2557 Ta = B*(t/tc)2 *(! * delta) = 36.298 * (0.625 / 1 .5091)2 '(1 + 0.6541) = 10.298 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength; = 2*7-10.298-0 = 1 44.2 > 70.273 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum usefu! weld size = 0.7072 * Fu * t / Fexx = 0.7072-65*0.75/70 = 0.4925 in. k=(wh-gap)/L = (4-0.5)/21.5 = 0.1628 a=wh/L-k2/(1+2k) = 4/21 .5 - 0.16282/(1+2*0.1628) = 0.1661 0=Arctan(H/V) = Arctan(70.273/240) = 16.32 Degrees k = 0.1628, a = 0.1661, Theta = 16.32 C= 1.2877 Try w=5/16in.wetd Maximum weld size for angle thickness = 0.5625 > 0.3125 in. (OK) Minimum weld size = 0.25 < 0.3125 in. (OK) Weld Allowable Strength = C*L*C1*16w = 1.2877*21.5*1*16*0.3125 = 138.4 kips Resultant Load, R = 0.5'(H2 + V2)0-5 = 0.5*((70.273)2 + (240)2)0-* = 125 kips < 138.4 kips (OK) Gusset Tear-out: Combined Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. GoeJ, Engineering Journal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 16.32 Degees A = Sin(0) = 0.281 B = Cos(0) = 0.9597 Ag = 24.984 in2 An = 24.984 in2 Rupture: M/FSlRn = (1/2)' 0.18 MA/ Bl * M + Fu/B = (1/2)*0.18-(0.281/0.9597)*(-1 +{1 + (0.9597 / Q.281)2 / 0.09)° 5) " 24.984 * 65 / 0.9597 = 465 > 250 kips (OK) (1/FSmn = (1/1 .St2- * 0.18 MA / Bl2- * M / f 1/1.671 + (1 / ff 1/1.67)=-) + IB I A)2-/ fO.09 * HJ1.5JE»ka.) * Ao * Fv/A = (1/1.5)2 -0.18 * (0.281 /0.9597)2 * (-1 / (1/1.67) + (1 / ((1/1.67)2) + (0.9597 / 0.281 )2 / (0.09 - (1/1.5)2 ))6-5) * 24.984 * 50/0.281 = 472.2 > 250 kips (OK) Block Shear ofGusset: Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections: Ag1= 24.046 in2 An1= 24.046 in2 Ag2 = 2.625 in2 An2 = 2.625 in2 Pattern 1: Adjusted Allowable Stress: ft1=(1/2)'0.18*(A/B)2 *(-1 +(1+(B/A)2 /0.09)a5)*Fu = (1/2}*0.18-(0.281/0.9597)2 * (-1 + (1 + (0.9597 / 0.281)2 /Q 09)tf.5 j * 65 = 5.2301 ksi Fv1 =ft1 'B/A = 5.2301 *0.9597/0.281 = 17.862 ksi ft2 = (1/2)*0.18*(B/A)2 *(-1 +(1 +(A/B)2 / 0.09)0-5) ' Fu = (1/2)'0.18* (0.9597/0.281)2 * (-1 + (1 + (0.281 /0.9597)2 / 0.09)ti-5)*65 = 27.113 ksi Fv2 = ft2 • A / B = 27.113 * 0.281 / 0.9597 = 7.9388 ksi f1/FS*Rn = fFvl ' An1 + Ft2 * An2WB = (17.862 * 24.046 + 27.113 * 2.625)/0.9597 = 521.7 > 250 kips (OK) Pattern 2: Ag1= 16.125 in2 An1= 16.125 in2 Ag2 = 5.25 in2 An2 = 5.25 in2 Adjusted Allowable Stress: (Same as Above) (1/FSlRn = (Fv1 * An1 + Ft2 * An2VB = (17.862 * 16.125 + 27.113 * 5.25)/0.9597 = 448.4 > 250 kips (OK) Use 2L4X4X5/8 Column Local Stresses for Lower Right Brace Bolt Bearing on Column: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)' 1.2 ' Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 8 Ventana Real @ 3rd Fir (Frames 1&3) (N-S)(2-27-06) _„_______ Vertical force per bolt =17.143 kips Allowable Bearing Strength = Fbs*tc = 67.425 * 0.77 = 51.917 kips > 17.143 kips (OK) Column Flange Bending: Force, H' = (H+3*M/L)/2 = (70.273 + 3*0/24)/2 = 35.136 kips Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 * 120/ (7 * 0.7854)) * 0.7854 < 88.75 = 72.596 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 36.298 kips Force per Bolt, T = H'/n = 5.0195 kips/Bolt b = 2.515 in., a = 1.625 in., b' = 2.015 in., a' = 2.125 in., ro = 0.9482 p = 3, d' = 1.0625, delta = (1-d7p) = 0.6458 Beta = (B/T -1 )/ro - (36.298 / 5.0195 -1) / 0.9482 = 6.5716 Alpha' = 1 Required Flange Thickness for Bending, treg'd = = (4.44T*b'/(p*Fy'(1 +delta*Alpha')))° •* = (4.44*5.0195" 2.015/(3*50*(1+0.6458*1)))°-5 = 0.4265< 0.77 in. (OK) Column Flange Shear: Required Flange Thickness for Shear = thShear = T / Min[((1/1.5) ' 0.6 * p * Fy),((1/2)*0.6*(p - (d1 * 0.0625))*Fu)J = 5.0195/Min[((1/1.5)* 0.6*3* 50),((1/2)*0.6*(3 - (1.0625 + 0.0625))*65)] = 0.1373<0.77 in. (OK) Column Web Local Yielding: Force from Gusset, RColumn = ((H+3*M/N)2 + (1.73*V)2)0-5 = ((70.273+3*0/18)2 + (1.73*240)2 )°-5 = 421.1 kips Required Web Thickness = RColumn / ((1/1.5) * Fy * (N+5*k)) = 421.1 / ((1/1.5) * 50 * (18 +5*1.27)) = 0.5188 in. > 0.47 in. (NG) Column Web Crippling; Force from Gusset, RColumn = H+3*M/N = 70.273 kips Allowable Strength, (1/FS)Rn: = (1/2)*0.8 * E° 5 * tw2 *(1 +3*(N/d)*(tw/tf)1 -5 )*(Fy*tf/tw)° 5 - (1/2)*0.8 * 170.3 * 0.472 *(1+3*(18/10.4) *(0.47/0.77)1-5)*(50'0.77/0.47)°-5 = 473.4 kips > 70.273 kips (OK) Lower Right Brace Gusset to Beam Connection Weld Size = 1/2 in. Horizontal Force on Welds, Hb = 200.8 kips Vertical Force on Welds, Vbm = 64.9 kips Moment on Welds, M = 1157 k-irt1. Weld Length on Each Side of Gusset Plate, L = 28.716 in. Average Force on Welds per Unit Length = fraverage = ((WL+3M/(L2))2 + (H/L)2 )°-5 = {(64,9/28.716 + 3* 1157/(28,7162))2 + (200.8/28.716)2)05 = 9.5262 kips/in. Max. Force on Welds per Unit Length = fr = ((V/L+6M/(L2))2 + (H/L)2)c:5 = ((64.9/28.716 +6* 1157/(28.7162))2 + (200.8/28.716)2)0-5 = 12.765 kips/in. Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072 ' 65 * 0.75/70 = 0.4925 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rf*f_avrg;f_peak)/((1/2)*0.6*1.41*Fexx) = 13.337/(0/2)*Q.6-1.41*70) = 0.4491 in. Use 1/2 in. Weld Right Side Beam to Column Connection Transfer Force from Right = 0 kips Tension Transfer Force from Left = 0 kips Tension Vertical force on clip angles = V = | -Vbmjop + Vbm_bot | + | Fv_beam | = | 69.259 + 64.9 | + | 34.4 | = 168.6 kips He Top = (-49.188) kips Hc_Bot. = 70.273 kips HcJTop + Hc_Bot. = 21.085 kips Horizontal force on clip angles = H = | Hbjop + Hb_bot + Fx_beam | = [(-127.9)+ 200.8+ (-94) [ = 21.143 kips Vertical Force on Each Clip Angle = 84.28 kips Horizontal Force on Each Clip Angle = 10.572 kips Anqle-to-Column Bolts: (6) 1"0 A490-N -STD Bolts/Angle Allowable Shear Strength of Bolts: = 2*n*((1/FS)m) = 2*6* 23.562 = 282.7 > 168.6 kips (OK) Number of Bolts Required = n = V/((1/2)*FVAb) = 84.28/((1/2)*60'0.7854) = 3.5769, Use 6 Bolts Nominal Tension Strength per Bolt == rn = (a-b*W(N*Ab))*Ab < Ft*Ab = (147 - 2,5 * 84.28 / (6 * 0.7854)) * 0.7854 < 88.75 = 80.337 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 40.169 kips Design Right Side Beam Clip Angles Minimum Length of Clip Angle = 10.565 in. DESCONBRACE-ASD Licensed to: Desert Eiagte Engineering LLC- Page: 9 Ventana Real @ 3rd Fir (Frames 1 &3) (N-S)(2-27-06) ^ - -\Maximum Length of Clip Angle = 18.375 in. Trv2L4X3X7/16 Bojt^Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in., Hole Size = 1.0625 in. = (1/2)M.2*Lc'Fu <<1/2)*2.4*d'Fu - 69.6 kips/in. = (1/2) * 1.2 «1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in.. Hole Size = 1.0625 in. = (1/2)M.2*Lc*Fu <(1/2)'2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2*(Fbe + Fbs*(n-1))*t = 2 ' (42.413 + 67.425 * (6 - 1)) * 0.4375 = 332 kips > 168.6 kips (OK) Shear Yielding of Angles: Clip Angle Length = Lc = (n-1)*s + 2'e = (6-1)* 3+2'1.75 = 18.5 in. Ag = Lc * t = 18.5 * 0.4375 = 8.0938 in2 (1/FSlRn = M/1.61 * 2 ' Ag * 0.6 * Fv = (1/1.5) "2-8.0938* 0.6'36 = 233.1 > 168.6 kips (OK) Shear Rupture of Angles: Anv = (Lc - n*(dh+0.0625))'t = (18.5 - 6 *(1.0625 + 0.0625)) * 0.4375 = 5.1406 in2 (1/FS)Rn = M/2)' 2 * Anv * 0.6 * Fu = (1/2)'2* 5.1406-0.6* 58 = 178.9> 168.6 kips (OK) Block Shear Rupture: Agv = (Lc - el)*t = (18.5-1.75)'0.4375 = 7.3281 in2 Anv = Agv - (N - 0.5)*(dh + 0.0625)*t = 7.3281 - (6 - 0.5)'(1.0625 + 0.0625)*0.4375 = 4.6211 in2 Agt = etM = 1.75'0.4375 = 0.7656 in2 Ant = Agt - 0.5*(dh + 0.0625)*t = 0.7656 - 0.5"(1.0625 + 0,0625)*0.4375 = 0.5195 in2 H/FS)Rn «(1/2) * fO.6 * Min(Fu ' Anv: Fv * Agv) + Ubs * Fu * Antt = 0.5 ' (0.6*Min(58 * 4.6211; 36 ' 7.3281) + 1" 58-0.5195) = 94.21 > 84.28 kips (OK) Angle OSkTension Strength: Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2-t/2 = (5.5-0.43)/2-0.2188 = 2.3163 in. Bolt Distance to Edge = e = osl -1/2 - b = 4-0.4375/2-2.3163 = 1.465 in. AJiowableJensile load on clip angles per tributary area for each bolt: dh = 1.0625 In. b'* 1.8163 In. a = Min(e;1.25*b)= 1.465 in. a' - 1.9S5 in. p = 3.0B33 in. tc = (4.44 * B * b' / (p ' Fy))°-5 = (4.44 '40.169 ' 1.8163/(3.0833 * 36))°-5 = 1.7083 in. delta = 1 - dn/p = 1 -1.0625/3.0833 = 0.6554 ro = b'/a1 = 1.8163/1.965 = 0.9243 Alpha' = ((to /1)2 -1) / (detta * (1 + ro)) = ((1.7083/0.4375)2 - 1) / (0.6554 * (1 + 0.9243)) = 11.296 Ta = B * (t / tc)2 ' (1 + delta) = 40.169 * (0.4375 / 1.7083)2 '(1 + 0.6554) = 4.3614 kips Reduction in Tension Strength due to Moment = Tm = 0 kips AJIowabjeTensjgn Strength: (1/FSmn = 2'n'Ta-Tm = 2'6'4.3614-0 = 52.337 > 21.143 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072 * 65 * 0.43/70 = 0.2824 in. k-(wh-gap)/L = (3-0.5)/18.5 = 0.1351 a=wh/L-k2/(1+2k) = 3/18.5 - 0.13512 /(1+2-0.1351) = 0.1478 0=Arctan(H/V) = Arctan(21.143/168.6) = 7.1496 Degrees k = 0.1351, a = 0.1478, Theta = 7.1496 0=1.2118 Try w=1/4 in. weld Maximum weld size for angle thickness = 0.375 > 0.25 in. (OK) Minimum weld size = 0.1875 < 0.25 in. (OK) Weld Allowable Strength = C*L*C1 '16w = 1.2118*18.5*1*16*0.25 \ = 89.672 kips Resultant Load, R = 0.5*(H2 + V2)0-5 = 0.5*((21.143)2 + {168.6)2)&-5 = 84,94 kips < 89.672 kips (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 10 Ventana Real @ 3rd Fir (Frames 1&3) (N-S)(2-27-06) f 1/FS)Rn = fFvl * An1 -t- Ft2 * An2WB - (18.78 * 7.955 -*• 31.192 * 2.15J/0.9922 = 218.2 > 169.9 kips (OK) Beam Web Tear-out: Combined Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Joumal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 7.1496 Degees A = Sin(0) = 0.1245 B = Cos(0) = 0.9922 Ag = 9.0859 in2 An = 9.0859 in2 Rupture; (1/FSlRn = M/21* 0.18 MA/ B) * f-1 + (1+ fB / A)*-/0.091^-1* An *Fu/B = (1/2) * 0.18 * (0.1245 / 0.9922) * (-1 + (1 + (0.9922 / 0.1245)2 / 0.09)0-5) * 9.0859 " 65 / 0.9922 - 172. > 169.9 kips (OK) (1/1.67) + (1 / «1/1.tt7gj -f fB / A) 9.0859 = (1/1.5)2 '0.18* (0.1245 /0.9922)2 * (-1 / (1/1.67) + (1 / ((1/1 .67)2 ) + (0.9922 / 0.1 245)2 / (0.09 * (1/1 .5)2 ))°-5 ) * 9.0 50/0.1245 = 175.6 > 169.9 kips (OK) Block Shear of Beam Web: Vertical (An1.Ft1) and Horizontal (An2,Ft2) Sections: Pattern 2: Ag1 = 7.955 in2 An1 = 7.955 in2 Ag2 = 2.15 in2 An2 = 2.15 in2 Adjusted Allowablejjtress: ft1 = (1/2}"0.18*(A/B)2 *(-1 +(1 +(6/A)2 / 0.09)6-5 ) * Fu = (1/2)*0.18 * (0.1245 / 0.9922)2 * (-1 + (1 + (0.9922 /0.1245)2 / 0.09)0-5 ) * 65 = 2.3557 kst Fv1 =tt1 * 18.78ksi = 2.3557*0.9922/0.1245 = ft2 = (1/2r0.18 * (B/ A)2 ' (-1 + (1 + (A / B)2 / 0.09)°-5 " Fu = (1/2)*0.18 * (0.9922 / 0.1245)2 * (-1 + (1 + (0.1245 / 0.9922)2 / 0.09)0-5 ) * 65 = 31.192ksi Fv2 = ft2 * A / B = 31.192 * 0.1245 / 0.9922 = 3.9126ksi Use 2L4X3X7/16 Beam and Column Local Stresses for Rioht Side Beam Beam Web Local Yielding: Force from Top, Rtop = ((1.73*HbTop)2 + (VbTop+3MbTop/Ltop)2 )6-5 = ((1.73*(-127.9))2 + (69.259+3M14.9/26.049)2 )°'5 = 250.4 kips Required Web Thickness = Rtop / ( Fy *(L+2.5*k)) = 250.4 / (50 '(26.049+2.5*1.19)) = 0.2588 in. < 0.43 in. (OK) Force from Bottom, Rbot = ((1.73*HbBot)2 + (VbBot+3MbBot/LBot)2 )°-5 = ((1.73*200.8)* + (64.9+3*1157/28.716)2)05 = 393.9 kips Required Web Thickness = Rbot / ((1/1.5) *Fy * (L+2.5*k)) = 393.9 / ((1/1.5) * 50 "(28.716+2.5*1.19)) = 0.3729 in. < 0.43 in. (OK) Beam Web Crippling: Force from Top, Rtop = VbTop+3MbTop/Ltop = 69.259+3*414.9/26.049 = 117 kips Allowable Strength for Top Loading, (1/FS)Rn: = (1/2)* 0.4 * E° 5 -tw2 *(1+(4*(Ntop/d)-0.2)*(1w/tf)1-5 )*(Fy*tf/tw)°-5 = (1/2)* 0.4 * 170.3 *0.432 *(1+(4*(26.049/21.13}-0.2) *(0.43/0.685)1-5)*(50*0.685/0.43)|J'5 = 188.5 kips > 117 kips (OK) Force from Bottom, Rbot = VbBot+3MbBot/LBot = 64.9+3*1157/28.716 = 185.8 kips Allowable Strength for Bottom Loading, (1/FS)Rn: = (1/2)*0.4*E05 * tw2*(1+(4*(Nbot/d)-0.2)*(tw/tf)1-5)-(Fy*tf/tw)°'5 = (1/2)* 0.4 * 170.3 *0.432*(1+(4*(28.716/21.13)-0.2) *(0.43/0.685)1 5 ^(SO'O.eSS/O^IS)6-5 = 202.6 kips > 185.8 kips (OK) Bolt Bearing on Column: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. - (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Vertical force per bolt = 14.047 kips Allowable Bearing Strength = Fbstc = 75.563 * 0.77 = 58.183 kips > 14.047 kips (OK) Column Flange Bending: Force, H' = (H+3*M/L)/2 = (21.143 + 3*0/21)/2 = 10.572 kips Nominal Tension Strength per Bolt == rn = (a-b*V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 * 84.28 / (6 * 0.7854)) * 0.7854 < 88.75 = 80.337 kips DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 11 Ventana Real @ 3rd Rr (Frames 1&3) (N-S)(2-27-06) Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 40.169 kips Force per Bolt, T = HVn = 1.762 kips/Bolt b = 2.515 In., a=1.465 in., b' = 2.015in., a' = 1.965 in., ro= 1.0254 p = 3, d' = 1.0625, delta = (1-d'/p) = 0.6458 Beta = (B/T - 1)/ro = {40.169 /1.762 -1) /1.0254 = 21.257 Alpha' = 1 Required Flange Thickness for Bending, treg'd = = (4.44*T*b'/(p'Fy*(1+delta*Alpha')))°5 = (4.44*1.762* 2.015/(3*50*(1 +0.6458*1 )))°'5 = 0.2527 < 0.77 in. (OK) Column FJange Shear: Required Flange Thickness for Shear = thShear = T / Min[((1/1.5)" 0.6 * p * Fy),((1/2)*0.6*(p - (d1 + 0.0625))*Fu)] = 1.762/Min[((1/1.5)*0.6*3* 50),((1/2)*0.6*(3 - (1.0625 +• 0.0625))*65}] = 0.0482 < 0.77 in. (OK) Column Web Local Yielding: Force from Beam, RCotumn = (H2 + (1.73"V)2)0-5 = ((21.143)2 +(1.73*168.6)2)0'5 =292.4 kips Required Web Thickness = RColumn / ((1/1.5) * Fy * (N+5*k)) = 292.4 / ((1/1.5) * 50 ' (15 +5*1.27)) = 0.4108 in. < 0.47 in. (OK) ColumnVVeb Crippling: Force from Beam, RColumn = 21.143 kips Allowable Strength, M/FS)Rn: = (1/2)'0.8 * E6-5 * tw2*(1+3w(N/d)*(tw/tf)1-5)'(Fy-tf/tw)0-5 = (1/2)*0.8 * 170.3 * 0.472*(1+3*(15/10.4) *(0.47/0.77)1-5)*(50*0.77/0.47)0-5 = 417.2 kips > 21.143 kips (OK) Design is incomplete or not -END- OI-- AS U> DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ 3rd Fir (Frames 1&3) (N-S)(2-27-06) . (Slotted) Slope: 1.125/1 Scale: 3/16" = 1' BASIC DESIGN DATA Column: Size: W10X68 Material: A992 Orientation: Web In Plane Axial Force; 0 kips Shear Force: 0 kips Right Side Beam: Size: W21X68 Material: A992 Axial Force: -108.4 kips Shear Force: 55.05 kips Work Point X: 0 in. Work Point Y: 0 in. Clip Angles: Length: 12.5 in. OSL: 4 in. Material: A36 Bolts; 1"0 A490-N-STD Bolt Spacing: 3 in. Bolt Edge Distance: 1.75 in. Upper Right Brace: Size: HSS6X6X3/8 Material; A500-B-46 Axial Force: -266.6 kips Work Point X; 0 in. Work Point Y: 0 in. Rise/Run: 1.154/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length; 25.827 in. Beam Side Length: 19.908 in. Brace Side Length: 9 in. Column Side Free Edge: x= 19.881 in., y= 0 in. Beam Side Free Edge: x= 6.7739 in., y= 19.933 in. Thickness: 0.875 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -18 in. Clip Angles: Length: 15.5 in. OSL: 4 in. Material; A36 Bolts: 1"0 A490-N-STD Bolt Spacing: 3 in. Bolt Edge Distance: 1.75 in. Lower Right Brace: Size: HSS7X7X1/2 Material: A500-B-46 Axial Force: 408 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.039/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 32.91 in. Beam Side Length: 29.149 in. Brace Side Length; 10 in. Column Side Free Edge: x= 29.204 in., y= 0 in. Beam Side Free Edge: x= 7.2601 in., y= 25.976 in. Thickness: 0.875 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22 in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: t Ventana Real @ 3rd Fir (Frames 2 & 4) (N-S) (2-27-06) Clip Angles: Length: 18.5 in. OSL: 4 in. Material: A36 Bolts: 1"0A490-N -STD Bolt Spacing: 3 in. Bolt Edge Distance: 1.75 in. Upper Right Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 5/16 in. (Use 0.25 in. for capacity calculation) Brace to Gusset Weld Length = 4X18 in. Weld Size = 5/16 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: M/FSlRn • B*4*(1/2r0.6*Fexx'0.707*w*L = 1*4*(1/2)*0.6*70'0.707*0.25*1I8 = 267.2 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSlRn - 4*f1/1.5l * 0.6*Fv*t*L = 4'(1/1.5) * 0.6*46 * 0.349 * 18 = 462.4 > 266.6 kips (OK) Check Upper Right Brace Tension Yielding of the Brace: (1/FSiRn = (1/1.67) *Fv*Ag = (1/1.67) *46* 7.58 y = 208.8 < 266.6 kips (NG) /V C t /?/ ~ A -J Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 - 2*(0.75 + 0.0625 )* 0.349 = 7.0129 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (62 + 2* 6 * 6)/(4*(6 + 6)) = 2.25 in. U = 1-(x/L)<0.9 = 1-(2.25/18)<0.9 = 0.875 Ae = U*An = 0.875 * 7.0129 = 6.1363 in2 f1/FSlRn = (1/2) * Fu * Ae = (1/2)* 58* 6.1363 * 178. < 266.6 kips Upper Right Brace Gusset Dimensions: Column Side, Lgc = 25.827 in. Beam Side, Lgb = 19.908 in. Beam Side Free Edge, Lvfx = 6.7739 in. Beam Side Free Edge. Lvfy = 19.933 in. Column Side Free Edge, Lhfx = 19.881 in. Column Side Free Edge, Lnfy - 0 in. Upper Right Brace Gusset Edge Forces: Special case: 2 Gusset edge moments carried by: EJeam interface Theta = 40.91 1 Degrees, eb = 1 0.565 in. ec = 5.2 in. Beta ~ 9. in. BetaBar = 9. in. AlphaBar = 10.454 in. Alpha = (Beta + eb)*Tan (Theta) - ec DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real @ 3rd Fir (Frames 2 & 4) (N-S) (2-27-06) ___ = (9. + 10.565)*Tan(40.911) - 5.2 = 11. 754 in. r = Fx / ((Alpha + ec)2 + (beta + eb)2 )°-5 = (-266.6)/((11.754 + 5.2)2 + (9. + 10.565)2}0-5 = (-10.298) kips/in. Hb = Alpha * r = 11.754 * (-10.298) = (-121) kips He = ec*r = 5.2* (-10.298) = (-53.549) kips Vb = (-66.478) kips (Adjusted by user) Vc = (-135) kips (Adjusted by user) Mb = lAlpha*(eb*r-Vb)| = |1 1.754 * (10.565 * (-10.298) - (-66.478)) = 583.8 k-in. Mc = 0 Upper Right Brace Gusset Thickness Trv t = 7/8" Maximum Brace Weld Fores Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5* 0.6*65* 0.875* 18 = 614.3 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*1 8*0.875 = 31 .5 in2 Agt = Ant = d*t = 6*0.875 = 5.25 in2 - (1/21 * lO.S * MinfPu * Anv: Fv * Aqv) + Ubs * Fu ' Ant) = 0.5 * (0.6*Min(65 * 31 .5; 50 * 31 .5) + 1 * 65 * 5 25) = 643.1 > 266.6 kips (OK) Chech Whitmore Sectiom Width, l_w = 1.1547'Lweld + d = 1.1547*18 + 6 = 26.785in. Lwo = 1 ,5683 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 25.216 in. Whitmore Section Stress: fa = Fx/(Lwg"t + Lwb*twb + Lwc*twc) - 266.67(25.216 * 0.875 + 0 * 0.43 + 0 * 0.47) = 1 2.083 ksi WhJtmore Section Yielding: Allowable Strength = (1/1.67)*(LwgTFyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1 .67)*(25.216 * 0.875 ' 50 + 0 * 0.43* 50 + 0 ' 0.47* 50) = 660.6 > 266.6 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 7.4651 in. Kl/r = Lcr/(t/12°-5 ) = 7.4651/(0.875/3.464) = 29.553 Fe = pi2 *E/(kUr)2 =3.142 *290.x102 /29.5532 - 327.7 >0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/327.7 = 0.1526 Fcr = 0.658° 152S * Fy = 0.658° 152S * 50 = 46.907 ksi Buckling Strength = (1/1.67) *Fcr = 28.088 > 12.083 ksi OK Upper Right Brace Gusset to Column Connection Vertical force on clip angles = (-135) kips Horizontal force on clip angles = (-53.549) kips Vertical Force on Each Clip Angle, V --= 67.5 kips Horizontal Force on Each Clip Angle, T = (-26.775) kips Anqle-to-Column Bolts: ' (5) 1"0 A490-N -STD Bolts/Angle Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*5* 23.562 = 235.6 > 135 kips (OK) Number of Bolts Required = n = V/((1/2)*Fv*Ab) = 67.5/((1/2)*60* 0.7854) = 2.8648, Use 5 Bolts Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 * 67.5 / (5 * 0.7854)) * 0.7854 < 88.75 = 81 .704 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 40.852 kips Design Upper Right Brace Clip Angles Minimum Length of Clip Angle = 12.913 in. Maximum Length of Clip Angle = 23.i327 in. Try 2L4X4X1/2 Bolt Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in., Hole Size = 1.0625 in. = (1/2) * 1.2 ' Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) ' 1.2 * 1 .2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1 .0625 in. • = (1/2) * 1 .2 * Lc * Fu < (1/2) • 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1 .2 * 1 .9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2 * (42.413 + 67.425 * (5 - 1)) * 0.5 = 312.1 kips > 135 kips (OK) Shear Yieldingjjf Angles: Clip Angle Length = Lc = (n-1)*s-*-2*e = (5-1)* 3 +2 '1.75 = 15.5 in. Ag = Lc * t = 15.5 * 0.5 = 7.75 in2 uu ju D ESC ON BRACE-ASP Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real @ 3rd Fir (Frames 2 & 4) fN-S> (2-27-06) t1/FS)Rn = (1/1.5) * 2 * Ag * 0.6 * Fv = (1/1.5) *2 -7.75*0.6*36 = 223.2 > 135 kips (OK) ShearRupture of Angles: Anv = (Lc - n-(dh+0.0625))*t = (15.5 - 5 '(1.0625 + 0.0625)) * 0.5 = 4.9375 in2 f1/FS)Rn a d/2) * 2 * Anv * 0.6 * Fu = (1/2) *2M.9375*0.6'58 = 171.8 > 135 kips (OK) Block Shear Rupture: Agv = (Lc - el)*t = (15.5-1.75)* 0.5 = 6.875 in2 Anv = Agv - (N - 0.5)*(dh + 0.0625)*t = 6.875 - (5 - 0.5)*(1.0625 + 0.0625)*0,5 = 4.3438 in2 Agt = et * t = 1.75 * 0.5 = 0.875 in2 Ant = Agt - 0.5*(dh + 0.0625)*t = 0.875 - 0.5*(1.0625 + 0.0625)*0.5 = 0.5938 in2 (1/FS)Rn = (1/2) * tO.6 * MinfFu * Anv: Fv * Aavl + Ubs * Fu * Antt = 0.5 * (0.6'Min(58 * 4.3438; 36 * 6.875) + 1 * 58 * 0.5938) = 91.469 > 67.5 kips (OK) Angle OSL Tension Strength: Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2 -1/2 = (5.5-0.875)72-0.25 = 2.0625 in. Bolt Distance to Edge = e = osl -1/2 - b = 4 - 0.5/2 - 2.0625 = 1.6875 in. AKowabjeJensite (pad on ctigjmgles per tributary area for each bolt: dh = 1.0625 in. b'= 1.5625 in. a = Min(e;1.25*b)= 1.6875 in. a1 = 2.1875 in. p = 3.1 in. tc = (4.44 * B * b' / (p * Fy))°-5 = (4.44 * 40.852 * 1.56257(3.1 * 36))°-5 = 1.5936 in. delta = 1 - dh/p = 1 -1.0625/3.1 = 0.6573 ro = b'/a' = 1.5625/2.1875 = 0.7143 Alpha' = ((tc /1)2 -1) / (delta * (1 + ro)) = ((1.5936/0.5)2 - 1)/(0.6573 *0 + 0,7143)) = 8.128 Ta=B*(t/tc)2 '(t+delta) = 40.852 ' (0.5 /1.5936)2 *(1 + 0.6573) = 6.6649 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength: (1/FS)Rn = 2*n*Ta-Tm = 2*5-6.6649-0 = 66.649 > 53.549 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072 * 65 - 0.875/70 = 0.5746 in. k=(wh-gap)/L = (4-0.5)/15.5 = 0.2258 a=wh/L-k2/(1+2k) = 4/15.5 - 0.22582 /(U2*0.2258) = 0.2229 0=Arctan(HAV) = Arctan(53.549/135) = 21.636 Degrees k= 0.2258, a = 0.2229, Theta = 21.636 C= 1.3698 Try w=1/4 in. weld Maximum weld size for angle thickness = 0,4375 > 0.25 in. (OK) Minimum weld size = 0.1875 < 0.25 in. (OK) Weld Allowable Strength = C*L*C1*1(iw = 1.3698-15.5-1*16*0.25 = 84.926 kips Resultant Load, R = 0.5*(H2 + V2)05 = 0.5'((53.549)2 +(135)2)°S = 72.616 kips < 84.926 kips (OK) Gusset Tear-out: Combined Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 *=•) (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Journal,3rd Q 1986, AtSC). Load Angte, 0 = Atn(H/V) = 21.636 Degees A =Sin(0) = 0.3687 B = Cos(0) = 0.9295 Ag = 22.598 in2 An = 22.598 in2 Rupture: (1/FSlRn = (M2V 0.18 * fA/ Bl * (-1 + (1 + fB / A£ / 0.09^^-j^Ari ' F-ii./B = (1/2) * 0.18 * (0.3687 / 0.9295) * (-1 + (1 + (0.9295 / 0.3687)2 / 0.09)° 5) * 22.598 * 65 / 0.9295 = 421 > 145.2 kips (OK) TT Yielding: M/FS)Rn = (1/1. (1/1.67 + (1 / fd/1.6712-) + fB / A' = (1/1 .5)2 * 0.18 '(0.3687 / 0.9295)2 * (-1 / (1/1 .67) + (1 / {(1/1 .67)2 ) + (0.9295 / 0.3687)2 / (0.09 ' (1/1 .5)2 ))°-5 ) ' 22.598 ' 50/0.3687 - 426 > 145.2 kips (OK) Block Shear of Gusset: Vertical (Anl.Ftl) and Horizontal (An2,Ft2) Sections: Ag1 = 14.656 in2 An1 = 14.656 in2 Ag2 = 3.0625 in2 An2 = 3.0625 in2 Pattern 1: Adjusted Allowable Stress: ft1 = (1/2)*0.18 * (A/ B)2 * (-1 + (1 + (B / A)2 / 0.09)°-5)*Fu = (1/2)*0.18* (0.3687 /0.9295)2 - (-1 + (1 + (0.9295 / 0.3687)2 / 0.09)° 5 ) ' 65 = 6.869 ksi Fv1 = ft1 * B / A = 6.869 * 0.9295 / 0.3687 = 17.317 ksi ft2 = [1/2)*0.18*(B/A)2 *(-1 + (1+<A/B)2 / 0.09)6-5)*Fu = (1/2)*0.18 * (0.9295 / 0.3687)2 * (-1 + (1 + (0.3687 / 0.9295)2 / 0.09)° 5) * 65 = 24.457 ksi Fv2 = tt2 ' A / B = 24.457 * 0.3687 / 0.9295 = 9.7009 ksi (1/FStRn = (Fv1 * An1 + Ft2 'An2j/B = (17.317M4.656 + 24.457* 3.0625)/0.9295 = 353.6 > 145.2 kips (OK) Pattern 2: Ag1 = 13.563 in2 An1 = 13.563 in2 Ag2 = 6.125 in2 An2 = 6.125 in2 Adjusted Allowable Stress: (Same as Above) M/FSIRn = (Fv1 * An1 + Ft2 • An2WB = (17.317 * 13.563 + 24.457 * 6.125)/0.9295 = 413.8 > 145.2 kips (OK) Use2L4X4X1/2 Column Local Stresses forjjpper Right Brace Bolt.B_earing_on Column; Bearing Sfrength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size - 1.0625 in. = (1/2)M.2*Lc*Fu < (1/2) ' 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 ' 58 = 67.425 kips/in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real ^ 3rd Fir (Frames 2 & 4) (N-S) (2-27-06) Vertical force per bolt = 13.5 kips Allowable Bearing Strength = Fbs'tc = 67.425 * 0.77 = 51.917 kips > 13.5 kips (OK) Column Flange Bending: Force, H' = (H+3*M/L)/2 = (53.549 + 3*0/18)/2 = 26.775 kips Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 * 67.5 / (5 * 0.7854)) * 0.7854 < 88.75 = 81.704 kips Allowable Strength per Bolt, (1/FS)m = (1/2)*rn = 40.852 kips Force per Bolt, T = H'/n = 5.3549 kips/SoJt b = 2.515 in., a = 1.6875 in., b' = 2.015 in., a1 = 2.1875 in., ro = 0.9211 p = 3, d' = 1.0625, delta = (1-d'/p) = 0.6458 Beta = (BfT-1)/m = (40.852/5.3549- 1)/0.9211 =7.1963 Alpha' = 1 Required Flange Thickness for Bending, treg'd = = (4.44*T*b'/(pTy'(1+defta*Afpha')))° •* = (4.44'5.3549 * 2.015/(3*50*(1+0.6458*1)))°-5 = 0.4405 < 0.77 in. (OK) Column Flange Shear: Required Flange Thickness for Shear = thShear = T / Min[((1/1.5) * 0.6 * p * Fy),((1/2)*0.6'(p - (d1 + 0.0625))*Fu)] = 5.3549 /Min[((1/1.5) * 0.6" 3 * 50),((1/2)*0.6*(3 - (1.0625 + 0.0625))*65)] = 0.1465 < 0.77 in. (OK) Column Web Local Yielding: Force from Gusset, RColumn = ((H+3*M/N)2 + (1.73*V)2)° 5 = {(53.549+3*0/12)2 + (1.73*135)2 )05 =239.6 kips Required Web Thickness = RColumn / ({1/1.5) * Fy * (N+5*k)) = 239.6 / ({1/1.5) * 50 * (12 +5*1.27)) = 0.3917 in. < 0.47 in. (OK) Column Web Crippling: Force from Gusset, RColumn = H+3*M/N = 53.549 kips Allowable Strength, (1/FS)Rn: = (1/2)'0.8 * E6-5 * tw2 *(1+3'(N/d)*(tw/tf)1-5 )*(Fy'tf/tw)°-5 = (1/2)*O.S * 170.3 " 0.472*(1+3*(12/10.4) *(0.47/0.77)15r{50*0.77/0.47)c|5 - 361. kips > 53.549 kips (OK) Upper Right Brace Gusset to Beam Connection Weld Size = 1/2 in. Horizontal Force on Welds, Hb = 121 kips Vertical Force on Welds, Vbm = 66.478 kips Moment on Welds, M = 583.8 k-in. Weld Length on Each Side of Gusset Plate, L = 19.908 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/(L2 ))2 + (H/L)2)° 5 = {(66.478/19.908 + 3* 583.8/(19.9082 ))2 + (121/19.908)2)0'5 = 9.8568 kips/in. Max. Force on Welds per Unit Length = fr = ((V/L+6M/(L2))2 +(H/L)2)0-5 - ((66.478/19.908 + 6* 583.8/(19.9082 ))2 + (121/19.908)2)0-5 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 5 Ventana Real fy 3rd Fir (Frames 2 & 4) (N-S) (2-27-06) = 13.611 kips/in. Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072*65*0,875/70 = 0.5746 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(RFf_avrg;f_peak)/((1/2)*0.6*1.41*Fexx) = 13.8/((1/2)*0.6*1.41*70} = 0.4647 in. Use 1/2 in. Weld Lower Right Brace to Gusset Connection Brace Force = 408 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FSlRn - R*4*(1/2ro.6*Fexx*0.707*w*L = 1*4*(1/2)*0.6*70*0.707*0.3125*22 = 408.3 > 408 kips (OK) Maximum Weld Force Brace Can Develop: <1/FS)Rn = 4*f1/1.S) ' 0.6'Fv*t*L = 4*(1/1 .5) - 0.6*46 * 0.465 * 22 = 752.9 > 408 kips (OK) Check Lower Right Brace Tension Yielding of the Brace: = (1/1.67l'Fv*Aa = (1/1.67) *46* 11.6 = 319.5 < 408 kips ( Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 11.6 - 2*(0.875 + 0.0625 )* 0.465 = 10.728 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (72 + 2* 7 * 7)/(4*(7 + 7)) = 2.625 in. U = 1 -(x/L)<0.9 = 1 - (2.625 / 22) < 0.9 = 0.8807 Ae = U*An = 0.8807 * 10.728 = 9.4481 in2 i1/FSlRn = (1/2>*Fu*Ae = (1/2)'58*9.4481 / = 274. < 408 kips t^G) OK. Lower Right Brace Gusset Dimensions: Column Side, Lgc = 32.91 in. Beam Side, Lgb = 29.149 in. Beam Side Free Edge, Lvfx = 7.2601 in. Beam Side Free Edge, Lvfy = 25.976 in. Column Side Free Edge, Lhfx= 29.204 in. Column Side Free Edge, Lhfy = 0 in. Lower Right Brace Gusset Edge Forces: -/~ /• •O Special case: 2 Gusset edge moments carried by: Beam interface Theta = 43.904 Degrees, eb = 10.565 in. ec = 5.2 in. Beta = 10.5 in. BetaBar= 10.5 in. Alph;aBar= 15.074 in. Alpha = (Beta + eb)*Tan(Theta) - ec = (10.5 + 10.565)*Tan(43.904) - 5.2 = 15.074 in. r = Fx / ((Alpha + ec)2 + (beta +• eb)2)° 5 = 408 / ((15.074 + 5.2)2 + (10.5 + 10.565)2 )°-5 = 13.955 kips/in. Hb = Alpha * r = 15.074 * 13.955 = 210.4 kips He = ec*r= 5.2* 13.955 = 72.566 kips Vb = 49.5 kips (Adjusted by user) Vc = 240 kips (Adjusted by user) Mb = |Alpha * (eb * r - Vb)| = |15.074 * (10.565 * 13.955 - 49.5| = 1476 k-in. Mc=0 Lower Right Brace Gusset Thickness Try t = 7/8" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5 * 0.6*65 * 0.875 * 22 = 750.8 > 408 kips (OK) Block Shear of Gusset at Brace: Agv = Any = 2*L*t = 2*22*0.875 = 38.5 in2 Agt = Ant = d*t = 7*0.875 = 6.125 in2 «1/FSWn - (1/21 * (0.6 * Mln(Fu * Any; Fv ' Aqvl + Ubs * Fu * Ant) = 0.5 * (0.6*MJn(65 * 38.5; 50 * 38.5) + 1 * 65 * 6.125) = 776.6 > 408 kips (OK) Check Whitmore Section: WkJth, Lw = 1.1547*Lweld + d = 1.1547*22 +7 = 32.403 in. Width of Whitmore Section inside gusset boundaries, Lwg = 32.403 in. Whitmore Section Stress: fa - Fx/(Lwg*t + Lwb*twb + Lwc'twc) = 408/(32.403 * 0.875 + 0 * 0.43 + 0 * 0.47) = 14.39 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*tTyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(32.403 * 0.875 * 50 + 0 * 0.43* 50 + 0 * 0.47* 50) = 848,9 > 408 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 13.484 in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 6 Ventana Real @ 3rd Fir (Frames 2 & 4) (N-S) (2-27-06} Kt/r=Lcr/(t/12°-5)=13.484/(0.875/3.464) = 53.38 Re = pi2 *E/{kUr)2 =3.142 '290.X102 / 53.S82 = 100.4 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/100.4 = 0.4978 Fcr = 0.6580-4978 * Fy = 0.6580'4978 * 50 = 40.597 ksi Buckling Strength = (1/1.67) *Fcr = 24.309 > 14.39 ksi OK Lower Right Brace Gusset to Column Connection Vertical force on clip angles = 240 kips Horizontal force on clip angles = 72.566 kips Vertical Force on Each Clip Angte, V = 120 kips Horizontal Force on Each Clip Angle, T = 36.283 kips Anqle-to-Column Bolts: (6)1"0A490-N-STD Bolts/Angle Allowable ..Shear Strength of Bolts: = 2'n*({1/FS)m) = 2 ' 6 * 23.562 = 282.7 > 240 kips (OK) Number of Bolls Required - n = V/((1/2)*Fv*Ab) = 120/«1/2)*60'0.7854) = 5.093, Use 6 Bolts Nominal Tension Strength per Bolt = m = (a-b*V/(N*Ab))*Ab < Ft*Ab - (147 - 2.5 ' 120 / (6 * 0.7854)) * 0.7854 < 88.75 = 65.454 kips Allowable Strength per Bolt, {1/FS)rn = (1/2)*m = 32.727 kips Design Lower Right Brace Clip Angles Minimum Length of Clip Angle = 16.455 in. Maximum Length of Clip Angle = 30.91 in. Trv 2L4X4X5/8 Bolt Bearing on Angle O5L Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist = 1,75 in., Hole Size = 1.062S in. = (1/2)M.2*Lc*Fu <(1/2)*2.4'd'Fu = 69.6 kips/in. = (1/2) * 1.2 ' 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc ' Fu < (1/2) ' 2.4 ' d ' Fu - 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap Fbs'(n-1))M = 2 * (42.413 + 67.425 * (6 - 1)) * 0.625 = 474.4 kips > 240 kips (OK) Shear Yielding of Angles: Clip Angle Length = Lc = (n-1)*s + 2*e = (6-1)* 3+2* 1.75 = 18.5 in. Ag = Lc * t = 18.5 * 0.625 - 11.563 in2 f1/FSlRn = (1/1.5) * 2 * Ag * 0.6 * Fv = (1/1.5)*2*11.563*0.6*36 = 333 > 240 kips (OK) Shear Rupture of Angles: Anv = (Lc - n*(dh+0.0625))*t = (18.5 - 6 "(1.0625 + 0.0625)) * 0.625 = 7.3438 in2 M/FSIRn = (1/21 * 2 * Anv ' 0.6 * Fu ' = (1/2) * 2 * 7.3438 * 0.6 * 58 = 255.6 > 240 kips (OK) Block Shear Rupture: Agv - (Lc - el)*t = (18.5-1.75)'0.625 = 10.469 in2 Anv = Agv - (N - 0.5)*(dh + 0.0625)*t = 10.469 - (6 - 0.5)*(1.0625 + 0.0625)*0.625 = 6.6016 in2 Agt = et M = 1.75 * 0.625 = 1.0938 in2 Ant = Agt - 0.5*(dh + 0.0625)*t = 1.0938 - 0.5*(1.0625 + 0.0625)*0.625 = 0.7422 in2 {1/FSlRn = f1/2i * (0.6 * Min{Fu * Anv: Fv * Agvl + Ubs * Fu * Antt = 0.5' (0.6*Min(58 * 6.6016; 36 * 10.469) + 1 * 58 * 0.7422) = 134.6 > 120 kips (OK) Angle OSL Tension Strength: Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2-t/2 = (5.5-0.875)/2-0.3125 = 2 in. Bolt Distance to Edge = e = osl -1/2 - b = 4 - 0.625/2 - 2 = 1.6875 in. Allowable tensile load on clip angles per tributary area for each bolt: dh= 1.0625 in. b'-1.5 In. a = Min(e;1.25'b)= 1.6875 In. a' = 2.1875in. p = 3.0833 in. tc = (4.44 * B' b1 / (p ' Fy))0-5 = (4.44 * 32.727 * 1.5/(3.0833 * 36))° 5 = 1.4013 in. delta = 1 - dh/p = 1 -1.0625/3.0833 = 0.6554 n DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 7 Ventana Real @ 3rd Fir (Frames 2 & 4) (N-S) (2-27-06) _^^^______ ro = b'/a' = 1.5/2.1875 = 0,6857 Alpha1 = ((tc /1)2 -1) / (delta * (1 + ro)) = {(1.4013/0.625)2 . 1)/(0.6554 ' (1 + 0.6857)) = 3.6448 Ta = B-(t/tc)2 "(1+ delta) = 32.727 * (0.625 / 1.4013)2*(1 + 0.6554) = 10.777 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength: (1/FSlRn-2*n*Ta-Tm = 2*6M0.777-0 = 129.3 > 72.566 kips (OK) Weld Size Required for Inclined Eccentric ' Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072 * 65 * 0.875/70 = 0.5746 in. k=(wh-gap)/L = (4-0.5)/18.5 = 0.1892 a=wh/L-k2/(1+2k) - 4/18.5 - 0.1 B922 /(1 +2*0.1892) = 0.1902 0=Arctan(H/V) = Arctan(72.566/240) = 16.823 Degrees k = 0.1892, a = 0.1902, Theta = 16.823 C= 1.325 Try w=3/8 in. weld Maximum weld size for angle thickness = 0.5625 > 0.375 in. (OK) Minimum weld size = 0.25 < 0.375 in. (OK) Weld Allowable Strength = C*L'C1'16w = 1.325*18.5*1-16-0.375 = 147 kips Resultant Load, R = 0.5*(H2 + V2)0'5 = 0.5*((72.566)2 + (240)2 }°-S = 125.4 kips < 147 kips (OK) Gusset Tear-out: Combmed Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft+ (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Journal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 16.823 Degees A =Sin(0) = 0.2894 B = Cos(0) = 0.9572 Ag = 28.796 in2 An = 28.796 in2 Rupture: f 1/FSlRn - M/21* 0.18 * fA/ Bl * f-1 + f 1 + (B / At2- / 0.09)^-1 * An * Fu/B = (1/2) * 0.18 * (0.2894 / 0.9572) - (-1 + (1 •»• (0.9572 / 0.2894)2 / 0.09)0-5) - 28.796 * 65 / 0.9572 = 535.8 > 250.7 kips (OK) (1/FS>Rn = M/1.512-* 0.18 " (A/ B£* (-1 / (1/1.67) + (1 / / tO.09 * <1/1 .5J£»B£-)' Ag * Fv/A = (1/1.5)* -0.18*(0.2894/0.9572)2 * (-1 / (1/1.67) +• (1 / ((1/1.67)2) + (0.9572 / 0.2894)2 / (0.09 * (1/1.5)2 ))°-5) * 28.796 * 50/0.2894 = 544. > 250.7 kips (OK) Block Shear, of Gusset: Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections: Ag1 = 27.703 in2 An1 - 27.703 in2 Ag2 = 3.0625 in2 An2 = 3.0625 in2 Pattern 1: Adjusted Allowable Stress: ftt = (1/2)*Q.18*(A/B)2 * (-1 + (t-MB / A)2 f 0.09)0-5 ) * Fu = (1/2)'0.18 * (0.2894 / 0.9572)2 * (-1 + (1 + (O.S I 0.09)0-5) ' 65 = 5.3854 ksi (1 + (0.9572 / 0.2894)2 Fv1 = ft1 * B / A = 5.3854 * 0.9572 / 0,2894 = 17.811 ksi ft2 = (1/2J-0.18 • (B/ A)2 * (-1 + (1+ W / B)2 / 0.09)0-5) - Fu = (1/2)*0.18 * (0.9572 / 0.2894)2 * (-1 + (1 + (0.2894 / 0.9572)2 / 0.09)0'5) * 65 = 26.862 ksi Fv2 = ft2 " A / B = 26.862 * 0.2894 / 0,9572 = 8.122 ksi f 1/FS)Rn = fFv1 * An1 + Ft2 * AnZWB = (17.811 * 27.703 + 26.862 * 3.0625)/0.9572 = 601.4 > 250.7 kips (OK) Pattern 2: Ag1 = 16.188 in2 An1 = 16.188 in2 Ag2 = 6.125in2 An2 = 6.125 in2 Adjusted Allowable Stress: (Same as Above) (1/FS)Rn = fFvl * An1 + Ft2 * An2WB = (17.811* 16.188+ 26.862-6.125)/0.9572 = 473 > 250.7 kips (OK) Use 2L4X4X5/8 Column Local Stresses for Lower Right Brace Bolt Bearing on Column: Bearing Strength/BoltfThickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 8 Ventana Real @ 3rd Fir (Frames 2 & 4) (N-S) (2-27-06) = (1/2)'1.2'Lc*Fu <(1/2)*2.4*d'Fu = 69.6 kips/in. = (1/2) * 1 .2 * 1 .9375 ' 58 = 67.425 kips/in. Vertical force per bolt = 20 kips Allowable Bearing Strength - Fbs'tc = 67.425 * 0.77 = 51.917 kips > 20 kips (OK) Column Flange Bending: Force, H' = (H+3*M/L)/2 = (72.566 + 3'0/21)/2 = 36.283 kips Nominal Tension Strength per Bolt = m = (a-b*V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 ' 120 / (6 * 0.7854)) * 0.7854 < 88.75 = 65.454 kips Allowable Strength per Bolt, (1/FS)m = (1/2)*rn = 32.727 kips Force per Bolt, T = H'/n = 6.0472 kips/Bott b = 2.515 in., a- 1.6875 in., b' = 2.015 in., a' = 2.1875 in., ro = 0.9211 p = 3, d' = 1.0625, delta = (1-dVp) = 0.6458 Beta = (B/T - 1)/ro = (32.727 / 6.0472 - 1 ) / 0.921 1 = 4.7896 Alpha' = 1 Required Flange Thickness for Bending, treg'd = = (4.44*6.0472 * 2.01 5/(3*50*(1 +0.6458-1 )))°-5 = 0.4681 < 0.77 in. (OK) Column Flange Shear: Required Flange Thickness for Shear = tnSnear = T / Min[((1/1.5) * 0.6 ' p * Fy),((1/2)*0.6*(p - (dr + 0.0625)rFu)] - 6.0472 /Min[((1/1 .5) " 0.6 * 3 * 50),((1/2)'0.6*<3 - (1.0625 + 0.0625))'65)] = 0.1654 < 0.77 in. (OK) Column Web Local Yielding: Force from Gusset, RColumn = ((H+3*M/N)2 + (1.73*V)2)as = {(72.566+3*0/1 5)z + (1.73*240)2)05 = 421.5 kips Required Web Thickness = RColumn / ((1/1.5) * Fy * (N+5*k)) = 421 .5 / ((1/1 .5) ' 50 * (15 +5*1 .27)) = 0.5923 in. > 0.47 in. (N^) Column Web Crippling: Force from Gusset, RColumn = H+3*M/N = 72.566 kips Allowable Strength, (1/FS)Rn: = (1/2)*0.8'Ed-5 ' tw2 *(1+3*(N/d)*(twffl)1-5 r(Fy*tf/tw)°-5 = (1/2)*0.8 * 170.3 ' 0.472'(1+3-(15/10.4) *(0.47/D.77)15)*{50*Q.77/0.47)°-S = 417.2 kips > 72.566 kips (OK) Lower Right Brace Gusset to Beam Connection Weld Size = 1/2 in. Horizontal Force on Welds, Hb = 210.4 kips Vertical Force on Welds, Vbm = 49.5 kips Moment on Welds, M = 1476 k-in. Weld Length on Each Side of Gusset F>late, L = 29.149 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/(L2))2 +(H/L)2)05 = ((49.5/29.149 + 3* 1476/(29.1492 ))2 + (210.4/29.149)2)0 5 = 9.9922 kips/in. Max. Force on Welds per Unit Length = fr = ((V/L+6W(L2))2 +(H/L)2p - ((49.5/29.149 + 6' 1476/(29.1492))2 + (210.4/29.149)2)05 = 14.109 kips/in. Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072 * 65 ' 0.875/70 = 0.5746 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rf*f_avrg;f_pealc)/((1/2)*0.6'1.4rFexx) = 14.109/((1/2)*0.6'1.41*70) = 0.4751 in. Use 1/2 in. Weld Right Side Beam to Column Connection Transfer Force from Right = 0 kips Tension Transfer Force from Left = 0 kips Tension Vertical force on clip angles = V = | -Vbmjop + VbmjDot \ + | Fv_beam | = | 66.478 + 49.5 ( + | 55.05 | = 171 kips Hc_Top = (-53.549) kips Hc_Bot. = 72.566 kips Hc_Top + Hc_Bot. = 19.017 kips Horizontal force on clip angles = H = | Hbjop + Hb bot + Fx beam | = I (-121)+ 210.4+ (-108^4) | = 19.079 kips Vertical Force on Each Clip Angle = 35.514 kips Horizontal Force on Each Clip Angle = 9.5395 kips Angle-to-Column Bolts: (4}1"0A490-N-STD Bolts/Angle Allowable Shear Strength of Bolts: = 2'n-((1/FS)rn) = 2 " 4 * 23.562 = 188.5 > 171 kips (OK) Number of Bolts Required = n = V/((1/2)'Fv*Ab) = 85.514/((1/2)*60* 0.7854) - 3.6293, Use 4 Bolts Nominal Tension Strength per Bolt = rn = (a-b*V/(N'Ab))'Ab < Ft"Ab = (147 - 2.5 * 85.514 / (4 - 0.7I354)) * 0.7854 < 88.75 - 62.007 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)'rn = 31.004 kips Design Right Side Beam Clip Angles DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 9 Ventana Real @ 3rd Fir (Frames 2 & 4) (N-S) (2-27-06) Minimum Length of Clip Angle =- 10.565 in. Maximum Length of Clip Angle = 18.375 in. Trv 2L6X4X5/8 Bolt Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc-Fu <(1/2)*2.4'd*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 ' 58 - 67.425 kips/in. Bearing Capacity = BrCap = 2*(Fbe + Fbs*(n-1))*t = 2 ' (42.413 + 67.425 * (4 - 1)) * 0.625 = 305.9 kips > 171 kips (OK) Shear Yielding of Angles: Clip Angle Length = Lc = (n-1)*s + 2'e -(4-1)* 3+2* 1.75 = 12.5 in. Ag = Lc * t = 12.5 * 0.625 = 7.8125 in2 M/FSlRn = (1/1.51 * 2 * Aq * 0.6 * Fv = (1/1.5) "2* 7.8125-0.6'36 = 22S>-\7-\ kips (OK) Shear Rupture of Angles: Anv = (Lc - n'(dh+0.0625))'t = (12.5 - 4 *(1.0625 + 0.0625)) * 0.625 = 5 in2 (1/FS)Rn = (1/2) * 2 * Anv * 0.6 ' Fu = (1/2)'2*5*0.6*58 = 174>171 kips (OK) Block Shear Rupture: Agv = (Lc - el)*t = (12.5-1.75)'0.625 = 6.7188 in2 Anv = Agv - (N - 0.5)'(dh + 0.0625)*t = 6.7188 - (4 - 0.5}*(1.0625 + 0.0625)*0.625 = 4.2578 in2 Agt = et*t = 1.75 *0.625 = 10938 in2 Ant = Agt - 0.5*(dh + 0.0625)*t = 1.0938 - 0.5*(1 -0625 + 0.0625)*0.625 = 0.7422 in2 (1/FS)Rn = (1/2) * (0.6 * MinfFu * Anv: Fy * Agv) + Ubs * Fu * Ant) = 0.5 * (0.6'Min(58 * 4.2578; 36 * 6.7188) + 1 '58*0.7422) = 94.086 > 85.514 kips (OK) Angle OSL Tension Strength: Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2-t/2 = (5.5-0.43)/2-0.3125 = 2.2225 in. Bolt Distance to Edge = e = osl -1/2 - b = 4 - 0.625/2 - 2.2225 = 1.465 in. Allowable tensile load on clip angles per tributary area foreach bofc dh = 1.0625 in. b'= 1.7225 in. a = Min(e;1.25*b)= 1.465 In. a'= 1.965 In. p = 3.125in. tc = (4.44 ' B * b' / (p * Fy))0'5 = (4.44 * 31.004 " 1.72257(3.125 * 36))°-5 = 1.4518 in. detta = 1 - dh/p = 1-1.0625/3.125 = 0.66 ro = b'/a* = 1.7225/1.965 = 0.8766 Alpha' = ((tc /1)2 -1) / (delta * (1 + ro)) = ((1.4518/0.625)2 - 1) / (0.66 * (1 + 0.8766)) = 3.549 Ta = B * (t / tc)2 * (1 + delta) = 31.004 * (0.625 / 1.4518)2 *(1 + 0.66) = 9.5385 kips Reduction in Tension Strength due to Moment = Tm = 0 kips AllowabjeJ'ension Strength: f1/FS)Rn = 2'n*Ta-Tm = 2*4*9.5385-0 = 76.308 > 19.079 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072 - 65 * 0.43/70 = 0.2824 in. k=(wh-gap)/L = (6-0.5X12.5 = 0.44 a=wh/L-k2/(1+2k) = 6/12.5-0.442/(1+2*0.44) = 0.377 0=Arctan(HA/) = Arctan(19.079/171) = 6.3653 Degrees k = 0.44. a = 0.377, Theta = 6,3653 C = 1.5469 Try w=5/16in. weld Maximum weld size for angle thickness = 0.5625 > 0.3125 in. (OK) Minimum weld size = 0.1875 < 0.3125 in, (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 10 Ventana Real @ 3rd Fir (Frames 2 & 4) (N-S) (2-27-06) (Use w = 0.2824 in. for capacity calculation) Weld Allowable Strength = C*L*C1*16w = 1.5469*12.5-1-16*0.2824 = 87.36 kips Resultant Load, R = 0.5'(H2 + V2 )05 = 0.5*((19.079)2 + (171)2 )°-5 - 86.044 kips < 87.36 kips (OK) Beam Web Tear-out: Combined Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Joumal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 6.3653 Degees A = Sin(0) = 0.1109 B = Cos(0}= 0.9938 Ag = 9.0859 in2 An = 9.0859 in2 Rupture: M/FSmn = j (1/21* 0.18 ' (A/ B) ' t-1 + (H- tB / = (1/2) * 0.18 * (0.1 109 / 0.9938) * (-1 + (1 + (0.9938 / 0.1109)2 / 0.09)0-5) * 9.0859 * 65 / 0.9938 - 1 72.4 > 172 kips (OK) (1/FSlRn = (1/1.512- * 018 * (A / B)2- * (-1 / (1/1.67) + M / ((1/1.67g.) + (B / A£/ (0.09 ' = (1/1.5)* *0.18*(0.1109/0.9938)2 * (-1 / (1/1.67) + (1 / ((1/1.67)2) + (0.9938 / 0.1109)2 / (0.09 « (1/1.5)2 )r5) * 9.0859 * 50/0.1109 = 176.2 > 172 kips (OK) Block ..Shear of Beam Web: Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections: Pattern 2: Ag1 = 5.375 in2 An1 = 5.375 in2 Ag2 = 4.73 in2 An2 = 4.73 in2 Adjusted Allowable Stress; ft1 = (1/2)'0.18 * (A / B)2 ' (-1 + (1 + (B / A)2 / 0.09)6-5}*Fu = (1/2)*0.18* (0.1109 /0.9938)2 * (-1 + (1 + (0.9938 / 0.1 109)2 /0.09)°-5)*65 = 2.1037 ksi Fv1 =m * 18.858 ksi = 2.1037*0.9938/0.1109 = tt2 = (1/2)*0.18*(B/A)2 *(-1 +(1 + (A/B)2 / 0.09)°5)*Fu = (1/2)*0.18* (0.9938 / 0.1 109)2 * (-1 + (1 + (0.1109/0.9938)2 /0.09)a5)"65 - 31.448 ksi Fv2 = ft2 * A / B = 31.448 * 0.1109 / 0.9938 = 3.5082 ksi (1/FS)Rn = (Fv1 * An1 + Ft2 * An2l/B = (18.858 * 5.375 + 31.448 * 4.73V0.9938 = 251.7 > 172 kips (OK) *=================a===========-===* Use 2L6X4X5/8 Beam and Column Local Stresses for Right Side Beam Beam Web Local Yielding: Force from Top, Rtop = ((1 .73*HbTop):: + VbTo+3MbTo/Lto2 6-5 =^260.2 kips (66.478+3*583.8/19.90fi)2)05 Required Web Thickness = Rtop / ( Fy *(L+2.5"k)) = 260.2/(50 '(19.908+2.5-1. 19)) = 0.3411 in. < 0.43 in. (OK) Force from Bottom, Rbot = ((1.73*HbBot)2 + <VbBot+3MbBot/LBot)2 )°-5 = ((1. 73-21 0.4)2 + (49.5+3M476/29.149)2)0-5 = 416. kips Required Web Thickness = Rbot / ((1/1.5) *Fy * (L+2.5*k)) = 416. / ((1/1 .5) * 50 *(29.149+2.5*1.19)) = 0.3885 in. < 0.43 in. (OK) Beam Web Cifopjing: Force from Top, Rtop = VbTop+3MbTop/Ltop = 66.478+3*583.8/19.908 = 154.5 kips Allowable Strength for Top Loading, (1 /FS)Rn: = (1/2)* 0.4 * eo.5 ^ *(n-(4'(Ntop/d)-0.2}*(tv//tf)1-5 )*(Fy*tf/tw)°-5 = (1/2)' 0.4 * 170.3 *0.432 *<1+(4*(19.908/21.13)-0.2> *(0.43/0.685)1-5)*(50T3.685/0.43rs = 156. kips > 154.5 kips (OK) Force from Bottom, Rbot = VbBot+3MbBot/LBot -49.5+3*1476/29.149 = 201.4 kips Allowable Strength for Bottom Loading, (1/FS)Rn: = n/2)' 0.4 * E°-5 * tw2 *(1+(4'(Nbot/d)-0.2)*(tw/tf)1-5 )-(Fy*tf/tw)°'5 = (1/2)- 0.4 • 170.3 "0.432 "(1+(4*(29.149/21.13)-0.2) '(0.43/0.685)1 5 )'(50-6.685/0.43)d 5 = 204.9 kips > 201 .4 kips (OK) Bolt Bearing on Column: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) M.2 ' Lc * Fu < (1/2) * 2.4 - d ' Fu = 78 kips/in. = (1/2) ' 1.2 * 1.9375-65 = 75.563 kips/in. Vertical force per bolt = 21 .378 kips Allowable Bearing Strength = Fbs-tc = 75.563 - 0.77 = 58.183 kips > 21. 378 kips (OK) Column Flange^Bending; Force, H' = (H+3*M/L)/2 = (19.079 + 3-Q/15)/2 = 9.5395 kips Nominal Tension Strength per Bolt = rn DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LUC- Page: 11 ^^ Ventana Real @ 3rd Fir (Frames 2 & 4) (N-S) (2-27-06) = (a-b*V/(N*Ab))'Ab < Ft*Ab = (147 - 2.5 * 85.514 / (4 * 0.7854)) * 0.7854 < 88.75 = 62.007 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 31.004 kips Force per Bolt, T = H7n = 2.3849 kips/Bolt b = 2.515in., a = 1.465 in., b' = 2.015in., a'= 1.965 in., ro = 1.0254 p = 3, d' = 1.0625, delta = (1-dVp) = 0.6458 Beta = (B/T - 1)/ro = (31.004/2.3849 -1) /1.0254 = 11.702 Alpha' = 1 Required Flange Thickness for Bending, treg'd = = (4.44*T*bV(p*Fy*(1 +delta*Alpha')))°-5 = (4.44*2.3849 • 2.015/(3*50*(H0.6458*1)))°-5 = 0.294 < 0.77 in. (OK) Column Flange Shear Required Flange Thickness for Shear = thShear = T / Min[«1/1.5) ' 0.6 " p * Fy),((1/2)*0.6*(p - (d1 + 0.0625))"Fu)] = 2.3849 /Min[((1/1.5) * 0.6 * 3 * 50),((1/2)*0.6*(3 - (1.0625 + 0.0625))*65)] = 0.0652 < 0.77 in. (OK) Column Web Local Yielding: Force from Beam, RColumn = (H2 + (1.73*V)2)0-5 = ((19.079)2 +(1.73*171)2)05 =296.5 kips Required Web Thickness = RColumn / ((1/1.5) * Fy * (N+5*k)) = 296.5 / ((1/1.5) * 50 * (9 +5*1.27)) = 0.5795 in. > 0.47 in. (^3) Q£ Column Web Crippjing; Force from Beam, RColumn = 19.079 kips Allowable Strength, (1/FS)Rn: = (1/2)*0.8 ' E6-5 * tw5 *(1+3*(N/d)*(tw/tf)1-5 )*(Fy*tf/tw)°-5 = (1/2)*0.8 * 170.3 * 0.472 *(1+3*(9/10.4) *(0.47/0.77)15 )*(50*0.77/0.47)° * = 304.8 kips > 19.079 kips (OK) Design is incomplete or not satisfactory" TJU ry DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ 3rd Fir (Frames 2 & 4) (N-S) (2-27-06) '-7 15/16" \ [6 (StoHed) Slope; 1.154/1 2 L6X4X5/8 X 1'- 1/T - A36 (S) 1"0 A49D-H +STD Botts 21-8 15/16" VT<SS7X7X1/2 - A500-B-46 (Slotted) Slope: 1.039/1 '.-SO Tee: 0,5 in. Scale: 1/4"=1' BASIC DESIGN DATA Column: Size: W10X68 Material: A992 Orientation: Web In Plane Axial Force: 0 kips Shear Force: 0 kips Right Side Beam: Size:W21X93 Material: A992 Axial Force: -211.9 kips Shear Force: 41.55 kips Work Point X: 0 in. Work Point Y: 0 in. Clip Angles: Length: 18.5 in. OSL: 4 in. Material: A36 Bolts: 1"0A490-N-STD Bolt Spacing: 3 in. Bott Edge Distance: 1.75 in. Upper Right Brace: Size: HSS6X6X3/8 Material: A500-B-46 Axial Force: -266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.304/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 25.97 in. Beam Side Length: 23.585 in. Brace Side Length: 9 in. Column Side Free Edge: x= 16.834 in., y= 0 in. Beam Side Free Edge: x= 0.3915 in., y= 20.493 in. Thickness: 0.75 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -15 in. Clip Angles: Length: 21.5 in. OSL: 4 in. Material: A36 Bolts: 1"0A490-N-STD Bolt Spacing: 3 in. Bolt Edge Distance: 1.75 in. LowerRlflht Brace: Size: HSS8X8X5/8 Material: A500-B-46 . - ' Axial Force: 576.9 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.174/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 36.373 in. Beam Side Length: 32.569 in. Brace Side Length: 11 in. Column Side Free Edge: x= 27.265 in., y= 0 in. Beam Side Free Edge: x= 3.0697 in., y= 29.24 in. Thickness: 1 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22.25 in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ 3rd Fir (Frame 5) (E-W)(2-27-06) Clip Angles: Length: 27.5 in. OSL: 4 in. Material: A36 Bolts: 1-0A490-N-STD BoR Spacing: 3 in. Bott Edge Distance: 1.75 in. Upper Right Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4X15 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FSlRn = B'4'(1/2l*0.6*Fexx*0.707*w*L = r4'(1/2)*0.6*70*0.707*0.3125*15 = 278.4 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: f1/FS)Rn • 4*(1/1.51 * 0.6*Fvt*L = 4*(1/1.5} * 0.6*46 * 0.349 * 15 = 385.3 > 266.6 kips (OK) Check Upper Right Brace Tension Yielding of thejtrace: »JFS)Rn = (1/1.67)*Fv*Aq = {1/1.67)*46*7.58 / = 208.8 < 266.6 kips (IjIG) /*/<!£ Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 - 2*(0.75 +• 0.0625 )" 0.349 = 7.0129 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (62 + 2' 6 * 6)/(4'(6 + 6)) = 2.25 in. U = 1 - (x/L) < 0.9 = 1-(2.25/15)<0.9 = 0.85 Ae = U*An = 0.85 * 7.0129 = 5.9609 in2 = (1/2) * 58 ' 5.9609 = 172.9 < 266 . j .6 kips (MG)'A X f/l-X-3 Upper Right Brace Gusset Dimensions: Column Side, Lgc = 25.97 in. Beam Side, Lgb = 23.585 in. Beam Side Free Edge, Lvfx = 0.39115 in. Beam Skte Free Edge, Lvfy = 20.493 in. Column Side Free Edge, Lhfx = 16.834 in. Column SkJe Free Edge, Lhfy = 0 in. Upper Right Brace Gusset Edge Forces: Special case: 2 Gusset edge moments carried by: Beam interface Theta = 37.484 Degrees, eb = 10.81 in. ec = 5.2 in. Beta = 12 in. BetaBar = 12 in. AlphaBar = 12.292 in. Alpha = (Beta + eb)*Tan(Thefa} - ec DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real @ 3rd Fir (Frame 5) {E-W)(2-27-06) = (12 + 10.81}*Tan(37.484)-5.2 = 12.292 in. r = Fx / ((Alpha + ec)2 + (beta + eb)2 )°-5 = (-266.6) / {(12.292+ 5.2)2 +(12 + 10.81)2)°-5 = (-9.2746) kips/in. Hb = Alpha ' r = 12.292 * (-9.2746) = (-114) kips He = ec * r = 5.2 * (-9.2746) = (-48.228) kips Vb = (-89.93) kips (Adjusted by user) Vc = (-318) kips (Adjusted by user) Mb = |Alpha " (eb * r - Vb)| = |12.292 ' (10.81 * (-9.2746) - (-89.93)| = 127. k-in. Mc = 0 Upper Right Brace Gusset Thickness Trv t = 3/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 *0.6TuTL = 2-0.5*0.6-65*0.75*15 = 438.8 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*15*0.75 = 22.5 in2 Agt = Ant = d*t - 6*0.75 = 4.5 in2 M/FSIRn = (1/21 * (0.6 * MintFu * Anv: Fv * Aqvl + Ubs * Fu * Antt = 0.5 * (0.6'Min(65 * 22.5; 50 * 22.5) + 1 * 65 -4.5) = 483.8 > 266.6 kips (OK) Check Whitmoregection: Width, Lw = 1.1547*Lweld + d = 1.1547*15 + 6 = 23.321 in. Width of Whitmore Section inside gusset boundaries, Lwg = 23.321 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc*twc) . ' = 266.6/(23.321 * 0.75 + 0 * 0.58 + 0 * 0.47) = 15.243 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc'twc'Fyc) = (1/1.67)*{23.321 * 0.75 * 50 + 0 * 0.58* 50 + 0 * 0.47* 50) = 523.7 > 266.6 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 9.8053 in. Kl/r = Lcr/(t/12°-5) = 9.8053/(0.75/3.464) = 45.287 Fe = pi2 *E/(kUr)2 =3.142 *290.x102 /45.2B72 = 139.6 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/139.6 = 0.3583 Fcr = 0.658° 3583 * Fy = 0.6580-3583 * 50 = 43.037 ksi Buckling Strength = (1 /1.67) *Fcr = 25.771 > 15.243 ksi OK Upper Right Brace Gusset to Column Connection Vertical force on clip angles = (-318) kips Horizontal force on clip angles = (-48.228) kips Vertical Force on Each Clip Angle, V = 159 kips Horizontal Force on Each Clip Angle, T = (-24.114) kips Angle-to-Column Bolts: (7) 1"0 A490-N-STD Bolts/Angle Allowable Shear Strength ofJBplts: = 2*n'((1/FS)rn) = 2*7* 23.562 = 329.9 > 318 kips (OK) Number of Bolts Required = n = V/((1/2)*Fv*Ab) = 159/((1/2)*60* 0.7854) = 6.7482, Use 7 Bolts Nominal Tension Strength per Bolt = rn = (a-b*V/(N-Ab))*Ab < Ft*Ab = (147 - 2.5 * 159 / (7 * 0.7854)) * 0.7854 < 88.75 = 58.668 kips Allowable Strength per Bolt, (1/FS)rn == (1/2)*rn = 29.334 kips Design Upper Right Brace Clip Angles Minimum Length of Clip Angle = 12.985 in. Maximum Length of Clip Angle = 23.97 in. Trv 2L4X4X3/4 Bolt Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in.. Hole Size = 1.0325 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2*(Fbe + Fbs*(n-1))*t = 2 * (42.413 + 67.425 * (7 -1)) * 0.75 = 670.4 kips > 318 kips (OK) Shear Yielding of Angles: Clip Angle Length = Lc = (n-1)*s + 2*e = (7-1) *3+2-1.75 = 21.5 in. Ag = Lc * t = 21.5 * 0.75 = 16.125 in:! M/FSlRn = f1/1.5> ' 2 ' Aq * 0.6 * Fv = (1/1.5)* 2* 16.125-0.6*36 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real @ 3rd Fir (Frame 5) (E-WH2-27-06) = 464.4 > 318 kips (OK) Shear Rupture of Angles: Anv = (Lc - n*(dh+0.0625))*t = (21.5 - 7 *(1.0625 + 0.0625)) * 0.75 = 10.219 in2 (1/FS)Rn * f 1/21 * 2 * Anv * 0.6 * Fu = (1/2)* 2'10.219 •0.6*58 = 355.6 > 318 kips (OK) Block Shear Rupture: Agv = (Lc - el)*t = (21.5-1.75)* 0.75 = 14.813 in2 Anv = Agv - (N - 0.5)'(dh + 0.0625)*t = 14.813 - (7 - 0.5)*(1.0625 + 0.0625)*0.75 = 9.3281 in2 Agt = et,*t = 1.75*0.75= 1.3125 in2 Ant = Agt - 0.5'(dh + 0.0625)*t = 1.3125 - 0.5'(1.0625 + 0.0625)*0.75 = 0.8906 in2 {1/FS)Rn = (1/2) * (0.6 ' MinfFu * Anv: Fv * Aavl +• Ubs * Fu * Ant) = 0.5 * (0.6*Min(58 * 9.3281; 36 ' 14.813) + t * 58 * 0.8906) = 185.8 > 159 kips (OK) Angle OSL Tension Strength: Gage, 9 = 5.5 in. (OK) Bott Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2 -t/2 = (5.5 - 0.75)72 - 0.375 = 2 in. Bolt Distance to Edge = e = osl -1/2 - b = 4 - 0.75/2 - 2 = 1.625 in. Allowable tensile load on clip ancles per tributary area for each bolt: dh = 1.0625 in. b'= 1.5 in. a = Min(e;1.25*b)= 1.625 in. a1 = 2.125 in. p 3.0714 in. tc=(4.44*B*b'/(p-Fy))°-5 = (4.44 * 29.334 * 1.5/(3.0714 * 36))°-5 = 1.3292 in. delta = 1 - dh/p = 1 -1.0625/3.0714 = 0.6541 ro = b'/a' = 1.5/2.125 = 0.7059 Alpha' = ((tc /1)2 -1) / (delta * (1 + ro)) = ((1.3292/0.75)2 - 1) / (0.6541 * (1 + 0.7059)) = 1.9189 = 29.334* (0.75/1.3292)2*(1 +0.6541) = 15.447 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength: M/FSlRn = 2*n*Ta-Tm = 2*7*15.447-0 = 216.3 > 48.228 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072 * 65 * 0.75/70 = 0.4925 in. k=(wh-gap)/L = (4-0.5)/21.5 = 0.1628 a=wh/L-k2/(1+2k) = 4/21.5- 0.16282/(1+2*0.1628) = 0.1661 0=Arctan(H/V) = Arctan{48.228/318) = 8.6238 Degrees k = 0.1628, a = 0.1661, Theta = 8.6238 C= 1.2632 Try w=3/8 in. weld Maximum weld size for angle thickness = 0.6875 ^ 0.375 in. (OK) Minimum weld size = 0.25 < 0.375 in. (OK) Weld Allowable Strength = C*L*C1*16w = 1.2632*21.5*1*16*0.375 = 162.9 kips Resultant Load, R = 0.5*(H2 + V2 )°-5 = 0.5*((48.228)2 +(318)2)aS = 160.8 kips < 162.9 kips (OK) Gusset Tear-out: Combined Tension andjihear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Joumal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 8.6238 Degees A = Sin(0) = 0.1499 B = Cos(0) = 0.9887 Ag = 19.477 in2 An = 19.477 in2 Rupture: H/FS)Rn = (1/21* 0.18 * (A/ B) * (-1 + (1 + (B / A)2- / 0.09^-1 * An ' Fu/B = (1/2) * 0.18 * (0.1499 / 0.9887) * (-1 + (1 + (0.9887 / 0.1499)2 / 0.09)0-5) * 19.477 * 65 / 0.9887 = 367 > 321.6 kips (OK) Ta = B*(t/tc)2 "(1 + delta) DESCONBRACE-ASD Licensed to: Desert Eaole Engineering LLC-- Page: 4 Ventana Real @ 3rd Fir (Frame 5) fE-WK2-27-061 _ (1/FSlRn = M/1.5V2-* 0.18 * <A/ B)2-* M / i2-/(0.09*(1/1.67) = (1/1.5)z * 0.18* (0.1499 /0.9887)2 *(-1/ (1/1.67) + (1 / ((1/1.67)2) + (0.9887 / 0.1499)2 / (0.09 * (1/1.5)2 )rs) * 19.477 * 50/0.1499 = 374.5 > 321.6 kips (OK) Block Shear jf Gusset: Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections: Ag1 = 17.063 tfi2 An1 = 17.063 in2 Ag2 = 2.625 in2 An2 = 2.625 in2 Pattern 1: Adjusted Allowable Stress: ft1 = f1/2)*0.18 * (A / B)2 * (-1 + (1 + (B / A)2 / 0.09)05) * Fu = (1/2)*0.18 * (0.1499 / 0.9887)2 * (-1 + (1 + (0.9887/0.1499)2 / 0.09)0-5) * 65 = 2.8259 ksi Fv1 = ft1 * B / A = 2.8259 * 0.9887 / 0.1499 = 18.633 ksi ft2 = (1/2)-0.18*(B/A)2 *(-1 +(1+(A/B)2 /0.09)°'5)*Fu = (1/2)*0.18 * (0.9887 / 0.1499)2 * (-1 + (1 + (0.1499 / 0.9887)2 / 0.09)° 5) * 65 = 30.653 ksi Fv2 = ft2 * A / B = 30.653 * 0.1499 / 0.9887 = 4.6488 ksi M/FSlRn = (Fvl * An1 + Ft2 * An2VB = (18.633 ' 17.063 + 30.653 * 2.625)/0.9887 = 402.9 > 321.6 kips (OK) Pattern 2: Ag1 = 16.125 in2 An1 = 16.125 in2 Ag2 = 5.25 in2 An2 = 5.25 in2 Adjusted Allowable Stress: (Same as Above) H/FSIRn = fFvl * An1 + Ft2 * An2WB = (18.633 * 16.125 + 30.653 * 5.25)/0.9887 = 466.7 > 321.6 kips (OK) Use 214X4X3/4 Column Local Stresses for Upper Right Brace Bolt Bearing on Column: Bearing Strength/Bott/Thickness Using Bolt Spacing = Fbs Bolt Spacing =* 3 in., Hole Size = 1.0625 in. = <1/2)*1.2*Lc*Fu <{1/2)'2.4*d*Fu = 69.6 kips/in. = (1/2) ' 1.2 * 1.9375 * 58 = 67.425 kips/in. Vertical force per bolt = 22.714 kips Allowable Bearing Strength = Fbs*tc = 67.425 * 0.77 = 51.917 kips > 22.714 kips (OK) Column Flange Bending: Force, H' = (H+3*M/L)/2 = (48.228 + 3*0/24)/2 = 24. 1 14 kips Nominal Tension Strength per Bolt = rri = (a-b-V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 * 159 / (7 * 0.7854)) " 0.7854 < 88.75 = 58.668 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 29.334 kips Force per Bolt, T = H'/n = 3.4449 kips/Bolt b = 2.515 in., a = 1.625 in., b' = 2.015 in., a' = 2.125 in., ro = 0.9482 p = 3, d' = 1.0625, delta = (1-d'/p) = 0.6458 Beta = {B/T - 1)/ro = (29.334 / 3.4449 - 1) / 0.9482 = 7.9255 Alpha' = 1 Required Flange Thickness for Bending, treq'd = = (4.44*T*b'/(p*Fy*(1 +delta*Alphia')))°-5 = (4.44*3.4449 * 2.015/(3*50*(1+0.6458*1)))05 = 0.3533 < 0.77 in. (OK) Column Flange Shear: Required Flange Thickness for Shear - thShear = T / MinK(1/1 .5) * 0.6 ' p * Fy),((1/2)*0.6*(p - (d1 + 0.0625))'Fu)] = 3.4449 /Min[({1/1.5) * 0.6 * 3 * 50),((1/2)*0.6*(3 - (1.0625 + 0.0625))*65)] = 0.0942 < 0.77 in. (OK) Column Web Local Yielding; Force from Gusset, RColumn = ((H+3"M/N)2 + (1 .73*V)2 )°-5 = ((48.228+3*0/1 8)2 + (1.73*31 &)2)0-5 =552.2 kips Required Web Thickness = RColumn / ((1/1 .5) * Fy * (N+5*k)) = 552.2 / ((1/1.5) * 50 ' (18+5-1.27)} = 0.6804 in. > 0.47 in. (fK?) OK. 0^/5 T/ff Column Web Crippling: Force from Gusset, RColumn = H+3*!i/I/N = 48.228 kips Allowable Strength, (1/FS)Rn: = (1/2)*0.8 * E6-5 ' tw2 *(1+3*(N/d)*(tw/tf)1 5 )*(Fy*tf/tw)°-5 = (1/2)*0.8 * 170.3 * 0.472 *(1+3'(18/10.4) '(0.47/0.77)1-5 )*(50*0.77/0.47)° 5 = 473.4 kips > 48.228 kips (OK) Upper Right Brace Gusset to Beam Connection Weld Size = 5/1 6 in. Horizontal Force on Welds, Hb = 1 14 kips Vertical Force on Welds, Vbm = 89.93 kips Moment on Welds, M = 127. k-in. Wefd Length on Each Side of Gusset Plate, L = 23.585 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/(L2 ))2 + (H/L)2 )° 5 = ((89.93/23.585 + 3* 127./(23.&852 ))2 + (1 14/23.585)2 )°-5 = 6.6029 kips/in. Max. Force on Welds per Unit Length = fr = ((V/L+6M/(L2 ))2 + (H/L)2 Y5 = ((89.93/23.585 + 6' 127./(23.5852 ))2 + (1 14/23.585)2 )°-5 = 7.0871 kips/in. Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072 * 65 * 0.75/70 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 5 Ventana Real @ 3rd Fir (Frame 5) (E-W)(2-27-06) _ = 0.4925 in. Use Richard Factor, Rf = 1 .4 Required Weld Size, w = Max(Rf*f_avrg;f_peak)/((1/2)*0.6*1 .41 *Fexx> = 9.244/((1/2)*0.6*1.41*70) = 0.3113 in. Use 5/16 in. Weld Lower Right Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld See = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22.25 in. Weld Size = 1/2 > Minimum Weld Size - 1/4 in. (OK) Weld Allowable Strength; (1/FSlRn = R'4*f1/2)*0.6*Fexx*0.707*w*L = 1*4*(1/2)*0.6*70*0.707*0.4375*22.25 = 578.1 > 576.9 kips (OK) Maximum Weld Force Brace Can Develop: M/FSlRn = 4*(1/1.51 * 0.6*Fv*t*L - 4"(1/1.5) * 0.6*46 • 0.581 * 22.25 = 951 .4 > 576.9 kips (OK) Check Lower Right Brace Tensjgn Yielding of the_Brace: fl/FSIRn - (1/1.671 * Fv * AQ = (1/1.67)*46*16.4 , , = 451 .7 < 576.9 kips ((^G) ^C<- (ty ~ Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 16.4 - 2*(1 + 0.0625 )* 0.581 = 15.165 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (82 + 2* 8 * 8)/(4*(8 + 8)) = 3 in. U = 1 - (x/L) < 0.9 = 1 - (3 / 22.25) < 0.9 = 0.8652 Ae = U*An - 0.8652 * 15.165 = 13.121 in2 (1/FSlRn = M/2) • Fu * Ae = (1/2) "58* 13.121 . = 380.5 < 576.9 kips (NjS) Oit Lower Right Brace Gusset Dimensions: Column Side, Lgc = 36.373 in. Beam Side, Lgb = 32.569 in. Beam Side Free Edge, Lvfx = 3.0697 in. Beam Side Free Edge, Lvfy = 29.24 in. Column Side Free Edge, Lhfx = 27.265 in. Column Side Free Edge, Lhfy = 0 in. Lower Right Brace Gusset Edge Forces: Special case: 2 Gusset edge moments carried by: Beam interface * "- '-o" Theta = 40.424 Degrees, eb = 10.81 in. ec = 5.2 in. Beta = 15 in. BetaBar = 15 in. AlphaBar = 16.785 in. Alpha = (Beta + eb)*Tan(Theta) - ec = (15 + 10.81)*Tan(40.424) - 5.2 = 16.785 in. r = Fx / ((Alpha + ec)2 + (beta + eb)2)° 5 = 576.9 I ((16.785 + 5.2)2 +{15+ 10.81)2)05 = 17.016 kips/in. Hb = Alpha * r= 16.785 * 17.016 = 285.6 kips Hc = ec*r = 5.2*17.016 = 88.482 kips Vb = 100.7 kips (Adjusted by user) Vc = 423 kips (Adjusted by user) Mb = [Alpha *(eb*r-Vb)| = [16.785 * (10.81 * 17.016 - 100.7| = 1397k-in. Mc=0 Lower Right Brace Gusset Thickness Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5 * 0.6*65 * 1 * 22.25 = 867.8 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22.25*1 = 44.5 in2 Agt = Ant = d*t = 8*1 = 8 in2 (1/FSlRn = (1/2) * (0.6 ' MintFu ' Anv: Fv * Aqv) + Ubs * Fu * Antl = 0.5 * (0.6*Min(65 * 44.5; 50 * 44.5) + 1 * 65 * 8) = 927.5 > 576.9 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d = 1.1547*22.25 + 8 = 33.692 in. Width of Whitmore Section inside gusset boundaries, Lwg = 33.692 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc'twc) = 576.9/(33.692 * 1 + 0 * 0.58 + 0 * 0.47) = 17.123 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)'(33.692 * 1 * 50 + 0 * 0.58* 50 + 0 * 0.47* 50) - 1009 > 576.9 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1 .2), Lcr = 14.437 in. Kl/r = Lcr/(t/1 2°-5 ) = 1 4.437/( 1 /3.464) = 50.008 Fe = pi2 *E/(k!_/r)2 =3.142 *290.x102 / 50.0082 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 6 Ventana Real @ 3rd Fir (Frame 5) (E-W)(2-27-06) . = 1 u.4 > 0.44*Fy = 0.44'50 = 22 ksi Fy/Fe = 50/114.4 = 0.4369 Fcr = 0.658° 4369 * Fy = 0.658° 4369 " 50 = 41.644 ksi Buckling Strength - (1/1.67) *Fcr = 24.937 > 17.123 ksi OK Lower Right Brace Gusset to Column Connection Vertical force on clip angles = 423 kips Horizontal force on clip angles = 88.482 kips Vertical Force on Each Clip Angle, V = 211.5 kips Horizontal Force on Each Clip Angle, T = 44.241 kips Angle-to-Colum n Bolts: (9) 1"0 A490-N -STD Bolts/Angle Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*9' 23.562 = 424.1 > 423 kips (OK) Number of Bolts Required = n = V/«1/2)*Fv*Ab) = 211.5/((1/2)*60* 0.7854) = 8.9763, Use 9 Bolts Nominal Tension Strength per Bolt = m = (a-b*V/(N'Ab))-Ab < Ft'Ab = (147 - 2.5 * 211.5 / (9 * 0.7854}) * 0.7854 < 88.75 = 56.704 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 28.352 kips Design Lower Right Brace Clip Angles Minimum Length of Clip Angle = 18.186 in. Maximum Length of Clip Angle = 34.373 in. Trv 2L4X4X3/4 Bolt Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. - 1.75 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc-Fu <(1/2)'2.4'd'Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <<1/2)'2.4'd*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2*(Fbe + Fbs'(n-1))*t = 2 * (42.413 + 67.425 * (9 - 1)) * 0.75 = 872.7 kips > 423 kips (OK) Shear Yielding of Angles; Clip Angle Length - Lc = (n-1)*s + 2*e = (9-1)-3+2'1.75 = 27.5 in. Ag = Lc * t = 27.5 * 0.75 = 20.625 in2 <1/FS)Rn = f1/1.51 * 2 * Ad * 0.6 * Fv = (1/1.5) '2 -20,625*0.6 '36 = 594 > 423 kips (OK) Shear Rupture of Angles: Anv=(Lc-n*(dh+0.0625))-t = (27.5 - 9 "(1.0625 + 0.0625)) * 0.75 = 13.031 in2 M/FSlRn - (1/21 * 2 * Anv * 0.6 * Fu = (1/2)-2*13.031 -0.6-58 = 453.5 > 423 kips (OK) Block Shear Rupture: Agv = (Lc - el)'t = (27.5-1.75)-0.75 = 19.313 in2 Anv = Agv - (N - 0.5)"(dh + 0.0625)*t = 19.313 - (9 - 0.5)*(1.0625 + 0.0625)*0.75 = 12.141 in2 Agt = et*t= 1.75'0.75= 1.3125 in2 Ant = Agt - 0.5'(dh + 0.0625)*t = 1.3125 - 0.5*(1.0625 + 0.0625)*0.75 = 0.8906 in2 M/FSlRn = (1/21' fO.6 * MinfFu • Anv: Fv * Aqv) + Ubs * Fu * Antl = 0.5 * (0.6*Min(58 * 12.141; 36 * 19.313) + 1 * 58 * 0.8906) = 234.4 > 211.5 kips (OK) Angle OSL TensiorrStrenpth; Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Hatf Thickness = b = (g-th)/2 -1/2 = (5.5-1)/2-0.375 = 1.875 in. Bolt Distance to Edge = e = osl -1/2 - b = 4-0.75/2-1.875 = 1.75 in. Allowable tensile load on clip angles per tributary area for each boK: dh= 1.0625 in. b'= 1.375 in. a = Min(e;1.25"b)= 1.75 in. a' = 2.25 in. p = 3.0556 in. tc=(4.44'rB-b'/(p*Fy))05 = (4.44 ' 28.352 * 1.375/(3.0556 - 36))°-5 = 1.2544 in. delta = 1 - dh/p = 1 -1.0625/3.0556 = 0.6523 ro = b'/a' = 1.375/2.25 = 0.6111 Alpha' = ((tc /1)2 -1) / (delta * (1 + ro)) ou> DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 7 Ventana Real @ 3rd Fir (Frame 5) (E-W)(2-27-06) t, = {(1 .2544/0.75)2 - 1) / (0.6523 " (1 + 0.6111)) = 1.7103 Ta = B * (t / tc)2 * (1 + delta) = 28.352 * (0.75 / 1 .2544)2 *(1 + 0.6523) = 16.746 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength: = 2*9*16.746-0 = 301. 4 > 88.482 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072*65*1/70 = 0.6567 in. k=(wh-gap)/L = (4 - 0.5)727.5 = 0.1273 a=wh/L-k2/(1+2k) = 4/27.5 - 0.12732/(1+2*0.1273) = 0.1325 0=Arctan(H/V) = Arctan(88.482/423) = 11. 81 5 Degrees k=0.1273, a = 0.1325, Theta=11.815 C= 1.198 Try w=7/16 in. weld Maximum weld size for angle thickness = 0.6875 > 0.4375 in. (OK) Minimum weld size = 0.25 < 0.4375 in. (OK) Weld Allowable Strength = C*L"C1*16w = 1.198*27.5*1-16*0.4375 = 230.6 kips Resultant Load. R = 0.5*(H2 + V2)° 5 = 0.5*((88.482)2 + (423)2)06 = 216 kips < 230.6 kips (OK) Gusset Tear-out: Combined Tension and Shear Th§ following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Journal.Srd Q 1986, AISC). Load Angle, 0 = Atn(H/V) =11.815 Degees A =: Sin(0) = 0.2047 B = Cos(0) = 0.9788 Ag = 36.373 in2 An = 36.373 in2 M/FSiRn - (1/21* 0.18 * fA/ Bl * f-1 + <1 + tB / A)2- / 0. Fu/B = (1/2) * 0.18 * (0.2047 / 0.9788) * (-1 + (1 + (0.9788 / 0.2047)2 / 0.09)0-5) ' 36.373 * 65 / 0.9788 = 680.6 > 432.2 kips (OK) f1/FS>Rn = M/1.512- • 0.18 * (A / / fp.09 * * M / 11/1.67) * (1 / Aq * Fy/A = (1/1.5)* -0.18 * (0.2047 / 0.9788)2 * (-1 / (1/1.67) + (1 / ((t/1.67)2) + (0.9788 /0.2047)2 /(0.09 * (1/f.5)2))ds) * 36.373 * 50/0.2047 = 693 > 432.2 kips (OK) Block Shear of Gusset; Vertical (An1,R1) and Horizontal (An2,Ft2) Sections: Ag1 = 35.123 in2 An1 = 35.123- in2 Ag2 = 3.5 in2 An2 = 3.5 in2 Pattern 1: Adjusted Allowable Stress: tt1 =(1/2)'0.18*(A/B)2 *(-1 +(1+(B/A)2 /0.09)a5)-Fu = (1/2)*0.18 - (0.2047 / 0.9788)2 * (-1 + (1 + (0.9788 / 0.2047)2 /0.09)°-5)*65 = 3.831 ksi Fv1=ft1*B/A= 3.831 "0.9788/0.2047 = 18.315 ksi ft2 = (1/2)*0.18 * (B/ A)2 * (-1 + (1 + (A / B)2 / 0.09)° 5 ) * Fu = (1/2)'0.18 * (0.9788 / 0.2047)* * (-1 + (1 + (0.2047 / 0.9788)2 /0.09)°-5)*65 = 29.291 ksi Fv2 = ft2 • A / B = 29.291 * 0.2047 / 0.9788 = 6.1271 ksi M/FS)Rn = <Fv1 * An1 + Ft2 ' An2VB = (18.315 ' 35.123 + 29.291 * 3~5)/0.9788 = 761. 9 > 432.2 kips (OK) Pattern 2: Ag1 = 27.5 in2 An1 = 27.5 in2 Ag2 = 7 in2 An2 = 7 in2 Adjusted Allowable Stress: (Same as Above) M/FS)Rn = (Fv1 * An1 + Ft2 * An2VB = (18.315 * 27.5 + 29.291 * 7)/0~9788 = 724 > 432.2 kips (OK) Use 2L4X4X3/4 Column Local Stresses for Lower Right Brace Bolt Bearing on Column: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in,, Hole Size = 1.0(525 in. - (1/2) - 1.2 ' Lc - Fu < (1/2) * 2.4 * d ' Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67 425 kips/in. Vertical force per bolt = 23.5 kips Allowable Bearing Strength = Fbs'tc = 67.425 * 0.77 = 51.917 kips > 23.5 kips (OK) O DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 8 Ventana Real ® 3rd Fir (Frame 5) (E-WK2-27-06) Column Flange Bending: Force, H' - (H+3*M/L)/2 = (88.482 + 3*0/30)/2 = 44.241 kips Nominal Tension Strength per Bolt = m = (a-b*V/(N'Ab))*Ab < Ft'Ab = (147 - 2.5 * 211,5 / (9 * 0.7854}) * 0.7854 < 88.75 ~ 56.704 kips Allowable Strength per Bolt. (1/FS)rn = (1/2)*rn = 28.352 kips Force per Bolt, T = H'/n = 4.9156 kips/Bolt b = 2.515 in., a = 1.75 in., b' = 2.015 in., a'= 2.25 in., ro = 0.8956 p = 3, d' = 1.0625, delta = (1-dVp) - 0.6458 Beta = (B/T - 1)/ro = (28.352 / 4.9156 -1) / 0.8956 = 5.3237 Alpha' = 1 Required Flange Thickness for Bending, treq'd = = (4.44'T*bV<p*Fy*(1+delta'Alpha')))°-5 = (4.44M.9156* 2.015/(3*50*(1+0.6458*1)))a5 = 0.4221 < 0.77 in. (OK) Column Flange Shear Required Flange Thickness for Shear = thShear = T/Min[((t/1.5) *0.6 *p *Fy),((1/2)*0.6*(p - <d' + 0.0625))'Fu)] = 4.9156 /Min[((1 /1.5) * 0.6 * 3 * 50),((1/2)*0.6*(3 - (1.0625 + 0.0625)r65)] = 0.1344 < 0.77 in. (OK) Column Web Local Yielding: Force from Gusset, RColumn = {(H+3*M/N)2 + (1.73-V)2)0-5 * = ((88.482+3-0/24)2 + (1.73M23)2)0-5 = 737.1 kips Required Web Thickness = RColumn / ((1/1.5) * Fy * (N+5*k)> = 737.1 / ((1/1.5) * 50 • (24+5*1.27)) = 0.7286 in. > 0.47 in. (r^G) OlC Column Web Crippling: Force from Gusset, RColumn = H+3*M/N = 88.482 kips Allowable Strength, (1/FS)Rn: = (1/2)*0.8"E°-5 * tw2 *(1+3*<N/d)*(tw/tf>1-5 r(Fytfflw)0-5 = (1/2)*0.8 ' 170.3 ' 0.472 *(1+3*(24/10.4) *(0.47/0.77)15)*(50*0.77/0.47)°S = 585.8 kips > 88.482 kips (OK) Lower Right Brace Gusset to Beam Connection Weld Size = 9/16 in. Horizontal Force on Welds, Hb = 285.6 kips Vertical Force on Welds, Vbm = 100.7 kips Moment on Welds, M = 1397 k-in. Weld Length on Each Side of Gusset Plate, L = 32.569 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/{L2))2 +(H/L)2)0-5 " = ((100.7/32,569 +3* 1397/(32.5692))2 + (285.6/S2.569)2)° 5 = 11.247 kips/in. Max. Force on Welds per Unit Length * fr = ((V/L+6M/(L2 ))2 + (H/L)2 )°-5 = ((100.7/32.569 + 6' 1397/(32.5692 ))2 + (285.6/32.569)2)0-5 = 14.063 kips/in. Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072'65'1/70 = 0.6567 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rrf_awg;f_peak)/((1/2r0.6*1.41'Fexx) = 15.746/((1/2)*0.6*1.4T70) = 0.5302 in. Use 9/16 in. Weld Right Side Beam to Column Connection Transfer Force from Right = 0 kips Tension Transfer Force from Left = 0 kips Tension Vertical force on clip angles = V = | -Vbmjop + Vbmjsot | + | Fv_beam | = | 89.93+ 100.7 |+ |41.55 | = 232.2 kips Hc_Top = (-48.228) kips Hc_Bot. = 88.482 kips Hc_Top + Hc_Bot. = 40.253 kips Horizontal force on clip angles = H = | Hbjop + Hbjiot + Fx_beam | = |(-114) + 285.6+(-211.9)| = 40.304 kips Vertical Force on Each Clip Angle =116 Jcips Horizontal Force on Each Clip Angle = 20.152 kips Angle-to-Column Bolts: (6) 1"0 A49Q-N-STD Bolts/Angle Allowable Shear Strengtb_of Bolts: = 2*n*((1/FS)rn) = 2*6* 23.562 = 282.7 > 232.2 kips (OK) Number of Bolts Required = n = V/((1/2)'Fv'Ab) = 116/((1/2)*60* 0.7854) = 4.927, Use 6 Bolts Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))'Ab < Ft*Ab = (147 - 2.5 * 116 / (6 * 0.7854)) * 0.7854 < 88.75 = 67.083 kips Allowable Strength per Bott, (1/FS)rn = (1/2)*rn = 33.541 kips Design Right Side Beam Clip Angles Minimum Length of Clip Angle = 10.fJ1 in. Maximum Length of Clip Angle = 18.375 in. DESCQNBRACE-ASP Licensed to: Desert Eagle Engineering LLC- Page: 9 Ventana Real @ 3rd Fir (Frame 5) fE-WK2-27-06) Trv 214X4X5/8 Bolt Bearing on Annie OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in., Hole Size = 1.0625 in. = (1/2)'1.2*Lc*Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) - 1.2 * 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 ' Lc * Fu < (1/2)' 2.4 " d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2*(Fbe + Fbs*(n-1))M = 2 * (42.413 + 67.425 * (6 - 1)) * 0.625 = 474.4 kips > 232.2 kips (OK) Shear YieldJhg of Angles: Clip Angle Length = Lc = (n-1)'s + 2*e = (6-1)-3+2* 1.75 = 18.5 in. Ag = Lc * t = 18.5 * 0.625 = 11.563 in2 f1/FS>Rn = (1/1.51 * 2 ' Aq * 0.6 * Fv -(1/1.5)* 2* 11.563* 0.6 "36 - 333 £ 232.2 kips (OK) Shear Rupture of Angles: Anv = (Lc - n-(dh+0.0625))*t = (18.5 - 6 '(1.0625 + 0.0625)) * 0.625 = 7.3438 in2 t1/FS)Rn - (1/21 • 2 ' Anv * 0.6 * Fu = (1/2) ' 2 * 7.3438 * 0.6 * 58 = 255.6 > 232.2 kips (OK) Block ShearRupture: Agv = {Lc - el)*t = (18.5-1.75)'0.625 = 10.469 in2 Anv = Agv - (N - 0.5)*{dh + 0.0625)'t = 10.469 - (6 - 0.5)*(1.0625 + 0.0625)'0.625 = 6.6016 in2 Agt = et * t * 1.75 * 0.625 = 1.0938 in2 Ant = Agt - 0.5'(dh + 0.0625)*t = 1.0938 - 0.5*(1.0625 + 0.0625)*0.625 - 0.7422 in2 fl/FSmn = (1/2) * (0.6 * Mint Fu * Anv: Fv * Aqvl + Ubs * Fu * Ant) = 0.5 * (0.6'Min(58 * 6.6016; 36 * 10.469) + 1 * 58 * 0.7422) = 134.6 > 116 kips (OK) Angle OSL Tension Strength: Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Half Thickness * b = (g-th)/2 -1/2 = (5.S - 0.58)/2 - 0.3125 = 2.1475 in. Bolt Distance to Edge = e = osl -1/2 - b = 4-0.625/2-2.1475 = 1.54 in. Allowable tensile load on clip angles per tributary area for each bolt: dh= 1.0625 in. b' = 1.6475 in. a = Min(e;1.25*b)=1.54in. a'= 2.04 in. p = 3,0833 in. tc = (4.44 * B * b1 / (p * Fy))° 5 = (4.44 * 33.541 * 1.6475/(3.0833 * 36))°-5 = 1.4867 in. delta = 1 - dh/p = 1 -1.0625/3.0833 = 0.6554 ro = b'/a' = 1.6475/2.04 = 0.8076 Alpha1 = ((tc /1)2 - 1) / (delta * (1 + ro)) = ((1.4867/0.625)2 - 1) / (0.6554 * (1 + 0.8076)) = 3.9322 Ta = B * (t / tc)2 * (1 + delta) = 33.541 * (0.625 / 1.4867)2 '(1 + 0.6554) = 9.8125 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength: M/FSIRn = 2 * n * Ta - Tm = 2-6-9.8125-0 = 117.7>40.304kips(OK) Weld Size Requiredl for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072 * 65 * 0.58/70 = 0.3809 in. k=(wh-gap)/L = (4-0.5)/18.5 = 0.1892 a=wh/L-k2/(1+2k) = 4/18.5 - D.18922/(1+2*0.1892> = 0.1902 0=Arctan{H/V) = Arctan(40.304/232.2) = 9.8479 Degrees k = 0.1892, a = 0.1902, Theta = 9.8479 C = 1.3037 Try w=5/16 in. weld Maximum weld size for angle thickness = 0.5625 > 0.3125 in. (OK) Minimum weld size = 0.25 < 0.3125 in. (OK) Weld Allowable Strength = C*L*C1*16w = 1.3037*18.5*1*16*0.3125 = 120.6 kips Resultant Load, R = 0.5*(H2 + V2 )°-5 = 0.5'((40.304)2 + (232.2)2)05 = 117.8 kips < 120.6 kips (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 10 Ventana Real @ 3rd Fir (Frame 5) (E-W)(2-27-06) = (18.511 * 10.73 + 30.158 * 4.06)/0.9853 = 325.9 > 235.7 kips (OK) Beam Web Tear-out: Combined Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 _4 (Ref. "Combined Shear and Tension Stress", Subhash C. Goe), Engineering Joumal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 9.8479 Degees A = Sin(0) = 0.171 B = Cos(0) = 0.9853 Ag = 12.54 in2 An =12,54 in2 Rupture: M/FS)Rn = (1/2)* 0.18 * W Bl * M * < 1 + <B I A£-10.09^)« An * Fu / B = (1/2)* 0.18" (0.171 / 0.9853) * (-1 + (1 + (0.9853/(J.171)2 / 0.09)0-5)* 12.54-65 / 0.9853 = = 235.6/235.7 kips M/FSiRn = (1/1.512- * 018 * (A / B)2- * M / f1/1 .67 * M / H1/1.67J2-) + f B / A£ / (0.09 * = (1/1.5)z * 0.18* (0.171 /0.9853)2 * (-1 / (1/1.67) + (1 / ((1/1 .67)2 ) + (0.9853 / 0.171)2 / (0.09 * (1/1 .5)2 ))°-5 ) ' 12.54 * 50/0.171 = 240.2 > 235.7 kips (OK) Block Shear of Beam Web: Vertical (Anl.Ftt) and Horizontal (An2,Ft2) Sections: Pattern 2: Ag1 = 10.73 in2 An1 = 10.73 in2 Ag2 = 4.06 in2 An2 = 4.06 in2 Adjusted Allowable Stress. ft1 = (1/2)*0.18 * (A / B)2 * (-1 + (1 + (B / A)2 / 0.09p)*Fu = (1/2)'0.18 * (0.171 / 0.9853)2 * (-1 + (1 + (0.9853 /0.171)2 /0.09)°-5)'65 = 3.21 33 ksi Fv1 = ft1 * 18.511 ksi = 3,2133'0,9853/0,171 = ft2 = (1/2)*0.18 * (B/ A)2 ' (-1 + (1 + (A / B)2 / 0.09)°'5)-Fu = (1/2)*0.18* (0.9853 /0.171)2 * (-1 + (1 (0.171 /0.9853)2 /0.09}05)-65 = 30. 158 ksi Fv2 = ft2 - A / B = 30.158 * 0.171 / 0.9853 = 5.2351 ksi f1/FS)Rn = (Fv1 * An1 + Ft2 * An21/B Use 2L4X4X5/8 Beam and Column Local Stresses for Right Side Beam Beam Web Local Yielding: Force from Top, Rtop = ((1.73*HbTop)2 + {VbTop+3MbTopfl.top)2 f 5 = ((1.73*(-114))2 + (89.93+3-127./23.585)2)05 = 223.9 kips Required Web Thickness = Rtop / ( Fy *(L+2.5*k)) = 223.9 / (50 '(23.585+2.5*1.43)) = 0.2474 in. < 0.58 in. (OK) Force from Bottom, Rbot = ((1.73*HbBot)2 + (VbBot+3MbBot/LBot)2 )°-5 = ((1.73*285.6)2 + (100.7+3-1397/32.569)2)05 = 544.7 kips Required Web Thickness = Rbot / {(1/1.5) *Fy * (L+2.5*k)) = 544.7 / ((1/1.5) * 50 '(32.569+2.5*1.43)) = 0.4521 in. < 0.58 in. (OK) Beam Web Crippling: Force from Top, Rtop = VbTop+3MbTop/Ltop = 89.93+3-127 723.585 = 106 kips Allowable Strength for Top Loading, (1/FS)Rn: = (1/2)* 0.4* E0.5 -^ *(i+(4*(Ntop/d)-0.2)*(tw/t01-5 )*(Fy*tf/tw)° 5 = (1/2)'0.4' 170.3 *0.582*(1+M*(23.585/21.62)-0.2) '(0.58/0.93)1-5 nSO'O.gS/O.SS)6 5 = 313. kips > 106 kips (OK) Force from Bottom, Rbot = VbBot+3MbBot/LBot = 100.7+3-1397/32.569 = 229.4 kips Allowable Strength for Bottom Loading, (1/FS)Rn: = (1/2)*0.4*E°-5 * tw2 *(1+(4*(Nbot/d)-0.2)*(tw/tf)1-5 )*(Fy'tf/tw)° 5 = (1/2)* 0.4 * 170.3 *0.582 '(1+H*(32.569/21,62)-0.2) *(0.58/0.93)'5)*(50*0.93/0.5Sr5 = 396.9 kips > 229.4 kips (OK) Bolt Bearjn_c[pn Column: Bearing Strength/Bolt/Tbickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 ' Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Vertical force per bott = 19.348 kips Allowable Bearing Strength = Fbs*tc = 75.563 * 0.77 = 58.183 kips > 19.348 kips (OK) Column Flange Bending: Force, H' = (H+3*M/L)/2 = (40.304 + 3*0/21)/2 = 20.152 kips Nominal Tension Strength per Bolt = rn = (a-b*V/(N-Ab))'Ab < Ft'Ab = (147 - 2.5 * 116 / (6 * 0.7854)) - 0.7854 < 88.75 = 67.083 kips Allowable Strength per Bolt, (1/FS)m = (1/2)'rn = 33.541 kips DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 1 Ventana Real @ 3rd Fir (Frame 5) (E-W)(2-27-06» _ Force per Bolt, T = H'/n = 3.3587 kips/Bolt b = 2.515in., a =1.54 in., b' = 2.015in., a' = 2.04 in., ro = 0.9877 p = 3, d1 = 1.0625, delta - (1-d'/p) = 0.6458 Beta = (BTT - 1)/ro = (33.541 / 3.3587 - 1) / 0.9877 = 9.0979 Alpha' = 1 Required Flange Thickness for Bending, treg'd = = (4.44TbV(p'Fy*(1 +delta*Alpha')))°^ = (4.44-3.3587 * 2.01 5/(3*50*(1 +0.6458*1 )))°-5 = 0.3489 < 0.77 in. (OK) Column Flange Shear Required Flange Thickness for Shear ~ thShear = T / Min[((1/1 .5} ' 0.6 * p ' Fy),((1/2}*0.6"(p - (d1 + 0.0625))'Fu)] = 3.3587 /Min[((1/1.5) ' 0.6 * 3 ' 50),U1/2)*0.6-(3 - (1.0625 + 0.0625))*65)] = 0.p919<0.77in. (OK) Column Web Local Yielding: Force from Beam, RColumn = (H2 + (1.73*V)2)0-5 = ((40.304)2 +(1.73-232.2)2)0-5 =403.7 kips Required Web Thickness = RColumn / ((1/1 .5) * Fy * (N+5*k)) = 403.7/((1/1.5)*50*(15/5'1.27)) = 0.5672 in. > 0.47 in. Column Web Crippling: Force from Beam, RColumn = 40.304 kips Allowable Strength, (1/FS)Rn: = (1/2)-0.8*Efi-5 ' tw2 '(l+S^N/d^ttw/tf)1-5 )*(Fy*tf/tw)°-5 = (1/2)'0.8 * 1 70.3 - 0.472 *(1+3*(1 5/1 0.4) '(0.47/0.77)1-5 )*(50*0.77/0.47)° 5 = 417.2 kips > 40.304 kips (OK) Design is incomplete or not satisfactory. *.*.*.*.*.*.*.«.*.*.*.END-*-*-*-*-*-*-*-*-*-*-* DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ 3rd Fir (Frame 5) (E-W)(2-27-06) ADD jl'-H 9/1F 1.304/1 '.y^SS8XBX5/B - A500-B-46 (Stotted) Stops: 1.174/1 0.5 in. 3-3/8" Scale:.25" = 1' DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ 3rd Fir (Frame 5} (E-W) (2-27-06) Gusset to Column Web BASIC DESIGN DATA Column: Size: W10X68 Material: A992 Orientation; Web Out of Plane Axial Force: 0 kips Shear Force: 0 kips RiqhtSide Beam: Size: W21X93 Material: A992 Axial Force; -204.1 kips Shear Force: 15 kips Work Point X: 0 in. Work Point Y: 0 in. ClipAnglesi Length: 15.5 in. OSL: 3 in. Material: A36 Bolts: 1"0A490-N-STD Bolt Spacing: 3 in. BoH Edge Distance: 1.75 in. Upper Right Brace: Size: HSS6X6X3/8 Material: A500-B-46 Axial Force: -266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.395/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 26.883 in. Beam Side Length: 24.781 in. Brace Side Length: 9 in. Column Side Free Edge: x= 20.749 in., y= 0 in. Beam Side Free Edge: x= 3.2823 in,, y= 21.64 in. Thickness: 0.75 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -18 in. Clip Angles; Length: 15.5 in. OSL: 3 in. Material: A36 Bolts: V0A490-N-STD Bolt Spacing: 3 in. Bolt Edge Distance: 1.75 in. Lower Right Brace: Size: HSS8X8X5/8 Material: A500-B-46 Axiat Force: 576.9 kips Work Point X: 0 in. Work Point Y:0 in. Rise/Run; 1.256/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 39.837 in. Beam Side Length: 39.629 in. Brace Side Length: 11 in. Column Side Free Edge: x= 32.559 in., y= 0 in. Beam Side Free Edge: x= 1,5359 in., y= 32.986 in. Thickness: 1 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -22.25 in. Clip Angles: Length: 27.5 in. OSL: 3 in. Material: A36 Bolts: T0A490-N-STD Bolt Spacing: 3 in. Boft Edge Distance: 1.75 in. Upper Right Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 5/16 in. (Use 0.25 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 1 8 in. Weld Size = 5/16 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: H/FS)Rn = R'4*l1/2l*0.6*Fexx*0.707*w*L = 1 M*(1 /2)'0.6*70*Q.707*0.25*1 8 = 267.2 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: (1/FS)Rn = 4*11/1.5) * 0.6*Fv*t*L = 4*(1/1.5) * 0.6*46 ' 0.349 • 18 = 462.4 > 266.6 kips (OK) Check Upper Right Brace Tension Yielding of the Brace: * (1/1.67)* 46 -7.58 . _ = 208.8 < 266.6 kips (NC) MC. 6. £/ - /• Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 - 2*(0.75 + 0.0625 )* 0.349 = 7.0129 in2 x = ((B or H)2 +• 2*B*H)/(4*(B + H)) = (62 + 2' 6 * 6)/(4'(6 + 6)) = 2.25 in. U = 1 - (x/L) < 0.9 = 1 -(2.25/18)<0.9 = 0.875 Ae = U'An = 0.875 * 7.0129 = 6.1363 in2 (1/FS)Rn = (1/2) * Fu * Ae = (1/2) -58* 6.1363 = 1 78. < 266.6 kips Upper Right Brace Gusset Dimensions: Column Side, Lgc = 26.883 in. Beam Side, Lgb = 24.731 in. Beam Side Free Edge, Lvfx = 3.2823 in. Beam Side Free Edge, Lvfy = 21 .6-4 in. Column Side Free Edge, Lhfx = 20.749 in. Column Side Free Edge, Lhfy - 0 in. Upper Right Brace Gusset Edge Forces: Special case: 2 Gusset edge moments carried by: Beam interface Theta = 35.635 Degrees, eb = 10.81 in. ec = 0 in. Beta = 9 in. BetaBar = 9 in. AIphaBar = 12.89 in. "*/A DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real @ 3rd Fir (Frame 5) (E-W) (2-27-06) Gusset to Column Web Alpha = (Beta + eb)*Tan(Theta) - ec = (9 -H0.81)*Tan(35.635) - 0 - 14.201 in. r = Fx / ((Alpha + ec)2 + (beta + eb)2 )°-5 = (-266.6) / {(14.201 +O)2 + (9+ 10.81)2)°-5 = (-10.938) kips/in. Hb = Alpha * r = 14.201 * (-10.938) = (-155.3) kips He = ec*r = 0' (-10.938) = 0 kips Vb = (-86.679) kips (Adjusted by user) Vc = (-130) kips (Adjusted by user) Mb = jAlpha * (eb * r - Vb)| = J14.201 * {10.81 * (-10.938) - (-86.679)| = 561.7k-in. Mc = 0 Upper Right Brace Gusset Thickness Trv t = 3/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5'0.6*65*0.75*18 = 526.5 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*18*0.75 = 27 in2 Agt = Ant = d*t = 6*0.75 = 4.5 in2 (1/FS)Rn = (1/2) * (0.6 * MinfFu * Anv: Fv ' Aav) + Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 27; 50 * 27) + 1 * 65 * 4.5) = 551.3 > 266.6 kips (OK) Check Whitmore Section; Width, Lw = 1.1547'Lweld + d = 1.1547*18 + 6 = 26.785 in. Width of Whitmore Section inside gusset boundaries, Lwg = 26.785 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb) = 266.6/(26.785 * 0.75 + 0 * 0.58) = 13.271 ksi Whitmore Section Yielding: = (1/1.67)*(Lwg*t*Fyg + Lwb*twb'Fyb) = (1/1.67)*(26.785 * 0.75 * 50 + 0 * 0.58* 50) = 601.5 > 266.6 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr - 9.3587 in. Kl/r = Lcr/(t/12°-5) = 9.3587/(0.75/3.464) = 43.225 Fe=pi2 *E/(kL/r)2 =3.142 *290.x102 /4S.2252 - 153.2 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/153.2 = 0.3264 Fcr = 0.658° 3264 * Fy = 0.658° 3264 ' 50 = 43.616 ksi Buckling Strength = (1/1.67) *Fcr = 26,117 > 13.271 ksi OK Upper Right Brace Gusset to Column Connection Vertical force on clip angles = (-130) kips Horizontal force on clip angles = 0 kips Vertical Force on Each Clip Angle, V » 65 kips Horizontal Force on Each Clip Angle, T = 0 kips Angle-to-Column Bolts: (5)1"0A490-N-STD Bolts/Angle Allowable Shear Strength of Bolts: = 2*n*((1/FS)m) = 2*5* 23.562 = 235.6 > 130 kips (OK) Number of Bolts Required = n = V/((1/2)Tv'Ab) = 65/((1/2)*60* 0.7854) = 2.7587, Use 5 Bolts Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 * 65 / (5 * 0.7854)) ' 0.7854 < 88.75 = 82.954 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 41.477 kips Design Upper Right Brace Clip Angles Minimum Length of Clip Angle = 13.442 in. Maximum Length of Clip Angle = 24.(J83 in. Trv 2L5X3X5/8 Bolt Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu - 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2'(Fbe+Fbs*(n-1))*t = 2 * (42.413 + 67.425 * (5 - 1 )'l * 0.625 = 390.1 kips > 130 kips (OK) Shear Yielding of Angles: Clip Angle Length - Lc = (n-1)*s + 2*e = (5-1)* 3+2* 1.75 = 15.5 in. Ag = Lc * t = 15.5 * 0.625 = 9.6875 in2 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real & 3rd Fir (Frame 5) (E-Wt (2-27-06) Gusset to Column Web (1/FS)Rn = (1/1.5) * 2 * Aa * 0.6 * Fv = (1/1. 5)* 2*9.6875*0.6*36 = 279 > 130 kips (OK) Shear Rupture of Ahales: Anv = (Lc - n"(dh-K>,0625))"t = (15.5 - 5 *(1.0625 + 0.0625)) * 0.625 = 6.1719 in2 (1/FSlRn = (1/21 * 2 * Anv * 0.6 * Fu = (1/2)* 2 '6.1719*0.6*58 = 214.8 > 130 kips (OK) Block Shear Rupture: Agv = (Lc - el)*t = (15.5 -1.75) -0.625 = 8.5938 in2 Anv = Agv - (N - 0.5)*{dh + 0.0625)*t = 8.5938 - (5 ^ Q.5)*(1 .0625 + 0.0625)*0.625 = 5.4297 in2 Agt = et * t = 1 .75 * 0.625 - 1 .0938 in2 Ant = Agt - 0.5*{dh + 0.0625)*t = 1 .0938 - 0.5*(1 .0625 + 0.0625)*0.625 = 0.7422 in2 M/FSIRn = (1/2) * fo.6 • MlnfFu * Anv: Fv * Agv) + Ubs " Fu * Anti = 0.5 * (0.6*Min(58 * 5.4297; 36 * 8.5938) + 1 * 58 * 0.7422) = 1 14.3 > 65 kips (OK) Angle OSL Tension Strength: Gage, g =^ / t/ Check bolt gage in column web. (tyG) ////? Bolt Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2 - 1/2 = (5.5 -0.75J/2- 0.3125 - 2.0625 in. Bolt Distance to Edge = e = osl - 1/2 - b = 3 - 0.625/2 - 2.0625 = 0.625 in. = ((1.6057/0.625)2 - 1) / (0.6573 * (1 + 1.3889)) = 3.567 Ta = B*(t/tc)2 *(1 + delta) = 41 .477 * (0.625 / 1 .6057)2 *(1 + 0.6573) = 10.414 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength: = 2-5-10.414-0 = 104.1 >0 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072 * 65 * 0.75/70 = 0.4925 in. k=(wh-gap)/L = (5-0.5)/15.5 = 0.2903 a=wh/L-k2/(1+2k) = 5/1 5.5 - 0.29032 /(1 +2*0.2903) = 0.2693 0=Arctan(H/V) = Arctan(0/130) = 0 Degrees k = 0.2903. a = 0.2693, Theta = 0 C = 1 .4252 Try w=1/4 in. weld Maximum weld size for angle thickness = 0.5625 > 0.25 in. (OK) Minimum weld size = 0.25 < 0.25 in. (OK) Weld Allowable Strength = C*L*C1"1 Sw = 1.4252*15.5*1*16*0.25 = 88.361 kips Resultant Load R = 0.5*(H2 + V2)°!i = 0.5*((0)2 +(130)2 )°-5 = 65 kips < 88.361 kips (OK) Allowable tensile load on clip angles per tributary area for_e_ach bolt: dh= 1.0625 in. b' = 1.5625 in. a = Min(e; 1.25*b}= 0.625 in. a' = 1.125 in. 3.1 in. tc - (4.44 - B * b1 / (p * Fy))° 5 = (4.44 * 41.477 " 1.56257(3.1 * 36))°-5 = 1.6057 in. delta = 1 - dh/p = 1 -1.0625/3.1 = 0.6573 ro = b'/a' = 1.5625/1.125 = 1.3889 Alpha' = ((tc /1)2 -1) / (delta * (1 + ro)) p = Gusset Tear-out: Combined Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Journal,3rd Q 1.986, AISC). Load Angle, 0 = Atn(H/V) = 0 Degees A = Sin(0) = 0 B = Cos(0) = 1 Ag = 20.162 in2 An = 20.162 in2 Rupture: (1/FS)Rn = 11/2) ' 0.6*An*Fu = f1/2l * 0.6 * 20.162 ' 65 = 393.2 > 130 kips (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real @ 3rd Fir (Frame 5) (E-W) (2-27-06) Gusset to Column Web \ t1/FS>Rn = (1/1.67) * 0.6*Aq*Fv = (1/1.671 • 0.6 * 20.162' 50 = 362.2 > 130 kips (OK) Block SheaLof Gusset: Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections: Ag1 = 12.563 in2 An1 = 12.563 in2 Ag2 = 3.375 in2 An2 = 3.375 in2 Pattern 1: (1/FSmn = f1/2)* ffvl * An1 +ft2* An2) = (1/2) * (39 ' 12.563 +65* 3.375) = 354.7 > 130 kips (OK) Pattern 2: Ag1 = 11.625 in2 An1 = 11.625 in2 Ag2 = 6.75 in2 An2 = 6.75 in2 (1/FSlRn = (1/21 * ffv1 * An1 +ft2* An2) = (1/2) * (39 * 11.625 +65* 6.75) = 446 > 130 kips (OK) Use 2L5X3X5/8 Column Local Stresses for Upper Right Brace Bolt Bearing on Column: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Vertical force per bolt = 13 kips Allowable Bearing Strength = Fbs*tc = 67.425 * 0.47 = 31.69 kips > 13 kips (OK) Upper Right Brace Gusset to Beam Connection Weld Size = 7/16 in. Horizontal Force on Welds, Hb = 155.3 kips Vertical Force on Welds, Vbm = 86.679 kips Moment on Welds, M = 561.7 k-in. Weld Length on Each Side of Gusset Plate, L = 24.781 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/(L2 ))2 + (H/L)2 )°-5 = ((86.679/24.781 + 3* 561.7/(24.7812 ))2 + (155.3/24.781 )2)0-5 = 8.8459 kips/in. Max. Force on Welds per Unit Length = fr = ((V/L+6M/(L2 ))2 + (H/L)2 p = ((86.679/24.781 + 6* 561.7/(24.7812))2 + (155.3/24.781)2)0-5 = 10.956 kips/in. Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072 * 65 * 0.75/70 = 0.4925 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rf*f_avrg;f_peak)/((1/2)*0.6*1.41*Fexx) = 12.384/((1/2)*0.6*1.41*70) = 0.417 in. Use 7/16 in. Weld Lower Right Brace to Gusset Connection Brace Force = 576.9 kips Brace to Gusset Weld Size = 1/2 in. (Use 0.4375 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22.25 in. Weld Size = 1/2 > Minimum Weld Size = 1/4 in. (OK) Weld Allowable Strength: (1/FS)Rn = B*4*f1/2t'0.6*Fexx*0.707'w*L = 1 *4*(1/2)*0.6*70*0.707*0.4375*22.25 = 578.1 > 576.9 kips (OK) Maximum Weld Force Brace Can Develop: (1/FSlRn = 4*M/1.51 * 0.6*Fv*t*L = 4*(1/1.5) * 0.6*46 * 0.581 * 22.25 - 951.4 > 576.9 kips (OK) Check Lower Right Brace Tension Yielding of the Brace: (1/FS)Rn = (1/1.671 'Fv'Aq = (1/1.67)* 46* 16.4 = 451.7 < 576.9 kips ( Tension Rupture of the Brace: An = Ag - 2*(Tg+O.D625 )*Tb = 16.4-2*(3 +0.0625)* 0.581 = 12.841 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (82 + 2* 8 * 8)/(4*(8 + 8)) = 3 in. U = 1-(x/L)<0.9 = 1 - (3 / 22.25) < 0.9 = 0.8652 Ae = U*An = 0.8652'12.841 = 11.11 in2 M/FS)Rn = (1/2) * Fu * Ae = (1/2)*58*11.11 = 322.2 < 576.9 kips (tyC Lower Right Brace Gusset Dimensions: Column Side, Lgc = 39.837 in. Beam Side, Lgb = 39.629 in. Beam Side Free Edge, Lvfx = 1.5359 in. Beam Side Free Edge, Lvfy = 32.986 in. Column Side Free Edge, Lhfx = 32.559 in. Column Side Free Edge, Lhfy = 0 in. DESCONBRACE-ASP Licensed to: Desert Eaale Engineering LLC- Paae: 5 Ventana Real @ 3rd Fir (Frame 5) fE-Wl (2-27-061 Gusset to Column Web Lower Right Brace Gusset Edge Forces: Special case: 2 Gusset edge moments carried by: Beam interface Theta = 38.526 Degrees, eb = 10.81 in. ec = 0 in. Beta= 15 in. BetaBar= 15 in. AlphaBar = 20.314 in. Alpha = (Beta + eb)*Tan(Theta) - ec = (15 + 10.81)*Tan(38.526) - 0 - 20.549 in. r = Fx / ((Alpha + ec)2 + (beta + eb)2 )°-5 = 576.9 / ((20.549 + O)2 +(15 + 10.81)2)0-* = 17.486 kips/in. Hb = Alpha * r = 20.549 * 17.486 = 359.3 kips Hc = ec*r=0*17.486 = 0 kips Vb - 91 kips (Adjusted by user) Vc = 360 kips (Adjusted by user) Mb = (Alpha * (eb * r - Vb)| = (20.549'(10.81* 17.486-911 = 2036 k-in. Mc = 0 Lower Riqht Brace Gusset Thickness Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5 * 0.6*65 * 1 * 22.25 = 867.8 > 576.9 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22.25*1 = 44.5 in2 Agt = Ant = d*t = 8*1 = 8 in2 ft/FSlRn » (1/2) * fO.6 * MintFu * Anv: Fv * Agv) + Ubs*Fu'Ant) = 0.5 * (0.6*Min(65 * 44.5; 50 * 44.5) + 1 * 65 -8) = 927.5 > 576.9 kips (OK) Check Whitmore Section: Width, Lw = 1 .1 547*Lweld + d = 1.1547*22.25 + 8 = 33.692 in. Width of Whitmore Section inside gusset boundaries, Lwg = 33.692 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lv<fb*twb) = 576.9/(33.692 * 1 + 0 * 0.58) = 17.123ksi Whitmore Section Yielding: = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb) = (1/1.67)*(33.692 * 1 * 50 + 0 * 0.58* 50) = 1009 > 576.9 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 22.339 in. Kl/r = Lcr/(t/12°-5) = 22.339/(173.464) = 77.383 Fe = pi2 *E/(kL/r)2 =3.142 *290.x102 /77.38S2 = 47.798 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50 7 47.798 =1.0461 Fcr=0.65810461 * Fy = 0.65810461 * 50 = 32.272 ksi Buckling Strength = (1/1.67) *Fcr= 19,324 > 17.123 ksi OK Lower Right Brace Gusset to Column Connection Vertical force on clip angles = 360 Kips Horizontal force on clip angles = 0 kips Vertical Force on Each Clip Angle, V - 180 kips Horizontal Force on Each Clip Angle, T = 0 kips Angle-to-Column Bolts: (9) 1"0 A490-N-STD Bolts/Angle Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*9* 23.562 = 424.1 > 360 kips (OK) Number of Bolts Required = n = V/((1/2)*Fv*Ab) = 1807 ((1/2)*60* 0.7854) = 7.6394, Use 9 Bolts Nominal Tension Strength per Bolt = rn = (a-b*V/(N-Ab))*Ab < Ft'Ab = (147 - 2.5 * 180 / (9 * 0.7854)) * 0.7854 < 88.75 = 65.454 kips Allowable Strength per Bolt, (1/FS)m - (1/2)*rn = 32.727 kips Design Lower Right Brace Clio Angles Minimum Length of Clip Angle = 19.919 in. Maximum Length of Clip Angle = 37.837 in. Trv 2L5X3X578 Bolt Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu £ (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2*(Fbe + Fbs*(n-1))M = 2 * (42.413 + 67.425 * (9 -1)) * 0.625 = 727.3 kips > 360 kips (OK) Shear Yielding of Angles: DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 6 Ventana Real @ 3rd Fir (Frame 5) (E-W) (2-27-06) Gusset to Column Web Clip Angle Length = Lc = (n-1)*s + 2'e = (9-1)* 3+2* 1.75 = 27.5 in. Ag = Lc * t = 27.5 * 0.625 = 17.188 in2 (1/FS)Rn = M/1.51 * 2 ' Aq ' 0.6 * Fv = (1/1.5)* 2 M7.188'0.6* 36 = 495 > 360 kips (OK) Shear Rupture of Angles: Anv = (Lc - n*(dh+0.0625))*t = (27.5 - 9 "(1.0625 + 0.0625)) * 0.625 = 10.859 in2 (1/FSmn = (1/21' 2 " Anv * 0.6 * Fu = (1/2) *2* 10.859* 0.6'58 = 377.9 > 360 kips (OK) Block Shear Rupture: Agv = (Lc - el)*t = (27.5-1.75)* 0.625 = 16.094 in2 Anv = Agv - (N - 0.5)'(dh + 0.0625)*t = 16.094 - (9 - 0.5)*(1.0625 + 0.0625)*0.625 = 10.117 in2 Agt = et * t = 1.75 * 0.625 = 1.0938 in2 Ant = Agt - 0.5*(dh + 0.0625)*t = 1.0938 - 0.5*(1.0625 + 0.0625)*0.625 = 0.7422 in2 f1/FS>Rn = (1/21 * (0.6 * Mint Fu ' Anv: Fv * Aqvl + Ubs * Fu * Antt = 0.5 * (0.6*Min(58 * 10.117; 36 • 16.094) + 1*58*0.7422) = 195.3>180kips(OK) Angle OSL Tension Strength: Gage, g =-S Check bolt gage In column web. Bolt Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2 - 1/2 = (5.5 -1)/2- 0.3125 = 1 .9375 in. Bolt Distance to Edge = e = osl - 1/2 - b = 3-0.625/2-1.9375 = 0.75 in. Ajlowable tensile load on clip angles per tributary area for each bolt: dh= 1.0625 in. b'= 1.4375 in. a = Min(e;1.25*b)= 0.75 in. a' = 1.25 in. p = 3.0556 in. tc = (4.44 * B * b' / (p * Fy))° 5 = (4.44 ' 32.727 * 1.4375/(3.0556 * 36))° 5 = 1.378 in. delta = 1 - dh/p = 1 -1.0625/3.0556 = 0.6523 ro = b'/a' = 1.4375/1.25 = 1.15 Alpha' = ((tc /1)2 -1) / (delta * (1 + ro)) = ((1.378/0.625)2 -I)/(0.6523*(1 +1.15)) = 2.7533 Ta = B * (t / tc)2 * (1 + delta) = 32.727 * (0.625 / 1.378)2 *(1 + 0.6523) = 11.124 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength: M/FSlRn-2'n*Ta-Tm = 2*9-*11.124-0 = 200,2 > 0 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072*65*1/70 = 0.6567 in. k=(wh-gap)/L = (5 - 0.5)/27.5 = 0.1636 a=wh/L-k2/(1+2k) = 5/27.5 - 0.16362/(1+2*0.1636) = 0.1616 0=Arctan(H/V) = Arctan(0/360) = 0 Degrees k = 0.1636, a = 0.1616, Theta = 0 C= 1.2691 Try w=3/8 in. weld Maximum weld size for angle thickness = 0.5625 > 0.375 in. (OK) Minimum weld size = 0.25 < 0.375 in. (OK) Weld Allowable Strength = C*L*C1*16w = 1.2691*27.5*1-16*0.375 = 209.4 kips Resultant Load. R = 0.5*fH2 + V2 )°-5 = 0.5*((0)2 +(360)2)0-5 = 180 kips < 209.4 kips (OK) Gusset Tear-out: Combined Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Journal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 0 Degees A = Sin(0) = 0 B = Cos(0) = 1 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 7 Ventana Real @ 3rd Fir (Frame 5) (E-W) (2-27-06) Gusset to Column Web Ag = 39.837 in2 An = 39.837 in2 Rupture: (1/FS)Rn = (1/2) * 0.6*An*Fu = (1/2) * 0.6 * 39.837 '65 = 776.8 > 360 kips (OK) Yielding: (1/FS)Rn = (1/1.67) * 0.6*Ag*Fv = (1/1.671 * 0.6 * 39.837 * 50 = 715.6 > 360 kips (OK) Block Shear of Gusset: Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections: Ag1 = 38.587 in2 An1 = 38.587 in2 Ag2 = 4.5 in2 An2 = 4.5 in2 Pattern 1: (1/FS)Rn = (1/21 * (fv1 * An1 +ft2* An21 = (1/2) * (39 * 38.587 +65* 4.5) = 898.7 > 360 kips (OK) Pattern 2: Ag1 = 27.5 in2 An1 = 27.5 in2 Ag2 = 9 in2 An2 = 9 in2 <1/FSlRn = (1/2> * ffvl * An1 +ft2* An2> = (1/2) * (39 * 27.5 +65* 9) = 828.8 > 360 kips (OK) Use 2L5X3X5/8 Column Local Stresses for Lower Right Brace Bolt Bearing on Column: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Vertical force per bolt = 20 kips Allowable Bearing Strength = Fbs*tc = 67.425 * 0.47 = 31.69 kips > 20 kips (OK) Lower Right Brace Gusset to Beam Connection Weld Size = 9/16 in. Horizontal Force on Welds, Hb = 359.3 kips Vertical Force on Welds, Vbm = 91 kips Moment on Welds, M = 2036 k-in. Weld Length on Each Side of Gusset Plate, L = 39.629 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/(L2 ))2 + (H/L)2 )°'5 = ((91/39.629 + 3* 2036/(39.6292 ))2 + (3S9.3/39.629)2 )°-5 = 10.976 kips/in. Max. Force on Welds per Unit Length = fr = ((V/L+6M/(L2 ))2 + (H/L)2 f-s = ((91/39.629 + 6* 2036/(39.629Z ))2 + (3S9.3/39.629)2 )°-5 = 13.554 kips/in. Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072*65*1/70 = 0.6567 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rf*f_avrg;f_peak)/((1/2)*0.6*1.41*Fexx) = 15.367/((1/2)*0.6*1.41*70) = 0.5174 in. Use 9/16 in. Weld Right Side Beam to Column Connection Transfer Force from Right = 0 kips Tension Transfer Force from Left = 0 kips Tension Vertical force on clip angles = V = | -Vbm_top + Vbmjjot | + | Fvjjeam | = 186.679 + 91 | + |15| = 192.7 kips Hc_Top = 0 kips Hc_Bot. = 0 kips Hc_Top + Hc_Bot. = 0 kips Horizontal force on clip angles = H = | Hbjop + Hb_bot + Fx_beam ] = I (-155.3) + 359.3 + (-204.1) [ = 0.0914 kips Vertical Force on Each Clip Angle = 96.34 kips Horizontal Force on Each Clip Angle = 0.0457 kips Anqle-to-Column Bolts: (5) 1"0 A490-N -STD Bolts/Angle Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*5* 23.562 = 235.6 > 192.7 kips (OK) Number of Bolts Required = n = V/((1/2)*Fv*Ab) - = 96.34/ ({1/2)*60 * 0.7854) = 4.0888, Use 5 Bolts Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))*Ab < FfAb = (147 - 2.5 * 96.34 / (5 * 0.7854)) " 0.7854 < 88.75 = 67.284 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 33.642 kips Design Right Side Beam Clip Angles Minimum Length of Clip Angle = 10.81 in. Maximum Length of Clip Angle = 18.375 in. Try 2L5X3X5/8 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 8 Ventana Real @ 3rd Fir (Frame 5^ (E-W) f2-27-06) Gusset to Column Web Bolt Bearing on Angle OSL Bearing Strength/BolUThickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in., Hole Size = 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)* 2.4 *d'Fu = 69.6 kips/in, = (1/2) * 1 .2 * 1 .2188 * 58 = 42.41 3 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) • 1.2 ' Lc * Fu < (1/2) * 2.4 * d • Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2*(Fbe+Fbs*(n-1))*t = 2 * (42.413 + 67.425 * (5 - 1}) * 0.625 = 390.1 kips > 192.7 kips (OK) Shear Yjelding of Angles: Clip Angle Length = Lc = (n-1)*s + 2*e = (5-1)* 3 +2* 1.75 = 15.5 in. Ag = Lc * t - 15.5 * 0.625 = 9.6875 in2 M/FSIRn = fl/1.51 * 2 * Aq * 0.6 * Fv = (1/1.5) *2* 9.6875* 0.6 '36 = 279 > 192.7 kips (OK) Shear J^upture of Angjes: Anv = (Lc - n*(dh+0.0625))*t = (15.5 - 5 '(1.0625 + 0.0625)) * 0.625 = 6.1719 in2 (1/FSlRn = f1/2l * 2 * Anv * 0.6 * Fu = (1/2)*2*6.1719*0.6*58 = 214.8 > 192.7 kips (OK) Block Shear Rupture: Agv = (Lc - el)*t = (15.5 -1.75)* 0.625 = 8.5938 in2 Anv = Agv - (N - 0.5)'(dh + 0.0625)*! = 8.5938 - (5 - 0.5)*{1.0625 + 0.0625)*0.625 = 5.4297 in2 Agt - 6t * t = 1 .75 ' 0.625 = 1 .0938 in2 Ant = Agt - 0.5*(dh +• 0.0625)*t =• 1.0938 - 0.5*(1.0625 + 0.0625)*0.625 = 0.7422 in2 M/FSlRn = (1/2) * fO.6 * MinfFu * Anv: Fv * Agvl + Ubs * Fu * AnH * 0.5 * (0.6*Min(58 * 5.4297; 36 * 8.5938) + 1 * 58 * 0.7422) * 1 14.3 > 96.34 kips (OK) Angle OSL Tension Strenth: Gage, g ^ Check bolt gage in column we Bolt Distance to Back of the Angle Minus Half Thickness = b * (g-th)/2 - 1/2 = (5.5 -0.58J/2- 0.3125 = 2,1475 in. Bolt Distance to Edge = e = osl -1/2 - b = 3-0.625/2-2.1475 = 0.54 in. Allowable tensite load on clip angles per tributary area for each bolt: dh = 1.0625 in. b' = 1,6475 in. a = Min(e;1.25'b)=0.54in. a'= 1.04 in. p = 3.1 in. tc = (4.44 * B * b1 / (p * Fy))05 = (4.44 ' 33.642 * 1.64757(3.1 * 36))°-5 = 1.485 in. delta = 1 - dh/p = 1-1.0625/3.1 = 0.6573 ro = b'/a' = 1.6475/1.04 = 1.5841 Alpha'= ((tc/t)2 -1)/(delta*(1 + ro)) = ((1.485/0.625)2 - 1) / (0.6573 * (1 + 1.5841)) = 2.7349 Ta = B*(t/tc)2 *(1+delta) = 33.642 * (0.625 /1.485)2 *(1 + 0.6573) = 9.8766 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength: (17FS)Rn = 2*n*Ta-Tm = 2*5* 9.8766 - 0 = 98.766 > 0.0914 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072 * 65 * 0.58/70 = 0.3809 in. k=(wh-gap)/L = (5-0.5)715.5 = 0.2903 a=wh/L-k2/(1+2k) = 5/15.5 - 0.29032 7(1+2*0.2903) ' = 0.2693 0=Arctan(HA7) = Arctan{0.0914/192.7) = 0.0272 Degrees k = 0.2903, a = 0.2693, Theta = 0.0:272 C = 1.4252 Try w= 5/16 in. weld Maximum weld size for angle thickness = 0.5625 > 0.3125 in. (OK) Minimum weld size = 0.25 < 0.3125 in. (OK) Weld Allowable Strength - C*L*C1*16w = 1.4252*15.5*1*16*0.3125 = 110.5 kips Resultant Load, R = 0.5*(H2 + V2 )°-5 = 0.5*((0.0914)2 + (192.7}2)°-5 = 96.34 kips < 110.5 kips (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 9 Ventana Real @ 3rd Fir (Frame 5) (E-W) (2-27-06) Gusset to Column Web ' • _j = 344.9 > 192.7 kips (OK) Use 2L5X3X5/8 Beam Web Tear-out: Combined Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Sub hash C. Goef, Engineering Journal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 0.0272 Degees A * Sin(0) = 0.0005 Ag = 12.54 in2 An = 12.54 in2 Rupture: (i/FSmn = (I/a* 0.18 MA/ Bl " f-1 + (1 + fB /' = (1/2) * 0.18 * (0.0005 / 01.) * (-1 + (1 + (01 . / 0.0005)2 / 0.09)° 5 ) * 12.54 * 65 / 01 . = 244.5 > 192.7 kips (OK) (1/FSlRn = C1/1.512-* 0.18 MA/ B)=-* (-1 / (1/1.67 + fl / ((1/1.67)2.1 + (B IA^-/ (0.09 * Aq'Fv/A = (1/1.5)* * 0.18'{0.0005/01.)2 -(-!/ (1/1.67) + (1 / ((1/1,67)2) + (01. / 0.0005)2 / (0.09 * (1/1.5)5 ))°-5) * 12.54 * 50/0.0005 = 250.8 > 192.7 kips (OK) Block Shear of Beam Web: Vertical (Anl.Fll) and Horizontal (An2,Ft2) Sections: Pattern 2: Ag1 = 8.99 in2 An1 = 8.99 in2 Ag2 = 5.22 in2 An2 = 5.22 in2 Adjusted Allowable Stress: tt1 = (1/2)*0.1 8 ' (A / B)2 -' (-1- + (1 •*- (B / A)2 / 0.09)°'5)*Fu = (1/2)"0.18* (0,0005 / 01 ,)2 *(-1 +(1 + (01./0.0005)2 /0.09)05)*65 = 0.0092 ksi =ft1 *B/A = 0.0092*01. / 0.0005 = 19.497 ksi ft2 = (1/2)*0.18 * (B/ A)2 * (-1 +• (1 + (A / B)2 /0 09)0.5 j.Fu = (1/2)*0.18 ' (01. / 0.0005)2 " (-1 + (1 + (0.0005 / 01 ,)2 / 0.09)0-5 ) * 65 - 32.5 ksi Fv2 = ft2 * A / B = 32.5 * 0.0005 / 01 . = 0.01 54 ksi f 1/FSJRn = (Fv1 * An1 -«- Ft2 * An2)/B = (1 9.497 ' 8.99 + 32.5 * 5.22)/01 . Beam and Column Local Stresses for Right Side Beam Beam Web Local Yielding: Force from Top, Rtop = ((1.73*HbTop'l2 + (VbTop+3MbTop/Ltop)2 )°-5 = ((1.73*(-155.3))2 + (86.679+3"561.7/24.781)2)0'5 = 310 kips Required Web Thickness = Rtop / ( Fy *(L+2.5*k)) = 3tO/(50 "(24.781+2.5*1.43)} = 0.328 in. < 0.58 in. (OK) Force from Bottom, Rbot - ((1.73*HbBot)2 + (VbBoH-SMbBot/LBot)2 )°-5 = ((1.73*359.3)2 + (91+3*2036/:39.629)2)05 = 668.2 kips Required Web Thickness = Rbot / ((1/1.5) *Fy * (L+2.5*k)) = 668.2 / ((1/1.5) ' 50 *(39.629+2.5'1.43)) = 0.464 in. < 0.58 in. (OK) Beam Web Crippling: Force from Top, Rtop = VbTop+3MbTop/Ltop = 86.679+3-561.7/24.781 = 154.7 kips Allowable Strength for Top Loading, (1/FS)Rn: = (1/2)' 0.4 * E°-5 'tw2 *(1 +(4*(Ntop/d)-0.2)-(t«/tf)t-5 r(Fy*tf/tw)°-5 = (1/2)' 0.4 * 170.3 *0.582 *(1+(4*(24.781/21.62)-0.2) *(0.58/0.93)1-5)*(50*0.93/0.58)0-5 = 324.1 kips > 154.7 kips (OK) Force from Bottom, Rbot = VbBot+3MbBot/LBot = 91+3*2036/39.629 = 245.1 kips Allowable Strength for Bottom Loading, (1/FS)Rn: = (1/2)* 0.4 * E°-5 * tw2 *(1 +(4*(Nbot/d)-0.2)*(tw/tf)1 -5 )*(Fy*tf/tw)° 5 = (1/2)* 0.4 * 170.3 'Q.5B2 *(1+|4*(39.629/21.62)-0.2) *{0.58/0.93)1 5 )*(50*0.93/0.58)'X5 - 462.9 kips > 245.1 kips (OK) Bolt Bearing on Column: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) * 1.2 * 1.9375 * 65 = 75.563 kips/in. Vertical force per bolt = 19.268 kips Allowable Bearing Strength = Fbs'tc = 75.563 * 0.47 = 35.514 kips > 19.268 kips (OK) Column Web Bending and out of Plane Shear: H = Fx/n = 0.0914/5 = 0.0183 kips Moment, M = H'(Wc-g)/4 = 0.0183 *(7.86-5.5) / 4 DESCONBRACE-ASD Licensed to: Desert Eatjle Engineering LLC- Page: 10 Ventana Real @ 3rd Fir (Frame 5) (E-W) (2-27-06) Gusset to Column Web • • = 0.0108 k-in./s Bending Strength: M/FSIMn = <1/1.671 * Fv * tw^- * fS - dhl/4 = (1/1.67)*50*0.472 * (3 - 1.0625)/4 = 3.2035 > 0.0108 k-in./s OK Shear Stress: fv=H/(2*tw*(s-dh)) = 0.0183 / (2*0.47 • (3 - 1.0625)) = 0.01 < Fv = (1/1.5)' 0.6*Fy = (1/1.5) * 0.6 - 50 = 20 ksi OK Design is incomclgfe or not satisfaetCw] DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 11 Ventana Real @ 3rd Fir (Frame 5) (E-W) (2-27-06) Gusset to Column Web 46 (Slotted) Slope: 1.395/1in. 2L5X3X5/8X1'-3 1/2"-A36 (1Q)1"0A490-N-STD Bolts SS8X8X5/8 - A500-B-46 Slotted) Scale: 3/8" =1' DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real @ 3rd Fir {Frames 6. 7 & 8) (E-W) (2-27-06) BASIC DESIGN DATA Column: Size: W1 0X68 Material: A992 Orientation: Web In Plane Axial Force: 0 kips Shear Force: 0 kips Right Side Beam: Size: W21X68 Material: A992 Axial Force: -98.9 kips Shear Force: 39.97 kips Work Point X: 0 in. Work Point Y: 0 in. Clip Angles: Length: 18.5 in. OSL: 4 In. Material: A36 Bolts: 1"0A490-N-STD Bolt Spacing: 3 in. Bolt Edge Distance: 1.75 in. Upper Right Brace: Size: HSS6X6X3/8 Material: A500-B-46 Axial Force: -266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.395/1 Bolt Edge Distance: 1.5 in. Gusset Pjale: Material: A572-50 Column Side Length: 25.874 in. Beam Side Length: 16.65 in. Brace Side Length: 9 in. Column Side Free Edge: x= 14.884 in., y= 0 in. Beam Side Free Edge: x= 5.5488 in., y= 20.63 in, Thickness: 1 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap: -18 in. _Clip_Anqtes: Length: 15.5 in. OSL: 3.5 in. Material: A36 Bolts: 1"0A490-N-STD Bolt Spacing: 3 in. Bolt Edge Distance: 1.75 in. Lower Riant Brace: Size: HSS7X7X1/2 Material: A500-B-46 Axial Force: 408 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.256/1 Bolt Edge Distance: 1.5 in. Gusset Material: A572-5Q Column Side Length: 31 .359 in. Beam Side Length: 22.143 in. Brace Side Length: 10 in. Column Side Free Edge: x= 21 .288 in., y= 0 in. Beam Side Free Edge: x= 6.9679 in., y= 25.13 in. Thickness: 1 in. Setback from Column: 0.5 in. Bolt Edge Distance: 1.75 in. Gusset-Brace Gap. -22 in. Clip Angles: Length: 18.5 in. OSL: 4 in. Material: A36 Bolts: 1"0 A490-N -STD Bolt Spacing: 3 in. Bolt Edge Distance: 1.75 in. Upper Right Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 5/16 in. (Use 0.25 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 1 8 in. Weld Size = 5/16 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FSlRn - B*4'M/2r0.6*Fexx*0.707'w*L = 1*4*(1/2)*0.6*70*0.707*0.25*1B _ = 267.2 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: f1/FS)Rn = 4*(1/1.S1 * 0.6*Fv*t'L = 4"{1/1.5) * 0.6*46 * 0.349 * 18 = 462.4 > 266.6 kips (OK) Check Upper Right Brace Tension. Yielding of the Brace: " J 3 (1/FSlRn = n/1.67)*Fy'Ag = (1/1.67)* 46* 7.58 / = 208.8 < 266.6 kips (NG) A/C C Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 - 2*(1 + 0.0625 )* 0.349 = 6.8384 in2 x = ((B or H)2 •+• 2*B*H)/(4*(B •*• H)) = (62 + 2' 6 • 6)/(4*(6 + 6)) = 2.25 in. U = 1-(x/L)<0.9 = 1-(2.25/18)<0.9 = 0.875 Ae = U*An = 0.875 * 6.8384 = 5.9836 in2 (1/FS)Rn = (1/21 * Fu ' Ae = (1/2) * 58 * 5.9836 = 173.5 < 266.6 kips Upper Right Brace Gusset Dimensions: Column Side, Lgc = 25.874 in. Beam Side, Lgb = 16.65 in. Beam Side Free Edge, Lvfx = 5.5488 in. Beam Side Free Edge, Lvfy = 20.63 in. Column Side Free Edge, Lhfx- 14.884 in. Column Side Free Edge, Lhfy = 0 in. Upper Right Brace Gusset Edge Forces: Special case: 2 Gusset edge moments carried by: Beam interface Theta = 35.635 Degrees, eb = 10.565 in. ec= 5.2 in. Beta = 9. in. BetaBar = 9. in. AlphaBar = 8.8251 in. AJpha = (Beta + eb)*Tan(Theta) - ec DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real @ 3rd Fir (Frames 6, 7 & 8) (E-W) (2-27-06) _^^____^_______ = (9. + 10.565)*Tan(35.635) - 5.2 = 8.8251 in. r = Fx / ({Alpha + ec)2 + (beta + eb)2)° 5 = (-266.6) / {(8.8251 + 5.2)2 + (9. + 10.565)2)0-5 = (-11.075) kips/in. Hb = Alpha * r = 8.8251 * (-11.075) = (-97.736) kips Hc = ec*r = 5.2*{-11.075) = (-57.589) kips Vb = (-47) kips (Adjusted by user) Vc = (-170) kips (Adjusted by user) Mb = [Alpha *(eb'r-Vb)| = [8.8251 * (10.565 * (-11.075) - (-47)| = 617.8 k-in. Mc = 0 Upper Right Brace Gusset Thickness Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5 ' 0.6*65 * 1 '18 = 702 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*18*1 = 36 in2 Agt = Ant = d*t = 6*1 = 6 in2 (1/FSlRn = (1/21 * (0.6 * MinfFu * Anv: Fv * Agvl + Ubs*Fu*Antl = 0.5 * (0.6*Min(65 * 36; 50 * 36) + 1 * 65 * 6) = 735 > 266.6 kips (OK) Check Whitmore Section: Width, Lw= 1.1547*Lweld + d = 1.1547*18 + 6 = 26.785 in. Lwo = 2.1335 in. of Lw is outside the gusset free edge. Lwc = 3.4821 in. of Lw is in the column. Width of Whitmore Section inside gusset boundaries, Lwg = 21.169 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc'twc) = 266.6/(21.169*1 +0*0.43 + 3.4821 * 0.47) = 11.69ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwgt*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(21.169 ' 1 * 50 + 0 * 0.43* 50 + 3.4821 -0.47*50) = 682.8 > 266.6 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 5.6956 in. Kl/r = Lcr/(t/12°-5) = 5.6956/(1/3.464) = 19.73 kUr<25 Fcr = Fy = 50 ksi Buckling Strength = (1/1.67) *Fcr = 29.94 > 11.69 ksi OK Upper Right Brace Gusset to Column Connection Vertical force on clip angles = (-170) kips Horizontal force on clip angles = (-57.589) kips Vertical Force on Each Clip Angle, V == 85 kips Horizontal Force on Each Clip Angle, T = (-28.795) kips Angle-to-Column Bolts: (5)1"0A490-N-STD Bolts/Angle Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*5* 23.562 = 235.6 > 170 kips (OK) Number of Bolts Required = n = V/((1/2)*Fv*Ab) = 85/ ({1/2)*60 * 0.7854) = 3.6075, Use 5 Bolts Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 * 85 / (5 * 0.7854)) * 0.7854 < 88.75 = 72.954 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 36.477 kips Design Upper Right Brace Clip Angles Minimum Length of Clip Angle = 12.937 in. Maximum Length of Clip Angle = 23.874 in. Try 2L3.5X2.5Xm BgjtBearing °n Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in., Hole Size =1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 ' 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in.. Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2*(Fbe+Fbs*(n-1))*t = 2 * (42.413 + 67.425 * (5 - 1)) * 0.5 = 312.1 kips > 170 kips (OK) Shear Yielding of Angles: Clip Angle Length = Lc = (n-1)*s + 2*e = (5-1)*3+2*1.75 = 15.5 in. Ag - Lc * t = 15.5 ' 0.5 = 7.75 in2 (1/FS)Rn = H/1.51 * 2 * Ag * 0.6 * Fv DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real @ 3rd Fir (Frames 6. 7 & 8) (E-W) (2-27-06) _____^______ = (1/1.5) *2*7.75* 0.6*36 = 223.2 > 170 kips (OK) Shear Rupture of Angles: Anv = <Lc - n*(dh-N).0625))*t = (15.5 - 5 '(1.0625 + 0.0625)) * 0.5 - 4.9375 in2 (1/FSlRn - (1/2) * 2 ' Anv * 0.6 * Fu = (1/2) * 2 * 4.9375 * 0.6 * 58 = 171.8>170kips(OK) Block Shear Rupture: Agv = (Lc - eirt = (15.5-1.75)* 0.5 = 6.875 in2 Anv = Agv - (N - 0.5)*(dh + 0.0625)'t = 6.875 - (5 - 0.5)*(1.0625 + 0.0625)*0.5 = 4.3438 in2 Agt = et't= 1.75* 0.5 = 0.875 in2 Ant = Agt - 0.5*(dh + 0.0625)*t = 0.875 - 0.5*(1.0625 + 0.0625)*0.5 = 0.5938 in2 M/FSlRn = (1/2> * (0.6 * MinfFu * Anv: Fv * Agvl + Ubs*Fu'Antt = 0.5 * (0.6*Min(58 * 4.3438; 36 * 6.875) + 1 * 58 * 0.5938) = 91.469 > 85 kips (OK) Angle OSL Tension Strength: Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2 -1/2 = (5.5-1)/2-0.25 = 2 in. Bolt Distance to Edge = e = osl -1/2 - b = 3.5 - 0.5/2 - 2 = 1.25 in. Allowable tensile load on clip angles per tributary area for each bolt: dh = 1.0625 in. b'=1.5in. a=Min(e;1.25*b)=1.25in. a'=1.75 in. p = 3.1 in. tc=(4.44*B*b'/(p'Fy))05 = (4.44 * 36.477 * 1.5/(3.1 * 36))a5 = 1.4754 in. delta = 1 - dh/p = 1 -1.0625/3.1 = 0.6573 ro = b'/a1 = 1.5/1.75 = 0.8571 Alpha' = ((tc /1)2 -1) / (delta * (1 + ro)) - ((1.4754/0.5)2 - 1) / (0.6573 * (1 + 0.8571)) = 6.3143 Ta = B'(t/tc)2 *(1 + delta) = 36.477 * (0.5 / 1 .4754)2 *(1 + 0.6573) = 6.9426 kips Reduction in Tension Strength due to Moment = Tm - 0 kips Allowable Tension Strength: (1/FSmn - 2 * n * Ta - Tm = 2*5*6.9426-0 = 69.426 > 57.589 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072*65*1/70 - 0.6567 in. k=(wh-gap)/L = (2.5-0.5)/15.5 = 0.129 a=wh/L-k2/(1+2k) = 2.5/15.5 -0.1292/(1+2*0.129) = 0.1481 0=Arctan(H/V) = Arctan(57.589/170) = 18.714 Degrees k = 0.129, 8 = 0.1481, C = 1.2242 s 18.714 Try w=5/16 in. weld Maximum weld size for angle thickness = 0.4375 > 0.3125 in. (OK) Minimum weld size = 0.1875 < 0.3125 in. (OK) Weld Allowable Strength = C*L*C1*1Sw = 1.2242*15.5*1*16*0.3125 = 94.875 kips Resultant Load, R = 0.5'(H2 + V2 )a;i = 0.5*((57.589)2 +(170)2)05 = 89.745 kips < 94.875 kips (OK) Gusset Tear-out: Combined Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Journal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 18.714 Degees A = Sin(0) = 0.3208 B = Cos(0) = 0.9471 Ag = 25.874 in2 An = 25.874 in2 Rupture: (1/FSlRn = (1/2>* 0.18 * fM B) ' M * M + (B / A£- / 0.09)^1' An * Fu/B = (1/2)* 0.18* (0.3208 / 0.9471) * (-1 +(1 +(0.9471 /0.3208)2 / 0.09)0-5) * 25.874 * 65 / 0.9471 = 481.3 > 179.5 kips (OK) f1/FS)Rn = = (1/1.5)* * 0.18'(0.3208 / 0.9471)2 * (-1 / (1/1.67) + (1 / ((1/1.67)2 ) + (0.9471 / 0.3208)2 / (0.09 " (1/1.5)2 ))°-5) * 25.874 ' 50/0.3208 = 488 > 179.5 kips (OK) Block Shear of Gusset: Vertical (An1,Ft1) and Horizontal (An2,Ft2) Sections: Agl = 10.75 in2 An1 = 16.75 in2 Ag2 - 2 in2 An2 = 2 in2 Pattern 1: Adjusted Allowable^tress: ft1 = (1/2)'0.18*(A/B)2 *(-1 +(1+(B/A)2 / 0.09)6-5)*Fu = (1/2)*0.18* (0.3208 /0.9471)2 * (-1 + (1 + (0.9471 / 0.3208)2 / 0.09)0-5) - 65 = 5.9685 ksi Fv1 = ft1 * B / A = 5.9685 * 0.9471 / 0.3208 = 17.619 ksi ft2 - (1/2)-0.18 * (B/ A)2 * (-1 + (1 + (A / B)2 / 0.09)°-5)*Fu = (1/2)*0.18 * (0.9471 / 0.3208)2 * (-1 + (1 + (0,3208 / 0.9471)2 / 0.09)05) * 65 = 25.914 ksi Fv2 = ft2 - A / B = 25.914 * 0.3208 / 0.9471 = 8.7785 ksi (1/FSlRn = I Fv1 * An1 + Ft2 * AnZUB = (17.619 * 16.75 + 25.914 " 2)/0.9471 = 366.3 > 179.5 kips (OK) Pattern 2: Ag1 = !5.5 in2 An1 =15.5 in2 Ag2 = 4 in2 An2=*4 in2 Adjusted Allowable Stress: (Same as Above) f1/FS)Rn = (Fv1 " An1 + Ft2 * An2UB = (17.619 ' 15.5 + 25.914 * 4)/0.9471 = 397.8 > 179.5 kips (OK) Use2L3.5X2.5X1/2 Column Local Stresses for Upber Right Brace Bolt Bearing on Column: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bott Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) ' 2.4 * d * Fu = 69.6 kips/in. = (1/2) " 1.2 * 1.9375 * 58 = 67.425 kips/in. Vertical force per bolt =17 kips Allowable Bearing Strength = Fbs*tc = 67.425 * 0.77 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real @ 3rd Fir (Frames 6, 7 & 8) (E-W) (2-27-06) _^_^_________ = 51.917 kips > 17 kips (OK) Column Flange Bending: Force, H' = (H+3*M/L)/2 = (57.589 + 3'0/18)/2 = 28.795 kips Nominal Tension Strength per Bolt = rn = (a-b*V/(N'Ab))'Ab < Ft'Ab = (147 - 2.5 ' 85 / (5 ' 0.7854)) * 0.7854 < 88.75 = 72.954 kips Allowable Strength per Bott, (1/FS)m = (1/2)*rn ~ 36.477 kips Force per Bolt, T = H'/n = 5.7589 kips/Bolt b = 2.515 in., a = 1.25 in., b' = 2.015 in., a'=1.75 in., ro-1.1514 p = 3, d' = 1.0625, delta = (1-d'/p) = 0.6458 Beta = (BfT - 1)/ro = (36.477 / 5.7589 -1) /1.1514 = 4.6325 Alpha1 = 1 Required Ffange Thickness for Bending, treg'd = = (4.44*T*bV(p*Fy*(1+delta*Alpha')))0 * = (4.44*5.7589 ' 2.015/(3*50*(1 +0.6458*1)))°-5 = 0.4568 < 0.77 in. (OK) -. Column Flange Shear Required Flange Thickness for Shear = thShear = T / Min[((1/1.5) * 0,6 * p * Fy),((1/2)*0.6*(p - (d1 + 0.0625))*Fu)] = 5.7589 /Min[((1/1.5) ' 0.6 * 3 * 50),((1/2)*0.6*(3 - (1.0625 + 0.0625))*65)] = 0.1575<0.77in.(OK) Column Web Local Yielding: Force from Gusset, RColumn = «H+3*M/N)2 + (1.73*V)2 )as = ((57.589+3*0/12)2 +(1.73*170)2)a5 =299.7 kips Required Web Thickness = RColumri / ((1/1.5) * Fy * (N+5*k)) = 299.7 / ((1/1.5) * 50 ' (12 *5*1.27)) = 0.4899 in. > 0.47 in. (Nfif) &K. t Column Web Crippling: Force from Gusset, RCofumn = H+3'M/N = 57.589 kips Allowable Strength, (1/FS)Rn: = (1/2)*0.8 ' E6 5 * tw2 *(1 +3'(N/d)*(tw/tf)1'5 )*(Fy*tfftw)°-5 = (1/2)*0.8 * 170.3 * 0.472 *(1+3*(12/10.4) *(0.47/0.77)1-5)*(50-0.77/0.47)°-g = 361. kips > 57.589 kips (OK) Upper Right Brace Gusset to Beam Connection Weld Size = 5/8 in. Horizontal Force on Welds, Hb = 97.736 kips Vertical Force on Welds, Vbm = 47 kips Moment on WekJs, M = 617.8 k-in. Weld Length on Each Side of Gusset Plate, L = 16.65 in. Average Force on Welds per Unit Length = fraverage - ((V/L+3M/(L2 ))2 + (H/L)2)° 5 = ((47/16.65 + 3* 617.8/(16.65:J))2 + (97.736/16.65)2)0-5 = 11.174 kips/in. Max. Force on Welds per Unit Length = fr = ((V/L+6M/(L2 ))2 + (H/L)2 )ff5 = ({47/16.65 + 6* 617.8/(16.652 ))2 + (97.736/16.65)2 )°'5 = 17.225 kips/in. Maximum useful weld size = 0.7072 * Fu't / Fexx = 0.7072 * 65 * 1/70 = 0.6567 in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 5 Ventana Real @ 3rd Fir (Frames 6, 7 & 8) (E-W) (2-27-06) Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rrf_avrg;f_peak)/((i/2)'0.6*1.4rFexx) = 17.225/((1/2)*0.6'1.41'70) = 0.58 in. Use 5/8 in. Weld Lower Right Brace to Gusset Connection Brace Force = 408 kips Brace to Gusset Wetd Size - 3/8 In. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 22 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: M/FS>Rn = R'4*(1/2r0.6*Fexx*0.707*w*L = 1 '4*(1/2)*0.6*70*0.707*0.31 25*22 = 408.3 > 408 kips (OK) Maximum Weld Force Brace Can Develop: f1/FS)Rn = 4*f1/1.5) * 0.6*Fy*t*L = 4*(1/1 .5) * 0.6MS * 0.465 " 22 = 752.9 > 408 kips (OK) Check Lower Right Brace Tension Yielding of the Brace: f1/FS)Rn = (1/1.671 An = (1/1.67) M6* 11.6 , « 31 9.5 < 408 kips (S) /-/C t- Ky Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 11.6- 2*(1 + 0.0625 )* 0.465 = 10.612 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (72 + 2' 7 * 7)/(4*(7 + 7)) = 2.625 in. U = 1 - (x/L) < 0.9 = 1 - (2.625 / 22) <-, 0.9 = 0.8807 Ae = U*An = 0.8807 * 10.612 = 9.3457 in2 f1/FS)Rn = (1/21 * Fu ' Ae = (1/2) -58- 9.3457 , = 271 < 408 kips (<5) Otf. Lower Right Brace Gusset Dimensions: Column Side, Lgc = 31.359 in. Beam Side, Lgb = 22.143 in. Beam Side Free Edge, Lvfx = 6.9679 in. Beam Side Free Edge, Lvfy = 25.13 in. Column Side Free Edge, Lhfx = 21.288 in. Column Side Free Edge, Lhfy = 0 in. Lower Right Brace Gusset Edge Forces: Special case: 2 Gusset edge moments carried by: Beam interface Theta = 38.526 Degrees, eb = 10.565 in. ec = 5.2 in. ti •*/ ' Beta = 10.5 in. BetaBar ~ 10.5 in. AlphaBar = 11.571 in. Alpha = (Beta + eb)*Tan(Theta) - ec = (10.5 + 10.565)*Tan(38.526) - 5.2 = 11.571 in. r = Fx / ((Alpha + ec)2 + (beta + eb)2 )°-5 = 408 / ((11.571 + 5.2)2 + (10.5 + 10.565)2 )°-5 = 15.153 kips/in. Hb = Alpha*r=11.571*15.153 = 175.3 kips He = ec*r= 5.2'15.153 = 78.793 kips Vb = 69 kips (Adjusted by user) Vc = 250 kips (Adjusted by user) Mb = |Alpha*(eb*r-Vb)| = |11.571*(10.565*15.153-69| -. =1054k-in. Mc = 0 Lower Right Brace Gusset Thickness Maximum Brace WekJ Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5 * 0.6*65 * 1 * 22 = 858 > 408 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*22*1 = 44 in2 Agt = Ant = d*t = 7*1 = 7 in2 f1/FS)Rn - <1/2) * (0.6 * MinfFu * Anv: Fv ' Aqv) + Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 44; 50 * 44) + 1 * 65 * 7) = 887.5 > 408 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lwetd + d = 1.1547*22+ 7 = 32.403 in. Lwo = 1.8502 in. of Lw is outside the gusset free edge. Lwc = 1.5069 in. of Lw is in the column. Width of Whitmore Section inside gusset boundaries, Lwg = 29.046 in. Whitmore Section Stress: , * fa = Fx/(Lwg*t + Lwb*twb + Lwc*twc) = 4087(29.046 * 1 + 0 * 0.43 + 1.5069 * 0.47) = 13.712ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(29.046 * 1 * 50 + 0 * 0.43* 50 + 1.5069 * 0.47* 50) = 890.9 > 408 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr= 7.3876 in. Kl/r = Lcr/(t/12°-5) = 7.3876/(1/3.464) = 25.591 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 6 Ventana Real @ 3rd Fir (Frames 6. 7 & 8) (E-W) (2-27-06) Fe = pi2 *E / (kL/r)2 = 3.142 *290.x102 / 25.5912 = 437 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50 / 437 = 0.1144 Fcr = 0.6580-1144 * Fy = 0.65801144 * 50 = 47.662 ksi Buckling Strength = (1/1.67) *Fcr = 28.54 > 13.712 ksi OK Lower Right Brace Gusset to Column Connection Vertical force on clip angles = 250 kips Horizontal force on clip angles = 78.793 kips Vertical Force on Each Clip Angle, V = 125 kips Horizontal Force on Each Clip Angte, T = '39.397 kips Angle-to^Cplurnn Bojte: (6)1"0A490-N-STD Bolts/Angle Allowable Shear Strength of Bolts: = 2*n*((1/FS)rn) = 2*6* 23.562 = 282.7 > 250 kips (OK) Number of Botts Required ~ n = V/((1/2)*Fv*Ab) = 125/((1/2)*60* 0.7854) = 5.3052, Use 6 Sorts Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))*Ab < Ft*Ab = (147 - 2.5 * 125 / (6 * 0.7854}) * 0.7854 < 88.75 = 63.37 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 31.685 kips Design Lower Right Brace Clip Angles Minimum Length of Clip Angle = 15.679 in. Maximum Length of Clip Angle = 29.359 in. Trv 2L4X4X5/8 Bolt Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in.. Hole Size = 1.0625 in. = <1/2}*1.2*Lc'Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 • 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2*(Fbe + Fbs*(n-1))*t = 2 * (42.413 + 67.425 * (6 - 1)) * 0.625 = 474.4 kips > 250 kips (OK) Shear Yielding olAngles: Clip Angle Length = Lc = (n-1)*s + 2*e = (6-1)* 3+2* 1.75 = 18.5 in. Ag = Lc * t = 18.5 * 0.625 = 11.563 in:! M/FSmn = (1/1.51 * 2 * Ag ' 0.6 * Fv = (1/1.5)'2*11.563*0.6* 36 = 333 > 250 kips (OK) Shear Rupture of Angles: Anv = (Lc - n*(dh+0.0625))*t = (18.5 - 6 *(1.0625 + 0.0625)) * 0.625 = 7.3438 in2 f1/FS>Rn ~ (1/21 * 2 * Anv * 0.6 * Fu • = (1/2) * 2 * 7.3438 * 0.6 * 58 = 255.6 > 250 kips (OK) B|Qck_Snear Rupture: Agv = (Lc - el)*t = (18.5-1.75)'0.625 = 10.469 in2 Anv = Agv - (N - 0.5)*(dh + 0.0625)*t = 10.469 - (6 - 0.5)*(1.0625 + 0.0625)*0.625 = 6.6016 in2 Agt = et' t = 1.75 * 0.625 = 1.0938 in2 Ant = Agt - 0.5*(dh + 0.0625)*t = 1.0938 - 0.5*(1.0625 + 0.0625)*0.625 = 0.7422 in2 M/FSIRn = f 1/21 * (0.6 * MinfFu * Anv: Fv * Agv) + Ubs * Fu • Antt = 0.5 * (0.6'Min(58 * 6.6016; 36 * 10.469) + 1 * 58 * 0.7422) = 134.6 > 125 kips (OK) Angle OSL Tension Strength: Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Half Thickness = b = (g-th)/2 -1/2 = (5.5-1)/2-0.3125 = 1.9375 in. Bolt Distance to Edge = e = osl -1/2 - b = 4-0.625/2-1.9375 = 1.75 in. Allowable tensile load on clip angles per tributary area for each bolt: dh= 1.0625 in. b'= 1.4375 in. a = Min(e;1.25*b)=1.75in. a'= 2.25 in. p = 3.0833 in. tc = (4.44 * B * b' / (p * Fy))0-5 = (4.44 * 31.685 * 1.4375/(3.0833 * 36))° 5 = 1.3498 in. delta = 1 - dh/p = 1 -1.0625/3.0833 = 0.6554 ro = b'/ar = 1.4375/2.25 = 0.6389 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 7 Ventana Real @ 3rd Fir (Frames 6. 7 & 8) (E-W) (2-27-06) ____________^_ Alpha' = ((tc /1)2 -1) / (delta * (1 + ro)> = ((1.3498/0.625)2 - 1) / (0.6554 * (1 + 0.6389)) = 3.4112 Ta = B'(t/tc)2 *(1 + delta) = 31.685 * (0.625 / 1.3498)2 *(1 + 0.6554) = 11.246 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength: (1/FSlRn = 2 * n * Ta - Tm = 2*6*11.246-0 = 135. > 78.793 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum usefut weld size = 0.7072 * Fu * t / Fexx = 0.7072*65*1/70 = 0.6567 in. k=(wh-gap)/L = (4-0.5)718.5 = 0.1892 a=wh/L-k2/(1+2k) = 4/18.5 -0.18922/(1+2*0.1892) = 0.1902 0=Arctan(H/V) = Arctan(78.793/250) = 17.493 Degrees k = 0.1892, a = 0.1902, Theta = 17.493 C = 1.325 Try w=3/8in. weld Maximum weld size for angle thickness = 0.5625 > 0.375 in. (OK) Minimum weld size = 0.25 < 0.375 in. (OK) Weld Allowable Strength = C*L*C1'16w = 1.325*18.5*1*16*0.375 = 147 kips Resultant Load, R = 0.5*(H2 + V2)° 5 = 0.5'«78.793)2 + (250)2 )°-5 = 131 kips < 147 kips (OK) Gusset Tear-out: CombinedI Tensjon and Shear The following formulae have been derived using an interaction equation of the form ft/Ft + (fv/Fv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Journal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 17.493 Degees A = Sin(0) = 0.3006 B = Cos(0) = 0.9538 Ag = 31.359 in2 An = 31.359 in2 Rupture: f1/FS)Rn = (1/21* 0.18 MA/ Bl * (-1 + (1 + (B / A£ / 0.09^1 * An * Fu/B = (1/2) * 0.18 * (0.3006 / 0.9538) * (-1 + (1 + (0.9538 / 0.3006)2 / 0.09)0-5) * 31.359 * 65 / 0.9538 = 583.4 > 262.1 kips (OK) (1/FSlRn = (1/1 .5£ * 0.18 * fA/ BJ2-" M / (1/1.67) * (1 / (B / A£ / (0.09 * (1/1.5^-1)^5.1 * Ao * Fv/A = (1/1.5JZ * 0.18* (0.3006 /0.9538)2 * (-1 / (1/1.67) •*• (1 / ((1/1 .67)2 ) + (0.9538 / 0.3006)2 / (0.09 * (1/1 .5)2 ))°-5 ) * 31.359*50/0.3006 = 592. > 262.1 kips (OK) Block Shear of Gusset: Vertical (Anl.Ftl) and Horizontal (An2,Ft2) Sections: Ag1= 30.109 in2 An1= 30.109 in:! Ag2 = 3.5 in2 An2 = 3.5 in-' Pattern 1 : Adjusted Altowabje_S_tress: ft1=(1/2)*0.18*(A/B)2 *(-1 + (1 + iB/A)2 /0.09)°-5)*Fu = (1/2)*0.1 8 * (0.3006 / 0.9538):i * (-1 + (1 + (0.9538 / 0.3006)2 / 0.09)a5 ) * 65 = 5.5922 ksi Fv1 = m * B / A = 5.5922 * 0.9538 / 0.3006 = 17.743 ksi ft2 = (1/2)*0.18 * (B/ A)2 " (-1 + (1 + (A / B)2 / 0.09}0-5 ) * Fu = (1/2)*0.1 8 * (0.9538 / 0.3006)'! * (-1 + (1 + (0.3006 / 0.(1/2)*0.1 8 * (0.9538 / 0.3006)' / 0.09)° 5 ) - 65 = 26.526 ksi (-1 + (1 + (0.3006 / 0.9538)2 Fv2 = ft2 * A / B = 26.526 * 0.3006 / 0.9538 = 8.3603 ksi f1/FS)Rn = (Fv1 * An1 + Ft2 * An2VB = (17.743 * 30.109 + 26.526 * 3.5)/0.9538 = 657.5 > 262.1 kips (OK) Pattern 2: Ag1 = 18.5 in2 An1 = 18.5 in2 Ag2 = 7 in2 An2 = 7 in2 Adjusted Allowable Stress: (Same as Above) (1/FSlRn = fFvl * An1 + Ft2 * An2VB = (17.743 * 18.5 + 26.526 * 7)/0.9538 = 538.9 > 262.1 kips (OK) Use 2L4X4X5/8 Column Local Stresses for Lower Right Brace Bott Bearing on Column-. Bearing Strength/Bolt/Thickness Using Bott Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 • d * Fu = 69.6 kips/in. = (1/2) * 1.2 ' 1.9375 * 58 = 67.425 kips/in. Vertical force per bolt = 20.833 kips DESCONBRACE-ASD Licensed to: Desert Eiagle Engineering LLC- Page: 8 Ventana Real @ 3rd Fir (Frames 6. 7 & 8) (E-W) (2-27-06) Allowable Bearing Strength = Fbs*tc = 67.425 * 0.77 = 51.917 kips > 20.833 kips (OK) Column Flange Bending: Force, H' = (H+3*M/L)/2 = (78.793 + 3*0/21)/2 = 39.397 kips Nominal Tension Strength per Bolt = rn = (a-b*V/(N'Ab))'Ab < Ft*Ab = (147 - 2.5 ' 125 / (6 * 0.7854)) * 0.7854 < 88.75 = 63.37 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 31.685 kips Force per Bolt, T = H'/n = 6.5661 kips/Bott b = 2.515 in., a = 1.75 in., b' = 2.015 in., a' = 2.25 in., ro = 0.8956 p = 3, d1 = 1.0625, delta = (1-d7p) = 0.6458 Beta = (B/T - 1)/ro = (31.685 / 6.5661 - 1) / 0.8956 = 4.2717 Alpha1 = 1 Required Flange Thickness for Bending, treg'd = = (4.44T-b'/(p*Fy*( = (4.44*6.5661 * 2.015/(3*50*(H0.6458*1}))° 5 = 0.4878 £0.77 in. (OK) Column Required Flange Thickness for Shear = thShear = T / Min[((1/1.5) * 0.6 * p * Fy),((1/2)*0.6'(p - (d1 + 0.0625)rFu)] = 6.5661 /Min[((1/1.5) * 0.6 * 3 * 50),((1/2)*0.6*(3 - (1 .0625 + 0.0625))*65)] = 0.1796 £ 0.77 in. (OK) Column Web Local Yielding: Force from Gusset, RCotumn = ((H+3*M/N)2 + (1.73*V)2)0-5 = ((78.793+3*0/15)2 + (1.73'250)2)0-5 - 439.6 kips Required Web Thickness = RColumn / ((1/1.5) * Fy * (N+5*k)) = 439.6 / ((1/1 .5) • 50 * (1 5 +5*1 .27)) = 0.6177 In. > 0.47 in. (NG) Column Web Crippling: Force from Gusset, RColumn = H+3*M/N = 78.793 kips Allowable Strength, (1/FS)Rn: = (1/2)*0.8*E6-5 * tw2 *(1+3*(N/d)*(tw/tf)1-5 )*(Fy'tf/tw)°'5 = (1/2)*0.8 * 170.3 * 0.472 *(1+3"M5/10.4) *(0.47/0.77)1-5}*(50*0.77/0.47)°^ = 417.2 kips > 78.793 kips (OK) Lower Right Brace Gusset to Beam Connection Weld Size = 5/B in. Horizontal Force on Welds, Hb = 175.3 kips Vertical Force on Welds, Vbm = 69 kips Moment on Welds, M = 1054 k-in. Weld Length on Each Side of Gusset Plate, L = 22.143 in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/(L2 ))2 + (H/L)2 )°-5 = ((69/22.143 + 3* 1054/(22.143* ))2 + (175.3/22.143)2 )°-5 = 12.417 kips/in. Max Force on Welds per Unit Length = fr = ((V/L+6M/(L2 ))2 + (H/L)2 )ff-5 = ((69/22.143 + 6- 1054/(22.143Z ))2 + (175.3/22.143)2 )°-5 = 17.865 kips/in. Maximum useful weld size = 0.7072 * Fu* t / Fexx = 0.7072*65*1/70 = 0.6567 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = Max(Rf*f avrg;f_peak)/((1/2)*0.6*1.41*Fexx) = 17.865/((1/2)*0.6*1.41*70) = 0.6015 in. Use 5/8 in. Weld Right Side Beam to Column Connection Transfer Force from Right = 0 kips Tension Transfer Force from Left = 0 kips Tension Vertical force on clip angles = V = | -Vbmjop + Vbm_bot [ + | Fv_beam | = | 47 + 69 | + | 39.97 [ = 156. kips Hc_Top = (-57.589) kips Hc_Bot. = 78.793 kips Hc_Top + Hc_Bot. = 21.204 kips Horizontal force on clip angles = H = | Hbjop + Hb_bot + Fx_beam | = | (-97.736)+ 175.3+ (-98.9) | = 21.298 kips Vertical Force on Each Clip Angle = 77.985 kips Horizontal Force on Each Clip Angle = 10.649 kips Angle-to-Column Bolts: (6) 1"0 A490-N-STD Bolts/Angle Allowable Shear Strength of Bolts: = 2'n*((1/FS)rn) = 2 * 6 * 23.562 = 282.7 > 156. kips (OK) Number of Bolts Required = n = V/((1/2)*Fv*Ab) = 77.985/((1/2)*60* 0.7854) = 3.3098, Use 6 Bolts Nominal Tension Strength per Bolt = rn = (a-b'V/(N*Ab))*Ab < Ft'Ab = (147 - 2.5 ' 77.985 / (6 * 0.7854)) ' 0.7854 < 88.75 = 82.96 kips Allowable Strength per Bolt, (1/FS)rn = (1/2)*rn = 41.48 kips Design Right Side Beam Clip Angles Minimum Length of Clip Angle = 10.565 in. Maximum Length of Clip Angle = 18.375 in. DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Facie: 9 Ventana Real @ 3rd Fir (Frames 6. 7 & 8) (E-W) (2-27-061 Trv2L4X4X1/2 Bolt Bearing on Angle OSL Bearing Strength/Bolt/Thickness Using Bolt Edge Distance = Fbe Edge Dist. = 1.75 in.. Hole Size - 1.0625 in. = (1/2)*1.2*Lc*Fu <(1/2)"2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.2188 * 58 = 42.413 kips/in. Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1.0625 in. = (1/2)-1.2*Lc*Fu <(1/2)*2.4*d*Fu = 69.6 kips/in. = (1/2) * 1.2 * 1.9375 * 58 = 67.425 kips/in. Bearing Capacity = BrCap = 2'(Fbe + Fbs*(n-1))-t = 2 * (42.413 + 67.425 * (6 - 1))* 0.5 = 379.5 kips > 156. kips (OK) Shear Yielding of Angles: Clip Angle Length = Lc = (n-1)*s + 2*e = (6-1)'3+2'1.75 = 18.5 in. Ag = Lc * t = 18.5 * 0.5 = 9.25 in2 (1/FSlRn = M/1.5) * 2 * Ag * 0.6 * Fv = (1/1.5)* 2 * 9.25* 0.6 • 36 = 266.4 > 156. kips (OK) Shear Rupture of Angles: Anv = (Lc - n*(dh+0.0625»*t = (18.5 - 6 '(1.0625 + 0.0625)) * 0.5 = 5.875 in2 (1/FS>Rn » (1/21 * 2 * Anv * 0.6 * Fu = (1/2)* 2'5.875*0.6*58 = 204.5 > 156. kips (OK) Block Shear Rupture: Agv = (Lc - el)'t = (18.5-1.75)'0.5 = 8.375 in2 Anv = Agv - (N - 0.5)*(dh + 0.0625)'t ~ 8.375 - (6 - 0.5)*(1.0625 + 0.0625)*0.5 = 5.2813 in2 Agt = et * t = 1.75 * 0.5 = 0.875 in2 Ant = Agt - 0.5*(dh + 0.0625)*t = 0.875 - 0.5*(1.0625 + 0.0625)*0.5 = 0.5938 in2 (1/FS)Rn = M/21 * (0.6 * MinfFu * Anv: Fv * Aqvl + Ubs * Fu * Ant) = 0.5 * (0.6*Min(58 * 5.2813; 36 * 8.375) + 1 * 58 * 0.5938) = 107.7 > 77.985 kips (OK) Angle OSL Tension Strength: Gage, g = 5.5 in. (OK) Bolt Distance to Back of the Angle Minus Half Thickness = b - (g-th)/2 -1/2 = (5.5 - 0.43)/2 - 0.25 = 2.285 in. Bolt Distance to Edge = e = osl -1/2 > b = 4-0.5/2-2.285 = 1.465 in. Allowabje tensile load on dip angles per tributary area for each bolt: dh = 1.0625 in. b1 = 1.785 in. a = Min(e;1.25*b)= 1.465 in. a' = 1.935 in. p = 3.0833 in. tc = (4.44*B*b'/(p*Fy))°-5 = (4.44 * 41.48 * 1.785/{3.0833 * 36))° 5 = 1.7209 in. delta = 1 - dh/p = 1-1.0625/3.0833 = 0.6554 ro = b'/a1 = 1.785/1.965 = 0.9084 Alpha1 = ((tc /1)2 -1) / (delta * (1 + ro)) = ((1.7209/0.5)2 - 1) / (0.6554 * (1 + 0.9084)) = 8.672 Ta = B * (t / tc)2 * (1 + delta) = 41.48 * (0.5 / 1.7209)2 *(1 + 0.6554) = 5.7962 kips Reduction in Tension Strength due to Moment = Tm = 0 kips Allowable Tension Strength: M/FSlRn = 2'n*Ta-Tm = 2*6' 5.7962 - 0 = 69.555 i 21.298 kips (OK) Weld Size Required for Inclined Eccentric Load: Maximum useful weld size = 0.7072 * Fu * t / Fexx = 0.7072 * 65 * 0.43/70 = 0.2824 in. k=(wh-gap)/L = (4-0.5)/18.5 = 0.1892 a=wh/L-k2/(1+2k) = 4/18.5- 0.18922/(1+2*0.1892) = 0.1902 0=Arctan(H/V) -Arctan(21.298/156.) = 7.7759 Degrees k = 0.1892, a * 0.1902, Theta = 7.7759 C = 1.3037 Try w=1/4 in. weld Maximum weld size for angle thickness = 0.4375 :> 0.25 in. (OK) Minimum weld size = 0.1875<0.25 in. (OK) Weld Allowable Strength = C*L*C1*16w = 1.3037*18.5*1*16*0.25 = 96.476 kips \ L- Resultant Load, R = 0.5*(H2 + V2 )°-5 = 0.5*((21.298)2 + (156.)2)a5 = 78.709 kips < 96.476 kips (OK) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 10 Ventana Real @ 3rd Fir (Frames 6. 7 & 8) (E-W) (2-27-06) = (18.718 * 7.955 + 30.971 * 3.01)/0.9908 = 244.4 > 157.4 kips (OK) Beam Web Tear-out: Combined Tension and Shear The following formulae have been derived using an interaction equation of the form ft/Ft +• (fWFv)2 =1 (Ref. "Combined Shear and Tension Stress", Subhash C. Goel, Engineering Joumal,3rd Q 1986, AISC). Load Angle, 0 = Atn(H/V) = 7.7759 Degees A = Sin(0) = 0.1353 B = Cos(0) = 0.9908 Ag = 9.0859 in2 An - 9.0859 in2 Rupture: f1/FS>Rn = tl/21* 0.18 MA/ Bl * M + (1 * fB / A£. / 0.091M.) * An " Fu / B = (1/2) * 0.18 * (0.1353 / 0.9908) * (-1 + (1 + (0.9908 / 0.1353)2 / 0.09)0-5)" 9.0859 * 65 / 0.9908 = 171.6>157.4kips(OK) Yielding: (1/FSlRn =0.18 * (A / B> (1/1.671 + f1 / H1/1.67£) *TB / AV = (1/1.5)* * 0.18* (0.1353/0.9908)2 * (-1 / (1/1.67) + (1 / ((1/1.67)2) + (0.9908 / 0.1353)2 / (0.09 ' (1/1.5)2 ))°-5) - 9.0859 * 50/0.1353 = 175.2 > 157.4 kips (OK) Block Shear of Beam Web: Vertical (An1,Ftt) and Horizontal (An2,Ft2) Sections: Pattern 2: Ag1 = 7.955 in2 An1 = 7.955 in2 Ag2 = 3.01 in2 An2 = 3.01 in2 Adjusted Allowable Stress: ft1 = (1/2)*0.18*(A/B)2 *(-1 +(1 + (B/A)2 / 0.09r5)*Fu = (1/2)*0.18 * (0.1353/ 0.9908)2 * (-1 + (1 + (0.9908 / 0.1353)2 / 0.09)0-5 ) ' 65 = 2.556 ksi Fv1 = ft1 * 18.71 8 ksi = 2.556*0.9908/0.1353 = (A/B)2ft2 = (1/2)-0.18*(B/A) *(-1 0.09)°5)*Fu = (1/2)*0.18' (0.9908/0.1353)2 * (-1 + (1 + (0.1353 / 0.9908)2 / 0.09)° 5 ) * 65 = 30.971 ksi Fv2 = tt2 * A / B = 30.971 * 0.1353 / 0.9908 = 4.2293 ksi (1/FSlRn = (Fv1 * An1 -»- Ft2 * An2VB Use2L4X4X1/2 Beam and Column Local Stresses for Right Side Beam Beam Web LocaLYjeldinq: Force from Top, Rtop - ((1 -73*HbTop)2 + (VbTop+3MbTop/Ltop)2 f 5 = ((1.73*(-97.736))2 + (47+3*617.8/16.65)2)05 = 231.6 kips Required Web Thickness = Rtop / ( Fy *(L+2.5*k)) * 231 ,6 / (50 *(1 6.65+2.5*1 .19)) = 0.3541 in. < 0.43 in. (OK) Force from Bottom, Rbot = ((1.73*HbBot)2 + (VbBof+3MbBot/LBot)2 )° 5 = ((1.73*175.3)2 + (69+3-1054/22.143)2)05 = 370. kips Required Web Thickness = Rbot / ((1/1 .5) *Fy * (L+2.5*k)) = 370./((1/1.5)*50*(22.143+2.5*1.19)) = 0.4419 in, > 0.43 in. (NG) ,', (j$ Beam Web Crippling: Force from Top, Rtop = VbTop+3MbTop/Ltop = 47+3*617.8/16.65 = 158.3 kips Allowable Strength for Top Loading, ('l/FS)Rn: = (1/2)* 0.4* Eo.5 .^ -(1 +(4*(Ntop/d)-0.2)*(tw/tf)1 '5 )*(Fy*tf/tw)°'5 = (1/2)* 0.4 * 170.3 *0.432*(1+(4*(16.65/21.13)-0.2) -(0.43/0.685)1 5 )*(50*0.685/0.43)d'5 = 138.7 kips < 158.3 kips 0*0) U $£ Force from Bottom, Rbot = VbBot+3MbBot/LBot = 69+3-1054/22.143 = 211.8 kips Allowable Strength for Bottom Loading, (1/FS)Rn: = (1/2)* 0.4 * E° 5 " tw2 *(1+(4*(Nbot/d)-0.2)'(tw/tf)15 )*(Fytf/tw)0'5 = (1/2)* 0.4* 170.3 *0.432"(1+(4*(22.143/21.13)-0.2) *(0.43/0.685)1 5 )*(50-0.685/0.43)d 5 = 167.8 kips < 21 1.8 kips ($8} t/5C" ^<f Required Thickness (Web Crippling) = 0.4925 in. Bolt Bearing on Column: Bearing Strength/Bolt/Thickness Using Bolt Spacing = Fbs Bolt Spacing = 3 in., Hole Size = 1 .0625 in. = (1/2) * 1.2 * Lc * Fu < (1/2) * 2.4 * d * Fu = 78 kips/in. = (1/2) ' 1 .2 * 1.9375 * 65 = 75.563 kips/in. Vertical force per bolt = 12.998 kips Allowable Bearing Strength = Fbs*tc = 75.563 * 0.77 = 58.183 kips > 12.998 kips (OK) Colurn n Flange_Bending; Force, H' = (H+3*M/L)/2 = (21.298 + 3*0/21)/2 = 10.649 kips Nominal Tension Strength per Bolt = rn = (a-b*V/(N*Ab))*Ab < Ft'Ab = (147 - 2.5 * 77.985 / (6 * 0.7854)) * 0.7854 < 88.75 = 82.96 kips DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 11 _ Ventana Real @ 3rd Fir (Frames 6. 7 & 6) (E-W) (2-27-06) __ Allowable Strength per Bolt, (1/FS)m = (1/2)*rn = 4148 kips Force per Bolt, T - H7n = 1.7749 kips/Bolt b = 2.515 in., a = 1.465 in., b' = 2.015 in., a' = 1.965 in., ro= 1.0254 p = 3, a" = 1.0625, delta = (1-dYp) = 0.6458 Beta - (B^ - 1)/ro = (41.48/1.7749 - 1) / 1.0254 = 21.816 Alpha' = 1 Required Flange Thickness for Bending, treq'd = = (4.44T*b'/(p*Fy*(1 +delta'Alpha1)))0 * = (4.44*1.7749* 2.01 5/(3*50*(1 +0.6458'1 )))°-5 - 0.2536 < 0.77 in. (OK) Column Flange Shear Required Flange Thickness for Shear = thShear = T / Mrn[((1/1.5) * 0.6 * p * Fy),((1/2)*0.6*{p - (d1 + 0.0625))'Fu)l = 1 .7749 /Min[«1/1 .5) * 0.6 * 3 * 50),((1/2)*0.6*(3 - (1 .0625 + 0.0625))*65)] = 0.0485 < 0.77 in. (OK) Column Web Local Yielding: Force from Beam, RColumn = (H2 + (1.73*V)2)0-5 = ((21.298)2 +(1.73*156.)2)0-5 =270.7 kips Required Web Thickness = RColumn / ((1/1 .5) * Fy * (N+5*k)} = 270.7 / ((1/1.5) ' 50 * (15 +5*1.27)) = 0.3803 in. < 0.47 in. (OK) Column WebCrippJing: Force from Beam, RColumn = 21.298 kips Allowable Strength, f1/FS)Rn: = (1/2)*0.8*E°-5 * tw2*(1+3*(N/d)'(tw/tf)1-5nFy'tf/tw)0-5 = (1/2}*0.8 * 170.3 * 0.472*(1+3*(15/t0.4) '(0.47/0.77)1 '5 )*(50'0.77/0.47)° * = 417.2 kips > 21 .298 kips (OK) Design is incomplete or not satisfactory: £4 U.J >-> I I DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 12 Ventana Real @ 3rd Fir (Frames 6, 7 & 8) (E-W) (2-27-06) i-_3_l/2"-A36 (Bfi-46 (Slotted) Slope: 1.395/1 2L4X4X1/2XV-6 1/2"-A36 Rnlte End ffset: 0.5 in SS7X7X1/2 - A500-B^6 (Slotted) Slope: 1.256/1 E-A572-50 ,30.5 in. Bolts Scale: 3/8" = 1' DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real - @ Roof (Frames 1 & 3) (N-S) (2-26-06) BASIC DESIGN DATA Bearm Size: W21X68 Material: A992 Lpwer Right Brace: Size: HSS6X6X3/8 Material: A500-B-46 Axial Force: 266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.25/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 23.633 in. Beam Side Length: 24.323 in. Brace Side Length: 9 in. Column Side Free Edge: x= 21.595 in., y= 0 in. Beam Side Free Edge: x= 4.3003 in., y= 18.01 in. Thickness: 0.875 in. • Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -15 in. Lower Left Brace: Size: HSS6X6X3/8 Material: A500-B-46 Axial Force: -266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.25/1 Bolt Edge Distance: 1.5 in. .gusset Plate: Material: A572-50 Column Side Length: 23.633 in. Beam Side Length: 24.323 in. Brace Side Length: 9 in. Column Side Free Edge: x= 21.595 in., y= 0 in. Beam Side Free Edge: x= 4.3003 in., y= 18.01 in. Thickness: 0.875 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -15 in. Lower Right Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4X15 in. Weld Size - 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: M/FSlRn = B*4*f1/2l'0.6*Fexx*u.707*w*L = 1*4*(1/2)*0.6*70*0.707'0.3125*15 = 278.4 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: f1/FSlRn = 4*11/1.5) * 0.6*Fv*t*L = 4*(1/1.5) * 0.6*46 * 0.349 * 15 = 385.3 > 266.6 kips (OK) Check Lower Right Brace Tension Yielding of the Brace: T /, 3 •'• OK = (1/1.67)*46*7.58 . = 208.8 <; 266.6 kips (KG) Tension Rupture of the Brace; An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 - 2*(0.875 + 0.0625 )* 0.349 = 6.9256 in2 x = ((B or H)2 + 2*B*H)/(4'(B + H)) = (62 + 2* 6 * 6)/(4*(6 + 6)) = 2.25 in. U = 1 - (x/L) < 0.9 = 1-(2.25/15) <0.9 = 0.85 Ae = U*An = 0.85 * 6.9256 = 5.8868 in2 (1/FSmn = (1/2) * Fu ' Ae = (1/2) * 58 " 5.8868 = 170.7 < 266.6 kips Lower Right Brace Gusset Dimensions: (See Sketch) Lower Right Brace Gusset Edge Forces: Theta = 38.66 Degrees Vb = P*Cos(Theta) = 266.6 * 0.7809 = 208.2 kips Hb = P*Sin(Theta) = 266.6 * 0.6247 = 166.5 kips (See below for combination of left and right side brace forces.) Lower Right Brace Gusset Thickness Try t = 7/8" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t"L = 2*0.5-0.6*65*0.875*15 = 511.9 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2'L*t = 2*15*0.875 = 26.25 in2 Agt = Ant = d*t = 6*0.875 = 5.25 in2 f 1/FSlRn = (1/2) * 10.6 * MintFu * Anv: Fy * Aqvl * Ubs * Fu * Antt = 0.5 * (0.6*Min(65 - 26.25; 50" 26.25) + 1 * 65 * 5.25) = 564.4 > 266.6 kips (OK) Check Whitmore Section: Width, Lw= 1.1547*Lweld + d = 1.1547*15+6 = 23.321 in. two = 0.0919 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 23.229 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwc*twc) = 266.6/(23.229 * 0.875 + 0 * 0.43 + 0*0) = 13.117 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t'Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(23.229 * 0.875 * 50 + 0 * 0.43* 50 + 0 * 0* 0) = 608.5 > 266.6 kips (OK) DESCONBRACE-ASD Licensed to: Desert Eaule Engineering LLC-- Page; 2 Ventana Real - ® Roof (Frames 1 & 3) (N-S) (2-26-06) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 13.997 in. Kl/r = Lcr/(t/12° 5 ) = 13.9977(0.875/3.464) = 55.413 Fe = pP *E/(kL/r)2 -3.M2 *29Q.xW2 I 55.41 32 = 93.212 > 0.44*Fy = 0.44'50 = 22 ksi Fy/Fe* 50/93.21 2 = 0.5364 Fcr = 0.658° 5364 * Fy = 0.6580'5364 * 50 = 39.945 ksi Buckling Strength =(1/1. 67) 'Fcr = 23.919> 13.1 17 ksi OK Lower Left Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 1 5 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FSlRn = a'4'H/21*0.6*Fexx*0.707*w*L = 1*4*(1/2)'0.6*70*0.707*0.3125*15 = 278.4 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: fl/FS)Rn = 4«M/1.5) * 0.6*Fv*t*L = 4'(1/1 .5) * 0.6M6 * 0.349 * 15 •= 385.3 > 266.6 kips (OK) Check Lower Left Brace Tension Yielding of the Brace: r '• = (1/1.67)' 46 -7.5S = 208.8 < 266.6 kips (r^ Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 - 2*(0.875 + 0.0625 )* 0.349 = 6.9256 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (62 + 2' 6 * 6}/<4*(6 + 6)) = 2.25 in. U=1-(x/L)<0.9 = 1-(2.25/15)<0.9 = 0.85 Ae = U*An = 0.85 * 6.9256 = 5.8868 in2 (1/FSlRn = f1/2l * Fu * Ae = (1/2)* 58 -5.8868 = 170.7 < 266.6 kips Lower Left Brace Gusset Dimensions: (See Sketch) Low^Left Brace Gussfet Edge Forces: Theta = 38.66 Degrees Vb = P*Cos(Theta) = (-266.6) * 0.7809 = (-208.2) kips ,SX/ - Hb = P*Sin(Theta) = (-266.6) * 0.6247 = (-166.5) kips Combined Forces: H = HbRight - HbLeft = 166.5 - (-166.5) = 333 kips V = VbRight + VbLeft = 208.2 + (-208.2) = 0 kips M = eLeft * VbLeft + eRight * VbRight = (-8.452) * (-208.2) + 8.452 * 208.2 = 3519k-in. Lower Left Brace Gusset Thickness Try t = 7/8" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6'FuTL = 2*0.5*0.6*65*0.875*15 = 511.9 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2*15*0.875 = 26.25 in2 Agt = Ant = d*t = 6*0.875 = 5.25 in2 (1/FSmn = H/21 * (0.6 * MinfFu * Anv: Fv * Aqv) + Ubs * Fu * Anti = 0.5 * (0,6*Min(65 * 26.25; 50 * 26.25) + 1 * 65 * 5.25) = 564.4 > 266.6 kips (OK) Check Whitmore Section: Width, Lw= 1.1547tweld + d = 1.1547*15 + 6 = 23.321 in. Lwo = 0.0919 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 23.229 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc*twc) = 266.6/(23,229 * 0.875 + 0 * 0.43 + 0*0) = 13.117 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) - (1/1.67)*(23.229 * 0.875 * 50 + 0 * 0.43* 50 + 0 * 0* 0) = 608.5 > 266.6 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr - 13.997 in. Kl/r = Lcr/(t/12°-5) = 13.997/(0.875/3.464) = 55.413 Fe = pi2 *E/(kL/r)2 =3.142 "290.X102 /55.4132 = 93.212 >0.44-Fy = 0.44'SO = 22 ksi Fy/Fe = 50 / 93.212 = 0.5364 Fcr = 0.6580-5364 * Fy = 0.658° 5364 * 50 = 39.945 ksi ( Buckling Strength = (1/1.67) "Fcr = 23.919 > 13.117 ksi OK Fe = pi2 *E/(kL/r)2 = 3.142 *290.x102 M71.82 = 9.6979 < 0.44'Fy = 0.44*50 = 22 ksi Fcr = 0.877 * Fe = 0.877 * 9.6979 = 8.505 ksi Additional Checks for V-Brace Gusset: Gusset Stresses at Horizontal Section at End of Brace: DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real - @ Roof (Frames 1 & 3) (N-S) (2-26-06) (Section is at 7.2343 in. from beam face.) Normal Stress: Moment, M = | el_eft*VbLeft - eRight*VbRight + H*ev| = |8.452 * (-208.2) - 8.452 * 208.2 + (-333) * 7.2343 | = 5929 k-in. Stress = V/A + 6*M/(L12 *t) = 0/(52.1 * 0.875) + 6*5929/(52.12 • 0.875) - 14.977 < O.QFy = 29.94 ksi OK Shear Yielding: Ag = h*t = 52.1*0.875 = 45.588 in2 Vn = 0.6 * Fy * Ag = 0.6 * 50 ' 45.588 = 1368 kips M/FSmn = f1/1.5l*Vn = 911.8 > 333 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 23.633 in.) Vertical Shear, Vi = VbLeft - V/2 = (-208.2) kips Horizontal Force, Hi = HbLeft - H/2 = 0 kips Moment, Mi = VbLefTeLeft + Hi*(Lv/2) - M/2- VL / 8) = (-0.002) k-in. Normal Stress; = Hi/A + 6*Mi/(Lv2 *t) = 07(23.633 * 0.875) + 6*0.002/(23.6332 * 0.875) = 0 < 0.6Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 23.633*0.875 = 20.678 in2 Vn = 0.6 * Fy * Ag - 0.6 * 50 * 20.678 = 620.4 kips (1/FS>Rn == f1/1.5Wn = 413.6 > 208.2 kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 36.163 in. UseK=1.2 Fe = pi2 *E/(kL/r)2 =3.142 *290.x102 / 171.82 = 9.6979 < 0.44*Fy = 0.44*50 = 22 ksi Fcr = 0.877 * Fe = 0.877 * 9.6979 = 8.505 ksi (1/FS)Fcr = (1/1.671*0 = 5.0928 > 0 ksi OK User turned off gusset edge buckling criteria. Lower Gusset to Beam Connection Horizontal Force on Welds, H = 333 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M = | eLeft*Vlefl - eRighfVright | - Abs(8,452 * (-208.2) - 8.452 * 208.2) = 3519 k-in. Length of Welds, L = 48.646 in. Max. Force on Welds per Unit Length = f = «WL+6M/L2)2+(H/L)2)05 = 11. 247 kips/in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/L2)2+(H/L)2)0-5 = ((0/48.646+3*351 9/48.G462 )2 +(333/48.646)2 )°-5 = 8.1724 kips/in. Maximum useful weld size = (1/2)*0.6 * Fu * t / {(1/2)*0.6*1 .414*Fexx) = (1/2)*0.6 * Min(0.875 * 65; 2 * 0.685 ' 58) / ((1/2)*0.6*1.414 * 70) = 0.5746 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(Rf *fav, f)/((1/2)*0.6*1.414*Fexx} = 11.441/((1/2)*0.6*1.414*70) = 0.3853 in. Minimum Weld Size = 1/4 in. Use 7/16 in. Weld BeanVWeb Local Yielding: Force from Gusset, R = ((1.73*H)2 + (V+3M/L)2 )05 = ((1. 73*333)2 + (0+3*351 9/48.646)2)°-5 = 615.8 kips Required Web Thickness = R / ((1/1 .5) * Fy * L) = 61 5.8 / ((1/1 .5) '50*48.646) = 0.3797 < 0.43 in. (OK) Beam Web Crippling: Force from Gusset.R = V+3M/L = 0+3*3519/48.646 = 217 kips (1/FSmn = (M2Y 0.8 ' E- = (1/2) *0.8* 170.3 *0.43i*(1+3*(48.646/21.13r(0.43/0.685)15)*(50*0.685/0.43)0 5 = 498.5 > 217 kips (OK) Design is incomplete jgr not satisfactory. ((0/48.646+6*3519/48.6462 )2 +(333/48.6462\0.5 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real - @ Roof (Frames 1 & 3) (N-S) (2-26-06) NSS6X6X3/8 - A500-B-46 (Slotted) Slope: 1.25/1 W21X6B-A992 A600-B-46 (Slotted) Slope: 1.25/1 Scale: 1/2" = 1' DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real - @ Roof (Frames 2 & 4) (N-S) (2-26-06) • BASIC DESIGN DATA Beam: Size: W21X68 Material: A992 Lower Right Brace: Size: HSS6X6X3/8 Material: A500-B-46 Axial Force: 266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.154/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 23.619 in. Beam Side Length: 25.728 in. Brace Side Length: 9 in. Column Side Free Edge: x= 23.668 in., y= 0 in. Beam Side Free Edge: x= 4.7408 in., y= 17.725 in. Thickness: 0.75 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -15 in. Lower Left Brace: Size: HSS6X6X3/8 Material: A500-B-46 Axial Force: -266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.154/1 Boll Edge Distance: 1.5 in. GusseLPIate: Material: A572-50 Column Side Length: 23.619 in. Beam Side Length: 25.728 in. Brace Side Length: 9 in. Column Side Free Edge: x= 23.668 in., y= 0 in. Beam Side Free Edge: x= 4.7408 in., y= 17.725 in. Thickness: 0.75 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -15 in. Lower Right Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 15 in. Weld Size ^ 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: M/FSIRn = R*4'(1/2>*0.6*Fexx*0.707'w*L = 1*4*(1/2)*0.6*70*0.707*0.3125*15 = 278.4 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: M/FS)Rn = 4*M/1.5) * 0.6'Fv*t*L = 4*(1/1.5) * 0.6*46 * 0.349 * 15 = 385.3 > 266.6 kips (OK) Check Lower Right Brace Tension Yiejdinci of the Brace: = (1/1.67)'Fv*Aq " / 3 = (1/1 .67)* 46* 7.58 = 208.8 < 266.6 kips Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 - 2*(0.75 + 0.0625 )* 0.349 = 7.01 29 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (62 + 2*6*6)/(4*(6 + 6)) = 2.25 in. U=1-(x/L)<0.9 = 1-(2.25/15)<0.9 = 0.85 Ae = U*An = 0.85 " 7.0129 = 5.9609 in2 ClfFSlRn = 11/21 * Fu * Ae = (1/2) ' 58 * 5.9609 / f = 172.9 < 266.6 kips (N0) O£ &> LoWer Right Brace Gusset Dimensions: (See Sketch) Lower Right Brace Gusset Edge Forces: Theta = 40.911 Degrees Vb = P*Cos(Theta) = 266.6 * 0.7557 = 201.5 kips Hb = P*Sin(Theta) = 266.6 * 0.6549 = 174.6 kips (See below for combination of left and right side brace forces.) Lower Right Brace Gusset Thickness Try t = 3/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2-0.5*0.6*65*0.75*15 = 438.8 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2'15*0.75 = 22.5 in2 Agt = Ant = d*t = 6*0.75 = 4.5 in2 M/FSlRn = M/2> * (0.6 * MintFu ' Anv: Fv * Aqy) + Ubs * Fu * Antl = 0.5 * (0,6-Min(65 * 22.5; 50 * 22.5) + 1 * 65 * 4.5) = 483.8 > 266.6 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d = t.1547*t5+ 6 = 23.321 in. Width of Whitmore Section inside gusset boundaries, Lwg = 23.321 in. Whitmore Section Stress. fa = Fx/(Lwg*t + Lwb'twb + Lwc'twc) = 266.6/(23.321 * 0.75 + 0 * 0.43 + 0 * 0) = 15.243 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)'(Lwg*1*Fyg + Lwb*twb*Fyb + Lwc'twc'Fyc) = (1/1.67)*(23.321 * 0.75 * 50 + 0 * 0.43' 50 + 0 * 0* 0) = 523.7 > 266.6 kips (OK) Buckling Check: DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real - @ Roof (Frames 2 & 4) (N-S) (2-26-06) • . Effective Length of Whitmore Section (K=1.2), Lcr = 14.824 in. Kl/r= Lcr/(t/1205)= 14.824/(0.75/3.464) - 68.468 Fe = pi2 *E/(kUr)2 =3.142 "290.X102 / 6S.4682 = 61 .055 > 0.44*Fy - 0.44*50 = 22 ksi Fy/Fe = 50/61 .055-0.81 89 Fcr = 0.6580-8189 * Fy = 0.658°'B189 - 50 = 35.49 ksi Buckling Strength = (1/1 .67) *Fcr = 21 .252 > 15.243 ksi OK Lower Left Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length - 4 X 15 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: H/FSmn - R'4*f1/2l*0.6*Fexx*0.707*w*L = 1*4*(iy2)*0.6*70*0.707-0.3125*15 - 278.4 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: ft/FSlRn = 4*M/1.51 * 0.6*Fv*t'L = 4"(1/1.5) * Q.6'46 * 0.349 * 15 = 385.3 > 266.6 kips (OK) Check Lower Left Brace TensionJ'ielding of the Brace; (1/FSlRn = (1/1.671 *Fv*Aq = 0/1. 67)* 46* 7.58 , = 208.8 < 266.6 kips (tyG) Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 - 2'(0.75 + 0.0625 )* 0.349 = 7.01 29 in2 x= ((B or H)2 + 2'B*H)/(4*(B + H)) = (62 + 2* 6 * 6)/(4*(6 + 6)) = 2.25. in. U=1-(x/L)<0.9 = 1-(2.25/15)<0.9 = 0.85 Ae = U'An = 0.85 * 7.0129 = 5.9609 in2 Ky C/.J -'0£ = (1/2) '58-5.9609 = 172.9 < 266.6 kips ( Lower Left Brace Gusset Dimensjgns: (See Sketch) Lower Left Brace Gusset Edge Forces: Theta = 40.911 Degrees Vb = P'Cos(Theta) = (-266.6) * 0.7557 = (-201.5) kips Hb = P'SinfTheta) = (-266.6) * 0.6549 == (-174.6) kips Combined Forces; H = HbRight - HbLeft = 174.6-(-174.6) = 349.2 kips V = VbRight + VbLeft = 2015 + (-201.5) = 0 kips M = eLeft • VbLeft + eRight * VbRight = (-9.1551)*(-201.5) + 9.1551 * 201.5 = 3689 k-in. Lower Left Brace Gusset Thickness Try t = 3/4" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t'L = 2-0.5*0.6*65*0.75*15 = 438.8 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L't = 2*15*0.75 = 22.5 in2 Agt = Ant = d*t = 6*0.75 = 4.5 in2 M/FSmn = (1/2) * fO.6 * MtnfFu ' Anv: Fv * Aqvl + Ubs * Fu * Ann = 0.5 * (0.6*Min(65 * 22.5; 50 * 22.5) + 1 * 65 * 4.5) = 483.6 > 266.6 kips (OK) Check Whitmore Section: Width. Lw = 1.1547*Lweld + d = 1.1547*15 + 6 = 23.321 in. Width of Whitmore Section inside gusset boundaries, Lwg = 23.321 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc*twc) = 266.6/(23.321 * 0.75 + 0 * 0.43 + 0 " 0) = 15.243 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)'(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)-(23.321 * 0.75 * 50 + 0 * 0.43* 50 + 0 * 0* 0) = 523.7 > 266.6 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 14.824 in. Kl/r = Lcr/(t/12° s) = 14.824/(0.75/3.464) = 68.468 Fe = pi2 *E/(kUr)2 =3.142 *290.x102 /68.46S2 = 61.055 > 0.44"Fy = 0.44*50 == 22 ksi Fy/Fe = 50/61.055 = 0.8189 Fcr = 0.6580-8189 * Fy = 0.658° 8169 * 50 = 35.49 ksi , „ Buckling Strength = (1/1.67)-Fcr = 21.252 > 15.243 ksi OK '° Fe = pi2 *E/(kL/r)2 =3.142 *290.xt02 /220.52 = 5.8883 < 0.44*Fy = 0.44*50 == 22 ksi Fcr= 0.877 * Fe = 0.877 "5.8883 = 5.164 ksi Additional Checks for V-Brace Gusset: Gusset Stresses at Horizontal Section at End of Brace: (Section is at 7,3713 in. from beam face.) DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC-- Page: 3 Ventana Real - @ Roof (Frames 2 & 4) (N-S) (2-26-06) - •s. Normal Stress: Moment, M = | el_eft*VbLeft - eRight*VbRight + H*ev| = |9.1551 '(-201.5)-9.1551 *201.5 + (-349.2) * 7.3713 | = 6263 k-in. Stress = V/A + 6-M/(L12*t) = 0/(55.4 * 0.75) + 6*6263/{55.42 * 0.75) = 16.325 < 0.9Fy = 29.94 ksi OK Shear Yielding: Ag = h-t = 55.4-0.75 = 41.55 in2 Vn = 0.6*Fy*Ag = 0.6-50*41.55=1246 kips M/FSIRn = (1/1.5rVn * 831. > 349.2 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 23.619 in.) Vertical Shear, Vi = VbLeft - V/2 = (-201.5) kips Horizontal Force, Hi - HbLett - H/2 = 0 kips Moment, Mi = VbLett*eLeft + Hi*(Lv/2) - M/2- V'L / 8) = (-0.0011) k-in. Normal Stress: = Hi/A + 6*Mi/(Lv2 *t) = 0/(23.619 * 0.75) + 6*0.0011/(23.6192 * 0.75) = 0 < 0.6Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 23.619*0.75 = 17.714 in2 Vn = 0.6 ' Fy * Ag = 0.6 *50* 17.714 = 531.4 kips f1/FSmn = 11/1.51*Vn • 354.3 > 201.5 kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 39.779 in. UseK=1.2 Fe = pi2 *E/(kL/r)2 =3.142 *290.x102 / 220.52 = 5.8883 < 0.44*Fy = 0.44*50 = 22 ksi Fcr= 0.877 *Fe = 0.877* 5.8883 = 5.164 ksi (1/FSlFcr = (1/1.671*0 = 3.0922 > 0 ksi OK User turned off gusset edge buckling criteria. Lower Gusset to Beam Connection Horizontal Force on Welds, H = 349.2 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M = | eLeffVleft - eRight*Vright | = Abs(9.1551 * (-201.5)-9.1551 *201.5) = 3689 k-in. Length of Welds, L = 51.457 in. Max. Force on Welds per Unit Length = f = ((V/L+6M/L2 )2 +(H/L)2 )°-5 ((0/51.457+6*3689/51.4572 )2 +(349.2/51.47)2 }O.S = 10.767 kips/in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/L2)2+(H/L)2)0-5 = ((0/51 .457+3*3689/51 .4572 )2 +(349.2/51 .457)2 )°-5 = 7.9699 kips/in. Maximum useful weld size = (1/2)*0.6 * Fu * t / ((1/2)*0.6*1.414*Fexx) = (1/2)*0.6 * Min(0.75 ' 65; 2 * 0.685 * 58) / «1/2)*0.6*1 .414 * 70) = 0.4925 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(Rf *fav, f)/((1/2)*0.6*1.414*Fexx) = 11.158/((1/2)*0.6*1.414"70) = 0.3758 in. Minimum Weld Size = 1/4 in. Use 7/1 6 in. Weld Beam Web Local Yielding; Force from Gusset, R = ((1 .73*H)2 + (V+3M/L)2 )° 5 = «1.73*349.2)2 + (0+3*3689/51. 457)2)65 = 641.2 kips Required Web Thickness = R / ((1/1 .5) * Fy ' L) = 641.2 / ((1/1.5)* 50* 51.457) = 0.3738 < 0.43 in. (OK) Beam Web Crippling: Force from Gusset,R = V+3M/L = 0+3*3689/51 .457 = 215 kips (1/FS>Rr> = (1/21* 0.8 * El *tw=-' = (1/2) '0.8* 170.3 -0.432 *(1 +3*(51 .457/21 . 1 3)*(0.43/0.685)1 -5 )'(50*0.685/0.43)° 5 = 520.8 > 21 5 kips (OK) Design is incomplete^r not satisfactory. *-*_*_*-*.*_*_*_*_*_*_cirfr)-*-*-*-*-*-*-*-*-''-*-* AS HA DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC~ Page: 4 Ventana Real - ® Roof (Frames 2 & 4) (N-S) (2-26-06) HSS6X6X3/8-A500-B-46 (Slotted) Slope; 1.154/1 W21X68-A992 Scale: 1/2"=1' DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real - @ Roof (Frame 5) (E-W) (2-26-06) BASIC DESIGN DATA Beam; Size: W21X62 Material: A992 Lower Right Brace: Size; HSS6X6X3/8 Material: A500-B-46 Axial Force: 266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.304/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 23.518 in. Beam Side Length: 23.556 in. Brace Side Length: 9 in. Column Side Free Edge: x= 20.413 in., y= 0 in. Beam Side Free Edge: x= 3.999 in., y= 18.042 in. Thickness: 0.875 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -15 in. Lower Left Brace: Size: HSS6X6X3/8 Material: A500-B46 Axial Force: -266.6 kips Work Point X:0 in. Work Point Y: 0 in. Rise/Run: 1.304/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 23.518 in. Beam Side Length: 23.556 in. Brace Side Length: 9 in. Column Side Free Edge: x= 20.413 in., y= 0 in. Beam Side Free Edge: x= 3.999 in., y= 18.042 in. Thickness: 0.875 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -15 in. Lower Right Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 3/8 in. (Use 0,3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 15 in. Welcj Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: 11/FSiRn = 6*4*(1/2>*0.6'Fexx*0.707*w*L = r4*(1/2)*0.6-70*0.707*0.3125"l5 - 278.4 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: H/FS)Rn = 4*(1/1.5> * 0.6*Fv*t'L = 4'(1/1.5)* 0.6*46* 0.349-15 = 385.3 > 266.6 kips (OK) Check Lower Right Brace Tension Yielding of the Brace: (1/FS)Rn = (1/1.67)*Fy*Ag = (1/1.67)* 46 '7.58 = 208.8 < 266 '7.5 / .6 kips (NG) Tension Rupture of the Brace: An = Ag - 2'(Tg+0.0625 )*Tb = 7.58 - 2*(0.875 + 0.0625 )* 0.349 - 6.9256 in2 x = ((B or H)2 + 2*B'H)/(4-(B + H)) = (62 + 2' 6 * 6)/(4*(6 + 6)) = 2.25 in. U = 1 - (x/L) < 0.9 = 1-(2.25/15)<0.9 = 0.85 Ae = ITAn = 0.85 * 6.9256 = 5.8868 in2 (1/FS)Rn = (1/21 ' Fu ' Ae = (1/2) '58 -5.8868 - 170.7 < 266.6 kips (- e> Lower Right Brace Gusset Dimensions: (See Sketch) Lower Right Brace Gusset Edge Forces: Theta = 37.484 Degrees Vb = P*Cos(Theta) = 266.6 * 0.7935 - 21 1 .6 kips Hb = P-SinfTheta) = 266.6 * 0.6085 = 162.2 kips (See below for combination of left and right side brace forces.) Lower Right Brace Gusset Thickness Trv t = 7/8" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 ' 0.6*FuTL = 2*0.5-0.6-65-0.875*15 = 51 1. 9 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t = 2'1 5*0.875 = 26.25 in2 Agt = Ant = d't = 6-0.875 = 5.25 in2 (1/FSmn = (1/21 * (0.6 * MinfFu * Anv: Fv " Agv) + Ubs * Fu * Ant) = 0.5 * (0.6-Min(65 * 26.25; 50 * 26.25) + 1 ' 65 * 5.25) = 564.4 > 266.6 kips (OK) Check Whitmore Section: Width, Lw= 1.1547"Lweld + d = 1.1547*15 + 6=23.321 in. Lwo = 0.1702 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 23.15 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb'twb + Lwc'twc) = 266.6/(23.15 ' 0.875 + 0 * 0.4 + 0*0) = 13.161 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*l*Fyg + Lwb*twb*Fyb + Lwc*twc'Fyc) = (1/1 .67)*(23.15 * 0.875 * 50 + 0 * 0.4' 50 + 0 * 0* 0) = 606.5 > 266.6 kips (OK) Buckling Check: DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real - @ Roof (Frame 5) (E-V\n <2-26-06> Effective Length of Whitmore Section (K=1.2), Lcr = 13.424 in. Kl/r = Lcr/(t/12° 5 } = 1 3.424/(0. 875/3.464) = 53.144 Fe = pi2 *E/(kUr)2 = 3.142 *290.x102 / 53.1 442 * 101 .3 > 0.44'Fy ~ 0.44*50 = 22 fcsi Fy/Fe = 50/101 .3 = 0.4934 Fcr - 0.6580-4934 * Fy = 0.658° 4934 * 50 = 40.671 ksi Buckling Strength = (1/1.67) *Fcr = 24.354 > 13. 161 ksi OK Lower Left Brace to Gusset Connection Brace Force ~ 266.6 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 15 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FSlRn = B'4*(1/2i*0.6*Fexx"0.707*w*L = 1*4*(1/2)*0.6'70*0.707*0,3125'15 = 278.4 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop; (1/FSlRn = 4*(1/1 .5) * 0.6*Fv*t*L -4*(1/1. 5)* 0.6*46* 0.349 '15 = 385.3 > 266.6 kips (OK) Check Lower Left Brace Tension Yielding of the Brace: = (1/1.67)* 46 '7.58 = 208.8 < 266.6 kips Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )'Tb = 7.58 - 2*(0.875 + 0.0625 )* 0.349 = 6.9256 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (62 + 2* 6 * 6)/(4*(6 + 6)) = 2.25 in. U=1 -(x/L)<0.9 = 1-(2.25/15)<0.9 = 0.85 Ae = U*An = 0.85 * 6.9256 = 5. <1/FSlRn = (1/21 * Fu * Ae = (1/2) * 58 ' 5.8868 , = 170.7 < 266.6 kips (1*3) Lower Left Brace Gusset Dimensions: (See Sketch) Lower Left Brace Gusset Edge Forces: Theta = 37.484 Degrees Vb - P*Cos(Theta) = (-266.6) * 0.7935 = (-21 1 .6) kips Hb = P*Sin(Theta) = (-266.6) * 0.6085 = (-162.2) kips Combined Forces: H = HbRight-HbLeft = 162.2-(-162.2) = 324.5 kips V = VbRight + VbLeft = 211.6 + (-211.6) = 0 kips M = eLeft * VbLeft + eRight * VbRight - (-8.0483) * (-211.6) + 8.0483 * 211.6 = 3405 k-in. Lower Left Brace Gusset Thickness Try t = 7/8" Maximum Brace Weld Force Gusset Can Develop: = 2'0.5 * 0.6*Fu't*L = 2*0.5* 0.6*65'0.875'15 = 511.9 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2'L*t = 2'15*0.875 = 26.25 in2 Agt = Ant = d*t - 6'0.875 = 5.25 in2 f 1/FSlRn = (1/2) * (0.6 * MinfFu * Anv: Fv ' Aavl + Ubs * Fu * Antt = 0.5 ' (0.6*Min(65 * 26.25; 50 ' 26.25) + 1 * 65 * 5.25) = 564.4 > 266.6 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d = 1.1547*15 + 6 = 23.321 in. Lwo = 0.1702 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 23.15 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc'twc) = 266.6/(23.15 * 0.875 + 0 * 0.4 + 0 " 0) = 13.161 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg't'!Fyg + Lwb'twb'Fyb + Lwc*twc*Fyc) = (1/1.67)*(23.15 * 0.875 ' 50 + 0 * 0.4' 50 + 0 * 0' 0) = 606.5 > 266.6 kips (OK) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr= 13.424 in. Kt/r= Lcr/(t/12°-5)= 13.424/(0.875/3.464) = 53.144 Fe = pi2 *E/(kl_/r)2 =3.142 *290.x102 / 53.1442 = 101.3 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/101.3 = 0.4934 Fcr = 0.658° -4934 ' Fy = 0.658° 4934 '50 = 40.671 ksi ^Buckling Strength = (1/1.67) 'Fcr = 24.354 > 13.161 ksi OK Fe=pi2 *E/(kL/r)2 =3.142 '290.X102 /161.92 = 10.92 < 0.44*Fy = 0.44*50 = 22 ksi Fcr= 0.877'Fe = 0.877'10.92 = 9.5771 ksi Additional Checks for V-Brace Gusset: gusset Stresses at Horizontal Section at End of Brace: DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real - @ Roof (Frame 5) (E-W) (2-26-06) (Section is at 7.0514 in. from beam face.) Normal Stress: Moment, M =) eLeffVbLeft - eRight*VbRight + H'ev| = 18.0483 * (-211.6) - 8.0483 * 211.6 + (-324.5) * 7.0514 | = 5693 k-in. Stress = V/A + 6'M/(L12 *t) = 0/(50.237 * 0.875) + 6*5693/(50.2372 * 0.875) = 15.469 < 0.9Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 50.237*0.875 = 43.958 in2 Vn = 0.6*Fy*Ag = 0.6*50*43.958 = 1319 kips f1/FS)Rn a 11/1.5)*Vn - 879.2 > 324.5 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 23.518 in.) Vertical Shear, Vi = VbLefl - V/2 = (-211.6) kips Horizontal Force, Hi = HbLeft - H/2 = 0 kips Moment, Mi = VbLefTeLeft + Hi*{Lv/2) - M/2- V*L / 8) = (-0.0004) k-in. Normal Stress: = Hi/A + 6*Mi/(Lv2 *t) = 0/(23.518 * 0.875) + 6"0.0004/(23.5182 * 0.875) = 0 < 0.6Fy = 29.94 ksi OK Shear Yielding: Ag = h*t = 23.518*0.875 = 20.579 in2 Vn = 0.6 * Fy * Ag = 0.6*50*20.579 = 617.4 kips (1/FS)Rn = (1/1.6rVn = 411.6 > 211.6 kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 34.079 in. UseK=1.2 Fe = pi2 *E/(kUr)2 =3.142 *290.x102 / 161.S2 = 10.92 < 0.44*Fy = 0.44'50 = 22 ksi Fcr = 0.877 * Fe = 0.877 * 10.92 = 9.5771 ksi (1/FSlFcr = (1/1.671*0 = 5.7348 > 0 ksi OK User turned off gusset edge buckling criteria. Lower Gusset to Beam Connection Horizontal Force on Welds, H = 324.5 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M = | eLeft*Vleft - eRight*Vright | = Abs(8.0483 * (-211.6) - 8.0483 * 211.6) - 3405 k-in. Length of Welds, L = 47.111 in. = ((0/47.111+6*3405/47.1112)2+(324.5/47.111}2)0-5 = 11. 497 kips/in. Average Force on Welds per Unit Length = fraverage = <(V/L+3M/L2)2+(H/L)2)a5 = ((0/47.11 1+3*3405/47.11 12 )2 +(324.5/47.1 1 1)2 )°-5 = 8.2838 kips/in. Maximum useful weld size = (1/2)*0.6 - Fu * t / ((1/2)*0.6*1 .414*Fexx) = (1/2)*0.6 * Min(0.875 * 65; 2 * 0.615 * 58) / ((1/2)*0.6*1 .414 * 70) = 0.5746 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(Rf *fav, f)/{(1/2)*0.6*1.414*Fexx) = 11.597/{(1/2)*0.6*1.414*70) = 0.3906 in. Minimum Weld Size = 1/4 in. Use 7/1 6 in. We)d Beam Web Local Yielding: Force from Gusset, R = ((1.73*H)2 + (V+3M/L)2 )°-5 = ((1.73*324.5)2 + (0+3*3405/47.1 11)2)6-5 = 601.8 kips Required Web Thickness - R I ((1/1 .5) * Fy * L) = 601.8 / ((1/1 .5)* 50* 47.1 11) = 0.3832 < 0.4 in. (OK) Beam Web Crippling: Force from Gusset.R = V+3M/L = 0+3*3405/47.111 = 216.8 kips fl/FSJRn •(1/21*0.8* I^S- r(50*0.615/0.4)° 5 = (1/2) *0.8* 170.3 *0.42 *(H3*(47. = 433 > 216.8 kips (OK) teorDesign is incompletgor not satisfactory. Max. Force on Welds per Unit Length = f = ((V/L+6M/L2 )2 +(H/L)2 )°-5 DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real - @ Roof (Frame 5) (E-W) (2-26-06) HSS6X6X3/8 - A500-B-46 (Slotted) Slope: 1.304/1 W21X62-A992 SS6X6X3/8 - A500-B-46 (Slotted) Slope: 1.304/1 7/8" iikPLATE\A572-50 \ v \ Scale: 1/2" = 1' DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 1 Ventana Real - @ Roof (Frames 6 &7AE-W) (2-26-06) BASIC DESIGN DATA BeajiK Size;W16X45 Material: A992 Lower Right Brace: Size: HSS6X6X3/8 Material: A500-B^t6 Axial Force: 266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.395/1 Bolt Edge Distance: 1.5 in. Gusset Plate: Material: A572-50 Column Side Length: 23.513 in. Beam Side Length: 20.722 in. Brace Side Length: 9 in. Column Side Free Edge: x= 17.1 in., y= 0 in. Beam Side Free Edge: x= 3.6926 in., y= 18.27 in. Thickness: 1 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -15 in. Lower Left Brace: Size: HSS6X6X3/8 Material: A500-B-46 Axial Force: -266.6 kips Work Point X: 0 in. Work Point Y: 0 in. Rise/Run: 1.395/1 Bolt Edge Distance: 1.5 in. .Gygset Plate: Material: A572-50 Column Side Length: 23.513 in. Beam Side Length: 20.722 in. Brace Side Length: 9 in. Column Side Free Edge: x= 17.1 in., y= 0 in. Beam Side Free Edge: x= 3.6926 in., y= 18.27 in. Thickness: 1 in. Setback from Column: 0 in. Bolt Edge Distance: 1.5 in. Gusset-Brace Gap: -15 in. Lower Right Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 3/8 in. (Us& 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4X15 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FSlRn = R*4*M/2)*0.6'Fexx*0.707*w*L = 1*4*(1/2)*0.6*70*0.707*0.3125*15 = 278.4 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: Il/FSlRn = 4*f1/1.5) * 0.6*Fv*t*L = 4*(1/1.5) ' 0.6*46 * 0.349 * 15 = 385.3 > 266.6 kips (OK) Check Lower Right Brace Tension Yielding of the Brace: (1/FS)Rn = (1/1.67) * Fv * Aa .~/ 3 'AlfS *X/~(>"'**-' *-' = (1/1.67)* 46* 7.58 , = 208.8 < 266.6 kips (MG) Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 -2*(1+0.0625)* 0,349 = 6.8384 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (62 + 2* 6 * 6)/(4*(6 + 6)) = 2.25 in. U = 1-(x/L)<0.9 = 1-(2.25/15)<0.9 = 0.85 Ae = U'An = 0.85 * 6.8384 = 5.8126 in2 = f1/2i'Fu*Ae = (1/2) '58 '5.8126 = 168.6 < 266.6 kips Lower Right Brace Gusset Dimensions: (See Sketch) Lower Right Brace _Gusset_Edge_Fproes: Theta = 35.635 Degrees Vb = P*Cos(Theta) = 266.6 * 0.8127 = 216.7 kips Hb = P*Sin(Theta) = 266.6 * 0.5826 = 155.3 kips (See below for combination of left and right side brace forces.) Lower Right Brace Gusset Thickness Trvt=1" Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5*0.6*65'! * 15 = 585 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2Vt = 2*15*1 = 30 in2 Agt = Ant = d*t-6*1=6in2 (1/FSiRn - f 1/2i * tO.6 * MinfFu ' Anv: Fv * Aavl + Ubs * Fu * Antt = 0.5 * (0.6*Min(65 * 30; 50 * 30) + 1 * 65 * 6) = 645 > 266.6 kips (OK) Check Whitmore Section: Width, Lw = 1.1547*Lweld + d = 1.1547*15 + 6 = 23.321 in. Lwo = 0.41 64 in, of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 22.904 in. Whitmore Section Stress: fa = Fx/(Lwg't + Lwb*twb + Lwc'twc) = 266.6/(22.904 * 1 + 0 * 0.345 + 0*0) = 11.64ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t"Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(22.904 ' 1 * 50 + 0 " 0.345* 50 + 0 * 0* 0) - 685.8 > 266.6 kips (OK) DESCONBRACE-ASP Licensed to: Desert Eagle Engineering LLC- Page: 2 Ventana Real - @ Roof (Frames 6 &7) f E-W1 (2-26-06) Buckling Check: Effective Length of Whitmore Section (K=1.2), Lcr = 12.846 in. Kl/r = Lcr/(t/12°-5) = 12.846/(1/3.464) = 44.497 Fe = pi2 *E/(kL/r)2 =3.142 '290.X102 / 44.4972 = 144.6 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50 /144.6 = 0.3459 Fcr = 0.6580-3459 * Fy = 0.6580-3459 * 50 = 43.261 ksi Buckling Strength = (1/1.67) *Fcr = 25.905 > 11.64 ksi OK Lower Left Brace to Gusset Connection Brace Force = 266.6 kips Brace to Gusset Weld Size = 3/8 in. (Use 0.3125 in. for capacity calculation) Brace to Gusset Weld Length = 4 X 15 in. Weld Size = 3/8 > Minimum Weld Size = 3/16 in. (OK) Weld Allowable Strength: (1/FSlRn = R*4*(1/2l*0.6*Fexx*0.707*w*L = 1*4*(1/2)*0.6*70*0.707*0.3125*15 = 278.4 > 266.6 kips (OK) Maximum Weld Force Brace Can Develop: (1/FS)Rn = 4*(1/1.S1 * 0.6*Fv*t*L = 4*(1/1.5)* 0.6*46 '0.349 * 15 = 385.3 > 266.6 kips (OK) Check Lower Left Brace Tension Yielding of the Brace: (1/FSlRn = M/1.67l'Fy*Aq = (1/1.67)* 46* 7.58 , = 208.8 < 266.6 kips (rj(3) Tension Rupture of the Brace: An = Ag - 2*(Tg+0.0625 )*Tb = 7.58 - 2*(1 + 0.0625 )* 0.349 = 6.8384 in2 x = ((B or H)2 + 2*B*H)/(4*(B + H)) = (62 + 2* 6 * 6)/(4*(6 + 6)) = 2.25 in. U = 1 - (x/L) < 0.9 = 1 -(2.25/15)^0.9 = 0.85 Ae = U*An = 0.85 * 6.8384 = 5.8126 in2 (1/FS>Rn = (1/2J * Fu * Ae = 168.6 < 266.6 kips (N^) D^*J Lower LeftBrace Gusset Dimensions: (See Sketch) Lower Left Brace Gusset Edge Forces: Theta = 35.635 Degrees Vb = P*Cos(Theta) = (-266.6) * 0.8127 = (-216.7) kips Hb = P*Sin(Theta) = (-266.6) * 0.5826 = (-155.3) kips Combined Forces: H = HbRight - HbLeft = 155.3 - (-155.3) = 310.7 kips V = VbRtght + VbLen = 216.7 + (-216.7) = 0 kips M = eLeft * VbLen + eRight * VbRight = (-5.7814)* (-216.7)+ 5.7814* 216.7 = 2505 k-in. Lower Left Brace Gusset Thickness Maximum Brace Weld Force Gusset Can Develop: = 2*0.5 * 0.6*Fu*t*L = 2*0.5*0.6*65*1 *15 = 585 > 266.6 kips (OK) Block Shear of Gusset at Brace: Agv = Anv = 2*L*t - 2*15*1 - 30 in2 M/FSIRn = (1/2) * (0.6 ' MinfFu ' Anv: Fv ' Aqv) + Ubs * Fu * Ant) = 0.5 * (0.6*Min(65 * 30; 50 * 30) + 1 * 65 * 6) = 645 > 266.6 kips (OK) Check Whitmore Section; Width, Lw= 1.1547*Lweld + d = 1.1547*15 + 6 = 23.321 in. Lwo = 0.4165 in. of Lw is outside the gusset free edge. Width of Whitmore Section inside gusset boundaries, Lwg = 22.904 in. Whitmore Section Stress: fa = Fx/(Lwg*t + Lwb*twb + Lwc*twc) = 266.6/(22.904 * 1 + 0 * 0.345 +0*0) = 11.64 ksi Whitmore Section Yielding: Allowable Strength = (1/1.67)*(Lwg*t*Fyg + Lwb*twb*Fyb + Lwc*twc*Fyc) = (1/1.67)*(22.904 * 1 * 50 + 0 * 0.345* 50 + 0 * 0* 0) = 685.7 > 266.6 kips (OK) Bucklinqjlheck: Effective Length of Whitmore Section (K=1.2), Lcr =12.846 in. Kl/r= Lcr/(t/12°-5) = 12.846/(1/3.464) = 44.497 Fe = pi2 *E/(kl_/r)2 = 3.142 *290.x102 /44.4972 = 144.6 > 0.44*Fy = 0.44*50 = 22 ksi Fy/Fe = 50/144.6 = 0.3459 Fcr = 0.6580-3459 * Fy = 0.658° 3459 * 50 = 43.261 ksi „ Buckling Strength = (1/1.67) *Fcr = 25.905 > 11.64 ksi OK Fe = pi2 *E / (kL/r)2 = 3.142 *290.x102 /116.2 = 21.282 < 0.44'Fy = 0.44*50 == 22 ksi Fcr = 0.877 * Fe = 0.877 * 21.282 = 18.664 ksi Additional Checks for V-Brace Gusset: Gusset Stresses at Horizontal Section at End of Brace: DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 3 Ventana Real - @ Roof (Frames 6 &7) (E-W) (2-26-06) (Section is at 6.9523 in. from beam face.) Normal Stress: Moment, M = | eLefTVbLeft - eRighfVbRight + H'ev| = |5.7814 * (-216.7) - 5.7814 * 216.7 + (-310.7) * 6.9523 | - 4665 k-in. Stress = V/A + 6*M/(L12*t) = 0/(44.254 * 1) + 6*4665/(44.2542 * 1) - 14.292 < 0.9Fy = 29.94 ksi OK Shear Yielding: Ag - h"t = 44.254*1 = 44.254 in2 Vn = 0.6*Fy*Ag = 0,6 '50* 44.254 = 1328 kips <1/FSlRn-M/1.5l*Vn =310.7 kips (OK) Gusset Stresses at Vertical Mid-Section: (Section width, Lv = 23.513 in.) Vertical Shear, Vi = VbLeft - V/2 = (-216.7) kips Horizontal Force, Hi = HbLeft - H/2 = 0 kips Moment, Mi = VbLefTeLeft + Hi'(Lv/2) - M/2- V*L / 8) = (-0.0022) k-in. Normal Stress: = Hi/A -t- 6*Mi/(Lv2 *t) = 0/(23.513 * 1) + 6*0.0022/(23.5132 * 1) = 0<0.6Fy = 29.94ksiOK Shear Yielding: Ag = hi = 23.51 3*1 =23.513 in2 Vn = 0.6 * Fy * Ag = 0.6*50*23.513 = 705.4 kips M/FSIRn = f1/1.5rVn = 470.3 > 216.7 kips (OK) Gusset Buckling Between Braces: Length of Column Strip, Lh = 27.899 in. UseK=1.2 Fe = pi2 -E/(kL/r)2 = 3.142 *290.x102 / 116.2 = 21 .282 < 0.44'Fy = 0.44*50 = 22 ksi Fcr= 0.877 * Fe = 0.877* 21.282 = 18.664 ksi f1/FS)Fcr = f1/1.67TO = 11.176 > 0 ksi OK User turned off gusset edge buckling criteria. Lower Gusset to Beam Connection Horizontal Force on Welds, H = 310.7 kips Vertical Force on Welds, V = 0 kips Moment on Welds, M = | eLefTVIeft - eRight*Vright | = Abs(5.7814 * (-216.7) - 5.7814 * 216.7) = 2505 k-in. Length of Welds, L = 41.444 in. Max. Force on Welds per Unit Length = f = ((V/L+6M/L2)2+(H/L)2)0-5 ((0/41 .444+6*2505/41 .4442 )2 +(31 0.7/41 .4 4)2 >0.5 = 11. 523 kips/in. Average Force on Welds per Unit Length = fraverage = ((V/L+3M/L2)2+(H/L)2)0-5 = ((0/41 .444+3*2505/41 .4442 )2 +(31 0.7/41 .444)2 )° 5 = 8.6795 kips/in. Maximum useful weld size = (1/2)*0.6 * Fu * t / ((1/2)*0.6*1.414*Fexx) = (1/2)*0.6 * Min(1 * 65; 2 * 0.565 * 58) / ((1/2)*0.6*1.414 * 70) = 0.6567 in. Use Richard Factor, Rf = 1.4 Required Weld Size, w = max(Rf 'fav, f)/((1/2)*0.6*1 .414*Fexx) = 12.151/((1/2)*0.6*1.414 * 70) = 0.4092 in. Minimum Weld Size = 1/4 in. Use 7/16 in. Weld Beam Web Local Yielding: Force from Gusset, R = ((1 .73*H)2 + (V+3M/L)2 )° 5 = ((1.73-310.7)2 + (0+3*2505/41 .444)2)65 = 567.2 kips Required Web Thickness = R / ((1/1 .5) * Fy * L) = 567.2 / ((1/1.5) * 50 * 4.1.444) = 0.41 06 > 0.345 in. (N/S) O 1 6 l+tfS Beam Web Crippling: Force from Gusset.R = V+3M/L = 0+3*2505/41.444 = 181.4 kips (1/FSlRn = (1/21* 0.8 * E = (1/2) *0.8* 170.3 -0.3452 *(1+3*(41 .444/16.13)-(0.345/0.565)1-5 W50*0. 565/0.34\0.5 = 343.2 > 181. 4 kips (OK) ftxfr nDesign is incompletexfr not satisfactory. AS So DESCONBRACE-ASD Licensed to: Desert Eagle Engineering LLC- Page: 4 Ventana Real - @ Roof (Frames 6 &7) f E-W) (2-26-06) HS56X6X3/B - A500-B-46 (Slotted) Slope: 1.395/1 W16X45-A992 SS6X6X3/S - A500-B-46 (Slotted) Slope: 1.395/1 Scale: 1/2" = V ro o IT) o eno C ro -H O Cna io o -^• ao cu OJ 0) 0) PC OSc; toto CQ o u_ Z UJ X 0-UJ O LL v=> & 5 O Q Q. 0^-g t; £ 1 5 n R *s> ^/^ "*~^ C* C ^ ^ N CN co o ® 5N. O * 4t b £rj O CO X b_ i"3 LL. a -2 y, D —13 O O C C =°O D~~ "" fp (o) 111o — fc CM 2 ^ - * * O *l"* Si b^j- o UO X ^0_ 1 ^ COu_ o tsi CL Q o D -2 -Q — D) o D D 0 "£ 52_Q H— ^ r^ C CN CN = j^ ^J; ^ CN tN o ;=- @ @ # * %1oCN b LO b^ ios X b CO o-LJ- Q. £ f^_O ^~13 O O c e ^_O O -^^^ _o fs^ CN £ ^ C ' Tr O "" =tt 1 CN O '^j- o_ I NO X b CNCO o u_ 5 E § S u 0) g>:° Q O .jv.— — " (y* "^T "ffl" <o Q) £g •^ n fc S.I-* ex » * *_^ rsi *^* ^~ o V o^ i NO X ^0 CN LL. Q."o0 _Q ^ i2 g- 0 E -Q « eo> ro b 0C C j3 .Q ^ _ 00 J5— — »- C ^ "£ t2 D 2 o o ^ c * * * *6 2 b LQ o_ 1o X M3 CNO <N LL. 2 •§jo EEg 0) O) =C tZ ON Q O ,-a.• — VyJ Q) <D g S"^^ £^S rv. CN 1 1 ' o ^J- o _ ' -vf- _x o o CO LL. 0 -Q D S 0 rag=° n ^ mW ^^ IS> *? S aIII c •— ^^ % ^1 O CO ^ o ^i^- o _ 'u")_x b o •<*• u_ NTHNAIICNAL Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Reai_REV_6 Building Code: UBC1 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #165 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 90.00 7.00 7.00 1.50 Footing Column Location:. Column Orientation (deg): (2-A) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9 - #5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. ty (ksi): 60.00 INPUT DATA Column Size: W10X-39 Base Plate Dimensions (in) 12.00 x 10.00 LOADS Surcharge (ksf) Dead Load: 0.110 Axial (kip) Dead Load: 115.60 Pos. Live: 31.97 Pos. Roof: 9.34 CONCRETE CAPACITY Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A Major 60.49 114.39 153.53 178.71 212.70 258.97 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Length Width 9-#5 2.727 2.79 Sec. 7.12 Minor Ld Co/Code Ref. 64,93 5 109.50 Sec. 11.5.4.1 161.91 5 170.86 Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY 2.727 2.79 Sec. 7.12 9.67 14.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) — Max Average Soil Bearing for Factored Design (ksf) __ 9.67 14.00 Side: 3.00 4.00 3.54 3.54 4.74 4.74 Length None None None None None LdCo 63 63 5 5 Width None None None None None NTCRNtfCNAl Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 2/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #166 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 4.00 4.00 1.00 Footing Column Location: Column Orientation (deg): (37.00 - 92.50) 0.00 Bottom Reinf. Parallel to Length: 6-#5 Width: 6-#5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155,92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS6X6X1/4 Base Plate Dimensions (in) 8.00 x 8.00 LOADS Surcharge (ksf) Dead Load: 0.110 Axial (kip) Dead Load: 5.12 Pos. Live: 1.79 Pos. Roof: 0.00 Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY Major 2.53 38.55 3.73 43.69 9.18 94.82 Ld Co/Code Ref. 2 Sec. 11.5.4.1 2 Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Length Bar Quantity/Bar Size: 6-#5 Required Steel/Provided Steel (in2) 1.62/ 1.86 Required Steel Code Ref. Sec. 7.12 Bar Spacing (in) 8.27 Bar Depth (in) 8.63 Minor Ld Co/Code Ref. 2.66 2 35.76 Sec. 11.5.4.1 3.73 2 40.35 Top Bars Parallel to Cover (in) SOIL CAPACITY Top N/A Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) ____ Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) __. Max Average Soil Bearing for Factored Design (ksf) Width 6-#5 1.62/1.86 Sec. 7.12 8.27 8.00 Side: 3.00 4.00 0.69 0.69 0.64 0.64 Length None None None None None LdCo 63 63 2 2 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 3/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #167 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 90.00 7.00 7.00 1.50 Footing Column Location:, Column Orientation (deg):. (3-A) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9 - #5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy(ksi): 60.00 INPUT DATA Column Size: W10X60 Base -Plate Dimensions (in)12.25x12.25 Percent of overhang to assume Rigid-,- 50.00 LOADS Surcharge (ksf) Axial (kip) Dead Load; Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 0.110 113.41 30.33 9.34 Major 58.60 114.39 148.56 178.71 205.34 272.00 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.000 -0.08 N/A Minor 60.35 109.50 148.77 170.86 Ld Co/Code Ref. 5 Sec. 11.5,4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 9-#5 2.727 2.79 Sec. 7.12 9.67 14.63 Bottom: 3.00 Width 9-#5 2.727 2.79 Sec. 7.12 9.67 14.00 Side: Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) 3.00 4.00 3.46 3.46 4.62 4.62 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana ReaI_REV_6 Building Code: UBC1 Page 4/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #168 Footing Orientation (deg): Length (ft): Width (ft): 90.00 7.00 7.00 1.50 Footing Column Location: Column Orientation (deg): (4-A) 0.00 Thickness (ft): Bottom Reinf. Parallel to Length: 9-#5 Width: 9-#5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W12X65 Base Plate Dimensions (in) LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 12.25x12.25 0.110 115.77 30.36 9.34 Major 58.18 114.39 146.86 178.71 206.78 282.13 Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.000 -0.15 N/A Minor Ld Co/Code Ref. 59.95 5 109.50 Sec. 11.5.4.1 147.06 5 170.86 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Length 9-#5 2.72/ 2.79 Sec. 7.12 9.67 14.63 Cover (in) Top N/A Bottom: 3.00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 9-#5 2.72/ 2.79 Sec. 7.12 9.67 14.00 Side: 3.00 4.00 3.51 3.51 4.68 4.68 Top Bars Parallel to Length Width None None None None None None None None None None LdCo 63 63 5 5 M1BNWO4M Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 5/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 169 Footing Orientation (deg): Length (ft): Width (ft): . Thickness (ft): 90.00 7.00 7.00 1.50 Footing Column Location: Column Orientation (deg): (5-A) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9-#5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X60 Base Plate Dimensions (in) LOADS Surcharge (ksi) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 12.25x12.25 0.110 113.92 30.17 9.34 Major 58.72 114.39 148.87 178.71 205.75 272.00 Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.000 -0.08 N/A Minor 60.48 109.50 149.07 170.86 Ld Co/Code Ref. 5 Sec. 11,5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 9-#5 2.72/2.79 Sec. 7.12 9.67 14.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 9-#5 2.72/ 2.79 Sec. 7.12 9.67 14.00 Side: 3.00 4.00 3.47 3.47 4.63 4.63 Length None None None None None LdCo 63 63 5 5 Width None None None None None INTEINAnOtsW Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 6/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 170 Footing Orientation (deg): Length (ft): Width (ft): 0.00 4.00 4.00 1.00 Footing Column Location: Column Orientation (deg): (107.00 92.50) 0.00 Thickness (ft): Bottom Reinf. Parallel to Length: 6 - #5 Width: 6-#5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA 'Column Size: HSS6X6X1/4 Base Plate Dimensions (in) 8.00 x 8.00 LOADS Surcharge (ksf) Axial (kip) Percent of overhang to assume Rigid: 50.00 Dead Load: Dead Load: Pos. Live: Pos, Roof: 0.110 5.12 1.79 0.00 CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) Major 2.53 38.55 3.73 43.69 9.18 94.82 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 11.5.4.1 2 0.000 0.00 N/A Minor 2.66 35.76 3.73 40.35 Ld Co/Code Ref. 2 Sec. 11.5.4.1 2 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 6-#5 1.62/1.86 Sec. 7.12 8.27 8.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 6-#5 1.62/1.86 Sec. 7.12 8.27 8.00 Side: 3.00 4.00 0.69 0.69 0.64 0.64 Top Bars Parallel to Length None None None None None LdCo 63 63 2 2 Width None None None None None INTERNATIONAL Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 7/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 171 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 90.00 7.00 7.00 1.50 Footing Column Location: Column Orientation (deg): (6-A) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9-#5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X39 Base Plate Dimensions (in) 12.00 x 10.00 Percent of overhang to-assume Rigid:50.00 LOADS Surcharge (ksf) Axial (kip) Dead Load: Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 0.110 108.14 30.25 8.95 Major 56.84 114.39 144.25 178.71 199.84 258.97 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.000 0.00 N/A Minor 61.01 109.50 152.12 170.86 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 9-#5 2.72/2.79 Sec. 7.12 9.67 14.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 9-#5 2.72/2.79 Sec. 7.12 9.67 14.00 Side: 3.00 4.00 3.34 3.34 4.45 4.45 Top Bars Parallel to Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana RealJREV_6 Building Code: UBC1 Page 8/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #172 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 7.00 7.00 1.50 Footing Column Location:. Column Orientation (deg): (7-A) 0.00 Bottom Reinf. Parallel to Length: 9-#5 Width: 9-#5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X39 Base Plate Dimensions (in) 12.00 x 10.00 LOADS Surcharge (ksf) Dead Load: 0.110 Axial (kip) Dead Load: 114.12 Pos. Live: 29.89 Pos. Roof: 9.34 CONCRETE CAPACITY Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Major 59.03 114.39 149.82 178.71 207.55 258.97 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Minor Ld Co/Code Ref. 63.36 5 109.50 Sec. 11.5.4.1 157.99 5 170.86 Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 9-#5 2.72/ 2.79 Sec. 7.12 9.67 14.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 9-#5 2.72/2,79 Sec. 7.12 9.67 14.00 Side: 3.00 4.00 3.46 3.46 4.62 4.62 Length None None None None . None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 9/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #173 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 7.00 7.00 1.50 Footing Column Location: Column Orientation (deg): (8-A) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9 - #5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf, fy (ksi): 60,00 INPUT DATA Column Size: W10X39 Base Plate Dimensions (in) LOADS Surcharge (ksf) Axial (kip) 12.00x10.00 Percent of overhang to assume Rigid: 50.00 Dead Load: Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 0.110 122.15 33.71 9.73 Major 63.82 114.39 161.99 178.71 224.42 258.97 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.000 0.00 N/A Minor 68.51 109.50 170.82 170.86 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Length 9-#5 2.72/ 2.79 Sec. 7.12 9.67 14.63 Cover (in) SOIL CAPACITY Top N/A Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 9-#5 2.79/ 2.79 Sec. 7.12 9.67 14.00 Side: 3.00 4,00 3.71 3.71 5.00 5.00 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 10/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #174 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 7.00 7.00 1.50 Footing Column Location:. Column Orientation (deg):. (9-A) 0.00 Bottom Reinf, Parallel to Length: 9 - #5 Width: Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Reinf. ry (ksi): 60.00 INPUT DATA Column Size: W10X39 Base Plate Dimensions (in) 12.00 x 10.00 LOADS Dead Load: Dead Load: Pos. Live: Pos. Roof: 9-#5 EC (ksi): 3155.92 Percent of overhang to assume Rigid: 50.00 Surcharge (ksf) Axial (kip) 0.110 122.84 31.03 9.34 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY a •Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Width 9-#5 Major 62.72 114.39 159.18 178.71 220.52 258.97 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Minor 67.32 109.50 167.86 170.86 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 9-#5 2.72/2.79 Sec. 7.12 9.67 14.63 Bottom: 3.00 2.747 2.79 Sec. 7.12 9.67 14.00 Side: Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) 3.00 4.00 3.67 3.67 4.91 4.91 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 11/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #175 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 7.00 7.00 1.50 Footing Column Location:. Column Orientation (deg):. (10-A) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9 - #5 Concrete f c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 i INPUT DATA ' Column Size: W10X39 Base Plate Dimensions (in) LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 12.00x10.00 0.110 124.60 30.63 9.34 Major 63.18 114.39 160.35 178.71 222.15 258.97 Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.000 0.00 N/A Minor 67.82 109.50 169.09 170.86 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 9-#5 2.72/ 2.79 Sec. 7.12 9.67 34.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) . Max Average Soil Bearing for Factored Design (ksf) __ Width 9-#5 2.76/2.79 Sec. 7.12 9.67 14.00 Side: 3.00 4.00 3.69 3.69 4.95 4.95 Length None None None None None LdCo 63 63 5 5 Width None None None None None INTERNATIONAL Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code; UBC1 Page 12/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 176 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 7.00 7.00 1.50 Footing Column Location: Column Orientation (deg):. (11-A) 0.00 Bottom Reinf. Parallel to Length: 9-#5 Width: Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Sjze: W10X39 Base Plate Dimensions (in) 12.00 x 10.00 LOADS Dead Load: Dead Load: Pos. Live: Pos. Roof: 9-#5 EC (ksi): 3155.92 Percent of overhang to assume Rigid: 50.00 Surcharge (ksi) Axial (kip) 0.110 124.60 30.63 9.34 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Width 9-#5 Major 63.18 114.39 160.35 178.71 222.15 258.97 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Minor 67.82 109.50 169.09 170.86 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) . . • Bar Depth (in) Length 9-#5 2.72/2.79 Sec. 7.12 9.67 14.63 Cover (in) SOIL CAPACITY Top N/A Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) 2.76/2.79 Sec. 7.12 9.67 14.00 Side: 3.00 4.00 3.69 3.69 4.95 4.95 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 13/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #177 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 7.00 7.00 1.50 Footing Column Location: Column Orientation (deg): (12-A) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9-#5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinffy (ksi): 60.00 INPUT DATA Column Size: W10X39 Base Plate Dimensions (hi) LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 12.00x10.00 0.110 124.60 30.63 9.34 Major 63.18 114.39 160.35 178.71 222.15 258.97 Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg, Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.000 0.00 N/A Minor 67.82 109.50 169.09 170.86 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 9-#5 2.72/ 2.79 Sec. 7.12 9.67 14.63 Bottom: 3.00 Width 9-#5 2.76/ 2.79 Sec. 7.12 9.67 14.00 3.00Side: Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf). 4.00 3.69 3.69 4.95 4.95 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 14/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #178 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 9.00 9.00 2.00 Footing Column Location:. Column Orientation (deg):. (11.7-C) 0.00 Bottom Reinf . Parallel to Length: 11 - #6 Width: 11 - #6 Concrete f c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X49 Base Plate Dimensions (in)12.00x12.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Axial (kip) Dead Load: Dead Load: Pos. Live: Pos. Roof: 0.110 185.98 71.96 17.76 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY Major 106.59 207.41 374.78 437.73 378.33 471.31 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Length Bar Quantity/Bar Size: 11 -#6 Required Steel/Provided Steel (in2) 4.66/ 4.84 Required Steel Code Ref. Sec. 7.12 Bar Spacing (in) 10.13 Bar Depth (in) 20.63 Minor 109.43 199.87 374.70 421.39 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Cover (in) SOIL CAPACITY Top N/A Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf). Width 11 -#6 4.66/ 4.84 Sec. 7.12 10.13 19.88 Side: 3.00 4.00 3.81 3.81 5.10 5.10 Top Bars Parallel to Length Width None None None None None None None None - None None LdCo 63 63 5 5 NTEBMATOMAl Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 15/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 179 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 10.00 10.00 2.00 Footing Column Location: Column Orientation (deg): (11.7 -B) 0.00 Bottom Reinf. Parallel to Length: 10-#7 Width: 10-#7 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X54 Base Plate Dimensions (in) LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 12.25x12.00 0.110 222.52 86.81 21.28 Major 139.97 229.06 509.17 537.62 461.91 465.52 Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.000 0.00 N/A Minor 143.94 219.28 510.80 513.99 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 10-#7 5.677 6.00 Sec. 7.12 12.57 20.50 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 10-#7 5.967 6.00 Sec. 7.12 12.57 19.63 Side: 3.00 4.00 3.72 3.72 4.95 4.95 Length None None None None None LdCo 63 63 5 5 Width None None None None None IWTCSNATICNAI Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase; Ventana Real_REV_6 Building Code: UBC1 Page 16/32 Date: 03/09/06 07:50:32 Design Code: ACI318-9f FOOTING DESIGN Footing # 180 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 4.00 4.00 1.00 Footing Column Location: Column Orientation (deg):. (298.50-3.50) 0.00 Bottom Reinf. Parallel to Length: 6 - #5 Width: 6 - #5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS6X6X1/4 Base Plate Dimensions (in) 8.00 x 8.00 LOADS Surcharge (ksf) Dead Load: 0.110 Axial (kip) Dead Load: 10.76 Pos. Live: 6.27 Pos. Roof: 0.00 Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY Major 6.36 38.55 9.38 43.69 23.10 94.82 Ld Co/Code Ref. 2 Sec. 11.5.4.1 2 Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Length 6-#5 1.62/1.86 Sec. 7.12 Minor 6.70 35.76 9.38 40.35 Ld Co/Code Ref. 2 Sec. 11.5.4.1 2 Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY 8.27 8.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf)~ Max Average Soil Bearing for Factored Design (ksf) Width 6-#5 1.62/1.86 Sec. 7.12 8.27 8.00 Side: 3.00 4.00 1.32 1.32 1.61 1.61 Length None None None None None LdCo 63 63 2 2 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 17/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #181 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 4.00 4.00 1.00 Footing Column Location: Column Orientation (deg): (298.50 - 23.00) 0.00 Bottom Reinf. Parallel to Length: 6-#; Concrete f c (ksi): 3.00 fct (ksi): CODE Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS6X6X1/4 Base Plate Dimensions (in) 8.00 x 8.00 LOADS Dead Load: Dead Load: Pos. Live: Width: Density (pcf): 145.00 6-#5 EC (ksi): 3155.92 Percent of overhang to assume Rigid: 50.00 Surcharge (ksf) Axial (kip) Pos. Roof: 0.110 10.76 6.27 0.00 CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) Major 6.36 38.55 9.38 43.69 23.10 94.82 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 11.5.4.1 2 0.000 0.00 N/A Minor 6.70 35.76 9.38 40.35 Ld Co/Code Ref. 2 Sec. 11.5,4.1 2 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 6-#5 1.62/1.86 Sec. 7.12 8.27 8.63 Bottom: 3.00 Width 6-#5 1.62/1.86 Sec. 7.12 8.27 8.00 Side: Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) 3.00 4.00 1.32 1.32 1.61 1.61 Length None None None None None LdCo 63 63 2 2 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 18/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #182 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 7.00 7.00 1.50 Footing Column Location:. Column Orientation (deg):. (11-D) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9 - #5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X33 Base Plate Dimensions (in) LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 11.75x10.00 0.110 96.85 31.30 6.70 Major 52.45 114.39 133.24 178.71 183.64 257.71 Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.000 0.00 N/A Minor Ld Co/Code Ref. 56.03 5 109.50 Sec. 11.5.4.1 139.72 5 170.86 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 9-#5 2.72/ 2.79 Sec. 7.12 - 9.67 14.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf). Width 9-#5 2.72/ 2.79 Sec. 7.12 9.67 14.00 Side: 3.00 4.00 3.09 3.09 4.09 4.09 Length None None None None None LdCo 63 63 5 5 Width None None None None None NTERNAFCNAl. Spread Footing Design RAM Foundation v9.0 Margaret Coffeys PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 19/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 183 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft):. 0.00 7.00 7.00 1.50 Footing Column Location: Column Orientation (deg): (12-D) 0.00 Bottom Reinf. Parallel to Length: 9-#5 Width: 9 - #5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X33 Base Plate Dimensions (in) 11.75 x 10.00 LOADS Surcharge (ksf) Axial (kip) 0.00 N/A Percent of overhang to assume Rigid: 50.00 Dead Load: Dead Load: Pos. Live: Pos. Roof: 0.110 96.85 31.30 6.70 Live Load:o.ooo Neg. Live: Neg. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Width 9~#5 Major 52.45 114.39 133.24 178.71 183.64 257.71 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Minor Ld Co/Code Ref. 56.03 5 109.50 Sec. 11.5.4.1 139.72 5 170.86 Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) SOIL CAPACITY Top N/A Length 9-#5 2.72/2.79 Sec. 7.12 9.67 14.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) 2.1212.79 Sec. 7.12 9.67 . . 14.00 Side: 3.00 4.00 3.09 3.09 4.09 4.09 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: VentanaRealJREV_6 Building Code: UBC1 Page 20/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 184 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 7.00 7.00 1.50 Footing Column Location:. Column Orientation (deg):. (7-C) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: Concrete f c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Reinf. fy(ksi): 60.00 INPUT DATA Column Size: W10X33 .Base Plate Dimensions (in) 11.75 x 10.00 LOADS Dead Load: Dead Load: Pos. Live: Pos. Roof: 9-#5 EC (ksi): 3155.92 Percent of overhang to assume Rigid: 50.00 Surcharge (ksi) Axial (kip) 0.110 113.28 38.32 12.35 Live Load: Neg. Live: Neg. Roof: 0.000 -0.06 N/A CONCRETE CAPACITY Major 64.11 114.39 162.88 178.71 224.49 257.71 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Length Bar Quantity/Bar Size: 9-#5 Required Steel/Provided Steel (in2) 2.727 2.79 Required Steel Code Ref. Sec. 7.12 Bar Spacing (in) 9.67 Bar Depth (in) 14.63 Minor 68.49 109.50 170.80 170.86 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Top Bars Parallel to Cover (in) SOIL CAPACITY Top N/A Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 9-#5 2.79/2.79 Sec. 7.12 9.67 14.00 Side: 3.00 4.00 3.68 3.68 4.99 4.99 Length None None None None None LdCo 63 63 5 5 Width None None None None None BMlBNAnCNAI. Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page Date: 03/09/06 07:50:3; Design Code: ACI318-9i FOOTING DESIGN Footing #185 Footing Orientation (deg): Length (ft): Width (ft): 0.00 8.00 8.00 2.00 Footing Column Location: Column Orientation (deg): (7.6 - C) 0.00 Thickness (ft): Bottom Reinf. Parallel to Length: 10-#6 Width: 10-#6 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. ry (ksi): 60.00 INPUT DATA Column Size: W10X45 Base Plate Dimensions (in) LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY 12.25x10.25 0.110 133.91 52.80 13.80 Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: 0.000 -2.41 N/A Major 68.24 184.36 234.76 397.70 270.56 458.64 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Length Bar Quantity/Bar Size: 10-#6 Required Steel/Provided Steel (in2) 4.1514.40 Required Steel Code Ref. Sec. 7.12 Bar Spacing (in) 9.92 Bar Depth (in) 20.63 Minor Ld Co/Code Ref. 73.79 5 177.66 Sec. 11.5.4.1 246.19 5 382.85 Top Bars Parallel to Cover (in) SOIL CAPACITY Top N/A Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 10-#6 4.15/4.40 Sec. 7.12 9.92 19.88 Side: 3.00 4.00 3.54 3.54 4.70 4.70 Length None None None None None LdCo 63 63 5 5 Width None None None None None INRAM Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 22/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #186 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 9.00 9.00 2.00 Footing Column Location: Column Orientation (deg):. (9-C) 0.00 Bottom Reinf. Parallel to Length: 11 - #6 Width: Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X49 Base Plate Dimensions (in) 12.00 x 12.00 LOADS Dead Load: Dead Load: Pos. Live: Pos. Roof: 11 -#6 EC (ksi): 3155.92 Percent of Qverhang to assume Rigid: 50.00 Surcharge (ksf) Axial (kip) 0.110 187.33 69.47 17.72 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) Major 105.97 207.41 372.59 437.73 376.13 471.31 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Minor 108.80 199.87 372.52 421.39 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 11-#6 4.66/4.84 Sec. 7.12 10.13 20.63 Bottom: 3.00 Width 11-#6 4.66/4.84 Sec. 7.12 10.13 19.88 Side: Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) 3,00 4.00 3.80 3.80 5.07 5.07 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 23/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #189 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 90.00 4.00 4.00 1.00 Footing Column Location: Column Orientation (deg): (5.7 - C.7) 0.00 Bottom Reinf. Parallel to Length: 6-#5 Width: 6-#5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: HSS6X6X1/4 Base Plate Dimensions (in) 8.00 x- 8.00 LOADS Surcharge (ksf) Dead Load: 0.110 Axial (kip) Dead Load: 31.74 Pos. Live: 14.46 Pos. Roof: 0.00 Percent of overhang to assume Rigid: 50.00 CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) Major 17.07 38.55 25.18 43.69 61.99 94.82 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 11.5.4.1 2 0.000 0.00 N/A Minor Ld Co/Code Ref. 17.97 2 35.76 Sec. 11.5.4.1 25.18 2 40.35 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 6-#5 1.62/1.86 Sec. 7.12 8.27 8.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf)- Max Soil Bearing for Factored Design (ksf) __ — Max Average Soil Bearing for Factored Design (ksf) Width 6-#5 1.62/1.86 Sec. 7.12 8.27 8.00 Side: 3.00 4.00 3.15 3.15 4.31 4.31 Length None None None None None LdCo 63 63 2 2 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 24/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 190 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 0.00 5.00 5.00 1.00 Footing Column Location: Column Orientation (deg): (6-D) 0.00 Bottom Reinf. Parallel to Length: 6-#5 Width: Concrete f c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X49 Base Plate Dimensions (in) 12.00 x 12.00 LOADS Dead Load: Dead Load: Pos. Live: Pos. Roof: 7- #5 EC (ksi): 3155.92 Percent-of overhang to assume Rigid: 50.00 Surcharge (ksf) Axial (kip) 0.110 52.52 22.42 6.42 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) Major 32.44 48.19 51.11 54.29 109.87 119.55 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Minor 33.70 44.69 51.09 58.07 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Width 7-#5 1.87/2.17 Sec. 7.12 Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 6-#5 1.73/1.86 Sec. 7.12 . . 10.67 8.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf)_ —__ Max Soil Bearing for Factored Design (ksf) ______ Max Average Soil Bearing for Factored Design (ksf) 8.89 8.00 Side: 3.00 4.00 3.51 3.51 4.90 4.90 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana ReaI_REV_6 Building Code: UBC1 Page 25/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #191 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 90.00 7.00 7.00 1.50 Footing Column Location: Column Orientation (deg):. (3-F) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9- Concrete fc(ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X33 Base Plate Dimensions (in) 11.75 x 10.00 LOADS Surcharge (ksf) Dead Load: 0.110 Live Load: 0.000 Axial (kip) Percent of overhang to assume Rigid: 50.00 Dead Load: Dead Load: Pos. Live: Pos. Roof: 0.110 108.30 32.31 5.42 CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) Major 56.52 114.39 143.59 178.71 197.90 257.71 Neg. Live: Neg. Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.00 N/A Minor Ld Co/Code Ref. 60.38 5 109.50 Sec. 11.5.4.1 150.57 5 170.86 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) - ' Bar Depth (in) Cover (in) SOIL CAPACITY Top N/A Length 9-#5 2.72/2.79 Sec. 7.12 9.67 14.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 9-#5 2.72/ 2.79 Sec. 7.12 9.67 14.00 Side: 3.00 4.00 3.31 3.31 4.40 4.40 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 26/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 192 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 90.00 7.00 7.00 1.50 Footing Column Location: Column Orientation (deg): (4-G) 0.00 Bottom Reinf. Parallel to Length: 9 - #5 Width: 9-#5 Concrete f c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X33 Base Plate Dimensions (in) 11.75 x 10.00 LOADS Surcharge (ksf) Axial (kip) Percent of overhang to assume Rigid: 50.00 Dead Load: Dead Load: Pos. Live: Pos. Roof: 0.110 115.31 31.94 5.14 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) Major 58.80 114.39 149.39 178.71 205.90 257.71 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Minor Ld Co/Code Ref. 62.82 5 109.50 Sec. 11.5.4.1 156.65 5 170.86 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Length 9-#5 2.727 2.79 Sec. 7.12 9.67 14.63 Cover (in) SOIL CAPACITY Top N/A Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) _ Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf). Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 9-#5 2.72/2.79 Sec. 7.12 9.67 14.00 Side; 3.00 4.00 3.44 3.44 4.58 4.58 Length None None None None None LdCo 63 63 5 5 Width None None None None None NTCRNAIIONAI Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 27/3: Date: 03/09/06 07:50:3: Design Code: ACI318-9* FOOTING DESIGN Footing # 193 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 90.00 9.00 9.00 2.00 Footing Column Location:. Column Orientation (deg): (2.3 - C) 0.00 Bottom Reinf. Parallel to Length: 11 - #6 Width: 11 - #6 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy(ksi): 60.00 INPUT DATA Column Size: W10X49 Base Plate Dimensions (in) LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 12.00x12.00 Percent of overhang to assume Rigid: 50.00 0.110 192.57 72.59 18.40 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A Major 109.53 207.41 385.12 437.73 388.77 471.31 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Minor 112.46 199.87 385.04 421.39 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY Length 11-#6 4.66/ 4.84 Sec. 7.12 10.13 20.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 11-#6 4.6614.84 Sec. 7.12 10.13 19.88 Side: 3.00 4.00 3.91 3.91 5.24 5.24 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 28/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #194 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft):. 90.00 10.00 10.00 2.00 Footing Column Location: Column Orientation (deg): (3.6 -C) 0.00 Bottom Reinf. Parallel to Length: 10-#7 Width: 10-#7 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X54 Base Plate Dimensions (in) 12.25 x 12.00 LOADS Surcharge (ksf) Dead Load: 0.110 Axial (kip) Dead Load: 208.56 Pos. Live: 79.60 Pos. Roof: 19.57 CONCRETE CAPACITY Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A Major 130.16 229.06 473.49 537.62 429.54 465.52 Ld Co/Code Ref. 5 Sec. 11,5.4.1 5 Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Length Bar Quantity/Bar Size: 10-#7 Required Steel/Provided Steel (in2) 5.26/ 6.00 Required Steel Code Ref. Sec. 7.12 Bar Spacing (in) 12.57 Bar Depth (in) 20.50 Minor 133.86 219.28 475.01 513.99 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Top Bars Parallel to Cover (in) SOIL CAPACITY Top N/A Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 10-#7 5.53/6.00 Sec. 7.12 12.57 19.63 Side: 3.00 4.00 3.49 3.49 4.61 4.61 Length None None None None None LdCo 63 63 5 5 Width None None None None None RAM Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 29/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 195 Footing Orientation (deg): Length (ft): Width (ft): 90.00 9.00 9.00 2.00 Bottom Reinf. Parallel to Length: 11 - #6 Width: Concrete f c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Footing Column Location: Column Orientation (deg): (5-C) 0.00 Thickness (ft): 11-#6 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X49 Base Plate Dimensions (in) LOADS Surcharge (ksf) Axial (kip) 12.00 x 12.00 Percent of overhang to assume Rigid: 50.00 Dead Load: Dead Load: Pos. Live: Pos. Roof: 0.110 165.90 59.13 14.99 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY Major 92.49 207.41 325.20 437.73 328.28 471.31 Ld Co/Code Ref. 5 Sec, 11.5.4.1 5 Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Length 11 -#6 4.66/4.84 Sec. 7.12 Minor 94.96 199.87 325.13 421.39 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) Top N/A SOIL CAPACITY 10.13 20.63 Bottom: 3.00 Width 11 -#6 4.66/4.84 Sec. 7.32 10.13 19.88 Side: Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) _ . Max Average Soil Bearing for Factored Design (ksf) 3.00 4.00 3.37 3.37 4.42 4.42 Length None None None None None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REVj5 Building Code: UBC1 Page 30/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 196 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 45.00 4.00 4.00 LOO Footing Column Location: Column Orientation (deg): (.5-C.I) 0.00 Bottom Reinf. Parallel to Length: 6-#5 Width: 6 - #5 Concrete f c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy(ksi): 60.00 INPUT DATA Column Size: HSS4X4X3/8 Base Plate Dimensions (in) 8.00 x 8.00 Percent of overhang to assume Rigid: 50.00 LOADS Surcharge (ksf) Axial (kip) Dead Load: Dead Load: Pos. Live: Pos. Roof: 0.1 10 15.49 7.37 0.00 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY Major 8.82 38.55 13.10 44.94 31.18 88.62 Ld Co/Code Ref. 2 Sec. 11.5.4.1 2 Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Length Bar Quantity/Bar Size: 6-#5 Required Steel/Provided Steel (in2) 1.5871.86 Required Steel Code Ref. Sec. 7.12 Bar Spacing (in) 8.27 Bar Depth (in) 8.63 Minor Ld Co/Code Ref. 9.27 2 35.76 Sec. 11.5.4.1 13.10 2 41.50 Top Bars Parallel to Cover (in) Top N/A SOIL CAPACITY Bottom: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) : Max Average Soil Bearing for Factored Design (ksf). Width 6-#5 1.58/1.86 Sec. 7.12 8.27 8.00 Side: 3.00 4.00 1.69 1.69 2.14 2.14 Length None None None None None LdCo 63 63 2 2 Width None None None None None INTERNATIONAl Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 31/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing #198 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 90.00 4.00 4.00 1.00 Footing Column Location: Column Orientation (deg):. (7 - C.7) 0.00 Bottom Reinf. Parallel to Length: 6 - #5 Width: Concrete f c (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X33 Base Plate Dimensions (in) 1 1.75 x 10.00 LOADS Dead Load: Dead Load: Pos. Live: Pos. Roof: 6-#5 EC (ksi): 3155.92 Percent of overhang to assume Rigid: 50.00 Surcharge (ksf) Axial (kip) 0.110 29.54 17.37 2.08 Live Load: Neg. Live: Neg. Roof: 0.000 0.00 N/A CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) Major 15.51 38.55 22.42 39.02 63.79 112.52 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 Minor 17.85 35.76 24.59 38.07 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Top Bars Parallel to Bar Quantity/Bar Size: Required Steel/Provided Steel (in2) Required Steel Code Ref. Bar Spacing (in) Bar Depth (in) Cover (in) SOIL CAPACITY Top N/A Length 6-#5 1.82/1.86 Sec. 7.12 8.27 8.63 Bottom: 3.00 Allowable Soil Bearing Capacity (ksf) Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) Width 6-#5 1.72/1.86 Sec. 7.12 8.27 8.00 Side: 3.00 4.00 3.32 3.32 4.65 4.65 Length None None None None - None LdCo 63 63 5 5 Width None None None None None Spread Footing Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 32/32 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # 202 Footing Orientation (deg): Length (ft): Width (ft): Thickness (ft): 90.00 7.00 7.00 1.50 Footing Column Location:. Column Orientation (deg): (5-E) 0.00 Bottom Reinf. Parallel to Length: 9-#5 Width: 9-#5 Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W10X33 Base Plate Dimensions (in) LOADS Surcharge (ksf) Dead Load: Axial (kip) Dead Load: Pos. Live: Pos. Roof: CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) 11.75x10.00- 0.110 102.91 32.43 5.79 Major 54.76 114.39 139.14 178.71 191.76 257.71 Percent of overhang to assume Rigid: 50.00 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 0.000 0.00 N/A Minor 58.51 109.50 145.90 170.86 Ld Co/Code Ref. 5 Sec. 11.5.4.1 5 REINFORCEMENT (Controlling Steel grouping not performed) Bottom Bars Parallel to Length Width Bar Quantity/Bar Size: 9-#5 9-#5 Required Steel/Provided Steel (in2) 2.1212.79 2.72/ 2.79 Required Steel Code Ref. Sec. 7.12 Sec. 7.12 Bar Spacing (hi) 9.67 Bar Depth (in) 14.63 Top Bars Parallel to Cover (in) SOIL CAPACITY Top N/A Bottom: 3.00 9.67 . 14.00 Side: 3.00 Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf) 4.00 3.21 3.21 4.27 4.27 Length None None None None None LdCo 63 63 5 5 Width None None None None None Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Date: 03/09/06 07:50:3: Design Code: ACI318-9f FOOTING DESIGN - AS BEAM Footing # Length (ft): Width (ft): Thickness (ft): 157 82.00 6.00 4.00 0.00°Footing Orientation (deg): __ Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf.fy (ksi): 60.00 LOADS Surcharge (ksf)Dead Load:0.11 Live Load:0.00 REINFORCEMENT Top Longitudinal Flexure Reinforcement: Bar Depth (in) Seg. Spacing Num. Start/End (ft) 1 O.OO/ 4.00 2 4.00/30.00 3 30.00/54.00 4 54.00/78.00 5 78.00/82.00 Bottom Longitudinal Flexure Reinforcement: 44.00 Bar End Condition Start/End H/S S/S s/s s/s S/H Bar Depth (in) Seg. Num. 1 2 3 4 Longitudinal Number of Sh< Seg. Num. 1 2 3 4 5 6 Cover ( Spacing Start/End (ft) O.OO/ 6.00 6.00/52.00 52.00/74.00 74.00/82.00 Shear Reinforcement: sarhar legs: 7. Segment Start/End (ft) 8.25/17.00 17.00/25.75 34.25/42.00 42.00/49.89 58.11/66.00 66.00/73.90 in\ Tor. 3.00 43.88 Bar End Condition Start/End H/S S/S s/s S/H Spacing (in) #4@ 6.00 #4@ 6.00 #4@ 6.00 #4@ 6.00 Not Applic. Not Applic. Bottom 3.00 Sid Top Bars 5-#7 18-#7 18-#7 6-#7 5-#7 Bot. Bars 5-#9 29-#9 7-#9 5-#9 Quantity 18 17 16 15 None None 3.00 SUPPORTED MEMBERS Columns: Loc. Along Column Base Plate ft ^m continuous r ounaation uesien MiVl RAM Foundation v9.0 m 1 V Margaret Coffey, PE; C-G Engineering DAM DataBase: Ventana Real REV 6•*»•••• ^ ., ,. ^ , Tm,-,.. ~ ~~NTtRNfflCNAi RmMino PnHp- TTRP1 Location Footing (ft): (7 - D) 4.00 (8 - D) 30.00 (9 - D) 54.00 (10 -D) 78.00 Brace Loc. Along Location Footing (ft): (142.00,0.00) 4.00 (168.00,0.00) . 30.00 CONCRETE CAPACITY Longitudinal Req. Max Shear (kip) 256.62 Provided Shear (kip) 443 .32 Req. Max Pos. Moment (kip-ft) 5037.84 Provided Pos. Moment (kip-ft) 5 1 07.3 1 Req. Max Neg. Moment (kip-ft) -1774.87 Provided Neg. Moment (kip-ft) -2052.64 Req. Max Punching Shear (kip) 440.34 Provided Punching Shear (kip) 1879.10 SOIL CAPACITY Allowable Soil Rearing Capacity (Vsf) Soil SnhgraHe Modulus (ksf/ ft) Max I TnfactoreH Soil Rearing fksf) Max Averaee Unfactored Soil Bearina (ksf) Page 2/16 Date: 03/09/06 07:50:32 Design Code: ACI3 18-95 Size Orientation W10X77 0.00 W10X77 0.00 W10X39 0.00 W10X33 0.00 Brace Orientation 0.00 0.00 Ld Co # Loc. (ft) Transvers 39 34.25 34.25 55 29.40 0.00 29.40 0.00 59 29.40 0.00 29.40 0.00 31 30.00 30.00 4.0 96.0 3.8 Ld Co # 92 2.1 (LxW)(in): Rigid 18.00x18.00 50 18.00x18.00 50 12.00x10.00 50 11.75x10.00 50 Ld Co # Loc. (ft) -1 0.00 0.00 -1 0.00 0.00 mm m *RAM Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 3/16 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN - AS BEAM Footing # Length (ft): Width (ft): Thickness (ft): 158 47.50 5.00 4.00 90.00°Footing Orientation (deg): _ Concrete fc(ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 LOADS Surcharge (ksf) Dead Load: 0.11 REINFORCEMENT Top Longitudinal Flexure Reinforcement: Bar Depth (in) Seg. Spacing Num. Start/End (ft) 1 O.OO/ 9.00 2 9.00/30.00 3 30.00/38.00 4 38.00/47.50 Live Load: 0.00 44.00 Bar End Condition Start/End H/S s/s s/s S/H Top Bars 4-#6 20-#6 20-#6 4-#6 Bottom Longitudinal Flexure Reinforcement: Bar Depth (in) Seg. Num. 1 2 3 Spacing Start/End (ft) 0.00/14.00 14.00/38.00 38.00/47.50 43.88 Bar End Condition Start/End H/S S/S S/H Bot Bars 7-#10 20-#10 12-#10 Longitudinal Shear Reinforcement: Number of Shear bar legs: • Seg. Segment Num. Start/End (ft) 1 " 0.00/4.75 2 13.25/20.00 3 20.00/26.25 4 42.62/47.50 Cover (in) Top 3.00 SUPPORTED MEMBERS Columns: Location (10.3-C) (10.3-B.4) (10.3-B) Loc. Along Footing (ft): 9.00 30.50 38.50 Spacing (in) #4@ 6.00 #4@ 6.00 #4@ 6.00 #4@ 6.00 Bottom_ 3.00 Side 3.00 Quantity 10 14 12 10 Size W10X77 W10X77 W10X60 Column Orientation 0.00 0.00 90.00 Base Plate (LxW) (in): 18.00x18.00 18.00x18.00 12.00x12.00 °/c Rigid 5( 5( 5( INTERN/TONAL Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 4/16 Date: 03/09/06 07:50:32 Design Code: ACI318-95 Brace Location (224.00,26.00) (224.00,47.50) CONCRETE CAPACITY Loc. Along Footing (ft): 9.00 30.50 Brace Orientation 0.00 0.00 Longitudinal Ld Co # Req. Max Shear (kip) 339.50 57 Provided Shear (kip) 394.29 Req. Max Pos. Moment (kip-ft) 4288.45 57 Provided Pos. Moment (kip-ft) 4445.65 Req. Max Neg. Moment (kip-ft) -1459.01 53 Provided Neg. Moment (kip-ft) -1674.07 Req. Max Punching Shear (kip) 643.22 37 Provided Punching Shear (kip) 1874.38 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf) Soil Subgrade Modulus (ksf/ ft) Loc. (ft) 42.62 42.62 29.90 29.90 29.90 29.90 9.00 9.00 Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf). 4.0 96.0 3.9 3.4 Transvers Ld Co # Loc. (ft) 0.00 0.00 0.00 0.00 -1 -1 0.00 0.00 0.00 0.00 Ld Co # 94 Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Date: 03/09/06 17:06:45 Design Code: ACI318-95 FOOTING DESIGN - AS BEAM Footing # Length (ft): Width (ft): 161 96.50 6.00 4.00 Footing Orientation (deg):_ 90.00° Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 Thickness (ft): LOADS Surcharge (ksf)Dead Load:0.11 REINFORCEMENT Top Longitudinal Flexure Reinforcement: Bar Depth (in) Seg. Spacing Num. Start/End (ft) 1 0.00/28.00 2 28.00/49.00 3 49.00/57.00 4 57.00/94.00 5 94.00/96.50 Bottom Longitudinal Flexure Reinforcement: Live Load: 0.00 44.00 Bar End Condition Start/End H/Ss/s s/s s/s S/H Rar Depth (in) Seg. Spacing Num. Start/End (ft) 1 O.OO/ 8.00 2 8.00/39.00 3 39.00/57.00 4 57.00/90.00 5 90.00/96.50 Longitudinal Shear Reinforcement: Numripr of Shear hnr legs: 7. Seg. Segment Num. Start/End (ft) 1 6.08/12.00 2 12.00/18.00 3 18.00/23.74 4 32.26/39.00 5 39.00/45.24 6 61.63/62.63 7 62.63/77.00 8 77.00/90.42 Cover fin") TOD 3.00 44.00 Bar End Condition Start/End H/S S/Ss/s s/s S/H Spacing (in) Not Applic. #4@ 6.00 #4@ 6.00 #4@ 6.00 #4@ 6.00 #4@ 6.00 Not Applic. Not Applic. Bottom 3.00 Sid Top Bars 18-#7 18-#7 18-#7 9-#7 5-#7 Bot. Bars 5-#7 18-#7 18-#7 13-#7 5-#7 Quantity None 0 0 0 0 0 None None 3.00 NTERNATO^l Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 2/2 Date: 03/09/06 17:06:45 Design Code: ACI318-95 SUPPORTED MEMBERS Columns: Location (13-D) (13-C) (13 - B.4) (13-B) (13-A) Loc. Along Footing (ft): 2.00 28.00 49.50 57.50 94.50 Size W 10X33 W10X77 W10X77 W10X54 W10X33 Column Orientation 90.00 0.00 0.00 90.00 90,00 Base Plate (LxW) (in): 12.00x12.00 18.00x18.00 18.00x18.00 12.00x12.00 12.00x12.00 % Rigid 50 50 50 50 50 Brace Location (288.00, 26.00) (288.00,47.50) CONCRETE CAPACITY Loc. Along Footing (ft): 28.00 49.50 Brace Orientation 0.00 0.00 Longitudinal Ld Co # Req. Max Shear (kip) 234.74 36 Provided Shear (kip) 444.58 Req. Max Pos. Moment (kip-ft) 1935.80 36 Provided Pos. Moment (kip-ft) 2052.64 Req. Max Neg. Moment (kip-ft) -1826.33 60 Provided Neg. Moment (kip-ft) -2052.64 Req. Max Punching Shear (kip) 592.40 36 Provided Punching Shear (kip) 1893.30 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf). Soil Subgrade Modulus (ksf/ ft) : Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf). Loc. (ft) 32.26 32.26 27.40 27.40 50.10 50.10 28.00 28.00 4.0 96.0 2.5 1.9 Transvers Ld Co # Loc. (ft) 0.00 0.00 0.00 0.00 -1 -1 0.00 0.00 0.00 0.00 Ld Co # 63 Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Date: 03/09/06 17:06:45 Design Code: ACI318-95 FOOTING DESIGN Footing #162 102.50 10.00 5.00 Footing Orientation (deg): _ 90.00° Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 Length (ft): Width (ft): Thickness (ft):. 0.11 LOADS Surcharge (ksf) Dead Load: REINFORCEMENT Top Longitudinal'Flexure Reinforcement: Bar Depth (in) Seg. Spacing Num. Start/End (ft) 1 O.OO/ 5.00 2 5.00/42.00 3 42.00/60.00 4 60.00/74.00 5 74.00/97.00 6 97.00/102.50 Bottom Longitudinal Flexure Reinforcement: Bar Depth (in) Seg. Num. 1 2 3 4 5 Spacing Start/End (ft) O.OO/ 8.00 8.00/51.00 51.00/62.00 62.00/96.00 96.00/102.50 Live Load: 0.00 56.50 Bar End Condition Start/End H/S s/s s/s s/s s/s S/H 56.38 Bar End Condition Start/End H/S S/S s/s s/s S/H Top Bars 7-#7 9-#7 7-#7 30-#7 31-#7 7-#7 Bot. Bars 9-#9 !4-#9 30-#9 45-#9 9-#9 Transverse Flexure Reinforcement: Top Bar Depth (in) Seg. Num. 1 2 3 4 5 6 7 Segment Start/End (ft) 0.00/1.00 LOO/9.00 9.00/38.00 38.00/46.00 46.00/57.00 57.00/64.00 64.00/70.00 70.00/79.00 79.00/93.00 55.63 Bottom Bar Depth (in) Top Bars 2-#5 l-#7 l-#5 l-#5 I-#5 l-#5 l-#5 l-#5 l-#8 55.38 Bot. Bars l-#8 17-#7 63-#7 17-#7 18-#8 15-#7 13-#7 19-#7 Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Page 2/3 Date: 03/09/06 17:06:45 Design Code: ACI318-95 Num. 10 11 Start/End (ft) 93.00/102.00 102.00/102.50 Longitudinal Shear Reinforcement: Number of Shear bar legs: Seg. Num. 1 2 3 4 5 6 7 8 9 Segment Start/End (ft) 7.78/21.00 21.00/34.34 44.66/46.00 46.00/49.00 49.00/52.82 63.18/65.00 65.00/66.71 77.29/84.00 84.00/89.72 Cover (in) Top SUPPORTED MEMBERS Columns: 3.00 Location d-D) (1-B.6) (1-B) (1 - A.6) (1-A) Brace Location (0.00, 0.00) (0.00, 69.50) (0.00, 92.50) CONCRETE CAPACITY Loc. Along Footing (ft): 5.00 42.00 60.50 74.50 97.50 Loc. Along Footing (ft): 5.00 74.50 97.50 l-#7 l-#8 Spacing (in) Not Applic. Not Applic. Not Applic. Not Applic. Not Applic. Not Applic. Not Applic. Not Applic. Not Applic. Bottom_ 3.00 Brace Orientation 0.00 0.00 0.00 19-#7 l-#5 Quantity None None None None None None None None None Side 3.00 Size W10X77 W10X54 W10X68 W10X88 W10X88 Column Orientation 90.00 0.00 0.00 0.00 0.00 Base Plate (LxW) (in): 18.00x18.00 12.00x12.00 12.50x12.25 18.00x18.00 18.00x18.00 % Rigid 50 50 50 50 50 Req. Max Shear (kip) Provided Shear (kip) Req. Max Pos. Moment (kip-ft) Provided Pos. Moment (kip-ft) Req. Max Neg. Moment (kip-ft) Provided Neg. Moment (kip-ft) Req. Max Punching Shear (kip) Provided Punching Shear (kip) gitudinal 499.45 629.91 10432.69 10522.56 -4424.48 -4544.28 704.09 2919.74 LdCo# 61 61 57 37 Loc. (ft) 92.20 92.20 73.90 73.90 75.10 75.10 74.50 74.50 Transvers 797 9201 -152 -153 .96 .92 ,55 .50 LdCo# 35 30 Loc. (ft 9.0( 9.0( 0.0( 0.0( INTEENAnOJAL Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase; Ventana RealJREV_6 Building Code: UBC1 Page 3/3 Date: 03/09/06 17:06:45 Design Code: ACI318-95 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf). Soil Subgrade Modulus (ksf/ ft) Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf). 4.0 96.0 3.6 1.8 Ld Co # 90 Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 11/16 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN Footing # Length (ft): Width (ft): Thickness (ft): 164 48.00 (11 - 9.5012 = 9.00) 9.00 5.00 90.00°Footing Orientation (deg): _ Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 LOADS Surcharge (ksf)Dead Load:0.11 REINFORCEMENT Top Longitudinal Flexure Reinforcement: Bar Depth (in) _ Seg. Spacing Num. Start/End (ft) 1 O.OO/ 9.00 2 9.00/31.00 3 31.00/39.00 4 39.00/48.00 Bottom Longitudinal Flexure Reinforcement: Bar Depth (in) _ Seg. Num. 1 2 3 Spacing Start/End (ft) 0.00/16.00 16.00/38.00 38.00/48.00 Live Load: 0.00 56.63 Bar End Condition Start/End H/S s/s s/s S/H 56.50 Bar End Condition Start/End H/S S/S S/H Top Bars 7-#5 25-#5 24-#5 7-#5 Bot Bars 13-#8 28-#8 19-#8 Transverse Flexure Reinforcement: Top Bar Depth (in) Seg. Segment Num. Start/End (ft) 1 0.00/5.00 2 5.00/14.00 3 14.00/27.00 4 27.00/35.00 5 35.00/43.00 6 43.00/48.00 56.00 Bottom Bar Depth (in) Top Bars l-#6 l-#6 l-#6 l-#5 l-#5 55.50 Bot. Bars 14-#6 20-#7 28-#7 23-#6 23-#6 11-#7 Longitudinal Shear Reinforcement: Number of Shear bar legs: 2 Seg. Segment Num. Start/End (ft) 1 0.00/4.21 2 14.79/17.00 Spacing (in) Not Applic. Not Applic. Quantity None None INliB continuous RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real REV_6 Building Code: UBC1 Num. Start/End (ft) 3 17.00/21.00 4 21.00/25.71 5 44.07/48.00 Cover (in) Top 3.00 inundation Liesign (in) Not Applic. Not Applic. Not Applic. Bottom 3.00 Side Page 12/16 Date: 03/09/06 07:50:32 Design Code: ACI3 18-95 Quantity None None None . 3.00 SUPPORTED MEMBERS Columns: Location (5.7 - C) (5.7 - B.4) (5.7 - B) Brace Location (113.33,26.00) (113.33,47.50) CONCRETE CAPACITY Loc. Along Footing (ft): 9.50 31.00 39.00 Loc. Along Footing (ft): 9.50 31.00 Size W10X77 W10X77 W10X54 Column Orientation 0.00 0.00 90.00 Base Plate % (LxW)(in): Rigid 18.00x18.00 50 18.00x18.00 50 12.00x12.00 50 Brace Orientation 0.00 0.00 Longitudinal Ld Co # Req. Max Shear (kip) 390.15 57 Provided Shear (kip) 568.17 Req. Max Pos. Moment (kip-ft) 5189.71 57 Provided Pos. Moment (kip-ft) 5384.16 Req. Max Neg. Moment (kip-ft) -1853.58 53 Provided Neg. Moment (kip-ft) -1926.95 Req. Max Punching Shear (kip) 557.59 37 Provided Punching Shear (kip) 2928.36 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf) Soil Subgrade Modulus (ksf / ft) Loc. (ft) 44.17 44.17 30.40 30.40 30.40 30.40 9.50 9.50 Transvers Ld Co # Loc. (ft) 339.31 1504.98 -111.21 -110.71 61 32 0.00 0.00 0.00 0.00 Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) 4.0 96.0 2.3 1.8 Ld Co # 94 Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 13/16 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN - AS BEAM Footing # Length (ft): _ Width (ft): Thickness (ft): 200 100.33 5.00 4.00 0.00°Footing Orientation (deg): _ Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pcf): 145.00 EC (ksi): 3155.92 Reinf. fy (ksi): 60.00 0.11 LOADS Surcharge (ksf) Dead Load: REINFORCEMENT Top Longitudinal Flexure Reinforcement: Bar Depth (in) Seg. Spacing Num. Start/End (ft) 1 O.OO/ 9.00 2 9.00/41.00 3 41.00/73.00 4 73.00/91.00 5 91.00/100.33 Bottom Longitudinal Flexure Reinforcement: Live Load: 0.00 44.00 Bar End Condition Start/End H/S S/Ss/s s/s S/H Bar Depth (in)-T \ / Seg. Num. 1 2 3 4 Longitudinal Spacing Start/End (ft) 0.00/14.00 14.00/57.00 57.00/84.00 84.00/100.33 Shear Reinforcement: 43.88 Bar End Condition Start/End H/S S/S s/s S/H Number of Shear bar teas: 7 Seg. Num. 1 2 3 4 5 6 7 8 9 10 11 — — t? • Segment Start/End (ft) O.OO/ 5.25 13.75/21.00 21.00/25.00 25.00/30.00 30.00/37.25 45.75/51.00 51.00/56.00 56.00/60.00 60.00/65.00 65.00/69.39 77.61/78.61 Spacing (in) #4@ 6.00 #4@ 6.00 Not Applic. Not Applic. #4@ 6.00 #4@ 6.00 #4@ 6.00 #4@ 6.00 #4@ 6.00 #4@ 6.00 #4@ 6.00 Top Bars 4-#7 12-47 12-#7 4-#7 4-#7 Bot. Bars 9-#9 17-#9 7-#9 4-#9 Quantity 11 15 None None 14 11 10 8 10 8 3 itlRAMNTERN/J1CNM continuous RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Num. Start/End (ft) 12 78.61/83.00 13 83.00/86.72 14 94.95/100.33 Cover CirA Ton 3.00 foundation tiesign (in) Not Applic. Not Applic. Not Applic. Bottom 3.00 Side Page 14/16 Date: 03/09/06 07:50:32 Design Code: ACI3 18-95 Quantity None None None . 3.00 SUPPORTED MEMBERS Columns: Location (23 - B) (3.6 - B) (5-B) (5.7 - B) Loc. Along Footing (ft): 9.50 41.50 73.50 90.83 Size W10X77 W10X77 W10X49 W10X54 Column Orientation 0.00 0.00 -90.00 0.00 Base Plate (LxW) (in): 18.00x18.00 18.00x18.00 12.00x12.00 12.00x12,00 % Rigid 50 50 50 50 Brace Location (32.00, 55.50) (64.00, 55.50) CONCRETE CAPACITY Loc. Along Footing (ft): 9.50 41.50 Brace Orientation 0.00 0.00 Longitudinal Ld Co # Req. Max Shear (kip) 280.59 54 Provided Shear (kip) 394.29 Req. Max Pos. Moment (kip-ft) 3002.04 54 Provided Pos. Moment (kip-ft) 3101.44 Req. MaxNeg. Moment (kip-ft) -1015.17 58 Provided Neg. Moment (kip-ft) -1379.86 Req. Max Punching Shear (kip) 672.84 30 Provided Punching Shear (kip) 1879.10 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf) Soil Subgrade Modulus (ksf/ ft) Max Unfactore'd Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Loc. (ft) 45.75 45.75 40.90 40.90 42.10 42.10 41.50 41.50 4.0 96.0 3.8 2.9 Transvers Ld Co # Loc. (ft) 0.00 0.00 0.00 0.00 -1 -1 0.00 0.00 0.00 0.00 LdCo#107 Continuous Foundation Design RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 15/16 Date: 03/09/06 07:50:32 Design Code: ACI318-95 FOOTING DESIGN - AS BEAM Footing # Length (ft): Width (ft): Thickness (ft): 201 100.00 4.00 4.00 0.00°Footing Orientation (deg): _ Concrete fc (ksi): 3.00 fct (ksi): CODE Density (pci): 145.00 EC (ksi): 3155.92 Reinf. fy(ksi): 60.00 LOADS Surcharge (ksf) Dead Load: 0.11 REINFORCEMENT Top Longitudinal Flexure Reinforcement: Bar Depth (in) Seg. Spacing Num. Start/End (ft) 1 O.OO/ 9.00 2 9.00/27.00 3 27.00/59.00 4 59.00/91.00 5 91.00/100.00 Bottom Longitudinal Flexure Reinforcement: Live Load: 0.00 44.00 Bar End Condition Start/End H/S S/S s/s s/s S/H Bar Depth (in)r v / Seg. Num. 1 2 3 4 Longitudinal Spacing Start/End (ft) 0.00/16.00 16.00/42.00 42.00/74.00 74.00/100.00 Shear Reinforcement: 44.00 Bar End Condition Start/End H/S S/S s/s S/H Nnmher nf Shear hnr IKPS- ? Seg. Num. 1 2 3 4 5 6 7 8 9 10 11 <^ — _— . . Segment Start/End (ft) 0.00/4.88 13.12/16.33 16.33/18.00 18.00/19.54 19.54/21.00 21.00/22.74 31.26/39.00 39.00/45.00 45.00/50.00 50.00/54.74 63.26/68.00 Spacing (in) #4@ 9.00 #4@9.00 Not Applic. #4@ 9.00 #4@ 9.00 #4@ 9.00 #4@ 9.00 #4@ 9.00 #4@ 9.00 #4@9.00 #4@ 9.00 Top Bars 4-#7 12-#7 12-#7 12-#7 4-#7 Bot. Bars i-m 12-#8 14-#8 8-#8 Quantity 7 5 None 2 1 2 11 8 6 6 7 INRAMMEfNATCHy continuous i^ounaanon resign RAM Foundation v9.0 Margaret Coffey, PE; C-G Engineer! DataBase: Ventana Real_REV 6 Building Code: UBC1 Num. 12 13 14 15 16 Cov SUPPORTED Start/End (ft) 68.00/73.00 73.00/77.00 77.00/81.00 81.00/86.88 95.12/100.00 er (in) Top 3.00 MEMBERS ns (in) #4@ 9.00 Not Applic. Not Applic. #4@ 9.00 #4@ 9.00 Bottom 3.00 Page 16/16 Date: 03/09/06 07:50:32 Design Code: ACI3 18-95 Side 3.00 Quantity 6 None None 7 7 Columns: Location (7- (7.6 (9- (10. B) -B) B) 3-B) Loc. Along Footing (ft): 9.00 27.00 59.00 91.00 Size W10X49 W10X77 " W10X77 W10X60 Column Orientation 0.00 0.00 0.00 0.00 Base Plate (LxW) (in): 12.00x12.00 18.00x18.00 18.00x18.00 12.00x12.00 % Rigid 50 50 50 50 Brace Location (160.00,55.50) (192.00,55.50) CONCRETE CAPACITY Loc. Along Footing (ft): 27.00 59.00 Brace Orientation 0.00 0.00 Longitudinal Ld Co # Req. Max Shear (kip) 268.33 30 Provided Shear (kip) 296.39 Req. Max Pos. Moment (kip-ft) 2011.67 30 Provided Pos. Moment (kip-ft) 2054.96 Req. Max Neg. Moment (kip-ft) -1175.06 54 Provided Neg. Moment (kip-ft) -1368.42 Req. Max Punching Shear (kip) 0.00 -1 Provided Punching Shear (kip) 0.00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf) Soil Subgrade Modulus (ksf/ ft) Loc. (ft) 63.26 63.26 59.60 59.60 26.40 26.40 0.00 0.00 Transvers Ld Co # Loc. (ft) 0.00 0.00 0.00 0.00 -1 -1 0.00 0.00 0.00 0.00 Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf). 4.0 96.0 4.0 3.5 Ld Co # 63 Chavez-Grieves consulting engineers, inc. 5639 Jefferson Street NE, Suite I • Albuquerque, NM 87109 Phone: 505.344.4080 • Fax: 505.343.8759 SHEET NO. JOB OF SUBJECT CLIENT _JOB NO. CHECKED BY. DATE DATE \AII0x80 1 Z Frame Reaction Envelope RAM Frame vlO.O Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 03/09/06 11:27:51 Building Code: UBC1 CRITERIA: Rigid End Zones: Ignore Effects Member Force Output: At Face of Joint P-Delta: No Diaphragm: Rigid Ground Level: Base Wall Mesh Criteria: Max. Allowed Distance between Nodes (ft) : 8.00 LOAD COMBINATION CRITERIA: Roof Live Load: Unreducible Cal 0.440 LOAD CASE DEFINITIONS: D DeadLoad RAMUSER Lp PosLiveLoad RAMUSER Ln NegLiveLoad RAMUSER Rfp PosRoofLiveLoad RAMUSER Wl Wind Wind_UBC97_l_X W2 Wind Wind_UBC97_l_Y El Seismic EQ_UBC97_X^+E_F Rho - 1.20 E2 Seismic EQ_UBC97J?T-E__F Rho - 1.18 E3 Seismic EQ_UBC97_Y_+E_F Rho = 1.11 E4 Seismic EQJJBC97_Y^-E_F Rho- 1.34 LOAD COMBINATIONS: UBC 97 LRFD 1 * 1.400D 2 * 1.200 D + 1.600 Lp + 0.500 Rfp 3 * 1.200 D + l.600 Lp 4 * 1.200 D+l.600 Ln 5 * 1.200 D + 0.500 Lp + 1.600 Rfp 6 * 1.200 D+1.600 Rip 7 * 1.200 D + 1.600 R$ + 0.800 Wl 8 * 1.200 D + 1.600 Rfp + 0.800 W2 9 * 1.200 D + 1.600 RiJ> - 0.800 Wl 10 * 1.200D + l.600Rfp-0.800 W2 11 * 1.200 D + 0.500 Lp + 0.500 Rfp + 1-300 Wl 12 * 1.200 D + 0.500 Lp + 0.500 R§> + 1.300 W2 13 * 1.200 D + 0.500 Lp + 0.500 Rfp - 1.300 Wl 14 * 1.200 D + 0.500 Lp + 0.500 Rfy - 1.300 W2 15 * 1.200 D + 0.500 Lp + 1.300 Wl 16 * 1.200 D + 0.500 Lp + 1.300 W2 17 * 1.200 D + 0.500 Lp - 1.300 Wl 18 * 1.200 D + 0,500 Lp - 1.300 W2 19 * 1.200 D + 0.500 Ln + 1.300 Wl 20 * 1.200 D + 0.500 Ln + 1.300 W2 inRAM • (NJTEflMATlGf^W. 21 22 23 24 25 26 27 28 29 30 31 32 33- 34 35 36 37 38 39 40 • 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 • 62 63 64 65 66 Frame Reaction Envelope RAM Frame vlO.O Page 2/5 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 03/09/06 1 1 :27:51 BuildineCodeiTJRCl * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * — .^ — — — — — — 1. 200 D + 0.500 Ln-l. 300 Wl 1. 200 D + 0.500 Ln-1. 300 W2 1.200 D + 0.500 Rfp + 1.300 Wl 1 .200 D + 0.500 Rfp + 1.300 W2 1.200 D + 0.500 Rfi> - 1.300 Wl 1.200 D + 0.500 Rfp - 1.300 W2 1. 200 D + l. 300 Wl 1. 200 D+l. 300 W2 1. 200 D-l. 300 Wl 1. 200 D-l. 300 W2 0.900 D+l. 300 Wl 0.900 D + l. 300 W2 0.900 D-l. 300 Wl 0.900 D- 3. 300 W2 1.420 D + 0.500 Lp+ 1.203 El 1.420 D + 0.500 Lp+1. 184 E2 1.420 D + 0.500 Lp + 1.106 E3 1. 420 D + 0.500 Lp+1. 343 E4 1. 420 D + 0.500 Lp- 1.203 El 1. 420 D + 0.500 Lp- 1.184E2 1.420 D + 0.500 Lp- 1.106 E3 1. 420 D + 0.500 Lp-1. 343 E4 1. 420 D + 0.500 Ln+ 1.203 El 1.420D + 0.500Ln+ 1.184 E2 1.420 D + 0.500 Ln+ 1.106 E3 1. 420 D + 0.500 Ln+1. 343 E4 1. 420 D + 0.500 Ln-1. 203 El 1.420 D + 0.500 Ln-1. 184 E2 1.420 D + 0.500 Ln-1. 106 E3 1. 420 D + 0.500 Ln-1. 343 E4 1.420 D + l. 203 El 1.420 D+l. 184 E2 1.420 D + l. 106 E3 1.420 D + l. 343 E4 1.420 D-l. 203 El 1.420 D-l. 184 E2 1.420 D-l. 106 E3 1,420 D-l. 343 E4 0.680 D + l. 203 El 0.680D + 1.184 E2 0.680 D + l. 106 E3 0.680 D+l. 343 E4 0.680 D- 1.203 El 0.680 D-l. 184 E2 0.680 D-l. 106 E3 0.680 D-l. 343 E4 Frame Reaction Envelope RAM Frame vl 0.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 3/5 03/09/06 11:27:51 * = Load combination currently selected to use REACTION MAXIMA AND MINIMA: Frame #1: Node 69 70 Max: LC: Min: LC: Max: LC: Min: LC: Rx kips 246.48 39 -142.25 59 141.37 63 -248.77 35 Ry kips 0.57 66 -0.61 38 0.54 66 -0.59 38 Rz kips 667.37 39 -163.01 59 681.81 35 -157.51 63 Mxx kip-ft 8.84 38 -8.67 66 8.56 38 -8.32 66 Myy kip-ft 19.18 39 -18.74 59 19.18" 39" -18.74 59 Tzz kip-ft 0.00 35 -0.00 63 0.00 35 -0.00 63 Frame #2: Node 74 76 Max: LC: Min: LC: Max: LC: Min: LC: Rx kips 249.46 39 -141.21 59 141.56 63 -248,55 35 Ry kips 0.45 66 -0.54 38 0.41 66 -0.53 38 Rz kips 600.66 39 -190.75 59 677.79 35 -158.21 63 Mxx kip-ft 7.74 38 -7.27 66 7.46 38 -6.92 66 Myy kip-ft 19.18 39 -18.74 59 19.18 39 -18.74 59 Tzz kip-ft 0.00 35 -0.00 63 0.00 35 -0.00 63 Frame #3: Node 65 68 Max: LC: Min: LC: Max: LC: Min: LC: Rx kips 156.44 40 -119.29 60 119.31 64 -156.37 36 Ry kips 0.16 62 -0.17 42 0.15 62 -0.17 42 Rz kips 451.63 40 -238.46 60 461.08 36 -234.29 64 Mxx kip-ft 0.00 1 0.00 1 0.00 1 0.00 1 Myy kip-ft 0.00 1 0.00 1 0.00 1 0.00 1 Tzz kip-ft 0.00 35 -0.00 63 0.00 35 -0.00 63 Frame #4: Node 73 Max: Rx kips 167.30 Ry kips 0.14 Rz kips 411.40 Mxx kip-ft 0.00 Myy kip-ft 0.00 Tzz kip-ft 0.00 IN:mt'NTHNfllONALl R Node 75 Frame #5: Node 66 67 Frame #6: Node 71 72 Frame #7: Node 77 78 trame KeactK>n n-nve ope \MFramevlO.O argaret Coffey, PE; C-G Engineering ataBase: Ventana Real_REV_6 uilding Code: UBC1 LC: Min: LC: Max: LC: Min: LC: Max: LC: Min: LC: Max: LC: Min: LC: Max: LC: Min: LC: Max: LC: Min: LC: Max: LC: Min: LC: Max: LC: Rx 40 -126.15 60 126.60 64 -166.16 36 Rx kips 0.14 35 -0.11 63 0.15 35 -0.11 63 Rx kips 0.10 35 -0.09 63 0.11 35 -0.09 63 Rx kips 0.10 35 -0.09 63 0.11 35 Ry 62 -0.19 42 0.14 62 -0.20 42 Ry kips 268.10 42 -235.17 62 235.51 66 -267.23 38 Ry kips 180.08 42 -153.04 62 152.89 66 -180.42 38 Ry kips 175.27 42 -128.12 62 127.70 66 Rz 40 -254.39 60 449.33 36 -237.59 64 Rz kips 718.34 42 -565.31 62 699.79 38 -572.17 66 Rz kips 567.06 42 -372.60 62 494.12 38 -404.68 66 Rz kips 652.44 42 -263.48 62 483.82 38 Mxx i 0.00 1 0.00 1 0.00 1 Mxx kip-ft 0.00 1 0.00 1 0.00 1 0.00 1 Mxx kip-ft 0.00 1 0.00 1 0.00 1 0.00 1 Mxx kip-ft 0.00 1 0.00 1 0.00 1 Myy 1 0.00 1 0.00 1 0.00 1 Myy kip-ft 0.00 1 0.00 1 0.00 1 0.00 1 Myy kip-ft 0.00 1 0.00 1 0.00 1 aoo i Myy kip-ft 0.00 1 0.00 1 0.00 1 Page 4/5 03/09/06 11:27:51 Tzz 35 -0.00 63 0.00 35 -0.00 63 Tzz kip-ft 0.00 35 -0.00 63 0.00 35 -0.00 63 Tzz kip-ft 0.00 35 -0.00 63 0.00 35 -0.00 63 Tzz kip-ft 0.00 35 -0.00 63 0.00 35 INRAMNTERNWOsW Frame Reaction Envelope RAM Frame vl 0.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real REV 6 Building Code: UBC1 Node Rx Ry Rz Min: -0.09 -176.32 -338.13 LC: 63 38 66 Mxx 0.001 Myy 0.00 1 Tzz -0.00 63 Page 5/5 03/09/06 11:27:51 Frame #8: Node 79 80 Max: LC: Min: LC: Max: LC: Min: LC: Rx kips 0.45 39 -0.43 59 0.47 39 -0.44 59 Ry kips 169.93 41 -139.84 61 140.19 65 -168.99 37 Rz kips 597.06 41 -303.76 61 434.25 37 -374.68 65 Mxx kip-ft 21.74 37 -19.79 65 22.03 37 -19.73 65 Myy kip-ft 6.30 39 -6.21 59 6.58 39 -6.42 59 Tzz kip-ft 0.00 35 -0.00 63 0.00 35 -0.00 63 Frame Reaction Envelope RAM Frame vlO.O Margaret Coffey, PE; C-G Engineering DataBase: Ventana RealJUEV_6 03/09/06 11:31:22 Building Code: UBC1 CRITERIA: Rigid End Zones: Ignore Effects Member Force Output: At Face of Joint | .--> \ f /jyu P-Deita: No IXJ^^ Diaphragm: Rigid -RjV Ground Level: Base ]U* Wall Mesh Criteria : Max. Allowed Distance between Nodes (ft): 8.00 LOAD CASE DEFINITIONS: D DeadLoad RAMUSER Lp -. PosLiveLoad RAMUSER Ln • NegLiveLoad RAMUSER - El Seismic EQ_UBC97_X_+E_F E2 Seismic EQJJBC97_X_-E_F E3 Seismic EQJJBC97_Y_+E_F E4 Seismic EQJJBC97_Y_-E_F LOAD COMBINATIONS: - None - 1 * 1.200 D + 2.200 El 2 * 1.200 D +2.200 E2 3 * 1.200 D + 2.200 E3 4 * 1.200 D +2.200 E4 5 * 1.200 D-2.200 El 6 * 1.200 D- 2.200 E2 7 * 1.200 D- 2.200 E3 8 * 1.200 D- 2.200 E4 9 * 1.200 D + 0.500 Lp + 2.200 El 10 * 1.200 D + 0.500 Lp + 2.200 E2 11 * 1.200 D + 0.500 Lp + 2.200 E3 12 * 1.200 D + 0.500 Lp + 2.200 E4 13 * 1.200 D + 0.500 Lp - 2.200 El 14 * 1.200 D + 0.500 Lp - 2.200 E2 15 * 1.200 D + 0.500 Lp - 2.200 E3 16 * 1.200 D + 0.500 Lp - 2.200 E4 17 * 1.200 D + 0.500 Ln + 2.200 El 18 * 1.200 D + 0.500 Ln + 2.200 E2 19 * 1.200 D + 0.500 Ln + 2.200 E3 20 * 1.200 D + 0.500 Ln + 2.200 E4 21 * 1.200 D + 0.500 Ln - 2.200 El 22 * 1.200 D + 0.500 Ln - 2.200 E2 23 * 1.200 D + 0.500 Ln - 2.200 E3 24 * 1.200 D + 0.500 Ln - 2.200 E4 25 * 0.900 D +2.200 El 26 * 0.900 D + 2.200 E2 27 * 0.900 D +2.200 E3 MI frame Reaction envelope RAM Frame vlO.O Margaret CofTey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Page 2/4 03/09/06 11:31:22 28 * 0.900 D + 2.200 E4 29 * 0.900 D- 2.200 El 30 * 0.900 D- 2.200 E2 31 * 0.900 D - 2.200 E3 32 * 0.900 D- 2.200 E4 * == Load combination currently selected to use REACTION MAXIMA AND MINIMA: Frame #1: Node 69 70 Max: LC: Min: LC: Max: LC: Min: LC: Rx kips . 378.88 13 -274.65 25 273.49 29 -380.89 9 Ry kips 0.94 32 -0.98 12 0.89 32 -0.94 12 Rz kips 877.22 13 -372.86 25 889.89 9 -365.59 29 Mxx kip-ft 14.39 12 -14.21 32 13.89 12 -13.64 32 Myy kip-ft 34.79 13 -34.35 25 34.79 13 -34.35 25 Tzz kip-ft 0.00 9 -0.00 29 0.00 9 -0.00 29 Frame #2: Node 74 76 Max: LC: Min: LC: Max: LC: Min: LC: Rx kips 381.54 13 -273.29 25 273.75 29 -380.74 9 Ry kips 0.75 31 -0.85 11 0.76 31 -0.87 11 Rz kips 819.48 13 -409.57 25 886.09 9 -366.51 29 Mxx kip-ft 12.77 11 -12.30 31 13.16 11 -12.62 31 Myy kip-ft 34.79 13 -34.35 25 34.79 13 -34.35 25 Tzz kip-ft 0.00 9 -0.00 29 0.00 9 -0.00 29 Frame #3: Node 65 68 Max: LC: Min: LC: Max: LC: Min: Rx kips 264.58 14 -227.43 26 227.46 30 -264.52 Ry kips 0.26 28 -0.27 16 0.25 28 -0.27 Rz kips 690.30 14 -477.12 26 698.40 10 -471.60 Mxx kip-ft 0.00 1 0.00 1 0.00 1 0.00 Myy kip-ft 0.00 1 0.00 1 0.00 1 0.00 Tzz kip-ft 0.00 9 -0.00 29 0.00 9 -0.00 INMM NTBNfllONAL RAM Frame vlO.O Margaret Coffey, PE; C- DataBase: Ventana Real Building Code: UBC1 Node LC: Rx 10 *rame Keaction envelope G Engineering _REV_6 Ry 16 Rz 30 Mxx 1 Myy. 1 Page 3/4 03/09/06 11:31:22 Tzz 29 Frame #4: Node 73 Max: 75 LC: Min: LC: Max: 1C: Min: LC: Rx kips 281.87 14 -240.71 26 241.31 30 -280.87 10 Ry kips 0.24 27 -0.30 15 0.25 27 -0.31 15 Rz kips 654.46 14 -497.44 26 686.94 10 -475.20 30 Mxx kip-ft 0.00 1 o.oo 1 0.00 1 o.oo I Myy kip-ft 0.00 1 0.00 1 0.00 1 . 0.00 1 Tzz kip-ft 0.00 9 -0.00 29 0.00 9 -0.00 29 Frame #5: Node 66 Max: 67 LC: Min: LC: Max: LC: Min: LC: Rx kips 0.24 9 -0.21 29 0.25 9 -0.21 29 Ry kips 421.13 16 -388.19 28 388.65 32 -420.37 12 Rz kips 1093.08 16 -940.06 28 1076.75 12 -949.13 32 Mxx kip-ft o.oo 1 0.00 1 0.00 1 0.00 1 Myy kip-ft 0.00 1 0.00 1 0.00 1 0.00 1 Tzz kip-ft 0.00 9 -0.00 29 0.00 9 -0.00 29 Frame #6: Node 71 Max: 72 LC: Min: LC: Max: LC: Min: LC: Rx kips 0,18 10 -0.17 30 0.19 9 -0.18 29 Ry kips 280.08 16 -253.04 28 252.85 32 -280.39 12 Rz kips 822.81 16 -628.35 28 760.25 12 -670.81 32 Mxx kip-ft 0.00 1 0.00 1 0.00 1 0.00 1 Myy kip-ft 0.00 1 0.00 1 0.00 1 0.00 1 Tzz kip-ft 0.00 9 -0.00 29 0.00 9 -0.00 29 Frame #7: Node 77 Max: Rx kips 0.18 Ry kips 305.27 Rz kips 973.74 Mxx kip-ft 0.00 Myy kip-ft 0.00 Tzz kip-ft 0.00 it!RAM NTIRKW1CNA1 Frame Keaction envelope RAM Frame vl 0.0 Margaret Coffey, PE; C-G Engineering DataBase: Ventana Real_REV_6 Building Code: UBC1 Node LC: Min: LC: 78 Max: LC: Min: LC: Rx 10 -0.17 30 0.19 9 -0.18 29 Ry 15 -258.12 27 257.56 31 -306.18 11 Rz 15 -584.78 27 829.27 11 -683.58 31 Mxx 1 0.00 1 0.00 1 0.00 1 Myy 1 0.00 1 0.00 1 0.00 1 Page 4/4 03/09/06 11:31:22 Tzz 9 -0.00 29 0.00 9 -0.00 29 Frame #8: Node 79 80 Max: LC: Min: LC: Max: LC: Min: LC: Rx kips 0.81 14 -0.79 26 0.84 13 -0.81 25 Ry kips 313.91 15 -283.82 27 284.29 31 -313.08 11 Rz kips 956.37 15 -663.07 27 816.50 11 -756.93 31 Mxx kip-ft 41.69 11 -39.74 31 41.97 11 -39.67 31 Myy kip-ft 11.49 14 -11.40 26 11.92 13 -11.76 25 Tzz kip-ft 0.00 9 -0.00 29 0.00 9 -0.00 29 Chavez-Grieves (oniuhinQ engineers, inc. 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE, NM 87109 PHONE: (505) 344-4060 FAX: (505) 343-8759 __ SHEET NO. 1 PROJECT Ventana SUBJECT Braced Frame 1 CLIENT CALCULATED BY GR CHECKED BY OF JOB NO. A27-21Q-05 DATE Mar-06 DATE ANCHOR BOLT GROUP DESIGN [UBC '97] USER DEFINED DATA STATUS =0.89 f c = 3000 psi Concrete type; Fu = 58 ksi Fy = 36 ksi R? Special Inspection Provided H Bolts in an area of cracking f c reduction factor: 1.00 LOAD DATA *no eccentricity Tu B 373 k Vu = 274 k DESIGN SUMMARY SI Factor =1.3 OK c2' i \ i c2 \ CC v t i \ NCRF K Cl _TE DATA C 3 D i •s s V C r 1 ) Cl" DIMENSION DATA c1 = concrete edge = 23 in c1 ' = concrete edge = 23 in c2 = concrete edge = 60 in c2' = concrete edge = 1 20 in s1 = bolt spacing = 14 Sin s2 - bolt spacing - 38 g in BOLT DATA n = total number of bolts = 8 |j hef = bolt embedment = 32 |j in d = bolt size = 11/2 in BoItTvoe-l ASTMF1554(36) M 0.65 TENSION: Bolt Strength in Tension Concrete Breakout Strength in Tension SHEAR: Bolt Strength in Shear Concrete Breakout Strength in Shear INTERACTION: Pu/*Pc = Vu/*Vc = 1 /* ((Pu/Pc)A1.67 + (Vu/Vc )A1.67) = CAP./ S( Factor 567 > 1031 > 473 > 476 > 0.56 < 0.89 < 0.89 < DEMAND 373 373 274 274 1 1 1 OK OK OK (Pu/Pss)ft2 + (Vu/Vss)A2 =0.77 OK Chavez-Grieves• consulting engineers, inc. 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE. NM B7109 PHONE: (505) 344-4060 FAX: (505) 343-6759 SHEET NO. 2 PROJECT Ventana SUBJECT Braced Frame 1 CLIENT 0 CALCULATED BY GR CHECKED BY D OF JOB NO. A27-210-05 DATE Mar-06 DATE 0 ANCHOR BOLT GROUP DESIGN [UBC '97] PG. 2 ANALYSIS BOLT STRENGTH IN TENSION Pss = 0.9*Ab*Fu*n =738 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = A *4*Ap 1341 k where: Ap= 6120 inA2 BOLT STRENGTH IN SHEAR Vss = 0.75*Ab*fut*n = 615 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = A *800«Ab*619 k 10d of free edge PC = 2*phi*c2A2*A*(f c)A0.5*n NA k 10d of free edge Chavez-Grievesengineer], int. SHEET NO. 1 OF 2 PROJECT Verrtana SUBJECT Braced Frame 2 CLIENT JOB NO. CALCULATED BY GR DATE CHECKED BY DATE A27-210-05 J;arH)5 4700 LINCOLN STREET ME SUITE 102 ALBUQUERQUE. NM 87109 PHONE: (505) 344-4080 FAX (505) 343-8759 ANCHOR BOLT GROUP DESIGN [UBC '97] USER DEFINED DATA STATUS = 1.03 NG c2' s2 \ C2\ V Q 0 i o < C1 0 V 0 r O < s1 ^1 CONCRETE DATA f c = 3000 psi Concrete type: 1^0^31 Weight f c reduction factor: 1.00 LOAD DATA *no eccentricity Tu = Vu = 410k 273k DIMENSION DATA c1 = concrete edge = 17 d' = concrete edge = 17 c2 = concrete edge = 150 c2'= concrete edge = 150 s1 = bolt spacing = 14 | s2 = bolt spacing = 38 f BOLT DATA n = total number of bolts = 8 \ hef = bolt embedment - 36 | d = bolt size = 1 1/2 Bolt Type: L Fu = Fy = I? Special Inspection Provided P Bolts in an area of cracking SI Factor = 58 36 ksi ksi 1.3 DESIGN SUMMARY 0.65 TENSION: Bolt Strength in Tension Concrete Breakout Strength in Tension SHEAR: Bolt Strength in Shear Concrete Breakout Strength in Shear INTERACTION: Pu/*Pc = Vu/*Vc = 1 /* ((Pu/Pc)A1.67 +• (Vu/Vc )A1.67) = CAP./ SI Factor 567 > 890 > 473 > 476 > 0.71 < 0.88 < 1.03 > DEMAND 410 410 273 273 1 1 1 OK OK NG (Pu/Pss)A2 + (Vu/Vss)A2 =0.86 OK Chavez-Grieves consulting engineers, int. 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE. NM 87109 PHONE: (SOB) 344-4080 FAXJ505) 343-8759 SHEET NO. 2 PROJECT Ventana SUBJECT Braced Frame 2 CLIENT 0 CALCULATED BY GR CHECKED BY 0 OF JOB NO. A27-210-05 DATE Jao-06 DATE 0 ANCHOR BOLT GROUP DESIGN [UBC '97] PG. 2 ANALYSIS BOLT STRENGTH IN TENSION I Pss = 0,9'Ab*Fu'n = 738 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = X *4*Ap*(f c/O.S = 1157 k where: Ap = 5280 inA2 BOLT STRENGTH IN SHEAR Vss = 0.75Wfut*n = 615 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = A *800*Ab*(fc)A0.5*n = 619 k PC = 2*phi*c2A2*X*(f cr0.5*n NA k > 10d of free edge < 10d of free edge Chavez-erieves consulting engineers, inc. SHEET NO, 1 PROJECT Verttana SUBJECT Braced Frame 3 CUEMT CALCULATED BY GR CHECKED BY OF JOB NO. A27-21D-05 DATE Jan-05 DATE 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE. NM 87109 PHONE: (505) 344-4060 FAX (505) 343-8759 ANCHOR BOLT GROUP DESIGN [UBC '97] USER DEFINED DATA STATUS a 0.85 OK c2' \ s2 \ i C2 f 0 0 i o c1 ^ 0 V 0 r O s1 •- d" CONCRETE DATA f c = 3000 psi Concrete type: f c reduction factor: 1.00 LOAD DATA *no eccentricity Tu = 447 k Vu ~ 227 k DIMENSION DATA c1 = concrete edge = 41 in c1' = concrete edge = 41 in c2 = concrete edge = 90 in c2' = concrete edge = 90 in s1 - bolt spacing = 14 || in s2 = boJt spacing = 42 || in BOLT DATA n - total number of bolts =8 hef = bolt embedment = 32 || in d = bolt size = 11/2 in BoltType:L Fu = Fy = Special Inspection Provided '. Bolts in an area of cracking SI Factor = 58 ksi 36 ksi 1.3 DESIGN SUMMARY 0.65 TENSION: Bolt Strength in Tension Concrete Breakout Strength in Tension SHEAR: Bolt Strength in Shear Concrete Breakout Strength in Shear INTERACTION: Pu/*Pc = Vu/*Vc = 1 /* ((Pu/Pc)A1.67 -t- (VuA/c )A1.67) = CAP./ SI Factor 567 > 1393 ' > 473 > 476 > 0.49 < 0.73 < 0.68 < DEMAND 447 447 227 227 1 1 1 OK OK OK (Pu/Pss)A2 + (Vu/Vss)A2 =0.85 OK Chavez-Grievesconsulting engineers, int. SHEET NO. 2 PROJECT Ventana SUBJECT Braced Frame 3 CLIENT 0 CALCULATED BY GR CHECKED BY 0 OF JOB NO. A27-210-05 DATE JaivOS DATE 0 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE, NM 87109 PHONE: (505} 344-4080 FAX: [505) 34^6759 ANCHOR BOLT GROUP DESIGN [UBC '97] PG. 2 ANALYSIS BOLT STRENGTH IN TENSION Pss = 0.9*Ab*Fu"n = 738 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = A *4*Ap*(fc)A0.5 - 1811 k where: Ap = 8268 inA2 BOLT STRENGTH IN SHEAR Vss = 0.75*Ab*fut*n = 615 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = X *800"Ab*(fc)A0.5*n = 619 k 10d of free edge Pc=2*phi'c2A2*A'(fc)A0.5*n= NA k < 10d of free edge 1)6,Chavez-Grieves coniulting engineers, inc. SHEET NO. 1 PROJECT Ventana SUBJECT Braced Frame 4 CLIENT CALCULATED BY GR CHECKED BY OF JOB NO. A27-21M5 DATE Jatv-05 DATE 4700 UNCOLN STREET NE SUtTE 102 ALBUQUERQUE. NM B7109 FHONE: (505) 344-4080 FAX: (505) 343-8759 ANCHOR BOLT GROUP DESIGN [UBC '97] USER DEFINED DATA STATUS - 1.03 NG s2 c2 0 0 1 o 0 V 0 ' o c1 -T s1 CONCRETE DATA f c ~ 3000 psi Concrete type: f c reduction factor: 1.00 LOAD DATA *no eccentricity Tu = Vu = 497 k 241 k DIMENSION DATA c1 = concrete edge = 29 in c1' = concrete edge = 29 in c2 = concrete edge = W in c2' = concrete edge = 120 in s1 = bolt spacing = 14 s2 = bolt spacing = 42 BOLT DATA n = total number of bolts = 8 hef = bolt embedment = 32 |] in d = bolt size = 1 1/2 in Bolt Type: L Fu = Fy = Wi Special Inspection Provided F Bolts in an area of cracking SI Factor = 58 36 ksi ksi 1.3 DESIGN SUMMARY 0.65 TENSION; Bolt Strength in Tension Concrete Breakout Strength in Tension SHEAR: Bolt Strength in Shear Concrete Breakout Strength in Shear INTERACTION: Pu/4>Pc = Vu/*Vc = 1 /* ((Pu/Pc)A1.67 + (Vu/Vc )A1.67) = CAP./SI Factor DEMAND 567 > 1286 > 473 > 476 » 0.59 0.78 0.81 < 497 497 241 241 : 1 : 1 : 1 OK OK OK (Pu/Pss)A2 +• {Vu/Vss)A2 =1.03 NG Chavez-Grieves consulting engineer:, inc. SHEET NO. 2 PROJECT Ventana SUBJECT Braced Frame 4 CUEWT 0 CALCULATED BY GR CHECKED BY 0 OF JOB MO. A27-210-05 DATE Jan-05 DATE 0 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE, NM 87109 PHONE: (505) 344-4080 FAX: (505) 343-8759 ANCHOR BOLT GROUP DESIGN [UBC '97] PG. 2 ANALYSIS BOLT STRENGTH IN TENSION I Pss = 0.9*Ab'Fu*n = 738 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = X M*Ap*(f 1672 k where: Ap = 7632 inA2 BOLT STRENGTH IN SHEAR Vss = 0.75*Ab*fut*n = 615 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = X *800*Ab*(f c)A0.5*n = 619 k > 10d of free edge PC = 2*phi*c2A2*A"(f cJ'HJ.S'n = NA k < 10d of free edge Chavez-Grieves consulting engineers, inc. SHEET NO. 1 PROJECT Ventana SUBJECT Braced Frame 5 CLIENT CALCULATED BY GR CHECKED BY JOB MO. A27-210-05 DATE . Jan-05 DATE 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE, NM B7109 PHONE: (505) 344-4080 FAX: (505) 34^6759 ANCHOR BOLT GROUP DESIGN [UBC '97] USER DEFINED DATA STATUS = 0.92 OK c2' i s2 / c2 ' \ i 0 o 1 o < c1 > 0 V 0 r o s1 d" CONCRETE DATA f c = 3000 psi Concrete type: f c reduction factor: 1.00 LOAD DATA *no eccentricity Tu = Vu = 949 k 388k DIMENSION DATA c1 = concrete edge = 53 c1' = concrete edge = 53 c2 = concrete edge = 41 c2' = concrete edge = 41 s1 = bolt spacing = 14 ] s2 = bolt spacing = 46 f BOLT DATA n = total number of bolts = 16 \ hef = bolt embedment = 36 | d = bolt size = 1 1/2 Bolt Type: L. Fu= 58 Fy= 36 W Special Inspection Provided P Bolts in an area of cracking SI Factor = 1.3 ksi ksi DESIGN SUMMARY 0.65 TENSION: Bolt Strength in Tension Concrete Breakout Strength in Tension SHEAR: Bolt Strength in Shear Concrete Breakout Strength in Shear CAP./ SI Factor DEMAND INTERACTION:Pu/*Pc = Vu/Wc = (Pu/Pc)A1.67 + (Vu/Vc)A1.67) = 1135 1710 946 953 0.85 0.63 0.92 > > > > < < < 949 949 388 388 1 1 1 OK OK OK (Pu/Pss)A2 + (Vu/Vss)A2 =0.87 OK Chavez-Grieves consulting engineers, inc. SHEET HO. 2 PROJECT Ventana SUBJECT Braced Frame 5 CLIENT 0 CALCULATED BY GR CHECKED BY 0 OF JOB NO. A27-Z10-05 DATE Jan-05 DATE 0 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE, NM 87109 PHONE: (505) 344-4080 FAX: (505) 343-8759 ANCHOR BOLT GROUP DESIGN [UBC '97] PG. 2 ANALYSIS BOLT STRENGTH IN TENSION Pss = 0.9*Ab*Fu*n = 1475k CONCRETE BREAKOUT STRENGTH IN TENSION PC = A *4*Ap*(f c)A0.5 = 2223 k where: Ap= 10148 in*2 BOLT STRENGTH IN SHEAR Vss = 0.75*Ab*fut*n = 1229 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = A *800'Ab*(f c)*0.5*n = 1238 k 10d of free edge = 2'phi*c2A2'A*(fc)A0.5*n= NA k 10d of free edge (68)Chavez-Grieves consulting engineers, inc. SHEET NO. 1 PROJECT Verrtana SUBJECT Braced Frame 6 CUEWT CALCULATED BY GR CHECKED BY OF JOB NO. A2?-210-05 DATE Jan-05 DATE 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE, NM 87109 PHONE: (505) 344-4080 FAX (505) 343-8759 ANCHOR BOLT GROUP DESIGN [UBC '971 USER DEFINED DATA STATUS a 0.75 OK C21 s2 c2 c1 T" s1 CONCRETE DATA f c = 3000 psi Concrete type: L^ormal Weight f c reduction factor: 1.00 LQADDATA *no eccentricity Tu - 671 k Vu = 253 k DESIGN SUMMARY DIMENSION DATA c1 = concrete edge = 47 d1 = concrete edge = 47 c2 = concrete edge = 72 c2' = concrete edge = 72 s1 = bolt spacing = 14 \ s2 = bolt spacing = 38 ; BOLT DATA n = total number of bolts = 12 ; hef = bolt embedment = 36 i! d = bolt size = 1 1/2* Bolt Type: L Fu = 58 ksi Fy = 36 ksi W-, Special Inspection Provided H Bolts in an area of cracking SI Factor = 1.3 0.65 TENSION: Bolt Strength in Tension Concrete Breakout Strength in Tension SHEAR: Bolt Strength in Shear Concrete Breakout Strength in Shear INTERACTION: Pu/*Pc = Vu/*Vc = 1 /* ((Pu/Pc)A1.67 + (Vu/Vc )A1.67} = CAP./ SI Factor DEMAND 851 > 1594 > 709 > 714 > 0.65 0.54 0.63 671 671 253 253 : 1 : 1 : 1 OK OK OK (Pu/Pss)A2 + (Vu/Vss)A2 =0.75 OK (CG)Chavez-Grieves consulting engineers, inc. 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE, NM 87109 PHONE J505) 344-4080 FAX: <505) 343-B759 SHEET NO. 2 PROJECT Verrtana SUBJECT Braced Frame 6 CLIENT 0 CALCULATED BY GR CHECKED BY 0 OF JOB NO. A27-210-05 DATE Jan-05 DATE 0 ANCHOR BOLT GROUP DESIGN [UBC '97] PG. 2 ANALYSIS BOLT STRENGTH IN TENSION I Pss = 0.9*Ab'Fu*n = 1106k CONCRETE BREAKOUT STRENGTH IN TENSION PC = A *4*Ap*(f c)*0.5 = 2073 k where: Ap = 9460 inA2 BOLT STRENGTH IN SHEAR Vss = 0.75'Ab*fut*n = 922 k CONCRETE BREAKOUT STRENGTH IN TENSION Pc= X *800*Ab*(fc)A0.5*n = 929 k > 10d of free edge PC = 2'phi*c2A2*X*(fc)A0.5*n = NA k < 10d of free edge (58)Chavez-Grieves consulting engineers, int. SHEET NO. 1 PROJECT Ventana SUBJECT Braced Frame 7 CLIENT CALCULATED BY GR CHECKED BY OF JOB NO. A27-210-05 DATE Jan-05 DATE 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE, NM 87109 __ PHONE: (505) 344-4080 FAX (505) 343-6759 __ ANCHOR BOLT GROUP DESIGN [UBC '97] USER DEFINED DATA STATUS = 0.96 f c = 3000 psi Concrete type: I .Normal Weight f c reduction factor: 1.00 LOAD DATA *no eccentricity Fu = 58 ksi Fy = 36 ksi W-, Special Inspection Provided F~ Bolts in an area of cracking SI Factor =1.3 Tu = Vu = 683 k 258 k OK / C21 \ / s2 / C2 \ CC f / (NCRE C1 =TE DATA 3 i s V C r " } Cl'^ DIMENSION DATA c1 = concrete edge = 23 in c1' = concrete edge ~ 23 in c2 = concrete edge ~ 72 in c2' = concrete edge - 72 in s1 = bolt spacing = 14 1 in _ ... . __ -3 . BOLT DATA n = total number of bolts = 1 2 § hef = bolt embedment ~ 36 | in d = bolt size = 11/2 in BoltTvoe-L ASTMF1554(36) J DESIGN SUMMARY 0.65 TENSION: Bolt Strength in Tension Concrete Breakout Strength in Tension SHEAR: Bolt Strength in Shear Concrete Breakout Strength in Shear INTERACTION: Pu/*Pc = Vu/*Vc = 1 /<t> ((Pu/Pc)A1.67 + (Vu/Vc )A1.67) = CAP./ SI Factor 851 > 1112 > 709 > 714 > 0.94 < 0.56 < 0.96 < DEMAND 683 683 258 258 1 1 1 OK OK OK (Pu/Pss)A2 + (Vu/Vss)A2 =0.78 OK (60)Chavez-Grieves Consulting engineers, inc. SHEET NO. 2 PROJECT Ventana SUBJECT Braced Frame 7 CLIENT 0 CALCULATED BY GR CHECKED BY 0 JOB NO. A27-210-05 DATE Jan-OS DATE 0 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE, MM 87109 PHONE: (505)J44-4030 FAX: (505) 543-8759 ANCHOR BOLT GROUP DESIGN [UBC '97] PG. 2 ANALYSIS BOLT STRENGTH IN TENSION I Pss = 0.9*Ab*Fu'n = 1106 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = A *4*Ap"(f c)A0.5 = 1446 k where: Ap = 6600 inA2 BOLT STRENGTH IN SHEAR Vss = 0.75*Ab*fut*n = 922 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = X *800*Ab*(f c)*0.5'n = 929 k 10d of free edge PC = 2*phi*c2A2*X'(fc)A0.5*n = NA k < 10d of free edge Chavez-Grieves consulting engineers, inc. SHEET NO. 1 PROJECT Ventana SUBJECT Braced Frame 8 CUEVT CALCULATED BY GR CHECKED BY JOB NO. A27-210-D5 DATE Jan-05 DATE 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE. NM 87109 PHONE: (505) M4-4Q80 FAX: (505) 34^8759 ANCHOR BOLT GROUP DESIGN [UBC '971 USER DEFINED DATA STATUS B 0.95 OK C21 i s2 'i C2\ V 0 0 1 o C1 > 0 V 0 r Q s1 ^^ Cl" CONCRETE DATA f c = 3000 psi Concrete type: f c reduction factor: 1.00 LOAD DATA *no eccentricity Tu = Vu = 757 k 284 k DIMENSION DATA c1 = concrete edge = 29 in c1' = concrete edge = 29 in c2 = concrete edge = 120 in c2' = concrete edge = 120 in st-= bolt spacing = 14 1 in s2-= bolt spacing = 38 § in BOLT DATA n - total number of bolts = 12 hef = bolt embedment = 36 || in d = bolt size = 1 1/2 in Fu = 58 ksi Fy = 36 ksi 17: Special Inspection Provided rj Bolts in an area of cracking SI Factor= 1.3 DESIGN SUMMARY 0.65 TENSION: Bolt Strength in Tension Concrete Breakout Strength in Tension SHEAR: Bolt Strength in Shear Concrete Breakout Strength in Shear INTERACTION: Pu/*Pc = Vu/*Vc = 1 /* ((Pu/Pc)A1.67 + (Vu/Vc )A1.67) = CAP./SI Factor DEMAND 851 > 1335 > 709 = 714 > 0.87 0.61 0.93 757 757 - 284 284 : 1 : 1 : 1 OK OK OK (Pu/Pss)A2 +• (Vu/Vss)A2 -0.95 OK (CG)Chavez-Grieves consulting engineers, int. SHEET NO. 2 PROJECT Ventana SUBJECT Braced Frame 0 CLIENT 0 CALCULATED BY GR CHECKED BY 0 OF JOB NO. A27-210-05 DATE Jav05 DATE 0 4700 LINCOLN STREET NE SUITE 102 ALBUQUERQUE, NM 87109 PHONE: (505) 344-4080 FAX: (505) 34^8759 ANCHOR BOLT GROUP DESIGN [UBC '971 PG. 2 ANALYSIS BOLT STRENGTH IN TENSION i Pss = 0.9'Ab*Fu*n = 1106k CONCRETE BREAKOUT STRENGTH IN TENSION PC = A *4*Ap*(f c)*0.5 = 1735 k where: Ap = 7920 inA2 BOLT STRENGTH IN SHEAR Vss = 0.75*Ab*fut*n = 922 k CONCRETE BREAKOUT STRENGTH IN TENSION PC = A *800*Ab*(f c)*0.5*n 929 k > 10d of free edge = 2*phi*c2A2'A*(fc)A0-5*n= NA k < 10d of free edge